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ABSTRACT 

The flowback performance of multi-fractured horizontal wells completed in an ultra-low permeability 

(shale) reservoir often includes an anomalous flowrate feature at early times prior to the development of a 

characteristic reservoir flow regime (i.e., linear or bilinear flow).  This flowrate feature is evident in all of 

the flow phases (gas, oil, water, and total fluid) and is caused by the "unloading" of the well (essentially 

the "clean-up" behavior following well stimulation).  Our concept is that this flowrate feature is caused by 

decaying skin effects, a changing wellbore storage effect, or a combination of both a decaying skin effects 

and changing wellbore storage effects.  For simplicity — and as a proof-of-concept, this research 

considers only the case of a vertical well with a single vertical fracture, but the concept and relations 

developed in this work can be directly extended to the solution for a multi-fractured horizontal well. 

As noted, the goal of this research is to develop series of time-dependent skin and wellbore storage models 

to characterize the early-time flowrate behavior observed in practice, under the constraint of a constant 

wellbore flowing pressure.  Our procedure is to couple case of time-dependent wellbore storage and skin 

effects with a set of reservoir flow models (i.e., power-law, bilinear and formation linear flow) and by 

applying the convolution integral to the constant pressure condition, we generate various scenarios of 

production performance. 

Specifically, in this work we provide derivations of the development of each constant pressure solution, 

where all work is performed Laplace domain and the Stehfest Algorithm is used to numerically invert each 

case to the real domain.  A graphical illustration of the performance of each model is provided and a 

generalized workflow is presented (we note that this workflow can easily be extended to more complex 

fracture structures — i.e., the multi-fractured horizontal well case).  

Although these models represent different physical phenomena, we observe that all of the proposed 

models provide some mechanism for representing early-time variations in flowrates.  We demonstrate the 

relevance of these models, which are based on empirical time-dependent models for wellbore storage and 

skin effects, as proxies that can be used to represent early-time flowrate behavior.  In short, we 

demonstrate that each time-dependent model has unique characteristics which could theoretically allow for 

characterization of fracture behavior prior to the onset of an undistorted "reservoir" flow regime (i.e., 

formation linear or bilinear flow). 
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CHAPTER I 

INTRODUCTION 

1.1 Motivation 

The motivation of this work originates from the lack of information available during flowback testing until 

the development of a characteristic reservoir flow regime (i.e., linear or bilinear flow) from which we can 

diagnose reservoir behavior.  Empirical analysis of field data, specifically the observation of an anomalous 

flowrate feature at early times (often a "hump" in the flowrate profile), leads to the hypothesis that 

reservoir behavior may not be uniquely identified nor quantified from flowback production performance.  

The goal of this present work is to utilize empirical and/or semi-analytical models to capture the 

anomalous behavior observed in flowback production performance as a means of possibly "diagnosing" 

causes of this behavior.  At present, we do not provide any mechanisms to use such models to estimate 

reservoir (or well) properties or to "uncouple" wellbore and reservoir flow behavior — such topics will be 

left to subsequent research. 

1.2 Objectives 

The main objectives of the work are: 

● To provide a constant pressure model for describing the early-time rate transient effects of a

vertically fractured well including time-dependent wellbore storage and time-dependent wellbore

skin effects.

● To provide diagnostic understanding of the behavior of the various time-dependent models.

● To provide a workflow of methodology to apply this technique to other applications.

● To generate dimensionless flowrate type-curves suitable for visualizing these flow phenomena.

1.3 Workflow for Model Development 

In this section, we present a workflow which demonstrates the steps taken to develop our constant pressure 

solution, presented in Fig. 1.1.  This workflow incorporates each historical flow regime and each of the 

time-dependent models presented in this proposal, and the major steps required to combine these models 

and presents a final solution in the Laplace domain.  
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Figure 1.1 — Workflow for pressure and rate prediction with time-dependent wellbore storage and skin effects. 

1.4 Basic Concepts 

The development of the constant pressure solution for a vertically fractured well requires the 

understanding of basic concepts which are defined in this chapter and applied throughout the derivation of 

the proposed model.   

Wellbore Storage is the phenomena that accounts for the difference between surface and bottomhole 

flowrates due primarily to the compressibility of the fluid within the wellbore.  Occurring immediately 

after any change in the flowrate, the expansion or compression of the fluid causes a delay in the measured 

rates of the fluid.  Wellbore storage is of significant interest due to its nature to mask reservoir behavior, at 

early-time, typically during well tests (e.g., shut-in tests), but also during early flowback operations. 

Incorporation of the wellbore storage behavior is essential to development of the constant pressure model 

in this work. 

Two types of wellbore storage are commonly examined (Lee, Rollins and Spivey, 2003), that of the single 

phase liquid filled wellbore, as illustrated by Fig. 1.2, and that of the two phase, gas-liquid filled wellbore 
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with rising or falling interface.  Derivation of the wellbore storage effect is performed using a mass 

balance approach assuming a constant wellbore volume and fluid density.  Although pressure differences 

within the wellbore could potentially lead to overall density changes in a two phase system, for practical 

applications, this assumption has been shown to be valid (Ramey, 1970).  The generalized rate relation, in 

dimensionless form, for the wellbore storage effect is described by:  
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D
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wD
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The dimensionless wellbore storage coefficient (CD) is a function of reservoir properties and fracture 

properties including formation porosity, height of the fracture, total system compressibility, fracture half-

length and the wellbore storage coefficient as defined by: 
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where field units are used.  The wellbore storage coefficient, CS, is dependent on the type of wellbore 

storage case (i.e., single-phase slightly compressible fluid or two-phase rising liquid interphase) examined 

(Lee, Rollins and Spivey, 2003). 
 

Solving Eq. 1.1 yields the generalized constant pressure solution, an identity utilized throughout this work.  

The solution of the generalized rate relation (Eq. 1.1) is performed in the Laplace domain.  Assuming that 

the tubing pressure remains constant for all times, (Blasingame, 1994) we solve for the dimensionless 

wellbore flowing pressure using the convolution integral (in the Laplace domain) to provide a relationship 

between the dimensionless wellbore flowrate and the dimension wellbore flowing pressure, as shown in 

Eq. 1.3 below: 
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where pwD(u) is the dimensionless wellbore pressure inclusive of wellbore storage and skin effects, psD(u) 

is the dimensionless wellbore pressure which only includes skin effects, and u is the Laplace transform 

parameter. 
 

Agarwal, Hussainy and Ramey (1970) provided a number of observations which should be considered 

during the analysis and interpretation of well test data. 

● The duration of the wellbore storage effect can be estimated primarily from the wellbore volume, the 

formation permeability and fluid compressibility. 
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● During the time of wellbore storage, the formation permeability and skin factor cannot be estimated; 

however, the wellbore storage coefficient can be determined. 

● A transition period occurs after the wellbore storage period ends and is characterized by a change 

from unit slope to the characteristic signature of the flow regime of the reservoir, on a diagnostic plot.  
 

Graphically, on a log-log diagnostic plot, the effects of wellbore storage will appear as a unit slope line at 

early times.  It should be noted that wellbore storage is often mistaken (conceptually, not practically) with 

late time flow regimes such as boundary-dominated flow, therefore, understanding of the reservoir system 

is crucial for accurate diagnosis of reservoir behavior.  Due to the significant impact wellbore storage has 

on pressure and rate transient analysis, extensive literature is available for the curious reader. 

 

 
Figure 1.2 — Wellbore diagram for a well producing a single-phase fluid (Lee, Rollins and Spivey, 2003)  

 

 

 
Figure 1.3 — Effect of near wellbore altered permeability (skin effect) on wellbore pressure (reproduced from Lee et al. 2003) 
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Wellbore Skin is the additional pressure drop (Van Everdingen, 1953) near the wellbore due to formation 

damage from adverse drilling and completion conditions creating a zone of reduced permeability.  

Hawkins (Lee et al. 2003), as demonstrated from Fig. 1.3, presented a definition of skin relating it to the 

wellbore flowing pressure and reservoir properties.  This classic definition is developed from a radial 

model assuming two concentric zones around the wellbore.  The inner region, as demonstrated by Fig. 1.4, 

is the zone of altered permeability while the outer zone maintains the original reservoir properties.  From 

this work, the skin factor is defined by: 
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which is a function of the ratio between reservoir and skin permeability, and the logarithmic ratio of the 

radius of the damaged zone to the wellbore radius.  In terms of reservoir parameters, this can be further 

expressed by: 
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, .................................................................................................................... (1.5)

 
 

where the derivation assumes constant rate production, and constant reservoir parameters. 
 

The skin factor has been demonstrated to be an additive function to the wellbore pressure response for the 

constant rate solution (Lee et al. 2003).  In dimensionless form, the near wellbore pressure inclusive of 

skin effects is: 
 

stptp DDDsD  )()( , ...................................................................................................................... (1.6) 

 

where psD(tD) is the dimensionless wellbore pressure which only includes skin effects, and pD(tD) is the 

dimensionless wellbore pressure without any skin effects.  In the Laplace domain, Eq. 1.6 is expressed as: 
 

u

s
upup DsD  )()( , ......................................................................................................................... (1.7) 

 

where u is the Laplace parameter.  As an additive function, the inclusion of the skin factor into the 

constant rate pressure solution generates a simple algebraic expression, pertinent to the completion of this 

work. 
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Figure 1.4 — Near wellbore zone of altered permeability (reproduced from Economides, Hill Ehlig-Ecomomides et. al., 2013) 

Fracture Face Skin, was proposed by Cinco and Samaniego (1977) as an alternative type of skin effect 

which occurs during hydraulic fracture stimulation.  Fracture face skin, different from the classic Hawkins 

skin developed for radial flow as demonstrated above, is physically described by the process of fluid leak-

off from the fracture into the formation during well stimulation.  The fracture is considered to contain a 

zone of altered permeability, as depicted by Fig. 1.5, which creates an additional pressure drop which the 

fluid must overcome when flowing from the reservoir into the fracture. This skin zone is defined as:  
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Where ws is the width of the damaged zone (bs in Fig. 1.5) and xf is the fracture half length.  The fracture 

face skin, in a similar respect to wellbore skin, is a function of the ratio of original reservoir permeability 

and fracture skin permeability.  In dimensionless form, the pressure drop relation due to the fracture face 

skin is expressed as: 
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where the flowrate is assumed constant and the pressure drop due to skin is described by:  
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Figure 1.5 — Infinite conductivity fracture with fracture face skin damage (reproduced from Cinco and Samaniego 1981b) 

 

 

Valdes et al. (2011) has performed further work on this subject introducing a Transient Interporosity 

Transfer model to describe the bilinear flow relation between the rock matrix and fracture with an 

additional skin between the two different porous structures. 
 

Choked Fracture Skin as discussed by Cinco and Samaniego (1981b) proposes a second variation of 

fracture damage due to completions in a fractured well.  Choked fracture skin occurs due to crushed 

proppant, or proppant lost or embedded in a fracture near the wellbore, as shown in Fig. 1.6.  The reduced 

permeability of this near wellbore damage will cause an increased pressure drop which the fluid must 

overcome when flowing from the fracture to the wellbore. 

 

 

   
Figure 1.6 — Infinite conductivity fracture with choked fracture skin damage (reproduced from Cinco and Samaniego 1981b) 

 

 

This skin zone is defined as:  
 

fsf

fs
chf kw

kx
s


, , ................................................................................................................................. (1.11) 

 

where wf is the width of the damaged zone (bf in Fig. 1.6) and xs is the length of damage along the fracture.  

The choked fracture skin is a function of the ratio of original fracture permeability to the damaged fracture 

permeability.  
 



8 

 

Convolution Integral allows for the overlap of one function as it is shifted over another function, or a 

"blending" of two functions together (Wolfram, 2007).  In well test analysis, convolution was introduced 

by van Everdingen and Hurst (1949) to provide a mechanism in which to combine the constant rate 

solution with the constant pressure solution.  The convolution integral, defined for a continuously 

changing flowrate, is expressed as: 
 

 dtpqtp
Dt

DsDDDwD  
0

)()()( . ............................................................................................. (1.12) 

 

where psD(tD) is described by Eq. 1.6.  In the Laplace domain, Eq. 1.12 reduces to:  
 

)()()( upuquup sDDwD  , ................................................................................................................ (1.13) 

 

where qD(u) is the constant-pressure sand-face flowrate in the Laplace domain and psD(u) is the constant-

rate wellbore pressure inclusive of skin effects, in the Laplace domain.  Eq. 1.13 provides an identity in 

which the constant rate solution, which has been a focus of significant well test research, may be 

transformed into the constant pressure solution (Van Everdingen & Hurst, 1949).  This identity is 

fundamental to the completion of this work. 
 

Numerical Laplace Inversion 
 

Analytical inversion of a function into the real domain from the Laplace domain is commonly performed 

through the use of "look-up tables" (Roberts and Kaufman, 1966).  However, when analytical inversion is 

either impossible or so cumbersome that it becomes impractical to use, numerical inversion techniques are 

applied.  The Gaver-Stehfest algorithm is utilized in this work for all numerical inversion.  
 

Gaver-Stehfest Algorithm is arguably the most common numerical inversion algorithm used in petroleum 

engineering due to its simplicity, accuracy and speed of performance in most applications.  Originally 

proposed by Gaver in the late 1960's, with Stehfest providing a variation of the original Gaver work 

allowing for faster computation and accuracy, the Gaver-Stehfest algorithm is described as: 
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where Stehfest provided extrapolation coefficients given as:  
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Theoretically, the larger the Stehfest number (n) the more accurate the approximation to the real solution. 

However, it has been demonstrated repeatedly in literature (Cheng et al, 1994) that at very large values of 

n the solution begins to diverge from the real solution. Therefore, 208  n is considered appropriate for 

most applications.  

Valkó and Abate (2004) developed code for use in Mathematica based on the acceleration scheme by 

Gaver-Wynn-Rho (GWR) algorithm.  The code controls the precision of numerical inversion based upon a 

user-defined requirement (n).  This code was employed for all numerical inversion requirements with a 

minimum precision level of n=32 (which is not to be confused with the number of terms of summation 

from Eq. 1.15). 

The author notes, that although highly applicable for most transient flow problems, the Gaver-Stehfest 

numerical inversion algorithm has been demonstrated to be inadequate for oscillatory and discontinuous 

functions.  Initial research led to the examination of other numerical inversion techniques, returning to the 

GWR algorithm as the most suitable for this research. 
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LITERATURE REVIEW  

 

 

 

 CHAPTER II 

This chapter presents a summary of notable milestones achieved in the study of well test analysis for 

fractured wells as is directly relevant to the content of this paper.  For further reference, Cinco (1982) 

provides a thorough evaluation of all major contributions to the evaluation of hydraulic fractures for 

pressure transient analysis through 1982.  This chapter further examines notable works by authors upon 

which the fundamentals of the constant pressure solution presented in this paper are built. 

2.1 History of Short Term Well Test Analysis for Fractured Wells 

Short-term well testing developed primarily in response to the high cost of performing very long duration 

tests used to evaluate radial flow and average reservoir pressure.  The lost revenue due to extended well 

shut-ins drove engineers to examine other methods to interpret the nature and behavior of the reservoir. 

With the widespread application of well stimulation, notably through hydraulic fracturing, further work 

was performed as it was recognized that classic radial flow theory did not apply to fractured wells. 

Muskat (1937) first examined infinite conductivity vertical fractures in a steady-state analytical model. 

Initial studies, mostly at steady-state, focused on the improved productivity gained through fracturing 

wells.  

Russell and Truitt (1964) worked with transient pressure behavior for infinite conductivity fractures, 

calculating wellbore pressure as a function of time depending on fracture half-length.  

Linear flow theory, in unsteady-state analysis, was first applied by Clark (1968) and Millheim and 

Cichowicz (1968) noticing the straight line relationship between the wellbore pressure against the square 

root of time.  

Transient flow behavior was reexamined by Gringarten, Ramey and Raghavan (1975) and three different 

models were developed.  These being: the case of an infinite conductivity vertical fracture, the uniform 

flux vertical fracture, and the uniform flux horizontal fracture.  In all three cases, linear flow periods were 

demonstrated before the occurrence of pseudo-radial flow.  Fig. 2.1 demonstrates the flow regimes 

associated with vertically fractured wells.  "Type curve analysis" was used to graphically diagnose flow 

regimes and determine formation and fracture properties. 

Wellbore storage was first introduced in literature by van Everdingen and Hurst (1949).  They expressed 

the phenomena in terms of a drawdown test where the unloading of the annulus is corrected to include the 

effects of the fluid column hydrostatic head as shown: 

dT

pd
CTq s


 )(  .................................................................................................................................. (2.1) 
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where CS is the volume of fluid unloaded from the annulus per unit bottomhole pressure per thickness of 

the reservoir.   
 

Agarwal, Hussainy and Ramey (1970) examined analytically the effect of wellbore storage and skin on 

short time transient flow behavior.  
 

In a radial system, Gringarten, Ramey and Raghavan (1975) applied this theory for fractured wells, further 

adding to the list of type curves available for well test analysis at the time. 
 

Cinco, Samaniego and Dominguez (1978) demonstrated that the infinite conductivity fracture is not valid 

for all cases, developing the finite conductivity vertical fracture model.  Further, this system was shown 

not to exhibit linear flow, and new analysis methods would be required.  Cinco, Samaniego and 

Dominguez (1978) presented a solution for the two-dimensional diffusivity equation through the use of 

Greens functions and source function, applying the Newman product method as discussed by Gringarten, 

Ramey and Raghavan (1973).  The solution presented by the authors (Cinco, Samaniego and Dominguez, 

1978) uses a discretization of the fracture (i.e., assuming fracture flux has a stepwise distribution in both 

time and space).  Due to the complexity of this solution, the authors re-cast the problem using the Laplace 

transform. 

 

 

 
Figure 2.1 — Flow periods for a vertically fractured well (reproduced from Cinco and Samaniego, 1981a) 
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Building on the work performed in 1978, Cinco and Samaniego (1981a) introduced the bilinear flow 

regime, Fig. 2.1b, for a fracture which exhibits "finite-conductivity" fracture behavior.  They developed 

semi-log analysis for wellbore pressure to demonstrate this behavior.  Approximations for fracture linear 

flow and bilinear flow regimes are presented as: 
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Type curves were developed to diagnose transitions between flow regimes and to estimate reservoir and 

fracture parameters.  The constant rate solutions presented by Cinco and Samaniego (1981a) are 

fundamental to the efforts in this thesis, and a full derivation of their work may be found in Appendix B. 
 

2.2 Transient Flow Behavior for Constant Pressure Production 
 

Understanding the practical difficulty in holding rate constant during production, Guppy, Cinco and 

Ramey (1981) examined the constant pressure solution for the vertical fracture with finite conductivity.  

Assuming the pressure response in the fracture varies only with distance along the fracture (fluid flowrate 

varies with both distance and time) the pressure gradient is expressed as a function of formation constants 

and the integration of rate along the fracture, as shown by: 
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The pressure response in the formation, solved in a similar manner, includes integral rates with respect to 

time and distance from the fracture, and exponential functions as shown in Eq. 2.6:  
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The full solution requires the coupling of Eq. 2.5 and Eq. 2.6 equating the pressure drop in the fracture.  

The final solution requires a discretization of the fracture length and a relationship between formation flow 

and fracture flow.  The authors suggested utilizing convolution as a method of solution, however, the full 

analytic solution would not be of any practical value.  Therefore, the authors preferred to present 

approximations based upon the conductivity of the fracture, shown as: 
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Equations 2.7 and 2.8 display the same behavioral characteristics of bilinear flow and linear flow regimes, 

respectively, as demonstrated by Cinco and Samaniego (1981a).   
 

In the formulation of the high and low conductivity fracture behavior, Eqs. 2.7 and 2.8 respectively, 

Guppy et al. (1981) proposed significant assumptions.  For the low conductivity case, the effect of the 

fracture tips were considered negligible, resulting in a fracture flow differential equation that does not vary 

with time. For high conductivity fractures, the pressure drop within the fracture was assumed negligible. 
 

Although the assumptions made by Guppy et al. (1981) are valid for very short times in the formulation of 

the approximate solutions, this author suggests, specifically for the low conductivity fracture case, a more 

rigorous approach.  We assumed that the pressure response in the fracture varies with both time and 

distance along the fracture, which was incorporated into our full diffusivity equation, shown in Appendix 

B. 
 

2.3 Variable Skin in Well Test Analysis  
 

Early-time cleanup effects in drawdown data can, when improperly analyzed, can provide the impression 

of additional pressure support by the reservoir leading to an inflated flow capacity (Larsen and Kviljo, 

1990).  Assuming a constant production rate, due to small transients in pressure, a limited zone of damage 

in radial coordinates, Larsen and Kviljo (1990) proposed a (time-dependent) variable skin model to 

account for the pressure increase caused by near-well cleanup.  Based on empirical data, Larsen and Kviljo 

(1990) proposed a "hyperbolic" relation of the skin factor with time as demonstrated by:  
 

c
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where c is the value of skin that the system would achieve if cleanup continued to fruition.  The 

parameters a and b are determined from drawdown data and are unique to each well (and perhaps to each 

producing scenario).  Larsen et al. (1990) demonstrated that cleanup effects can be modeled using a 

hyperbolic expression of skin as a function of time, substituting a variable skin into constant skin 

drawdown solutions providing a reliable estimation of the flow capability of the system. 
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2.4 Pressure Buildup Analysis with Wellbore Phase Redistribution  
 

Wellbore phase redistribution is a wellbore storage phenomena occurring when both liquid and gas flow 

through the tubing.  After shut-in, gravity will cause a separation of fluids, with liquid falling and gas 

rising to surface.  In the closed system, as liquid fills the tubing, the inability of gas to expand may cause, 

at early-times, a temporary increase in pressure above the formation pressure coined "gas-humping."  

Eventually pressure equilibrium is restored with the formation (Stegmeier and Matthews, 1958). 
 

Fair (1981) expanded on the general work of Stegmeier and Matthews (1958) and Earlougher (1977) by 

performing a rigorous analysis of wellbore phase redistribution incorporating the additional wellbore 

storage effect into the diffusivity equation.  Starting from van Everdingen and Hurst (1949) definition for 

the effect on wellbore pressure with time due to wellbore storage, Fair (1981) added a term for phase 

distribution as shown by:  
 

, .................................................................................................. (2.10) 

 

where pD is the pressure caused by phase redistribution.  Based on a single laboratory test, and theoretical 

postulation, Fair (1981) defined the pressure caused by wellbore phase redistribution as: 
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where CD is the dimensionless phase redistribution constant and D is the time in which 63% of the total 

change has occurred.  Fair (1981) defines each dimensionless term as:  
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where all values are listed in field units.  Fair (1981) uses the well-known diffusivity equation in radial 

coordinates: 
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With initial and boundary conditions which incorporate the phase redistribution and near wellbore skin: 
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Fair (1981) solved the diffusivity equation in Laplace domain providing solutions for cylindrical and line 

source wells.  The wellbore pressure solutions, in Laplace domain are:  
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Where K0 and K1 are modified Bessel functions.  Fair generated type curves for various values of the 

dimensionless wellbore storage constant and dimensionless wellbore phase distribution constant.  As a 

demonstration (Fair, 1981), field data obtained from a gas-lift well were matched very well using the Fair 

model (Eq. 2.11). 
 

Extension of the phase redistribution concept to model the behavior of flowback data is logical, 

particularly for cases of gas condensate and volatile oils, but this concept alone may not be sufficient to 

capture uniquely the behavior of early-time flowback data as we believe that a time-dependent skin 

function will also be required to capture the effect of stimulation fluid "clean-up" which occurs during 

flowback operations. 
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PROPOSED MODELS 

 CHAPTER III  

Examining the reservoir flow behavior of a hydraulically fractured vertical well, we assume that time-

dependent wellbore storage and skin effects dominate the "early-time" classically observed flow regimes 

(i.e., linear and bilinear flow) for a vertical fracture.  Our proposed time-dependent wellbore storage and 

skin effect models are coupled with each classical flow regime (linear flow, bilinear flow, and a general 

power-law model) in the Laplace domain.  Application of the convolution integral provides the 

mechanism to evaluate the constant pressure (rate) solution.  This chapter contains a summary of each of 

the proposed time-dependent models which could theoretically allow for diagnosis of reservoir behavior 

prior to the onset of "late-time" (i.e., linear or bilinear) reservoir flow regimes. 

3.1 Assumptions 

The following specific assumptions are made in this work: 

● A vertical well with a single vertical fracture penetrates the entire thickness of the reservoir.

● The reservoir thickness is uniform (constant).

● The reservoir is initially at pressure, pi.

● The reservoir is infinite in size.

● The well produces from a constant flowrate.

● The rock properties are constant.

● The fracture has finite conductivity.

● The fracture is infinite in length.

● Flow to the wellbore occurs only through the vertical fracture.

● The system contains a "slightly-compressible" fluid.

● The effects of gravity are negligible.

● The pressure gradients are small.

● The system obeys Darcy's Law.
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A schematic of the proposed model is shown in Fig. 3.1. 

Figure 3.1 — Schematic representation of the proposed model (reproduced from Cinco and Samaniego, 1978) 

3.2 Flow Regime Development 

Cinco and Samaniego (1981a) described four flow regimes, classically considered to describe reservoir 

behavior for hydraulically fractured vertical wells.  These models are summarized as: 

● Fracture Linear Flow 

● Formation Linear Flow 

● Bilinear Flow 

● Pseudo-Radial Flow 

Fracture linear flow, in practice, occurs too early in the unloading of the system to (ever) be observed 

through conventional means.  Further, in an ultra-low permeability reservoir, the time required to attain 

pseudo-radial flow far exceeds the "early-time" parameters of this work.  For these reasons, the "fracture 

linear" and "pseudo-radial" flow regimes will not be considered in this work. 
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Formation Linear Flow Relation 

Formation linear flow was described by Gringarten, Ramey and Raghavan (1974) derived from the contin-

uous line-source solution originally presented by Carslaw and Jaeger (1946).  Fully derived in Appendix 

A, the formation linear flow derivation begins with a statement of the continuous line source solution: 
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Integration through substitution and non-dimensionalizing, the system yields a formulation consisting of 

error functions and exponential integrals as shown by Eq. 3.2: (constant rate formulation) 
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At very early-times, Eq. 3.2, evaluating at xD=0, may be approximated by: 

DDDcrD ttxp  ),0(,  ............................................................................................................. (3.3) 

which is the approximation linear flow.  The authors further simplified Eq. 3.2 for late-time pseudo-radial 

flow — however, this result is not applicable to this work.  Use of the convolution integral in the Laplace 

domain provides a mechanism to re-cast this formulation as a constant pressure solution.  Taking the 

Laplace transform of Eq. 3.3 yields: 

2/3,
)2/3(

)(
u

up crD


  ....................................................................................................................... (3.4) 

Where u is the Laplace transform parameter.  Eq. 3.4 is to be combined with time-dependent wellbore 

storage and skin effects in an attempt to model the "early-time" (flowback) production performance. 
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Bilinear Flow Relation 

Bilinear Flow was originally proposed by Cinco and Samaniego (1981) for "finite-conductivity" fractures, 

where the pressure drop across the fracture is not negligible and must be considered when evaluating 

reservoir performance.  Derivation of the bilinear flow regime is provided in complete detail in Appendix 

B.  The differential equation, coupling fracture flow with formation flow is given as: 
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 (0 < xD < ∞) .................................................. (3.5) 

The proposed method of solution takes the formulation given by Eq. 3.5 into the Laplace domain, and is 

solved using traditional methods for a second-order, ordinary differential equation.  The result, in the 

Laplace domain, is a function which describes both fracture linear flow and bilinear flow behavior.  Eq. 

3.6 describes the combined formulation for a finite-conductivity vertical fracture: 
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As fracture linear flow is not relevant to this work, we examine when Eq. 3.6 tends to long times (u tends 

towards zero in the Laplace domain) which results in the following late-time approximation: 

4/5,
1

)(2
)(

uwk
up

Dff
crD


 . ....................................................................................................... (3.7) 

Inversion from the Laplace domain yields:  
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which is the bilinear flow approximation that we will use in this work. 
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Power-Law Flow Relation 
 

We have included a third model, the general power-law formulaiton which provides the potential to 

describe additional reservoir behavior.  Proposed as a general power-law relation, Eq. 3.9 describes any 

flow regime which produces a straight line on a log-log plot, shown as: 
 


DDcrD tctp 1, )(   (power-law flow) ................................................... (3.9) 

 

where c1 is a problem-dependent constant, likened to the dimensionless fracture conductivity term in the 

bilinear flow case, and  may be any value between zero and one. 
 

3.3 Time-Dependent Skin Effects 
 

Larsen and Kviljo (1990) examined the effects of wellbore cleanup and proposed a hyperbolic time-

dependent skin factor to account for the overestimation of a wells flow capacity.  The original formulation 

given by Larsen and Kviljo (1990) is presented as:  
 

c
tb

a
s 


  ......................................................................................................................................... (3.10) 

 

where c is the theoretical minimum skin a system would reach assuming continuous cleanup. 
 

Using Eq. 3.10 as a basis for our formulations, we postulated the following time-dependent skin factor 

models for the work in this thesis: 
 

]])/(exp[1][[)( 0
 DD tsssts    (cumulative-exponential, s(t)) .............................. (3.11) 

)]/(exp[)( 0 DD tssts    (exponential, s(t)) ................................................. (3.12) 
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t
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   (hyperbolic, s(t)) .................................................. (3.13) 
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To demonstrate the behavior of each model, we provide a graphical representation of each model in Fig. 

3.2 shown below. 

Figure 3.2 — Log-log plot of time-dependent skin factor models for select values of s∞-parameter. 

Each time-dependent skin model was provided with an upper and lower boundary for the skin values, in 

the forms of the s0- and s∞-parameters.  These formulations provide a mechanism to maintain a positive 

value of the skin factor for each model. 

It has been demonstrated that the skin factor is an additive dimensionless pressure term: (Lee, Rollins and 

Spivey, 2003) 

)()()( ,, DDcrDDcrsD tstptp   .................................................................................................... (3.14) 

Where the constant-rate dimensionless pressure inclusive of skin (psD,cr(tD)) is equal to the constant-rate 

dimensionless pressure (pD,cr(tD)) plus a time-dependent skin factor (s(tD)). 

The generalized constant pressure solution in the Laplace domain, presented below for reference, utilizes 

the convolution integral to provide a direct relationship between the constant rate and constant pressure 

solutions. 

)(

11
)(

,2, upu
uq

crsD
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Inverting the three different flow regimes, along with the three different time-dependent skin factors, into 

the Laplace domain, and combining with Eq. 3.14 yields nine different models to be evaluated in this 

thesis. 

A full derivation of the generalized constant rate-solution is provided in Appendix C.  As a point of 

importance, we note that during the formulation of the generalized constant-rate solution for the constant 
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wellbore storage case, the constant pressure result does not exist due to mathematical condition that the 

pressure cannot be constant at both the sandface and the surface at the same time.  Specifically, the 

Roberts and Kaufman reference [Roberts and Kaufman (1966, pg. 202, Eq.172)] demonstrate that the 

inverse Laplace transform of a constant yields the Dirac delta, δ(t), an impulse function which has no 

meaning for our cases.  As the Laplace Transform Operator is a linear operator (Spiegel, 1971), we know 

that the wellbore storage constant will either be zero, or infinity for the constant pressure solution in the 

real domain. 
 

As the constant wellbore storage case is not relevant for our work, we will utilize the time-dependent 

wellbore storage (or wellbore phase redistribution) model proposed by Fair (1981) as our primary means 

of representing wellbore flow effects (discussed in the next section).  Our approach is to combine the Fair 

(1981) time-dependent wellbore storage model with the prescribed constant rate models (i.e., the linear, 

bilinear, or general power-law cases) in the Laplace domain to obtain the constant pressure (rate) solution 

for each case.  The inverse Laplace transformation (i.e., the real domain) solutions are generated 

numerically through the use of the Stehfest algorithm. 
 

For the cases of time-dependent skin effects (only), the following summary is presented for reference: 
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Linear Flow: 
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Bilinear Flow: 
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3.4 Time-Dependent Wellbore Storage 

In a two phase (gas-liquid) system, when a well is shut-in at the surface, gravity effects cause phase 

separation and due to the incompressibility of liquid relative to gas, may cause an increase in surface 

pressure before system equilibrium is attained.  Evaluating these anomalous pressure readings, Fair (1981) 

proposed the incorporation of a wellbore phase redistribution pressure term into the solution of the radial 

flow diffusivity equation.  From empirical evidence and a single laboratory test given by another author, 

Fair (1981) postulated an exponential pressure function as shown by Eq. 3.16: 

)1()( / DDtDDD eCtp 


  ....................................................................................................... (3.16) 

Fully derived in Appendix E, the fluid flowrate due to changing sandface and wellbore phase 

redistribution pressures was described by Fair (1981) as: 
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Transforming Eq. 3.17 into the Laplace domain, and solving for the wellbore flowing pressure yields:  
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Which is the generalized constant rate dimensionless pressure solution in the Laplace domain, as a 

function of the wellbore phase redistribution pressure (pD(u)), the sandface flowing pressure inclusive of 

skin (psD(u)), the Laplace parameter (u) and the wellbore storage constant (CD).  For this formulation, we 

assume that the skin effect is constant. 
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In order to find a constant pressure solution, we return to the convolution integral in Laplace domain for a 

constant flowrate defined as:  
 

. ................................................................................................................ (3.19) 

 

Substituting Eq. 3.18 into Eq. 3.19 and solving for the constant pressure (rate) solution yields: 
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We recall our pressure solutions, presented in the Laplace domain, as:  
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Substitution of Eq. 3.21 and Eq. 3.22 into Eq. 3.20 yields a generalized time-dependent wellbore storage 

solution, in the Laplace domain, as shown:  
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Incorporation of each flow relation into the generalized constant-pressure solution (Eq. 3.23) inclusive of 

time-dependent wellbore storage is provided below: 
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3.5 Time-Dependent Wellbore Storage and Skin Effects 

The validation of the proposed (early-time) time-dependent models for wellbore storage and skin effects is 

likely to be very challenging, if not impossible to achieve in practice.  However, the logical progression of 

this work is to integrate the combined effects of time-dependent wellbore storage with a time-dependent 

skin factor.  As a simplification, we have chosen only a single example for this evaluation, due to the 

unlikeliness of a practical application, our goal is a "demonstration" of what such an integrated model 

could provide.  Specifically, we have chosen to combine the cumulative-exponential time-dependent skin 

factor model with time-dependent wellbore storage for the case of the linear flow regime. 

To develop this model, we have taken the time-dependent wellbore storage formulation, derived in 

Appendix E, and substituted the time-dependent cumulative-exponential skin model.  We recall the 

cumulative-exponential time-dependent skin below. 
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 DD tsssts    (cumulative-exponential s(t)) ............................... (3.11) 

Returning to the constant pressure time-dependent wellbore storage model, we substitute in a time-

dependent skin factor for the constant skin in the original formulation, as shown by Eq. 3.24. 
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Substituting in Eq. 3.11 into Eq. 3.24 yields a constant pressure (rate) model with time-dependent wellbore 

storage and cumulative-exponential skin effects, as shown below: 
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which is the full constant pressure (rate) solution inclusive of time-dependent wellbore storage and the 

cumulative-exponential skin factor. 
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SOLUTIONS AND RESULTS 

     CHAPTER IV 

In this section, we demonstrate the viability of this work through numerous illustrations of the proposed 

models, with plots chosen to represent significant features from each model.  Variations in each parameter 

for all time-dependent wellbore storage or skin factor models, for each flow relation are documented in 

Appendix F of this thesis. 

4.1 Power-Law Flow Relation 

The power-law flow regime proposed in Chapter 3 is a generalized relation that allows for any "power-

law" flow regime, theoretical or observed, to be represented during "early-time" performance.  We have 

chosen an arbitrary flow relation where the flowrate is proportional to the 3/4 root time (i.e., 3:4 slope) in 

order to illustrate the applicability of our time-dependent model.  In future sections we evaluate the 

classical linear and bilinear flow models (1/2 and 1/4 root time models, respectively).  The generalized 

power-law flow relation is displayed below for reference: 


DDcrD tctp 1, )(  , ............................................................................................................................ (4.1) 

Where c1 represents an arbitrary constant for a given system (i.e., fracture conductivity), and  may 

represent any positive value less than one describing a flow regime (i.e., linear flow (1/2 root time) or 

bilinear flow (1/4 root time)).  The following sections examine the time-dependent models using the 

generalized power-law flow relation (recall that we have selected 3/4 root time as our general case). 

4.2 Power-Law Flow Relation with Cumulative-Exponential Time-Dependent Skin Effects 

The cumulative-exponential time-dependent skin effect is proposed based on empirical observations of 

reservoir performance for ultra-low permeability reservoirs.  In Appendix D we provide the derivation of 

the constant pressure solution in the Laplace domain for the case of the cumulative-exponential, time-

dependent skin effect model applied to the power-law flow regime. 

Certain unique trends have been observed in flowrate data taken from field operations.  In order to validate 

the applicability of our model, we need to demonstrate that our model(s) exhibits the features observed in 

the field — and while we do not have a practical diagnostic approach, we can vary each parameter within 

the model to generate possible field scenarios.  The range of each parameter is defined by either 

mathematical or field limitations (e.g., skin values will be limited to cases observed in practice, and/or 

from physical limitations (e.g., skin factors for fractured wells should not be negative)). 
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Figure 4.1 — Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the 

cumulative-exponential time-dependent skin factor model for select values of the -parameter. 

 

 

 

 
Figure 4.2 — Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the 

cumulative-exponential time-dependent skin factor model for select values of the s0-parameter. 



28 

 

As shown in Fig. 4.1, the -parameter imposes little impact on the dimensionless flowrate, except for the 

potential for a slight increase during the transition between early-time and late-time power-law flow.  In 

this application, the -parameter is bounded between zero and one.  In Fig. 4.2 we observe that the s0-

parameter affects the initial flowrate — the higher the value of the s0 -parameter (a proxy for the maximum 

skin available to the system), the lower the initial flowrate.  The minimum skin factor for a given case is 

established through the s∞-parameter as shown in Fig. 4.3.  The greater the difference between the s0-and 

s∞-parameters, the larger the rate "hump" observed during the transition to late-time.  Validation of this 

model is achieved as the s∞- and s0-parameters approach zero — i.e., the time-dependent skin effects 

become negligible which yields the power-law flow regime. 

 

 

 
Figure 4.3 — Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the 

cumulative-exponential time-dependent skin factor model for select values of the s∞-parameter. 

 

 

As shown in Fig. 4.4, the c1-parameter illustrates flow transitions from early-time distorted flow behavior 

to late-time power-law flow behavior.  We note that the higher the value of the c1-parameter, the earlier 

that late-time flow behavior occurs.  As the power-law flow regime is a generalization for all potential 

flow regimes, the c1-paramter may be correlated to other constants such as (inverse) fracture conductivity 

seen in bilinear flow.  This similarity will be demonstrated in future sections. 
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Figure 4.4 — Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the 

cumulative-exponential time-dependent skin factor model for select values of the c1-parameter. 

 

 

Variations in the -parameter are shown in Fig. 4.5 and we note that the -parameter is a proxy for the 

system flow regime.  We observe variations in the late-time slope with all flowrates crossing at 

approximately the same coordinate.  As we will demonstrate with the constant rate solution (in the next 

section), this inflection point is based on the mathematics of the power-law flow relation. 
 

As shown in the previous examples (Fig. 4.1 -Fig. 4.5) a time-dependent skin factor function is used to 

represent rate features observed from field data — including the "hockey-stick" shape, where the 

dimensionless flowrate shows an flat or gently increasing (derivative is positive) rate at early-times, 

followed by a rollover (i.e., transition) feature, which is then followed by a decline into a late-time flow 

regime, in this case we have specified the 3/4 root time relation. 
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Figure 4.5 — Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the 

cumulative-exponential time-dependent skin factor model for select values of the -parameter. 

 

Supplementing the constant pressure solution, we have provided additional diagnostic material to support 

the validation of this time-dependent model — specifically, we provide examples of the rate derivative, 

the cumulative production, and the time-normalized cumulative production performance.  Not all 

parameters will be evaluated in this section, however, all combinations and permutations of parameters 

may be found in Appendix F. 
 

The flowrate derivative plot has significant diagnostic potential in its ability to enhance subtle changes in 

flowrate performance for qualitative behavioral (and eventually qualitative) evaluation.  As shown in Fig. 

4.6, the rate increase exhibited by the s0-parameter results in the rate derivative approaching zero.  Our 

time-dependent skin effect assumes, within limiting boundaries, that the skin factor will decrease for a 

period of time due to cleanup effects, increasing the fluid flowrate.  The greater the difference between the 

s0- and s∞-parameter, the greater potential for clean-up; therefore, the greater the potential flowrate 

increase. 
 

The rate derivative for the various cases of the s∞-parameter are shown in Fig. 4.7.  This performance 

highlights the small rate increase exhibited within the dimensionless flowrate (which is also plotted).  

However, the unique "double hump" shown in the derivative has potential for diagnostic capabilities.  This 

author notes, that unless otherwise states, the -parameter always maintains a value of 0.01 for all 

presented examples. 
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Figure 4.6 — Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined 

with the cumulative-exponential time-dependent skin factor model for select values of the s0-parameter. 

 

 

 

 
Figure 4.7 — Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined 

with the cumulative-exponential time-dependent skin factor model for select values of the s∞-parameter. 
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Figure 4.8 — Log-log plot (constant pressure dimensionless cumulative production solution) for the power-law flow model 

combined with the cumulative-exponential time-dependent skin factor model for select values of the s0-parameter. 

 

 
 

 
Figure 4.9 — Log-log plot (constant pressure time-normalized dimensionless cumulative production solution) for the power-

law flow model combined with the cumulative-exponential time-dependent skin factor model for select values of the 
s0-parameter. 
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In Fig. 4.8 we introduce the dimensionless cumulative production function and we plot this function with 

the dimensionless rate function to illustrate the "smooth" nature of the dimensionless cumulative 

production.  In Fig. 4.9 we present the time-normalized dimensionless cumulative production function and 

we again plot this function with the dimensionless rate function.  We immediately note that the time-

normalized dimensionless cumulative production function does not have same "hump" features as in the 

dimensionless rate function, but this behavior is somewhat expected due to the smoothing inherent in the 

cumulative production.  As a comment, we note that the higher values of the s0-parameter yields more 

extreme character in the rate functions.  While this work is "theoretical" rather than "practical," we can see 

from Figs. 4.6-4.9 that the effect of the time-dependent factor is both unique for some functions, and less 

so for others, but taken as a part of a diagnostic workflow, we believe that such "type curves" will help 

guide understanding of flowback performance in unconventional reservoirs. 

 

 

 
Figure 4.10 — Log-log plot (constant rate dimensionless pressure solution) for the power-law flow model combined with the 

cumulative-exponential time-dependent skin factor model for select values of the s0-parameter. 

 

 
 

In order to thoroughly examine the behavior of the cumulative-exponential time-dependent skin effect 

model, we have created additional plots for the constant rate dimensionless pressure and the constant rate 
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derivative pressure functions for each parameter considered for this model.  In some aspects, the 

diagnostic features are similar to those for the constant pressure solution functions.  For reference, an 

exhaustive evaluation of all parameters considered for the cumulative-exponential time-dependent skin 

effects model coupled with the generalized power-law flow regime can be found in Appendix F. 
 

As shown in Fig. 4.10, the constant rate dimensionless pressure solution is a sort of "mirror image" of the 

constant pressure solution (trends increase to the right, as opposed to decreasing).  In this particular case 

we are varying the -parameter ( = 0.1, 0.25, 0.5, 0.75, and 0.9), and the skin factor parameters (s0 and 

s∞) are constant.  The s∞-parameter (s∞ = 0.1) controls the performance at early times (several cases are 

constant at pD(tD) = 0.1 until the power-law portion of the solution dominates). 

 

 

 
Figure 4.11 — Log-log plot (constant rate dimensionless pressure solution) for the power-law flow model combined with the 

cumulative-exponential time-dependent skin factor model for select values of the -parameter. 

 

 
 

We observe an inflection point, shown in Fig. 4.11, as the -parameter is varied.  The power-law flow 

regime formulation states that when the dimensionless time is one, all flow regimes will intersect at a 

pressure influenced notably by the c1-parameter, which is this point of intersection (i.e., c1 = 10). 
 

In summary, the behavior of the cumulative-exponential time-dependent skin effect model appears to be 

unique and relevant for representing the behavior of early-time rate "flowback" (see Fig. 4.2 -Fig. 4.11).  

In a practical sense, there appears to be significant potential in the diagnostic capabilities of the 
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cumulative-exponential time-dependent skin effects model, where the rate and pressure performance 

functions include: the dimensionless rate, the dimensionless rate derivative, the dimensionless cumulative 

production, time-normalized dimensionless cumulative production, dimensionless pressure, and 

dimensionless pressure derivative functions. 
 

4.3 Power-Law Flow Relation with Exponential Time-Dependent Skin Effects 
 

The exponential time-dependent skin effect model is proposed as a "more simple" alternative to the 

cumulative-exponential time-dependent skin effect model.  In Appendix D we provide the derivation of 

the constant pressure solution in the Laplace domain for the exponential time-dependent skin effect model 

couple with the model for the generalized power law flow regime. 
 

The exponential time-dependent skin effect model is very similar in function to the cumulative-

exponential skin effects model.  As we examine each parameter for the exponential time-dependent skin 

model, provide comparison to the previous function and provide evidence as to the validity of our time-

dependent relation as a diagnostic tool for observed features from field data. 

 

 

 
 

Figure 4.12 — Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the 
exponential time-dependent skin factor model for select values of the s0-parameter. 
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In Fig. 4.12 we note the effect of the s0-parameter on the dimensionless rate trends, where these values 

were chosen to represent a range of skin factor values expected to be observed in practice.  We do note a 

bit of instability in the = 0.001 cases, and as comment, we did try to address this with higher precision 

specifications in the Gaver-Stehfest algorithm, but these instabilities remain.  Examining the rate 

derivative solution shown in Fig. 4.13, we note (as expected) that the "rate hump" causes an negative rate 

derivative function (recall that the derivative is make negative because we assume a declining flowrate 

function, if the rate increase, the definition of the rate derivative becomes negative.  Regardless, we can 

comment that the dimensionless rate derivative function has more "character" than the dimensionless rate 

function, and that this observed character could be useful as a "diagnostic" function. 

 

 

 
Figure 4.13 — Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined 

with the exponential time-dependent skin factor model for select values of the s0-parameter. 

 

 

In Fig. 4.14 we observe the influence of the s∞-parameter, in particular, on the initial flowrate.  We again 

observe a stability issue with regard to the cases where = 0.001, and we again note that these instabilities 

could not be resolved in a computational sense.  The behavior of the dimensionless rate functions shown in 

Fig. 4.14 do resemble expected performance in the field, and due to the relative simplicity of this skin 

factor model, this case may be preferred for diagnostics in practice. 
 

In Fig. 4.15 we observe the influence of the c-parameter, and again we note the instabilities for the = 

0.001 cases.  The influence of the c-parameter is essentially just a "displacement" in time of the various 
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trend functions.  We note, that for very large values of the c1-parameter (a possible proxy for inverse 

fracture conductivity) the time-dependent choked fracture skin has essentially no impact on the 

dimensionless flowrate function. 

 

 


Figure 4.14 — Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the 

exponential time-dependent skin factor model for select values of the s∞-parameter. 
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Figure 4.15 — Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the 
exponential time-dependent skin factor model for select values of the c1-parameter. 

 

 

 
 

 
Figure 4.16 — Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the 

exponential time-dependent skin factor model for select values of the -parameter. 
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As shown in Fig. 4.16, the influence of the -parameter is observe, and we can comment that the lowest 

values of the -parameter are the least affected by the prescribed exponential time-dependent skin factor 

model.  This is likely due to the fact that the lower -parameter cases represent a lesser decline in time and 

hence are less affected by the skin factor. 
 

As has been demonstrated in the previous example (Fig. 4.12 — Fig. 4.16), a second time dependent skin 

factor is used to represent rate features from field data.  Features are very similar to those of the 

cumulative-exponential time-dependent skin effect — including the desired "hockey-stick" profile, a 

rollover (i.e., transition) feature dissipating into late-time reservoir characteristic power-law flow.  Early-

time behavior is generally flat or gently increasing, with a potential for a flowrate increase during the 

transition period as the time-dependent skin effects are imposed on the system. 
 

A number of additional diagnostic plots have been included to validate the exponential time-dependent 

skin factor for implementation in field data.  All available plots may be found in Appendix F. 

 

 

 
Figure 4.17 — Log-log plot (constant pressure dimensionless cumulative production solution) for the power-law flow model 

combined with the exponential time-dependent skin factor model for select values of the s∞-parameter. 
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As shown in Fig. 4.17 and Fig. 4.18 the dimensionless cumulative production and time-normalized 

dimensionless cumulative rate provide further diagnostic measures to evaluate the behavior and 

performance of early-time transient production of ultra-low permeability reservoirs. 

 

 

 
Figure 4.18 — Log-log plot (constant pressure time-normalized dimensionless cumulative rate solution) for the power-law flow 

model combined with the exponential time-dependent skin factor model for select values of the s∞-parameter. 

 

 

Through the evaluation of the exponential time-dependent skin factor with power-law flow regime, some 

diagnostic capabilities are demonstrated in Fig. 4.12 through Fig. 4.18 representing rate features observed 

in field data.  The variety of diagnostic plots available provide additional measures to ensure evaluation of 

the reservoir performance. 
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4.4 Power-Law Flow Relation with Hyperbolic Time-Dependent Skin Effects 
 

The hyperbolic time-dependent skin effect is proposed as an alternative model to the cumulative-

exponential and exponential time-dependent skin models to further characterize reservoir performance for 

ultra-low permeability reservoirs.  Appendix D provides a derivation of the constant pressure solution in 

the Laplace domain with hyperbolic time-dependent skin effects and the power law flow regime. 
 

Following, we examine the effect of each parameter of the constant pressure solution through a number of 

diagnostic plots providing support to validate the applicability of the hyperbolic time-dependent skin 

model for field implementation. 

 

 

 
Figure 4.19 — Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the 

hyperbolic time-dependent skin factor model for select values of the -parameter. 

 

 

For the limited range considered, the -parameter, shown in Fig. 4.19, imposes little impact on the 

constant pressure solution.  The derivative, shown in Fig. 4.20, has much stronger features than the rate 

function, and although this may be difficult to assess in practice, its behavior is noted for possible use as a 

diagnostic characteristic. 



42 

 

 
Figure 4.20 — Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined 

with the hyperbolic time-dependent skin factor model for select values of the -parameter ( = 0.01). 

 

 

 

 
Figure 4.21 — Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the 

hyperbolic time-dependent skin factor model for select values of the s0-parameter. 
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As a proxy for the maximum skin of the system, the s0-parameter, shown in Fig. 4.21, impacts the rate at 

which the system reaches late-time power-law flow.  The higher the s0-parameter, the lower the 

dimensionless flowrate, and the longer the system required to attain late-time flow.  The lower boundary 

for the skin factor, the s∞-parameter, shown in Fig. 4.22, influences the initial rate of the system.  The 

higher the s∞-parameter, the lower the initial flowrate.  Validation of this model is achieved as the s∞- and 

s0-parameters approach zero — i.e., the time-dependent skin effects become negligible which yield the 

power law flow regime. 

 

 

 

 
Figure 4.22 — Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the 

hyperbolic time-dependent skin factor model for select values of the s∞-parameter. 
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Figure 4.23 — Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the 

hyperbolic time-dependent skin factor model for select values of the c1-parameter. 
 

 

 

The c1-parameter affects the time until transition into late-time flow regimes, as shown in Fig. 4.23.  This 

plays a significant role in the cumulative rate of the system, shown in Fig. 4.24.  The larger the c1-

parameter, the faster late-time flow is reached and the smaller cumulative production achieved.  As the 

power-law flow regime is a generalization for all potential flow relations, the c1-parameter is a proxy for 

any parameter appropriate to a particular flow relation (e.g., fracture conductivity for bilinear flow 

regime). 
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Figure 4.24 — Log-log plot (constant pressure dimensionless cumulative production solution) for the power-law flow model 

combined with the hyperbolic time-dependent skin factor model for select values of the c1-parameter ( = 0.01). 
 

 

 

As shown in Fig. 4.25, the -parameter describes the flow regime of the system.  The generalization of the 

power-law flow relation allows for any observed or theoretical reservoir to be evaluated. 
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Figure 4.25 — Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the 

hyperbolic time-dependent skin factor model for select values of the -parameter. 

 

 

The previous example, evaluating the hyperbolic time-dependent skin effects with the power-law flow 

model (Fig. 4.19 — Fig. 4.25) represents rate features observed from field data.  In a similar fashion as 

with the cumulative-exponential and exponential time-dependent skin factors, we observe a "hockey-stick" 

shape, with a rollover (i.e., transition) feature into late-time power-law flow.  Unlike the previous two 

time-dependent skin effect models (cumulative-exponential and exponential) the hyperbolic time-

dependent skin factor does not show a rate increase during the transition to late-time flow.  Although some 

of the features may be difficult to resolve in practice, the behavior of the model is noted for possible use to 

diagnose reservoir behavior. 
 

4.5 Power-Law Flow Relation with Time-Dependent Wellbore Phase Redistribution 
 

Fair (1990) proposed a wellbore phase redistribution pressure based upon empirical data and a single 

laboratory test to explain anomalous pressure signatures in build-up tests.  Incorporation of the phase 

redistribution pressure profile into the wellbore pressure is fully derived in Appendix E.  Keeping our 

diagnostic "procedure" consistent, we examine each parameter within the model and as our method to 

validate potential application to field data.  To assist in diagnostic capabilities, the derivative of the 

constant pressure solution was also taken and plotted for each parameter.  A full evaluation of all plots 

may be found in Appendix F. 
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Figure 4.26 — Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined 

with the time-dependent wellbore storage for select values of the -parameter. 

 

 

 
Figure 4.27 — Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined 

with the time-dependent wellbore storage for select values of dimensionless wellbore storage constant. 
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For the limited range considered, the -parameter, shown in Fig. 4.26, imposes little impact on the 

constant pressure solution.  The derivative has much stronger features than the rate function, and although 

this function may be difficult to assess in practice, its behavior is noted for possible use as a diagnostic 

characteristic.  The dimensionless wellbore storage constant (CD), shown in Fig. 4.27, provides variations 

in both early-time behavior and the transition region.  As the wellbore storage influence diminishes over 

time, the rate is governed by the specified power-law flow regime, clearly shown in Fig. 4.27. 
 

The dimensionless wellbore phase redistribution constant (CD), shown in Fig. 4.28, has a similar 

influence on the solution as the dimensionless wellbore storage constant (CD), and affects the rate behavior 

at early-times, merging to yield the power-law flow solution at late-times.  The CD-parameter yields a 

consistent shape in the derivative function, displace in time, unlike the CD-parameter which derivative 

shape is inconsistent. 
 

The skin factor, as shown in Fig. 4.29, imposes little impact on the constant pressure solution.  The rate 

derivative has much stronger features than the rate function as shown by the variation caused by the skin 

factor.  Although the combined effects of skin and wellbore storage may be difficult (or even impossible) 

to assess in practice, we may be able to develop diagnostic characteristic functions (i.e., derivative ratios, 

etc.). 

 

 
Figure 4.28 — Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined 

with the time-dependent wellbore storage for select values dimensionless phase redistribution constant. 
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Figure 4.29 — Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined 

with the time-dependent wellbore storage for select values of skin factor. 
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Figure 4.30 — Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined 

with the time-dependent wellbore storage for select values of the c-parameter. 

Rate Increase 
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Figure 4.31 — Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined 

with the time-dependent wellbore storage for select values of the -parameter. 

 

 

 

As shown in Fig. 4.30, the c1-parameter has a significant impact on early-time and late-time flow 

behavior.  At early-time, the c1-parameter yields a consistent shape offset with time.  At late-times, higher 

values of the c1-parameter yield a significantly lower dimensionless flowrate. 
 

The -parameter significantly affects the rate and rate derivative behavior at both early-times and late-

times.  As a proxy for the system flow regime (i.e., for linear flow the -parameter is ½), late-time 

behavior is dependent on the exponential -parameter, bounded between zero and one for this application. 

 

In summary, the time-dependent wellbore storage model presents a unique diagnostic capability which 

may be utilized to represent early-time ("flowback") behavior (see Fig. 4.26 — Fig. 4.31).  Practically, the 

use of all diagnostic plots (i.e., dimensionless rate, dimensionless rate derivative, dimensionless 

cumulative rate, time-normalized dimensionless cumulative rate and dimensionless pressure and 

dimensionless pressure derivative) provide some mechanism to diagnose time-dependent wellbore storage 

effects. 
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4.6 Linear Flow Relation 
 

The linear flow regime, proposed in Chapter III, is based upon the work of Gringarten, Ramey and 

Raghavan (1974) provides a behavioral model for fluid flow from the matrix to the fracture.  Fully derived 

in Appendix A, we apply each of our time-dependent models to the linear flow regime to quantify "early-

time" performance of a vertically fractured well.  The linear flow relation is displayed below for reference:  
 

DDcrD ttp )(, , ......................................................................................................................... (4.2) 

 

The following sections examine the time-dependent skin factor and wellbore storage models with the 

linear flow relation. 
 

4.7 Linear Flow Relation with Cumulative-Exponential Time-Dependent Skin Effects 
 

The cumulative-exponential time-dependent skin factor model is based on empirical observations from 

ultra-low permeability reservoirs.  Appendix D provides a derivation of the constant pressure solution in 

the Laplace domain with cumulative-exponential time-dependent skin effects and the linear flow regime. 
 

As with the power-law flow regime, similar unique trends have been observed within the flowrate data.  In 

this regard, we examine each parameter within the model, along with other relevant diagnostic plots to 

validate the applicability of our time-dependent relation. 
 

The -parameter, shown in Fig. 4.32 imposes little impact on the dimensionless flowrate except for the 

potential for cause a slight rate increase during the transition between early-time and late-time linear flow.  

The rate derivative flow, shown in Fig. 4.33, highlights the increase in flowrate causing the derivative 

term to tend towards a zero value, creating a unique diagnostic feature for potential field application. 
 

The s0-parameter, shown in Fig. 4.34, affects the initial flowrate.  As a proxy for the initial skin value, the 

lower the initial skin, the higher the initial flowrate.  A lower boundary for the skin term is developed 

through the s∞-parameter (Fig. 4.35).  Validation of this time-dependent skin factor model is achieved as 

the s0- and s∞-parameters approach zero — i.e., the time-dependent skin effects become negligible yielding 

the linear flow solution. 
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Figure 4.32 — Log-log plot (constant pressure dimensionless rate solution) for the linear flow model combined with the 

cumulative-exponential time-dependent skin effects for select values of the -parameter. 

 

 

 

 
Figure 4.33 — Log-log plot (constant pressure dimensionless rate derivative solution) for the linear flow model combined with 

the cumulative-exponential time-dependent skin effects for select values of the -parameter ( = 0.01). 
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Figure 4.34 — Log-log plot (constant pressure dimensionless rate solution) for the linear flow model combined with the 

cumulative-exponential time-dependent skin effects for select values of the s0-parameter. 
 

 

 

 
Figure 4.35 — Log-log plot (constant pressure dimensionless rate solution) for the linear flow model combined with the 

cumulative-exponential time-dependent skin effects for select values of the s∞-parameter. 
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As shown in the previous examples (Fig. 4.32 — Fig. 4.35) the cumulative-exponential time-dependent 

skin factor is used to represent observed rate features — including the desired "hockey-stick" shape, where 

the flowrate is flat or steadily increasing (derivative is positive) at early-time before reaching a transition 

feature in which the flowrate demonstrates a "hump" or rate increase, before dissipating to late-time linear 

flow. 
 

4.8 Linear Flow Relation with Exponential Time-Dependent Skin Effects 
 

The exponential time-dependent skin factor model is based on empirical observations from ultra-low 

permeability reservoirs.  Appendix D provides a derivation of the constant pressure solution in the 

Laplace domain with exponential time-dependent skin effects and the linear flow regime. 

 

 

 

 
Figure 4.36 — Log-log plot (constant pressure dimensionless rate solution) for the linear flow model combined with the 

exponential time-dependent skin effects for select values of the s0-parameter. 
 

 

 

The exponential time-dependent skin factor with linear flow relation performs in an almost identical 

manner as the exponential time-dependent skin factor with power law flow relation.  This confirms the 

additive nature of the time-dependent skin factor to the pressure relation having the same effect on the 
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dimensionless flowrate regardless the characteristic flow of the reservoir.  For thoroughness, we will 

evaluate each parameter to validate the applicability of our model. 

The s0-parameter affects the initial flowrate, as shown by Fig. 4.36, creating a characteristic rate "hump" 

during the transition to late-time linear flow.  The greater difference between the s∞- and s0-parameter, the 

larger the rate increase (i.e., system cleanup) required to dissipate into the reservoir characteristic linear 

flow regime. 

 

 

 
Figure 4.37 — Log-log plot (constant pressure dimensionless rate solution) for the linear flow model combined with the 

exponential time-dependent skin effects for select values of the s∞-parameter. 



 

57 

 

 
Figure 4.38 — Log-log plot (constant pressure dimensionless rate derivative solution) for the linear flow model combined with 

the exponential time-dependent skin effects for select values of the s∞-parameter ( = 0.01). 

 

 

 

The s∞-parameter, shown in Fig. 4.37 with the rate derivative shown in Fig. 4.38, affects the transition 

region between early-time and late-time linear flow.  The larger the difference between the s∞- and s0-

parameters, the greater the rate "hump" feature observed. 
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Figure 4.39 — Log-log plot (constant pressure dimensionless cumulative production solution) for the linear flow model 

combined with the exponential time-dependent skin effects for select values of the s∞-parameter ( = 0.01). 
 

 

 

The dimensionless cumulative production (Fig. 4.39) and the time-normalized dimensionless cumulative 

rate (Fig. 4.40) provide additional diagnostic tools, which may be used to evaluate the reservoir behavioral 

characteristics. 
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Figure 4.40 — Log-log plot (constant pressure time-normalized dimensionless cumulative rate solution) for the linear flow 
model combined with the exponential time-dependent skin effects for select values of the s∞-parameter ( = 0.01). 

The previous examples (Fig. 4.36 —  Fig. 4.40) demonstrate that the exponential time-dependent 

skin factor with linear flow has the same form and function as with the power-law flow relation, with 

the only difference being the late-time reservoir characteristic flow behavior.  Diagnostic features 

include the desired "hockey-stick" flow profile, with an early-time flat or gently increasing 

(derivative is positive) flowrate, a rollover (i.e., transition) feature with rate increase potential, 

dissipating into the late-time linear flow regime, characteristic of the reservoir.  These diagnostic 

features, representing empirical data, potentially provide the ability to quantify early-time or "flow-

back" behavior.  All diagnostic plots may be found in Appendix F. 
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4.9 Linear Flow Relation with Hyperbolic Time-Dependent Skin Effects 

The hyperbolic time-dependent skin factor model is based on empirical observations from ultra-low 

permeability reservoirs.  Appendix D provides a derivation of the constant pressure solution in the 

Laplace domain with hyperbolic time-dependent skin effects and the linear flow regime. 

The hyperbolic time-dependent skin model, with linear flow, displays the same characteristics in flowrate 

behavior as with the hyperbolic time-dependent skin model with power-law flow.  The only notable 

difference is the late-time flowrate characterized by the specific one-half slope of the linear flow regime. 

For thoroughness, we will evaluate each parameter with supporting diagnostic plots to validate the 

applicability of the hyperbolic time-dependent skin function for field implementation. 

Figure 4.41 — Log-log plot (constant pressure dimensionless rate solution) for the linear flow model combined with the 
hyperbolic time-dependent skin effects for select values of the -parameter. 

The -parameter imposes little impact on the constant pressure solution, for the limited range considered, 

as shown in Fig. 4.41.  Mathematically, the -parameter may be any value, however, for this work we 

chose to bound the value between zero and one in order to maintain consistency with the cumulative-

exponential time-dependent skin factor. 
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Figure 4.42 — Log-log plot (constant pressure dimensionless rate solution) for the linear flow model combined with the 
hyperbolic time-dependent skin effects for select values of the s0-parameter. 

Figure 4.43 — Log-log plot (constant pressure dimensionless rate derivative solution) for the linear flow model combined with 
the hyperbolic time-dependent skin effects for select values of the s0-parameter ( = 0.01). 
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As shown in Fig. 4.42, the s0-parameter affects the rate at which late-time linear flow is achieved.  As a 

proxy for the systems maximum skin, the higher the s0-parameter, the more time required to achieve linear 

flow.  The author notes the significant amount of time required, approximately five log-cycles, when the 

s0-parameter is very large.  The dimensionless rate derivative, shown in Fig. 4.43, highlights the features 

of the dimensionless rate. 

Figure 4.44 — Log-log plot (constant pressure dimensionless rate solution) for the linear flow model combined with the 
hyperbolic time-dependent skin effects for select values of the s∞-parameter. 

The s∞-parameter, the lower boundary for skin in this formulation shown in Fig. 4.44, affects the initial 

dimensionless flowrate.  The lower the s∞-parameter, the higher the initial flowrate.  The time-normalized 

dimensionless cumulative rate, shown in Fig. 4.45, provides additional diagnostic capabilities when 

attempting to utilize this methodology to evaluate reservoir behavior.  Validation of this model is achieved 

as the s∞- and s0-parameters approach zero — i.e., the time-dependent skin effects become negligible 

which yield the linear flow regime. 
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Figure 4.45 — Log-log plot (constant pressure time-normalized dimensionless cumulative rate solution) for the linear flow 
model combined with the hyperbolic time-dependent skin effects for select values of the s∞-parameter ( = 0.01). 

From this example, (Fig. 4.41 — Fig. 4.45), we observe that the hyperbolic time-dependent skin effects 

occur at very small values of dimensionless time, resulting in potentially challenging application to field 

data where rate measurements are typically taken at a longer time intervals.  Although quantitatively this 

may result in a challenging application, qualitatively, this methodology may serve as a diagnostic tool for 

reservoir characterization. 
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4.10 Linear Flow Relation with Time-Dependent Wellbore Phase Redistribution 

Fair (1990) proposed a wellbore phase redistribution pressure based upon empirical data and a single 

laboratory test to explain anomalous pressure signatures in build-up tests.  Incorporation of the phase 

redistribution pressure profile into the wellbore pressure is fully derived in Appendix E.  To demonstrate 

the viability of this work, we examine each parameter within the model and the potential application to 

field data.  To assist in diagnostic capabilities, the derivative of the constant pressure solution was also 

taken and plotted for each parameter.  To supplement the dimensionless rate and rate derivative plots, we 

have further included a variety of other diagnostic plots to further validate the application of this model.  A 

full evaluation of all plots may be found in Appendix F. 

Figure 4.46 — Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model 
combined with the time-dependent wellbore storage for select values of the -parameter. 

For the limited range we considered, the -parameter, shown in Fig. 4.46, imposes little impact on the 

constant pressure solution.  The derivative displays much stronger features than the rate function, and 
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although this function may be difficult to assess in practice, its behavior is noted for possible use as a 

diagnostic characteristic. 

Figure 4.47 — Log-log plot (constant rate dimensionless pressure and pressure derivative solution) for the linear flow model 
combined with the time-dependent wellbore storage for select values of the -parameter. 

For comparative purposes, the constant rate dimensionless pressure solution was created to demonstrate 

features characteristic to wellbore storage.  Shown in Fig. 4.47, we observe the unit slope wellbore storage 

line with a wellbore storage "bubble" during the transition into late-time linear flow. 
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Figure 4.48 — Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model 

combined with the time-dependent wellbore storage for select values of dimensionless wellbore storage constant 
 

 

 

The dimensionless wellbore storage constant (CD) shown in Fig. 4.48, provides variations in both early-

time behavior and the transition region.  As the wellbore storage influence diminishes over time, the rate is 

governed by the specified linear flow solution.  Additional diagnostic features may be explored, through 

the evaluation of the dimensionless cumulative flowrate (Fig. 4.49) and time-normalized dimensionless 

cumulative flowrate (Fig. 4.50) highlighting the transition region between early-time and late-time linear 

flow. 
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Figure 4.49 — Log-log plot (constant pressure dimensionless cumulative production solution) for the linear flow model 
combined with the time-dependent wellbore storage for select values of dimensionless wellbore storage constant. 

Figure 4.50 — Log-log plot (constant pressure time-normalized dimensionless cumulative rate solution) for the linear flow 
model combined with the time-dependent wellbore storage for select values of dimensionless wellbore storage 
constant. 
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Figure 4.51 — Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model 
combined with the time-dependent wellbore storage for select values of dimensionless wellbore phase redistribution 
constant. 

Figure 4.52 — Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model 
combined with the time-dependent wellbore storage for select values of constant skin factor. 



 

69 

 

The dimensionless wellbore phase redistribution constant (CD), shown in Fig. 4.51, displays similar 

features as the dimensionless wellbore storage constant (CD), affecting the rate at early-times and 

dissipating to yield the linear flow solution at late-times.  The CD-parameter rate derivative profile yields 

a consistent shape displaced in time, unlike the CD-parameter which does not influence the shape in a 

constant manner. 
 

The skin factor imposes little impact on the constant pressure solution shown in Fig. 4.52.  The rate 

derivative has much stronger features than the rate function as shown by the early-time variations in the 

skin factor rate derivative.  Although the combined effects of skin and wellbore storage may be difficult 

(or even impossible) to assess in practice, we may be able to develop diagnostic characteristic functions 

(e.g., derivative ratios etc.) 
 

As shown in the previous example (Fig. 4.46 — Fig. 4.52) a time-dependent wellbore storage model (with 

constant skin factor) is used to represent rate features observed from field data. Features include flat or 

gently decreasing rates at early-times and a convergence to the reservoir signature (e.g., linear flow) at 

late-times via a rollover (i.e., transition) attribute.  The dimensionless rate derivative function highlights 

the transition feature where, for time-dependent wellbore storage, all cases exhibit a "hump" indicative of 

a wellbore storage "bubble" (which is commonly seen in the constant rate dimensionless pressure function. 
 

4.11 Bilinear Flow Relation  
 

The bilinear flow regime, developed in Chapter III, based upon the work of Cinco and Samaniego (1981a) 

provides a behavioral model for fluid flow from the matrix through the fracture to the wellbore.  Fully 

derived in Appendix A, we apply each of our time-dependent models to the bilinear flow regime to 

quantify "early-time" performance of a vertically fractured well.  The linear flow relation is displayed 

below for reference:  
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The following sections examine the time-dependent skin factor and wellbore storage models with the 

linear flow relation. 
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4.12 Bilinear Flow Relation with Cumulative-Exponential Time-Dependent Skin Effects 
 

The cumulative-exponential time-dependent skin factor model is based on empirical observations from 

ultra-low permeability reservoirs.  Appendix D provides a derivation of the constant pressure solution in 

the Laplace domain with cumulative-exponential time-dependent skin effects and the bilinear flow regime. 

 

 
 

 
Figure 4.53 — Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the 

cumulative-exponential time-dependent skin effects for select values of -parameter. 

 

 

The -parameter, shown in Fig. 4.53, imposes little impact on the constant pressure solution, as was 

evident with both the linear and power-law flow regimes, except for the slight increase in rate during the 

transition from early-time flow to late-time bilinear flow.  In this application, the -parameter must be 

bounded between zero and one. 
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Figure 4.54 — Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the 

cumulative-exponential time-dependent skin effects for select values of s0-parameter. 

 

 

 
Figure 4.55 — Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the 

cumulative-exponential time-dependent skin effects for select values of s∞-parameter. 

 

 

As shown in Fig. 4.54, the s0-parameter affects the initial flowrate.  The higher the value of the s0-

parameter, a proxy for the maximum skin available to the system, the lower the initial flowrate.  Shown in 
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Fig. 4.55, the s∞-parameter, a proxy for the minimum skin boundary, affects the transition region 

potentially increasing the dimensionless flowrate, between early-time and late-time-bilinear flow.  

Validation of this model is achieved as the s0- and s∞-parameters approach zero, the time dependent skin 

effects become negligible yielding the late-time bilinear flow regime. 

 
Figure 4.56 — Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the 

cumulative-exponential time-dependent skin effects for select values of dimensionless fracture conductivity. 

 

 

The effect of the cumulative-exponential time-dependent skin effects remains consistent regardless of the 

flow regime to which it is associated.  The example posed above (shown in Fig. 4.53 — Fig. 4.56), the 

cumulative-exponential time-dependent skin model with bilinear flow regime, differs from the linear and 

power law model only in regards to the late-time reservoir signature — i.e., early-time and transitional 

behavior are consistent are regardless of the flow regime experienced by the reservoir. 
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4.13 Bilinear Flow Relation with Exponential Time-Dependent Skin Effects 
 

The exponential time-dependent skin factor model is based on empirical observations from ultra-low 

permeability reservoirs.  Appendix D provides a derivation of the constant pressure solution in the 

Laplace domain with exponential time-dependent skin effects and the bilinear flow regime. 

 

 

 
Figure 4.57 — Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the 

exponential time-dependent skin effects for select values of s0-parameter. 
 

 

 

The s0-parameter affects initial dimensionless flowrate and therefore, the size of the rate "hump" required 

to return to the late-time quarter slope (i.e., bilinear flow) on a log-log scale.  The higher the s0-parameter, 

the lower the initial flowrate and larger of a transition feature before dissipating into late-time bilinear 

flow, as demonstrated in Fig. 4.57.  The derivative of the dimensionless rate solution, evaluating the s0-

parameter, clearly shows this rate increase, shown in Fig. 4.58. 



74 

 

 
Figure 4.58 — Log-log plot (constant pressure dimensionless rate derivative solution) for the bilinear flow model combined with 

the exponential time-dependent skin effects for select values of s0-parameter ( = 0.01). 
 

 

 

The s∞-parameter has less effect than the s0-parameter, however, still exhibits the same early-time 

influence and transitional features, as illustrated by Fig. 4.59.  The difference between the two parameters 

(s∞-and s0-parameter) proxies for the upper and lower limits of skin observed by the system, defines the 

magnitude of influence the exponential time-dependent skin factor has on the reservoir characteristic flow 

regime (i.e., bilinear flow relation).  The larger the difference, the more prominent the features. 
 

The dimensionless fracture conductivity plays a significant role on when the system reaches the reservoirs 

late-time characteristic flow regime (i.e., bilinear flow) as shown by Fig. 4.60.  Clearly, for a low 

conductive fracture, the effects of a time-dependent skin factor are negligible.  For an infinite conductivity 

fracture, the choked fracture skin effects are the only impediment to fluid flow within the fracture, 

therefore, play a significant impact on the transition to late-time reservoir characteristic flow behavior. 

 



 

75 

 

 
Figure 4.59 — Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the 

exponential time-dependent skin effects for select values of s∞-parameter. 

 

 

 

 
Figure 4.60 — Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the 

exponential time-dependent skin effects for select values of dimensionless fracture conductivity. 
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We observe, in Fig. 4.61, the significance of dimensionless fracture conductivity on the dimensionless 

cumulative production of the system.  As observed, an infinite conductivity fracture will produce more 

hydrocarbon than a finite conductivity fracture. 

 

 

 
Figure 4.61 — Log-log plot (constant pressure dimensionless cumulative production solution) for the bilinear flow model 

combined with the exponential time-dependent skin effects for select values of dimensionless fracture conductivity 
( = 0.01). 

 

 

 

The previous example (Fig. 4.57 — Fig. 4.61) demonstrates that the exponential time-dependent skin 

factor with bilinear flow has the same form as the same time-dependent function with the power-law and 

linear flow relations, the only difference being the late-time reservoir flow behavior.  Diagnostic features 

include the desired "hockey-stick" flow profile, with an early-time flat or gently increasing (derivative is 

positive) flowrate, a rollover (i.e., transition) feature with rate increase potential, dissipating into the late-

time linear flow regime, characteristic of the reservoir.  Dimensionless fracture conductivity imposes 

significant influence on the rate behavior, with higher conductivity fractures being influenced by time-

dependent skin effects more than low conductivity fractures.  These diagnostic features, representing 

empirical data, potentially provide the ability to quantify early-time or "flow-back" behavior.  All 

diagnostic plots may be found in Appendix F. 
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4.14 Bilinear Flow Relation with Hyperbolic Time-Dependent Skin Effects 
 

The hyperbolic time-dependent skin factor model is based on empirical observations from ultra-low 

permeability reservoirs.  Appendix D provides a derivation of the constant pressure solution in the 

Laplace domain with exponential time-dependent skin effects and the bilinear flow regime. 
 

As with previous flow regimes, following we examine the effect of each parameter, from the hyperbolic-

time dependent skin factor, on the constant pressure solution to evaluate the potential application to field 

data. 

 

 

 
Figure 4.62 — Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the 

hyperbolic time-dependent skin effects for select values of -parameter. 
 

 

 

Bounding the -parameter between zero and one for this work, in order to maintain consistency with the 

cumulative-exponential time-dependent skin factor, we notice little impact on the constant pressure 

solution, as shown by Fig. 4.62.  The dimensionless rate derivative solution, shown in Fig. 4.63, has 

stronger features than the dimensionless rate solution providing behavioral characteristics for diagnosis, 

despite the potential difficulty in assessing this function in practice. 
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Figure 4.63 — Log-log plot (constant pressure dimensionless rate derivative solution) for the bilinear flow model combined with 

the hyperbolic time-dependent skin effects for select values of -parameter ( = 0.01). 
 

 

 

A proxy for the systems maximum skin, the s0-parameter affects the rate at which the system reaches the 

reservoir characteristic flow (i.e., bilinear flow) as shown in Fig. 4.64.  The s∞-parameter affects the initial 

dimensionless flowrate as shown in Fig. 4.65, where the higher the s∞-parameter, the lower the initial 

dimensionless flowrate.  Validation of this model is achieved as the s∞- and s∞-parameters approach zero 

— i.e., the time-dependent skin effects become negligible yielding only the bilinear flow regime. 
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Figure 4.64 — Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the 

hyperbolic time-dependent skin effects for select values of s0-parameter. 

 

 
 

 
Figure 4.65 — Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the 

hyperbolic time-dependent skin effects for select values of s∞-parameter. 

 

 

The dimensionless fracture conductivity, shown in Fig. 4.66, imposes a significant impact on the final 

system flowrate.  As observed with the power-law flow regime, the higher the fracture conductivity, the 

faster the system reaches reservoir characteristic flow (i.e., bilinear flow).  The dimensionless derivative 

rate solution yields more distinct features than the dimensionless rate solution, as shown in Fig. 4.67, 

providing further potential to diagnose reservoir behavioral characteristics. 
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Figure 4.66 — Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the 

hyperbolic time-dependent skin effects for select values of the dimensionless fracture conductivity. 

 

 

 

 
Figure 4.67 — Log-log plot (constant pressure dimensionless rate derivative solution) for the bilinear flow model combined with 

the hyperbolic time-dependent skin effects for select values of the dimensionless fracture conductivity ( = 0.01). 
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Figure 4.68 — Log-log plot (constant pressure dimensionless cumulative production solution) for the bilinear flow model 

combined with the hyperbolic time-dependent skin effects for select values of the dimensionless fracture 
conductivity ( = 0.01). 

 

 

 

The dimensionless cumulative production solution, shown in Fig. 4.68, demonstrates the impact that a 

higher fracture conductivity has on the total production of a system.  A highly conductive fracture (the 

author notes this evaluation was performed over 5 orders of magnitude for comparative purposes) will 

yield orders of magnitude more total production than a low-conductivity fracture. 
 

Although the features observed in the time-normalized dimensionless cumulative rate solution, shown in 

Fig. 4.69 are not unique in and of themselves, in conjunction with the dimensionless rate solution and 

other diagnostic plots demonstrated above, may provide additional diagnostic tool in order to characterize 

reservoir behavior 
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Figure 4.69 — Log-log plot (constant pressure time-normalized dimensionless cumulative rate solution) for the bilinear flow 

model combined with the hyperbolic time-dependent skin effects for select values of the dimensionless fracture 
conductivity ( = 0.01). 

 

 

 

The hyperbolic time-dependent skin factor models are consistent regardless of the flow regime to which it 

is applied, as is demonstrated through the examples in Sections 4.4 and 4.8.  The hyperbolic time-

dependent skin effects only differ from example to example only based on the late-time reservoir signature 

— i.e., early-time and transitional behavior are consistent are regardless of the reservoir characteristic flow 

regime. 
 

4.15 Bilinear Flow Relation with Time-Dependent Wellbore Storage 
 

As with previous examples, we apply the concept of Fair (1990) proposed wellbore phase redistribution 

pressure on the bilinear flow regime to compare performance against the other two flow relations 

examined.  Fully derived in Appendix E, we demonstrate the viability of this work by evaluating the 

effect of each parameter within the model plotting the constant pressure dimensionless rate solution 

against dimensionless time.  Further diagnostic plots are generated including the dimensionless rate 

derivative solution, the dimensionless cumulative production solution and the time-normalized 

dimensionless cumulative rate solution to further evaluate the validity of this model.  This section contains 

a summary of diagnostic plots for this model, while a comprehensive examination may be found in 

Appendix F. 
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Over the limited range considered, the -parameter, shown in Fig. 4.70, imposes little impact on the 

constant pressure solution.  The dimensionless derivative rate solution has much stronger features than the 

dimensionless rate solution, and although this may be difficult to assess in practice, we note this behavior 

for the potential diagnostic capabilities. 

 

 

 
Figure 4.70 — Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the bilinear flow model 

combined with the time-dependent wellbore storage for select values of the -parameter. 

 

 

 

 
Figure 4.71 — Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the bilinear flow model 

combined with the time-dependent wellbore storage for select values of dimensionless wellbore storage constant. 
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As shown in Fig. 4.71, the dimensionless wellbore storage constant (CD) provides variations in both early-

time behavior and during the rollover (i.e., transition) region before dissipating into late-time bilinear flow.  

This behavior is nearly identical to that found with the power-law and linear flow regimes, save for the 

late-time reservoir flow characteristics are altered.  As the wellbore storage influence diminishes with 

time, the rate is governed by bilinear flow regime. 
 

The dimensionless wellbore phase redistribution constant (CD), shown in Fig. 4.72, has a similar 

influence as the dimensionless wellbore storage constant (CD), affecting both early-time and the transition 

region. 

 

 

 
Figure 4.72 — Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the bilinear flow model 

combined with the time-dependent wellbore storage for select values of dimensionless wellbore phase redistribution 
constant. 
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Figure 4.73 — Log-log plot (constant rate dimensionless pressure and pressure derivative solution) for the bilinear flow model 

combined with the time-dependent wellbore storage for select values of dimensionless wellbore phase redistribution 
constant. 

 

 

 

The constant-rate dimensionless pressure derivative "bubble" feature is demonstrated through evaluation 

of the dimensionless wellbore phase redistribution constant (CD), shown in Fig. 4.72.  This "anomalous" 

pressure build-up is the basis of Fair's (1981) work, which we have captured in our constant pressure 

solution. 
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Figure 4.74 — Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the bilinear flow model 

combined with the time-dependent wellbore storage for select values of constant skin factor. 
 

 

 

The skin factor, held constant for the time-dependent wellbore storage case, imposes little impact on the 

constant pressure solution (over the range considered).  The rate derivative has much stronger features 

than the rate function as shown in the early-time variations demonstrated in Fig. 4.74.  At small values of 

skin, a rate increase is observed highlighted by the derivative trending towards zero.  As with the other 

flow regimes, the combined effect of skin and time-dependent wellbore storage may be difficult (if 

impossible) to assess in practice, however, diagnostic features may be developed in order to characterize 

reservoir behavior. 
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Figure 4.75 — Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the bilinear flow model 

combined with the time-dependent wellbore storage for select values of dimensionless fracture conductivity. 
 

 

 

The dimensionless fracture conductivity, shown in Fig. 4.75, imposes a significant impact on the constant 

pressure solution.  A large fracture conductivity may cause the dimensionless rate to increase during the 

transition region before dissipating into the reservoir characteristic flow (i.e., bilinear flow). 
 

As shown in the previous example (Fig. 4.70 — Fig. 4.75) a time-dependent wellbore storage model 

(inclusive of a constant skin factor) may be used to represent observed features from field data.  These 

features include flat to gently increasing (derivative is positive) at early-time rate transitioning into a late-

time bilinear flow.  The dimensionless flowrate during the transition region may rollover directly, or 

increase slightly before the late-time reservoir flow signature is reached.  In all cases, the dimensionless 

rate derivative exhibit a "hump" feature indicative of a commonly observed wellbore storage "bubble" 

(which is seen in the constant-rate dimensionless pressure function, Fig. 4.73 for reference). 
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4.16 Time-Dependent Wellbore Storage and Skin Effects 
 

Recognizing that time-dependent wellbore storage and time-dependent skin effects will, individually, be 

very challenging to distinguish within field data, we never-the-less continue our work along it logical 

progression and examine the combined effects of both time-dependent models.  Evaluating the 

cumulative-exponential time-dependent skin effects with time-dependent wellbore storage, yields the 

following diagnostic plots. 

 

 

 
Figure 4.76 — Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model 

combined with the time-dependent wellbore storage and cumulative-exponential skin effects for select values of the 
-parameter. 

 

 

For the limited range we considered, the -parameter, shown in Fig. 4.76, imposes little impact on the 

constant pressure solution.  The derivative displays much stronger features than the rate function.  The 

author acknowledges the difficulty in assessing this function in practice — however, the "double-hump" in 

the constant pressure derivative is a notable feature, which may be possible for use as a diagnostic 

characteristic. 
 

The dimensionless wellbore storage constant (CD) shown in Fig. 4.77, provides variations in both early-

time behavior and the transition region.  As the wellbore storage influence diminishes over time, the rate is 

governed by the specified linear flow solution.  The dimensionless wellbore phase redistribution constant 

(CD), shown in Fig. 4.78, displays similar features as the dimensionless wellbore storage constant (CD), 
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affecting the rate at early-times and dissipating to yield the linear flow solution at late-times.  Both 

parameters rate derivative plot display the characteristic "double-hump" as shown in the rate derivative of 

the -parameter. 

 

 

 
Figure 4.77 — Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model 

combined with the time-dependent wellbore storage and cumulative-exponential skin effects for select values of 
dimensionless wellbore storage constant. 
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Figure 4.78 — Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model 

combined with the time-dependent wellbore storage and cumulative-exponential skin effects for select values of 
dimensionless phase redistribution constant. 

 

 

 

 
Figure 4.79 — Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model 

combined with the time-dependent wellbore storage and cumulative-exponential skin effects for select values of the 
s0-parameter. 
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Figure. 4.80 — Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model 

combined with the time-dependent wellbore storage and cumulative-exponential skin effects for select values of the 
s∞-parameter. 

 

 

 

The s0-parameter and s∞-parameter affect the flow rate before the transition "rollover" feature to late time 

linear flow.  The s0-parameter, shown in Fig. 4.79, causes the rate to increase slightly.  The rate derivative 

then illustrates the double change in slope by twice tending towards a zero value.  The time-dependent 

skin effect is clearly illustrated in Fig. 4.80 examining the rate derivative.  In all previous examples, the 

skin factor has had a negligible effect on the time-dependent wellbore storage, which is clearly not the 

case in this example. 
 

From the previous example, (Fig. 4.76 — Fig. 4.80), we observe a unique behavior that, theoretically, has 

the potential to provide diagnostic characteristics for a vertically fractured well.  However, in practice, we 

acknowledge the difficult, if impossible, task of evaluate the combined effects of time-dependent wellbore 

storage and skin factor from field data. 
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SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE WORK   

 CHAPTER V 

5.1 Summary 

In an effort to quantify "early-time" or "flowback" performance of a hydraulically fractured vertical well, 

we have postulated a series of time-dependent wellbore storage and skin factor models which appear to 

describe observed features from field data.  Using, as a foundation, Larsen and Kviljo's (1990) hyperbolic 

variable skin model, developed to describe the lowering skin factor during wellbore cleanup, our time-

dependent skin factor models are given as: 
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Fair (1981) proposed a wellbore phase redistribution pressure to account for the anomalous pressure 

"humps" sometimes observed during pressure build-up tests conducted in two-phase flow systems.  Fair's 

(1981) exponential wellbore phase redistribution pressure is given as: 
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 (wellbore phase redistribution) ....................... (5.4) 

In this work, we wanted to keep our concepts simple so we assumed that reservoir flow is dominated by 

linear or bilinear flow regimes with "base" approximations for formation flow regimes given as: 

v
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Through the use of the convolution integral, with most of our algebraic manipulations performed in the 

Laplace domain, we examine the performance of the constant pressure rate solutions, numerically 

inverting the Laplace domain formulations using the Stehfest algorithm.  Unfortunately, analytical 

solutions of the proposed formulations are essentially impossible to generate due to the complexity of the 

algebraic forms of these formulations in the Laplace domain. 

We examine the performance of each time-dependent wellbore storage and skin model with each reservoir 

flow regime, evaluating the effects of each model parameter on the computed rate performance.  Our 

results indicate that the proposed time-dependent models demonstrate characteristics similar to those 
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observed in field data (i.e., rate "humps" and nearly constant rate performance at early times).  In theory, 

this would could provide diagnostic capabilities for early-time well performance behavior during "clean-

up" after well stimulation.  We acknowledge that our proposed models have yet to be directly verified 

against field cases. 

A major accomplishment of this work is the development of a general procedure for modeling early-time 

well clean-up behavior.  We believe that this theory may be applicable to other fields of research — 

including multi-fracture horizontal wells. 

5.2 Conclusions 

● The time-dependent skin factor models yield features observed in field data.  Subtle differences

between models will likely yield an optimal model for practical application.

■ All time-dependent skin factor models exhibit certain features including the "hockey-stick" shape,

with dimensionless flowrate gently increasing at early times, followed by a "rollover" (i.e.,

transition) feature, with all flowrates converging to the characteristic reservoir (i.e., power-law,

linear or bilinear) flow regime (which is the reservoir model for the constant pressure case).

■ The cumulative-exponential time dependent skin factor demonstrates a rate increase during the

"rollover" feature, and has a strong "transition" regime as the performance tends to be dominated by

the reservoir flow behavior.  This makes it likely to be the most applicable in practice.

■ The exponential time dependent skin factor demonstrates a rate increase during the "rollover"

feature, but has a fixed duration of the time-dependent skin effect.

■ The hyperbolic time-dependent skin factor does not demonstrate a rate increase during the

"rollover" feature — however, this model can be tuned to have a very long transition period.

● For the time-dependent wellbore storage case, we observe a monotonically decreasing dimensionless

rate profile that is roughly "s-shaped," where all cases converge to the characteristic reservoir flow

regime (i.e., power-law, linear or bilinear) at late times.

● We believe that the derivative of the constant pressure dimensionless rate function has the potential to

provide diagnostic capabilities.  We would also comment that the cumulative production, and

normalized cumulative production functions also have good character, but less sharpness in features

compared to the derivative of the constant pressure dimensionless rate function.

5.3 Recommendations for Future Work 

● Perform field tests to verify the applicability of each time-dependent functional form.

● Perform analytical inversion of the models from the Laplace domain (currently not possible).

● This workflow should be exhaustively applied to field cases for vertically fractured wells.

● This workflow should be extended to field cases for multi-fractured horizontal wells.
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NOMENCLATURE 

 

Field Variables 
 

B = Formation volume factor, [bbl/STB] or [Rm3/Sm3]   
ct = Total compressibility, (M/Lt2)-1 [Pa-1] or [psi-1] 
Cs = Wellbore storage constant, L2/(M/Lt2) [bbl/psi] or [m3/Pa] 
C = Wellbore phase redistribution constant, L2/(M/Lt2) [bbl/psi] or [m3/Pa] 
h = Net pay thickness, L [m] or [ft] 
k = Permeability, L2 [mD] or [m2] 
kf = Fracture permeability, L2 [mD] or [m2] 
ks = Damaged reservoir permeability, L2 [mD] or [m2] 
kfs = Damaged fracture permeability, L2 [mD] or [m2] 
kfwf = Fracture conductivity, L3 [mD-ft] or [m3] 
p =  Pressure, M/Lt2 [Pa] or [psi] 
pi =  Initial reservoir pressure, M/Lt2 [Pa] or [psi] 
pf =  Fracture pressure, M/Lt2 [Pa] or [psi] 
ps =  Wellbore flowing pressure inclusive wellbore skin, M/Lt2 [Pa] or [psi] 
pwf =  Wellbore flowing pressure, M/Lt2 [Pa] or [psi] 
p =  Wellbore phase redistribution pressure, M/Lt2 [Pa] or [psi] 
pt =  Tubing flowing pressure at surface, M/Lt2 [Pa] or [psi] 
r = Radial distance, L [m] or [ft] 
rs = Damaged skin zone radial distance, L [m] or [ft] 
rw = Wellbore radius, L [m] or [ft] 
rD = Dimensionless radius, dimensionless 
s = Skin factor, dimensionless 
sf = Fracture face skin factor, dimensionless 
sf,ch = Choked fracture skin factor, dimensionless 
so = Maximum skin factor, dimensionless 
s∞ = Minimum skin factor, dimensionless 
q =  Flowrate, L3/t [m3/sec] or [ft3/s] 
qD =  Dimensionless flowrate, dimensionless 
qsf =  Sandface flowrate, L3/t [m3/sec] or [ft3/s] 
t = Time, t [sec]  
tD = Dimensionless time, dimensionless 
u = Laplace transform variable 
Vi = Stehfest extrapolation coefficient, dimensionless 
Vwb =  Wellbore volume, L3 [m3] or [ft3] 
wf = Fracture width, L [m] or [ft] 
ws = Damaged zone width, L [m] or [ft] 
xf = Fracture half length, L [m] or [ft] 
xw = Wellbore length in x-direction, L [m] or [ft] 
yw = Wellbore length in y-direction, L [m] or [ft] 
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Dimensionless Field Variables 
CD = Dimensionless wellbore storage constant 
CD = Dimensionless wellbore phase redistribution constant 
kfD = Dimensionless damaged fracture permeability 
(kfwf)D = Dimensionless fracture conductivity 
pD = Dimensionless wellbore flowing pressure 
pwD = Dimensionless wellbore flowing pressure inclusive wellbore storage and skin 
psD = Dimensionless wellbore flowing pressure inclusive skin 
ptD = Dimensionless tubing flowing pressure at surface 
pD = Dimensionless Wellbore phase redistribution pressure 
wfD = Dimensionless fracture width 
xD = Dimensionless fracture length 
xwD = Dimensionless wellbore length in x-direction 
ywD = Dimensionless wellbore length in y-direction 

 

Greek Variables 
 

 = Wellbore phase redistribution time constant, t [sec] 
D = Dimensionless wellbore phase redistribution time constant, dimensionless 
λ = Time-dependent skin effect exponential parameter (0 ≤ λ ≤ 1) 
 = Newtonian Viscosity, M/Lt [cp] or [lbm/fts] 
ν = Power-law flow regime exponential parameter (0 ≤ ν ≤ 1) 
  Hydraulic diffusivity, L/t2 [md/cpPa-1] or [m2/( lbm/fts) psi-1] 
D  Dimensionless hydraulic diffusivity, dimensionless 
  Density, M/L3 [kg/m3] or [lbm/ft3] 
  Variable for substitution
  = Porosity, fraction 
 Convolution variable 

 

Subscripts 
 

cls = Continuous line source 
cp = Constant pressure production 
cr = Constant rate production 
frac = Fracture 
WBS = Wellbore Storage 

 

Mathematical Functions 
 

Ei = Exponential integral 
erf = Error function 
Γ = Gamma function 
K0 = Modified Bessel Functions of the first kind, zero order 
K1 = Modified Bessel Functions of the first kind, first order 
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APPENDIX A 

FORMATION LINEAR FLOW REGIME PRESSURE RELATION DERIVATION 

 
This Appendix presents the derivation of the transient pressure behavior of an infinite-conductivity 

vertical fracture, derived from the line source solution, as proposed by Gringarten, Ramey and Raghavan 

(1974) in the formulation of formation linear flow from the matrix to the fracture.  Assumptions used for 

the formulation of this derivation are: 
 

● A vertical well penetrates the entire thickness of the reservoir. 

● The reservoir thickness is uniform (constant). 

● The reservoir is initially at pressure ip . 

● The reservoir is infinite in size. 

● The well produces from a constant flowrate  

● The rock properties are constant. 

● The fracture has infinite conductivity. 

● The fracture is infinite in length. 

● Flow to the wellbore occurs only through the vertical fracture.  

● The system contains a "slightly-compressible" fluid. 

● The effects of gravity are negligible. 

● The fracture has a uniform pressure distribution. 

 
The continuous line source solution, as presented by Carslaw and Jaeger (1946) presents the foundation of 

this work. Although Gringarten, Ramey and Raghavan (1974) presented their solution using Greens 

Functions, we propose an alternative derivation in this Appendix resulting in the same final solution.  The 

continuous line source solution is presented as Eq. A.1 below.  
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Where 
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t
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k


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Assuming a constant flowrate, then Eq. A.1 may be reduced to:  
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In order to solve this integral, we first define a variable for substitution:  
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Taking the derivative of Eq. A.5 with respect to the -parameter yields: 
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Substituting Eq. A.5 into A.6 yields:  
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Rearranging Eq. A.7 yields a form to substitute back into Eq. A.4:  
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Where the limits of integration are: 
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Substituting Eq.A.5 and Eq. A.7 through A.10 into Eq. A.4 yields:  
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Reversing the limits of integration yields: 
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Recalling the definition of the exponential integral from Schaum's (1971):  
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We can substitute the definition of the exponential integral into Eq. A.12 resulting in:  
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Where the function evaluated at infinity is zero.  Eq. A.14 is the continuous line source solution for radial 

flow.  For a fractured well, we create a plane along the x-axis and integrate.  Rearranging Eq. A.14 for a 

continuous fracture, assuming the wellbore is in the center of the fracture, yields:  
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Eq. A.15 assumes the fracture half-length is notated by xf while the wellbore length is xw. The constant 

flowrate into the fracture is denoted by:  
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Non-dimensionalizing Eq. A.15 requires the following equations: 
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Substituting Eq. A.16 through A.21 into Eq. A.15 yields:  
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Multiplying the exponential integral function by ]/1/[]/1[ 22
ff xx and simplifying terms yields:  
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Defining further a dimensionless variable for substitution:  
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Differentiating Eq. A.24 yields:  
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where the limits of integration are:  
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Eq. A.26 and A.27 may be rewritten as:  
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Substitution of Eq. A.28 and A.29 into Eq. A.23, and multiplication by 




oqB

hk2
yields:  
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Recalling Eq. A.20, we define the dimensionless fracture pressure as:  
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Assuming that the well is at the center of the fracture (i.e., xwD'=0) with negligible length compared to the 

fracture half-length, and that the fracture has no thickness (i.e., yD=ywD=0), we can rewrite Equation A.31 

as:  
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To solve this integral, we begin by creating a variable for substitution as:  
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Taking the square root of all terms in Eq. A.33 yields:  
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Taking the derivative of Eq. A.34 with respect to xwD:  
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Rewriting Eq. A.35 yields:  
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Evaluating the limits of integration:  

 



 

103 

 

1wDx ,  
D

D

t

x
z

2

1
   ..................................................................................................................... (A.38) 

1wDx ,  
D

D

t

x
z

2

1
    .................................................................................................................. (A.39) 

 

Returning these results to Eq. A.33, we rewrite the dimensionless fracture pressure difference as:  
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Performing a second variable substitution, we introduce:  
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Taking the derivative of Eq. A.41 yields:  
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Substituting Eq. A.42 into Eq. A.40:  
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We cannot take this integral; therefore, we rewrite Eq. A.41 as:  
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Returning Eq. A.44 to A.43:  
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Naming variables to use in integration by parts let:  

 



104 

 

][mEu i    ....................................................................................................................................... (A.46) 

mv 2'    ......................................................................................................................................... (A.47) 
 

Therefore:  

 

m

e
u

m
'    ......................................................................................................................................... (A.48) 

mv     ......................................................................................................................................... (A.49) 
 

Applying integration by parts to solve Eq. A.45 yields: 
 


























 










Dt
Dx

Dt
Dx

m
Dt

Dx

Dt
Dxi

D
DDcfracD dmm

m

e
mEm

t
txp

2

1

2

1

2

1

2

1, ][
2

),(    .......................................... (A.50) 

 

Performing a second substitution in order to solve the integral remaining in Eq. A.50, we define:  

 

mu     ........................................................................................................................................... (A.51) 
 

Taking the derivative of Eq. A.51 yields: 

m

dm
du

2
    ...................................................................................................................................... (A.52) 

 

Substituting Eq. A.51 and A.52 into A.50 yields:  
 


























 











Dt
Dx

Dt
Dx

uDt
Dx

Dt
Dxi

D
DDcfracD duemEm

t
txp

2

1

2

1

22

1

2

1, 2][
2

),(    .............................................. (A.53) 

 

We rewrite the integral of Eq. A.53 as a sum of integrals across the limits of integration as shown:  
 















 
Dt

Dx

u

Dt
Dx

u
Dt

Dx

Dt
Dx

u dueduedue

2

1

0

2
0

2

1

2
2

1

2

1

2
222    ......................................................................... (A.54) 
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Recalling the error function from Schaum's (1974):  
 

duexerf

x
u 

0

22
)(


 .................................................................................................................... (A.55) 

 

 

Rewriting Eq. A.54,  
 














 

Dt
Dx

u

Dt
Dx

u

Dt
Dx

Dt
Dx

u dueduedue

2

1

0

2

2

1

0

2

2

1

2

1

2
222  ............................................................................. (A.56) 

 

Substituting the definition of the error function into Eq. A.56 yields:  
 











 












 








D

D

D

D

Dt
Dx

Dt
Dx

u

t

x
erf

t

x
erfdue

2

1

2

1
2

2

1

2

1

2
  ....................................................................... (A.57) 

 

Returning this result to Eq. A.53 yields:  
 





























 












 








D

D

D

DDt
Dx

Dt
Dxi

D
DDcfracD

t

x
erf

t

x
erfmEm

t
txp

2

1

2

1
][

2
),(

2

1

2

1,     ............. (A.58) 

 

Substituting Eq. Eq. A.44 into Eq. A.58 yields:  
 





























 












 








D

D

D

DDt
Dx

Dt
Dxi

D
DDcfracD

t

x
erf

t

x
erfzzE

t
txp

2

1

2

1
][

2
),(

2

1

2

1
2

,     ................. (A.59) 

 

Applying the limits to the exponential integral and substituting Eq. A.34, results in:  
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   

















 












 












 











 












 
















 


D

D

D

D

D

D
i

D

D

D

D
i

D

DD
DDcfracD

t

x
erf

t

x
erf

t

x
E

t

x

t

x
E

t

xt
txp

2

1

2

1

4

1

2

1

4

1

2

1

2
),(

22

,



   

 ........................................................................................................................................................... (A.60) 
 

Multiplying through by 2/Dt results in:  

 

   

















 












 












 




 












 




 



D

DD

D

DD

D

D
i

D

D

D
i

D
DDcfracD

t

x
erf

t

t

x
erf

t

t

x
E

x

t

x
E

x
txp

2

1

22

1

2

4

1

4

1

4

1

4

1
),(

22

,


 

   ......................................................................................................................................................... (A.61) 
 

Combining like terms within Eq. A.60 yields:  
 

   










 





 












 





 
























 












 


D

D
i

D

D

D
i

D

D

D

D

DD
DDcfracD

t

x
E

x

t

x
E

x

t

x
erf

t

x
erf

t
txp

4

1

4

1

4

1

4

1

2

1

2

1

2
),(

22

,


 

   ......................................................................................................................................................... (A.62) 
 

Applying the negative sign in the error and exponential integral terms, we can rearrange to the form 

produced by Gringarten, Ramey and Raghavahn (1974).  
 

   










 







 












 







 


























 












 


D

D
i

D

D

D
i

D

D

D

D

DD
DDcfracD

t

x
E

x

t

x
E

x

t

x
erf

t

x
erf

t
txp

4

1

4

1

4

1

4

1

2

1

2

1

2
),(

22

,


 

   ......................................................................................................................................................... (A.63) 
 

The short term solution for Eq. A.63, as described by the authors, describes the formation linear flow 

regime utilized within this thesis.  Evaluating the error function, as dimensionless time approaches zero 

leads towards a solution of one, while the exponential integral approaches negative infinity.  Applying this 

to Eq. A.63 yields: 
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]11[
2

),0(,  D
DDfracD

t
txp


 ............................................................................................. (A.64) 

 

Simplification of Eq. A.64 results in:  
 

DDDfracD ttxp  ),0(,  ....................................................................................................... (A.65) 

 

Which is the short term approximation for the dimensionless pressure relation of an infinite conductivity 

vertical fracture displaying formation linear flow regimes between the reservoir matrix and the fracture. 
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APPENDIX B 

BILINEAR FLOW REGIME PRESSURE RELATION DERIVATION 

 

This Appendix presents the derivation of the transient pressure behavior of a finite-conductivity vertical 

fracture as proposed by Cinco and Samaniego (1981).  Assumptions used for the formulation of this 

derivation are: 
 

● A vertical well penetrates the entire thickness of the reservoir. 

● The reservoir thickness is uniform (constant). 

● The reservoir is initially at pressure, pi. 

● The reservoir is infinite in size. 

● The well produces from a constant flowrate  

● The rock properties are constant. 

● The fracture has finite conductivity. 

● The fracture is infinite in length. 

● Flow to the wellbore occurs only through the vertical fracture.  

● The system contains a "slightly-compressible" fluid. 

● The effects of gravity are negligible. 

● The pressure gradients are small. 

● The system obeys Darcy's law. 
 

Assuming linear flow within the fracture, and that fracture tip effects are not felt at early-times, we recall 

the full pressure behavior of the system as described (Eq. B.1) by Cinco and Samaniego's (1981a) in Eq. 

B.1. Derivation of the full pressure behavior is based on mass balance and continuity principles, however, 

is not of direct relevance to this paper and not produced in this work. 
 

D

fD

fDDyD

D

DffD

crfD

dt

p

dy

p

wkx

p 









 
1

)(

2

0
2
,

2

(0 < xD < ∞)  ......................................................... (B.1) 

 

The initial condition for Eq. B.1 is: 
 

0)0,(, DDcrfD txp  ....................................................................................................................  (B.2) 

 

The boundary conditions for Eq. B.1 are: 
 

Dff
DxD

crfD

wkx

p

)(
0

, 







 (inner boundary condition) ...................................................  (B.3) 
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0),(lim , 


DDcrfD
Dx

txp

 

(outer boundary condition) ...................................................  (B.4) 

 

The transient flow behavior from the formation can be described with the following partial differential 

equation.  
 

D

D

D

D
t

p

y

p








2

2
 )0,0(  DD ty  ..............................................................................................  (B.5) 

 

The initial condition for Eq. B.5 is: 
 

0)0,( DDD typ  ............................................................................................................................ (B.6) 

 

The boundary conditions for Eq. B.5 are: 
 

),(),0( , DDcrfDDDD txptyp 
 

(inner boundary condition) ...................................................  (B.7) 

0),(lim 


DDD
Dy

tyP

 

(outer boundary condition) ...................................................  (B.8) 

 

Method of Solution 

Taking the differential equation for fracture flow into the Laplace domain yields the following 

relation: 
 

 crfD
fDDyD

D

DffD

crfD
p

u

dy

p

wkx

p
,

0
2
,

2

)(

2












   (0 < xD < ∞) .................................................... (B.9) 

 

The initial condition for Eq. B.9 is: 
 

0),(, uxp DcrfD  ............................................................................................................................ (B.10) 

 

The boundary conditions, in the Laplace domain, for Eq. B.9 are: 
 

u

wk

x

p Dff

DxD

crfD )(

0

,








  

(inner boundary condition) .................................................. (B.11) 

0),(lim , 


uxp DfDcr
Dx

  (outer boundary condition) .................................................. (B.12) 

 

Taking the differential equation for reservoir flow into the Laplace domain yields the following 

relation: 
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D
D

D pu
y

p





2

2

(0 < yD < ∞) .............................................................................................................. (B.13) 

 

 

The initial condition for Eq. B.13 is: 
 

0),( uyp DD  ................................................................................................................................. (B.14) 

 

The boundary conditions for Eq. B.13 are: 
 

),(0),0( , uxpuyp DcrfDDD   ................................................................................................ (B.15) 

),(lim uyp DD
Dy 

 ........................................................................................................................... (B.16) 

 

The solution for Eq. B.13 results in a second order linear differential equation with a general solution 

of the form: 
 

xBxB eKeKty  21)(  ............................................................................................................ (B.17) 

 

Applying Equation B.13 into the known form of the differential equation, 
 

DyuDyu
D eKeKup  21)(  ...................................................................................................... (B.18) 

 

Applying the outer boundary condition Eq. B.16 to B.15 yields: 
 

)(
2

)(
10   uu eKeK  ......................................................................................................... (B.19) 

 

Evaluating, the second term on the right hand side will tend towards zero. 
 

)(
10  ueK  ................................................................................................................................... (B.20) 

 

leading to K1=0.  Returning to Eq. B.18, substituting our first constant yielding:   
 

Dyu
D eKup  2)(  ...................................................................................................................... (B.21) 

 

Applying the second boundary condition Eq. B.15 to our incomplete solution Eq. B.21, 
 

)0(
2, )( u

crfD eKup   ................................................................................................................. (B.22) 

 

Leading to fDpK 2 . Returning the solution to the constant to Eq. B.21, yields: 
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Dyu
crfDD eupup  )()( ,  ........................................................................................................... (B.23) 

 

Taking the derivative of the pressure response with respect to distance from the fracture Dy , yields: 

yields: 
 

Dyu
crfD

D

D eupu
y

up 



)(

)(
,  ................................................................................................. (B.24) 

 

Solving at the fracture interface,  
 

)0(
,

0

)(
)( u

crfD
DyD

D eupu
y

up 







 ....................................................................................... (B.25) 

 

Yielding 
 

)(
)(

,
0

upu
y

up
crfD

DyD

D 





 ...................................................................................................... (B.26) 

 

Which provides an expression for transient reservoir inflow source term which may be substituted 

into the fracture flow pressure expression Eq. B.9 yielding: 

 

crfD
fD

crfD
DffD

crfD
p

u
p

wk

u

x

p
,,2

,
2

)(

2







, ............................................................................. (B.27) 

 

Or: 
 

crfD
DfffDD

crfD
p

wk

uu

x

p
,2

,
2

)(

2



















, ....................................................................................... (B.28) 

 

The solution to Eq. B.28 will take the form: 
  

xBxB eKeKty  21)( , ........................................................................................................... (B.29) 

 

Where substituting Eq. B.28 into the known form of the differential equation, we arrive at:  
  

Dx
Dfwfk

u

fD

u
Dx

Dfwfk

u

fD

u

crfD eKeKup
)(

2

2
)(

2

1, )(






, ......................................... (B.30) 

 

Utilizing boundary conditions to solve for the constants K1 and K2, we first apply the outer boundary 

condition Eq. B.12: 



112 

 

 

)(
)(

2

2

)(
)(

2

10



 Dfwfk

u

fD

u

Dfwfk

u

fD

u

eKeK


 ......................................................... (B.31) 

 

Evaluating, the second term on the RHS will tend towards zero. 
  



 Dfwfk

u

fD

u

eK
)(

2

10


, ........................................................................................................... (B.32) 

 

 

 

Leading to K1=0.  Therefore, we return to Eq. B.31, substituting our first constant yielding:   
  

Dx
Dfwfk

u

fD

u

crfD eKup
)(

2

2, )(






, ....................................................................................... (B.33) 

 

Taking the derivative of Eq. B.33, and applying the inner boundary condition, Eq. B.11, yields: 
  

)0(
)(

2

2
,

)(

2)( Dfwfk

u

fD

u

DfffD

Dff

D

crfD
eK

wk

uu

u

wk

x

p





 





, .............................. (B.34) 

 

Simplifying, we solve for the second constant: 
  

DfffD

Dff

wk

uu
u

wk
K

)(

2

)(
2









, ........................................................................................................... (B.35) 

 

Returning the second constant to Eq. B.33, we arrive at the expression for pressure behavior along the 

fracture: 
 

2/1

2/1

,

)(

2
)(

)(

2
exp

)(













































DfffD
Dff

DfffD
D

crfD

wk

uu
uwk

wk

uu
x

up






, ....................................................................... (B.36) 

 

Examining the pressure performance at the wellbore 0Dx , we arrive at the final non-dimensional 

pressure response for the fracture in Laplace space: 
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2/1,

)(

2

1

)(
)(
















DfffD

Dff
crD

wk

uu
u

wk
up




. .......................................................................... (B.37) 

 

Inversion of Equation B.37 is too complex for practical application; therefore, we will produce short and 

long time approximations.  Beginning with short time behavior, we return to Eq. B.37. Knowing that as 

the limit of time in the real domain tends towards zero, the Laplace variable u tends towards infinity, 

yields: 
 

2/1,
1

)(
)(














fD

Dff
crD

u
u

wk
up




, .............................................................................................. (B.38) 

 

Arraying and simplifying, we arrive at, 
 

2/3,
1

)(
)(

uwk
up

Dff

fD
crD


 , ......................................................................................................... (B.39) 

 

The short term pressure behavior of a well in Laplace space.  Utilizing the work of Roberts and Kaufman 

(1966) we apply the following two identities 

 

Table 1 — Laplace Inversion Lookup Table for Short Time Pressure Solution 

)(ug   )(tf   Location 

2/3
1

u
 

 2/1
2 





t

 
 

Pg. 206, Eq. 2 

)(uag   )(taf   Pg. 169, Eq. 1 

 

Utilizing Table 1, we assume the general shape of Eq. B.39 is of the form )(uag . Taking the Laplace 

inversion of )(ug results in: 

 

2/1

, 2
)(

)( 






 t

wk
tp

Dff

fD
DcrD , .................................................................................................. (B.40) 

 

Rearranging,  
 

DfD
Dff

DcrD t
wk

tp 
)(

2
)(,  , ............................................................................................... (B.41) 
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Which is the short term approximation of pressure near the wellbore for a finite conductivity vertical 

fracture. Eq. B.41 will produce fracture linear flow response as described by Cinco and Samaniego (1981).  

This response is of little value, as fracture linear flow occurs at such short times it is masked by short time 

wellbore storage and skin effects and if near-never observed in practice. 
 

The long time approximation follows a similar methodology as the short time approximation. Returning to 

Eq. B.37, at long times in the real domain, the Laplace variable will approach zero. Therefore, the full 

solution, 
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, ......................................................................... (B.37) 

 

Simplifies to,  
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Arraying:  
 

4,
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)(2
)(

uu
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Dff
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Simplifying further yields:  
 

4/5,
1

)(2
)(

uwk
up

Dff
crD


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The long term pressure behavior in the Laplace domain.  Utilizing the work of Roberts and Kaufman 

(1966) we apply the following two identities 

 

Table 2 — Laplace Inversion Lookup Table for Long Time Pressure Solution 

)(ug   )(tf   Location 

vu

1
 

 

)(

1



vt
 

 
Pg. 206, Eq. 4 

)(uag   )(taf   Pg. 169, Eq. 1 
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Utilizing Table 2, we assume the general shape of Eq. B.44 is of the form )(uag . Taking the Laplace 

inversion of )(ug results in: 












4

5)(2
)(

1
4

5

,
D

Dff
DcrD

t
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tp


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Arraying,  
 

4
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)(2)4/5(
)( D

Dff
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
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Which is the final long term pressure behavior measured at the wellbore for a finite conductivity vertical 

fracture. In accordance with Cinco and Samaniego's (1981) work, this agrees with the bilinear flow regime 

that is expected at long times.  

  



116 

 

APPENDIX C 

GENERALIZED CONSTANT PRESSURE SOLUTION IN THE LAPLACE DOMAIN 

 

This appendix provides the derivation of the generalized constant pressure solution in the Laplace domain. 

Developed from a mass balance approach with a control volume around the wellbore with a sand-face inlet 

and well-head outlet, this equation is of primary use in this work upon which all other theories are applied.  

We begin with the dimensionless rate relation, demonstrated as: 
 











D

tD

D

wD
DDWBSD dt

dp

dt

dp
Ctq 1)(, . ........................................................................................... (C.1) 

 

Defining dimensionless terms:  
 

q

q
q

f
WBSD ,  ................................................................................................................................... (C.2) 
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
 .............................................................................................................. (C.4) 

][
2.141 titD pp

qB
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p 


 ................................................................................................................ (C.5) 

 

where all values are in field units.  Assuming that the tubing pressure remains constant, we take Eq. C.1 

into the Laplace domain, following the theory presented by Blasingame (PETE 620 Notes, 1994), we 

have:  
 

 )0()(
1

)(  DwDwDDD tpupuC
u

uq . ..................................................................................... (C.6) 

 

Knowing that the dimensionless wellbore pressure, at initial dimensionless time is zero, we can rewrite Eq. 

C.6 as:  
 

)(
1

)( upuC
u

uq wDDD  . ................................................................................................................ (C.6) 

 

Examining the convolution integral for a continuously changing flowrate (i.e. applicable for any case), 

displayed below for reference: 
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 dtpqtp
Dt

DsDDDwD )()(')(

0
  . .............................................................................................. (C.7) 

 

Where  
 

stptp DDDsD  )()( ...................................................................................................................... (C.8) 

 

Taking the Laplace transform of Eq. C.7:  
 

)()]0()([)( uptququup sDDDDwD  . ....................................................................................... (C.9) 

 

The flowrate at initial time is zero, therefore, Eq. C.10 condenses to:  
 

)()()( upuquup sDDwD  . .............................................................................................................. (C.10) 

 

Substituting Eq. C.6 into Eq. C.10 yields:  
 

)()(
1

)( upupuC
u

uup sDwDDwD 



   ............................................................................................ (C.11) 

 

Multiplying through by the Laplace parameter yields:  
 

)()](1[)( 2 upupuCup sDwDDwD  . ............................................................................................ (C.12) 

 

Solving for the dimensionless wellbore pressure, we multiply through by )(/1 upwD  and )(/1 upsD

yielding:  
 

2

)(

1

)(

1
uC

upup D
wDsD

 . ............................................................................................................ (C.13) 

 

Solving for the dimensionless wellbore storage pressure yields: 
 

2

)(

1
1

)(
uC

up

up

D
sD

wD


 . ............................................................................................................ (C.14) 

 

From Van Everdingen and Hurst (1949) we recall the convolution integral relating the constant pressure 

solution to the constant rate solution, defined, in Laplace space, as: 
 

2,,
1

)()(
u

upuq crwDcpD  . .............................................................................................................. (C.15) 
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Solving for the constant pressure solution, we assume that Eq. C.14 is a constant rate case, rather than 

applicable in all situations.  Substituting Eq. C.14 into Eq. C.15 yields: 
 

2

,

2,

)(

1
1
11

)(

uC
up

u
uq

D
crsD

cpD



 . ................................................................................................. (C.16) 

 

Simplifying the right hand side of Eq. C.16:  
 












 2

,2, )(

11
)( uC

upu
uq D
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Multiplying through by u2 yields:  
 

D
crsD

cpD C
upu

uq 
)(

11
)(

,2, . ...................................................................................................... (C.18) 

 

Consulting Roberts and Kaufman (1966, pg. 202, Eq.172) demonstrate that the Laplace inversion of a 

constant is the Dirac delta, δ(t), an impulse function where the result is zero for all values other than at 

time equals zero, where it results in infinity.  As Laplace inversion is additive, therefore, we know that the 

inversion of the wellbore storage constant will result in zero.  For this reason, we can rewrite Eq. C.18 as:  
 

)(

11
)(

,2, upu
uq

crsD
cpD  , ............................................................................................................. (C.19) 

 

which is the generalized constant pressure solution. 
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APPENDIX D 

CONSTANT PRESSURE SOLUTION WITH TIME-DEPENDENT CHOKED FRACTURE SKIN  

 

This appendix examines the constant pressure behavior, derived in Appendix C, with the addition of a 

variable choked fracture skin pressure constraint. Larsen et al. (1990) initially proposed a hyperbolic 

relation for variable skin in order to describe the effects of the early-time pressure transient response due 

to fracture cleanup.  This work examines the hyperbolic relation proposed by Larsen et al. for the constant 

pressure solution, along with an exponential and cumulative exponential time dependent skin.  This work 

is performed in the Laplace domain with numerical inversion of the constant pressure solution. 
 

Hyperbolic Model 
 

Larsen et al. (1990) proposed a hyperbolic time dependent skin function to account for variations in 

production seen during cleanup, as shown by: 
 

c
tb

a
s 


  .......................................................................................................................................... (D.1) 

 

Where the parameters a, b and c are unique to the well being examined.   

 

Loosely basing our model upon the original work of Larsen, we present Eq. D.2 proposed based on 

empirical field evidence: 
 















Dt

sssDts

1

1
]0[)(  ........................................................................................................ (D.2) 

 

Knowing that skin is an additive function to wellbore pressure in the real domain, and assuming a time 

dependent skin factor demonstrated as: 
 

)()()( ,, DDcrDDcrsD tstptp   ..................................................................................................... (D.3) 

 

Substituting in Eq. D.2 into Eq. D.3, assuming that the skin factor term is variable with time, we arrive at: 
 



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






 

Dt
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1
]0[,)(, )(  ......................................................................... (D.4) 

 

 

In an effort to obtain the constant pressure solution, we will take advantage of the convolution integral, 

presented in Laplace space. Utilizing the Mathematica "LaplaceTransform" function to bring Eq. D.4 into 

Laplace space, yielding:  
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u

ssuU

u

s
upup crDcrsD

])[,0,()1(
)()( 0

,,
 


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 .............................................................. (D.5) 

 

where (x) is the gamma function, and U(a,b,z) is the hypergeometric function.  Application of the 

convolution integral in Laplace space, the constant pressure solution is expressed as a relation of the 

constant rate solution, provided below for reference: 
 

)(

11
)(

,2, upu
uq

crsD
cpD   ................................................................................................................... (D.6) 

 

We substitute the wellbore pressure including skin, Eq. D.5, into Eq. D.6 yielding:  
 

u

ssuU

u

s
upu
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cpD ])[,0,()1(
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0
,
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 


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 .......................................................... (D.7) 

 

In order to solve the invert Eq. D.7 into the real domain, we must incorporate a dimensionless wellbore 

flowing pressure.  Linear and bilinear flow relations have been derived in Appendix A and B (provided 

below for reference). We further introduce a third general "power-law" flow regime (capable of describing 

any potential flow pattern) also described as follows: 
 


DDcrD tctp 1, )(   (power-law flow) ............................................................. (D.8a) 

DDcrD ttp )(,  (linear flow) ..................................................................... (D.8b) 

4
,

)(2)4/5(
)( D

Dff
DcrD t

wk
tp



  (bilinear flow) .................................................................. (D.8c) 

 

Transforming the dimensionless wellbore pressure solutions into the Laplace domain, yields: 
 


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
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
11,

)1(
)(

u
cup crD  (power-law flow) .................................................................. (D.9a) 
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   (linear flow) .......................................................................... (D.9b) 
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)(

uwk
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Dff
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


  (bilinear flow) ....................................................................... (D.9c) 
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Substituting the dimensionless wellbore pressures (Eq. 9) into Eq. D.7, we arrive at the constant pressure 

solution, assuming a skin with a hyperbolic relation with time, in Laplace space shown as:  
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 (bilinear flow) ........ (D.10c) 

 

Multiplying Eq. D.10 through by the Laplace parameter squared: 
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 (bilinear flow) ........ (D.11c) 

 

Eq. D.11 are the constant pressure solution, in Laplace space, for linear, bilinear and a general power-law 

flow regime, which include a hyperbolic time dependent skin, and no wellbore storage.  Numerical 

inversion through the Stehfest algorithm is employed to return the solution to the real domain. 
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Exponential Decay Model: 

Continuing the efforts of Larsen et al. (1980), we propose an additional time dependent skin model 

following an exponential decay model.  The following "exponential decay" model is proposed for a time-

dependent skin factor: 
 

]exp[ 0)( / DssDts t  .............................................................................................................. (D.12) 
 

Substitution of Eq. D.19 into Eq. D.11, the wellbore pressure, including wellbore skin, in the real domain 

yields: 
 

]exp[ 0,, /)()( DtssDcrDDcrsD tptp   .............................................................................. (D.13) 

 
 

In the Laplace domain, Eq. D.13 is: 
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We substitute the wellbore pressure including an exponential model for time dependent skin, Eq. D.14, 

into Eq. D.6 yielding: 
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Substituting in Eq. D.9, the three flow regimes examined in this work, into Eq. D.15, yields: 
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Multiplying Eq. D.16 through by the Laplace parameter squared:  
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Eq. D.17 is the constant pressure solution for a vertical fracture assuming time-dependent exponential skin 

effects and no wellbore storage.  The Stehfest algorithm provides accurate and rapid numerical inversion 

of this equation. 
 

Cumulative Exponential Model: 
 

A third "cumulative exponential" model is explored to describe time dependent skin behavior for the 

constant pressure solution.  The cumulative exponential model is described as: 
 

]])/(exp[1][[)( 0
 DD tsssts    ................................................................................... (D.18) 

 

Substitution of Eq. D.18 into Eq. D.11, the wellbore pressure in the real domain yields: 
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Utilizing the Mathematica "LaplaceTransform" function to bring Eq. D.19 into Laplace space yielding:  
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We substitute the wellbore pressure including cumulative exponential time dependent skin, Eq. D.20, into 

Eq. D.6 yielding: 
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Substituting in Eq. D.9, the three flow regimes examined in this work, into Eq. D.21, yields: 
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Multiplying Eq. D.22 through by the Laplace parameter squared: 
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We arrive at the constant pressure solution, assuming a cumulative-exponential time-dependent skin 

factor, in Laplace space.  The Stehfest algorithm provides accurate and rapid numerical inversion. 
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APPENDIX E 

CONSTANT PRESSURE SOLUTION INCLUDING WELLBORE PHASE REDISTRIBUTION  

 

This appendix examines the constant pressure behavior, derived in Appendix C, with the addition of a 

wellbore phase redistribution parameter.  Fair (1981) examined a variation of the wellbore storage effect, 

incorporating the result into the diffusivity equation for a constant rate, radial system.  This work examines 

the exponential pressure distribution proposed by Fair (1981) for the constant pressure case in a vertically 

fractured well. This work in performed in Laplace space with numerical inversion of the constant pressure 

solution. 
 

Fair (1981) proposed that the pressure response due to wellbore phase redistribution is an additive function 

to the traditional wellbore storage examined in classical theory.  Eq. E.1 was proposed by Fair (1981) to 

examine the changing sand face flowrate due to changing wellbore pressure and wellbore phase 

redistribution. 
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Defining dimensionless terms:  
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Taking Eq. E.1 into the Laplace domain, following the theory presented by Blasingame (PETE 620 Notes, 

1994), we have:  
 

 )]0()([)]0()([
1

)(  DDDDwDwDDD tpuputpupuC
u

uq  . ....................................... (E.6) 

 

Assuming that the pressure of the wellbore is zero when dimensionless time equals zero, Eq. E.6 becomes:  
 

)]()([
1

)( upuupuC
u

uq DwDDD  . .............................................................................................. (E.7) 

 

Recalling the convolution integral for a continuously changing flowrate:  
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Where  
 

stptp DDDsD  )()(  ..................................................................................................................... (E.9) 

 

Taking the Laplace transform of Eq. E.8:  
 

)()]0()([)( uptququup sDDDDwD   ...................................................................................... (E.10) 

 

The flowrate at initial time is zero, therefore, Eq. E.9 condenses to:  
 

)()()( upuquup sDDwD   ................................................................................................................ (E.11) 

 

Substituting Eq. E.7 into Eq. E.11 we arrive at:  
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Multiplying through by the Laplace parameter:  
 

)()]]()([1[)( 2 upupupuCup sDDwDDwD  . .......................................................................... (E.13) 

 

Combining pressure terms in order to separate the wellbore flowing pressure:  
 

)()](1[)](1)[( 22 upupuCupuCup sDDDsDDwD  . ................................................................ (E.14) 

 

Solving for the flowing wellbore pressure 
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According to Fair (1981), the phase redistribution pressure Dp has an exponential relationship based on 

theoretical reasoning and unpublished laboratory data, demonstrated by the following relationship:  
 

)1()( / DDtDDD eCtp 

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where dimensionless parameters are defined by: 
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where constants are in field units.  The wellbore phase redistribution constant, , is a logarithmic 

average between the surface and bottomhole flowing pressure, and  is dependent on two phase fluid flow 

properties such as gas bubble or slug rise time in the well (Fair 1981).  Assuming a constant skin factor 

(i.e. one that does not vary with time), and that the reservoir is operating at a constant rate, we can take the 

Laplace transform of Eq. E.9 and E.16: 
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Substituting Eq. E.20 and Eq. E.21 into Eq. E.15:  
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Expanding all terms, we arrive at a generalized wellbore storage relationship, which includes the effects of 

wellbore phase redistribution:  
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In order to find a constant pressure solution, we return to the convolution integral in Laplace domain for a 

constant flowrate defined as:  
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Substituting Eq. E.23 into Eq. E.24 we arrive at a constant pressure solution:  
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Recalling that, in the Laplace domain, our pressure solutions are defined by Eq. E.21: 
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Returning E.21 into E.20, we arrive at the final constant pressure solution which includes wellbore phase 

redistribution and a constant skin effect:  
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Eq. E.22 is the constant pressure solution for a vertically fractured well with time-dependent wellbore 

storage, a constant skin factor producing from linear, bilinear or a general power-law flow relation. 
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