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ABSTRACT 

 

As climate change progresses, carbon sequestration is becoming an increasingly 

important strategy for long term carbon storage in soil. Adding to and preserving this 

carbon storage is crucial for the development of future management strategies that 

maintain this natural process. This study examines the effects of sodium in urban soils 

on water extractable dissolved organic carbon (DOC) and organic nitrogen (DON) and 

biodegradable DOC (BDOC) from 1) de-icing salts, 2) irrigation water, and 3) 

deposition of oceanic aerosols. Evaluation of the effects of time of soil exposure to 

sodium from the different sources was a major objective of this study. Urban soil 

samples were collected from Chicago, IL (n=36), Galveston, TX (n=36), and Bryan-

College Station, TX (n=36). Soil samples were extracted with a 1:10 soil/deionized 

water ratio and DOC, DON, BDOC, EC, pH, alkalinity, and soil chemistry (Ca, Mg, K, 

Na, Fe, Zn, Mn, B, S, Cu) was measured.  

Univariate analysis of variance determined that sodium source had a significant 

effect on all major dependent variables tested, which included %BDOC (p < 0.001), 

DOC (p = 0.03), DON (p < 0.001), and specific UV absorbance (SUVA254) (p < 0.001). 

Soil exposure time to sodium had a significant effect on water extractable DOC (p < 

0.001) and DON (p < 0.001) but not on %BDOC (p = 0.13) or SUVA254 (p = 0.25). 

%BDOC and SUVA254 did not exhibit a significant relationship; however, when 

%BDOC and SUVA254 were analyzed by city a significant relationship existed for all 
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three cities. There was a significant positive relationship between DOC concentration 

and SUVA254 across all three cities (p < 0.001, r2 = 0.33). 

The implications of this study can help predict water extractable DOC and DON 

and %BDOC loss resulting from increased soil sodium accretion from deicing salts, 

irrigation, and atmospheric deposition. Increased accretion of soil sodium could have 

large scale implications on carbon storage and potentially offer an explanation for the 

increased DOC concentrations observed in urban streams.  
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NOMENCLATURE 

 

BCS Bryan/College Station 

BDOC Biodegradable Dissolved Organic Carbon 

DOC Dissolved Organic Carbon 

DOM Dissolved Organic Matter 

DON Dissolved Organic Nitrogen 

EC Electric Conductivity 

ESP Exchangeable Sodium Percentage 

SAR Sodium Adsorption Ratio 

SUVA254 Specific UV Absorbance at the wavelength 254nm 

TDN Total Dissolved Nitrogen 
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1.! INTRODUCTION AND LITERATURE REVIEW 

Sources, Transport, and Fates of DOC 

Dissolved organic carbon (DOC) is a continuum of molecules of variable Dalton 

weights that fit through the pores of a 0.45 µm filter (Thurman 1985). Its highest 

concentration is found in organic soil horizons (Aitkenhead-Peterson et al. 2003) and its 

primary sources include throughfall from the vegetation canopy, decomposition of 

vegetation overlaying the soil, and rhizo-deposited exudates released by roots 

(Aitkenhead-Peterson & Kalbitz 2005; Aitkenhead-Peterson et al. 2003). The terrestrial 

DOC pool comprises labile and recalcitrant fractions of carbon. The labile and semi-

labile fractions are called biodegradable dissolved organic carbon (BDOC) (Yano et al. 

1998). BDOC consists of simple carbon compounds that are low in molecular weight 

and are usually consumed by microbes within a short time period (Servais et al. 1989; 

Yano et al. 1998). Glucose is the simplest molecule that heterotrophic bacteria consume 

readily; therefore it is typically utilized as an indicator of viable microbes when used as 

an inoculant (Cioce & Aitkenhead-Peterson 2015; McDowell et al. 2006). Due to the 

rapid uptake of BDOC, it is generally not a major contributor to DOC concentrations in 

surface water compared to the more recalcitrant, aromatic compounds of DOC 

(McLaughlin & Kaplan 2013; Mei et al. 2012) and is usually removed as it passes 

through the watershed soils (Fellman et al. 2009; Mei et al. 2012). 

The three major fates of terrestrially derived DOC include: 1) adsorption to soil 

in the mineral horizon, where it often complexes with iron and aluminum oxides to form 
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spososols (McDowell & Wood 1984), 2) mineralization to CO2-C by heterotrophic 

microbes (Aitkenhead-Peterson & Kalbitz 2005; Marschner & Kalbitz 2003; McDowell 

et al. 2006) and 3) transportation from terrestrial to aquatic ecosystems in runoff from 

rain or irrigation events. For the first fate of DOC, the degree of DOC adsorption to soil 

mineral surfaces is proportional to the aluminum and iron oxide contents (Kahle et al. 

2004; Palmer et al. 2013) as well as the pH (Tavakkoli et al. 2015) and clay content of 

the soil (Nelson et al. 1993). Adsorption to soil minerals does not preclude DOC from 

being degraded by soil microorganisms (Kalbitz et al. 2003a) or from being released 

during certain environmental soil conditions. An example of an environmentally-

stimulated DOC release includes DOC being released resulting from a decline of Ca2+ in 

soil water, which causes a reduction of cation bridging, and in turn, a reduction of 

adsorption to soil minerals (Kerr & Eimers 2012). In addition, sodium has also been 

shown to affect DOC release through irrigation water application. A study showed that 

reactive soil pools of DOC (DOCRSP) irrigated with sodic water (sodium adsorption ratio 

> 35) had higher DOC release when compared to remnant soils of wetland forests, 

forests, and range land uses which are exposed to rainfall only (Aitkenhead-Peterson & 

Cioce 2013). The second fate of DOC is mineralization to CO2-C by heterotrophic 

microbes. The biodegradable or labile DOC (BDOC) is the proportion that is usually 

mineralized. The proportion of BDOC (%BDOC) in a bulk DOC sample obtained from a 

terrestrial ecosystem varies. Currently, the literature states that %BDOC in throughfall 

ranges from 19 to 75% (McDowell et al. 2006; Qualls & Haines 1992; Yano et al. 2000), 

25% and 53% for water extracted urban grasses and remnant forest leaf litter, 
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respectively, (Cioce & Aitkenhead-Peterson 2015), and 56% for water extracted spruce 

needle litter (McDowell et al. 2006). In soil solution collected from the organic layer 

under a hardwood forest and a spruce forest with zero tension lysimeters, BDOC was 

approximately 30% and 20% biodegradable, respectively (McDowell et al. 2006). Water 

extractable agricultural soil was 44% biodegradable (McDowell et al. 2006) while root 

exudate derived from Norway spruce varied in its biodegradability from 30 to 69% 

depending on N fertilization (Aitkenhead-Peterson & Kalbitz 2005). In urban soils under 

turfgrass and landscaping shrubs in south-central Texas, %BDOC ranged from 2 to 70% 

and tended to be affected by sodium inputs from irrigation water (Cioce & Aitkenhead-

Peterson 2015). As illustrated, %BDOC in terrestrial ecosystems can be extremely 

variable. The final fate of DOC is transport to surface water by runoff where it is termed 

allochthonous DOC (Aitkenhead-Peterson et al. 2003). Once terrestrial or allochthonous 

DOC is transported into aquatic systems, surface water %BDOC can range from 6% in 

urban streams to 10% in rural streams (Cioce 2012). Exceptionally high values of 

%BDOC in surface waters, specifically lentic waters, may be due to the mixture of 

allochthonous and autochthonous DOC. 

Increases in Aquatic DOC 

Over the past three decades, increased dissolved organic carbon (DOC) 

concentrations were reported in many streams in North America and the UK (Evans et 

al. 2005; Filella & Rodríguez-Murillo 2014; Monteith et al. 2007). There are several 

conflicting explanations as to why the color and concentration of aquatic DOC are 

increasing. The most frequently mentioned hypotheses in the literature states that the 
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increased release of DOC from terrestrial to aquatic ecosystems is due to a) the reduction 

in oceanic salt deposition and atmospheric sulfur as acid deposition; b) climate change in 

terms of temperature, distribution of precipitation, and increased atmospheric CO2; and 

c) changes in land management (Clark et al. 2010). Currently, a general consensus has 

not yet been determined as many studies have conflicting results. 

Atmospheric deposition can influence DOC solubility by changing the ionic 

strength and pH of the soil solution. Sulfur deposition impacts soils by increasing acidity 

and ionic strength which decreases DOC solubility (Kalbitz et al. 2000). Declining 

trends in sulfur deposition has been observed since 1988 and is thought by many 

scientists to be responsible for increasing instream DOC concentrations by reducing soil 

acidity which allowed the pH to rise and DOC solubility to increase (Evans et al. 2006; 

Monteith et al. 2007; Vet et al. 2014). On the other hand, decreased sea salt deposition is 

also thought to influence increased DOC release from soils. Sea salt deposition occurs in 

soils through a cation exchange process where marine cations, such as sodium and 

magnesium, displace acidic cations, such as aluminum and hydrogen on soil particle 

exchange sites. The aluminum and hydrogen in soil solution makes the soil water acidic 

and decreases DOC solubility. Therefore, a decreased input of sea salt has been 

postulated as the cause for increased DOC release to surface waters. The effects of wet 

sea salt deposition typically occurs within 500 km of the coast while dry deposition can 

occur over much greater distances (Vet et al. 2014). Sea salt deposition varies by 

meteorological factors, such as the North Atlantic Oscillation, however, declines in 
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deposition have been postulated to increased DOC release in soils (Clark et al. 2011; 

Evans et al. 2001; Monteith et al. 2007). 

As climate change progresses, increasing DOC concentrations in urban rivers can 

have large scale implications on carbon sequestration in soils. Recently, carbon isotope 

analysis revealed that 3-9% of the DOC concentrations in rivers is aged carbon 

originating from terrestrial carbon sinks that were disturbed and mobilized by human 

influence (Butman et al. 2015). Additionally, the age of the riverine carbon increased by 

the degree of population density and urbanization (Butman et al. 2015). Although that 

study is not the first to link increased DOC concentrations with urbanization, 

(Aitkenhead-Peterson et al. 2009; Westerhoff & Anning 2000), it is the first to show that 

urbanization may effect a soils’ capacity to store older and typically more stabilized C.  

Land use change will continue to increase with population growth as agricultural 

and native landscapes are converted to urban land use. By 2030, urban land cover is 

projected to increase by 1.2 million km2 globally (Seto et al. 2012) and by 75% in the 

United States by 2051 (Lawler et al. 2014). This expansion is expected to have a large 

impact on future DOC release from soils from urban centers, as shown in Butman et al. 

(2015). Until recently, wastewater effluent was thought to be the major contributor of 

observed DOC increases in urban streams (Sickman et al. 2007; Westerhoff & Anning 

2000). However other studies have shown that the impact of wastewater effluent on 

instream DOC concentrations is minimal. For example, an urban stream in Illinois 

showed slight DOC increases (23%) from wastewater effluent contribution (Kalscheur et 

al. 2012) while urban streams in Texas showed no differences in DOC concentrations 
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between urban streams with and without wastewater effluent outfalls (Aitkenhead-

Peterson et al. 2009; Kalscheur et al. 2012). In the Dallas/ Fort Worth area, wastewater 

effluent was shown to contribute only 35% of the total DOC loading in streams, with the 

remaining 65% derived from non-point sources (Aitkenhead-Peterson & Steele 2016). 

Since most lotic surface water DOC is derived from allochthonous sources, such as the 

organic soil horizon (Aitkenhead-Peterson et al. 2003), recent attention has turned to the 

role watershed soil plays as the source for increased DOC input and the potential 

mechanisms that may be causing the increased allochthonous DOC release. 

The Role of Sodium in DOC Release 

Increased salinization of surface waters has been observed over the last few 

decades and attributed to deicing salts, wastewater effluent, saltwater intrusion and 

groundwater irrigation (Duan & Kaushal 2015). Highest concentrations of salts have 

been reported to occur in urban watersheds (Kaushal et al. 2005). This increase in salts, 

specifically sodium, has been attributed to a disruption of the biogeochemical cycles of 

carbon and nitrogen (Aitkenhead-Peterson & Cioce 2013; Cioce & Aitkenhead-Peterson 

2015; Compton & Church 2011; Green et al. 2008; Green et al. 2009; Lancaster et al. 

2016; Steele & Aitkenhead-Peterson 2013). Disruptions in the bioreactive cycles of 

phosphorus and sulfer have also been attributed to increased salinization (Compton & 

Church 2011; Nielsen et al. 2003). The mobilization of these bioreactive compounds due 

to sodium may be through a direct influence, such as an ion exchange mechanism, where 

sodium replaces H+ on exchange sites which increases soil pH over time. Green et al. 

(2009) showed the complete removal of H+ ions (0%) and large increase of Na+ ions 
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(85%) on soil exchange sites in soils exposed to road salt drainage compared to soils not 

exposed to road salts (Na+ 1% and H+ 98%). As a consequence of increased pH there is 

an increase in the solubility of humic acids (Stevenson et al. 1996). Indirect effects such 

as release of monovalent and divalent cations such as NH4
+, K+, Ca2+ and Mg2+ with a 

high Na+ input (Eimers et al. 2015; Shainberg & Letey 1984) would necessitate an 

equivalent release of anionic compounds such as DOC, DON, SO4
2-, or PO4

3- to 

maintain electroneutrality of soil solution.  

Findlay and Kelly (2011) examined the emerging indirect and long term road salt 

effects on ecosystems. While their paper was concerned mainly about the toxic effect of 

Cl- to soil ecosystem function, they acknowledged the effect that sodium may also have 

on bioreactive cycles. Astebol et al. (1996) and McBean and Al-Nassari (1987) 

determined that road salt deposition could be found up to 10 m from the road with higher 

concentrations in soil closer to roads. One of the only studies directly linking road salt 

use to DOC and soil organic matter was the work by Green et al. (2008) and Green et al. 

(2009). Green et al. (2008) examined the land adjacent to the A6 (a relatively rural road 

in northern England) with land use dominated by cattle and sheep grazing on grasses 

overlying an acidic spodosol (pH 3.78) with varying depths of organic matter. Control 

soils, soils exposed to drainage from road salts and soils exposed to road salt spray were 

examined. They reported that DOC concentrations were significantly lower in soils 

exposed to road salt drainage and pH significantly increased relative to control soils. 

Only 33% of the variance in DOC concentration was explained by pH and NaCl content 

of the soil suggesting that other factors may be responsible as well. The second study by 
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Green et al. (2009) was conducted at the same site, but soil solution samplers were used. 

Control site DOC ranged from 5 to 32 mg L-1 for the October to July sampling period 

and sodium concentrations ranged from 2 to 5 mg L-1 for the same period. Soil solution 

sodium concentrations reached a high of 5,800 mg L-1 closest to the road and declined 

with distance from the road. DOC concentrations showed a seasonal pattern for all 

distances from the road (8 to 60 mg L-1) but concentrations appeared to be much lower at 

the sites 2 m and 4 m from the road during the winter months (8 to 20 mg L-1) compared 

to sites 16 m from the road (35 to 60 mg L-1). Green and co-authors also ran laboratory 

simulation experiments with NaCl additions to soil and unfortunately most of their 

statistical analyses and discussion was on the simulation experiments and not the field 

experiments conducted. The simulation studies were not however without merit as they 

were able to examine the effect of NaCl on soil not previously exposed to road salts. 

Based on these simulation studies by Green et al. (2008) and Green et al. (2009), the 

effect of road salts on DOC concentration is that newly exposed soils will have the 

greatest DOC release due to soil dis-aggregation while previously exposed soils that 

have already had some degree of dis-aggregation will release less DOC. 

Multiple studies by Aitkenhead-Peterson and colleagues have investigated the 

effect of Na+ derived from irrigation water on DOC and DON release (Aitkenhead-

Peterson & Cioce 2013; Cioce & Aitkenhead-Peterson 2015; Pannkuk et al. 2011; Steele 

& Aitkenhead-Peterson 2012; Steele & Aitkenhead-Peterson 2013) and its effect on the 

relative abundance of soil microbial communities (Holgate et al. 2011). 
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In cities with municipal water high in sodium and used for irrigation, DOC 

solubility was shown to increase significantly in Texas soils (Steele & Aitkenhead-

Peterson 2012). Other studies have shown a strong proportional relationship between 

DOC concentrations and sodium absorption ratios (SAR) within urban streams 

(Aitkenhead-Peterson et al. 2009; Steele & Aitkenhead-Peterson 2013) and soils 

(Aitkenhead-Peterson & Cioce 2013; Steele & Aitkenhead-Peterson 2012). There also 

may be a combined role of bicarbonate (HCO3) and SAR on DOC release as irrigation 

water. NaCO3 and CaCO3 showed no significant difference on DOC release, yet a 

significant relationship between DOC and bicarbonates was observed (Pannkuk et al. 

2011). In a study examining NaCl and NaHCO3 with differing EC and SAR values, it 

was found that the type of sodium in the form of NaCl and NaHCO3 showed some 

difference in the mass of DOC and DON leached from urban landscape vegetation in 

Texas (Steele & Aitkenhead-Peterson 2013). Mass of DOC leached increased as salinity 

(EC) increased with NaHCO3 solutions, however at low salinity, the mass of DOC lost 

was higher in the NaCl solutions compared to the NaHCO3 solutions (Steele & 

Aitkenhead-Peterson 2013). Although not all municipal water supplies are high in 

sodium, the eventual move to alternative sources of irrigation water in urban landscapes 

will increase as water resources continue to diminish. The sources of this alternative 

water will most likely be brackish water or treated effluent that is high in dissolved salts 

(Martinez & Clark 2012). As a result, it is highly likely that sodium loading will increase 

in urban watersheds. 
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Fewer studies have investigated the role of sodium in sea salt deposition on DOC 

release from soils. Salt additions closely resembling coastal salt spray in Oregon showed 

reduced DOC release from soils with increasing salt concentrations (Compton & Church 

2011). Additionally, sodium from coastal seawater has been shown to influence ionic 

strength in forested soils and cause a decrease in DOC release as seawater concentrations 

increased (Moldan et al. 2012). 

The Role of Sodium and BDOC in Urban Soils 

To date, the role of sodium on biodegradable dissolved organic carbon (BDOC) 

in urban soils is not well understood and only one study has been completed (Cioce & 

Aitkenhead-Peterson 2015). It is known that DOC biodegradability decreases with soil 

depth (Boyer & Groffman 1996) and is controlled by DOC molecular structure and size, 

soil nutrient availability, microbial communities, and soil solution in the soil, as well as 

temperature and precipitation patterns (Marschner & Kalbitz 2003). However, the 

mechanisms in which different sodium sources (NaCl and NaHCO3) might mobilize 

DOC and effect its biodegradation in soils is lacking. A recent laboratory experiment 

found that high concentrations of sodium fluoride (1105 - 6631 mg kg-1 NaF; 605 - 3631 

mg kg-1 Na) actually increased the degradation of glucose and until inhibition occurred 

at concentrations higher than 8841 mg kg-1 NaF (Ropelewska et al. 2016). The findings 

from the study by Ropelewska et al. (2016) supported the only urban BDOC study 

completed, which showed samples containing water extractable soil sodium 

concentrations above 500 mg kg-1 had less than 10% BDOC in the soil (Cioce & 

Aitkenhead-Peterson 2015). This indicates that the high water extractable soil sodium 
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concentrations may have stimulated microbial communities to degrade and/or mineralize 

BDOC in soils before the soil samples were obtained. These two studies imply that 

sodium fertilization within a certain threshold may be stimulating microbial activity in 

soils and could be influencing terrestrial soil carbon sinks. If BDOC is mineralized or 

broken down by sodium-stimulated microbial degradation, more organic carbon pools 

could be accessed and utilized by microbes. As a result, the proportion of refractory 

DOC available for runoff would increase and microbial degradation of the refractory 

DOC would decrease due to the increased availability of BDOC. 

Determining DOC and BDOC from Optics 

Specific UV absorbance (SUVA) could prove to be a powerful technique for 

determining the amount of DOC available to leach into streams. Previous work 

determined that SUVA at 254 nm and 280 nm can be used to determine the percent of 

aromatic DOC fractions as well as estimating DOC concentrations and molecular weight 

(Chin et al. 1994; Simonsson et al. 2005; Traina et al. 1990). Larger SUVA values 

indicate a higher percentage of aromatic DOC compounds while smaller SUVA values 

indicate larger amounts of biodegradable DOC compounds that are simple molecules 

and low in molecular weight as well as decreased amounts of lignin-derived compounds 

that are high in molecular weight (Kalbitz et al. 2003b). Since some aromatic 

compounds of DOC are semi-labile, aromaticity would not be the best predictor for 

determining the potential amount of water extractable BDOC. Rather, a relationship 

between SUVA and %BDOC may be more applicable as the remaining percent would be 

refractory DOC potentially able to runoff into streams.  
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SUVA at 254nm and 280nm have been used to determine the %BDOC in soil 

solutions for forests, wetlands, and grasslands with conflicting results (Fellman et al. 

2009; Sun et al. 2012). SUVA280 was a significant predictor of %BDOC across land uses 

when soil samples from China and Canada were combined, however when analyzed 

separately there was no significant relationship (Sun et al. 2012). This was likely due to 

the small range of SUVA280 (Canada: 0.15-0.17 and China: 0.09-0.10) and %BDOC 

(Canada: 42-52% and China: 37 – 44%) within each continent. Conflicting results were 

also observed in temperate soils in Alaska when wetland soils showed a significant 

relationship between %BDOC and SUVA254 while forest soils did not (Fellman et al. 

2009). This may be indicative of anaerobic vs aerobic decomposition of terrestrial C 

compounds. However, SUVA280 has been successfully used to identify significant 

positive relationships with %DOC aromaticity (Kalbitz et al. 2003a; Kalbitz et al. 

2003b) as well as inverse relationships with %DOC mineralization (Marschner & 

Kalbitz 2003) and %BDOC (McDowell et al. 2006). SUVA254 has been successfully 

used for determining significant positive relationships between %DOC aromaticity by 

13C-NMR (R2=0.97) and SUVA254 (Weishaar et al. 2003), changes in DOC aromaticity 

and changes in acidity (Clark et al. 2011), direct positive relationships between SUVA254 

and molecular weight and humic-like fluorescence and a direct negative relationship 

with fulvic-like fluorescence (Nguyen & Hur 2011). Furthermore, SUVA254 has been 

used to identify a significant relationship between aromatic compound enrichment 

during biodegradation and %BDOC, revealing that aromatic compounds are relatively 

stable and accumulate as DOC biodegradation increases (Kalbitz et al. 2003b). If 



 

 13 

significant relationships between %BDOC and SUVA254 are found, further work could 

apply this predictive tool at a watershed scale and use it to estimate future trends in 

terrestrial DOC available for runoff. 

Study Objectives 

The objectives of this study were to: 

•! Examine if sodium from different sources effect %BDOC 

•! Determine if time of exposure to sodium from 1) deicing salts, 2) 

irrigation water, or 3) deposition of sea salts effect %BDOC in urban soils 

•! Investigate if %BDOC in urban soils can be predicted using optics such 

as SUVA254  

This study will expand on previous knowledge of BDOC in urban soils and 

assess the roles of sodium from three different sources on %BDOC. It has been shown 

that sodium derived from high NaHCO3 irrigation water impacts %BDOC in urban and 

rural soils in Texas (Cioce & Aitkenhead-Peterson 2015); however, it is unknown if the 

impact of sodium on %BDOC is consistent across different cities and sodium sources. 

This study will determine the effect of sodium on %BDOC, SUVA254 and water 

extractable soil DOC and DON across three cities (Chicago, IL; Galveston, TX; 

Bryan/College Station, TX) and determine whether the sodium source (road salts, sea 

salt deposition, or irrigation water) influences a response. This information will be 

valuable for determining whether sodium influences BDOC and is related to DOC 

availability for runoff. 

The hypotheses for this study are: 
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1.! H10: There will be no significant relationship between %BDOC, 

DOC, DON and SUVA254 when soils are exposed to differing 

sodium sources. 

H11: %BDOC and water extractable DOC, DON and SUVA254 will 

significantly differ when soils are exposed to differing sodium. 

2.! H20: There is no significant difference in %BDOC, DOC, DON or 

SUVA254 whether soil is exposed to a sodium source for 0-5, 6-10, 

11-20, 21-30. or >30 years irrespective of the specific sodium source. 

H21: %BDOC, DOC, DON and SUVA254 will alter dependent upon 

the exposure time of soil to  

H30: %BDOC, DOC and DON cannot be modeled across cities using 

SUVA254 

H31: %BDOC, DOC and DON can be modeled across cities using 

SUVA254 
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2.! MATERIALS AND METHODS 

 

Experimental Design 

This experiment examines the effects of time of exposure to three sources of 

sodium: 1) deicing salts, 2) oceanic deposits and 3) irrigation water on %BDOC, DOC, 

and DON. Time of exposure is assumed to be the time since the site was developed and 

new soil or turfgrass sod was installed on the property. Age ranges selected were new 

development 0-5 years, 6-10 years, 11-20 years, 21-30 years and >30 years. Cities were 

selected based on their exposure to the selected sodium sources: Chicago, IL for deicing 

salts, Galveston, TX for oceanic deposition and Bryan/College Station, TX for irrigation 

water. Thus the independent factors for this study are 1) sodium source and 2) length of 

time of exposure to sodium and the dependent factors are %BDOC, DOC, and DON. 

Site Descriptions 

Chicago is the largest city examined and has the highest population density, 

while Galveston is the smallest city examined and has the lowest population density 

(Table 1). Chicago experiences yearly snow precipitation and below freezing 

temperatures necessitating the use of deicing salts while the lack of snow in Galveston 

and Bryan/College Station negates their use of deicing salts (Table 1). Galveston is a 

barrier island in the Gulf of Mexico and is subject to high sodium inputs from sea salt 

deposition. Bryan/College Station was selected because prior research suggested that 

irrigation with sodic groundwater effected DOC and DON adsorption in soils 

(Aitkenhead-Peterson & Cioce 2013), %BDOC (Cioce & Aitkenhead-Peterson 2015), 
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relative abundance and community composition of soil microbes (Holgate et al. 2011), 

general leaching of DOC and DON (Holgate et al. 2011; Pannkuk et al. 2011), and 

runoff to surface waters (Aitkenhead-Peterson & Steele 2016; Aitkenhead-Peterson et al. 

2009). Irrigation with municipal water is likely to be a greater issue in Bryan/College 

Station than in Chicago or Galveston due to its higher sodium concentration (Table 2). 

Soil groups differ among the three cities with sandy soil being dominant in Galveston 

and College Station and clayey soils being dominant in Chicago (Table 3). 

 
 
 

Table 1. Physical demographics of the three cities examined during this study. 

City Sodium 
Source 

Year 
Settled 

Area 
(km2) Population Density 

(# km-2) 
Snow 
(mm) 

Rain 
(mm) 

Temp 
(°C) 

Prior 
Land 
Use 

Chicago, IL Deicing 
salts 1780 606 2,695,598 4,447 945 843 9.8† Savannah/ 

Woodland 

Bryan/College 
Station, TX 

Irrigation 
water 1866 115 228,660 926 0 1020 20.7‡ Post Oak 

Savannah 

Galveston, 
TX Sea salt 1816 539 47,243 479 0 1114 21.8‡ Saltgrass 

Marsh 
Climate (Koopen-Geiger): †Dfa ‡Cfa 

 
 
 
Table 2. Sources of municipal water and associated sodium concentrations for each 
city examined 

City Year Source  Na+ (mg L-1) 

Chicago, IL 2014 Surface Lake Michigan 9.53 – 10.0 

Galveston, TX 2015 Surface Brazos River 46.9 – 62.8 

College Station, TX 2011 Ground Carrizo Wilcox/ 
Sparta Aquifer  193 

Bryan, TX 2011 Ground Simsboro Aquifer 230 

Source: City water quality reports 
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Table 3. Soil groups and soil attributes for cities sampled in this study. 

City Soil Group Sample Size 
(%) 

Clay 
(%) 

Sand 
(%) 

Silt 
(%) 

OM 
(%) 

Ksat 
(mm/hr) 

BD 
(g/cm3) 

CEC 
(cmol charge  

kg-1 soil) 

Galveston Entisol 74.3 5±0 94±0 1±0 1±0 331±0 1.6±0 3±0 

 
Beach 25.7 2±0 98±0 1±0 0±0 508±0 1.5±0 3±0 

BCS Alfisol 97.1 11±2 68±7 21±6 1+0 44±53 1.5±0.1 5±1 

 
Vertisol 2.9 50±0 22±0 28±0 2±0 0.8+0 1.8±0 50±0 

Chicago Urban-Orthent 69 36±0 8±0 56±0 3±0 3±0 1.9±0 19±0 

 
Urban-Alfic-Udarent 25 44±0 8±0 48±0 1±0 1±0 2±0 23±0 

  Urban-Psamment 6 25±0 35±0 40±0 2±0 10±0 1.8±0 18±0 
OM = organic matter, Ksat = saturated hydraulic conductivity, BD = soil bulk density, CEC = cation exchange 
capacity 
 
 
 

Sample Collection and Processing 

Sampling locations in each city were selected from realtor websites based on the 

age of the house and the presence of in-ground irrigation systems in BCS. In each city, 

seven single family homes were selected based on their fit into each of the five pre-

determined time of sodium exposure categories (0-5yr, 6-10yr, 11-20 yr, 21-30 yr, >30 

yr) for a total of 35 sampling locations in each city and 105 total locations for the 

experiment. A benefit of using this method of selection was that it ensured that in-

ground irrigation systems were installed at the BCS sites (Figure 1). For the older 

Chicago sites (Figure 2), if imagery data existed, the address was checked using the 

historic function in Google Earth to ensure it was indeed built on the date displayed on 

the realtor website and there was not a rebuild on a previous home site. Figure 3 displays 

the sampling location sites for Galveston, TX.  

At each sampling site, three soil cores (2 cm diameter, 15 cm depth) were 

obtained and composited for analysis. Samples were air dried, sieved (2 mm), and 
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weighed. 25 g of each soil sample was added to 250 mL of ultra-pure water (reverse 

osmosis water fed through a Beckman water purification system which filtered, UV 

sterilized and filtered water through a 0.2 µm filter) for a 1:10 soil:water ratio. The 

solutions were placed on a shaker at 400 rpm for 4 hours and then centrifuged for 5 min 

at 19,000 g-force. The extracted solutions were then filtered to remove any floating 

organic material with a Whatman GF/F (nominal pore size 0.7 µm) filter and DOC 

concentrations were quantified within 24 h of extraction. Extracts were then diluted to 

10 mg L-1 DOC prior to running the biodegradability procedure. 
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Figure 1. Relative sampling locations and soil series of sample sites in BCS, TX. 
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Figure 2. Relative sampling locations and soil series of sample sites in Chicago, IL. 
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Figure 3. Relative sampling locations and soil series of sample sites in Galveston, 

TX. 
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DOC Biodegradation Method 

The BDOC method used in Cioce and Aitkenhead-Peterson (2015) was modified 

for this study. 50 mL of the diluted extracts (10 mg/L DOC) were combined in an 

Erlenmeyer flask with 7.14 mL of freshly treated, but un-disinfected effluent (collected 

from treatment effluent prior to UV disinfection), and 1.43 mL nutrient solution. 

Effluent was obtained from the Carter’s Creek Wastewater Treatment Plant, College 

Station, TX in 1.9 L containers. The effluent was used as a bacterial inoculant source for 

DOC biodegradation. The nutrient solution (1.43 mL) was modified from McDowell et 

al. (2006) and comprised of 0.3085 mM (0.0165 g) NH4Cl, 1.21 mM (0.1647 g) 

KH2PO4, 0.62 mM (0.0527 g) NaNO3, 0.0113 mM (0.0016 g) Na2SO4, and 0.0198 mM 

(0.0022 g) CaCl2 to create ideal nutrient conditions for DOC biodegradation by 

microbes. Three small pieces (1 cm2) of ashed glass fiber filter paper was added to each 

incubation flask to stabilize microbes. The contribution of DOC from the filter paper to 

the incubation solution was assumed to be negligible as it was non-detectable in prior 

work (Cioce & Aitkenhead-Peterson 2015). 

The samples were covered with parafilm to prevent evaporation with small holes 

poked into the parafilm to allow release of CO2. The samples were incubated at 25 ºC for 

7 days and then analyzed for DOC. Input DOC (µg) derived from soil extracts (50 mL) 

and effluent (7.14 mL) were calculated while the final DOC (µg) was calculated as 

combined soil extract and effluent (57.14 mL). Two controls were used: 1) A blank 

including double deionized water (50 mL), 7.14 mL untreated effluent, and 1.43 mL 

nutrient solution to assess microbial DOC uptake of the effluent and 2) a 10 mg/L 



 

 23 

glucose solution (50 mL) with 7.14 mL untreated effluent, and 1.43 mL nutrient solution 

to monitor the inoculants’ validity as a source for the biodegradation of DOC through 

glucose uptake. All controls and samples were run in triplicates. 

Chemical Analysis 

Electrical conductivity (EC) and pH were recorded for all unfiltered soil extracts. 

Filtered extracts were analyzed for dissolved organic carbon (DOC) and total dissolved 

nitrogen (TDN) using high temperature Pt-catalyzed combustion with a Shimadzu TOC-

VCSH and Shimadzu total measuring unit TNM-1 (Shimadzu Corp. Houston, TX, 

USA). Dissolved organic carbon was measured as non-purgeable carbon which entails 

acidifying the sample (250 µL 2 M HCl) and sparging for 4 min with C-free air.  

Ammonium-N was analyzed using the phenate hypochlorite method with sodium 

nitroprusside enhancement (USEPA method 350.1), nitrate-N was analyzed using Cd-Cu 

reduction (USEPA method 353.3), and orthophosphate-P was analyzed using the 

ascorbic acid-molybdate blue method. All colorimetric analyses were performed using a 

Westco Scientific Smartchem Discrete Analyzer (Westco Scientific Instruments Inc. 

Brookfield, CT, USA). Calcium (Ca), magnesium (Mg), potassium (K) and sodium (Na) 

in the extracts were used for the estimation of sodium adsorption ratio (SAR) and 

exchangeable sodium percentage (ESP). Other elements (Fe, Zn, Mn, B, S, Cu) in the 

extracts were also quantified using inductively coupled plasma mass spectrometry (ICP) 

(Spectro Genesis: Spectro, Germany) using the method described in (Franson 1989). 

Dissolved organic nitrogen was estimated by deducting inorganic-N (NH4-N + NO3-N) 
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from TDN. SUVA254 was quantified on a Shimadzu 280 spectrophotometer (Shimadzu 

Corp. Houston, TX, USA) at wavelength of 254 nm. 

Statistical Analysis 

Tests of normality and equal variance were run on the data to assess the need for 

transformation prior to statistical analysis. Analyzed DOC and Zn data was transformed 

using the reciprocal square root to meet the assumptions of normality and equal 

variances. Analyzed DON data met the assumption of equal variances but failed to meet 

the assumption of normality for all data transformations. The Kruskal - Wallis 

nonparametric test then was used. SUVA254 and EC data were log transformed for 

analysis. All other extract data was analyzed using the nonparametric Kruskal - Wallis 

test and the post hoc test used was pairwise comparisons. Untransformed data was 

reported in the thesis. 

A univariate analysis of variance was performed with 1) sodium source and 2) 

length of exposure to sodium (soil age) as independent variables and water extractable 

dissolved organic matter (DOM) fractions (DOC and DON, %BDOC and SUVA254) as 

dependent variables. The data was pooled and the univariate analysis of variance was 

rerun if any independent variable was not significant. A post hoc Tukey test was 

performed to determine the significant differences among groups.  

The following equations were used to calculate ESP and SAR: 

!"# = % &'(
&'( + *( ++,-( + .'-( ∗ 100 
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Regression analysis was performed on %BDOC and various independent variables to 

assess their relationship and determine if a significant trend existed. 

A backward stepwise regression analysis was performed using all extraction data, 

soil age, and source to determine the best independent variables for predicting %BDOC, 

DOC, and DON. Those independent variables selected were used in a partial least 

squares (PLS) regression analysis with a full cross validation using an Orthogonal 

Scores algorithm (Martens & Naes 1989). The full cross validation removes one sample 

at a time and refits the model using the new equation to predict the removed sample. The 

full cross validation method is often preferred over a test set validation when the sample 

size is limited such as this study (Martens & Dardenne 1998). In this experiment, the 

best model was chosen based on a high R2 and low root mean square error (RMSE).  

The modeling step was not to produce a predictive model per se, but to identify 

the independent variables that had the largest significant effect on %BDOC, DOC and 

DON in order to identify and interpret potential mechanisms in their production. 

Statistical analysis was performed using SPSS v22 and the cross validation was 

performed using Unscrambler v9.8 (Camo Software Inc., Woodbridge, NJ, USA). 
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3.! RESULTS AND DISCUSSION 

 

This study examined the theory that sodium exposure to watershed soils would 

increase DOC solubility of humic acids, leading to a smaller fraction of labile DOC and 

larger fraction of refractory DOC available for transport in soil solution. To test this 

hypothesis, urban soils from three U.S. cities were examined based on their source of 

sodium and length of exposure time to the sodium source. An assumption was made that 

newly constructed homes had new top soil and/or sod that had not been previously 

exposed to the sodium source. The study concentrated on the labile fraction (%BDOC) 

and refractory fraction (SUVA254) of water extractable DOC and also on water 

extractable DON. Univariate analysis of variance determined that sodium source had a 

significant effect on all major dependent variables tested, which included %BDOC (p < 

.001), DOC (p = .03), DON (p < .001), and SUVA254 (p < .001) and soil exposure time 

had a significant effect on water extractable DOC (p < .001) and DON (p < .001) but not 

on %BDOC (p = 0.13) or SUVA254 (p = 0.25). 

Sodic soils are classified as having an EC< 4 dSm-1, pH > 8.5, SAR > 13, and 

ESP > 15 while saline soils have an EC > 4, pH < 8.5, SAR < 13, and ESP < 15. In this 

experiment, BCS soils exposed to irrigation water have sodic characteristics whereas 

Galveston soils exposed to sea salt deposition have saline characteristics. Chicago soils 

have sodic characteristics except that the pH (at an average of 7.5) is less than the 

required pH of 8.5 to classify it as a sodic soil (Table 4). All extract data is shown in 

Table 4. 
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Table 4. Mean values for data. Numbers in parenthesis are standard deviation. Significant differences within age and 
source are indicated with a lowercase letter (p < .05). 

Source Age 

 Deicing Irrigation Sea Salt 0 to 5 6 to 10 11 to 20 21 to 30 > 30 

Number of Samples 33 34 35 20 21 20 18 23 

pH a 7.5 (0.2) b 8.7 (0.8) a 7.8 (0.57) 7.7 (0.7) 8.0 (0.7) 8.1 (0.8) 8.3 (0.8) 7.9 (0.8) 

EC (uScm) a 149 (36) a 169 (97) b 94 (36) 123 (36) 148 (97) 127 (79) 152 (79) 136 (70) 

Na (µg/g soil) a 180 (133) a 333 (287) b 34 (36) 106 (83) 155 (201) 206 (280) 260 (252) 186 (226) 

SAR a 35 (27) a 49 (32) b 7 (8) 20 (15) 24 (27) 33 (34) 43 (37) 33 (32) 

ESP (%) a 35 (17) a 45 (18) b 13 (9) 29 (17) 27 (21) 31 (20) 36 (22) 31 (22) 

Ca (µg/g soil) ab 124 (45) a 171 (108) b 115 (39) 132 (44) 163 (115) 137 (84) 131 (42) 122 (61) 

Mg (µg/g soil) a 54 (25) a 85 (84) b 25 (9) 35 (12) 56 (72) 56 (46) 75 (71) 55 (56) 

K (µg/g soil) a83 (46) ab80 (66) b88 (228) 54 (24) 60 (39) 79 (69) 96 (64) 127 (278) 

Fe (µg/g soil) a150 (177) b652 (1013) c54 (24) 71 (40) 270 (745) 281 (451) 597 (1068) 241 (470) 

Zn (µg/g soil) ab1.2 (0.8) a1.9 (1.7) b0.87 (0.30) a0.8 (0.24) a1.0 (1.0) ab1.3 (0.7) b1.9 (1.8) b1.6 (1.2) 

Cu (µg/g soil) a0.31 (0.22) b0.51 (0.32) a0.29 (0.11) 0.29 (0.14) 0.29 (0.17) 0.40 (0.24) 0.48 (0.27) 0.41(0.34) 

Mn (µg/g soil) ab0.46 (0.51) a1.12 (1.44) b0.18 (0.11) a0.19 (0.13) ab0.54 (1.0) ab0.56 (0.61) b1.06 (1.36) ab0.62(1.12) 

HCO3 (µg/g soil) a384 (187) b591 (292) c108 (129) 359 (239) 392 (318) 350 (293) 413 (292) 292 (316) 

S (µg/g soil) a16 (5) b46 (83) c10 (5) 24 (29) 41 (103) 17 (11) 23 (25) 14 (9) 

B (µg/g soil) a0.54 (0.60) a0.91 (1.21) b0.03 (0.10) 0.13 (0.17) 0.41 (0.98) 0.46 (0.62) 0.97 (1.24) 0.52 (0.79) 

NH4 – N (µg/g soil) a9.0 (4.0) b2.7 (2.0) b2.9 (2.2) 3.2 (2.8) 4.6 (3.6) 4.8 (5.2) 4.9 (3.8) 6.3 (4.2) 

SUVA254 (Lmg-1m-1) a 5.8 (3.3) b 11.0 (4.7) b 9.3 (5.9) 8.5 (5.6) 9.5 (5.4) 7.0 (4.4) 7.7 (5.1) 13.2 (7.6) 
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The Influence of Sodium Source on Soil Chemistry 

It was assumed that sodium entered the soil in the form of NaCl for soils exposed 

to sea salt deposition and deicing salts in Galveston and Chicago, respectively. While 

sodium from soils collected in BCS were assumed to enter the soils in the form of 

NaHCO3. The concentrations of Na within the soils were significantly different among 

the sodium sources (p < 0.001). Figure 4 shows that soils exposed to sea salt deposition 

in Galveston had significantly lower Na concentrations (34 ± 6 µg/g) than soils exposed 

to deicing salts (180 ± 23 µ/g) and irrigation water (333 ± 49 µg/g). Due to this 

difference in Na concentration, it is expected that DOC, %BDOC, and DON in soils 

exposed to sea salt deposition will not be influenced in the same way as soils exposed to 

higher Na concentrations. 

 
 
 

 
Figure 4. Mean water extractable Na concentrations in urban soils exposed to 

different sodium sources. Different lower case letters indicate a significant 
difference at p < 0.05. Error bars are standard error. 
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%BDOC 

BDOC is that fraction of labile (easily mineralized C) carbon found in soil 

solution, throughfall or water extracts (McDowell et al. 2006). The range of %BDOC 

values in the current study (0-56%) is similar to the only other study completed on urban 

soils (19-46%) (Cioce & Aitkenhead-Peterson 2015). To date, no studies have examined 

the influence of different sodium sources on BDOC in urban soils. The mean %BDOC in 

soils was significantly different among sources (Figure 5). Urban soils exposed to sea 

salt had the highest %BDOC (46 ± 6%), urban soils irrigated with sodic water had the 

second highest %BDOC (29 ± 3%), and urban soils exposed to deicing salts (18 ± 2%) 

experienced the lowest %BDOC. The null hypothesis (H10) that sodium source does not 

affect %BDOC in soils was rejected (p < 0.001).  

 
 
 

 

Figure 5. Mean %BDOC in urban soils exposed to deicing salts, sodic irrigation 
water and sea salt deposition. Differences in lower case letters indicate significant 

differences at p < 0.05. Error bars are standard error. 
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The soils exposed to sea salt deposition have the highest %BDOC and the lowest 

Na concentrations. Although there was no significant difference in the mean Na 

concentrations between soils exposed to deicing salts and irrigation water, there was a 

significant difference in %BDOC. This suggests a potential influence from the form that 

Na enters the soil (NaCl or NaHCO3) on %BDOC. This relationship is demonstrated 

when observing that %BDOC in soils exposed to sodium in the form of NaCl decrease in 

%BDOC at a faster rate than soils exposed to NaHCO3 (Figure 6). Although it is 

expected that the effect is due to sodium the fact that soil textures are different among 

the sites cannot be ignored. 

 
 
 

 
Figure 6. Relationship between %BDOC and water extractable sodium for NaCl 

and NaHCO3 (p < 0.001). 
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DOC 

DOC solubility in soils has been shown to have a direct relationship with S.A.R 

and Na concentrations (Steele & Aitkenhead-Peterson 2012) as well as bicarbonate 

concentrations (Pannkuk et al. 2011) within soils. However, the influence Na source on 

DOC release in soils has not been compared. DOC release was significantly different 

among sodium sources, (p = 0.03; Figure 7) The mean DOC concentration was 

significantly higher in soils exposed to irrigation water (388 ± 53 µg/g soil) compared to 

those exposed to sea salt deposition (235 ± 21 µg/g soil), while soils exposed to deicing 

salts (275 ± 31 µg/g soil) did not significantly differ from irrigation or sea salt deposition 

sources.  

 
 
 

 
Figure 7. Water extractable DOC concentrations in urban soils exposed to different 
sodium sources. Different lower case letters indicate a significant difference at p < 

0.05. Error bars are standard error. 
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The significant difference in DOC release between sea salt and irrigation sources 

can be explained by the significantly large difference in Na concentrations in the soils 

(Figure 4). Due to the large amount of Na exposure in soils exposed to irrigation water, 

DOC release is expected to be higher than soils exposed to less Na, as seen in sea salt 

deposition. There is an obvious direct relationship between DOC release and Na 

concentrations between all sources (Figure 8) however, the lack of significance 

difference in DOC release between deicing and sea salt deposition suggests another 

parameter may be influencing DOC release besides just Na. High alkalinity can also 

increase DOC release in soils (Tavakkoli et al. 2015) which may be influencing the 

higher DOC release observed in soils exposed to irrigation water (Figure 9). Since Na 

enters the soil in the form of NaHCO3, the bicarbonate ion increases soil pH and as a 

result, increases DOC solubility. Since Na enters the soils as NaCl for deicing salts and 

sea salt deposition, DOC solubility is dependent on Na concentrations which does not 

influence pH as strongly as HCO3 (Tavakkoli et al. 2015). 
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Figure 8. The relationship between DOC and water extractable sodium (p < 0.001). 
 
 
 

 
Figure 9. Relationship between DOC and alkalinity in soils for NaCl (p = 0.78) and 

NaHCO3 (p = 0.001). 
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DON 

DON and DOC are usually highly correlated because DON is a subset of DOC in 

that it is a C compound with amino groups (NH3) attached. Microbes and soil enzymes 

cleave NH3 off the molecule and the amino group becomes NH4
+. Therefore, factors 

influencing DON solubility are similar to DOC. Mean water extractable DON 

concentrations in urban soils were significantly different among sodium sources (p < 

0.001; Figure 10). Urban soils exposed to deicing salts had significantly lower DON 

concentrations (17 ± 3 µg/g soil) compared to soils exposed to irrigation water (33 ± 5 

µg/g soil) and sea salt deposition (23 ± 2 µg/g soil). Soils exposed to deicing salts also 

experienced significantly higher mean NH4 – N concentrations (9 µg/g soil) than soils 

exposed to irrigation water (2.7 µg/g soil) and sea salt deposition (2.9 µg/g soil), 

suggesting microbes may have been inhibited to uptake NH4 – N. 
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Figure 10. Water extractable DON concentrations in urban soils exposed to 
different sodium sources. Different lower case letters indicate a significant 

difference at p < 0.05. Error bars are standard error. 
 
 
 

SUVA254 

Large SUVA254 values indicate a higher percentage of aromatic, recalcitrant 

DOC compounds while smaller SUVA values indicate a larger proportion of BDOC 

compounds that are simple molecules that are low in molecular weight (Kalbitz et al. 

2003b). It has previously been shown that %BDOC has an inverse relationship with 

SUVA280 values and as %BDOC decreases, SUVA280 values increased along with 

structural aromatic DOC molecules (Kalbitz et al. 2003a). In this study, mean SUVA254 

values in soils exposed to deicing salts were significantly lower than soils exposed to 

irrigation water and sea salt deposition (p < 0.001; Figure 11), regardless of exposure 

time.  
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Figure 11. Mean water extractable SUVA254 values in urban soils exposed to 
different sodium sources. Different lower case letters indicate a significant 

difference at p < 0.05. Error bars are standard error. 
 
 
 

It would be expected that soils exposed to sea salt deposition would have the 

lowest SUVA values due to its high %BDOC and low DOC release. However, this was 

not observed in this study. The high SUVA254 values observed in soils exposed to 

irrigation water are likely due to the combination of high sodium and alkalinity in the 

soils (Figure 9) stimulating the highest DOC release. As a result, soils exposed to 

irrigation water would have a larger amount of highly reflective aromatic DOC 

compounds and high mean SUVA254 values compared to soils exposed to deicing salts. 

As stated above, %BDOC is a measurement of the amount of labile DOC compounds 

where a low %BDOC is known to have a high aromatic DOC concentration. The high 

SUVA254 values observed in urban soils exposed to sea salt are likely indicative of a 

a

b
b

0

2

4

6

8

10

12

14

Deicing Irrigation Sea Salt

SU
VA

25
4

(L
 m

g-1
m

-1
)



 

 37 

higher fraction of aromatic C compounds, some of which may have been derived from 

the numerous oil spills that have occurred in the Gulf of Mexico over the last three 

decades. Evidence of this is also shown in Figure 12, where soils exposed to irrigation 

water and deicing salts demonstrate an inverse relationship between %BDOC and DOC. 

Soils in Galveston do not demonstrate this relationship suggesting an input of highly 

aromatic DOC compounds, which explains the high DOC release without sodium 

exposure as well as the high %BDOC and SUVA254 values  

 
 
 

 
Figure 12. Demonstrating the inverse relationship between %BDOC and DOC 

across BCS (p < 0.001), Chicago (p = 0.03), and Galveston (p = 0.63).  
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The Influence of Time of Sodium Exposure on Soil Chemistry 

To test whether exposure time to sodium influenced %BDOC, DOC, DON, and 

SUVA, it was assumed that house age equaled soil exposure time to sodium and new 

soil was laid once the house build was complete. As soil exposure time increased it was 

thought that Na would increase and accumulate in soils. Although there was no 

significant difference among Na concentrations and soil exposure time across all cities 

(p = 0.23), Na concentrations show an increase over time until soil age reached < 30 

years and a decline began (Figure 13).  

When analyzed by sodium source, the decline in soil Na after 30 years was 

present for deicing salts and irrigation water (Figure 14). The decline in sodium for 

irrigation water exposure may be due to the fact that in-ground irrigation systems were 

not installed on properties over 30 years ago. Similarly, Chicago may have mixed 

deicing salts with sand until 30 years when a switch occurred to NaCl. With the potential 

influence of these factors, the results still demonstrate that time of sodium exposure can 

be seen between 0 and 30 years before changes occur in soils exposed over 30 years. 
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Figure 13. Mean water extractable Na concentrations over exposure time (p = 0.23). 

Error bars are standard error. 
 
 
 

 
Figure 14. Water extractable Na concentrations by sodium source over exposure 

time for deicing salts (p = 0.01), irrigation water (p = 0.03), and sea salt deposition 
(p = 0.95). 
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%BDOC 

To date, no study has examined the relationship of %BDOC over time of Na 

exposure. As Na concentrations increase with soil exposure time, it would be expected 

that %BDOC would decrease (Figure 6) due to increased solubility of DOC compounds 

(Figure 8). However, %BDOC was not significantly different among soil age groups (p 

= 0.13; Figure 15) and when analyzed by sodium source, no significant difference 

among exposure times were present (Figure 16). On the other hand, %BDOC does 

demonstrate a non-significant decrease as exposure time to sodium increases for deicing 

salts and irrigation water, likely due to the accumulation of sodium over time. The null 

hypothesis (H20) that soil age has no significant effect on %BDOC was accepted  

 
 
 

 
Figure 15. Mean %BDOC in urban soils exposed to sodium over time (p = 0.134). 

Error bars are standard error. 
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Figure 16. %BDOC by sodium source over time of sodium exposure. There was a 

significant quadratic trend for deicing salts (p = 0.03; r2 = 0.20) while the trends for 
irrigation and sea salt sources were not significant (p = 0.40; r2 = 0.02 and p = 0.57; 

r2 = 0.01, respectively) 
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the remaining soil age groups whose means ranged from 261 ± 38 µg/g soil to 428 ± 63 

µg/g soil and did not significantly differ from one another (Figure 17).  

Significant increases of DOC among exposure time were present in soils exposed 

to deicing salts and irrigation water among age groups (Figure 18). These differences are 

likely influenced by increasing sodium concentrations over time (Figure 14) especially 

because all soils, regardless of sodium source, had similar DOC concentrations at 

exposure time 0 to 5 (Figure 18). Soils exposed to sea salt deposition show a slight 

increasing trend in DOC release over time. This increase in DOC solubility may be a 

result of a natural accumulation of DOC that microbes cannot degrade or an 

accumulation of highly recalcitrant DOC from oil spills in the Gulf of Mexico.  

 
 
 

 
Figure 17. Mean water extractable DOC concentrations in urban soils grouped by 

time of exposure to a sodium source. Different lower case letters indicate a 
significant difference at p < 0.05. Error bars are standard error. 
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Figure 18. DOC concentrations by sodium source over exposure time to sodium. 
Lowercase letters denote significant differences for deicing salts (p = 0.001) and 

uppercase letters denote significant differences for irrigation (p = 0.001) while sea 
salt exposure had no significant differences (p = 0.32) using univariate analysis. 

Regression analysis determined significant quadratic trends for deicing salts (p = 
0.001, r2 = 0.40) and irrigation (p = 0.002; r2 = 0.36) and a cubic trend for sea salt (p 

= 0.004; r2 = 0.35). 
 
 
 

DON 
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or more amino acid(s) (NH3) as a functional group and when cleaved, simple low 

molecular weight DON becomes DOC. As a result, factors influencing DOC release are 
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so dramatic as time increased, they attributed the decline to soils reaching an equilibrium 

that was previously present before soils were disturbed.  

The results in this study show DON concentrations significantly increased over 

time of sodium exposure (p < .001; Figure 19). Soils with smallest exposure time had the 

lowest mean DON concentration (12 ± 2 µg/g soil) and DON concentrations 

significantly increased with length of exposure time (6-10 yr: 21 ± 3 µg/g soil, 11-20 yr: 

25 ± 5 µg/g soil) until it peaked at 21-30 yrs (38 ± 5 µg/g soil) before beginning to 

decrease for soils > 30 yrs (28 ± 5 µg/g soil). These results agree with those found by 

Aitkenhead-Peterson and Cioce (2013) which showed increased DOC and DON release 

in soils until time was greater than 34 years when a sharp decrease in solubility was 

observed. However, this decrease may be a result of decreased sodium exposure from 

irrigation systems not being installed over 30 years ago or from previous decreased use 

of deicing salts. These results mirror DOC (Figure 18) as well as the trends observed for 

sodium (Figure 14), demonstrating that DON solubility increases with sodium exposure, 

regardless of sodium source.  
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Figure 19. Mean water extractable DON concentrations in urban soils grouped by 

time of exposure to a sodium source. Different lower case letters indicate a 
significant difference at p < 0.05. Error bars are standard error. 

 
 
 

SUVA254 

It would be expected for SUVA254 values to increase over time of sodium 

exposure due to the increased release of DOC for sodium. In this study, time of exposure 

to sodium had no significant effect on mean SUVA254 values (p = 0.25; Figure 20) across 

all cities. When analyzed by individual cities, there was no significant differences in 

SUVA254 values over time. This is likely due to the lack of significant differences in 

%BDOC over exposure time within individual sources (Figure 16). Since SUVA can be 

used to determine %BDOC (inverse relationship) and DOC (direct relationship) (Kalbitz 

et al. 2003b), the lack of significant decreasing trends observed for %BDOC could have 

a

b

bc

c

bc

0
5

10
15
20
25
30
35
40
45

0-5 6-10 11-20 21-30 >30

D
O

N
 (µ

g/
g 

so
il)

 

Exposure to Sodium (Years) 



 

 46 

created enough variability that differences could not be detected in SUVA254 values over 

time, even though DOC had significant differences over time.  

 
 
 

 
Figure 20. Mean SUVA254 values grouped by soil age. Error bars are mean 

standard errors. 
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In this experiment, linear regression analysis was preformed to determine if DOC 

and %BDOC could be predicted. A significant positive relationship was found between 

SUVA254 and DOC concentrations within soils across all cities (p < 0.001, r2 = 0.33, adj. 

r2 = 0.33; Figure 21). This relationship was improved by examining it by sodium source. 

Significant positive relationships were present in Chicago soils (p < 0.001, r2 = 0.36), 

BCS soils (p < 0.001, r2 = 0.48), and Galveston soils (p < 0.001, r2 = 0.40) (Figure 22). 

As DOC concentrations increased, the amount of aromatic/refractory compounds also 

increased. This relationship is similar to results obtained in previous studies that 

successfully related DOC concentrations to SUVA values (Nguyen & Hur 2011; 

Simonsson et al. 2005). 

 
 
 

 
Figure 21. Relationship between DOC and SUVA254 across all cities (p < 0.001). 
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Figure 22. Relationship between DOC and SUVA254 grouped by sodium source.  

*** p < 0.001 
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regression line which increased residual error and prevented a significant trend to be 

detected over all cities. 

 
 
 

 

Figure 23. The relationship between %BDOC and SUVA254 across all cities (n=102) 
(p = 0.08)  
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Figure 24. Relationship between %BDOC and SUVA254 grouped by city. * p < 0.5 

and *** p < 0.001 
 
 
 

Models of %BDOC, DOC, and DON 

Backward, stepwise multiple linear regression analysis identified several 
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error (RMSE).  
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Modeling is often done to predict a dependent variable when an analysis of that 

variable is complex. This certainly describes %BDOC and DON where analysis of these 

parameters are time consuming and costly. DON is derived as the difference between 

total dissolved N (TDN) and inorganic N (NO3-N + NH4-N). Confidence in the value of 

DON can only be achieved if the sample is run for all N analyses within 18 hours of 

collection due to likely transformation between N species. In the case of %BDOC, the 

recommended method is 7-day incubation (McDowell et al. 2006). 

It is always prudent to check individual correlations between the dependent and 

independent variables particularly when running multiple linear regression analysis 

because there may be mediational or confounding effects among the independent 

variables selected. Differences in the direction (negative or positive) reflected in the 

equation coefficients and correlation analysis is quite common. 

An objective of this study was to isolate independent variables that may be 

involved in release mechanisms for DOC and DON in urban soils and to recognize the 

variables that may have an effect on the presence of BDOC in soils. 

%BDOC 

While %BDOC has been quantified in multiple undisturbed and agricultural soils 

(Boyer & Groffman 1996; Fellman et al. 2009; McDowell et al. 2006; Yano et al. 2000) 

fewer studies have quantified %BDOC in urban soils (Cioce & Aitkenhead-Peterson 

2015) and to date %BDOC in urban soils has not been modeled using soil chemistry. 

Four models were created and compared in this study for %BDOC to examine the 

significant measured variables that relied on the concentration of %BDOC across all 
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cities and within individual cities. This study also determined the relationship between 

%BDOC and the selected significant variables and the potential mechanisms influencing 

one another (Table 5).  

 
 
 

Table 5. Summary of %BDOC model statistics and predictors 
 n Slope Offset RMSE R2 p Independent Variables 

All Cities 102 0.631 11.522 9.578 0.63 < 0.001 City, NO3-N, DON, DOC, Na 

Chicago 33 0.657 6.191 7.276 0.66 <0.001 SUVA254, HCO3, Mn 

BCS 34 0.662 9.781 7.508 0.66 <0.001 EC, Ca, Na, Mn 

Galveston 35 0.578 19.375 3.821 0.58 ns pH, EC, DOC, Mg, K, Zn, Mn 

 
 
 

All-Cities %BDOC Model 

The selected independent variables for the All-City %BDOC Model were city, 

NO3-N, DON, DOC and Na (R2 = 0.63, p < 0.001;Table 5). All independent variables 

selected for this model were significant (p < 0.01; Table 6) suggesting a change in that 

independent variable would elicit a response in %BDOC. The cross validation for this 

%BDOC model showed that the relationship between predicted and observed %BDOC 

was relatively weak but nonetheless significant (Figure 25A). Under- and over-

predictions generally occurred within ± 20% of the real values except for one sample 

which was under-predicted by 38% (Figure 25A). The cross validation trend line 

intercepts zero because of the expectations of a 1:1 relationship between observed and 

predicted values.  
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%BDOC was significantly and negatively correlated with all the independent variables 

selected except city which was significantly which displayed a significant positive 

correlation: city (R = 0.27; p < 0.01), NO3-N (R = -0.51; p < 0.001), DON (R = -0.25; p 

= 0.01), DOC (R = -0.42; p < 0.001) and Na (R = -0.54; p < 0.001). 

 

All-Cities %BDOC = 35.242 + 3.948*City – 0.366*NO3-N + 0.95*DON – 0.037*Na – 

0.083*DOC 

 
 
 
Table 6. All-Cities %BDOC Model coefficient statistics. 

MODEL CORRELATION 

Predictors Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model  
P value 

Correlation 
Coefficients 

(R) 

Correlation 
P value 

(Constant) 35.242  < 0.001    
City 3.948 0.203 0.013 0.27 0.005 
NO3-N - 0.366 - 0.207 0.007 - 0.51 < 0.001 
DON 0.950 1.203 < 0.001 - 0.25 0.011 
Na - 0.037 - 0.513 < 0.001 - 0.54 < 0.001 
DOC - 0.083 - 1.184 < 0.001 - 0.42 < 0.001 

Model ANOVA Table 

 Sum of Squares df Mean Square F value p 
Regression 16,007 5 3,201 33 < 0.001 
Residual 9,357 96 97   
Total 25,364 101    
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Figure 25. Cross validations of %BDOC Models for A) all cities, B) Chicago, and 
C) BCS. Inset figures display differences for each sample between observed and 

predicted values.

y = 0.9187x
R² = 0.37

-10

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Pr
ed

ict
ed

 B
D

O
C

 (%
)

A

y = 0.8729x
R² = 0.43

-20

-10

0

10

20

30

40

50

0 10 20 30 40 50

Pr
ed

ict
ed

 B
D

O
C

 (%
)

B

y = 0.9413x
R² = 0.40

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Pr
ed

ict
ed

 B
D

O
C

 (%
)

Observed BDOC (%)

C

!40

10

!20

0

20

!20

0

20



 

 55 

Chicago %BDOC Model 

Percent BDOC in the urban soils in the city of Chicago was modeled relatively 

well (R2 = 0.66; p < 0.001; Tables 5 and 7). Cross-validation of the Chicago BDOC 

model yielded a weak but significant relationship between predicted and observed 

BDOC concentrations (Figure 25B) and under- and over-estimates of BDOC were 

generally ±14% (Figure 25B).  

All independent variables selected for the Chicago DOC were significant (p < 

0.05) with the exception of HCO3 (p = 0.09) suggesting that any change in them would 

stimulate a change in %BDOC (Table 7). Pearson bivariate correlation analysis showed 

that all independent variables selected during the backward stepwise regression analysis 

had significant and negative correlations with %BDOC with the exception of HCO3 

which had a positive correlation with %BDOC and was non-significant: SUVA254 (R = -

0.76; p < 0.001), Mn (R = -0.60; p < 0.001) and HCO3 (R = 0.10; p > 0.05). 

 

Chicago %BDOC = 46.386 – 0.013*HCO3 + 13.151*Mn – 5.004*SUVA254  
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Table 7. Chicago %BDOC Model coefficient statistics. 
MODEL CORRELATION 

Predictors Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model  
P value 

Correlation 
Coefficients 

(R) 

Correlation 
P value 

(Constant) 46.386   < 0.001    
HCO3 - 0.013 - 0.199 0.096 0.10 0.096 
Mn 13.151 0.535 0.047 - 0.60 < 0.001 
SUVA254 - 5.004 - 1.312 < 0.001 - 0.76 < 0.001 

Model ANOVA Table 

 Sum of Squares df Mean Square F value p 
Regression 3,352 3 1,117 19 < 0.001 
Residual 1,747 29 60   
Total 5,099 32    
 
 
 

BCS %BDOC Model 

The resultant model for BCS %BDOC was relatively strong and significant (R2 = 0.66; p 

< 0.001; Table 5 and 8). Although the full cross validation yielded a poor relationship 

between predicted and observed %BDOC, it was still significant (Figure 25C). All 

under- and over-predictions were less than ± 16%. All independent variables selected 

during regression analysis were significant (p < 0.05) indicating that any change their 

concentration would stimulate a change in %BDOC (Table 8). When predictors were 

analyzed for significant correlations, %BDOC was negatively correlated with all the 

independent variables selected for the BCS %BDOC model but only Na and Mn had a 

significant correlation: EC (R = -0.30; p > 0.05), Ca (R = -0.26; p > 0.05), Na (R = -

0.60; p < 0.001) and Mn (R = 0.64; p < 0.001). 

 

BCS %BDOC = %BDOC = 32.984 + 0.189*EC - 0.094*Ca – 0.047*Na – 3.745*Mn  
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Table 8. BCS %BDOC Model coefficient statistics. 
MODEL CORRELATION 

Predictors Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model  
P value 

Correlation 
Coefficients 

(R) 

Correlation 
P value 

(Constant) 32.984   < 0.001    
EC 0.189 1.401 < 0.001 - 0.30 0.087 
Ca - 0.094 - 0.779 0.001 - 0.26 0.143 
Na - 0.047 - 1.033 0.001 - 0.60 < 0.001 
Mn - 3.745 - 0.412 0.045 - 0.64 < 0.001 

Model ANOVA Table 

 Sum of Squares df Mean Square F value p 
Regression 3,756 4 939 14 < 0.001 
Residual 1,917 29 66   
Total 5,673 33    
 
 
 

Galveston %BDOC Model 

The Galveston model for %BDOC was the poorest (R2 = 0.58; Table 5). A full 

cross validation for this model was not possible and likely due to the small range of 

%BDOC values for this site. All independent variables selected for the Galveston model 

were significant (p < 0.05) except DOC (p = 0.07) (Table 9). Percent BDOC did not 

have a strong or significant correlation with any of the independent variables the 

backward stepwise multiple linear regression analysis selected when analyzed separately 

using a Pearson bivariate correlation analysis. 

 

Galveston %BDOC = 6.096*pH + 0.076*EC + 0.045*DOC - 0.515*Mg - 0.023*K - 

11.198*Zn + 30.019*Mn – 0.362 
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Table 9. Galveston %BDOC Model coefficient statistics. 
MODEL CORRELATION 

Predictors Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model  
P value 

Correlation 
Coefficients 

(R) 

Correlation 
P value 

(Constant) - 0.362   0.985   
pH 6.096 0.586 0.008 0.22 0.194 
EC 0.045 0.943 < 0.001 - 0.07 0.702 
DOC 0.076 0.463 0.077 0.08 0.632 
Mg - 0.515 - 0.766 0.002 - 0.12 0.475 
K - 0.023 - 0.888 0.002 - 0.03 0.871 
Zn - 11.085 - 0.552 0.002 - 0.32 0.058 
Mg 30.019 0.570 0.007 0.17 0.319 

Model ANOVA Table 

 Sum of Squares df Mean Square F value p 
Regression 705  7 101  33 0.001 
Residual 503  27 19    
Total 1,208  34    
 
 
 

Similarities and Dissimilarities in %BDOC Predictors Across Urban Ecosystems 

Slightly improved models were achieved for predicting %BDOC in urban soils 

when examined by individual cities compared to grouping cities together. The variables 

selected in the All-Cities Model were city, NO3-N, DON, Na, and DOC. These selected 

variables are supported in the literature to be dependent on the presence of %BDOC. It is 

well known that nitrification (the production of NO3-N) is dependent on the presence of 

labile DOC, which is used as a substrate along with NH4; However, NYSERDA (2015) 

was able to show that microbial immobilization (or uptake) of NO3-N increased with 

increasing %BDOC. The All City Model demonstrated this mechanism through the 

relationship showing if %BDOC increased, the concentration of NO3-N decreased. The 

model also showed that increases in Na concentrations caused %BDOC to decrease. This 
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relationship was noted by Cioce and Aitkenhead-Peterson (2015) in a similar study of 

urban soils where they reported that soil Na concentrations > 518 µg g soil-1 had 

significantly lower %BDOC when compared to soil Na concentrations < 390 µg g soil-1. 

Several of the soils in the current study had soil sodium concentrations > 518 µg g soil-1 

and while there was a general tendency for high Na soils to have lower %BDOC, other 

factors may be responsible for depressing %BDOC. The negative but significant 

correlation between %BDOC and DOC suggests that as DOC concentrations increase 

then more of their composition is in the form of recalcitrant DOC.  

City (or source of Na) was selected during backward regression analysis as an 

important independent variable. While the source of sodium might be important and was 

in fact the reason for the experiment, other differences among the cities examined must 

be considered. There were climatic (temperature and precipitation) differences among 

the cities and furthermore soil texture was also very different. For example, in Chicago 

69% of the soils were a silty clay loam and 25% were silty clay, in BCS the dominant 

soil was a sandy loam and in Galveston the soils were classified as sandy soils. 

Individual site factors such as annual temperature, precipitation and soil characteristics 

need to be included in any future models across cities to understand how these factors 

might affect %BDOC. 

Different independent variables incorporated into the individual city models are 

likely to be site specific and reflect conditions occurring in the soil of that city but not 

elsewhere. The only similar independent variable for describing %BDOC in urban soils 

in Chicago and BCS was Mn and the correlation between the two was significant and 
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negative in both cities. The concentrations of Mn ranged between 0.02 and 2.29 µg g 

soil-1 in Chicago and between 0.01 and 4.97 µg g soil-1 in BCS. Manganese is known to 

strongly interact with DOC and form Mn-DOC complexes (Lovley 1991; Stone & 

Morgan 1984; Sunda & Kieber 1994); thus, it would be expected that a Mn-DOC 

complex would be refractory and increases in DOC would lead to decreased %BDOC 

within a sample. It should be noted that Galveston had the lowest soil Mn concentrations 

(0.01 to 0.49 µg g soil-1) and higher %BDOC concentrations relative to Chicago and 

BCS.  

The significant negative correlation between %BDOC and SUVA254 in Chicago 

soils makes sense as SUVA254 is a measure of aromaticity of the sample. Aromatic 

compounds are typically not biodegradable it is expected that increased aromaticity 

would result in lower %BDOC values. For BCS soils the significant negative correlation 

between %BDOC and Na supports prior work by Cioce and Aitkenhead-Peterson (2015) 

on soils collected at different sites during the summer months. 

DOC 

To date, it is poorly understood as to which soil characteristics stimulate DOC 

mobilization (Emsens et al. 2016). Few studies have examined the drivers for producing 

water extractable DOC in situ and whether the extraction method recovers different 

DOC concentrations than one would see in soil leachate. Some studies have examined 

the effect of shaking time and extraction solution on the recovery of DOC from soils 

(Jones and Willett 2005; Carillo-Gonzalez et al. 2013). Carrillo-Gonzalez et al. (2013) 

reported that DOC concentrations after extraction of a soil with ultra-pure water were 
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not significantly different from DOC concentrations in soil leachate. It was also 

determined that the extract solution used can impact the strong relationship between 

DOC and DON in undisturbed and rotational crop agricultural soils (Carillo-Gonzalez et 

al. 2013). The study by (Carrillo-Gonzalez et al. 2013) highlighted the impact of cations 

present in the soil solution and their potential to alter DOC or DON release differently. 

The major objective for modeling water extractable DOC in this study was to identify 

those independent variables that were potentially responsible for initiating DOC release 

during water extraction, rather than merely producing a model using predictors that are 

already known to have high association to DOC. Therefore, prior to running the linear 

regression analysis using backward selection, independent variables known to have a 

strong relationship with DOC were removed from the dataset. These variables included 

DON, which is thought to be a subset of DOC or a DOC molecule with an amino group 

attached, and SUVA254, which has been used to quantify DOC (Sun et al. 2012). 

Four models were created and compared for DOC to identify the possible 

mechanisms involved in its release from the soil (Table 10).  

 
 
 

Table 10. Summary of DOC model statistics and predictors. 
 n Slope Offset RMSE R2 p Independent Variables 

All Cities 102 0.759 74.22 112.412 0.75 0.001 Exposure Time, NO3-N, NH4-N, 
HCO3, Ca, Na, K, S, Fe, Cu 

Chicago 33 0.903 26.524 54.783 0.90 0.001 pH, EC, NH4-N, Fe, Zn, Mn 

BCS 34 0.925 28.996 83.635 0.93 0.001 Exposure Time, Ca, B, S, Fe, Cu, 
SAR 

Galveston 35 0.873 29.855 43.403 0.87 0.001 Ca, B, Fe, Zn 
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All-Cities DOC Model 

The All-Cities DOC Model was relatively strong and significant (R2 = 0.75; p < 

0.001; Table 10). All of the independent variables selected for predicting DOC 

concentrations across all cities were significant (p < 0.05) except HCO3 (p = 0.08) 

suggesting that as their concentrations changed, so would DOC (Table 11). The full 

cross validation of the model produced a moderately strong relationship between 

predicted and observed DOC concentrations (Figure 26A) with under- and over-

predictions within ± 340 µg g soil- 1. Correlation analysis revealed that all selected 

variables had a positive correlation with DOC and for most, this correlation was 

significant: Soil Age) (R = 0.32; p = 0.001), NH4-N (R = 0.33; p = 0.001), HCO3 (R = 

0.41; p < 0.001), Ca (R = 0.40), K (R = 0.38; p < 0.001), Fe (R = 0.77; p < 0.001), Cu (R 

= 0.67; p < 0.001) and Na (R = 0.77; p < 0.001). NO3-N (R = 0.15; p > 0.05) and S (R = 

0.06; p > 0.05) had positive but weak and non-significant correlations with DON (data 

not shown).  

 

All-City DOC = 20.282*Exposure time – 3.228*NO3-N + 11.386*NH4-N – 

0.085*HCO3 + 0.878*Ca + 0.167*K – 1.067*S + 0.129*Fe + 152.672*Cu + 0.354*Na – 

3.123 
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Table 11. All-Cities DOC Model coefficient statistics. 
MODEL CORRELATION 

Predictors Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model  
P value 

Correlation 
Coefficients 

(R) 

Correlation 
P value 

(Constant) - 3.123   0.922    
Exposure Time 20.282 0.144 0.002 0.315 0.001 
NO3-N - 3.228 - 0.128 0.010 0.152 0.127 
NH4-N 11.386 0.204 < 0.001 0.335 0.001 
HCO3 - 0.085 - 0.110 0.084 0.409 < 0.001 
Ca 0.878 0.291 < 0.001 0.396 < 0.001 
K 0.167 0.104 0.021 0.376 < 0.001 
S - 1.067 - 0.235 < 0.001 0.059 0.556 
Fe 0.129 0.368 < 0.001 0.769 < 0.001 
Cu 152.672 0.170 0.006 0.665 < 0.001 
Na 0.354 0.344 < 0.001 0.772 < 0.001 

Model ANOVA Table 

 Sum of Squares df Mean Square F value p 
Regression 4,391,413 10 439,141 52 < 0.001 
Residual 764,106 91 8,397    
Total 5,155,519 101      
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Figure 26. Cross validations of DOC models for A) All cities, B) Chicago, C) BCS and D) Galveston.  

Inset figures display difference for each sample between observed and predicted values.  
*** denotes significance at p < 0.0001 
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Chicago DOC Model 

Release of DOC in the urban soils in the city of Chicago was modeled relatively 

well (R2 = 0.90; p < 0.001; Table 10 and 12). Cross-validation of the Chicago DOC 

Model yielded a strong and significant relationship between predicted and observed 

DOC concentrations and under and over-estimates of DOC were within ± 150 µg g soil-1 

with many of the under- and over-estimates occurring at lower DOC concentrations 

(Figure 26B). All independent variables selected for the Chicago DOC Model were 

significant (p < 0.05; Table 12) suggesting that any change in them would stimulate a 

change in DOC release. Correlation analysis showed that all independent variables 

selected during the backward stepwise regression analysis had significant and positive 

correlations with DOC; pH (R = 0.57; p < 0.001), EC (R = 0.49; p = 0.004), NH4-N (R = 

0.62; p < 0.001) Fe (R = 0.83; p < 0.001) Zn (R = 0.68; p < 0.001) and Mn (R = 0.64; p 

< 0.001).  

 

Chicago DOC = 101.034*pH + 0.994*EC+15.888*NH4-N + 1.204*Fe – 76.862*Zn – 

131.344*Mn – 799.542 
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Table 12. Chicago DOC Model coefficient statistics. 
MODEL CORRELATION 

Predictors Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model  
P value 

Correlation 
Coefficients 

(R) 

Correlation 
P value 

(Constant) - 799.542   0.029    
pH 101.034 0.148 0.040 0.573 < 0.001 
EC 0.994 0.198 0.004 0.493 0.004 
NH4-N 15.888 0.353 < 0.001 0.624 < 0.001 
Fe 1.204 1.191 < 0.001 0.825 < 0.001 
Zn - 76.862 - 0.331 0.012 0.680 < 0.001 
Mn - 131.344 - 0.377 0.023 0.644 < 0.001 

Model ANOVA Table 

 Sum of Squares df Mean Square F value p 
Regression 942,032 6 157,005 48 < 0.001 
Residual 84,635 26 3,255    
Total 1,026,667 32      
 
 
 

BCS DOC Model 

Release of DOC in the urban soils in the twin cities of Bryan and College Station 

was modeled well (R2 = 0.93; p < 0.001; Table 10 and 13) Cross-validation of the BCS 

DOC Model yielded a strong and significant relationship between predicted and 

observed DOC concentrations with under and over-estimates of DOC of ± 200 µg g soil-

1 (Figure 26C). All independent variables selected for the BCS DOC Model were 

significant (p < 0.05) suggesting that any change in them would stimulate a change in 

DOC release (Table 13). Correlation analysis showed the independent variables selected 

during the backward stepwise regression analysis had positive correlations with DOC; 

Age (R = 0.35; p < 0.05), Ca (R = 0.43; p = 0.01), B (R = 0.88; p < 0.001), Fe (R = 0.84; 



 

 67 

p < 0.001), Cu (R = 0.73; p < 0.001) and SAR (R = 0.71; p < 0.001) with the exception 

of S which had a weak, non-significant negative relationship (R = -0.06; p > 0.05).  

 

BCS DOC = 39.927*Exposure Time + 1.078*Ca – 125.275*B – 1.067*S + 0.262*Fe + 

246.704*Cu + 3.133*SAR 

 
 
 
Table 13. BCS DOC Model coefficient statistics. 

MODEL CORRELATION 

Predictors Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model  
P value 

Correlation 
Coefficients 

(R) 

Correlation 
P value 

(Constant) - 155.232   0.001    
Exposure Time 32.927 0.160 0.004 0.355 0.039 
Ca 1.078 0.376 < 0.001 0.430 0.011 
B - 125.275 - 0.485 0.041 0.876 < 0.001 
S - 1.067 - 0.284 0.002 - 0.063 0.724 
Fe 0.262 0.854 < 0.001 0.843 < 0.001 
Cu 246.704 0.253 0.002 0.727 < 0.001 
SAR 3.133 0.327 < 0.001 0.714 < 0.001 

Model ANOVA Table 

 Sum of Squares df Mean Square F value p 
Regression 3,020,414 7 431,488 70 < 0.001 
Residual 159,569 26 6,137    
Total 3,179,983 33      
 
 
 

Galveston DOC Model 

Release of DOC in the urban soils on the island of Galveston was modeled 

relatively well (R2 = 0.87; p < 0.001; Table 10 and 14). Cross-validation of the 

Galveston DOC Model yielded a strong and significant relationship between predicted 
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and observed DOC concentrations, with under and over-estimates of DOC within ± 108 

µg g soil-1 (Figure 26D). All independent variables selected for the BCS DOC model 

were significant (p < 0.05) suggesting that any change in them would stimulate a change 

in DOC release (Table 14). The Galveston DOC Model had the fewest independent 

variables to predict DOC compared to the other DOC models. Correlation analysis 

showed that all independent variables selected during the backward stepwise regression 

analysis had positive correlations with DOC; Ca (R = 0.71; p < 0.001), B (R = 0.43; p = 

0.01) and Zn (R = 0.54; p = 0.001) with the exception of Fe which had a weak, non-

significant negative relationship (R = -0.06; p > 0.05).  

 

Galveston DOC = 2.481*Ca + 471.254*B – 1.834*Fe + 101.039*Zn – 59.764 

 
 
 
Table 14. Galveston DOC Model coefficient statistics. 

MODEL CORRELATION 

Predictors Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model  
P value 

Correlation 
Coefficients 

(R) 

Correlation 
P value 

(Constant) - 59.764   0.075    
Ca 2.481 0.781 < 0.001 0.710 < 0.001 
B 471.254 0.391 < 0.001 0.426 0.011 
Fe - 1.834 - 0.355 < 0.001 - 0.055 0.752 
Zn 101.039 0.243 0.002 0.545 < 0.001 

Model ANOVA Table 

 Sum of Squares df Mean Square F value p 
Regression 453,356 4 113,339 52 < 0.001 
Residual 65,934 30 2,198    
Total 519,290 34      
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Similarities and Dissimilarities in Predictors for DOC Across Urban Ecosystems 

Models for predicting water extractable DOC were best at the individual city 

scale rather than compositing all cities into one model. This was likely due to individual 

environmental conditions and land management within each city. The only commonly 

observed independent variables that occurred in individual city models for DOC were Fe 

in all cities but only significant in Chicago and BCS, Zn in Chicago and Galveston and 

Ca and B in BCS and Galveston.  

It is known that the binding of Fe with functional groups of DOC molecules 

creates metal chelates within soil. Due to the polyvalent nature of Fe, it can compete for 

binding sites on DOC fractions that are also involved in soil sorption (Kaiser & Zech 

1997). It has been shown that the degree of metal dissolution from soils depends on the 

concentration of DOC present; as levels of DOC increased, the amount of Fe dissolution 

from soils also increased, most likely caused by higher affinity of Fe for DOC functional 

groups than the soils (Pohlman & McColl 1988). Furthermore, a study by Emsens et al. 

(2016) demonstrated that Fe-rich soils, subjected to rewetting, stimulated much higher 

DOC, NH4, Fe, and dissolved inorganic carbon (DIC) release from soils into solution 

than Fe-poor soils, of which they attributed to the presence of Fe. They suggested that 

the mechanism may be once the soils were rewetted, the reduction of Fe caused the 

release of complexed DOC into solution. This further demonstrates the importance of the 

quantity of Fe present in soils and its influence on DOC mobilization. As Fe increases 

within the soils, high affinity binding sites on DOC molecules become taken and 

competition for lower affinity binding sites begin, which could include those involved in 



 

 70 

cation-bridging with soil and as a result, DOC release occurs (Guggenberger & Zech 

1993).  

Soil Fe content in the current study ranged from 0.25 to 4091 µg g soil-1. 

Although the expectations that the Fe and DOC link are due to metal complexation, the 

causative effect of the reduction of Fe on DOC release posited by Emsens et al. (2016) is 

compelling. Although BCS and Chicago soils are not considered highly organic, peaty 

soils (Table 3), rewetting of the samples after air drying and shaking for 4 hours may 

have prompted a disproportionate amount of DOC to be released from the higher Fe 

soils in this study.  

A link between DOC mobilization and Zn has been reported in some studies 

(Antoniadis et al. 2007; Gungor & Bekbolet 2010; Rekasi & Filep 2015). However, the 

effect that Zn has on DOC release is highly variable. A study completed by Rekasi and 

Filep (2015) analyzed the metal mobility in forest and arable soils and the potential 

influence of clay, DOC concentrations, pH and CEC. Although arable soils had higher 

metal concentrations of Zn, Cu, Cr, and Ni, the mobility of these metals was higher in 

forest soils, likely due to the higher DOC content while the higher clay content in arable 

soils was likely impacting mobility (Rekasi & Filep 2015). Gungor and Bekbolet (2010) 

also experienced a similar result in their study where the additions of Zn had little effect 

on DOC releases of humic acids from soils, instead changes in pH stimulated DOC 

release. These studies demonstrate that Zn concentrations in soils play little causative 

role in DOC release and environmental factors, such as clay content and pH may have a 

larger impact.  
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In the current study, Zn concentrations ranged from 0.31 to 3.96 µg g soil-1 in 

Chicago soils and from 0.35 to 1.84 µg g soil-1 in Galveston soils; although BCS soils 

had a similar range and a significantly higher mean concentration than Galveston, Zn 

had no predictive effect in BCS. These results may be due to the difference in soil types 

between each city where sandy soils in Galveston showed a moderate positive 

correlation between DOC and Zn and while the clayey loam soils in Chicago had a 

stronger, positive DOC correlation with Zn.  

Boron has a close relationship with calcium and DOM in soils likely because Ca 

reduces the availability of B through the formation of to a calcium metaborate complex 

(Sillanpaa 1972). Increased DOC concentrations in soils stimulate the release of B 

adsorbed to soils to form DOM-B complexes (Communar & Keren 2008). Furthermore, 

Communar and Keren (2008) showed that in a sandy loam soil more B was adsorbed 

than in a loamy sand soil, regardless, both soils did exhibit a B release from soils as 

DOC increased. 

Both B and Ca had positive effects on DOC mobilization in BCS in Galveston in 

the current study and this may be due to their Ca:B ratio or to the individual analytes 

effects on DOC mobilization. No studies have examined the effect of the soil Ca:B ratio 

on DOC mobilization but it was observed that an increased Ca:B stimulated DOC 

release in Galveston and decreased Ca:B stimulated DOC in BCS (data not shown) and 

these conflicting results suggest that B and Ca should be considered separately as 

mobilizers of DOC. While little if anything is known about B and DOC mobilization, 

more is known about the link between DOC and Ca (e.g. Whittinghill & Hobbie 2012; 
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Kerr and Eimers 2012). Whittinghill & Hobbie (2012) reported that high soil Ca 

inhibited microbial respiration in soil with a pH of 6.5 and 4.5 but increased microbial 

respiration in circum-neutral pH soils with a concomitant inhibition on the release of 

DOC. Kerr and Eimers (2012) found that as Ca concentrations increased, DOC 

adsorption to soil particles increased. The data in the current study do not support these 

studies because increased soil Ca promoted increased DOC mobility.  

City specific controls on DOC release varied with SAR and Cu being dominant, 

positive predictors of DOC and soil age (soil exposure time to sodium) a moderate and 

positive predictor for DOC mobilization. Sodium adsorption ratio (SAR) had a 

significant and positive effect on DOC mobilization in BCS and Na has been shown in 

prior studies to increase DOC release in soils (Aitkenhead-Peterson and Cioce 2013; 

Steele & Aitkenhead-Peterson ), particularly newly exposed soils (Green et al. 2008, 

2009) and senescent vegetation (Steele & Aitkenhead-Peterson 2013). The mechanism 

behind increases in DOC with increases in Na is unclear but current theory suggests that 

as Na+ increases in soil, H+ is removed from soil exchange sites which leads to an 

increase in soil pH and the increased soil pH is responsible for solubilization of humic 

acids resulting in an increase in DOC concentration. An alternative theory is indirect 

effects such as release of monovalent and divalent cations such as NH4
+, K+, Ca2+ and 

Mg2+ with a high Na+ input (Eimers et al. 2015; Shainberg & Letey 1984) would 

necessitate an equivalent release of anionic compounds such as DOC, DON, SO4
2-, or 

PO4
3- to maintain electroneutrality of soil solution. 
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Dissolved copper plays a role of micronutrient and toxicant depending on its 

concentration to microorganisms in surface waters (Brand et al. 1986; Manahan & Smith 

1973; Peers et al. 2005) and can be assumed to play a similar role in soil. Lockwood et 

al. (2015) suggested that alkalization of a soil increases DOC release and with it any 

complexed Cu. 

As soils age, their organic carbon (OC) content tends to increase due to inputs 

from precipitation, throughfall, decomposition of plants and animals and root exudate 

(Aitkenhead-Peterson et al. 2003). Depending on the type of C input, much of this 

organic carbon may be mineralized resulting in a relatively stable, generally recalcitrant, 

organic carbon pool, over time. In BCS as soil age increased so did DOC release up to 

30 years.  

In Chicago, the correlation between DOC and pH is likely due to the 

solubilization of humic acids as pH increases (Stevenson et al. 1996); although the pH 

range for Chicago soils was small (6.9 to 7.9). The correlation between DOC and NH4-N 

may be due to maintenance of electroneutrality as described earlier but without evidence 

of losses of K, Mg and Ca this is unlikely. Yang et al. (2006) in a study examining DOC 

leachate in a meadow marsh soil found a strong relationship between DOC and NH4-N 

and suggested that nitrogen mineralization potential may be a main factor affecting DOC 

production. The incidence of more clayey soils in Chicago would support this theory. 

Emsens et al. (2016) demonstrated that rewetting soils can stimulate increased DOC, Fe, 

NH4-N, and TIC release over time. Furthermore, they concluded that the increasing 

NH4-N levels in soil cores could be a result of iron-mediated anerobic degradation of 
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DON within the soil that released produced NH4-N and NO3-N. Results in the current 

study demonstrate a similar process. Dissolved organic carbon also had a significant and 

relatively strong correlation Mn in the Chicago soils and as described earlier may be due 

to its relationship through complexation rather than metals having a causative effect on 

DOC release. 

DON 

Fewer studies have been conducted on DON compared to DOC. Yet DON is a 

significant pool of soluble N in many ecosystems (Wherley et al. 2015) and its low 

molecular weight fraction is an important source of N for direct uptake by some plants 

(Jones et al. 2004). Jones et al. (2004) posited that there are two pools of DON in soil: 1) 

low molecular weight (LMW) free amino acids and proteins that are turned over 

relatively rapidly by soil microorganisms and 2) high molecular weight (HMW) 

compounds rich in humic substances that represent the observed losses of DON to 

surface waters. Kusliene et al. (2015) suggested that DON was derived from soil 

microbial lysis in a study of legume based (white clover) grassland soils. While the 

current study does not seek to describe DON fractions, use of the linear regression 

analyses using backward selection may provide some insight into its release in urban 

soils. Four models were created and compared for DON to identify the possible 

mechanisms involved in its release from the soil (Table 15) 
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Table 15. Summary of all DON model statistics and predictors.  
 n Slope Offset RMSE R2 p Independent Variables 

All Cities 102 0.781 5.331 9.338 0.78 < 0.001 Soil Age, pH, EC, NO3-N, HCO3, Ca, 
S, Fe, Cu 

Chicago 33 0.839 2.764 6.204 0.84 < 0.001 EC, NH4-N, Ca, Fe, Zn, Mn 

BCS 34 0.944 1.824 6.368 0.95 < 0.001 pH, EC, NH4-N, HCO3, Ca, Mg, Cu, 
Mn, SAR 

Galveston 35 0.852 3.438 4.239 0.85 < 0.001 Soil Age, HCO3, Ca, K, B, S, Fe, Zn 

 
 
 

All-Cities DON Model 

Dissolved organic nitrogen release from soils across three urban ecosystems was 

modeled relatively well (R2 = 0.78; p < 0.001; Table 15 and 16). All of the independent 

variables selected for predicting DON concentrations across all cities were significant (p 

< 0.05; Table 16). Cross-validation of the All-Cities DOC Model yielded a relatively 

strong and significant relationship between predicted and observed DOC concentrations 

(Figure 27A). Correlation analysis showed that all independent variables selected for 

modeling DON had a positive correlation with DON and all but two of the correlations 

were significant: Soil Age (R = 0.30; p < 0.01), pH (R = 0.55; p < 0.001), EC (R =0.57; 

p < 0.001), HCO3 (R = 0.32; p = 0.001), Ca (R = 0.38; p < 0.001), Fe (R = 0.71; p < 

0.001). Cu (R = 0.66; p < 0.001), NO3-N (R = 0.05; p > 0.05) and S (R = 0.05; p > 0.05). 

 

All-City DON = 2.181*Exposure Time + 4.666*pH + 0.153*EC – 0.364*NO3-N – 

0.021*HCO3 + 0.055*Ca – 0.16*S+ 0.012*Fe + 13.499*Cu 
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Table 16. All-Cities DON Model coefficient statistics. 
MODEL CORRELATION 

Predictors Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model  
P value 

Correlation 
Coefficients 

(R) 

Correlation 
P value 

(Constant) - 39.553   0.005    
Exposure Time 2.181 0.174 0.001 0.302 0.002 
pH 4.666 0.181 0.008 0.551 < 0.001 
EC 0.153 0.538 < 0.001 0.568 < 0.001 
NO3-N - 0.364 - 0.163 0.006 0.050 0.618 
HCO3 - 0.021 - 0.303 < 0.001 0.323 0.001 
Ca 0.055 0.203 0.016 0.379 < 0.001 
S - 0.160 - 0.397 < 0.001 0.049 0.628 
Fe 0.012 0.382 < 0.001 0.708 < 0.001 
Cu 13.499 0.170 0.010 0.659 < 0.001 

Model ANOVA Table 

 Sum of Squares df Mean Square F value p 
Regression 32,232 9 3,581 39 < 0.001 
Residual 8,447 92 92    
Total 40,679 101      
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Figure 27. Cross Validation of DON Models for A) All cities, B) Chicago, C) BCS and D) Galveston. Inset figures 
display difference for each sample between observed and predicted values. *** Denotes significance at p < 0.0001.  
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Chicago DON Model 

Release of DON in the urban soils in the city of Chicago was modeled relatively 

well (R2 = 0.84; p < 0.001; Table 15 and 17). Cross-validation of the Chicago DOC 

model yielded a relatively strong and significant relationship between predicted and 

observed DOC concentrations and under- and over-estimates of DON ranging from -28 

to 15 µg g soil-1 (Figure 27B). All independent variables selected for the Chicago DON 

model were significant (p < 0.05) suggesting that any change in them would stimulate a 

change in DON release (Table 17). Correlation analysis showed that all independent 

variables selected during the backward stepwise regression analyses had significant 

positive correlations with DON; EC (R = 0.44; p < 0.05), NH4-N (R = 0.53; p < 0.01), Fe 

(R = 0.79; p < 0.001) Zn (R = 0.60; p < 0.001) and Mn (R = 0.62; p < 0.001) with the 

exception of Ca which was negatively correlated with DON (R = -0.31; p > 0.05) and 

non-significant.  

 

Chicago DON = 7.193 + 0.089*EC + 1.075*NH4-N – 0.089*Ca + 0.139*Fe – 

13.022*Zn – 15.97*Mn 
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Table 17. Chicago DON Model coefficient statistics. 
MODEL CORRELATION 

Predictors Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model  
P value 

Correlation 
Coefficients 

(R) 

Correlation 
P value 

(Constant) 7.193   0.375    
EC 0.089 0.201 0.035 0.435 0.011 
NH4 1.075 0.272 0.008 0.527 0.002 
Ca - 0.089 - 0.254 0.021 - 0.314 0.075 
Fe 0.139 1.565 < 0.001 0.790 < 0.001 
Zn - 13.022 - 0.638 0.002 0.605 < 0.001 
Mn - 15.970 - 0.521 0.030 0.617 < 0.001 

Model ANOVA Table 

 Sum of Squares df Mean Square F value p 
Regression 6,659 6 1,110 23 < 0.001 
Residual 1,270 26 49    
Total 7,930 32      
 
 
 

BCS DON Model 

In the urban soils in the twin cities of Bryan and College Station, release of DON 

was modeled extremely well (R2 = 0.95; p < 0.001; Table 15 and 18). Cross-validation 

of the BCS DON Model yielded a strong and significant relationship between predicted 

and observed DOC concentrations with under and over-estimates of DON within ± 30 

µg g soil-(Figure 27C). All independent variables selected for the BCS DON Model were 

significant (p < 0.05; Table 18) suggesting that any change in them would stimulate a 

change in DON release. Cross validation showed that all independent variables selected 

during the backward stepwise regression analysis had a significant and positive 

correlation with DON; pH (R = 0.71; p < 0.001), EC (R = 0.65; p < 0.001). NH4-N (R = 

0.77; p < 0.001), HCO3 (R = 0.52; p = 0.001), Ca (R = 0.42; p < 0.05), Mg (R = 0.81; p 
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< 0.001), Cu (R = 0.78; p < 0.001), Mn (R = 0.86; p < 0.001) and SAR (R = 0.76; p < 

0.001). 

 

BCS DON = 8.66*pH – 0.22*EC + 4.246*NH4-N – 0.017*HCO3 + 0.175*Ca – 

0.114*Mg + 24.103*Cu + 9.947*Mn + 0.524*SAR 

 
 
 
Table 18. BCS DON Model coefficient statistics. 

MODEL CORRELATION 

Predictors Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model  
P value 

Correlation 
Coefficients 

(R) 

Correlation 
P value 

(Constant) - 76.961   0.004    
pH 8.660 0.252 0.010 0.710   
EC - 0.220 - 0.782 0.001 0.647 < 0.001 
NH4 4.246 0.308 < 0.001 0.765 < 0.001 
Alk - 0.017 - 0.180 0.026 0.524 < 0.001 
Ca 0.175 0.697 < 0.001 0.419 0.001 
Mg - 0.114 - 0.351 0.014 0.809 0.014 
Cu 24.103 0.281 < 0.001 0.779 < 0.001 
Mn 9.947 0.526 0.001 0.858 < 0.001 
SAR 0.524 0.622 < 0.001 0.757 < 0.001 

Model ANOVA Table 

 Sum of Squares df Mean Square F value p 
Regression 23,651 9 2,628 70 < 0.001 
Residual 899 24 37   
Total 24,550 33     
 
 
 

Galveston DON Model 

Release of DON in the urban soils in the island of Galveston was modeled 

relatively well (R2 = 0.85; p < 0.001; Table 15 and 19). Cross-validation of the 
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Galveston DON Model yielded a relatively strong and significant relationship between 

predicted and observed DON concentrations with under and over-estimates of DON 

within ± 15 µg g soil-1 (Figure 27D). All independent variables selected for the 

Galveston DON model were significant (p < 0.05; Table 19) with the exception of time 

soil was exposed to sodium (p = 0.08) suggesting that any change in them would 

stimulate a change in DOC release. Correlation analysis showed that all independent 

variables selected during the backward stepwise regression analysis had significant 

positive correlations with DON; soil age (R = 0.41; p < 0.05), Ca (R = 0.70; p < 0.001), 

K (R = 0.58; p < 0.001), B (R = 0.42; p < 0.05), S (R = 0.46; p < 0.01), Zn (R = 0.54; p = 

0.001) with the exception of HCO3 which was non-significant (R = 0.10; p > 0.05) and 

Fe which had a negative correlation with DON and was non-significant (R = -0.11; p > 

0.05). 

 

Galveston DON = -0.821*Exposure Time + 0.014*HCO3 + 0.254*Ca + 0.012*K + 

32.354*B – 0.519*S – 0.0187*Fe + 9.522*Zn – 1.221 
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Table 19. Galveston DON Model coefficient statistics. 
MODEL CORRELATION 

Predictors Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model  
P value 

Correlation 
Coefficients 

(R) 

Correlation 
P value 

(Constant) - 1.221   0.590    
Exposure Time - 0.821 - 0.111 0.079 0.415 0.013 
HCO3 0.014 0.162 0.007 0.096 0.581 
Ca 0.254 0.885 < 0.001 0.702 < 0.001 
K 0.012 0.252 0.023 0.579 < 0.001 
B 32.354 0.297 0.009 0.423 0.011 
S - 0.519 - 0.225 0.007 0.461 0.005 
Fe - 0.187 - 0.400 < 0.001 - 0.112 0.522 
Zn 9.522 0.253 < 0.001 0.535 0.001 

Model ANOVA Table 

 Sum of Squares df Mean Square F value p 
Regression 3,990 8 499 49 < 0.001 
Residual 264 26 10    
Total 4,253 34      
 
 
 

Similarities and Dissimilarities in Predictors for DON Across Urban Ecosystems 

It is known that DON is highly correlated to DOC due to the structural complex 

of DON which is a DOC molecule with amino functional groups (NH3). Once these 

functional groups are cleaved by microorganisms, the DON molecule becomes a DOC 

molecule. Therefore, factors influencing DOC release in soils are similar to those 

influencing DON release and they are highly correlated (Figure 28). The purpose of 

developing models for DON was to determine the most significant predictors influencing 

DON release and whether they differ from the factors in DOC release. 
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Figure 28. The strong relationship between DOC and DON (p < 0.001) 

demonstrating that factors that influence DOC release in soils are similar to those 
for DON release. 

 
 
 
When comparing the predictors of the All- Cities DON and DOC Models, the 

predictors that were most influential on DON, in order of importance, were EC, S, and 

Fe (Table 16) while the most influential predictors in DOC model were Fe, Na, and Ca 

(Table 11). Correlation analysis for DON revealed that Fe had the strongest relationship 

(R = 0.71) with EC (R = 0.57) and S (R = 0.05) following. Fe also had the strongest 

relationship with DOC (R = 0.77) with Na (R = 0.77) and Ca (R = 0.40) following. This 

strong relationship with Fe is likely due to its polyvalent nature and its high affinity for 

functional groups. DOC and Fe have a strong proportional relationship and the 

concentration of Fe in solution has been shown to be dependent on the concentration of 

solubilized DOC, most likely because the affinity for DOC functional groups is higher 

than the soil (Pohlman & McColl 1988). If there are large amounts of Fe in the soil, the 
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affinity for binding sites on DOC molecules become taken by Fe and competition for 

those sites may include those involved in binding with soil, causing DOC to be released 

(Guggenberger & Zech 1993). Although there was a strong relationship of DON and 

with Fe, the fact that Fe was not as significant of a predictor for DON suggests that other 

factors have a larger effect on its concentration, such as EC. 

EC is a measure of the salt concentration in a solution. It has been shown that 

small increases in EC from greatly decreases microbial mineralization of N (Adviento-

Borbe et al. 2006; Rietz & Haynes 2003). The strong positive relationship between EC 

and DON demonstrates that increases in EC stimulated increases in DON 

concentrations. The All-Cities DON Model also showed that a change in EC caused the 

largest change in DON, reflecting that DON concentrations are most dependent on EC 

concentrations. This strong relationship is likely due to the effects of EC on microbial 

communities and increased osmotic stress from increasing EC reduced the amount of 

DON mineralized, explaining the increasing concentrations of DON with EC. 

Furthermore, EC was not a selected predictor in the DOC model, showing DON 

concentrations most likely due to controls on microbial communities. 

Conditions favorable of S mineralization are similar to those that lead to N 

mineralization in soils (Williams 1967). Both DON and DOC had positive, weak 

relationships with S that were not significant. In the DON model, changes in S had the 

second largest effect on DON, as shown in the standardized coefficients of Table 16. 

The weak relationship between DON and S along with the large significant effect S has 

on DON, suggests small increases in S, perhaps from lack of mineralization from 
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microbes, is related to large increases in DON, which could also be from lack of 

mineralization.  

The selected predictors in the All-Cities DON Model with the largest impact on 

DON (EC, S, Fe) compared to the All-Cities DOC Model (Fe, Na, Ca) suggest that both 

metals and sodicity had an effect on DON and DOC concentrations. However, the 

predictors for DON suggest DON concentrations are influenced by metals and sodicity 

(EC) and potentially microbial activity. Whereas the DOC predictors suggest metals and 

sodicity have the largest impact on DOC concentrations. Comparing individual city 

DON models with DOC models also reflect this. 

The Chicago and Galveston DOC and DON models have similar predictors that 

had the greatest effect on their concentrations. The most influential parameters for the 

Chicago model for DON were Fe, Zn, and Mn (Table 17) and for the Galveston model 

they were Ca, Fe, and B (Table 19). These parameters reflect strong influence of metal 

complexes on DON solubility. The most influential parameters for the Chicago DOC 

Model were Fe, Mn, and Zn (Table 12) and for the Galveston model they were Ca, B, 

and Fe (Table 14). These DOC models also show strong influences of metals on DOC. 

The BCS models show that DON is more influenced by sodicity effects since the most 

influential predictors were EC, Ca, and SAR. The BCS DOC Model showed that Fe, B, 

and Ca had the largest effect on DOC, suggesting metals and sodic effects.  

Results from this study show that DON solubility is related to metal 

concentrations in the soil, which was shown to be similar for DOC. The All-Cities DON 

Models also showed a strong influence of sodicity on DON solubility whereas the All-
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Cities DOC Model showed a strong influence of metals on DOC solubility. This 

difference may be due to microbial stress from increasing sodicity in soils, preventing 

DON mineralization. 
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4.! CONCLUSIONS 

 

Carbon sequestration in soil is important as climate change progresses and 

atmospheric CO2 concentrations continue to rise. However, increasing DOC 

concentrations in surface waters demonstrates a loss of this terrestrial carbon storage. 

This study sought to determine what might be affecting %BDOC, DOC and DON in 

urban soils. While it was apparent from this study that sodium exposure increases the 

release of water extractable DOC and DON in soils, while decreasing the availability of 

BDOC within soils there is a question of cause and effect. Soils exposed to sodium in the 

form of NaHCO3 (from irrigation water) showed greater DOC and DON release than 

soils exposed to NaCl (from deicing salts and sea salt deposition). SUVA254 values were 

significantly different among sodium sources suggesting that sodium type may play a 

role in the amount of aromatic DOC release. Furthermore, soils exposed to high sodium 

concentrations had increased release of water extractable DOC and DON over time of 

sodium exposure until soils were exposed for 30 years; after a 30 year exposure to 

sodium a decline in DOC and DON concentrations were observed. This decline is likely 

due to the lack of irrigation installations and decreased use of deicing salts pre the mid 

1980s. DOC was successfully predicted by SUVA254 while %BDOC was not. This was 

likely due to large %BDOC values observed in soils exposed to sea salt deposition with 

high aromatic DOC release. It may be that the different soil characteristics in each of the 

cities examined have a greater affect on the variables examined and this should be 

considered in future cross-city research. These results could be used to help develop 
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future management strategies that minimize carbon loss in soils and help determine a 

threshold of sodium exposure for DOC, DON, and %BDOC release in soils.  
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APPENDIX 

 

Table 20. Physical and Chemical soil attributes for the soils collected in Chicago, IL. 
Lat Long Series Name Group Clay Sand Silt OM Ksat BD CEC 

     % mm/hr g/cm3 cmol charge 
/kg soil 

41.9736 -87.7593 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9732 -87.7580 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9704 -87.7557 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9714 -87.7425 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9740 -87.7242 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9830 -87.7389 2811A Urban-Alfic-Udarent Entisol 36.0 8.0 56.0 2.5 3.3 1.85 19.4 
41.9855 -87.7380 2811A Urban-Alfic-Udarent Entisol 36.0 8.0 56.0 2.5 3.3 1.85 19.4 
41.9887 -87.7364 533 Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9956 -87.7377 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9958 -87.7370 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9729 -87.6980 2800A Urban-Psamment Entisol 25.0 35.0 40.0 2.0 10.2 1.78 18.3 
41.9722 -87.6982 2800A Urban-Psamment Entisol 25.0 35.0 40.0 2.0 10.2 1.78 18.3 
41.9518 -87.7181 392A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9509 -87.7370 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9473 -87.7327 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9436 -87.7450 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9566 -87.7454 533 Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9664 -87.7809 2811A Urban-Alfic-Udarent Entisol 36.0 8.0 56.0 2.5 3.3 1.85 19.4 
41.9643 -87.7820 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
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41.9615 -87.7883 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9474 -87.7957 2811A Urban-Alfic-Udarent Entisol 36.0 8.0 56.0 2.5 3.3 1.85 19.4 
41.9331 -87.8062 533 Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9405 -87.8139 2811A Urban-Alfic-Udarent Entisol 36.0 8.0 56.0 2.5 3.3 1.85 19.4 
41.9550 -87.8107 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9663 -87.8087 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9695 -87.8063 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9737 -87.8134 2811A Urban-Alfic-Udarent Entisol 36.0 8.0 56.0 2.5 3.3 1.85 19.4 
41.9687 -87.8376 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9790 -87.8215 2811A Urban-Alfic-Udarent Entisol 36.0 8.0 56.0 2.5 3.3 1.85 19.4 
41.9803 -87.8215 2811A Urban-Alfic-Udarent Entisol 36.0 8.0 56.0 2.5 3.3 1.85 19.4 
41.9816 -87.7942 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
41.9478 -87.8702 534A Urban-Orthent Entisol 44.0 8.0 48.0 1.3 1.0 1.98 23.4 
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Table 21. Physical and Chemical soil attributes for the soils collected in Galveston, TX. 
Lat Long Series Code Soil Series Group Clay Sand Silt OM Ksat BD CEC 

  
 

  

% mm/hr g/cm3 cmol charge 
/kg soil 

29.2833 -94.8698 BBBX Beaches NA 1.5 97.9 0.6 0.0 507.6 1.5 3 
29.2937 -94.8639 Gd Galveston Entisol 5.0 94.4 0.6 0.3 331.2 1.67 2.5 
29.2902 -94.8182 BBBX Beaches NA 1.5 97.9 0.6 0.0 507.6 1.5 3 
29.3200 -94.7713 BBBX Beaches NA 1.5 97.9 0.6 0.0 507.6 1.5 3 
29.3178 -94.7712 BBBX Beaches NA 1.5 97.9 0.6 0.0 507.6 1.5 3 
29.3156 -94.7690 BBBX Beaches NA 1.5 97.9 0.6 0.0 507.6 1.5 3 
29.3231 -94.7429 Mt Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.3196 -94.7487 Mt Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.3185 -94.7503 Mt Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.2778 -94.8123 BBBX Beaches NA 1.5 97.9 0.6 0.0 507.6 1.5 3 
29.2792 -94.8247 BBBX Beaches NA 1.5 97.9 0.6 0.0 507.6 1.5 3 
29.2771 -94.8473 BBBX Beaches NA 1.5 97.9 0.6 0.0 507.6 1.5 3 
29.2685 -94.8758 Mn Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.2631 -94.8712 Mn Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.2524 -94.8701 Mn Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.2259 -94.9185 Mt Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.2197 -94.9090 Mn Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.2095 -94.9286 Mt Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.2067 -94.9328 Mt Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.2059 -94.9365 Mn Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.2035 -94.9396 Mn Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.2032 -94.9415 Mn Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.1985 -94.9461 Mn Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
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29.1979 -94.9469 Mt Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.1990 -94.9474 Mn Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.1998 -94.9865 Mu Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.1431 -95.0453 Mn Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.1409 -95.0514 Mu Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.1391 -95.0472 GaB Galveston Entisol 5.0 94.4 0.6 0.3 331.2 1.67 2.5 
29.1353 -95.0485 Mn Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.1275 -95.0600 BBBX Beaches NA 1.5 97.9 0.6 0.0 507.6 1.5 3 
29.1115 -95.0852 Gc Galveston Entisol 5.0 94.4 0.6 0.3 331.2 1.67 2.5 
29.1120 -95.0874 Mt Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.1117 -95.0872 Mt Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
29.1364 -95.0492 Mn Mustang Entisol 5.0 94.4 0.6 0.6 331.2 1.57 3 
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Table 22. Physical and Chemical soil attributes for the soils collected in Bryan/College Station, TX. 
Lat Long Series Name Group Clay Sand Silt OM Ksat BD CEC 

     % mm/hr g/cm3 cmol charge 
/kg soil 

30.5975 -96.3303 BrB Boonville Alfisol 10.0 68.5 21.5 0.8 32.4 1.49 6 
30.5878 -96.3028 TuA Tabor Alfisol 14.0 69.6 16.4 0.8 32.4 1.63 3.5 
30.5830 -96.3033 TuA Tabor Alfisol 14.0 69.6 16.4 0.8 32.4 1.63 3.5 
30.5658 -96.2894 BoA Boonville Alfisol 10.0 68.5 21.5 0.8 32.4 1.49 6 
30.5651 -96.2905 BuB Burleson Vertisol 50.0 22.1 27.9 2.0 0.8 1.78 50 
30.5652 -96.2888 BoA Boonville Alfisol 10.0 68.5 21.5 0.8 32.4 1.49 6 
30.5647 -96.2890 BoA Boonville Alfisol 10.0 68.5 21.5 0.8 32.4 1.49 6 
30.5605 -96.2851 SnB Singleton Alfisol 12.5 70.9 16.6 0.8 32.4 1.62 6 
30.5611 -96.2853 SnB Singleton Alfisol 12.5 70.9 16.6 0.8 32.4 1.62 6 
30.5449 -96.2879 MaA Mabank Alfisol 17.5 43.0 39.5 1.5 32.4 1.65 7.5 
30.5436 -96.2894 MaA Mabank Alfisol 17.5 43.0 39.5 1.5 32.4 1.65 7.5 
30.5263 -96.2497 BwC Burlewash Alfisol 10.0 65.0 25.0 1.3 32.4 1.55 4.3 
30.5546 -96.2306 BwC Burlewash Alfisol 10.0 65.0 25.0 1.3 32.4 1.55 4.3 
30.5620 -96.2450 ReC Rehburg Alfisol 7.0 83.5 9.5 0.8 331.2 1.52 3.5 
30.5614 -96.2487 SkB Shiro Alfisol 8.5 82.2 9.3 0.8 100.8 1.52 4.5 
30.5626 -96.2502 BwC Burlewash Alfisol 10.0 65.0 25.0 1.3 32.4 1.55 4.3 
30.5896 -96.2834 TuA Tabor Alfisol 14.0 69.6 16.4 0.8 32.4 1.63 3.5 
30.5909 -96.2837 TuA Tabor Alfisol 14.0 69.6 16.4 0.8 32.4 1.63 3.5 
30.5905 -96.2787 TuA Tabor Alfisol 14.0 69.6 16.4 0.8 32.4 1.63 3.5 
30.5901 -96.2795 TuA Tabor Alfisol 14.0 69.6 16.4 0.8 32.4 1.63 3.5 
30.6179 -96.2846 BrB Boonville Alfisol 10.0 68.5 21.5 0.8 32.4 1.49 6 
30.6208 -96.2885 BrB Boonville Alfisol 10.0 68.5 21.5 0.8 32.4 1.49 6 
30.6239 -96.3026 Ur-BrB Urban Alfisol 10.0 68.5 21.5 0.8 32.4 1.49 6 
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30.6310 -96.3167 ZcB Zack Alfisol 11.0 67.7 21.3 0.7 32.4 1.29 7.5 
30.6286 -96.3198 BrB Boonville Alfisol 10.0 68.5 21.5 0.8 32.4 1.49 6 
30.6684 -96.3415 ZcB Zack Alfisol 11.0 67.7 21.3 0.7 32.4 1.29 7.5 
30.6767 -96.3310 BoB Boonville Alfisol 10.0 68.5 21.5 0.8 32.4 1.49 6 
30.6788 -96.3336 BoB Boonville Alfisol 10.0 68.5 21.5 0.8 32.4 1.49 6 
30.6761 -96.3329 ZcD Zack Alfisol 11.0 67.7 21.3 0.7 32.4 1.29 7.5 
30.6874 -96.3305 BoB Boonville Alfisol 10.0 68.5 21.5 0.8 32.4 1.49 6 
30.6868 -96.3308 BoB Boonville Alfisol 10.0 68.5 21.5 0.8 32.4 1.49 6 
30.6811 -96.3224 BoB Boonville Alfisol 10.0 68.5 21.5 0.8 32.4 1.49 6 
30.6811 -96.3224 BoB Boonville Alfisol 10.0 68.5 21.5 0.8 32.4 1.49 6 
30.6727 -96.2944 BoB Boonville Alfisol 10.0 68.5 21.5 0.8 32.4 1.49 6 
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Table 23. Raw data for water extractable metals. 
NAWA     Age Na Ca Mg Na K B S Fe Zn Cu Mn 
          mg/kg 
S06887 Chicago 6 6 to 10 Deicing1 106 28 54 43 0 7 38 0 0 0 
S06888 Chicago 21 21 to 30 Deicing1 141 38 120 82 0 17 28 1 0 0 
S06889 Chicago 30 > 30 Deicing1 66 60 286 68 1 14 186 2 0 0 
S06890 Chicago 7 6 to 10 Deicing1 149 31 112 59 0 25 16 0 0 0 
S06891 Chicago 91 > 30 Deicing1 55 44 174 64 0 12 148 2 0 1 
S06892 Chicago 72 > 30 Deicing1 58 64 320 96 1 13 239 3 0 1 
S06893 Chicago 10 6 to 10 Deicing1 142 62 384 11 1 20 219 1 1 1 
S06894 Chicago 0 0 to 5 Deicing1 171 36 95 56 0 11 110 1 1 1 
S06895 Chicago 24 21 to 30 Deicing1 106 43 162 89 0 17 61 1 0 0 
S06896 Chicago 14 11 to 20 Deicing1 104 40 115 52 1 14 137 1 0 0 
S06897 Chicago 61 > 30 Deicing1 102 46 89 102 0 10 20 1 1 0 
S06899 Chicago 92 > 30 Deicing1 183 49 158 76 0 15 19 1 0 0 
S06900 Chicago 3 0 to 5 Deicing1 120 43 145 66 0 17 105 1 0 0 
S06901 Chicago 11 11 to 20 Deicing1 176 42 27 79 0 11 105 1 0 0 
S06902 Chicago 0 0 to 5 Deicing1 146 43 155 46 0 24 45 0 0 0 
S06903 Chicago 3 0 to 5 Deicing1 213 53 16 47 0 19 28 1 0 0 
S06904 Chicago 21 21 to 30 Deicing1 150 56 140 115 1 20 103 1 0 0 
S06905 Chicago 12 11 to 20 Deicing1 89 49 310 118 0 14 129 1 0 0 
S06906 Chicago 0 0 to 5 Deicing1 172 37 99 57 0 15 29 1 0 0 
S06907 Chicago 7 6 to 10 Deicing1 74 60 201 82 1 12 229 1 0 1 
S06908 Chicago 27 21 to 30 Deicing1 135 175 442 253 3 20 964 4 1 2 
S06909 Chicago 12 11 to 20 Deicing1 90 43 387 183 1 30 190 2 1 1 
S06910 Chicago 0 0 to 5 Deicing1 153 54 69 61 0 14 73 1 0 0 
S06911 Chicago 18 11 to 20 Deicing1 86 71 258 133 1 11 326 2 0 2 
S06912 Chicago 59 > 30 Deicing1 57 52 172 73 1 12 173 2 0 0 
S06913 Chicago 55 > 30 Deicing1 93 79 396 128 1 18 320 2 0 1 
S06914 Chicago 69 > 30 Deicing1 69 56 265 80 1 14 196 1 0 1 
S06915 Chicago 9 6 to 10 Deicing1 155 47 19 48 0 11 49 1 0 0 
S06916 Chicago 0 0 to 5 Deicing1 166 51 34 99 0 20 54 0 0 0 
S06917 Chicago 8 6 to 10 Deicing1 118 47 179 53 0 11 126 1 0 1 
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S06918 Chicago 15 11 to 20 Deicing1 179 49 51 45 0 12 45 0 0 0 
S06919 Chicago 10 6 to 10 Deicing1 200 41 20 48 0 16 39 1 0 0 
S06920 Chicago 29 21 to 30 Deicing1 82 89 494 133 1 19 419 2 0 1 
S06956 BCS 13 11 to 20 Irrigation 183 158 447 78 1 36 962 3 0 1 
S06957 BCS 13 11 to 20 Irrigation 155 116 478 72 1 29 711 2 0 1 
S06958 BCS 60 > 30 Irrigation 177 31 57 24 0 11 123 1 0 0 
S06959 BCS 56 > 30 Irrigation 148 31 31 24 0 10 67 2 0 0 
S06960 BCS 30 > 30 Irrigation 237 251 734 159 3 32 1501 4 2 3 
S06961 BCS 0 0 to 5 Irrigation 103 28 140 36 0 11 96 1 0 0 
S06962 BCS 28 21 to 30 Irrigation 109 56 322 52 1 12 451 2 1 1 
S06963 BCS 60 > 30 Irrigation 44 24 74 33 0 9 107 2 1 0 
S06964 BCS 8 6 to 10 Irrigation 173 23 122 39 0 18 54 1 1 0 
S06965 BCS 13 11 to 20 Irrigation 454 185 1175 318 2 44 1900 3 1 2 
S06966 BCS 9 6 to 10 Irrigation 146 49 237 76 0 20 159 1 0 0 
S06967 BCS 0 0 to 5 Irrigation 138 28 140 36 0 26 20 1 0 0 
S06968 BCS 34 > 30 Irrigation 104 17 10 47 0 6 47 1 0 0 
S06969 BCS 9 6 to 10 Irrigation 130 75 324 57 0 51 337 1 0 1 
S06970 BCS 28 21 to 30 Irrigation 90 29 228 60 0 15 144 1 0 1 
S06971 BCS 0 0 to 5 Irrigation 109 41 145 122 0 20 177 1 0 0 
S06972 BCS 27 21 to 30 Irrigation 93 20 322 55 0 19 96 0 0 0 
S06973 BCS 0 0 to 5 Irrigation 179 32 179 51 0 131 58 1 0 0 
S06974 BCS 23 21 to 30 Irrigation 176 156 705 135 2 52 1328 5 1 3 
S06975 BCS 0 0 to 5 Irrigation 168 31 333 27 0 75 91 1 0 0 
S06976 BCS 22 21 to 30 Irrigation 102 62 383 55 1 22 309 1 1 1 
S06977 BCS 15 11 to 20 Irrigation 110 79 392 62 1 26 381 2 1 1 
S06978 BCS 8 6 to 10 Irrigation 608 53 85 55 0 486 0 0 0 0 
S06979 BCS 8 6 to 10 Irrigation 166 29 21 71 0 17 91 1 0 0 
S06980 BCS 19 11 to 20 Irrigation 108 32 151 57 0 29 113 1 0 0 
S06981 BCS 8 6 to 10 Irrigation 312 352 766 213 4 49 3478 5 1 4 
S06982 BCS 34 > 30 Irrigation 280 201 832 90 3 38 1894 6 1 5 
S06983 BCS 23 21 to 30 Irrigation 207 217 885 195 3 113 2414 5 1 5 
S06984 BCS 11 11 to 20 Irrigation 73 33 89 45 0 9 130 1 0 0 
S06985 BCS 34 > 30 Irrigation 136 40 407 32 1 31 171 1 0 0 
S06986 BCS 9 6 to 10 Irrigation 149 123 548 68 1 34 491 2 0 2 
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S06987 BCS 0 0 to 5 Irrigation 127 33 186 32 0 23 103 1 0 0 
S06988 BCS 27 21 to 30 Irrigation 207 236 320 202 3 39 4091 6 0 3 
S06989 BCS 16 11 to 20 Irrigation 119 29 62 46 0 8 85 1 0 0 
S06990 Galveston 30 > 30 Seasalt 112 23 20 62 0 9 46 2 0 0 
S06991 Galveston 3 0 to 5 Seasalt 145 33 23 55 0 12 75 1 0 0 
S06992 Galveston 7 6 to 10 Seasalt 138 31 44 57 0 13 33 1 0 0 
S06993 Galveston 55 > 30 Seasalt 152 34 25 89 0 13 52 1 0 0 
S06994 Galveston 50 > 30 Seasalt 145 32 32 62 0 11 66 1 0 0 
S06995 Galveston 45 > 30 Seasalt 185 30 37 117 0 15 42 1 0 0 
S06996 Galveston 6 6 to 10 Seasalt 147 23 26 62 0 12 54 1 0 0 
S06997 Galveston 0 0 to 5 Seasalt 105 24 31 47 0 3 50 1 0 0 
S06998 Galveston 7 6 to 10 Seasalt 41 3 8 10 0 3 6 0 0 0 
S06999 Galveston 89 > 30 Seasalt 121 26 107 1394 1 19 20 1 0 0 
S07000 Galveston 27 21 to 30 Seasalt 169 32 37 57 0 14 48 1 0 0 
S07001 Galveston 12 11 to 20 Seasalt 148 36 14 59 0 9 90 1 0 0 
S07002 Galveston 22 21 to 30 Seasalt 181 37 36 69 0 16 74 1 0 0 
S07003 Galveston 2 0 to 5 Seasalt 152 30 24 70 0 14 84 1 0 0 
S07004 Galveston 34 > 30 Seasalt 122 24 21 49 0 9 40 1 0 0 
S07005 Galveston 15 11 to 20 Seasalt 156 24 11 47 0 8 59 1 0 0 
S07006 Galveston 10 6 to 10 Seasalt 127 28 11 55 0 7 85 1 0 0 
S07007 Galveston 18 11 to 20 Seasalt 158 31 24 56 0 11 54 1 0 0 
S07008 Galveston 13 11 to 20 Seasalt 111 34 31 50 0 10 66 1 0 0 
S07009 Galveston 25 21 to 30 Seasalt 112 28 22 49 0 8 61 1 0 0 
S07010 Galveston 11 11 to 20 Seasalt 91 22 17 28 0 7 60 1 1 0 
S07011 Galveston 28 21 to 30 Seasalt 99 24 22 26 0 8 44 1 0 0 
S07012 Galveston 16 11 to 20 Seasalt 117 28 48 29 0 15 48 1 0 0 
S07013 Galveston 5 0 to 5 Seasalt 80 18 19 37 0 6 33 1 0 0 
S07014 Galveston 23 21 to 30 Seasalt 112 28 16 41 0 8 85 1 0 0 
S07015 Galveston 10 6 to 10 Seasalt 128 26 47 47 0 19 49 0 0 0 
S07016 Galveston 8 6 to 10 Seasalt 95 23 18 46 0 6 72 1 0 0 
S07017 Galveston 21 21 to 30 Seasalt 79 16 22 66 0 5 36 1 0 0 
S07018 Galveston 4 0 to 5 Seasalt 79 30 89 54 0 12 67 1 0 0 
S07019 Galveston 35 > 30 Seasalt 111 25 30 43 0 6 65 1 0 0 
S07020 Galveston 31 > 30 Seasalt 58 7 12 15 0 3 13 1 0 0 
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S07021 Galveston 14 11 to 20 Seasalt 36 9 23 14 0 6 29 1 0 0 
S07022 Galveston 0 0 to 5 Seasalt 69 43 202 54 0 19 118 1 0 0 
S07023 Galveston 9 6 to 10 Seasalt 115 24 19 52 0 20 45 1 0 0 
S07024 Galveston 0 0 to 5 Seasalt 38 6 9 17 0 3 12 1 0 0 
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Table 24. Raw data for water extractable nutrients. 

  
pH EC NO3-N NH4-N PO4-P DOC DON Alk 2 SAR ESP SUVA254 BDOC 

   
µS/cm µg g soil 

   
% 

Chicago 1 7.70 135 7.07 3.85 1.18 136.00 8.31 372.40 11.18 23.04 3.32 23.19 
Chicago 3 7.27 199 56.39 12.03 5.22 273.00 16.18 285.44 21.54 29.84 3.98 32.69 
Chicago 4 7.85 120 10.70 13.98 8.44 469.70 36.04 294.32 64.91 58.26 6.32 19.92 
Chicago 1 7.39 127 19.75 7.67 4.40 236.70 17.83 378.30 19.86 31.23 3.30 33.41 
Chicago 5 7.41 114 27.37 7.60 6.83 231.90 14.71 0.00 44.22 49.15 5.89 14.33 
Chicago 5 7.75 229 27.67 11.90 7.41 282.40 15.12 0.00 74.69 56.37 10.49 11.14 
Chicago 1 7.57 229 14.27 14.12 8.17 569.00 26.64 650.73 65.81 68.66 6.52 6.84 
Chicago 0 7.24 122 3.50 4.10 4.37 119.50 1.30 452.40 15.66 26.46 2.82 41.64 
Chicago 3 7.61 140 5.09 5.89 5.54 268.80 20.21 376.93 32.37 37.81 3.94 21.52 
Chicago 2 7.68 100 9.69 21.50 6.59 449.20 29.70 167.32 23.32 36.48 3.92 39.28 
Chicago 5 7.56 101 24.24 10.40 5.45 240.30 14.06 279.70 17.93 23.69 4.10 19.08 
Chicago 5 7.22 143 23.19 7.92 4.05 113.70 3.99 457.80 24.93 33.45 5.07 21.04 
Chicago 0 7.53 142 7.98 8.05 4.81 194.70 11.46 517.30 27.55 37.70 3.84 25.03 
Chicago 2 7.10 108 15.62 5.10 4.92 141.70 6.67 420.68 4.37 8.01 3.69 15.39 
Chicago 0 7.03 154 4.99 1.91 1.01 146.10 9.00 673.96 27.14 40.45 1.84 46.41 
Chicago 0 7.33 172 27.43 7.95 10.16 155.40 6.82 583.54 2.35 5.17 2.96 34.83 
Chicago 3 7.43 186 15.62 6.26 49.18 286.60 16.22 582.98 23.71 28.23 4.30 14.29 
Chicago 2 7.60 167 26.05 12.71 9.61 252.20 19.44 325.14 65.34 50.47 3.84 23.23 
Chicago 0 7.26 134 6.10 5.10 3.60 126.10 1.80 250.82 16.33 27.09 2.98 23.71 
Chicago 1 7.91 107 27.92 4.13 5.29 182.70 11.85 240.30 43.94 46.03 8.83 1.48 
Chicago 3 7.88 197 9.90 13.06 10.80 927.70 72.04 184.55 65.37 40.83 14.94 0.00 
Chicago 2 7.00 166 9.38 10.64 13.39 229.30 6.67 682.58 82.50 48.41 7.03 3.70 
Chicago 0 7.48 141 10.44 4.63 3.39 194.20 11.94 519.04 11.63 20.62 4.83 15.72 
Chicago 2 7.35 139 51.41 5.11 6.03 168.10 9.09 291.50 52.16 43.24 14.38 2.48 
Chicago 5 7.60 110 16.42 12.12 12.57 242.40 8.77 127.96 41.98 46.07 7.63 7.24 
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Chicago 5 7.76 170 8.12 12.11 9.10 510.30 27.77 579.21 76.62 53.77 7.02 7.41 
Chicago 5 7.37 162 14.93 9.99 11.57 331.50 22.19 309.00 59.98 53.99 8.57 4.49 
Chicago 1 7.25 135 16.32 8.32 3.40 205.30 11.75 433.17 3.22 7.29 6.02 6.77 
Chicago 0 6.90 138 18.25 8.83 5.34 142.40 6.22 532.72 5.56 9.09 4.88 8.61 
Chicago 1 7.62 131 8.24 10.65 4.89 247.60 18.81 619.81 33.96 45.11 4.32 21.03 
Chicago 2 7.12 165 11.95 7.00 13.97 173.00 10.05 596.71 8.11 16.48 5.25 14.06 
Chicago 1 7.47 128 10.18 9.30 2.21 151.80 9.32 170.39 3.06 6.72 2.85 33.64 
Chicago 3 7.69 220 21.03 11.72 12.28 671.10 67.36 308.61 97.30 58.90 13.11 2.72 

BCS 2 9.11 163 9.63 2.10 2.92 359.40 27.94 824.46 61.48 54.33 17.34 7.45 
BCS 2 9.27 170 6.23 1.90 3.17 402.81 30.20 871.08 73.13 59.98 13.02 39.60 
BCS 5 8.44 78 10.30 2.24 1.72 250.33 20.04 369.02 9.36 21.23 7.62 31.19 
BCS 4 7.60 60 10.47 2.34 3.69 230.52 17.50 249.96 5.51 14.27 6.11 20.22 
BCS 4 9.63 250 13.70 4.30 9.39 948.62 78.63 1124.35 85.45 54.62 11.80 15.08 
BCS 0 8.31 83 2.65 1.56 2.10 157.04 14.25 406.64 29.35 45.78 8.52 31.94 
BCS 3 9.32 122 7.24 2.52 5.15 318.22 32.37 591.41 61.85 60.18 12.74 28.63 
BCS 5 8.12 45 6.60 1.94 13.76 272.72 22.25 0.00 22.21 40.85 8.52 28.23 
BCS 1 8.36 130 5.20 0.75 0.57 184.73 14.22 634.64 20.49 34.73 6.32 38.27 
BCS 2 9.69 402 13.50 8.06 11.01 1211.42 111.04 803.81 113.41 53.18 19.81 1.19 
BCS 1 8.54 165 7.20 2.38 10.01 283.96 21.60 732.82 41.06 45.63 6.84 48.96 
BCS 0 8.47 102 5.30 0.76 1.12 118.60 8.49 527.80 25.85 41.65 8.63 28.88 
BCS 4 8.34 60 6.10 1.73 3.04 179.91 14.12 207.00 2.15 5.27 6.00 39.65 
BCS 1 8.62 164 5.60 2.02 4.33 292.68 24.96 580.29 56.17 56.45 10.88 45.90 
BCS 3 8.75 130 8.50 2.86 5.64 275.80 31.76 570.30 50.48 53.80 6.69 50.56 
BCS 0 6.68 111 4.20 0.73 1.50 81.23 4.36 24.80 28.78 30.90 17.62 39.77 
BCS 3 8.90 155 7.41 2.29 3.45 475.73 46.40 631.30 72.13 63.49 12.29 29.63 
BCS 0 6.73 198 2.78 6.94 0.39 110.04 7.62 428.50 29.19 40.80 6.91 43.25 
BCS 3 9.60 301 12.11 3.47 7.00 629.89 58.99 761.70 98.43 60.23 15.19 18.15 
BCS 0 8.69 196 1.10 0.60 0.50 176.36 12.21 730.04 55.96 61.47 7.93 33.17 
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BCS 3 9.48 169 6.22 2.84 3.79 394.76 41.55 655.72 74.45 64.02 9.51 34.12 
BCS 2 9.23 170 6.24 1.41 4.31 357.37 31.52 627.99 71.64 61.72 10.84 32.46 
BCS 1 7.30 394 3.61 1.35 0.32 124.26 8.77 369.52 7.72 11.54 3.36 46.01 
BCS 1 8.37 97 7.06 2.62 5.15 170.55 15.59 421.10 3.56 6.96 7.43 41.28 
BCS 2 8.50 117 5.01 1.00 3.53 154.84 12.47 423.32 30.72 42.06 9.09 33.03 
BCS 1 9.67 280 13.87 6.55 7.12 841.86 70.74 733.37 76.74 48.29 22.44 7.21 
BCS 4 9.80 352 12.61 4.91 8.00 1158.20 99.20 848.74 95.32 62.30 13.38 10.80 
BCS 3 9.69 333 14.15 4.87 6.10 754.57 69.52 1042.87 110.46 58.54 18.14 28.65 
BCS 2 8.31 57 6.55 2.08 3.14 268.06 21.48 166.51 21.19 36.09 8.63 26.07 
BCS 4 9.10 167 4.37 0.91 4.23 250.48 15.30 936.93 73.84 67.71 9.03 35.46 
BCS 1 9.43 220 6.58 2.41 4.69 370.34 28.30 1283.04 84.17 63.83 12.96 13.10 
BCS 0 8.50 125 3.70 0.75 0.68 175.85 8.78 566.97 35.23 50.46 8.14 20.90 
BCS 3 8.71 96 18.32 7.03 6.11 1003.42 68.42 595.20 39.28 33.03 20.01 5.26 
BCS 2 8.29 76 3.77 1.62 1.27 197.75 13.42 355.65 12.18 23.91 6.98 30.27 

Galveston 4 7.10 106 6.50 6.22 3.60 282.90 27.48 19.80 4.09 8.50 15.06 39.24 
Galveston 0 7.05 112 7.20 2.38 1.20 357.40 34.22 362.80 4.11 8.83 20.36 38.98 
Galveston 1 7.03 143 5.80 6.31 9.90 408.60 39.29 48.00 8.07 15.85 19.45 33.37 
Galveston 4 6.88 155 5.50 4.63 4.10 337.00 32.87 394.50 4.37 7.65 18.05 35.61 
Galveston 4 7.38 130 10.20 9.51 4.20 244.60 24.89 127.00 5.73 11.40 14.18 39.86 
Galveston 4 6.92 178 11.00 4.66 4.30 414.50 42.44 167.00 5.96 8.96 17.36 52.95 
Galveston 1 7.37 128 6.50 3.99 5.80 280.20 26.71 0.00 4.71 9.57 14.22 52.84 
Galveston 0 8.00 106 4.10 3.70 4.70 109.90 22.20 94.30 6.45 14.25 6.45 41.31 
Galveston 1 7.77 85 2.20 3.26 1.80 145.20 12.34 98.40 2.81 12.83 6.71 56.27 
Galveston 5 9.50 177 4.40 9.53 13.30 596.50 57.47 0.00 21.01 4.12 25.30 44.85 
Galveston 3 7.01 130 6.60 3.82 10.70 413.90 38.28 0.00 6.19 12.41 17.61 49.89 
Galveston 2 7.10 114 6.40 4.39 2.50 295.10 30.51 114.00 2.47 5.34 16.87 45.02 
Galveston 3 8.23 103 6.04 3.24 4.09 445.77 39.43 503.30 5.80 10.89 3.26 56.21 
Galveston 0 8.20 77 5.63 1.83 4.11 255.67 22.25 0.00 4.23 8.24 5.15 48.20 
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Galveston 4 7.63 60 4.41 2.82 9.03 346.71 30.27 72.20 4.13 9.40 3.42 51.72 
Galveston 2 8.06 68 6.73 1.97 4.80 317.78 30.22 19.20 1.93 4.59 4.42 51.65 
Galveston 1 8.22 61 3.87 3.50 5.33 232.52 20.85 41.00 2.11 4.78 5.24 52.89 
Galveston 2 7.57 77 8.15 2.50 3.74 342.26 30.39 3.50 4.15 8.78 4.25 49.50 
Galveston 2 8.44 101 4.83 2.42 1.83 176.02 18.67 27.40 6.21 13.43 5.71 47.12 
Galveston 3 8.11 59 3.23 1.76 2.13 127.92 12.88 110.50 4.45 10.10 6.90 46.06 
Galveston 2 7.56 62 2.78 1.58 1.18 152.01 15.93 113.80 3.82 10.93 6.52 42.43 
Galveston 3 8.26 71 4.32 1.27 1.83 166.23 17.93 0.00 4.74 13.32 5.17 51.53 
Galveston 2 8.33 93 3.95 1.72 4.69 194.72 21.99 119.90 9.52 22.42 5.37 44.10 
Galveston 0 8.13 60 4.33 1.87 5.27 164.25 15.91 0.00 4.58 11.79 5.11 40.19 
Galveston 3 8.26 63 2.75 1.73 2.25 141.63 13.60 51.10 3.24 8.07 7.74 38.70 
Galveston 1 8.04 103 10.58 1.56 0.81 126.01 13.10 77.88 9.00 18.63 6.22 49.72 
Galveston 1 7.57 62 1.65 0.42 1.17 109.47 10.96 49.88 3.96 9.41 9.27 43.81 
Galveston 3 7.62 56 3.53 1.00 2.65 123.87 14.86 185.10 5.36 10.40 5.49 45.02 
Galveston 0 8.45 97 0.78 0.60 1.63 124.34 11.42 44.40 20.73 33.51 7.04 48.38 
Galveston 4 7.53 76 4.18 1.46 5.60 140.59 15.33 4.80 6.13 14.08 7.03 37.77 
Galveston 4 8.28 78 4.98 1.42 1.94 107.26 12.65 137.60 3.49 13.08 4.66 49.46 
Galveston 2 8.31 21 5.57 0.80 1.42 151.14 16.53 40.90 8.20 27.73 5.71 37.92 
Galveston 0 8.30 129 1.17 0.66 1.56 114.10 8.74 384.50 47.58 53.62 10.96 43.94 
Galveston 1 8.17 86 3.73 1.89 2.42 180.72 19.21 287.80 3.83 8.62 5.39 50.87 
Galveston 0 7.55 56 3.08 0.80 1.55 102.92 12.08 82.90 3.20 12.13 4.66 47.76 
 

 




