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ABSTRACT 

 Air-sea-ice interaction observed within the Sabrina Basin, East Antarctica are 

likely widespread along the Antarctica margins, therefore this study is relevant to 

explaining and predicting current mass loss trends in other Antarctic ice shelves and 

glaciers. Water mass structure, mixing history and flow patterns over the continental 

shelf off Sabrina Coast (115 °E - 122 °E) are described using the first observations made 

during the multi-disciplinary U.S. cruise of 2014 and the follow up Australian cruise of 

2015 and based on dynamic topographies at selected levels, property distributions on 

specific isopycnals and levels.  

 Two large cyclones are inferred over the shelf, an elongated one connecting slope 

waters to the eastern end of the escarpment, and a zonally-oriented cell connecting the 

westward boundary current along the northern escarpment to the interior of the Dalton 

Basin. Unlike the available Modified Circumpolar Deep Water near the shelf break, the 

lighter Thermocline Water is able to enter the shelf over the Dalton Basin sill (~450 m), 

progressively deepening within the bottom layer temperature maximum of an eastern 

boundary current found against the western flank of the Dalton Plateau (450 m – 550 m). 

Near the southern end of the Plateau its densest remnant branches westward and further 

sinks to depths greater than 550 m supplying the warmest bottom layer within the 

southern limb of the Dalton Basin cyclone. Relatively lighter Thermocline Water (γn = 

27.90 kg m3) lying at about 150 m near the shelf break extends to over the escarpment at 

450 m, and supplies multiple trenches connected to Moscow University Ice Shelf with 

source water warmer than -1.7 °C at 560 m available for basal melt. Directly above this 
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inflow, a prominent Meltwater-bearing outflow is observed at the Central Trench of this 

Ice Shelf over a 300-m thick layer with water colder than -1.8 °C and fresher than 34.22 

(γn < 27.90 kg m3), whose downstream influence throughout the Sabrina Basin cyclonic 

flow is evident by a thickened thermostad layer and much deeper interior thermocline 

than over the eastern shelf. Ventilation of the oceanic Thermocline Water takes place 

along a tight anticyclonic loop west of the Dalton Iceberg Tongue. Here, a relatively 

warm (θ > -1.83 °C) and saline (S > 34.30) southeastward inflow at 200 m (γn > 27.90 

kg m3) impinges onto the northern Tongue, and emerges off its tip as a fresh (S < 34.22) 

and lighter (γn < 27.80 kg m3) plume injected northwestward into the Antarctic Slope 

Current. 
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1. INTRODUCTION 

1.1. Changing Antarctic Cryosphere  

 The largest volume of fresh water on Earth is stored in two continental ice sheets 

on Antarctica, the West Antarctic Ice Sheet (WAIS) and the East Antarctic Ice Sheet 

(EAIS), equivalent to a potential global sea level rise (SLR) of 3.3 m and 47 m [IPCC, 

2013]. The interaction of the ocean with the edges of these ice sheets is of special 

interest because, through basal melt, the effects impact ice sheet stability and SLR. A 

continental ice sheet is considered stable if it gains as much mass in the interior, through 

precipitation, as it loses around the edges, through basal melt and calving. Ice streams 

flow downslope from the interior toward the ocean, supplying mass to floating glaciers 

and ice shelves. The latter provide enough backpressure, from fringe buttressing, to 

maintain continental ice discharge at a steady state; otherwise it could potentially 

accelerate SLR [Dupont and Alley, 2005; Feldmann and Levermann, 2015].  

Increased heat content of the Earth Climate System over the past few decades has 

lead to warming of the upper ocean [Abraham et al., 2013; IPCC, 2013]. The Southern 

Ocean has warmed at a decadal rate more than double the average global rate [Gille, 

2002; IPCC, 2013]. Potential consequences of this additional available oceanic heat are 

the recent fall of ice steams surface and increase in basal melt of ice shelves at some 

Antarctic margins [Davis et al., 2005; IPCC, 2013; Liu et al., 2015; Prichard et al., 

2012; Shepherd et al., 2004; Rignot, 2013]. 

 The WAIS shows some of the highest estimated ice stream velocities, and rates 

of basal melt and elevation loss in Antarctica [Davis et al., 2005; Liu et al., 2015; Jacobs 
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et al., 2011; Rignot, 2013; Rignot and Thomas, 2002]. Evidence of how rapidly WAIS 

may adjust to future atmospheric and oceanic temperature changes was observed during 

the week-long collapse of the Larsen B Ice Shelf (60°W) in 2002, in spite of the 

available Circumpolar Deep Water (CDW) being the coldest (~θ = 0.5 °C; Figure 1a) 

around Antarctica [Whitworth et al., 1998]. The contribution to SLR was immediate as 

the result of enhanced discharge from local ice streams [Scambos et al., 2004]. CDW 

inflows to the southeast Pacific shelf are the warmest (θ = 2 °C). A relatively thick 

bottom layer with θ > 1 °C extends uninterrupted to the entrance of Pine Island Glacier 

(PIG) sub-ice cavity [Rignot and Thomas, 2002, Jacobs et al., 2011]. In the 

Bellingshausen-Amundsen Sea region (130°W – 70°W), the poleward oceanic heat 

transport controls the overall stability of WAIS [Rignot, 2013]. 

 One of the most climate-relevant areas of the EAIS is the Aurora Subglacial 

Basin, because it includes ice streams feeding the Totten Glacier (TG) and Moscow 

University Ice Shelf (MUIS), whose combined SLR potential amounts to 6.9 m. These 

ice streams show similar changes in velocity, elevation loss, and melt rates to those in 

the Amundsen Sea [Davis et al., 2005; Khazendar et al., 2013; Liu et al., 2015; Rignot 

and Thomas, 2002; Wingham et al., 2009], suggesting increased accessibility of oceanic 

heat to the sub-ice cavities found off Sabrina Coast (115 °E – 122 °E; Figure 1). 

Pritchard et al., [2012] shows the warmest ocean bottom temperatures with access to 

EAIS near TG/MUIS, apparently directly inshore of a measured bottom water inflow 

with θ =1.2 °C near the shelf break [Bindoff et al., 2011]. However, the lack of direct 

observations over this margin prevents any attempt to explain the regional air-sea-ice 
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responses to ongoing climate change. In fact, the first-time shipboard observations in 

this area were obtained during the austral summers of 2014 and 2015. Therefore, the 

newly available data sets warrant initial studies of ocean circulation and stratification 

over the continental shelf off Sabrina Coast, and the inferred interactions of local water 

masses with the underlying bottom topography and surrounding Dalton Iceberg Tongue 

(DIT), MUIS and TG. 
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(a) 

(b) 

Figure 1. Map of bottom (a) potential temperature, (b) salinity, and (c) neutral density for 
all stations inshore of the 3000-m isobath shown by the thin gray line. Red, blue and 
green boxes centered at 110°W, 140°E and 120°E include stations in the Amundsen Sea, 
Mertz Basin and Sabrina Basin. 
 

(c) 
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2. STRATIFICATION OF ANTARCTIC MARGINS 

2.1. Cross-slope Exchange 

The most voluminous water mass in the Southern Ocean is the CDW carried 

eastward around Antarctica by the Antarctic Circumpolar Current (ACC) [Worthington, 

1981]. As the southern boundary of the ACC extends over the upper slope in the 

Bellingshausen Sea and Drake Passage (100°W – 60 °W, Figure 1a-c), extremely warm, 

saline and oxygen-poor CDW floods the local shelves. Where the path of the ACC is far 

from the continental margins, CDW drawn from the ACC circulates cyclonically within 

large subpolar gyres in the Weddell-Enderby Abyssal Plain, the Australian-Antarctic 

Basin, and the Amundsen Abyssal Plain. Here CDW is clearly identified by relatively 

high temperatures (below a θ-max) at subsurface to intermediate levels, between the 

much colder Antarctic Surface Water (AASW) above, which includes the thin horizontal 

Thermocline Water (TW) layer between the θ-min and θ-max, and the Antarctic Bottom 

Water (AABW) below (γn > 28.27 kg m3). Poleward-flowing eastern limbs (30°E - 40 

°E, 120°E -130 °E, 140°W – 150°W, Figure 1a) bring relatively warmer CDW to the 

shelf sectors immediately downstream. Except for the Bellingshausen and southern 

Drake Passage sector, the diving of the oceanic thermocline at the upper continental 

slope is indicated by a strong subsurface (200 m -600 m) property gradients (water 

depths < 800 m) known as Antarctic Slope Front (ASF) [Jacobs, 1991; Schroder and 

Fahrbach, 1999; Whitworth et al., 1998; Bindoff et al., 2001]. Here CDW mixes with a 

thickened layer of AASW inshore, attenuating the extreme characteristics of local TW 

and CDW available to continue poleward across the shelf, as Modified TW and CDW 
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(MTW and MCDW). Thus the upper (lower) limit of local CDW (TW) available near 

the slope varies regionally around Antarctica; they are defined by the neutral density (γn) 

surfaces of the θ-max (θ-min) observed at the slope’s 3000-m isobath [Whitworth et al., 

1998]. 

2.1.1. Dominant Oceanic Input 

The Amundsen Sea (120°W - 100 °W) shows some of the most prominent 

poleward extent and influence of CDW. Local CDW (TW) at the lower portion of the 

slope is warmer than 1.9 °C (θ-max at γn = 27.95 kg m3, green station in Figure 2a-b) 

(colder than -1.2°C at γn < 27.60 kg m3), but it cools (freshens) to 1.2 °C as it overrides 

the shelf break sills. The oceanic thermocline is slightly tilted across the shelf break, i.e. 

poleward from about 150 m to 350 m, which facilitates oceanic inputs to extend farther 

inshore within a relatively thick bottom θ-max layer with θ > 1 °C (Figure 2c) [Jacobs et 

al., 2011; Jacobs and Hellmer, 1996; Jenkins et al., 2010; Payne et al., 2007; Schodlok 

et al., 2012] (Figure 1a-c). After minimum cross-shelf cooling (θ = 0.5 °C), freshening 

(S = 0.05) and deepening (depth = 250 m) [Jacobs et al., 2011], the source bottom water 

to basal melt continuing below the PIG is about 3.5 °C warmer than the in situ freezing 

point.  

At intermediate depths (200 m – 400 m) at the ice edge a portion of an 

outflowing buoyancy plume incorporates local Meltwater (MW) [Arrigo et al., 2012; 

Mankoff et al., 2012; Yager et al., 2012]. In TS space the signal of attenuating MW is 

detected about 300 km north of the ice front, as indicated by the straight portion of 

abnormally warm local TW (MTW).  
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Figure 2. (a) Location of stations over the Amundsen Sea margins; (b) scatter plot of their 
potential temperature vs. salinity, with thin cyan lines being the traces of selected neutral 
density surfaces; and (c) vertical distribution of potential temperature for the red stations 
shown in (a). Thick white contours are of selected neutral density surfaces. The green 
station shown in (a-b) characterizes the warmest available CDW, whereas red stations 
depict the cross-shelf water mass structure. 

(c) 

(a) (b) 
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2.1.2. Constrained Access by Marginal Waters  

 Intrusion of CDW to most other sectors is often limited by the production rate 

and circulation pattern of lighter and denser waters found over the shelf [Whitworth et 

al., 1998]. Near other large shelf embayments (Ross, Mertz, Prydz, and Weddell Seas) 

and along the narrower continental shelves in between, poleward intrusion of TW and 

MCDW are dynamically regulated by the Antarctic Slope Current associated to a deep 

expression of the ASF, as it interacts with the local sills near the self break. 

 Inflow to the shelf off Sabrina Coast has been inferred from interpretation 

[Williams et al., 2011] of limited observations at 120 °E from the 1996 BROKE survey 

(red stations in Figure 3a-b). The warmest CDW (TW) available at the deeper slope is 

warmer (colder) than 1.4 °C with a θ-max at γn = 28.08 kg m3 (-1.8°C with a θ-min at γn 

< 27.90 kg m3) (green station), whereas the MCDW found at the shelf break (Sta. 83) 

just south of the ASF (Stas. 84-89) is colder than 0.7°C. Unlike in the Amundsen Sea, 

there is a prominent deep-reaching (150 m - 450 m) local expression of the ASF 

effectively blocking the poleward reach of local MCDW to the floating ice shelves and 

glaciers with SLR potential (Figure 3c). The slightly tilted thermocline at the shelf break 

of the Amundsen Sea clears the sill by about 250 m, whereas at the Sabrina Basin 

(120°E) it dives about 300 m into sill over a similar distance (20 km). 

  



 

 9 

 
 

 Deep expressions of the ASF are observed at the eastern Ross and Weddell Seas, 

where sharp poleward bends of the coastline [Carmack & Foster, 1975] and prevailing 

easterly winds [Deacon, 1933; Deacon, 1937; Sverdrup, 1954] facilitate the transport of 

AASW from near the shelf break to vast floating ice shelves along the Antarctic Coastal 

Current. Therefore, strong topographic steering by the massive northward-protruding 

Dalton Iceberg Tongue (DIT) could also channel slope waters along its western flank 

toward MUIS/TG. 

Figure 3. (a) Location of stations over the margins off Sabrina Coast; (b) scatter plot of 
their potential temperature vs. salinity, with thin cyan lines being the traces of selected 
neutral density surfaces; and (c) vertical distribution of potential temperature for the red 
stations shown in (a). Thick white contours are of selected neutral density surfaces. The 
green station shown in (a-b) characterizes the warmest available CDW, whereas red 
stations depict the cross-shelf water mass structure. 

(c) (a) (b) 
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The effective blocking of sea-ice drift from the east by the DIT promotes the 

development of a large ice-free area in the eastern basin off the Sabrina Coast known as 

the Dalton Polynya (DP; Figure 4a). Prominent and persistent coastal polynyas like the 

Ross Sea Polynya, the Terra Nova Bay Polynya, and the Mertz Polynya (MP; Figure 4b) 

are normally sustained by katabatic winds, enhanced upwelling of relatively warmer 

subsurface waters, and export of newly-formed sea-ice from its interior. Even though the 

total areal extent of coastal polynyas represents a small portion of the Antarctic shelf, 

they play a major climatic role by influencing regional heat and moisture fluxes, water 

mass transformations, gas exchange, and deep ocean ventilation [Barber and Massom, 

2007; Locarnini, 1994; Massom et al., 1998; Smethie and Jacobs, 2005; Stössel et al., 

2002; Tamura et al., 2007; Willmott et al., 2007]. 

 

  

Figure 4. Sea ice distribution off the (a) Sabrina and (b) Adelie coasts on 26 November, 
2015 from a MODIS mosaic of visible light imagery. Solid black (white) areas indicate 
sea surface waters devoid of (entirely filled) sea ice. 

(a) (b) 
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 Sea ice production within coastal polynyas, so-called “salt factories”, can 

transform local upper waters (AASW, upwelled TW or MCDW) into much denser types 

of Shelf Water (SW; γn > 28.27 kg m3). SW sinks to equilibrium levels, most of the time 

to the seafloor beneath polynyas and filling the deepest cross-shelf channels, as it is the 

densest water found over the shelf [Whitworth et al., 1998]. Over shelves where SW fills 

the bottom layer of shelf troughs, e.g. in the western Ross and Weddell Seas, the lighter 

waters above are pushed upward to form a dome-like shape, which is consistent with 

cyclonic geostrophic circulation relative to a deeper reference level. In turn interior 

cyclonic cells favor intermediate inflows of TW and MCDW along the eastern limbs 

[Fahrbach 1998; Schroder and Fahrbach, 1999]. Progressive inshore shoaling of 

MDCW to near surface levels provides additional heat and salt to the southwestern 

sectors, e.g. in the Ross Sea where the Terra Nova Polynya opens in early spring 

[Newsom, Francavillese, and Tierney, 1965]. 

Source CDW available off the Adelie Coast warmer than 1.4 °C (θ-max at γn = 

28.08 kg m3, green and blue stations in Figure 5a-b) [colder than -1.7°C at γn < 27.90 kg 

m3] shows identical characteristics to those off the Sabrina Coast. Its cross-ASF mixing 

with AASW forms MCDW (θ =0.5 °C) that progressively shoals toward the interior of 

the Mertz Depression. Further attenuated MCDW (θ < -1 °C) over the inner shelf lies 

within a thin subsurface layer, and it is transformed to denser SW through buoyancy loss 

(heat loss and gain in salt content) within the MP. Some SW inflows underneath the 

Mertz Glacier and, through basal melt, supplies outflow of Ice SW (θ < -2 °C). Cyclonic 
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flow of local SW to near the shelf break produces the newly-formed Antarctic Bottom 

Water (AABW; γn > 28.27 kg m3) observed sinking downslope at this location. 

Though inshore access of MCDW to the MUIS and TG appears limited at the 

eastern side of Sabrina Basin, some portion of the TW above could clear the sill and 

continue farther south into the central and western shelf regions off the Sabrina Coast, in 

particular if deep cross-shelf trenches were carved during past advances and retreats of 

EAIS [Jacobs et al., 2011; Jacobs and Hellmer, 1996; Orsi & Wiederwohl, 2009]. 

 

  

 
 
  

Figure 5. (a) Location of stations over the margins off Adelie Coast; and (b) scatter plot 
of their potential temperature vs. salinity, with thin cyan lines being the traces of selected 
neutral density surfaces. The green and blue stations characterizes the warmest available 
CDW, whereas red stations depict the cross-shelf water mass structure. 

(a)                                                                                (b) 
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3. NEW OBSERVATIONS OFF SABRINA COAST 

As part of the U.S. Antarctic Program and funded by the National Science 

Foundation, a multidisciplinary scientific expedition to the continental margin off 

Sabrina Coast was carried out aboard the U.S. Research Vessel Icebreaker Nathaniel B. 

Palmer from January 29th to March 16th, 2014 (NBP1402). A collaborative cruise funded 

by the Australian Antarctic Division reoccupied the area between December 5th, 2014 

and January 20th, 2015 aboard Research Vessel Icebreaker Aurora Australis (AU1402). 

Data collected during these cruises include routine underway measurements of seafloor 

bathymetry, shipboard Acoustic Doppler Current Profiling (ADCP), and surface 

seawater temperature and salinity. Full water column profiling of physical properties 

consisted of stationary casts with a Seabird Niskin bottle Rosette equipped with 

redundant conductivity-temperature-depth (CTD) sensors, and the original use in 

Antarctic waters of an Oceanscience Underway CTD system (uCTD) with a sampling 

rate of 16 Hz. A summary of the data collection, reduction, quality control, and 

application are described in the following sections. 

3.1. Bathymetry 

 Water depth was measured during NBP1402 with two hull-mounted sonars, a 

multibeam system and a single-ping Knudsen system. One-minute multibeam data was 

gridded to ~25-m resolution (Figure 6a), whereas Knudsen data from AU1402 was 

averaged and filtered to 1-minute intervals (Figure 6b). Due to the significant (46%) 

overlap of surveyed areas during both cruises, only the higher resolution multibeam data 

were combined to unique 1-minute Knudsen data, e.g. at the front of TG. All data were 
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interpolated using a nearest neighbor method to a custom, uniform 30-m longitude-

latitude grid modeled after the raw multibeam resolution. The blended dataset was then 

objectively mapped (optimal least squares estimates) to a 600-m equal-area grid in polar 

stereographic projection with circular influence areas of variable radial lengths 

proportional to the local water. Heavy ice restricted access to the western basin, where 1-

minute altimeter bathymetric data was similarly (nearest neighbor) interpolated to our 

adopted 600-m grid (Figure 6a-b). 

 Special care was taken to fill in the gaps within the adjoining band indicated by 

the white area surrounding the NBP1402 and AU1402 source datasets, as it was done by 

optimal mapping of all source bathymetric datasets using circular ellipses of influence 

(Figure 6-7). A map of the new blended bathymetry at a 600-m resolution is shown in 

Figure 7. 
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Figure 6a. Available bathymetric observations off Sabrina Coast, derived from 30-m 
gridded multibeam data measured during the 2014 U.S. NBP1402 cruise track 
(southeastern sector) and from 1-minute altimetry over the northwestern sector, with a 
schematic of the ellipse of influence (open circles) for optimal mapping. 



 

 16 

  

Figure 6b. Available bathymetric observations off Sabrina Coast, derived from 30-m 
averages of single-pin Knudsen soundings along the 2015 Australian AU1402 cruise 
track (southeastern sector) and from 1-minute altimetry over the northwestern sector, 
with a schematic of the circular ellipse of influence (open circles) for optimal mapping. 
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Figure 7. New bathymetric chart off Sabrina Coast derived from a gridded field with 600-
m resolution using circular ellipses of influence (open circles) for optimal mapping.. 
Labeled place-names indicate the main topographic features, ice shelves and glaciers 
adopted in this study. 
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3.2. Shipboard Acoustic Doppler Current Profiling 

Underway 1-min current profiling down to 1000 m was done during both cruises 

using Ocean Surveyor ADCPs (38 kHz, 75 kHz, 150 kHz) with maximum vertical 

resolution of 8 m. Initial quality control was completed using the standard Common 

Ocean Data Access System (CODAS) ADCP software developed at the Data 

Acquisition Center at University of Hawaii. This first step reduced the data set to a 

cleaned ADCP at 5-minute binned ensembles. More than 7000 (3500) 5-minute 

ensembles were preserved from NBP1402 (AU1402) (Figure 8). Tidal variability 

intrinsic to ADCP data was estimated using Oregon State University Tidal Prediction 

Software, and removed from 5-min data bins, although it proved to have an insignificant 

affect on the currents main direction and magnitude; thus, we conclude that tidal 

variability on ADCP circulation patterns derived for this region is negligible. 

 Antarctic data processing usually demands additional attention due to influences 

from the harsh environment. For example, questionable quality ADCP data is expected 

during slow transects through sea ice where acoustic interference becomes problematic 

or while stationary during science deployments. Thus, only measurements taken at ship 

speeds over 2 knots were further processed, which reduced the working dataset by 50%. 

To remove outliers from the working dataset an ad-hoc variance based filtering of 

ensembles located within 10 nm along the cruise track was applied, initially level-wise 

against two standard deviation envelopes (Figure 9) and then against entire profile 

standard deviations (inset of Figure 9). Individual data points falling outside these either 

of these envelopes were removed from our source dataset. Finally, to address data gaps 
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and to reduce the shear number of cleaned individual profiles (4974), a standard binning 

at 1.25 nm intervals along the track was applied. The spatial distribution of binned 

ensembles is shown by the white dots in Figure 10; the 1.25 nm spacing is ideal for 

combined analysis of hydrographic data, specifically for the computation of adjusted 

geostrophic flow at synoptic sections of CTD profiles made at average spacing of 2 nm.

 Unprecedented coverage of high-resolution data resulted from underway 

profiling (ADCP and uCTD), and warranted the mapping of fields to the same 600-m 

grid used for the new bathymetry described above. All profile data were first 

interpolated to standard depths and to a subset of representative neutral density surfaces. 

The desired spatial domain was divided into seven sub-regions determined by the 

characteristics of the underlying seafloor topography, regional water mass properties and 

circulation regimes. This included the regional selection of size and orientation of 

ellipses of influence applied during optimal mapping, as listed in (Table 1) and portrayed 

in Figure 10. 

 
Run Region Offshore East Southeast Southwest Northwest West Hole 

 Color Blue Red Green Magenta Black Cyan Yellow 

 Area 51685800 100306 71022 57865 11250 59107 3029 

1 Major Axis (km) 48.0 5.50 5.50 5.50 5.50 12.0 5.50 

 Minor Axis (km) 9.60 12.0 12.0 5.50 5.50 5.05 5.50 

 Angle (°) 20.0 0 -40.0 0 0 0 0 

2 Major Axis (km) 192.0 22.0 22.0 22.0 22.0 48.0 48.0 

 Minor Axis (km) 38.4 48.0 48.0 22.0 22.0 22.0 22.0 
 
  Angle 20.0 0 -40.0 0 0 0 0 

Table 1. Characteristics of adopted regional parameters for optimal mapping of property fields.  
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Figure 8. Spatial distribution of all available current profiling data off Sabrina Coast, 
corresponding to 5-minute ensembles of shipboard ADCP measurements made during the 
2014 U.S. NBP1402 (red dots) and 2015 Australian AU1402 (blue dots) cruises. 
 



 

 21 

  

Figure 9. Example of the two-stage quality control of 5-min ADCP data. The original 
individual velocity profiles for the numbered ensembles are shown with color lines; and 
rejected data points in each stage are indicated by the black circles. The light (dark) gray 
shaded envelope shown in the full (inset) frame plot corresponds level-wise (full profile)  
± one standard deviations calculated using ten adjacent 5-min ensembles along the cruise 
track. 
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Figure 10. Adopted scheme for the optimal mapping of source ADCP data, the 1.25 nm 
along track averages indicated by the white dots, off Sabrina Coast. Particular lengths and 
orientation of ellipses of influence (gray shapes) were selected for seven sub-regions 
(colored polygons), as listed in Table 1. 
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3.3. Temperature and Salinity Profiling 

 A total of 120 and 40 underway profiles of temperature, salinity, and pressure 

down to 1300 m were completed during NBP1402 and AU1402. A similar number of 

conventional stationary CTD profiles were occupied (15 and 108 on NBP1402 and 

AU1402; Figure 11). After in-house quality control, a total of 123 (34) uCTD profiles 

from NBP1402 (AU1402) and 80 CTD profiles from AU1402 remained in the working 

dataset. Large offsets between duplicate CTD sensors in the rosette deployed during 

NBP1402 deemed data from the 15 CTD casts in that cruise unusable for the purpose of 

this study. In total, including BROKE and historical stations, the 232 hydrographic casts 

shown in Figure 11 represent the source hydrographic data in the analyses to follow.  

 Water mass analysis follows the classical method of comparing characteristic T-

S diagrams at the station locations [Helland-Hansen, 1916]. Isentropic analysis of 

optimally mapped property fields on selected neutral density surfaces (kg m-3) is used to 

describe the mixing of water masses along their spreading path [Jackett & McDougall, 

1997; Whitworth et al., 1998; Orsi et al., 1999]. Additional mapping of properties at 

level surfaces complements the regional characterization and spatial distribution of water 

mass mixing and flow paths. Property and velocity vertical distributions along uCTD 

sections provide details on the stratification near the continental slope, across the central 

basin and at the Central MUIS Trench. 

 Profiled seawater properties, ADCP velocity, and derived neutral density and 

geostrophic baroclinic velocity were objectively mapped on a 3 m (horizontal) x10 m 

(vertical) grid along each vertical section. Baroclinic velocity profiles were individually 
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adjusted at each station pair with measured ADCP velocity interpolated at the 

corresponding reference level. 

 

  

Figure 11. Location map for stations off Sabrina Coast occupied during the 2014 U.S. 
NBP1402 and 2015 Australian AU1402 cruises; with underway and stationary CTD 
profiling sites indicated with open and solid circles. Thick lines spanning numbered 
stations correspond to the vertical sections shown in Figures 15-16. 
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4. NEAR SURFACE CIRCULATION 

The depth level with the largest number of quality controlled source ADCP data 

(200 m) is selected to describe the flow pattern and intensity of the near-surface 

circulation in the Sabrina Basin (Figure 12). The most influential topographic features 

(Figure 7) on the inferred circulations at 200 m are the Dalton Plateau (DPL, < 400 m) 

and the Dalton Bank (DB, < 500 m), with sill of about 350 m (120.8 °E, -65.6 °S) and 

450 m (120.5 °E, -65.7 °S). Along the ice front a broad seafloor band, so-called 

basement or escarpment, is characterized by exposed bedrock with multiple deep (> 

1000 m) and narrow rift fractures and trenches randomly oriented, that connect the 

subglacial cavities with the interior of the Dalton Depression (DD; > 600 m). 

The main near surface current illustrated in Figure 12 is the nearly poleward 

eastern boundary current connecting DB’s sill to the Central MUIS Trench (119 °E), 

approximately following the 450-m isobath along the western flank of DPL. An 

elongated anticyclonic cell is aligned with and around the top (< 300 m) of the DPL. 

Multiple northwestward streams are inferred at the MUIS and TG ice front, the strongest 

of which are located over the Central MUIS Trench. A small cyclonic cell is located 

over the DD. Off to the west of DIT there is a prominent northwestward outflow across 

the shelf break, some of which appears to return south within a tight anticyclonic cell 

centered at 120.6 °E and -65.75 °S. 
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Figure 12. Map of current velocity at 200 m derived from 0.04° averages of objectively 
mapped ADCP data at 600-m resolution. 
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Next the circulation patterns at 200 m derived from direct ADCP measurements 

described above are compared to those inferred indirectly from the application of the 

geostrophic method. Assuming a deeper reference level throughout the distribution of 

neutral density at 200 m shown in Figure 13, cyclonic (anticyclonic) flow is indicated 

around centers of relatively high (low) density values, i.e. around domes (troughs) of 

isopycnals topography. A large cyclonic flow dominates the circulation pattern in Figure 

13, with a strong eastern boundary current roughly following the 450-m isobath, in close 

agreement with the current’s path indicated by the gridded velocity field based on direct 

ADCP measurements (Figure 12). Further agreement between these two independently 

derived maps of near surface circulation is apparent at the isolated anticyclonic cell 

located northwest off the DIT tip and centered at γn < 27.80 kg m3. A similar 

northwestward stream is found over the Central MUIS Trench (119°E) extending into 

the same cyclonic cell at the DD.  
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Figure 13. Neutral density at 200 m derived from CTD data objectively mapped on a 600-
m grid. Black dots are the source hydrographic stations. 
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5. WATER MASS STRUCTURE AND MIXING HISTORY 

5.1. Input and Fate of Oceanic Thermocline Water 

Inspection of the T-S scatter for all NBP1402 and AU1402 CTD profiles (Figure 

14) reveals a remarkable contrast between the stratifications in the Mertz and Sabrina 

basins, in spite of both areas having almost identical geographical and oceanographic 

setup. Available CDW at the slope of both regions has the same characteristics, but there 

is no evidence of MCDW inflows along the eastern boundary current off DIT, nor 

elsewhere across the eastern Sabrina Basin.  

The warmest and densest input to this basin has characteristics of relatively 

lighter TW (γn < 28.05 kg m3), as effectively controlled by the shelf break sills. Local 

MTW is found north of the sill with θ > 0.5 °C (see red curves in Figure 3b), but a much 

attenuated signal is found within the bottom layer farther downstream as illustrated by 

the progression of TS curves (Figure 14) for stations at the three sections shown in 

Figure 12. Potential temperature, salinity and adjusted geostrophic velocity at each of the 

Basin and MUIS sections are shown in Figure 15a-c and Figure 16a-c. Relatively warm 

θ > 0 °C (cyan curves in Figure 14) southward-flowing MTW is found within the bottom 

(350 m – 550 m) layer at the eastern (left) end of the Basin section (Figure 15a-c). 

However, it is not the densest portion of this MTW inflow that actively interacts with the 

continental ice farther to the south. The green curves in Figure 14 show that much colder 

MTW (θ ≤ -1.6 °C) fills the bottom layer of the Central MUIS Trench (Figure 16a-c).  

However an apparent inflection at about θ ~ -1.7 °C in these stations characteristic 

diagrams points to source water for MUIS basal melt with γn ~ 27.90 kg m3.   
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Figure 14. Scatter plot of potential temperature vs. salinity for stations off Sabrina Coast 
occupied during the 2014 U.S. NBP1402 and 2015 Australian AU1402 cruises. Colored 
curves correspond to selected profiles along each vertical section: cyan for Basin and 
green for MUIS. Red dots correspond to the 1996 BROKE CTD stations. 
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The relief of this isopycnal (Figure 17a), when interpreted with respect to a 

deeper reference level, portrays the geostrophic flow of MTW: shelf input of MTW 

happens at intermediate levels (~300 m) clearing the DB’s 450-m sill; it continues 

directly southward along the eastern boundary current; it turns westward at the eastern 

end of the escarpment and thereafter it approximately follows its northern flank at ~450 

m; it branches poleward descending into the Central MUIS Trench to supply the sub-

glacial cavity with source water for melting at 560 m with θ ~ -1.7 °C (Figure 17b); 

farther to the west of this trench, along the escarpment’s southern boundary current, it 

similarly supplies the Totten Glacier Trench but with θ ~ -1.6 °C at 580 m; a cyclonic 

interior recirculation of MTW is indicated at depths of about 320 m – 420 m within the 

DD, with a relatively warmer southern limb (θ > -1.77 °C, Figure 17a-b). 
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Figure 15a. Potential temperature in a vertical section across the Dalton Depression. 
Particular isopycnals are indicated with heavy white lines. 
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Figure 15b. Salinity in a vertical section across the Dalton Depression. Particular 
isopycnals are indicated with heavy white lines. 
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Figure 15c. Adjusted geostrophic velocity temperature in a vertical section across the 
Dalton Depression. Particular isopycnals are indicated with heavy white lines. 
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Figure 16. (a) Potential temperature in a vertical section in front of MUIS. Particular 
isopycnals are indicated with heavy white lines. (b) Salinity in a vertical section in front 
of MUIS. Particular isopycnals are indicated with heavy white lines. (c) Adjusted 
geostrophic velocity in a vertical section in front of MUIS. Particular isopycnals are 
indicated with heavy white lines. 

(b) (c) (a) 
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Figure 17a. Depth of the 27.90 kg m3 neutral density derived from CTD data objectively 
mapped on a 600-m grid. 
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Figure 17b. Potential temperature of the 27.90 kg m3 neutral density derived from CTD 
data objectively mapped on a 600-m grid. 
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5.2. Input and Fate of Basal Meltwater 

The MUIS vertical section (Figure 16a) clearly shows a major intermediate 

outflow of basal MW (150 m - 450 m) within a lighter layer than the source MTW (γn < 

27.90 kg m3) described above. It is indicated by waters with below surface freezing point 

potential temperatures (θ < -1.95 °C) at density levels above the MTW (γn > 27.90 kg 

m3). The downstream cyclonic circulation of this MW-bearing outflow is observed at the 

Basin section (Figure 15a-c), where it appears as a 300-m thick westward-flowing layer 

(θ < -1.85 °C) at Stas. 60-64 and its attenuated (θ < -1.8 °C) southeastward return at Stas. 

32-36. 

Localized buoyant plumes of MW-bearing waters are clearly indicated on 

property maps at 200 m (Figure 18a-b and Figure 13) at the small areas with γn < 27.80 

kg m3 and S < 34.22, depicting northwestward injection at the Central MUIS Trench (θ > 

-1.95 °C) and off the tip of DIT (θ > -1.8 °C). The latter relatively warmer output is 

consistent with the tight anticyclonic loop inferred from the 200-m ADCP velocity 

distribution (Figure 11). 

At 200 m, local MTW (27.90 kg < γn < 28.08 kg m3) available at the slope (θ > -

1.7 °C and S > 34.32) turns southward across the shelf break with θ > -1.83 °C and S > 

34.30 over the DB sill, and extends southeastward reaching to the DIT front near 66 °S 

with θ > -1.82 °C and S > 34.25. From this location, a conspicuous northward extension 

of anomalously warm and salty MTW (γn > 27.83 kg) with origin in the oceanic domain 

impinges at the base of the northern DIT (65.85 °S). This is the source water for DIT 
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melt, whose northwestward export of MW bearing AASW (S < 34.22 and γn < 27.80 kg 

m3) ventilated the oceanic TW while it completes the anticyclonic loop described earlier.  

  

Figure 18a. Potential temperature at 200 m derived from CTD data objectively mapped 
on a 600-m grid. 
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Figure 18b. Salinity at 200 m derived from CTD data objectively mapped on a 600-m 
grid. 
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6. SUMMARY AND CONCLUSIONS 

6.1. Geostrophic Flow 

Descriptive representations of the basin-scale time-averaged (2014-2015) 

baroclinic circulation of the continental margins off Sabrina Coast, East Antarctica are 

given by the dynamic topographies at 150/350 db, 350/500 db, and 500/600 db shown in 

Figure 19. The 150/350 db dynamic topography shows a general cyclonic surface 

circulation expressed by multiple well-developed troughs in dynamic heights of various 

sizes and orientation (Figure 19a). A north-south elongated cyclone along west of the 

DIT connects slope waters near 120 °E to the eastern end of the escarpment, and it 

includes a strong interior poleward boundary current extending from 66 °S to 66.5 °S.  

A zonally-oriented cyclone includes a westward-flowing boundary current along 

the northern escarpment and its interior recirculation within the DD. Southward flow of 

surface water into multiple deep trenches across the escarpment are indicated at all three 

levels. 

6.2. Far Fetch of Cold Thermocline Water 

The available MCDW near the shelf break is blocked by the sills of the DPL (350 

m) and DB (450 m). Less dense MTW is able to extend over the sills, to continue 

southward within a bottom temperature maximum layer along an eastern boundary 

current where its signal progressively attenuates and deepens: it reaches the eastern base 

of the escarpment (θ > -0.2 °C, γn = 28.00 kg m3) near 500 m, and sinks to the DB where 

it recirculates at depths greater than 500 m.  
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MTW with γn = 27.90 kg m3 lying near 150 m at the shelf break is found at about 

450 m over the northern escarpment, from where it descends further into the multiple 

trenches connected to MUIS. It supplies the source water with θ > -1.7 °C lying near 560 

m at the Central MUIS Trench (Figure 16, Figure 17b, Figure 19c) that supports basal 

melt inferred farther to the south.  

6.3. Localized Basal MUIS Meltwater Plumes 

At the Central MUIS Trench there is an intermediate export of MW-bearing 

AASW (Figure 19b) indicated by θ > -1.95 °C and S < 34.22 at 200 m at γn < 27.80 kg 

m3 (Figure 13, Figure 16, Figure 18). Its downstream signal is indicated by the 

anticyclonic flow of a thickened relatively cold (θ < -1.8 °C) intermediate layer 

throughout the Dalton Basin (Figures 19 b-c). 

Cross-slope ventilation of oceanic TW (27.90 kg < γn < 28.08 kg m3) is indicated 

along a tight anticyclonic loop west of DIT. The southeastward inflow of MTW with θ > 

-1.83 °C and S > 34.30 at 200 m supplies the source water for melting at the northern 

DIT, from where a northwestward MW-bearing outflow is indicated by MTW with S < 

34.22 and γn < 27.80 kg m3 (Figure 19a, Figure 11, Figure 13, Figure 18a-b). 
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Figure 19a. Dynamic topography at 150 db relative to 350 db from objectively mapped 
dynamic height on a 600-m grid. 
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Figure 19b. Dynamic topography at 350 db relative to 500 db from objectively mapped 
dynamic height on a 600-m grid. 
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Figure 19c. Dynamic topography at 500 db relative to 600 db from objectively mapped 
dynamic height on a 600-m grid. 
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