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ABSTRACT

The flowback performance of multi-fractured horizontal wells completed in an ultra-low permeability
(shale) reservoir often includes an anomalous flowrate feature at early times prior to the development of a
characteristic reservoir flow regime (i.e., linear or bilinear flow). This flowrate feature is evident in all of
the flow phases (gas, oil, water, and total fluid) and is caused by the "unloading" of the well (essentially
the "clean-up" behavior following well stimulation). Our concept is that this flowrate feature is caused by
decaying skin effects, a changing wellbore storage effect, or a combination of both a decaying skin effects
and changing wellbore storage effects. For simplicity — and as a proof-of-concept, this research
considers only the case of a vertical well with a single vertical fracture, but the concept and relations

developed in this work can be directly extended to the solution for a multi-fractured horizontal well.

As noted, the goal of this research is to develop series of time-dependent skin and wellbore storage models
to characterize the early-time flowrate behavior observed in practice, under the constraint of a constant
wellbore flowing pressure. Our procedure is to couple case of time-dependent wellbore storage and skin
effects with a set of reservoir flow models (i.e., power-law, bilinear and formation linear flow) and by
applying the convolution integral to the constant pressure condition, we generate various scenarios of

production performance.

Specifically, in this work we provide derivations of the development of each constant pressure solution,
where all work is performed Laplace domain and the Stehfest Algorithm is used to numerically invert each
case to the real domain. A graphical illustration of the performance of each model is provided and a
generalized workflow is presented (we note that this workflow can easily be extended to more complex

fracture structures — i.e., the multi-fractured horizontal well case).

Although these models represent different physical phenomena, we observe that all of the proposed
models provide some mechanism for representing early-time variations in flowrates. We demonstrate the
relevance of these models, which are based on empirical time-dependent models for wellbore storage and
skin effects, as proxies that can be used to represent early-time flowrate behavior. In short, we
demonstrate that each time-dependent model has unique characteristics which could theoretically allow for
characterization of fracture behavior prior to the onset of an undistorted "reservoir" flow regime (i.e.,

formation linear or bilinear flow).
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CHAPTER1

INTRODUCTION

1.1 Motivation

The motivation of this work originates from the lack of information available during flowback testing until
the development of a characteristic reservoir flow regime (i.e., linear or bilinear flow) from which we can
diagnose reservoir behavior. Empirical analysis of field data, specifically the observation of an anomalous
flowrate feature at early times (often a "hump" in the flowrate profile), leads to the hypothesis that
reservoir behavior may not be uniquely identified nor quantified from flowback production performance.
The goal of this present work is to utilize empirical and/or semi-analytical models to capture the
anomalous behavior observed in flowback production performance as a means of possibly "diagnosing"
causes of this behavior. At present, we do not provide any mechanisms to use such models to estimate
reservoir (or well) properties or to "uncouple" wellbore and reservoir flow behavior — such topics will be

left to subsequent research.
1.2 Objectives

The main objectives of the work are:

e To provide a constant pressure model for describing the early-time rate transient effects of a

vertically fractured well including time-dependent wellbore storage and time-dependent wellbore
skin effects.

e To provide diagnostic understanding of the behavior of the various time-dependent models.

e To provide a workflow of methodology to apply this technique to other applications.

e To generate dimensionless flowrate type-curves suitable for visualizing these flow phenomena.
1.3 Workflow for Model Development

In this section, we present a workflow which demonstrates the steps taken to develop our constant pressure
solution, presented in Fig. 1.1. This workflow incorporates each historical flow regime and each of the
time-dependent models presented in this proposal, and the major steps required to combine these models

and presents a final solution in the Laplace domain.
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Figure 1.1 — Workflow for pressure and rate prediction with time-dependent wellbore storage and skin effects.

1.4 Basic Concepts

The development of the constant pressure solution for a wvertically fractured well requires the
understanding of basic concepts which are defined in this chapter and applied throughout the derivation of

the proposed model.

Wellbore Storage is the phenomena that accounts for the difference between surface and bottomhole
flowrates due primarily to the compressibility of the fluid within the wellbore. Occurring immediately
after any change in the flowrate, the expansion or compression of the fluid causes a delay in the measured
rates of the fluid. Wellbore storage is of significant interest due to its nature to mask reservoir behavior, at
early-time, typically during well tests (e.g., shut-in tests), but also during early flowback operations.
Incorporation of the wellbore storage behavior is essential to development of the constant pressure model

in this work.

Two types of wellbore storage are commonly examined (Lee, Rollins and Spivey, 2003), that of the single

phase liquid filled wellbore, as illustrated by Fig. 1.2, and that of the two phase, gas-liquid filled wellbore



with rising or falling interface. Derivation of the wellbore storage effect is performed using a mass
balance approach assuming a constant wellbore volume and fluid density. Although pressure differences
within the wellbore could potentially lead to overall density changes in a two phase system, for practical
applications, this assumption has been shown to be valid (Ramey, 1970). The generalized rate relation, in

dimensionless form, for the wellbore storage effect is described by:

dpwp _ dpip
=1-C We — s 1.1
4D D{ i i (L.1)

The dimensionless wellbore storage coefficient (Cp) is a function of reservoir properties and fracture
properties including formation porosity, height of the fracture, total system compressibility, fracture half-

length and the wellbore storage coefficient as defined by:

where field units are used. The wellbore storage coefficient, Cs, is dependent on the type of wellbore
storage case (i.e., single-phase slightly compressible fluid or two-phase rising liquid interphase) examined

(Lee, Rollins and Spivey, 2003).

Solving Eq. 1.1 yields the generalized constant pressure solution, an identity utilized throughout this work.
The solution of the generalized rate relation (Eq. 1.1) is performed in the Laplace domain. Assuming that
the tubing pressure remains constant for all times, (Blasingame, 1994) we solve for the dimensionless
wellbore flowing pressure using the convolution integral (in the Laplace domain) to provide a relationship
between the dimensionless wellbore flowrate and the dimension wellbore flowing pressure, as shown in

Eq. 1.3 below:

Pwp W) = 1

— +u2CD
DPsp (u)

where p,p(u) is the dimensionless wellbore pressure inclusive of wellbore storage and skin effects, psp(u)
is the dimensionless wellbore pressure which only includes skin effects, and u is the Laplace transform

parameter.

Agarwal, Hussainy and Ramey (1970) provided a number of observations which should be considered
during the analysis and interpretation of well test data.
e The duration of the wellbore storage effect can be estimated primarily from the wellbore volume, the

formation permeability and fluid compressibility.



e During the time of wellbore storage, the formation permeability and skin factor cannot be estimated;
however, the wellbore storage coefficient can be determined.
e A transition period occurs after the wellbore storage period ends and is characterized by a change

from unit slope to the characteristic signature of the flow regime of the reservoir, on a diagnostic plot.

Graphically, on a log-log diagnostic plot, the effects of wellbore storage will appear as a unit slope line at
early times. It should be noted that wellbore storage is often mistaken (conceptually, not practically) with
late time flow regimes such as boundary-dominated flow, therefore, understanding of the reservoir system
is crucial for accurate diagnosis of reservoir behavior. Due to the significant impact wellbore storage has

on pressure and rate transient analysis, extensive literature is available for the curious reader.
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Figure 1.2 — Wellbore diagram for a well producing a single-phase fluid (Lee, Rollins and Spivey, 2003)
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Figure 1.3 —Effect of near wellbore altered permeability (skin effect) on wellbore pressure (reproduced from Lee et al. 2003)



Wellbore Skin is the additional pressure drop (Van Everdingen, 1953) near the wellbore due to formation
damage from adverse drilling and completion conditions creating a zone of reduced permeability.
Hawkins (Lee et al. 2003), as demonstrated from Fig. 1.3, presented a definition of skin relating it to the
wellbore flowing pressure and reservoir properties. This classic definition is developed from a radial
model assuming two concentric zones around the wellbore. The inner region, as demonstrated by Fig. 1.4,
is the zone of altered permeability while the outer zone maintains the original reservoir properties. From

this work, the skin factor is defined by:

k T
s= {E - l}ln{a} O U SOOI (1.4)

which is a function of the ratio between reservoir and skin permeability, and the logarithmic ratio of the

radius of the damaged zone to the wellbore radius. In terms of reservoir parameters, this can be further

expressed by:
kh
=—(p- yeeteetetetenteteteutehen s st s et eat et et eR et et eR e e A ea b en e R et e Rt e s et e Rt eR et en e ese b e st b et entesebeneesenee 1.5
S = 1a12g8 PP (1.5

where the derivation assumes constant rate production, and constant reservoir parameters.

The skin factor has been demonstrated to be an additive function to the wellbore pressure response for the
constant rate solution (Lee et al. 2003). In dimensionless form, the near wellbore pressure inclusive of

skin effects is:

PDED) = DD D) F 8 5 ettt ettt et (1.6)
where p,p(?p) is the dimensionless wellbore pressure which only includes skin effects, and pp(fp) is the

dimensionless wellbore pressure without any skin effects. In the Laplace domain, Eq. 1.6 is expressed as:

ﬁsD(u)zﬁD(u)+§, ......................................................................................................................... (1.7)

where u is the Laplace parameter. As an additive function, the inclusion of the skin factor into the
constant rate pressure solution generates a simple algebraic expression, pertinent to the completion of this

work.
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Figure 1.4 —Near wellbore zone of altered permeability (reproduced from Economides, Hill Ehlig-Ecomomides et. al., 2013)

Fracture Face Skin, was proposed by Cinco and Samaniego (1977) as an alternative type of skin effect
which occurs during hydraulic fracture stimulation. Fracture face skin, different from the classic Hawkins
skin developed for radial flow as demonstrated above, is physically described by the process of fluid leak-
off from the fracture into the formation during well stimulation. The fracture is considered to contain a
zone of altered permeability, as depicted by Fig. 1.5, which creates an additional pressure drop which the

fluid must overcome when flowing from the reservoir into the fracture. This skin zone is defined as:

T owg | k
R I I RS 1.8
f 2xf|:ks :|’ (1.8)

Where wy is the width of the damaged zone (b, in Fig. 1.5) and xris the fracture half length. The fracture
face skin, in a similar respect to wellbore skin, is a function of the ratio of original reservoir permeability
and fracture skin permeability. In dimensionless form, the pressure drop relation due to the fracture face

skin is expressed as:

kh

Apgp=— A
PsD =141 24Bu

where the flowrate is assumed constant and the pressure drop due to skin is described by:

443.6qw, [ Kk
Apg = hkq S{ } ................................................................................................................ (1.10)
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Figure 1.5 —Infinite conductivity fracture with fracture face skin damage (reproduced from Cinco and Samaniego 1981b)

Valdes et al. (2011) has performed further work on this subject introducing a Transient Interporosity
Transfer model to describe the bilinear flow relation between the rock matrix and fracture with an

additional skin between the two different porous structures.

Choked Fracture Skin as discussed by Cinco and Samaniego (1981b) proposes a second variation of
fracture damage due to completions in a fractured well. Choked fracture skin occurs due to crushed
proppant, or proppant lost or embedded in a fracture near the wellbore, as shown in Fig. 1.6. The reduced
permeability of this near wellbore damage will cause an increased pressure drop which the fluid must

overcome when flowing from the fracture to the wellbore.
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Figure 1.6 — Infinite conductivity fracture with choked fracture skin damage (reproduced from Cinco and Samaniego 1981b)

This skin zone is defined as:

megk
wrkps

Sfch=

where wyis the width of the damaged zone (yin Fig. 1.6) and x; is the length of damage along the fracture.
The choked fracture skin is a function of the ratio of original fracture permeability to the damaged fracture

permeability.



Convolution Integral allows for the overlap of one function as it is shifted over another function, or a
"blending" of two functions together (Wolfram, 2007). In well test analysis, convolution was introduced
by van Everdingen and Hurst (1949) to provide a mechanism in which to combine the constant rate
solution with the constant pressure solution. The convolution integral, defined for a continuously

changing flowrate, is expressed as:

D
wa(tD)ZJ.O GDT)PDUED —TYAT « ettt (1.12)

where p;p(tp) is described by Eq. 1.6. In the Laplace domain, Eq. 1.12 reduces to:

Do) () S UG U)Pgy (1) s coveveeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeseeee s eeeseseseeesesseesseeeeeeeeeesssesseee (1.13)

where gp(u) is the constant-pressure sand-face flowrate in the Laplace domain and p,p(u) is the constant-
rate wellbore pressure inclusive of skin effects, in the Laplace domain. Eq. 1.13 provides an identity in
which the constant rate solution, which has been a focus of significant well test research, may be
transformed into the constant pressure solution (Van Everdingen & Hurst, 1949). This identity is

fundamental to the completion of this work.
Numerical Laplace Inversion

Analytical inversion of a function into the real domain from the Laplace domain is commonly performed
through the use of "look-up tables" (Roberts and Kaufman, 1966). However, when analytical inversion is
either impossible or so cumbersome that it becomes impractical to use, numerical inversion techniques are

applied. The Gaver-Stehfest algorithm is utilized in this work for all numerical inversion.

Gaver-Stehfest Algorithm is arguably the most common numerical inversion algorithm used in petroleum

engineering due to its simplicity, accuracy and speed of performance in most applications. Originally
proposed by Gaver in the late 1960's, with Stehfest providing a variation of the original Gaver work

allowing for faster computation and accuracy, the Gaver-Stehfest algorithm is described as:

fGS(n,t):@ZVl-f{@z}, .................................................................................................. (1.14)
i=1

where Stehfest provided extrapolation coefficients given as:
Min{i,ﬁ} n

T k2 (2K)!

Vi=(-1)?2 :
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Theoretically, the larger the Stehfest number (7) the more accurate the approximation to the real solution.
However, it has been demonstrated repeatedly in literature (Cheng et al, 1994) that at very large values of
n the solution begins to diverge from the real solution. Therefore, 8 < n < 20 is considered appropriate for

most applications.

Valké and Abate (2004) developed code for use in Mathematica based on the acceleration scheme by
Gaver-Wynn-Rho (GWR) algorithm. The code controls the precision of numerical inversion based upon a
user-defined requirement (7). This code was employed for all numerical inversion requirements with a
minimum precision level of n=32 (which is not to be confused with the number of terms of summation

from Eq. 1.15).

The author notes, that although highly applicable for most transient flow problems, the Gaver-Stehfest
numerical inversion algorithm has been demonstrated to be inadequate for oscillatory and discontinuous
functions. Initial research led to the examination of other numerical inversion techniques, returning to the

GWR algorithm as the most suitable for this research.



CHAPTER IT

LITERATURE REVIEW

This chapter presents a summary of notable milestones achieved in the study of well test analysis for
fractured wells as is directly relevant to the content of this paper. For further reference, Cinco (1982)
provides a thorough evaluation of all major contributions to the evaluation of hydraulic fractures for
pressure transient analysis through 1982. This chapter further examines notable works by authors upon

which the fundamentals of the constant pressure solution presented in this paper are built.
2.1 History of Short Term Well Test Analysis for Fractured Wells

Short-term well testing developed primarily in response to the high cost of performing very long duration
tests used to evaluate radial flow and average reservoir pressure. The lost revenue due to extended well
shut-ins drove engineers to examine other methods to interpret the nature and behavior of the reservoir.
With the widespread application of well stimulation, notably through hydraulic fracturing, further work

was performed as it was recognized that classic radial flow theory did not apply to fractured wells.

Muskat (1937) first examined infinite conductivity vertical fractures in a steady-state analytical model.
Initial studies, mostly at steady-state, focused on the improved productivity gained through fracturing

wells.

Russell and Truitt (1964) worked with transient pressure behavior for infinite conductivity fractures,

calculating wellbore pressure as a function of time depending on fracture half-length.

Linear flow theory, in unsteady-state analysis, was first applied by Clark (1968) and Millheim and
Cichowicz (1968) noticing the straight line relationship between the wellbore pressure against the square

root of time.

Transient flow behavior was reexamined by Gringarten, Ramey and Raghavan (1975) and three different
models were developed. These being: the case of an infinite conductivity vertical fracture, the uniform
flux vertical fracture, and the uniform flux horizontal fracture. In all three cases, linear flow periods were
demonstrated before the occurrence of pseudo-radial flow. Fig. 2.1 demonstrates the flow regimes
associated with vertically fractured wells. "Type curve analysis" was used to graphically diagnose flow

regimes and determine formation and fracture properties.

Wellbore storage was first introduced in literature by van Everdingen and Hurst (1949). They expressed
the phenomena in terms of a drawdown test where the unloading of the annulus is corrected to include the

effects of the fluid column hydrostatic head as shown:



where Cs is the volume of fluid unloaded from the annulus per unit bottomhole pressure per thickness of

the reservoir.

Agarwal, Hussainy and Ramey (1970) examined analytically the effect of wellbore storage and skin on

short time transient flow behavior.

In a radial system, Gringarten, Ramey and Raghavan (1975) applied this theory for fractured wells, further

adding to the list of type curves available for well test analysis at the time.

Cinco, Samaniego and Dominguez (1978) demonstrated that the infinite conductivity fracture is not valid
for all cases, developing the finite conductivity vertical fracture model. Further, this system was shown
not to exhibit linear flow, and new analysis methods would be required. Cinco, Samaniego and
Dominguez (1978) presented a solution for the two-dimensional diffusivity equation through the use of
Greens functions and source function, applying the Newman product method as discussed by Gringarten,
Ramey and Raghavan (1973). The solution presented by the authors (Cinco, Samaniego and Dominguez,
1978) uses a discretization of the fracture (i.e., assuming fracture flux has a stepwise distribution in both

time and space). Due to the complexity of this solution, the authors re-cast the problem using the Laplace

transform.
—~
=0 = .3
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/S Fracture
i
/ \\
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Figure 2.1 —Flow periods for a vertically fractured well (reproduced from Cinco and Samaniego, 1981a)
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Building on the work performed in 1978, Cinco and Samaniego (1981a) introduced the bilinear flow
regime, Fig. 2.1b, for a fracture which exhibits "finite-conductivity" fracture behavior. They developed
semi-log analysis for wellbore pressure to demonstrate this behavior. Approximations for fracture linear

flow and bilinear flow regimes are presented as:

PwD 7 ptp (formation linear flow) ........ccccceevvierciieiiieneeciee e, 2.3)

B (kywyr)p

P s .
t 4/ (DIlIn€ar fIOW). ...ccveeveeeieeeeeeeeeeeee et (2.4)
pD,cr( D)F(5/4) 2(kaf)D D

Type curves were developed to diagnose transitions between flow regimes and to estimate reservoir and
fracture parameters. The constant rate solutions presented by Cinco and Samaniego (1981a) are

fundamental to the efforts in this thesis, and a full derivation of their work may be found in Appendix B.
2.2 Transient Flow Behavior for Constant Pressure Production

Understanding the practical difficulty in holding rate constant during production, Guppy, Cinco and
Ramey (1981) examined the constant pressure solution for the vertical fracture with finite conductivity.
Assuming the pressure response in the fracture varies only with distance along the fracture (fluid flowrate
varies with both distance and time) the pressure gradient is expressed as a function of formation constants

and the integration of rate along the fracture, as shown by:

xp
J
2
pr(O’tD)_pr(xDj’tD):(kuZﬁ IQCDdx'D~ .................................................................... 2.5
0

The pressure response in the formation, solved in a similar manner, includes integral rates with respect to

time and distance from the fracture, and exponential functions as shown in Eq. 2.6:

!Dx g 1 ’ (xD—x')2 (xD+x')2
CID(T)J‘qu(x»T)[e Xp-0) |, 4p-o) |
4 Iip—7
0

pD(xD :Oﬂthf )= I
0

The full solution requires the coupling of Eq. 2.5 and Eq. 2.6 equating the pressure drop in the fracture.
The final solution requires a discretization of the fracture length and a relationship between formation flow
and fracture flow. The authors suggested utilizing convolution as a method of solution, however, the full
analytic solution would not be of any practical value. Therefore, the authors preferred to present

approximations based upon the conductivity of the fracture, shown as:
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Vid
Equations 2.7 and 2.8 display the same behavioral characteristics of bilinear flow and linear flow regimes,

respectively, as demonstrated by Cinco and Samaniego (1981a).

In the formulation of the high and low conductivity fracture behavior, Eqgs. 2.7 and 2.8 respectively,
Guppy et al. (1981) proposed significant assumptions. For the low conductivity case, the effect of the
fracture tips were considered negligible, resulting in a fracture flow differential equation that does not vary

with time. For high conductivity fractures, the pressure drop within the fracture was assumed negligible.

Although the assumptions made by Guppy et al. (1981) are valid for very short times in the formulation of
the approximate solutions, this author suggests, specifically for the low conductivity fracture case, a more
rigorous approach. We assumed that the pressure response in the fracture varies with both time and
distance along the fracture, which was incorporated into our full diffusivity equation, shown in Appendix

B.
2.3 Variable Skin in Well Test Analysis

Early-time cleanup effects in drawdown data can, when improperly analyzed, can provide the impression
of additional pressure support by the reservoir leading to an inflated flow capacity (Larsen and Kviljo,
1990). Assuming a constant production rate, due to small transients in pressure, a limited zone of damage
in radial coordinates, Larsen and Kviljo (1990) proposed a (time-dependent) variable skin model to
account for the pressure increase caused by near-well cleanup. Based on empirical data, Larsen and Kviljo

(1990) proposed a "hyperbolic" relation of the skin factor with time as demonstrated by:

where ¢ is the value of skin that the system would achieve if cleanup continued to fruition. The
parameters a and b are determined from drawdown data and are unique to each well (and perhaps to each
producing scenario). Larsen et al. (1990) demonstrated that cleanup effects can be modeled using a
hyperbolic expression of skin as a function of time, substituting a variable skin into constant skin

drawdown solutions providing a reliable estimation of the flow capability of the system.
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2.4 Pressure Buildup Analysis with Wellbore Phase Redistribution

Wellbore phase redistribution is a wellbore storage phenomena occurring when both liquid and gas flow
through the tubing. After shut-in, gravity will cause a separation of fluids, with liquid falling and gas
rising to surface. In the closed system, as liquid fills the tubing, the inability of gas to expand may cause,
at early-times, a temporary increase in pressure above the formation pressure coined "gas-humping."

Eventually pressure equilibrium is restored with the formation (Stegmeier and Matthews, 1958).

Fair (1981) expanded on the general work of Stegmeier and Matthews (1958) and Earlougher (1977) by
performing a rigorous analysis of wellbore phase redistribution incorporating the additional wellbore
storage effect into the diffusivity equation. Starting from van Everdingen and Hurst (1949) definition for
the effect on wellbore pressure with time due to wellbore storage, Fair (1981) added a term for phase

distribution as shown by:

dp—WD—dpﬂ}, .................................................................................................. (2.10)

‘]D(ID):I_CD{
dip  dip

where pgp is the pressure caused by phase redistribution. Based on a single laboratory test, and theoretical

postulation, Fair (1981) defined the pressure caused by wellbore phase redistribution as:

PgDUD) = Cgpll =€ PIED Yttt @.11)

where Cp is the dimensionless phase redistribution constant and ¢ is the time in which 63% of the total

change has occurred. Fair (1981) defines each dimensionless term as:

khp¢
P o (2.12a)
D " 141298, 1
C khCy (2.12b)
¢D = 141.2qB/1 ............................................................................................................................. .
B .
Pucyry,
ap :M ............................................................................................................................ (2.12d)
Pucery,

where all values are listed in field units. Fair (1981) uses the well-known diffusivity equation in radial

coordinates:

2
“pp 1 %Pp _%Pp
erZ rp dVD dtD

............................................................................................................... (2.13)
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With initial and boundary conditions which incorporate the phase redistribution and near wellbore skin:

pp(rp,0)=0 (initial condition)..........cceeevevceerieriieieeieneee e (2.14)
lim pp(rp.tp)=0 (outer boundary condition) ............cceeeeveereerereereenenn. (2.15)
rp —®©
5 4 dp
~| %D =1-Cp PwD _ 4D (inner boundary condition) ...........ccceeeereeneenereenennenn (2.16)
8VD _ dl‘D dZD
rp=1 L
y -
wa{pD—s{ pD} ................................................................................................................... (2.17)
d}"D i

Fair (1981) solved the diffusivity equation in Laplace domain providing solutions for cylindrical and line

source wells. The wellbore pressure solutions, in Laplace domain are:

M+s 1+CDC¢D”2 i1t
”Kl\/; u u+llap o
Pwp W) = (Cylindrical Source Well)............... (2.17)
KO\/;
u|1+Cpu +s
MKI\/;
2| 1 1
Kovu +s|1+CpCypu®| ——————
u u+l/ap )
Pwp W)= (Line Source Well), .....cccccevveennnnen. (2.18)

ull + Cpu[Kou +s51]

Where Ky and K; are modified Bessel functions. Fair generated type curves for various values of the
dimensionless wellbore storage constant and dimensionless wellbore phase distribution constant. As a
demonstration (Fair, 1981), field data obtained from a gas-lift well were matched very well using the Fair

model (Eq. 2.11).

Extension of the phase redistribution concept to model the behavior of flowback data is logical,
particularly for cases of gas condensate and volatile oils, but this concept alone may not be sufficient to
capture uniquely the behavior of early-time flowback data as we believe that a time-dependent skin
function will also be required to capture the effect of stimulation fluid "clean-up" which occurs during

flowback operations.
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CHAPTER I

PROPOSED MODELS

Examining the reservoir flow behavior of a hydraulically fractured vertical well, we assume that time-
dependent wellbore storage and skin effects dominate the "early-time" classically observed flow regimes
(i.e., linear and bilinear flow) for a vertical fracture. Our proposed time-dependent wellbore storage and
skin effect models are coupled with each classical flow regime (linear flow, bilinear flow, and a general
power-law model) in the Laplace domain. Application of the convolution integral provides the
mechanism to evaluate the constant pressure (rate) solution. This chapter contains a summary of each of
the proposed time-dependent models which could theoretically allow for diagnosis of reservoir behavior

prior to the onset of "late-time" (i.e., linear or bilinear) reservoir flow regimes.
3.1 Assumptions
The following specific assumptions are made in this work:

e A vertical well with a single vertical fracture penetrates the entire thickness of the reservoir.
e The reservoir thickness is uniform (constant).

e The reservoir is initially at pressure, p;.

e The reservoir is infinite in size.

e The well produces from a constant flowrate.

e The rock properties are constant.

e The fracture has finite conductivity.

e The fracture is infinite in length.

e Flow to the wellbore occurs only through the vertical fracture.
e The system contains a "slightly-compressible" fluid.

e The effects of gravity are negligible.

e The pressure gradients are small.

e The system obeys Darcy's Law.
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A schematic of the proposed model is shown in Fig. 3.1.
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Figure 3.1 — Schematic representation of the proposed model (reproduced from Cinco and Samaniego, 1978)

3.2 Flow Regime Development

Cinco and Samaniego (1981a) described four flow regimes, classically considered to describe reservoir
behavior for hydraulically fractured vertical wells. These models are summarized as:

e Fracture Linear Flow

e Formation Linear Flow

e Bilinear Flow

o Psecudo-Radial Flow

Fracture linear flow, in practice, occurs too early in the unloading of the system to (ever) be observed
through conventional means. Further, in an ultra-low permeability reservoir, the time required to attain
pseudo-radial flow far exceeds the "early-time" parameters of this work. For these reasons, the "fracture

linear" and "pseudo-radial" flow regimes will not be considered in this work.
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Formation Linear Flow Relation

Formation linear flow was described by Gringarten, Ramey and Raghavan (1974) derived from the contin-
uous line-source solution originally presented by Carslaw and Jaeger (1946). Fully derived in Appendix

A, the formation linear flow derivation begins with a statement of the continuous line source solution:

(x_xw)2 +(y_yw)2 dr
477f(t—z') t

t
1
Apeis(x,,t) = —IqCZS (‘[)exp[—
47r77f -7
0

Integration through substitution and non-dimensionalizing, the system yields a formulation consisting of

error functions and exponential integrals as shown by Eq. 3.2: (constant rate formulation)

et 2 o)

{1—@}5. [-xp]> _{1+xD}E [1+xp]?
4 o4 4 "o

.............................................................................................................................................................. (3.2)
At very early-times, Eq. 3.2, evaluating at x,=0, may be approximated by:
PDer(XD Z0,D) SAVTID oottt (3.3)

which is the approximation linear flow. The authors further simplified Eq. 3.2 for late-time pseudo-radial
flow — however, this result is not applicable to this work. Use of the convolution integral in the Laplace
domain provides a mechanism to re-cast this formulation as a constant pressure solution. Taking the
Laplace transform of Eq. 3.3 yields:

r3/2)
u3/2

Pp.erW) =7

Where u is the Laplace transform parameter. Eq. 3.4 is to be combined with time-dependent wellbore

storage and skin effects in an attempt to model the "early-time" (flowback) production performance.
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Bilinear Flow Relation

Bilinear Flow was originally proposed by Cinco and Samaniego (1981) for "finite-conductivity" fractures,
where the pressure drop across the fracture is not negligible and must be considered when evaluating
reservoir performance. Derivation of the bilinear flow regime is provided in complete detail in Appendix

B. The differential equation, coupling fracture flow with formation flow is given as:

2
0 P fD,cr 4 2 5pD| _ 1 apr,cr
2 (kywp)p ayD|yD:0 nmp Otp

R TR J (3.5)
BxD

The proposed method of solution takes the formulation given by Eq. 3.5 into the Laplace domain, and is
solved using traditional methods for a second-order, ordinary differential equation. The result, in the

Laplace domain, is a function which describes both fracture linear flow and bilinear flow behavior. Eq.

3.6 describes the combined formulation for a finite-conductivity vertical fracture:

T 1
(kaf)D ) ; . 2\/; 1/2
nmp (kpwe)p

I_7D,cr (u) =

As fracture linear flow is not relevant to this work, we examine when Eq. 3.6 tends to long times (u tends

towards zero in the Laplace domain) which results in the following late-time approximation:

T 1

PD.cr(u) = et etetteteeteteseetesteseesesteseatestetebentetebesteseehes s et e be b ete e b et ese et e beneetebeneens 3.7
PD.c (u) Z(kaf)D u5/4 (3.7)

Inversion from the Laplace domain yields:

PD.r(tp) = z 40D seevreeeereessseesssses s (3.8)

rs/4) Z(kaf)D

which is the bilinear flow approximation that we will use in this work.
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Power-Law Flow Relation

We have included a third model, the general power-law formulaiton which provides the potential to
describe additional reservoir behavior. Proposed as a general power-law relation, Eq. 3.9 describes any

flow regime which produces a straight line on a log-log plot, shown as:

pp.cr(tp)=citp” (power-1aw flow) .........cccooviiiiniiciiinicicce, (3.9
where c¢; is a problem-dependent constant, likened to the dimensionless fracture conductivity term in the
bilinear flow case, and vmay be any value between zero and one.
3.3 Time-Dependent Skin Effects

Larsen and Kviljo (1990) examined the effects of wellbore cleanup and proposed a hyperbolic time-
dependent skin factor to account for the overestimation of a wells flow capacity. The original formulation

given by Larsen and Kviljo (1990) is presented as:

where c is the theoretical minimum skin a system would reach assuming continuous cleanup.

Using Eq. 3.10 as a basis for our formulations, we postulated the following time-dependent skin factor

models for the work in this thesis:

s(tp) =S +[s0 — S [[1 —exp[—(z/tp )’1 1] (cumulative-exponential, S(£)) ......cceeveerercrernennen. (3.11)
s(tp)=Sx +50exp[—(tp/7)] (exponential, S(£))......ceeveeeeeenienenieneeeeeeieeeee e (3.12)
1

s(tp)=Swp +[S0 —Soo] (hyperbolic, S(£)) ...ccveeeerierieieieeeeee e (3.13)

+z/tpT”
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To demonstrate the behavior of each model, we provide a graphical representation of each model in Fig.

3.2 shown below.

Time-Dependent Skin Models — Comparison
{Variable s_-Parameter)
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Figure 3.2 —Log-log plot of time-dependent skin factor models for select values of s..-parameter.

Each time-dependent skin model was provided with an upper and lower boundary for the skin values, in
the forms of the s9- and s.-parameters. These formulations provide a mechanism to maintain a positive

value of the skin factor for each model.

It has been demonstrated that the skin factor is an additive dimensionless pressure term: (Lee, Rollins and

Spivey, 2003)
psD,cr(tD):pD,cr(ZD)"'S(tD) .................................................................................................... 3.14)

Where the constant-rate dimensionless pressure inclusive of skin (psp.2p)) is equal to the constant-rate

dimensionless pressure (pp,.(tp)) plus a time-dependent skin factor (s(¢p)).

The generalized constant pressure solution in the Laplace domain, presented below for reference, utilizes
the convolution integral to provide a direct relationship between the constant rate and constant pressure

solutions.

_ 1 1
gD, cp (B = 5 o (3.15)
v u? sD,cr(“)

Inverting the three different flow regimes, along with the three different time-dependent skin factors, into
the Laplace domain, and combining with Eq. 3.14 yields nine different models to be evaluated in this

thesis.

A full derivation of the generalized constant rate-solution is provided in Appendix C. As a point of

importance, we note that during the formulation of the generalized constant-rate solution for the constant
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wellbore storage case, the constant pressure result does not exist due to mathematical condition that the

pressure cannot be constant at both the sandface and the surface at the same time. Specifically, the
Roberts and Kaufman reference [Roberts and Kaufman (1966, pg. 202, Eq.172)] demonstrate that the
inverse Laplace transform of a constant yields the Dirac delta, d(¢), an impulse function which has no
meaning for our cases. As the Laplace Transform Operator is a linear operator (Spiegel, 1971), we know
that the wellbore storage constant will either be zero, or infinity for the constant pressure solution in the

real domain.

As the constant wellbore storage case is not relevant for our work, we will utilize the time-dependent
wellbore storage (or wellbore phase redistribution) model proposed by Fair (1981) as our primary means
of representing wellbore flow effects (discussed in the next section). Our approach is to combine the Fair
(1981) time-dependent wellbore storage model with the prescribed constant rate models (i.e., the linear,
bilinear, or general power-law cases) in the Laplace domain to obtain the constant pressure (rate) solution
for each case. The inverse Laplace transformation (i.e.,, the real domain) solutions are generated

numerically through the use of the Stehfest algorithm.

For the cases of time-dependent skin effects (only), the following summary is presented for reference:

Power Law Flow:

1

® 4p,cpu)= o e (hyperbolic s(7))
clu Frd+v)+sepu+ul’ 1+ A)U(A,0,ut)[so — S« ]
® Gp,cpu)= ! S s (exponential s(7))
clu(l_v)r‘(l+v)+usoo 4 150
u+l/t
® 4Dy )= 1 S P (cumulative-exponential s(¢))
2u Kl[ *}[so—sw]
clu(l_v)l“(l+v)+uso - Ludz
ul At
Linear Flow:
1 .
® pepl)=——=F——————————————————— ‘(" (hyperbolic s(#))
P VENUTB12) + sqpu +ul (1 + ) U (A,0,ut)[50 — S0 ]
® Gpepu)= ! ST s (exponential s(%))
aNuT(3712) + us oy + 20
u+l/t
° s Dep () = 1 - P (cumulative-exponential s(¢))
2u Kl[}[so S0 ]
auT(3/2) + usq - V17utz
ul'( ) +uso Nuldt



Bilinear Flow:

_ 1 :
® Dy = (hyperbolic s(7))
7expl5/4] r(35 // f) + sopu + ul(1+ AU (A0,u7)[50 = Soo |

2 (kaf )D u

® 4p,cpu)= e (exponential s(¢))
’ rexp[5/4] T(5/4) u?s
3/4 +usy + 0
lz(kfwf)D u u+l/z

® 4p,cpW) = ...(cumulative-exponential s(¥))

2 2K{ 2 } —Sop
rexpls/4] TG4y i )0

RUwop w34 Julaz

3.4 Time-Dependent Wellbore Storage

In a two phase (gas-liquid) system, when a well is shut-in at the surface, gravity effects cause phase
separation and due to the incompressibility of liquid relative to gas, may cause an increase in surface
pressure before system equilibrium is attained. Evaluating these anomalous pressure readings, Fair (1981)
proposed the incorporation of a wellbore phase redistribution pressure term into the solution of the radial
flow diffusivity equation. From empirical evidence and a single laboratory test given by another author,

Fair (1981) postulated an exponential pressure function as shown by Eq. 3.16:

PADED) = Cap(L=e D ED Y e (3.16)

Fully derived in Appendix E, the fluid flowrate due to changing sandface and wellbore phase

redistribution pressures was described by Fair (1981) as:

dpwp _ dp ¢D
dip  dip

qD(l‘D)Zl—CD|: :| ................................................................................................. (317)

Transforming Eq. 3.17 into the Laplace domain, and solving for the wellbore flowing pressure yields:

[1+Cpu® Byp ()] psp ()

PwD,cr () = 5
1+ Cpu”psp (u)
Which is the generalized constant rate dimensionless pressure solution in the Laplace domain, as a
function of the wellbore phase redistribution pressure (pgn(u)), the sandface flowing pressure inclusive of
skin (psp(u)), the Laplace parameter () and the wellbore storage constant (Cp). For this formulation, we

assume that the skin effect is constant.
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In order to find a constant pressure solution, we return to the convolution integral in Laplace domain for a

constant flowrate defined as:

_ — 1
qD,cp(”)wa,cr(“)z_z- ................................................................................................................ (3.19)
u

Substituting Eq. 3.18 into Eq. 3.19 and solving for the constant pressure (rate) solution yields:

L 1+ Cpu’Bap®) e (3.20)
u? [1+Cpu? B yp )psp )

qD,cp (u) =

We recall our pressure solutions, presented in the Laplace domain, as:

c c
— _ D @¢D 321
Pgp (W) =—— —u+1/aD 5 eeeeeeeeehe ettt ettt e b e bt e bt e bt et e at e eh et she e bt e bt et e e et e ee e ebaesbee bt e bt e et e et eaee (3.21)
Pspcr(U) = ﬁD’C,,(u)+5. ............................................................................................................... (3.22)

Substitution of Eq. 3.21 and Eq. 3.22 into Eq. 3.20 yields a generalized time-dependent wellbore storage

solution, in the Laplace domain, as shown:

— S
1+ CDMZ[PD,cr (u)+ J

_ 1
QD,cp (M) = _2 coc > e eeeeeeeeeteeteeeteeeaeeeteteaeeeaeteaeneaaenaann (3.23)
u pCgpu™ | _ s
1+C¢DCDL£+ D=9 pD,C,,(u)-i-f
u+l/ap u

Incorporation of each flow relation into the generalized constant-pressure solution (Eq. 3.23) inclusive of

time-dependent wellbore storage is provided below:

ra
1+u2CDc1 ( +l/)+usCD
— 1 y1v
® 4p,cpu)=— PR P —E (general power-law flow)
u CypCpu rd+v) s
1+C¢DCDL!— u+l/0{D 1 u1+V +;

1+u2CD\/;F(§//22) +usCD

® p,cpt) =L2 u ST (linear flow)
u CypCpu r3/2) s
1+ CypCpu— 7 2
=D ap B2
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zexp[5/4] T(5/4)

2
1+u“Cp usCp
_ 1 J2kwp)p W' N
® 4p,cpu)= — R (bilinear flow)
u CopCpu mwexp[5/4] T(5/4)

1+C¢DCDM—

S
u+l/ap lz(kaf)D WS

3.5 Time-Dependent Wellbore Storage and Skin Effects

The validation of the proposed (early-time) time-dependent models for wellbore storage and skin effects is
likely to be very challenging, if not impossible to achieve in practice. However, the logical progression of
this work is to integrate the combined effects of time-dependent wellbore storage with a time-dependent
skin factor. As a simplification, we have chosen only a single example for this evaluation, due to the
unlikeliness of a practical application, our goal is a "demonstration" of what such an integrated model
could provide. Specifically, we have chosen to combine the cumulative-exponential time-dependent skin

factor model with time-dependent wellbore storage for the case of the linear flow regime.

To develop this model, we have taken the time-dependent wellbore storage formulation, derived in
Appendix E, and substituted the time-dependent cumulative-exponential skin model. We recall the

cumulative-exponential time-dependent skin below.
s(tp) =S +[s0 =S [l —exp[—(z/tp )/I 11 (cumulative-exponential $(¢)).......cccecveveruennennen. 3.11)

Returning to the constant pressure time-dependent wellbore storage model, we substitute in a time-

dependent skin factor for the constant skin in the original formulation, as shown by Eq. 3.24.

. 1+u’C J—F(3/2 +usCp
D) =— ) (3.24)
v u’ C¢DCDu r(3/2)
1+ CypCpu -2 J_
u+l/ap u

Substituting in Eq. 3.11 into Eq. 3.24 yields a constant pressure (rate) model with time-dependent wellbore

storage and cumulative-exponential skin effects, as shown below:

+u2Cpr PO L uls, 4150 -0 ]l —expl~(z /1) 1Cp

— 1 3/2
CID,cr(M):_z ConC T (3.25)
u u2 - - ~
1+CypCpu~— ¢D~D ﬂ(3/2) [Soo +[50 —Seo l[1—exp[—(z/tp)" ]
u+l/ap w32 y

which is the full constant pressure (rate) solution inclusive of time-dependent wellbore storage and the

cumulative-exponential skin factor.
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CHAPTER 1V

SOLUTIONS AND RESULTS

In this section, we demonstrate the viability of this work through numerous illustrations of the proposed
models, with plots chosen to represent significant features from each model. Variations in each parameter
for all time-dependent wellbore storage or skin factor models, for each flow relation are documented in

Appendix F of this thesis.
4.1 Power-Law Flow Relation

The power-law flow regime proposed in Chapter 3 is a generalized relation that allows for any "power-
law" flow regime, theoretical or observed, to be represented during "early-time" performance. We have
chosen an arbitrary flow relation where the flowrate is proportional to the 3/4 root time (i.e., 3:4 slope) in
order to illustrate the applicability of our time-dependent model. In future sections we evaluate the
classical linear and bilinear flow models (1/2 and 1/4 root time models, respectively). The generalized

power-law flow relation is displayed below for reference:

pD,cr(tD):CIIDV5 ............................................................................................................................ 4.1)

Where ¢ represents an arbitrary constant for a given system (i.e., fracture conductivity), and v may
represent any positive value less than one describing a flow regime (i.e., linear flow (1/2 root time) or
bilinear flow (1/4 root time)). The following sections examine the time-dependent models using the

generalized power-law flow relation (recall that we have selected 3/4 root time as our general case).
4.2 Power-Law Flow Relation with Cumulative-Exponential Time-Dependent Skin Effects

The cumulative-exponential time-dependent skin effect is proposed based on empirical observations of
reservoir performance for ultra-low permeability reservoirs. In Appendix D we provide the derivation of
the constant pressure solution in the Laplace domain for the case of the cumulative-exponential, time-

dependent skin effect model applied to the power-law flow regime.

Certain unique trends have been observed in flowrate data taken from field operations. In order to validate
the applicability of our model, we need to demonstrate that our model(s) exhibits the features observed in
the field — and while we do not have a practical diagnostic approach, we can vary each parameter within
the model to generate possible field scenarios. The range of each parameter is defined by either
mathematical or field limitations (e.g., skin values will be limited to cases observed in practice, and/or

from physical limitations (e.g., skin factors for fractured wells should not be negative)).
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Dimensionless Rate Solution — Power Law Flow Case with Cumulative-Exponential
Time-Dependent Skin Effects (Variable i-Parameter)
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Figure 4.1 —Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the
cumulative-exponential time-dependent skin factor model for select values of the A-parameter.
Dimensionless Rate Solution — Power Law Flow Case with Cumulative-Exponential
Time-Dependent Skin Effects (Variable s,-Parameter)
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Figure 4.2 —Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the

cumulative-exponential time-dependent skin factor model for select values of the s,-parameter.
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As shown in Fig. 4.1, the A-parameter imposes little impact on the dimensionless flowrate, except for the
potential for a slight increase during the transition between early-time and late-time power-law flow. In
this application, the A-parameter is bounded between zero and one. In Fig. 4.2 we observe that the so-
parameter affects the initial flowrate — the higher the value of the sy -parameter (a proxy for the maximum
skin available to the system), the lower the initial flowrate. The minimum skin factor for a given case is
established through the s.-parameter as shown in Fig. 4.3. The greater the difference between the sy-and
So-parameters, the larger the rate "hump" observed during the transition to late-time. Validation of this
model is achieved as the s.- and syp-parameters approach zero — i.e., the time-dependent skin effects

become negligible which yields the power-law flow regime.

Dimensionless Rate Solution — Power Law Flow Case with Cumulative-Exponential
Time-Dependent Skin Effects (Variable s -Parameter)
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Figure 4.3 —Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the
cumulative-exponential time-dependent skin factor model for select values of the s..-parameter.

As shown in Fig. 4.4, the c;-parameter illustrates flow transitions from early-time distorted flow behavior
to late-time power-law flow behavior. We note that the higher the value of the c;-parameter, the earlier
that late-time flow behavior occurs. As the power-law flow regime is a generalization for all potential
flow regimes, the c;-paramter may be correlated to other constants such as (inverse) fracture conductivity

seen in bilinear flow. This similarity will be demonstrated in future sections.
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Dii i Rate ion — Power Law Flow Case with Cumulative-Exponential
Time-Dependent Skin Effects (Variable c,-Parameter)
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Figure 44 —Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the

cumulative-exponential time-dependent skin factor model for select values of the c¢;-parameter.

Variations in the v-parameter are shown in Fig. 4.5 and we note that the -parameter is a proxy for the
system flow regime. We observe variations in the late-time slope with all flowrates crossing at
approximately the same coordinate. As we will demonstrate with the constant rate solution (in the next

section), this inflection point is based on the mathematics of the power-law flow relation.

As shown in the previous examples (Fig. 4.1 -Fig. 4.5) a time-dependent skin factor function is used to
represent rate features observed from field data — including the "hockey-stick" shape, where the
dimensionless flowrate shows an flat or gently increasing (derivative is positive) rate at early-times,
followed by a rollover (i.e., transition) feature, which is then followed by a decline into a late-time flow

regime, in this case we have specified the 3/4 root time relation.

29



Dimensionless Rate Solution — Power Law Flow Case with Cumulative-Exponential
Time-Dependent Skin Effects (Variable v-Parameter)
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Figure 4.5 —Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the
cumulative-exponential time-dependent skin factor model for select values of the v-parameter.

Supplementing the constant pressure solution, we have provided additional diagnostic material to support
the validation of this time-dependent model — specifically, we provide examples of the rate derivative,
the cumulative production, and the time-normalized cumulative production performance. Not all
parameters will be evaluated in this section, however, all combinations and permutations of parameters

may be found in Appendix F.

The flowrate derivative plot has significant diagnostic potential in its ability to enhance subtle changes in
flowrate performance for qualitative behavioral (and eventually qualitative) evaluation. As shown in Fig.
4.6, the rate increase exhibited by the sp-parameter results in the rate derivative approaching zero. Our
time-dependent skin effect assumes, within limiting boundaries, that the skin factor will decrease for a
period of time due to cleanup effects, increasing the fluid flowrate. The greater the difference between the
so- and s.-parameter, the greater potential for clean-up; therefore, the greater the potential flowrate

increase.

The rate derivative for the various cases of the s.-parameter are shown in Fig. 4.7. This performance
highlights the small rate increase exhibited within the dimensionless flowrate (which is also plotted).
However, the unique "double hump" shown in the derivative has potential for diagnostic capabilities. This
author notes, that unless otherwise states, the zparameter always maintains a value of 0.01 for all

presented examples.

30



Dimensionless Rate and Rate Derivative Solution — Power Law Flow Case with Cumulative-Exponential
Time-Dependent Skin Effects (Variable s,-Parameter)
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Dimensionless Rate and Cumulative Rate Solution — Power Law Flow Case with Cumulative-Exponential
Time-Dependent Skin Effects (Variable sy,-Parameter)
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In Fig. 4.8 we introduce the dimensionless cumulative production function and we plot this function with
the dimensionless rate function to illustrate the "smooth" nature of the dimensionless cumulative
production. In Fig. 4.9 we present the time-normalized dimensionless cumulative production function and
we again plot this function with the dimensionless rate function. We immediately note that the time-
normalized dimensionless cumulative production function does not have same "hump" features as in the
dimensionless rate function, but this behavior is somewhat expected due to the smoothing inherent in the
cumulative production. As a comment, we note that the higher values of the so-parameter yields more
extreme character in the rate functions. While this work is "theoretical" rather than "practical," we can see
from Figs. 4.6-4.9 that the effect of the time-dependent factor is both unique for some functions, and less
so for others, but taken as a part of a diagnostic workflow, we believe that such "type curves" will help

guide understanding of flowback performance in unconventional reservoirs.

Dimensionless Pressure Soltuion — Power Law Flow Case with Cumulative-Exponential
Time-Dependent Skin Effects (Variable s,-Parameter)
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Figure 4.10 —Log-log plot (constant rate dimensionless pressure solution) for the power-law flow model combined with the
cumulative-exponential time-dependent skin factor model for select values of the so-parameter.

In order to thoroughly examine the behavior of the cumulative-exponential time-dependent skin effect

model, we have created additional plots for the constant rate dimensionless pressure and the constant rate
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derivative pressure functions for each parameter considered for this model. In some aspects, the
diagnostic features are similar to those for the constant pressure solution functions. For reference, an
exhaustive evaluation of all parameters considered for the cumulative-exponential time-dependent skin

effects model coupled with the generalized power-law flow regime can be found in Appendix F.

As shown in Fig. 4.10, the constant rate dimensionless pressure solution is a sort of "mirror image" of the
constant pressure solution (trends increase to the right, as opposed to decreasing). In this particular case
we are varying the v-parameter (v = 0.1, 0.25, 0.5, 0.75, and 0.9), and the skin factor parameters (so and
Sw) are constant. The s.-parameter (s» = 0.1) controls the performance at early times (several cases are

constant at pp(¢p) = 0.1 until the power-law portion of the solution dominates).

Di ionl Pressure Soltuion — Power Law Flow Case with Gumulative-Exponential
Time-Dependent Skin Effects (Variable v-Parameter)
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Figure 4.11 —Log-log plot (constant rate dimensionless pressure solution) for the power-law flow model combined with the
cumulative-exponential time-dependent skin factor model for select values of the v-parameter.

We observe an inflection point, shown in Fig. 4.11, as the v-parameter is varied. The power-law flow
regime formulation states that when the dimensionless time is one, all flow regimes will intersect at a

pressure influenced notably by the ci-parameter, which is this point of intersection (i.e., ¢; = 10).

In summary, the behavior of the cumulative-exponential time-dependent skin effect model appears to be
unique and relevant for representing the behavior of early-time rate "flowback" (see Fig. 4.2 -Fig. 4.11).

In a practical sense, there appears to be significant potential in the diagnostic capabilities of the
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cumulative-exponential time-dependent skin effects model, where the rate and pressure performance
functions include: the dimensionless rate, the dimensionless rate derivative, the dimensionless cumulative
production, time-normalized dimensionless cumulative production, dimensionless pressure, and

dimensionless pressure derivative functions.

4.3 Power-Law Flow Relation with Exponential Time-Dependent Skin Effects

The exponential time-dependent skin effect model is proposed as a "more simple" alternative to the
cumulative-exponential time-dependent skin effect model. In Appendix D we provide the derivation of
the constant pressure solution in the Laplace domain for the exponential time-dependent skin effect model

couple with the model for the generalized power law flow regime.

The exponential time-dependent skin effect model is very similar in function to the cumulative-
exponential skin effects model. As we examine each parameter for the exponential time-dependent skin
model, provide comparison to the previous function and provide evidence as to the validity of our time-

dependent relation as a diagnostic tool for observed features from field data.

Dimensionless Rate Solution — Power Law Flow Case with Exponential
Time-Dependent Skin Effects (Variable s,-Parameter)

i 10” 10° 10* 10" 10° 10

2
10 T T T T T T T T T T T T T T Ty 10
Legend
(m—) 7=0.1
(==+=) 7=0.01
(====) £=0.001
1
10 _::::-—"‘--. Pararameters 10
o s,=0.05
el B~ X3, c, =10
o I e e, R v=0.75
e P o -y -
< " '!P-.
g 100 == -t \.»\\ .w“
[v] e ——— "
- 1 B
» g
E “ j’
= 1 H s
° \ .
£10 . 10-‘
a !
' \
107° \ 107
Ppertp)=citp”
s(tp) =8z +50 cxp{— tp/ r]
10-3 r . = L L llllll;5 L L L LALLLL 5 L Il lllll|l1_l_|_]_|_[_|_|.|_o 110'3
10 10 10 10 10~ 10 10 10

Normalized Dimensionless Time, /T

Figure 4.12 —Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the
exponential time-dependent skin factor model for select values of the s,-parameter.
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In Fig. 4.12 we note the effect of the so-parameter on the dimensionless rate trends, where these values
were chosen to represent a range of skin factor values expected to be observed in practice. We do note a
bit of instability in the 7= 0.001 cases, and as comment, we did try to address this with higher precision
specifications in the Gaver-Stehfest algorithm, but these instabilities remain. Examining the rate
derivative solution shown in Fig. 4.13, we note (as expected) that the "rate hump" causes an negative rate
derivative function (recall that the derivative is make negative because we assume a declining flowrate
function, if the rate increase, the definition of the rate derivative becomes negative. Regardless, we can
comment that the dimensionless rate derivative function has more "character" than the dimensionless rate

function, and that this observed character could be useful as a "diagnostic" function.

Dimensionless Rate and Rate Derivative Solution — Power Law Flow Case with Exponential
Time-Dependent Skin Effects (Variable s,-Parameter)
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Figure 4.13 —Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined
with the exponential time-dependent skin factor model for select values of the s,-parameter.

In Fig. 4.14 we observe the influence of the s.-parameter, in particular, on the initial flowrate. We again
observe a stability issue with regard to the cases where = 0.001, and we again note that these instabilities
could not be resolved in a computational sense. The behavior of the dimensionless rate functions shown in
Fig. 4.14 do resemble expected performance in the field, and due to the relative simplicity of this skin

factor model, this case may be preferred for diagnostics in practice.

In Fig. 4.15 we observe the influence of the ci-parameter, and again we note the instabilities for the 7=

0.001 cases. The influence of the ci-parameter is essentially just a "displacement” in time of the various
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trend functions. We note, that for very large values of the c;-parameter (a possible proxy for inverse

fracture conductivity) the time-dependent choked fracture skin has essentially no impact on the

dimensionless flowrate function.

Dimensionless Rate Solution — Power Law Flow Case with Exponential
Time-Dependent Skin Effects (Variable s_-Parameter)
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Figure 4.14 —Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the
exponential time-dependent skin factor model for select values of the s.-parameter.
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Dimensionless Rate Solution — Power Law Flow Case with Exponential
Time-Dependent Skin Effects (Variable c,-Parameter)
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Figure 4.15 —Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the
exponential time-dependent skin factor model for select values of the c;-parameter.

Dimensionless Rate Solution — Power Law Flow Case with Exponential
Time-Dependent Skin Effects (Variable v-Parameter)
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Figure 4.16 —Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the
exponential time-dependent skin factor model for select values of the V-parameter.
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As shown in Fig. 4.16, the influence of the -parameter is observe, and we can comment that the lowest
values of the 1-parameter are the least affected by the prescribed exponential time-dependent skin factor
model. This is likely due to the fact that the lower v-parameter cases represent a lesser decline in time and

hence are less affected by the skin factor.

As has been demonstrated in the previous example (Fig. 4.12 — Fig. 4.16), a second time dependent skin
factor is used to represent rate features from field data. Features are very similar to those of the
cumulative-exponential time-dependent skin effect — including the desired "hockey-stick" profile, a
rollover (i.e., transition) feature dissipating into late-time reservoir characteristic power-law flow. Early-
time behavior is generally flat or gently increasing, with a potential for a flowrate increase during the

transition period as the time-dependent skin effects are imposed on the system.

A number of additional diagnostic plots have been included to validate the exponential time-dependent

skin factor for implementation in field data. All available plots may be found in Appendix F.

Dimensionless Rate and Cumulative Rate Solution — Power Law Flow Case with Exponential
Time-Dependent Skin Effects (Variable s_-Parameter)
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Figure 4.17 —Log-log plot (constant pressure dimensionless cumulative production solution) for the power-law flow model
combined with the exponential time-dependent skin factor model for select values of the s.-parameter.
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As shown in Fig. 4.17 and Fig. 4.18 the dimensionless cumulative production and time-normalized
dimensionless cumulative rate provide further diagnostic measures to evaluate the behavior and

performance of early-time transient production of ultra-low permeability reservoirs.

Dimensionless Rate and Normalized Cumulative Rate Solution — Power Law Flow Case with Exponential
Time-Dependent Skin Effects (Variable s_-Parameter)
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Figure 4.18 —Log-log plot (constant pressure time-normalized dimensionless cumulative rate solution) for the power-law flow
model combined with the exponential time-dependent skin factor model for select values of the s.-parameter.

Through the evaluation of the exponential time-dependent skin factor with power-law flow regime, some
diagnostic capabilities are demonstrated in Fig. 4.12 through Fig. 4.18 representing rate features observed
in field data. The variety of diagnostic plots available provide additional measures to ensure evaluation of

the reservoir performance.
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4.4 Power-Law Flow Relation with Hyperbolic Time-Dependent Skin Effects

The hyperbolic time-dependent skin effect is proposed as an alternative model to the cumulative-
exponential and exponential time-dependent skin models to further characterize reservoir performance for

ultra-low permeability reservoirs. Appendix D provides a derivation of the constant pressure solution in

the Laplace domain with hyperbolic time-dependent skin effects and the power law flow regime.

Following, we examine the effect of each parameter of the constant pressure solution through a number of

diagnostic plots providing support to validate the applicability of the hyperbolic time-dependent skin

model for field implementation.

Dimenslonless Rate, gp

Figure 4.19 —Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the
hyperbolic time-dependent skin factor model for select values of the A-parameter.

For the limited range considered, the A-parameter, shown in Fig. 4.19, imposes little impact on the
constant pressure solution. The derivative, shown in Fig. 4.20, has much stronger features than the rate
function, and although this may be difficult to assess in practice, its behavior is noted for possible use as a

diagnostic characteristic.
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Dimensionless Rate, g,

Dimensionless Rate, qp

Dimensionless Rate and Rate Derivative Solution — Power Law Flow Case with Hyperbolic

7

D-G

Time-Dependent Skin Effects (Variable A-Parameter)
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Figure 4.20 —Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined

Normalized Dimensionless Time, ty/r

with the hyperbolic time-dependent skin factor model for select values of the A-parameter (7= 0.01).

Dimensiconless Rate Solution — Power Law Flow Case with Hyperbolic

Time-Dependent Skin Effects (Variable s;-Parameter)
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Figure 4.21 —Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the
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hyperbolic time-dependent skin factor model for select values of the s,-parameter.
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As a proxy for the maximum skin of the system, the so-parameter, shown in Fig. 4.21, impacts the rate at
which the system reaches late-time power-law flow. The higher the sj-parameter, the lower the
dimensionless flowrate, and the longer the system required to attain late-time flow. The lower boundary
for the skin factor, the s.-parameter, shown in Fig. 4.22, influences the initial rate of the system. The
higher the s..-parameter, the lower the initial flowrate. Validation of this model is achieved as the s.- and
so-parameters approach zero — i.e., the time-dependent skin effects become negligible which yield the

power law flow regime.

Dimensionless Rate Solution — Power Law Flow Case with Hyperbolic
Time-Dependent Skin Effects (Variable s, -Parameter)
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hyperbolic time-dependent skin factor model for select values of the s..-parameter.
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Figure 4.22 —Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the



Dimensionless Rate Solution — Power Law Flow Case with Hyperbolic
Time-Dependent Skin Effects (Variable c,;-Parameter)
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Figure 4.23 —Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the
hyperbolic time-dependent skin factor model for select values of the c,-parameter.

The ci-parameter affects the time until transition into late-time flow regimes, as shown in Fig. 4.23. This
plays a significant role in the cumulative rate of the system, shown in Fig. 4.24. The larger the ci-
parameter, the faster late-time flow is reached and the smaller cumulative production achieved. As the
power-law flow regime is a generalization for all potential flow relations, the c¢;-parameter is a proxy for
any parameter appropriate to a particular flow relation (e.g., fracture conductivity for bilinear flow

regime).
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Dimensionless Rate and Cumulative Rate Solution — Power Law Flow Case with Hyperbolic
Time-Dependent Skin Effects (Variable c¢,-Parameter)
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Figure 4.24 —Log-log plot (constant pressure dimensionless cumulative production solution) for the power-law flow model
combined with the hyperbolic time-dependent skin factor model for select values of the ¢;-parameter (7= 0.01).

As shown in Fig. 4.25, the v-parameter describes the flow regime of the system. The generalization of the

power-law flow relation allows for any observed or theoretical reservoir to be evaluated.
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Dimensionless Rate Solution — Power Law Flow Case with Hyperbolic
Time-Dependant Skin Effects (Variable v-Parametar)
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Figure 4.25 —Log-log plot (constant pressure dimensionless rate solution) for the power-law flow model combined with the
hyperbolic time-dependent skin factor model for select values of the v-parameter.

The previous example, evaluating the hyperbolic time-dependent skin effects with the power-law flow
model (Fig. 4.19 — Fig. 4.25) represents rate features observed from field data. In a similar fashion as
with the cumulative-exponential and exponential time-dependent skin factors, we observe a "hockey-stick"
shape, with a rollover (i.e., transition) feature into late-time power-law flow. Unlike the previous two
time-dependent skin effect models (cumulative-exponential and exponential) the hyperbolic time-
dependent skin factor does not show a rate increase during the transition to late-time flow. Although some
of the features may be difficult to resolve in practice, the behavior of the model is noted for possible use to

diagnose reservoir behavior.

4.5 Power-Law Flow Relation with Time-Dependent Wellbore Phase Redistribution

Fair (1990) proposed a wellbore phase redistribution pressure based upon empirical data and a single
laboratory test to explain anomalous pressure signatures in build-up tests. Incorporation of the phase
redistribution pressure profile into the wellbore pressure is fully derived in Appendix E. Keeping our
diagnostic "procedure" consistent, we examine each parameter within the model and as our method to
validate potential application to field data. To assist in diagnostic capabilities, the derivative of the
constant pressure solution was also taken and plotted for each parameter. A full evaluation of all plots

may be found in Appendix F.
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Dimensionless Rate and Rate Derivative Solution — Power Law Flow Case
with Time-Dependent Wellbore Storage (Variable & -Parameter)
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Figure 4.26 —Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined
with the time-dependent wellbore storage for select values of the a-parameter.

Dimensionless Rate and Rate Derivative Solution — Power Law Flow Case
with Time-Dependent Wellbore Storage (Variable Cp-Parameter)
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Figure 4.27 —Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined
with the time-dependent wellbore storage for select values of dimensionless wellbore storage constant.
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For the limited range considered, the a-parameter, shown in Fig. 4.26, imposes little impact on the
constant pressure solution. The derivative has much stronger features than the rate function, and although
this function may be difficult to assess in practice, its behavior is noted for possible use as a diagnostic
characteristic. The dimensionless wellbore storage constant (Cp), shown in Fig. 4.27, provides variations
in both early-time behavior and the transition region. As the wellbore storage influence diminishes over

time, the rate is governed by the specified power-law flow regime, clearly shown in Fig. 4.27.

The dimensionless wellbore phase redistribution constant (Cgp), shown in Fig. 4.28, has a similar
influence on the solution as the dimensionless wellbore storage constant (Cp), and affects the rate behavior
at early-times, merging to yield the power-law flow solution at late-times. The Cgp-parameter yields a
consistent shape in the derivative function, displace in time, unlike the Cp-parameter which derivative

shape is inconsistent.

The skin factor, as shown in Fig. 4.29, imposes little impact on the constant pressure solution. The rate
derivative has much stronger features than the rate function as shown by the variation caused by the skin
factor. Although the combined effects of skin and wellbore storage may be difficult (or even impossible)
to assess in practice, we may be able to develop diagnostic characteristic functions (i.e., derivative ratios,

etc.).

Dimensionless Rate and Rate Derivative Solution — Power Law Flow Case
with Time-Dependent Wellbore Storage (Variable C - Parameter)
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Figure 4.28 —Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined
with the time-dependent wellbore storage for select values dimensionless phase redistribution constant.
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Dimensionless Rate and Rate Derivative Solution — Power Law Flow Case
with Time-Dependent Wellbore Storage (Variable s-Parameter)
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Figure 4.29 —Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined
with the time-dependent wellbore storage for select values of skin factor.
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Dimensionless Rate and Rate Derivative Solution — Power Law Flow Case
with Time Dependent Wellbore Storage (Variable ¢,-Parameter)
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Figure 4.30 —Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined
with the time-dependent wellbore storage for select values of the ci-parameter.
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Dimensionless Rate and Rate Derivative Solution — Power Law Flow Case
with Time-Dependent Wellbore Storage (Variable vParameter)
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Figure 4.31 —Log-log plot (constant pressure dimensionless rate derivative solution) for the power-law flow model combined
with the time-dependent wellbore storage for select values of the v-parameter.

As shown in Fig. 4.30, the c;-parameter has a significant impact on early-time and late-time flow
behavior. At early-time, the c;-parameter yields a consistent shape offset with time. At late-times, higher

values of the ci-parameter yield a significantly lower dimensionless flowrate.

The w-parameter significantly affects the rate and rate derivative behavior at both early-times and late-
times. As a proxy for the system flow regime (i.e., for linear flow the 1-parameter is %2), late-time

behavior is dependent on the exponential v-parameter, bounded between zero and one for this application.

In summary, the time-dependent wellbore storage model presents a unique diagnostic capability which
may be utilized to represent early-time ("flowback") behavior (see Fig. 4.26 — Fig. 4.31). Practically, the
use of all diagnostic plots (i.e., dimensionless rate, dimensionless rate derivative, dimensionless
cumulative rate, time-normalized dimensionless cumulative rate and dimensionless pressure and
dimensionless pressure derivative) provide some mechanism to diagnose time-dependent wellbore storage

effects.
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4.6 Linear Flow Relation

The linear flow regime, proposed in Chapter III, is based upon the work of Gringarten, Ramey and
Raghavan (1974) provides a behavioral model for fluid flow from the matrix to the fracture. Fully derived
in Appendix A, we apply each of our time-dependent models to the linear flow regime to quantify "early-

time" performance of a vertically fractured well. The linear flow relation is displayed below for reference:

PD.er (D) ZATID sttt (4.2)

The following sections examine the time-dependent skin factor and wellbore storage models with the

linear flow relation.
4.7 Linear Flow Relation with Cumulative-Exponential Time-Dependent Skin Effects

The cumulative-exponential time-dependent skin factor model is based on empirical observations from
ultra-low permeability reservoirs. Appendix D provides a derivation of the constant pressure solution in

the Laplace domain with cumulative-exponential time-dependent skin effects and the linear flow regime.

As with the power-law flow regime, similar unique trends have been observed within the flowrate data. In
this regard, we examine each parameter within the model, along with other relevant diagnostic plots to

validate the applicability of our time-dependent relation.

The A-parameter, shown in Fig. 4.32 imposes little impact on the dimensionless flowrate except for the
potential for cause a slight rate increase during the transition between early-time and late-time linear flow.
The rate derivative flow, shown in Fig. 4.33, highlights the increase in flowrate causing the derivative

term to tend towards a zero value, creating a unique diagnostic feature for potential field application.

The s¢-parameter, shown in Fig. 4.34, affects the initial flowrate. As a proxy for the initial skin value, the
lower the initial skin, the higher the initial flowrate. A lower boundary for the skin term is developed
through the s.-parameter (Fig. 4.35). Validation of this time-dependent skin factor model is achieved as
the s¢- and s.-parameters approach zero — i.e., the time-dependent skin effects become negligible yielding

the linear flow solution.
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Dimensionless Rate, qp,

Dimensionless Rate Solution — Linear Flow Case with Cumulative-Exponential
Time-Dependent Skin Effects (Variable A-Parameter)
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Figure 4.32 —Log-log plot (constant pressure dimensionless rate solution) for the linear flow model combined with the
cumulative-exponential time-dependent skin effects for select values of the A-parameter.

Dimensionless Rate and Rate Derivative Solution — Linear Flow Case with Cumulative-Exponential
Time-Dependent Skin Effects (Variable i-Parameter)
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Figure 4.33 —Log-log plot (constant pressure dimensionless rate derivative solution) for the linear flow model combined with
the cumulative-exponential time-dependent skin effects for select values of the A-parameter (7= 0.01).
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Dimensionless Rate Solution — Linear Flow Case with Cumulative-Exponential

Time-Dependent Skin Effects (Variable s,-Parameter)
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Figure 4.34 —Log-log plot (constant pressure dimensionless rate solution) for the linear flow model combined with the
cumulative-exponential time-dependent skin effects for select values of the sy-parameter.

Dimensionless Rate Solution — Linear Flow Case with Cumulative-Exponential

Time-Dependent Skin Effects (Variable s -Parameter)
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Figure 4.35 —Log-log plot (constant pressure dimensionless rate solution) for the linear flow model combined with the
cumulative-exponential time-dependent skin effects for select values of the s,.-parameter.
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As shown in the previous examples (Fig. 4.32 — Fig. 4.35) the cumulative-exponential time-dependent
skin factor is used to represent observed rate features — including the desired "hockey-stick" shape, where
the flowrate is flat or steadily increasing (derivative is positive) at early-time before reaching a transition
feature in which the flowrate demonstrates a "hump" or rate increase, before dissipating to late-time linear

flow.
4.8 Linear Flow Relation with Exponential Time-Dependent Skin Effects

The exponential time-dependent skin factor model is based on empirical observations from ultra-low
permeability reservoirs. Appendix D provides a derivation of the constant pressure solution in the

Laplace domain with exponential time-dependent skin effects and the linear flow regime.

Dimensionless Rate Solution — Linear Flow Case with Exponential
Time-Dependent Skin Effects (Variable s,-Parameter)
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Figure 4.36 —Log-log plot (constant pressure dimensionless rate solution) for the linear flow model combined with the
exponential time-dependent skin effects for select values of the sy-parameter.

The exponential time-dependent skin factor with linear flow relation performs in an almost identical
manner as the exponential time-dependent skin factor with power law flow relation. This confirms the

additive nature of the time-dependent skin factor to the pressure relation having the same effect on the
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dimensionless flowrate regardless the characteristic flow of the reservoir. For thoroughness, we will
evaluate each parameter to validate the applicability of our model.

The so-parameter affects the initial flowrate, as shown by Fig. 4.36, creating a characteristic rate "hump"
during the transition to late-time linear flow. The greater difference between the s..- and sg-parameter, the

larger the rate increase (i.e., system cleanup) required to dissipate into the reservoir characteristic linear

flow regime.
Dimensionless Rate Solution — Linear Flow Case with Exponential
Time-Dependent Skin Effects (Variable s, -Parameter)
10° 10° 10" 10° 10? 10" 10°
102 T T TTTI T T T TTT] T T 11111 T T T TTT] T T TrrIT

Legend

( ) r=0.1
(=+=) 7z=0.01
(====) 7=0.001

Pararameters
S5=0.1

Dimensionless Rate, qp,
=

10

PDer (ID.) = ‘/;\/5

s(Ep) =8+ exp[— ip /1’]
10-2 L L Illllﬂ 1 IIIIIId L lllllﬂ '] L L LLLL
10 107 10" 10° 10° 10" 10°
Normalized Dimensionless Time, /7

Figure 4.37 —Log-log plot (constant pressure dimensionless rate solution) for the linear flow model combined with the
exponential time-dependent skin effects for select values of the s..-parameter.
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Dimensionless Rate and Rate Derivative Solution — Linear Flow Case with Exponential
Time-Dependent Skin Effects (Variable s, -Parameter)

10° 10° 10" 10° 10° 10" 10’ 10'
102E T |l|||I'I'I T |||l||I'H T T TTIIT T lllllll'l T l|l|||l'| T T T ITIm T 1 |l|||'! 102
F 5,701 Legend 3
[ 0.075 (—) @ .
o [ s.=000025 005 (=-=) -dgp/dint; ]
£
3
1 Pararameters 1
._310 Sp=0.1 g 10
Qi =
=g ]
&2 .
e g ]
e g
20 o tm P,
= 2 10 ;_':_'_.:- Ta,
o5 "'"""',I"';.\
c oy ¢
VU @y ~
Es 8y
[=] E Ml
g -1 .s's
.§10 ~
o

PDerp)= ‘/;\/;

s(tp) =38, +3g uxp[ftD f’r]
10-2 L aauul Ll Ll gl Ll L aaaul Lol 1 alLl
10 10° 10” 10° 107 10" 10° 10

Normalized Dimensionless Time, /7

Figure 4.38 —Log-log plot (constant pressure dimensionless rate derivative solution) for the linear flow model combined with
the exponential time-dependent skin effects for select values of the s..-parameter (z= 0.01).

The s.-parameter, shown in Fig. 4.37 with the rate derivative shown in Fig. 4.38, affects the transition
region between early-time and late-time linear flow. The larger the difference between the s.- and s¢-

parameters, the greater the rate "hump" feature observed.
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Dimensionless Rate and Cumulative Rate Solution — Linear Flow Case with Exponential
Time-Dependent Skin Effects (Variable s,-Parameter)
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Figure 4.39 —Log-log plot (constant pressure dimensionless cumulative production solution) for the linear flow model
combined with the exponential time-dependent skin effects for select values of the s..-parameter (7= 0.01).

The dimensionless cumulative production (Fig. 4.39) and the time-normalized dimensionless cumulative
rate (Fig. 4.40) provide additional diagnostic tools, which may be used to evaluate the reservoir behavioral

characteristics.
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Dimensionless Rate and Normalized Cumulative Rate Solution — Linear Flow Case with Exponential
Time-Dependent Skin Effects (Variable s_-Parameter)
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Figure 4.40 —Log-log plot (constant pressure time-normalized dimensionless cumulative rate solution) for the linear flow
model combined with the exponential time-dependent skin effects for select values of the s.-parameter (7= 0.01).

The previous examples (Fig. 4.36 — Fig. 4.40) demonstrate that the exponential time-dependent
skin factor with linear flow has the same form and function as with the power-law flow relation, with
the only difference being the late-time reservoir characteristic flow behavior. Diagnostic features
include the desired "hockey-stick" flow profile, with an ecarly-time flat or gently increasing
(derivative is positive) flowrate, a rollover (i.e., transition) feature with rate increase potential,
dissipating into the late-time linear flow regime, characteristic of the reservoir. These diagnostic
features, representing empirical data, potentially provide the ability to quantify early-time or "flow-

back" behavior. All diagnostic plots may be found in Appendix F.
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4.9 Linear Flow Relation with Hyperbolic Time-Dependent Skin Effects

The hyperbolic time-dependent skin factor model is based on empirical observations from ultra-low
permeability reservoirs. Appendix D provides a derivation of the constant pressure solution in the

Laplace domain with hyperbolic time-dependent skin effects and the linear flow regime.

The hyperbolic time-dependent skin model, with linear flow, displays the same characteristics in flowrate
behavior as with the hyperbolic time-dependent skin model with power-law flow. The only notable
difference is the late-time flowrate characterized by the specific one-half slope of the linear flow regime.
For thoroughness, we will evaluate each parameter with supporting diagnostic plots to validate the

applicability of the hyperbolic time-dependent skin function for field implementation.

Dimensionless Rate Sclution — Linear Flow Case with Hyperbolic
Time-Dependent Skin Effects (Variable A-Parameter)
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Figure 441 —Log-log plot (constant pressure dimensionless rate solution) for the linear flow model combined with the
hyperbolic time-dependent skin effects for select values of the A-parameter.

The A-parameter imposes little impact on the constant pressure solution, for the limited range considered,
as shown in Fig. 4.41. Mathematically, the A-parameter may be any value, however, for this work we
chose to bound the value between zero and one in order to maintain consistency with the cumulative-

exponential time-dependent skin factor.
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Dimensionless Rate, g,

Dimensionless Rate, gp
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Dimensionless Rate Solution — Linear Flow Case with Hyperbolic
Time-Dependent Skin Effects (Variable 5,-Parameter)
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hyperbolic time-dependent skin effects for select values of the s)-parameter.

Dimensionless Rate and Rate Derivative Solution — Linear Flow Case with Hyperbolic

Time-Dependent Skin Effects (Variable sy-Parameter)
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the hyperbolic time-dependent skin effects for select values of the sy-parameter (7= 0.01).
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As shown in Fig. 4.42, the sy-parameter affects the rate at which late-time linear flow is achieved. As a
proxy for the systems maximum skin, the higher the ss-parameter, the more time required to achieve linear
flow. The author notes the significant amount of time required, approximately five log-cycles, when the
so-parameter is very large. The dimensionless rate derivative, shown in Fig. 4.43, highlights the features

of the dimensionless rate.

Dimensionless Rate Solution — Linear Flow Case with Hyperbolic
Time-Dependent Skin Effects (Variable s_-Parameter)
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Figure 4.44 —Log-log plot (constant pressure dimensionless rate solution) for the linear flow model combined with the
hyperbolic time-dependent skin effects for select values of the s.-parameter.

The se-parameter, the lower boundary for skin in this formulation shown in Fig. 4.44, affects the initial
dimensionless flowrate. The lower the s.-parameter, the higher the initial flowrate. The time-normalized
dimensionless cumulative rate, shown in Fig. 4.45, provides additional diagnostic capabilities when
attempting to utilize this methodology to evaluate reservoir behavior. Validation of this model is achieved
as the s.- and sg-parameters approach zero — i.e., the time-dependent skin effects become negligible

which yield the linear flow regime.
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Dimensionless Rate and Normalized Cumulative Rate Solution — Linear Flow Case with Hyperbolic
Time-Dependent Skin Effects (Variable s _-Parameter)
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Figure 4.45 —Log-log plot (constant pressure time-normalized dimensionless cumulative rate solution) for the linear flow
model combined with the hyperbolic time-dependent skin effects for select values of the s..-parameter (7= 0.01).

From this example, (Fig. 4.41 — Fig. 4.45), we observe that the hyperbolic time-dependent skin effects
occur at very small values of dimensionless time, resulting in potentially challenging application to field
data where rate measurements are typically taken at a longer time intervals. Although quantitatively this
may result in a challenging application, qualitatively, this methodology may serve as a diagnostic tool for

reservoir characterization.
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4.10 Linear Flow Relation with Time-Dependent Wellbore Phase Redistribution

Fair (1990) proposed a wellbore phase redistribution pressure based upon empirical data and a single
laboratory test to explain anomalous pressure signatures in build-up tests. Incorporation of the phase
redistribution pressure profile into the wellbore pressure is fully derived in Appendix E. To demonstrate
the viability of this work, we examine each parameter within the model and the potential application to
field data. To assist in diagnostic capabilities, the derivative of the constant pressure solution was also
taken and plotted for each parameter. To supplement the dimensionless rate and rate derivative plots, we
have further included a variety of other diagnostic plots to further validate the application of this model. A
full evaluation of all plots may be found in Appendix F.

Dimensionless Rate and Rate Derivative Solution — Linear Flow Case
with Time-Dependent Wellbore Storage (Variable o -Parameter)
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Figure 4.46 —Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model
combined with the time-dependent wellbore storage for select values of the a-parameter.

For the limited range we considered, the a-parameter, shown in Fig. 4.46, imposes little impact on the

constant pressure solution. The derivative displays much stronger features than the rate function, and
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although this function may be difficult to assess in practice, its behavior is noted for possible use as a

diagnostic characteristic.

Dimensionless Pressure and Pressure Derivative Solution — Linear Flow Case
with Time-Dependent Wellbore Storage (Variable & -Parameter)
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Figure 4.47 —Log-log plot (constant rate dimensionless pressure and pressure derivative solution) for the linear flow model
combined with the time-dependent wellbore storage for select values of the a-parameter.

For comparative purposes, the constant rate dimensionless pressure solution was created to demonstrate
features characteristic to wellbore storage. Shown in Fig. 4.47, we observe the unit slope wellbore storage

line with a wellbore storage "bubble" during the transition into late-time linear flow.
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Dimensionless Rate and Rate Derivative Solution — Linear Flow Case
with Time-Dependent Wellbore Storage (Variable Cp-Parameter)
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Figure 4.48 —Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model

The dimensionless wellbore storage constant (Cp) shown in Fig. 4.48, provides variations in both early-
time behavior and the transition region. As the wellbore storage influence diminishes over time, the rate is
governed by the specified linear flow solution. Additional diagnostic features may be explored, through
the evaluation of the dimensionless cumulative flowrate (Fig. 4.49) and time-normalized dimensionless

cumulative flowrate (Fig. 4.50) highlighting the transition region between early-time and late-time linear

flow.
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Dimensionless Time, 1,
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combined with the time-dependent wellbore storage for select values of dimensionless wellbore storage constant
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Dimensionless Rate, qp
Normalized Cumulative Rate, Qp/tp

Dimensionless Rate, gp

Dimensionless Rate and Cumulative Rate Solution — Linear Flow Case
Time-Dependent Wellbore Storage (Variable Cp-Parameter)

10° 10° 10" 10° 10° 10" 10° 10' 10° 10 w0,
10" T T T T T TTI T, T AT R TA I AT AT T T ™7 10
b 76D (tD) = Cypll-s 7DD
[ PDortp)=+l7 fip ]
' E :
E -1 3
C 5 ]
A0,
o ]
[—Cp =100
10" E :
e \ "
- 3 ‘\: =
10°E {10
3 25
o':"; Parameters
10 E T Cao=1 = 10"
F KRt ool E
F SRt Legend  s_q1 ]
[ S (=) @ ¢=10 ]
[ P i (=+=) Q@ y=0715 1
r e | o
i sl el el il il —iad
10 10° 10 10 10 10 10 10 10 10 10

Dimensionless Time, tp

Dimensionless Cumulative Rate, Qp

Figure 449 —Log-log plot (constant pressure dimensionless cumulative production solution) for the linear flow model
combined with the time-dependent wellbore storage for select values of dimensionless wellbore storage constant.

Dimensionless Rate and Normalized Cumulative Rate Solution — Linear Flow Case
Time-Dependent Wellbore Storage (Variable Cp-Parameter)
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Figure 4.50 —Log-log plot (constant pressure time-normalized dimensionless cumulative rate solution) for the linear flow
model combined with the time-dependent wellbore storage for select values of dimensionless wellbore storage

constant.
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Dimensionless Rate and Rate Derivative Solution — Linear Flow Case
with Time-Dependent Wellbore Storage (Variable Cp-Parameter)
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Figure 4.51 —Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model
combined with the time-dependent wellbore storage for select values of dimensionless wellbore phase redistribution

constant.
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Figure 4.52 —Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model
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The dimensionless wellbore phase redistribution constant (Cgp), shown in Fig. 4.51, displays similar
features as the dimensionless wellbore storage constant (Cp), affecting the rate at early-times and
dissipating to yield the linear flow solution at late-times. The Cgp-parameter rate derivative profile yields
a consistent shape displaced in time, unlike the Cp-parameter which does not influence the shape in a

constant manner.

The skin factor imposes little impact on the constant pressure solution shown in Fig. 4.52. The rate
derivative has much stronger features than the rate function as shown by the early-time variations in the
skin factor rate derivative. Although the combined effects of skin and wellbore storage may be difficult
(or even impossible) to assess in practice, we may be able to develop diagnostic characteristic functions

(e.g., derivative ratios etc.)

As shown in the previous example (Fig. 4.46 — Fig. 4.52) a time-dependent wellbore storage model (with
constant skin factor) is used to represent rate features observed from field data. Features include flat or
gently decreasing rates at early-times and a convergence to the reservoir signature (e.g., linear flow) at
late-times via a rollover (i.e., transition) attribute. The dimensionless rate derivative function highlights
the transition feature where, for time-dependent wellbore storage, all cases exhibit a "hump" indicative of

a wellbore storage "bubble" (which is commonly seen in the constant rate dimensionless pressure function.

4.11 Bilinear Flow Relation

The bilinear flow regime, developed in Chapter III, based upon the work of Cinco and Samaniego (1981a)
provides a behavioral model for fluid flow from the matrix through the fracture to the wellbore. Fully
derived in Appendix A, we apply each of our time-dependent models to the bilinear flow regime to
quantify "early-time" performance of a vertically fractured well. The linear flow relation is displayed

below for reference:

= IZ. 4 ............................................................................................
PD,cr(tD) F(5/4)\/m\/§’

The following sections examine the time-dependent skin factor and wellbore storage models with the

linear flow relation.
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4.12 Bilinear Flow Relation with Cumulative-Exponential Time-Dependent Skin Effects

The cumulative-exponential time-dependent skin factor model is based on empirical observations from
ultra-low permeability reservoirs. Appendix D provides a derivation of the constant pressure solution in

the Laplace domain with cumulative-exponential time-dependent skin effects and the bilinear flow regime.

Dimensionless Rate Solution — Bilinear Flow Case with Cumulative-Exponential
Time-Dependent Skin Effects (Variable A-Parameter)
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Figure 4.53 —Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the
cumulative-exponential time-dependent skin eftects for select values of A-parameter.

The A-parameter, shown in Fig. 4.53, imposes little impact on the constant pressure solution, as was
evident with both the linear and power-law flow regimes, except for the slight increase in rate during the
transition from early-time flow to late-time bilinear flow. In this application, the A-parameter must be

bounded between zero and one.
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Dimensionless Rate Solution — Bilinear Flow Case with Cumulative-Exponential

Time-Dependent Skin Effects (Variable s,-Parameter)
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Figure 4.54 —Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the

cumulative-exponential time-dependent skin effects for select values of s,-parameter.

Dimensionless Rate Solution — Bilinear Flow Case with Cumulative-Exponential

Time-Dependent Skin Effects (Variable s -Parameter)
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Figure 4.55 —Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the

cumulative-exponential time-dependent skin effects for select values of s..-parameter.

As shown in Fig. 4.54, the so-parameter affects the initial flowrate. The higher the value of the sy

parameter, a proxy for the maximum skin available to the system, the lower the initial flowrate. Shown in
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Fig. 4.55, the s.-parameter, a proxy for the minimum skin boundary, affects the transition region
potentially increasing the dimensionless flowrate, between early-time and late-time-bilinear flow.
Validation of this model is achieved as the so- and s.-parameters approach zero, the time dependent skin

effects become negligible yielding the late-time bilinear flow regime.

Dimensionless Rate Solution — Bilinear Flow Case with Cumulative-Exponential
Time-Dependent Skin Effects (Variable (kaw),-Parameter)
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Figure 4.56 —Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the
cumulative-exponential time-dependent skin effects for select values of dimensionless fracture conductivity.

The effect of the cumulative-exponential time-dependent skin effects remains consistent regardless of the
flow regime to which it is associated. The example posed above (shown in Fig. 4.53 — Fig. 4.56), the
cumulative-exponential time-dependent skin model with bilinear flow regime, differs from the linear and
power law model only in regards to the late-time reservoir signature — i.e., early-time and transitional

behavior are consistent are regardless of the flow regime experienced by the reservoir.
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4.13 Bilinear Flow Relation with Exponential Time-Dependent Skin Effects

The exponential time-dependent skin factor model is based on empirical observations from ultra-low

permeability reservoirs.

Appendix D provides a derivation of the constant pressure solution in the

Laplace domain with exponential time-dependent skin effects and the bilinear flow regime.

Dimensionless Rate, q,
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Dimensionless Rate Solution — Bilinear Flow Case with Exponential
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Figure 4.57 —Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the

exponential time-dependent skin effects for select values of s,-parameter.

The so-parameter affects initial dimensionless flowrate and therefore, the size of the rate "hump" required

to return to the late-time quarter slope (i.e., bilinear flow) on a log-log scale. The higher the sy-parameter,

the lower the initial flowrate and larger of a transition feature before dissipating into late-time bilinear

flow, as demonstrated in Fig. 4.57. The derivative of the dimensionless rate solution, evaluating the s¢-

parameter, clearly shows this rate increase, shown in Fig. 4.58.
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Dimensionless Rate and Rate Derivative Solution — Bilinear Flow Case with Exponential
Time-Dependent Skin Effects (Variable s,-Parameter)
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the exponential time-dependent skin effects for select values of sy-parameter (7= 0.01).

The so-parameter has less effect than the so-parameter, however, still exhibits the same early-time
influence and transitional features, as illustrated by Fig. 4.59. The difference between the two parameters
(sw-and sg-parameter) proxies for the upper and lower limits of skin observed by the system, defines the

magnitude of influence the exponential time-dependent skin factor has on the reservoir characteristic flow

regime (i.e., bilinear flow relation). The larger the difference, the more prominent the features.

The dimensionless fracture conductivity plays a significant role on when the system reaches the reservoirs
late-time characteristic flow regime (i.e., bilinear flow) as shown by Fig. 4.60. Clearly, for a low
conductive fracture, the effects of a time-dependent skin factor are negligible. For an infinite conductivity

fracture, the choked fracture skin effects are the only impediment to fluid flow within the fracture,

therefore, play a significant impact on the transition to late-time reservoir characteristic flow behavior.
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Dimensionless Rate, g,

Dimensionless Rate Solution — Bilinear Flow Case with Exponential
Time-Dependent Skin Effects (Variable s_-Parameter)

Dimensionless Rate, q,
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Figure 4.59 —Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the
exponential time-dependent skin effects for select values of s..-parameter.

Dimensionless Rate Sclution — Bilinear Flow Case with Exponential
Time-Dependent Skin Effects (Variable (kwypy-Parameter)
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Figure 4.60 —Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the
exponential time-dependent skin effects for select values of dimensionless fracture conductivity.
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We observe, in Fig. 4.61, the significance of dimensionless fracture conductivity on the dimensionless
cumulative production of the system. As observed, an infinite conductivity fracture will produce more

hydrocarbon than a finite conductivity fracture.

Dimensionless Rate and Cumulative Rate Solution — Bilinear Flow Case with Exponential
Time-Dependent Skin Effects (Variable (kw;),-Parameter)
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Figure 4.61 —Log-log plot (constant pressure dimensionless cumulative production solution) for the bilinear flow model
combined with the exponential time-dependent skin effects for select values of dimensionless fracture conductivity
(z=0.01).

The previous example (Fig. 4.57 — Fig. 4.61) demonstrates that the exponential time-dependent skin
factor with bilinear flow has the same form as the same time-dependent function with the power-law and
linear flow relations, the only difference being the late-time reservoir flow behavior. Diagnostic features
include the desired "hockey-stick" flow profile, with an early-time flat or gently increasing (derivative is
positive) flowrate, a rollover (i.e., transition) feature with rate increase potential, dissipating into the late-
time linear flow regime, characteristic of the reservoir. Dimensionless fracture conductivity imposes
significant influence on the rate behavior, with higher conductivity fractures being influenced by time-
dependent skin effects more than low conductivity fractures. These diagnostic features, representing
empirical data, potentially provide the ability to quantify early-time or "flow-back" behavior. All
diagnostic plots may be found in Appendix F.
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4.14 Bilinear Flow Relation with Hyperbolic Time-Dependent Skin Effects

The hyperbolic time-dependent skin factor model is based on empirical observations from ultra-low
permeability reservoirs. Appendix D provides a derivation of the constant pressure solution in the

Laplace domain with exponential time-dependent skin effects and the bilinear flow regime.

As with previous flow regimes, following we examine the effect of each parameter, from the hyperbolic-

time dependent skin factor, on the constant pressure solution to evaluate the potential application to field

data.
Dimensionless Rate Solution — Bilinear Flow Case with Hyperbolic
Time-Dependent Skin Effects (Variable i-Parameter)
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Figure 4.62 —Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the
hyperbolic time-dependent skin eftects for select values of A-parameter.

Bounding the A-parameter between zero and one for this work, in order to maintain consistency with the
cumulative-exponential time-dependent skin factor, we notice little impact on the constant pressure
solution, as shown by Fig. 4.62. The dimensionless rate derivative solution, shown in Fig. 4.63, has
stronger features than the dimensionless rate solution providing behavioral characteristics for diagnosis,

despite the potential difficulty in assessing this function in practice.
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Dimensionless Rate and Rate Derivative Solution — Bilinear Flow Case with Hyperbolic
Time-Dependent Skin Effects (Variable A-Parameter)
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Figure 4.63 —Log-log plot (constant pressure dimensionless rate derivative solution) for the bilinear flow model combined with
the hyperbolic time-dependent skin effects for select values of A-parameter (z=0.01).

A proxy for the systems maximum skin, the sy-parameter affects the rate at which the system reaches the
reservoir characteristic flow (i.e., bilinear flow) as shown in Fig. 4.64. The s..-parameter affects the initial
dimensionless flowrate as shown in Fig. 4.65, where the higher the s.-parameter, the lower the initial
dimensionless flowrate. Validation of this model is achieved as the s.- and s.-parameters approach zero

— i.e., the time-dependent skin effects become negligible yielding only the bilinear flow regime.
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Dimensionless Rate Solution — Bilinear Flow Case with Hyperbelic
Time-Dependent Skin Effects (Variable sy-Parameter)
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Figure 4.64 —Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the
hyperbolic time-dependent skin effects for select values of s)-parameter.

Dimensionless Rate Solution — Bilinear Flow Case with Hyperbolic
Time-Dependent Skin Effects (Variable s -Parameter)
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Figure 4.65 —Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the
hyperbolic time-dependent skin effects for select values of s..-parameter.

The dimensionless fracture conductivity, shown in Fig. 4.66, imposes a significant impact on the final
system flowrate. As observed with the power-law flow regime, the higher the fracture conductivity, the
faster the system reaches reservoir characteristic flow (i.e., bilinear flow). The dimensionless derivative
rate solution yields more distinct features than the dimensionless rate solution, as shown in Fig. 4.67,

providing further potential to diagnose reservoir behavioral characteristics.
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Dimensicnless Rate, g,

Dimensionless Rate, qp

Dimensionless Rate Solution — Bilinear Flow Case with Hyperbolic
Time-Dependent Skin Effects (Variable (kwqp-Parameter)
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Figure 4.66 —Log-log plot (constant pressure dimensionless rate solution) for the bilinear flow model combined with the
hyperbolic time-dependent skin effects for select values of the dimensionless fracture conductivity.

Dimensionless Rate and Rate Derivative Solution — Bilinear Flow Case with Hyperbolic
Time-Dependent Skin Effects (Variable {(kawvjy-Parameter)
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Figure 4.67 —Log-log plot (constant pressure dimensionless rate derivative solution) for the bilinear flow model combined with
the hyperbolic time-dependent skin effects for select values of the dimensionless fracture conductivity (z=0.01).
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Dil i Rate and Ci ive Rate ion — Bilinear Flow Case with Hyperbolic
Time-Dependent Skin Effects {Variable (kw},-Parameter)
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Figure 4.68 —Log-log plot (constant pressure dimensionless cumulative production solution) for the bilinear flow model
combined with the hyperbolic time-dependent skin effects for select values of the dimensionless fracture
conductivity (7= 0.01).

The dimensionless cumulative production solution, shown in Fig. 4.68, demonstrates the impact that a
higher fracture conductivity has on the total production of a system. A highly conductive fracture (the
author notes this evaluation was performed over 5 orders of magnitude for comparative purposes) will

yield orders of magnitude more total production than a low-conductivity fracture.

Although the features observed in the time-normalized dimensionless cumulative rate solution, shown in
Fig. 4.69 are not unique in and of themselves, in conjunction with the dimensionless rate solution and
other diagnostic plots demonstrated above, may provide additional diagnostic tool in order to characterize

reservoir behavior
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Dimensionless Rate and Normalized Cumulative Rate Selution — Bilinear Flow Case with Hyperbolic
Time-Dependent Skin Effects (Variable (kwi)p-Parameter}

10° 10" 107 107 10* 10" 1w* 10* 10" 10° 10’ 10*
10° T T T T T T T T T T T T T T T T 10°
T i
10" B i 4 10

T F E

= F - - ]

% E (Fepw)5=1,000 ]
s€ I ]
g .
2E0'F s
] E E

@ E - 3
0w 2 - ]
3= - ——
=35 ]
sE | —

w = ? .
H ‘.é 4 i
E Q10" H 10
a8 E 2. 3

- - -

g K (k) p=0.1_]

o - Legend e

= - (=) @ E

3 (==} Qflto/q g
w0’ : o 10
E  Pararameters Sip) =50 50— 5w ] ]

[ 2=05 feirp] 3
- 5,=0.05 Ppalip)————ip ]
Fos.=04 U s [
10° R TIT BRI MEERRTIIT MEEERT M RTTIT BRI R TTT R ERTTT B EE W R TTTT AN RETT R R TTIT B R W AR 10°?
10° 10" 107 10° 10° 10" 10° 10° 10" 10" 10 10°

Nermalized Dimensionless Time, {57

Figure 4.69 —Log-log plot (constant pressure time-normalized dimensionless cumulative rate solution) for the bilinear flow
model combined with the hyperbolic time-dependent skin effects for select values of the dimensionless fracture
conductivity (z7=0.01).

The hyperbolic time-dependent skin factor models are consistent regardless of the flow regime to which it
is applied, as is demonstrated through the examples in Sections 4.4 and 4.8. The hyperbolic time-
dependent skin effects only differ from example to example only based on the late-time reservoir signature
— i.e., early-time and transitional behavior are consistent are regardless of the reservoir characteristic flow

regime.
4.15 Bilinear Flow Relation with Time-Dependent Wellbore Storage

As with previous examples, we apply the concept of Fair (1990) proposed wellbore phase redistribution
pressure on the bilinear flow regime to compare performance against the other two flow relations
examined. Fully derived in Appendix E, we demonstrate the viability of this work by evaluating the
effect of each parameter within the model plotting the constant pressure dimensionless rate solution
against dimensionless time. Further diagnostic plots are generated including the dimensionless rate
derivative solution, the dimensionless cumulative production solution and the time-normalized
dimensionless cumulative rate solution to further evaluate the validity of this model. This section contains
a summary of diagnostic plots for this model, while a comprehensive examination may be found in

Appendix F.

82



Over the limited range considered, the a-parameter, shown in Fig. 4.70, imposes little impact on the
constant pressure solution. The dimensionless derivative rate solution has much stronger features than the
dimensionless rate solution, and although this may be difficult to assess in practice, we note this behavior

for the potential diagnostic capabilities.

Dimensionless Rate and Rate Derivative Solution — Bilinear Flow Case
with Time-Dependent Wellbore Storage (Variable « -Parameter)
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Figure 4.70 —Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the bilinear flow model
combined with the time-dependent wellbore storage for select values of the a-parameter.

Dimensionless Rate and Rate Derivative Solution — Bilinear Flow Case
with Time Dependent Wellbore Storage (Variable Cp-Parameter)
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Figure 4.71 —Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the bilinear flow model
combined with the time-dependent wellbore storage for select values of dimensionless wellbore storage constant.
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As shown in Fig. 4.71, the dimensionless wellbore storage constant (Cp) provides variations in both early-
time behavior and during the rollover (i.e., transition) region before dissipating into late-time bilinear flow.
This behavior is nearly identical to that found with the power-law and linear flow regimes, save for the
late-time reservoir flow characteristics are altered. As the wellbore storage influence diminishes with

time, the rate is governed by bilinear flow regime.

The dimensionless wellbore phase redistribution constant (Cgp), shown in Fig. 4.72, has a similar

influence as the dimensionless wellbore storage constant (Cp), affecting both early-time and the transition

region.
Dimensionless Rate and Rate Derivative Solution — Bilinear Flow Case
with Time-Dependent Wellbore Storage (Variable C-Parameter)
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Figure 4.72 —Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the bilinear flow model
combined with the time-dependent wellbore storage for select values of dimensionless wellbore phase redistribution
constant.
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Dimensionless Pressure and Pressure Derivative Solution — Bilinear Flow Case
with Time-Dependent Wellbore Storage (Variable C p-Parameter)
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Figure 4.73 —Log-log plot (constant rate dimensionless pressure and pressure derivative solution) for the bilinear flow model

combined with the time-dependent wellbore storage for select values of dimensionless wellbore phase redistribution
constant.

The constant-rate dimensionless pressure derivative "bubble" feature is demonstrated through evaluation
of the dimensionless wellbore phase redistribution constant (Cgp), shown in Fig. 4.72. This "anomalous"
pressure build-up is the basis of Fair's (1981) work, which we have captured in our constant pressure

solution.
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Dimensionless Rate and Rate Derivative Solution — Bilinear Flow Case
with Time-Dependent Wellbore Storage (Variable s-Parameter)
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Figure 4.74 —Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the bilinear flow model
combined with the time-dependent wellbore storage for select values of constant skin factor.

The skin factor, held constant for the time-dependent wellbore storage case, imposes little impact on the
constant pressure solution (over the range considered). The rate derivative has much stronger features
than the rate function as shown in the early-time variations demonstrated in Fig. 4.74. At small values of
skin, a rate increase is observed highlighted by the derivative trending towards zero. As with the other
flow regimes, the combined effect of skin and time-dependent wellbore storage may be difficult (if
impossible) to assess in practice, however, diagnostic features may be developed in order to characterize

reservoir behavior.
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Dimensionless Rate and Rate Derivative Solution — Bilinear Flow Case
with Time-Dependent Wellbore Storage (Variable (kgvjp-Parameter)

° 107 10° 10° 0’ 0° 10° ' 0’ 10’ W w0 w'
W0 7 T 7 " 10
F o Parameters 3
PDor(1p) =Cypll-e" D #P] J—:LE")" - ETTIRES
-
PDer(tn) ——————ifip (=+=) -dgp/dint;| Coo=1
TR Epein °| a=05
Wk s=oot
i E
=
2
% | ]
i [kawdp = 1,000 |
£ q 10
£ E
« 3 T, E
rE- 6
i3 -.._fED‘N
=3 ke
5.8 ]
® o
5 e
ES = 10
[=] g 3
x = "1—'9':"-1
< el
£ 4
= Tl = 04
10°
i
- 10°
10 10

Dimensionless Time, 1,

Figure 4.75 —Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the bilinear flow model
combined with the time-dependent wellbore storage for select values of dimensionless fracture conductivity.

The dimensionless fracture conductivity, shown in Fig. 4.75, imposes a significant impact on the constant
pressure solution. A large fracture conductivity may cause the dimensionless rate to increase during the

transition region before dissipating into the reservoir characteristic flow (i.e., bilinear flow).

As shown in the previous example (Fig. 4.70 — Fig. 4.75) a time-dependent wellbore storage model
(inclusive of a constant skin factor) may be used to represent observed features from field data. These
features include flat to gently increasing (derivative is positive) at early-time rate transitioning into a late-
time bilinear flow. The dimensionless flowrate during the transition region may rollover directly, or
increase slightly before the late-time reservoir flow signature is reached. In all cases, the dimensionless
rate derivative exhibit a "hump" feature indicative of a commonly observed wellbore storage "bubble"

(which is seen in the constant-rate dimensionless pressure function, Fig. 4.73 for reference).
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4.16 Time-Dependent Wellbore Storage and Skin Effects

Recognizing that time-dependent wellbore storage and time-dependent skin effects will, individually, be
very challenging to distinguish within field data, we never-the-less continue our work along it logical
progression and examine the combined effects of both time-dependent models. Evaluating the
cumulative-exponential time-dependent skin effects with time-dependent wellbore storage, yields the

following diagnostic plots.

Dimensionless Rate and Rate Derivative Solution — Linear Flow Case
with Time-Dependent Wellbore Storage and Cumulative-Exponential
Skin Effects (Variable « -Parameter)
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Figure 4.76 —Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model
combined with the time-dependent wellbore storage and cumulative-exponential skin effects for select values of the
a-parameter.

For the limited range we considered, the a-parameter, shown in Fig. 4.76, imposes little impact on the
constant pressure solution. The derivative displays much stronger features than the rate function. The
author acknowledges the difficulty in assessing this function in practice — however, the "double-hump" in
the constant pressure derivative is a notable feature, which may be possible for use as a diagnostic

characteristic.

The dimensionless wellbore storage constant (Cp) shown in Fig. 4.77, provides variations in both early-
time behavior and the transition region. As the wellbore storage influence diminishes over time, the rate is
governed by the specified linear flow solution. The dimensionless wellbore phase redistribution constant

(Cy¢p), shown in Fig. 4.78, displays similar features as the dimensionless wellbore storage constant (Cp),
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affecting the rate at early-times and dissipating to yield the linear flow solution at late-times. Both

parameters rate derivative plot display the characteristic "double-hump" as shown in the rate derivative of

the a-parameter.

Dimensionless Rate, qp
Dimensionless Rate Derivative, -dqp/dinty

Dimensionless Rate and Rate Derivative Solution — Linear Flow Case
with Time-Dependent Wellbore Storage and Cumulative-Exponential
Skin Effects (Variable Cp-Parameter)
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Figure 4.77 —Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model
combined with the time-dependent wellbore storage and cumulative-exponential skin effects for select values of

dimensionless wellbore storage constant.
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Dimensionless Rate, qp
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Dimensionless Rate and Rate Derivative Solution — Linear Flow Case
with Time-Dependent Wellbore Storage and Cumulative-Exponential

Skin Effects (Variable C-Parameter)
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dimensionless phase redistribution constant.

Dimensicnless Rate and Rate Derivative Solution — Linear Flow Case
with Time-Dependent Wellbore Storage and Cumulative-Exponential

Bkin Effects (Variable sy-Parameter)
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Figure 4.79 —Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model
combined with the time-dependent wellbore storage and cumulative-exponential skin effects for select values of the
So-parameter.
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Dimensionless Rate and Rate Derivative Solution — Linear Flow Case
with Time-Dependent Wellbore Storage and Cumulative-Exponential
Skin Effects (Variable s_Parameter)
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Figure. 4.80 —Log-log plot (constant pressure dimensionless rate and rate derivative solution) for the linear flow model
combined with the time-dependent wellbore storage and cumulative-exponential skin effects for select values of the
Se-parameter.

The sp-parameter and so-parameter affect the flow rate before the transition "rollover" feature to late time
linear flow. The sy-parameter, shown in Fig. 4.79, causes the rate to increase slightly. The rate derivative
then illustrates the double change in slope by twice tending towards a zero value. The time-dependent
skin effect is clearly illustrated in Fig. 4.80 examining the rate derivative. In all previous examples, the
skin factor has had a negligible effect on the time-dependent wellbore storage, which is clearly not the

case in this example.

From the previous example, (Fig. 4.76 — Fig. 4.80), we observe a unique behavior that, theoretically, has
the potential to provide diagnostic characteristics for a vertically fractured well. However, in practice, we
acknowledge the difficult, if impossible, task of evaluate the combined effects of time-dependent wellbore

storage and skin factor from field data.
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CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE WORK

5.1 Summary

In an effort to quantify "early-time" or "flowback" performance of a hydraulically fractured vertical well,
we have postulated a series of time-dependent wellbore storage and skin factor models which appear to
describe observed features from field data. Using, as a foundation, Larsen and Kviljo's (1990) hyperbolic
variable skin model, developed to describe the lowering skin factor during wellbore cleanup, our time-

dependent skin factor models are given as:

s(tp) =S +[s0 — S [l —exp[—(z/tp )’1 1] (cumulative-exponential, $(£))........cceevverreennene 5.1
s(tp)=Sx +50exp[—(tp /7)] (exponential, S(£)).....cccerverererereeeeieieneeeens (5.2)
1

S(tp)=Swp +[S0 —Soo] (hyperbolic, S(£)) .c.oeoveeverierieereeie e 5.3)

+z/tp]”

Fair (1981) proposed a wellbore phase redistribution pressure to account for the anomalous pressure
"humps" sometimes observed during pressure build-up tests conducted in two-phase flow systems. Fair's

(1981) exponential wellbore phase redistribution pressure is given as:
pgp(tp)=Cyp(1- e7tD/aD) (wellbore phase redistribution) ....................... (5.4)

In this work, we wanted to keep our concepts simple so we assumed that reservoir flow is dominated by

linear or bilinear flow regimes with "base" approximations for formation flow regimes given as:

Pp.ertp)=citp® (general power-law flow)..........ccccocvicinicinnnes (5.5
PD.er(tp) = Jr \/G (formation linear flow)..........cccoovviiiininnnes (5.6)
7 .
(tp) = 4y (bilinear flow) ........ccceeveiiiieieieiereererereieinns 5.7
PPt s 14y 2 pwpop *

Through the use of the convolution integral, with most of our algebraic manipulations performed in the
Laplace domain, we examine the performance of the constant pressure rate solutions, numerically
inverting the Laplace domain formulations using the Stehfest algorithm. Unfortunately, analytical
solutions of the proposed formulations are essentially impossible to generate due to the complexity of the

algebraic forms of these formulations in the Laplace domain.

We examine the performance of each time-dependent wellbore storage and skin model with each reservoir
flow regime, evaluating the effects of each model parameter on the computed rate performance. Our
results indicate that the proposed time-dependent models demonstrate characteristics similar to those
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observed in field data (i.e., rate "humps" and nearly constant rate performance at early times). In theory,
this would could provide diagnostic capabilities for early-time well performance behavior during "clean-
up" after well stimulation. We acknowledge that our proposed models have yet to be directly verified
against field cases.

A major accomplishment of this work is the development of a general procedure for modeling early-time
well clean-up behavior. We believe that this theory may be applicable to other fields of research —

including multi-fracture horizontal wells.
5.2 Conclusions

e The time-dependent skin factor models yield features observed in field data. Subtle differences
between models will likely yield an optimal model for practical application.

m All time-dependent skin factor models exhibit certain features including the "hockey-stick" shape,
with dimensionless flowrate gently increasing at early times, followed by a "rollover" (i.e.,
transition) feature, with all flowrates converging to the characteristic reservoir (i.e., power-law,
linear or bilinear) flow regime (which is the reservoir model for the constant pressure case).

m The cumulative-exponential time dependent skin factor demonstrates a rate increase during the
"rollover" feature, and has a strong "transition" regime as the performance tends to be dominated by
the reservoir flow behavior. This makes it likely to be the most applicable in practice.

m The exponential time dependent skin factor demonstrates a rate increase during the "rollover"
feature, but has a fixed duration of the time-dependent skin effect.

m The hyperbolic time-dependent skin factor does not demonstrate a rate increase during the
"rollover" feature — however, this model can be tuned to have a very long transition period.

e For the time-dependent wellbore storage case, we observe a monotonically decreasing dimensionless
rate profile that is roughly "s-shaped," where all cases converge to the characteristic reservoir flow
regime (i.e., power-law, linear or bilinear) at late times.

e We believe that the derivative of the constant pressure dimensionless rate function has the potential to
provide diagnostic capabilities. We would also comment that the cumulative production, and
normalized cumulative production functions also have good character, but less sharpness in features

compared to the derivative of the constant pressure dimensionless rate function.
5.3 Recommendations for Future Work

e Perform field tests to verify the applicability of each time-dependent functional form.
e Perform analytical inversion of the models from the Laplace domain (currently not possible).
e This workflow should be exhaustively applied to field cases for vertically fractured wells.

e This workflow should be extended to field cases for multi-fractured horizontal wells.
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NOMENCLATURE

Field Variables

B = Formation volume factor, [bbl/STB] or [Rm*/Sm?]

¢ = Total compressibility, (M/L#?)" [Pa™'] or [psi']

C, = Wellbore storage constant, L?/(M/L#?) [bbl/psi] or [m?/Pa]

Co = Wellbore phase redistribution constant, L%(M/L#’) [bbl/psi] or [m*/Pa]

h = Net pay thickness, L [m] or [ft]

k = Permeability, L° [mD] or [m?]

k; = Fracture permeability, L’ [mD] or [m?]

ks = Damaged reservoir permeability, L? [mD] or [m?]
ks = Damaged fracture permeability, L’ [mD] or [m?]
kwy, = Fracture conductivity, L* [mD-ft] or [m?]

p = Pressure, M/Lt? [Pa] or [psi]

Di = Initial reservoir pressure, M/Lt? [Pa] or [psi]

pr = Fracture pressure, M/Lt? [Pa] or [psi]

Ds = Wellbore flowing pressure inclusive wellbore skin, M/Lt? [Pa] or [psi]
pw = Wellbore flowing pressure, M/Lt? [Pa] or [psi]
po = Wellbore phase redistribution pressure, M/Lt? [Pa] or [psi]
D: = Tubing flowing pressure at surface, M/Lt> [Pa] or [psi]
r = Radial distance, L [m] or [ft]

T = Damaged skin zone radial distance, L [m] or [ft]
Py = Wellbore radius, L [m] or [ft]

1) = Dimensionless radius, dimensionless

s = Skin factor, dimensionless

Sf = Fracture face skin factor, dimensionless

sten = Choked fracture skin factor, dimensionless

So = Maximum skin factor, dimensionless

Seo = Minimum skin factor, dimensionless

q = Flowrate, L3/t [m3/sec] or [ft¥/s]

gp = Dimensionless flowrate, dimensionless

gs= = Sandface flowrate, L3/t [m%/sec] or [ft¥/s]

t = Time, t [sec]

b = Dimensionless time, dimensionless

u = Laplace transform variable

Vi = Stehfest extrapolation coefficient, dimensionless
Vi, = Wellbore volume, L* [m?] or [ft}]

wr = Fracture width, L [m] or [ft]

Wy = Damaged zone width, L [m] or [ft]

Xr = Fracture half length, L [m] or [ft]

xw = Wellbore length in x-direction, L [m] or [ft]

yw = Wellbore length in y-direction, L [m] or [ft]
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Dimensionless Field Variables

Cp = Dimensionless wellbore storage constant
Cop = Dimensionless wellbore phase redistribution constant
kp = Dimensionless damaged fracture permeability
(kwyp= Dimensionless fracture conductivity
pp = Dimensionless wellbore flowing pressure
pwp = Dimensionless wellbore flowing pressure inclusive wellbore storage and skin
psp = Dimensionless wellbore flowing pressure inclusive skin
pwo = Dimensionless tubing flowing pressure at surface
paop = Dimensionless Wellbore phase redistribution pressure
wp = Dimensionless fracture width
xp = Dimensionless fracture length
xwp = Dimensionless wellbore length in x-direction
ywp = Dimensionless wellbore length in y-direction
Greek Variables
a = Wellbore phase redistribution time constant, ¢ [sec]
ap = Dimensionless wellbore phase redistribution time constant, dimensionless
A = Time-dependent skin effect exponential parameter (0 <A <1)
U = Newtonian Viscosity, M/Lt [cp] or [Iby/ftes]
v = Power-law flow regime exponential parameter (0 <v <1)
n = Hydraulic diffusivity, L/ [md/cpePa'] or [m?/( 1by/ftes) epsi']
np = Dimensionless hydraulic diffusivity, dimensionless
P = Density, M/L? [kg/m?] or [Iby/ft’]
o = Variable for substitution
@ = Porosity, fraction
T = Convolution variable
Subscripts
cls = Continuous line source
cp = Constant pressure production
cr = Constant rate production

frac = Fracture
WBS = Wellbore Storage

Mathematical Functions

E; = Exponential integral

erf = Error function

r = Gamma function

Ky = Modified Bessel Functions of the first kind, zero order
K; = Modified Bessel Functions of the first kind, first order
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APPENDIX A
FORMATION LINEAR FLOW REGIME PRESSURE RELATION DERIVATION

This Appendix presents the derivation of the transient pressure behavior of an infinite-conductivity
vertical fracture, derived from the line source solution, as proposed by Gringarten, Ramey and Raghavan
(1974) in the formulation of formation linear flow from the matrix to the fracture. Assumptions used for

the formulation of this derivation are:

e A vertical well penetrates the entire thickness of the reservoir.

e The reservoir thickness is uniform (constant).

e The reservoir is initially at pressure P;.

e The reservoir is infinite in size.

e The well produces from a constant flowrate

e The rock properties are constant.

e The fracture has infinite conductivity.

e The fracture is infinite in length.

e Flow to the wellbore occurs only through the vertical fracture.
e The system contains a "slightly-compressible" fluid.

e The effects of gravity are negligible.

e The fracture has a uniform pressure distribution.

The continuous line source solution, as presented by Carslaw and Jaeger (1946) presents the foundation of
this work. Although Gringarten, Ramey and Raghavan (1974) presented their solution using Greens
Functions, we propose an alternative derivation in this Appendix resulting in the same final solution. The

continuous line source solution is presented as Eq. A.1 below.

Apos (X, 7,1) = ﬁi‘qu () exp[— (x xz’;i;(_y;) ry)’ I‘Z ................................................. (A.1)
Where
B T (A2)
Ct
e (A3)

Assuming a constant flowrate, then Eq. A.1 may be reduced to:
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t
2 2
(x—x,)"+(y—yy,) |dr
Apets (x,,1) = qC_lSJ‘exp{_ w Y—Yw) |4t
0

4rn f 4n T T
In order to solve this integral, we first define a variable for substitution:

o= (x_xw)2+(y_yw)2
477fz'

Taking the derivative of Eq. A.5 with respect to the T-parameter yields:

do _ 1 (x—x) +(r—yy)’

dr T 477fz'

Substituting Eq. A.5 into A.6 yields:

do _ o
e —

Rearranging Eq. A.7 yields a form to substitute back into Eq. A.4:

oo mx)? + =)’
4n

Substituting Eq.A.5 and Eq. A.7 through A.10 into Eq. A.4 yields:

(=) +(—yw)?
4n ¢ (t-7)
Ap s (%, y,8) = Mdels jma’a ..........................................................
47r77f 7 o

99



Reversing the limits of integration yields:

AP eis (%, 9,) :4‘1;—’7@ J @da .................................................................................. (A.12)
)+ 0rw)?
4n ¢ (t-7)

Recalling the definition of the exponential integral from Schaum's (1971):

We can substitute the definition of the exponential integral into Eq. A.12 resulting in:

Gets | (F=x)° + =y’
Apes(x,3,8) = 2 o | m o | ettt (A.14)
7y 477fr

Where the function evaluated at infinity is zero. Eq. A.14 is the continuous line source solution for radial
flow. For a fractured well, we create a plane along the x-axis and integrate. Rearranging Eq. A.14 for a

continuous fracture, assuming the wellbore is in the center of the fracture, yields:

Xyp'+X £ 5 5
A (x, y 1) =-2b5 _[ o T e 40 (A.15)
47[77f 477fz'
xW'—xf

Eq. A.15 assumes the fracture half-length is notated by xr while the wellbore length is x,. The constant

flowrate into the fracture is denoted by:

SO (A.16)
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Substituting Eq. A.16 through A.21 into Eq. A.15 yields:

Xyp'+x
_|_aBo [ e | =)+ (=7
Apeps(x,y,t) = {2¢cthxf ]{ A } J. E{ 4kt prc, ]dxw ..................................... (A.22)
wXf

Multiplying the exponential integral function by [1/x f 21/ x r 21 and simplifying terms yields:

Xy +X 2 2
1[ gByu || by |l xp =X /X)) + /X =/ Xf)" |dx,,
Apeps(xX, y,0) =—| —— | ——— E| ——————————————————— | —~ . (A.23)
4| 27h | 4k 4kt | uc, Xf
Xy'=Xf
Defining further a dimensionless variable for substitution:
oD = o oo (A.24)
xf
Differentiating Eq. A.24 yields:
A (A.25)
where the limits of integration are:
T S (A.26)
*roxf
Xy =X X[, xup T (A.27)
rroxr
Eq. A.26 and A.27 may be rewritten as:
Xy ZXFX L, X00D = XD H] s (A.28)
Xy =X =X £ XD = XypD' =] s (A.29)
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Substitution of Eq. A.28 and A.29 into Eq. A.23, and multiplication by 27k

—A X, y,t)=—
4B Pcfmc( 1) 4 4

XD '+1 5 2
— + —
27k ! I E,-[(XD *wD)” +(YD =wD) }dwa ............................... (A.30)
Xywp'-1

Recalling Eq. A.20, we define the dimensionless fracture pressure as:

R T )2 4 ( %
xp—xwp)” +(VD ~ YwD
ApD,cfmc(xDa)/Dst)=Z j Ei[ W pr. W }dwa .......................... (A31)

Xyp'-1

Assuming that the well is at the center of the fracture (i.e., x,,»'=0) with negligible length compared to the
fracture half-length, and that the fracture has no thickness (i.e., yp=y..p=0), we can rewrite Equation A.31

as:
: +1 ( )2
XD —XwD
Aprcﬁac(xD,tD)=—J.E,- ST XD e (A.32)
- 4 4tD

-1

To solve this integral, we begin by creating a variable for substitution as:

Taking the square root of all terms in Eq. A.33 yields:

P (A34)

N7y

Taking the derivative of Eq. A.34 with respect to x,.p:

dz -1

o _25 ..............................................................................................................................

Evaluating the limits of integration:
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XD = Ly Z o i ettt ettt ettt (A.38)
" 21“D
D ==Ly 22 D e (A.39)
2\tp
Returning these results to Eq. A.33, we rewrite the dimensionless fracture pressure difference as:
xp-1
2\tDp
_—4ID 2
ApD,cﬁ'ac(xDﬂtD) = ) Ei[Z71AZ ot (A.40)
xp+l
24tp
Performing a second variable substitution, we introduce:
m=z 2 e (A.41)
Taking the derivative of Eq. A.41 yields:
AM = 2Z AZ oottt ettt a et ae e bt enteenteentenseenteentens (A.42)
Substituting Eq. A.42 into Eq. A.40:
xp-1
2\tp
=D dm
ApD,cfrac(xD’tD) = 5 I EZ[M]Z ................................................................................ (A43)
xp+l1
2\tp
We cannot take this integral; therefore, we rewrite Eq. A.41 as:
N L (A.44)
Returning Eq. A.44 to A.43:
xp-1
24tp
=D dm
ApD,cfrac(xDﬂtD) = 5 J‘ Ei[m m ............................................................................. (A.45)
xp+l
24tp

Naming variables to use in integration by parts let:
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N (A.47)
Therefore:
—m
U = G e (A.48)
m

Applying integration by parts to solve Eq. A.45 yields:

xp-1
\/_ xp-1 > D
—vID 2t e "
PD.efrac (D+1p) =— —\/ZE,-[m]XDf1 + ~ NMAM | oo (A.50)

2‘/5 XD+1

2ip

Performing a second substitution in order to solve the integral remaining in Eq. A.50, we define:

WAL e (A.51)
Taking the derivative of Eq. A.51 yields:
d
U= e (A.52)

Wm

Substituting Eq. A.51 and A.52 into A.50 yields:

xp-1
\/_ XD—I 2 tD
-tp 2\tp 2
PD.gfrac (D>1p) = ‘MEi[m]x\l/): +2 I T U | e (A.53)
2 tp XD+1

We rewrite the integral of Eq. A.53 as a sum of integrals across the limits of integration as shown:

xp-1 xp-1
2.4/t 0 24/t
p 2 2 = 2
2 J‘ e du=2 J-e du+2 J- € 7 AU e (A.54)
xp+l xp+l 0

2Jip 2Jtp
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Recalling the error function from Schaum's (1974):

X

erf(x)= J_ J —u? AU oottt ettt b e b et e beeta e raesre e beebeebeerae e (A.55)
V4

Rewriting Eq. A.54,

xp-1 xp+l1 xp-1
2\tp 2Jip 2Jip
2
2 J‘e_u du =-2 Je_” du+2 Je_” AU oo (A.56)
xp+l 0 0
2\tp

Substituting the definition of the error function into Eq. A.56 yields:

xp-1
2\tp
2 1 -1
2 e du:—x/;erf DT +x/_erf 7 2 (A.57)
2\tp 2\tp
xp+l
2\tp

Returning this result to Eq. A.53 yields:

xp-1

—/! 2 +1 -1
PD.cfrac(XD>Ip) = D —\/ZE,'[W!] \/E +—x/;erf *D +\/;erf DTN, (A.58)
2 *D 2ip 2ip
2
Substituting Eq. Eq. A.44 into Eq. A.58 yields:
xp-1
VD 2o
=Y 2| _ZE 221 VP s rerf| "2 |+ Vrerf| || e A.59
pD,cfrac (.XD,tD) 2 ZEZ[ xjil \/_ f[ \/G] \/_erf[ \/g:l ( )
2

Applying the limits to the exponential integral and substituting Eq. A.34, results in:
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PD.cfrac(XD,tp) = _\/EBH)CD —IIE{(XD _1)2]_[?@ +1]E{(xD +1)2]

2\tp 4p 2\tp 4p

xp+1 xp—1
e | 2|

........................................................................................................................................................... (A.60)
Multiplying through by —./tp /2 results in:
2 2
xD—l (xD—l) xD+l (xD+1)
,Ip)=— E; + E;
PD,cfrac(xD D) |: 4 :| 1[ 41y 4 i atp,
V13 it —
+w/ DerfxD+1 _\l DerfxD 1
2 2 tp 2 2 tp
......................................................................................................................................................... (A.61)
Combining like terms within Eq. A.60 yields:
» (x : )_ D rf xXp +1 _ XD—I
D.cfrac\XD>!D 2 2\/5 200
_ 1R 2
xp =11, (xp-1)° | [ap +1 £, (xp +1)
4 4tD 4 4tD
......................................................................................................................................................... (A.62)

Applying the negative sign in the error and exponential integral terms, we can rearrange to the form

produced by Gringarten, Ramey and Raghavahn (1974).

\ 7T 1 1-
PD.cfrac(XD>tp) = 2D erf[ +xD]+erf|: xD]

NS 2tp

{1—:0 }E{(l —49;5 ) ]{”:D }E{(l +4ftf§ ) ]

The short term solution for Eq. A.63, as described by the authors, describes the formation linear flow

regime utilized within this thesis. Evaluating the error function, as dimensionless time approaches zero

leads towards a solution of one, while the exponential integral approaches negative infinity. Applying this
to Eq. A.63 yields:
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PD, frac(xp =0,tp) =

Simplification of Eq. A.64 results in:

prfmc(xD =0,tD)=\/;\/G ....................................................................................................... (A65)

Which is the short term approximation for the dimensionless pressure relation of an infinite conductivity

vertical fracture displaying formation linear flow regimes between the reservoir matrix and the fracture.
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APPENDIX B
BILINEAR FLOW REGIME PRESSURE RELATION DERIVATION

This Appendix presents the derivation of the transient pressure behavior of a finite-conductivity vertical
fracture as proposed by Cinco and Samaniego (1981). Assumptions used for the formulation of this

derivation are:

e A vertical well penetrates the entire thickness of the reservoir.
e The reservoir thickness is uniform (constant).

e The reservoir is initially at pressure, p;.

e The reservoir is infinite in size.

e The well produces from a constant flowrate

e The rock properties are constant.

e The fracture has finite conductivity.

e The fracture is infinite in length.

e Flow to the wellbore occurs only through the vertical fracture.
e The system contains a "slightly-compressible" fluid.

e The effects of gravity are negligible.

e The pressure gradients are small.

e The system obeys Darcy's law.

Assuming linear flow within the fracture, and that fracture tip effects are not felt at early-times, we recall
the full pressure behavior of the system as described (Eq. B.1) by Cinco and Samaniego's (1981a) in Eq.
B.1. Derivation of the full pressure behavior is based on mass balance and continuity principles, however,

is not of direct relevance to this paper and not produced in this work.

2
0 PfD.cr N 2 apD| _ 1 6pr
2 (kpwp)p dyD|yD:0 nm dip

(0 XD O0) e (B.1)
oxp

The initial condition for Eq. B.1 is:
PD,er(XDstD Z0) =0 (B.2)
The boundary conditions for Eq. B.1 are:

8PfD,cr -7

= (inner boundary condition)..........c.cecceverererieieniee e (B.3)
axD xD=0 (kij)D
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lim pmp o (xp.tp)=0 (outer boundary condition)..........cccceceverererenreneenienenennenn (B.4)
xXp —>® ’

The transient flow behavior from the formation can be described with the following partial differential

equation.
o*pp _pp
> (O < YD <0, 1D 2 0) ittt e e (B.5)
ovp otp

The initial condition for Eq. B.5 is:

PDVDAED T 0) =0 ettt ettt sttt eaten (B.6)

The boundary conditions for Eq. B.5 are:

PpWp=0tp)=ppcr(xp.tp)  (inner boundary condition)..............ccoeevevveesservveesnsrriiernne. (B.7)
lim Pp(yp > oo,tp)=0 (outer boundary condition)............cceeveeueeiieieneenieereeiennns (B.8)
YD —®
Method of Solution

Taking the differential equation for fracture flow into the Laplace domain yields the following

relation:

2_
0 29
prz’” + Pp| =B Dier (0<XD <) oo (B.9)
xp (krwr)p dyD|yD:0 1D
The initial condition for Eq. B.9 is:
PD,cr(XD M) =0 (B.10)

The boundary conditions, in the Laplace domain, for Eq. B.9 are:

-
p (kgws)p
DLDicr] - SD (inner boundary condition)............cccevererenieneneeieeeene (B.11)
oxp u
xp=0
lim  pe mp(xp,u)=0 (outer boundary condition).........c..coeeerereeceneninenercnennencnn (B.12)

Xp —>®

Taking the differential equation for reservoir flow into the Laplace domain yields the following

relation:
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*pp  _
?zupD (0 YD < 00) oo eseeeeeeee e es s eseeseeeee (B.13)

D

The initial condition for Eq. B.13 is:

B (VDo) =0 oo eeeeee e eeees e eeeee e seeee e s e eeseesseeee s (B.14)

The boundary conditions for Eq. B.13 are:

PDOID Z0,U)Z0=D D (XDsU) oo (B.15)
lim [_JD(yD,u) ........................................................................................................................... (Bl6)
yp >

The solution for Eq. B.13 results in a second order linear differential equation with a general solution

of the form:

y(l):KleJEx +K28_\/Ex ............................................................................................................ (Bl7)

Applying Equation B.13 into the known form of the differential equation,

Do) = KieVD 4 Kye™ 8D e (B.18)
Applying the outer boundary condition Eq. B.16 to B.15 yields:

TR L I o ) (B.19)

leading to K;=0. Returning to Eq. B.18, substituting our first constant yielding:

T Sy L (B.21)

Applying the second boundary condition Eq. B.15 to our incomplete solution Eq. B.21,

B p.cr () = Koo VO e (B.22)

Leading to K, = p s . Returning the solution to the constant to Eq. B.21, yields:
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P =P m,cr (u)e‘*/;yD ........................................................................................................... (B.23)

Taking the derivative of the pressure response with respect to distance from the fracture ¥ p , yields:

yields:
@ayDl()”) =—up pcr e D (B.24)

Solving at the fracture interface,

app(u)

o =—up . cr @We VO (B.25)

yp=0

Yielding

dpp )

- = VUD [D,07 () e (B.26)

yp=0

Which provides an expression for transient reservoir inflow source term which may be substituted

into the fracture flow pressure expression Eq. B.9 yielding:

2_
0P m,cr 2\/; _ u _
sz - PD,cr = DD cr seerevrisssiiiisiiiiiiises (B.27)
xp (krwr)p 1D
Or:
azﬁﬂ,cr u 2\/; —
5= + DD, 01 »eeseeesseesseesssessees s (B.28)
xp nmp (kgwr)p
The solution to Eq. B.28 will take the form:
D) = K1e VBT KoV BE e (B.29)
Where substituting Eq. B.28 into the known form of the differential equation, we arrive at:
u 2\u u 2u
“hpwpp ™ ap e P
_ i
B poer )= Ky P +Kye VPSS oo (B.30)

Utilizing boundary conditions to solve for the constants K; and K>, we first apply the outer boundary

condition Eq. B.12:
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u 2\5 u 2\5
nm Gpwp ) Vo Gpwpp
0=Kel P IS +Kye VTP (B.31)

Evaluating, the second term on the RHS will tend towards zero.

u + Zw/; w»
P KL (B.32)

Leading to K;=0. Therefore, we return to Eq. B.31, substituting our first constant yielding:

2u

“ D
B per @)= Kge VT D e (B.33)

Taking the derivative of Eq. B.33, and applying the inner boundary condition, Eq. B.11, yields:

i _ L.,.l(o)
P.er _ Kfwrlp =_J u_ 2Wu Kye V1P (kfwr)p (B34)

xp u nmw  (kgwe)p

Simplifying, we solve for the second constant:
o
(kgwr)p
2= e ene et h et h et e a et e h e h e e h e R e a e R e a e et et s e et e ettt e st et e aeete e neeren
u 2«/;
u +
n/m  (kywr)p

Returning the second constant to Eq. B.33, we arrive at the expression for pressure behavior along the

fracture:

1/2
u N Zx/;
nmp (kfwy)p

/2’
i u Zx/;
( fo)Du +
nmp  (krws)p

7T eXp —xD{

l_7fD,cr (u) =

Examining the pressure performance at the wellbore Xp =0, we arrive at the final non-dimensional

pressure response for the fracture in Laplace space:
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T 1

(krwg)p

PD.cr ()= e (B37)

e 1/2
u +
nmp (kgwe)p

Inversion of Equation B.37 is too complex for practical application; therefore, we will produce short and
long time approximations. Beginning with short time behavior, we return to Eq. B.37. Knowing that as

the limit of time in the real domain tends towards zero, the Laplace variable u tends towards infinity,

yields:

— V4 1

PD,cr ()= T I ees (B.38)

(kfwr)p "
u
/D

Arraying and simplifying, we arrive at,

— 1D 1

DD, cr (B = o o o e (B.39)

(kpwp)p 4327

The short term pressure behavior of a well in Laplace space. Utilizing the work of Roberts and Kaufman

(1966) we apply the following two identities

Table 1 — Laplace Inversion Lookup Table for Short Time Pressure Solution

g(w) S Location

1 12
=75 2| — Pg. 206, Eq. 2
232 [ﬂ} g !

ag(u) af(¢) Pg. 169, Eq. 1

Utilizing Table 1, we assume the general shape of Eq. B.39 is of the form ag(u) . Taking the Laplace

inversion of g(u) results in:

A Z{L}l/z’

PD,er(tp) = 7 2 (B.40)
Rearranging,
2
pD,cr(tD)_Wﬂ”UthD 5 e ea et ea e ea e a et a e a e a e a e a et a e a e a e a e a e h e a e h e a e aeh e aeaeaeaeaea et aaas (B41)
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Which is the short term approximation of pressure near the wellbore for a finite conductivity vertical
fracture. Eq. B.41 will produce fracture linear flow response as described by Cinco and Samaniego (1981).
This response is of little value, as fracture linear flow occurs at such short times it is masked by short time

wellbore storage and skin effects and if near-never observed in practice.

The long time approximation follows a similar methodology as the short time approximation. Returning to

Eq. B.37, at long times in the real domain, the Laplace variable will approach zero. Therefore, the full

solution,
1
Py () = — oo (B.37)
’ (kaf)D 1/2
u + Hu
nmp  (kywr)p
Simplifies to,
V3 1
PD,cr(u) = [ s (B.42)
(krwr)p ) W
(krwr)p
Arraying:

i o (B.43)

PD,cr(u) = \/E(kfwf)D y % S PRROt

Simplifying further yields:

T 1

PD,cr ()= 2(kaf)D u5/4 OO TOT

The long term pressure behavior in the Laplace domain. Utilizing the work of Roberts and Kaufman

(1966) we apply the following two identities

Table 2 — Laplace Inversion Lookup Table for Long Time Pressure Solution
g(u) f@ Location
1 tv—l
- Pg. 206, Eq. 4
u’ r'(v) 8 d
ag(u) af(t) Pg. 169, Eq. 1
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Utilizing Table 2, we assume the general shape of Eq. B.44 is of the form ag(u) . Taking the Laplace

inversion of g(u) results in:

5
-
z D4

PD,ertp)= e eeee ettt h et e bt et e bt et e e e bt ettt s bt e st e sbeeeabeesneeeanee s (B.45)

‘ 2k rwy)p r(Sj

4
Arraying,

Pp.or(tp) = d Q1D s (B.46)

T(5/4)2(k jw ) p

Which is the final long term pressure behavior measured at the wellbore for a finite conductivity vertical
fracture. In accordance with Cinco and Samaniego's (1981) work, this agrees with the bilinear flow regime

that is expected at long times.
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APPENDIX C
GENERALIZED CONSTANT PRESSURE SOLUTION IN THE LAPLACE DOMAIN

This appendix provides the derivation of the generalized constant pressure solution in the Laplace domain.
Developed from a mass balance approach with a control volume around the wellbore with a sand-face inlet
and well-head outlet, this equation is of primary use in this work upon which all other theories are applied.

We begin with the dimensionless rate relation, demonstrated as:

dp—wD-dp—’D}. ........................................................................................... (C.1)

tp)=1-C
4p,wBs (tp) D{ dp  dip

Defining dimensionless terms:

GDVBS = i vttt (C.2)

Cp = 0.0372LCS2 ...................................................................................................................... (C.3)
pheyx ¢

P :#[pi Py ] e (C4)

2D =#[m T (C.5)

where all values are in field units. Assuming that the tubing pressure remains constant, we take Eq. C.1
into the Laplace domain, following the theory presented by Blasingame (PETE 620 Notes, 1994), we

have:

— 1 _
qD(u):;—CD[uwa(u)—pWD(ZD =0)]. ..................................................................................... (C.6)

Knowing that the dimensionless wellbore pressure, at initial dimensionless time is zero, we can rewrite Eq.

C.6 as:

_ 1 _
gp(u) = CDUD WD) « oottt ettt (C.6)

u
Examining the convolution integral for a continuously changing flowrate (i.e. applicable for any case),

displayed below for reference:
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)]

pPwp(tp)= '[q'D (T)PGDED —T)AT e (C.7)
0
Where
PsD D) T DD D) F S e e e (C.8)

Taking the Laplace transform of Eq. C.7:

PwD W) =[ugp W) =qgpAD = 0)]PgD () - oottt (C.9
The flowrate at initial time is zero, therefore, Eq. C.10 condenses to:

DPwD @) = UGDU)PgD(U) « e (C.10)

Substituting Eq. C.6 into Eq. C.10 yields:

PwD ) :“{i_CDuﬁwD(”)}ﬁsD(u) ............................................................................................ (C.11)

Multiplying through by the Laplace parameter yields:

DD ) =[1= C U2 Doy UNIB 31 (1) « eooeeeeeeeeeeeeeeeeeeeesessesseseeeesssseeeesessesessesssseeesensseseeeessesee (C.12)

Solving for the dimensionless wellbore pressure, we multiply through by 1/p,,p(u) and 1/pgp(u)

yielding:

1 _ 1 3
Psp(@)  pyp (1)

DU oo (C.13)

Solving for the dimensionless wellbore storage pressure yields:

Doop (1) =+ et e e e e eree e (C.14)

+CDu2

Psp (1)

From Van Everdingen and Hurst (1949) we recall the convolution integral relating the constant pressure

solution to the constant rate solution, defined, in Laplace space, as:

_ —_ 1
4D,cp(U) PywD,cr ) = TSN S (C.15)
u
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Solving for the constant pressure solution, we assume that Eq. C.14 is a constant rate case, rather than

applicable in all situations. Substituting Eq. C.14 into Eq. C.15 yields:

_ 1 1
qD,Cp(u)z — S (C.16)
u
1

ﬁsD,cr (u)

+ CDu2
Simplifying the right hand side of Eq. C.16:

_ 1 1 )
AD,epU)= | = F CDU | oo (C.17)
? u? l:psD,cr(“)

Multiplying through by u? yields:

1 1
gD, (U) = o O+ veeerreiee e (C.18)
P u2 psD,cr(“)

Consulting Roberts and Kaufman (1966, pg. 202, Eq.172) demonstrate that the Laplace inversion of a
constant is the Dirac delta, d(t), an impulse function where the result is zero for all values other than at
time equals zero, where it results in infinity. As Laplace inversion is additive, therefore, we know that the
inversion of the wellbore storage constant will result in zero. For this reason, we can rewrite Eq. C.18 as:

— 1
qD,cp (u) = )
u

which is the generalized constant pressure solution.
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APPENDIX D
CONSTANT PRESSURE SOLUTION WITH TIME-DEPENDENT CHOKED FRACTURE SKIN

This appendix examines the constant pressure behavior, derived in Appendix C, with the addition of a
variable choked fracture skin pressure constraint. Larsen et al. (1990) initially proposed a hyperbolic
relation for variable skin in order to describe the effects of the early-time pressure transient response due
to fracture cleanup. This work examines the hyperbolic relation proposed by Larsen et al. for the constant
pressure solution, along with an exponential and cumulative exponential time dependent skin. This work

is performed in the Laplace domain with numerical inversion of the constant pressure solution.

Hyperbolic Model

Larsen et al. (1990) proposed a hyperbolic time dependent skin function to account for variations in

production seen during cleanup, as shown by:

Where the parameters a, b and ¢ are unique to the well being examined.

Loosely basing our model upon the original work of Larsen, we present Eq. D.2 proposed based on

empirical field evidence:

S(tp) = se0 +[50 =0 ———+
ol
I4+—
D

Knowing that skin is an additive function to wellbore pressure in the real domain, and assuming a time

dependent skin factor demonstrated as:
PsD,cr(D) = PD,cr(D) FS(ED) oo (D.3)

Substituting in Eq. D.2 into Eq. D.3, assuming that the skin factor term is variable with time, we arrive at:

1
psD,cr(tD):pD,cr(tD)+Soo +[s0 _500]7/1 ......................................................................... (D.4)

1+
‘D

In an effort to obtain the constant pressure solution, we will take advantage of the convolution integral,
presented in Laplace space. Utilizing the Mathematica "LaplaceTransform" function to bring Eq. D.4 into

Laplace space, yielding:
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N rad+A)U,0,ur)[sg—-sex]

— — S
PsD,cr (u)= PD,cr (u)+—=
u u

where /7(x) is the gamma function, and U(a,b,z) is the hypergeometric function. Application of the
convolution integral in Laplace space, the constant pressure solution is expressed as a relation of the

constant rate solution, provided below for reference:

_ 1
0D,0p () = o o (D.6)
u

We substitute the wellbore pressure including skin, Eq. D.5, into Eq. D.6 yielding:

1

_ 1
qD.cp ) = 2 s T+ AD)U(A,0,ut)[sg—s
u ﬁD,cr(”)""j‘o"" ( U ( ’us )50 =500

In order to solve the invert Eq. D.7 into the real domain, we must incorporate a dimensionless wellbore
flowing pressure. Linear and bilinear flow relations have been derived in Appendix A and B (provided
below for reference). We further introduce a third general "power-law" flow regime (capable of describing

any potential flow pattern) also described as follows:

pp.cr(tp)=citp” (POWET-1aW TlOW) ... (D.8a)
PDer(tp)= \/;WD (HNEAT TLOW) ...t (D.8b)

Ytp (bilinear flow)........coocviriiiiiiccec (D.8¢)

T
crt
PD, (D)r(5/4) 2k pw)p

Transforming the dimensionless wellbore pressure solutions into the Laplace domain, yields:

PD,crW)=cy 1"(11::/) (POWET-1aW fIOW) .ouiiiiiiiiriinicecccccece e (D.9a)
u
Pp.orw)=~n F(i//zz) (HNEAT IOW) ..ot (D.9b)
u
rexpl5/4] TG/4) (bilinear fIoW) ....cceeieieriirinireeeee e (D.9¢)

Pp,cr(u) = Bk rw (kaf)D 574
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Substituting the dimensionless wellbore pressures (Eq. 9) into Eq. D.7, we arrive at the constant pressure

solution, assuming a skin with a hyperbolic relation with time, in Laplace space shown as:

1 1

q =— -law flow)....(D.10
ID.ep)="3 L T0+) sy DA+ AU A0.un)s0 = 550] (power-law flow)....(D-10a)

1 u1+v u u
qD,cp W)= L ! (linear flow) (D.10b)
q4D,cp\U —uz J_F(3/2) 5 F(1+1)U(A,O,MT)[S0—SOO] ............ .

S VT R

u u u

q (u)= R ! (bilinear flow) (D.10c)
4D,cp\H) = w2 mexp[5/4] T(5/4) EEN ra+AHUA,0,ut)so-swl 7 '

\/2(kfwf)D w4 u u

Multiplying Eq. D.10 through by the Laplace parameter squared:

1
cpu VT =v) +usg +ul (14 AU (A,0,ut)[s0 ~ o0 ]

qD,cpu) = (power-law flow)....(D.11a)

1
NINUT(312) + s +ul'(1+ AU (A,0,ut)[s0 — S0 ]

4D,cp(u) = (linear flow)............ (D.11b)

1

7 = ilinear flow) ........ D.11
qD,cp (W) Zexpl574] T(5/4) (bilinear flow) (D.11c)

Jz(kaf)D w4

+use, +ul'(1+ 1)U (A,0,ut)[s0 — S0 ]

Eq. D.11 are the constant pressure solution, in Laplace space, for linear, bilinear and a general power-law
flow regime, which include a hyperbolic time dependent skin, and no wellbore storage. Numerical

inversion through the Stehfest algorithm is employed to return the solution to the real domain.
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Exponential Decay Model:

Continuing the efforts of Larsen et al. (1980), we propose an additional time dependent skin model
following an exponential decay model. The following "exponential decay" model is proposed for a time-

dependent skin factor:

SED) = So0FSQEXPIED T] oo (D.12)
Substitution of Eq. D.19 into Eq. D.11, the wellbore pressure, including wellbore skin, in the real domain
yields:

PsD,crtD) = PD,cr(tD) +Sao +50 €XPELD/T] oo (D.13)

In the Laplace domain, Eq. D.13 is:

— — N S
PsD.er (D) = PD,er(ID) + 22— eeeeesseeees s (D.14)
u u+l/r

We substitute the wellbore pressure including an exponential model for time dependent skin, Eq. D.14,
into Eq. D.6 yielding:

_ 1 1
0D, cp (1) = 5 (D.15)

_ s 50
u tp)+-2+
pD,cr(D) u utlie

Substituting in Eq. D.9, the three flow regimes examined in this work, into Eq. D.15, yields:

1 1
7 = ower-law flow) ..................... D.16a
qD,cp (1) 2 ) TI+v) 5 5 (pow: w flow) ( )
1 u1+v u u+l/z
TD.o (1) = —— ! (linear flow) .....c.cooorrere. (D.16b)
<P u2 \/—r(3/2) S 50
SR V5 TRV
T (1) = —— ! (bilincar flow) (D.16¢)
q4D,cp = zexpl5/4] T(5/4) +Si o \HReATHIOW) .

2pwpp WA u el
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Multiplying Eq. D.16 through by the Laplace parameter squared:

1

qD,cp ) = 5 (power-law flow) ......ccoocuvruenee (D.17a)
clu(l_v)r‘(l+v)+usoo 4 150
u+l/t
qp,cp )= ! 5 (linear flow) ....cocovevereeieeriennns (D.17b)
ZNUT(3712) + us oy + 20
u+l/t
= 1 .
qp,cp ) = 7 (bilinear flow) .......ccccceeueuennennee (D.17¢)
mexp[5/4] T'(5/4) N u<sg

USo +
lz(kaf)D u34 ©utl/r

Eq. D.17 is the constant pressure solution for a vertical fracture assuming time-dependent exponential skin
effects and no wellbore storage. The Stehfest algorithm provides accurate and rapid numerical inversion

of this equation.

Cumulative Exponential Model:

A third "cumulative exponential" model is explored to describe time dependent skin behavior for the

constant pressure solution. The cumulative exponential model is described as:
S(UD) = Sop +[50 = Sop L= EXPL(T/ 1)) F T] cooeeeerrerrrreeesesesesssssssssseseesessesesessssssesssssssseeeeessssesene (D.18)
Substitution of Eq. D.18 into Eq. D.11, the wellbore pressure in the real domain yields:

PsD.cr (D) = PD.cr (tD) + 5o 4150 = 00 [ = eXPL—(7/19) 1] wovvvveeveessssssssscscvicmvervreeeeesessssis (D.19)

Utilizing the Mathematica "LaplaceTransform" function to bring Eq. D.19 into Laplace space yielding:

2
SR
_ — ) 1/ ult
tp)= D ) e D.20
psD,cr( D) =PD,cr( D) » Jul iz ( )

We substitute the wellbore pressure including cumulative exponential time dependent skin, Eq. D.20, into

Eq. D.6 yielding:

_ 1 1
qD,Cp(u) :—2 P (DZI)
; 9 TR
5 (t )+S70_ 1/ulr
Der®D u Vul/ At

Substituting in Eq. D.9, the three flow regimes examined in this work, into Eq. D.21, yields:
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_ 1 1
d4D,cp (u) = >

(power-law flow) .....(D.22a)
2
u 2K -
LTy so 1{\/1/14/11}[30 o0
1 u1+v u NulAr
qp,cp () = Lz ! 5 (linear flow) ............. (D.22b)
\/;F(3/2)+S70_ 1/ulr
143/2 u Nul it
qp,cpu) = % ! 5 (bilinear flow) .......... (D.22¢)
u 2K —
rexpls/4] T(/4) s 1L/1/w17}[so S0
/2(kfwf)D WY Vulir

Multiplying Eq. D.22 through by the Laplace parameter squared:

qp,cp ) = ! ; . (power-law flow) .....(D.23a)
2wk _
1-v) ! l[dl/um }[SO Seo ]
clu Ird+v)+usg -
Nuldt
qp,cp )= ! ; ; (linear flow) ............. (D.23b)
N }
T(3/2)+usq -
VA1) + o Julir
TD.cp ) = ! 2 . (bilinear flow) ........(D.23¢)
WK _
rexpl5/4] TG/4) lL/mm }[SO ol
1IZ(kaf)D u3/4 0 Nulir

We arrive at the constant pressure solution, assuming a cumulative-exponential time-dependent skin

factor, in Laplace space. The Stehfest algorithm provides accurate and rapid numerical inversion.
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APPENDIX E
CONSTANT PRESSURE SOLUTION INCLUDING WELLBORE PHASE REDISTRIBUTION

This appendix examines the constant pressure behavior, derived in Appendix C, with the addition of a
wellbore phase redistribution parameter. Fair (1981) examined a variation of the wellbore storage effect,
incorporating the result into the diffusivity equation for a constant rate, radial system. This work examines
the exponential pressure distribution proposed by Fair (1981) for the constant pressure case in a vertically
fractured well. This work in performed in Laplace space with numerical inversion of the constant pressure

solution.

Fair (1981) proposed that the pressure response due to wellbore phase redistribution is an additive function
to the traditional wellbore storage examined in classical theory. Eq. E.1 was proposed by Fair (1981) to
examine the changing sand face flowrate due to changing wellbore pressure and wellbore phase

redistribution.

d
M—@] .................................................................................................. (E.1)

QD(tD)=1_CD{
dip  dip

Defining dimensionless terms:

q
qD,WBS :—f ................................................................................................................................... (EZ)
q
e e (E.3)
¢hctxf2
kh
o T — D] eeeeeeee e e et e e e ettt ——————eetttt——————————ttta——————————a1———— E4
PwD 141_quﬂ[pl Pwl (E4)
kh
e L A ORI E.5
P gD 141.2(13#[17, Pyl (E.5)

Taking Eq. E.1 into the Laplace domain, following the theory presented by Blasingame (PETE 620 Notes,
1994), we have:

qpu) = % - Cpllupywp @) — pywp(p =0)]- [uﬁ¢D (u)— P¢D (tp = 0)]] ........................................ (E.6)

Assuming that the pressure of the wellbore is zero when dimensionless time equals zero, Eq. E.6 becomes:

qpu) :%—CD[uﬁWD (@) =UPGD U] - v (E.7)

Recalling the convolution integral for a continuously changing flowrate:
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D

pwp(p) = J.qD’(r)pSD(tD—T)dT. .............................................................................................. (E.8)
0
Where
PsDED) T PDUED) T8 e s (E.9)

Taking the Laplace transform of Eq. E.8:

Bop W) =[G D W) =GP (D) = OVIBD () coreereeeeeeeeeeeeeeeeeseeseeeeseeeeeeeeeeeeeeeseeeeessseeseseseeeeeeeeeeeeeeee (E.10)

The flowrate at initial time is zero, therefore, Eq. E.9 condenses to:

DD () Z UG D U B5 P () cerereeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeseeeeeeeeeseeeseseseseesssessesesesssesessssss (E.11)

Substituting Eq. E.7 into Eq. E.11 we arrive at:

Doop ) = uB ~CpulPwp )~ Pgp (u)]}f)sD (7 NSO (E.12)

Multiplying through by the Laplace parameter:

Bup () = [1= Cpu?[Brup () = Bgp W1 BsD (U) corvvvvrrsvverrssvsesssssesssssessssssssssesssssessno (E.13)
Combining pressure terms in order to separate the wellbore flowing pressure:

Bup @I+ Cpu? Bp ()] = [1+ Cput? Bap (] Bsp (1) coovverreeessoeessiseessseessseeessees s (E.14)

Solving for the flowing wellbore pressure

[1+Cpu? By )]psp (1)

DD () = e o e (E.15)

2—
1+ Cpu” psp(u)

According to Fair (1981), the phase redistribution pressure Pgphas an exponential relationship based on
theoretical reasoning and unpublished laboratory data, demonstrated by the following relationship:
Pgp (D)= Cyp (L= ™™D ED Y [ (E.16)

where dimensionless parameters are defined by:
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khCy

e E.17
0 = 1412¢Bu (E17)

2.637x10 ke
Ip=—""75—
drcex o

2.637x10 % ka
ap =—————
(WCtxf

where constants are in field units. The wellbore phase redistribution constant, Cyp, is a logarithmic

average between the surface and bottomhole flowing pressure, and a is dependent on two phase fluid flow
properties such as gas bubble or slug rise time in the well (Fair 1981). Assuming a constant skin factor
(i.e. one that does not vary with time), and that the reservoir is operating at a constant rate, we can take the

Laplace transform of Eq. E.9 and E.16:

— — s

PsD,cr = PD,cr +; ........................................................................................................................ (EZO)
C¢D C¢D

D, ) o o et et et s et a e bt et ettt b e e E.21

PD,er(®) u u+l/ap ( )

Substituting Eq. E.20 and Eq. E.21 into Eq. E.15:

C C
1+CD”2 Z¢D _ TD 1_7Dcr+£
u u+l/ap ’ u

|:1 + CDuzliﬁD,cr +s:l:|
u

Expanding all terms, we arrive at a generalized wellbore storage relationship, which includes the effects of

e eeeenn (E.22)

ﬁwD,cr (u) =

wellbore phase redistribution:

2
C¢DCDu K
1+ CypCpu——=——"— | Pp.or +—
#DCD willap PD.cr »

PwD,cr (1) = S
1+u CDpD,cr +usCD

In order to find a constant pressure solution, we return to the convolution integral in Laplace domain for a

constant flowrate defined as:
_ _ 1
4D,cpWDPwp,cr 1) = T A (E.24)

u

Substituting Eq. E.23 into Eq. E.24 we arrive at a constant pressure solution:
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2 —
_ 1 1+u CDpD’C,A—i-usCD
AD,ep (1) = 5 T T (E.20)

u C¢DCD“2 _ s
1z

1+C¢DCDM—

u+l/ap u

Recalling that, in the Laplace domain, our pressure solutions are defined by Eq. E.21:

PD,er(u)=cy 1"(11_:/1/) (power-law flow).. (E.21a)
u
Bpoer () =7 F(i // 22) (linear flow).......... (E.21b)

mexp[5/4] T'(5/4)
J2Gpwop ud'?

PD.cr(m)= (bilinear flow)....... (E.21¢)

Returning E.21 into E.20, we arrive at the final constant pressure solution which includes wellbore phase
redistribution and a constant skin effect:

ra+
1+u2CDcl%+usCD

qp,cpu) = Lz U 3 (power-law flow).. (E.22a)
u CypCpu
1+C¢DCDM— #DCD o F(l+v)+£
u+l/ap JTY
1+u 2C \/_ F( 2 +usCp
qp,cpu) = Lz (linear flow).......... (E.22b)
u o)) CDu NACIE
W CopCpu= ey u+l/ap w32 u
2 mexp[5/4] T(5/4)
1+u CD uSCD
_ I J2kpwp)p ' N
4D,cp (u) = > 2 (bilinear flow)....... (E.22¢)
u CypCpu zwexp[5/4] T(5/4)

1+C¢DCDL!—

u+tl/ap /2(kaf)D WO

Eq. E.22 is the constant pressure solution for a vertically fractured well with time-dependent wellbore

storage, a constant skin factor producing from linear, bilinear or a general power-law flow relation.

128




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




