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ABSTRACT 

 

Functionally graded porous materials (FGPMs) are porous materials with 

porosity gradient distributed over the volume. They have many applications in 

aerospace, biomedical, and other engineering fields. Despite a lot of effort being made to 

fabricate FGPMs, the manufacturing processes are either complex, expensive, unable to 

control exact porosity distribution, or unable to create closed cell structures.  

This work presents a new approach to manufacturing polymer FGPMs with both 

closed cell and open cell structures using the thermo-bonding lamination process. Under 

applied compressive load, controlled heating temperature, and appropriate holding time, 

it was shown that this thermally-induced bonding technique can bond layers of polymer 

sheets to create porous three-dimensional objects. An investigation on effects of 

different factors on the bonding shear strength was performed. It was found that the 

bonding shear strength can be controlled by properly setting the pressure, temperature, 

and time.  

The fabricated FGPMs specimens with different porosity configurations were 

characterized using the compression test in the normal direction and transverse direction, 

and the effective moduli were obtained.  
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An analytical model for predicting the elastic properties of the FGPMs was 

derived. The model is based on Mori-Tanaka’s approach while extended to graded and 

porous cases. A more generalized case – the polynomial varying strain field – was 

assumed and the Eshelby’s tensor for polynomial varying eigenstrain was obtained to 

facilitate the derivation. In addition, an analytical model for FGPMs with open cell 

structure was also developed. A solution to the overall eigenstrain of the interconnected 

voids was provided by considering the disturbed stress field outside of the voids. It was 

shown that the models can accurately predict the mechanical response of closed cell and 

open cell FGPMs.   

Numerical model based on representative volume element (RVE) with the 

periodic boundary condition applied was also developed for FGPMs to investigate the 

mechanical response of the material and to obtain the corresponding effective modulus. 

It was shown that the results from the numerical model agree well with experimental and 

analytical results, indicating that the developed model can predict the material response 

accurately. 

In summary, the developed fabrication technique is an effective method to 

produce 3-D graded porous objects for practical applications. The proposed analytical 

and numerical models can be adopted directly by researchers in the fields of 

micromechanics and mechanics of composite.   
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1. INTRODUCTION

1.1 Overview 

Functionally graded materials (FGMs) are composite materials which consist of 

two or more compositions with the variation in compositions or structures gradually over 

volume. As such, their material properties are also gradually changed over volume [1]. 

FGMs have received extensive attention since they possess a number of advantages. For 

example, FGMs can be designed and fabricated for specific applications due to their 

certain desired features of each individual phases [2]. i.e. the aerospace and aircraft 

industry is interested in the material’s capability of withstanding high thermal gradient, 

which can be achieved by using one layer of ceramic and one layer of metal material. 

The materials are widely used in aviation and aerospace, optoelectronic, and energy 

applications.   

Functionally graded porous materials (FGPMs) can be considered as hollow 

members, which have also been extensively investigated due to their wide applications 

in space, biomedical, and aeronautical engineering [3]. In the FGPMs, the pores are 

distributed throughout the material with the variation in porosity over volume. The 

variation of porosity may be due to the density change of pores as shown in Figure 1.1 or 
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the size change of pores as shown in Figure 1.2 or both.  The weight of FGPMs are 

reduced with the involvement of pores compared to non-FGPMs. In addition, the gradual 

change of porosity can impart desirable properties such as excellent damping capacity 

and the ability to withstand high thermal gradient [4]. The nature FGPMs include 

bamboo with density gradients along radial direction in its cross section [5], human 

cancellous bone which is sponge-like cellular structure [6], banana peel [7], and elk 

antler [8], etc. Other FGPMs, such as biomedical implants [9, 10], cushioning materials 

[11], filtration material, drug delivery device [12], and permeable interlocking pavement, 

etc, are also widely used in industries and daily lives. 

 

 

 

Figure 1. 1 FGPMs with density of pores changed [6] 



 

3 

 

 

 

Figure 1. 2 FGPMs with pores size changed [6] 

 

Depending on the pore structures, porous materials can be divided into open cell 

and closed cell structures.  In open cell porous materials, the pores are interconnected, 

while in closed cell structures, each pore is enclosed and isolated by the base material. 

Significant efforts in the past have been made to fabricate porous materials. For open 

cell porous metal, powder sintering [13], space holder method [14], replication [15], and 

plasma spraying are the common manufacturing methods. In order to fabricate 

functionally graded material, electro discharge compaction approach has been used [16].  

Closed cell structures are commonly processed by random foaming processes, with the 

dimension, shape, and locations of pores are affected by the processing parameters [17]. 

Closed cell graded porous metal material can also be fabricated by gas injection or 
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foaming agents injection into the molten metals in order to introduce “gradient” [18]. 

Plasma spraying is another alternative approach to manufacture closed cell FGPMs. A 

variety of processing techniques were used to fabricate polymer porous materials, 

including particulate leaching [19, 20], thermally induced phase separation[15, 21], 

supercritical fluid-gassing [22], solvent-free process [23], and solvent/non-solvent 

sintering [24] . These methods are relatively complicated since they require either molds 

or foaming agents. More importantly, the exact pore size, overall porosity, and the 

gradient are hard to control.  

Another approach to fabricating FGPMs is to use Additive Manufacturing (AM) 

techniques. In recent years, AM becomes a popular technology that have received 

extensive attention.  The AM processes are able to produce almost any freeform parts 

using .stl file format as the geometric input [25]. They can also be used to fabricate 

porous materials for aerospace, electronics, and biomedical applications. While common 

AM processes such as Fused Deposition Modeling (FDM) [10], Selective Laser 

Sintering (SLS) [12, 26], , Stereolithography (SLA) [27, 28], freeze form extrusion 

fabrication [29] have been used to produce porous materials, supporting material is 

needed in order to create the porous structures.  For example, FDM processes adopt 

supporting materials to fill in the empty space during part fabrications. An additional 

operation is required to remove the support material after the process. For printed parts 
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with small pores, e.g. a few hundred microns, it would take laborious effort to remove 

the supporting material.  

Another approach to deal with supporting material issue is to selectively fuse 

liquid or powder material layer by layer [30], such as SLA and SLS processes. While 

removing liquid or powder is not a concern for creating open cell porous structures, for 

closed cell porous structure, the base material, liquid or powder, is trapped inside the 

pore and cannot be removed after the fabrication process. It was also reported that some 

supporting materials might be hazardous during use and disposal since harmful 

chemicals might be involved, e.g. some thermoplastic acrylic polymers consist of phenyl 

phosphates which are toxic [31]. Furthermore, comparing to the base material usage for 

part fabrication, supporting material consumption could be greater in volume and in cost, 

which would also result in longer part construction time and high costs.  

An alternative to the aforementioned AM technique for manufacturing porous 

materials of both closed cell and open cell structure without support material is 

lamination. With lamination, objects are fabricated in multiple layers, and the process is 

generally achieved by welding, adhesive bonding or thermal bonding. Lamination 

technology has been used in automotive, aerospace, appliances, medical and hygiene, 

constructions, electronics, and pharmaceutical. It can be also used in manufacturing 

molding tools [32, 33] and solar cell panels. Typically, adhesives alone or in combined 
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with heat or pressure are utilized. Based on the bonding techniques, lamination processes 

can be divided into flame lamination, aqueous based-adhesive lamination, solvent based-

adhesive lamination, heat lamination, and hot melt-adhesive based lamination [34, 35]. 

In addition, the thermo-compression bonding technique has been used for bonding 

metals [36, 37], nonwoven fabrics [38], and thermoplastic polymer microfluidics [39, 

40].  

More specifically, Laminated Object Manufacturing (LOM), one of the AM 

techniques, uses adhesive or binder to bond layers and build up objects. Each single 

layer represents the cross-sectional profile at certain location of the specimen [41-43]. 

Parts made by LOM are inexpensive, consistent, and with no chemical reaction involved. 

This technology works best for conceptual prototyping, scaled model or casting-mold 

fabrication. Selective Deposition Lamination (SDL) was invented to laminate the 

selectively-cut paper layers with adhesive and pressure in order to build up parts [44]. 

This method is commonly used by teachers, artists, and architects to build objects.  

As some materials can achieve self-adhesion, the phenomenon can be utilized as 

a bonding strategy in lamination process. Self-adhesion of materials generally requires 

heat or diffusion; thus, thermal bonding or diffusion bonding can be considered as an 

alternative lamination technique. Some efforts have been made to investigate the 

polymer self-adhesion, and it was found that the phenomenon is due to inter-diffusion of 
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macromolecules [45-47]. A new phenomenon was reported that under about 60 K below 

glass transition temperature (Tg), solid-state condition, certain polymeric layers can be 

bonded on the order of a second when subjected to plastic deformation [48]. This is 

because the molecular-level rearrangement is triggered under sub-Tg and plastic 

deformation condition, and it results in inter-diffusion of polymer chains to cross the 

interface of layers and leads to bonding. The finding is very useful since it provides a 

convenient and quick way to bond polymer. However, from the mechanical perspective, 

the plastic deformation changes the original geometry of the specimen, and gives rise to 

issues when processing specimens to meet certain desired dimension tolerances.  

In addition to the fabrication of FGPMs, it is often of great interest to investigate 

their mechanical properties, as well as to predict their behaviors under different loading 

conditions. Previous approaches on deriving analytical models for composite material 

including rule of mixture, self-consistent model, Mori-Tanaka model, method of cell, 

and homogenization method. The first three methods provide analytical solutions. Rule 

of mixture method gives the upper bound and lower bound of effective elastic modulus. 

The self-consistent model is known for providing a good prediction for skeletal 

microstructure with a wide transition range between the two phases, and Mori-Tanaka 

model is proven to have accurate predictions for the mechanical property of composites 

with discontinuous inclusions embedded in a “well-defined” continuous matrix [49, 50].  
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It is known, however, that Mori-Tanaka method has no solution for the 

interconnected cavity problem [51], and it has not been applied to model graded porous 

composite materials. In addition, the method assumes incompressible matrix and 

inclusion; while for porous materials, the volume of pores changes during deformation. 

Treating voids as inclusions could lead to inaccurate predictions. Therefore, further 

investigation of applying Mori-Tanaka’s scheme to model closed cell and open cell 

FGPMs is needed.  

 

1.2 Motivations 

 

Functionally graded porous materials widely exist in nature, and engineered 

FGPMs have broad applications in industry. As a porous material, FGPM has high 

stiffness to mass ratio that is favorable in transportation and aeronautics industries. As a 

graded material, it has material property gradient over the volume which can be used as 

damping, thermal gradient, biomedical, and building materials. Based on these 

applications, it is of great interest to fabricate FGPMs with precisely controlled 

geometrical structure and mechanical properties. It is also necessary to develop a cost-

effective manufacturing technique so that mass production can be achieved and the 

fabrication approach can be widely adopted by industries.  In this research, a novel 
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fabrication approach that is able to produce both open cell and closed cell FGPMs with 

precise part geometry is investigated.  

Analytical model can be a powerful tool to predict material behavior under 

different loading conditions. It also enables the evaluation and selection of the base 

material and geometry when designing a desired material structure. Since there is no 

available model for FGPMs, in this research, an analytical approach for modeling porous 

graded material based on Mori-Tanaka’s scheme is proposed. The model is expected to 

deliver accurate prediction results.   

 

1.3 Research Objectives 

 

There are two main objectives in this dissertation research. The first objective is 

to develop a new fabrication method to manufacture FGPMs based on lamination 

processes. In addition to the commonly-used adhesive bonding technique, this research 

will focus on thermal bonding method. Thermal bonding process involves heating the 

polymer close to Tg (or between Tg and melting temperature Tm) to bond polymer 

layers through self-adhesion. With the controlled pressure, temperature, and heating 

time, polymeric FGPMs can be fabricated with no or little plastic deformation. This 
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lamination technique is simple, convenient, and cost-effective. In addition, the technique 

can provide high resolution and accurate geometry.  

The second objective is to develop analytical models to predict mechanical 

behaviors of FGPMs with known base material properties and geometric structures. To 

achieve this objective, the Mori-Tanaka method will be adopted to model the 

constitutive behavior of porous material layers. The work will then be extended to 

consider graded fields and interconnected pores. The mechanical properties of the 

fabricated FGPMs will be characterized and compared to the model predictions.  

In this dissertation, literature reviews including various approaches to fabricating 

FGMs, previous work on lamination, and mathematical modeling of the mechanical 

behavior of composite and porous materials are presented in Section 2. In Section 3, the 

thermo-bonding lamination process and the evaluation of bonding shear strength through 

lap-shear test is discussed, the fabrication of FGPMs and the material characterization 

through the compression test are presented. Analytical model derivation dealing with 

graded porous material and interconnected open cell structure, and numerical model of 

FGPMs based on RVE with periodic boundary condition (PBC) are described in Section 

4. Section 5 presents the comparison of modeling and experimental results. A discussion 

about prediction accuracy of analytical model will be also presented. The conclusions 

and future work are summarized in Section 6.   
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2. LITERATURE REVIEW 

 

To provide the background of this research, the review of previous literatures 

consists of three parts, i.e., fabrication of functionally graded porous materials (FGPMs), 

lamination processes and bonding techniques, and modeling of mechanical behavior of 

composite and porous materials. In Section 2.1, common methods for fabricating 

metallic and non-metallic FGPMs with open and closed cells are reviewed. The review 

of existing lamination technology and their applications is presented in Section 2.2. 

Section 2.3 examines methodologies of modeling mechanical property of composite and 

porous material. In Section 2.4, the approach to numerically model the composite 

materials is discussed.  

 

2.1 Fabrication Methods for Functionally Graded Porous Materials  

 

Functionally graded materials (FGMs) are composites materials consist of two or 

more phases with a graded changing composition over the volume [1, 2]. The material 

can have certain desirable property of each constituent phase, sometimes even 

contradictory properties, such as both high hardness and high toughness [52]. FGMs are 

usually associated with particulate composites and their thermo-mechanical 
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performances are excellent. It has wide applications in automobile, aerospace, energy, 

and optoelectronics [53] .  

Functionally graded porous materials (FGPMs) are porous materials with 

porosity gradually changing throughout the volume. As a porous material, it has high 

stiffness to weight ratio, and can be used for impact energy adsorption, construction, 

water permeability, acoustic absorption, and sound absorption. As a graded material, its 

porosity is gradually changing, and can be potentially used as damping, cushioning, 

filtration, and biomedical materials. Based on the cell structure, FGPMs can be open cell 

or closed cell structures. In open cell porous material, the pores are interconnected; in 

contrast, each cell is enclosed and isolated by base material in closed cell structure.  

Section 2.1.1 lists the approaches used for fabricating open cell structures, and 

Section 2.1.2 demonstrates the methods for the fabrication of closed cell structures. 

Section 2.1.3 deals specifically with techniques used for fabricating polymeric porous 

materials. In Section 2.1.4, a discussion about manufacturing porous materials using 

additive manufacturing techniques were provided.  
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2.1.1 Methods for Fabrication of Open Cell Structures 

 

A variety of methods were developed in order to fabricate open cell porous 

materials. In order to manufacture open cell materials where pores are interconnected, 

powder sintering is a commonly used approach, which refers to the process of 

compacting and forming powder by heating and applying pressure without melting it 

[54]. This relatively high temperature treatment process involves the bonding of powder 

particles without much change of the particle shape. Both metal powder and polymer 

powder can be used in this technology. For metal powder, Pure Ti [13, 55], Ti alloys [56, 

57], bronze [58], and Co alloys [59, 60] are commonly used materials, and the resulting 

porosity can range from 5%  to 40%. For example, Thieme et al. [9] fabricated FGPMs 

for orthopedic implants using titanium powder sintering and the resulting Young’s 

modulus can cover the typical range of cortical bone. For polymer sintering, different 

materials were used, e.g. high density polyethylene (HDPE) [58], nylon [61], 

polypropylene copolymer [62],  and acrylonitrile butadiene styrene (ABS) [63]. To 

create hollow structures, a rotational mold are sometimes used.  Besides powder 

sintering, fiber sintering is also used in order to achieve high strength and ductility [64].  

Other powder based technologies for making open cell structures include the 

space holder technique [14], replication [15], and plasma spraying method. In the space 
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holder method, high porosity can be achieved by compaction of the mix of powder and 

space holder material, and removal of space holder after a well-controlled heat 

treatment. To ensure the removal of the space holder material, the melting temperature 

of the powder should be higher than that of the space holder material. Li. et al. [65] used 

replication method to create porous titanium alloy up to 88% of porosity. Instead of 

polymer space holder, a polymer foam was added into a slurry consists of powder, pure 

water, and ammonia solution. Drying process, the removal of polymer foam, and 

sintering were followed step by step before the final product is obtained [17]. Freeze-

casting of porous metallic and ceramic materials has also been received some attention. 

Like replication method, the resulting porous material is a replica of the frozen solvent 

crystals. In freeze-casting, the slurry is added and then solidifies in the mold. The 

freezing solvent would sublime before sintering of the desired material. The process can 

create micro-pores with pore size ranging between 2 to 200 m[66, 67]. Besides, plasma 

spraying [68] and combustion synthesis [69] were also used to create open cell 

structures. In addition, electro discharge compaction approach was proven to be a viable 

method to fabricate functionally graded materials [16].   
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2.1.2 Methods for Fabrication of Closed Cell Structures 

 

Comparing to open cell structures that are generally made from powder, closed 

cell materials are mostly created from liquid or melt. Casting is one of the most 

frequently used techniques to fabricate closed cell FGPMs. Foaming process is used with 

casting for creating porous structure with a desired part shape. The gas source can be 

divided into two types: blowing agent which decomposes after certain time, and 

dissolved gas which causes foaming instantaneously [18]. Gas, e.g. argon, air, and 

nitrogen gas, is injected into molten materials with a rotating mixer can result in uniform 

porosity distribution. An alternative approach is to add blowing agent since the 

decomposition of blowing agent under heating will release gas.  This process can 

generate porous materials with high porosity ranging from 60 to 97%. The Gasar process 

is based on gas-eutectic reaction, which occurs during solidification of materials 

saturated with hydrogen. When the material solidifies, gas precipitates and is entrapped 

in the material to create porous structure [70, 71]. The Gasar process can be used for a 

wide range of metals, including nickel, copper, aluminum, titanium, and iron.  Lost foam 

casting is able to produce metallic foam with the evaporation of mold made from organic 

foam. The porosity can be achieved as high as 95%.  
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2.1.3 Methods for Fabrication of Polymeric Porous Materials 

 

This subsection specifically reviews the fabrication methods for polymeric 

porous materials. These fabrication approaches includes:  (1) gas foaming, (2) phase 

separation, (3) solvent casting and particle leaching, (4) emulsion freeze drying, (5) 

templating, (6) molecular imprinting [72, 73]. 

As discussed above, gas foaming is not only widely used to produce polymer 

foams, but also applied to make scaffolds, with supercritical fluid as a blowing agent. 

Phase separation technique adopts porogen where solidification is used to fix the shape. 

Based on the separation mechanism, three different methods were developed, e.g. 

immersion precipitation, thermal – induced phase separation, and chemically induced 

phase separation. Immersion precipitation refers to the process to immerse polymer-

solvent mixture into a coagulation bath containing nonsolvent. Young et al. [74] formed 

thin membrane of PVDF by immerse precipitation in harsh and soft nonsolvents, and 

achieved a uniform microporous structure with spherical particles about 1.5 m in 

diameter. Anisotropic microporous membranes were also developed [75]. Thermally 

induced phase separation refers to polymer-rich and polymer-poor phases separation 

when cooling down a high temperature-homogeneous polymer solution. Nam and Park 
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[21] made biodegradable polymeric microcellular foam with different pore geometries 

and reached an average diameter of about 15 m.  

Solvent casting and particle leaching is commonly used to make scaffold where 

the solvent is evaporated followed by particle leaching when the material is immersed in 

solution to create porous polymeric materials [73]. Zhu and Chen [76] successfully 

fabricated scaffolds with porosity of about 93%. The material can be used as cancellous 

bone scaffold. Same efforts include using the same method to fabricate polyurethane 

biomaterial to support vascular cell and control the scaffold morphology [77, 78].   

In addition, emulsion freeze drying, templating, and molecular imprinting were 

also used to make porous polymer material. However, these methods are relatively 

complicated since they require mold, machine, and/or foaming agents. More 

importantly, the exact pore size, overall porosity, morphology, and the gradient are hard 

to control when using these processes.  

 

2.1.4 Fabrication of Porous Materials based on Additive Manufacturing Techniques 

 

Additive Manufacturing (AM) is a powerful technology and it fabricates parts 

through a layer-by-layer fashion. Based on 3-D models generated from computer 

software, the porous material can be fabricated with a better control of microstructure, 
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e.g. dimension, size of pore, porosity, morphology, and overall shape, compared to 

conventional technologies discussed above. As such, it is popular to produce porous 

materials with the available AM technologies. According to the way that layers are 

processed and deposited, AM technology consists of powder-based techniques, e.g. 

Selective Laser Sintering (SLS), Selective Laser Melting (SLM), Electron-beam Melting 

(EBM); light polymerized-based method, e.g. Stereolithography (SLA); extrusion-based 

approaches, e.g. Fused Deposition Modeling (FDM); and Laminating approach, e.g. 

Laminated Object Manufacturing (LOM) [79].   

SLS sinters powder material using a laser as a point source as shown in Figure 

2.1 (a). Metals, ceramics, and polymers all can be processed using SLS. Jande et al. [26] 

prepared polyamide epoxy material with uniform and graded porous structures using 

SLS. The graded porosity can be well controlled in the range of 5 to 29%. Polymeric 

matrix drug delivery devices were developed by Leong et al. [12], and the work focused 

on studying the effects of SLS process parameters, e.g. the power of laser beam and 

scanning speed, on the resulting porosity and drug release rate. Bioresorbable and 

biodegradable polymer materials such as polycaprolactone were adopted in order to 

potentially apply to bone and cartilage scaffolds [80, 81].  Other efforts include studying 

the effects of laser processing parameters and thermal control conditions on the material 
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properties [82], exploration and investigation for more available and suitable materials 

[83].   

SLA builds parts layer by layer using lithographic methods, e.g. curing a photo-

reactive resin with a UV light through photopolymerization as shown in Figure 2.1 (b). 

The materials used are mostly polymers, wax or wax compounds which have to be 

reactive resins. Liebschner [27] optimized the bone scaffold for load bearing application, 

and Yu [28] used SLA to fabricate functionally graded shape memory polymer which is 

able to response quickly to an external stimulus, and will return back to a certain 

structure or shape in a well-controlled varying fashion. The approach was proved to be 

cost-effective for rapid and mass production and is ready for engineering applications. 

Other applications include using biodegradable material for customized bone repair [84], 

live cell-scaffold [85], and heart valves [86].  The SLS technology greatly helps the 

fabrication of patient specific models and aids for complex surgery.  

FDM as shown in Figure 2.1(c), one of the most popular AM techniques due to 

its low cost and easy-operation, is widely used for almost all kinds of part fabrication. In 

this process, the material is melted and then extruded through a nozzle and deposited 

onto a platen in a strand by strand and layer by layer fashion. Kalita et al. [10] used 

FDM to process polymer-ceramic scaffolds with a well-controlled porosity. The porous 

structure was proved to be a good bone graft with its biological, mechanical, and 
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physical properties aligned well with requirements. Yu et al. [87] proposed a hybrid 

bioprinting system to process scaffold-free cellular constructs for tissues and organ 

models using two micro-nozzles. Even the approach is still at proof-of-concept study 

stage, it demonstrated the potential for therapeutic purpose. 

 

 

(a)  SLS 

 

   (b) SLA                                  

 

Figure 2. 1 AM technologies (a) SLS (b) SLA (c) FDM [88-90] 
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(c) FDM 

Figure 2.1 Continued 

 

Other available AM techniques such as freeze form extrusion fabrication [29], 

direct metal laser sintering (DMLS), and electron beam melting (EBM) [91] were also 

received extensive attention. However, an inevitable issue involved in all these AM 

techniques is that it relies either a different supporting material (in FDM) or the 

constituent/part materials (in SLS and SLA) to fill in space when fabricating porous 

parts. Some of the filler materials are hazardous or contain harmful chemical when 

disposal. It is also reported that the material consumption for the purpose of filling in 

space can be greater in volume and in cost than the actual part. More importantly, it is 

time-consuming to clean the filler material especially when the pore size is small. In 

addition, the AM technologies discussed above cannot be used for fabricating closed cell 
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porous structure, since the filler materials, no matter they are solid, liquid or powder, 

will be trapped in the cell and cannot be removed to create porous structure. 

An alternate approach that can be used to fabricate porous materials without 

dealing with the filler material issues is lamination process.  

 

2.2 Lamination of Porous Materials 

 

Lamination is a process that fabricates materials in multiple layers in which the 

materials for each layer could be the same or different. The bonding process is generally 

achieved by adhesive, heat, pressure, and/or welding. Lamination technology has a 

variety of applications in biomedical, pharmaceutical, electronics, and automotive.  

Section 2.2.1 discusses the existing lamination techniques. In particular, in 

Section 2.2.2, the thermo-compression bonding is reviewed. Polymer self-adhesion and 

its mechanism is discussed in Section 2.2.3.  

 

2.2.1 Existing Lamination Techniques   

 

One of the most commonly used methods to laminate materials is to apply 

adhesives. Based on the lamination techniques, it can be divided into flame lamination, 
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aqueous-based adhesive lamination, solvent-based adhesive lamination, pressure 

sensitive adhesive-based lamination, and hot melt-adhesive-based lamination [34, 35]. In 

flame lamination, the material is melted by flame and then pressed into contact with the 

substrate. To demonstrate the process, Singha showed that Polyurethane foam can be 

laminated to textile material by passing over a gas flame through a rolling system [35].  

Aqueous based pressure sensitive adhesive can be used for bonding foams, fabrics, and 

porous substrates. It is either from nature polymer, e.g. vegetable sources, protein 

sources, or animal; or from soluble synthetic polymers, e.g. cellulose ethers, 

methylcellulose, polyvinyl alcohol, etc. [92]. In solvent-based adhesive, the performance 

for bonding micro-porous materials is determined by the polymer system in the formula. 

The solvent-based adhesive consists of two different types: wet bonding type where the 

bond is effective through the evaporation of the solvent, and contact type where pressure 

must be applied in order to form strong bonding. Unlike aqueous or solvent-based 

adhesive, pressure sensitive adhesive does not solidify but will keep viscous and tacky. 

Adequate pressure must be applied to ensure a strong bonding. The pressure sensitive 

adhesives are generally obtained from natural rubber, polyacrylates, and synthetic 

rubbers.  Hot melt adhesives are thermoplastic polymers and would melt and bond 

material when subjected to elevated temperature. It can be reheated and re-solidified in 
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order to rebond once debonding occurs [93]. Thus, it is widely used in package, textile, 

automotive, and electronics industry.  

Laminated Object Manufacturing (LOM) (as shown in Figure 2.2) is also a rapid 

prototyping process where layers of plastic, paper or metal are successively bind 

together and cut into the desired geometry [41-43]. It is actually a combination of 

additive and subtractive technologies in which the layers are built up together by heat 

and pressure with an adhesive, followed by laser cutting to the desired shape for each 

layer [94]. Griffin et al. [95] used LOM to fabricate functional ceramic components and 

obtained high purity and density alumina ceramic components. It was also successfully 

proved that material prepared by LOM has almost the same physical and mechanical 

properties as those produced by conventional pressing process [96]. Mueller and Kochan 

showed that LOM is an ideal approach for rapid tooling and patternmaking due to its low 

costs, low shrinking, high durability, and capability to produce large part [97]. Other 

efforts include process studies such as thermomechanical analysis [98], investigations on 

effects of different parameters, e.g. layer thickness and orientation angle on product 

quality [99].   
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Figure 2. 2 LOM process [100] 

 

Selective Deposition Lamination (SDL) (as shown in Figure 2.3) was invented to 

laminate the selectively cut paper layers with adhesive to build up parts [44]. One of the 

difference between LOM and SDL is that, in SDL the densities of adhesive drops are 

different in the part area and in the surround area, while in LOM process, the adhesive is 

applied in equal amount across the entire surface of the material. The fabricated objects 

can be used for architect models, classroom teaching materials, and other proof of 

concept models.  
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Figure 2. 3 SDL process [44] 

 

Using lamination process to fabricate porous material is cost-effective, requires 

no supporting material and no post-processing. It solves the supporting problem in FDM, 

SLS, and SLA, and is able to build large parts. Thus, in this research, lamination will be 

used to manufacture the FGPMs.  

 

2.2.2 Thermo-compression Bonding 

 

An alternative to adhesive bonding in lamination process is the thermo-

compression bonding. The bonding between two materials is generated when the 

materials are brought into contact with properly applied force and heat. The bonding is 

due to diffusion caused by atomic or molecular motion. It is widely used for metal 

bonding, e.g. wafer bonding, and is an ideal bonding technique for integrated circuits, 
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nanocrystalline metal film [36, 37], nonwoven fabrics [38], and thermoplastic polymer 

microfluidics [39, 40].  

 

2.2.3 Polymer Self-adhesion 

 

The thermo-compression bonding can also be used for polymer-polymer 

bonding. The polymer self-adhesion phenomenon is due to inter-diffusion of 

macromolecules and has attracted great attention since it can be used as a convenient 

binding process. According to McLaren, there are two stages for self-adhesive bonding 

[45]. In the first stage, the micro-Brownian motion drives polymer molecular to migrate 

to the interface of materials. As the polar groups of both materials approach to each 

other, the chain segments also approach to the inter-surface. In the second stage, 

intermolecular force is effective as the polymer molecules become close enough, and the 

force is ranging from 102 cal./mol to 104 cal./mol, which eventually lead to bonding. 

This process was further investigated to measure the self-diffusion coefficient and to 

develop mathematical model [46, 47].  

A new phenomenon was reported that under sub-Tg (around 60 K below Tg), 

solid-state condition, a particular polymeric film can be bonded on the order of a second 

when subjected to plastic deformation [48]. This is because the molecular-level 
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rearrangement is triggered under sub-Tg and plastic deformation conditions, and it 

results in interdiffusion of polymer chains to cross the interface and thus leads to 

bonding as shown in Figure 2.4. This convenient and quick way to generate bonding in 

polymer layers is being considered in pharmaceutical manufacturing. However, from the 

mechanical perspective, the plastic deformation changes the geometry of the specimen, 

and gives rise to issues when processing the specimen and modeling its mechanical 

behavior.  

 

 

 

Figure 2. 4 Interdiffusion of polymer chain [48] 

 

An alternative approach is to heat the polymer close to Tg (sometimes higher 

than Tg but lower than Tm), and the polymer layers would bond without being subjected 

to large plastic deformation. This bonding approach is effective and can be applied to a 

variety of polymers. With the controlled-temperature thermal bonding, polymeric 

FGPMs can be fabricated without applying large plastic deformation or using the 
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supporting material as in other AM technologies. This lamination technique is 

convenient, easy, and inexpensive. Besides, it can produce parts with good resolution 

and accurate geometry.  

 

2.3 Modeling Mechanical Behavior of Composite and Porous Material 

 

Composite and porous materials are intensively used in automobile, space, 

aeronautical, biomedical, electronics industries. The composite porous materials with 

different manufacturing methods, dimensions, geometries, and porosity have very 

different mechanical behaviors. From the review of previous work in mechanical 

modeling of composite porous material, the major modeling methods fall into two 

categories: (1) analytical approaches to derive models to predict mechanical behavior; 

(2) finite element method to simulate the mechanical performance of the materials. The 

reviews of analytical modeling methods and finite element methods are presented in 

Section 2.3 and Section 2.4, respectively.  

Section 2.3.1 summarizes the analytical models for composite materials. 

Analytical models dealing with FGM without and with porous structures are discussed in 

Section 2.3.2 and Section 2.3.3, respectively.  
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2.3.1 Analytical Modeling for Composite Materials  

 

Significant efforts have been taken into developing material models for 

composite materials. Micromechanics approach is one of the most frequently used 

methods. It is a homogenization process which involves deriving the mechanical 

behavior of the composite material based on the mechanical property and geometry of 

each individual constituent [101]. The representative volume element (RVE) is generally 

used in micromechanics. The RVE is defined as a sub-volume of the composite whose 

size is sufficient large enough for representing all the geometry information but also the 

smallest unit that can be used to study in order to yield a result representative of whole 

structure.  

The rule of mixture approach developed by Voigt [102] and Reuss [103] are 

widely used since it yields the upper bound and lower bound of the overall mechanical 

property. Hashin investigated transversally isotropic composites and macroscopically 

isotropic composites, and also provided bounds on the elastic moduli [104, 105]. 

Eshelby [106] investigated the stress and eigenstrain field inside an ellipsoid 

inclusion which is embedded an infinite matrix. He concluded that the Eshelby’s tensor 

Sijkl is a constant tensor in the case of an ellipsoidal inclusion embedded in a 

homogeneous infinite medium, and it only depends on the dimension of the inclusion, 
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and the eigenstrain inside the inclusion are uniform. A series of analytical models were 

developed based on Eshelby’s tensor. The self-consistent scheme [107, 108] is an 

effective medium approximation based on Eshelby’s tensor, and it uses the material 

properties of the composite as the infinite medium. Christensen improved the self-

consistent model by developing the generalized self-consistent model [109] that was 

further investigated by Nemat-Nasser [110, 111]. In this model, the Eshelby’s tensor is 

not a constant, rather, it is a periodically fluctuating function. Mori-Tanaka method [112, 

113] is an effective field approximation method with a fourth order strain concentration 

tensor that relates the volume average macroscopic strain to the volume average 

eigenstrain in the inclusion. Other methods, including the Chamis model [114], the 

Halpin-Tsai model [115], and the Differential scheme [116, 117] were also derived to 

model the mechanical property of composites.   

 

2.3.2 Analytical Modeling for FGM without Porous Structures 

 

In order to derive the mechanical model of FGM, the variation of volume 

fraction of each constituent in the graded direction can be assumed, e.g. variation 

according to a power law [118] and variation of volume fraction as a function of 

coordinate [119]. Other investigations studied FGMs on the basis of the graded field 
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relative to the size of RVE. If the volume fraction changes relatively slow with respect to 

spatial coordinates, the material can be considered as homogeneous at RVE scale, but 

globally heterogeneous on the macro scale. Standard homogenization methods such as 

dilute model, self-consistent schemes, and Mori-Tanaka model can still be applied to 

study its mechanical response. Zuiker [41] applied Mori-Tanaka model, self-consistent 

model, and Tamura’s model to predict the effective stiffness of FGMs and compared the 

results with experiments, and commented that the former two methods are more reliable. 

Reiter [50, 120] did similar work by investigating the mechanical property of graded 

composites using different micromechanical models. Four models were developed by 

Pal [121] using a differential approach to solve the problem of an incompressible 

medium with a dilute concentration of ellipsoidal particles. Zuiker [122] extended Mori-

Tanaka model to linearly variable local fields in order to yield better prediction for 

functionally graded materials with a variable density of reinforcement or a large overall 

stress density.  

 

2.3.3 Analytical Models for Porous Materials 

 

Efforts have been made on predicting the effective elastic properties of porous 

materials. Zhao et al. [123, 124] derived the effective moduli for a variety of porous 
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materials by setting the inclusions stiffness to zero, and they proved that when the matrix 

has lower elastic property, the effective moduli of overall material obtained from the 

Mori-Tanaka’s method agreed well with Hill and Hashin’s lower bounds; and coincided 

with the upper bounds when the matrix is the harder constituent. The compressibility of 

2-D pores of various shapes under hydrostatic stress were studied by Zimmerman [125], 

who used a technique of mapping a pore onto a unit circle. Later on Zimmerman further 

investigated the volume change of a single ellipsoidal cavity in 3-D case. Walsh [126] 

also investigated the effect of porosity on the compressibility of different materials. 

Efforts were made to obtain the stiffness of solids with non-interacting pores, and a 

fourth rank tensor called cavity compliance tensor were proposed to facilitate the 

derivation, and the expressions were derived for different shapes of cavities [127]. For 

interacting defects, differential scheme, self-consistent scheme, generalized self-

consistent scheme, and Mori-Tanaka’ scheme [128] were generalized and applied.      

 

2.4 Finite Element Study for Composite Materials  

 

Finite element method (FEA) is a numerical approach for obtaining approximate 

solution to boundary value problems for mathematical models.  The method subdivides 

the whole model into simpler, smaller geometry called finite elements. The solution for 
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each small finite element is then assembled over the whole model to achieve the 

solution. This method is widely used in material performance modeling.  

In Section 2.4.1, numerical models developed for composite material are 

discussed. Section 2.4.2 demonstrates the periodic boundary conditions for RVEs.  

 

2.4.1 Numerical Models for Composite Materials  

 

FEA is an efficient way to obtain the effective stiffness of composite materials. 

Some of the models assume periodic arrangement of the material. The homogenization 

theory was first used by Babuska [129] and Keller [130] for studying effective behavior 

of heterogeneous material, and then was applied to study the composite materials [131]. 

Hollister and Kikuchi [132] used an asymptotic expansion to approximate the field 

variables and provided a clear description of this theory. Method of cell was developed 

by Aboudi et al. [133, 134]. It explicitly considered reinforcement and matrix subcell 

from periodic unit cell, and was later generalized to model FGMs. The method first 

assumed displacement field in the subcells and then applied displacement and traction 

continuity between the neighboring subcells and cells. Investigations related to FEA 

study of FGMs were also carried out [91, 135-137] for designing porous structure and 

studying its behavior under different conditions.  
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2.4.2 Periodic Boundary Conditions 

 

To numerically model the mechanical behavior of composites using the RVE 

approach, periodic boundary condition (PBC) should be applied to ensure the 

deformation compatibility.  To satisfy PBC, the shape and displacement of two opposite 

edges should be identical during the deformation [138]. Figure 2.5 shows a typical 2-D 

unit cell, the lengths of edge in y1, y2 direction are a1 and a2, respectively. Based on 

periodicity assumption, it follows Eq. (2.1) [139]:    
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where 
ij

u denotes the displacement vector for points on edge ij ; and 
1vu  denotes the 

displacement vector for each vertex iv . It can be also written in the form of Eq. (2.2):  
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where ij denotes the strain tensor of the unit cell.  
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Figure 2. 5 Unit cell with PBC [139] 
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3. EXPERIMENTS 

 

Material bonding has always been important for lamination process. Applying 

adhesive is one of the most commonly used methods to generate bonding between 

layers. However, polymer self-adhesion is also a very promising approach that has the 

potential to attract a lot of attention due to its low-cost and effectiveness. The aim of this 

section is to show the feasibility of applying thermal bonding technique to laminate 

polymer sheets to create three-dimensional objects, and to investigate the material 

behavior of the laminated FGPMs experimentally. The FGPMs are also built up by using 

adhesive as an alternative. Lap shear tests were conducted to investigate the shear 

strength of the thermally bonded specimens, while the effects of applied pressure, 

heating temperature, and holding time on the shear strength were studied. The 

compression tests were carried out to characterize the elastic compressive behavior of 

the porous structure under normal and transverse loading conditions.  

In Section 3.1, it is demonstrated that the thermo-bonding process can be used to 

laminate polymer layers to build-up specimen. Lap-shear tests were carried out to study 

the shear strength of the bonding. In Section 3.2, FGPMs with different configurations, 

i.e. different geometries, constant porosity and graded porosity, closed cell and open cell 
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structures, were fabricated using either the thermo-bonding or the adhesive bonding 

techniques. The materials were also characterized using mechanical testing.    

 

3.1 Lamination Using Thermo-bonding  

 

In this section, the feasibility of thermally-induced lamination process is 

demonstrated by bonding two layers of polymer sheets through the thermo-bonding 

process. The single-layer made from polymeric material was first fabricated by Fused 

Deposition Modeling (FDM), and then processed to form specimens. In Section 3.1.1, 

the material properties of base material and the preparation of single-layer samples are 

described. Section 3.1.2 presents the experimental procedure for lamination. Various 

thermo-bonding conditions, i.e. different applied pressure, heating temperature, and 

holding time, were used to bond the single-layers in order to achieve different bonding 

shear strength. Lap-shear testing of specimens, presented in Section 3.1.3, was carried 

out in order to investigate the shear strength of bonding. The effects of different process 

parameters on shear strength are discussed.  
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3.1.1 Base Material Property and Preparation of Single-layers 

 

In order to perform the lamination process, single-layers of material need to be 

fabricated first. The geometry of these single-layers depends on the final product – the 

final product is a build-up of the multiple thin layers, or the final product is considered to 

be “sliced” into multiple layers, and each layer has specific geometry and porosity. In 

this experiment, single-layers were fabricated by 3-D printing machine FlashForge 

Dreamer. Polylactic acid (PLA) was selected as the base material in this work due to its 

low glass transition and melting temperatures as well as its low shrinkage after cooling. 

In 3–D printing of PLA, the layer thickness of printing was set at 0.1 mm, and the infill 

percentage was set as 100% for all the printing process in this work. For the consistency, 

HATCHBOX  PLA 3D  printer filament with 1.75 mm in diameter and dimensional 

accuracy + 0.05 mm was used in this work. The layer thickness and width of filament 

was selected in order to maintain the dimensional accuracy of printing parts. The glass 

transition temperature and melting temperature of PLA filament are 60-65oC and 150-

160 oC, respectively. The elastic modulus of PLA is 3.5 GPa. The individual layers were 

first designed and drawn by Solidworks, and the .stl files were sent to Simplify 3D 

software which prepares the 3D model ready for printing by slicing the model in the 

printing direction and generating G code for the trajectory of nozzle.   
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3.1.2 Thermo-bonding Process 

 

In this section, the thermo-bonding mechanism will be explained and the bonding 

approach will be elaborated. Lamination of the single-layers will be conducted in order 

to show the bonding process. 

 

The mechanism of the thermo-bonding process 

 

The thermo-bonding is caused by polymer self-adhesion due to the interdiffusion 

of polymer chains. Below Tg, even if the material is still in glassy and solid state, a 

certain amount of mobility of the polymer polar groups and chains can be triggered 

under proper conditions, and interdiffusion between polymer chains across the interfaces 

can occur [40]. Given time, as more and more polymer chains cross the interfaces, the 

interdiffusion would eventually lead to bonding as shown in Figure 3.1.  
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Figure 3. 1 Interdiffusion across the polymer chains [48] 

 

Experimental procedure for the thermo-bonding process 

 

In order to investigate the thermal bonding lamination process and improve the 

bonding, the surface of the single layer sample should be carefully cleaned. This was 

achieved by degreasing the surface using CSM Degreaser. The surfaces were then 

carefully dried with a gauze sponge. In addition, any burs due to 3-D printing would be 

removed to ensure the surface-surface contact when thermal bonding.  In order to avoid 

surface contamination, the cleaned single layer samples were bonded within 30 min after 

the surface cleaning.  

During the thermo-bonding lamination process, the single-layers were carefully 

aligned and built up according to the desired geometry of the final product. A CARVER 

Interdiffusion below Tg within time 
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hydraulic unit model #3925 heating compression machine was used to heat the polymer 

layers. The heating temperature is up to 10 to 20 Celsius degree below the glass 

transition temperature (Tg) for some polymers, such as Acrylonitrile Butadiene Styrene 

(ABS), Polycarbonate (PC), etc.; or between Tg and melting temperature (Tm) for other 

polymers, such as PLA, Polypropylene (PP), Polyethylene (PE), etc. An “L” shaped 

fixture was made in order to ensure the alignment of layers. The height of the fixture was 

properly controlled to make sure the upper die can fully compress the built-up layers. 

Figure 3.2 shows the experimental setup for the thermal bonding process.  

The thermo-bonding process was then held for sufficient time to allow enough 

interdiffusion. The heating temperature was carefully chosen through several trials to 

make sure that a strong bonding can be achieved. During the thermal bonding process, a 

compressive load was applied in order to make sure that each layer is in close contact 

with the neighboring layers.  This thermal bonding lamination processes were carried out 

on PLA specimens.  
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Figure 3. 2 Experimental setup for the thermal bonding process 

 

Investigations on factors which influence bonding shear strength 

 

The shear strength of bonding can be affected by different process parameters. 

From diffusion theory, it is known that time, temperature, and pressure are critical 

factors that strongly influence diffusion. Therefore, different pressure, heating 
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temperature, and holding time were used to study their effects on polymer interdiffusion 

and bonding strength. Three different parameters were chosen for each factor.  

To minimize the dimension change caused by applied pressure, the first set of 

experiment is to study the pressure effect and determine how much pressure is needed. 

Three different pressure, i.e. 0.5 MPa, 1.0 MPa, and 1.5 MPa were used to do the 

investigation. The heating temperature and holding time were set at Tm-10C and 75 min, 

respectively. Table 3.1 lists the condition applied for studying the effects of pressure. It 

was then found out that 0.5 MPa of pressure is high enough to develop very strong 

bonding and also result in plastic deformation which will cause dimensional change. 

Therefore, pressure was kept as a constant and low when investigating the effects of 

heating temperature and holding time on bonding shear strength. The constant pressure 

was achieved by using an aluminum spacer which has high elastic modulus compared to 

PLA, and can prevent the upper die from moving down to deform the layered FGPMs 

further.  

The testing matrix for temperature and time investigation is shown in Table 3.2. 

The heating time listed includes the time used for heating up the upper and lower dies. 

As can be seen from Table 3.2, there are 5 different trials since the experiment under the 

condition of “Tm – 10C” and 75 min is in both temperature and time studies. For each 

condition, three samples were tested.  
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Table 3. 1 Conditions applied for studying the effects of pressure 

 

  Pressure 
Heating 

Temperature 
 Time 

Investigation for 

pressure  

0.5 MPa 

Tm-10C  75 min 1.0 MPa 

1.5 MPa 

 

 

Table 3. 2 Experimental testing matrix for temperature and time evaluation 

 

  
Heating 

Temperature 
 Time 

Investigation for 

heating temperature  

Tm  

75 min Tm-10C  

Tm-20C  

Investigation for 

time  
Tm-10C  

45 min 

75 min 

105 min 
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3.1.3 Lap-shear Test 

 

Experimental procedure for lap-shear tests 

 

Lap-shear tests were conducted in order to investigate the effects of different 

pressure, heating temperature, and time on the shear strength of thermally bonded 

specimens. The lap-shear specimens were prepared using Flashforge Dreamer 3-D 

printing machine as described in Section 3.1.1 and thermally bonded as described in 

Section 3.1.2. Figure 3.3 depicts the lap-shear sample. The right and left sides of the 

sample is designed for gripping purpose in lap-shear tests. The overlapping area in the 

middle is the bonding area.  

 

 

Figure 3. 3 Lap-shear sample 



 

47 

 

Lap-shear tests were performed using MTS Insight○R  Electromechancial testing 

systems with load capacity of 30 KN. The capacity of the load cell used is 2.5 KN, in 

order to ensure the accuracy of load measurement. The testing speed of cross head was 

kept at 0.1 mm/min.  The overlapping area was measured and calculated before and after 

each test. An experimental set-up for the lap-shear test is demonstrated in Figure 3.4. 

The testing parameters, are listed in Tables 3.1 and 3.2. Three repetitive tests were 

conducted for each condition.  

After each test, the load-displacement data is exported, and the lap-shear strength 

is calculated as the maximum load before failure divided by the bonding area.  
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Figure 3. 4 Experimental set-up for Lap-shear tests 
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Experimental results for lap-shear test 

 

Lap-shear tests were used to measure shear strength of thermally bonded 

specimens and investigate the effects of heating temperature and time on shear strength 

of bonding. The variations of load-displacement curves under different pressure are 

shown in Figure 3.5. It should be also noted that pressure has significant influence on 

shear strength of bonding, these specimens fail at where the stress concentrated and there 

is no obvious debonding occurs in the bonding area. More importantly, this indicates that 

0.5 MPa (or above) of applied pressure is high enough to develop strong bonding under 

Tm-10C while holding for 75 min.  

Tables 3.3 shows the shear strength data, and it was observed that with an 

increase in applied pressure, the shear strength also increases since it is 0.997 MPa under 

the pressure of 0.5 MPa, 1.531 MPa under the pressure of 1.0 MPa, and 2.041 MPa 

when the applied pressure is 1.5 MPa.  
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(a) 1.5 MPa 

 

(b) 1.0 MPa 

 

(c) 0.5 MPa 

Figure 3. 5 Load versus displacement plot for lap-shear specimen under different 

pressures heated at 140 C held for 75 min 
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Table 3. 3 Variation of shear strength under different pressure 

at heat temperature and time of 140 C and 75 min 

 

Pressure applied  0.5 MPa 1 MPa 1.5 MPa 

Shear strength 

(MPa) 
0.997 1.531 2.041 

 

As mentioned above, low pressure applied, i.e. 0.5 MPa, is high enough to cause 

plastic deformation. As such, in order to eliminate dimensional change, pressure was 

kept as a constant during the fabrication of specimens, and the pressure was applied only 

for densifying the build-up layers. The load-displacement curves for lap-shear specimens 

under different heating temperatures and constant pressure held for 75 min are depicts in 

Figure 3.6. It is observed that heating temperature has significant effects on shear 

strength since closer to Tm, the shear strength is much higher than that heated under Tm-

20C. It is reasonable since the molecular mobility is triggered and chain movement is 

speeded up under higher temperature. In Figure 3.6 (b), the slope of the curve dropped at 

about displacement x=0.55 mm, this is because the specimen is slightly debonded, but 

still can carry further loading. However, the load and displacement at first debonding in 

Figure 3.6 (b) are higher than that in Figure 3.6 (c) (where load and displacement at 

debonding is about 325 N and 0.31 mm, respectively), indicating that shear strength of 
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specimen bonded at a higher temperature is much stronger than that bonded at a lower 

temperature.   

Table 3.4 lists the bonding shear strength under different temperatures, as can be 

seen that the shear strength is 0.617 MPa when the heating temperature is 130 C, and 

0.931 MPa and 1.037 MPa for 140 C and 150 C, respectively.  

 

 

(a) Heating temperature 150 C 

 

(b) Heating temperature 140 C 

Figure 3. 6 Load versus displacement plot for lap-shear specimen under (a) 150 C (b) 

140 C (c) 130 C held for 75 min 
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(c) Heating temperature 130 C 

Figure 3.6 Continued  

 

Table 3. 4 Variation of shear strength under different heating temperatures 

at holding time of 75 min and constant pressure 

 

Heating temperature 

(Celsius）   
130 C 140 C 150 C 

Shear strength 

(MPa) 
0.617 0.931 1.037 

 

Figure 3.7 demonstrates the load-displacement curve for lap-shear specimens at 

140 C and constant pressure held for different time. It can be observed that with a 

decrease of heating time, the shear strength also decreases due to the less diffusion of 

polymer chains. It can be also seen that debonding occurs gradually as the load drops 
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gradually before the specimen is fully debonded. Table 3.5 demonstrates the shear 

strength increases with the increase of holding time, as the shear strength is 0.768 MPa 

when the holding time is 45 min, 0.931 MPa for 75 min, and 1.027 MPa for 105 min.  

 

 

(a) Held for 105 min 

 

(b) Held for 75 min 

 

Figure 3. 7 Load versus displacement plot for lap-shear specimen under 140 C held for 

(a) 105 min (b) 75 min (c) 45 min 
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(c) Held for 45 min 

 

Figure 3.7 Continued 

 

Table 3. 5 Variation of shear strength under different heating time 

at heat temperature of 140 C and constant pressure 

 

Heating time (min)   45 min 75 min 
105 

min 

Shear strength 

(MPa) 
0.768 0.931 1.027 

 

3.2 Fabrication and Characterization of FGPMs 

 

The fabrication of FGPMs with different configurations using the thermo-

bonding process and adhesive bonding process is presented in this section. In Section 

3.2.1, specimen configurations are described. The configurations were chosen properly 
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not only for demonstrating the feasibility of lamination process in fabricating different 

structures, but also for validating the analytical and numerical models derived in Section 

4. The detailed lamination process is presented and the processed samples are shown in 

Section 3.2.2. In Section 3.2.3, characterization of laminated FGPMs through the 

compression tests are presented, and the experimental results and summary are also 

provided.  

 

3.2.1 Specimen Configurations 

 

In order to fully investigate the mechanical properties of FGPMs and 

demonstrate the feasibility of thermal-induced lamination process, eight different 

configurations of specimens were fabricated, including the combination of open cell and 

closed cell structure with different void geometries and porosity gradient, i.e. constant 

porosity, and gradient porosity. The specimen matrix is demonstrated in Table 3.6.  As 

can be seen, Configurations 1-4 deal with the closed cell problem, while the rest of the 

configurations were designed as open cell structures. Odd layers were designed for 

closed cell structures in order to ensure that the voids are all enclosed as can be seen in 

Configurations 1-4. Round disk void and square disk void were selected in order to study 

the effects of different pore geometries on the mechanical property of FGPMs. As a 
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comparison to gradient structure, materials with constant porosity were also fabricated 

and their mechanical responses were studied. The overall porosity of all the specimen 

configurations was kept below 40% as this work is mainly focused on fabrication and 

modeling of FGPMs with low-to-medium porosity.  

 

Table 3. 6 Specimen matrix for different configurations 

 

  Geometry 
# of 

layer 

Overall 

porosity  

Void 

arrangement  

Configuration 

1 

Closed 

cell  

Round 

disk void  

Constant 

porosity 
9 12.60% 

void 

alignment 

Configuration 

2 

Closed 

cell  

Square 

disk void 

Constant 

Porosity 
9 12.64% 

void 

alignment 

Configuration 

3 

Closed 

cell  

Round 

disk void  

Graded 

porosity 
9 12.15% 

void 

alignment 

Configuration 

4 

Closed 

cell  

Square 

disk void 

Graded 

porosity 
17 11.73% 

void 

alignment 

Configuration 

5 

Open 

cell 

Round 

disk void  

Constant 

Porosity 
8 32.71% 

half diameter 

shift 

Configuration 

6 

Open 

cell 

Square 

disk void 

Constant 

Porosity 
8 35.67% 

half diameter 

shift 

Configuration 

7 

Open 

cell 

Round 

disk void  

Graded 

porosity 
8 24.20% 

void 

alignment 

Configuration 

8 

Open 

cell 

Square 

disk void 

Graded 

porosity 
16 24.92% 

void 

alignment 

  

 

Figures 3.8 and 3.9 demonstrate the single-layers with round disk void and 

square disk void for Configurations 1 and 2, respectively.  The detailed geometrical 
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information for closed cell configurations are shown in Tables 3.7– 3.10. For 

Configuration 1 as shown in Table 3.7, since it is a closed cell structure, Layer #1, #3, 

#5, #7, and #9 are all solid layers while Layer #2, #4, #6 and #8 are identical porous 

layers. Each layer contains 5×5 round disk with a pore diameter of 3.4 mm. Similar to 

Configuration 1, Configuration 2 has the same layer setting except the pores are square 

disk void with side length of 3.2 mm as shown in Table 3.8. Configuration 3 is 

associated with closed cell graded round disk, where Layer #2, #4, #6, and #8 have 

different pore diameters and porosities as shown in Table 3.9.  As can be observed from 

Table 3.10, Configuration 4 contains 17 layers with 8 different porosities. In each layer, 

6×6 square disk voids are included.  

 

 

Figure 3. 8 Porous single layer for Configuration 1 
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Figure 3. 9 Porous single layer for Configuration 2 

 

Table 3. 7 Geometrical information for Configuration 1 

 

  
Description Porosity 

Layer size 

(mm) 

Pore size 

(mm) 

Layer #1, #3, #5, 

#7, #9 
Solid layer 0.00% 6×6×3.5 N/A 

Layer #2, #4, #6, 

#8 
Porous layer 25.20% 6×6×3.5 3.4×3.5 

 

Table 3. 8 Geometrical information for Configuration 2 

 

  Description Porosity 

Layer size 

(mm) 

Pore size 

(mm) 

Layer #1, #3, #5, 

#7, #9 
Solid layer 0.00% 6×6×3.5 N/A 

Layer #2, #4, #6, 

#8 

Porous 

layer 28.44% 6×6×3.5 3.2×3.2×3.5 
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Table 3. 9 Geometrical information for Configuration 3 

  Description Porosity 
Layer size 

(mm) 

Pore size 

(mm) 

Layer #1, #3, #5, 

#7, #9  
Solid layer 0.00% 6×6×3.5 N/A 

Layer #2 
Porous 

layer 
14.74% 6×6×3.5 2.6×3.5 

Layer #4 
Porous 

layer 
28.26% 6×6×3.5 3.6×3.5 

Layer #6 
Porous 

layer 
31.48% 6×6×3.5 3.8×3.5 

Layer #8 
Porous 

layer 
34.89% 6×6×3.5 4.0×3.5 

 

Table 3. 10 Geometrical information for Configuration 4 

  Description Porosity 
Layer size 

(mm) 

Pore size 

(mm) 

Layer #1, #3, #5, 

#7,#9, #11, #13, 

#15, #17   

Solid layer 0.00% 4×4×1.5 N/A 

Layer #2 
Porous 

layer 
5.06% 4×4×1.5 0.9×0.9×1.5 

Layer #4 
Porous 

layer 
10.56% 4×4×1.5 1.3×1.3×1.5 

Layer #6 
Porous 

layer 
16.00% 4×4×1.5 1.6×1.6×1.5 

Layer #8 
Porous 

layer 
22.56% 4×4×1.5 1.9×1.9×1.5 

Layer #10 
Porous 

layer 
27.56% 4×4×1.5 2.1×2.1×1.5 

Layer #12 
Porous 

layer 
33.06% 4×4×1.5 2.3×2.3×1.5 

Layer #14 
Porous 

layer 
39.06% 4×4×1.5 2.5*2.5*1.5 

Layer #16 
Porous 

layer 
45.56% 4×4×1.5 2.7*2.7*1.5 



 

61 

 

Configurations 5-8 are designed as open cell structures. Configurations 5 and 7 

contain round disk voids, while Configurations 6 and 8 deal with square disk void. 

Tables 3.11 and 3.12 show the geometrical information for Configurations 5 and 6. Note 

that in order to maintain the interconnected open cell structure, Layers #2, #4, #6, and #8 

were designed to shift a half diameter to the right compared to Layer #1, #3, #5, and #7, 

respectively. Configurations 7 and 8 have eight different layers with different porosity 

through the graded direction as shown in Tables 3.13-3.15.  

The individual single layers were carefully examined and measured after 3-D 

printing to make sure that the dimensional accuracy is within the tolerance of 0.4 mm.   

 

Table 3. 11 Geometrical information for Configuration 5 

 

  Description Porosity 
Layer size 

(mm) 

Pore size 

(mm) 

Layer #1, #3, #5, 

#7 
Porous layer 32.71% 6×6×4 4×4 

Layer #2, #4, #6, 

#8 

Porous 

layer, pores 

shift a half 

diameter to 

the right 

32.71% 6×6×4 4×4 
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Table 3. 12 Geometrical information for Configuration 6 

 

  Description Porosity 
Layer size 

(mm) 

Pore size 

(mm) 

Layer #1, #3, #5, 

#7 
Porous layer 35.67% 6.5×6.5×4 4×4×4 

Layer #2, #4, #6, 

#8 

Porous 

layer, pores 

shift a half 

diameter to 

the right 

35.67% 6.5×6.5×4 4×4×4 

 

 

Table 3. 13 Geometrical information for Configuration 7 

 

  Description Porosity 
Layer size 

(mm) 

Pore size 

(mm) 

Layer #1 Porous layer 14.74% 6×6×3.5 2.6×3.5 

Layer #2 Porous layer 17.10% 6×6×3.5 2.8×3.5 

Layer #3 Porous layer 19.63% 6×6×3.5 3.0×3.5 

Layer #4 Porous layer 22.33% 6×6×3.5 3.2×3.5 

Layer #5 Porous layer 25.21% 6×6×3.5 3.4×3.5 

Layer #6 Porous layer 28.26% 6×6×3.5 3.6×3.5 

Layer #7 Porous layer 31.49% 6×6×3.5 3.8×3.5 

Layer #8 Porous layer 34.89% 6×6×3.5 4.0×3.5 
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Table 3. 14 Geometrical information for Configuration 8 

 

  Description Porosity 
Layer size 

(mm) 

Pore size 

(mm) 

Layer #1 Porous layer 5.06% 4×4×3 0.9×0.9×3 

Layer #2 Porous layer 10.56% 4×4×3 1.3×1.3×3 

Layer #3 Porous layer 16.00% 4×4×3 1.6×1.6×3 

Layer #4 Porous layer 22.56% 4×4×3 1.9×1.9×3 

Layer #5 Porous layer 27.56% 4×4×3 2.1×2.1×3 

Layer #6 Porous layer 33.06% 4×4×3 2.3×2.3×3 

Layer #7 Porous layer 39.06% 4×4×3 2.5×2.5×3 

Layer #8 Porous layer 45.56% 4×4×3 2.7×2.7×3 

 

 

3.2.2 Lamination Processes  

 

Thermally induced lamination process  

 

As mentioned previously, FGPMs samples were prepared under the thermo-

compression process. In order to ensure the best mechanical properties as well as strong 

shear strength of bonding, heating temperature of Tm-10 C with holding time 75 min 

under constant pressure was chosen. As mention above, the constant pressure was 

achieved by using an aluminum spacer which has high elastic modulus compared to 
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PLA, and can prevent the upper die from moving down to deform the layered FGPMs 

further; thus, the constant pressure during the experiment can be maintained.  

 

Adhesive bonding process 

 

As an alternative, adhesive bonding was also used to laminate the FGPMs. In this 

work, Loctite○R  Super Glue Liquids was chosen to create bond between the layers. The 

adhesive is a fast acting cyanoacrylate which is ideal for quickly forming of strong 

bonds between non-absorbent materials in harsh conditions with pinpoint accuracy 

[140]. The cyanoacrylate adhesive is formulated with additives such as rubber or fumed 

silica in order to increase shear strength and generate impact resistant bond. The material 

has low viscosity and can be easily applied evenly on the surface of samples to form a 

very thin adhesive layer.  

Before the application of adhesive, the surfaces of samples were carefully 

cleaned with CSM Degreaser in order to remove any oil or contaminant. The surfaces 

were then carefully dried with a gauze sponge. In addition, any burs due to 3-D printing 

would be removed to ensure the surface-surface contact when applying the adhesion.  In 

order to avoid surface contamination, the cleaned single layer samples were bonded 

within 30 min after the surface cleaning. 
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After evenly applying the adhesive on the surface of single layer, the bonded 

layers are pressed together and held in place for 20 seconds. For full bond strength, the 

parts would be left for 24 hours to cure before being tested for mechanical property.  

 

Laminated samples 

 

Specimens were obtained for each configuration using the above lamination 

processes. The open cell FGPMs for Configuration 8 obtained through the thermo-

bonding at 10 C below Tm of PLA and were held for 75 min is shown in Figure 3.10 (a) 

and (b).  The sizes of pores are gradually changed in the layer built-up direction, as can 

be observed that the square disk voids in the top layer (Figure 3.10 (a)) are smaller than 

that in bottom layer (Figure 3.10 (b)). Due to the preloading condition in the thermo-

bonding process, the layers are in close contact with the neighboring layers. It is also 

observed that the original pore sizes are maintained since the material were kept in solid-

state, and there was no plastic deformation occurred during the lamination process. 

 



 

66 

 

 

 (a) FGPM sample view from the top layer 

 

 (b) FGPM sample view from the bottom layer 

Figure 3. 10 FGPM sample prepared from thermal bonding process 
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Figure 3.11 shows the closed cell FGPMs for Configuration 3 obtained through 

adhesive bonding process. Since it is a closed cell structure, the sample was laminated as 

one layer solid and one layer porous alternatively, and all the round disk voids were 

enclosed inside. During the lamination process, the adhesive dwells on the surface of the 

single-layers, thus, the material property of 3-D printed PLA was maintained.  

 

 

 

Figure 3. 11 FGPM sample prepared from adhesive bonding process 

 

Once the samples were prepared, mechanical tests are performed in order 

to characterize the mechanical property of fabricated FGPMs.  
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3.2.3 Characterization of Laminated FGPMs 

 

The laminated FGPMs specimens were characterized using the compression tests 

in the layer built-up direction (Direction 3) and transverse direction (Direction 1 and 

Direction 2, directions perpendicular to the built-up direction). As can be seen from 

Tables 3.7 to 3.14, the specimens can be considered as pseudo – transversely isotropic 

material where the compressive properties are equal in Direction 1 and Direction 2 

( 11 22E E ). The compression tests were aimed at evaluating the compression behavior 

and measuring the effective modulus of the FGPMs, as well as at validating the 

analytical and numerical models developed in the following section.  

 

Experimental procedure for compression test 

 

The compression tests were carried out using MTS Insight○R  Electromechancial 

testing systems with load capacity of 30 KN. The experiments were performed at room 

temperature at a constant speed of the crosshead at 0.5 mm/min for all the tests. Strain 

endpoint of the specimen was set as 9% before tests stop to ensure the elastic behavior is 

fully covered. Four repetitive tests were conducted per condition, as such, for each 

configuration listed in Table 3.6, eight samples were tested in normal and transverse 
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compression tests. Solid 3-D printed specimens are also tested in order to acquire the 

material property of base material, since the 3-D printed material may have different 

mechanical response from raw material [141]. Figure 3.12 demonstrates the 

experimental set-up for the compression tests.  The specimen geometry and porosity are 

depicts in Tables 3.7 to 3.14. The load-displacement data were exported after the 

experiments, and the stress-strain relations are calculated.  
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Figure 3. 12 Experimental set-up for the compression test 

 

Experimental results for compression test 

 

The mechanical response of the 3-D printed PLA was first characterized using 

the compression tests as shown in Figure 3.13. The elastic modulus of 3-D printed PLA 
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was found to be 986.27 MPa. Compared to the elastic modulus of raw (filament) PLA of 

3.5 GPa, it can be seen that there is a significant difference in material property between 

3-D printed material and raw material, and the former strongly depends on printing 

parameters, such as the percentage of infill, the width of filament, layer thickness, etc.  

 

 

Figure 3. 13 Stress-strain behavior of 3-D printed PLA in compression test 

 

Figures 3.14 to 3.17 demonstrate the compression engineering stress versus strain 

plots for a specimen with square disk voids, i.e. Configurations 2,4,6,8, in build-up 

direction and transverse direction. The strain was calculated by the displacement of cross 

head divided by initial specimen thickness. It is observed that the initial slopes of the 

stress-strain curve are small, indicating that the materials are densified by compressive 
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load. The curve is linear in the elastic deformation in all the curves, and the effective 

moduli were calculated as the slopes of linear part of the stress-strain curves.   

 

 

     (a)                                                             (b) 

Figure 3. 14 Stress versus strain plot for closed cell constant square disk void in           

(a)  normal direction (b) transverse direction 

 

 

     (a)                                                             (b) 

Figure 3. 15  Stress versus strain plot for closed cell graded square disk void in the (a) 

normal direction (b) transverse direction 
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     (a)                                                             (b) 

Figure 3. 16 Stress versus strain plot for open cell constant square disk void in the        

(a) normal direction  (b) transverse direction 

 

 

 

     (a)                                                             (b) 

Figure 3. 17 Stress versus strain plot for open cell graded square disk void in the           

(a) normal direction  (b) transverse direction 
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Tables 3.15 to 3.18 show the effective moduli for each configuration. Each value 

is calculated from the average of four repetitive tests. E33 denotes the modulus in the 

layer built-up direction, and E11 denotes the modulus in the direction perpendicular to 

the E33 direction. Normalized effective moduli were calculated as the effective stiffness 

divided by the elastic modulus of the base material, which is 986.27 MPa in this case. 2 

indicates the overall porosity of each configuration. It is observed that the effective 

modulus is related to the porosity. Overall, an increase of the porosity will result in a 

decrease of the effective modulus. However, the relationship might not be necessarily 

linear. The shape and the location of the voids and the porosity distribution also affect   

the effective modulus as will be shown in the next section. The experimental data are 

later used to verify the prediction accuracy of the developed analytical and numerical 

model.  

 

Table 3. 15 Effective moduli for closed cell round disk voids 

 

  

Round disk void_constant       

(Configuration 1) 2=12.6% 

Round disk void_graded                                  

( Configuration 3) 2=12.15% 

Effective 

stiffness data 

(MPa) 

Normalized 

effective 

stiffness 

Effective 

stiffness data 

(MPa) 

Normalized 

effective 

stiffness 

E33 593.298 0.602 721.160 0.731 

E11 571.156 0.579 759.170 0.770 
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Table 3. 16 Effective moduli for closed cell square disk voids 

 

  

Square disk void_constant       

(Configuration 2) 2=12.64% 

Square disk void_graded                        

( Configuration 4) 2=11.73% 

Effective 

stiffness data 

(MPa) 

Normalized 

effective 

stiffness 

Effective 

stiffness data 

(MPa) 

Normalized 

effective 

stiffness 

E33 698.366 0.708 859.310 0.871 

E11 721.235 0.731 788.952 0.800 

 

Table 3. 17 Effective moduli for open cell round disk voids 

 

  

Round disk void_constant       

(Configuration 5) 2=32.71% 

Round disk void_graded                                  

( Configuration 7) 2=24.2% 

Effective 

stiffness data 

(MPa) 

Normalized 

effective 

stiffness 

Effective 

stiffness data 

(MPa) 

Normalized 

effective 

stiffness 

E33 571.385 0.579 551.488 0.559 

E11 469.948 0.477 583.844 0.592 

 

Table 3. 18 Effective moduli for open cell square disk voids 

 

  

Square disk void_constant       

(Configuration 6) 2=35.67% 

Square disk void_graded                        

( Configuration 8) 2=24.92% 

Effective 

stiffness data 

(MPa) 

Normalized 

effective 

stiffness 

Effective 

stiffness data 

(MPa) 

Normalized 

effective 

stiffness 

E33 472.926 0.480 711.312 0.721 

E11 634.676 0.644 614.837 0.623 
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4. ANALYTICAL AND NUMERICAL MODELING OF FUNCTIONALLY GRADED 

POROUS MATERIALS  

 

In Section 4, analytical model and numerical model are established for 

functionally graded porous materials (FGPMs). The model are then implemented and the 

predictions are compared with experimental results from Section 3. Section 4.1 describes 

the existing analytical models for obtaining the material properties of composites, and 

their accuracy in predicting the mechanical behavior of FGPMs is examined.  

In Section 4.2, analytical model derivation for FGPMs based on Mori-Tanaka 

scheme is elaborated. The Mori-Tanaka’s model is extended to graded and porous 

materials with the consideration of volume change of pores.  

Section 4.3 deals with open-cell structure, and an application of Mori-Tanaka’s 

model to open-cell structure is presented. The disturbed stress fields outside the cavity 

for isotropic and anisotropic material are used to deliver analytical solutions for open-

cell structure.  

Section 4.4 demonstrates the application of the derived analytical model to obtain 

mechanical properties of FGPMs.  The model is used to predict both open cell and 

closed cell structures with different pore shapes.  
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Numerical modeling of FGPMs is discussed in Section 4.5. In the model, 

representative volume element (RVE) is used and periodic boundary condition (PBC) is 

applied on RVE.  

 

4.1 Overview of Analytical Models of Composite Materials  

 

Efforts have been taken to develop analytical models for composite materials, 

and overview of available analytical models using micromechanics approach is provided 

in this section.  

In Section 4.1.1, Eshelby’s inclusion problem and Eshelby’s equivalent inclusion 

problem are elaborated. In Section 4.1.2, the response of RVE under homogeneous 

boundary conditions is discussed. The stress-strain relationship for elastic materials is 

briefly described in Section 4.1.3. In Section 4.1.4, the averaging stress and strain 

theorem is presented, followed by a description of effective elastic moduli in Section 

4.1.5. Section 4.1.6 presents the well-known Mori-Tanaka’s model, which is an effective 

field approximation based on Eshelby’s equivalent inclusion model. An evaluation of 

Mori-Tanaka’s model in predicting the effective stiffness of FGPMs is conducted in 

Section 4.1.7.  
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4.1.1 Eshelby’s Tensor for Composite Materials 

 

Significant efforts have been made to study and predict the effective properties of 

composite materials. Most of the developed analytical models are based on 

micromechanics methods. Homogenization process is generally employed to analyze the 

mechanical behavior of composite material based on the geometries and properties of 

individual constituents [122]. Some of the most commonly used models include: rule of 

mixture, Chamis model, Halpin-Tsai model, Differential scheme, self-consistent 

model/generalized self-consistent model, and Mori-Tanaka method.    

It is reported that each model has its specific applicability and limitations. Self-

consistent model and Mori-Tanaka model are two models that consider the interactions 

between the inclusions. It was shown that the self-consistent scheme yields more 

accurate prediction results for skeletal microstructure with a relatively wide matrix-

inclusion transition zone, while Mori-Tanaka method is a better prediction scheme for 

obtaining the effective properties with a “well-defined” continuous medium and 

discontinuous inclusions [1]. Both models are based on Eshelby’s equivalent inclusion 

method that provides the stress and strain relationship inside and outside of the 

inhomogeneity.  

In Eshelby’s inclusion problem, an infinite linear elastic solid body with volume 
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V contains an inclusion with a sub-volume V0 and surface area S0 is considered as 

shown in Figure 4.1. The material inside V0 is called an inclusion with its elastic 

properties the same as the outside matrix. Now the inclusion is subjected to a 

permanent deformation with a uniform eigenstrain , which caused by thermal 

expansion or phase transformation. Here the eigenstrain  refers to the strain under 

stress free state. Eshelby solved this problem through a “thought experiment” [142]. The 

first step is to assume the removal of the inclusion out from the matrix. Both the matrix 

and inclusion undergo stress free state, while inclusion subjects to eigenstrain as 

shown in Figure 4.2 (a) and Table 4.1(a). The second step involved straining the 

inclusion back to its original shape by applying surface traction to it, which also means 

that the eigenstrain is cancelled exactly by the reshaping strain  in this step. Now the 

stress of inclusion is . The stress and strain state in the matrix and inclusion 

is shown in Figure 4.2 (b) and Table 4.1(b). In the third step, simply put the inclusion 

back to the matrix without releasing applied force, thus the stress and strain state stays 

the same as the third step as shown in Figure 4.2 (c) and Table 4.1 (c). The applied 

surface traction is then removed in the fourth step in which become the same condition 

as the original problem. The process is obtained by applying a surface traction  to the 

inclusion which cancels the stress applied in step (2) and step (3). The material 

responses to the surface traction by forming equal displacement or strain in the 

ijklL
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matrix and inclusion.  is also called perturbation strain which refers to the 

perturbation of the inclusion compared to a pure linear elastic body without inclusion.  

Therefore, the stress inside of the inclusion is  as shown in Figure 4.2 

(d) and Table 4.1 (d).  

 

 

Figure 4. 1 Eshelby’s inclusion problem 

 

 

 

(a) Eshelby’s inclusion problem – step 1 

Figure 4. 2 Solution steps for Eshelby’s inclusion problem [142] 

p

ij

*( )p

ij ijkl kl klL   
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(b) Eshelby’s inclusion problem – step 2 

 

 

 

 

(c) Eshelby’s inclusion problem – step 3 

 

Figure 4.2 Continued  
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(d) Eshelby’s inclusion problem – step 4 

Figure 4.2 Continued  

 

Table 4. 1 Stress and strain in matrix and inclusion for Eshelby’s inclusion problem 

 

Matrix Inclusion 

  

  

(a) Stress and strain in matrix and inclusion for step 1 

 

Matrix Inclusion 

  

  

(b) Stress and strain in matrix and inclusion for step 2 

 

 

0ij  *

ij ij 

0ij  0ij 

0ij  * 0re
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0ij  * *re

ij ijkl ij ijkl ij ijL L       
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Table 4.1 Continued 

 

Matrix Inclusion 

  

  

(c) Stress and strain in matrix and inclusion for step 3 

 

Matrix Inclusion 

  

  

 (d) Stress and strain in matrix and inclusion for step 4 

 

Eshelby [106] showed that the perturbed strain of the inclusion  can be 

directly related to its eigenstrain  by introducing a fourth order tensor , where  

                                                      (4. 1) 

The tensor  is called Eshelby’s tensor. He also demonstrated that the 

Eshelby’s tensor is a constant tensor in the case of an ellipsoidal inclusion enclosed in an 

infinite and homogeneous medium. It only depends on the inclusion property and 

geometry, and the stress and eigenstrain inside the inclusion is uniform. However, in 

some particular cases, as will be shown later, it is a function of coordinate in space.   

An inhomogeneity is defined as a sub-volume V0 in an infinite large linear elastic 
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solid body V with its elastic property  different from matrix as shown in Figure 

4.3. In order to investigate the stress-strain state inside the inhomogeneity when it is 

subjected to a permanent deformation with eigenstrain , an Eshelby’s equivalent 

inclusion approach is used. In this method, a proper eigenstrain of the inclusion is 

chosen in order to satisfy the condition that the elastic stress and strain fields inside the 

inhomogeneity are equal to the corresponding elastic stress and strain fields inside the 

equivalent inclusion.  

Inside of the inhomogeneity, the stress is expressed as: 

                                        (4. 2) 

which equals the stress inside the equivalent inclusion:  

                                          (4. 3) 

Since the total strain inside the inhomogeneity is equal to that inside the 

equivalent inclusion, which gives:  

                                                         (4. 4) 

Combine Eq. (4.1) and Eq. (4.2), and substitute to Eq. (4.3) gives:  

                                          (4. 5) 

From Eq. (4.5), it is seen that the by applying equivalent inclusion problem and properly 

choosing equivalent eigenstrain, the stress strain state of inhomogeneity can be solved.  
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(a) Matrix without inhomogeneity  (b) Matrix with the perturbation of inhomogeneity 

Figure 4. 3 Eshelby’s equivalent inclusion problem 

 

Now considering another inhomogeneity problem that is widely used in 

micromechanics to obtain the effective stiffness for composite material. In this case, the 

inhomogeneity is embedded in an infinite linear elastic solid body, instead of undergo an 

eigenstrain, a uniform external load is applied to the whole body. The stress inside the 

inhomogeneity is the superposition of two responses: the first is the response to the 

external load: 

                                                          (4. 6)   

where  and denote the stress and strain of the inhomogeneity under the external 

load without considering the perturbation effect. 

The second response considers the perturbation effect of inhomogeneity, whereas 

0' ' 0'
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kl
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the perturbed stress can be expressed as:  

                                                             (4. 7) 

Since no eigenstrain is involved inside the inhomogeneity, the total elastic stress 

inside the inhomogeneity can be expressed as: 

                                        (4. 8) 

where denotes the stress in the inhomogeneity.  

On the other hand, by applying the equivalent inclusion method, the stress-strain 

state inside the equivalent inclusion can expressed as:  

                              (4. 9) 

where , , and  denote the stresses due to external applied load, perturbation 

effect of inhomogeneity, and equivalent eigenstrain, respectively; , , and denote 

the strains due to external applied load, perturbation effect of inhomogeneity, and 

equivalent eigenstrain, respectively. 

Similar to the previous inhomogeneity case, the stress and strain inside the 

inhomogeneity and equivalent inclusion should be equal, which gives: 

                                  (4. 10) 

and 

                                               (4. 11) 

And as discussed above, it was further demonstrated by Eshelby that 

                                                        (4. 12)  
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where is a fourth order tensor called Eshelby’s tensor.  

 

4.1.2 Representative Volume Elements (RVEs) under Homogeneous Boundary 

Conditions  

 

Representative volume elements (RVEs) is frequently used in studying the 

mechanics of composite material, when the composite material (1) is geometrically 

entirely typical of the whole material; (2) is large enough comparing to the 

microstructure scale, and includes a sufficient number of inhomogeneity or inclusions. 

An RVE is the element that retains and represents the material’s apparent property of the 

composite because RVE does not depend on boundary values of displacement and 

traction when the materials are uniform in the macro scale [143]. In this work, RVE will 

be properly chosen for FGPMs and the RVE method will be used in the analytical model 

derivation and numerical modeling.     

 

4.1.3 Stress-strain Relationships for Elastic Materials 

 

The Hooke’s law for elastic material used for RVEs is expressed as: 

                                                        (4. 13) 

ijklS

ij ijkl klL 
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where denotes the stress component, denotes the strain component, and 

denotes the elastic stiffness of the material.  

Alternatively, the generalized Hooke’s law relating strain to stress can be 

expressed as:    

                                                       (4. 14) 

where denotes the compliance tensor of the material, which is the inverse of the 

stiffness matrix .  

Due to the existence of strain energy density, both the stiffness and compliance 

tensor are symmetric. Therefore, for the orthotropic material that has different material 

properties in three different perpendicular directions, the constitutive model is given by:  

                      (4. 15) 

where denotes nonzero elastic constants. For orthotropic material, nine independent 

nonzero constants are needed to fully define the stiffness matrix.  Alternatively, Eq. 

(4.15) can be rewritten in form of compliance tensor relating the strain and stress:  
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                  (4. 16) 

where denotes the Young’s modulus in th direction, denotes the shear modulus 

in  -  direction, and denotes Poisson’s ratio which is negative ratio of transverse 

strains in the j th direction to the axial strain in i  th direction when load is applied in the 

i  th direction.  

In this work, FGPMs described in Section 3 can be considered as orthotropic 

material, and the final results of analytical model for obtaining their effective modulus 

will be in the form of Eq. (4.15). For the graded material, it will be a combination of 

term for effective modulus and term for graded porosity.    

 

4.1.4 Averaging Strain and Stress Theorem 

 

For an RVE of composite subjected to macroscopically homogeneous stress or 

strain, the volume average stress and strain are expressed by:  
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                                                   (4. 17) 

                                                     (4. 18) 

where  is the volume of the RVE.  

The average strain theorem shows that the average strain is equal to 

macroscopic strain that applied on material for homogeneous boundary condition 

[144]. The strain – displacement relation is given by: 

                                                 (4. 19) 

where denotes the displacement in  direction.  

Combine Eq. (4.18) and Eq. (4.19) based on two constituents yields:  

                            (4. 20) 

where “1” and “2” refers to constituent 1 and constituent 2 of the composite, and ,   

denotes the volume of two phases. The well-known Gauss theorem is given by: 

                                                  (4. 21) 

where jn is the face normal in j direction.  

Substitute Eq. (4.21) into Eq. (4.20) yields: 

                      (4. 22) 
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where , are the boundary of constituent 1 and 2, respectively. On the interface of the 

two phases , assuming a perfect contact, it follows: 

                                                      (4. 23) 

Therefore in Eq. (4.22), the contributions from in the two integrals on the 

right side cancel each other, which yields: 

                                          (4. 24) 

For composite subjected to homogeneous displacement boundary condition: 

                                                   (4. 25) 

Substitute Eq. (4.25) into Eq. (4.24) gives:  

                                                          (4. 26) 

Similarly, the above derivation can be used to show that [144]: 

                                                         (4. 27) 

 

4.1.5 Effective Elastic Moduli  

 

 For composite material, the effective stiffness matrix and effective 

compliance matrix 
*

ijklM  are defined as [144]: 

                                                        (4. 28) 

                                                        (4. 29) 

1S 2S

12S

1 2

i iu u 

12S

1
( )

2
ij i j j i

S

u n u n dS
V

  

0( )i ij ju S x

0

ij ij 

0

ij ij 

*

ijklL

*

ij ijkl klL 

*

kl ijkl ijM 



 

92 

 

For a multiple-phases composite with perfect contact, the average stress and strain 

follows:  

                                                 (4. 30) 

                                                (4. 31) 

where , , and denote the average strains of the overall material, the matrix, and 

the inhomogeneity, respectively;  and  denote the volume fractions of the matrix and 

the inhomogeneity, respectively; and , , and denote the average stresses of the 

overall material, the matrix, and the inhomogeneity, respectively. In Eq. (4.30),  

satisfy Eq. (4.24) with the integral on phase  (where for the matrix and 

inhomogeneous, respectively).  

 

4.1.6 Mori-Tanaka’s Model 

  

The well-known Mori-Tanaka’s model [112, 113] is an effective field 

approximation based on Eshelby’s model. It can be classified as a mean field 

micromechanics model that is used to obtain the effective stiffness of the composites in 

dilute or non-dilute condition. A fourth-order strain concentration tensor is used to relate 

the average overall macroscopic strain (or applied strain) to the average strain in 

inhomogeneity [112].  
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The method starts with considering an average uniform macroscopic strain of the 

overall material, since for two phases system, the average strain is expressed as shown in 

Eq. (4.30).  

For composites, it follows that: 

                                     (4. 32) 

                                  (4. 33) 

Eq. (4.32) and Eq. (4.33) can be in a simplified form by introducing and that: 

                                             (4. 34) 

                                                          (4. 35)                                                   

and                                                                            (4. 36) 

                                                            (4. 37)                                                    

where and are the strain concentration tensor and stress concentration tensor, which 

can be obtained using eigenstrain inside of inclusion and the Eshelby’s tensor.  

The Mori-Tanka model was initially derived for dilute problem, and was further 

generalized to non-dilute problem in which the interaction between inclusions or 

inhomogeneity cannot be ignored. In solving this problem, Mori-Tanaka model assumes 

the average strain 2 in the non-dilute composite can be approximated as one 

inhomogeneity in an infinite matrix undergoing the average matrix strain 1 . In this 

way, the strain concentration tensor was modified as [51, 144]: 
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                                                   (4. 38)  

and the effective stiffness can be expressed as: 

                               (4. 39) 

Similarly, the effective compliance matrix can be expressed by:  

                         (4. 40) 

The Mori-Tanka scheme was originally derived for inhomogeneity – matrix type 

composites with dilute or uniform non-dilute condition, however, in this work, the 

functionally graded porous material is considered, which means that the porosity is 

changing over the volume in a linear or polynomial varying fashion. In addition, for 

graded porous material, either the pore size is gradually changing, or the number of 

pores is varying, or both could occur. As such, adoption of Mori-Tanaka scheme directly 

by applying the volume average porosity to obtain the effective stiffness of FGPMs 

would cause inaccurate results.  

In addition, Mori-Tanaka method was initially derived for a linear elastic solid 

body with distributed inhomogeneity, which indicates that no interconnected 

inhomogeneity are involved. While in this work, both open cell and closed cell structures 

are considered. In open cell materials, the interconnected pores would affect the stress 

and strain field of each other. This interaction between the adjacent pores, however, is 

not considered in the original Mori-Tanaka method. Therefore, inaccurate predictions 
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could occur when adopting the method to model the effective stiffness of open cell 

structures.  

In this work, the derivation of analytical model for FGPMs uses RVE approach 

(as described in Section 4.1.2). The volume average stress and strain of RVEs (as 

described in Section 4.1.4) and the stress-strain relationship for elastic materials (as 

described in Section 4.1.3) are considered in order to obtain the effective elastic moduli 

(as described in Section 4.1.5) of FGPMs. Mori-Tanaka’s model (as described in Section 

4.1.6) is extended to the cases of graded and porous material and open cell structure. The 

method is based on Eshelby’s tensor (as described in Section 4.1.1). 

 

4.1.7 Preliminary Study on the Prediction Accuracy of Mori-Tanaka Model on FGPMs 

 

A preliminary study on the discrepancy between the Mori-Tanaka scheme and 

finite element models in predicting the effective stiffness of FGPMs were carried out. In 

this study, specimens with three different overall average porosities were examined. For 

each configuration, eight different layers with different porosities were built up to form 

an open cell structure, and the pores are cuboid with their size varied for different layers. 

The base material property was set as 2400 MPa for elastic modulus and 0.34 for 

Poisson’s ratio. Table 4.2 shows the average porosity of each configuration and the 
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specimen is depicted in Figure 4.4. For each specimen, Direction 3 is the layer stacking 

direction, and Direction 1&2 are the in plane directions. 

 

Table 4. 2 Average porosity of each configuration 

 

  Average porosity 

Specimen Configuration 1 0.25 

Specimen Configuration 2 0.49 

Specimen Configuration 3 0.72 

 

Figure 4. 4 The specimen for studying the discrepancy between the Mori-Tanaka scheme 

and Finite element model 

 

The comparison between the results from Mori-Tanaka scheme and those from 

finite element models in predicting the effective stiffness of FGPMs for specimens 

Porosity is gradually 

changed in different layers  
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described above is demonstrated in Figure 4.5.  

 

 

(a) Discrepancy between the Mori-Tanaka scheme and FEA models for E33       

                       

 

 

(b) Discrepancy between the Mori-Tanaka scheme and FEA models for E11 & E22 

Figure 4. 5 The discrepancy between Mori-Tanaka and FEA models for different 

specimen configurations 
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(c) Discrepancy between the Mori-Tanaka scheme and FEA models for G12 

 

 

         

(d) Discrepancy between the Mori-Tanaka scheme and FEA models for G23&G31 

Figure 4.5 Continued  

 

In Figure 4.5, the x-axis Ei/Em refers to the elastic modulus ratio of the 

inhomogeneity and the matrix where x=0 indicates the inhomogeneity becomes a void. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

V_0_25_FEA

V_0_49_FEA

V_0_72_FEA

V_0_25_M-T

V_0_49_M-T

V_0_72_M-T

Ei/Em

E
*
/E

m

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

V_0_25_FEA

V_0_49_FEA

V_0_72_FEA

V_0_25_M-T

V_0_49_M-T

V_0_72_M-T

Ei/Em

E
*
/E

m



 

99 

 

The y-axis E*/Em denotes the normalized effective modulus of the overall material 

predicted either by Mori-Tanaka scheme or FEA model. It is observed that there is some 

discrepancy between the two predictions, and the discrepancy increases with the higher 

volume fraction of inhomogeneity. This is due to the fact that there is a graded field of 

stress and strain due to graded porosity over the volume, while Mori-Tanaka’s scheme 

used volume average porosity, and will result in discrepancy. In addition, the interaction 

between the interconnected pores is not considered. The above results imply that a 

generalized Mori-Tanaka model for FGPMs is needed to better predict their overall 

stiffness. An extension to the open cell structure is also necessary when deal with 

interconnected pore structures.   

 

4.2 A Generalization of Mori-Tanaka’s Model to FGPMs 

 

An extension of Mori-Tanaka’s Model to FGPMs will be discussed in this 

section. Section 4.2.1 discusses the overall basic idea of the derivation. In Section 4.2.2, 

the perturbation of one cavity embedded in an infinite large matrix is discussed. Section 

4.2.3 deals with the polynomial varying boundary condition by assuming the matrix is 

undergo a gradient strain field. In Section 4.2.4, the varying perturbed strain field under 

graded applied matrix strain is presented. The strain concentration tensor of FGPMs is 
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demonstrated in Section 4.2.5. Finally, the overall effective stiffness matrix of FGPMs is 

presented in Section 4.2.6.  

 

4.2.1 Basic Ideas 

 

To model FGPMs based on Mori-Tanaka’s method, the derivation starts with 

considering a single void in an infinite matrix. Assuming the matrix is incompressible, 

the model derivation addresses the perturbed field caused by the void as well as the 

compressibility of void. The problem is then generalized to “graded and porous” case. 

This more generalized case with polynomial varying porosity of voids embedded in a 

linear elastic solid body is investigated and the corresponding polynomial varying stress 

and strain fields of the material are derived. The developed relation is then applied to 

Mori-Tanaka’s scheme to obtain the overall effective stiffness for FGPMs.  

 

4.2.2 The Perturbation of One Cavity in Matrix 

 

Consider a single void embedded in a linear elastic body as shown in Figure 4.6, 

and the whole material undergoes a remote externally applied stress . The total strain 

of the body is the superposition of responses due to two effects: the first is the strain 

0

kl
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caused by the external stress  without considering the perturbation of void,  

                                                   (4. 41) 

where  and denote the external applied stress and the corresponding strain under 

the external load without considering the perturbation effect of void, respectively; and 

1

ijklM  denotes the compliance tensor of the matrix. 

The second response considers the perturbation effect due to the involvement of 

the void , whereas the perturbed strain is a linear function of applied stress:  

                                                    (4. 42) 

where denotes the perturbation strain due to void, and is a fourth rank tensor 

which is called a cavity compliance tensor [127]. Eq. (4.42) shows that the response of 

perturbation strain to external applied stress is linear. And for 3-D case, the expression 

of this cavity compliance tensor depends on the applied strain and the geometry of the 

cavity.  

                                 

                       

Figure 4. 6 A single void embedded in a linear elastic medium 
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Therefore, the total strain in the matrix subjected to a remotely applied stress can 

be expressed as [127]:  

                                                        (4. 43) 

where denotes the overall effective strain subjected to external stress. Eq. (4.42) can 

be further specified using Eq. (4.24) [143]: 

                                        (4. 44) 

where denotes the total volume of overall material including the cavity; is the 

displacement of the cavity boundary ; is the normal direction point inward of the 

cavity.  

Substitute Eq. (4.22) into Eq. (4.21), it gives: 

                             (4. 45)  

where  denotes the overall effective compliance matrix of overall material.   

 

4.2.3 Polynomial Varying Boundary Conditions 

 

The mechanical behavior of FGPMs can be investigated using an extension of 

Mori-Tanka’s method. Since the porosity is graded in the built-up direction, the strain 

field due to the perturbation of voids is also graded. Similar to the generalization from 

the dilute case to the non-dilute case in Mori-Tanaka model [122], the interaction 
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between voids can be treated as follows: the problem of one void embedded in a finite 

matrix which contains a lot of graded voids can be approximated as the problem in 

which a single void embedded in an infinite homogeneous matrix, while the matrix 

undergoes a graded strain field which is exactly the same as the original porosity graded 

field. Furthermore, it is also assumed that the graded strain field of the matrix is caused 

by external graded boundary condition applied on the matrix. Therefore, it is necessary 

to study the stress-strain relationship under the graded varying applied boundary 

condition.  

For a polynomial varying boundary condition applied to a homogeneous body in 

 direction, the strain field follows: 

                    (4. 46) 

where  denotes the strain field of the material and is a polynomial function of 

coordinate ,  denotes the volume average strain, and  is a series of constants 

which define the polynomial gradient of strain field.  

Thus, by integral Eq. (4.46), the displacement field follows:  

        (4. 47) 

where  denotes the displacement field of the material and is a polynomial function 

of coordinate . 
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Therefore, the polynomial varying stress field is: 

2 3

n1 n2 n3( ) ( ...)ij ijkl kl inkl kl kl n kl n kl nx L L a x a x a x      
 

1

N
n

ijkl kl inkl kl n

n

L L a x 


                                                       (4. 48) 

The equilibrium equation follows: 

                                                        (4. 49) 

where is the body force in the  direction, and is defined in Eq. (4.48).  

 

4.2.4 Varying Perturbed Strain Field 

 

Now instead of the problem described in Section 4.2.2 which discusses the 

problem of a single void embedded in matrix, consider a series of voids embedded in a 

linear elastic solid body, and the porosity gradually changes over the layer built-up 

direction as in FGPMs. A polynomial function is used to describe the variation of 

porosity field with the coordinate in the gradient direction as shown in Eq. (4.50).  

                     (4. 50)                           

where the porosity distribution field is a function of coordinate x in the pore 

gradient direction, are a series of constants, and  denotes the average porosity over 

the volume.  
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As discussed in the previous section, for the problem of FGPMs with graded 

voids embedded in a matrix and the porosity distribution field is a polynomial function 

defined in Eq. (4.50), the perturbation strain field due to the graded voids has the 

same degree of polynomial as that in . Thus, in Eq. (4. 43) is also a polynomial 

function. Assuming the porosity gradient is in the  direction, the resulting perturbation 

strain field in the direction is expressed as: 

 

                                                     (4. 51) 

where denotes the perturbed strain due to cavity at 0x   in the gradient direction,  

is the position in the  direction. 

Similarly, the perturbed strain field is given by modifying Eq. (4.51): 

                                                 (4. 52) 

where the summation of takes into account the perturbed strain in the , and 

 directions.  

It can be seen that the cavity compliance tensor  in Eq. (4.42), which reflects 

how the perturbed strain due to cavity responses to the externally applied stress, is 

dependent on geometry and dimension of the void. The cavity compliance tensor is a 

constant under the condition of cavities with same geometry. For FGPMs, where the 
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cavities gradually varied over the volume,  is not a constant over the volume.  By 

introducing the polynomial graded perturbation field, for one direction graded material, 

Eq. (4.42) can be expressed as: 

                                        (4. 53)       

Similarly, the polynomial graded perturbation field can be expressed as: 

                              (4. 54) 

where the summation in and consider the perturbed strain field in the 

, and  directions. 

Eq. (4.54) implies that, similar to porosity gradient field that consists of a 

constant term and polynomial gradient term, the perturbation field due the cavities is 

also composed of a constant term and a polynomial varying gradient term. In addition, it 

also shows that for graded porous material, the cavity compliance tensor is not a constant 

matrix, rather it is different for different layers, and the graded field follows the porosity 

graded field. In Eq. (4.54), the constant term and graded term can be separated, which 

yields:  
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                                        (4. 55)  

                                                   

where is a matrix, , , , and  are all vector,  denotes the 

constant term of the perturbed strain field, and , , and  denote the varying gradient 

term of the perturbed strain field in the 1, 2, and 3 direction, respectively. In this way, 

the total perturbation strain field can be written in the form of: 

                                                             (4. 56) 

where  in Eq. (4.56) is a matrix. 

 

4.2.5 Strain Concentration Tensor 

 

As discussed in Section 4.2.3, a void embedded in a finite matrix filled with 

porosity-graded voids where interaction between voids cannot be ignored could be 

approximated as the void embedded in an infinite large homogeneous matrix undergo an 

externally applied graded boundary condition. Therefore, it is necessary to determine the 

matrix strain field under that graded boundary condition.  

Now consider a single void embedded in an infinite homogeneous matrix, and 
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the matrix is subjected to a remotely applied polynomial varying boundary field as given 

by: 

                                        (4. 57) 

where  is matrix denoting the matrix varying strain field that consists of a 

constant and a varying strain vector. The summation of takes into account the 

varying strains in the , and  directions.  

From the above discussion, it is demonstrated that without the involvement of 

cavities, the strain field in the matrix is defined as in Eq. (4.57). However, there are 

voids present, and the perturbed the strain field is defined by Eq. (4.52). Thus, the strain 

field on the boundary of cavity is a superposition of the polynomial varying applied 

strain field and the polynomial varying perturbed strain field given by: 

                                                (4. 58) 

By substitute Eq. (4.52) and Eq. (4.57) into Eq. (4.58), it yields: 

                      (4. 59)  

Eq. (4.59) can be also written as below:  
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                                                                        (4. 62)                    

and I is the unit vector. Eq. (4.60) shows that for FGPMs, the strain field at boundary of 

the cavity over the volume is also graded, and the degree of polynomial follows the same 

degree of polynomial in porosity distribution function.  

Since the stress-strain relation follows  for the matrix and 

 for the cavities as shown in Eqs. (4.39) and (4.40), combining the two 

equations gives: 

                                                  (4. 63)  

In Eq. (4.63), let                   

                                                            (4. 64) 

where                                                                                                     (4. 65)  

Eqs. (4.64) and (4.65) show how the perturbation field due to presence of cavities varies 

with the matrix strain field due to the externally applied varying boundary condition. 

Note that in Eq. (4.65),  is not a constant over the volume. As discussed in the 

previous section, the cavity compliance tensor is graded, corresponding to graded 

porosity field. Therefore,  is also graded.  

Substituting (4.64) into (4.61), the equation becomes: 

                                              (4. 66)  

where , and  are defined in Eqs. (4.61), (4.62), and (4.65).  
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Rearranging Eq. (4.66) results in: 

                                                           (4. 67)  

where                                                                                                   (4. 68) 

and can be called the strain concentration tensor as  it is extended and derived from 

Mori-Tanaka model for FGPMs. The strain concentration tensor relates the strain field at 

the cavity boundary to that of the matrix applied boundary condition.  

From the above derivation, it can be observed that the strain concentration tensor 

is dependent on porosity varying field, the stiffness of matrix, and the cavity compliance 

tensor that relates to geometry and dimension of cavities.  

 

4.2.6 The Overall Effective Stiffness Matrix of FGPMs 

 

Now consider a RVE for FGPMs consists of  different layer ( ) and 

different cavities ( ) where the interaction between cavities cannot be ignored. The 

previous section deals with the problem of one single cavity embedded in a finite matrix 

with graded varying cavities.  For general FGPMs case, different cavities need to be 

considered. Assume the overall materials can be divided into  sub-volumes, where 

the first sub-volume stands for base material, while the rest of the sub-volumes stand for 

the pores for each layer. The overall volume average strain can be expressed as [49]: 
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                           (4. 69)  

where denotes the volume average strain of FGPMs; V and  denote the volume of 

the overall material and rth sub-volume, respectively;  is the total number of sub 

volumes; is volume fraction of rth sub-volume; denotes the volume average strain 

of rth sub-volume; is the strain of base material; and is the strain at the cavity 

boundary of rth sub-volume. Thus, the average stress and strain of FGPMs follows that:  

                                                          (4. 70)  

and similarly,                                                                                         (4. 71)  

where and denote the volume average stress of overall FGPMs and rth sub-volume, 

respectively.   

Consider a variety of porosity – polynomial varied cavities embedded in the 

matrix, the overall material is subjected to a remotely applied strain , and the strain 

fields of the material are polynomial functions. Substitute Eq. (4.67) into Eq. (4.70): 

                                               (4. 72)   

Note that the1st sub-volume refers to the base material phase, e.g.  in Eq. (4.72) 

denotes the volume fraction of base material.  is the partial strain concentration tensor 

for the rth sub-volume.  
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Rewriting Eq. (4.72), it gives:      

                                          (4. 73)  

where                                                                                         (4. 74) 

Eq. (4.73) shows how the matrix applied strain related to the volume average applied 

strain. Note the matrix applied strain is used to study the interaction between the 

cavities, and volume average applied strain is the real strain that applied to FGPMs.  

Substituting Eq. (4.73) to Eq. (4.64) yields 

                                                                (4. 75)  

In Eq. (4.75), can be considered as the strain concentration tensor of the material as 

defined in Mori-Tanaka’s model and it relates the strain at the cavity boundary to the 

volume average applied strain.  

Substitute Eq. (4.75) to Mori-Tanaka’s model in Eq. (4.34) and Eq. (4.70), it can 

be obtained that:    

                                                             (4. 76)                           

where  and denote the stiffness of the overall material and that of the matrix, 

respectively; is  matrix that contains constant term and graded term, and 

denote the volume average applied strain and volume average strain of rth sub-volume, 

and is matrix that contains constant term and graded term which similar to 
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Eq. (4.57). Substitute Eq. (4.75) into Eq. (4.76):                                                                         

                                        (4. 77)                               

                                                   (4. 78)                          

Rewriting Eq. (4.78), it can be shown that: 

                                                (4. 79)  

where  is defined in Eq. (4.65). From Eqs. (4.78) and (4.79), it is observed that the 

overall stiffness of the material depends on strain concentration tensor, the geometry of 

each sub-volume, and the stiffness of the base material.  

 

4.3 An Extension of Mori-Tanaka’s Scheme to Open Cell Structure 

 

In the previous section, the analytical model for FGPMs is derived by 

generalizing Mori-Tanaka’s scheme with the consideration of the effects of graded 

porosity field. Since Mori-Tanaka’s model was initially developed for composites, i.e. 

fiber reinforced materials, when used for porous material, it is more appropriate for 

closed cell porous materials. However, for the case of open cell structures or 

interconnected pores, the interaction between two connected pores needs to be taken into 
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account because of the disturbed stress field will affect each other. Thus, an extension of 

Mori-Tanaka’s model to interconnected pores or open cell structure is needed.  

In Section 4.3.1, the approach of extending Mori-Tanaka’s method to open cell 

structure is described where the disturbed stress field between interconnect pores is 

considered. In Section 4.3.2, the extension of Mori-Tanaka’s model to open cell 

structure is implemented. Sections 4.3.3 and 4.3.4 provide the analytical solution for 

disturbed stress field of cavity, where Section 4.3.3 discusses the disturbed stress field of 

cavity just outside the inclusion, Section 4.3.4 shows the disturbed stress field of cavities 

with different shapes, i.e. ellipsoid and cuboid cavities, for isotropic and anisotropic 

materials.  

 

4.3.1 The Approach to Extend Mori-Tanaka’s Model to Open Cell Structure  

 

Assume that two interconnected cavities, Cavity 1 and Cavity 2, are embedded in 

a matrix as shown in Figure 4.7. In the absence of Cavity 2, the presence of Cavity 1 will 

generate perturbed stress and strain field to the matrix as discussed in the previous 

section. However, the existence of Cavity 2, which also cause perturbation to the elastic 

field, will disturb the perturbation stress field of Cavity 1.  
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Figure 4. 7 Two interconnected pores embedded in a matrix 

 

In order to solve the problem, the following approach proposed by Zhao and 

Taya [145] is adopted here: the perturbation stress and strain fields as well as 

eigenstrains caused by Cavity 1 and Cavity 2 will be considered separately first, and 

later the two interconnected pores will be put together and reach an overall stress strain 

field and an overall eigenstrain. In the first step, the perturbation stress  and strain 

 and eigenstrain due to the presence of the Cavity 1 in the matrix undergo 

externally applied stress is considered. The disturbance of Cavity 2 will not be 

considered here, but Mori-Tanaka’s mean field approach will be considered for 

obtaining the interaction between Cavity 1 and Cavity 2. The next step involves 

obtaining the eigenstrain due to both the presence of Cavity 2 which can be obtained 
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by Mori-Tanaka’s mean field approach, and the disturbed [146] stress field 
1( )d

ij x  

caused by the perturbed stress of Cavity 1. The third step is to obtain the weighted 

average eigenstrain from of 
*(1)

ij and as the eigenstrain for the two interconnected 

cavities. In this step, the two interconnected cavities is treated as “one cavity”, and the 

weighting is based on the dimension of the pores.  

In [145], the disturbed stress caused by cavities is simplified by only considering 

the difference between stress just outside and inside of the inclusion. However, in this 

work, the stress fields of cavities with different shapes embedded in isotropic and 

anisotropic materials are considered.  

 

4.3.2 Implementation of Extension of Mori-Tanaka Model to Open Cell Structure 

 

As discussed above, the first step is to determine the eigenstrain for Cavity 1, 

and the disturbance from Cavity 2 is not considered. Thus, the eigenstrain can be 

expressed as: 

                                         (4. 80) 

where denotes the eigenstrain due to Cavity 1,  denotes the volume fraction of the 

matrix,  denotes the Eshelby’s tensor, denotes the unit vector, denotes the 

compliance tensor of the matrix, and denotes the externally applied stress.  
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 The second step involves obtaining the eigenstrain by taken into account of 

the perturbation due to Cavity 2 and the disturbed stress caused by Cavity 1. The latter is 

the perturbation stress field outside of Cavity 1. The total stress in cavity can be 

expressed as [145]: 

           (4. 81) 

where denotes the overall stress field at the boundary of Cavity 2; denotes the 

perturbation of stress due to the presence of cavity; and denotes the disturbed stress 

field outside the cavity. In general, is a disturbed stress field that changed with 

the coordinate. The solution of  depends on the property of base material, the 

geometry and dimension of cavity, which will be discussed in Sections 4.3.3 to 4.3.4. 

The expression of in Eq. (4.81) can be expressed as: 

                                          (4. 82) 

where 
1

ijklL denotes the stiffness tensor of the matrix. 

Once the externally applied stress is given, and and  are solved, 

at a particular location can be found. Therefore, can be obtained. 

In the last step, a weighted average eigenstrain for open cell is obtained by: 

(4. 83) 

where is  and  are constants used to calculate the weighted average eigenstrain, 

which are directly related to the dimension of the two interconnected open cells, and 
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(4. 84) 

Once is obtained for each pair of interconnected open cells, it can be used in 

Mori-Tanaka’s method as discussed above to predict the effective modulus of the overall 

material. 

4.3.3 Disturbed Stress Field of Cavity Just Outside the Inclusion 

As discussed in the above section, in order to apply Mori-Tanaka’s scheme on 

open cell structure, it is required to obtain the stress field of a cavity thus the disturbed 

stress in Eq. (4.81) can be derived. The process of deriving the expression of the 

stress fields of an elliptical cavity and a cuboid cavity embedded in both isotropic and 

anisotropic materials will be demonstrated. In a special case, the explicit solution of 

stress difference just outside and inside of the cavity is given as well. 

General solution for stress field outside of cavity 

The general solution for elastic field, i.e. displacement field, strain field, and 

stress field, due to an inclusion are given as below. Eqs. (4.85) to (4.91) follows the 

derivation of [146]. 
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3 * ' 1ˆ ˆˆ ˆ( ) (2 ) ( ) ( ) ( )i jlmn mn l iju x i C x N D    


 

 
     

' 'ˆ ˆˆ ˆ ˆexp{ ( )} ( ) ( )i x x d d x                                               (4. 85) 

where in this work, a variable with a hat denotes a vector, i.e.  and  refer to 

and .  denotes the coordinate of a particular point which is to 

be investigated,  denotes the coordinate in the inclusion space, denotes the 

displacement in the direction,  denotes the eigenstrain of inclusion, since the 

eigenstrain  is originally given as a wave vector , denotes 

the wave vector within the given period of wave,  denotes the stiffness of base 

material, denotes the domain of inclusion, and    are the cofactor and 

determinant of : 

 

                                         (4. 86) 

    

where     ,                                                               (4. 87) 

and the solution of displacement iu in Eq. (4.86) is given by .  

(4. 88)                 

Note that 

  ,               (4. 89) 

The strain field of is given by the derivative of the displacement field 

in Eq. (4.85): 
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3 * ' ˆ ˆˆ ˆ( ) (2 ) (1/ 2) ( ) { ( ) ( )}ij klmn mn l j ik i jkx C x N N       
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    

1 ' 'ˆ ˆ ˆˆ ˆ ˆ( )exp{ ( )} ( ) ( )D i x x d d x                                       (4. 90) 

The stress field can be obtained using Eshelby’s inclusion problem as given by: 

3 * ' 1ˆ ˆˆ ˆ( ) {(2 ) ( ) ( ) ( )ij ijkl pqmn mn q l kpx C C x N D      
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 
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' ' *ˆ ˆˆ ˆ ˆ ˆexp{ ( )} ( ) ( ) ( )}kli x x d d x x                                      (4. 91) 

where is the eigenstrain.  

Define Green’s function  as: 

               (4. 92) 

where generally the elastic Green’s function  can be used to solve the problem 

when a point force is at  and the displacement at  is known [142].  

Therefore, substitute Eq. (4.92) into Eqs. (4.85), (4.90)-(4.91), the elastic field 

can be expressed as:  

                                     (4. 93) 

                (4. 94) 

                         (4. 95) 

It is known that the displacement and traction field should be continuous 

throughout the material and across the interface of the inhomogeneity and the matrix. 

Therefore, the displacement and traction field at the interface can be expressed as:     
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                                                       (4. 96) 

                                       (4. 97) 

where  and  denote the displacement of material just outside and just 

inside the inclusion, respectively; and denote the stress of material just 

outside and just inside the inclusion, respectively;  denotes the normal direction point 

outside of the inclusion.  

However, the strain field, unlike the displacement and stress field, can be 

discontinuous across the inclusion-matrix boundary. Thus,  

                                           (4. 98) 

And according to [146], the Eq. (4.98) can be explicitly solved as: 

                                      (4. 99) 

where  and  are the unit normals point to the outside of the inclusion, and and 

 are defined in Eq. (4.86) and (4.87). And for stress just outside and inside of the 

inclusion, it gives: 

                                          (4. 100) 

In [145], the stress field of porous material is simplified by only considering the 

difference between stress just outside and inside of the inclusion as shown in Eq. 

(4.100). However, in this work, the stress fields of cavities with different shapes 

embedded in isotropic and anisotropic materials are considered.  
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4.3.4 Disturbed Stress Field of Cavities with Different Shapes 

The disturbed stress field of cavities with different shapes is shown in this 

section, and for generality, anisotropic material will be considered first, and the solution 

to isotropic material case can be obtained as a special case of anisotropic material. 

Ellipsoidal cavity 

From the elastic displacement field of an inclusion shown in Eq. (4.85), it can be 

observed that for anisotropic material, the Green’s function is not only a function of 

coordinate, but also varied in different directions, i.e. for transversely isotropic material 

where direction 1 and 2 have the same property but different from direction 3, . 

In Eq. (4.85), the integration with respect to , , and  is within 𝛺 domain. 

After transformations, Eq. (4.85) is simplified as:   

2
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where  has to be a real number in order to do integration [146]. 

From the displacement field shown in Eq. (4.85), the strain field ,
ˆ( )i ju x  is given 

as: 
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1 ''ˆ ˆˆ ˆ( ) ( ) ( )l jD y z dS                                            (4. 102) 

When investigating the elastic field inside the inclusion,   lies inside the inclusion, and 

is inside the unit sphere,  is a real number. When investigating the elastic field 

outside the inclusion,  lies outside the inclusion, and is outside the unit sphere, only 

for some  will result in a real number . Therefore, for  lies outside the inclusion, 

the integral respect to might not be the whole surface of the unit sphere; rather, it is 

only a part of the surface of the unit sphere.  

In order to obtain the stress field outside the inclusion as discussed in Section 

4.3.2, the case that  lies outside the inclusion is considered here. Since:  

                                          (4. 103) 

Substitute Eq. (4.103) into Eqs. (4.93) and (4.94), the displacement and strain field can 

be expressed as: 
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Further simplify Eq. (4.105) where is a constant, it gives: 

        

                      (4. 106) 

Since , and let  

                                       (4. 107) 

Combine Eq. (4.106) and Eq. (4.107), the strain field can be expressed that: 
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For anisotropic material, in Eq. (4.107) is different, i.e. the material property in 

direction 1 is different from that in direction 2, . As discussed in the 

previous sections,  and  are the cofactor and the determinant of  

matrix, where . The expression for  and  are provided in 

[146].  

From Eq. (4.108), the stress field is obtained as:  

                      

                (4. 109) 

where shown in Eq. (4.109) is exact the same as in Eq. (4.81). With 

obtained, the overall stress field at the boundary of Cavity 2 can be 

obtained.  
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In the special case of disturbed stress field of cavity embedded in isotropic 

material, an explicit solution can be obtained as below: 

                       

           

                 

           

                        (4. 110) 

where                                                                              (4. 111) 

                                                (4. 112) 

                                   (4. 113) 

where                                                                 (4. 114) 

and  is the largest solution of                           (4. 115) 

Eq. (4.110) is identical to the solution given in [146]. Eq. (4.109) can be used to 

obtain the disturbed stress field of open cell FGPMs with round disk shape and graded 

porosity, and Eq. (110) can be used to obtain the solution for open cell structure with 

round disk shape with constant porosity.  
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Cuboid cavity 

In this section, open cell structure with interconnected cuboid inclusions or 

inhomogeneity are considered. Figure 4.8 shows two interconnected cuboid cavities 

embedded in matrix, and it is of great interest to obtain the disturbed stress field 

generated by cuboidal cavity in order to develop analytical model for open cell FGPMs 

with cuboid cavities. The displacement, stress, and strain fields due to inclusion and 

inhomogeneity are shown in Eqs. (4.85), (4.90) and (4.91). 

Figure 4. 8 Two interconnected cuboid in matrix 

Again, assuming the eigenstrain inside the inclusion or at the boundary of cavity 

is a constant, where: 
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           (4. 116) 

Integrating with respect to in Eq. (4.90) results in [147]: 

 

(4. 117) 

where     

 (4. 118) 

 

An auxiliary equation is defined as follows: 

 (4. 119) 

After simplification, Eq. (4.117) can be expressed as: 

(4. 120) 
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(4. 121) 
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In this work, the problem of two interconnected cuboid cavities is considered, 

and the solution of disturbed stress field outside a cuboid cavity needs to be obtained. 

Define: (4. 122) 

Eq. (4.120) is simplified as: 

(4. 123) 

      (4. 124) 

Eq. (4.124) can be used to obtain the disturbed stress field for open cell structure 

with square disk void. 

4.4 Application of Derived Analytical Model to FGPMs 

The extension of Mori-Tanaka’s model to “graded” and “porous” FGPMs and 

open cell structure as discussed in the previous sections is implemented here. Section 

4.4.1 listed the Eshelby’s tensor for inclusion with different geometries, i.e. spherical 

inclusion, round disk inclusion, cylindrical inclusion, and cuboidal inclusion. In Section 

4.4.2, the Eshelby’s tensor under polynomial varying eigenstrain was demonstrated. The 

application of the above analytical model to FGPMs case will be discussed in Section 

4.4.3. 
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4.4.1 Eshelby’s Tensor for Inclusion with Different Geometries in Isotropic Material 

When the eigenstrain field is uniform inside the inclusion and the base material is 

considered as isotropic, Eshelby’s tensor has explicit solutions for inclusion with various 

geometries for direct uses. 

Eshelby’s tensor has the form as: 

(4. 125) 

For sphere inclusion since , where specify the size of the ellipsoid, and 

is the radius of sphere.  The expression of Eshelby’s tensor was derived as [106]: 

 

 (4. 126) 

where denotes the Poisson’s ratio of the base material. 

For elliptic cylinder case where , 
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(4. 127) 

For penny-shaped inclusion where , 

, 

 ,

 (4. 128) 
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      , 

For cuboidal inclusion where side lengths are , , and respectively, 

Garlekin vector method were used to obtain the stress and strain fields inside the 

inclusion embedded in isotropic material. 

Under isotropic material condition,  and can be expressed as: 

(4. 129) 

 (4. 130) 

where and are Lame constants. 

Therefore, Eqs. (4.117-4.118) can be reduced to: 

(4. 131) 

where  denotes the volumetric eigenstrain，  denotes the deviatoric eigenstrain 

component, denotes as vertices of cuboid, and is given in [147]. 

4.4.2 Eshelby’s Tensor under Polynomial Varying Eigenstrain Field 

For a general case, Eshelby’s tensor can be calculated as [144]: 
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(4. 132) 

 

  

Other components can be obtained by the cyclic permutation of the above equations. 

For Eshelby’s tensor with polynomial eigenstrain, the I-integral are given as 

shown in Eq. (133) [148]: 
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where , , , and are defined below: 
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(4. 134) 

(4. 135) 

(4. 136) 

(4. 137) 

4.4.3 Analytical Model Applied to FGPMs Cases 

To show to application of the derived model, consider the case of FGPMs with 

linearly varying porosity; and according to the above derivation, the stress, strain fields, 

and the perturbation fields are also linearly varying fields. Thus, Eq. (4.52) is simplified 

to:  

 (4. 138) 

         (4. 139)

where denotes the average strain applied, is the position in j direction, is the 

centroid of the cavity, is the perturbed strain gradient, and is the cavity 

compliance gradient tensor (a matrix). Thus, Eq. (4.55) becomes: 
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    (4. 140) 

where , , , and  are all vectors, and , , and  denote the varying 

gradient term of the perturbed strain field. 

Similarly, the strain field on the boundary of cavity is a combination of the 

linearly varying applied strain field and the corresponding linearly varying perturbation 

strain field as shown in Eq. (4.141): 

(4. 141)          

Eq. (4.141) can be written as        (4. 142) 

where

  (4. 143) 

where I is the unit vector. 

Thus, Eq. (4.141) retains in the linearly varying porosity field case, with 

   (4. 144)

where M, N are defined in Eq. (4.143) and is defined in Eq. (4.65).The effective 

stiffness of FGPMs with linearly varying porosity field can be derived as: 
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                                         (4. 145)                       

with  defined in Eq. (4.79).  

The FGPMs with linearly varying porosity are commonly used, and the above 

derived equations can be used to obtain their effective stiffness. For slightly non-linearly 

gradient FGPMs, the above equations could still be used if their porosity fields can be 

approximated as linear distribution.   

The derived analytical model was implemented to obtain the effective stiffness of 

the experimentally fabricated FGPMs. The stiffness and Poisson’s ratio of base material 

is assumed to be and , respectively.  

For 3-D case, the integral of Eq. (4.45) can be obtained in terms of Eshelby’s 

tensor: 

                                             (4. 146) 

where and denote the strain field at the cavity boundary and the perturbation 

strain field due to the presence of cavities, respectively, denotes Eshelby’s tensor, 

and  denotes the applied stress.  

The displacement at the cavity boundary in Eq. (4.45) follows  where x 

is the position coordinate, and the integral in Eq. (4.45) can be obtained from [127]: 
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              (4. 147)            

where  and denote total volume of the cavities and overall material, respectively, 

denotes the Young’s modulus of the base material, and can be obtained in terms 

of Eshelby’s tensor.  

The overall effective stiffness of FGPMs was obtained through homogenization 

process using the above analytical model. The normalized effective stiffness obtained 

will later be compared with the results from numerical simulation in order to verify the 

prediction accuracy.  

 

4.5 Numerical Modeling of FGPMs 

 

Finite element analysis is carried out using commercial software Abaqus in order 

to (1) investigate the mechanical response and stress distribution of the FGPMs for both 

closed and open cell structures, (2) obtain the effective stiffness of overall material. The 

results from numerical model are used to compare with experimental results and 

analytical results.   
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In section 4.5.1, the periodic boundary condition (PBC) for FGPMs under normal 

stress (or strain) and shear stress (or strain) are described. Section 4.5.2 discusses the 

details about the numerical model for FGPMs and the implementation of PBC on an 

RVE.  

   

4.5.1 Periodic Boundary Condition for FGPMs 

 

In order to predict the material property of FGPMs, a representative volume 

element (RVE) is modeled and a periodic boundary condition (PBC) is applied [149]. 

RVE should be chosen properly such that its size is sufficiently large enough for 

representing all the geometry information but also relative small enough to be 

investigated analytically and numerically. For composite material that can be considered 

as heterogeneous material, the stress and strain fields of RVE should be identical to that 

of the overall material.  

The procedure of obtaining effective elastic property using FEA is listed as 

follows: (1) a proper RVE should be chosen, and corresponding PBC should be 

determined and applied, i.e. in Abaqus, it is applied through “constraint” module using 

“equation” function. (2) the non-homogeneous stress and strain fields should be 

transformed to volume-average stress and strain using: 
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(4. 148) 

(4. 149) 

Alternatively, in Abaqus, a short programming can be used to calculate the volume 

average stress/strain. (3) Now that the stress-strain, and load-displacement relationships 

are obtained, the corresponding effective modulus can also be determined. 

Periodic boundary conditions under normal stress or strain 

 In order to acquire the effective elastic modulus, the response of the material 

under externally applied normal load and displacement needs to be obtained. Figure 9 

shows a typical 3-D cuboidal unit cell, the lengths of edge in x, y, and z direction are 

, , and , respectively. The origin of the coordinate lies at (0, 0, 0). In order to 

obtain the effective modulus in x direction, the displacement boundary condition for 

the pair of plane  and can be applied as: 

 (4. 150)       
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                                            (4. 151)                                                 

for the pair of plane  and  

                                            (4. 152) 

Alternatively, if consider the plane of symmetry of the RVE, when an RVE subjected to 

a macroscopic externally applied stress , the boundary conditions of three pairs 

opposite planes are given by [150]:  

 and   (Applied displacement)                 (4. 153) 

 and   (Free to flow)                                (4. 154) 

 and   (Free to flow)                                 (4. 155) 

where Eq. (4.153) is the externally applied displacement boundary condition, and the 

second terms in Eqs. (4.154) and (4.155) should be left free in order to satisfy the 

uniaxial stress state.  

Thus, for the problem of displacement input as , and 

the boundary conditions shown in Eqs. (4.154) and (4.155), the solution in terms of 
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stress field can be obtained from Abaqus simulation. Once the volume average stress 

is calculated, the effective modulus is obtained by: 

(4. 156) 

Similarly, the same principle and procedure can be used to obtain the effective elastic 

modulus in other two directions. 

Figure 4. 9 A cuboid RVE 

Periodic boundary conditions under shear stress or strain 

Considering a cuboid RVE as shown in Figure 4.9 subjected to externally applied 

shear stress . In order to obtain the effective modulus in x-y direction, the 

x

*

xE

*

2

x
x

x

E





0

xy *

xyG



 

141 

 

displacement boundary conditions for the pair of plane perpendicular to x direction can 

be expressed as below:  

On the plane where  and  it follows: 

 and                                               (4. 157) 

 and                                        (4. 158) 

On the plane where  and  it follows: 

  and                                               (4. 159) 

 and                                       (4. 160) 

On the plane where  and  it follows: 

                                                                      (4. 161) 

                                                                    (4. 162) 

Note the above boundary conditions is different from [150], where it sets  on 

the plane of . Here is not zero; it either equals  or can be set free since 

it is also subjected to externally applied shear stress .  

Once the solution in terms of strain field is obtained from Abaqus simulation and 

volume average strain is calculated, the effective modulus is obtained by: 

                                                      (4. 163) 
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4.5.2 Finite Element Analysis for FGPMs  

 

The compression test and shear test simulations of the developed FGPMs are 

conducted using ABAQUS in order to investigate the overall material behavior under 

different loading conditions. The simulation follows exactly the same geometry of the 

specimen and the same loading condition.  

3-D RVE models are built to simulate the compression and shear tests of FGPMs 

for each configuration. Figure 4.10 demonstrates the RVE model for Configuration 7 

(open cell with round disk void and graded porosity). The 8 single layers with different 

pore sizes were built up to simulate the same material tested in experiments. Perfect 

bonding between the layers were assumed and the implicit analysis was used in both the 

compression and shear tests. The element type was set as 3D stress quadratic tetrahedral 

(Tet) C3D10 for configurations with round disk shaped void in order to generate equal 

mesh on the opposite faces to apply PBC.  The element type of linear 3D stress and 

reduced integration C3D8R was utilized for configurations with square disk. In all the 

simulations, displacement control was used. Two dimensional PBC was used since the 

FGPMs are periodic in x and y direction as shown in Figure 4.10. And the PBC was used 

based on “Equation” function and was implemented by an input Python code. In the 

compression test simulation, the displacement in x, y, and z directions were fixed on one 
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face and allowing the opposite face to flow freely. In the shear test simulation the pure 

shear testing condition was used in order to obtain the shear moduli.  

 

 

 

Figure 4. 10 3D RVE model for Configuration 7 

 

Simulations were conducted on 3-D printed Polylactic acid (PLA) materials, and 

the material property input in the simulation was obtained from experimental 

compression test. The elastic modulus of PLA is 986.27 MPa, and Poisson’s ratio is 

0.34. The base materials were considered as isotropic and incompressible. The volume 

average stress data was collected after the simulation, and the effective moduli were 

obtained using the volume average stress divided by volume average strain.   
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5. ANALYTICAL AND NUMERICAL RESULTS 

 

In Section 5, the results for analytical and numerical model derived in Section 4 

are presented. The models are validated by experimental results, and the prediction 

accuracy is evaluated.  

In Section 5.1, analytical and numerical results for predicting effective Young’s 

moduli are shown, a comparison with experimental results and a discussion of prediction 

accuracy based on different factors is provided. Section 5.2 presents the analytical and 

numerical results for effective shear moduli.  

 

5.1 Analytical and Numerical Results for Effective Young’s Moduli 

 

In Section 5.1.1, the analytical and numerical results are presented. Sections 5.1.2 

to 5.1.4 provide a detailed discussion of the effects of geometry, porosity distributions, 

and cell structures (open cell/closed cell) on the prediction accuracy of analytical 

models.  
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5.1.1 Effective Young’s Moduli from Analytical and Numerical Model  

 

The effective Young’s moduli for each configuration were obtained through 

numerical modeling using RVE based periodic boundary condition (PBC). Python 

programming was used to generate PBC. Taking Configuration 7 as an example, Figure 

5.1 demonstrates the section view of the stress contour of the RVE for a graded, open 

cell structure with round disk voids subjected to 33. It is observed that near the round 

disk void, the stress level is higher while further away from it the stress level becomes 

the average stress. With an increase in the size of void, the stress level also increases as 

can be seen by comparing the right part of the specimen with the left side where the size 

of the void is smaller. Similarly, the trend can be seen from Figure 5.2 which depicts the 

section view of the stress contour of the RVE for a graded, open cell structure with 

round disk voids (Configuration 7) subjected to 22. The effective modulus was obtained 

by the volume average stress divided by volume average strain. 
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Figure 5. 1 Stress contour of 33 for a graded, open cell structure with round disk voids 

(section view) 

 

 

Figure 5. 2 Stress contour plot of 22 for graded, open cell structure with round disk 

voids (section view) 
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The extension of Mori-Tanaka’s model to closed cell graded porous material and 

open cell graded porous material was implemented, and the results are compared with 

experimental and numerical results as a validation. Figures 5.3 and 5.4 show the 

comparison of normalized effective moduli from experimental, analytical, and numerical 

results for closed cell structures, i.e. Configurations 1,3, 5, and 7. The normalized 

effective modulus is defined as the effective modulus divided by modulus of base 

material (in this work, it is 986.27 MPa), where the normalized effective modulus falls in 

the range (0, 1]. It is observed that a good agreement was achieved among the 

experimental, analytical, and numerical results, indicating that the analytical model and 

numerical model can predict the material response of FGPMs with good accuracy. Note 

that overall, the experimental data are lower than analytical and numerical results, this is 

due to the porous nature of 3-D printing specimens, which might have lower porosity 

than the input 3D model. The effect of this issue on verifying the prediction accuracy of 

analytical and numerical model will be further discussed in Section 5.1.2. 
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Figure 5. 3 Comparison for E33 for closed cell structure 

 

 

Figure 5. 4 Comparison for E11 for closed cell structure 

 

Figures 5.5 and 5.6 show the comparison of normalized effective moduli from 

experimental, analytical, and numerical results for open cell structures, i.e.  
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Configurations 2, 4, 6, and 8. As can be seen, a good agreement was achieved which 

indicates that the analytical model with an extension of Mori-Tanaka’s scheme to open 

cell porous structure can accurately predict its mechanical property.  

 

Figure 5. 5 Comparison for E33 for open cell structure 

 

 

Figure 5. 6 Comparison for E11 for open cell structure 
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Tables 5.1 and 5.2 show experimental data of closed cell structure and open cell 

structures, respectively. Eeff and Enormal denote the effective modulus and normalized 

effective modulus, respectively. The discrepancy between analytical and numerical 

results and experimental data were calculated and tabulated. It was observed that the 

discrepancy between analytical and numerical results with experimental data is larger for 

round disk shape compared to square disk shape for almost all the configurations. This is 

due to the nature of FDM 3-D printed round shape feature. It is hard to achieve 100% of 

infill and it will leave some space unfilled, comparing to printing a square shape feature. 

It is also found that the discrepancy for analytical and numerical results compared to 

experimental data is generally smaller for graded material than that for constant material. 
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Table 5. 1 Comparison of experimental, analytical, and numerical 

 for closed cell structure 

 

Round disk_constant_closed cell     

  

Experimental Analytical Numerical 

Eeff     

(Mpa) 
Enormal 

Eeff     

(Mpa) 
Enormal 

Discrepancy 

with 

experiment 

Eeff     

(Mpa) 
Enormal 

Discrepancy 

with 

experiment 

E33 593.298 0.602 645.892 0.655 8.865% 632.506 0.641 6.608% 

E11 571.156 0.579 646.345 0.655 13.164% 622.527 0.631 8.994% 

Round disk_graded_closed cell     

  

Experimental Analytical Numerical 

Eeff     

(Mpa) 
Enormal 

Eeff     

(Mpa) 
Enormal 

Discrepancy 

with 

experiment 

Eeff     

(Mpa) 
Enormal 

Discrepancy 

with 

experiment 

E33 721.160 0.731 768.193 0.779 6.522% 742.843 0.753 3.007% 

E11 759.170 0.770 819.068 0.830 7.890% 787.856 0.799 3.779% 

Square disk_constant_closed cell     

  

Experimental Analytical Numerical 

Eeff     

(Mpa) 
Enormal 

Eeff     

(Mpa) 
Enormal 

Discrepancy 

with 

experiment 

Eeff     

(Mpa) 
Enormal 

Discrepancy 

with 

experiment 

E33 698.366 0.708 752.224 0.763 7.712% 717.169 0.727 2.692% 

E11 721.235 0.731 794.268 0.805 10.126% 765.382 0.776 6.121% 

Square disk_graded_closed cell     

  

Experimental Analytical Numerical 

Eeff     

(Mpa) 
Enormal 

Eeff     

(Mpa) 
Enormal 

Discrepancy 

with 

experiment 

Eeff     

(Mpa) 
Enormal 

Discrepancy 

with 

experiment 

E33 859.310 0.871 893.260 0.906 3.951% 838.925 0.851 -2.372% 

E11 788.952 0.800 823.560 0.835 4.387% 793.322 0.804 0.554% 
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Table 5. 2 Comparison of experimental, analytical, and numerical  

for open cell structure 

 

Round disk_constant_open cell     

  

Experimental Analytical Numerical 

Eeff     

(Mpa) 
Enormal 

Eeff     

(Mpa) 
Enormal 

Discrepancy 

with 

experiment 

Eeff     

(Mpa) 
Enormal 

Discrepancy 

with 

experiment 

E33 571.384 0.579 571.789 0.580 0.071% 555.658 0.563 -2.752% 

E11 469.948 0.476 520.896 0.528 10.841% 494.480 0.501 5.220% 

Round disk_graded_open cell     

  

Experimental Analytical Numerical 

Eeff     

(Mpa) 
Enormal 

Eeff     

(Mpa) 
Enormal 

Discrepancy 

with 

experiment 

Eeff     

(Mpa) 
Enormal 

Discrepancy 

with 

experiment 

E33 551.488 0.559 603.256 0.612 9.387% 586.860 0.595 6.414% 

E11 583.844 0.592 583.246 0.591 -0.102% 556.977 0.565 -4.602% 

Square disk_constant_open cell     

  

Experimental Analytical Numerical 

Eeff     

(Mpa) 
Enormal 

Eeff     

(Mpa) 
Enormal 

Discrepancy 

with 

experiment 

Eeff     

(Mpa) 
Enormal 

Discrepancy 

with 

experiment 

E33 472.926 0.480 528.249 0.536 11.698% 503.028 0.510 6.365% 

E11 634.676 0.644 696.548 0.706 9.749% 665.924 0.675 4.924% 

Square disk_graded_open cell     

  

Experimental Analytical Numerical 

Eeff     

(Mpa) 
Enormal 

Eeff     

(Mpa) 
Enormal 

Discrepancy 

with 

experiment 

Eeff     

(Mpa) 
Enormal 

Discrepancy 

with 

experiment 

E33 711.312 0.721 739.286 0.750 3.933% 713.306 0.723 0.280% 

E11 614.837 0.623 613.906 0.622 -0.151% 577.587 0.586 -6.059% 
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5.1.2 Discussion: the Prediction Accuracy Comparison of Different Geometries 

 

As mention above, the effective modulus of FGPMs not only depends on overall 

porosity, but is also closely related to porosity distribution, the shape of voids, and their 

location. On the experimental side, the printing accuracy of FDM is also affected by the 

geometry of the model. When printing single layers of round shape void, due to the 

trajectory of the nozzle, it is observed that at some locations, the space is not fully filled 

by the filament material as shown in Figure 5.7. As such, the real porosity of the FGPMs 

specimen is higher than that of the designed porosity. Therefore, the effective moduli of 

the FGPMs specimens can be lower than that of the model predictions.  

 

 

Figure 5. 7 Single layer with round shape void 
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In order to better evaluate the prediction accuracy of analytical model, the 

discrepancy between analytical results and numerical results for each configuration were 

calculated as shown in Tables 5.3 to 5.6. Comparing Table 5.3 with Table 5.4, and Table 

5.5 with Table 5.6, it can be observed that the discrepancy between analytical results and 

numerical results for square shaped void is higher than that for round shape void. This 

could be due to the accuracy of Eshelby’s tensor for inclusions with different shapes. It 

is known that Eshelby’s tensor was initially derived from ellipsoidal shaped inclusion (in 

which the strain inside the inclusion is uniform) with very good prediction. The 

Eshelby’s tensor was then derived for different shapes, e.g.  elliptical cylinder, penny-

shaped spheroid, oblate spheroid, prolate spheroid, cuboid, and polygonal shapes, where 

the initial “condition” for ellipsoidal inclusion becomes an “approximation” for some 

geometries.  

Table 5. 3  Comparison of numerical and analytical results for                            

  closed cell round disk 

 

  

Round disk_constant_closed cell Round disk_graded_closed cell 

Numerical Analytical 

Discrepancy 

with 

Numerical 

Numerical Analytical 

Discrepancy 

with 

Numerical 

E33 0.641 0.655 2.116% 0.753 0.779 3.413% 

E11 0.631 0.655 3.826% 0.799 0.830 3.962% 
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Table 5. 4 Comparison of numerical and analytical results for                

  closed cell square disk 

  

Square disk_constant_closed cell Square disk_graded_closed cell 

Numerical Analytical 

Discrepancy 

with 

Numerical 

Numerical Analytical 

Discrepancy 

with 

Numerical 

E33 0.727 0.763 4.888% 0.851 0.906 6.477% 

E11 0.776 0.805 3.774% 0.804 0.835 3.812% 

 

Table 5. 5 Comparison of numerical and analytical results for                    

 open cell round disk 

  

Round disk_constant_open cell Round disk_graded_open cell 

Numerical Analytical 

Discrepancy 

with 

Numerical 

Numerical Analytical 

Discrepancy 

with 

Numerical 

E33 0.563 0.580 2.903% 0.595 0.612 2.794% 

E11 0.501 0.528 5.342% 0.565 0.591 4.716% 

 

 

Table 5. 6 Comparison of numerical and analytical results for                 

     open cell square disk 

  

Square disk_constant_open cell Square disk_graded_open cell 

Numerical Analytical 

Discrepancy 

with 

Numerical 

Numerical Analytical 

Discrepancy 

with 

Numerical 

E33 0.510 0.536 5.014% 0.723 0.750 3.642% 

E11 0.675 0.706 4.599% 0.586 0.622 6.288% 
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In order to confirm this idea or explanation, the comparison of analytical and 

numerical results for closed cell spherical void, which is the exactly condition how 

Eshelby’s tensor was derived initially [106], is demonstrated in Table 5.7. It can be seen 

that the discrepancy is within 3%, indicating an accurate solution of Eshelby’s tensor for 

ellipsoidal inclusion. However, for cuboidal inclusion, the analytical solution to 

Eshelby’s tensor was obtained through Galerkin method, which can be considered as an 

approximated solution. On the other hand, singularity exists for certain edges and 

corners of the cuboid, which will also cause discrepancy. Under this condition, the 

prediction of mechanical behavior of FGPMs with round disk void can be more accurate 

than that with square disk void. However, as can be seen from Tables 5.4 and 5.6, the 

discrepancy is within 7%, which is quite accurate.  

 

Table 5. 7 Comparison of numerical and analytical results for                                   

closed cell spherical void 

 

  

Sphere_constant_closed cell Sphere_graded_closed cell 

Numerical  Analytical  

Discrepancy 

with 

numerical   

Numerical  Analytical  

Discrepancy 

with 

numerical   

E33 802.175 786.225 -1.988% 725.108 710.805 -1.972% 

E11 802.175 786.225 -1.988% 744.358 724.321 -2.692% 
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5.1.3 Discussion: the Prediction Accuracy Comparison of Constant and Graded 

Configurations 

 

For graded specimens (Configurations 3, 4, 7, and 8), it can be observed that the 

predication discrepancy between analytical model and numerical model is within 7%, 

indicating that the analytical model derived in Section 4 can predict material property 

well. However, when considering the constant porosity case and graded porosity case, as 

can be observed from Tables 5.3 to 5.7, the discrepancy of graded porosity case is 

generally higher than that of constant porosity case. This could partially due to the fact 

that there are variations of the solution to Eshelby’s tensor under polynomial varied 

eigenstrain condition (as discussed in Section 4.4.2) that leads to some inaccurate results.  

This could also due to the fact that the Mori-Tanaka’s model is a better prediction tool 

for composite with relative low volume fraction of inclusions or inhomogeneity. 

However, as discussed by Christensen [51], this model might not be able to yield 

accurate prediction for high concentration of inclusion or inhomogeneity case since the 

strain concentration tensor for high concentration of inclusion/inhomogeneity case is 

obtained by “matrix operations.” Therefore, when the porosity of FGPMs is high, the 

accuracy of model prediction could decrease.    

 



 

158 

 

5.1.4 Discussion: the Prediction Accuracy Comparison of Closed Cell and Open Cell 

Structure  

 

An extension of Mori-Tanaka’s scheme to open cell FGPMs is discussed in 

Section 4, and as can be seen from Tables 5.5 and 5.6, the analytical model yields good 

prediction accuracy. The idea of the derivation is to find an “equivalent eigenstrain” of 

the interconnected voids through obtaining the individual eigenstrain for each voids with 

the consideration of disturbed stress field outside each void. However, comparing the 

discrepancy in Tables 5.5 and 5.6 to that in Tables 5.3 and 5.4, there is slight but still 

observable larger discrepancy for open cell structures. This could be due to that the 

equivalent eigenstrain of the interconnected voids was obtained from approximation. It 

is known that Mori-Tanaka’s scheme is first derived from closed cell and dilute 

inclusion/inhomogeneity case, while the derived “equivalent eigenstrain” of the 

interconnected voids is an effective method to obtain the material property of open cell 

structures, discrepancy might be introduced in the extension of the original model.  
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5.2 Analytical and Numerical Results for Effective Shear Moduli 

Besides effective moduli in normal direction, effective shear moduli for each 

configuration were obtained through analytical and numerical model. In Section 5.2.1, 

the analytical and numerical modeling results of effective shear moduli are presented. A 

discussion is provided in Section 5.2.2. 

5.2.1 Effective Shear Moduli from Analytical and Numerical Model 

As mention above, the specimens for each configuration were designed as 

pseudo-transversely isotropic material, thus 31 32 12G G G  , where Direction 3 is the

layer build-up direction, and Directions 1 and 2 are perpendicular to Direction 3. In 

numerical simulations, effective shear moduli of 31G and 12G  for each configuration 

were obtained. Taking Configuration 7 as an example, Figure 5.8 demonstrates the 

section view of stress contour of RVE for graded open cell structure with round disk 

voids subjected to pure shear stress 12. The porosity is gradually becoming higher along 

+z direction (from left to right in Figure 5.8). It is observed that with a higher porosity, 

the stress 12 is lower, indicating lower shear stress for higher porosity layers.  The stress 

level is highest near the round disk void, while lower when further away from the void. 
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The effective modulus was obtained by the volume average stress divided by volume 

average strain. 

 

 

 

Figure 5. 8 Stress contour plot of 12 for graded open cell structure with round disk voids 

 

Tables 5.8-5.11 show the comparison of effective shear moduli from numerical 

and analytical results for each configuration. The normalized effective shear modulus is 

defined as the effective shear modulus divided by shear modulus of base material (in this 

case, it is 368 MPa), where the normalized effective shear modulus falls in the range of 

(0, 1]. It is observed that a good agreement was achieved between numerical and 

analytical results, indicating that the analytical model can predict the shear behavior of 

FGPMs with good accuracy. 
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Table 5. 8 Comparison of numerical and analytical results of normalized effective shear 

moduli for closed cell round disk 

 

  

Round disk_constant_closed cell Round disk_graded_closed cell 

Numerical  Analytical  

Discrepancy 

with 

Numerical 

Numerical  Analytical  

Discrepancy 

with 

Numerical 

G31 0.543 0.588 8.325% 0.524 0.578 10.321% 

G12 0.620 0.657 5.987% 0.568 0.610 7.385% 

 

 

Table 5. 9 Comparison of numerical and analytical results of normalized effective shear 

moduli for closed cell square disk 

 

  

Square disk_constant_closed cell Square disk_graded_closed cell 

Numerical  Analytical  

Discrepancy 

with 

Numerical 

Numerical  Analytical  

Discrepancy 

with 

Numerical 

G31 0.556 0.622 11.762% 0.524 0.574 9.513% 

G12 0.704 0.764 8.557% 0.655 0.691 5.421% 
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Table 5. 10 Comparison of numerical and analytical results of normalized effective shear 

moduli for open cell round disk 

 

  

Round disk_constant_open cell Round disk_graded_open cell 

Numerical  Analytical  

Discrepancy 

with 

Numerical 

Numerical  Analytical  

Discrepancy 

with 

Numerical 

G31 0.467 0.512 9.697% 0.484 0.538 11.300% 

G12 0.541 0.581 7.493% 0.437 0.477 9.223% 

 

Table 5. 11 Comparison of numerical and analytical results of normalized effective shear 

moduli for open cell square disk 

 

  

Square disk_constant_open cell Square disk_graded_open cell 

Numerical  Analytical  

Discrepancy 

with 

Numerical 

Numerical  Analytical  

Discrepancy 

with 

Numerical 

G31 0.331 0.363 9.648% 0.487 0.542 11.382% 

G12 0.521 0.563 8.080% 0.380 0.403 6.103% 

 

 

5.2.2 Discussions  

 

It can be observed from Tables 5.8-5.11 that prediction discrepancy between 

analytical and numerical model for G31 is higher than G12. Since Direction 3 is the 

layer build-up direction and the geometry along Direction 3 is more complicated than 
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that along Directions 1 and 2, it might be difficult for the analytical model to capture all 

the geometrical information, i.e. the location of each void. Thus, it might lead to a higher 

discrepancy for G31.  

Comparing the discrepancy between analytical model and numerical model for 

effective shear moduli (Tables 5.8-5.11) to that of effective Young’s moduli (Tables 5.3-

5.6), it is observed that overall, the former is larger than the latter. This could be partially 

due to that, unlike Young’s modulus E33 and E11, the geometries of the structures, i.e. the 

location of voids and the porosity distribution have significant effects on the shear 

property of the material. Since the analytical model might not be able to capture the 

location information of voids, it is understandable that a larger discrepancy in predicting 

effective shear moduli was found compared to that in effective Young’s moduli.  
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6. CONCLUSIONS AND FUTURE WORK  

 

6.1 Conclusions 

 

The fabrication of porous material received great attention. This work developed 

a new technique to use the thermo-bonding lamination process to fabricate porous 

material. In this approach, the single layers were first fabricated and then bonded by 

polymer self-adhesion using a heating and compression machine. The technique is 

capable of creating both open cell and closed cell structures. The approach is convenient, 

efficient, and cost-effective. The factors which influence the bonding shear strength was 

investigated. It was also demonstrated that the bonding shear strength can be controlled 

by properly setting the heating temperature, applied pressure, and processing time.  

Analytical models were derived for FGPM in order to better understand its 

material behavior and predict the mechanical response under different loading 

conditions. A generalization of Mori-Tanaka’s method to model “porous” and “graded” 

material was derived and implemented for the FGPMs. In addition, a model deals with 

open cell structure was developed, and an analytical solution to the overall eigenstrain of 

interconnected voids were provided by considering the disturbed stress field outside of 
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the voids. The models can accurately predict the mechanical response of open cell and 

closed cell FGPMs.   

Numerical model based on RVE with periodic boundary condition was 

developed for FGPMs material in order to investigate the mechanical behavior of the 

material and to obtain the effective modulus. It has been shown that the numerical model 

can predict the material response accurately.  

In conclusion, this research demonstrated the feasibility of using the thermo-

bonding lamination approach to fabricate functionally graded porous material structures. 

The research also resulted in analytical models and numerical techniques to accurately 

predict the mechanical behavior of developed materials.  

 

6.2 Future Work 

 

While this work has achieved the research objectives of developing a feasible 

approach to fabricate FGPMs, a powerful analytical model and numerical model to 

predict their mechanical properties, the following future work is suggested to further 

advance the knowledge in the field: 

In the area of FGPM fabrication, the future work includes developing a direct 

relationship for the heating temperature, holding time, and applied pressure to bonding 
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strength; shortening the processing time to improve the efficiency; and applying this 

method to real industrial production.  

In the area of analytical modeling, the future work includes implementing 

different FGPMs with different geometry and size of pores and different material 

property into the proposed models. The applicability of the methodology presented here 

in the condition of polygon void remains to be investigated. One challenge here is that 

the disturbed stress field outside irregular polygon voids embedded in anisotropic 

material might be necessary have analytical solution, therefore, other alternative solution 

method needs to be figure out.   

In the area of numerical modeling, the future work including: (1) to investigate 

that under the same porosity gradient level, how the geometry of pores (in terms of the 

number of pores, and the shape and size of pores) will affect the material properties such 

stiffness, and damping property; (2) for the FGPMs with the same overall porosity, the 

effects of porosity distribution over the volume (e.g. discrete distribution, linear 

distribution, non-linear distribution) on the overall material property will be investigated. 

The developed FGPMs can potentially be used as mechanical filter, damping 

material, bone scaffold, and core of the sandwich panel. Future work will also include 

the evaluation of the requirements for such applications. 
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