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ABSTRACT 

 

Over time, oil and gas producing companies have used various techniques and 

approaches to estimate their hydrocarbon reserves. Their approaches are set according to 

their own internal business needs and/or according to their interpretation of the regulatory 

requirements. 

Reservoir simulation has been used more commonly as an optimization, 

production forecasting, and reservoir management tool than as a reserves and resources 

estimation tool, particularly for reserves estimates provided to regulatory agencies. 

Deterministic and probabilistic reservoir simulation approaches for reserves estimation 

are currently in practice with different procedures. The problem is that there is usually 

inconsistency in estimates from the different methods. 

The objective of this work was to determine how to estimate reserves using 

reservoir simulation with both deterministic and probabilistic approaches such that the 

resulting reserves estimates from the two approaches are consistent with one another in 

some way. Since all the simulation runs were terminated at a fixed simulation time instead 

of an economic limit, the production calculated is technically not reserves. The recovery 

from the end of history to the end of prediction, i.e., the quantity that was recovered for 

the 8.5 years of prediction, was termed ROP and was used as an approximation for reserves 

in this study. 
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In this study, a distribution of the ROP estimate was generated using multiple 

simulation models with the probabilistic approach. A deterministic ROP estimate was 

derived using the simulation model that has the best history match out of the simulation 

models that were generated using the probabilistic approach.  

It is concluded that the consistency between the deterministic and probabilistic 

reserves cannot be guaranteed and it is hard to say where exactly the deterministic reserves 

will fall on the probabilistic reserves distribution. The consistency between the 

deterministic and probabilistic reserves is controlled by the relationship between reserves 

and the uncertain parameter, the relationship between the uncertain parameter and 

mismatch objective function (OF), and the acceptance threshold of the models to be 

included in generating the reserves distribution.  

Therefore, deterministic reserves estimates should be used with caution, as it is 

uncertain which reserves categories the deterministic estimate represents for any situation.  
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NOMENCLATURE 

 

2D  =Two dimensional 

3D  =Three dimensional 

BHP  =Bottom hole pressure 

d  =Day 

m  =Meter 

md  =Millidarcy 

NPV                =Net present value  

OF                   =Objective function 

OIIP                =Oil initial in place 

phi  =Porosity 

PVT  =Pressure, volume and temperature relationship 

SE  =South east 

STB  =Stock tank barrel  
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1. INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Introduction 

Over time, oil and gas producing companies have used various techniques and 

approaches to estimate their hydrocarbon reserves. Their approaches are set according to 

their own internal business needs and/or according to their interpretation of the regulatory 

requirements. 

Reservoir simulation has been used more commonly as an optimization, 

production forecasting, and reservoir management tool than as a reserves and resources 

estimation tool, particularly for reserves estimates provided to regulatory agencies. There 

are no published standards regarding the best practices for evaluation of reserves and 

resources using reservoir simulation as noted in the Guidelines for Application of the 

Petroleum Resources Management System (PRMS 2011). 

The United States Securities and Exchange Commission (SEC) published the new 

rules “Modernization of Oil and Gas Reporting” in January 2009 (SEC 2009).  The new 

rules in paragraph (a) (25) of rule 4-10 on page 2192 require that a “Reliable Technology,” 

including computational methods, must be demonstrated in practice on a repeatable and 

consistent basis to provide the claimed level of certainty for reporting reserves of any 

category; however, it does not specify the reliable technology that can be used (SEC 2009). 

Moreover, the new rules in paragraph (a) (24) of rule 4-10 on page 2192 allow using both 

deterministic and probabilistic approaches in reserves estimation (SEC 2009). 
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Estimators who prefer deterministic methods find it straightforward, easy to 

explain, and needing less effort. According to Capen (1996), many competent engineers 

feel that a qualified engineer ought to be able to find the answer without significant error 

and, thus, applying probabilities to reserves makes no sense. On the other hand, reserves 

are always uncertain and the ultimate goal is to quantify the uncertainty. To achieve that 

ultimate goal, the systematic probabilistic approach is the best auditable and justifiable 

method (Wolff 2010b). Deterministic and probabilistic approaches are currently in 

practice with different procedures (Patricelli and McMichael 1995, Purvis et al. 1997, 

Dehghani et al. 2008, Sajjadian et al. 2010). The problem is that there is usually 

inconsistency in estimates from the different methods (Rietz and Usmani 2009, Dehghani 

et al. 2008, Purvis et al. 1997). 

Reliable reserves estimates are important for governments, companies, regulators, 

analysts, investors, and the public. For instance, an analyst who assesses companies’ worth 

is usually influenced by short-term earnings and stock prices that are strongly reserves 

related. An investor is interested in development costs and reserves replacement ratios 

because of the fact that the ability to generate revenue in the future will shrink if no new 

reserves replaced the produced volumes. Producing companies compete between each 

other for capital with reserves-based borrowing. According to Dharan (2004), 70% of a 

producer’s total market value is based on its proved reserves, and the value of the total 

proved reserves of over 150 publicly owned US oil and gas companies has exceeded $3 

trillion. Finally, government and regulatory bodies, such as the SEC, require US-based oil 

and gas companies to report and disclose their proved reserves annually. 
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1.2 Background 

1.2.1 History of Reserves Definitions 

The development of reserves definitions started in 1936 by the American 

Petroleum Institute (API), which was involved in the annual studies of oil reserves in the 

U.S., while the American Gas Association (AGA) joined the API and set definitions for 

natural gas reserves in the annual studies of oil and gas reserves in 1946 (Harrell and 

Gardner 2005). In 1964, the Society of Petroleum Engineers (SPE) issued similar 

definitions. After that, the  SEC in 1975 was required to take necessary steps to guarantee 

that persons involved in the production of crude oil or natural gas in the United States are 

following the accounting practices by the Energy Policy and Conservation Act of 1975 

(US-Code 2012). In 1978, the SEC established definitions for proved oil and gas reserves. 

In 1987, both the SPE and the World Petroleum Council (WPC) published similar reserves 

definitions independently. Later, the SPE and the WPC jointly published the first 

standardized reserves definitions that could be used internationally in 1997. In 2000, the 

“Petroleum Resources Classification System and Definitions” was approved by the SPE, 

the WPC, and the American Association of Petroleum Geologists (AAPG). After that, the 

Society of Petroleum Evaluation Engineers (SPEE) with the SPE, the WPC, and the 

AAPG updated and approved the previous definitions as the “Petroleum Resources 

Management System” (PRMS) in 2007. On December 31, 2008, the SEC updated their 

rules as the “Modernization of Oil and Gas Reporting” using PRMS as a guide (PRMS 

2007). On January 14, 2009, the new rules were published in the Federal Register (SEC 

2009). 
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According to PRMS (2007), reserves are classified into three categories based on 

the range of uncertainty: proved (1P), proved-plus-probable (2P), and proved-plus-

probable-plus-possible (3P). When a probabilistic approach is used to represent the range 

of uncertainty, the three classes shall be presented such that: 

 There should be at least 90 % probability (P90) that the recovered quantities will 

be equal or exceed the proved reserves estimate. 

 There should be at least 50 % probability (P50) that the recovered quantities will 

be equal or exceed the proved-plus-probable estimate. 

 There should be at least 10 % probability (P10) that the recovered quantities will 

be equal or exceed the proved-plus-probable-plus-possible estimate. 

1.2.2 The Role of the SEC 

There is large consistency between the revised reserves definitions of the SEC and 

PRMS definitions (Lee 2009). However, the SEC is a law enforcement organization, 

whose job is to assure responsible reporting of oil and gas reserves by operators that will 

“protect investors, maintain fair, orderly, and efficient markets, and facilitate capital 

formation” (SEC 2013). According to the West's Encyclopedia of American Law (2008), 

the SEC writes rules, establishes laws and enforces its rules by prosecuting violators, in 

addition to holding adjudicative hearings and acting as judge and jury to settle conflicts 

and prescribe sanctions. Such authority was given when the Congress passed the 

Administrative Procedures Act (APA) in 1946. Therefore, US-based oil and gas 

companies have to disclose their oil and gas proved reserves to the SEC annually. 
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Reserves definitions are the criteria that qualify forecasted recoveries as reserves 

regardless of the method used. The SEC has established several definitions that US-based 

oil and gas companies have to compute their reserves in accordance with. In January 2009, 

the SEC published the new rules known as “Modernization of Oil and Gas Reporting; 

Final Rule” in the Federal Register on pages 2190 to 2192 (SEC 2009). 

1.2.3 Reserves Estimation Methods 

Reserves are estimated using different methods such as analogs, volumetrics, 

decline curve analysis, and material balance. Reservoir simulation has been used more 

commonly as an optimization, production forecasting, and reservoir management tool than 

as a reserves and resources estimation tool, particularly for reserves estimates provided to 

regulatory agencies. 

Reservoir simulation is a sophisticated methodology that applies computer 

programs (simulators) to model static geological characteristics and dynamic flow 

characteristics. One of the benefits of reservoir simulation is that it integrates rigorously 

and simultaneously almost all geoscience and engineering data that influence the 

production behavior of the reservoir (Mattax and Dalton 1990). 

Lee et al. (2011) concluded that simulation is a potential reliable technology once 

it satisfies the criteria of consistency and repeatability. The authors applied the steps of 

the scientific method described by Sidle and Lee (2010) to demonstrate the required 

consistency and repeatability. A hind-cast test, which matches a portion of the history data 

and predicts the remaining portion of history data, is used by the authors as strong evidence 

of reliability of simulation predictions. Accurately honoring the match period and hind-
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cast period gives confidence to the standard of consistency according to the authors. The 

standard of repeatability is judged by the authors by showing that sensitivity runs of key 

assumed input data have either little/no impact on predictions after the end of actual 

history, or significant impact on both the match period and the hind-cast period.  

Over time, oil and gas producing companies have used various techniques and 

approaches to estimate their recoverable hydrocarbons deterministically and 

probabilistically. Their approaches are set according to their own internal business needs 

and/or according to their interpretation of the regulatory requirements. 

1.2.4 Deterministic vs Probabilistic  

Deterministic and probabilistic reservoir simulation approaches for reserves 

estimation are currently in practice with different procedures. The deterministic approach 

is used to report a single representative estimate, which is usually considered as proved-

plus-probable, i.e., the median, or P50. The approach is typically conducted by using a 

single value of each of the input parameters to derive a single outcome of the recoverable 

volume. In general, estimators consider the model that shows the best history match as the 

best estimate of the truth or the most-likely scenario to exist. The purpose of history 

matching is to compare the simulation results with the observed data and adjust the 

uncertain parameters in the simulation model to reduce the mismatch between the 

simulation results and observed data. The resulting simulation model should capture the 

level of details necessary for production forecasts with high predictive confidence. 

In the probabilistic approach, probability distributions of all possible values of 

each input parameter are used to derive a probability distribution of all possible outcomes 



 

 

7 

 

of recoverable volumes.  It is called uniform search because the sampling from the 

uncertain parameters distributions was just random and it was not controlled by 

optimization process for minimizing the mismatch objective function as in computer-

assisted history matching process. To eliminate the effect of the prior distribution on the 

consistency between the deterministic and the probabilistic reserves, uniform distributions 

of the uncertain parameters were used.  

Estimators who prefer deterministic methods find it straightforward, physically 

easy to explain, and needing less effort. According to Capen (1996), many competent 

engineers feel that a qualified engineer ought to be able to find the answer without 

significant error and, thus, applying probabilities to reserves makes no sense. On the other 

hand, assessment of subsurface petroleum resources is complex and always subject to 

many uncertainties. Therefore, reserves are always uncertain and the systematic 

probabilistic approach is the best auditable and justifiable method to quantify the 

uncertainty (Wolff 2010b). 

McVay and Dossary (2014) quantified the value of assessing uncertainty and the 

consequences of overconfidence. The authors demonstrated that expected disappointment 

(the difference between estimated portfolio NPV and realized portfolio NPV) was 30-35% 

of estimated NPV in cases of moderate overconfidence and optimism and up to 100% of 

the estimated NPV with greater degrees of overconfidence and optimism. They noted that 

elimination of overconfidence and optimism will eliminate expected disappointment, 

which will improve the performance of the organization over all. 
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1.2.5 Reserves Estimation Using Reservoir Simulation 

According to the Guidelines for Application of the Petroleum Resources 

Management System (PRMS 2011), there are no published standards regarding best 

practices for evaluation of reserves and resources using reservoir simulation. The SEC 

previous rules do not specify criteria for the use of reservoir simulation models in the 

reserves estimation process, other than the model must have a “good history match” to 

derive the proved reserves (Rietz and Usmani 2005).  

The SEC new rules in paragraph (a) (25) of rule 4-10 on page 2192 require that a 

“Reliable Technology,” including computational methods, must be demonstrated in 

practice on a repeatable and consistent basis to provide the claimed level of certainty for 

reporting reserves of any category; however, it does not specify the reliable technology 

that can be used (SEC 2009). Moreover, the new rules in paragraph (a) (24) of rule 4-10 

on page 2192 allow using both deterministic and probabilistic approaches in reserves 

estimation (SEC 2009).  

Patricelli and McMichael (1995) discussed the method used by Mobile Oil E&P 

Corp. for reserves and resources evaluation. In the deterministic analysis, a geological 

model was developed with calculated values of rock volume and recovery factor 

parameters that were claimed to be appropriate, based on a conclusive formation 

evaluation, to estimate proved reserves. Similarly, calculated values of rock volume and 

recovery factor parameters were used to estimate proved-plus-probable reserves. In the 

probabilistic analysis, the minimum values of rock volume and recovery factor parameters 

were set equal to the values used to calculate the deterministic proved reserves. Similarly, 
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the values used to calculate the deterministic proved-plus-probable reserves were set as 

the most-likely values in the probabilistic analysis. Moreover, upside values of the 

parameters were used as maximum values in the probabilistic analysis. After that, Monte 

Carlo simulation was run to derive the cumulative probability distribution of the reserves 

and the proved-plus-probable-plus-possible reserves were derived. The authors used the 

deterministic and probabilistic methods as a combined approach and did not discuss any 

comparison between the deterministic and probabilistic estimates of the reserves 

categories. However, they demonstrated that a company could uses a single deterministic 

simulation model to estimate proved reserves, and similarly to estimate proved-plus-

probable reserves, according to their own internal business needs and/or according to their 

interpretation of the regulatory requirements. 

Purvis et al. (1997) used Monte Carlo techniques with reservoir simulation to 

quantify the uncertainty in production forecasts. The authors identified net thickness, gas-

water contact, porosity, water saturation and permeability as uncertain parameters. A 

symmetrical triangular distribution was used for net thickness with a mode equal to the 

deterministic value. A uniform distribution was used for fluids contacts with equal height 

below and above the deterministic depth. A normal distribution centered at zero was used 

for the measurement error of porosity and water saturation so that the mode would be 

equal to the deterministic value with measurement error of zero. A skewed triangular 

distribution was used for permeability multiplier so that it is centered at one, with fifty 

percent of cases to be high by up to a factor of three and fifty percent of cases to be low 

by down to a factor of one-third. The results showed that there is agreement between the 
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deterministic estimate and the P50 probabilistic estimate in the early years of the 

production rate forecast, with mismatch in the later years. The authors noted that the 

deterministic and P50 estimates may not be the same since they are different types of 

forecasts. That is, the P50 is a median value that is greater than half of the forecasted rates 

and less than the other half of the forecasted rates. On the other hand, the deterministic 

forecast is the most likely outcome, not the median outcome. The study was to be used for 

internal company decision-making and not to report reserves. Also, a 2D cross sectional 

simulation model was used in this study and the uncertainty in porosity, permeability and 

water saturation was addressed only in the vertical direction. 

Dehghani et al. (2008) conducted an integrated probabilistic reservoir simulation 

study to address uncertainties and better manage the Tangiz field. Static and dynamic 

uncertainties were investigated and a “base model” was constructed by setting each of the 

uncertain parameters to a reasonable “most likely” value based on the geological and 

engineering judgment of the authors. To handle the geostatistical uncertainty, random seed 

values and variogram lengths were used with geostatistical techniques such as sequential 

Gaussian simulation to provide a set of non-unique realizations of reservoir properties. 

The simulation model was history matched and uncertainty analysis on the prediction runs 

were conducted for different combinations of the dynamic parameters. The results of the 

uncertainty analysis were used to generate a response surface. After that, Monte Carlo 

simulation is conducted to generate the cumulative distribution of recoveries using the 

response surface and distribution of the parameters. For the desired probability, the 

combination of parameters is selected for a final deterministic simulation run.  As the 
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objective of their study was to understand the uncertainties in the recoveries, the authors 

did not discuss any comparisons between reserves estimates from the deterministic base 

model and P50 from the generated cumulative distribution. However, they stated that the 

base model may not have the same original oil volume as the P50 model from the 

probabilistic study because of the uncertainty in the locations of the boundaries between 

regions away from wells. 

Sajjadian et al. (2010) conducted a risk analysis to quantify the uncertainty in the 

oil initially in place (OIIP) and reserves using reservoir simulation. No distributions of the 

uncertain parameters were used. However, collection of different realizations that 

represent discrete sets of the uncertain parameters is defined. The addressed uncertainties 

are structure, net-to-gross ratio (NTG), porosity, initial water saturation, absolute 

permeability, relative permeability shape and endpoints, skin factor, and minimum well-

head pressure. After that, Monte Carlo simulation was run to generate 200 simulation 

models with different combinations of the uncertain parameters. Subsequently P10, P50, 

and P90 percentiles were derived from the oil initial in place (OIIP) and reserves 

distributions. The authors concluded that, for the addressed reservoir, the top structure 

uncertainty has the most impact on the OIIP calculations and NTG with permeability 

uncertainty have the most impact on reserves. The authors did not use the deterministic 

approach and therefore did not compare probabilistic and deterministic estimates. 

However, they demonstrated using probabilistic reservoir simulation according to their 

own internal business needs to quantify the uncertainty in the OIIP and reserves. 
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The Guidelines for Application of the Petroleum Resources Management System 

noted that a multidisciplinary team with appropriate skills and experience is required to 

develop a meaningful reservoir simulation model that can generate reliable results with 

reasonable certainty once it showed reasonably good history match (PRMS 2011). The 

guidelines mentioned two cases of using reservoir simulation to evaluate and categorize 

reserves. In the first case, three different reservoir simulation models based on three 

different geological realizations, representing low, best, and high estimates are used 

directly to estimate hydrocarbons in place and reserves. The realizations are selected 

depending on the estimator’s choice of the uncertain parameters values that are the most 

appropriate for the corresponding reserves category. In the second case, a single 

simulation model that represents the most-likely or best estimate is used to derive the best 

estimate of reserves and then sensitivity runs are used to derive the range of uncertainty 

and assign the low and high reserves estimates accordingly. The reserves are categorized 

based on the degree of uncertainty the estimator determined to exist in the reserves 

estimates. There are no published standards regarding the best practices for evaluation of 

reserves and resources using reservoir simulation as noted in the Guidelines for 

Application of the Petroleum Resources Management System (PRMS 2011). 

1.2.6 Categorizing Reserves from Reservoir Simulation 

Simulation models traditionally have been used as a reservoir management tool for 

improving the understanding of reservoir performance and making better development 

decisions. According to Palke and Rietz (2001), optimizing a reservoir development plan 

based on proved reserves could under-deplete the reservoir and reduce the overall 
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production. Therefore, the most-likely scenario is more commonly considered for 

optimization purposes. The SEC recognizes that simulations models are usually built to 

estimate most-likely or proved-plus-probable cases and therefore the models need to be 

adapted before being used for estimating proved reserves (Harrell and Gardner 2005).  

Rietz and Usmani (2009) provided a case study illustrating the adjustment of 

reservoir simulation models and using their results to assist in quantifying reserves. In this 

study, an initial base-case simulation model was constructed using the most-likely input 

parameters and considered as the proved-plus-probable estimate. After that, a probabilistic 

Monte Carlo study was performed to assess the likely distribution of ultimate recovery. 

The authors found that the Monte Carlo probabilistic P50 showed ultimate recovery less 

than the 2P estimate from the deterministic base-case model. They explained that the 

parameters chosen to build the base case were more optimistic than the parameters used 

to derive the probabilistic P50. However, they did not provide any insights on how to 

ensure consistency between deterministic and probabilistic reserves estimates.  

Lee et al. (2011) suggest that if the sensitivity runs showed good history matches 

while giving different predictions then 1P, 2P, and 3P reserves estimates can be extracted 

according to the appropriate level of certainty. Two examples were demonstrated by the 

authors: the first is a single model that was used for both 1P and 2P scenarios by changing 

just the operational conditions, and the second example consists of multiple models that 

have good history matches and represent a range of internally consistent scenarios from 

2P, with higher estimate of reserves, to 1P, the most conservative case. The full 
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probabilistic approach considering the full range of outcomes was beyond the scope of 

their work. 

1.3 Summary of the Literature and Research Objectives 

To sum up the literature, different estimators use different approaches based on 

their own internal business needs and/or according to their interpretation of the regulatory 

requirements (Patricelli and McMichael 1995, Purvis et al. 1997, Dehghani et al. 2008, 

Sajjadian et al. 2010). The base deterministic case is traditionally built using the most-

likely values of the input parameters (Patricelli and McMichael 1995, Purvis et al. 1997, 

Palke and Rietz 2001, Harrell and Gardner 2005, Dehghani et al. 2008, Rietz and Usmani 

2009, PRMS 2011).  

There were some attempts to compare deterministic estimates with probabilistic 

estimates using reservoir simulation. Purvis et al. (1997) showed that there is agreement 

between the deterministic estimate and the P50 probabilistic estimate in the early years of 

the production rate forecast, with mismatch in the later years. Dehghani et al. (2008) stated 

that the base model may not have the same original oil volume as the P50 model from the 

probabilistic study because of the uncertainty in the locations of the boundaries between 

regions away from wells. Rietz and Usmani (2009) found that the Monte Carlo 

probabilistic P50 showed ultimate recovery was less than the 2P estimate from the 

deterministic base-case model.  

To my knowledge there has been no thorough investigation of the consistency 

between the two approaches and how the estimates can be reconciled. The objective of 

this study is to determine how to estimate reserves using reservoir simulation with both 
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deterministic and probabilistic approaches such that the resulting reserves estimates from 

the two approaches are consistent with one another in some way. 
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2. METHODOLOGY AND MODEL DESCRIPTION  

 

2.1 Available Data 

A set of available data including a simulation model and a rough geological 

description, well porosities and well permeabilities and a production strategy were 

acquired from the literature. The data set is publically available under PUNQ-S3 model 

on the internet page of the petroleum engineering & rock mechanics research group at the 

department of earth science and engineering at Imperial College (Elf 1997). These data 

were used to build the truth-case simulation model and generate the synthetic history.  

2.1.1 PUNQ-S3 Simulation Model 

A project of production forecasting with uncertainty quantification was carried out 

to compare different techniques of quantifying uncertainty in the oil production forecast. 

The project involved oil companies, research institutes, and 10 European universities. A 

synthetic reservoir simulation model known as PUNQ-S3 was created by one of the 

involved organizations (Floris et al. 2001). The model is a small-size industrial reservoir 

engineering model containing 19x28x5 grid blocks with 1761 active blocks of 180 meters 

length and width each. PVT data and relative permeability functions were also defined in 

the simulation model. Zero capillary pressure was assumed. A strong aquifer surrounds 

the reservoir from the north and west, whereas a fault delimits the reservoir from the south 

and east. A small gas cap is centered in the dome-shaped reservoir. Fig. 1 shows the top 

structure map of the reservoir.   
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Fig. 1—Top structure map of PUNQ-S3 (adapted from Floris et al., 2001) 

 

 

2.1.2 Geological Description 

Based on the knowledge of the regional geology, the reservoir was geologically 

described as good quality layer in Layers 1, Layer 3, Layer 4, and Layer 5. These layers 

represent fluvial channel fills and lagoonal delta. In Layers 1, Layer 3, and Layer 5 there 
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are linear streaks of high-porosity sands (phi > 20 %) with an azimuth somewhere between 

110 and 170 degrees SE. The streaks are embedded in low quality matrix (phi < 5 %) and 

their width and spacing vary between layers. In contrast, Layer 2 represents poor quality 

lagoonal shales with low-porosity (phi < 5%) shaly sediments and some irregular patches 

of somewhat higher porosity (phi > 5%). An intermediate-porosity region (phi ~ 15%) 

with an approximate lobate shape embedded in a low-porosity matrix (phi < 5%) forms 

Layer 4. The longest axis of the lobate shape is perpendicular to the paleocurrent (which 

is between 110 and 170 degrees SE). 

2.1.3 Production Strategy 

There are six production wells located around the gas-oil contact and no injection 

wells are present due to the strong aquifer. The provided production strategy starts with 

one year of extended well testing that consists of four three-month production periods, 

each having its own production rate, followed by a three-years shut-in period, followed by 

12.5 years of field production. In every year of the 12.5 years, each well is shut in for 2 

weeks for testing to collect shut-in pressure data. The wells are operating under oil 

production rate control with upper limit of 150 m3/day/well, and BHP lower limit of 120 

bars, below which the wells will switch to BHP control. Also, well cut-back limits were 

set to reduce the oil flow rate with a factor of 0.75 whenever the gas-liquid ratio exceeds 

200 sm3/sm3 and/or the well block pressure drops below 120 bars.  The total simulation 

period is 16.5 years. Fig. 2 shows the field oil production rate according to the provided 

production scheme of PUNQ-S3 model.  
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Fig. 2—Field oil production strategy for PUNQ-S3 model 
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2.2 Truth-Case 

A truth-case simulation model is needed to generate the synthetic history to be 

used in the history matching process. Geological and dynamic modeling workflows are 

applied to generate the truth-case model using Petrel & Eclipse softwares.  

2.2.1 Truth-Case Generation 

To model the available geological description, using Petrel software, a property 

modeling process is performed by filling the grid blocks with continuous properties such 

as porosity and permeability. The objective of the property modeling process is to 

distribute properties between the available wells so it realistically preserves the reservoir 

heterogeneity and matches the well data. Porosity and permeability values at the well 

blocks were provided and will be used in the property modeling process.  

As the property modeling processes are used to describe the natural random 

variation in a property, the variogram should describe this natural variation. Based on the 

concept that two points close together are more likely to have similar values than points 

far away from each other, the variogram is described by some parameters like major range 

(MJR), minor range (MNR), and azimuth. The range is the maximum distance in meters 

where sample values are dependent on each other. The range is given in a major horizontal 

distance that is called a major range and a minor distance that is normal to the major range 

and it is called a minor range. The azimuth is the orientation of the major range.  

Gaussian Random Function is the geostatistical estimation technique that was used 

to map the porosity field in the truth-case model honoring well data, input distributions, 

and variograms. This geostatistical estimation technique uses a random seed in addition 
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to the variogram parameters, so while consecutive runs will give similar equal probability 

realizations with the same variogram parameters, the details of the realizations will be 

different. The 3D grid is organized in numbered cells. The value of the property is 

calculated at the cells according to a random path that is decided by the seed number. The 

seed number is the integer value that represents the start point of the random path and it is 

used to preserve the random nature throughout the model. For every seed number, a 

kriging algorithm is run to estimate the value of the property at the starting point using the 

neighboring data points. After that, the value of the property is calculated using the 

neighboring data points and the recent estimated point at a new point on the random path 

that is decided by the seed number. The same process is repeated until all points on the 

random path have their values of the property estimated. The result will be a unique 

realization for each unique seed number. The values of the geostatistical parameters were 

defined to be as consistent as possible with the geological description. Porosity and 

Permeability fields were truncated with minimum and maximum limits to avoid any non-

physical values. A global seed number of 100 was used for the five layers. Table 1 shows 

the values of the geostatistical parameters and truncation limits that were used to model 

the geological description. Fig. 3 shows the porosity maps of the five layers in the truth-

case model. 
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Table 1—Truth-case geostatistical parameters 

 
 

 

 
Fig. 3—Porosity maps of the truth-case model 

 

 

In many cases, the properties being modeled are likely to be related to one another; 

permeability is often high in areas of high porosity. In the PUNQ-S3 project and in this 

study, a correlation coefficient between porosity and horizontal permeability of 0.8 and a 

correlation coefficient between horizontal permeability and vertical permeability of 0.8 

were used. Reliable permeability data is usually much less available than porosity data. 

Therefore, there is often a relationship between these two properties and it is common 

practice to base the permeability model directly upon the porosity model. Collocated Co-
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simulation calculates the horizontal permeability in the area of each cell using the porosity 

as secondary variable, together with the correlation coefficient of 0.8, to keep consistent 

correlation between porosity and horizontal permeability. Fig. 4 shows the horizontal 

permeability maps of the five layers in the truth-case model. The porosity vs permeability 

cross plot from the generated porosity and horizontal permeability maps of the truth-case 

model in this study, shows that the correlation coefficient is 0.8 as was used in PUNQ-S3 

project (Fig. 5).  

 

 

 
Fig. 4—Horizontal permeability maps of the truth-case model 
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Fig. 5—Porosity vs permeability cross plot from the generated porosity and 

permeability maps 

 

 

Similarly, Collocated Co-simulation calculates the vertical permeability in the area 

of each cell using the horizontal permeability as secondary variable, together with the 

correlation coefficient of 0.8, to keep consistent correlation between horizontal 

permeability and vertical permeability. Fig. 6 shows the horizontal permeability maps of 

the five layers in the truth-case model.  
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Fig. 6—Vertical permeability maps of the truth-case model 

  

 

A Carter-Tracy aquifer model is used to simulate amounts of water connected to 

the reservoir and how it affects the reservoir behavior. The aquifer model is defined to 

have the initial pressure in hydrostatic equilibrium with the reservoir. The datum depth is 

2355 m at the gas-oil contact and the oil-water contact depth is 2395 m. The aquifer 

permeability is 137.5 md and the aquifer porosity is 0.2125. After that, the truth case was 

created, and the truth-case simulation model was ready to run. 

2.2.2 Observed Data Generation 

After the truth-case model was built, the next step was to run the generated 

simulation model and create a synthetic history that was used in the history matching 

process. The generated synthetic history includes oil rates, gas-oil ratio (GOR), water cut 

(WCT), static bottom-hole pressure (SBHP) and flowing bottom-hole pressure (FBHP) 

for every single well. The synthetic history was reported at a frequency of monthly in the 
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first year, annually in three-years shut-in period, and semiannually in the years of 

production. In every year of the production years, each well was shut in for 2 weeks for 

testing to collect shut-in pressure data. The wells were operating under oil production rate 

control with upper limit of 150 m3/day/well, and BHP lower limit of 120 bars, below which 

the wells switches to BHP control. Also, well cut-back limits were set to reduce the oil 

flow rate with a factor of 0.75 whenever the gas-liquid ratio exceeds 200 sm3/sm3 and/or 

the well block pressure drops below 120 bars.  

To mimic the systematic nature of errors in production data, a Gaussian noise with 

standard deviation (Std) of measurement error was added to the production ratios and 

pressures considering the shut-in/flow periods and the breakthrough times. The 

measurement error for pressures during the flowing period was 3 bars and during the shut-

in period was 1 bar, as a shut-in pressure is more accurate. The measurement errors of 

WCT was defined as 2% before water breakthrough and 5% after water breakthrough. 

Similarly, GOR measurement error was set to 10% before gas breakthrough and 25% after 

gas breakthrough. The limits of the Gaussian noises were truncated to avoid generating 

extreme noisy measurements. The truncation limits for pressures during the flowing period 

was 5 bars and during the shut-in period was 3 bar, as a shut-in pressure is more accurate. 

The truncation limits of WCT was defined as 3% before water breakthrough and 7% after 

water breakthrough. Similarly, GOR truncation limits was set to 15% before gas 

breakthrough and 30% after gas breakthrough. Table 2 shows the noise levels applied to 

each measurement. Well PRO-5 had water breakthrough during the 6th year, Well PRO-1 

had gas breakthrough in the 5th year, and Well PRO-4 had gas breakthrough in the 7th year.  
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Fig. 7-Fig. 13 show comparisons between the truth-case performance and the generated 

noisy observed data at the reservoir and well levels. The ECLIPSE data file of the truth-

case model is included in Appendix A. 

 

 

Table 2—Observed data noise levels 
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Fig. 7—Comparison of the truth-case and noisy observed field performance 

 

 

 
Fig. 8—Comparison of the truth-case and noisy observed PRO-1 performance 
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Fig. 9—Comparison of the truth-case and noisy observed PRO-11 performance 

 

 

 
Fig. 10—Comparison of the truth-case and noisy observed PRO-12 performance 
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Fig. 11—Comparison of the truth-case and noisy observed PRO-15 performance 

 

 

 
Fig. 12—Comparison of the truth-case and noisy observed PRO-4 performance 
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Fig. 13—Comparison of the truth-case and noisy observed PRO-5 performance 
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2.3 Reserves Estimation Workflow 

In the PUNQ-S3 project and in this study, the total simulation time was 16.5 years 

including 8 years of history plus 8.5 years of prediction and all the simulation runs were 

ended at the end of the simulation time. Therefore, the total cumulative production for 8 

years of history plus 8.5 years of prediction in this study is called the total recovery at the 

end of history plus prediction (TRHP). The recovery from the end of history to the end of 

prediction is the quantity that was recovered for the 8.5 years of prediction (ROP). 

Therefore, ROP was determined by subtracting the cumulative production for 8 years of 

history from the total recovery for 16.5 years.  Since all the simulation runs were ended at 

the end of simulation time instead of an economic limit, ROP was used as an 

approximation for reserves in this study.   

After the noisy synthetic observed data were generated, the deterministic and 

probabilistic approaches were carried out to estimate ROP using reservoir simulation. In 

real life, the truth case is unknown and the generated simulation models forecast different 

recovery values based on the values of the uncertain parameters. 

2.3.1 Identification of Uncertain Parameters 

Including as many uncertain parameters as possible is theoretically preferred; 

however, in practice a compromise is often needed. In this study, the uncertainties 

addressed were petrophysical properties, aquifer properties, oil relative permeability 

curves, and geostatistical parameters. Traditionally, an integrated multi-disciplinary team 

conducts a comprehensive study to determine the distributions of the uncertainties. In most 

cases, the range of the uncertain parameter distribution (minimum to maximum),  has a 
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stronger impact on forecasts than distribution shape (Wolff 2010a). To eliminate the effect 

of the prior distribution on the consistency between the deterministic and the probabilistic 

forecasts, uniform distributions of the uncertain parameters were used in this study. 

 Petrophysical uncertainties included porosity and permeability at the well 

locations to mimic the uncertainties associated with wireline data quality and processing. 

Therefore, a well porosity and permeability multiplier (PHIKMULT) was used as an 

uncertain parameter.  

To address the uncertainty in the porosity and permeability in between wells and 

in portions of the reservoir that were not sampled by logs, I used a Gaussian random 

function—a geostatistical estimation technique—to provide a set of unique realizations of 

porosity and permeability maps. This geostatistical estimation technique uses a random 

seed in addition to the variogram parameters, so while consecutive runs will give similar 

equal probability realizations with the same variogram parameters, the details of the 

realizations will be different. For every seed number, a kriging algorithm is run to estimate 

the value of the property at the starting point using the neighboring data points. The result 

will be a unique realization of porosity and permeability map for each unique seed number. 

Therefore, the seed variable was selected as uncertain parameter to consider the 

uncertainty of porosity and permeability between wells and in portion of reservoirs that 

are not sampled. In addition, the azimuth in Layer 1, Layer 3, and Layer 5 was selected as 

an uncertain parameter with a range of uncertainty from -70° to -10°. The azimuth value 

was the same for the three layers. Also the variogram major range in Layer 3 and Layer 5 
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was selected as uncertain parameter with an uncertainty range from 1500 m to 9000 m. 

The major range value was the same for the two layers.  

There is a strong aquifer in the model and the analytical Carter-Tracy aquifer 

permeability was selected as an uncertain parameter. Also, the oil relative permeability 

curves were picked as an uncertain parameter in this study.  

2.3.2 Mismatch Objective Function 

A mismatch objective function was defined to quantify the mismatch between the 

simulation model results and the observed data. The mismatch computations are based on 

the reservoir production data: oil rates, GOR, WCT, SBHP and FBHP for the 6 wells at 

all reporting time steps. Eq. 1 represents the mismatch between the simulation results and 

observed data at every reporting time step. 

𝑀𝑀(𝑡) = 𝑆𝑖𝑚(𝑡) − 𝑂𝑏𝑠(𝑡)………………………………..………………… (1) 

where the simulation results 𝑆𝑖𝑚(𝑡) = 𝑆𝑖𝑚1(𝑡1), … … . 𝑆𝑖𝑚𝑁(𝑡𝑁) and the 

observed data 𝑂𝑏𝑠(𝑡) = 𝑂𝑏𝑠1(𝑡1), … … . 𝑂𝑏𝑠𝑁(𝑡𝑁). The mismatch is normalized to the 

observed data as in Eq. 2 

𝑁𝑀𝑀(𝑡) = 𝑀𝑀(𝑡)/𝑂𝑏𝑠(𝑡)……………………….…………….…………… (2) 

In PUNQ-S3 project and this study, to mimic the systematic nature of errors in 

production data, the noise level in the shut-in period was smaller than in the flow period 

to reflect the more accurate shut-in pressures. Therefore, higher time weights 𝑊(𝑡) were 

assigned to shut-in periods and lower time weights for the flow period. Similarly, the noise 

level in the WCT and GOR was smaller before the breakthrough than after the 
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breakthrough. Therefore, higher time weights 𝑊(𝑡) were given to WCT and GOR before 

breakthrough and lower time weights after the breakthrough. Eq. 3 represents the global 

mismatch objective function that combines the mismatch of oil rates, GOR, WCT, SBHP 

and FBHP which were assigned equal quantity weight 𝑊(𝑞) for the 6 wells at all reporting 

time steps. 

𝑂𝐹 = ∑ 𝑊(𝑞)√
∑  𝑊(𝑡)𝑁𝑀𝑀2(𝑡)𝑁

𝑡=1

∑  𝑊(𝑡)𝑁
𝑡=1

𝑞  ……………………………………………. (3) 

The objective function was used in the deterministic approach to select the model 

with the minimum mismatch between the simulation model and observed data. Moreover, 

the objective function was used in the probabilistic approach as a probability weighting 

factor.  

2.3.3 Probabilistic Approach 

The approach is conducted by using Monte Carlo simulation to sample randomly 

“all” possible combinations of the uncertain parameters values and generate a sufficient 

number of models with different combinations of the uncertain values. It is called uniform 

search because the sampling from the uncertain parameters distributions was just random 

and it was not controlled by an optimization process for minimizing the mismatch 

objective function as in computer-assisted history matching. To eliminate the effect of the 

prior distribution on the consistency between the deterministic and the probabilistic ROP, 

uniform distributions of the uncertain parameters were used.  

The generated simulation models were run under the control of the specified 

production strategy to forecast the total recovery at the end of history plus prediction 
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(TRHP) at 16.5 years. Using the mismatch objective function, the models were assigned 

different probabilities based on their history match quality. Exponential weighting was 

used to calculate the probabilities to be assigned to the simulation models as a function of 

the mismatch objective function (Eq. 4).  Using the weighted probabilities, the reserves 

distribution was generated and P10, P50, P90, mean, and mode statistics were derived. 

Since the prior distribution is uniform, the likelihood distribution and the posterior 

distribution are the same.  

𝑃(𝑥) =  
𝑒

− 
1
2

𝑂𝐹𝑖
2

∑ 𝑒
− 

1
2

𝑂𝐹𝑖
2

𝑛
𝑖=1

………………..………..………………..…………… (4) 

2.3.4 Deterministic Approach 

As was demonstrated in the literature review, the deterministic approach is 

performed by using a single value of each of the input parameters to derive a single 

outcome of the recoverable volume. In general, estimators consider the model that shows 

the best history match to be the best estimate of the truth or the most-likely scenario to 

exist. The purpose of history matching is to compare the simulation results with the 

observed data and adjust the uncertain parameters in the simulation model to minimize the 

mismatch between the simulation results and observed data. The resulting simulation 

model should capture the level of detail necessary for production forecasts with high 

predictive confidence. In this study, a deterministic ROP estimate was derived using the 

simulation model that has the best history match out of the simulation models that were 

generated using the probabilistic approach. An example of the quality of the history match 
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for oil rate, GOR, WCT, and pressures on the field and wells levels that can be achieved 

with mismatch objective function of 1.884 is sown in Fig. 67 - Fig. 73 in Appendix A.  
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3. RESULTS 

3.1 Effect of Uncertain Variable Type 

To study the effect of the type of uncertain parameter on the ROP distribution, a 

single uncertain variable was altered at a time. The other uncertain variables were held at 

constant values. In the first case, the well porosity and permeability multiplier was 

examined. In the second case, the aquifer permeability was investigated, then the oil 

relative permeability curve was the uncertain parameter in the 3rd case. After that, Case 4 

is combination of the uncertain variables in Case 1, Case 2, and Case 3 that were altered 

simultaneously. Last, in Case 5 the geostatistical parameters were added to the three 

uncertainties in Case 4. 

3.1.1 Case 1: Well Porosity and Permeability Multiplier (PHIKMULT) 

The generated simulation models forecasted different values of ROP as a function 

of the well porosity and permeability multiplier PHIKMULT values (Fig. 14). These 

models have different values of history match quality as a function of the uncertain 

variable and the deterministic model was selected with the minimum mismatch OF on the 

small scale axis (Fig. 15). The weighting function (Eq. 4) assigns high probabilities to 

ROP values with low mismatch objective function values and low probabilities to ROP 

values with high mismatch objective function (Fig. 16). Moreover, Fig. 16 shows that 

models with mismatch OF less than 3.5 get the main part of probability weights. These 

models have PHIKMULT values ranging from -0.05 to 0.15 (Fig. 15) and ROP values 

ranging from 2.32 to 2.56 MM Sm3 while deterministic ROP estimate derived from the 



 

 

39 

 

deterministic model is 2.40 MM Sm3 (Fig. 14). Fig. 17 shows that models with high 

probability weight make the main part (more than 80%) of the ROP distribution with P10, 

P50, P90 equal to 2.51, 2.43, and 2.35 MM Sm3, respectively. Fig. 18  and Table 3 show 

that the deterministic ROP does not correspond to any of the statistical measures of central 

tendency – mean, median, mode.  

In general, estimators consider the model that shows the best history match as the 

best estimate of the truth or the most-likely scenario and use it to report the P50 proved-

plus-probable estimate (PRMS 2011, Rietz and Usmani 2009, Dehghani et al. 2008), but 

this is not the case. Some might consider it to be the same as the mode, since the 

deterministic model corresponds to the most-likely history match, but this is also not the 

case. The results show that the deterministic estimate is pessimistic compared to the P50 

and it fell on percentile P64.5 (Fig. 18, Table 3).  
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Fig. 14—Case 1 well porosity and permeability multiplier: ROP as a function of 

well porosity and permeability multiplier  

 

 

 
Fig. 15—Case 1 well porosity and permeability multiplier: mismatch objective 

function of the models based on the uncertain parameter 
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Fig. 16—Case 1 well porosity and permeability multiplier:  probability weights 

based on history match quality 

 

 

 
Fig. 17—Case 1 well porosity and permeability multiplie: PDF of ROP distribution 
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Fig. 18—Case 1 well porosity and permeability multiplie: CDF of ROP distribution 

 

 

Table 3—Case 1 well porosity and permeability multiplie: statistical parameters of 

ROP distribution 

 
 

 

3.1.2 Case 2: Aquifer Permeability (AQPERM) 

The generated simulation models forecasted different values of ROP as a function 

of the aquifer permeability (AQPERM) values (Fig. 19). These models have different 

values of history match quality as a function of the uncertain variable (Fig. 20). The 

weighting function assigns high probabilities to ROP values with low mismatch objective 

function values and lower probabilities to ROP values with high mismatch objective 

function (Fig. 21). Fig. 21 also shows that models with mismatch OF less than 4 get most 

of the probability weights. These models have AQPERM values ranging from 80 to 500 

md and the deterministic model was selected with the minimum mismatch objective 
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function with $AQPERM of 146.7 md as (Fig. 22). The models with high probability 

weights showed ROP values ranging from 2.25 to 2.55 MM Sm3 and the deterministic 

reserves derived from the deterministic model is 2.42 MM Sm3 (Fig. 19). Fig. 23 shows 

that high probability weight models make the main part of the ROP distribution with P10, 

P50, P90 equal to 2.50, 2.42, and 2.33 MM Sm3 respectively. The ROP distribution is 

near symmetrical and the deterministic ROP and mode lie on the P50 (Fig. 23, Fig. 24, 

Table 4). Fig. 24 shows that the deterministic ROP is consistent with P50 as it fell on the 

percentile P49.8. The statistical parameters of the distribution are shown in Table 4. 

 

 

 
Fig. 19—Case 2 aquifer permeability: ROP as a function of aquifer permeability 
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Fig. 20—Case 2 aquifer permeability: mismatch objective function of the models 

based on the uncertain parameter 

 

 

 
Fig. 21—Case 2 aquifer permeability: probability weights based on history match 

quality 
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Fig. 22—Case 2 aquifer permeability: selecting the deterministic model 

 

 

 
Fig. 23—Case 2 aquifer permeability: PDF of ROP distribution 
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Fig. 24—Case 2 aquifer permeability: CDF of ROP distribution 

 

 

Table 4—Case 2 aquifer permeability: statistical parameters of ROP distribution 
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3.1.3 Case 3: Oil Relative Permeability (Kro) 

The generated simulation models forecasted different values of ROP as a function 

of the aquifer permeability (Kro) values (Fig. 25). These models have different values of 

history match quality as a function of the uncertain variable (Fig. 26). The weighting 

function assigns high probabilities to ROP values with low mismatch objective function 

values and lower probabilities to ROP values with high mismatch objective function 

values (Fig. 27). Fig. 27 also shows that models with mismatch OF less than 4 get most 

of the probability weights. These models have Kro values ranging from 0.82 to 1 and the 

deterministic model was selected with the minimum mismatch objective function with 

Kro of 0.90 (Fig. 28). The high probability weight models derived ROP values ranging 

from 2.29 to 2.49 MM Sm3 and the deterministic ROP derived from the deterministic 

model is 2.41 MM Sm3 (Fig. 25). Fig. 29 shows that high probability weight models make 

the main part of the ROP distribution with P10, P50, P90 equal to 2.46, 2.40, and 2.33 

MM Sm3 respectively. Fig. 30 shows that the deterministic ROP is optimistic comparing 

to P50 as it fell on the percentile P42. The statistical parameters of the distribution are 

shown in Table 5. 



 

 

48 

 

 
Fig. 25—Case 3 oil relative permeability: reserves as a function of oil relative 

permeability 

 

 

 
Fig. 26—Case 3 oil relative permeability: mismatch objective function of the 

models based on the uncertain parameter 
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Fig. 27—Case 3 oil relative permeability 3: probability weights based on history 

match quality 

 

 

 
Fig. 28—Case 3 oil relative permeability: selecting the deterministic model 
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Fig. 29—Case 3 oil relative permeability: PDF of reserves distribution 

 

 

 
Fig. 30—Case 3 oil relative permeability: CDF of reserves distribution 

 

 

Table 5—Case 3 oil relative permeability: statistical parameters of reserves 

distribution 
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3.1.4 Case 4: Combinations of Case 1, Case 2, and Case 3 

In this case the uncertain variables in Case 1, Case 2, and Case 3 are altered 

simultaneously to understand the combined impact of the uncertainties on the ROP 

distribution.  The generated simulation models forecasted different values of ROP as a 

function of combinations of (PHIKMULT), (AQPERM), and (Kro) values. Fig. 31 shows 

the ROP plotted versus AQPERM. ROP does not vary systematically with AQPERM 

because other parameters are varying as well. These models have different values of 

history match quality as a function of the uncertain variables (plotted versus only 

AQPERM in Fig. 32). The weighting function assigns high probabilities to ROP values 

with low mismatch objective function values and lower probabilities to reserves values 

with high mismatch objective function (Fig. 33). The figure also shows that models with 

mismatch OF less than 4 get most of the probability weights. The deterministic model was 

selected with the minimum mismatch objective function with LOGSMULT, AQPERM, 

and Kro of -0.007, 128.4 md, and 0.88 respectively (Fig. 34). Fig. 31 shows that the 

deterministic ROP derived from the deterministic model is 2.43 MM Sm3. Fig. 35 shows 

that high probability weight models make the main part of the ROP distribution with P10, 

P50, P90 equal to 2.59, 2.44, and 2.29 MM Sm3 respectively. Fig. 36 shows that the 

deterministic ROP is pessimistic comparing to P50 as it fell on the percentile P54. The 

statistical parameters of the distribution are shown in Table 6. 



 

 

52 

 

 
Fig. 31—Case 4 combination of PHIKMULT, AQPERM, and Kro: ROP as a 

function of aquifer permeability 

 

 

 
Fig. 32—Case 4 combination of PHIKMULT, AQPERM, and Kro: mismatch 

objective function of the models based on the uncertain parameter  
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Fig. 33—Case 4 combination of PHIKMULT, AQPERM, and Kro: probability 

weights based on history match quality 

 

 

 
Fig. 34—Case 4 combination of PHIKMULT, AQPERM, and Kro: selecting the 

deterministic model 
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Fig. 35—Case 4 combination of PHIKMULT, AQPERM, and Kro: PDF of ROP 

distribution 

 

 

 
Fig. 36— Case 4 combination of PHIKMULT, AQPERM, and Kro: CDF of 

reserves distribution 

 

 

Table 6—Case 4 combination of PHIKMULT, AQPERM, and Kro: statistical 

parameters of reserves distribution 
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3.1.5 Case 5: Combinations of Case 4, and Geostatistical Uncertainty 

Because the Gaussian random function provides a set of non-unique realizations 

of reservoir properties, the random seed variable was selected as a global geostatistical 

uncertain parameter in all layers. In addition, the azimuth (Azimuth135) in Layer 1, Layer 

3, and Layer 5 and the variogram major range in Layer 3 and Layer 5 (MJR35) were 

included in the geostatistical uncertainties. 

In this case, the uncertain variables in Case 1, Case 2, and Case 3 and the 

geostatistical uncertainties are altered simultaneously to understand the combined impact 

of the uncertainties on the ROP distribution.  The generated simulation models forecasted 

different values of ROP as a function of combinations of PHIKMULT, AQPERM, and 

Kro and geostatistical parameters. Fig. 37 shows the ROP plotted versus AQPERM. ROP 

does not vary systematically with AQPERM because other parameters are varying as well. 

These models have different values of history match quality as a function of the uncertain 

variables (plotted versus only AQPERM in Fig. 38). The weighting function assigns high 

probabilities to ROP values with low mismatch objective function values and lower 

probabilities to ROP values with high mismatch objective function values (Fig. 39). Fig. 

39 also shows that models with mismatch OF less than 5 get most of the probability 

weights. The deterministic model was selected with the minimum mismatch objective 

function with LOGSMULT, AQPERM, Kro, SEED, MJR35, and Azimuth135 of 0.257, 

265.7 md, 0.834, 14207, 2735.7 ft, and -61.9°, respectively (Fig. 40). Fig. 37 shows that 

the deterministic reserves derived from the deterministic model is 2.49 MM Sm3.  Fig. 41 

shows that high probability weight models make the main part of the reserves distribution 
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with P10, P50, P90 equal to 2.59, 2.47, and 2.31 MM Sm3, respectively. Fig. 42 shows 

that the deterministic ROP is optimistic compared to the P50 as it fell on the percentile 

P40. The statistical parameters of the distribution are shown in Table 7. 

 

 

 
Fig. 37—Case 5 combination of PHIKMULT, AQPERM, Kro, and geostatistical 

uncertainty: ROP as a function of aquifer permeability 
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Fig. 38— Case 5 combination of PHIKMULT, AQPERM, Kro, and geostatistical 

uncertainty: mismatch objective Function of the models based on the uncertain 

parameter 

 

 

 
Fig. 39—Case 5 combination of PHIKMULT, AQPERM, Kro, and geostatistical 

uncertainty: probability weights based on history match quality 
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Fig. 40—Case 5 combination of PHIKMULT, AQPERM, Kro, and geostatistical 

uncertainty: selecting the deterministic model 

 

 

 
Fig. 41—Case 5 combination of PHIKMULT, AQPERM, Kro, and geostatistical 

uncertainty 5: PDF of ROP distribution 
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Fig. 42—Case 5 combination of PHIKMULT, AQPERM, Kro, and geostatistical 

uncertainty: CDF of reserves distribution 

 

 

Table 7—Case 5 combination of PHIKMULT, AQPERM, Kro, and geostatistical 

uncertainty: statistical parameters of ROP distribution 

 
 

 

3.1.6 Summary 

Fig. 43 and Table 8 show that in comparison with the P50, the deterministic ROP 

was pessimistic in case of the well porosity and permeability multiplier and fell on 

percentile P64.5. The deterministic ROP in case of the aquifer permeability was consistent 

with P50 and fell on percentile P49.8. On the other hand, for oil relative permeability the 

deterministic ROP was optimistic and fell on percentile P42. When the uncertain variables 

in Case 1, Case 2, and Case 3 were altered simultaneously to generate multiple 

combinations, the deterministic ROP fell on percentile P54 and was slightly pessimistic 
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compared to the P50. When the geostatistical uncertainty was added to Case 4, the 

deterministic ROP was optimistic and fell on percentile P40.  

I conclude that the consistency between deterministic and probabilistic reserves 

estimates cannot be guaranteed. It is difficult to predict exactly where the deterministic 

reserves will fall on the probabilistic reserves distribution. Thus, one cannot conclude that 

a deterministic reserves estimate will correspond to either proved reserves (P90) or 

proved-plus-probable reserves (P50), or that it will correspond to the mean, most-likely, 

or any other statistic from a probabilistic reserves assessment. Therefore, deterministic 

reserves estimates should be used with caution, as it is uncertain which reserves categories 

the deterministic estimate represents for any situation. 

The shape of the ROP distribution and the difference between the probabilistic and 

deterministic ROP is controlled by: 

 The relationship between reserves and the uncertain parameter which represents 

the complexity of the reservoir physics involved in predicting the flow and how 

the uncertain parameters are interacting with the reservoir physics, and 

 The relationship between the uncertain parameter and mismatch objective function 

(OF). 
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Fig. 43—Deterministic percentiles comparisons of Case 1, Case 2, Case 3, Case 4, 

and Case 5 

 

 

Table 8—Deterministic percentiles comparisons of Case 1, Case 2, Case 3, Case 4, 

and Case 5 

 
 

 

3.2 Effect of Models Acceptance Threshold 

To study the effect of the acceptance threshold on the ROP distribution, different 

OF thresholds were examined. The OF acceptance threshold was used as the criterion to 
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include the models with “good” history matches and exclude the ones with “bad” history 

matches in generating the ROP distribution. The case of well porosity and permeability 

multiplier (PHIKMULT) from the Section 3.1.1 was used to examine the effect of 

excluding models with lower history match quality in the generation of the ROP 

distribution. In Section 3.1.1, no filtering was applied and all models were included in 

generating the ROP distribution. The results of this case were discussed in Section 3.1.1. 

Next, the acceptance threshold was lowered to different levels and more models with 

“bad” history matches were filtered out.  

3.2.1 Mismatch OF Less Than 167 

The acceptance threshold for including the simulation models in generating the 

ROP distribution was set to 167. The models simulation models with mismatch OF higher 

than 167 were excluded. 438 models were included in generating the ROP distribution 

(Fig. 44). The generated simulation models forecasted different values of ROP as a 

function of the well porosity and permeability multiplier (PHIKMULT) values which 

ranged from -0.21 to 0.3 (Fig. 45). These models have different values of history match 

quality as a function of the uncertain variable (Fig. 46). The resulting ROP distribution 

showed P10, P50, P90 equal to 2.48, 2.43, and 2.36 MM Sm3 respectively (Fig. 47). Fig. 

48 shows that the deterministic ROP is pessimistic compared to the P50 as it fell on the 

percentile P65. The statistical parameters of the distribution are shown in Table 9. 
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Fig. 44—Mismatch OF <167:438 models included 

 

 

 
Fig. 45—Mismatch OF <167: ROP as a function of well porosity and permeability 

multiplier 
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Fig. 46—mismatch OF <167: mismatch objective function of the models based on 

the uncertain parameter 

 

 

 
Fig. 47—Mismatch OF <167: PDF of ROP distribution 
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Fig. 48—Mismatch OF <167,:CDF of ROP Distribution 

  

 

Table 9—Mismatch OF <167:statistical parameters of ROP distribution 

 
 

 

3.2.2 Mismatch OF Less Than 39 

The acceptance threshold was set to 39 and the models with mismatch OF higher 

than 39 were excluded. 364 models were included in generating the ROP distribution (Fig. 

49). The generated simulation models forecasted different values of ROP as a function of 

the well porosity and permeability multiplier (PHIKMULT) values which ranged from -

0.12 to 0.3 (Fig. 50). These models have different values of history match quality as a 

function of the uncertain variable (Fig. 51). The resulting ROP distribution showed P10, 

P50, P90 equal to 2.49, 2.42, and 2.37 MM Sm3 respectively (Fig. 52). Fig. 53 shows that 

the deterministic ROP is pessimistic compared to the P50 as it fell on the percentile P68. 

The statistical parameters of the distribution are shown in Table 10. 
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Fig. 49—Mismatch OF <39, 364 models included 
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Fig. 50—Mismatch OF <39: ROP as a function of well porosity and permeability 

multiplier 

 

 

 
Fig. 51—Mismatch OF <39: mismatch objective function of the models based on 

the uncertain parameters 
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Fig. 52—Mismatch OF <39: PDF of ROP distribution 

 

 

 
Fig. 53—Mismatch OF <39: CDF of ROP distribution 

 

 

Table 10—Mismatch OF <39: statistical parameters of ROP distribution 

 
 

3.2.3 Mismatch OF Less Than 3.5 

The acceptance threshold was set to 3.5 and the models with mismatch OF higher 

than 3.5 were excluded. 157 models were included in generating the ROP distribution 
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(Fig. 54). The generated simulation models forecasted different values of ROP as a 

function of the well porosity and permeability multiplier (PHIKMULT) values which 

ranged from -0.048 to 0.139 (Fig. 55). These models have different values of history match 

quality as a function of the uncertain variable (Fig. 56). The resulting ROP distribution is 

showed P10, P50, P90 equal to 2.47, 2.42, and 2.38 MM Sm3 respectively (Fig. 57). Fig. 

58 shows that the deterministic ROP is pessimistic compared to the P50 as it fell on the 

percentile P72. The statistical parameters of the distribution are shown in Table 11. 

 

 

 
Fig. 54—Mismatch OF <3.5: 157 models included 
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Fig. 55—Mismatch OF <3.5: ROP as a function of well porosity and permeability 

multiplier 

 

 
Fig. 56—Mismatch OF <3.5: mismatch objective function of the models based on 

the uncertain parameter 
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Fig. 57—Mismatch OF <3.5: PDF of ROP distribution 

 

 

 
Fig. 58—Mismatch OF <3.5: CDF of ROP distribution 

 

  

Table 11—Mismatch OF <3.5: statistical parameters of ROP distribution 
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3.2.4 Mismatch OF Less Than 3.5 with Equal Probability  

In this case, the 157 models that were included in generating the ROP distribution, 

as in Section 3.2.3, were assigned equal probability. The resulting ROP distribution 

showed P10, P50, P90 equal to 2.52, 2.45, and 2.38 MM Sm3, respectively (Fig. 59). Fig. 

60 shows that the deterministic ROP is pessimistic compared to the P50 as it fell on the 

percentile P78. The statistical parameters of the distribution are shown in Table 12.  

 

 

 
Fig. 59—Mismatch OF <3.5 with equal probabilities: PDF of ROP distribution 

 

 

 
Fig. 60—Mismatch OF <3.5 with equal probabilities: CDF of ROP distribution 
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Table 12—Mismatch OF <3.5 with equal probabilities: statistical parameters of 

ROP distribution 

 
 

 

 
Fig. 61—Mismatch OF <3.5: comparisons of CDF when assigning weighted and 

non-weighted probability to the models  

 

 

3.2.5 Summary 

Excluding models with “bad” history matches from the full range by using more 

conservative acceptance thresholds eliminated the models with “bad” history match 

quality. Such models lie on both sides of the mismatch OF curve (Fig. 15, Fig. 46, Fig. 

51, Fig. 56). Therefore, excluding these models truncated the ROP curve from both ends 

(Fig. 14, Fig. 45, Fig. 50, and Fig. 55), which leads to decrease in the P10 and increase in 
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the P90, narrowing the distribution (Fig. 62 and Table 13). As the truncation of the ROP 

curve is greater from the lower end of the ROP curve (Fig. 15, Fig. 46, Fig. 51, Fig. 56), 

the percentile of the deterministic ROP increased from P64.5 to P72 when the acceptance 

threshold was set to 3.5 (Fig. 63). There was no noticeable change in the P50, the mode, 

and the mean (Fig. 62, Fig. 63, and Table 13). 

A comparison between assigning the filtered models weighted probability with 

their history match quality and assigning them equal probability weights was made (Fig. 

61). When the filtered models were assigned equal probability weights, the effect of the 

weighting function (Eq. 4) was no longer active. The probability of the models with high 

PHIKMULT values and relatively high mismatch OF values (Fig. 56) actually increased 

because those models were not assigned lower probability weights. These models have 

high PHIKMULT and thus high ROP values (Fig. 55). Therefore, assigning the models 

equal probability weights changed the ROP distribution skewness from right-skewed (Fig. 

57) to left-skewed (Fig. 59) and increased the P50, the mode and the mean (Fig. 61, Table 

12). Moreover, P10 was increased and P90 decreased and the distribution got wider (Fig. 

61) because the probability weights of models at both ends of the ROP distribution (Fig. 

57) increased when the weighting function (Eq. 4) was deactivated. That change in the 

ROP distribution increased the percentile of the deterministic ROP from P72 to P78 (Fig. 

61). 

I conclude that the consistency between the deterministic and probabilistic ROP 

estimates also depends on how the probabilistic analysis was conducted. For example, 

assigning the models equal probabilities, instead of a weighted probability based on their 
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mismatch OF values, significantly altered the statistical parameters of the probabilistic 

ROP distribution and thus changed the relationship between the deterministic ROP and 

the statistical parameters of the probabilistic ROP distribution. Moreover, excluding 

models with “bad” history matches from generating the ROP distribution leads to 

decreasing P10 and increasing P90, narrowing the distribution. Such practices could 

overestimate P90 and underestimate P10 with the probabilistic analysis. All this suggests 

that proper care should also be taken in conducting probabilistic analyses as well as 

deterministic analyses. To reliably quantify the full uncertainty with probabilistic 

methods, it appears the best practice is use high thresholds to admit as many models as 

possible and then weight these models appropriately using probabilities derived from OF 

mismatch values.  

 

   

 
Fig. 62—Comparisons of CDF using different OF acceptance thresholds 
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Table 13—Comparisons of ROP distribution using different OF acceptance 

thresholds 

 
 

 

 
Fig. 63—ROP statistics and deterministic ROP percentiles using different OF 

acceptance thresholds 



 

 

77 

 

3.2.6 Volumetric Method 

An experiment was run to compare deterministic reserves with probabilistic 

reserves using the volumetric method. Distributions for porosity, initial water saturation, 

formation volume factor, net pay, area, and recovery factor were generated (Fig. 64). The 

modes (most-likely values) of the input parameters distributions were selected as the 

deterministic values in the deterministic approach. The volumetric calculations were 

determined using Eq. 5 

𝑁 =
7758 𝐴 ℎ ∅ (1−𝑆𝑤)𝑅𝑓

𝐵𝑜
 ………………………………………………. (5) 

where 

N = oil in place, stb 

 A = drainage area, acres 

 Boi = initial formation volume factor,rb/stb 

 h = thickness, ft  

∅ = porosity, fraction  

Swi = water saturation, fraction 

𝑅𝑓 = recovery factor 

 Fig. 65 shows the reserves distribution that was generated by sampling randomly 

from the distributions of the input parameters using Monte Carlo simulation and plugging 

them in Eq. 5.  The P10, the P50, and the P90 of the reserves distribution are equal to 

1011.796, 236.922, and 56.943 MM STB, respectively. Fig. 66 shows that the 

deterministic reserves is pessimistic compared to the P50 as it fell on percentile P85. The 

statistical parameters of the reserves distribution are shown in Table 14. 
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Similarly to the simulation method, in the volumetric method the relationship 

between the deterministic reserves and probabilistic reserves is controlled by two sets of 

functions. The first set of functions is the distributions of the uncertain parameters. The 

distributions are prior distributions for the volumetric method, while they are either 

likelihood or posterior distributions for the simulation method because they are a function 

of history match quality. The second set of functions is the relationships between the 

reserves and the uncertain parameters, which are linear for the simple volumetric equation. 

For the simulation method, these functions are not necessarily linear because they depend 

on flow physics, heterogeneity and other complexities. Thus, similarly to the simulation 

method, because of the interaction of the two sets of functions, the consistency between 

the deterministic reserves and probabilistic reserves distribution cannot be guaranteed for 

the volumetric method.   

 

 

 
Fig. 64—Volumetric method: distributions of the input parameters 
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Fig. 65—Volumetric method: PDF of reserves distribution 

 

 

 
Fig. 66—Volumetric method: CDF of reserves distribution 

 

 

 

 



 

 

80 

 

Table 14—Volumetric method, statistical parameters of reserves distribution 
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4. CONCLUSIONS AND RECOMMENDATIONS 

 

4.1 Summary of Conclusions 

Based on the results for the PUNQ-S3 reservoir and the volumetric method 

experiment, the following can be concluded: 

 The consistency between deterministic and probabilistic reserves estimates 

cannot be guaranteed. It is difficult to predict exactly where the deterministic 

reserves will fall on the probabilistic reserves distribution. Thus, one cannot 

conclude that a deterministic reserves estimate will correspond to either proved 

reserves (P90) or proved-plus-probable reserves (P50), or that it will 

correspond to the mean, most-likely, or any other statistic from a probabilistic 

reserves assessment. Therefore, deterministic reserves estimates should be 

used with caution, as it is uncertain which reserves categories the deterministic 

estimate represents for any situation. 

 In the volumetric method, the deterministic reserves fell on the 85th percentile 

of the probabilistic reserves distribution. 

 For the PUNQ-S3 cases, the deterministic reserves estimate was optimistic in 

two cases, showed good agreement in another case and was pessimistic in two 

other cases compared to the P50 of probabilistic reserves. The relationship 

between the deterministic and probabilistic reserves estimates is controlled by: 

o The relationships between reserves and the uncertain parameters, 

which represents the complexity of the reservoir physics involved in 
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predicting the flow and how the uncertain parameters are interacting 

with the reservoir physics, 

o The relationships between the uncertain parameters and mismatch 

objective function (OF), and 

o The OF acceptance threshold of the models to be included in generating 

the reserves distribution.  

 Excluding models with “bad” history matches from generating the reserves 

distribution leads to decreasing P10 and increasing P90, narrowing the 

distribution. Such practices could lead to underestimation of uncertainty with 

probabilistic methods. Although the threshold did not have noticeable effect 

on the P50, the mode, and the mean for the cases studied, assigning models 

equal probability weights had significant effect on the reserves distribution and 

the resulting statistical parameters like the P50, the mode and the mean.  

 The relationship between the deterministic and probabilistic reserves estimates 

depends also on how the probabilistic analysis was conducted. 
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4.2 Recommendations for Future Works 

 Since all the simulations were run to a common simulation end time of 16.5 

years, as was used in the PUNQ-S3 project, the production calculated is 

technically not reserves. Therefore, it is advised to use an economic limit to 

terminate the simulation runs in future studies. 

 Using the PUNQ-S3 model with the parameters I chose resulted in P10/P90 

ratios no greater than 1.13, while P10/P90 ratios in practice normally range 

between 5 and 10. Therefore, these experiments should be repeated with either 

modification of the PUNQ-S3 model or use of another simulation model to 

investigate larger P10/P90 ratios. 

 The deterministic reserves were calculated using the modes of the parameters 

distributions. The deterministic analysis should be conducted using the means 

from the parameter distributions to see if this results in consistency with the 

probabilistic result. 
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APPENDIX A 

A.1 ECLISPE Data File of the Truth Case 

   RUNSPEC 
   PUNQ-S3 MODEL 
= NDIVIX NDIVIY NDIVIZ 
   19    28      5 / 
= OIL WAT GAS DISGAS VAPOIL QAPITR QWATTR QGASTR NOTRAC NWTRAC NGTRAC 
   T   T   T     T      F      F      F      F      0      0      0   / 
= UNIT CONVENTION 
     'METRIC'                                  / 
=  NRPVT  NPPVT  NTPVT NTROCC QROCKC QRCREV 
    30     30      1      1      F      F      / 
= NSSFUN NTSFUN QDIRK QREVK QVEOP QHYST QSCAL QSDIR QSREV NSEND NTEND 
    35      1      F     T     F     F     F     F     T     1     1   / 
= NDRXVD NTEQUL NDPRVD QUIESC QTHPRS QREVTH QMOBIL NTTRVD NSTRVD 
    5       1    100      T      F      T      F      1      1         / 
=  NTFIP QGRAID QPAIR QTDISP NTFRG QTDSK NRFRG NMFPR NETRC MHISTM NMHISTR 
    5   F   F   F   0   F   0   0   0  / 
= NWMAXZ NCWMAX NGMAXZ NWGMAX  NLGRMAX  NMAXCL 
     20     40      2    20        0      0    / 
= QIMCOL NWCOLC NUPCOL 
     F      0      3                           / 
= MXMFLO MXMTHP MXMWFR MXMGFR MXMALQ NMMVFT 
    10      10     10     10     1      1      / 
= MXSFLO MXSTHP NMSVFT 
    10      10      1                          / 
= NANAQU NCAMAX NIFTBL NRIFTB 
     2     120     0      0                    / 
=   DAY   MONTH  YEAR 
    01    'JAN'  1967                          / 
= QSOLVE NSTACK QFMTOU QFMTIN QUNOUT QUNINP NGDISK IDYNAM 
     T     25      F      F    T      T        / 
 
MESSAGES 
8* 10000 / 
 
NOECHO 
GRID 
 
GRIDFILE                               -- Generated : Petrel 
  0 0 / 
 
GRIDUNIT                               -- Generated : Petrel 
  METRES / 
 
MAPUNITS                               -- Generated : Petrel 
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  METRES / 
 
MAPAXES                                -- Generated : Petrel 
  0.00 -999.00 0.00 1.00 1000.00 1.00 / 
 
NOECHO                                 -- Generated : Petrel 
 
INCLUDE                                -- Generated : Petrel 
'TRUTH_CASE_GRID.GRDECL' / 
 
INCLUDE                                -- Generated : Petrel 
'TRUTH_CASE_PROP_PERMX.GRDECL' / 
 
INCLUDE                                -- Generated : Petrel 
'TRUTH_CASE_PROP_PERMY.GRDECL' / 
 
INCLUDE                                -- Generated : Petrel 
'TRUTH_CASE_PROP_PERMZ.GRDECL' / 
 
INCLUDE                                -- Generated : Petrel 
'TRUTH_CASE_PROP_PORO.GRDECL' / 
 
ACTNUM 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 
  0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 
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  0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 
  0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 
  0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 
  0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 
  0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 
  0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
  0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 
  0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 
  0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
  0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 
  0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 
  0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 
  0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 
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  0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
  0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 
  0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
 / 
 
NOECHO 
 
ECHO                                   -- Generated : Petrel 
 
EDIT 
 
PROPS 
 
SWFN 
0.2  0.0      0.0 
0.3  0.00024  0.0 
0.4  0.0039   0.0 
0.5  0.02     0.0 
0.6  0.062    0.0 
0.7  0.152    0.0 
0.8  0.316    0.0 
0.9  0.585    0.0 
1.0  1.0      0.0 
/ 
 
SOF3 
0.1  0.0   0.0 
0.2  0.018 0.0 
0.3  0.073 0.025 
0.4  0.165 0.1 
0.5  0.294 0.225 
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0.6  0.459 0.4 
0.7  0.661 0.625 
0.8  0.9   0.9 
/ 
 
SGFN 
0.0  0.0        0.0 
0.1  0.00000077 0.0 
0.2  0.000049   0.0 
0.3  0.00056    0.0 
0.4  0.0032     0.0 
0.5  0.012      0.0 
0.6  0.036      0.0 
0.7  0.091      0.0 
0.8  0.2        0.0 
/ 
 
PVTO 
11.460    40.000   1.064   4.338   / 
17.890    60.000   1.078   3.878   / 
24.320    80.000   1.092   3.467   / 
30.760   100.000   1.106   3.100   / 
37.190   120.000   1.120   2.771   / 
43.620   140.000   1.134   2.478   / 
46.840   150.000   1.141   2.343   / 
50.050   160.000   1.148   2.215   / 
53.270   170.000   1.155   2.095   / 
56.490   180.000   1.162   1.981   / 
59.700   190.000   1.169   1.873   / 
62.920   200.000   1.176   1.771   / 
66.130   210.000   1.183   1.674   / 
69.350   220.000   1.190   1.583   / 
72.570   230.000   1.197   1.497   / 
74.000   234.460   1.200   1.460    
         250.000   1.198   1.541    
         300.000   1.194   1.787   / 
80.000   245.000   1.220   1.400    
         300.000   1.215   1.700   / 
/ 
 
PVDG 
 40.00   0.02908   0.00880       
 60.00   0.01886   0.00920       
 80.00   0.01387   0.00960       
100.00   0.01093   0.01000       
120.00   0.00899   0.01040       
140.00   0.00763   0.01090       
150.00   0.00709   0.01110       
160.00   0.00662   0.01140       
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170.00   0.00620   0.01160       
180.00   0.00583   0.01190          
190.00   0.00551   0.01210          
200.00   0.00521   0.01240          
210.00   0.00495   0.01260          
220.00   0.00471   0.01290          
230.00   0.00449   0.01320          
234.46   0.00440   0.01330          
/ 
 
DENSITY 
912.0   1000.0   0.8266          
/ 
 
PVTW 
234.46   1.0042   5.43E-05   0.5   1.11E-04   / 
 
ROCK 
         235           0.00045   / 
 
STONE1 
 
REGIONS 
 
NOECHO                                 -- Generated : Petrel 
 
NOECHO 
 
INCLUDE                                -- Generated : Petrel 
'TRUTH_CASE_PROP_SATNUM.GRDECL' / 
 
INCLUDE                                -- Generated : Petrel 
'TRUTH_CASE_PROP_PVTNUM.GRDECL' / 
 
INCLUDE                                -- Generated : Petrel 
'TRUTH_CASE_PROP_ROCKNUM.GRDECL' / 
 
INCLUDE                                -- Generated : Petrel 
'TRUTH_CASE_PROP_EQLNUM.GRDECL' / 
 
ECHO                                   -- Generated : Petrel 
 
SOLUTION 
 
AQUANCON 
1   14   14    4    4   5   5   'I-'   1180.7   / 
1   15   15    4    4   5   5   'J-'   1186.7   / 
1   16   16    4    4   5   5   'J-'   1189.7   / 
1   17   17    4    4   5   5   'J-'   1197.7   / 
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1   18   18    4    4   5   5   'I-'   1204.3   / 
1   12   12    5    5   5   5   'I+'   1094.6   / 
1   13   13    5    5   5   5   'I-'   1115.7   / 
1   11   11    6    6   5   5   'J-'   1031.0   / 
1   10   10    7    7   5   5   'I-'    999.6   / 
1    9    9    8    8   5   5   'I-'    983.6   / 
1    8    8    9    9   5   5   'I-'    987.8   / 
1    7    7   10   10   5   5   'I-'   1001.5   / 
1    6    6   11   11   5   5   'I-'   1005.3   / 
1    6    6   12   12   5   5   'I-'    966.6   / 
1    5    5   13   13   5   5   'I-'    911.7   / 
1    5    5   14   14   5   5   'I-'    877.4   / 
1    4    4   15   15   5   5   'I-'    835.6   / 
1    4    4   16   16   5   5   'I-'    819.1   / 
1    3    3   17   17   5   5   'I-'    755.5   / 
1    3    3   18   18   5   5   'I-'    720.2   / 
1    3    3   19   19   5   5   'I-'    673.3   / 
1    3    3   20   20   5   5   'I-'    633.9   / 
1    3    3   21   21   5   5   'I-'    596.0   / 
1    3    3   22   22   5   5   'I-'    607.8   / 
1    3    3   23   23   5   5   'I-'    614.3   / 
1    3    3   24   24   5   5   'I-'    598.3   / 
1    3    3   25   25   5   5   'I-'    460.6   / 
1    4    4   26   26   5   5   'I-'    153.2   / 
1    5    5   26   26   5   5   'J+'    256.8   / 
1    6    6   27   27   5   5   'I-'    251.4   / 
1    7    7   27   27   5   5   'J+'    255.2   / 
1    8    8   27   27   5   5   'J+'    247.2   / 
1    9    9   27   27   5   5   'J+'    232.8   / 
1   10   10   27   27   5   5   'J+'    227.4   / 
1   11   11   27   27   5   5   'J+'    222.8   / 
1   12   12   27   27   5   5   'I+'    223.2   / 
 
1   14   14    4    4   4   4   'I-'   1180.7   / 
1   15   15    4    4   4   4   'J-'   1186.7   / 
1   16   16    4    4   4   4   'J-'   1189.7   / 
1   17   17    4    4   4   4   'J-'   1197.7   / 
1   18   18    4    4   4   4   'I-'   1204.3   / 
1   12   12    5    5   4   4   'I+'   1094.6   / 
1   13   13    5    5   4   4   'I-'   1115.7   / 
1   11   11    6    6   4   4   'J-'   1031.0   / 
1   10   10    7    7   4   4   'I-'    999.6   / 
1    9    9    8    8   4   4   'I-'    983.6   / 
1    8    8    9    9   4   4   'I-'    987.8   / 
1    7    7   10   10   4   4   'I-'   1001.5   / 
1    6    6   11   11   4   4   'I-'   1005.3   / 
1    6    6   12   12   4   4   'I-'    966.6   / 
1    5    5   13   13   4   4   'I-'    911.7   / 
1    5    5   14   14   4   4   'I-'    877.4   / 
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1    4    4   15   15   4   4   'I-'    835.6   / 
1    4    4   16   16   4   4   'I-'    819.1   / 
1    3    3   17   17   4   4   'I-'    755.5   / 
1    3    3   18   18   4   4   'I-'    720.2   / 
1    3    3   19   19   4   4   'I-'    673.3   / 
1    3    3   20   20   4   4   'I-'    633.9   / 
1    3    3   21   21   4   4   'I-'    596.0   / 
1    3    3   22   22   4   4   'I-'    607.8   / 
1    3    3   23   23   4   4   'I-'    614.3   / 
1    3    3   24   24   4   4   'I-'    598.3   / 
1    3    3   25   25   4   4   'I-'    733.9   / 
1    4    4   26   26   4   4   'I-'    303.9   / 
1    5    5   26   26   4   4   'J+'    256.8   / 
1    6    6   27   27   4   4   'I-'    251.4   / 
1    7    7   27   27   4   4   'J+'    255.2   / 
1    8    8   27   27   4   4   'J+'    247.2   / 
1    9    9   27   27   4   4   'J+'    232.8   / 
1   10   10   27   27   4   4   'J+'    227.4   / 
1   11   11   27   27   4   4   'J+'    222.8   / 
1   12   12   27   27   4   4   'I+'    223.2   / 
 
1   14   14    4    4   3   3   'I-'   1180.7   / 
1   15   15    4    4   3   3   'J-'   1186.7   / 
1   16   16    4    4   3   3   'J-'   1189.7   / 
1   17   17    4    4   3   3   'J-'   1197.7   / 
1   18   18    4    4   3   3   'I-'   1204.3   / 
1   12   12    5    5   3   3   'I+'   1094.6   / 
1   13   13    5    5   3   3   'I-'   1115.7   / 
1   11   11    6    6   3   3   'J-'   1031.0   / 
1   10   10    7    7   3   3   'I-'    999.6   / 
1    9    9    8    8   3   3   'I-'    983.6   / 
1    8    8    9    9   3   3   'I-'    987.8   / 
1    7    7   10   10   3   3   'I-'   1001.5   / 
1    6    6   11   11   3   3   'I-'   1005.3   / 
1    6    6   12   12   3   3   'I-'    966.6   / 
1    5    5   13   13   3   3   'I-'    911.7   / 
1    5    5   14   14   3   3   'I-'    877.4   / 
1    4    4   15   15   3   3   'I-'    835.6   / 
1    4    4   16   16   3   3   'I-'    819.1   / 
1    3    3   17   17   3   3   'I-'    755.5   / 
1    3    3   18   18   3   3   'I-'    720.2   / 
1    3    3   19   19   3   3   'I-'    673.3   / 
1    3    3   20   20   3   3   'I-'    633.9   / 
1    3    3   21   21   3   3   'I-'    596.0   / 
1    3    3   22   22   3   3   'I-'    607.8   / 
1    3    3   23   23   3   3   'I-'    614.3   / 
1    3    3   24   24   3   3   'I-'    598.3   / 
1    3    3   25   25   3   3   'I-'    733.9   / 
1    4    4   26   26   3   3   'I-'    303.9   / 
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1    5    5   26   26   3   3   'J+'    256.8   / 
1    6    6   27   27   3   3   'I-'    251.4   / 
1    7    7   27   27   3   3   'J+'    255.2   / 
1    8    8   27   27   3   3   'J+'    247.2   / 
1    9    9   27   27   3   3   'J+'    232.8   / 
1   10   10   27   27   3   3   'J+'    227.4   / 
1   11   11   27   27   3   3   'J+'    222.8   / 
1   12   12   27   27   3   3   'I+'    223.2   / 
 
2   15   15    1    1   2   2   'I-'    979.0   / 
2   16   16    1    1   2   2   'J-'    963.7   / 
2   17   17    1    1   2   2   'J-'    940.0   / 
2   18   18    1    1   2   2   'I+'    904.5   / 
2   14   14    2    2   2   2   'I-'    860.9   / 
2   11   11    3    3   2   2   'I-'    665.4   / 
2   12   12    3    3   2   2   'J-'    657.5   / 
2   13   13    3    3   2   2   'J-'    652.0   / 
2   10   10    4    4   2   2   'I-'    586.0   / 
2    9    9    5    5   2   2   'I-'    620.4   / 
2    8    8    6    6   2   2   'I-'    743.0   / 
2    7    7    7    7   2   2   'I-'    213.5   / 
2    6    6    8    8   2   2   'I-'    284.7   / 
2    6    6    9    9   2   2   'I-'    366.6   / 
2    5    5   10   10   2   2   'I-'    395.4   / 
2    5    5   11   11   2   2   'I-'    464.4   / 
2    5    5   12   12   2   2   'I-'    504.3   / 
2    4    4   13   13   2   2   'I-'    553.3   / 
2    4    4   14   14   2   2   'I-'    595.7   / 
2    3    3   15   15   2   2   'I-'    716.9   / 
2    2    2   16   16   2   2   'I-'    583.6   / 
2    2    2   17   17   2   2   'I-'    576.6   / 
2    2    2   18   18   2   2   'I-'    518.7   / 
2    1    1   23   23   2   2   'I-'    750.1   / 
2    1    1   24   24   2   2   'I-'    767.4   / 
2    1    1   25   25   2   2   'I-'    698.9   / 
2    2    2   26   26   2   2   'I-'    721.1   / 
2    3    3   27   27   2   2   'I-'    666.0   / 
2    4    4   28   28   2   2   'I-'    644.2   / 
2    5    5   28   28   2   2   'J+'    743.7   /  
 
2   15   15    1    1   1   1   'I-'   1958.0   / 
2   16   16    1    1   1   1   'J-'   1927.4   / 
2   17   17    1    1   1   1   'J-'   1880.5   / 
2   18   18    1    1   1   1   'I+'   1809.0   / 
2   14   14    2    2   1   1   'I-'   1721.9   / 
2   11   11    3    3   1   1   'I-'   1330.8   / 
2   12   12    3    3   1   1   'J-'   1315.0   / 
2   13   13    3    3   1   1   'J-'   1303.9   / 
2   10   10    4    4   1   1   'I-'   1172.1   / 



 

 

97 

 

2    9    9    5    5   1   1   'I-'   1240.8   / 
2    8    8    6    6   1   1   'I-'   1486.0   / 
2    7    7    7    7   1   1   'I-'   1222.1   / 
2    6    6    8    8   1   1   'I-'   1242.7   / 
2    6    6    9    9   1   1   'I-'   1171.9   / 
2    5    5   10   10   1   1   'I-'    988.7   / 
2    5    5   11   11   1   1   'I-'    961.8   / 
2    5    5   12   12   1   1   'I-'   1022.0   / 
2    4    4   13   13   1   1   'I-'   1110.6   / 
2    4    4   14   14   1   1   'I-'   1189.5   / 
2    3    3   15   15   1   1   'I-'   1131.3   / 
2    2    2   16   16   1   1   'I-'   1350.2   / 
2    2    2   17   17   1   1   'I-'   1491.5   / 
2    2    2   18   18   1   1   'I-'   1442.2   / 
2    1    1   23   23   1   1   'I-'   1167.1   / 
2    1    1   24   24   1   1   'I-'   1253.7   / 
2    1    1   25   25   1   1   'I-'   1306.9   / 
2    2    2   26   26   1   1   'I-'   1183.3   / 
2    3    3   27   27   1   1   'I-'   1070.9   / 
2    4    4   28   28   1   1   'I-'   1179.4   / 
2    5    5   28   28   1   1   'J+'   1260.5   / 
/ 
 
EQUIL 
     2355.00 234.46 2395.0 0.00  2355.0 0.000     1     1*      0  / 
 
RSVD                                   -- Generated : Petrel 
          2175           74 
          2496           74 
  / 
 
 
AQUCT                                  -- Generated : Petrel 
  1 2355 234 137.5 0.2125 3.5E-5 3000 19.6 95 1 1* 0.0 / 
  2 2355 234 137.5 0.2125 3.5E-5 3200 6 95 1 1* 0.0 / 
  / 
 
NOECHO 
 
RPTSOL                                 -- Generated : Petrel 
  / 
 
SUMMARY 
 
WBP9 
  / 
 
FPR 
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DATE 
 
SEPARATE 
 
RUNSUM 
 
WSTAT                                  -- Generated : Petrel 
  / 
 
WBHP 
  / 
 
WWGR                                   -- Generated : Petrel 
  / 
 
GWGR                                   -- Generated : Petrel 
  / 
 
FWGR                                   -- Generated : Petrel 
 
WWCT                                   -- Generated : Petrel 
  / 
 
GWCT                                   -- Generated : Petrel 
  / 
 
FWCT                                   -- Generated : Petrel 
 
TIMESTEP                               -- Generated : Petrel 
 
WVPR                                   -- Generated : Petrel 
  / 
 
GVPR                                   -- Generated : Petrel 
  / 
 
FVPR                                   -- Generated : Petrel 
 
WVPT                                   -- Generated : Petrel 
  / 
 
GVPT                                   -- Generated : Petrel 
  / 
 
FVPT                                   -- Generated : Petrel 
 
WVIR                                   -- Generated : Petrel 
  / 
 



 

 

99 

 

GVIR                                   -- Generated : Petrel 
  / 
 
FVIR                                   -- Generated : Petrel 
 
WVIT                                   -- Generated : Petrel 
  / 
 
GVIT                                   -- Generated : Petrel 
  / 
 
FVIT                                   -- Generated : Petrel 
 
WPI                                    -- Generated : Petrel 
  / 
 
WWPR                                   -- Generated : Petrel 
  / 
 
GWPR                                   -- Generated : Petrel 
  / 
 
FWPR                                   -- Generated : Petrel 
 
WOPR                                   -- Generated : Petrel 
  / 
 
GOPR                                   -- Generated : Petrel 
  / 
 
FOPR                                   -- Generated : Petrel 
 
WGPR                                   -- Generated : Petrel 
  / 
 
GGPR                                   -- Generated : Petrel 
  / 
 
FGPR                                   -- Generated : Petrel 
 
WWPT                                   -- Generated : Petrel 
  / 
 
GWPT                                   -- Generated : Petrel 
  / 
 
FWPT                                   -- Generated : Petrel 
 
WOPT                                   -- Generated : Petrel 
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  / 
 
GOPT                                   -- Generated : Petrel 
  / 
 
FOPT                                   -- Generated : Petrel 
 
WGPT                                   -- Generated : Petrel 
  / 
 
GGPT                                   -- Generated : Petrel 
  / 
 
FGPT                                   -- Generated : Petrel 
 
FWIP                                   -- Generated : Petrel 
 
FOIPG                                  -- Generated : Petrel 
 
FGIPL                                  -- Generated : Petrel 
 
FOIP                                   -- Generated : Petrel 
 
FOIPL                                  -- Generated : Petrel 
 
FGIP                                   -- Generated : Petrel 
 
FGIPG                                  -- Generated : Petrel 
 
WWIR                                   -- Generated : Petrel 
  / 
 
GWIR                                   -- Generated : Petrel 
  / 
 
FWIR                                   -- Generated : Petrel 
 
WOIR                                   -- Generated : Petrel 
  / 
 
GOIR                                   -- Generated : Petrel 
  / 
 
FOIR                                   -- Generated : Petrel 
 
WGIR                                   -- Generated : Petrel 
  / 
 
GGIR                                   -- Generated : Petrel 
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  / 
 
FGIR                                   -- Generated : Petrel 
 
WWIT                                   -- Generated : Petrel 
  / 
 
GWIT                                   -- Generated : Petrel 
  / 
 
FWIT                                   -- Generated : Petrel 
 
WOIT                                   -- Generated : Petrel 
  / 
 
GOIT                                   -- Generated : Petrel 
  / 
 
FOIT                                   -- Generated : Petrel 
 
WGIT                                   -- Generated : Petrel 
  / 
 
GGIT                                   -- Generated : Petrel 
  / 
 
FGIT                                   -- Generated : Petrel 
 
WGOR                                   -- Generated : Petrel 
  / 
 
GGOR                                   -- Generated : Petrel 
  / 
 
FGOR                                   -- Generated : Petrel 
 
FAQR                                   -- Generated : Petrel 
 
FAQT                                   -- Generated : Petrel 
 
RPTONLY                                -- Generated : Petrel 
 
NOECHO 
 
SCHEDULE 
 
WELSPECS                               -- Generated : Petrel 
'PRO-1'    'G1'   10   22   2362.2   'OIL'   1*   'STD'   3*   'SEG'   / 
'PRO-4'    'G1'    9   17   2373.0   'OIL'   1*   'STD'   3*   'SEG'   / 
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'PRO-5'    'G1'   17   11   2381.7   'OIL'   1*   'STD'   3*   'SEG'   / 
'PRO-11'   'G1'   11   24   2386.0   'OIL'   1*   'STD'   3*   'SEG'   / 
'PRO-12'   'G1'   15   12   2380.5   'OIL'   1*   'STD'   3*   'SEG'   / 
'PRO-15'   'G1'   17   22   2381.0   'OIL'   1*   'STD'   3*   'SEG'   / 
--'PRO-23'   'G1'    5   23   2380.7   'OIL'   1*   'STD'   3*   'SEG'   / 
--'PRO-24'   'G1'    7   14   2382.5   'OIL'   1*   'STD'   3*   'SEG'   / 
--'PRO-29'   'G1'   15    7   2376.7   'OIL'   1*   'STD'   3*   'SEG'   / 
--'PRO-50'   'G1'   12   12   2362.2   'OIL'   1*   'STD'   3*   'SEG'   / 
/ 
 
GRUPTREE                               -- Generated : Petrel 
  'GROUP 1' FIELD / 
  / 
 
DRSDT                                  -- Generated : Petrel 
      0  / 
 
------------------- WELL SPECIFICATION DATA -------------------------- 
 
------------------- WELL SPECIFICATION DATA -------------------------- 
 
------------------- WELL SPECIFICATION DATA -------------------------- 
 
COMPDAT                                -- Generated : Petrel 
--                                        RADIUS    SKIN 
'PRO-1'    10   22   5   5   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-1'    10   22   4   4   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-4'     9   17   5   5   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-4'     9   17   4   4   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-5'    17   11   4   4   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-5'    17   11   3   3   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-11'   11   24   4   4   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-11'   11   24   3   3   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-12'   15   12   5   5   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-12'   15   12   4   4   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-15'   17   22   4   4   'OPEN'   2*  0.15  1*  5.0 / 
--'PRO-23'    5   23   2   2   'OPEN'   2*  0.15  1*  5.0 / 
--'PRO-23'    5   23   1   1   'OPEN'   2*  0.15  1*  5.0 / 
--'PRO-24'    7   14   2   2   'OPEN'   2*  0.15  1*  5.0 / 
--'PRO-24'    7   14   1   1   'OPEN'   2*  0.15  1*  5.0 / 
--'PRO-29'   15    7   2   2   'OPEN'   2*  0.15  1*  5.0 / 
--'PRO-29'   15    7   1   1   'OPEN'   2*  0.15  1*  5.0 / 
--'PRO-50'   12   12   3   3   'OPEN'   2*  0.15  1*  5.0 / 
--'PRO-50'   12   12   2   2   'OPEN'   2*  0.15  1*  5.0 / 
/ 
 
WCONPROD                               -- Generated : Petrel 
'PRO*'  'SHUT'  6* 120.0 / 
/ 
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WCUTBACK                               -- Generated : Petrel 
'PRO*' 1* 200.0 2* 0.75 'OIL' 120.0 / 
/ 
 
--------------------- PRODUCTION SCHEDULE ---------------------------- 
 
TSTEP                                  -- Generated : Petrel 
0.01 
/ 
 
WELOPEN                                -- Generated : Petrel 
  'PRO-1'   'OPEN'  /             
  'PRO-4'   'OPEN'  /           
  'PRO-5'   'OPEN'  /           
  'PRO-11'  'OPEN'  /           
  'PRO-12'  'OPEN'  /           
  'PRO-15'  'OPEN'  /           
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'  100.0 / 
  'PRO-4'   'ORAT'  100.0 / 
  'PRO-5'   'ORAT'  100.0 / 
  'PRO-11'  'ORAT'  100.0 / 
  'PRO-12'  'ORAT'  100.0 / 
  'PRO-15'  'ORAT'  100.0 / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
--------------------- PRODUCTION SCHEDULE ---------------------------- 
 
DATES                                  -- Generated : Petrel 
1  'FEB'  1967  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'MAR'  1967  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'APR'  1967  /         
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'  200.0 /   
  'PRO-4'   'ORAT'  200.0 /   
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  'PRO-5'   'ORAT'  200.0 /   
  'PRO-11'  'ORAT'  200.0 /   
  'PRO-12'  'ORAT'  200.0 /   
  'PRO-15'  'ORAT'  200.0 /   
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
1  'MAY'  1967  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'JUN'  1967  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'JUL'  1967  /         
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'  100.0 /   
  'PRO-4'   'ORAT'  100.0 /   
  'PRO-5'   'ORAT'  100.0 /   
  'PRO-11'  'ORAT'  100.0 /   
  'PRO-12'  'ORAT'  100.0 /   
  'PRO-15'  'ORAT'  100.0 /   
/ 
 
 
'PRO*' 100 5* Y / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
1  'AUG'  1967  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'SEP'  1967  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'OCT'  1967  /         
/ 
 



 

 

105 

 

WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'  50.0 /   
  'PRO-4'   'ORAT'  50.0 /   
  'PRO-5'   'ORAT'  50.0 /   
  'PRO-11'  'ORAT'  50.0 /   
  'PRO-12'  'ORAT'  50.0 /   
  'PRO-15'  'ORAT'  50.0 /   
/ 
 
 
'PRO*' 50 5* Y / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
1  'NOV'  1967  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'DEC'  1967  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'JAN'  1968  /         
/               
               
-- End for test purposes 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   0.0 /   
  'PRO-4'   'ORAT'   0.0 /   
  'PRO-5'   'ORAT'   0.0 /   
  'PRO-11'  'ORAT'   0.0 /   
  'PRO-12'  'ORAT'   0.0 /   
  'PRO-15'  'ORAT'   0.0 /   
/ 
 
 
'PRO*' 0 5* Y / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
-- Just to include shut-in 
 
DATES                                  -- Generated : Petrel 
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1  'JAN'  1969  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'JAN'  1970  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'JAN'  1971  /         
/ 
 
-- End for buildup-test purposes 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 /   
  'PRO-5'   'ORAT'   150.0 /   
  'PRO-11'  'ORAT'   150.0 /   
  'PRO-12'  'ORAT'   150.0 /   
  'PRO-15'  'ORAT'   150.0 /   
/ 
 
 
'PRO*' 150 5* Y / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
1  'JUL' 1971  / 
/ 
 
-- work over -- 
 
-- work over -- 
 
-- work over -- 
 
DATES                                  -- Generated : Petrel 
1  'JAN'  1972  /         
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   0.0 /   
  'PRO-4'   'ORAT'   0.0 /   
  'PRO-5'   'ORAT'   0.0 /   
  'PRO-11'  'ORAT'   0.0 /   
  'PRO-12'  'ORAT'   0.0 /   
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  'PRO-15'  'ORAT'   0.0 /   
/ 
 
 
'PRO*' 0 5* Y / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
15  'JAN'  1972  /         
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
 
 
'PRO*' 150 5* Y / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
1  'JUL'  1972  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'JAN'  1973  /         
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
 
 
'PRO*' 0 5* Y / 
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/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
15  'JAN'  1973  / 
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
 
 
'PRO*' 150 5* Y / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
1  'JUL'  1973  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'JAN'  1974  /         
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
 
 
'PRO*' 0 5* Y / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
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DATES                                  -- Generated : Petrel 
15  'JAN'  1974  / 
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
 
 
'PRO*' 150 5* Y / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
1  'JUL'  1974  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'JAN'  1975  /         
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
 
 
'PRO*' 0 5* Y / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
15  'JAN'  1975  / 
/ 
 
WELTARG                                -- Generated : Petrel 
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  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
1  'JUL'  1975  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'JAN'  1976  /         
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
15  'JAN'  1976  / 
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
1  'JUL'  1976  /         
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/ 
 
DATES                                  -- Generated : Petrel 
1  'JAN'  1977  /         
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
15  'JAN'  1977  / 
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
1  'JUL'  1977  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'JAN'  1978  /         
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
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/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
15  'JAN'  1978  / 
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
1  'JUL'  1978  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'JAN'  1979  /         
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
15  'JAN'  1979  / 
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 



 

 

113 

 

  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
1  'JUL'  1979  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'JAN'  1980  /         
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
15  'JAN'  1980  / 
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
1  'JUL'  1980  /         
/ 
 
DATES                                  -- Generated : Petrel 
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1  'JAN'  1981  /         
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
15  'JAN'  1981  / 
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
1  'JUL'  1981  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'JAN'  1982  /         
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
 
TSTEP                                  -- Generated : Petrel 
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  1 / 
 
DATES                                  -- Generated : Petrel 
15  'JAN'  1982  / 
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
1  'JUL'  1982  /         
/ 
 
DATES                                  -- Generated : Petrel 
1  'JAN'  1983  /         
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
15  'JAN'  1983  / 
/ 
 
WELTARG                                -- Generated : Petrel 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 



 

 

116 

 

/ 
 
TSTEP                                  -- Generated : Petrel 
  1 / 
 
DATES                                  -- Generated : Petrel 
1  'JUL'  1983  /         
/ 
 
END                                    -- Generated : Petrel 
 
DATES                                  -- Generated : Petrel 
  1 JUL 1983 / 
  / 
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A.2 History Match of Reservoir Performance 

In the deterministic approach, the best history match was achieved with mismatch 

objective function of 1.884. The achieved history match showed good results on the field 

and wells levels. Fig. 67 - Fig. 73 show the quality of history match for oil rate, GOR, 

WCT, and pressures on the field and wells levels.  

 

 

 
Fig. 67—Field level history match 
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Fig. 68—PRO-1 history match 

 

 

 
Fig. 69—PRO-11 history match 
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Fig. 70—PRO-12 history match 

 

 

 
Fig. 71—PRO-15 history match 
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Fig. 72—PRO-4 history match 

 

 

 
Fig. 73—PRO-5 history match 

 

 




