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ABSTRACT

In many real-world engineering applications, model uncertainty is inherent. Large-

scale dynamical systems cannot be perfectly modeled due to systems complexity, lack

of enough training data, perturbation, or noise. Hence, it is often of interest to acquire

more data through additional experiments to enhance system model. On the other hand,

high cost of experiments and limited operational resources make it necessary to devise a

cost-effective plan to conduct experiments. In this dissertation, we are concerned with

the problem of prioritizing experiments, called experimental design, aimed at uncertainty

reduction in dynamical systems. We take an objective-based view where both uncertainty

and modeling objective are taken into account for experimental design. To do so, we utilize

the concept of mean objective cost of uncertainty to quantify uncertainty.

The first part of this dissertation is devoted to the experimental design for gene reg-

ulatory networks. Owing to the complexity of these networks, accurate inference is prac-

tically challenging. Moreover, from a translational perspective it is crucial that gene reg-

ulatory network uncertainty be quantified and reduced in a manner that pertains to the

additional cost of network intervention that it induces. We propose a criterion to rank po-

tential experiments based on the concept of mean objective cost of uncertainty. To lower

the computational cost of the experimental design, we also propose a network reduction

scheme by introducing a novel cost function that takes into account the disruption in the

ranking of potential experiments caused by gene deletion. We investigate the performance

of both the optimal and the approximate experimental design methods on synthetic and
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real gene regulatory networks.

In the second part, we turn our attention to canonical expansions. Canonical ex-

pansions are convenient representations that can facilitate the study of random processes.

We discuss objective-based experimental design in the context of canonical expansions for

three major applications: filtering, signal detection, and signal compression. We present

the general experimental design framework for linear filtering and specifically solve it for

Wiener filtering. Then we focus on Karhunen-Loève expansion to study experimental de-

sign for signal detection and signal compression applications when the noise variance and

the signal covariance matrix are unknown, respectively. In particular, we find the closed-

form solution for the intrinsically Bayesian robust Karhunen-Loève compression which is

required for the experimental design in the case of signal compression.
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NOMENCLATURE

MOCU Mean objective cost of uncertainty

IBR Intrinsically Bayesian robust

MSE Mean-squared error

MAP Maximum a posteriori

KL Karhunen-Loève

R(W, i) i-th row of matrix W

C(W, j) j-th column of matrix W

Pr(.) Probability operator

fX(x) Probability density function of X

fX(x|y) Conditional density function of X given Y = y

Cov[X] Covariance matrix of X

Ex[g(x)] Expectation of g(x) with respect to random variable X

E
[
X |Y = y

]
Conditional expectation of X given Y = y

Ex|Y=y
[
g(x,y)

]
Conditional expectation of g(x,y) relative to X given Y = y

N (µ,Σ) Multivariate Normal distribution, mean µ and covariance Σ

N(x; µ,Σ) Gaussian function, 1√
(2π)k|Σ|

exp
(
− 1

2(x−µ)T Σ−1(x−µ)
)

Wp(Σ,n) Wishart distribution, degree of freedom n and scale matrix Σ

δ (t) Dirac delta function
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1 INTRODUCTION

Since the earliest days of modern science, it has been recognized that experimen-

tal design is critical for the efficient observation of nature. Immanuel Kant, the seminal

philosopher of the 18th century, says in the Critique of Pure Reason: “It is only when

experiment is desired by rational principles that it can have any real utility”. Dynami-

cal systems typically involve a large number of variables interacting with each other and

therefore often suffer from many uncertain parameters. Moreover, experiments are usu-

ally time-consuming and expensive. This brings up the issue of experimental design in

many branches of science such as signal processing, biological investigations, materials

science, etc. The task of experimental design is to evaluate potential experiments to find

out which ones are most informative relative to the problem at hand. In other words, ex-

perimental design is concerned with maximizing the information content of experiments

to be conducted.

1.1 Literature Review on Experimental Design

Experimental design has roots in statistics and machine learning [1, 2, 3]. The first

statistical framework for experimental design was proposed by Smith [4]. She was con-

cerned with univariate polynomials and her aim was to find the design which minimizes

the maximum variance. In 1943, Wald proposed a sequential hypothesis testing method for

linear normal regression based on the D-optimality criterion which seeks to maximize the

1



determinant of the information matrix [5]. Later Elfving proposed A-optimality criterion

aimed at minimizing the average variance of the estimates of the regression parameter [6].

Kiefer utilized the theory of convex optimization for experimental design in the case of

linear regression [7]. In 1953, Chernoff proposed locally optimal designs for non-linear

models [8]. Experimental design from an information theoretic viewpoint was first pro-

posed by Lindley [9] and further studied in several follow-up works [10, 11, 12, 13, 14].

The basic idea in these methods is to define the information gain I(Θ;Ti) for experiment Ti,

that leads to the estimation of parameter θi, as the difference between the entropy before

experiment and the conditional entropy after conducting the experiment:

I(Θ;Ti) = H(Θ)−H(Θ|Ti)

= H(Θ)+∑
θ ,ϕ

Pr(θ ,θi = ϕ) log2 Pr(θ |θi = ϕ), (1.1)

where H(Θ) is the model entropy and Pr(.) is the probability operator. The chosen exper-

iment is the one that maximizes (1.1).

All aforementioned experimental designmethods emphasize the application of statis-

tics and focus merely on the model statistical information. To perceive the shortcomings of

purely statistical experimental design methods, consider the case that all uncertain param-

eters are statistically independent and uniformly distributed. In this case, all experiments

would possess equal information gain (as defined in (1.1)) and consequently the experi-

mental design does not distinguish between different experiments. From an engineering

perspective, the ultimate objective of constructing mathematical models is to design opti-

mal operators. Although statistical information can give us some hints, it does not tell us

2
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Figure 1.1. The general flowchart of the proposed objective-based experimental design
framework.

much about the operator performance in many cases. Therefore, if the ultimate objective is

to design operators, the experimental design method aimed at reducing model uncertainty

should also consider operator performance.

1.2 Objective-Based Experimental Design

In the absence of model uncertainty, the goal is to design the optimal operator relative

to a single perfectly known model. However, when the model knowledge is lacking, the

aim becomes to design a robust operator. In this study, we take the viewpoint that exper-

imental design should depend on both the uncertainty and the modeling objective, which

is designing operators. Such an approach is called objective-based experimental design.

An experimental design scenario begins with a mathematical model possessing un-

known parameters. The knowledge regarding unknown parameters is incorporated in the

model in terms of a prior distribution. As Figure 1.1 shows, the proposed experimental de-
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sign framework uses the prior distribution, which reflects our knowledge about unknown

parameters, and takes into account the objective, which is designing robust operators, to

find the best experiment that should be conducted first. After conducting the chosen exper-

iment, based on the observed outcome of the experiment, the prior distribution is updated

to the posterior distribution. The updated posterior distribution can be used as the new

prior distribution and to find the next experiment. We can keep repeating this process.

A crucial step in an objective-based experimental design method, whose aim is to

improve operator performance, is the criterion used for robustness definition.

1.3 Robustness Criteria

When it is not realistic to assume that all model parameters are known, it is prudent

to design a robust operator by taking into account all possible models consistent with the

partial prior knowledge, being called the uncertainty class. In signal processing, the design

of robust operators goes back to the 1970s, with the goal being to design a linear filter in

the presence of an uncertain covariance structure. Qualitatively, an operator is robust if its

performance degradation is acceptable relative to all models close to the model for which

it has been designed. In fact, robust operator is the best option given the current imperfect

state of knowledge regarding the model.

We consider an uncertainty class of models Θ parameterized by the vector of un-

known parameters θ = {θ1, ...,θk} ∈ Θ under the assumption that the true model is given

by some specific value of θ . We refer to θ as uncertainty vector. Let ψ denote an operator
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such as filter, control, classifier, etc that belongs to a class Ψ of operators such that for

each operator ψ ∈Ψ, if ψ is applied to the model with parameter θ , there is an associated

cost ηθ (ψ). The model-specific optimal operator ψ(θ) for model θ is:

ψ(θ) = argmin
ψ∈Ψ

ηθ (ψ). (1.2)

If ψΘ denotes the robust operator that has been obtained relative to the uncertainty class

Θ, then ηθ
(
ψ(Θ)

)
−ηθ

(
ψ(θ)

)
is the increased cost arises from applying the robust inter-

vention ψΘ instead of the model-specific optimal operator ψ(θ) to model θ .

1.3.1 Minimax Approach

Early works on robust operator design were focused on minimax robustness [15, 16,

17, 18, 19], the aim being to find an operator exhibiting the best worst-case performance.

Under this approach, the minimax robust operator ψΘ
minimax is the one whose worst perfor-

mance across the uncertainty class Θ is best among operators in Ψ:

ψΘ
minimax = arg min

ψ∈Ψ
max
θ∈Θ

ηθ (ψ). (1.3)

Minimax approach has been used for Wiener filtering [20, 21, 22, 23], Kalman filtering

[24, 25], and matched filtering [26, 27] . In [28], it has been shown in the context of

game theory, that a minimax robust filter exists if the convexity assumption holds for the

uncertainty class . Minimax robustness is a conservative approach and suffers from being

overly influenced by models possessing negligible likelihood because it does not take into

account the probability mass over the uncertainty class.
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1.3.2 Bayesian Approach

The Bayesian framework addresses the problem of outlier models by assuming a

prior distribution f (θ) over the uncertainty class Θ. In this framework, the aim is to find

an operator with the best expected performance relative to f (θ):

ψΘ
IBR = argmin

ψ∈Ψ
Eθ

[
ηθ (ψ)

]
. (1.4)

Such a robust operator is called an intrinsically Bayesian robust (IBR) operator. The IBR

operator performs optimally relative to the prior distribution used to represent model with

uncertain parameters. It should be recognized that the IBR operator is not guaranteed to

perform optimally for each possible model in the uncertainty class. Intuitively, it is ex-

pected to performwell over thosemodels, where the prior distribution f (θ) is concentrated.

Designing Bayesian robust operators has been addressed in different engineering applica-

tions, including Wiener filtering [29, 30], Kalman filtering [31], classification [32], mor-

phological and binary filtering [33, 34], classification error estimation [35], blind image

deconvolution [36], hypothesis testing [37], and control policy design for Markov chains

[38].

When it is computationally infeasible to search through the classΨ to identify an IBR

operator, we can confine the search to the set of model-specific optimal interventionsψ(θ)

for models within Θ. We define a model-constrained Bayesian robust (MCBR) operator

by

ψΘ
MCBR = argmin

ψ(ϕ):ϕ∈Θ
Eθ

[
ηθ

(
ψ(ϕ)

)]
. (1.5)
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An MCBR operator is suboptimal relative to an IBR operator, i.e., Eθ
[
ηθ (ψΘ

MCBR)
]
≥

Eθ
[
ηθ (ψΘ

IBR)
]
. Historically, MCBR filtering goes back to binary filtering [34]. MCBR

dynamical intervention for gene regulatory networks was presented in [39].

In this dissertation, we take a Bayesian view to define robustness when dealing with

an uncertain dynamical model, be it a gene regulatory network or a canonical expansion.

1.4 Contributions

In this dissertation, we will focus on the problem of experimental design for two ma-

jor engineering applications: (1) uncertainty reduction in gene regulatory networks models

used for designing therapeutic interventions, and (2) uncertainty reduction in canonical ex-

pansions used to express random functions in a simpler form.

As remarked earlier, the proposed experimental design framework is objective-

based. Therefore, as a first step we need to quantify uncertainty in an objective-based

manner. In that regard, we use mean objective cost of uncertainty (MOCU) [40]. MOCU

measures the deterioration in the operator performance resulting from the presence of un-

certainty. Based on MOCU, we develop an objective-based experimental design method

to reduce uncertainty in dynamical models.

In Chapter 2, we provide the proposed experimental design framework based on the

concept of MOCU and then utilize it for uncertainty reduction in gene regulatory networks

modeled as Boolean networks with perturbation (BNps). In the proposed framework, po-

tential experiments are prioritized based on theMOCU expected to remain after conducting
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the experiment. Based on this prioritization, one can select an optimal experiment with the

largest potential to reduce the pertinent uncertainty present in the current network model.

We demonstrate the effectiveness of the proposed method via extensive simulations based

on synthetic and real gene regulatory networks. Work in this chapter is originally from

[41].

Chapter 3 addresses computational concerns of the optimal experimental design

method for gene regulatory networks. In the process of experimental design, one must

find the optimal intervention for every gene regulatory network compatible with the prior

knowledge, which can be prohibitively expensive when the size of the network is large.

To overcome this difficulty, we propose a computationally efficient experimental design

method that incorporates a network reduction scheme by introducing a novel cost func-

tion [42]. This cost function takes into account the disruption in the ranking of potential

experiments. We then estimate the approximate expected remaining MOCU at a lower

computational cost using the reduced networks. Simulation results based on synthetic and

real gene regulatory networks show that the proposed approximate method has close per-

formance to that of the optimal method but at lower computational cost. The proposed

approximate method also outperforms the random selection policy significantly.

In Chapter 4, we present the general framework for the experimental design in the

context of canonical expansions and solve it for two major signal processing problems:

optimal linear filtering and signal detection. We note that parameters of the random process

appear in the canonical expansion, so that when the expansion is used for operator design,
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the uncertainty in these parameters affects the operator objective via the expansion. Hence,

optimal experimental design can be approached in terms of the canonical expansion. In

particular, we show how experimental design can be used for Wiener filtering.

Having provided a general framework for experimental design in the context of

canonical expansions, in Chapter 5, we apply the proposed experimental design frame-

work to Karhunen-Loève (KL) compression to decide which uncertain parameter in the

covariance matrix should be determined first to improve the quality of the compressed sig-

nal [43]. We find the closed-form solution for the intrinsically Bayesian robust (IBR) KL

compression when the covariance matrix is unknown and show that the IBR KL compres-

sion can be found in the same form as the ordinary KL compression with the covariance

matrix replaced by the expected covariance matrix. We then utilize the expression for IBR

KL compression to develop the experimental design framework. Two model assumptions

for the covariance matrix are studied: Wishart priors and the blocked covariance model. In

particular, we will show how the conditional expectation of each element given the value

of another element can be found for the Wishart priors case.
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2 OPTIMAL EXPERIMENTAL DESIGN FOR GENE

REGULATORY NETWORKS 1

The main objective in systems biology is to characterize the way genes interact with

each other in the context of the mathematical models called gene regulatory networks

(GRNs). Gene regulatory network models are increasingly used as a tool to study inter-

actions among genes [44]. Today, of major interest to translational systems biology is to

determine beneficial interventions in GRNs for the purpose of identifying potential drug

targets. A precondition for using GRNs to design intervention strategies is network iden-

tification. Hence, given a model possessing uncertainty, the aim of an experiment is to

reduce that uncertainty as it pertains to the intervention objective. Thus, entropy alone is

inadequate. One needs a measure that incorporates both the uncertainty and the objective.

From the earliest days of high-throughput gene-expression measurements, the inter-

vention problem has been addressed from two perspectives: (1) dynamical intervention

by altering one or more regulatory outputs (expressions) over time [45], and (2) structural

intervention via a one-time change of one or more regulatory functions constituting the

network [46]. Dynamical intervention interferes with signaling and does not alter network

wiring, whereas structural intervention constitutes a one-time alteration of the physical

network. Both approaches have mainly developed in the context of probabilistic Boolean
1Part of this chapter is reprinted with permission from “Optimal Experimental Design for Gene Regulatory
Networks in the Presence of Uncertainty” by R. Dehghannasiri, B. Yoon, and and E. R. Dougherty, 2015,
IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 12, no. 4, pp. 938-950,
© 2015 IEEE.
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networks (PBNs) [47]. Structural intervention, which concerns us here, has been stud-

ied from a logical perspective to achieve a desired alteration of the attractor structure of a

PBN [48] and in the framework of Markov Chain perturbation theory to derive an altered

transition probability matrix that optimally reduces undesirable (pathological) steady-state

probability mass [49].

In the vast majority of methods considered for both dynamical and structural inter-

vention, the GRN is assumed to be known, which in the case ofMarkovian networks means

that the transition probability matrix is known. However, given the complex regulatoryma-

chinery of the cell and the lack of sufficient data for accurate inference, there is typically

significant uncertainty in GRN models. Hence, rather than assume that the model is fully

known, it can be beneficial to assume that the true GRN belongs to an uncertainty class of

networks and the problem is to find a robust intervention strategy that is optimal across the

uncertainty class. In the case of dynamical intervention in PBNs, robust control policies

have been found under two scenarios: (1) no knowledge is assumed concerning the dis-

tribution of the networks in the uncertainty class and optimality is defined via a minimax

criterion [50]; and (2) there is a prior distribution governing the networks in the uncertainty

class and optimality is defined via a Bayesian criterion [39]. Robust design has also been

addressed in structural intervention, where one searches for the optimal regulatory function

alteration relative to the uncertainty class [40].

It should be recognized that the uncertainty problem is inherent to computational

biology owing to the complexity of biological systems and the ubiquity of samples that are
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small relative to the number of variables. This is why many works analyze gene regulatory

networks with uncertainty [51, 52, 53, 54]. In particular, not only is model uncertainty an

issue that must be addressed for network intervention (optimal therapy), it is also an issue

for biomarker design (optimal diagnosis) and in this context has been treated in the context

of uncertainty classes of feature-label distributions [32, 35].

From an experimental perspective, one would like to reduce model uncertainty and

thereby improve intervention performance. For smaller uncertainty classes, it is more

likely that the performance of a designed robust intervention strategy is close to the per-

formance of the optimal intervention for the actual network. This brings up the issue of

experimental design. Experimental design has been utilized in the inference of gene regu-

latory networks to reduce the entropy of the network model [55, 56, 57, 58]. Here we take

the viewpoint that, when designing an intervention strategy we are not so much concerned

with reducing model uncertainty from a general perspective, say, entropy; rather, our goal

is to reduce uncertainty that will retard the effectiveness of our designed strategy.

Here we present an experimental design method based on the concept of mean ob-

jective cost of uncertainty (MOCU), introduced in [40]. MOCU is an uncertainty quantifi-

cation for dynamical models that quantifies the increased cost due to uncertainty, where

the cost function depends on ones objective. In the context of controlling GRNs, MOCU

measures uncertainty in terms of the differential cost between applying the robust and true-

model optimal interventions. According to our proposed method, we conduct experiments

to estimate unknown parameters in such a way as to maximize the expected reduction
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of MOCU. By computing the expected remaining MOCU after conducting each experi-

ment, we select the experiment that results in the minimum expected remaining MOCU.

We desire experiments that estimate these uncertain parameters and would like to know

which experiment should be conducted first. To evaluate our proposed experimental de-

sign method, we perform simulations on both synthetic and real networks. The simulation

results demonstrate the effectiveness of the proposed method.

This chapter is organized as follows. Section 2.1 provides an overview of Boolean

networks. Section 2.2 presents our proposed experimental design method based on mean

objective cost of uncertainty. In Section 2.3.1, a comprehensive performance analysis of

the proposed experimental design method for both synthetic and real networks is given.

Finally, we conclude the chapter in Section 2.4.

2.1 Boolean Networks

Boolean networks (BNs) [59] and probabilistic Boolean networks (PBNs) [47] are

widely used models for GRNs that have been shown to be effective in capturing these in-

teractions [60, 61, 62, 63, 64, 65, 66]. An n-gene Boolean network (BN) is a pair (V,F),

where V = {X1,X2, ...,Xn} is a set of nodes representing the binary expression states of

genes and F = { f1, f2, ..., fn} is a set of Boolean functions such that fi : {0,1}ki→{0,1} is

the Boolean function that determines the expression state of Xi. It is commonplace to refer

to gene i as Xi. The binary values Xi = 0 and Xi = 1 correspond to the gene being turned

”off” or ”on”, respectively. The vector X(t) = (X1(t), ...,Xn(t)) of gene values at time t is
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called the gene activity profile (GAP). It reflects the “state” of the network at time t. The

value of gene i at the next time point, Xi(t+1) = fi
(
Xi1(t),Xi2(t), ...,Xiki

(t)
)
, is determined

by the values of ki predictor genes at time t. In a Boolean network with perturbation (BNp),

each gene may randomly flip its value at a given time with a perturbation probability p,

independently from other genes. Hence, for a BNp, X(t + 1) = F(X(t)) with probabil-

ity (1− p)n when there is no perturbation, but X(t + 1) may take a different value with

probability 1− (1− p)n, when there exists one or more random perturbations. In a BNp,

the sequence of states over time can be regarded as a Markov chain with transition proba-

bility matrix (TPM) P =
[
pi j

]2n

i, j=1 where pi j is the probability that state i transitions into

state j. Therefore, classical Markov chain theory can be applied for analyzing network

dynamics [67, 68]. The general formula of a TPM using Boolean functions and pertur-

bation probability has been derived in [50]. When p > 0, the resulting Markov chain is

ergodic, irreducible, and possesses a steady-state distribution (SSD) πT = πT P, where the

k-th element, πk, of the column vector π corresponds to the steady-state probability of state

k and T denotes the transpose operator. A probabilistic Boolean network (PBN) contains a

set of m constituent BNps, called contexts. The choice of which context is chosen at each

time step is governed by network selection probabilities c1,c2, ...,cm. A PBN switches its

context for the next transition according to a network switching probability q. If q = 1,

then PBN changes its context at every time point and is called an instantaneously random

PBN. When q < 1, the network is a context-sensitive PBN.

A key objective in modeling gene regulatory networks is to design therapeutic net-
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work interventions based on long-run network behavior to avoid abnormal phenotypes such

as cancer. The long-run behavior of a GRN is characterized by its SSD and hence the goal

of beneficial interventions is to change the SSD of network [69]. In the context of transla-

tional genomics, the state space of a network can typically be partitioned into undesirable

states (U), corresponding to abnormal (disease) phenotypes, and desirable states (D), corre-

sponding to normal (healthy) phenotypes. The goal in controlling GRNs via interventions

is to beneficially alter the dynamics of network to decrease the probability that the network

will enter the set U of undesirable states. In other words, intervention aims at minimiz-

ing the overall steady-state probability mass πU = ∑i∈U πi in undesirable states. There are

two basic categories of intervention approaches: structural interventions and dynamical

interventions. Structural interventions [40, 46, 48, 49, 70] alter the long-run behavior of a

network via a one-time change of the underlying network structure (wiring). After apply-

ing this type of interventions to the network, the regulatory functions of the network and

consequently the state transitions of the underlying Markov chain are altered. Dynamical

interventions [39, 45, 50, 71, 72, 73] utilize Markov decision theory to flip (or not flip)

the value of a certain gene called control gene at each time instant. These interventions

typically involve stationary control policies to make a decision at each time.

We restrict ourselves to Boolean networks in this study; however, it should be rec-

ognized that the proposed experimental design method is fairly general and can be applied

to different models and applications in a straightforward manner.
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2.2 MOCU-Based Experimental Design

Let θ = (θ1,θ2, ...,θk) be a vector of parameters that characterizes the gene regu-

latory network. We assume that θ is uncertain and belongs to an uncertainty class Θ of

possible networks. For any θ ∈ Θ, let ηθ (ψ) be the cost of applying the intervention

ψ ∈Ψ, a class of potential interventions, to the network defined by the uncertainty vector

θ . For instance, ηθ (ψ) might be the steady-state probability mass in undesirable states

after applying the intervention. Let ψ(θ) ∈ Ψ denote an optimal intervention relative to

ηθ , meaning that ηθ (ψ(θ))≤ ηθ (ψ) for any ψ ∈Ψ. ψ(θ) is an optimal intervention for

the network with uncertainty vector θ .

An intrinsically Bayesian robust (IBR) intervention is defined as

ψΘ
IBR = argmin

ψ∈Ψ
Eθ

[
ηθ (ψ)

]
(2.1)

[40]. The expectation Eθ
[
•
]
is taken over the probability distribution f (θ) of θ .

The mean objective cost of uncertainty (MOCU) relative to an uncertainty class Θ

of networks and a class Ψ of interventions is defined as

MΨ(Θ) = Eθ

[
ηθ

(
ψΘ

IBR
)
−ηθ

(
ψ(θ)

)]
(2.2)

[40]. MOCU is the expected cost increase that results from applying a robust intervention

over all networks in Θ instead of the optimal intervention for the true network, which is

unknown.

We also define a model-constrained Bayesian robust (MCBR) intervention by

ψΘ
MCBR = argmin

ψ(ϕ):ϕ∈Θ
Eθ

[
ηθ

(
ψ(ϕ)

)]
. (2.3)
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Empirical results in [40] indicate that, at least for binary PBNs with up to ten genes, the

MCBR structural intervention provides an extremely accurate approximation of the IBR

structural intervention. Since the large number of MOCU computations required for the

simulations performed in the current study would be computationally prohibitive using

IBR intervention, we employ MCBR intervention. Using the MCBR intervention, rather

than the IBR intervention, we can obtain an approximation of the true MOCU in (2.2) by

replacing the optimal IBR operator, ψΘ
IBR, by the optimal MCBR operator, ψΘ

MCBR. In what

follows, we will refer to the approximate MOCU computed based on MCBR intervention

as MOCU. We will denote an MCBR intervention ψΘ
MCBR.

Consider a GRN possessing k uncertain parameters θ1,θ2, ...,θk. Suppose there ex-

ists a corresponding set of k experiments T1,T2, ...,Tk, where performing experiment Ti

would completely determine θi such that we would be sufficiently confident about the

value of θi that we would no longer consider it to be uncertain. In practice, more than

one actual experiment might be needed to be conducted for the true estimation of an un-

certain parameter but we can consider these experiments collectively as one experiment

for our analysis. For simplicity, let us assume that θi is a binary variable and that exper-

iment Ti can determine whether θi = 0 or θi = 1. Our aim is to decide which experiment

Ti among the k potential experiments should be conducted first in order to optimally re-

duce the uncertainty based on a single experiment. Let θ |θi = θ̄i be the conditional un-

certainty vector composed of all uncertain parameters other than θi, with θi = θ̄i, and let

Θ|(θi = θ̄i) =
{

θ
∣∣θ ∈ Θ,θi = θ̄i

}
be the reduced uncertainty class of networks obtained
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by assuming that θi = θ̄i. Let MΨ(Θ|θi = θ̄i) be the remaining MOCU given θi = θ̄i:

MΨ(Θ|θi = θ̄i) = Eθ |θi=θ̄i

[
ηθ |θi=θ̄i

(
ψΘ|θi=θ̄i

MCBR

)
−ηθ |θi=θ̄i

(
ψ(θ |θi = θ̄i)

)]
, (2.4)

where the expectation is taken over the conditional probability distribution f (θ |θi = θ̄i) of

the remaining uncertain parameters given θi = θ̄i and ψΘ|θi=θ̄i
MCBR is the MCBR intervention

for the reduced uncertainty class Θ|(θi = θ̄i):

ψΘ|θi=θ̄i
MCBR = argmin

ψ(τ):τ∈Θ|(θi=θ̄i)

Eθ |θi=θ̄i

[
ηθ |θi=θ̄i

(
ψ(τ)

)]
. (2.5)

We define the cost function by

ηθ |θi=θ̄i

(
ψ(τ)

)
= π̃U,θ |θi=θ̄i

(
ψ(τ)

)
, (2.6)

where π̃U,θ |θi=θ̄i

(
ψ(τ)

)
is the steady-state probability mass in undesirable states after ap-

plying intervention ψ(τ) to the network defined by the uncertainty vector θ |θi = θ̄i in

the reduced uncertainty class Θ|θi = θ̄i. We define the expected remaining MOCU after

determining the value of θi via experiment Ti by

MΨ(Θ;θi) = Eθ̄i

[
MΨ(Θ|θi = θ̄i)

]
, (2.7)

where the expectation is taken over the marginal probability density function, f (θ̄i), for

the uncertain parameter θi. In order to optimally reduce the uncertainty in the current

uncertainty class Θ, we should select the experiment Ti∗ such that

i∗ = argmin
i∈1,2,...,k

MΨ(Θ;θi), (2.8)

since Ti∗ is expected to minimize the remaining MOCU by determining the value of the

parameter θi∗ .

To calculate MΨ(Θ;θi), we need to define the class of interventions. We focus on
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the structural intervention method proposed in [49]. In [49], intervention is performed via

a rank-1 function perturbation such that the relation between the transition probability ma-

trices of the original and perturbed networks is P̃ = P+abT , where P̃ is the transition prob-

ability matrix after perturbation and abT is the rank-1 perturbation matrix, a and b being

two arbitrary vectors, and bT e= 0 for e (all unity column vector). Single-gene perturbation

is a special case of a rank-1 function perturbation in which the output state for only one

input state changes and the output states of other states remain unchanged. We consider

single-gene perturbations for the classΨ of structural interventions. Let F̃= { f̃1, f̃2, ..., f̃n}

be the list of Boolean functions for the perturbed BNp. The structural intervention for in-

put state j solely changes the output state for input state j and leaves the rest unaltered:

v = F̃(u) ̸= F(u) = w and F̃(i) = F(i) for i ̸= u. The transition probability matrix P̃ of

the perturbed network will be identical to the transitional probability matrix P of the orig-

inal network, except for p̃uw = puw− (1− p)n and p̃uv = puv +(1− p)n. The SSD of the

perturbed BNp can be obtained by

π̃i(u,v) = πi +
(1− p)nπu(zvi− zwi)

1− (1− p)n(zvu− zwu)
, (2.9)

where πi is the steady-state probability for the state i, zvi,zwi,zvu,zwu are elements of the

fundamental matrix of the BNp, and π̃i(u,v) is the perturbed steady-state probability for

state i after applying the aforementioned intervention [49]. The fundamental matrix of a

BNp can be computed as Z = [I−P+eπT ]−1, where I is the n×n identity matrix and e is

the all unity column vector. Let π̃i,θ (u,v) be the steady-state probability of state i in the net-

work with uncertainty vector θ after intervention (u,v). Then π̃U,θ (u,v) = ∑i∈U π̃i,θ (u,v)
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is the steady-state probability mass in undesirable states after applying the single-gene per-

turbation structural intervention. For a BNp defined by a given uncertainty vector θ , the

optimal single-gene perturbation structural intervention
(
u(θ),v(θ)

)
is the one that mini-

mizes π̃U,θ (u,v): (
u(θ),v(θ)

)
= argmin

u,v∈{1,2,3,...,2n}
π̃U,θ (u,v) (2.10)

For each network θ ∈ Θ, we find the optimal intervention ψ(θ) =
(
u(θ),v(θ)

)
. The

MCBR intervention ψΘ
MCBR =

(
uΘ

MCBR,v
Θ
MCBR

)
is chosen from the set {ψ(θ), θ ∈ Θ}

such that it can minimize the expected error over the uncertainty class as shown in (2.3).

2.3 Performance Assessment

2.3.1 Simulation Setup

The simulations involve GRNswith genes regulated according to the commonly used

majority vote rule [74]. Regulations in the network are governed by a regulatory matrix

R, where Ri j represents the regulatory relation from gene j to gene i as follows:

Ri j =


1 the relation from j to i is activating

−1 the relation from j to i is suppressive

0 there is no relation from j to i

(2.11)

A given gene takes the value 1 if the majority of its regulator genes up-regulate it and

the value 0 if the majority of the predictor genes down-regulate it; otherwise, it remains
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unchanged. Under this rule,

Xi(t +1) = fi
(
X(t)

)
=


1 if ∑ j Ri jX j(t)> 0

0 if ∑ j Ri jX j(t)< 0

Xi(t) if ∑ j Ri jX j(t) = 0

(2.12)

We assume that for certain gene pairs, we are aware of the existence of regulatory

relations based on prior biological knowledge; however, the precise type of regulation (i.e.,

activating or suppressive) may not be known. Therefore, the uncertain parameters in our

simulations would be these regulatory relations. Each uncertain parameter θi, correspond-

ing to an uncertain regulatory relation of an unknown type, can take on two different values:

1 for activating regulation and −1 for suppressive regulation. For a network with k uncer-

tain regulations, the uncertainty class Θ contains 2k potential networks that differ in one

or more of these uncertain regulations. The proposed experimental design method is used

to decide which uncertain parameter would be better to determine first, or equivalently,

which experiment should be conducted first, in order to maximally reduce the uncertainty

in the current network model and thereby optimally improve the performance of structural

intervention.

After performing the optimal experiment, we are left with a smaller number of un-

certain parameters that lead to a reduced uncertainty class of networks. Suppose we have

performed an experiment to estimate the parameter θi and that the experiment has identi-

fied the true value to be θi = µi. We denote the reduced uncertainty class as Θ|θi = µi and

the robust intervention for this reduced uncertainty class as ψΘ|θi=µi
MCBR . An effective experi-

ment selection strategy should allow us to find out the best parameter θi∗ to be determined
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first, such that on average the optimal robust intervention ψΘ|θi∗=µi∗
MCBR for the reduced uncer-

tainty classΘ|θi∗ = µi∗ would outperform other robust interventions on the true (unknown)

network after identifying θ j ( j ̸= i∗).

To illustrate the proposed experimental design strategy, consider k = 5 uncertain

parameters in the GRN. Suppose the five potential experiments, each identifying one of

the five parameters, θ1,θ2, · · · ,θ5, have been ranked to obtain an ordered θ1′ ,θ2′ , · · · ,θ5′ .

Performing the experiment Ti′ leads to the identification of the unknown parameter θi′ and

results in the expected remaining MOCU MΨ(Θ;θi′), such that

MΨ(Θ;θ1′)< MΨ(Θ;θ2′)< · · ·< MΨ(Θ;θ5′). (2.13)

To measure the overall gain for performing the optimal experiment T1′ relative to other

suboptimal experiments, we define

ξi = ηµ

(
ψ

Θ|θ(i+1)′=µ(i+1)′

MCBR

)
−ηµ

(
ψΘ|θ1′=µ1′

MCBR

)
, (2.14)

where µ is the vector of true parameter values corresponding to θ . For example, ξ1 de-

notes the difference between the cost ηµ

(
ψΘ|θ2′=µ2′

MCBR

)
of applying the robust intervention,

derived for the reduced uncertainty class that results from conducting the second best ex-

periment T2′ , to the true network and the cost ηµ

(
ψΘ|θ1′=µ1′

MCBR

)
of applying the robust in-

tervention obtained from conducting the optimal experiment T1′ . ξi (i = 1,2, ...,k− 1)

quantifies the expected benefit of performing the best experiment predicted by the pro-

posed strategy compared to other experiments, in terms of the operational cost that could

be further reduced by performing the selected experiment.
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2.3.2 Simulations on Synthetic Networks

To evaluate the performance of the proposed experimental design strategy, we have

performed simulations based on synthetic BNps. In our simulations, k = 2,3,4,5 uncertain

parameters are considered, assuming a uniform distribution f (θ) for all potential networks

θ ∈Θ. The analysis can be easily extended to other distributions. To make the simulations

computationally tractable, we consider networkswith six genes,X1, ...,X6,where each gene

has three predictor genes. To generate a random BNp, we randomly select three predictor

genes for each gene with uniform probability and randomly assign 1 (up-regulation) or−1

(down-regulation) to the corresponding entries in the regulatorymatrixR. The perturbation

probability is set to p = 0.001. States for which X1 = 1 are assumed to be undesirable, so

that the set of undesirable states is U = {32, ...,63}. For a given k, we generate 1,000

synthetic BNps and randomly select 50 different sets of k edges (i.e., regulations) for each

network. In each case, the regulatory information of other edges is retained while that of

the k selected edges is assumed to be unknown.

From a translational perspective, the salient issue in evaluating an experimental de-

sign scheme using synthetic networks is controllability. Unlike real biological networks,

which are controllable to a certain extent, many randomly generated networks may not be

controllable. In other words, regardless of the intervention applied to the network, the SSD

shift that results from the intervention may be negligible. For such networks, the differ-

ence between optimal and suboptimal experiments may be insignificant. For this reason,

to examine the practical impact of experimental design, we must take controllability into
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Table 2.1. The average gain of conducting the optimal experiment predicted by the pro-
posed experimental design strategy in comparison to other suboptimal experiments.

Average ξ1 Average ξ2 Average ξ3 Average ξ4

k = 2 0.0584 N/A N/A N/A
k = 3 0.0544 0.0718 N/A N/A
k = 4 0.0545 0.0750 0.0855 N/A
k = 5 0.0474 0.0696 0.0803 0.0863

account. In this work, the percentage decrease of total steady-state mass in undesirable

states after intervention is used as a measure of controllability:

∆ =
πU − π̃U( j∗,s∗)

πU
×100%,

where controllable networks have a larger ∆.

Table 2.1 summarizes the average gain of performing the optimal experiment pre-

dicted by the proposed strategy over other suboptimal experiments. The average is taken

over different sets of uncertain regulations and different networks with ∆ > 40%. For

k = 2, we calculate ξ1; for k = 3, we calculate ξ1 and ξ2; and so on. As we can see in

Table 2.1, the average gain is always positive. The results in Table 2.1 clearly show that

the robust intervention derived from the uncertainty class reduced by conducting the opti-

mal experiment outperforms the robust intervention that results from any other suboptimal

experiment on average. We can also see that the average ξi gets larger for a larger i. For

example, for k = 4, average ξ1 = 0.0545 < average ξ3 = 0.0855, which shows that, on

average, the gain of determining θ1′ over θ4′ is larger than that of determining θ1′ over θ2′ .

This demonstrates that MΨ(Θ, i) can serve as an effective measure for prioritizing poten-
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Table 2.2. The average gain of conducting the optimal experiment predicted by the pro-
posed experimental design strategy in comparison to a randomly selected experiment.

Average Gain

k = 2 0.0291
k = 3 0.0430
k = 4 0.0533
k = 5 0.0571

tial experiments. Furthermore, this suggests that we could expect larger gains when we

compare the optimal experiment with an experiment that has a larger MΨ(Θ;θi).

A salient question is how much we can gain by conducting an optimal experiment

predicted by the proposed method over a randomly selected experiment. Since we would

normally have to randomly pick an experiment unless there are reasons to prefer a specific

experiment over the rest, such comparison would be useful in demonstrating the efficacy

of the proposed method in a practical setting. We calculate the average gain of applying

the robust intervention derived from the reduced uncertainty class obtained by conducting

the optimal experiment instead of the intervention that results from a randomly chosen

experiment, for all networks with ∆ > 40%. The simulation results are shown in Table 2.2.

It should be noted that the randomly chosen experiment may be identical to the optimal

experiment (in fact, they are identical with probability 1/k), which is the main reason that

the performance gain shown Table 2.2 is typically smaller than the gain shown in Table 2.1.

For example, the average ξ1 in Table 2.1 for k = 2 is almost two times the average gain for

k = 2 in Table 2.2, which is due to the fact that the randomly picked experiment will be

identical to the optimal experiment predicted by our method about 50% of the time. We can
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also see in Table 2.2 that the average gain increases for a larger k. For example, while the

average gain for k = 2 is 0.0291, it is 0.0571when k = 5. This implies that the performance

gap between optimal and random selection is expected to increase as the uncertainty of the

network increases.

As mentioned earlier, previous works for experimental design in gene regulatory

networks are based on entropy reduction of the model. In [55], the information gain for

each experiment is defined as the difference between the model entropy before experiment

and the conditional entropy of conducting the experiment:

I(Θ;Ti) = H(Θ)−H(Θ|Ti)

= H(Θ)+∑
θ ,ϕ

Pr(θ ,θi = ϕ) log2 Pr(θ |θi = ϕ), i = 1,2, ...,k, (2.15)

where H(Θ) is the model entropy and Pr(.) is the probability operator. The chosen experi-

ment according to [55] is the one that maximizes (2.15). In our setting (uniform distribution

and independent uncertain parameters), with k uncertain parameters, H(Θ) would be k and

I(Θ;Ti) would be k−1 for each potential experiment. Therefore, this experimental design

scheme does not discriminate between potential experiments and as a result it would per-

form like a random selection approach. This makes sense because (2.15) only takes into

account the stochastic properties of the model without considering the objective. Through-

out this chapter, whenever we compare our method with the random experiment strategy,

in fact, we are also comparing our method with experimental design methods based on

entropy, such as [55].

We have compared ηµ

(
ψΘ|θ1′=µ1′

MCBR

)
and ηµ

(
ψΘ|θi′=µi′

MCBR

)
(i′ ̸= 1′) and measured
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the proportion of “success” (predicted optimal experiment T1′ outperforms the subopti-

mal experiment Ti′), “failure” (Ti′ outperforms T1′), and “tie” (T1′ and Ti′ provide identi-

cal intervention performance). These results are summarized in Table 2.3. In this table,

θ1′ ∼ θi′ denotes the comparison between ηµ

(
ψΘ|θ1′=µ1′

MCBR

)
and ηµ

(
ψΘ|θi′=µi′

MCBR

)
. When

comparing θ1′ ∼ θi′ , a “tie” means that conducting either of the two experiments results

in the same intervention performance after the uncertainty reduction, a “success” means

that ηµ

(
ψΘ|θ1′=µ1′

MCBR

)
< ηµ

(
ψΘ|θi′=µi′

MCBR

)
, and a “failure” means that ηµ

(
ψΘ|θ1′=µ1′

MCBR

)
>

ηµ

(
ψΘ|θi′=µi′

MCBR

)
. We can see that the “success” proportion is consistently larger than the

“failure” proportion, which explains why the gain in Table 2.1 is always positive. For

k > 2, the proportion of “failure” decreases and the proportion of “success” increases as

we compare ψΘ|θ1′=µ1′
MCBR with ψΘ|θi′=µi′

MCBR , i′ ̸= 1′, for a larger i. Moreover, for k = 2, the

proportion of “tie” is larger than that for k > 2. This is because the size of the uncertainty

class of networks is small for k = 2 and therefore it is more likely that conducting either

experiment yields the same robust intervention.
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Table 2.3. The proportion of success, failure, and tie of the optimal experiment predicted by the proposed strategy in comparison
to other suboptimal experiments.

θ1′ ∼ θ2′ θ1′ ∼ θ3′ θ1′ ∼ θ4′ θ1′ ∼ θ5′

Success Failure Tie Success Failure Tie Success Failure Tie Success Failure Tie

k = 2 38.07% 15.29% 46.64% N/A N/A N/A N/A N/A N/A N/A N/A N/A
k = 3 40.76% 22.32% 36.92% 42.84% 15.30% 41.86% N/A N/A N/A N/A N/A N/A
k = 4 40.97% 25.82% 33.21% 42.98% 19.21% 37.82% 43.75% 15.95% 40.30% N/A N/A N/A
k = 5 43.00% 28.76% 28.24% 45.02% 22.62% 32.36% 45.63% 18.32% 36.05% 46.17% 15.96% 37.87%
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Table 2.4. The proportion of overall success, overall failure, and overall tie of the opti-
mal experiment predicted by the proposed strategy in comparison to all other suboptimal
experiments.

θ1′ ∼ θi′(i ̸= 1)
Overall Success Overall Failure Overall Tie

k = 2 38.07% 15.29% 46.64%
k = 3 44.86% 28.33% 26.81%
k = 4 44.90% 37.10% 18.00%
k = 5 44.71% 43.13% 12.16%

Table 2.4 shows the proportions of “overall success”, “overall failure”, and

“overall tie” for the proposed experimental design strategy. Here, an “overall suc-

cess” means that ηµ

(
ψΘ|θ1′=µ1′

MCBR

)
6 ηµ

(
ψΘ|θi′=µi′

MCBR

)
for all i′ ̸= 1′ (except in the case

that ηµ

(
ψΘ|θ1′=µ1′

MCBR

)
= ηµ

(
ψΘ|θi′=µi′

MCBR

)
for all i′ ̸= 1′). An “overall tie” means that

ηµ

(
ψΘ|θ1′=µ1′

MCBR

)
= ηµ

(
ψΘ|θi′=µi′

MCBR

)
for all i′ ̸= 1′. Finally, an “overall failure” means that

ηµ

(
ψΘ|θ1′=µ1′

MCBR

)
> ηµ

(
ψΘ|θi′=µi′

MCBR

)
for at least one i′ ̸= 1′. As this table shows, the pro-

portion of “overall success” is larger than that of “overall failure” for all k. The proportion

of “tie” decreases with increasing k, as the size of the uncertainty class of networks in-

creases. While the proportion of “overall tie” decreases with increasing k, the proportion

of “overall failure” increases. This is intuitive, since by increasing the number of uncertain

regulations k, it becomes more difficult to have an “overall success”, since ψΘ|θ1′=µ1′
MCBR has

to outperform all other robust interventions, whose number increases with k.

Now, let us consider the difference between the expected remaining MOCU of the

optimal experiment and that of a suboptimal experiment:

∆MOCU = MΨ(Θ;θi′)−MΨ(Θ;θ1′)
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Figure 2.1. The empirical conditional expectation of the gain E
[
ξi|∆MOCU

]
given the

difference in MOCU between the optimal and suboptimal experiments. Synthetic BNps
with five uncertain regulations are considered. (a) θ1′ ∼ θ2′ . (b) θ1′ ∼ θ3′ . (c) θ1′ ∼ θ4′ .
(d) θ1′ ∼ θ5′ .

for i′ ̸= 1′. Figure 2.1 shows the empirical conditional expectation, E
[
ξi|∆MOCU

]
, of ξi

(i = 1,2,3,4) given ∆MOCU estimated based on all random networks with ∆ > 40%. The

average gain is positive for all ∆MOCU. This shows that, on average, the robust interven-

tions obtained by conducting the optimal experiments predicted by our proposed method

outperform the robust interventions obtained from other suboptimal experiments when ap-

plied to the true network. Moreover, as ∆MOCU increases, the average gain increases

in a more or less linearly proportional manner. Another interesting observation is that
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Figure 2.2. Effect of the controllability of the synthetic BNp on the average performance
gain of the proposed experimental design method. (a) Networks with 2 uncertain regula-
tions. (b) Networks with 3 uncertain regulations. (c) Networks with 4 uncertain regula-
tions. (d) Networks with 5 uncertain regulations.

E
[
ξi|∆MOCU

]
does not significantly differ for different i. This result is intuitive, since

we expect the gain to depend on the estimated ∆MOCU, and not the predicted rank of the

suboptimal experiment.

To see how the controllability ∆ measured in terms of the SSD shift that can be

achieved by optimal intervention, affects the average gain of the proposed experimen-

tal design strategy, we compute the average ξi (i = 1,2,3,4) for random networks whose

controllability (i.e., ∆) exceeds a certain minimum value, where we consider minimum ∆
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Figure 2.3. Performance comparison based on a sequence of experiments. (a) The average
cost of robust intervention after performing the sequence of experiments predicted by the
proposed strategy and the average cost after performing randomly selected experiments.
(b) The performance difference between the proposed approach and the random selection
approach.

ranging between 0% and 90%. According to Figure 2.2, the average gain of ξi increases

as the minimum ∆ increases, regardless of i and the number of uncertain regulations k. For

example, for k = 5 uncertain regulations in the network, the average gain based on com-

paring θ1′ to θ5′ is slightly below 0.07 for all networks, but it increases to almost 0.1 when

we consider only highly controllable networks with ∆ > 90%.

Figure 2.3 compares the performance of the proposed experimental design method

and that of the random selection approach based on a sequence of experiments. Assuming

k = 5 uncertain regulations in each network, we perform 5 consecutive experiments until

the network does not contain any uncertainty. First, we consider adopting the proposed ex-

perimental design strategy, where at each step, we select the optimal experiment predicted

by our method, conduct the experiment to reduce the uncertainty class, and repeat this pro-

cess until the network is fully identified. For comparison, we perform similar simulations
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by conducting a randomly selected experiment at each step until there is no uncertainty

about the network. In both cases, the network will be fully identified after conducting 5

experiments. To compare the performance of the two approaches, after conducting each

experiment, we derive the robust intervention based on the reduced network class, apply it

to the true (unknown) network, and measure the cost of intervention (i.e., total steady-state

mass in undesirable states). The average performance is estimated based on 1,000 synthetic

BNps and 50 different sets of uncertain regulations for each of these networks. Let ψopt
MCBR

denote the robust intervention obtained by taking the proposed strategy and let ψ rnd
MCBR de-

note the robust intervention obtained by performing randomly selected experiments. As

seen in Figure 2.3(a), the curves corresponding to these two methods begin and end at

the same average cost, but the curve that corresponds to the proposed experimental design

strategy drops much more sharply at the beginning compared to the random selection ap-

proach. This clearly demonstrates the effectiveness of the proposed method in reducing the

network uncertainty. Figure 2.3(b) plots the difference between the average ηµ(ψ rnd
MCBR)

and the average ηµ(ψopt
MCBR). In both figures, the performance difference is especially

large for the first few experiments and ηµ(ψopt
MCBR) quickly approaches the minimum cost

attained by the optimal intervention. This fast convergence is important, considering the

difficulty of performing a large number of experiments in real applications.

2.3.3 Performance Evaluation Based on the Mammalian Cell Cycle Network

In this section, we evaluate the performance of the proposed experimental design

strategy based on the mammalian cell cycle network. The cell cycle involves a sequence
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Figure 2.4. A gene regulatory network model of the mammalian cell cycle. Normal arrows
represent activating regulations and blunt arrows represent suppressive regulations.

of events resulting in the duplication and division of the cell. It occurs in response to growth

factors and, under normal conditions, it is a tightly controlled process. A regulatory model

for the mammalian cell cycle is proposed in [66]. This model contains 10 genes: CycD,

Rb, p27, E2F, CycE, CycA, Cdc20, Cdh1, UbcH10, and CycB. We represent this gene

regulatory network by a BNp, where the perturbation probability is set to p = 0.001 and

genes are numbered in the previous order. The regulatory model for this network is shown

in Figure 2.4. The blunt arrows represent suppressive regulations and the normal arrows

represent activating regulations. The cell cycle in mammals is controlled via extra-cellular

stimuli. Positive stimuli activate Cyclin D (CycD) in the cell leading to cell division. CycD
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Figure 2.5. The steady state distribution of the mammalian cell cycle network modeled by
a BNp with perturbation probability p = 0.001.

inactivates Rb protein, a tumor suppressor, via phosphorylation. When gene p27 and ei-

ther CycE or CycA are active, the cell cycle stops, because Rb can be expressed even in

the presence of cyclins. States in which the cell cycle continues even in the absence of

stimuli are associated with cancerous phenotypes. For this reason, we regard states with

down-regulated CycD, Rb, and p27 (X1 = X2 = X3 = 0) as undesirable states, representing

cancerous phenotypes. The network SSD is shown in Figure 2.5, where the total undesir-

able steady-state mass is πU = 0.3461without intervention. Suppose we want to reduce the

steady-state probability mass of the set of undesirable states, U = {0, ...,127}, via struc-

tural intervention. The optimal intervention is to change the transition from the input state

0000000111 to the output state 1110001011 by perturbing the regulatory function such that

F̃(0000000111) = 1110001011. For all other states, their output states remain unchanged

after the intervention.

To evaluate the proposed experimental design method based on the given network,

we again assume that k (= 2,3,4,5) regulations are unknown. For each k, we randomly
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Table 2.5. The average gain of conducting the optimal experiment predicted by the pro-
posed experimental design strategy in comparison to other suboptimal experiments. The
10-gene mammalian cell cycle network with k unknown regulations are considered.

Average ξ1 Average ξ2 Average ξ3 Average ξ4

k = 2 0.0208 N/A N/A N/A
k = 3 0.0207 0.0261 N/A N/A
k = 4 0.0217 0.0337 0.0379 N/A
k = 5 0.0365 0.0389 0.0395 0.0425

select 50 different sets of k regulations from the network, for which we assume their reg-

ulatory information is not known, and apply the experimental design strategy to predict

the optimal experiment to be performed. Table 2.5 summarizes the average gain of the

predicted optimal experiment over other suboptimal experiments for different values of k.

The average gain is positive in all cases, as in our simulations based on synthetic BNps.

Furthermore, the average gain ξi increases with i. For example, when k = 5,

average ξ4 > average ξ3 > average ξ2 > average ξ1.

Table 2.6 shows the proportion of “success”, “failure”, and “tie” for applying the

proposed experimental design strategy. The results based on the mammalian cell cycle

network are consistent with the results obtained from the synthetic networks. The “suc-

cess” rate is consistently and significantly higher than the “failure” rate in all cases, thereby

demonstrating the effectiveness of the proposed method. The proportion of “success” in-

creases whenwe compare the optimal experiment with an experiment with largerMΨ(Θ, i′)

(i.e., for larger i′), which shows that the MOCU provides a sound mathematical basis for

predicting the effectiveness of potential experiments.
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Table 2.6. The proportion of success, failure, and tie of the optimal experiment predicted by the proposed strategy in comparison
to other suboptimal experiments. The 10-gene mammalian cell cycle network with k unknown regulations are considered.

θ1′ ∼ θ2′ θ1′ ∼ θ3′ θ1′ ∼ θ4′ θ1′ ∼ θ5′

Success Failure Tie Success Failure Tie Success Failure Tie Success Failure Tie
k = 2 40.00% 24.00% 36.00% N/A N/A N/A N/A N/A N/A N/A N/A N/A
k = 3 52.00% 30.00% 18.00% 54.00% 26.00% 20.00% N/A N/A N/A N/A N/A N/A
k = 4 48.00% 24.00% 28.00% 56.00% 16.00% 28.00% 60.00% 12.00% 28.00% N/A N/A N/A
k = 5 56.00% 26.00% 18.00% 60.00% 20.00% 20.00% 60.00% 14.00% 26.00% 68.00% 10.00% 22.00%
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Figure 2.6. A gene regulatory model for the p53 network. Normal arrows represent acti-
vating regulations and blunt arrows represent suppressive regulations.

2.3.4 Performance Evaluation Based on the Pathways Involving p53 Gene

We now investigate performance of the proposed experimental design method on

a p53 network [75]. p53 is a tumor suppressor gene which plays a major role in DNA

damage regulation and programmed cell death (apoptosis). It has been observed that p53 is

mutated in 30-50% of commonly occurring human cancers [76]. Under normal conditions,

the expression level of p53 remains low via the control ofMDM2, an oncogene that is often

highly expressed in tumor cells. When DNA damage occurs, p53 is up-regulated and either

activates other genes involved in DNA repair or it initiates apoptosis. Figure 2.6 shows key

pathways that involve the regulation of p53 (see [77] for a detailed dynamical analysis of a

very similar network). In the model of Figure 2.6, when a DNA double strand break occurs,
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Table 2.7. The average gain of conducting the optimal experiment predicted by the pro-
posed experimental design strategy in comparison to other suboptimal experiments. The
6-gene p53 network with k unknown regulations is considered.

Average ξ1 Average ξ2 Average ξ3 Average ξ4

k = 2 0.0386 N/A N/A N/A
k = 3 0.0466 0.0434 N/A N/A
k = 4 0.0343 0.0489 0.0657 N/A
k = 5 0.0387 0.0597 0.0622 0.0632

DNA DSBs becomes 1. The model contains five genes: MDM2, p53, WIP1, CHK2, and

ATM.

Like the mammalian cell cycle network, we model the p53 network as a BNp with

perturbation probability p = 0.001 and 6 nodes: X1 (DNA DSBs), X2 (MDM2), X3 (p53),

X4 (WIP1), X5 (CHK2), and X6 (ATM). The presence of DNA damage (X1 = 1), perma-

nently up-regulated MDM2 (X2 = 1) and permanently down-regulated p53 (X3 = 0) would

result in an abundance of cancerous cells. For example, TCGA studies on 138 patients with

glioblastoma (a kind of brain tumor) have shown that 32% and 12% of them had mutated

p53 and MDM2 genes, respectively. Therefore, states with X1 = 1, X2 = 1, and X3 = 0

are considered as the undesirable states; i.e., U = {48, ...,55}. The steady-state proba-

bility mass of undesirable states before and after optimal structural intervention is 0.3478

and 0.0289, respectively. Our simulations use the same settings as for the mammalian cell

cycle network analysis.

Table 2.7 shows the average gain of conducting optimal experiments instead of other

suboptimal experiments. The average gain is always positive and in most cases average
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ξi increases with i. However, there is an anomaly for k = 3, where average ξ1 is larger

than average ξ2. Because the average results are obtained based on a single network and

50 different selections of uncertain parameters, we should expect such occurrences since

we are not averaging over a large set of simulations as with the synthetic networks. Table

2.8 evaluates the performance of the predicted optimal experiments in terms of percent-

ages of “success”, “failure”, and “tie”. The “success” percentage is always larger than the

“failure” percentage and it becomes larger when we compare the optimal experiment with

an experiment corresponding to a larger i′. Again, there are a few anomalies, such as the

decrease of “success” percentage for k = 3 and k = 4 when the optimal experiment is com-

pared against the second and third optimal experiments – again not surprising given the

small number of observations.

2.4 Discussion

Prioritization of potential experiments is of great practical import in systems biology

and translational medicine. In this work, we have proposed a novel framework for evalu-

ating the expected impact of a potential experiment in reducing the amount of uncertainty

present in a dynamic network model. We estimate the mean objective cost of uncertainty

expected to remain after conducting a specific experiment and select the one expected to

optimally reduce network uncertainty. Extensive simulations based on both synthetic and

actual networks show that the proposed experimental design strategy significantly outper-

forms random selection.
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Table 2.8. The proportion of success, failure, and tie of the optimal experiment predicted by the proposed strategy in comparison
to other suboptimal experiments. The 6-gene p53 network with k unknown regulations is considered.

θ1′ ∼ θ2′ θ1′ ∼ θ3′ θ1′ ∼ θ4′ θ1′ ∼ θ5′

Success Failure Tie Success Failure Tie Success Failure Tie Success Failure Tie

k = 2 26.00% 8.00% 66.00% N/A N/A N/A N/A N/A N/A N/A N/A N/A
k = 3 34.00% 6.00% 60.00% 30.00% 4.00% 66.00% N/A N/A N/A N/A N/A N/A
k = 4 46.00% 24.00% 30.00% 44.00% 16.00% 40.00% 52.00% 14.00% 34.00% N/A N/A N/A
k = 5 62.00% 18.00% 20.00% 62.00% 8.00% 30.00% 64.00% 8.00% 28.00% 66.00% 4.00% 30.00%
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The proposed experimental design method is objective-based and herein our objec-

tive is network intervention. Therefore, the computational burden of the design method is

mainly based on the associated network intervention strategy. A salient issue for network

intervention methods is their inherent computational complexity [78, 79, 80]. The com-

plexity of network intervention grows exponentially with network size. Computational

complexity for experimental design is much greater because we need to find the optimal

intervention for every potential network inside the uncertainty class.

Finally, it is worth noting that the problem considered in this work bears conceptual

similarity to the online learning problems that have been gaining broad interest in recent

years. In online learning, sequential measurements are made, one at a time, to improve an

uncertain model. The online knowledge gradient (KG) algorithm is an interesting example

that deals with a general class of such online learning problems [81]. It is assumed that

one of M alternatives can be measured at each time step, which yields a random reward

with an unknown mean and known variance (corresponding to measurement error). The

main goal is to make sequential measurements that will maximize the expected total re-

ward to be collected over a time period. To achieve this goal, in every time step, one tries

to identify the optimal KG policy that will allow one to choose the single best measurement

(among the M available alternatives) that is expected to bring forth the largest improve-

ment. The alternative measurements (or rewards) are typically assumed to be independent

Gaussian random variables, but one can incorporate prior beliefs about the measurements

and their correlations into the problem via their joint distribution. Although the online
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learning problem and the aforementioned KG algorithm bear some conceptual similari-

ties to the sequential experimental design problem considered here and our MOCU-based

strategy, there are critical differences. For example, our approach does not require direct

modeling of the distribution of the reward (or cost). Instead, we focus on the uncertainty

regarding the underlying network as it pertains to the cost of the operation of interest. Even

though our ultimate goal is minimizing the cost, it is indirectly attained by optimally im-

proving our knowledge regarding the network in a way that is pertinent to the operation

(and its cost) to be performed based on the network.
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3 APPROXIMATE EXPERIMENTAL DESIGN FOR GENE

REGULATORY NETWORKS 1

Although, the experimental design method proposed in the previous chapter is op-

timal, it is computationally expensive. Since our final objective is to improve the perfor-

mance of the therapeutic interventions, the optimal experimental design method involves

finding optimal interventions for all networks which are compatible with the prior knowl-

edge. Finding optimal interventions is computationally expensivewhose complexity grows

exponentiallywith the number of genes in network. Therefore, the computational complex-

ity of finding optimal experiment can be prohibitively high for large networks. Thus, it is

inevitable to construct a smaller network via deleting some genes from the original large

size network and then estimate the optimal interventions using the resulting reduced net-

work. Generally the goal in network reduction methods is to produce networks of smaller

size while the dynamical behavior of the original network is preserved. There have been

some efforts for network reduction to reduce the complexity of designing interventions

[79, 80, 82].

In this chapter, we propose a novel cost function for the gene deletion process which

takes into account the disruption in the order of potential experiments when they are ranked

according to the proposed experimental design method. Since experiments are ranked

based upon the expected remaining MOCU or the MOCU that is expected to remain af-
1Part of this chapter is reprinted with permission from “Efficient Experimental Design for Uncertainty Re-
duction in Gene Regulatory Networks”, R. Dehghannasiri, B.-J. Yoon, and E. R. Dougherty, BMC Bioin-
formatics, vol. 16, no. Suppl 13, p. S2, 2015.
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ter performing the experiment, we desire that the network reduction step has a low effect

on the expected remaining MOCU corresponding to the potential experiments. When the

gene (or genes) suggested by the cost function are deleted from network, the optimal (and

robust) interventions are estimated using the reduced networks and then they are used for

calculating expected remaining MOCU for prioritizing potential experiments. We show

the effectiveness of our proposed cost effective experimental design method through sim-

ulations on synthetic and real networks. The simulation results verify that our method can

perform comparable to the optimal experimental design method with much lower compu-

tations.

MOCU-based optimal experimental design is very general and does not even require

a Markovian network. As we will see, finding the best gene to delete is also very gen-

eral; however, once the genes are deleted, the regulatory structure of the original network

must be mapped onto a corresponding regulatory structure on the reduced network, an op-

timal intervention must be found on the reduced network, and that intervention must be

induced to the full network. Reduction and inducement are nontrivial and depend on the

nature of the regulatory structure. The problem has been addressed for Boolean networks

in [82], to which we refer, and a theoretical analysis is given in [79], where it is noted that

the methodology applies to probabilistic Boolean networks (PBNs) [47] by applying the

reduction to each constituent BN of the PBN. Moreover, whereas we will restrict interven-

tion to rank-one perturbations [49], which provide a one-time alteration of the regulatory

logic, the reduction-inducement paradigm applies to other forms of intervention [79, 82].
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3.1 Approximate Experimental Design Method

We briefly recall the optimal experimental design method proposed in the previous

chapter.

Suppose there are k uncertain parameters θ = (θ1,θ2, ...,θk), such that θ ∈ Θ, and

that there are k potential experiments T1, T2, ..., Tk corresponding to k uncertain parame-

ters. It is assumed that experiment Ti, which might be a complex experiment consisting

of several sub-experiments, fully identifies θi. The goal of experimental design is to find

out which experiment Ti, 1≤ i≤ k should be conducted first, or how to rank potential ex-

periments effectively. In the last chapter, we showed that the optimal experiment Ti∗ to be

conducted first is obtained as:

i∗ = argmin
i=1,2,...,k

MΨ(Θ;θi), (3.1)

where MΨ(Θ;θi) is the expected remaining MOCU after conducting experiment Ti which

can be obtained as

MΨ(Θ;θi) = Eθ̄i

[
MΨ(Θ|θi = θ̄i)

]
(3.2)

such that

MΨ(Θ|θi = θ̄i) = Eθ |θi=θ̄i

[
ηθ |θi=θ̄i

(
ψΘ|θi=θ̄i

IBR

)
−ηθ |θi=θ̄i

(
ψ(θ |θi = θ̄i)

)]
, (3.3)

According to (3.2), calculating the expected remaining MOCU requires finding the

optimal intervention ψ(θ) for each θ ∈ Θ and the robust intervention ψΘ|θi=θ̄i
IBR for each

possible remaining uncertainty class. The complexity of finding optimal interventions

grows exponentially with network size n. For finding an optimal single-gene structural
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intervention, we need to search among all possible 2n× 2n state pairs and calculate the

new steady-state probability π̃i for each state i in the set of undesirable statesU . Thus, the

complexity isO(23n). This heavy computational cost motivates us to reduce the size of net-

work in order to reduce the complexity of finding optimal interventions, thereby reducing

the complexity of the experimental design.

Assuming that gene g is deleted from a network with regulatory function F, we de-

fine a regulatory function Fred for the reduced network. Doing this for each network with

uncertainty vector θ in Θ produces the uncertainty class, Θg, of reduced networks via the

mapping θ → θ g.

To approximate the optimal intervention for a network inΘ, we use the corresponding

network in Θg, find the optimal intervention for the reduced network ψ(θ g), and then

induce the intervention to the original network inΘ. This approximate optimal intervention

denoted by ψ(θ ;g) is called the induced optimal intervention. Also, to find the induced

robust intervention, ψΘ
IBR(ind;g), for Θ, first we find the robust intervention, ψΘg

IBR, for Θg

using (2.1) and then find the induced robust intervention ψΘ
IBR(ind;g) from ψΘg

IBR.

As illustrated in Figure 3.1, in the proposed approximate experimental design

method, we find the best gene g∗ for deletion via a novel cost function c(g) and then ob-

tain the induced optimal and robust interventions needed for the MOCU calculations in

the experimental design step by inducing interventions from uncertainty class of reduced

networks Θg∗ to the original uncertainty class Θ.

We now aim to find a gene whose deletion results in minimum degradation in the
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Figure 3.1. An illustrative view of the general approach of the proposed approximate ex-
perimental design method.

experimental design process. Keeping in mind that the experimental design is based on the

expected remaining MOCU for potential experiments, let Mg
Ψ(Θ|θi = θ̄i) be the remaining

MOCU when uncertain parameter i has value θ̄i and we delete gene g,

Mg
Ψ(Θ|θi = θ̄i) = Eθ |θi=θ̄i

[
ηθ |θi=θ̄i

(
ψΘ|θi=θ̄i

IBR (ind;g)
)
−ηθ |θi=θ̄i

(
ψ(θ |θi = θ̄i)

)]
. (3.4)

We define the cost of deleting gene g by

c(g) =
k

∑
i=1

∣∣∣Mg
Ψ(Θ;θi)−MΨ(Θ;θi)

∣∣∣, (3.5)

where

Mg
Ψ(Θ;θi) = Eθ̄i

[
Mg

Ψ(Θ|θi = θ̄i)
]
. (3.6)

The gene g∗ minimizing the cost function in (3.5) is selected for deletion:

g∗ = argmin
g∈1,2,...,n

c(g). (3.7)

The intuition behind this cost function is that our choice of optimal experiment is based

upon the expected remaining MOCU corresponding to each experiment. Therefore, we

desire that the network reduction step has minimum effect on these quantities. Deleting
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genes increases the inherent uncertainty of the network because the induced robust inter-

vention cannot perform better than the original robust intervention on average. We want

to reduce this increase in the uncertainty of model caused by network reduction. Since

Eθ |θi=θ̄i

[
ηθ |θi=θ̄i

(
ψΘ|θi=θ̄i

IBR (ind;g)
)]
≥ Eθ |θi=θ̄i

[
ηθ |θi=θ̄i

(
ψΘ|θi=θ̄i

IBR
)]
, (3.8)

Mg
Ψ(Θ;θi)≥MΨ(Θ;θi). Hence, we can omit the absolute value operator in (3.5) to obtain

g∗ = argmin
g

k

∑
i=1

(
Mg

Ψ(Θ;θi)−MΨ(Θ;θi)
)

= argmin
g

k

∑
i=1

Mg
Ψ(Θ;θi), (3.9)

where the second equality follows from the fact that MΨ(θ ;θi) does not depend on the

gene being deleted. Expanding Mg
Ψ(Θ;θi) yields

g∗ = argmin
g

{ k

∑
i=1

Eθ̄i

[
Eθ |θi=θ̄i

[
ηθ |θi=θ̄i

(
ψΘ|θi=θ̄i

IBR (ind;g)
)
−ηθ |θi=θ̄i

(
ψ(θ |θi = θ̄i)

)]]}
= argmin

g

k

∑
i=1

Eθ̄i

[
Eθ |θi=θ̄i

[
ηθ |θi=θ̄i

(
ψΘ|θi=θ̄i

IBR (ind;g)
)]]

. (3.10)

The minimization problem in (3.10) is equivalent to the one in (3.7). Based on the cost

function in (3.10), for each gene g, we find the expected performance of the induced robust

intervention ψΘ|θi=θ̄i
IBR (ind;g) across the remaining uncertainty class Θ|θi = θ̄i, then take

the expectation of this average performance relative to the marginal distribution of the

uncertain parameter θi, and finally sum all values found for the k uncertain parameters.

After removing gene g∗, we find the expected remaining MOCU corresponding to

each experiment using equation (3.2) by replacing ψ(θ |θi = θ̄i) with ψ ind(θ |θi = θ̄i;g∗)

and ψΘ|θi=θ̄i
IBR with ψΘ|θi=θ̄i

IBR (ind;g∗). An abstract form of the proposed experimental design

method has been given in Algorithm 1. A step by step toy example illustrating Algorithm
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Algorithm 1 Approximate experimental design
1: input: Θ, Ψ, f (θ), θ = (θ1, ...,θk)
2: output: Ti∗ , i∗ ∈ {1., , , .,k}: the estimated optimal experiment to be conducted first
3: for g = 1 : n do
4: cost(g)← 0
5: for i = 1 : k do
6: for all θ̄i do
7: build remaining uncertainty class of reduced networks Θg|θi = θ̄i

8: compute conditional density function f (θ |θi = θ̄i)

9: find induced robust intervention ψΘ|θi=θ̄i
IBR (ind;g)

10: hg(θi)← Eθ |θi=θ̄i

[
ηθ |θi=θ̄i

(
ψΘ|θi=θ̄i

IBR (ind;g)
)]

11: cost(g)← cost(g)+Eθi [hg(θi)]

12: g∗← argmin
g=1,2,...,n

cost(g)

13: for i = 1 : k do
14: for all θ̄i do
15: build remaining uncertainty class Θ|θi = θ̄i

16: compute conditional density function f (θ |θi = θ̄i)

17: compute Mg∗
Ψ (Θ|θi = θ̄i) via (3.3) using ψΘ|θi=θ̄i

IBR (ind;g∗) and ψ ind(θ |θi = θ̄i;g∗)

18: Mg∗
Ψ (Θ;θi)← Eθi

[
Mg∗

Ψ (Θ|θi = θ̄i)
]

19: i∗← argmin
i=1,2,...,k

Mg∗
Ψ (Θ;θi)

20: return i∗

1 is also provided in Appendix A.

This procedure for estimating optimal experiment via deleting one gene can be easily

extended to the deletion of two or more genes. For example, to delete two genes, we need

to evaluate the cost function in (3.10) for all possible two-gene combinations and delete

the pair whose cost is minimum.

3.1.1 Reduction Mappings and Induced Interventions

If we want to delete gene g from network, we need to find the regulatory function

Fred for the reduced network. Following [82], every two states of the original network that

differ only in the value of gene g can be collapsed to find the transition rule of the reduced
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Algorithm 2 Finding induced optimal interventions
1: input: ψ(θ g) = (û, v̂), π
2: output: ψ ind(θ ;g) = (uind

g ,vind
g )

3: ũg
1← place 1 in the g-th coordinate of û

4: ũg
0← place 0 in the g-th coordinate of û

5: if πũg
1
≥ πũg

0
then

6: uind
g ← ũg

1
7: else
8: uind

g ← ũg
0

9: ṽg
1← place 1 in the g-th coordinate of v̂

10: ṽg
0← place 0 in the g-th coordinate of v̂

11: if πṽg
1
≥ πṽg

0
then

12: vind
g ← ṽg

1
13: else
14: vind

g ← ṽg
0

network. Let sg
1 and sg

0 be two states with value 1 and 0 for gene g, respectively, and

identical values for other genes. State sg can be obtained from either sg
1 or sg

0 by removing

the value of gene g. If for the original network, the transition rules for these two states

are F(sg
1) = p and F(sg

0) = q, then for the reduced network, Fred(sg) = pg if πsg
1
> πsg

0
and

otherwise Fred(sg) = qg, where pg and qg are found from states p and q via removing the

value of gene g, respectively. Following this procedure, we find the regulatory function

Fred for all states in the reduced network.

As illustrated in Algorithm 2, we find the induced optimal intervention from the

optimal intervention for the reduced network. Suppose that the optimal intervention for

the reduced network θ g is ψ(θ g) = (û, v̂). The two corresponding states to û in the

original network are ũg
1 and ũg

0, which are found by placing 1 and 0 in the g-th coordi-

nate of û, respectively. Similarly, there are two states ṽg
1 and ṽg

0 in the original network

corresponding to state v̂. The induced optimal intervention for the original network is
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Algorithm 3 Finding induced robust interventions
1: input: ψΘg

IBR = (û, v̂), π(θ) ∀ θ ∈Θ
2: output: ψΘ

IBR(ind;g) = (uind
g ,vind

g )
3: π ← Eθ [π(θ)]
4: ũg

1← place 1 in the g-th coordinate of û
5: ũg

0← place 0 in the g-th coordinate of û
6: if πũg

1
≥ πũg

0
then

7: uind
g ← ũg

1
8: else
9: uind

g ← ũg
0

10: ṽg
1← place 1 in the g-th coordinate of v̂

11: ṽg
0← place 0 in the g-th coordinate of v̂

12: if πṽg
1
≥ πṽg

0
then

13: vind
g ← ṽg

1
14: else
15: vind

g ← ṽg
0

ψ ind(θ ;g) = (uind
g ,vind

g ), where uind
g is the one among ũg

1 and ũg
0 having larger steady-state

probability in the original network and vind
g is the one among ṽg

1 and ṽg
0 with larger steady-

state probability in the original network.

Analogous to the induced optimal intervention, the induced robust intervention

ψΘ
IBR(ind;g) is found from the robust interventionψΘg

IBR according to Algorithm 3; however,

here we choose the two states possessing larger expected steady-state probability across Θ

using the expected SSD, π(Θ) = Eθ [π(θ)], where π(θ) is the SSD of the network with

uncertainty vector θ in uncertainty class Θ. We can use this procedure to find the induced

robust intervention for each remaining uncertainty class Θi,ϕ .

3.1.2 Preliminary Gene Elimination via the Coefficient of Determination

To further reduce the computational cost of the experimental design, we utilize the

coefficient of determination (CoD) [83] to eliminate some genes from the optimization
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problem without evaluating the cost function and then search among the remaining genes

for choosing genes to be removed using the cost function (3.10). The CoD measures the

strength of relationship between a target gene Y and a vector X of predictor genes as the

difference between the error of the best estimation of gene Y in the absence of other genes

and in the presence of genes in X . The CoD is between 0 and 1 and a larger CoD means

a stronger connection between the target and predictor genes, in our case the target gene

being the aim of intervention. We use the intuition that genes possessing large CoD in

relation to the target gene are not likely among the genes that should be deleted because

they have strong connection to the target gene. The CoD of the target gene Y , relative to a

vector X = (X1, ...,Xm) of predictor genes is defined by

CoDX(Y ) =
εY − εX ,Y

εY
(3.11)

where εY is the error of the best estimation of Y without any predictors,

εY = min[Pr(Y = 0),Pr(Y = 1)], (3.12)

and εX ,Y is the error of the optimal estimation ofY upon observing X . By assuming that the

value of the binary vector X of predictor genes changes from 1 to 2m, εX ,Y can be calculated

by

εX ,Y =
2m

∑
j=1

Pr(X = j)min
[
Pr(Y = 0|X = j),Pr(Y = 1|X = j)

]
. (3.13)

If CoDX(Y ;θ) denotes the CoD of Y relative to X in a network with uncertainty

vector θ , then given the uncertainty class Θ the expected CoD of Y relative to X is given
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by

CoDX(Y ;Θ) = Eθ
[
CoDX(Y ;θ)

]
. (3.14)

Genes possessing strong connection with the target gene in terms of CoDX(Y ;Θ) are not

considered for deletion. When excluding genes using the CoD it is important to recognize

the possibility of intrinsic multivariate prediction [84], where a set of genes may have

low individual CoDs with respect to the target gene but may have significant CoD when

used together for multivariate prediction. First we calculate CoDX(Y ;Θ) for all 3-gene

combinations and pick the one with largest CoD. We compute CoD for 3-gene predictors

because it has been shown in [59] that the average connectivity of the model cannot be

too high providing that the model is not chaotic and it is commonplace to assume 3-gene

predictivity in BNs. If we want to exclude less than 3 genes from the search space, then

among the 3-gene combination with the largest expected CoD, we choose those genes that

have larger expected individual CoD. If we want to exclude more than 3 genes, then in

addition to the three genes in the combination with the largest CoD, we choose those genes

in the 3-gene combination with the second largest CoD that have larger expected individual

CoD and do not belong to the first 3-gene combination. We repeat this process until we

reach the desired number of genes to exclude.

If there are initially n genes and we want to delete 3 genes, then we need to evaluate

cost function (3.10) for allC(n,3) 3-gene combinations, whereC(n,k) denotes the number

of combinations of n objects taken k at a time; however, if we exclude s genes from search

space then the number of evaluations of (3.10) decreases toC(n− s,3).
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Having performed the CoD-based exclusion process and excluded s genes,

X ′1,X
′
2, ...,X

′
s , we search for the genes to be deleted using the cost function in (3.10) among

the remaining genes, {X1,X2, ...,Xn}−{X ′1,X ′2, ...,X ′s}.

3.1.3 Computational Complexity Analysis

The first step for the optimal experimental design is estimating optimal interventions

ψ(θ) for each network in Θ. We also need to compute the robust intervention ψΘ|θi=θ̄i
IBR for

each possible remaining uncertainty class Θ|θi = θ̄i. Most of the computations are devoted

to this step. Finding robust interventions does not require additional calculations because

we can store the error of each intervention ψ ∈Ψ for the network θ when finding optimal

interventions and later use these errors to find robust interventions. Therefore, complexity

analysis requires computing the complexity of estimating the optimal interventions.

With n genes that take on binary expression levels, the network has 2n states. Finding

an optimal single-gene function intervention requires searching among all possible 22n state

pairs (u,v) according to (2.9). Assuming without loss of generality that states 2n−1 to 2n are

undesirable, (2.9) must be evaluated 2n−1 times for each state pair. Thus, the complexity

of finding the optimal intervention ψ(θ) is O(23n). If there are k uncertain parameters

and each can take on l different values, then the uncertainty class Θ contains lk different

networks for which an optimal intervention must be found. Hence, the complexity of the

optimal experimental design method is O(lk×23n).

To analyze the complexity of the proposed approximate method, suppose p genes

are to be deleted. Then the cost function in (3.10) must be evaluated for all C(n− 1, p)
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p-gene combinations, n − 1 instead of n because the target gene cannot be deleted.

The complexity of finding an induced optimal intervention for each network after delet-

ing p genes is O(23(n−p)). Therefore, the complexity of the approximate method is

O(C(n− 1, p)× lk× 23n−3p). For large n, it is possible that for small p the complexity

of the approximate method can exceed that of the original method; however, by deleting

more genes the complexity of the approximate method drops sharply because by deleting

each additional gene the complexity of estimating the optimal intervention decreases by

eight-fold.

By incorporating the CoD-based gene exclusion step in the approximate method

and excluding s genes we are able to decrease the number of p-gene combinations from

C(n−1, p) toC(n− s−1, p), which reduces the complexity of the approximate method to

O(C(n− s−1, p)× lk×23n−3p). Define the computational gain λ by

λ =
lk×23n

C(n− s−1, p)× lk×23n−3p =
23p

C(n− s−1, p)
, (3.15)

which is the ratio of the complexity of the optimal design method to the complexity of the

approximate method when deleting p genes using the cost function in (3.10) and excluding

s genes from the search space using the CoD-based gene exclusion step.

Figure 3.2 shows the computational gain λ when deleting p genes and excluding

s genes from the search space for network size of 10 and 15. Note that for large n, if

we delete very few genes the complexity might exceed that of the optimal experimental

design method but as more genes are deleted the complexity of the approximate method

becomes much smaller. For example when n = 15, searching over all genes and deleting
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Figure 3.2. Computational gain (λ ) of using the proposed approximate method. Different
number of genes are deleted and s genes are excluded from the search space. (a) Networks
with n = 10 genes. (b) Networks with n = 15 genes.

Table 3.1. Comparing the approximate processing times (in seconds) of the optimal and ap-
proximate experimental design methods when p genes are deleted and s genes are excluded
for networks of size n with 4 uncertain regulations.

n = 10 n = 11 n = 12

Optimal 468 4846 60169

Approximate s = 0 s = 2 s = 0 s = 2 s = 0 s = 2

p = 3 81.71 39.64 830 407 9795 5026
p = 4 23.61 12.98 215 93 2355 1057
p = 5 8.68 8.36 58 35 450 181

1, 2, and 3 genes, λ = 0.5741, λ = 0.7, and λ = 1.4, respectively, but for p > 3, λ grows

rapidly, reaching λ ≈ 600 when deleting 7 genes. Greater computational gain results from

excluding some genes using the CoD-based step. For instance, excluding 3 genes from the

search space results in λ = 1.16 and λ ≈ 6350 when deleting 2 and 7 genes, respectively.

Table 3.1 shows the approximate processing times for performing the optimal and

proposed experimental designmethods for networks of different size with 4 unknown regu-
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lations. Simulations have been run on amachine with 8GB of RAM and Intel(R) Core(TM)

i7 CPU, 3.1 GHz. The run times grow exponentially as the number of genes increases. This

table clearly suggests that the optimal experimental designmethod can be applicable to net-

works of at most n = 11 genes but using the proposed approximate experimental design

method we can still increase the number of genes in the network. For example, for n = 12

genes, optimal experimental design takes around 17 hours to complete but when we use

the proposed method and delete 5 genes it takes around 8 minutes without gene exclusion

and 3 minutes with 2-gene exclusion – a significant saving in processing time. Note that

the ratios between times in Table 3.1 do not exactly follow the computational gain in (19),

especially when the size of the reduced network is very small, because the times in the table

also include the time required for calculating the SSD, TPM, and fundamental matrices for

original networks in Θ.

3.2 Simulation Results

This section evaluates the performance of the approximate method for both synthetic

and real GRNs where the majority vote rule is used as the transition rule. Majority vote

rule [74, 85, 86, 87] is popular in systems biology, especially when we are interested in the

overall dynamics of the network. For example, majority vote is used in [86] to model the

dynamics of yeast cell-cycle network. For the majority vote rule, a regulatory matrix R is

defined component-wise by
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Ri j =


1 gene j activates gene i

−1 gene j suppresses gene i

0 no relation from gene j to gene i

.

According to this rule, gene i takes value 1 if the number of genes that are ON and activate

it is more than the number of genes that are ON and suppress it:

Xi(t +1) = fi
(
X(t)

)

=


1 if ∑ j Ri jX j(t)> 0

0 if ∑ j Ri jX j(t)< 0

Xi(t) if ∑ j Ri jX j(t) = 0

Uncertainty is introduced by assuming that the exact values of some of the nonzero

components of R are unknown; that is, for some regulations it is not known whether they

are activating or suppressive. Each uncertain parameter θi can be −1 or 1. Conducting

experiment Ti determines the value of parameter θi. Let µ = (µ1, ...,µk) denote the true

value for the uncertainty vector θ = (θ1,θ2, ...,θk). Conducting experiment Ti results in

a remaining uncertainty class Θ|θi = µi consisting of networks with θi = µi and other

uncertain parameters being −1 or 1. For Θ|θi = µi we can determine a robust interven-

tion ψΘ|θi=µi
IBR . We evaluate the effectiveness of experiment Ti in terms of the error of the

resulting robust intervention obtained after experiment on the underlying true network,

ηµ
(
ψΘ|θi=µi

IBR
)
. We define the gain of conducting the chosen experiment Ti∗ over a random

experiment Trnd (chosen randomly without using any experimental design) by

ξ = ηµ
(
ψΘ|θrnd=µrnd

IBR
)
−ηµ

(
ψΘ|θi∗=µi∗

IBR
)
. (3.16)
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If ξ > 0, then the chosen experiment outperforms the random experiment; if ξ < 0, then the

random experiment outperforms the chosen experiment; and if ξ = 0, then they perform

the same.

3.2.1 Simulations on Synthetic Examples

For the performance evaluation based on synthetic BNps, we generated 1000 net-

works randomly and chose 50 different sets of k regulations in each to be unknown – 50000

simulations in total. We assigned 3 random predictor genes to each gene where each one

can be randomly activating or suppressive. The gene perturbation probability was set to

0.001. Without loss of generality, we assume that states with up-regulated X1 are unde-

sirable. We removed the regulatory type of those regulations that have been assumed to

be uncertain and retained other regulatory information of the network. We assume that all

uncertain parameters are independent from each other and have uniform marginal distri-

bution. The analysis can be easily extended to other distributions. Because X1 is the target

gene, it was excluded from the reduction process. Hence, we look for the best p-gene set

to be deleted among {X2, ...,Xn}.

Figure 3.3 shows the average gain ξ for networks with n = 7 genes and k = 2,3,4,5

uncertain regulations. For each k, we delete 1, 2, and 3 genes. Given the deletion of

p genes, to evaluate the effectiveness of the proposed cost function in (3.10), we rank

all p-gene combinations based on this cost function and compare the performance of the

proposed approximate method when deleting each of these sets. For example in Figure

3.3(a), there are 6 different choices for a single gene to be deleted or in Figure 3.3(b) there

60



0 1 2 3 4 5 6
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Order of deleted gene

A
ve

ra
ge

 g
ai

n 
w

.r
.t.

 r
an

do
m

 e
xp

er
im

en
t

 

 

k = 5

k = 4

k = 3

k = 2

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Order of deleted set of genes

A
ve

ra
ge

 g
ai

n 
w

.r
.t.

 r
an

do
m

 e
xp

er
im

en
t

 

 

k = 5

k = 4

k = 3

k = 2

(b)

0 5 10 15 20
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Order of deleted set of genes

A
ve

ra
ge

 g
ai

n 
w

.r
.t.

 r
an

do
m

 e
xp

er
im

en
t

 

 

k = 5

k = 4

k = 3

k = 2

(c)

Figure 3.3. Evaluating the effectiveness of the proposed cost function for 7-gene networks
with k uncertain regulations. The average gain of conducting the chosen experiments by
the proposed approximate method with respect to the random experiments when deleting
different genes is shown. (a) Deleting one gene. (b) Deleting two genes. (c) Deleting three
genes.

are C(6,2) = 15 different selections for two genes to be deleted. In all subfigures in 3.3,

the average gain when the order of the deleted set is 0 corresponds to optimal experimental

design. This figure shows that for different number of uncertain regulations and different

number of deleted genes, deleting those sets that correspond to a lower cost function results

in larger average ξ . Denoting average ξ by ξ̄ , for k = 5, where ξ̄ = 0.0411 for the optimal

method, if we delete the gene with minimum cost, then ξ̄ = 0.0408, but if we delete the
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Figure 3.4. The box plot of the gain of conducting the chosen experiment by the proposed
approximate method with respect to the random experiment when deleting different genes.
7-gene networks with 5 uncertain regulations are considered. (a) Deleting one gene. (b)
Deleting two genes. (c) Deleting three genes.

gene with maximum cost, then ξ̄ = 0.0302. When deleting two genes, corresponding to

the best pair of genes (corresponding to the minimum cost) ξ̄ = 0.0395 but for the pair

corresponding to the largest cost (15th set) ξ̄ = 0.0248. When deleting three genes, for the

best set of deleted genes ξ̄ = 0.0378 and for the worst set ξ̄ = 0.0219.

Figure 3.4 provides the box plots for 7-gene networks possessing 5 uncertain regu-

lations when 1, 2, and 3 genes are deleted. The box extends from the first quartile (25th

percentile) to the third quartile (75th percentile) of the data. The lines extending vertically
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from the box are called “whiskers”. Herein we set whisker length to the interquartile range

(distance between the first and third quartiles). The red line in the box represents the me-

dian. Note that in the given box plots median and first quartile might not be distinguishable

as they are very close to each other but in fact they have different values. The number on

the x-axis is the ranking of the set of deleted genes, running from the minimum cost of

deletion on the left to the maximum cost of deletion on the right. For optimal experimen-

tal design the first quartile, median and third quartile are −1.57×10−5, 5.38×10−5, and

0.662, respectively. For approximate experimental design, as we delete gene(s) whose

corresponding cost function is larger, the first quartile, median, and third quartile decrease.

For example, in case of deleting 3 genes, if we delete the set of genes corresponding to the

minimum cost of deletion the first quartile, median, and third quartile are −3.53× 10−5,

1.51× 10−6, and 0.048, respectively but if we delete the set of genes with the maximum

of deletion cost the first quartile, median, and third quartile would be −0.00055, 0, and

0.023 respectively. These box plots indicate the promising performance of the proposed

cost function because the boxes cover larger values when we delete set of genes possessing

smaller cost function.

Figure 3.5 shows performance evaluation for 8-gene networks with k = 4 uncertain

regulations, deleting up to four genes from the original networks. Again, this figure verifies

the promising performance of the proposed cost function. It can be observed that when gene

sets possessing larger cost are deleted, the resulting average gain decreases. For example,

when we delete 4 genes ξ̄ = 0.0390 for the optimal method and ξ̄ for the approximate
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Figure 3.5. Evaluating the effectiveness of the proposed cost function for 8-gene networks
with 4 uncertain regulations. The average gain of conducting the chosen experiments by
the proposed approximate method with respect to the random experiments is shown. (a)
Deleting one gene. (b) Deleting two genes. (c) Deleting three genes. (d) Deleting four
genes.

method decreases from 0.0352 to 0.0175 if we delete the 35th set of 4 genes according to the

cost function instead of the first set. To consider larger networks, we generated 100 random

13-gene networks and in each chose one set of 4 regulations to be unknown. We used the

approximate experimental design method and deleted 5 genes. For this size of network

it is not possible to perform the optimal experimental design method or compute original

optimal and robust interventions to calculate the gain of the chosen experiment over a
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Figure 3.6. Percentage of finding the same experiment as the optimal method. Different p
genes are deleted for 7-gene networks possessing k = 4 uncertain regulations. Gene sets
with larger order have higher cost function.

randomly selected experiment. Hence, we use the induced robust intervention obtained by

deleting the set of 5 genes having the minimum cost of deletion as in (14). Therefore, here

gain ξ is defined as

ξ = ηµ

(
ψΘ|θrnd=µrnd

IBR (ind;g∗)
)
−ηµ

(
ψΘ|θi∗=µi∗

IBR (ind;g∗)
)

where g∗ is the set of 5 genes with minimum cost of deletion. For this set of simulations,

the average gain ξ̄ is 0.0192. Note that here the average gain might not be very accurate

owing to the small number of simulations. The approximate run time for each simulation

was around 5700 seconds.

We now evaluate the proportion of times that we obtain the optimal experiment found

by when using the approximate method. Figure 3.6 shows the percentage of finding the

optimal experiment when using the approximate method and deleting different number of
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genes from 7-gene networks. In this figure, there are 6, 15, and 20 values for deleting 1,

2, or 3 genes, respectively. We observe that deleting the set of genes corresponding to the

minimum of the cost function yields the highest likelihood of obtaining an optimal experi-

ment, which is what we would hope for from an efficient approximate method. According

to Figure 3.6, when we delete the gene which attains the minimum cost, 90.72% of the

simulations yield an optimal experiment, whereas this percentage is 55.73% when delet-

ing the gene with the largest value of the cost function. Similar behavior is observed when

deleting 2 or 3 genes. A salient reason that the largest average gain of the approximate

method over random experiments is when we delete genes corresponding to the minimum

cost function is that it is more likely to get an optimal experiment.

An issue that arises when evaluating experimental design on synthetic networks, as

opposed to real biological networks, which typically manifest substantial controllability on

account of their need to maintain functionality within changing contexts, a large portion of

randomly generated networks might not be controllable and therefore not be responsive to

intervention. Hence, intervention has negligible effect on their SSDs and including them

in the analysis masks the effect of optimality. To address this issue, we define controlla-

bility ∆ as the percentage decrease of undesirable probability mass after applying optimal

intervention:

∆ =
πU − π̃U

πU
×100%, (3.17)

where πU and π̃U are the undesirable probability masses before and after applying opti-

mal intervention to the network, respectively. A larger ∆ means that a network is more
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Figure 3.7. Effect of controllability ∆ on the performance of the experimental design
method. Optimal and approximate experimental design methods when deleting p genes
are considered for networks with n = 8 genes and k = 4 uncertain regulations.

controllable. Figure 3.7 considers the effect of controllability on the performance of ex-

perimental design when networks have n = 8 genes and k = 4 uncertain regulations. The

figure shows the average gain ξ̄ for the optimal method and the proposed approximate

method for networks possessing controllability greater than a given threshold. We observe

that ξ̄ increases when networks are more controllable, regardless of the number of genes

deleted from network. Note that as controllability increases, the difference between the

performance of different methods increases. For example, for all networks the average

gain for the optimal method and the proposed method when deleting one, two, three, and

four genes is 0.0390, 0.0384, 0.0380, 0.0369, and 0.0352, respectively; but for networks

with ∆ ≥ 40% the average gains are 0.0509, 0.0503, 0.0498, 0.0484, and 0.0463, respec-

tively.

To evaluate the effectiveness of the CoD-based gene exclusion algorithm, we com-
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Figure 3.8. Performance evaluation of the CoD-based gene exclusion scheme for 7-gene
networks. The average gain of the proposed method over the random experiments when
p genes are deleted and different number of genes are excluded from the search space is
shown. (a) k = 2 uncertain regulations. (b) k = 3 uncertain regulations. (c) k = 4 uncertain
regulations. (d) k = 5 uncertain regulations.

pare the average gain of the approximate method when excluding genes from the search

space using the CoD-based exclusion algorithm against the average gain when excluding

randomly selected genes from the search space. Figure 3.8 shows the average gain ξ̄ for

networks with n = 7 genes and k = 2,3,4,5 uncertain regulations. For deleting p genes,

we exclude up to 6− p− 1 genes from the search space so that for the largest number of

genes excluded, the search space contains at least p+1 genes. For example, when deleting
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p = 1 gene, we exclude 1, 2, 3, and 4 genes; when deleting p = 2 genes we exclude 1, 2,

and 3 genes; and so on. For each number of uncertain regulations, we observe that the

average gain when excluding genes using the CoD-based algorithm is always larger than

random gene exclusion, regardless of the number of deleted genes. For example, when

k = 5, for deleting one gene and excluding 1, 2, 3, and 4 genes randomly, ξ̄ = 0.0407,

0.0404, 0.0401, and 0.0392 respectively but using the CoD-based scheme and excluding

the same number of genes, ξ̄ = 0.0408, 0.0405, 0.0403, and 0.0399 respectively. If we

delete three genes ξ̄ = 0.0378 without gene exclusion, and if we exclude 1 and 2 genes,

then ξ̄ = 0.0364 and ξ̄ = 0.0344, respectively, when we exclude genes randomly and

ξ̄ = 0.0371 and ξ̄ = 0.0355, respectively, when we exclude genes based on CoD . Note

that when deleting more genes, the difference between random exclusion and CoD-based

exclusion increases because as more genes are deleted, exclusion has a larger impact on the

number of candidate sets for evaluating the cost function. For example, when deleting 1

gene, if we exclude one gene, then the number of candidate sets decreases from 6 to 5, but

when deleting 3 genes, if we exclude one gene, then the number of candidate sets decreases

fromC(6,3) = 20 toC(5,3) = 10.

In Figure 3.9, we also show the box plot for the gain of conducting the chosen exper-

iment if we delete 3 genes and exclude genes from the search space either randomly or via

the proposed CoD-based method for 7-gene networks possessing 5 uncertain regulations.

We observe that the first quartile, median, and third quartiles are higher when exclud-

ing genes using CoD. For example, when randomly excluding 2 genes from the search
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Figure 3.9. The box plot of the gain with respect to the random experiment when s genes
are excluded randomly or using the proposed CoD-based procedure. 7-gene networks with
5 uncertain regulations are considered.

space, the first quartile, median, and third quartile are −6.64× 10−5, 3.33× 10−7, and

0.043, respectively; however, when excluding genes using CoD they are −5.62× 10−5,

6.04×10−7, and 0.044, respectively.

Figure 3.10 is similar to Figure 3.8 except that it is for 8-gene networks with 4 uncer-

tain regulations. The approximate method is applied deleting 1, 2, 3, and 4 genes. For each

number of deleted genes, average ξ is computed for random and CoD-based exclusion.

Table 3.2 lists the percentage that the optimal experiment is found using the approxi-

mate method when deleting p genes and excluding s genes from the search space randomly

or according to the CoD-based algorithm. Results are tabulated for 7-gene networks with

k = 2,3,4,5 uncertain regulations and 8-gene networks with k = 4 uncertain regulations.

Note that if we are interested in deleting p genes, p+1 genes should remain in the search

space after the gene exclusion step. For example, for p = 2 we exclude up to s = 3 genes

and for p = 3 we exclude up to s = 2 genes from the search space. We use N/A in the
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Figure 3.10. Performance evaluation of the CoD-based gene exclusion algorithm for 8-
gene networks with k = 4 uncertain regulations. The average gain of the proposed ap-
proximate experimental design with respect to the random experiments when p genes are
deleted and different number of genes are excluded from the search space is shown.

table for those pairs of p and s which are not applicable. We observe that the likelihood of

obtaining the optimal experiment is larger when we exclude genes according to the CoD-

based algorithm rather than excluding them randomly. A larger proportion of experiments

found by the approximatemethod via excluding genes based on CoD agree with the optimal

method. These tables demonstrate the effectiveness of reducing the number of candidate

gene sets for the optimization problem by excluding genes based on the CoD.
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Table 3.2. Percentage of finding the same experiment as the optimal method using the
proposed approximate method with gene exclusion from the search space

n = 7, k = 2

p = 1 p = 2 p = 3

Random CoD Random CoD Random CoD

s = 0 92.59 92.59 87.72 87.72 82.90 82.90
s = 1 91.78 91.96 85.85 86.44 80.05 80.85
s = 2 90.23 91.07 83.38 84.77 75.97 77.96
s = 3 88.31 89.89 79.28 82.01 N/A N/A
s = 4 85.18 87.24 N/A N/A N/A N/A

n = 7, k = 3

p = 1 p = 2 p = 3

Random CoD Random CoD Random CoD

s = 0 90.84 90.84 84.19 84.19 77.87 77.87
s = 1 89.78 90.07 81.94 82.67 74.46 75.49
s = 2 88.19 89.08 78.67 80.42 69.56 71.58
s = 3 85.77 87.54 73.95 76.76 N/A N/A
s = 4 82.15 84.79 N/A N/A N/A N/A

n = 7, k = 4

p = 1 p = 2 p = 3

Random CoD Random CoD Random CoD

s = 0 90.72 90.72 83.56 83.56 76.17 76.17
s = 1 89.65 90.06 81.11 82.00 72.44 73.67
s = 2 87.95 89.08 77.71 79.58 67.10 69.80
s = 3 85.54 87.57 72.51 76.07 N/A N/A
s = 4 81.81 84.51 N/A N/A N/A N/A
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Table 3.2 continued

n = 7, k = 5

p = 1 p = 2 p = 3

Random CoD Random CoD Random CoD

s = 0 91.28 91.28 83.71 83.71 76.46 76.46
s = 1 90.21 90.56 81.32 82.31 72.55 73.86
s = 2 88.60 89.63 78.17 79.96 67.09 69.72
s = 3 86.33 88.14 72.66 76.26 N/A N/A
s = 4 82.64 85.58 N/A N/A N/A N/A

n = 8, k = 4

p = 1 p = 2 p = 3 p = 4

Random CoD Random CoD Random CoD Random CoD

s = 0 92.43 92.43 86.98 86.98 80.90 80.90 74.97 74.97
s = 1 91.69 92.05 85.21 85.94 78.10 79.05 70.95 72.04
s = 2 90.59 91.40 82.53 84.13 74.53 76.29 65.81 67.94
s = 3 89.03 90.58 79.47 82.00 68.98 71.91 N/A N/A
s = 4 86.83 88.85 74.51 77.93 N/A N/A N/A N/A
s = 5 83.09 86.29 N/A N/A N/A N/A N/A N/A

We have also evaluated the performance of the approximate experimental design

method when a sequence of experiments is conducted. Suppose there are k = 5 uncertain

regulations and we conduct five experiments to identify all unknown regulations. For each

set of unknown regulations, at each step we utilize the experimental design to choose one

of the possible experiments, conduct the chosen experiment, and measure the performance

(undesirable probability mass after intervention) of the robust intervention obtained after

the experiment on the underlying true network. Continuing, for the remaining uncertain
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Figure 3.11. Performance comparison based on a sequence of experiments. The average
gain for the optimal method and the proposed approximate method when deleting p genes
are shown for k = 5 uncertain regulations. (a) Networks with n = 7 genes. (b) Networks
with n = 8 genes.

regulations we use the experimental design method and repeat the previous procedure until

there is no more unknown regulation remaining in the network. We also do sequential ex-

periments randomly where at each step we choose an experiment randomly, measure the

performance of its corresponding robust intervention, and again choose one experiment

randomly among the remaining ones. The difference between the undesirable probability

mass after applying the robust interventions corresponding to the randomly chosen exper-

iment and the chosen experiment through experimental design at each step is the gain of

conducting the chosen experiment at that step. Figure 3.11 shows the average gain over

random selection for the optimal method and the approximate design method deleting up

to three genes for 7-gene networks and up to four genes for 8-gene networks. The fig-

ure indicates that the approximate design method has reliable performance compared to

the optimal method. Moreover, similar to the optimal method, the average gain increases
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MEK 1/2 PKC

Figure 3.12. The regulatory relations among key genes involved in the colon cancer path-
ways. Normal arrows represent activating regulations and blunt arrows represent suppres-
sive regulations.

sharply in the beginning for the approximate method. This is very important in real appli-

cations owing to the cost and time required for conducting experiments. Note that when

we conduct all five experiments the average gain is zero because after five experiments the

network is fully known and we can exactly calculate the optimal intervention regardless of

the approach taken to choose experiments.

3.2.2 An Example Based on the Colon Cancer Pathway

In this section, we analyze the performance of the proposed experimental design

method on the colon cancer pathways used in [88]. We focus on the pathways formed by

11 genes extracted from the complete pathway set, as used in [89]. These are shown in

Figure 3.12: STAT3, RAS, IL6, HGF, PIK3CA, EGF, TSC1/TSC2, mTOR, SPRY4, PKC,

and MEK 1/2. Normal and blunt arrows represent activating and suppressive regulations,

respectively. We modeled the pathways as a BNp with perturbation probability 0.001.
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Table 3.3. Performance of the proposed approximate method on the colon cancer pathways
when deleting p genes and excluding s genes from the search space.

p = 3 p = 4 p = 5

s = 0 s=2 s=0 s=2 s=0 s=2

ξ̄ 0.0239 0.0235 0.0231 0.0229 0.0206 0.0198

Genes are named as they have been introduced. For example, STAT3 is X1 and MEK 1/2

is X11.

EGF, HGF, and IL6 are three stimulation factors that carry the external signals gener-

ated by neighboring cells to downstream genes and activate downstream pathways. Signal

transducers and activators of transcription (STATs) constitute a family of transcription fac-

tors that can be activated via extracellular signaling proteins such as cytokins and growth

factors. These play a major role in regulating downstream processes such as cell growth,

survival, and apoptosis [90]. STAT3 is an oncogene observed to be highly activated in

many cancers, in particular, colon cancer [91, 92]. Hence, STAT3 has been recognized as

a legitimate target for cancer therapy [93]. We considered states with up-regulated STAT3

(X1 = 1) as undesirable states, so that the set of undesirables states isU = {1024, ...,2047}.

Before intervention the probability mass of undesirable states πU is 0.5525. The optimal

intervention for this network is transitioning state 11111110101 to state 01011001101; that

is, F̃(11111110101) = 01011001101 for the regulatory function after intervention. The

undesirable probability mass after intervention π̃U is 0.3837.

To evaluate the proposed approximate method, we randomly selected 100 different

sets of k = 4 regulations and assumed that they are uncertain, meaning that their regulatory
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information is unknown. If experiments are chosen according to the optimal experimental

design method, then ξ̄ = 0.0244. Table 3.3 compares the average gain ξ̄ of the exper-

iments chosen by the approximate method when deleting p = 5 genes and excluding s

genes from the search space using the CoD-based algorithm. The table shows that we can

obtain meaningful gain when the approximate experimental design method is used to select

the experiment to be conducted first.

3.3 Discussion

We have proposed a computationally effective experimental design method for re-

ducing uncertainty in gene regulatory networks. This method can effectively approximate

the optimal experimental design method in the previous chapter, which is based on the

mean objective cost of uncertainty (MOCU). To reduce computational complexity, we use

network reduction to estimate the optimal and robust interventions needed for finding an

optimal experiment. We introduced a novel cost function for gene deletion that takes into

account the effect of gene deletion on the ranking of potential experiments. Because po-

tential experiments are ranked based on the MOCU in the proposed objective-based exper-

imental design framework, the proposed cost function is also based on the MOCU. Sim-

ulation results on both synthetic and real networks show that while our proposed method

can greatly reduce computations, its performance is comparable to the optimal method and

much better than random gene deletion. Greater computational reduction is achieved by

excluding genes from the search space based on their CoD with the target gene whose
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expression the intervention is aimed at altering.

We have assumed a uniform distribution over the uncertainty class. If one has rele-

vant prior knowledge, perhaps it can be used to construct a distribution reflecting it. Care

must be taken because concentrating the mass of the distribution in the wrong place can

lead to poorer results. In Bayesian terminology, the distribution on the uncertainty class

is called a prior distribution. Putting a non-uniform prior on Θ does not change the re-

duction procedure introduced here; however, some calculations are altered by including

the weights. Prior construction is a difficult problem and has been considered in the con-

text of gene regulation, but not in the context of network construction. Rather, pathway

knowledge has been used to construct prior distributions governing uncertainty classes

of feature-label distributions for optimal Bayesian classification [32]. Prior construction is

particular to each application, examples being gene/protein signaling pathways in Gaussian

and discrete phenotype classifications [89, 94]. Prior construction for uncertainty classes

of the kind considered in this chapter constitutes an important issue for future study – and

not just in relation to the specific problem considered herein.
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4 OPTIMAL EXPERIMENTAL DESIGN IN THE CONTEXT OF

CANONICAL EXPANSIONS: FILTERING AND SIGNAL

DETECTION

This chapter addresses the following general experimental design problem: given a

set of potential experiments, each of which can determine an unknown parameter in the

signal model, find an experiment that results in the minimum expected remaining MOCU.

This experiment should be the one conducted first. We have previously addressed this

problem as it relates to gene regulatory networks, where the network topology is incomplete

owing to missing parameters and the aim is to find the experiment to maximally reduce the

MOCU.

Herein we address optimal parameter determination in the framework of random

processes represented as canonical expansions. We simply note that parameters of the

random process appear in the expansion, so that when the expansion is used for operator

design, the uncertainty in these parameters affects the operator objective via the expansion.

Hence, optimal experimental design can be approached in terms of the expansion. We will

discuss canonical expansions in detail in the sequel. In this chapter, we will treat uncer-

tainty quantification, robust operator design, and experimental design for two fundamental

signal processing applications of canonical expansions: optimal linear filtering and signal

detection.

The remainder of this chapter is organized as follows. Section 4.1 is devoted to a
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briefly review of canonical expansions. We review the notion of effective characteristics as

a means to robust filtering in Section 4.2. In Section 4.3, we apply the experimental design

framework for the general case of robust filtering in the context of canonical expansions.

We adopt the experimental design method to Wiener filtering in Section 4.4. Section 4.5

involves applying experimental design for signal detection. Finally, Section 4.6 contains

concluding remarks.

4.1 Canonical Expansions

Many problems in engineering and physical science such as data compression, esti-

mation and detection, and control involve random processes, and these can often be more

readily solved with the process being expressed as a canonical expansion [95]. Canonical

expansions are effective tools for studying random process when we are only concerned

with the second-order statistics of the whole process. Consider a random process X(t),

indexed by the variable t. The canonical expansion for X(t) is given as

X(t) = µX(t)+
∞

∑
k=1

Zkxk(t), (4.1)

where µX(t) is the mean function of X(t), xk(t), k = 1,2, ... are deterministic functions

called coordinate functions, and Zk, k = 1,2, ... are uncorrelated zero-mean random vari-

ables called coefficients. Also, Zkxk(t) are called elementary functions. The sequence

of random variables Zk can be regarded as a discrete white-noise process. Therefore, the

sum in (4.1) is also called a discrete white-noise representation for the centered process

X(t)−µX(t). Utilizing canonical expansions simplifies the problem of dealing with a set
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of correlated random variables defined over a continuous domain t to the problem of deal-

ing with a discrete sequence of uncorrelated random variables which is much easier.

4.1.1 Fourier Representation

The concept of canonical expansions in (4.1) is parallel to the idea of Fourier-series

representations as both involve decomposition in terms of the orthogonal functions. As-

sume that the sequence of random variables {Zi} provides an orthonormal system, being a

collection of uncorrelated random variables each having unit variance, for the vector space

of zero-mean random variables. According to the projection theorem, a zero-mean random

variable X with finite second moment can be decomposed as:

X =
∞

∑
i=1

E
[
XZi

]
Zi, (4.2)

where E
[
XZi

]
is called the Fourier coefficient of X relative to Zi. Now consider a ran-

dom process X(t) for a fixed time t, then the Fourier representation in terms of m random

variables Z1, Z2, ...., Zm is given by:

Xm(t) =
m

∑
i=1

E
[
X(t)Zi

]
Zi. (4.3)

As t varies, Fourier coefficients x̂i(t) = E
[
X(t)Zi

]
can be regarded as deterministic func-

tions of t. If for any t, the Fourier representation converges to X(t) in the mean-square

sense, i.e.,

lim
m→∞

E
[∣∣X(t)−Xm(t)

∣∣2]= 0 (4.4)

then in the spirit of (4.1), the canonical representation for X(t) is

X(t) =
∞

∑
i=1

Zix̂i(t), (4.5)
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4.1.2 Karhunen-Loève Expansion

In 1947, Karhunen established the analytical theory of Karhunen-Loève (KL) ex-

pansion from the viewpoint of orthogonal functions [96]. Later in 1965, Pugachev put

KL expansion into a more general canonical expansion form similar to the idea of Fourier

representation [95].

For a zero-mean random process X(t) defined over T with covariance function

KX(t1, t2), if there is a weight function w(t) such that∫
T

∫
T

∣∣KX(t1, t2)
∣∣2w(t1)w(t2)dt1dt2 < ∞, (4.6)

then X(t) can be represented in the form of KL canonical expression

X(t) =
∞

∑
i=1

Ziui(t), (4.7)

where ui is the i-th eigenfunction of the covariance function,∫
T

KX(t1, t2)ui(t1)w(t2)dt2 = λiui(t1), (4.8)

for i = 1,2, ..., with corresponding eigenvalues λ1 ≥ λ2 ≥ ...≥ 0, and {Zi}, i = 1,2, ..., are

the generalized Fourier coefficients of X(t) relative to the set {ui(t)},

Zi =
∫

T
X(t)ui(t)w(t)dt, (4.9)

such that Var[Zi] = λi. The set of eigenfunctions {ui(t)} forms an orthonormal system on

T relative to the weight function w(t):

∫
T

ui(t)u j(t)w(t)dt =


1 if i = j

0 otherwise
. (4.10)
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For discrete random processes, the integral in (4.8) changes to a sum:
∞

∑
n2=1

KX(n1,n2)ui(n2)w(n2) = λiui(n1), (4.11)

for i = 1,2, ..., if w(ni) = 1 for all ni and the random process X(n) is defined over N points,

then (4.11) takes matrix form

Ku = λu, (4.12)

where K is the covariance matrix for X(n) and λ and u =
[
u(1), ...,u(n)

]T are the eigen-

value and eigenvector of the covariance matrix K. The KL expansion is

X(n) =
N

∑
i=1

Ziui(n), (4.13)

where Zi = XT ui and ui is the eigenvector of the random process covariance matrix K with

corresponding eigenvalue of λi. Eigenvectors ui build an orthonormal systemmeaning that

< ui,u j >= 0 if i ̸= j and ||ui||= 1.

As will be discussed later, KL expansion is particularly important for data compres-

sion. KL expansion can be used to achieve the optimal compression in terms of the mean-

squared error.

4.1.3 Integral Canonical Expansion

Specifically, an integral canonical expansion of a random process X(t) takes the

form

X(t) = µX(t)+
∫

Ξ
Z(ξ )x(t,ξ )dξ , (4.14)

where µX(t) is the mean of X(t), Z(ξ ) is white noise over Ξ (the domain of ξ ), and the

coordinate functions x(t,ξ ) are deterministic. Referring to the integral canonical expansion
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in (4.14), the covariance function of continuous white noise is the generalized function

KZ(ξ ,ξ ′) = I(ξ )δ (ξ −ξ ′), where I(ξ ) is the intensity of the white noise, δ (ξ ) is the Dirac

delta function, and the theory of integral representation is interpreted in the generalized

sense. X(t) has covariance function

KX(t, t ′) =
∫

Ξ
I(ξ )x(t,ξ )x(t ′,ξ )dξ , (4.15)

and x(t,ξ ) = KXZ(t,ξ )I(ξ )−1, where KXZ(t,ξ ) is the cross-covariance between X(t) and

Z(ξ ). Integral canonical expansions are formed via a kernel a(t,ξ ) by defining

Z(ξ ) =
∫

T
X(t)a(t,ξ )dt. (4.16)

Three conditions are necessary and sufficient for a canonical expansion to result [95, 97]:

x(t,ξ ) =
1

I(ξ )

∫
T

a(s,ξ )KX(t,s)ds, (4.17)

∫
T

a(t,ξ )x(t,ξ ′)dt = δ
(
ξ −ξ ′

)
, (4.18)∫

Ξ
x(t,ξ )a(t ′,ξ )dξ = δ (t− t ′). (4.19)

The intensity of the white noise is

I(ξ ) =
∫

Ξ

∫
T

∫
T

KX(t, t ′)a(t,ξ )a(t ′,ξ ′)dtdt ′ dξ ′. (4.20)

For simplicity (while not affecting the theory in any consequential manner), we will as-

sume µX(t) = 0 and replace the covariance KX by the auto-correlation RX without loss of

generality.
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4.2 Effective Characteristics

The basic filtering problem involves jointly distributed observation and signal ran-

dom processes,
(
X(t),Y (s)

)
, t ∈ T,s ∈ V , with T and V being index sets. Optimal signal

estimation involves estimating a signal Y (s) at time s via a filter ψ given observations

{X(t)}t∈T . We write ψ(X)(s) to emphasize that ψ(X) is meant to estimate the signal

Y (s) at time s. Optimization is relative to a family of filters, L , where a filter ψ ∈ L

is a mapping ψ : O → C and O is the space of possible observed signals, each signal

being a complex-valued function on T . Performance measurement is relative to a cost,

η
(
Y (s),ψ(X)(s)

)
, quantifying the cost or error in estimating signal Y (s) by ψ(X)(s). If

an optimal filter exists for a fixed s ∈V (with finite error), then it can be expressed as

ψ̂(X)(s) = argmin
ψ∈L

η
(
Y (s),ψ(X)(s)

)
, (4.21)

where the minimum may be achieved by more than a single ψ ∈L . In the case of mean-

squared error (MSE), η
(
Y (s),ψ(X)(s)

)
= E

[∣∣Y (s)−ψ(X)(s)
∣∣2] and an optimal filter is

referred to as a minimum-mean-square-error (MMSE) filter.

When the statistical model is not known with certainty, we assume that the joint

process belongs to an uncertainty class of processes and the optimality is defined relative

to the uncertainty class. Given an uncertainty class defined by the parameter set Θ, so

that each θ ∈ Θ corresponds to a distribution Fθ (x,y; t,s) in the uncertainty class, a prior

distribution f (θ), a cost function η , and a filter class L , an intrinsically Bayesian robust
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(IBR) filter in L relative to f (θ) is defined by

ψΘ
IBR(X)(s) = argmin

ψ∈L
Eθ

[
η
(
Yθ (s),ψ(Xθ )(s)

)]
. (4.22)

An IBR filter minimizes the expected cost over the uncertainty class. The adjective “in-

trinsic” refers to the fact that the argmin is taken over all filters in L , as opposed to con-

straining optimization to filters that are optimal for some θ ∈Θ [29, 34].

Filter error and optimality often depend on only certain characteristics, a charac-

teristic being a deterministic function derived from the joint process. For instance, the

MMSE linear filter depends on only second-order moments and can be represented via

power spectra. It has been demonstrated how an IBR filter can be expressed in exactly

the same closed-form as a model-specific optimal filter with the original characteristics

replaced by “effective” characteristics [30].

An observation and signal pair,
(
X(t),Y (s)

)
, is solvable under η and L if there

exists ψ̂ ∈L minimizing η
(
Y (s),ψ(X)(s)

)
over all ψ ∈L . An observation and signal

pair (Xeff(t),Yeff(s)) is an effective process under η , L and Θ if for all ψ ∈ L , both

Eθ

[
η
(
Yθ (s),ψ(Xθ )(s)

)]
and η

(
Yeff(s),ψ(Xeff)(s)

)
exist and

Eθ

[
η
(
Yθ (s),ψ(Xθ )(s)

)]
= η

(
Yeff(s),ψ(Xeff)(s)

)
. (4.23)

Proposition 1. If there exists a solvable effective process, (Xeff(t),Yeff(s)), with the optimal

filter ψ̂eff, then ψΘ
IBR = ψ̂eff. The effective process may or may not belong to the uncertainty

class, Θ, but should be solvable [30].

IBR filters can be determined in terms of characteristics of the joint random process;

in fact, we need only find effective characteristics, not necessarily an effective process.

86



Moreover, the error of a filter can often be expressed in the form G (ω ,κ), where ω refers

to the characteristics of
(
X(t),Y (s)

)
and κ refers to the filter parameters – for instance, in

the case of linear filtering ω corresponds to the auto- and cross-correlation functions, and

κ to the filter weighting function.

A class,Λ, of process pairs, (Xλ (t),Yλ (s)), is reducible under η and L if there exists

a functional G , called a cost functional, such that for each λ ∈ Λ and ψ ∈L ,

η
(
Yλ (s),ψ(Xλ )(s)

)
= G (ωλ ,κψ), (4.24)

where ωλ represents a collection of process characteristics relative to
(
Xλ (t),Yλ (s)

)
and

κψ represents parameters for filter ψ .

A collection of characteristics, ω , is solvable in the weak sense under cost functional

G and L if there exists a solution to

ψ̂ = arg min
ψ∈L

G (ω,κψ). (4.25)

Given a set of characteristics, ω , which are solvable in the weak sense, there is an optimal

filter, ψ̂ that possesses a functional, G (ω,κψ̂). If Θ is contained in a reducible class, then

the characteristic ωeff is said to be an effective characteristic in the weak sense under cost

functional G , L , and Θ if for all ψ ∈L , both Eθ
[
G (ωθ ,κψ)

]
and G (ωeff,κψ) exist and

Eθ
[
G (ωθ ,κψ)

]
= G (ωeff,κψ). (4.26)

Proposition 2. If Θ is contained in a reducible class and there exist weak-sense solvable

weak-sense effective characteristics, ωeff, with the optimal filter ψ̂eff, then ψΘ
IBR = ψ̂eff

[30].
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If there exists an effective process providing the effective characteristics, we say that

these are effective in the strong sense; otherwise, we say they are effective in the weak

sense. For filter optimization, weak-sense effective characteristics are sufficient.

4.3 IBR Filtering in the Context of Canonical Expansions

This section reviews the general theory of IBR filtering in the framework of canon-

ical expansions [30] and then introduces experimental design in this framework. In the

next section, we apply the general integral-canonical theory to Wiener filtering, in which

experimental design applies in the transformed domain.

4.3.1 Linear Filtering

Following [95, 97], optimal linear filtering can be addressed in the framework of

canonical expansions. A linear filter takes the form

ψ(X)(s) =
∫

T
g(s, t)X(t)dt. (4.27)

We assume that X(t) and Y (s) are zero-mean complex-valued random processes. Opti-

mization involves finding a weighting function, g(s, t), to minimize the MSE. If G is a

linear function space on T and, for any g(s, t) ∈ G, the stochastic integral of (4.27) gives

a random variable having a finite second moment, then ĝ(s, t) yields the optimal linear

estimator of Y (s) based on X(t) if and only if it satisfies the Wiener-Hopf equation,

RY X(s, t) =
∫

T
ĝ(s,u)RX(u, t)du, (4.28)

where RX is the auto-correlation function for X(t) and RY X is the cross-correlation function

between Y (s) and X(t). If the optimal filter exists, then it can be shown via the Wiener-
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Hopf equation that

ĝ(s, t) =
∫

Ξ

a(t,ξ )
I(ξ )

RY Z(s,ξ )dξ , (4.29)

where

RY Z(s,ξ ) =
∫

T
RY X(s,u)a(u,ξ )du. (4.30)

Plugging ĝ(s, t) in (4.27) and substituting (4.16) into (4.27) yields the MMSE estimate of

Y (s) as:

Ŷ (s) =
∫

Ξ

Z(ξ )RY Z(s,ξ )
I(ξ )

dξ , (4.31)

which possesses the MSE

E
[∣∣Y (s)− Ŷ (s)

∣∣2]= RY (s,s)−
∫

Ξ

∣∣RY Z(s,ξ )
∣∣2

I(ξ )
dξ . (4.32)

4.3.2 IBR Linear Filtering

Now consider designing an IBR linear filter for an uncertainty class of signal models

{Xθ ,Yθ}, θ ∈ Θ, and suppose that the estimation is made at time s using observations

at t ∈ T . Let RΘ,Y (s,s) = Eθ
[
RYθ (s,s)

]
, RΘ,X(t,u) = Eθ

[
RXθ (t,u)

]
, and RΘ,Y X(s, t) =

Eθ
[
RYθ Xθ (s, t)

]
for all s ∈ V and t,u ∈ T . It is straightforward to show that RΘ,X(t,u) is

a valid auto-correlation function and therefore there exists a zero-mean Gaussian process

Xeff with the auto-correlation function RΘ,X(t,u). Similar reasoning shows that there exists

a Gaussian process Yeff with auto-correlation RΘ,Y (s,s) at s and with the cross-correlation
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RΘ,Y X(s, t) at s and all t ∈ T . In the robust model the error is given by

Eθ

[
E
[∣∣∣Yθ (s)−

∫
T

g(s, t)Xθ (t)dt
∣∣∣2∣∣θ]]= Eθ

[
RYθ (s,s)

]
−

∫
T

Eθ
[
RYθ Xθ (s, t)

]
g(s, t)dt

−
∫

T
Eθ

[
RYθ Xθ (s, t)

]
g(s, t)dt

+
∫

T

∫
T

Eθ
[
RXθ (t,u)

]
g(s, t)g(s,u)dtdu

= RΘ,Y (s,s)−
∫

T
RΘ,Y X(s, t)g(s, t)dt

−
∫

T
RΘ,Y X(s, t)g(s, t)dt

+
∫

T

∫
T

RΘ,X(t,u)g(s, t)g(s,u)dtdu. (4.33)

Thus, (4.23) is satisfied and (Xeff,Yeff) is an effective joint process. All previous equa-

tions for characteristics hold except that all characteristics are replaced by the effective

characteristics RΘ,Y , RΘ,X , RΘ,Y X .

In this effective setting, the three necessary and sufficient conditions for a canonical

expansion take the form

xΘ(t,ξ ) =
1

IΘ(ξ )

∫
T

a(s,ξ )RΘ,X(t,s)ds, (4.34)

∫
T

a(t,ξ )xΘ(t,ξ ′)dt = δ
(
ξ −ξ ′

)
, (4.35)∫

Ξ
xΘ(t,ξ )a(t ′,ξ )dξ = δ (t− t ′), (4.36)

where the intensity of the white noise is given by

IΘ(ξ ) =
∫

Ξ

∫
T

∫
T

RΘ,X(t, t ′)a(t,ξ )a(t ′,ξ ′)dt dt ′ dξ ′. (4.37)

If the three conditions hold and the Wiener-Hopf equation is satisfied for the effective
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process, then the IBR filter can be found as

gΘ
IBR(s, t) =

∫
Ξ

a(t,ξ )
IΘ(ξ )

RΘ,Y Z(s,ξ )dξ , (4.38)

where RΘ,Y Z(s,ξ ) = Eθ [RYθ Zθ (s,ξ )]. The estimate obtained by applying the IBR filter to

process Xθ is given by

ψΘ
IBR(Xθ )(s) =

∫
T

gΘ
IBR(s, t)Xθ (t)dt =

∫
Ξ

Zθ (ξ )RΘ,Y Z(s,ξ )
IΘ(ξ )

dξ , (4.39)

and the optimal average MSE can be computed using (4.32) and replacing RY (s,s) and

RY Z(s,ξ ) with effective characteristics RΘ,Y (s,s) and RΘ,Y Z(s,ξ ), respectively.

4.3.3 Optimal Experimental Design

We consider an uncertainty class of modelsΘ parameterized by θ = {θ1, ...,θk} ∈Θ,

a classΨ of operators, and an associated cost ηθ (ψ). The optimal operatorψ(θ) for model

θ and the IBR operator for the uncertainty class are obtained according to (1.2) and (1.4),

respectively.

Assume that there are k experiments T1, ...,Tk, where conducting each experiment Ti

is equivalent to the exact determination of the uncertain parameter θi. The question that an

effective experimental design should address is: Which experiment should be conducted

first or equivalently how experiments should be ranked such that only experiments with

high priority are conducted?

Following discussions in the previous chapters, the experiment Ti∗ resulting in the

minimum expected remaining MOCU should be conducted first:

i∗ = argmin
i∈1,...,k

MΨ(Θ;θi). (4.40)
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This reduces to

i∗ = argmin
i∈1,...,k

Eθ̄i

[
Eθ |θi=θ̄i

[
ηθ |θi=θ̄i

(
ψΘ|θi=θ̄i

IBR

)
−ηθ |θi=θ̄i

(
ψ(θ |θi = θ̄i)

)]]
= argmin

i∈1,...,k

{
Eθ̄i

[
Eθ |θi=θ̄i

[
ηθ |θi=θ̄i

(
ψΘ|θi=θ̄i

IBR

)]]
−Eθ̄i

[
Eθ |θi=θ̄i

[
ηθ |θi=θ̄i

(
ψ(θ |θi = θ̄i)

)]]}
= argmin

i∈1,...,k

{
Eθ̄i

[
Eθ |θi=θ̄i

[
ηθ |θi=θ̄i

(
ψΘ|θi=θ̄i

IBR

)]]
−Eθ

[
ηθ

(
ψ(θ)

)]}
= argmin

i∈1,...,k
Eθ̄i

[
Eθ |θi=θ̄i

[
ηθ |θi=θ̄i

(
ψΘ|θi=θ̄i

IBR

)]]
, (4.41)

where the third equality follows from the law of total expectation and the fourth equality

is due to the independence of the second term inside the optimization expression from the

variable of optimization. We shall refer to the value being minimized as the experimental

design value and denote it by D(θ i). We shall refer to the parameter to be determined

first according to (4.41) as the primary parameter. Regarding experimental design, the

uncertain parameter θi to determine first (the primary parameter) is, based on (4.41), given

by

i∗ = argmin
i∈1,...,k

Eθ̄i

[
Eθ |θi=θ̄i

[
η
(

Yθ |θi=θ̄i
(s),ψΘ|θi=θ̄i

IBR
(
Xθ |θi=θ̄i

)
(s)

)]]

= argmin
i∈1,...,k

Eθ̄i

[
RΘ|θi=θ̄i,Y (s,s)−

∫
Ξ

∣∣∣RΘ|θi=θ̄i,Y Z(s,ξ )
∣∣∣2

IΘ|θi=θ̄i
(ξ )

dξ
]

= argmax
i∈1,...,k

Eθ̄i

[∫
Ξ

∣∣∣RΘ|θi=θ̄i,Y Z(s,ξ )
∣∣∣2

IΘ|θi=θ̄i
(ξ )

dξ
]
, (4.42)

where RΘ|θi=θ̄i,Y Z and RΘ|θi=θ̄i,X can be found by taking the conditional expectation given

θi = θ̄i and IΘ|θi=θ̄i
(ξ ) is obtained using (4.37) with RΘ,X replaced by RΘ|θi=θ̄i,X . We illus-
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trate (4.42) with a discrete example. A discrete canonical representation takes the form

X(t) =
∞

∑
l=1

Z(l)xl(t), (4.43)

where

Z(l) =
∫

T
X(t)al(t)dt. (4.44)

The three necessary and sufficient conditions for an integral canonical representation are

replaced by L2 orthogonality conditions, the integral representations are replaced by sum-

mations, and the white-noise intensity I(ξ ) is replaced by the variance of Z(l) [97]. This

all holds analogously for robust filter design, with all correlation functions replaced by the

effective correlation functions.

Consider the following signal plus noise model parameterized by θ = (θ1,θ2):

Xθ (t) = Yθ1(t)+Nθ2(t), (4.45)

where Nθ2(t) is a white noise process with intensity σ2
θ2
; θ1 parameterizes some feature of

Y (t), such as phase, amplitude, frequency, etc.; and that θ1 and θ2 are statistically inde-

pendent. Paralleling the analysis in [30], we obtain

RΘ,X(u, t) = RΘ,Y (u, t)+Eθ2

[
σ2

θ2

]
δ (u− t), (4.46)

where RΘ,X(u, t) = Eθ
[
RXθ (u, t)

]
, RΘ,Y (u, t) = Eθ1

[
RYθ1

(u, t)
]
, and Eθ2[σ

2
θ2
] are the effec-

tive characteristics. Since noise is uncorrelated, it can be seen that RYθ Xθ (s,u) = RYθ (s,u).

Because we use a discrete canonical expansion, the integral over ξ is replaced by a sum-

mation. Also, al(t) = xl(t). Assume that λ Θ
l and xΘ

l (t) are the eigenvalues and the eigen-

functions of RΘ,Y , respectively. Substituting (4.46) in (4.37) and keeping in mind that the
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canonical expansion is discrete, we can find IΘ
l , the discrete form of IΘ(ξ ), as follows:

IΘ
l =

∞

∑
l′=1

∫∫
T

(
RΘ,Y (t, t ′)+Eθ2

[
σ2

θ2

]
δ (t− t ′)

)
xΘ

l (t)x
Θ
l′ (t
′)dtdt ′

=
∞

∑
l′=1

∫
T

(∫
T

RΘ,Y (t, t ′)xΘ
l′ (t
′)dt ′

)
xΘ

l (t)dt +Eθ2

[
σ2

θ2

] ∞

∑
l′=1

∫
T

(∫
T

δ (t− t ′)xΘ
l′ (t
′)dt ′

)
xΘ

l (t)dt

=
∞

∑
l′=1

∫
T

λ Θ
l′ xΘ

l′ (t)x
Θ
l (t)dt +Eθ2

[
σ2

θ2

] ∞

∑
l′=1

∫
T

xΘ
l′ (t)x

Θ
l (t)dt

= λ Θ
l +Eθ2

[
σ2

θ2

]
, (4.47)

where the third equality results because xΘ
l′ (t
′) is an eigenfunction of RΘ,Y (t, t ′) and the set

of eigenfunctions {xΘ
l (t)} forms an orthonormal system on T. Moreover,

RΘ,Y Z(s, l) = Eθ
[
RYθ Zθ (s, l)

]
= Eθ

[∫
T

RYθ Xθ (s,u)x
θ
l (u)du

]
= Eθ1

[∫
T

RYθ1
(s,u)xθ1

l (u)du
]

= Eθ1

[
λ θ1

l xθ1
l (s)

]
, (4.48)

where λ θ
l and xθ

l (t) are the eigenvalues and the eigenfunctions of RYθ , respectively. Using

(4.39) and substituting (4.47) and (4.48), the IBR filter is given by

ψΘ
IBR(Xθ )(s) =

∞

∑
l=1

Eθ1

[
λ θ1

l xθ1
l (s)

]
λ Θ

l +Eθ2

[
σ2

θ2

]Zθ
l , (4.49)

and the expected MSE is

Eθ

[
η
(
Yθ1(s),ψ

Θ
IBR(Xθ )(s)

)]
= RΘ,Y (s,s)−

∞

∑
l=1

E2
θ1

[
λ θ1

l xθ1
l (s)

]
λ Θ

l +Eθ2

[
σ2

θ2

] . (4.50)

According to (4.42), to determine which parameter, θ1 or θ2, should be determined

first, we compare

D(θ1) = Eθ1

[ ∞

∑
l=1

(λ θ1
l )2

λ θ1
l +Eθ2

[
σ2

θ2

]∣∣∣xθ1
l (s)

∣∣∣2], (4.51)
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and:

D(θ2) = Eθ2

[ ∞

∑
l=1

E2
θ1

[
λ θ1

l xθ1
l (s)

]
λ Θ

l +σ2
θ2

]
. (4.52)

If (4.51) > (4.52), then θ1 is primary; otherwise, θ2 is primary.

4.4 Wiener Filtering

When processes X(t) and Y (s) are jointly wide-sense stationary (WSS), meaning

that their second-order statistics are translation invariant, a closed-form solution for the

optimal linear filter can be found. Let rX(τ) and SX(ω) denote the auto-correlation func-

tion and the power spectral density for X(t), respectively, and ry(τ) and SY (ω) denote

the auto-correlation function and the power spectral density for Y (t), respectively. The

cross-correlation function RY X(t, t ′) is denoted by rY X(τ), with Fourier transform SY X(ω).

Letting T = (−∞,∞) and a(t,ω) = e jωt , (4.16) becomes

Z(ω) =
∫ ∞

−∞
X(t)e− jωtdt. (4.53)

The three necessary and sufficient conditions for a canonical expansion are satisfied and

X(t) possesses the integral canonical expansion

X(t) =
1

2π

∫ ∞

−∞
Z(ω)e jωt dω . (4.54)

From (4.20), Z(ω) has intensity I(ω) = 2πSX(ω).

The Wiener-Hopf equation simplifies to

rY X(ζ ) =
∫ ∞

−∞
ĝ(ζ − τ)rX(τ)dτ. (4.55)

Applying the Fourier transform F with SX(ω) = F
[
rX(τ)

]
, SY (ω) = F

[
rY (τ)

]
, and
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SY X(ω) = F
[
rY X(τ)

]
yields

Ĝ(ω) =
SY X(ω)

SX(ω)
, (4.56)

where Ĝ(ω) = F
[
ĝ(τ)

]
is the optimal linear (Wiener) filter that is spatially invariant and

is called Wiener filter. The MSE of the Wiener filter is:

E
[∣∣∣Y (s)− Ŷ (s)

∣∣∣2]= 1
2π

∫ ∞

−∞

SY (ω)SX(ω)−
∣∣SY X(ω)

∣∣2
SX(ω)

dω. (4.57)

With uncertainty, the effective power spectra are SΘ,X(ω) = F
[
Eθ

[
rXθ (τ)

]]
and

SΘ,Y X(ω) = F
[
Eθ

[
rYθ ,Xθ (τ)

]]
. The IBR Wiener filter GΘ

IBR(ω) is found by plugging

SΘ,X(ω) and SΘ,Y X(ω) in (4.56) [30].

Keeping inmind our aim is to find out which unknown parameter should be estimated

first, we rewrite (4.30) as

rY Z(s−ω) =
∫ ∞

−∞
rY X(s−u)e jωudu = e jωs

∫ ∞

−∞
rY X(τ)e− jωτ dτ = e jωsSY X(ω). (4.58)

Therefore,
∣∣rY Z(s−ω)

∣∣2 = ∣∣SY X(ω)
∣∣2.

Substitution into (4.42) with the corresponding notation changes dictates the primary

parameter:

i∗ = argmax
i∈1,...,k

Eθ̄i

[∫ ∞

−∞

∣∣rΘ|θi=θ̄i,Y Z(s−ω)
∣∣2

Eθ |θi=θ̄i

[
Iθ |θi=θ̄i

(ξ )
] dω

]

= argmax
i∈1,...,k

Eθ̄i

[∫ ∞

−∞

∣∣SΘ|θi=θ̄i,Y X(ω)
∣∣2

SΘ|θi=θ̄i,X(ω)
dω

]
, (4.59)

where SΘ|θi=θ̄i,X(ω) = F
[
rΘ|θi=θ̄i,X(τ)

]
and SΘ|θi=θ̄i,Y X = F

[
rΘ|θi=θ̄i,Y X(τ)

]
.
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4.4.1 Blurring and Additive Noise

We consider reconstruction of the signal process when it is blurred with another ran-

dom process Hθ (t) and corrupted by an additive noise process Nθ (t):

Xθ (t) =
∫ ∞

−∞
Hθ (τ)Yθ (t− τ)dτ +Nθ (t), (4.60)

where Nθ (t) is assumed to be uncorrelated to Yθ (t) and Hθ (t) and is white. For WSS Yθ (t)

and Nθ (t), the Wiener filter for a fixed θ is given by

Ĝ(ω) =
Hθ (ω)SYθ (ω)∣∣Hθ (ω)
∣∣2SYθ (ω)+SNθ (ω)

, (4.61)

where Hθ (ω) =F [Hθ (t)] and SNθ (ω) is the spectral density function of Nθ (t). Based on

(4.57) the MSE is

E
[∣∣Yθ (s)− Ŷθ (s)

∣∣2]= 1
2π

∫ ∞

−∞

SYθ SNθ∣∣Hθ (ω)
∣∣2SYθ +SNθ

dω. (4.62)

In terms of effective characteristics, the IBR Wiener filter is given by [30]

GIBR
Θ (ω) =

SΘ,Y X(ω)

SΘ,X(ω)
, (4.63)

where

SΘ,Y X(ω) = Eθ
[
Hθ (ω)

]
SΘ,Y (ω),

SΘ,X(ω) = Eθ

[∣∣Hθ (ω)
∣∣2]SΘ,Y (ω)+SΘ,N(ω), (4.64)

and SΘ,N(ω) =F
[
rΘ,N(τ)

]
and SΘ,Y (ω) =F

[
rΘ,Y (τ)

]
. The expectedMSE of theWiener

filter is:

Eθ

[
η
(

Yθ (s),ψΘ
IBR(Xθ )(s)

)]
=

1
2π

∫ ∞

−∞

J(ω)
∣∣SΘ,Y (ω)

∣∣2 +SΘ,Y (ω)SΘ,N(ω)

Eθ

[∣∣Hθ (ω)
∣∣2]SΘ,Y (ω)+SΘ,N(ω)

dω, (4.65)

where J(ω) = Eθ

[∣∣∣Hθ (ω)
∣∣∣2]− ∣∣∣Eθ

[
Hθ (ω)

]∣∣∣2.
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4.4.2 Gaussian Blurring and Additive White Noise for a WSS Process

Suppose the blurring function h(n) has Gaussian form hσ2
h
(n) =

(2πσ2
h )
− 1

2 exp(− n2

2σ2
h
), the power spectral density for the noise process N(n) is σ2

n ,

and the model for the underlying signal process is Y (n) = 2ku(n)− ku(n + 1), where

u(n) ∼ N(0,1). Suppose that θ = (σ2
h ,σ

2
n ) is unknown and we want to find out which

parameter, σ2
h or σ2

n , should be determined first in the following discrete signal observation

model:

Xθ (n) = hσ2
h
(n)∗Y (n)+Nσ2

n
(n). (4.66)

Let f (θ) = f (σ2
h ) f (σ2

n ) denote the prior distribution function for θ , where f (σ2
h )

and f (σ2
n ) denote the marginal priors for σ2

h and σ2
n , respectively.

In order to evaluate the experimental design value in (4.59) forσ2
h we use the equation

D(σ2
h ) = Eσ2

h

[∫ ∞

−∞

∣∣∣SΘ|σ2
h ,Y X(ω)

∣∣∣2
SΘ|σ2

h ,X
(ω)

dω
]

=
∫ [∫ ∞

−∞

∣∣∣Hσ2
h
(ω)

∣∣∣2 ∣∣∣SY (ω)
∣∣∣2∣∣∣Hσ2

h
(ω)

∣∣∣2SY (ω)+Eσ2
n
[σ2

n ]

dω
]

f (σ2
h )dσ2

h , (4.67)

where SY (ω) can be found using realizations for Y (n). Similarly, the experimental design

value according to (4.59) for σ2
n is found from

D(σ2
n ) = Eσ2

n

[∫ ∞

−∞

∣∣∣SΘ|σ2
n ,Y X(ω)

∣∣∣2
SΘ|σ2

n ,X
(ω)

dω
]

=
∫ [∫ ∞

−∞

∣∣∣Eσ2
h

[
Hσ2

h
(ω)

]∣∣∣2 ∣∣∣SY (ω)
∣∣∣2

Eσ2
h

[∣∣Hσ2
h
(ω)

∣∣2]SY (ω)+σ2
n

dω
]

f (σ2
n )dσ2

n . (4.68)
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Figure 4.1. The difference between the experimental design values corresponding to the
determination of unknown parameters σ2

n and σ2
h for different k.

The primary parameter is chosen according to

θi∗ =


σ2

h if (4.67)> (4.68)

σ2
n otherwise

. (4.69)

Assuming that σ2
n ∈ [0,3] and σ2

h ∈ [0.5,2], Figure 4.1 shows the difference between

the experimental design values computed for σ2
n and σ2

h using equations (4.68) and (4.67),

respectively, for different values of k, which sets the amplitude of the process Y (n). In the

figure, when the difference is negative, meaning that D(σ2
h )< D(σ2

n ), the curve is shown

in blue and otherwise it is shown in red. When the signal has low amplitude, σ2
n is primary,

but as k gets larger, the blurring parameter σ2
h becomes primary. This makes sense because

we know that, whereas for low-amplitude processes the additive noise is more important,

for high-amplitude signals the blurring function plays a major role in signal reconstruction.

Figure 4.2 shows the performance of the IBR Wiener filter designed after determin-

ing each uncertain parameter σ2
h and σ2

n over the uncertainty class for each possible pair
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Figure 4.2. The MSE of the IBR filter obtained after determining one unknown parameter
over the uncertainty class for k = 8 when σ2

h or σ2
n is determined first.

(σ2
h ,σ

2
n ) with k = 8, i.e., Y (n) = 16u(n)−8u(n+1). Keep in mind that, although the ex-

perimental design procedure selects σ2
h as primary, for some states the designed IBR filter

may perform better by determining σ2
n first. For example for 1≤ σ2

n ≤ 2 and 0.5≤ σ2
h ≤ 1

determining σ2
n results in the lower MSE. The point is that the designed IBR filter obtained

upon determining σ2
h first performs better on average with respect to the uncertainty class.

4.4.3 Gaussian Blurring and Additive White Noise for a Random Phase Signal with

Unknown Parameters

A random phase process is of the form Y (n;A, fc) = Acos(2π fcn+Φ), where the

amplitude A and frequency fc are fixed and the phase random variable Φ is uniformly

distributed over the interval [0,2π). A random phase signal is WSS. The power spectral

density SY (ω;A, fc) of Y (n;A, fc) with N samples is A2N
4 δ ( f ± fc). For this signal process,

we assume the signal observation model

X(n) = hσ2
h
(n)∗Y (n;A, fc)+Nσ2

n
(n). (4.70)
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Suppose θ = [A, fc,σ2
h ,σ

2
n ] is unknown and the intent is to find the parameter to deter-

mine first. We use (4.59) for each parameter and then determine the parameter having the

maximum experimental design value D .

D(σ2
h ) is found using (4.67), where SY (ω) is replaced by SΘ|σ2

h ,Y
(ω) which, on ac-

count of the independence of A and fc from σ2
h , can be obtained as follows:

SΘ|σ2
h ,Y

(ω) = F
[
Eθ |σ2

h

[
rYθ |σ2

h
(τ;A, fc)

]]
= F

[
EA, fc

[
rY (τ;A, fc)

]]
= EA, fc

[
F

[
rY (τ;A, fc)

]]
= EA, fc

[
SY (ω ;A, fc)

]
.

(4.71)

Note that interchanging the Fourier transform and expectation integrals is assumed to be

justified.

We use (4.68) to calculate D(σ2
n ), where SΘ|σ2

n ,Y
(ω) is similarly found by using

(4.71). For the amplitude,

D(A) = EA

[∫ ∞

−∞

∣∣SΘ|A,Y X(ω)
∣∣2

SΘ|A,X(ω)
dω

]

=
∫ [∫ ∞

−∞

∣∣∣Eσ2
h

[
Hσ2

h
(ω)

]∣∣∣2 ∣∣∣SΘ|A,Y (ω)
∣∣∣2

Eσ2
h

[∣∣∣Hσ2
h
(ω)

∣∣∣2]SΘ|A,Y (ω)+Eσ2
n

[
σ2

n
] dω

]
f (A)dA, (4.72)

where

SΘ|A,Y (ω) = F
[
Eθ |A

[
rYθ |A(τ;A, fc)

]]
= F

[
E fc

[
rY (τ;A, fc)

]]
= E fc

[
F

[
rY (τ;A, fc)

]]
= E fc

[
SY (ω;A, fc)

]
.

(4.73)
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Finally,

D( fc) = E fc

[∫ ∞

−∞

∣∣SΘ| fc,Y X(ω)
∣∣2

SΘ| fc,X(ω)
dω

]

=
∫ [∫ ∞

−∞

∣∣∣Eσ2
h

[
Hσ2

h
(ω)

]∣∣∣2 ∣∣∣SΘ| fc,Y (ω)
∣∣∣2

Eσ2
h

[∣∣∣Hσ2
h
(ω)

∣∣∣2]SΘ| fc,Y (ω)+Eσ2
n

[
σ2

n
] dω

]
f ( fc)d fc. (4.74)

The parameter with maximum experimental design value is determined first. Note that

SΘ| fc,X(ω) can be found similarly to (4.73).

To analyze experimental-design performance, we assign some intervals to the un-

certain parameters as follows: σ2
n ∈ [0.1, σ2

nmax], σ2
h ∈ [0.5, σ2

hmax], A ∈ [5, Amax], and

fc ∈ [0.1, fcmax]. The nominal values for σ2
nmax, σ2

hmax, Amax, and fcmax are 1, 4, 10, and

0.15, respectively. Figure 4.3 shows the uncertain parameter to be determined first. The

experimental design values for σ2
n , σ2

h , A, and fc are computed using equations (4.68),

(4.67), (4.72), and (4.74), respectively. For example, in Figure 4.3 (a), we consider the

uncertainty interval of σ2
n as [0.1, σ2

nmax], 0.5≤ σ2
nmax ≤ 8. When the interval is small, σ2

h

is primary, but as the interval gets larger, fc becomes primary. In Figure 4.3 (d), when the

interval of fc is small, σ2
h is primary, but for large uncertainty intervals of fc, the primary

parameter is fc. Generally, we observe that for different intervals of uncertain parameters,

the primary parameter is either frequency fc or the blurring function parameter σ2
h .

We now consider experimental-design performance when a sequence of experiments

is conducted. For determining all unknown parameters in the signal observation model

(4.70), we need to conduct four experiments. For the first experiment, we select the primary

parameter using the prior distributions for the parameters. When the first experiment is
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Figure 4.3. Prioritizing the determination of uncertain parameters when the interval of one
of the uncertain parameters changes and the other intervals are according to the nominal
intervals. The parameter with the maximum experimental design value is the primary pa-
rameter. (a) The interval of σ2

n changes as [0.1,σ2
nmax]. (b) The interval of σ2

h changes as
[0.1,σ2

hmax]. (c) The interval of A changes as [5,Amax]. (d) The interval of fc changes as
[0.1, fcmax].

done, we put the true value of the determined parameter in the signal observation model.

Then, using the updated signal observation model, which has fewer unknown parameters,

the primary parameter among the remaining unknown parameters is found. The procedure

is repeated until all parameters are determined.

To evaluate the performance of the selected experiment at each step, after performing
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Figure 4.4. The average MSE obtained after performing each experiment in a sequence
of experiments for the signal observation model with four unknown parameters. Results
are shown when experiments are chosen randomly or based on the proposed experimental
design method.

the experiment of interest and incorporating the value of the corresponding parameter in

the model (4.70), we find the IBRWiener filter for the new uncertainty class and calculate

its MSE relative to the underlying true model. For simulations, we assume nominal inter-

vals for the uncertain parameters as we had considered for the single experiment case and

report the average MSE over 10000 different assumed true models. Figure 4.4 shows the

average MSE after conducting different numbers of experiments both when they are cho-

sen randomly and when they are based on experimental design. According to the figure,

experimental design achieves much faster decrease in averageMSE than random selection.

Note that both curves in the figure begin from the same point and reach the same point be-

cause initially no experiment has been done and at the end all experiments have been done

(and the true model is found regardless of the order of the experiments).
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4.5 Signal Detection

In this section, we consider signal detection via the Karhunen-Loève canonical ex-

pansion. We develop robust signal detection in the presence of uncertainty and show how

experimental design can be applied in signal detection when canonical expansions are used.

Here optimization will be relative to the criterion of Maximum A Posteriori (MAP) prob-

ability rather than MSE.

4.5.1 Signal Detection via Karhunen-Loève Expansion

The main concern of signal detection is to analyze a received signal and extract rele-

vant information [98, 99]. In Gaussian signal detection, it is assumed that the processes are

Gaussian. We consider optimal signal detection algorithm under the maximum a posteriori

(MAP) criterion [100, 101] in the framework of the Karhunen-Loève expansion [98]. First

we briefly review some essentials on how the signal is estimated via the MAP criterion

as given in [98]. Then we compute the maximum a posteriori probability obtained by the

MAP estimate and subsequently define and compute the MOCU for signal detection. We

also show that the MAP estimate of the signal when the noise variance is unknown can be

found in a similar manner as when the variance is known.

Following [98], (which can be consulted for more details) suppose signal X(t) has

been received during the time interval [0,T ] and is of the form

X(t) = e[t,Y (t)]+N(t), (4.75)

whereY (t) is the signal, e[t,Y (t)] (a deterministic function ofY (t) and t is the representative

105



of the modulation scheme, and N(t) is Gaussian noise. Let RY (t,τ), with eigenfunctions

ui(t) and eigenvalues λi, be the auto-correlation function forY (t); and RN(t,τ),with eigen-

functions vi(t) and eigenvalues µi, be the auto-correlation function for N(t). Also suppose

that Yi and Ni are the KL expansion coefficients of Y (t) and N(t), respectively:

Y (t) =
∞

∑
i=1

Yiui(t), (4.76)

N(t) =
∞

∑
i=1

Nivi(t). (4.77)

Utilizing the KL expansion, the problem of estimating Y (t) reduces to estimating the cor-

responding KL coefficients Yi.

As the coefficients of the KL expansion are independent Gaussian random variables,

Y1:M = {Y1,Y2, ...,YM} and N1:M = {N1,N2, ...,NM} for a fixed M have the following joint

probability density functions:

fY (Y1:M) =
1

√
2πM

√
∏M

i=1 λi

exp
(
−

M

∑
i=1

Y 2
i

2λi

)
, (4.78)

fN(N1:M) =
1

√
2πM

√
∏M

i=1 µi

exp
(
−

M

∑
i=1

N2
i

2µi

)
, (4.79)

If X1,X2, ...,XM are the corresponding KL coefficients of the received signal X(t) and

X1:M = {X1,X2, ...,XM}, then to calculate the posterior probability of the coefficients Yi,

first we obtain the conditional probability distribution function fX(X1:M|Y1:M) as

fX(X1:M|Y1:M) = fN(B1:M), (4.80)

where B1:M = {B1,B2, ...,BM} and

Bi =
∫

T

(
X(t)− e[t,Y (t)]

)
vi(t) dt. (4.81)

106



The MAP estimate Ŷ1:M of Y1:M is

Ŷ1:M = argmax
Y1:M

log
(

fY (Y1:M|X1:M)
)
= argmax

Y1:M

log
(

fY (Y1:M) fX(X1:M|Y1:M)
)
(4.82)

= argmax
Y1:M

{
−

M

∑
j=1

Y 2
j

λ j
−

M

∑
j=1

B2
j

µ j

}
. (4.83)

To find Ŷ1:M, for i = 1,2, ...M, ∂
∂Yi

is found for the expression inside the optimization in

(4.83) and set to 0 to obtain

Ŷi =−λi

M

∑
j=1

B j

µ j

∂B j

∂Yi

∣∣∣∣
Yi=Ŷi

, (4.84)

where

∂B j

∂Yi

∣∣∣∣
Yi=Ŷi

=−
∫

T

∂e[t,Ŷ (t)]
∂Y (t)

ui(t)v j(t) dt. (4.85)

Substituting (4.85) in (4.84), the MAP estimate Ŷi of Yi is:

Ŷi = λi

M

∑
j=1

B j

µ j

∫
T

∂e[t,Ŷ (t)]
∂Y (t)

v j(t)ui(t) dt. (4.86)

Letting M→ ∞ yields the MAP estimate of Y (t):

Ŷ (t) =
∞

∑
i=1

Ŷiui(t) =
∞

∑
i=1

λi

∞

∑
j=1

B j

µ j

∫
T

∂e[τ,Ŷ (τ)]
∂Y (τ)

v j(τ)ui(τ)ui(t) dτ

=
∞

∑
j=1

B j

µ j

∫
T

∂e[τ,Ŷ (τ)]
∂Y (τ)

v j(τ)RY (t,τ) dτ. (4.87)

Letting

PN(t,τ) =
∞

∑
i=1

1
µi

vi(t)vi(τ), (4.88)

it can be shown that ∫
T

RN(t, t ′)PN(t ′,τ) dt ′ = δ (t− τ). (4.89)

Substituting (4.81) in (4.87) and using (4.88), it can be shown that the following set of
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integral equations should be solved to find the optimal detector:

Ŷ (t) =
∫

T

∂e[τ,Ŷ (τ)]
∂Y (τ)

RY (t,τ)h(τ) dτ, (4.90)

h(τ) =
∫

T
PN(τ , t ′)

(
X(t ′)− e[t ′,Ŷ (t ′)]

)
dt ′. (4.91)

Generally there is no straightforward solution for solving (4.90) and (4.91); they have been

solved only in some certain cases [100, 101]. For instance, in [100] they have been solved

for unity amplitude modulation, e[t;Y (t)] = Y (t), uncorrelated noise samples, RN(t,τ) =

ε2
n δ (t− τ), and exponential form for the signal auto-correlation, RY (t,τ) = ε2

Y exp(−k|t−

τ|).

From now on to simplify the equations to some extent, we assume that the noise

samples are uncorrelated, RN(t,τ) = ε2
n δ (t− τ). From (4.89) we deduce that

PN(t,τ) =
1
ε2

n
δ (t− τ), (4.92)

and (4.91) becomes

h(τ) =
1
ε2

n

(
X(τ)− e[τ,Ŷ (τ)]

)
. (4.93)

Substituting (4.93) in (4.90), the MAP estimate Ŷ (t) is obtained by solving the following

integral equation:

Ŷ (t) =
∫

T

∂e[τ,Ŷ (τ)]
∂Y (τ)

1
ε2

n

(
X(τ)− e[τ,Ŷ (τ)]

)
RY (t,τ) dτ. (4.94)

To define MOCU for signal detection in the presence of uncertainty, we need to

compute the MAP obtained by Ŷi. Thus, we plug the value found for Ŷi in (4.86) into the
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expression being maximized in (4.83). First we need to compute
∞

∑
i=1

Ŷ 2
i

λi
=

∞

∑
j=1

∞

∑
l=1

B jBl

µ jµl

∫∫
T

[
∂e[t,Ŷ (t)]

∂Y (t)
∂e[t ′,Ŷ (t ′)]

∂Y (t ′)
RY (t, t ′)v j(t)vl(t ′)

]
dtdt ′. (4.95)

We can further simplify (4.95) using the relation
∞

∑
j=1

B j

µ j
v j(t) =

∞

∑
j=1

∫
T

(
X(τ)− e[τ,Ŷ (τ)]

)v j(τ)v j(t)
µ j

dτ

=
∫

T
PN(t,τ)

(
X(τ)− e[τ,Ŷ (τ)]

)
dτ. (4.96)

If PN(t,τ) takes the form as in (4.92), then (4.96) becomes
∞

∑
j=1

B j

µ j
v j(t) =

1
ε2

n

(
X(t)− e[t,Ŷ (t)]

)
. (4.97)

Substituting (4.97), (4.95) becomes
∞

∑
i=1

Ŷ 2
i

λi

=
1
ε4

n

∫∫
T

∂e[t,Ŷ (t)]
∂Y (t)

∂e[t ′,Ŷ (t ′)]
∂Y (t ′)

(
X(t)− e[t,Ŷ (t)]

)(
X(t ′)− e[t ′,Ŷ (t ′)]

)
RY (t, t ′)dtdt ′.

(4.98)

To compute the maximized value in (4.83), we also find
∞

∑
i=1

B2
i

µi
=

∞

∑
i=1

[
1
µi

∫
T

(
X(t ′)− e[t ′,Ŷ (t ′)]

)
vi(t ′)dt ′

∫
T

(
X(t)− e[t,Ŷ (t)]

)
vi(t)dt

]
=

∫∫
T

PN(t, t ′)
(

X(t ′)− e[t ′,Ŷ (t ′)]
)(

X(t)− e[t,Ŷ (t)]
)

dtdt ′

=
1
ε2

n

∫
T

(
X(t)− e[t,Ŷ (t)]

)2
dt. (4.99)
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Using (4.98) and (4.99), the maximized value for (4.83) is

−
∞

∑
i=1

Ŷ 2
i

λi
−

∞

∑
i=1

B2
i

µi

∣∣∣∣
Yi=Ŷi

=− 1
ε4

n

∫∫
T

∂e[t,Ŷ (t)]
∂Y (t)

∂e[t ′,Ŷ (t ′)]
∂Y (t ′)

(
X(t)− e[t,Ŷ (t)]

)(
X(t ′)− e[t ′,Ŷ (t ′)]

)
RY (t, t ′) dtdt ′

− 1
ε2

n

∫
T

(
X(t)− e[t,Ŷ (t)]

)2
dt. (4.100)

Now suppose the noise is uncorrelated and its variance is unknown and parameter-

ized by θ = {θ1, ...,θk}, so that Rθ
N(t,τ) = ε2

θ δ (t−τ),whose eigenfunctions and eigenval-

ues are denoted by vθ
i (t) and µθ

i . We desire to estimate the signal that has the maximum

expected a posteriori probability with respect to the uncertainty class of noise variance.

Keeping in mind that uncertainty only occurs in the noise, the optimization problem in

(4.83) should be modified as follows:

ŶΘ
1:M = argmax

Y1:M

Eθ

[
log

(
fY (Y1:M) f θ

X (X1:M|Y1:M)
)]

, (4.101)

where f θ
X (X1:M|Y1:M) is the conditional distribution with respect to Rθ

N ,which can be com-

puted by

f θ
X (X1:M|Y1:M) = f θ

N (B
θ
1:M), (4.102)

where

Bθ
i =

∫
T

(
X(t)− e[t,Y (t)]

)
vθ

i (t)dt, (4.103)

and

f θ
N (N1:M) =

1
√

2πM
√

∏M
i=1 µθ

i

exp
(
−

M

∑
i=1

N2
i

2µθ
i

)
. (4.104)

110



Similar to (4.83),

ŶΘ
1:M = argmax

Y1:M

{
−

M

∑
i=1

Y 2
i

λi
−Eθ

[ M

∑
i=1

(Bθ
i )

2

µθ
i

]}
. (4.105)

Similar to (4.86), it can be shown that

Ŷ Θ
i = λi

M

∑
j=1

∫
T

∂e[t,Ŷ Θ(t)]
∂Ŷ Θ(t)

Eθ

[Bθ
j vθ

j (t)

µθ
j

]
ui(t) dt. (4.106)

Letting M→ ∞, Ŷ Θ(t) is obtained as

Ŷ Θ(t) =
∞

∑
i=1

Ŷ Θ
i ui(t) =

∞

∑
i=1

λi

∞

∑
j=1

∫
T

∂e[τ,Ŷ Θ(τ)]
∂Ŷ Θ(τ)

Eθ

[Bθ
j vθ

j (τ)
µθ

j

]
ui(τ)ui(t) dτ. (4.107)

The expectation is given by
∞

∑
j=1

Eθ

[Bθ
j vθ

j (t)

µθ
j

]
=

∫
T

(
X(t ′)− e[t ′,Ŷ Θ(t ′)]

)
Eθ

[ ∞

∑
j=1

vθ
j (t
′)vθ

j (t)

µθ
j

]
dt ′

=
∫

T

(
X(t ′)− e[t ′,Ŷ Θ(t ′)]

)
Eθ

[
Pθ

N (t, t
′)
]
dt ′

=
(

X(t)− e[t,Ŷ Θ(t)]
)

Eθ
[ 1

ε2
θ

]
. (4.108)

Substituting (4.108) in (4.107) yields

Ŷ Θ(t) =
∞

∑
i=1

λi

∫
T

∂e[τ,Ŷ Θ(τ)]
∂Ŷ Θ(τ)

(
X(t)− e[t,Ŷ Θ(t)]

)
Eθ

[ 1
ε2

θ

]
ui(τ)ui(t) dτ

=
∫

T

∂e[τ,Ŷ Θ(τ)]
∂Ŷ Θ(τ)

(
X(t)− e[t,Ŷ Θ(t)]

)
Eθ

[ 1
ε2

θ

]
RY (t,τ) dτ. (4.109)

Comparing (4.109) with (4.94) shows that finding the estimate with the maximum

expected a posteriori probability when the noise variance is unknown reduces to finding

the MAP estimate if the inverse of the noise variance is Eθ
[ 1

ε2
θ

]
. In other words, we have

shown that (4.101) can be solved in the same way that one may solve (4.82).

Now using (4.106), we aim to find the maximum value of the expression being op-

timized in (4.105) as M→ ∞. That is, we desire the value of the following expression as
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M→ ∞:

−
M

∑
i=1

(Ŷ Θ
i )2

λi
−Eθ

[ M

∑
i=1

(Bθ
i )

2

µθ
i

∣∣∣∣
Yi=Ŷ Θ

i

]
. (4.110)

For the first summand in (4.110), substituting (4.106) yields
M

∑
i=1

(Ŷ Θ
i )2

λi
=

M

∑
i=1

λi

M

∑
j1=1

M

∑
j2=1

∫∫
T

∂e[t,Ŷ Θ(t)]
∂Ŷ Θ(t)

∂e[t ′,Ŷ Θ(t ′)]
∂Ŷ Θ(t ′)

Eθ

[Bθ
j1vθ

j1(t)

µθ
j1

]
Eθ

[Bθ
j2vθ

j2(t
′)

µθ
j2

]
ui(t)ui(t ′)dtdt ′.

(4.111)

Using (4.108), the limit of the first summand in (4.110) as M→ ∞ is
∞

∑
i=1

(Ŷ Θ
i )2

λi
=

∫∫
T

{
∂e[t ′,Ŷ Θ(t ′)]

∂Ŷ Θ(t ′)
∂e[t,Ŷ Θ(t)]

∂Ŷ Θ(t)

(
X(t ′)− e[t ′,Ŷ Θ(t ′)]

)
×
(

X(t)− e[t,Ŷ Θ(t)]
)

E2
θ
[ 1

ε2
θ

]
RY (t, t ′)

}
dtdt ′. (4.112)

Regarding the second term in (4.110),

Eθ

[ M

∑
i=1

(Bθ
i )

2

µθ
i

]
=

∫∫
T

(
X(t)− e[t,Ŷ Θ(t)]

)(
X(t ′)− e[t ′,Ŷ Θ(t ′)]

) M

∑
i=1

Eθ

[
vθ

i (t)v
θ
i (t
′)

µθ
i

]
dtdt ′.

(4.113)

Since

Bθ
i =

∫
T

(
X(t)− e[t,Y (t)]

)
vθ

i (t)dt, (4.114)

(4.113) with M→ ∞ becomes

Eθ

[ ∞

∑
i=1

(Bθ
i )

2

µθ
i

]
= Eθ [

1
ε2

θ
]
∫

T

(
X(t)− e[t,Ŷ Θ(t)]

)2
dt. (4.115)
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Substituting (4.112) and (4.115), and letting M→ ∞ in (4.110) yields

−
∞

∑
i=1

(Y Θ
i )2

λi
−Eθ

[ ∞

∑
i=1

(Bθ
i )

2

µθ
i

∣∣∣∣
Yi=Ŷ Θ

i

]

=−E2
θ
[ 1

ε2
θ

]∫∫
T

{
∂e[t ′,Ŷ Θ(t ′)]

∂Ŷ Θ(t ′)
∂e[t,Ŷ Θ(t)]

∂Ŷ Θ(t)

×
(

X(t ′)− e[t ′,Ŷ Θ(t ′)]
)(

X(t)− e[t,Ŷ Θ(t)]
)

RY (t, t ′)
}

dtdt ′

−Eθ
[ 1

ε2
θ

]∫
T

(
X(t)− e[t,Ŷ Θ(t)]

)2
dt. (4.116)

Observe that (4.116) results from (4.100) by replacing Ŷ (t) and 1
ε2

n
with Ŷ Θ(t) and

Eθ
[ 1

ε2
θ

]
. In other words, to find the maximum expected a posteriori probability in (4.101),

one needs to find themaximum a posteriori probability in (4.82) for the case that the inverse

of the noise variance is Eθ
[ 1

ε2
θ

]
.

To define MOCU in the framework of signal detection, we first define a reward

function

ζθ (Y) =−
∞

∑
i=1

Y 2
i

λi
−

∞

∑
i=1

(Bθ
i )

2

µθ
i

∣∣∣∣
Yi

. (4.117)

MOCU is then defined by

M(Θ) = Eθ

[
ζθ (Ŷθ )−ζθ (ŶΘ)

]
, (4.118)

where Ŷθ is the set of model-specific MAP KL coefficients obtained according to (4.86)

and ŶΘ is the set of robust MAP KL coefficients obtained according to (4.106). In fact,

(4.100) and (4.116) should be used to compute the expectation of the first and the second

terms, respectively, in (4.118).

In filtering the goal is to minimize an MSE but in signal detection the goal is to

maximize the a posteriori probability. Therefore, while in the MOCU definition in(2.2) we
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deduct the performance function (cost function) of the model-specific optimal filter from

that of the robust filter, in (4.118) we deduct the performance function (reward function)

of the robust estimation from that of the model-specific optimal estimation to calculate

MOCU.

Getting back to the problem of experimental design, the primary parameter θi∗ is

found in the spirit of (4.41):

i∗ = argmax
i∈1,...,k

Eθ̄i

[
Eθ |θi=θ̄i

[
ζθ |θi=θ̄i

(
ŶΘ|θi=θ̄i

)]]
. (4.119)

We can compute the inner expectation in (4.119) using (4.116).

In summary, in analogy to the effective structure utilized for filtering uncertain

canonical expansions, experimental design can be applied to signal detection in the pres-

ence of uncertainty utilizing the same calculational structure as in the certain case. If the

optimal signal estimation can be found in the MAP sense, then the MAP estimate in the

presence of uncertainty can be solved in exactly the same way. Thus, the experimental

design framework can be used in a straightforward manner without having any concern

regarding the calculations in the presence of uncertainty to find the robust MAP estimation

or the calculations needed for the experimental design process. That having been said, it

should be recognized that signal detection using the MAP criterion is not easy and remains

an open research area.
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4.6 Discussion

This chapter proposed a general methodology for objective-based experimental de-

sign in filtering and signal detection. The experimental design takes into account the effect

of model uncertainty on the performance of the operator via the mean objective cost of un-

certainty (MOCU). MOCU measures the expected performance difference (in a Bayesian

setting) in the presence and absence of model uncertainty. In the experimental design

method, the parameter possessing the highest impact on the performance of the designed

operator is determined first. The optimal objective-based experimental design problem has

been addressed for Wiener filtering when some of the parameters of the observation model

are unknown and for signal detection when the covariance matrix for the noise process is

unknown. In the next chapter, we will consider experimental design for signal compression

via the Karhunen-Loève (KL) expansion. We will find the IBR KL compression when the

covariance matrix is unknown and then use it to apply the proposed experimental design

for signal compression.
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5 OPTIMAL EXPERIMENTAL DESIGN IN THE CONTEXT OF

CANONICAL EXPANSIONS: KARHUNEN-LOÈVE

COMPRESSION

Having laid the theoretical groundwork for canonical-expansion-based experimental

design in the previous chapter, here we focus on the role of the Karhunen-Loève (KL)

expansion [96] in data compression [102, 103, 104]. For instance, the KL expansion is

used for image compression where the statistics of the image pixels are used to generate

independent coefficients and then only high energy coefficients are stored or transmitted

[105, 106, 107, 108]. In fluid mechanics, flows are often described as nonlinear dynamical

processes with infinite dimensions; however, it has been shown that a finite number of

parameters can be used for an accurate approximation of a flow [109]. The KL expansion

can be used to represent the fluid process via constructing a reduced set of basis elements.

This approach has been extensively used in mechanics for complexity reduction [110, 111,

112, 113].

KL compression is based on analyzing the data covariancematrix; however, often the

knowledge regarding the actual underlying covariance matrix is not complete. Therefore,

to improve the performance of the KL compression, one needs to reduce the uncertainty

in the covariance matrix. To decide which uncertain parameter in the covariance matrix

should be determined first to improve the quality of the compressed signal, we utilize the

experimental design framework proposed in this dissertation.
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Uppercase and lowercase letters denote random variables and their realizations, re-

spectively. Bold face letters denote vectors and matrices. For a matrix W,W (i, j) denotes

the element of the matrix in row i and column j and WT , tr(W), and |W| represent the

transpose, trace, and determinant operators, respectively. Also, R(W, i) and C(W, j) op-

erators extract the i-th row and the j-th column, respectively. For a vector v, v(i) denotes

the i-th element of the vector. c denotes the complex conjugate of a complex quantity c.

Cov[.] and Var(.) denote the covariance and variance of random variables, respectively.

fX(x) and fX(x|y) denote the marginal probability density of X and the conditional prob-

ability density of X given Y = y, respectively. Finally, Ex[g(x)] and E
[
X |Y = y

]
denote

the expectation of function g(x) with respect to random variable X and the conditional

expectation of random variable X given Y = y, respectively.

It has been shown in the previous chapter that the parameter θ j∗, known as the pri-

mary parameter, to be determined first is given by

j∗ = argmin
j∈1,...,k

Eθ̄ j

[
Eθ |θ j=θ̄ j

[
ηθ |θ j=θ̄ j

(
ψΘ|θ j=θ̄ j

IBR

)]]
, (5.1)

where the inner expectation is relative to the conditional distribution function fθ (θ |θ j =

θ̄ j), model (θ |θ j = θ̄ j) is obtained by assigning θ j = θ̄ j in the model with the uncertainty

vector θ , and the reduced uncertainty class Θ|θ j = θ̄ j contains all models resulting from

setting θ j = θ̄ j.
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5.1 Karhunen-Loève Compression

5.1.1 Karhunen-Loève Compression with Known Covariance Matrix

If the random process X(n) is defined over N points, the discrete KL expansion for

this random process is given by (4.13). Suppose m < N terms are selected from (4.13) to

form the approximation

Xm(n) = ∑
i∈A

Ziui(n), (5.2)

where A is the set of indices for the selected terms. The MSE between X(n) and Xm(n) is

defined by

MSE < X(n),Xm(n)>= E
[(

X(n)−Xm(n)
)(

X(n)−Xm(n)
)]

, (5.3)

and can be shown that

MSE < X(n),Xm(n)>= ∑
i∈Ac

λi
∣∣ui(n)

∣∣2, (5.4)

where Ac is the set of indices for the removed terms. Considering all n ∈ N, the MSE

between X and Xm is defined by

MSE < X,Xm >=
N

∑
n=1

MSE < X(n),Xm(n)> . (5.5)

A basic property of the KL expansion is that

MSE < X,Xm >= ∑
i∈Ac

λi. (5.6)

Since λ1≥ λ2≥ λ3≥ ..., given full knowledge of covariance matrixK, the optimalm-term

compression is

Xm(n) =
m

∑
i=1

Ziui(n). (5.7)
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Henceforth, the notation Xm(n) will refer to this sum.

5.1.2 Intrinsically Bayesian Robust Karhunen-Loève Compression

Now suppose K is unknown and Θ is the uncertainty class of all possible covariance

matrices Kθ , θ ∈Θ. We desire a covariance matrix KΘ that can represent the uncertainty

class Θ in an effective way, where effectiveness must be defined relative to the uncertainty

class and the objective, which is compression.

First we need to show how to compute the MSE between a given process and the

compressed process when the compressed process is not obtained necessarily using the

covariance matrix of the original process. Suppose the covariance matrix of the random

process X(n) is K and the one used for compression is K′. Hence, the compressed process

is

X ′m(n) =
m

∑
i=1

Z′iu
′
i(n), (5.8)

where u′i is the eigenvector of K′ and Z′i is the generalized Fourier coefficient of X(n)

relative to u′i.

Theorem 1. If the random processes X(n) and X ′m(n) are defined as in (4.13) and (5.8),

respectively, then

MSE < X,X′m >=
N

∑
i=1

λi−
m

∑
i=1

(u′i)
T Ku′i. (5.9)

Proof. Please refer to Appendix B.

Note that as (u′i)T Ku′i is scalar:

(u′i)
T Ku′i =

((
u′i
)T Ku′i

)T
= (u′i)

T KT u′i =
(
u′i
)T Ku′i
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Now we utilize (5.9) to find the m-term compression that minimizes the average MSE

across the uncertainty class. Let Xθ (n) denote a random process with fixed covariance

matrixKθ whose eigenvalues and eigenvectors are represented by λ θ
i and uθ

i , respectively.

The average MSE for the compressed random process X ′m(n) defined in (5.8) is given by

Eθ

[
MSE < Xθ ,X′m >

]
= Eθ

[ N

∑
i=1

λ θ
i −

m

∑
i=1

(u′i)
T Kθ u′i

]
=

N

∑
i=1

Eθ

[
λ θ

i

]
−

m

∑
i=1

(u′i)
T Eθ

[
Kθ ]u′i. (5.10)

We need to find u′i that minimizes (5.10) subject to the constraint
∣∣∣∣u′i∣∣∣∣= 1 for 1≤ i≤m:

minimize
u′i

Eθ

[
MSE < Xθ ,X′m >

]
subject to

∣∣∣∣u′i∣∣∣∣= 1, i = 1, . . . ,m.

(5.11)

This constrained optimization can be solved via the method of Lagrange multipliers:

L(u′i,ζi) =
N

∑
i=1

Eθ

[
λ θ

i

]
−

m

∑
i=1

(u′i)
T Eθ [Kθ ]u′i−

m

∑
i=1

ζi(< u′i,u
′
i >−1)

=
N

∑
i=1

Eθ

[
λ θ

i

]
−

m

∑
i=1

N

∑
n=1

N

∑
n1=1

Eθ
[
Kθ (n,n1)

]
u′i(n)u

′
i(n1)−

m

∑
i=1

ζi

( N

∑
n=1

u′i(n)u′i(n)−1
)
.

(5.12)

The partial derivative of L(ui,ζi) relative to u′i(n) is

∂L(ui,ζi)

∂u′i(n)
=−2

N

∑
n1=1

Eθ
[
Kθ (n,n1)

]
u′i(n1)−2ζiu′i(n). (5.13)

Setting this partial derivative equal to 0 yields the following relation for uΘ
i that minimizes

the constrained optimization in (5.11):
N

∑
n1=1

Eθ
[
Kθ (n,n1)

]
uΘ

i (n1) = ζiuΘ
i (n). (5.14)

The relation in (5.14) shows that the minimizing uΘ
i and the Lagrange multiplier ζi are in

fact the i-th eigenvector and eigenvalue of the expected covariance matrix Eθ [Kθ ], respec-

120



tively. Hence, the minimum average MSE is achieved by using the expected covariance

matrix KΘ = Eθ [Kθ ]. Therefore, the IBR m-term compression when dealing with the un-

known covariance matrix is

XΘ
m (n) =

m

∑
i=1

ZΘ
i uΘ

i (n), (5.15)

where uΘ
i is the eigenvector of KΘ and ZΘ

i is the generalized Fourier coefficient relative to

uΘ
i .

When performing KL compression to m terms in the presence of unknown covari-

ance matrix, relative to an uncertainty class Θ of covariance matrices, a class Ψ of m-term

compressions, and the cost function η being theMSE between the original and compressed

processes as in (5.9), the MOCU is defined similarly to (2.2) by

MΨ(Θ) = Eθ

[
MSE < Xθ ,XΘ

m >−MSE < Xθ ,Xθ
m >

]
. (5.16)

5.1.3 Primary Parameters and Optimal Experimental Design

In the spirit of (5.1) and using the relation for MSE in (5.9), the parameter θ j∗ to be

determined first is obtained as

j∗ = argmin
j

Eθ̄ j

[
Eθ |θ j=θ̄ j

[
MSE < Xθ |θ j=θ̄ j ,XΘ|θ j=θ̄ j

m >
]]

= argmin
j

Eθ̄ j

[
Eθ |θ j=θ̄ j

[ N

∑
i=1

λ θ |θ j=θ̄ j
i −

m

∑
i=1

(uΘ|θ j=θ̄ j
i )T Kθ |θ j=θ̄ juΘ|θ j=θ̄ j

i

]]
= argmin

j

N

∑
i=1

Eθ [λ θ
i ]−Eθ̄ j

[
Eθ |θ j=θ̄ j

[ m

∑
i=1

(uΘ|θ j=θ̄ j
i )T Kθ |θ j=θ̄ juΘ|θ j=θ̄ j

i

]]
= argmax

j
Eθ̄ j

[
Eθ |θ j=θ̄ j

[ m

∑
i=1

(uΘ|θ j=θ̄ j
i )T Kθ |θ j=θ̄ juΘ|θ j=θ̄ j

i

]]
= argmax

j
Eθ̄ j

[ m

∑
i=1

λ Θ|θ j=θ̄ j
i

]
, (5.17)
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where λ Θ|θ j=θ̄ j
i is the i-th eigenvalue ofKΘ|θ j=θ̄ j = Eθ |θ j=θ̄ j

[Kθ |θ j=θ̄ j ] and the last equality

holds because uΘ|θ j=θ̄ j
i is the eigenvector of the conditional expected covariance matrix

KΘ|θ j=θ̄ j .

As seen from (5.17), to find the primary parameter, for each unknown parameter

one needs to find the conditional expectation of the other unknown parameters given each

possible value of that parameter. In the next section, we assume that the elements of the

covariance matrix are distributed according to the Wishart distribution, which is a widely

used prior for the covariance matrix in multivariate signal analysis. We will show how to

compute the conditional expectations in a Wishart distribution and then perform experi-

mental design.

5.2 Unknown Covariance Matrix with Wishart Priors

The covariance matrix K is symmetric and positive semi-definite, meaning that

qT Kq ≥ 0 for all possible vectors q. A suitable prior that can be considered for an un-

known covariance matrix is the Wishart distribution. Formally, the Wishart distribution is

the distribution of the sample covariance matrix where samples are drawn from a multi-

variate normal distribution. For a p-variate normal distribution, there are p(p+1)
2 random

variables in the covariance matrix. The joint distribution of these p(p+1)
2 random variables,

or equivalently the distribution of the covariance matrix, is called the Wishart distribution

and is defined as

K∼Wp(Σ,n) =
|K|

n−p−1
2

2
np
2 |Σ| n2 Γp(

n
2)

exp
(
−1

2
tr
(
Σ−1K

))
, (5.18)
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where Γp(.) is the multivariate gamma function, n ≥ p is called the degree of freedom,

and Σ is a p× p positive definite matrix called the scale matrix. To find the best element

of an unknown covariance matrix with Wishart distribution via (5.17), we need to find

the conditional expectation of each element of a Wishart distribution given the value of

another element. In what follows, we find these conditional expectations with p= 3. Later,

we propose a recursive algorithm to find the conditional expectations for a matrix of an

arbitrary size.

A 4-block representation for K is given by

K =

K11 K12

K21 K22

 , (5.19)

where Ki j is a matrix of size pi× p j for i, j = 1,2 and p1+ p2 = p. Also K12 = KT
21. There

is a similar 4-block representation for the scale matrix Σ.

Let

K11.2 = K11−K12K−1
22 K21, (5.20)

and

K22.1 = K22−K21K−1
11 K12, (5.21)

be the Schur complements of K22 and K11, respectively. The following theory is central

to our analysis to find the conditional expectations in a Wishart distribution.

Theorem 2. If K∼Wp(Σ,n) and K is partitioned according to (5.19), then

1. K11.2 is independent from K21 and K22, and K11.2 ∼Wp1(Σ11.2,n− p2).
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2. The conditional distribution of K21 given K22 is a multivariate normal distribution:

K21|K22 ∼N (K22Σ′,K22⊗Σ11.2), (5.22)

where Σ′ = Σ−1
22 Σ21 and ⊗ denotes Kronecker product.

3. K22 has a Wishart distribution: K22 ∼Wp2(Σ22,n).

Proof. Please refer to reference [114].

Corollary 1. If K∼Wp(Σ,n) and K is partitioned according to (5.19), then

1. K22.1 is independent from K12 and K11, and K22.1 ∼Wp2(Σ22.1,n− p1).

2. The conditional distribution of K12 given K11 is a multivariate normal distribution:

K12|K11 ∼N (K11Σ′′,K11⊗Σ22.1), (5.23)

where Σ′′ = Σ−1
11 Σ12.

3. K11 has a Wishart distribution: K11 ∼Wp1(Σ11,n).

We consider two 4-block representations for matrices K and Σ. Throughout this

section, Kr
i j denotes the block i j in Representation r, where in Representation 1, p1 = 1

and p2 = p− 1, and in Representation 2, p1 = p− 1 and p2 = 1. Also, Kr
11.2, Kr

22.1, Σ′r,

and Σ′′r are computed with regards to Representation r. Consider a 3×3 covariance matrix

K =


K1 K4 K5

K4 K2 K6

K5 K6 K3

 . (5.24)

We can partition K in two ways. For Representation 1, the blocks are K1
11 = [K1], K1

12 =

[K4 K5 ], K1
21 =

[
K4
K5

]
, and K1

22 =
[

K2 K6
K6 K3

]
. For Representation 2, the blocks are K2

11 =
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[
K1 K4
K4 K2

]
, K2

12 =
[

K5
K6

]
, K2

21 = [K5 K6 ], and K2
22 = [K3] .

5.2.1 Conditional Expectations for a 3×3 Wishart Distribution

In the following several subsections, we find the conditional expectations relative to

each element of the covariance matrix using Theorem 2 and Corollary 1.

Conditional expectation given K1 = k1

Partitioning K according to Representation 1, it is enough to compute E
[
K1

12|k1
]
and

E
[
K1

22|k1
]
. By part 2 of Corollary 1,

E
[
K1

12|k1
]
= k1Σ′′1. (5.25)

Since E
[
K1

22.1|k1
]
= E

[
K1

22|k1
]
−E

[
K1

21(K
1
11)
−1K1

12|k1
]
and K1

11 = K1, the conditional

expectation of K1
22 given K1 = k1 is

E
[
K1

22|k1
]
= E

[
K1

22.1|k1
]
+ k−1

1 E
[
K1

21K1
12|k1

]
. (5.26)

As E
[
K1

21K1
12|k1

]
is the conditional auto-correlation matrix of K1

12 given K1 = k1, using

(5.23) we have:

E
[
K1

21K1
12|k1

]
= Cov(K1

12|k1)+E
[
K1

12|k1
]T E

[
K1

12|k1
]

= k1Σ1
22.1 + k1

(
Σ′′1

)T k1Σ′′1 = k1Σ1
22.1 + k2

1(Σ
′′
1)

T Σ′′1. (5.27)

Using (5.27), and noting that from the first part in Corollary 1, E
[
K1

22.1|k1
]
=

E
[
K1

22.1
]
= (n−1)Σ1

22.1, (5.26) becomes

E
[
K1

22|k1
]
= nΣ1

22.1 + k1(Σ′′1)
T Σ′′1. (5.28)
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Conditional expectation given K3 = k3

Partitioning K according to Representation 2, we need to find the conditional expec-

tations of K2
21 and K2

11 given K3 = k3, for which we use Theorem 2. Following a similar

procedure as in Subsection 5.2.1, we obtain E
[
K2

21|K3 = k3
]
using (5.25), where k1, Σ1

11,

and Σ1
12 are replaced by k3, Σ2

22, and Σ2
21, respectively.

We can also find E
[
K2

11|K3 = k3
]
similarly to (5.28), where k1, Σ1

22.1, and Σ′′1 are

replaced by k3, Σ2
11.2, and Σ′2, respectively.

Conditional expectation given K2 = k2

To compute the conditional expectation given K2 = k2, we should compute

E
[
K1

22|K2 = k2
]
, E

[
K2

11|K2 = k2
]
, and E

[
K5|K2 = k2

]
.

We can compute the conditional expectation E
[
K1

22|K2 = k2
]
in a similar way that

we computed the conditional expectation of other elements given K1 = k1 in Subsection

5.2.1, where here we have a matrix of size 2×2 with Wishart distribution W2(Σ1
22,n) and

we want to find the conditional expectation of other elements given the value of the first

diagonal element.

We also partition K based on Representation 2 and compute the conditional expecta-

tion E
[
K2

11|K2 = k2
]
in a similar way that we computed the conditional expectation of other

elements given K3 = k3 in Subsection 5.2.1 where here we have a matrix of size 2×2 with

Wishart distribution W2(Σ2
11,n) and we want to find the conditional expectation of other

elements given the value of the last diagonal element.
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We now need to compute E
[
K5|K2 = k2

]
:

E
[
K5|K2 = k2

]
=

∫
k5 fK5(k5|k2)dk5

=
∫

k5

∫
fK5(k5|k1,k4,k2) fK1,K4(k1,k4|k2)dk1dk4dk5

=
∫

fK1,K4(k1,k4|k2)E
[
K5|K1 = k1,K4 = k4,K2 = k2

]
dk1 dk4

=
∫

fK1,K4(k1,k4|k2)R(
(

k1 k4
k4 k2

)
,1)Σ′′2 dk1 dk4

=
∫

fK1,K4(k1,k4|k2)
(
k1Σ′′2(1)+ k4Σ′′2(2)

)
dk1 dk4

= Σ′′2(1)E
[
K1|K2 = k2

]
+Σ′′2(2)E

[
K4|K2 = k2

]
, (5.29)

where we use (5.23) to obtain the fourth equality. Note that E
[
K1|K2 = k2

]
and E

[
K4|K2 =

k2
]
have already been calculated when we computed E

[
K2

11|K2 = k2
]
.

Conditional expectation given K4 = k4

It is enough to compute the conditional expectations for K1
22, K1

11 = K1, and K5. To

compute the conditional expectation given K4 = k4, first we compute fK4(k4) by partition-

ing K according to Representation 1 as follows:

fK4(k4) = Ek1

[
fK4(k4|k1)

]
= Ek1

[
N(k4;α ,β )

]
, (5.30)

where α = k1C(Σ′′1,1), β = k1Σ1
22.1(1,1), and N(k4;α ,β ) is the value of a multivariate

Gaussian function with mean vector α and covariance matrix β at point k4. Note that

one only needs to drop the irrelevant variables from the mean vector and the covariance

matrix to obtain the marginal distribution over a subset of multivariate normal random

variables. The expectation in (5.30) involves a Gaussian function with respect to a Wishart

distribution and cannot be solved analytically. Hence, we compute it numerically by taking
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the average of function N(k4;α ,β ) relative to a Wishart distribution with scale matrix

Σ(1,1) and n using Monte-Carlo simulations. The numerators in (5.32) and (5.33) will be

treated similarly.

If X and Y are two random variables, then the conditional expectation E
[
X |y

]
can be

found as

E
[
X |Y = y

]
=

∫
x

fXY (x,y)
fY (y)

dx =
∫

x fY (y|x) fX(x)dx
fY (y)

=
Ex
[
x fY (y|x)

]
fY (y)

. (5.31)

For computing conditional expectations forK1
22 andK1, we use the relation in (5.31). Now,

E
[
K1

22|K4 = k4
]
=

EK1
22

[
K1

22 fK4(k4|K1
22)

]
fK4(k4)

=
EK1

22

[
K1

22N(k4;α,β )
]

fK4(k4)
, (5.32)

where α = R(K1
22,1)Σ

′
1, β = K1

22(1,1)Σ
1
11.2, and the second equality results from using

Theorem 2, part 2. Next,

E
[
K1|K4 = k4

]
=

Ek1

[
k1 fK4(k4|k1)

]
fK4(k4)

=
Ek1

[
k1N

(
k4;α ,β

)]
fK4(k4)

, (5.33)

whereα = k1C(Σ′′1,1), β = k1Σ1
22.1(1,1), and we use Corollary 1 part 2 to obtain the second

equality. Finally,

E
[
K5|K4 = k4

]
=

Ek1

[∫
k5 fK5,K4(k5,k4|k1)dk5

]
fK4(k4)

=
Ek1

[∫
k5N([k4 k5

]
;α ,β )dk5]

fK4(k4)
, (5.34)

where α = k1Σ′′1 and β = k1Σ1
22.1. To compute the numerator in (5.34), we introduce the

following lemma, which is the bivariate Gaussian form of the relation
∫

x fX ,Y (x,y)dx =

E
[
X |y

]
fY (y).
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E
[
K5|K4 = k4

]
=

Ek1

[
exp

(
− (k4−k1Σ′′1(1))

2

2k1Σ1
22.1(1,1)

) k1Σ′′1(2)+
(

k4−k1Σ′′1(1)
)√Σ1

22.1(2,2)

Σ1
22.1(1,1)

Σ1
22.1(1,2)√

Σ1
22.1(1,1)Σ

1
22.1(2,2)√

2π
√

k1Σ1
22.1(1,1)

]
fK4(k4)

=

Ek1

[
exp

(
− (k4−k1Σ′′1(1))

2

2k1Σ1
22.1(1,1)

) k1

(
Σ′′1(2)−Σ′′1(1)

Σ1
22.1(1,2)

Σ1
22.1(1,1)

)
+k4

Σ1
22.1(1,2)

Σ1
22.1(1,1)√

2π
√

k1Σ1
22.1(1,1)

]
fK4(k4)

. (5.37)

Lemma 1. If σx,σy > 0, µx,µy ∈ R, and −1 < ρ < 1 are all constants, then∫
x

1

2πσxσy
√

1−ρ2
exp

(
−1

2(1−ρ2)

[
(
x−µx

σx
)2 +(

y−µy

σy
)2−2ρ(

x−µx

σx
)(

y−µy

σy
)

])
dx

=
µx +

y−µy
σy

ρσx
√

2πσy
exp

(
−

(y−µy)
2

2σ2
y

)
. (5.35)

Using Lemma 1, we can show that:∫
k5N([k4 k5];k1Σ′′1,k1Σ1

22.1)dk5 =
µk5 +

k4−µk4
σk4

ρσk5
√

2πσk4

exp
(
−

(k4−µk4)
2

2σ2
k4

)
, (5.36)

where [µk4 µk5] = k1Σ′′1 , σ2
k4

= k1Σ1
22.1(1,1), σ2

k5
= k1Σ1

22.1(2,2), and ρ =
k1Σ1

22.1(1,2)
σk4σk5

=

Σ1
22.1(1,2)√

Σ1
22.1(1,1)Σ

1
22.1(2,2)

. Therefore, in order to compute E
[
K5|K4 = k4

]
we can rewrite (5.34) as

shown in (5.37).

Conditional expectation given K6 = k6

This conditional expectation can be computed similarly to the conditional expecta-

tion given K4 = k4; however, here we use Representation 2 for K to find the conditional

expectations.
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Conditional expectation given K5 = k5

The conditional expectations of K2
11 and K1

22 given K5 = k5 are needed. First we

require fK5(k5). By partitioning K according to Representation 2, we obtain

fK5(k5) = Ek3

[
fK5(k5|k3)

]
= Ek3

[
N(k5;α ,β )

]
, (5.38)

where α = k3C(Σ′2,1), β = k3Σ2
11.2(1,1). Now, using the relation in (5.31):

E
[
K2

11|K5 = k5
]
=

EK2
11

[
K2

11 fK5(k5|K2
11)

]
fK5(k5)

=
EK2

11

[
K2

11N(k5;α,β )
]

fK5(k5)
, (5.39)

where α =R(K2
11,1)Σ

′′
2 and β = K2

11(1,1)Σ
2
22.1.

Next, we partition K according to Representation 1 and compute E
[
K1

22|K5 = k5
]
in

a similar way:

E
[
K1

22|K5 = k5
]
=

EK1
22

[
K1

22 fK5(k5|K1
22)

]
fK5(k5)

=
EK1

22

[
K1

22N(k5;α,β )
]

fK5(k5)
, (5.40)

where α =R(K1
22,2)Σ

′
1 and β = K1

22(2,2)Σ
1
11.2.

5.2.2 Conditional Expectations for an Arbitrary Size Wishart Distribution

In this section, we propose a recursive approach to compute the conditional expec-

tations for a Wishart distribution of size p× p.

Conditional expectation given K(1,1) = k11 and K(p, p) = kpp

To compute the conditional expectations of other elements given K(1,1) = k11, we

find the conditional expectation for K1
12 and K1

22 similarly to the 3×3 case in Subsection

5.2.1. The conditional expectations given K(p, p) = kpp are found similarly to the method

of Subsection 5.2.1.
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Conditional expectation given K(i, i) = kii, 1 < i < p

To compute the conditional expectations of other elements givenK(i, i) = kii, we find

the conditional expectations for K1
22, K2

11, and K(1, p).

As K1
22 has a Wishart distribution with the scale matrix Σ1

22, we compute the con-

ditional expectation E
[
K1

22|K(i, i) = kii
]
recursively, where we need to compute the con-

ditional expectation of a Wishart matrix of size (p− 1)× (p− 1) given the value of an

element at position (i−1, i−1).

AsK2
11 has aWishart distribution with scale matrix Σ2

11, we compute E
[
K2

11|K(i, i) =

kii
]
recursively, where we need to compute the conditional expectation of a Wishart matrix

of size (p−1)× (p−1) conditioned on the value of an element at position (i, i).

We compute E
[
K(1, p)|K(i, i) = kii

]
using Representation 2 as (5.29):

E
[
K(1, p)|K(i, i) = kii

]
=

p−1

∑
j=1

Σ′′2( j)E
[
K(1, j)|K(i, i) = kii

]
. (5.41)

Conditional expectation given K(1, i) = k1i, 2≤ i≤ p−1

To compute the conditional expectations of other elements given K(1, i) = k1i, we

find the conditional expectations for K1
22, K(1,1), and K(1, j), j ̸= 1. First, we evaluate

fK(1,i)(k1i) = Ek11

[
fK(1,i)(k1i|k11)

]
= Ek11

[
N
(
k1i;α,β

)]
, (5.42)

where α = k11C(Σ′′1, i−1) and β = k11Σ1
22.1(i−1, i−1).

Proceeding similarly to (5.32), we compute E
[
K1

22|K(1, i) = k1i
]
as

E
[
K1

22|K(1, i) = k1i
]
=

EK1
22

[
K1

22 fK(1,i)(k1i|K1
22)

]
fK(1,i)(k1i)

=
EK1

22

[
K1

22N
(
k1i;α,β

)]
fK(1,i)(k1i)

, (5.43)

where α =R(K1
22, i−1)Σ′1 and β = K1

22(i−1, i−1)Σ1
11.2.
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E
[
K(1, j)|K(1, i) = k1i

]

=

Ek11

[
exp

(
− (k1i−k11Σ′′1(i−1))2

2k11Σ1
22.1(i−1,i−1)

) k11Σ′′1( j−1)+
(

k1i−k11Σ′′1(i−1)
)√Σ1

22.1( j−1, j−1)
Σ22.1(i−1,i−1)

Σ1
22.1(i−1, j−1)√

Σ1
22.1(i−1,i−1)Σ1

22.1( j−1, j−1)
√

2π
√

k11Σ1
22.1(i−1,i−1)

]
fK(1,i)(k1i)

=

Ek11

[
exp

(
− (k1i−k11Σ′′1(i−1))2

2k11Σ1
22.1(i−1,i−1)

) k11

(
Σ′′1( j−1)−Σ′′1(i−1)

Σ1
22.1(i−1, j−1)

Σ1
22.1(i−1,i−1)

)
+k1i

Σ1
22.1(i−1, j−1)

Σ1
22.1(i−1,i−1)

√
2π
√

k11Σ1
22.1(i−1,i−1)

]
fK(1,i)(k1i)

. (5.47)

Via Representation 1, E
[
K(1,1)|K(1, i) = k1i

]
is found similarly to (5.33):

E
[
K(1,1)|K(1, i) = k1i

]
=

Ek11

[
k11 fK(1,i)(k1i|k11)

]
fK(1,i)(k1i)

=
Ek11

[
k11N

(
k1i;α ,β

)]
fK(1,i)(k1i)

, (5.44)

where α = k11C(Σ′′1, i−1) and β = k11Σ1
22.1(i−1, i−1).

To find E
[
K(1, j), j ̸= 1, i|K(1, i) = k1i

]
, partitioning K according to Representation

1 yields

E
[
K(1, j)|K(1, i) = k1i

]
=

Ek11

[∫
k1 j f (k1 j,k1i|k11)dk1 j

]
fK(1,i)(k1i)

=
Ek11

[∫
k1 jN([k1i k1 j];α ,β )dk1 j

]
fK(1,i)(k1i)

,

(5.45)

where α = k11[Σ′′1(i−1) Σ′′1( j−1)] and

β = k11

Σ1
22.1(i−1, i−1) Σ1

22.1(i−1, j−1)

Σ1
22.1(i−1, j−1) Σ1

22.1( j−1, j−1)

 . (5.46)

Note that f (k1 j,k1i|k11) is found using part 2 of Corollary 1 and the fact that the

marginal distribution over a subset ofmultivariate normal randomvariables can be obtained

by dropping the irrelevant variables from the mean vector and the covariance matrix. We

extract the (i−1)-th and ( j−1)-th elements of Σ′′1 because K(1, i) and K(1, j) are the the
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(i−1)-th and ( j−1)-th elements in block K1
12. Since (5.45) has a form similar to (5.34), it

can be simplified further in the same way. The conditional expectation E
[
K(1, j)|K(1, i) =

k1i
]
is given by (5.47). Note that (5.37) results from (5.47) by setting i = 2 and j = 3.

Conditional expectation given K(1, p) = k1p

To find the conditional expectations given K(1, p) = k1p, follow the same procedure

used in Subsection 5.2.1 for K5 = k5.

Conditional expectation given K(i, j) = ki j, 2≤ i≤ p−1, i < j < p

To evaluate the conditional expectations of other elements given K(i, j) = ki j, we

find the conditional expectation for K1
22, K(1,1), and K(l,1),2 ≤ l ≤ p. We extract a

block
[
K(h, l)

] j
h,l=i and then partition it based on Representation 1 to evaluate

fK(i, j)(ki j) = Ek11

[
fK(i, j)(ki j|k11)

]
= Ek11

[
N
(
ki j;α ,β

)]
, (5.48)

where α = k11C(Σ′′1, j−1) and β = k11Σ1
22.1( j− i, j− i). Note that here the scale matrix Σ

used in (5.48) is in fact
[
Σ(h, l)

] j
h,l=i, which corresponds to the block

[
K(h, l)

] j
h,l=i. Now

we proceed to compute conditional expectations.

For E
[
K1

22|K(i, j) = ki j
]
we require the conditional expectation for a Wishart distri-

bution of size (p−1)× (p−1) and scale matrix Σ1
22 given the value of K(i−1, j−1). We

do this recursively.

Representation 2 is used to obtain E
[
K(1,1)|K(i, j) = ki j

]
. Therefore, we must com-

pute the conditional expectation ofK(1,1) in aWishart distribution of size (p−1)×(p−1)

with scale matrix Σ2
11, given K(i, j) = ki j.
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Now, using Representation 1, for 2≤ l ≤ p,

E
[
K(l,1)|K(i, j) = ki j

]
=

∫
kl1 fK(l,1)(kl1|ki j)dkl1

=
∫

kl1

∫
. . .

∫
︸ ︷︷ ︸

K(i′, j′)∈K1
22

fK(l,1)
(
kl1

∣∣ki′ j′,ki j
)

fK(i′, j′)(ki′ j′|ki j)dki′ j′ dkl1

=
∫

. . .
∫

︸ ︷︷ ︸
K(i′, j′)∈K1

22

fK(i′, j′)
(
ki′ j′

∣∣ki j
)∫

kl1 fK(l,1)(kl1|ki′ j′ ,ki j)dkl1 dki′ j′

=
∫

. . .
∫

︸ ︷︷ ︸
K(i′, j′)∈K1

22

fK(i′, j′)
(
ki′ j′

∣∣ki j
)
R(K1

22, l−1)Σ′1 dki′ j′

= ∑
j′

Σ′1( j′)E
[
K1

22(l−1, j′)|K(i, j) = ki j
]
, (5.49)

where E
[
K1

22(l−1, j′)|K(i, j) = ki j
]
has been evaluated previously.

5.3 Simulation Results for Wishart Prior

5.3.1 3×3 Covariance Matrix with Wishart Prior

In this section, we analyze the performance of experimental design when the un-

known covariance matrix has a Wishart distribution with the scale matrix

Σ =


8 1.2 −2.6

1.2 5 −4.5

−2.6 −4.5 8

 , (5.50)

and the aim is to compress 3 random variables to 1 random variable, i.e., m = 1. We set the

degree of freedom n for the Wishart prior to 4. The experimental design values computed
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according to (5.17) for the elements of the covariance matrix are
55.53 55.77 56.67

54.26 55.16

54.59

 . (5.51)

Based on these values, the best element to be determined first is the element at (1, 3),

which has been denoted by K5 in (5.24), because it has the largest experimental design

value. Moreover, determination of unknown elements can be prioritized: for example,

the order of determination is K5 > K4 > K1 > K6 > K3 > K2, by which we mean that if

determining element K5 is not possible, then the next best option is K4, and so on.

For performance evaluation, suppose that parameter θ j∗ whose true value is µ j∗ is

chosen first. After conducting the chosen experiment, there is a smaller uncertainty class

containing that part of the initial uncertainty classΘ that is compatible with the outcome of

the experiment. Denote it byΘ|(θ j∗ = µ j∗). To evaluate the effectiveness of the chosen ex-

periment, we measure the MSE of the KL expression that is robust for Θ|(θ j∗ = µ j∗) when

it is applied to the underlying process with the true value µ for the unknown parameters of

the covariance matrix:

MSE < Xµ ,XΘ|θ j∗=µ j∗
m >=

N

∑
i=1

λ µ
i −

m

∑
i=1

(
uΘ|θ j∗=µ j∗

i

)T
KµuΘ|θ j∗=µ j∗

i , (5.52)

where λ µ
k is the k-th eigenvalue of the underlying true covariance matrixKµ and uΘ|θ j∗=µ j∗

k

is the k-th eigenvector of the expectation of the covariance matrices relative to the uncer-

tainty class Θ|θ j∗ = µ j∗ . We generate a pool of 106 covariance matrices using the Wishart

distribution and assume that each could be the true covariance matrix. Once the true co-
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variance matrix is fixed, we find the MSE corresponding to determining each element of

the covariance matrix using (5.52). Then the average MSE corresponding to the deter-

mination of each element is obtained by taking the average over different assumed true

covariance matrix. To illustrate simulation results, we show the average MSE obtained by

determining each element of the covariance matrix over all possible values for a certain

element. To enhance evaluation, we also show the empirical marginal distribution of the

element. The space of realizations for the element Ki is partitioned into intervals of size

0.2/
∣∣E[Ki

]∣∣, where E
[
Ki
]
is the average of elementKi, and then the empirical marginal dis-

tribution is computed as the proportion of the number of sample matrices that fall within

the interval. For each interval, the average MSE over those sample matrices which fall

within the interval is computed. Figure 5.1 shows the conditional average MSE obtained

by determining each element of the covariance matrix for different realizations of each el-

ement of the covariance matrix. In this figure, the background gray curves are empirical

distributions. Note that, although from the experimental design step the primary parameter

is K5, it is not optimal over the entire space of realizations. K5 is optimal on average with

respect to the Wishart distribution (or the marginal distribution of each element) for the

covariance matrix.

The Mahalanobis distance reflects the distance of a realization from the distribution

of the random variable. It gets larger as the realization moves away from the mean of the

distribution. Because the Mahalanobis distance can be computed for random vectors, if

the unknown covariance matrix K is of size p× p, we first remove its duplicate entries and
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Figure 5.1. The conditional average MSE of determining each element of the covariance
matrix over the space of possible realizations of the elements for n = 4. The background
gray curves are empirical distributions. (a) Conditional average MSE given k1. (b) Con-
ditional average MSE given k2. (c) Conditional average MSE given k3. (d) Conditional
average MSE given k4. (e) Conditional average MSE given k5. (f) Conditional average
MSE given k6. 137
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Figure 5.2. The effect of the Mahalanobis distance on the average MSE resulting from the
determination of different elements of the covariance matrix with the Wishart prior and
degree of freedom n = 4.

then re-arrange the distinct p(p+1)
2 random variables into a column vector of size p(p+1)

2 .

We denote this random vector and its realizations by K̃ and k̃ respectively. We represent the

covariance and mean of K̃ by Cov[K̃] and E
[
k̃
]
, respectively. The Mahalanobis distance

for a re-arranged realization k̃ is defined as

DM(k̃) =
√

(k̃−E
[
K̃
]
)T Cov−1[K̃](k̃−E

[
K̃
]
). (5.53)

For Cov[K̃], we use the sample covariance matrix. Moreover, the mean of a Wishart dis-

tribution with parameters n and Σ is nΣ, which should be re-arranged to be used as E
[
K̃
]

in (5.53). Figure 5.2 presents the average MSE corresponding to the determination of each

element of K for realizations whose Mahalanobis distance is below a certain value. We

observe that as the maximum value for the Mahalanobis distance gets larger, the average

MSE increases and determiningK5, which has been chosen by experimental design, always

achieves the lowest average MSE.
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5.3.2 Performance Evaluation for Sequential Experiments

We now evaluate the performance of experimental design for a sequence of experi-

ments. For a covariance matrix of size 3×3 we need to conduct six experiments to fully

characterize the covariance matrix. At each step we select the primary parameter and then

incorporate its true value in the covariance matrix to find the resulting reduced uncertainty

class. We then utilize this new uncertainty class to find the next parameter to be determined.

We keep repeating this process until all unknown parameters are determined. With the se-

quential experiments, after determining the first element, the distribution of the remaining

unknown elements of the covariance matrix given the value of the determined element is

no longer Wishart and there is no known analytic form for it. Therefore, except the first

experiment, where we use the equations in Section 5.2 to find conditional expectations, for

the remaining experiments Monte Carlo simulations are employed to approximate the con-

ditional expectations required for the experimental design process. To do so, we initially

generate a sample poolS of covariance matrices for the givenWishart distribution. When

the fist element is determined, we obtain its value from the assumed-to-be-true covariance

matrix. To find the next experiment to be conducted, we only keep those matrices from the

original sample poolS whose value of the element just determined is very close to that of

the assumed-to-be-true covariance matrix and denote the new sample pool byS1. Now, to

compute the conditional expectations required in the experimental design calculations for

finding the second parameter to be determined, we employ aMonte Carlo approach: to find

the conditional expectation given the value k of a certain unknown element K(i, j) of the
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Figure 5.3. The average MSE obtained after conducting each experiment in a sequence of
experiments for an unknown covariance matrix with the Wishart prior when experiments
are chosen randomly or based on the proposed experimental design method.

covariance matrix, we take the average of those samples in S1 whose element K(i, j) has

a close value to the value k being considered for the conditional expectation. After taking

the average of those samples, we use the entries of the average matrix as the conditional

expectations given K(i, j) = k.

To evaluate the performance of experimental design, each time a parameter is chosen

to be determined we get its value from the assumed-to-be-true covariance matrix, find the

robust KL expression for the new reduced uncertainty class, and calculate the MSE of the

robust KL expression relative to the underlying true covariance matrix using (5.52), where

here µ ,Θ, and θ j∗ are the assumed-to-be-true covariance matrix, the uncertainty class prior

to conducting the experiment, and the chosen parameter to be determined, respectively.

Consider a Wishart distribution with the scale matrix given in (5.50) and degree of

freedom n = 2. We initially generate a sample pool of 4×107 covariance matrices and as-

sume that the true covariance matrix is fixed during the sequential experiments to be one of
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the generated matrices. Figure 5.3 shows the average MSE obtained after conducting each

experiment using experimental design and compares it with randomly chosen experiments.

The reported average MSE in the figure is averaged over 15,000 different true covariance

matrices. Both curves begin from the same point and ultimately reach the same point

because initially no experiment has been done and after conducting all experiments the

covariance matrix is completely determined. The average MSE obtained via experimental

design is always lower than the random selection policy. The decrease in the average MSE

is sharper when the first few experiments are conducted based on the proposed method.

Note that MSE reduction for the first few experiments is larger even when experiments are

chosen randomly because random variables in a Wishart distribution are not independent

and therefore determining the value of a random variable can provide information about

the true value of the remaining random variables.

Table 5.1 presents the proportion of each element of the covariance matrix chosen to

be determined for each step in the sequential experiments for the 15,000 different assumed-

to-be-true covariancematrices. Observe that while elementK5 is always chosen for the first

experiment, for the remaining experiments different elements are chosen. For example, for

the third experiment T3, elements K1, K2, K3, and K4 are chosen for 57%, 2%, 32%, and

9% of the assumed-to-be-true covariance matrices, respectively. This is because, keeping

in mind that we run simulations over 15,000 different true covariance matrices, different

realizations of a chosen parameter result in different posterior distributions, which are then

used as the prior distributions for finding the next experiment. As the decision making
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Table 5.1. The proportion of choosing each element for each experiment in a sequence of
experiments.

T1 T2 T3 T4 T5 T6

K1 0 0.010 0.574 0.304 0.081 0.030
K2 0 0 0.017 0.127 0.533 0.324
K3 0 0.002 0.319 0.217 0.245 0.217
K4 0 0 0.086 0.348 0.140 0.426
K5 1 0 0 0 0 0
K6 0 0.988 0.004 0.004 0.001 0.003

in our experimental design method depends on the prior distribution, for different true

covariance matrices, different parameters, especially for intermediate experiments, might

be chosen .

5.4 Blocked Covariance Matrix with Unknown Parameters

A common covariancemodel is a blockedmatrix, in which each block corresponds to

a group of correlated random variables, there is no dependency between random variables

in different blocks, and within each block the variance and correlation do not change. For

example, the following covariance matrix contains 2 blocks of size 2×2 and 3×3, where

σ2
1 and ρ1 denote the variance and correlation for the first block and σ2

2 and ρ2 denote the
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variance and correlation for the second block:

σ2
1 ρ1σ2

1 0 0 0

ρ1σ2
1 σ2

1 0 0 0

0 0 σ2
2 ρ2σ2

2 ρ2σ2
2

0 0 ρ2σ2
2 σ2

2 ρ2σ2
2

0 0 ρ2σ2
2 ρ2σ2

2 σ2
2


.

Among other applications, the model has been used to study feature selection in systems

where blocks correspond to uncorrelated subsystems [115, 116], for instance, in genomics,

where each block represents the correlation between genes within a pathway and genes

from different pathways are assumed to be uncorrelated.

Assume that the parameters of the covariance matrix, which are the variance and cor-

relation coefficient for each block, are not known. We apply experimental design to decide

which parameter should be determined first to improve the performance of KL compres-

sion. Unknown parameters are uniformly distributed over a certain interval and different

parameters are statistically independent from each other.

For a numerical illustration, assume a covariance matrix with two blocks of size

2×2 whose unknown parameters are uniformly distributed as follows (nominal intervals):

σ2
1 ∈ [0.1, 4], ρ1 ∈ [−0.3, 0.3], σ2

2 ∈ [0.1, 3], and ρ2 ∈ [−0.1, 0.1]. After compression, one

random variable remains. In Figure 5.4, the interval of one uncertain parameter changes

while other intervals are fixed to the nominal intervals. We then find which uncertain

parameter is better to be determined first by looking at the experimental design values.

For example, according to Figure 5.4 (a), if we change the interval of σ2
1 such that σ2

1 ∈
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[0.1, σ2
1max] and σ2

1max varies from 0.5 to 7, then the primary parameter is given by

ρ2 σ2
1max ≤ 1.4

σ2
2 1.4≤ σ2

1max ≤ 2.9

σ2
1 2.9≤ σ2

1max ≤ 3.7

ρ1 3.7≤ σ2
1max

. (5.54)

In Figure 5.4 (e), the averageMSE resulting from obtaining the chosen parameter is always

lower than the MSE of obtaining other parameters. Suppose we change the interval of σ2
2

such that [0.1, σ2
2max],where σ2

2max varies from 0.5 to 7. As seen from Figure 5.4 (c), when

the interval of σ2
2 is very small, the primary parameter is ρ1, as the interval becomes larger;

the primary parameter changes to σ2
1 , and for very large intervals, the primary parameter

is σ2
2 .

Figure 5.5 presents the same type of simulations when the covariance matrix contains

a block of size 2× 2 (block 1) and a block of size 3× 3 (block 2) and the unknown pa-

rameters have the following nominal uncertainty intervals: σ2
1 ∈ [0.1, 4], ρ1 ∈ [−0.3, 0.3],

σ2
2 ∈ [0.1, 3], and ρ2 ∈ [0.01, 0.4]. Now if σ2

1 ∈ [0.1, σ2
1max] and change σ2

1max from 0.5

to 7, then the primary parameter is given by

σ2
1 or ρ1 σ2

1max ≤ 1

σ2
2 1≤ σ2

1max ≤ 4.2

σ2
1 4.2≤ σ2

1max ≤ 5.3

ρ1 5.3≤ σ2
1max

. (5.55)
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Figure 5.4. The effect of increasing the uncertainty interval of a particular uncertain parameter on the experimental design
performance for an unknown covariance matrix with two blocks of size 2×2. (a) Experimental design values as σ2

1max increases.
(b) Experimental design values as ρ1max increases. (c) Experimental design values as σ2

2max increases. (d) Experimental design
values as ρ2max increases. (e) The average MSE as σ2

1max increases. (f) The average MSE as ρ1max increases. (g) The average
MSE as σ2

2max increases. (h) The average MSE as ρ2max increases.
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Figure 5.5. The effect of increasing the uncertainty interval of a particular uncertain parameter on the experimental design
performance for an unknown covariance matrix with two blocks of size 2×2 and 3×3. (a) Experimental design values as σ2

1max
increases. (b) Experimental design values as ρ1max increases. (c) Experimental design values asσ2

2max increases. (d) Experimental
design values as ρ2max increases. (e) The average MSE as σ2

1max increases. (f) The average MSE as ρ1max increases. (g) The
average MSE as σ2

2max increases. (h) The average MSE as ρ2max increases.
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Figure 5.6. The average MSE obtained after conducting each experiment in a sequence of
experiments for an unknown covariance matrix with disjoint blocks model when experi-
ments are chosen randomly or based on the proposed experimental design method.

We also evaluate the performance for sequential experiments. To do so, we assume a

covariance matrix that has one 2×2 block (block 1) and two 3×3 blocks (blocks 2 and 3).

The parameters are distributed as follows: σ2
1 ∈ [0.1, 4], ρ1 ∈ [−0.3, 0.3], σ2

2 ∈ [0.1, 3],

ρ2 ∈ [0.01, 0.4], σ2
3 ∈ [0.5, 2], and ρ3 ∈ [0.5, 0.9]. One random variable remains after com-

pression. The framework for running simulations is the same as done for the Wishart prior

case except that here there is no need to perform Monte Carlo simulations to find condi-

tional expectations after conducting the first experiment because parameters are uniformly

distributed and statistically independent. Therefore, the posterior distribution after deter-

mining each parameter can be found analytically via multiplying the marginal distributions

of the remaining unknown parameters. Figure 5.6 shows the average MSE obtained after

conducting each experiment chosen either via experimental design or randomly. Note the

large difference between experimental design and random experiments for the first few
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Table 5.2. The proportion of choosing each element for each experiment in a sequence of
experiments for a blocked covariance matrix.

T1 T2 T3 T4 T5 T6

σ1 1 0 0 0 0 0
ρ1 0 0.43 0.18 0.27 0.07 0.05
σ2 0 0.43 0.31 0.21 0.06 0
ρ2 0 0 0 0.25 0.55 0.20
σ3 0 0.14 0.51 0.22 0.03 0.10
ρ3 0 0 0 0.05 0.29 0.65

experiments. Note also that here, unlike the simulations for the Wishart prior case, the

average MSE reduction after conducting each experiment in the random selection policy

is almost the same because parameters are independent from each other.

Finally, Table 5.2 presents the proportion of times that each unknown parameter is

chosen based on all experiments. The primary parameter for the first experiment is always

σ2
1 but for the remaining experiments the primary parameter depends on the outcomes of

preceding experiments.

5.5 Discussion

In this chapter, we studied optimal covariance uncertainty reduction for KL compres-

sion. Having found the optimal parameter to be determined first in (5.17), we then turn

to the case of an unknown covariance matrix with a Wishart prior. A recursive method is

developed to solve the problem for an arbitrary size matrix. Simulations are then provided

to demonstrate the experimental design method, including its advantage over randomly
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selected experiments, for the Wishart model and for a uniform model with a blocked co-

variance matrix. This comparison is critical because the pragmatic goal of experimental

design is to obtain a large gain in relevant knowledge with as few experiments as possible.

The sequential graphs in Figures 5.3 and 5.6 demonstrate this advantage, with the latter

looking very similar to a corresponding graph in [41] for optimal experimental design in

the case of gene regulatory networks, where the objective is drug intervention to reduce

the long-term risk of disease. Owing to the many applications of canonical expansions in

science and engineering, canonical-expansion-based experimental design can be helpful

in many problems where accessibility to data is limited or costly. Admittedly, there are

computational issues and these need to be addressed within specific applications, as they

have been in the case of gene regulatory networks [42].
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6 CONCLUSION

In this dissertation, we introduced an objective-based experimental design frame-

work for uncertainty reduction in complex dynamical systems. The standard engineering

approach to operator design is to construct a mathematical model and then find an operator

in a class of feasible operators that minimizes a cost function relative to an objective. In

the presence of uncertainty, the aim becomes to find a robust operator in the sense that

its performance is acceptable across the uncertainty class. Focusing on the Bayesian set-

ting, model uncertainty negatively impacts operator performance relative to the true model;

however, model uncertainty in itself, such as entropy, is not of prime importance. What

matters is the extent to which the uncertainty results in the loss of operator performance.

In that regard, we developed an objective-based experimental design framework that takes

into account the performance degradation of the operator due to the presence of uncertainty.

The proposed experimental design method utilizes the concept of the mean objec-

tive cost of uncertainty which captures the pertinent uncertainty in the model. In brief, to

find out which uncertainty is better to be estimated first, we calculate the expected remain-

ing MOCU given each uncertain parameter is estimated. The parameter whose expected

remaining MOCU is minimum is selected for estimation.

In Chapter 2, we explained how experimental design can be used for uncertainty re-

duction in gene regulatory networks. Through simulations on both synthetic and real gene

regulatory networks, we showed that the proposed strategy significantly outperforms both
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the random selection policy and the selection policy based on pure statistical information,

such as entropy.

In the following chapter, we presented a computationally efficient method to mitigate

the computational burden of the optimal experimental design for gene regulatory networks.

We used a network reduction scheme to approximately estimate the MOCU at a reduced

computational cost without disrupting the ranking of potential experiments. Our network

reduction scheme is analogous to the reduction of gene regulatory networks to facilitate

design of optimal controllers, except that reduction must be accomplished in such a way as

to preserve (to the extent possible) theMOCU calculations. Simulation results verified that

the proposed approximate method clearly outperforms random selection and is comparable

to the optimal experimental design method.

To further explore the utility of the proposed framework in systems biology, in an on-

going project, we are currently working on an experimental design methodology to reduce

dynamics uncertainty in a class of dynamical gene network models at the process level

[117, 118]. In these models, network dynamics can be updated in different ways, thereby

giving multiple dynamic trajectories, that is, dynamics uncertainty [119]. The goal is to

find the experiment yielding the largest reduction of the pertinent dynamics uncertainty –

equivalently, the number of dynamic trajectories in the network dynamical model – that

affects operational cost.

In the second half of this dissertation, we focused on canonical expansions. Canoni-

cal expansions are convenient expressions that can facilitate the study of random functions.
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Canonical expansions play a major role in many engineering applications. We developed a

rigorous mathematical methodology for the experimental design in the context of canonical

expansions and solved it for three important signal processing applications: linear filter-

ing, signal detection, and signal compression. A crucial step in the proposed experimen-

tal design for canonical expansions is to derive closed-form solutions for the intrinsically

Bayesian robust operators. In the case of Wiener filtering, this can be done via the concept

of effective characteristics, or for the KL compression, the intrinsically Bayesian robust

KL compression is shown to be obtained using the expected covariance matrix.

As a final comment, we should emphasize the far-reaching utility of the proposed

experimental design framework for various disciplines, including signal processing, en-

gineering of new materials, communication systems, and drug design, which may require

mathematical models involving covariance matrices, regression models, graphical models,

systems of differential equations, or other parameterized mathematical structures. In this

dissertation, we solved it for gene regulatory networks and canonical expansions, but we

believe that it can be further applied to other engineering problems. In this regard, we are

currently investigating the application of the proposed framework for the problem of ma-

terials design and discovery where the outstanding challenge is to reduce the number of

experiments required to find new materials with desired properties.
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APPENDIX A

AN ILLUSTRATIVE EXAMPLE TO DEMONSTRATE THE

APPROXIMATE METHOD IN CHAPTER 3

In this supplemental document we provide an illustrative example to demonstrate the

algorithm used for the approximate experimental design proposed.

We consider a 3-gene toy network as shown in Figure A.1. This network consists

of three genes {X1,X2,X3} and three regulations. We assume that the activating regulation

from gene X2 to gene X3 and the suppressive regulation from gene X1 to gene X3 are un-

known and denote them by θ1 and θ2 respectively. Each uncertain parameter can take two

values: 1 for being activating and 2 for being suppressive. Uncertainty class Θ as shown

in Figure A.2 contains 4 different networks: {θ 1,θ 2,θ 3,θ 4} such that:

θ 1 : (θ1 = 1,θ2 = 1)

θ 2 : (θ1 = 1,θ2 = 2)

θ 3 : (θ1 = 2,θ2 = 1)

θ 4 : (θ1 = 2,θ2 = 2)

Let us assume that the probability density function governing the uncertainty class

is uniform and two uncertain parameters are independent from each other. Therefore, all

networks within Θ are equally likely having probability 1/4, i.e., P(θ i) = 1/4.

The first step in the proposed experimental design method is to decide which gene

is better to be removed. In this example, we assume that the expression state of gene X3
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Figure A.1. The 3-gene toy network used for illustrative example.
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Figure A.2. The uncertainty class Θ which contains all possible networks.
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determines whether a given state is desirable or undesirable. Therefore, we need to find

the best gene for deletion among X1 and X2. We go through lines 3 to 12 of Algorithm 1 to

calculate the cost of deleting gene X1 (the signX is used for comments):

1. Line 3: g← X1

2. Line 4: cost(X1)← 0

3. Line 5: i← 1

X we compute the cost of deleting gene X1 related to uncertain parameter θ1.

4. Line 6: θ1← 1

5. Line 7: Θ|θ1 = 1←{θ 1,θ 2}, ΘX1|θ1 = 1←{θ 1,X1,θ 2,X1}

X remaining uncertainty class when θ1 = 1

X θ 1,X1 and θ 2,X1 are obtained from θ 1 and θ 2 respectively by deleting gene X1.

X we find the reduced networks inΘX1|θ1 = 1 using the procedure given in section

“Reduction mappings and induced interventions”.

6. Line 8: P(θ 1)← 1/4, P(θ 2)← 1/4

X probabilities of two networks inside Θ|θ1 = 1

7. Line 9: ψIBR
(
ΘX1|θ1 = 1

)
← argmin

ψ∈Ψ

{
P(θ 1)ηθ 1,X1 (ψ)+P(θ 2)ηθ 2,X1 (ψ)

}
X we found the robust intervention for the uncertainty classΘX1|θ1 = 1 of reduced

networks.

X we can store all costs such as ηθ 1,X1 (ψ) and ηθ 2,X1 (ψ) calculated in this step for

future computations.

8. Line 9: find ψΘ|θ1=1
IBR (ind;X1) using Algorithm 3
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9. Line 10: hX1(θ1 = 1) ← P(θ 1)ηθ 1

(
ψΘ|θ1=1

IBR (ind;X1)
)

+

P(θ 2)ηθ 2

(
ψΘ|θ1=1

IBR (ind;X1)
)

X the average performance of induced intervention across Θ|θ1 = 1

10. Line 6: θ1← 2

11. Line 7: Θ|θ1 = 2←{θ 3,θ 4}, ΘX1|θ1 = 2←{θ 3,X1,θ 4,X1}

X remaining uncertainty class when θ1 = 2

X we find the reduced networks inΘX1|θ1 = 2 using the procedure given in section

“Reduction mappings and induced interventions”.

12. Line 8: P(θ 3)← 1/4, P(θ 4)← 1/4

X probabilities of two networks inside Θ|θ1 = 2

13. Line 9: ψΘX1 |θ1=2
IBR ← argmin

ψ∈Ψ

{
P(θ 3)ηθ 3,X1 (ψ)+P(θ 4)ηθ 4,X1 (ψ)

}
X we found the robust intervention for the uncertainty classΘX1|θ1 = 2 of reduced

networks.

X we can store all costs such as ηθ 3,X1 (ψ) and ηθ 3,X1 (ψ) calculated in this step for

future computations.

14. Line 9: find ψΘ|θ1=2
IBR (ind;X1) using Algorithm 3

15. Line 10: hX1(θ1 = 2) ← P(θ 3)ηθ 3

(
ψΘ|θ1=2

IBR (ind;X1)
)

+

P(θ 4)ηθ 4

(
ψΘ|θ1=2

IBR (ind;X1)
)

16. Line 11: P(θ1 = 1)← 1/2, P(θ1 = 2)← 1/2

17. Line 11: cost(X1)← cost(X1)+P(θ1 = 1)hX1(θ1 = 1)+P(θ1 = 2)hX1(θ1 = 2)

X we obtained cost for gene X1 caused by θ1.
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18. Line 5: i← 2

X we now consider uncertain parameter θ2.

X steps 20-31 (for θ2) are similar to steps 5-16 (for θ1).

19. Line 6: θ2← 1

20. Line 7: Θ|θ2 = 1←{θ 1,θ 3}, ΘX1|θ2 = 1←{θ 1,X1,θ 3,X1}

21. Line 8: P(θ 1)← 1/4, P(θ 3)← 1/4

22. Line 9: ψΘX1 |θ2=1
IBR ← argmin

ψ∈Ψ

{
P(θ 1)ηθ 1,X1 (ψ)+P(θ 3)ηθ 3,X1 (ψ)

}
23. Line 9: find ψΘ|θ2=1

IBR (ind;X1) using Algorithm 3

24. Line 10: hX1(θ2 = 1) ← P(θ 1)ηθ 1

(
ψΘ|θ2=1

IBR (ind;X1)
)

+

P(θ 3)ηθ 3

(
ψΘ|θ2=1

IBR (ind;X1)
)

25. Line 6: θ2← 2

26. Line 7: Θ|θ2 = 2←{θ 2,θ 4}, ΘX1|θ2 = 2←{θ 2,X1,θ 4,X1}

27. Line 8: P(θ 2)← 1/4, P(θ 4)← 1/4

28. Line 9: ψΘX1 |θ2=2
IBR ← argmin

ψ∈Ψ

{
P(θ 2)ηθ 2,X1 (ψ)+P(θ 4)ηθ 4,X1 (ψ)

}
29. Line 9: find ψΘ|θ2=2

IBR (ind;X1) using Algorithm 3

30. Line 10: hX1(θ2 = 2) ← P(θ 2)ηθ 2

(
ψΘ|θ2=2

IBR (ind;X1)
)

+

P(θ 4)ηθ 4

(
ψΘ|θ2=2

IBR (ind;X1)
)

31. Line 11: P(θ2 = 1)← 1/2, P(θ2 = 2)← 1/2

32. Line 11: cost(X1)← cost(X1)+P(θ2 = 1)hX1(θ2 = 1)+P(θ2 = 2)hX1(θ2 = 2)

X we found the cost of deleting gene X1 by adding the cost related to θ2 to the

cost related to θ1.
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At this point we have calculated the cost of deleting gene X1, cost(X1). We need

to calculate the cost of deleting gene X2, cost(X2), as well. The steps for calculating the

cost of gene X2 are similar to those for X1. Therefore, we skip illustrating these steps and

proceed to the next stage to use the induced optimal and robust interventions found via

deleting the optimal gene for the experimental design. Suppose that the optimal gene for

deletion is gene X1 meaning that cost(X1)< cost(X2). Therefore, we go through the rest of

Algorithm 1 (lines 13 to 19) to estimate the optimal experiment Ei∗ to be conducted first:

• Line 13: i← 1

• Line 14: θ1← 1

• Line 15: Θ|θ1 = 1←{θ 1,θ 2}

• Line 16: P(θ 1)← 1/4, P(θ 2)← 1/4

• Line 17: MX1
Ψ (Θ|θ1 = 1)← P(θ 1)

{
ηθ 1

(
ψΘ|θ1=1

IBR (ind;X1)
)
−ηθ 1

(
ψ ind(θ 1;X1)

)}
+P(θ 2)

{
ηθ 2

(
ψΘ|θ1=1

IBR (ind;X1)
)
−ηθ 2

(
ψ ind(θ 2;X1)

)}
X we estimated the remaining MOCU when θ1 = 1 via deleting gene X1.

• Line 14: θ1← 2

• Line 15: Θ|θ1 = 2←{θ 3,θ 4}

• Line 16: P(θ 3)← 1/4, P(θ 4)← 1/4

• Line 17: MX1
Ψ (Θ|θ1 = 2)← P(θ 3)

{
ηθ 3

(
ψΘ|θ1=2

IBR (ind;X1)
)
−ηθ 3

(
ψ ind(θ 3;X1)

)}
+P(θ 4)

{
ηθ 4

(
ψΘ|θ1=2

IBR (ind;X1)
)
−ηθ 4

(
ψ ind(θ 4;X1)

)}
X we estimated the remaining MOCU when θ1 = 2 via deleting gene X1.

• Line 18: MX1
Ψ (Θ,1)← P(θ1 = 1)MX1

Ψ (Θ|θ1 = 1)+P(θ1 = 2)MX1
Ψ (Θ|θ1 = 2)
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X we estimated the expected remaining MOCU when θ1 is assumed to be known

via deleting gene X1.

• Line 13: i← 2

• Line 14: θ2← 1

• Line 15: Θ|θ2 = 1←{θ 1,θ 3}

• Line 16: P(θ 1)← 1/4, P(θ 3)← 1/4

• Line 17: MX1
Ψ (Θ|θ2 = 1)← P(θ 1)

{
ηθ 1

(
ψΘ|θ2=1

IBR (ind;X1)
)
−ηθ 1(ψ ind(θ 1;X1))

}
+P(θ 3)

{
ηθ 3

(
ψΘ|θ2=1

IBR (ind;X1)
)
−ηθ 3

(
ψ ind(θ 3;X1)

)}
X we estimated the remaining MOCU when θ2 = 1 via deleting gene X1.

• Line 14: θ2← 2

• Line 15: Θ|θ2 = 2←{θ 2,θ 4}

• Line 16: P(θ 2)← 1/4, P(θ 4)← 1/4

• Line 17: MX1
Ψ (Θ|θ2 = 2)← P(θ 2)

{
ηθ 2

(
ψΘ|θ2=2

IBR (ind;X1)
)
−ηθ 2

(
ψ ind(θ 2;X1)

)}
+P(θ 4)

{
ηθ 4

(
ψΘ|θ2=2

IBR (ind;X1)
)
−ηθ 4

(
ψ ind(θ 4;X1)

)}
X we estimated the remaining MOCU when θ2 = 2 via deleting gene X1.

• Line 18: MX1
Ψ (Θ,2)← P(θ2 = 1)MX1

Ψ (Θ|θ2 = 1)+P(θ2 = 2)MX1
Ψ (Θ|θ2 = 2)

X we estimated the expected remaining MOCU when θ2 is assumed to be known

via deleting gene X1.

• Line 19: i∗← argmin
i∈1,2

MX1
Ψ (Θ;θi)
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APPENDIX B

PROOF OF THEOREM 1 IN CHAPTER 5

In this appendix, we prove (5.9), which shows how to find the MSE between an

original random process X and a compressed random process X′m obtained using an arbi-

trary covariance matrix K′ that may not be necessarily equal to that of the original random

process, K.

First we find the MSE for each n:

MSE < X(n),X ′m(n)> = E
[∣∣X(n)−X ′m(n)

∣∣2]
= E

[( N

∑
i=1

Ziui(n)−
m

∑
i=1

Z′iu
′
i(n)

)( N

∑
l=1

Zlul(n)−
m

∑
l=1

Z′lu
′
l(n)

)]
= E

[ N

∑
i=1

N

∑
l=1

ZiZlui(n)ul(n)+
m

∑
i=1

m

∑
l=1

Z′iZ′lu
′
i(n)u′l(n)

−
m

∑
i=1

N

∑
l=1

Z′iZlu′i(n)ul(n)−
N

∑
i=1

m

∑
l=1

ZiZ′lui(n)u′l(n)
]

=
N

∑
i=1

λi
∣∣ui(n)

∣∣2 + m

∑
i=1

E
[∣∣Z′i∣∣2] ∣∣u′i(n)∣∣2

−
m

∑
i=1

N

∑
l=1

E
[
Z′iZl

]
u′i(n)ul(n)−

N

∑
i=1

m

∑
l=1

E
[
ZiZ′l

]
ui(n)u′l(n).

(B.1)
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Now the MSE over all n is

MSE < X,X′m > =
N

∑
n=1

E
[∣∣X(n)−X ′m(n)

∣∣2]
=

N

∑
i=1

λi

N

∑
n=1

∣∣ui(n)
∣∣2 + m

∑
i=1

E
[∣∣Z′i∣∣2] N

∑
n=1

∣∣u′i(n)∣∣2
−

m

∑
i=1

N

∑
l=1

E
[
Z′iZl

] N

∑
n=1

u′i(n)ul(n)

−
N

∑
i=1

m

∑
l=1

E
[
ZiZ′l

] N

∑
n=1

ui(n)u′l(n). (B.2)

E
[∣∣Z′i∣∣2] can be calculated as follows:

E
[∣∣Z′i∣∣2]= E

[ N

∑
n=1

N

∑
n1=1

X(n)X(n1)u′i(n)u
′
i(n1)

]
=

N

∑
n=1

N

∑
n1=1

E
[
X(n)X(n1)

]
u′i(n)u

′
i(n1)

= (u′i)
T Ku′i. (B.3)

To compute the third term in (B.2), first we find E
[
ZiZ′l

]
:

E
[
Z′iZl

]
= E

[ N

∑
n=1

N

∑
n1=1

X(n)X(n1)u′i(n)ul(n1)
]

=
N

∑
n=1

( N

∑
n1=1

K(n,n1)ul(n1)
)

u′i(n)

=
N

∑
n=1

λlul(n)u′i(n), (B.4)

where the third equality follows from the fact that ui is the eigenvector of K such that

∑N
n1=1 K(n,n1)ul(n1) = λlul(n).
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Compute the third term in (B.2) by plugging in (B.4):
m

∑
i=1

N

∑
l=1

E
[
Z′iZl

]( N

∑
n1=1

u′i(n1)ul(n1)
)
=

m

∑
i=1

N

∑
l=1

( N

∑
n=1

λlul(n)u′i(n)
)( N

∑
n1=1

u′i(n1)ul(n1)
)

=
m

∑
i=1

N

∑
n=1

N

∑
n1=1

( N

∑
l=1

λlul(n)ul(n1)
)

u′i(n1)u′i(n)

=
m

∑
i=1

N

∑
n=1

N

∑
n1=1

K(n,n1)u′i(n1)u′i(n)

=
m

∑
i=1

(u′i)
T Ku′i, (B.5)

where the third equality follows from
N

∑
i=l

λlul(n)ul(n1) = K(n,n1). (B.6)

Note that in (B.2), the fourth term is the conjugate of the third term; therefore, it equals the

conjugate of (B.5). Using (B.3) and (B.5), we simplify (B.2):

MSE < X,X′m > =
N

∑
i=1

λi +
m

∑
i=1

E
[∣∣Z′i∣∣2]− m

∑
i=1

N

∑
l=1

E
[
Z′iZl

] N

∑
n=1

u′i(n)ul(n)

−
N

∑
i=1

m

∑
l=1

E
[
ZiZ′l

] N

∑
n=1

ui(n)u′l(n)

=
N

∑
i=1

λi +
m

∑
i=1

(u′i)
T Ku′i−

m

∑
i=1

(u′i)
T Ku′i−

m

∑
i=1

(u′i)
T Ku′i

=
N

∑
i=1

λi−
m

∑
i=1

(u′i)
T Ku′i. (B.7)
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