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ABSTRACT  

Tissue engineering is a promising treatment strategy for osteochondrosis and 

osteoarthritis induced articular cartilage injuries, with the goal of restoring structure and 

function, reducing/eliminating clinical signs, and preventing major surgical treatment. 

The objective of the work presented herein describes the manipulation of 3D scaffolds 

and progenitor cells known as multipotent stromal cells (MSCs) as a potential 

combination treatment for articular cartilage injuries. First, a three-dimensional (3D), 

serum-free collagen system was used as a model to demonstrate the importance of 

growth factors and cell-matrix interactions in 3D environments. Results demonstrated 

PDGF-BB induced dose- and time-dependent invasion of MG-63 cells into 3D collagen 

type I matrices. To examine the specific MT-MMP responsible, siRNA knockdown 

experiments were performed. Significant reduction of invasion was exhibited in MT1-

MMP siRNA cultures, but not MT2- or MT3-MMP siRNAs. This work demonstrates 

that PDGF-BB is an important growth factor in MG-63 osteosarcoma cell invasion, and 

that MT1-MMP is required for this process. Second, canine multipotent stromal cells 

(cMSCs) were isolated from synovium, marrow, and adipose tissue and 

comprehensively characterized using a donor-matched study and assays optimized for 

the canine species. Tissues were isolated from five client owned dogs with cranial 

cruciate ligament rupture. All tissues produced plastic adherent, spindle shaped cMSCs. 

Each cell preparation was assessed for MSC criteria using flow cytometry, colony 

forming unit (CFU) potential, tri-lineage differentiation, and immunomodulation assays. 

There were significant differences between cMSCs as assessed by growth parameters, 
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CFU potential, tri-lineage differentiation, and immunomodulatory response when 

comparing donor and tissue source. Synovial and marrow cMSCs exhibited superior 

short-term osteogenesis while synovium and adipose proliferated more rapidly, 

displayed higher CFU potential, and formed larger chondrogenic pellets. All cMSCs 

reduced concentration of murine TNF-α in LPS-stimulated mouse macrophage co-

culture assays, a novel finding for cMSCs. In summary, as described in humans, 

significant differences in cMSCs exist due to both tissue source and donor variability. 

Lastly, fabrication method for incorporation of cMSCs with polyethylene glycol-

diacrylate (PEG-DA) based hydrogels for in vitro and in vivo studies was optimized. 

PEG-DA hydrogels fabricated with “conventional” photoinitiators were compared to a 

novel solvent induced phase separation via solvent-casted particulate leaching 

(SIPS/SCPL) hydrogel system. Using a 21-day time course, marrow cMSCs cultured on 

SIPS/SCPL-PEG-DA hydrogels exhibited significantly greater attachment, spreading, 

and proliferation while limiting cytotoxicity when compared to cMSCs 

photoencapsulated within conventional hydrogels. Furthermore, using the rat 

subcutaneous and intra-articular implant models, SIPS/SCPL-PEG-DA hydrogels were 

biocompatible, as determined by an appropriate vascular, cellular, and fibrous tissue 

response 21 days post-implantation. In summary, PEG-DA hydrogels fabricated via 

SIPS/SCPL may be preferential to conventional PEG-DA hydrogels for articular 

cartilage tissue-engineering scaffolds. Collectively, the work presented herein describes 

manipulation of 3D scaffolds in combination with cMSCs and represents advancement 

in the field of canine tissue engineering for focal articular cartilage injuries. 
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CHAPTER I  
 

INTRODUCTION 

ARTICULAR (HYALINE) CARTILAGE 

 Articular cartilage is connective tissue lining the subchondral bone of articulating 

surfaces of joints primarily composed of extracellular matrix (ECM) components, 

collagen type II and proteoglycans. Collagen type II is the principal component (90-

95%) of the microfibrillar network and is composed of three α1 chains in a triple-helical 

structure organized into multi-fibril structures. The collagen fibril network is cross-

linked and thought to provide stability and stiffness while being resistant to swelling and 

tensile strains (Wilson et al., 2005). Interwoven within the collagen fibril network are 

protein polysaccharide molecules, proteoglycans. Proteoglycans provide a backbone 

structure for subunits binding of glycosaminoglycans (GAGs). GAGs are negatively 

charged disaccharides involved in attraction of positively charged molecules to maintain 

osmolarity. In turn, fluid and electrolyte balance is maintained. This balance of fluid 

(water) is responsible for the tensile and shear properties of cartilage. Water allows for 

the load-dependent deformation as a shock absorber, minimizing peak pressures; in 

addition, water also assists in providing a low-friction gliding surface for pain free 

movement. When the microfibrillar collagen network or proteoglycans incur acute 

trauma or damage, normal wound healing mechanisms are limited due to the avascular 

and aneural properties of this specialized tissue. Thus damage is minimally repaired. 

Damage to the macrostructure of cartilage alters the intrinsic tissue properties allowing 

increased permeability, leading to an increase in water content. This increase in water 
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reduces the elasticity modulus thereby decreasing the load bearing capacity. In 

osteoarthritis, water content can exceed >90% of tissue weight, allowing for increased 

damage and progression across the joint surface (Martin and Buckwalter, 2000).  

 

OSTEOARTHRITIS 

Developmental and degenerative joint diseases such as OC and OA are 

debilitating conditions that affect the quality of life, economic productivity, and life 

expectancy of humans and domestic animals (Woolf and Pfleger, 2003; Ytrehus et al., 

2007). Osteochondrosis is characterized by a genetic or developmental disorder of 

abnormal endochondral ossification of articular cartilage leading to focally thickened 

cartilage, tissue necrosis, detachment, synovitis, and pain. OC has been hypothesized to 

occur in a focal region of subcondral bone with the overlying cartilage incurring 

secondary lesions and necrosis (Robertson et al., 2003). Deformation to cartilage 

surrounding OC lesions often results in joint effusion, arthralgia, lameness, and eventual 

progression to OA (Breur and Lambrechts, 2011).	
  In contrast to OC where the articular 

cartilage is developmentally abnormal, normal cartilage can be affected by traumatic, 

high-impact injuries during athletic events. These focal traumatic injuries result in 

cartilage fibrillation, fragmentation, and subsequent OA.	
   Approximately 52.5 million 

adults in the United States are currently affected by OA. Due to the aging population and 

increased obesity rates, this number is expected to grow to 67 million by 2030 (Barbour 

et al., 2013). Furthermore, the economic impact of OA approaches 60 billion dollars per 

year in humans (Buckwalter et al., 2004).  
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From a biomechanical perspective, the canine skeleton undergoes loading in a 

manner that approximates that of the human skeleton (Bergmann et al., 1984; 

Liebschner, 2004). For this reason, canine models of osteoarthritis, anterior cruciate 

ligament repair, meniscal injury, and non-union fractures are acceptable models for 

translational into human clinical trials. As a model species, approximately 25% of dogs 

over 2 years of age are affected by OA with increasing prevalence as age progresses 

(Johnston, 1997); while knee OA associated with rupture of the cranial cruciate ligament 

(a ligament in the knee of dogs analogous to the ACL in humans) in dogs was estimated 

at 1.32 billion dollars in 2005 (Wilke et al., 2005). Longitudinal studies, in which 

healthy dogs are followed to the end of life, demonstrate that between 50% and 87% of 

dogs develop OA of the elbow, hip, and shoulder (Huck et al., 2009; Runge et al., 2008; 

Smith et al., 2006).  

Broadly, two strategies are currently used for the treatment of joint disorders: 

medical and surgical. Medical approach involves the management of symptoms through 

the use of non-steroidal anti-inflammatory drugs (NSAIDs) or corticosteroids, initiation 

of weight loss, diet modifications, maintenance of regular low-impact activity, and 

occasional use of joint lubricants such as Hyaluronic Acid (HA) administered into the 

joint to control pain. Clinical signs are likely to progress despite escalation of medical 

treatments (Moran et al., 2003). Not only does medical management require life-long 

treatment, long-term administration of some of these medications carry a risk of major 

complications such as bleeding disorders, gastrointestinal ulceration, and kidney or liver 

damage. Alternative options for relief can be explored for patients in whom medical 
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treatments do not provide quality pain management or improved function. These options 

include: surgical debridement of damaged joint surfaces using arthroscopy, 

microfracture to stimulate fibrocartilage ingrowth, osteochondral autograft transplant 

(OAT), and autologous cartilage implantation (ACI). While some of these treatments 

provide short-term alleviation of pain, they often do not provide long-term relief (Al-

Shaikh et al., 2002; Clair et al., 2009; Gobbi et al., 2006; Harris et al., 2011; Peterson et 

al., 2000). When these options have been exhausted, major surgical intervention 

becomes necessary. While surgical treatments such as joint replacement are highly 

effective, joint replacement is costly and not without its own complications such as 

implant loosening, infection, luxation, or fracture (Clohisy et al., 2004; Ranawat, 1986). 

For these reasons, joint replacement is considered by many to be a procedure intended 

only for patients with end-stage OA.  

There are currently few viable treatment options for patients with early-stage OA 

intended to bridge the gap between medical management and major surgical 

interventions such as total joint replacement. These treatments include the 

aforementioned: ACI, OAT, microfracture, and abrasion arthroplasty procedures. While 

microfacture and abrasion arthroplasty have proven effective in fibrocartilage 

production, the mechanical properties of this tissue do not approach that of normal 

articular cartilage (Ochi et al., 2001). On the other hand, while ACI and OAT procedures 

have demonstrated promising early results, long-term effects are questionable due to 

poor integration with surrounding tissue, donor site morbidity, fibrocartilage formation, 
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and cell phenotype changes (Constantinou et al., 2014; Madry et al., 2011; Pacifici et al., 

1991). 

 

REGENERATIVE MEDICINE AND TISSUE ENGINEERING 

Due to costs, limitations, and risks associated with treatments described above, 

regenerative medicine using novel tissue engineering scaffolds holds much promise in 

the treatment of OA and other focal cartilage defects. Ideally, a successful treatment 

would reduce clinical signs, improve quality of life, reduce the frequency of medical 

management, and delay or eliminate the need for total joint replacement. In fact, 

regenerative medicine and tissue engineering approaches are well suited to serve as a 

bridge between medical and surgical treatments. In 2006, Greenwood defined 

regenerative medicine as an emerging interdisciplinary field of research and clinical 

application focused on the repair, replacement, or regeneration of cells, tissues, or organs 

to restore impaired function resulting from any cause, including congenital defects, 

disease, and trauma (Greenwood et al., 2006). Tissue engineering is considered a 

subspecialty within regenerative medicine in which 3D scaffolds, either alone or in 

conjunction with cells, are used to repair and improve the function of injured tissues 

(Daar and Greenwood, 2007; Greenwood et al., 2006). Regenerative medicine and tissue 

engineering may provide treatment options for a number of traumatic injuries, 

spontaneous diseases, or genetic mutations (Horwitz et al., 1999; Tsubota et al., 1999). 

The objective of tissue engineering in the context of focal cartilage injury is to 

re-create a tissue interface capable of restoring function, eliminating pain, and limiting 
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the progression of focal cartilage injury to widespread OA. There have been numerous 

attempts to engineer articular (hyaline) cartilage using cell-free tissue-engineering 

systems. To date, previous tissue engineering strategies have not proven effective due to 

limitations of tissue engineering constructs to duplicate the unique structure, function, 

and biomechanical properties of the specialized zones of articular cartilage (Gao et al., 

2001; Niederauer et al., 2000). For these reasons, the addition of multipotent stromal 

cells to tailored 3D scaffolds may improve the ability to generate a tissue-engineering 

device capable of restoring the structure and function of the osteochondral interface. 

 

MULTIPOTENT STROMAL CELLS (MSCS) 

 Multipotent stromal cells, also known as mesenchymal stem cells or marrow 

stromal cells, are spindle-shaped progenitor cells of mesenchymal origin capable of 

differentiating into a variety of cells within the mesenchymal lineage including bone, fat, 

and cartilage (Caplan, 1991; Dominici et al., 2006). Recent work has suggested that 

MSCs also function in a similar manner as specialized perivascular smooth muscle cells 

known as pericytes and have been shown to exist in a variety of tissues such as bone 

marrow, adipose tissue, dermis, synovium, and umbilical cord (Erices et al., 2000; Fraser 

et al., 2008; Friedenstein et al., 1987; Sakaguchi et al., 2005; Toma et al., 2001). It is 

known that MSCs play a central role in both development and tissue repair; however, the 

existence of MSCs was not recognized until Alexander Friedenstein identified 

fibroblastic colony-forming cells from the non-hematopoietic fraction of bone marrow in 

the early 1970’s (Friedenstein et al., 1970; Owen and Friedenstein, 1988). Friedenstein’s 
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groundbreaking work described the morphology, colony forming potential, and 

differentiation of MSCs into osteogenic and cartilaginous lineage. Subsequent studies 

proved differentiation into various cell types such as osteoblasts, adipocytes, 

chondrocytes, and fibrous tissue (Prockop, 1997). Friedenstein’s pioneering work also 

demonstrated that when transplanted in vivo to the renal capsule or peritoneal cavity, 

these cells would lead to de novo formation of bone-like tissue (Friedenstein et al., 1987; 

Owen and Friedenstein, 1988).  

 

MSC DIFFERENTIATION CAPACITY 

Stem cells (mesenchymal or other) are classified based on differentiation 

potential. Differentiation potential is typically categorized by three levels: totipotent, 

pluripotent, and multipotent. These levels of differentiation potential are best described 

in the context of human development. The term “totipotent” refers to a stem cells’ ability 

to differentiate into all three embryonic germ layers (ectoderm, endoderm, mesoderm), 

placenta, and supporting tissues required for development. Totipotent stem cells are 

present only during the early stages of embryonic development. Cell division occurs 

over 2-3 days, forming a morula (mass consisting of eight cells). At this point the cells 

are totipotent, as defined by the cells’ capacity to differentiate into any cell type. After 

approximately five days the morula develops into a blastocyst, consisting of two distinct 

cell types: the inner cell mass and the trophectoderm. The trophectoderm forms the outer 

layer of the blastocyst and is responsible for the placenta while the inner cell mass 

continues cellular division as a developing embryo. Prior to gastrulation embryonic cells 
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are capable of differentiating into any of the three primary germ layers (ectoderm, 

mesoderm, endoderm), making these cells pluripotent. This state of pluripotency is 

present until the mid-gestation period. As the embryo continues to form, stem cells 

continue to divide, creating daughter cells. Daughter cells are replicas of stem cells but 

undergo further specialization due to subsequent division and changing environmental 

cues. Stem cells present during this period of development are referred to as multipotent 

cells, as they have the ability to differentiate into various cell types, but this 

differentiation is limited to cells within their specific lineage of origin. In summary, 

totipotent stem cells have the capacity to differentiate into all three germ layers, 

placenta, and supporting tissue during embryonic development; pluripotent stem cells 

have the capacity to differentiate in the any of the primary germ layers (ectoderm, 

mesoderm, endoderm); multipotent stem cells have the capacity to differentiate into 

specialized cells within their respective germ layer.   

 

MSC CHARACTERIZATION 

Although the use of MSCs as regenerative medicine agents holds much promise, 

the ability to precisely define what constitutes an MSC remains a challenge in the field. 

Differences in isolation and culture techniques make it difficult to use potency as a 

classification criterion for stem cells. Due to the disparate characteristics of MSCs 

reported, a working group convened in 2006 to establish more rigorously and generally 

accepted criteria for MSCs (Dominici et al., 2006). Accordingly, MSCs are cells that: 1) 

adhere to tissue culture plastic and exhibit a spindle-shaped or “mesenchymal” 



 

 9 

appearance; 2) form colonies of cells from single parent cells when cultured in low-

density “clonal” cultures without media exchange; 3) express specific surface epitopes 

negative for hematopoietic lineages; and 4) possess the ability to differentiate into 

osteoblasts, adipocytes, and chondrocytes (tri-lineage differentiation) using defined in 

vitro differentiation assays (Dominici et al., 2006). More recently, immunomodulation 

has been suggested as an additional criterion (Nauta and Fibbe, 2007; Rasmusson, 2006; 

Uccelli et al., 2006) 

Although MSCs have been used in regenerative medicine and tissue-engineering 

approaches to repair or replace diseased tissues in humans and several animal species 

(Granero-Moltó et al., 2009; Greenwood et al., 2006; Horie et al., 2012a; Nishida et al., 

2004), a better understanding of interactions between micro environmental cues and 

cellular responses such as proliferation potential, differentiation capacity, and 

immunomodulation will expand their therapeutic use. MSCs are most commonly 

isolated from bone marrow and adipose tissue but it is now well documented that MSCs 

can be isolated from a variety of tissues; including synovium (De Bari et al., 2001), 

periosteum (De Bari et al., 2006), muscle (Danišovič et al., 2013), dental pulp 

(Pierdomenico et al., 2005), and others (Sakaguchi et al., 2005). During their initial 

discovery, MSCs from these alternate tissues were assumed to be similar to marrow and 

adipose derived MSCs due to their common ability to self-renew, expression of similar 

surface epitopes, and their ability to undergo tri-lineage differentiation in vitro. Although 

cells isolated from each of these tissues have been shown to meet established criteria that 

define MSCs, more recent donor-matched studies have revealed that the ability of MSCs 
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to proliferate and undergo lineage specific differentiation varies widely based on the 

tissue of origin and donor (Bruder et al., 1994; Reger et al., 2008; Sakaguchi et al., 2005; 

Sekiya et al., 2002; Volk et al., 2005; Volk et al., 2012). As previously discussed, MSC 

properties are affected by isolation and culture techniques, which have not been 

accounted for in some studies. In summary, drawing distinctions between canine MSCs 

based on existing literature is difficult due to donor variation and differences in the 

isolation and culture techniques used in each study.  

 

CANINE MSCS (cMSCS) 

Translation of promising findings from rodent models to humans represents a 

significant hurdle for cell-based therapies due to variances in size and biomechanics. 

Therefore, a number of large animal species have been used to bridge the gap from 

rodents to humans (Hatsushika et al., 2014; Horie et al., 2012b; Horie et al., 2009; Kon 

et al., 2000; Murphy et al., 2003). The dog is a compelling model species for these types 

of cell-based translational studies. When compared to rodents, dogs are large, long-lived, 

genetically diverse, and share many biochemical and physiological similarities with 

humans. Canine models have been used successfully for adult bone marrow 

transplantation, gene therapy, and development of protocols to overcome allograft 

rejection (Prentice et al., 1984; Socie and Blazar, 2009; Storb et al., 1970). Due to their 

response to learned behaviors such as treadmill exercise, dogs have been used to develop 

new therapies for cardiovascular and orthopedic diseases (Bockstahler et al., 2007; 

Kiviranta et al., 1988). From a biomechanical perspective, the canine skeleton undergoes 
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loading in a manner that approximates that of the human skeleton (Bergmann et al., 

1984; Liebschner, 2004). For these reasons, canine models of osteoarthritis, anterior 

cruciate ligament repair, meniscal injury, and non-union fractures are well suited 

(Arnoczky and Warren, 1983; Johnson et al., 1989; Liu et al., 2006; Nelson et al., 1988; 

Pond and Nuki, 1973; Shortkroff et al., 1996) for the development of new treatments for 

focal or diffuse OA, including the optimization of tissue engineering strategies. Many of 

these studies require the use of MSCs or other progenitor cells; however, currently only 

a modest number of reports exist describing the isolation and differentiation of cMSCs 

from bone marrow, adipose tissue, and other tissues (Kisiel et al., 2012; Neupane et al., 

2008; Sakaguchi et al., 2005; Volk et al., 2005; Volk et al., 2012). Kadiyala’s initial 

cMSC report in 1997 exhibited an ability to identify and isolate cMSCs from canine 

bone marrow (Kadiyala et al., 1997). Moreover, this study was seminal in displaying the 

ability of cMSCs to regenerate bone in a critical gap defect model. Subsequently, in 

2005, Volk et al. described the necessity of supplementation of bone morphogenic 

protein- 2 (BMP-2) when culturing cMSCs towards an osteogenic lineage (Volk et al., 

2005). In 2008, Neupane et al. detailed the first isolation and characterization of adipose 

derived canine MSCs, showing expression of genes commonly associated with 

developmental plasticity (Neupane et al., 2008). In 2012, Kisiel et al. evaluated MSCs 

from a variety of tissues, demonstrating that cMSCs could be successfully isolated from 

a multiple tissues and that key differences are present when comparing MSC 

characteristics between different tissue sources (Kisiel et al., 2012). While these 

aforementioned publications are important to the cMSC field, it is not possible to make 
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direct comparisons between studies due to donor variation, isolation techniques, and 

culture inconsistencies utilized by individual laboratories. For these reasons, in 

conjunction with the scarcity of canine literature, a comprehensive report describing the 

characteristics of subject-matched cMSCs isolated from bone marrow, synovium, and 

adipose tissues using identical isolation and characterization methods is of the utmost 

importance in order to facilitate the selection of cMSCs for cell-based translational 

studies.  

 

HYDROGEL SCAFFOLDS FOR OSTEOCHONDRAL TISSUE REPAIR 

Many techniques have been used to improve differentiation of MSCs with the 

goal to repair articular cartilage. Examples include the use of lineage specific media, 

supplementation with growth factors, and use of pelleted cell aggregates to alter cellular 

arrangement (Lee and Shin, 2007; Martin et al., 2007; Nooeaid et al., 2012; Sherwood et 

al., 2002). While these techniques may prove useful, they are not without restrictions 

such as limitations on size alterations for appropriate translation to clinical-sized defects, 

time required to induce chondrogenesis through traditional methods, cost prohibitions in 

regards to the use of recombinant growth factors, safety concerns in regards to use of 

growth factors such as BMP-2, and the inability of these techniques to produce 

biologically and biomechanically consistent, reproducible tissue engineering constructs 

(Garrison et al., 2007; Jin et al., 2001; Shields et al., 2006). Due to these limitations, 

recent emphasis has been placed on alternative methods to enhance differentiation. Use 

of 3D scaffolds hold much promise for tissue engineering approaches as treatments for 
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bone and joint defects (Bailey et al., 2013; Brandl et al., 2007; Gunatillake and Adhikari, 

2003; Hou et al., 2010; Kirschner and Anseth, 2013; Munoz-Pinto et al., 2012; Park et 

al., 2005). Scaffolds constructed of biologic (collagen, hydroxyapatite, gelatin, silk, and 

alginate) and synthetic polymers (polyurethane, polyanhydride, polyphosphazene, and 

polyethylene glycol) (Gunatillake and Adhikari, 2003; Guo and Ma, 2014; Park et al., 

2005) have been successfully used in animal models to treat small, experimentally-

induced osteochondral defects (de Girolamo et al., 2015). Additionally, many of these 

biologic and synthetic scaffolds are currently being commercially used for healthcare 

treatment (Park et al., 2007). Implementation of 3D scaffolds offer a means to deliver 

drugs or growth factors to a specific site as well as to enhance local cell retention, 

provide structural support, and facilitate tissue repair (Gunatillake and Adhikari, 2003; 

Park et al., 2005). The ideal 3D scaffold for tissue engineering of articular cartilage 

should possess the following properties: 

 

1. Biocompatible- referring to the ability of the material to interact with the host 

tissue without inducing toxicity, inflammation, or immune response. 

2. Tunable- referring to the ability of the material to be custom modulated for 

overall size and gradient transition (from cancellous bone, to subchondral bone, 

to articular cartilage). 

3. Tetherable- referring to the ability to incorporate growth factors, cytokines, and 

cell binding domains- amplifying properties for facilitating cell adhesion and 

response to local environmental cues. 
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4. Biomechanically similar to native tissue - referring to the ability to mimic normal 

articular cartilage biomechanics.  

5. Cost efficient 

6. Reproducible - referring to the manufacturing consistency of the implant 

7. Readily implantable- referring to the ability of the material/device to be 

implanted using minimally invasive procedures and standard surgical 

instruments.  

8. Bondable to adjacent host tissue- referring to ability to be incorporated and 

respond with surrounding local environment over time. 

9. Biodegradable- referring to the ability of material to be degraded or broken down 

under normal biologic conditions. Furthermore, allowing the physiologic process 

of the body to permanently remodel and replace the temporary implant. 

 

POLYETHYLENE GLYCOL (PEG) 

Polyethylene glycol (PEG) is a synthetic, biodegradable compound that has been 

extensively studied as a polymer for hydrogel fabrication because it has been shown to 

inhibit protein aggregation and to be inherently biocompatible (Bailey et al., 2013; Guo 

and Ma, 2014; Ma and Elisseeff, 2005; Munoz-Pinto et al., 2012). PEG is a common 

component of surgical implants and other medical devices, including contact lenses, 

catheters, cell delivery scaffolds, orthopedic implants (Park et al., 2007). PEG has been 

evaluated extensively as a 3D scaffold for tissue engineering. It has been described as a 

“gold standard” in synthetic biopolymers due to its ability to be incorporated without 
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increased negative complications (Pasut, 2014; Ulbricht et al., 2014). PEG based 

hydrogels have been shown to be hydrophilic, tissue compatible, and tunable to 

necessary specifications. In particular, PEG based hydrogels are especially popular 

because they are immunologically inert, preventing non-specific protein adhesion that 

would induce immune and/or inflammatory responses (Bailey et al., 2012; Pasut, 2014). 

This “biologic blank slate” also allows for control of cellular behavior through 

incorporation of specific cytokines, growth factors, and cell adhesion ligands tailored to 

the scaffold and specific need of the tissue-engineering device. In addition, modulation 

of polymer size and crosslinking can contribute to mechanical changes in an attempt to 

mimic surrounding tissue biomechanics. While these properties have made PEG 

hydrogels attractive for cartilage tissue engineering, current hydrogel fabrication 

techniques have limited the translation of PEG hydrogels into the clinical setting. To 

date, prior in vivo studies attempting to restore osteochondral defects using 3D tissue 

engineering constructs composed of PEG have been limited due to poor integration with 

adjacent tissue and an inability to reconstruct normal tissue architecture (de Girolamo et 

al., 2015; Duan et al., 2013).  

 

COMBINING MSCS WITH 3D SCAFFOLDS FOR TISSUE ENGINEERING 

Differentiation of MSC can be influenced by mechanical and structural 

properties of scaffolds and the inclusion of growth factors. It has been shown that a 

cell’s ability to convert extracellular mechanical stimulus into a phenotypic response, 

known as mechanotransduction, is enhanced in 3D environments (Engler et al., 2006; 
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Tibbitt and Anseth, 2009). Mechanotransduction in 3D environments is known to affect 

cell proliferation, migration, invasion, and differentiation through integrin signaling and 

cytoskeletal tensegrity (Brandl et al., 2007; Grinnell and Petroll, 2010; Miyamoto et al., 

1995; van der Flier and Sonnenberg, 2001). Thus, 3D scaffolds designed for 

osteochondral tissue repair or replacement may provide an environment that allows 

creation of focal adhesions, development of unique cellular functions, and differentiation 

into tissue specific progenitors. Due to these effects, it has been proposed that induction 

of MSC differentiation via the osteoinductive and bioactive properties of PEG hydrogel 

scaffolds is possible, without inducing cytotoxicity or apoptosis. These bioactive, 

gradient systems composed of PEG and MSCs have previously been termed as 

Regenerative Osteochondral Plugs (ROPs) (Gacasan et al., 2016). Prior studies and our 

own preliminary data have demonstrated that structural properties of ROPs are critically 

important for integration with surrounding tissues. Upon successful integration with 

adjacent host tissue, PEG hydrogel scaffolds may direct MSC differentiation so that in 

the future, zone-specific tissues can be created to potential replicate the specialized 

zones of articular (hyaline) cartilage. 

 

SUMMARY AND OUTLINE 

In summary, this chapter outlines the unique properties of articular cartilage, 

clinical and economic impact of cartilage injury and subsequent OA, and limitations of 

current treatment strategies. While a number of treatments exist in both humans and 

veterinary species, none are without limitations. The ideal treatment for injured joint 
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tissue has yet to be determined. The use of regenerative medicine, specifically tissue 

engineering, as a potential treatment for articular cartilage injuries is discussed in detail 

above. Tissue engineering is a promising treatment strategy for these injuries, with the 

goal of restoring structure and function, reducing/eliminating clinical signs, and delaying 

or preventing major surgical treatment. In subsequent chapters of this dissertation, 

important components of tissue engineering will be detailed. First, in Chapter II, a well-

described, 3D, serum-free collagen system was used as a model system in the study of 

human MG-63 osteosarcoma cell invasion. This system will elucidate the role of platelet 

derived growth factor-BB and cell-matrix interactions during osteosarcoma cell invasion 

in 3D environments. In Chapter III, cMSCs were isolated from synovium, bone marrow, 

and adipose tissue and comprehensively characterize using a donor-matched study and 

assays optimized for the canine species. In Chapter IV, the optimal fabrication method 

for incorporation of cMSCs with PEG based hydrogels for in vitro studies and eventual 

transition into a clinical setting was determined. Lastly, Chapter V contains concluding 

comments, future directions/perspectives, and establishes long-term goals for success.   
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CHAPTER II 

PLATELET-DERIVED GROWTH FACTOR-BB (PDGF-BB) STIMULATES 

MG-63 OSTEOSARCOMA CELL INVASION OF THREE-DIMENSIONAL 

COLLAGEN MATRICES IN A MEMBRANE-TYPE MMP DEPENDENT 

MANNER 

SUMMARY 

Invasion of the extracellular matrix is essential for many physiological and 

pathological processes. Invasion of 3D matrices requires an invasion stimulus, integrins, 

proteinases such as matrix metalloproteinases (MMPs), and cytoskeletal rearrangement. 

Previous work has linked soluble MMPs to tumor invasion and metastasis while recent 

studies suggest that membrane-type MMPs (MT-MMPs) are required for focused 

pericellular proteolysis that occurs during tumor invasion. The objective of this study 

was to evaluate the role of MMPs in osteosarcoma cell invasion in response to platelet-

derived growth factor-BB (PDGF-BB). We hypothesized that PDGF-BB would induce 

invasion of 3D collagen type I matrices by MG-63 osteosarcoma cells in an MT-MMP 

dependent manner and that soluble MMPs would be less critical in these events. MG-63 

cells were seeded on 3.75mg/mL collagen type I gels in a serum-free environment and 

allowed to invade for 24-72 hours. Cell invasion was determined and analysis of 

conditioned media and cell lysates via western blot and gelatin zymography was 

performed. PDGF-BB induced a dose- and time-dependent invasion of MG-63 cells into 

3D collagen type I matrices. In addition, PDGF-BB resulted in increased expression of 

soluble interstitial collagenase MMP-1 as well as an increased activation of MMP-2. The 

addition of the PDGF receptor tyrosine kinase inhibitor AG1296 resulted in a significant 
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reduction in invasion; thus, suggesting a connection between MG-63 invasion and 

PDGF-BB receptor signaling. Furthermore, disruption of MMP activity through broad-

spectrum MMP inhibitors (GM6001 and TAPI-0) significantly inhibited MG-63 

invasion in response to PDGF-BB. On the other hand, cultures containing tissue 

inhibitor of metalloproteinase-1 (TIMP-1), which inhibits soluble MMPs, or the serine 

proteinase inhibitor aprotinin, had a substantial invasion response. To examine the 

specific MT-MMP responsible for MG-63 invasion, siRNA knockdown experiments 

were performed. There was a significantly reduced invasion after treatment with MT1-

MMP siRNA, but not MT2- or MT3-MMP siRNAs. This work suggests that PDGF-BB 

is an important growth factor in MG-63 osteosarcoma cell invasion, and that MT1-MMP 

is required for this process. 

 

INTRODUCTION 

Osteosarcoma 

Osteosarcoma (OSA) is the most common form of malignant bone cancer in 

children and dogs in which very few effective therapeutic options are currently available 

(Fenger et al., 2014). In 2014, approximately one thousand adolescents were diagnosed 

with OSA, occurring in the appendicular skeleton with the long bones affected 90% of 

the time (Jaffe et al., 2010). Currently, chemotherapy followed by either tumor excision 

surgery or complete amputation of the affected limb is the only treatment option 

available. The ability to actively pursue advancement in new medical care of human 

OSA is difficult because of its high occurrence in the pubescent years, typically 

spanning between 10 to 14 years of age. The fact that OSA is often initiated during this 
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stage of human development creates major challenges for novel drug therapies due to the 

anatomical, hormonal, and physiologic changes occurring within the body during this 

time. These challenges, along with the low incidence of OSA as compared to other 

neoplasms, make therapeutic advancement difficult. Therefore new strategies need to be 

developed if improved treatment options are to be developed. 

While the cause and progression of OSA is widely unknown, determining genetic 

and environmental influences of OSA are likely key to understanding incidence and 

progression. In an environmental setting, recent studies displayed increased plutonium 

induced axial skeleton OSA in beagles similar to that of humans whom had prolonged 

plutonium exposure (Miller et al., 2003). In addition, increased incidence of OSA is 

prevalent in both humans and canines that have previously been treated for non-OSA 

associated diseases using radiotherapy. Exposure to radiotherapy in these cases was 

shown to increase incidence of OSA. Additionally, OSA can also be linked to other bone 

conditions such as Paget’s disease in humans, bone infarcts in dogs, and osteomyelitis 

(Thomas et al., 2009). While the cause is unknown, the susceptibility of the rapidly 

proliferating cells for healing, carcinogenic agents, and cytokinesis mutations has been 

proposed (Fenger et al., 2014; Sandberg and Bridge, 2003). Collectively, these studies 

demonstrate that an environmental influence likely exists as a direct cause of OSA; 

likely in addition to the purely spontaneous manner by which neoplastic transformation 

occurs in the absence of environmental stimuli.  

Although development of human and canine OSA can be influenced by 

environmental factors, there is a growing body of evidence supporting genetic 
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predisposition to inheritance of OSA risk factors. In some cases gene mutation or 

deletion inheritance is correlated to specific breeds of dogs but in large part 

retinoblastoma protein (RB1), p53, and phosphatase and tensin homolog (PTEN) are the 

most extensively implicated with inherited predisposition to OSA in humans and canines 

(Hu et al., 2010; Miller et al., 1996; Park et al., 2001; Sandberg and Bridge, 2003; 

Thomas et al., 2009; Walkley et al., 2008). The most thoroughly described genetic 

alteration in human OSA is a mutation to the p53 and retinoblastoma genes.  

The tumor suppressor gene, p53, helps regulate proliferation, DNA repair, and 

programed cell death through cell-cycle arrest. Mutations of p53 gene are present in 50% 

of all cancers and 22% in osteosarcomas (Miller et al., 1996). Miller et al. in 1996 

described DNA damage resulting in the phosphorylation of p53, allowing for 

dissociation of MDM2 (Miller et al., 1996). In these cases, the MDM2 protein is unable 

to act as a negative regulator for p53; thus, p53 becomes a proto-oncogene in cases 

where regulation is lost allowing for continued transcription. When p53 is mutated, 

cancer cells are able to survive and proliferate without restraint. The checks and balance 

system of delinquent DNA is lost and leads to further malignancy in some cases. Li-

Fraumeni syndrome is linked to an autosomal dominant mutation of p53, a direct link to 

cancer malignancies, including OSA (Walkley et al., 2008). While a correlation may 

exist, it is unclear whether p53 is the primary cause of OSA. Studies provide conflicting 

evidence of the role of p53 in OSA. One study claims that p53 has potential to influence 

the degree of severity of OSA (Park et al., 2001) while another states that p53 may in 

fact reduce metastasis and increase survival (Hu et al., 2010). 
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In addition to mutations of the p53 gene, frequency of the tumor suppressor RB1 

gene has been shown to be involved in tumorigenesis of OSA (Walkley et al., 2008). 

The inheritance of a mutation in RB1 gene causes retinoblastoma syndrome and is 

consistent with multiple malignancies, 40% of which are OSA (Gorlick, 2009). RB1 

regulates the cell cycle between the G1 and S phases; binding transcription factors to 

prevent DNA duplication. When RB1 is deleted, mutated, or phosphorylated, DNA can 

be transcribed and the cell cycle operates unabated. Loss of the RB1 associated gene 

may explain genetic inheritance risk, but somatic mutations are still poorly understood.     

Lastly, PTEN abnormalities are documented more commonly in canine OSA 

than humans. PTEN is a tumor suppressor gene participating through negative regulation 

of the AKT pathway. Regulation occurs through dephosphorylation of the inositol ring 

of phosphatidylinositol triphosphate. PTEN can also influence p53 pathway by blocking 

signaling to the proteasome. These influences allow the cell to transcribe and proliferate 

without regulation. Deletion or decrease in PTEN expression is found in OSA and more 

prevalent in canines as compared to humans with copy number loss present in 30%-42% 

of tumors analyzed (Thomas et al., 2009). 

While traditional experimental models using rodent and non-human primates to 

study OSA in vivo have been described, they do not come without inherent 

disadvantages. Promising results obtained in rodent models of OSA have not translated 

to the clinical setting. The genetic modifications required to generate mouse models of 

OSA have resulted in tumors occurring more frequently in the flat bones as opposed to 

long bones predominately seen in humans and other species (Walkley et al., 2008). Due 
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to the potential risk of zoonotic disease transmission, non-human primate research is 

tightly regulated in regards to housing conditions, colony maintenance, and euthanasia 

procedures. These factors often create a financial and regulatory burden that proves 

insurmountable for many investigators. Due to these limitations, it is important to 

consider other in vivo models. In contrast to murine models, which require tumor 

seeding or DNA manipulation strategies, dogs develop OSA spontaneously in a manner 

similar to humans (Vail and Macewen, 2009; Withrow et al., 1991). In fact, canine OSA 

has approximately ten times the incidence rate (>10,000/year) and approximately twice 

the morbidity rate (>90%) when compared to humans (Morello et al., 2011). 

Additionally, dogs are common, genetically diverse as compared to rodent strains, and 

are often treated as in-home pets by humans. Cohabitation exposes both humans and 

canines to similar environmental stimuli, helping to eliminate distinguishing variables 

between species (Fenger et al., 2014; Morello et al., 2011). Given the similar bone 

structure and biomechanics of dogs and children, as well as the strong interest of pet 

owners to develop viable treatment options for canine OSA, use of the dog as a model 

for human OSA presents an excellent opportunity for research advancement. Thus, while 

the work performed will focus on a human OSA cell line, our findings may have 

implications for both humans and dogs affected by this debilitating and fatal disease. 

High rates of metastases occur prior to diagnosis (Jaffe et al., 2010) making OSA 

treatments difficult. Metastasis of the OSA from the bone decreases the long-term 

survival rate of patients from 75% to 30% (Lee et al., 2008). While a robust number of 

studies have been performed examining the mechanisms of metastasis, elucidation of the 
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specific physiologic molecules, such as growth factors and cytokines, responsible for 

tumor cell invasion and metastasis is essential for understanding the mechanism and 

subsequent therapeutic treatment strategies. One such molecule that has proven to play 

an important role in these events through its mitogenic and chemotactic effects is PDGF-

BB. Previous studies have shown that elevated levels of PDGF correlate with tumor 

growth, higher metastasis rates, reduced treatment efficacy, and decreased survival rates 

(Allam et al., 1992; Graves et al., 1984; Heldin et al., 1986; Seymour and Bezwoda, 

1994; Seymour et al., 1993). Additionally, PDGF-BB has been shown to influence bone 

specific cells, such as osteoblasts and osteoclasts, for proliferation, activation, 

remodeling, invasion, and propagation of metastasis (Canalis et al., 1989; Caplan and 

Correa, 2011; Liu et al., 2011). These signaling cascades can directly influence tumor 

growth and cell survival. For these reasons, the role of PDGF-BB influence on OSA 

invasion is of primary interest for developing future clinical treatment strategies.  

Platelet Derived Growth Factor-BB 

Cellular invasion of the ECM is essential for many physiological and 

pathological processes, such as angiogenesis, tissue morphogenesis, wound healing, 

tissue repair, tumor growth, and metastasis (Alvarez et al., 2006; Bayless and Davis, 

2003; Davis et al., 2000; Khanna et al., 2014; Maniscalco et al., 2012; Ostman and 

Heldin, 2001). It has been previously shown that PDGF-BB plays an important role 

during these events through both its mitogenic and chemotactic effects (Alvarez et al., 

2006; Caplan and Correa, 2011; Hollinger et al., 2008b). 
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The PDGF family is a group of cationic homo- and hetero-dimeric growth factors 

composed of disulfide-bonded α- and β- polypeptide chains. The α- and β-chains of 

PDGFs are approximately 100 amino acid residues long and share approximately 60% 

amino acid sequence homology (Alvarez et al., 2006; Heldin and Westermark, 1999; 

Yarden et al., 1986). The three known forms of PDGF were recognized as PDGF-AA, -

BB, and -AB until recent discovery of PDGF-CC and –DD. The ability for the A and B 

chains to dimerize creates a total of 5 known PDGF ligands (–AA, -AB, -BB, -CC, -DD) 

that bind PDGF receptors. Ligand binding occurs through tyrosine kinase receptors 

creating hetero- and homo-dimers that further influence the cell physiologic pathways to 

initiate proliferation, chemo kinesis, chemo taxis, and other important cellular events. 

PDGF receptors have three potential dimer combinations: 

PDGFR−αα, −αβ, −ββ. Phosphorylation at various residues of each receptor sub-type 

results in downstream signaling (Kim et al., 1999) through the MAK/Erk1/2, 

Akt/phosphidionsitol-3 kinase, and phospholipase Cγ (PLCγ) pathways; however, 

phosphorylation events do not appear to be specific to the individual PDGF ligand 

isoforms. PDGFR−α dimerization is initiated by PDGF-AA, -AB, -BB, and -CC but not 

PDGF-DD; while PDGF-BB initiates dimerization for all known receptor forms 

(Hollinger et al., 2008a). The ability of PDGF-BB to bind all known receptor 

combinations (PDGFR-αα, −αβ, −ββ) has led some scientists to term PDGF-BB as “the 

universal PDGF” (Hollinger et al., 2008a). 

Various cell types, such as endothelial cells, megakaryocytes, fibroblasts, smooth 

muscle cells, macrophages, astrocytes, and glial cells, express various PDGF isoforms. 
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Within platelets, PDGF isoforms are not released into circulation but stored within the 

alpha granules (Bowen-Pope, 1986; Ross, 1989). Platelet-induced release of PDGF is 

triggered by platelet activation and degranulation secondary to activation stimuli such as 

thrombin. The ability to express, secrete, and respond to PDGF is critical in development 

and biological processes for cell growth, function, and maintenance of the pericellular 

environment. For example, PDGF is essential for embryonic development of kidneys, 

lungs, vascular networks, connective tissue, and central nervous system (Heldin and 

Westermark, 1988; Heldin and Westermark, 1999; Hoch, 2003; Levéen et al., 1994; 

Lindahl et al., 1997; Ostman and Heldin, 2001). In the context of angiogenesis, it is well 

known that angiogenic and vasculogenic endothelial networks express PDGF-BB, and 

that the appearance of PDGF-BB during angiogenesis recruits pericytes to stabilize 

newly formed vascular networks (Armulik, 2005; Gerhardt and Betsholtz, 2003). Lack 

of functional PDGF in these critical developmental stages has been shown to lead to loss 

of organ specific function or neonate death (Boström et al., 1996; Hoch, 2003; Levéen et 

al., 1994; Lindahl et al., 1997). In addition to developmental influence, PDGF has been 

shown to play a role in wound healing and fracture repair through PDGF-BB stimulated 

recruitment of pericytes (Caplan, 1988; Caplan and Correa, 2011). PDGF-BB stimulated 

recruitment of pericytes to wound or fracture sites, resulting in an increased level of 

expression and secretion of vascular endothelial growth factor (VEGF) from the recently 

recruited pericytes (Hellström et al., 2001; Reynolds et al., 2000). Interestingly, recent 

work has suggested that MSCs, or progenitor cells capable of reproducing skeletal 

tissues in vitro, are in effect pericytes (Caplan, 2008). The increased expression of 
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VEGF by pericytes and possibly MSCs subsequently triggers a downstream cascade, 

resulting in recruitment of endothelial cells for additional vascular network formation 

(Gehmert et al., 2011).  

Due to the fact that PDGF-BB is critical during physiologic and pathologic 

processes, manipulation of the PDGF ligand-receptor signaling axis or critical 

downstream effector proteins may prove to be useful clinical targets. Although vascular 

networks assist in regulating PDGF-BB, PDGF-BB has also been linked to fibrosis, 

atherosclerosis, tumor growth, and metastasis. Currently, two possible scenarios exist for 

modulation of PDGF-BB: 1) stimulation and 2) inhibition of PDGF-BB; stimulation has 

shown to improve angiogenesis, wound healing, bone repair, and development (Caplan 

and Correa, 2011; Gehmert et al., 2011) while inhibition has been shown to limit 

malignant and non-malignant disease by blocking ligand-receptor binding or altering the 

signaling ability of the receptor tyrosine kinase (Hoch, 2003; McGary et al., 2002; 

Uehara et al., 2003). Thus, whether investigators choose to enhance or inhibit PDGF-BB 

expression, ligand-receptor binding, or down-stream signaling events; modulation of 

PDGF-BB may provide novel research and therapeutic strategies targeting downstream 

effector molecules responsible for cell invasion of 3D environments in response to 

PDGF. One important group of proteins involved in this process are the MMPs (Lu et 

al., 2012; Shi et al., 2011).   

Matrix Metalloproteinases (MMPs) 

MMPs, often termed matrixins, are proteolytic enzymes of the metzincin 

superfamily. MMPs have been shown to be highly involved in physiological processes 
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and disease progression and have been implicated in embryogenesis, nerve growth, 

ovulation, bone remodeling, wound healing, angiogenesis, apoptosis, atherosclerosis, 

cancer, arthritis, ulceration, and fibrosis (Bayless and Davis, 2003; Deryugina and 

Quigley, 2006; Egeblad and Werb, 2002; Lu et al., 2005; Nagase and Woessner, 1999; 

Sternlicht and Werb, 2001; Tang et al., 2013). The MMP family is subdivided into six 

groups: collagenases, gelatinases, stromelyins, matrilysins, membrane-type, and non-

typical/other. Although classifications were organized to assist in identifying similar 

structure and function across the family of proteinases, this idea is likely inadequate as 

most MMPs are capable of degrading diverse matrix and non-matrix proteins (Nagase 

and Woessner, 1999). MMPs are endopeptidases, synthesized in an inactive or zymogen 

state. They are characterized by the presence of a highly conserved amino acid sequence 

shown to have a specificity for zinc at its catalytic site (Stocker et al., 1995). Beginning 

from the N-terminus, prototypical MMP contains a signal peptide, propeptide domain, 

catalytic domain, hinge region, and hemopexin domain. The signal peptide is present in 

all MMPs (except for MMP-17) and is present for targeting the translocon in the rough 

endoplasmic reticulum (rER) (Puente et al., 1996). Once the signal sequence is 

translated, it is cleaved, leaving the remaining domains to undergo post-translational 

modifications and eventual export from the cell. 

The propeptide region contains a highly conserved cysteine residue, termed the 

cysteine switch, responsible for maintaining zymogen latency. For activation to occur, 

the propeptide domain must be cleaved or disrupted creating a conformational change, 

allowing the catalytic domain to bind preferential substrates for initiation of proteolysis. 
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Cleavage can be accomplished through substrate-mediated proteolysis by plasmin and 

other serine proteases, pH changes, free radicals, mechanical forces, and other activated 

MMPs (Vanwart and Birkedal-Hansen, 1990). Zymogen activation by these catalysts 

occurs after exportation from the cell, except when a furin-like recognition motif is 

present in the propeptide domain. This furin-like motif allows MMP-11, -14, -15, -16, 

and -17 to be activated within the cell due to a conserved region recognized by furin/pro-

hormone convertase (Pei and Weiss, 1995). The convertase enzymes specialize in 

cleaving peptide sequences containing lysine and arginine to release the catalytic domain 

for activation. Once the catalytic domain is released, calcium ions stabilize the structure 

for enzymatic activity and proteolysis (Nagase and Woessner, 1999). In the case of 

MMP-2 and -9, the catalytic domain also contains a fibronectin repeat domain to assist 

in attachment and subsequent interaction with gelatin (Allan et al., 1995; Bányai et al., 

1994). The catalytic domain is usually connected to the hemopexin domain through a 

flexible linker or “hinge” region. This hemopexin region is an ellipsoidal disk shape with 

a four blade β-propeller structure shown to be absolutely required for the collagenases 

but not essential for the other MMPs (Murphy and Knäuper, 1997). These structural 

differences in MMP regions aide in identifying group classification and functionality of 

specific proteolytic activity. 

Currently, 25 MMPs are known to exist in vertebrates, with 22 being expressed 

in humans (Lohi et al., 2000; Sternlicht and Werb, 2001; Woessner, 1994; Woessner, 

2002). In most cases, cells secrete MMPs into the cytosol or export the protein 

completely out of the cell; however, of the 22 human MMPs, six have been 
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characterized as MT-MMPs due to the presence of the transmembrane and cytoplasmic 

domains on the C-terminus of proteins. 

Although much work has linked soluble MMPs such as MMP-1, -2, -3, -9, -10, 

and -13 to tumor invasion and metastasis (Himelstein et al., 1998; Proulx-Bonneau et al., 

2011) other studies suggest that the MT-MMPs are the sub-family of MMPs required for 

the focused ECM proteolysis that occurs during angiogenic sprouting, tumor invasion, 

stem cell invasion, and tumor metastasis (Bayless and Davis, 2003; Bayless et al., 2009; 

Shiomi and Okada, 2003; Sternlicht and Werb, 2001). While MMPs have been linked to 

a myriad of tumor types such as chordomas, fibromas, fibrosarcoma, 

dermatofibrosarcoma, osteosarcomas, and tumors of the central nervous system, few 

studies exist linking MT-MMPs or other MMPs in to primary bone tumors such as OSA 

(Bjørnland et al., 2005; Bjørnland et al., 1999).   

The multitude of contributing factors known to increase susceptibility of OSA 

make target treatment strategies difficult. Therefore, alternative options must be sought 

to reduce metastasis of OSA. The known role of PDGF-BB and its receptors in cell 

proliferation and invasion events, in addition to the strong support in the literature for the 

concept that MT-MMPs are required for focal ECM proteolysis during invasion, have 

led investigators to evaluate the role of PDGF-BB in direct correlation of increased 

expression and proteolytic activity of MMPs, more specifically MT-MMPs. These 

studies have been shown in our own preliminary data and previous publications in which 

MT-MMP activity is increased in response to PDGF-BB. Elucidation of expression and 

potential signaling cascades caused by PDGF-BB activation may prove useful in 
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treatment strategies for in vivo testing. In the present study, we evaluate the role of 

PDGF-BB in human OSA cell invasion into 3D collagen type I matrices via MMP 

proteolysis. We hypothesized that PDGF-BB would stimulate MG-63 cells to invade 3D 

collagen type I matrices in an MT-MMP dependent manner, while soluble MMPs would 

be less important to these events. Results detailed herein demonstrate invasion response 

of human osteosarcoma MG-63 cells to PDGF-BB by way of MT1-MMP proteolysis of 

collagen type I in a dose- and time-dependent manner. Our results provide insight into 

important cellular events and will prove useful for both investigators and clinicians 

considering translational treatment strategies of OSA.  

 

MATERIALS AND METHODS  

Cell Culture 

MG-63 OSA cells were obtained from American Type Culture Collection 

(ATCC) and cultured with Dulbecco’s Modified Eagle Medium (DMEM, Invitrogen, 

Carlsbad, CA), 10% heat-inactivated fetal bovine serum (FBS, Atlanta Biologicals, Inc., 

Flowery Branch, GA), 100µg/mL gentamicin (Invitrogen), and antimycotic (Invitrogen) 

containing 100U/mL of penicillin, 100µg/mL of streptomycin, and Fungizone and 

maintained at 37ºC with 5% CO2. Cells were seeded at 500 cells/cm2 on T75 tissue-

culture plastic flask (Corning, Corning, NY) and media exchanged twice a week. Cells 

were allowed to reach 70-80% confluence before experimental use or incremental 

passage. After ten passages, cultured cells were discarded and a new cryopreserved vial 

thawed. Prior to each experiment, cells were washed with 10mLs of phosphate buffered 



 

 32 

saline (PBS), trypsinized, neutralized with FBS, and centrifuged. Cells were washed in 

an additional 10mL volume of DMEM to remove residual serum and subsequently 

counted via hemocytometer in preparation for assays. 

Chemotaxis/Migration Assay 

Chemo taxis response was determined as previously described (Fisher et al., 

2006) using a modified Boyden chamber (NeuroProbe, Inc., Gaitherburg, MD). Briefly, 

polycarbonate filters with 8µm pores (NeuroProbe) were pre-coated with 1mg/mL 

collagen type I in PBS for 24 hours prior to use. In configuring the Boyden chamber, 

50µL of DMEM and 1:250 RSII (+) (transferrin, bovine serum albumin, oleic acid, 

insulin) (Fisher et al., 2006) media was supplemented with recombinant human PDGF-

BB (R&D Systems, Minneapolis, MN) and pipetted into the lower chamber wells. 

Lower chamber wells were then covered with the collagen type I coated polycarbonate 

membrane. The remainder of the Boyden chamber was assembled and 3x104 cells 

suspended in DMEM, 1:250 RSII, and 10µg/mL fibronectin added to the upper chamber 

wells. In some instances inhibitors were added to media for analysis. Cells were allowed 

to migrate for 4 hours at 37ºC with 5% CO2 environment. After 4 hours, the Boyden 

chamber was disassembled and polycarbonate membrane fixed in 3% glutaraldehyde for 

10 minutes. Upon fixation, membranes were stained with 0.1% amido black in 30% 

methanol and 10% acetic acid. Membrane adherent cells were quantified using a Bio-

Rad Chemdoc™MP Imager and Quantity One software (Bio-Rad, version 5.2.1 build 

11, Hercules, CA). Values were plotted against a previously established standard curve 
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to determine migrated cell number. Experimental groups were performed in 

quadruplicate to acquire mean ± standard deviation.  

Collagen Invasion Assay 

Collagen gels (n=3 gels/condition, 28µL volume) were prepared as previously 

described (Bayless et al., 2009). Briefly, 3D collagen gels were prepared at a final 

concentration of 3.75mg/mL in A/2 wells of 96 well plates (Corning). PDGF-BB was 

incorporated into gels at doses ranging from 0 to 1000ng/mL prior to polymerization and 

equilibrated at 37ºC and 5% CO2. After polymerization, 100µL of FBS-free media 

containing 1:250 dilution of RSII and 2.5x105 MG-63 cells were added to each well. In 

some instances, inhibitors were added to the culture media as follows: GM6001 (5µM), 

TAPI-0 (5µM), aprotinin (20KIU/mL), TIMP-1 (5µg/mL), TIMP-3 (5µg/mL), and 

AG1296 (5µM, 25µM, or 50µM). Cells were allowed to invade for 24-72 hours, at 

which point conditioned media were collected and gels fixed in 4% paraformaldehyde 

for 30 minutes. Fixed cultures were stained with 1µM DAPI for 30 minutes and invading 

cell nuclei counted with an ocular grid at 20x magnification. After invasion 

quantification, cultures were stained with 0.1% toluidine blue in 30% methanol for 30 

minutes and subsequently destained with distilled water. Multiple focal plane 

microscopy images were acquired at 10x magnification. Afterwards, gels were extracted 

for sectioning analysis. Extracted gels were sagittally transected for imaging and 

invasion depth quantification (Cellsens, Olympus, Japan). Invading cell number and 

depth were recorded and mean ± standard deviation calculated. 
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MT-MMP Gene Expression 

Isolation of RNA and subsequent gene expression evaluation was performed as 

previously described (Neupane et al., 2008). Total RNA was isolated from MG-63 cells 

using PureLink™ RNA Mini Kit (Life Technologies, Carlsbad, CA) and treated with 

DNase to remove contaminating DNA. Complementary DNA (cDNA) was synthesized 

from 2.5µg of total RNA using random hexamer primers and Superscript III reverse 

transcriptase (Invitrogen). Primers were commercially synthesized (Sigma-Aldrich) as 

follows: GAPDH (Kumar et al., 2010) Forward: ACCCACTCCTCCACCTTTG, 

Reverse: CTCTTGTGCTCTTGCTGGG; MT1-MMP (Primer 3) Forward: 

CAGAGAAGGCACACAAACGA, Reverse: CACTGGTGAGACAGGCTTGA; MT2-

MMP (Primer 3) Forward: CGTGTCCTGCTTTACTGCAA, Reverse: 

GTCGGGGAAACAGAAACAAA; MT3-MMP (Primer 3) Forward: 

ATCTTGGCCTTATGCCTCCT, Reverse: CCTCTGGGTTTGAAAGGTCA; MT4-

MMP (Primer 3) Forward: GGTGCGTGCACTCATGTACT, Reverse: 

TCATCGTCAAAGTGGGTGTC. PCR reactions (20µL) were prepared with 2µL of 

cDNA, 10nM of each primer, and 0.5 units of AmpliTaq Gold® 360 DNA Polymerase 

(Invitrogen). Cycling conditions were performed with an initial denaturation at 94°C for 

5 minutes, followed by 35 cycles of: denature at 94°C for 0.5 minutes, anneal at 55°C 

for 0.5 minutes, extend at 72°C for 0.5 minutes, and a final extension at 72°C for 7 

minutes. Upon completion, PCR products were separated on a 1.2% agarose gel by 

constant voltage electrophoresis for 60 minutes. PCR products were visualized using Gel 
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Green (Biotium, Hayward, CA) and images captured using BioRad Chemdoc™MP 

Imager and ImageLab software (version 5.2.1; Bio-Rad, Hercules, CA). 

Transfection with siRNA  

siGenome SMARTpool human MMP-1, MMP-2, MT1-MMP, MT2-MMP, and 

MT3-MMP siRNAs were obtained from General Electric Dharmacon (Lafayette, CO). 

Target Control #2 was used as a luciferase control. 3x105 MG-63 cells were transfected 

with siRNA (50nM) in antibiotic-free media using siPORT Amine (Ambion, Naugatuck, 

CT) and the manufacturer’s protocol. After 24 hours, cells were counted and seeded on 

polymerized collagen type I gels as described above. Protein expression was evaluated 

via Western blot and gelatin zymography. 

Gelatin Zymography and Western Blotting 

Conditioned media and cell lysates were collected from invasion assays and 

analyzed via gelatin zymography or Western blot analysis for protein expression and 

activation as previously described (Davis and Saunders, 2006; Fisher et al., 2006; 

Saunders et al., 2005). At the termination of the experiment, conditioned media was 

removed and gels extracted for lysate preparation. Gelatin zymography was performed 

with SDS-PAGE gels containing 8.5% acrylamide (Bio-Rad) and 1mg/mL porcine 

gelatin (Sigma-Aldrich, St. Louis, MO). Gel electrophoreses was performed at 150V for 

55 minutes and subsequently incubated with three 20 minute periods in 2% Triton-X 

(Sigma-Aldrich) in milliQ water. Afterwards gels were washed and incubated overnight 

in developing buffer consisting of 25mM Tris HCL (Sigma-Aldrich) and 5mM CaCl2 

(Sigma-Aldrich). The following morning developing buffer was removed and gels were 
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stained with 0.1% Amido black in 30% methanol. After 20 minutes gels were destained 

in 30% methanol and 10% acetic acid in preparation for analysis and photography. 

Western blotting of cell lysates was performed with 7%, 10%, or 12% SDS-PAGE gels 

and probed against the following antibodies: MMP1 (Millipore; Billerica, MA), MT1-

MMP (Epitomics; Burlingame, CA), MT2-MMP (Santa Cruz, Dallas, TX), MT3-MMP 

(Santa Cruz), PDGFR-β (Epitomics), PDGFR-α (Epitomics), and beta-actin (Millipore). 

In some instances, lysates were prepared in the presence of beta mercaptoethanol (BME, 

Sigma-Aldrich) for Western blot analysis. 

Statistical Analysis 

Descriptive statistics were generated and presented as mean ± standard deviation 

for all data. Analytical statistics included ANOVA with Tukey’s post-hoc test. All 

statistics were performed with GraphPad Prism 6.0 (GraphPad Software, La Jolla, CA) 

Significance was established as p≤0.05. 

 

RESULTS 

PDGF-BB Stimulated Invasion 

To determine if MG-63 cells were potentially responsive to PDGF-BB, Western 

blots were implemented to assess the presence of PDGF receptors α and β. In 

comparison to other cell types evaluated, MG-63 displayed robust expression of both 

receptor isoforms (Figure 2.1).  

After demonstrating high levels of PDGF receptor expression in MG-63 cells as 

compared to other normal and neoplastic cells, evaluation of migration and invasion  
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Figure 2.1. PDGF receptor identification in normal and neoplastic cell types. Western 
blot analysis of PDGFR-α and PDGFR-β levels in human embryonic kidney cells 
(HEK293), human bone marrow cells (BM18), normal human dermal fibroblast cells 
(NHDF), human fibrosarcoma cells (HT1080), and human osteosarcoma cells (MG-63), 
demonstrating robust levels of both α and β receptors for PDGF.  
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response to increasing concentrations of PDGF-BB using a Boyden camber (Figure 2.2) 

and 3D collagen type I matrices (Figure 2.3). As shown in Figure 2.2, using a modified 

Boyden chamber, MG-63 cells migrate through the membrane in the presence of PDGF-

BB a dose dependent manner exhibiting migration in doses as low as 1 and 10ng/mL. 

For invasion assays, PDGF-BB was incorporated into collagen gels and assessed at 24- 

and 48-hours. As shown in representative images (overhead and sagittal) in Figure 2.3A, 

MG-63 cells invade in response to increasing dosages of PDGF. Inclusion of PDGF-BB 

resulted in a significant (p<0.0001) increase in invasion response in a dose dependent 

manner. While invading cell number is visually decreased at 24-hours in the 1000ng/mL, 

robust invasion is observed at the 48-hour time point. Invading cell number was 

quantified and mean ± SD calculated. Using two-way ANOVA, significant increases in 

invading cell number (p<0.0001) and invasion depth (p<0.0001) was observed in 

response to increasing concentrations of PDGF-BB and time as compared to controls (0 

PDGF-BB, 24- vs. 48-hour); however, the 1000ng/mL condition at 24 hours confirm the 

visual representation of lower numbers of invading cells, Additionally, significant 

increases in cell invasion number and depth is present in high PDGF-BB dosage 

conditions when comparing similar PDGF-BB dosage of 24 vs. 48 hours (p<0.0001). 

Interestingly, when evaluating conditioned media and lysates for protein levels using 

Western blotting and gelatin zymography, increased expression of MMP-1 and 

activation of MMP-2 was observed, while MT-1 MMP appeared to remain unaffected by 

increasing doses of PDGF-BB (Figure 2.3C,D). While MMP-1 levels were substantially 

elevated, protein expression is visible for the latent conformation (52kDa) rather than the  
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Figure 2.2. MG-63 cells migrate in response to PDGF-BB. PDGF-BB was incorporated 
in the lower wells of the modified Boyden chamber with a collagen coated, 
polycarbonate membrane overlaying lower wells. After assembly of the Boyden 
chamber, 3x104 MG-63 cells were added to the upper wells and allowed to migrate for 4 
hours. At the duration of 4 hours, the polycarbonate membrane was fixed, stained, and 
quantified for migrating cells using a predetermined standard curve. Graph represents 
mean ± standard deviation of migrating MG-63 cells in response to PDGF-BB dosages.  
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Figure 2.3. PDGF-BB mediated MG-63 invasion in collagen type I matrices. Collagen 
gels were polymerized as described with increasing concentrations of PDGF-BB. MG-63 
cells were seeded on monolayer surfaces of gels and allowed to invade for 24 and 48 
hours. A) Representative 10x overhead and sagittal microscopy images at 24 and 48 
hours, demonstrating increased invasion (bar = 100µm) of MG-63 cells in response to 
PDGF-BB. B) Invading cells were manually counted using DAPI staining, fluorescence, 
and HPF and reported as mean ± SD. Invading cells significantly (p<0.0001) increased 
in a dose-dependent manner. C) Invasion depth was determined using data from panel A 
and reported as mean ± SD. D) Western blot analysis of MMP-1, MT1-MMP, and beta-
actin, demonstrating corresponding increases in MMP-1 with increased concentration of 
PDGF-BB. E) Gelatin zymography analysis of conditioned media, demonstrating 
increased conversion of MMP-2 from the pro or latent form to active form with 
increasing concentrations of PDGF-BB.  
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active form (42kDa) (Figure 2.3D). On the contrary, gelatin zymography images in 

Figure 2.3E exhibit MMP-2 conversion from pro-MMP-2 (latent) (72kDa) to the active 

conformation (63kDA and 52kDa). These results indicate that PDGF-BB stimulates 

MG-63 cell migration and invasion in a dose-dependent manner Additionally, expression 

of MMP-1 and activation MMP-2 are increased during invasion.  

Time Course Analysis of Invasion in Response to PDGF-BB 

Time-dependent invasion in response to PDGF-BB was assessed at 

predetermined time points of 0-, 12-, 24-, 36-, 48-, and 72-hours. At each time point, 

conditioned media were collected, cell lysates prepared, and cultures fixed for 

quantification. Representative images (overhead and sagittal) of a 72-hour time-course 

of MG-63 cell invasion in response to PDGF-BB is shown in Figure 2.4A. As shown in 

the images and graphs, invading cell number and depth increased over time (Figure 

2.4A,B,C). Using ANOVA and Tukey’s correction, significant (p<0.01) increases were 

present in the number of MG-63 cells invading after 36 hours for both PDGF-BB 

incorporated and non-incorporated gels. While, depth of invasion was significantly 

increased over time (p<0.0001) in response to PDGF-BB, non-PDGF-BB containing 

wells did not display statistical differences. When comparing PDGF-BB treated and non-

PDGF-BB treated conditions, significant increased invasion number (p<0.0001) and 

depth (p<0.0001) were present with increased time. Interestingly when evaluating 

conditioned media and lysates for MMP-1, MT1-MMP, and MMP-2 using Western 

blotting and gelatin zymography, increased expression was observed regardless of 

PDGF-BB treatment (Figure 2.4D,E). While MMP-1 remained in its latent conformation   
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Figure 2.4. Time course analysis of MG-63 invasion in response to PDGF-BB. Collagen 
gels were polymerized as described with 100ng/mL PDGF-BB. MG-63 cells were 
seeded on monolayer surfaces of gels and allowed to invade for 0, 12, 24, 36, 48, or 72 
hours. At each predetermined time point conditioned media were collected, gels fixed 
4% paraformaldehyde, quantified, and photographed. A) Representative 10x microscopy 
images of invading MG-63 cells at each predetermined time point. B) Invading cells 
were manually counted using DAPI staining, fluorescence, and HPF and reported as 
mean ± SD. Invading cells significantly (p<0.0001) increased in a time-dependent 
manner. C) Invasion depth was determined using data from panel A and reported as 
mean ± SD. D) Western blot analysis, demonstrating MMP-1 and MT1-MMP levels. 
Gelatin zymography analysis of conditioned media, demonstrating increased.  
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(52ka), MMP-2 was detected in both its respective pro- (latent) and active states (63kDa 

and 52kDa). When comparing MMP-2 activation levels in the presence of PDGF-BB, 

conversion of pro-MMP-2 to its active state was visibly increased in the presence of 

PDGF-BB (Figure 2.4E). Although, MMP-1 and MMP-2 subjectively display robust 

increases in protein expression, MT-1 MMP expression was remained consistent (Figure 

2.4E). These results indicate that PDGF-BB stimulates MG-63 cell invasion and that 

expression of MMP-1 (latent) and MT1-MMP increase over time regardless of PDGF-

BB treatment. Additionally, pro-MMP-2 is converted from its pro- to active 

conformation with in the presence of PDGF-BB and increased time. 

Effect of a Tyrosine Kinase Receptor Inhibitor on MG-63 Invasion 

To evaluate the role of PDGF receptor signaling on the MG-63 invasion 

response, signaling was inhibited through the use of a known PDGF receptor tyrosine 

kinase inhibitor, AG1296. AG1296 has previously been shown to competitively inhibit 

autophosphorylation sites of PDGF receptor tyrosine kinase domains Try857 and Try751 

(Kovalenko et al., 1997). In a dose-dependent manner (5µM, 25µM, 50µM), significant 

reduction (p<0.0001) of invasion at both 24- and 48-hours was observed when MG-63 

cells were induced to invade in response to PDGF-BB in the presence of increasing 

concentrations of AG1296. As shown in Figure 2.5A, representative (overhead and 

sagittal) images demonstrate reduced invasion response in the presence of increasing 

concentrations of AG1296. Quantification of invading cell number (Figure 2.5B) in the 

presence of AG1296 demonstrated a significant decrease in the number of invading cells 

(p<0.0001) as compared to invasion control (PDGF-BB) and inhibitor carrier (DMSO)   
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Figure 2.5. Effect of PDGF receptor tyrosine kinase inhibitor on MG-63 cell invasion of 
collagen type I matrices. Tyrosine kinase inhibitor, AG1296, was added to cultures to 
determine the correlation between PDGF-BB and MG-63 invasion. MG-63 cells were 
seeded on monolayer surfaces of gels containing 100ng/mL of PDGF-BB and allowed to 
invade for 24 or 48 hours prior to collection of culture media, fixation, quantification, 
and photography. A) Representative 10x overhead and sagittal microscopy images, 
demonstrating decreased invasion to relation to increasing concentrations of AG1296. B) 
Invading cell number was quantified and reported as mean ± SD. Invading cell number 
significantly (p<0.0001) decreased compared to PDGF-BB control and carrier (DMSO) 
conditions. C) Western blot analysis exhibiting decreased levels of MMP-1 as 
concentration of AG196 increases. D) Gelatin zymography analysis MMP-2 activation 
in conditioned media. Interestingly, no visual effect of MMP-2 activation is observed 
with increasing concentrations of AG1296.  
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wells. Interestingly, AG1296 inhibition decreased invading cell number to the level 

recorded for control wells lacking PDGF-BB (data not shown). As previously described, 

conditioned media and lysates from experiments in Figure 2.5A were evaluated with 

Western blot and gelatin zymography to analyze MMP-1, MMP-2, and MT1-MMP 

expression. AG1296 had limited to no effect on MT1-MMP levels (Figure 2.5C) or 

MMP-2 activation as both pro- and active forms are present (Figure 2.5D). These results 

notwithstanding, decreased MMP-1 protein levels were observed with increasing 

concentration of AG1296 (Figure 2.5C), suggesting that tyrosine kinase signaling is 

responsible increased MMP-1 expression that occurs upon exposure to PDGF-BB. 

MT-MMPs are Required for Invasion of 3D Collagen Type I Matrices 

Previous studies have shown the requirement of MMPs for cell-mediated 

invasion of 3D collagen matrices (Bayless and Davis, 2003; Fisher et al., 2006; Wolf et 

al., 2013). To evaluate the role of various classes of MMPs during MG-63 invasion of 

3D collagen type I gels, MG-63 cells were induced to invade 3D collagen matrices 

containing PDGF-BB in the presence of several proteinase inhibitors. GM6001, TAPI-O, 

aprotinin, TIMP-1, and TIMP-3, were added to culture media in a step-wise process to 

determine the class/group of MMPs involved in MG-63 invasion. Representative images 

of cellular invasion (overhead and sagittal) are shown in Figure 2.6A. Invasion of MG-

63 cells was completely inhibited in the presence of the broad-spectrum chemical MMP 

inhibitors GM6001 and TAPI-O (p<0.0001). Additionally, biologic MMP inhibitor 

TIMP-3, capable of inhibiting soluble and membrane-type MMPs, significantly inhibited 

invasion (p<0.0001). These results indicate that MMPs are required for MG-63 invasion 
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of collagen type I. To further elucidate the specific role of soluble versus membrane-type 

MMPs during MG-63 invasion, MG-63 cells were induced to invade in the presence of 

TIMP-1, a biologic inhibitor specific soluble MMPs. In contrast to GM6001 and TAPI-

O, MG-63 cells were capable of invading in the presence of TIMP-1, although the 

invasion was slightly reduced as compared to PDGF-BB carrier control wells (p<0.01) 

(Figure 2.6B). However, when comparing invasion response in the presence of TIMP-3 

and TIMP-1, there was a significant increase in invasion in the presence of TIMP-1 

(p<0.0001). In addition, there was a significant decrease in invasion (p<0.0001) for MG-

63 cells cultured in the presence of TIMP-3 when compared to PDGF-BB carrier control 

wells (Figure 2.6B). These results indicate that MT-MMPs are likely the required group 

of MMPs for MG-63 invasion of 3D collagen type I matrices.  

Conditioned media and lysates were collected from experiments in Figure 2.6A 

and analyzed as described above. Using Western blot and gelatin zymography analyses, 

MMP-1, MMP-2, and MT1-MMP were expressed by MG-63s in culture (Figure 

2.6C,D). As seen in previous figures (2.3-2.5), latent MMP-1 expression is increased in 

response to PDGF-BB (Figure 2.6C). Additionally, pro-MMP-2 is converted to an active 

conformation (Figure 2.6D). Interestingly, MMP-2 conversion to an activate state was 

visually decreased or absent in GM6001, TAPI-O, and TIMP-3 treatments, as noted by 

the absence of lower molecular weight bands (63kDa). However, MMP-2 activation was 

unaffected by the addition of TIMP-1. These results are of particular interest due to the 

known interaction between MMP-2 and MT1-MMP/TIMP-2 complex at the cell surface   
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Figure 2.6. MT-MMPs are required for MG-63 invasion of 3D collagen type I matrices. 
Collagen gels were polymerized with 100ng/mL PDGF-BB as previously described. 
MG-63 cells were seeded on monolayer surfaces of gels and allowed to invade for in the 
presence of the following proteinase inhibitors: no stimulus (Control), no inhibitor 
(PDGF-BB, positive control), DMSO (carrier control), 5µM GM6001, 5µM TAPI-O, 
20KIU/mL aprotinin, 5µg/mL TIMP-1, or 5µg/mL TIMP-3. A) Representative 10x 
microscopy images after 48 hours, demonstration GM6001, TAPI-O, but not TIMP-1, 
suggesting that MT-MMPs are required for MG-63 invasion. B) Invading cells per HPF 
was quantified and reported as mean ± SD., demonstrating significant reduction 
(p<0.0001) of invading cell number when compared to DMSO (carrier control) wells. C) 
Western blot analysis displaying reduced MMP-1 expression in GM6001 and TAPI-O 
wells, while TIMP-1 and TIMP-3 had no effect on MMP-1 levels. D) Gelatin 
zymography assessment of MMP-2 expression and activation. Interestingly, MMP-2 
activation was blocked by GM6001 and TAPI-O, reduced by TIMP-3, and remained 
unaffected by TIMP-1. 
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Figure 2.7. MT-MMP gene expression in MG-63 cells. MG-63 cells were qualitatively 
evaluated for MT-1, 2, 3, and 4-MMP using RT-PCR. MT-1, 2, and 3-MMP were 
positive when assessed using RT-PCR. Representative images of MT1 (172bp), MT2 
(245bp), MT3 (250bp), and MT4 (216bp) gene expression demonstrating the absence of 
MT4-MMP.  
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(Sato et al., 1996). Through this triad, MMP-2 is activated by MT1-MMP, as such 

MMP-2 levels are often used as an indirect readout of MT1-MMP activity.   

PDGF-BB Mediated Invasion of MG-63 Cells Requires MT1-MMP 

Based on the results described in Figure 2.6, several MT-MMPs known to be 

involved in pericellular proteolysis and invasion were evaluated. MG-63 cells were 

evaluated for the presence of MT-1, -2, -3, and -4-MMP RNA using reverse 

transcription PCR. MG-63 cells were positive for MT-MMP 1, 2, and 3 transcripts, but 

negative for MT4-MMP (Figure 2.7). Based on these data, commercially available 

siRNAs for MT1, 2, and 3-MMP were acquired (Figure 2.8). Representative images 

(overhead and sagittal) of invading MG-63 cells transfected with the various siRNAs are 

shown in Figure 2.8A. There was a marked decrease in the number of invading cells in 

MG-63 cells treated with MT1-MMP siRNA, whereas invasion was unaffected by 

treatment with MT-2 or MT3-MMP. Moreover, quantification (mean ± SD) of Figure 

2.8A confirms that significant differences in the number of invading cells (p<0.0001) 

were present when comparing MT1-MMP siRNA transfected cells to PDGF-BB control 

wells (Figure 2.8B). Protein expression confirmed knockdown of respective proteins 

(Figure 2.8C). These results indicate that MT1-MMP is required for PDGF-BB mediated 

invasion of 3D collagen matrices by MG-63 cells.  

 

DISCUSSION 

OSA is highly metastatic and pulmonary metastases are the most common cause 

of morbidity. The mechanism(s) by which OSA cells invade surrounding stroma and  
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Figure 2.8. PDGF-BB mediated MG-63 invasion of collagen type I requires MT1-MMP. 
Knockdown of protein expression by siRNA was used to determine the specific MT-
MMP responsible for MG-63 cells invasion in response to 100ng/mL PDGF-BB. MG-63 
cells were siRNA transfected and subsequently seeded on monolayer surfaces of gels. 
Invasion response was evaluated at 24 or 48 hours. A) Representative 10x overhead and 
sagittal images display decreased invasion to no PDGF-BB (control) in MT1-MMP and 
MT-1, 2, 3 (MT-pool) wells, but not MT2- or MT3-MMP alone. B) Invading cells per 
HPF were quantified and reported as mean ± SD, demonstrating significant reduction 
(p<0.0001) in invading cell number in siMT1-MMP wells when compared to no-PDGF-
BB control wells. C) Western blots expression confirms knockdown of MT-MMP 
protein levels.  



 

 52 

eventually metastasize has yet to be fully elucidated. When prompted, cells must prove 

to be motile and proteolytic in traversing the extra cellular matrix, specifically collagen 

type I (Hotary et al., 2000; Murphy and Knäuper, 1997; Werb, 1997). It is thought that 

MMPs play a significant role in these functions. Although MMPs are often categorized 

based on either location or functionality (substrate specificity), a number of MMPs are 

thought to be involved in invasion. Previous literature has described soluble MMPs, such 

as MMP-1 (Colandrea et al., 2000), MMP-2 (Masson et al., 2005), and MMP-9 (Klein et 

al., 2004), invasion capabilities. However, other studies have focused on membrane-type 

MMPs’ ability to promote invasion (Hotary et al., 2000; Sabeh et al., 2009). It has been 

previously shown that PDGF-BB plays an important role during many physiological and 

pathological processes, such as angiogenesis, wound healing, tumor growth, or 

metastasis, through both its mitogenic and chemotactic effects. The ability to express, 

secrete, and respond to PDGF is critical in development and biological processes for cell 

growth, function, and maintenance of the pericellular environment. In addition to 

developmental influence, PDGF has been shown to play a role in wound healing and 

fracture repair through PDGF-BB stimulated recruitment of pericytes (Caplan and 

Correa, 2011). PDGF-BB has also been linked to fibrosis, atherosclerosis, tumor growth, 

and metastasis. In addition, PDGF levels were elevated in a significant proportion of 

extensive metastatic breast cancers and osteosarcoma cell lines (Ariad et al., 1991; 

Takagi et al., 2014). 

While previous studies have examined OSA cell lines MG-63, U2OS, SaOS, 

OHS, HOS, SaOS, and KPDX our accessibility and preliminary data (data not shown) 
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demonstrated a propensity of MG-63 to actively invade collagen type I matrices. In 

addition, previous studies have examined PDGF signal transduction and subsequent 

cellular response of MG-63 cells (Graves et al., 1984; Takagi et al., 2014; Thomas et al., 

1997), but to the authors’ knowledge 3D assays detailing proteolytic events of the extra 

cellular matrix in response to PDGF-BB have not been performed. Given the unique 

properties of PDGF-BB, the objective of this study was to examine invasion of human 

osteosarcoma MG-63 cells in 3D collagen type I matrices via MMP proteolysis in 

response to PDGF-BB. We hypothesized that PDGF-BB would stimulate MG-63 cells to 

invade 3D collagen matrices in an MT-MMP dependent manner, while soluble MMPs 

would be less important to these events.  

The known role of PDGF-BB and its receptors in cell proliferation and invasion 

events, in addition to the strong support in the literature for the concept that MT-MMPs 

are required for focal ECM proteolysis during invasion, have led our laboratory to 

evaluate the role of PDGF-BB and MMPs, more specifically MT-MMPs, in invasion. 

Our results demonstrate both a significant time- and dose-dependent invasion of MG-63 

human osteosarcoma cells in response to PDGF-BB. Furthermore, this process of 

invasion was dependent on PDGF receptor signaling and MT1-MMP. Therefore, based 

on the data presented herein we fail to reject our hypothesis that PDGF-BB would 

stimulate MG-63 cells to invade 3D collagen matrices in an MT-MMP dependent 

manner, while soluble MMPs would be less important to these events. 

The MG-63 cell line in this study were passaged and expanded on traditional 2D 

tissue culture plastic for use in a serum-free 3D collagen type I invasion assay. Prior to 
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seeding, PDGF-BB was incorporated into collagen type I gels. Assessment of both dose- 

and time-dependent invasion exhibited significant increases in number and depth of 

invading cells. Interestingly, when assessing MMP levels of the dose response assay, 

MT1-MMP remains visually consistent with no increase or decrease in expression with 

increasing PDGF-BB concentrations. One explanation for the increased invasion may be 

the localization of MT1-MMP to the filapodia/lamelipodia processes in focal 

degradation of collagen type I matrices in response to PDGF. In contrast to MT1-MMP, 

MMP-1 expression levels increased in response to increasing concentrations of PDGF-

BB. This increased protein expression may be the result of PDGF-BB activation of 

signaling cascades leading to transcription and expression of multiple genes with MMP-

1 being one of the products. Previous studies have implicated phosphoinositide 3-kinase 

(PI3K) (Cheng et al., 2006), JAK-STAT (Andl, 2004), and C-terminal Src kinase (c-Src) 

(Leaner et al., 2010) pathways in tumorigenesis and increased MMP transcription. The 

PI3K pathway is activated by PDGF inducing arrangement of the Rho and Ras 

complexes (Auger et al., 1989; Coughlin et al., 1989; Kazlauskas et al., 1992) directing 

downstream cytoskeletal rearrangements (Kazlauskas et al., 1992). Furthermore, PI3K 

phosphorylates AKT initiating a cascade through IκB kinase (IKK) complex, a regulator 

for NF-κβ (Israel, 2010). Significantly, NF-κβ is known to be involved in gene 

transcription of MMPs (Bond et al., 1998; Vincenti and Brinckerhoff, 2002). Similar to 

PI3K, c-Src is implicated in AKT pathway activation for cell survival and gene 

transcription related to tumorigenesis and metastasis (Leaner et al., 2010). Lastly, Fossey 

et al, described activation of signal transducer and activator of transcription-3 (STAT3) 
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through the JAK-STAT pathway, leading to upregulation of gene transcription of MMPs 

(Fossey et al., 2009). These previous studies corroborate the data presented herein, in 

which MMP-1 expression is observed in the presence of PDGF-BB. While these 

signaling events directly link PDGF receptor-signaling to MMP gene transcription, 

further studies are needed to elucidate the specific pathway responsible for increased 

expression. 

When evaluating potential signaling axis responsible for PDGF-BB and gene 

transcription/up-regulation we targeted the PDGF receptor tyrosine kinase using a 

synthetic inhibitor AG1296. In 1997, Kovalenko et al. suggested the role of AG1296 as a 

secondary inhibitor by allowing receptor tyrosine kinase to preferentially bind PDGF-

BB and allow subsequent dimerization, but abolish the signaling cascade by competing 

with auto phosphorylation sites, Y857 and Y751 (Kovalenko et al., 1997). Thus, 

extinguishing the perpetuation of intra-cell signaling in response to ligand-receptor 

binding. Therefore, the addition of the PDGF receptor tyrosine kinase inhibitor AG1296 

was of extreme interest. There was a significant reduction in MG-63 cell invasion when 

cultured in the presence of both PDGF-BB and increasing doses of AG1296. Moreover, 

when cultured in lower doses (5µM) of AG1296, limited invasion was still present while 

increasing concentrations (25µM and 50µM) of AG1296 eliminated invasion altogether. 

While AG1296 has a high specificity to PDGF receptor signaling inhibition, one 

limitation in is the ability of AG1296 to also inhibit fibroblast growth factor receptor 

(FGFR) at increased concentrations (12-18µM). Although other studies suggest alternate 

platelet-dependent signaling pathways, such as insulin-like growth factor-1 (IGF-1) 
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(Raile et al., 2003); data presented herein support that MG-63 invasion is driven at least 

in part by PDGF-BB.  

Although previous studies described above discuss up regulation of MMP levels 

in response to PDGF, the specific MMPs implicated in invasion were not evaluated. To 

further our understanding, we explored the role of MMP-dependent proteolysis in 

invasion. In the presence of synthetic (GM6001 and TAPI-O) and biologic (TIMP-3) 

inhibitors of soluble and membrane-type MMPs, MG-63 cell invasion was completely 

absent (Figure 2.6A). These results indicate that MMPs are required for MG-63 cell 

invasion of 3D collagen type I gels. Moreover, inhibition of invasion by TIMP-3 

(capable of inhibiting soluble and membrane-bound MMPs), but not TIMP-1 (inhibits 

soluble MMPs alone) suggests that MT-MMPs are required for MG-63 cell invasion. 

Interestingly, MMP-2 activation was blocked by GM6001 and TAPI-0, reduced by 

TIMP-3 and remained unaffected by TIMP-1. These findings are not surprising given 

that MMP-2 has shown to be activated by MT1-MMP/TIMP-2 complex on the cell 

surface (Sato et al., 1996).  

Given the proteolytic response of MT1-MMP, increased expression of MMP-2 is 

not surprising. As described by Sato in 1996, through indirect activation, MT1-MMP 

conformationally activates MMP-2, using TIMP-2 as an intermediary binding structure 

(Sato et al., 1996). Briefly, MT1-MMP binds the N-terminus of TIMP-2 allowing MMP-

2 to bind the C-terminal. Subsequently, an adjacent MT1-MMP activates MMP-2 to 

proMMP-2 while another MMP-2 enzyme removes the propeptide region creating a 
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fully activated/mature MMP-2 (Sato et al., 1996). The known relationship of this triad 

explains the increased activation levels of MMP-2 in our results.  

 While invasion was blocked in the presence of synthetic and biologic MT-MMP 

inhibitors, transcriptional blockade via siRNA was used to demonstrate the key influence 

of MT1-MMP in invasion. These findings were not surprising considering previous 

literature has shown invasion of other cell types is not dependent on MT2- and MT3-

MMP (Hotary et al., 2000; Shimada et al., 1999). In addition, these findings were further 

corroborated when examining those of Bjornland et al., in which MT1-MMP was 

present in multiple osteosarcoma cells from both human and veterinary species 

(Bjørnland et al., 2005). Collectively, previous studies in combination findings presented 

above demonstrate the importance of MT1-MMP in MG-63 invasion of collagen type I 

matrices. While decreased invasion was present in MT1-MMP siRNA transfected wells 

was observed, invasion decrease was not equal to that of the robust inhibition seen in 

GM6001, TAPI-0, and TIMP-3 conditions (Figure 2.6). One explanation to limited 

invasion is that MT1-MMP is not genetically eliminated from the cellular transcript and 

thus residual protein would still be found in the cells even after siRNA blockade. 

Furthermore, whereas secreted MMPs are normally released as inactive zymogens, 

MT1-MMP is active before cell surface localization (Pei and Weiss, 1995; Sato et al., 

1996; Yana and Weiss, 2000). Another alternative explanation to baseline MG-63 cell 

invasion may be the role of uninvestigated MT-MMPs or adamalysins-related membrane 

proteins (ADAMs) not addressed in this study. Additional studies are needed to identify 

and address the role of complementary molecules and their influence in MG-63 invasion. 
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Results presented herein demonstrate that PDGF-BB stimulates MT1-MMP-

dependent MG-63 cell invasion, and thus, is critical in matrix proteolysis for tumor cell 

invasion. One question that remains to be answered is: how PDGF-BB stimulates intra-

cellular pathways for gene transcription, in addition enabling MT1-MMP-dependent 

invasion. Further detailing of signaling mechanisms and key molecular proteins involved 

in localizing MT1-MMP to invasion sites will improve the understanding of how MG-63 

and other neoplastic cell types invade their micro-stroma and eventually metastasize.   

In conclusion, we elucidate an invasion response of human osteosarcoma MG-63 

cells to PDGF-BB by way of MT1-MMP proteolysis of collagen type I. These results 

detail the importance of MT1-MMP in tumor cell proteolysis for motility and invasion. 

Interestingly, PDGF tyrosine kinase inhibitor, AG1296, neutralized MG-63 cell invasion 

in the presence of PDGF-BB. Moreover, given the significant reduction in invasion of 

MG-63 after reduction of MT1-MMP via siRNA, addition of TIMP-3, and addition of 

the PDGF-receptor tyrosine kinase inhibitors, each of these molecules/methods may be 

useful for investigators interested in reducing invasion of MG-63 cells, and possibly 

other osteosarcoma cells. Our results provide insight into important cellular events and 

will prove useful for both investigators and clinicians considering translational treatment 

strategies of osteosarcoma.  
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CHAPTER III 

CHARACTERIZATION OF CANINE MULTIPOTENT STROMAL CELLS 

ISOLATED FROM SYNOVIUM, BONE MARROW, OR ADIPOSE TISSUE: 

A SUBJECT-MATCHED COMPARISON USING ASSAYS OPTIMIZED 

FOR THE DOG 

SUMMARY 

The dog represents an excellent large animal model for translational regenerative 

medicine studies; however, the ideal source of cMSCs for specific applications remains 

to be determined. The objective of this study was to comprehensively characterize 

cMSCs from bone marrow, adipose, and synovium using assays optimized for the dog. 

Tissues were isolated from five client owned dogs with cranial cruciate ligament rupture. 

All tissues produced plastic adherent, spindle shaped MSCs. Each cell preparation was 

assessed for MSC criteria using flow cytometry, colony forming unit (CFU) potential, 

tri-lineage differentiation, and immunomodulation assays. These cells were negative for 

CD 34, 45, STRO-1 and positive for CD 9, 44, 90. CD105 staining was variable across 

all cell preparations. There were significant differences between cMSCs as assessed by 

growth parameters, CFU potential, tri-lineage differentiation, and immunomodulatory 

response when comparing donor and tissue source. Synovial and marrow cMSCs 

exhibited superior short-term osteogenic activity, but when assessing long-term 

osteogenesis no significant differences were present. Additionally, synovial and adipose 

cMSCs proliferated more rapidly, displayed higher CFU potential, and formed larger 

chondrogenic pellets, although proteoglycan and collagen II staining was decreased 

when compared to marrow pellets. Lastly, all cMSCs reduced the concentration of 
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murine tumor necrosis factor alpha (TNF-α) in LPS-stimulated mouse macrophage co-

culture assays, a novel finding for canine MSCs. As described in humans, we conclude 

that significant differences in cMSCs exist due to both tissue source and individual 

donor variability. Our findings and optimized methods will prove useful for future tissue 

engineering studies using the canine model.  

 

INTRODUCTION 

Translation of promising findings from rodent models to humans represents a 

significant hurdle for cell-based therapies. A number of large animal species have been 

used to bridge the gap from rodents to humans (Hatsushika et al., 2014; Horie et al., 

2009; Horie et al., 2012b; Kon et al., 2000; Murphy et al., 2003). The dog is a 

compelling model species for these types of cell-based translational studies. When 

compared to rodents, dogs are large, long-lived, genetically diverse, and share many 

biochemical and physiological similarities with humans. Canine models have been used 

successfully for adult bone marrow transplantation, gene therapy, and development of 

protocols to overcome allograft rejection (Prentice et al., 1984; Socie and Blazar, 2009; 

Storb et al., 1970). Due to their response to learned behaviors such as treadmill exercise, 

dogs have been used to develop new therapies for cardiovascular and orthopedic 

diseases (Bockstahler et al., 2007; Kiviranta et al., 1988). From a biomechanical 

perspective, the canine skeleton undergoes loading in a manner that approximates that of 

the human skeleton (Bergmann et al., 1984; Liebschner, 2004). For these reasons, canine 

models of osteoarthritis, anterior cruciate ligament repair, meniscal injury, and non-
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union fractures are well described (Arnoczky et al., 2010; Johnson et al., 1989; Liu et al., 

2006; Nelson et al., 1988; Pond and Nuki, 1973; Shortkroff et al., 1996). Additionally, 

humans often consider dogs as in-home pets. Cohabitation exposes both humans and 

canines to similar environmental stimuli, helping to eliminate distinguishing variables 

between species (Fenger et al., 2014). For many of these reasons, the occurrence of 

adverse events in canine clinical trials appears to more reliably predict adverse events in 

humans. As such, performing clinical trials in dogs may allow investigators to more 

effectively identify and predict the benefits or unforeseen obstacles in humans.   

MSCs hold much promise as therapeutic agents for many debilitating diseases. In 

addition to contributing to tissue and organ repair by homing, differentiation, and 

engraftment, MSCs are believed to improve tissue repair through production of growth 

factors, anti-inflammatory cytokines, direct modulation of the immune system, and anti-

apoptosis effects (Augello et al., 2010). MSCs are most commonly isolated from bone 

marrow and adipose tissue (Neupane et al., 2008; Owen and Friedenstein, 1988; Peng et 

al., 2008; Sakaguchi et al., 2005; Takemitsu et al., 2012; Zuk et al., 2002). Recent 

literature has described the isolation of MSCs from synovium (De Bari et al., 2001), 

skeletal muscle (Kisiel et al., 2012), periosteum (De Bari et al., 2006) and dental pulp 

(Pierdomenico et al., 2005). While MSCs isolated from these diverse tissues meet 

established criteria for MSCs (Dominici et al., 2006), cell proliferation and 

differentiation vary widely when assessed by established in vitro assays. These 

differences may have important implications as investigators consider both the tissue 

source of MSCs as well as the model species for novel cell-based translational studies.   



 

 62 

Although a robust foundation of literature exists describing synovium, bone 

marrow, and adipose-derived MSCs in humans, rodents, and other species (Arnhold et 

al., 2007; Niemeyer et al., 2010; Nishimura et al., 1999; Phinney, 2008; Stewart and 

Stewart, 2011; Vidal et al., 2007), a relatively modest number of reports exist describing 

he isolation and differentiation of cMSCs from these tissues (Kadiyala et al., 1997; 

Kisiel et al., 2012; Neupane et al., 2008; Volk et al., 2005; Volk et al., 2012). Drawing 

distinctions between the cMSCs isolated in these studies is difficult due to donor 

variation and differences in the isolation and culture techniques utilized by individual 

laboratories. Thus, a comprehensive report describing the characteristics of donor-

matched cMSCs isolated from canine synovium, bone marrow, and adipose tissue is of 

utmost importance in order to facilitate the selection of cMSC for cell-based 

translational studies. 

The objective of this study was to comprehensively characterize canine MSCs 

isolated from synovium, bone marrow, and adipose tissue using a donor-matched study 

and assays optimized for the canine species. Based on work in other species, we 

hypothesized that canine MSCs isolated from synovium, bone marrow, and adipose 

tissues would exhibit significant differences in isolation parameters, growth kinetics, 

CFU potential, flow cytometry profiles, tri-lineage differentiation, and 

immunomodulatory potential. As seen in other species, results detailed herein 

demonstrate variability in donor and tissue source when comparing the aforementioned 

characteristics. Our results provide insight into important similarities and differences 
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between cMSCs and will prove useful for investigators considering cMSCs for large 

animal translational studies.   

 

MATERIALS AND METHODS  

Tissue Collection and Cell Isolation 

This study was performed under the supervision of the institutional animal care 

and use committee (IACUC) and an approved animal use protocol (AUP 2011-149). 

Canine synovium, bone marrow, and adipose tissues were obtained from four-castrated 

male and one spayed female dogs during knee arthroscopy for cranial cruciate ligament 

rupture. Median age was three years (range 2 to 6) with a median body weight of 39.4 kg 

(range 21.4 to 71.7 kg). Under general anesthesia, bone marrow aspirates were 

performed on the proximal humerus using 15 gauge Illinois biopsy needles. Adipose 

tissue was obtained from the infrapatellar fat pad prior to arthroscope insertion. 

Synovium/subsynovial tissues were isolated from the femoropatellar joint using 

arthroscopic biopsy forceps during knee arthroscopy. Sample weights and volumes are 

provided in Table 3.1. 

Nucleated cells were isolated from bone marrow using gradient centrifugation 

(Ficoll-Paque Plus, GE Health Care Biosciences, Piscataway, NJ) as previously 

described (Pittenger, 2008). Following centrifugation at 1,800xG for 30 minutes, 

mononuclear cells were removed, washed twice with 15mL of Hank’s Balanced Salt 

Solution (HBSS, Invitrogen, Carlsbad, CA), quantified, and assessed for viability using a 

hemocytometer and trypan blue exclusion. Adipose and synovial samples were washed 
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in HBSS and were manually minced into a paste consistency using sterile scalpel blades 

and scissors. Samples were subjected to enzymatic digestion using Liberase TM® 

(Roche Molecular Biochemical, Mannheim, Germany) with gentle agitation at 37°C for 

3-6 hours (Sekiya et al., 2002). Digested samples were washed, centrifuged, and strained 

though a 40µm cell strainer. Residual non-digested tissues that were retained in the cell 

strainer were discarded. Strained cells were washed and centrifuged for quantification 

and assessment of viability.   

Nucleated marrow cells were plated at 3x104 cells/cm2 in 150cm2 tissue culture 

dishes in Complete Culture Medium (CCM) containing α-MEM, 100U/mL penicillin, 

100µg/mL streptomycin (Invitrogen), and 10% premium select fetal bovine serum 

(Atlanta Biological, Inc., Flowery Branch, GA), while nucleated cells from adipose and 

synovium were plated at 200 cells/cm2. Cells were incubated at 37°C and 5% humidified 

CO2 for 24 hours. For the following three days, plates were washed with PBS to remove 

non-adherent cells followed by media exchange. Culture dishes were subsequently 

monitored for expansion of the primary cell population (passage 0) with media exchange 

performed every other day. At 70% confluence (5-12 days) cells were lifted with 0.5% 

trypsin/EDTA solution (Invitrogen) and re-seeded at 100 cells/cm2 for expansion of 

passage 1 cells. Media was exchanged every other day until cells were 70% confluent. 

Passage 1 cells were cryopreserved in α-MEM with 5% DMSO (Sigma-Aldrich, St. 

Louis, MO) and 30% FBS in preparation for subsequent experiments. With exception of 

the CFU assays, passage 1 cells were thawed, plated at 100 cells/cm2, and expanded to 

70% confluent passage 2 cells for use in experiments. 
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Colony Forming Unit (CFU) Assay 

CFU ability of the primary cell population was determined on the day of tissue 

harvest by plating isolated cells in triplicate on 55cm2 dishes at 4.5x105 total cells/dish 

for bone marrow and 1x103 total cells/dish for synovium and adipose tissue as 

previously described (Digirolamo et al., 1999; Pochampally, 2008; Prockop et al., 2001). 

Cells were incubated at 37°C in 5% humidified CO2 for 24 hours in CCM. Plates were 

washed with PBS twice followed by media exchange with CCM at 24 and 48 hours. 

After the 48-hour wash, plates were incubated 21 additional days without media 

exchange. At 21 days, plates were stained with 0.3% crystal violet solution (Sigma-

Aldrich) for 30 minutes. Plates were washed, photographed, and colony number and size 

were quantified using Image J FIJI Colony Counter (Schneider et al., 2012). 

Expression of Plasticity Associated Genes  

Isolation of RNA and subsequent gene expression evaluation was performed as 

previously described (Neupane et al., 2008). Total RNA was isolated from passage 2 

cells using PureLink™ RNA Mini Kit (Life Technologies, Carlsbad, CA) and treated 

with DNase to remove contaminating DNA. Complementary DNA (cDNA) was 

synthesized from 2.5µg of total RNA using random hexamer primers and Superscript III 

reverse transcriptase (Invitrogen). Primers were commercially synthesized (Sigma-

Aldrich) as follows: GAPDH (Okui et al., 2008) Forward: 

GGAGAAAGCTGCCAAATATG, Reverse: ACCAGGAAATGAGCTTGACA; 

NANOG (Neupane et al., 2008) Forward: GAATAACCCGAATTGGAGCAG, Reverse: 

AGCGATTCCTCTTCACAGTTG; OCT4 (Neupane et al., 2008) Forward: 
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GAGTGAGAGGCAACCTGGAG, Reverse: GTFAAGTGAGGGCTCCCATA; SOX2 

(Neupane et al., 2008) Forward: AGTCTCCAAGCGACGAAAAA, Reverse: 

GCAAGAAGCCTCTCCTTGAA. PCR reactions (20µL) were prepared with 2µL of 

cDNA, 10nM of each primer, and 0.5 units of AmpliTaq Gold® 360 DNA Polymerase 

(Invitrogen). Cycling conditions were performed with an initial denaturation at 94°C for 

5 minutes, followed by 35 cycles of: denature at 94°C for 0.5 minutes, anneal at 55°C 

for 0.5 minutes, extend at 72°C for 0.5 minutes, and a final extension at 72°C for 7 

minutes. Upon completion, PCR products were separated on a 1.2% agarose gel by 

constant voltage electrophoresis for 60 minutes. PCR products were visualized using Gel 

Green (Biotium, Hayward, CA) and images captured using BioRad Chemdoc™MP 

Imager and ImageLab software (version 5.2.1; Bio-Rad, Hercules, CA). 

Flow Cytometry  

Passage 2 cMSCs were trypsinized, washed in PBS, counted, resuspended to 

6x105 cells/mL, and divided into individual aliquots containing 3x105 cells in 50µL of 

PBS and 2% FBS. Commercially available antibodies were acquired for cell analysis 

from AbD Serotec (CD-9, -34, -44, -45, -90; Raleigh, North Carolina), Santa Cruz (CD-

105; Santa Cruz, CA), and R&D (STRO-1; Minneapolis, MN). Cells were incubated in 

primary antibody (CD34-, 44-, 45-, 90- 100µg/mL, CD9- 10µg/mL, CD105- 40µg/mL, 

STRO1- 150µg/mL) for 30 minutes, washed twice, and resuspended in 300µL of PBS 

and 2% FBS. For CD44, CD90, and STRO-1 cells were resuspended in 50µL of PBS 

and 2% FBS for incubation in secondary antibody at 6.25µg/mL for 30 minutes, then 

washed twice, and resuspended in 300µL of PBS and 2% FBS for analysis (Stewart and 
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Stewart, 2001; Stewart et al., 1999). Cell fluorescence was determined by flow 

cytometry using a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA), 

CellQuest (BD Biosciences) acquisition software, and FlowJo analysis software version 

9.8.3 (TreeStar, Inc, Ashland, Oregon). Prior to analysis, propidium iodide was added at 

100µg/mL to identify and remove non-viable cells. The filters used were 610/20 for 

propidium iodide and 530/30 for FITC. Flow cytometry results are presented as 

percentage positive staining relative to unstained control cells, in which percentage 

positive is defined as the number of viable cells that stained positive for each marker 

divided by the total number of viable cells evaluated for that marker.   

Proliferation Assay- Short-term Proliferation 

To compare the short term proliferation of synovium, marrow, and adipose 

cMSCs, cells were plated at 100 cells/cm2 in triplicate wells on 12-well tissue culture 

plates in CCM as described above. Cells were washed with PBS, fixed in 500µL of 

DNA quantification buffer at 24-hour intervals for 10 days, and quantified by 

fluorescence DNA incorporation assay as previously described (Krause et al., 2011). 

After application of DNA quantification buffer, cells were frozen and stored at -20°C 

until assay completion. After thawing to room temperature, cell monolayers were 

disassociated and DNA released from them by adding 1mg/mL collagenase (Sigma), 

1U/mL HindIII (Invitrogen), and 1U/mL EcoRI (Invitrogen) for incubation at 37°C for 

16 hours. The following day, cell suspensions were transferred to 1.5mL tubes and Sytox 

Orange (Life Technologies) was added in a 1000-fold dilution. Cell suspensions were 

centrifuged at 15,000xG for 20 minutes and supernatant added to opaque 96-well plates 
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in triplicate to determine fluorescence (Krause et al., 2011). Individual cell numbers 

were determined by referencing a linear standard curve consisting of pre-determined 

numbers of cMSCs. 

Proliferation Assay- Long-term Proliferation  

To compare the long-term proliferation of cMSCs over multiple passages, cells 

were plated in triplicate at 100 cells/cm2 on 55cm2 dishes and cultured in CCM with 

media exchange every other day. After five days, cells were trypsinized, manually 

counted, and re-plated at 100 cells/cm2. This process was repeated for a total of five cell 

passages (25 cumulative days in culture). At each passage, cell yield per plate was 

determined using a hemocytometer and trypan blue exclusion (n=3 plates/cell line) and 

data reported as the mean population doubling number for each cell preparation. 

Population doubling was determined as previously described by Greenwood et al. as 

follows: population doubling (PD) is equal to the log of the ratio of the final cell count 

(N) to the starting cell count (X0), divided by the log of 2; that is PD= [log(N ÷ X0)] ÷ 

log2 (Greenwood et al., 2004). 

Adipogenesis 

Canine MSCs were plated in CCM at 2x104 cells/cm2 in 12-well plates (n=4 

wells/condition). The following day, cells were treated with CCM or modified 

adipogenic medium developed by making slight modifications to existing cMSC 

literature (Al-Nbaheen et al., 2012; Csaki et al., 2007; Kisiel et al., 2012; Neupane et al., 

2008; Reger et al., 2008; Schwarz et al., 2012; Sekiya et al., 2002). Adipogenic medium 

consisted of α-MEM containing 1nM dexamethasone (Sigma), 5mM rosiglitazone 
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(Sigma), 50mM pantothenate (Enzo Life Sciences, Farmingdale, NY), 10mM insulin 

(Sigma), 30mM biotin (Enzo), 50mM isobutylmethylxanthine (Sigma), and 10% serum 

[5% FBS, 5% rabbit serum (Atlanta Biological)]. Media were exchanged twice weekly. 

After 21 days, cells were washed with PBS and fixed in 10% neutral buffered formalin 

prior to staining in 0.5% Oil Red O (Sigma) to document lipid vacuole formation. Cells 

were photographed prior to extraction of Oil Red O stain for quantification as previously 

described (Sekiya et al., 2002). 

Short-term Assay of Osteogenesis - Alkaline Phosphatase (ALP) Activity 

Canine MSCs were plated in CCM at 5x103 cells/cm2 in 12-well plates (n=3 

wells/ condition). The following day (Day 1), cells were treated with control medium 

(CCM), or osteogenic basal medium optimized for the dog. Osteogenic basal medium 

(OBM) consisted of α-MEM, 5% FBS, 10µg/mL beta-glycerophosphate (βGP, Sigma), 

50mg/mL ascorbate-2-phosphate (Sigma), or OBM supplemented with 50 or 100-ng/mL 

of recombinant human bone morphogenic protein-2 (rhBMP-2; R&D Systems) as 

previously described (Krause et al., 2011; Volk et al., 2005). Media were exchanged on 

day four. At day seven, cells were washed twice with PBS and incubated with 500µL of 

4°C ALP activity buffer containing 1mM magnesium chloride (Sigma), 0.1% Triton-X 

(Sigma), and 100mM sodium chloride (Sigma) in PBS. 500µL of 4°C ALP substrate p-

nitrophenylphosphate (P-NPP, Thermo Fisher Scientific; West Palm Beach, FL) was 

added to each well to initiate the assay. Absorbance was determined for each well at 

405nm in one minute intervals for 20 minutes at 37°C using an automated plate reader 

(HT Synergy, BioTek, Winooski, VT) and Gen3Bio software. Kinetic ALP activity 
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curves were generated for each well and the ALP activity per well was calculated by 

determining the slope of each activity curve using a linear curve fit technique. ALP 

activity of each well was normalized to the number of cells in each well using the DNA 

quantification technique described above. 

Long-term Assay of Osteogenesis - Alizarin Red Stain (ARS) Mineralization 

 Detachment of high-density monolayers from the tissue culture surface of long-

term mineralization assays is a phenomenon that is not uncommon in cMSC 

mineralization assays (unpublished observations). This problem has been described in 

prior cMSC literature (Kadiyala et al., 1997; Volk et al., 2005; Volk et al., 2012). In 

order to prevent monolayer detachment, cMSCs were plated in CCM at 2x104 cells/cm2 

in 12-well plates (n=4 wells/condition). Prior to plating, the periphery of wells was 

mechanically scored using a sterile stone Dremel bit and associated hand chuck in order 

to create a circular etching around the margin of each well. Wells were coated with 

human fibroblast derived fibronectin (Sigma) at 5mg/mL in PBS for 30 minutes at 37°C. 

Excess fibronectin was removed and cells were seeded in each well. The following day, 

cells were treated with CCM, OBM, or OBM supplemented with 200ng/mL rhBMP-2. 

Media were exchanged twice weekly. After seven days, 1nM dexamethasone was added 

to OBM and OBM + BMP-2 wells, creating osteogenic differentiation media (ODM) to 

induce mineralization (Krause et al., 2008; Reger et al., 2008; Volk et al., 2005). At 21 

days, cells were washed with PBS and fixed in 500µL of 10% neutral buffered formalin 

prior to staining in 40nM alizarin red stain (ARS; Sigma) to visualize calcium deposition 

within osteogenic monolayers. Wells were photographed prior to extraction of ARS for 
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semi-quantification via spectrophotometry using an acetic acid extraction technique as 

previously described (Krause et al., 2011).   

Chondrogenesis 

Micromass cultures of cMSCs were generated using slight modifications to the  

previously described technique (Sekiya et al., 2002). Briefly, passage 2 cMSCs were 

washed in PBS, trypsinized, counted, and resuspended to 1x106 cells/mL in 

chondrogenic medium. Chondrogenic medium consisted of α-MEM supplemented with 

a 1:250 dilution of ITS+ culture supplement, 50µg/mL ascorbate-2-phosphate, 40µg/mL 

L-proline (Sigma), 100µg/mL sodium pyruvate (Sigma), 10-7M dexamethasone, 

10ng/mL recombinant human transforming growth factor-β3 (rhTGF-β3, R&D 

Systems), and 500ng/mL of rhBMP-2. Cells were pelleted in 15mL conical tubes (5x105 

cells/tube) by centrifugation at 500xG for 5 minutes (n=3 pellets/cell line). 

Chondrogenic medium was exchanged twice weekly. After 21 days, chondrogenic 

pellets were fixed in 10% neutral buffered formalin. Pellets were photographed and area 

(mm2) was determined using digital morphometry. Pellets were subsequently embedded 

in paraffin and sectioned for histologic evaluation using 1% toluidine blue/sodium borate 

(Sigma) stain. 

Immunohistochemistry 

Paraffin-embedded sections were deparaffinized in CitraSolv (Thermo Fisher 

Scientific) and rehydrated using a graded alcohol series. Antigen retrieval was 

performed with boiling citrate buffer and endogenous peroxidase activity was quenched 

by incubating sections in methanol containing 1% hydrogen peroxide for 15 minutes at 
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room temperature. Sections were then incubated with rabbit anti-collagen type II IgG 

(Abcam, Cambridge, MA; 10µg/ml in PBS containing 1% BSA) or rabbit IgG 

(Rockland, Limerick, PA) as a negative control for 16 hours at 4°C. Immunoreactive 

protein was visualized using the Vectastain ABC Kit (Vector Laboratories Inc., 

Burlingame, CA) according to kit instructions with 3,3′-diaminobenzidine 

tetrahydrochloride (Sigma) as the color substrate. Sections were lightly counterstained 

with Gill's hematoxylin, dehydrated, and coverslipped for photography (Gao et al., 2008; 

Spencer et al., 1999). 

Immunomodulation 

To assess macrophage-mediated immunomodulation, mouse macrophage cells 

(RAW 264.7 cell line, ATCC TIB-71) were seeded at 1x104 cells/cm2 in 12-well plates 

in CCM and allowed to attach overnight. After 24 hours (approximately 60% 

confluence), cMSCs were titrated in triplicate (1x103, 1x104, 2.5x104, and 5x104 

cells/well) to initiate a 24 hour co-culture (n=3 replicates/cMSC dosage). 

Lipopolysaccharide (E. coli 055:B5 strain, Sigma) was introduced to each well at 

0.5µg/mL to induce macrophage activation. Co-cultures were allowed to respond for 18 

hours, at which point conditioned media were collected and stored at -20°C. Upon 

evaluation of all 15 cMSC preparations, media were thawed on ice and analyzed for 

murine TNF-α and interleukin-6 (IL-6) protein concentrations via enzyme-linked 

immunosorbent assay (ELISA) according to manufacturer’s protocol (R&D).     
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Statistical Analysis 

Descriptive statistics were generated using GraphPad Prism 6.0 (GraphPad 

Software, La Jolla, CA) and were reported as mean ± standard deviation. Data were 

imported into a commercial statistical software program (SAS, version 9.4; SAS Institute 

Inc., Cary, NC, USA) for analysis. Repeated measures ANOVA was used to determine if 

each parameter differed significantly by tissue type and treatment group, as appropriate, 

with donor dog regarded as a random effect. The Tukey method was used to adjust for 

multiple pairwise comparisons. For all analyses, p-values < 0.05 were considered 

significant.  

RESULTS 

Results presented herein summarize data from five individual donors. Detailed 

descriptions for individual donors can be found in the APPENDIX. 

Cell Isolation and Colony Forming Unit (CFU) Potential  

Nucleated cells were successfully isolated from each donor and tissue sample. 

Synovium (46.6 x 103 ± 62.8 x 103 cells/gram of tissue) provided greater numbers of 

nucleated cells when compared to bone marrow (18.7 x 103 ± 28.1 x 103) and adipose 

tissue (12.9 x 103 ± 12.0 x 103), although these differences were not significantly 

different (p=0.2). In addition, there was no difference in the number of total nucleated 

cells isolated from bone marrow or adipose tissue (p=0.8) (Figure 3.1A. Table 3.1). 

After 7-14 days of culture, cMSCs were identified in primary expansion plates as  
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Table 3.1. Nucleated cell isolation and CFU potential of synovium, marrow, and 
adipose cMSCs. Synovium, marrow, and adipose tissues were obtained from five canine 
donors presenting for rupture of the cranial cruciate ligament. Cells were isolated using 
Ficoll™ centrifugation (marrow) or enzymatic digestion (synovium, adipose) and plated 
at clonal density. Tissue sample weights from all donor specimen collections are shown 
(mean ± SD) and nucleated cell number adjusted per gram of tissue of all cell 
preparations acquired (mean ± SD). Post isolation, CFU potential of primary cell 
populations for all 15 donors was performed. 1x103 total cells (synovium and adipose) or 
4.5x105 total cells (marrow) were seeded on 55 cm2 plates and incubated for 21 days. 
Plates were stained with 0.3% Crystal Violet and colony number (mean ± SD) and 
surface area (mean ± SD) was quantified for each plate.  
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Figure 3.1. Nucleated cell isolation and CFU potential of synovium, marrow, and 
adipose cMSCs. Synovium, marrow, and adipose tissues were obtained from five canine 
donors presenting for rupture of the cranial cruciate ligament. Cells were isolated using 
Ficoll™ centrifugation (marrow) or enzymatic digestion (synovium, adipose) and plated 
at clonal density. A) Initial nucleated cell yield for all 15 donors, normalized to tissue 
weight. B) Representative 10X objective phase contrast microscopy images seven days 
post isolation (Bar=100µm). C) CFU potential of primary cell populations for all 15 
donors. 1x103 total cells (synovium and adipose) or 4.5x105 total cells (marrow) were 
seeded on 55 cm2 plates and incubated for 21 days. Plates were stained with 0.3% 
Crystal Violet and colony counts were performed on each plate. CFU potential is defined 
as the number of colonies present divided by total number of seeded cells, expressed as a 
percentage of the total seeded cells. Data are reported as mean ± SD (n=3 plates/tissue). 
Letters a, b, and c denote significant differences between tissue sources of cMSCs 
(p<0.0001). D) Photographs of CFU plates from a single representative donor. For 
panels A and C, data are reported in descending order for each tissue.   
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plastic-adherent, spindle shaped cells (Figure 3.1B). All primary nucleated cell 

populations obtained from the 15-tissue samples exhibited some degree of CFU 

potential. Using repeated measures ANOVA, significant differences were observed in 

the CFU potential between the three tissues (p<0.0001), with synovium (6.48 ± 3.49%) 

and adipose tissue (2.63 ± 2.17%) exhibiting markedly higher CFU potential when 

compared to bone marrow (0.009 ± 0.01%). These CFU values are consistent with 

findings in human MSCs (Sakaguchi et al., 2005). Specifically, the CFU potential of 

synovium cMSCs was significantly greater than both adipose (p<0.001) and bone 

marrow (p<0.0001) derived cells; while CFU potential of adipose cMSCs was 

significantly greater than bone marrow derived cells (p<0.01) (Table 3.1, Figure 

3.1C,D). 

Cell Surface Expression 

Flow cytometry was used to characterize each preparation of cMSCs for cell 

surface markers (Figure 3.2, Table 3.2). All cMSC were negative for the leukocyte 

markers CD34 and CD45. Cells were consistently positive for CD9, CD44, and CD90. 

Interestingly, there was variable staining for CD105 (Endoglin), with synovium (46.16 ± 

21.78%) and adipose (59.84 ± 15.57%) cMSCs exhibiting higher percentage positive 

staining cells when compared to marrow cMSCs (17.12 ± 8.85%). Additionally, cMSCs 

were negative for STRO-1, despite confirming cross reactivity of the commercially 

available STRO-1 antibody on canine peripheral blood (data not shown). Histograms 

from a representative donor’s marrow-derived cMSCs are shown in Figure 3.2.   
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Figure 3.2. Flow cytometry analysis of synovium, marrow, and adipose cMSCs. A) 
Percentage positive cells reported as mean ± SD for synovium, marrow, and adipose 
cMSCs isolated from five canine donors. B) Representative histograms demonstrating 
staining of marrow cMSCs from a single donor in which grey shading denotes unstained 
control cells, black outline denotes secondary control staining, and blue outline denotes 
staining of interest.  
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Table 3.2. Flow cytometry analysis of synovium, marrow, and adipose cMSCs. 
Percentage positive cells reported as mean ± SD for synovium, marrow, and adipose 
cMSCs isolated from five canine donors. 
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Figure 3.3. Expression of plasticity-associated genes in synovium, marrow, and adipose 
cMSCs. Passage 2 cMSCs were qualitatively evaluated for the plasticity-associated 
genes NANOG, OCT4, and SOX.2 using RT-PCR. All 15 cMSC cell preparations were 
positive when assessed using RT-PCR. Representative images of NANOG (274bp), 
OCT4 (141bp), and SOX2 (142bp) gene expression from synovium, marrow, and 
adipose derived cMSCs of a single donor are shown. Canine GAPDH was used as a 
housekeeping gene.   
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Gene Expression 

Reverse-transcription PCR was used to evaluate all cell preparations for 

pluripotent associated transcription factors, NANOG, OCT4, and SOX2, as previously 

described (Neupane et al., 2008). All cMSCs displayed positive indication for plasticity 

associated gene expression and GAPDH control (Figure 3.3). 

Proliferation Assays  

Both short- and long-term proliferation assays were used to assess the 

proliferation characteristics of donor-matched cMSCs derived from synovium, marrow, 

and adipose tissues. In short-term proliferation assays, there were significant differences 

in proliferation between synovium, marrow, and adipose cMSCs (p<0.01). Consistent 

with findings in previously described literature (Sakaguchi et al., 2005), adipose and 

synovium cMSCs proliferated more rapidly than marrow cMSCs. A proliferation curve 

from a representative donor is shown in Figure 3.4A. Scatter plots reporting the number 

of recovered cells at day 5 and day 10 for all 15 cMSC isolates are shown in Figure 

3.4B. Using repeated measures ANOVA, adipose cMSC proliferation was significantly 

greater than marrow (p<0.01) and synovium (p<0.05). While synovium cMSCs tended 

to proliferate more rapidly than marrow cMSCs, values were not significantly different 

in the short-term proliferation assay (p=0.1). These results indicate that despite donor 

variation, tissue source of cMSCs affects short-term proliferation of cMSCs, with 

adipose cMSCs proliferating more rapidly than synovium or marrow cMSCs. These 

findings are consistent with publications in other species (Sekiya et al., 2002). 
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Figure 3.4. Short- and long-term proliferation of synovium, marrow, and adipose 
cMSCs. Passage 2 cMSCs were seeded at 100 cells/cm2 in CCM on 12-well plates (n=3 
wells/cell preparation) with media exchange every other day. Mean cell number was 
determined daily for 10 consecutive days using DNA quantification. A) Mean short-term 
proliferation of a representative donor, demonstrating higher proliferation rates of 
adipose and synovium cMSCs. B) Scatter-plot demonstrating the number of cMSCs for 
all 15 cell preparations at days 5 and 10. Each data point represents the cell number for 
an individual cMSC preparation (bar=mean cell yield across the five donors). Long-term 
proliferation was determined over a 5 passage, 25-day time course. Passage 2 cMSCs 
were seeded at 100 cells/cm2 in CCM on 55 cm2 plates (n=3 plates/cell 
preparation/passage) with media exchange every other day. At 5 day intervals, cells were 
washed, trypsinized, recovered, cell number determined using a hemocytometer, and re-
plated at 100 cells/cm2. Long-term proliferation rates were determined using the 
population doubling equation. C) Population doubling (mean ± SD) of a representative 
donor, demonstrating increased doubling rate of adipose and synovium cMSCs, 
particularly at passages 1-3. D) Population doubling scatter-plot for all 15 cMSC 
preparations at Passage 1 and 5. Each data point denote population-doubling rate for an 
individual cMSC preparation (bar=mean population doubling rate across the 5 donors). 
Note: for panels B and D, asterisks represent significant differences in the cell number: 
(***) p<0.001; (****) p<0.0001. Letters a, b, c denote significant differences between 
tissue sources (p<0.05).    
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In long-term assays, tissue source of cMSCs had a significant effect on the 

number of recovered cells over the five passage, 25-day time course (p<0.0001) (Figure 

3.4C,D). As previously reported in other species, population doubling decreased 

significantly with sequential passaging (p<0.0001). Results for a representative donor 

are shown in Figure 3.4C. The mean population doubling at Passage 1 and Passage 5 for 

all cMSC preparations are shown in Figure 3.4D. Using repeated measures ANOVA, 

population doubling of both adipose (p<0.0001) and synovium (p<0.0001) cMSCs was 

significantly greater than marrow cMSCs across all passages. Additionally, the 

population doubling of adipose and synovium cMSCs was significantly different 

(p=0.02). These results demonstrate the superior proliferation abilities of adipose and 

synovium cMSCs as well as the finite proliferation of cMSCs derived from all three 

tissues. 

Tri-lineage Differentiation- Adipogenesis  

Adipogenic potential was evaluated at 21 days by both visual assessment of lipid 

vacuole accumulation and quantification of Oil Red O staining. All cMSCs underwent 

varying degrees of adipogenesis, with increased vacuole formation and Oil Red O 

staining when compared to control (CCM) (Figure 3.5). Adipogenic differentiation of a 

representative donor is shown in Figure 3.5A,B. Morphologically, synovium and adipose 

cMSCs produced medium to large, grape-like vacuoles, whereas marrow cMSCs 

produced small, diffuse vacuoles. Oil Red O extraction for this individual donor 

confirms significant increases in lipid accumulation for all three tissues when compared 

to control (CCM) (p<0.005), with adipose cMSCs exhibiting significantly greater Oil  
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Figure 3.5. Adipogenesis of synovium, marrow, and adipose cMSCs. A) Passage 2 
cMSCs were cultured in quadruplicate wells in CCM or modified adipogenic media with 
media exchange twice weekly. At 21 days, cells were formalin fixed and evaluated for 
lipid accumulation with Oil Red O (bar=25µm). B) Oil Red O quantification (mean ± 
SD) for a representative donor. Asterisks (**) denote significantly different Oil Red O 
quantification between treatment conditions (p<0.01). C) Mean ± SD Oil Red O 
quantification for all 15 cMSC isolates. CCM values have been subtracted from 
adipogenic values to facilitate presentation of results. Data are reported in descending 
order for each tissue. For panels B and C, letters a and b denote significant differences 
between tissue sources of cMSCs (p<0.001).  
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Red O extraction as compared to synovium (p<0.05) or marrow derived (p<0.05) 

cMSCs.  

 Oil Red O extraction values for all 15 cMSC cell preparations are reported in 

Figure 3.5C. Using repeated measures ANOVA, there was a significant increase in Oil 

Red O extraction in cMSCs treated with adipogenic media as compared to control 

(p<0.0001, data not shown). In addition, there were significant differences in Oil Red O 

extraction based on tissue source of the cMSCs (p<0.001). Using the Tukey post-hoc 

test, adipose cMSCs had significantly greater Oil Red O extraction values across all 

donors when compared to bone marrow (p<0.01) and synovium (p<0.001) cMSCs; 

however, there was no difference in Oil Red O extraction between synovium and 

marrow cMSCs (p=0.1). These results indicate that while synovium, marrow, and 

adipose cMSCs are capable of undergoing adipogenesis, adipose cMSCs are superior in 

their adipogenic ability. 

Tri-lineage Differentiation- Osteogenesis 

Two assays were utilized to evaluate the osteogenic potential of donor-matched 

cMSCs. The ALP activity assay was used to assess early commitment to osteogenic 

differentiation after seven days while the Alizarin Red Stain (ARS) mineralization assay 

was used to assess mineralizing osteogenesis at 21 days.  

ALP Activity Assay  

In contrast to MSCs derived from other species, it has previously been reported 

that cMSCs require osteogenic medium supplemented with exogenous BMP-2 in order 

to exhibit robust ALP activity (Volk et al., 2005; Volk et al., 2012). To confirm this 
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finding, we performed ALP activity assays on all 15 cMSC isolates after initiation of 

osteogenesis with OBM or OBM containing 50 or 100ng/mL rhBMP-2. In support of 

prior publications, there were marked differences in ALP activity in response to rhBMP-

2. An ALP assay from a representative donor (marrow cMSCs) is shown in Figure 3.6A. 

Over the 20-minute kinetic assay, we were unable to detect ALP activity in cMSCs 

treated with CCM or OBM; however, OBM containing rhBMP-2 induced a dose-

dependent increase in ALP activity. The slope of each ALP activity assay was 

determined and normalized to a per cell basis using DNA quantification. The ALP 

activity per cell for synovium, marrow, and adipose cMSCs from a representative donor 

is provided in Figure 3.6B. There was no significant difference in ALP activity when 

synovium, marrow, and adipose cMSCs were treated with OBM (p=0.999), a medium 

known to induce robust ALP activity in human MSCs. In the presence of OBM 

containing rhBMP-2, there was a dose-dependent increase in ALP activity for synovium, 

marrow, and adipose cMSCs (OBM+50ng/mL rhBMP-2, p<0.001; OBM+100ng/mL 

rhBMP02, p<0.0001). Furthermore, there were marked differences in the response to 

rhBMP-2 based on the tissue source of cMSCs. Synovium (p<0.001) and marrow 

(p<0.001) cMSCs exhibited significantly greater ALP activity in response to OBM + 

rhBMP-2 as compared to adipose cMSCs.   

 ALP activity values for all 15 cMSC lines are shown in Figure 3.6C. Using 

repeated measures analysis of variance (ANOVA), there were significant differences in 

ALP activity based on osteogenic media condition (p<0.0001) as well as the cMSC 

tissue source (p<0.01). There was no difference in ALP activity between cMSCs  
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Figure 3.6. Short-term osteogenesis of synovium, marrow, and adipose cMSCs. Short-
term osteogenesis was determined using the ALP assay. Passage 2 cMSCs were cultured 
in CCM, OBM, or OBM + rhBMP-2 for 7 days and evaluated for the ability to convert 
the colorless substrate PNPP to colorimetric PNP over time. A) ALP activity was 
determined by spectrophotometer (absorbance 405nM) over a 20-minute time course. 
Kinetic ALP activity results for a single cMSC preparation from a representative donor 
are shown. B) ALP activity normalized to cell number by DNA quantification for 
synovium, marrow, and adipose cMSCs from a representative donor are shown, 
demonstrating the minimal response of adipose cMSCs to OBM. C) Scatter plots 
demonstrating ALP activity for all 15 cMSC preparations organized by tissue and media 
condition. Each data point represents the ALP activity per cell for an individual cMSC 
preparation and a given media condition (bar=mean across the 5 donors). For panels B 
and C, asterisks denote significant differences between treatment groups; (*) denotes 
p<0.05, (**) denotes p<0.01, (***) denotes p<0.001, (****) denotes p<0.0001. The 
letters a and b denote significant differences between tissue sources of cMSCs (p<0.01).  
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cultured in CCM or OBM (data not shown, p=0.999). ALP activity was significantly 

higher for cMSCs treated with OBM+50ng/mL rhBMP-2 (p<0.001) and 

OBM+100ng/mL rhBMP-2 (p<0.0001) when compared to CCM or OBM. Additionally, 

cMSCs treated with OBM+100ng/mL BMP-2 exhibited significantly higher ALP 

activity as compared to cMSCs treated with OBM+50ng/mL rhBMP-2 (p<0.001). When 

considering the cMSC tissue source, marrow-derived cMSCs exhibited significantly 

greater ALP activity when compared to adipose cMSCs (p<0.001) and synovium cMSCs 

(p<0.05), while no significant difference in ALP activity was observed between 

synovium and adipose cMSCs (p=0.1). Collectively, these data clearly demonstrate that 

cMSCs require exogenous BMP-2 to exhibit detectible ALP activity, and that rhBMP-2 

supplementation drives ALP activity in a dose-dependent manner. Moreover, while 

synovium and marrow cMSCs from individual donors respond robustly to OBM + BMP-

2, adipose derived cMSCs from the same donors exhibit significantly reduced short-term 

osteogenic differentiation as assessed by the ALP activity assay. 

Alizarin Red Stain (ARS) Mineralization Assay  

Long-term, biomineralizing osteogenesis was evaluated at 21 days by both visual 

assessment of calcium accumulation within monolayers and quantification of ARS 

extraction. All cMSCs underwent varying degrees of osteogenesis as assessed by ARS 

binding (Figure 3.7). The ARS results for a representative donor are shown in Figure 

3.7A,B. While ARS did not stain control wells (CCM), or in wells treated with ODM 

lacking BMP-2 (not shown), ARS accumulation was robust in synovium, marrow, and 

adipose cMSCs treated with ODM + 200ng/mL rhBMP-2. Quantification of ARS   
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Figure 3.7. Long-term osteogenesis of synovium, marrow, and adipose cMSCs. Passage 
2 cMSCs were cultured in triplicate wells in CCM or ODM with media exchange twice 
weekly. A) After 21 days of culture in CCM (left column) or ODM + 200ng/mL of 
rhBMP-2 (middle and right columns) monolayers were fixed in 10% formalin and 
stained with ARS. Plates were photographed (left and middle columns) and imaged with 
10X objective light microscopy (right column) to document ARS accumulation 
(bar=125µm). B) ARS extraction (mean ± SD) for a representative donor. Asterisks 
(****) denote significant differences between treatment groups (p<0.0001). C) Mean ± 
SD ARS extraction values for all 15 cMSC preparations. CCM values have been 
subtracted from osteogenic values to facilitate presentation of results. Data are reported 
in descending order for each tissue. For panels B and C, letters a and b denote significant 
differences between tissue sources of cMSCs, if present (p<0.0001).    
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extraction for the donor in panel A demonstrates a marked increase in ARS for all three 

tissues when compared to control (CCM) (p<0.0001), with synovium (p<0.0001) and 

adipose (p<0.0001) cMSCs exhibiting significantly greater ARS extraction as compared 

to marrow cMSCs. ARS extraction values for all 15 cMSC cell lines are reported in 

Figure 3.7C. Using repeated measures ANOVA, there was a significant increase in ARS 

extraction in cMSCs treated with ODM + 200ng/mL rhBMP-2 as compared to control 

(data not shown, p<0.0001). However, in contrast to the ALP activity assay there was no 

significant difference in ARS extraction based on tissue source of the cMSCs (p=0.5). 

These results suggest that while adipose cMSCs may exhibit reduced osteogenic 

differentiation in the short term ALP activity assay, all tissue sources of cMSCs 

underwent osteogenesis when assessed using a long-term mineralization assay. 

Tri-lineage Differentiation- Chondrogenesis 

The classic micromass culture system was used to evaluate the chondrogenic 

potential of donor-matched cMSCs derived from synovium, marrow, and adipose tissues 

(Sekiya et al., 2002). All cMSCs underwent chondrogenic differentiation and increased 

in size over 21 days. Chondrogenesis was assessed using digital morphometry to 

quantify pellet size and histology to assess proteoglycan (toluidine blue) and collagen 

type II (immunohistochemistry) accumulation. Results from a representative donor are 

shown in Figure 3.8A,B. Synovium (p<0.0001) and adipose (p<0.001) cMSCs produced 

larger chondrogenic pellets as compared to marrow cMSCs. For this donor, adipose 

pellets were significantly larger than synovium pellets (p<0.05). While marrow cMSCs 

were smaller in size, they consistently displayed a deeper and more uniform staining for   
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Figure 3.8. Chondrogenesis of synovium, marrow, and adipose cMSCs. Passage 2 
cMSCs were evaluated for chondrogenesis using the micromass pellet technique. 5x107 
cells from each cMSC preparation were pelleted in triplicate and incubated for 21 days 
in chondrogenic medium with media exchange twice weekly. A) Pellets were 
photographed (gross images, bar=300µm), formalin fixed, and sectioned for histology. 
Pellets were positive for proteoglycan (toluidine blue) and collagen type II (10X 
objective, bar=150µm), although the intensity of staining varied across donor and tissue 
source of cMSC. B) Pellet morphometry for a representative donor (mean ± SD). C) 
Mean ± SD pellet area (mm2) of chondrogenic pellets for all 15 cMSC preparations. 
Data are reported in descending order for each tissue. For panels B and C, letters a, b, 
and c denote significant differences between tissue source of cMSCs (p<0.01).  
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toluidine blue and collagen Type II (Figure 3.8A, middle row). Although adipose cMSCs 

tended to produce the largest chondrogenic pellets, toluidine blue and collagen type II 

immunohistochemistry was less uniform, with much of the periphery of the structures 

devoid of toluidine blue stain or collagen type II signal.   

Digital morphometric results for all 15 cMSC isolates are provided in Figure 

3.8C. Using repeated measures ANOVA, there was a significant difference in 

chondrogenic pellet size based on the cMSC tissue of origin (p<0.01). Both adipose 

(p<0.001) and synovium (p<0.01) cMSC chondrogenic pellets were significantly larger 

than marrow cMSC pellets. There was no significant difference in pellet size when 

comparing synovium or adipose chondrogenic cMSCs (p=0.1). Collectively, the results 

suggest that synovium and marrow cMSCs may generate superior chondrogenic pellets 

when employing the micromass system. Subjectively assessing toluidine blue and 

collagen type II stain accumulation, marrow cMSC chondrogenic pellets exhibited an 

increased staining compared to synovium and adipose derived cMSC chondrogenic 

pellets. These findings suggest higher levels of proteoglycan and collagen type II for 

marrow cMSCs, although these pellets were significantly smaller than those generated 

from synovium or adipose cMSCs. However, when assessed based on pellet size, 

adipose and synovium cMSCs generated the largest chondrogenic structures.   

Immunomodulation  

 While the dog has been used to study graft-vs-host disease (Prentice et al., 1984; 

Socie and Blazar, 2009; Storb et al., 1970), to the authors’ knowledge, the ability of 

cMSCs to modulate inflammation in vitro has yet to be examined. For this reason, we 



 

 92 

established macrophage and cMSC co-culture experiments in which a murine 

macrophage cell line (RAW 264.7 cell line) was cultured alone or in combination with 

cMSCs (1 x 103 to 50 x 103 cells/well). Cultures were stimulated with LPS to stimulate 

toll-like receptors on the macrophages and thereby initiate an inflammatory response. 

Levels of secreted murine TNF-α and IL-6 were then assayed in conditioned media to 

measure inflammatory responses by the RAW cells and also assess whether cMSCs 

could affect the production of these two cytokines. The concentration of TNF-α detected 

in a representative co-culture experiment is shown in Figure 3.9A,B. As has been 

described in other species (Chen et al., 2012; Choi et al., 2011; Oh et al., 2012), cMSC 

co-culture resulted in a dose-dependent decrease in the concentration of murine TNF-α 

detected in conditioned media, suggesting that cMSCs have the ability to modulate the 

expression of murine TNF-α. In order to make direct comparisons across all 15 cMSC 

preparations, the measured concentrations of TNF-α were normalized to the positive 

control (murine cells alone stimulated with LPS) for each assay and reported as the 

percentage TNF-α relative to control (Figure 3.9B).   

The relative concentrations of TNF-α for all 15 cMSC co-culture experiments are 

shown in Figure 3.9C. Using repeated measures ANOVA, there were significant 

differences in TNF-α based on the number of cMSCs present within the co-cultures 

(p<0.0001), whereas the tissue source of cMSCs had no effect on TNF-α (p<0.5). Using 

the Tukey method, TNF-α concentrations were significantly decreased in co-cultures 

containing 50 x 103 cells (p<0.0001) and 25 x 103 cells (p<0.01) when compared to co-

cultures containing 1 x 103 cells/well. These results suggest that cMSCs are capable of  
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Figure 3.9. Immunomodulation of murine TNF-α by synovium, marrow, and adipose 
cMSCs. Passage 2 cMSCs (1x103–50x103) were co-cultured with 1x104 murine 
macrophage cells in 12 well plates in CCM (n=3 wells/condition). After 24hrs, LPS 
(0.5µg/mL) was added to co-cultures to activate macrophages and to assess cMSCs 
immunomodulation. After 18hrs, media were collected and ELISA performed to 
determine the concentration of secreted murine TNF-α. A) Representative murine TNF-
α concentrations (mean ± SD) for an individual donor. RAW + LPS denotes TNF-α 
concentration from murine macrophages (RAW cells) in the absence of cMSCs (positive 
control). B) Data from panel A were transformed to reflect the percentage change in 
TNF-α relative to the RAW + LPS positive control in preparation for comparative 
analysis across all 15 cMSC preparations and are reported as mean ± SD. C) Scatter 
plots demonstrating the percentage change of TNF-α concentration relative to positive 
control for all 15 cMSC preparations, organized by tissue and number of cMSCs present 
within co-cultures. Each data point represents the relative murine TNF-α for an 
individual cell preparation and “dose” of cMSC (bar=mean across the 5 donors). For all 
three tissues, TNF-α concentrations decreased in response to increasing numbers of co-
cultured cMSCs. Marrow-derived cMSCs had the largest effect on TNF-α concentration, 
suggesting that marrow-derived cMSCs had the largest immunomodulatory effect on 
TNF-α in this in vitro co-culture system; however, differences between tissue source of 
cMSCs was not significant (p=0.5). Asterisks denote significant differences between 
numbers of co-cultured cMSCs: (*) p<0.05, (***) p<0.001, (****) p<0.0001.  
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Figure 3.10. Immunomodulation of murine IL-6 by synovium, marrow, and adipose 
cMSCs. Passage 2 cMSCs (1x103–50x103) were co-cultured with 1x104 murine 
macrophage cells in in CCM (n=3 wells/condition). After 24hrs, LPS (0.5µg/mL) was 
added to co-cultures to activate macrophages and to assess cMSCs immunomodulation. 
After 18hrs in LPS stimulated co-culture, media were collected and ELISA performed to 
determine the concentration of secreted murine IL-6. A) Representative murine IL-6 
concentrations (mean ± SD) for an individual donor. RAW + LPS denotes IL-6 
concentration from murine macrophages (RAW cells) in the absence of cMSCs (positive 
control). B) Data from panel A were transformed to reflect the percentage change in IL-6 
relative to the RAW + LPS positive control in preparation for comparative analysis 
across all 15 cMSC preparations and are reported as mean ± SD. C) Scatter plots 
demonstrating the percentage change in IL-6 concentration relative to positive control 
for all 15 cMSC preparations, organized by tissue an number of cMSCs present within 
co-cultures. Each data point represents the relative murine IL-6 for an individual cell 
preparation and “dose” of cMSCs (bar=mean across the 5 donors). For all three tissues, 
IL-6 concentrations significantly increased in response to increasing number of co-
cultured cMSCs. While cMSCs resulted in a dose-dependent increase in measured 
murine IL-6, adipose cMSCs had the largest effect. Asterisks denote significant 
differences between numbers of co-cultured cMSCs: (**) p<0.01, (***) p<0.001. Letters 
a and b denote significant differences in IL-6 concentrations (p<0.05).   
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modulating macrophage-mediated inflammation in the described in vitro co-culture 

system. Furthermore, it appears the cMSCs obtained from synovium, marrow, and 

adipose tissues are able to modulate murine TNF-α levels. Interestingly, we also assayed 

co-culture conditioned media for murine IL-6 (Figure 3.10). In contrast to TNF-α results, 

co-culture of cMSCs with murine macrophages activated with LPS resulted in an 

increase in the detected concentration of murine IL-6, a finding that has yet to be 

reported in other species. As shown in Figure 3.10C, co-cultures containing adipose 

derived cMSCs contained significantly higher levels of IL-6 when compared to the other 

tissue types (p<0.001). Collectively, these results indicate that cMSCs are indeed 

capable of modulating an LPS-mediated inflammatory response in the in vitro setting, 

and that when co-cultured with cMSC, murine macrophages may differentially modulate 

specific inflammatory cytokines.  

 

DISCUSSION  

While a modest number of studies have described the isolation and multi-lineage 

differentiation of canine MSCs derived from various mesenchymal tissues, selecting the 

ideal MSC tissue source for specific translational studies remains a challenge due to 

donor variation, small sampling size, tissue comparison discrepancies, differences in cell 

isolation and culture techniques, and diverse tri-lineage differentiation protocols. 

Existing canine studies often utilize differentiation protocols developed for human 

MSCs, despite evidence that human MSC protocols may not be completely effective for 

differentiation of canine MSCs (Kisiel et al., 2012; Volk et al., 2005). Canine MSCs 
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appear to require rhBMP-2 supplementation for consistent osteogenic differentiation 

(Volk et al., 2005; Volk et al., 2012); in addition, optimization of lineage specific media 

including pantothenate, biotin, rosiglitazone, and insulin are needed for consistent 

adipogenic differentiation (Al-Nbaheen et al., 2012; Csaki et al., 2007; Kisiel et al., 

2012; Neupane et al., 2008; Park et al., 2012; Schwarz et al., 2012; Volk et al., 2012). 

Additionally, the immunomodulatory effects of MSCs have received much recent 

attention in human, murine, and equine MSCs (Carrade et al., 2012; English, 2012; Le 

Blanc, 2003). To the authors’ knowledge, immunomodulatory experiments have not 

been included in prior donor-matched canine MSC characterization studies.  

Given the unique properties of cMSCs, the objective of this study was to 

comprehensively characterize canine MSCs isolated from synovium, bone marrow, and 

adipose tissue using a donor-matched study design and assays optimized for the canine 

species. We hypothesized that given the differences among donor and tissue source, 

significant differences would exist in the properties of these cells. Canine MSCs were 

successfully isolated from all donor tissues. While the resulting 15 cMSC preparations 

met established criteria for MSCs, there were significant differences in isolation 

numbers, CFU potential, proliferation rates, and tri-lineage differentiation. Therefore, we 

were unable to reject our hypothesis. 

MSCs were first isolated from bone marrow and adipose tissue (Friedenstein et 

al., 1970; Zuk et al., 2002). It was subsequently discovered that MSCs are present in 

many adult mesenchymal tissues such as: synovium, periosteum, muscle, and dental 

pulp (Kisiel et al., 2012; Pierdomenico et al., 2005). We selected synovium, bone 
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marrow, and adipose tissue for extensive characterization because of the strong clinical 

interest, the likely use of these tissues in translational canine studies, the ability to 

acquire these tissues using minimally invasive techniques such as bone marrow 

aspiration or arthroscopy, and the ability of these tissues to produce robust numbers of 

MSCs.   

The canine MSCs isolated from five adult dogs in this study were spindle-

shaped, adherent to tissue culture plastic, exhibited positive plasticity-associated 

markers, and demonstrated CFU capability. Digests of synovium and subsynovial tissues 

produced the highest number nucleated cells per gram of tissue. Furthermore, nucleated 

cells isolated from synovial digests exhibited a significantly higher CFU efficiency 

(~6.5%) as compared to adipose tissue digests (~2.6%). These results indicate that 

synovium is a potentially suitable alternative to marrow or adipose tissue and, consistent 

with reports in humans, synovial tissue contains high numbers of MSCs (Fan et al., 

2009; Mochizuki et al., 2006; Sakaguchi et al., 2005). Although bone marrow aspirates 

produced a large number of nucleated cells, the CFU efficiency (~0.01%) of bone 

marrow was approximately 100-fold less than synovium or adipose tissue, a finding that 

is well described for human bone marrow MSCs.  

Canine MSCs were characterized for surface epitopes using flow cytometry. As 

has been described in other species, canine MSCs were consistently CD34-, CD45-, 

CD9+, CD44+, and CD90+. Whereas all cell preparations were strongly positive for CD9, 

CD44, and CD90, the frequency of CD105 (Endoglin) staining varied dramatically. 

CD105 values for our five canine donors ranged from 16-75% for synovium, 3-25% for 



 

 98 

bone marrow, and 48-89% for adipose tissues. The diverse CD105 results obtained on 

our passage 2 cMSCs indicates that subsequent to isolation and expansion, the tissue of 

origin affects the epitope profile of canine MSCs (Figure 3.2, Table 3.2). It is also 

possible that the reduced CD105 staining of our canine MSCs may represent incomplete 

antibody binding to the canine CD105 epitope, as commercially available antibodies 

designed for other species were used to evaluate our canine cells. Lastly, the cMSCs 

examined in this study were negative for STRO-1, regardless of cell source. While 

STRO-1 has been linked to colony-forming osteogenic progenitor cells from humans 

(Gronthos et al., 1994; Gronthos et al., 1999), STRO-1 may be rapidly lost in culture 

(Stewart et al., 1999). Additional studies report variable STRO-1 staining of human 

marrow and adipose MSCs (Colter et al., 2001; Gronthos et al., 2001; Hung et al., 2002; 

Zuk et al., 2002), and negative STRO-1 staining of human synovial MSCs (Sakaguchi et 

al., 2005). The STRO-1 antibody used in the present study did not label any of the 15 

cMSC preparations, despite staining canine peripheral blood mononuclear cells (data not 

shown). Our ability to perform more extensive epitope characterization via flow 

cytometry was limited by access to commercially available antibodies capable of cross-

reacting with canine isoforms of additional cell surface epitopes. The flow cytometry 

reagents and methods described in the present report should prove useful to investigators 

attempting to characterize cMSCs via flow cytometry.  

The ability of MSCs to self-renew and rapidly expand in culture is of 

considerable importance when selecting a potential tissue source for MSC translational 

studies. The present study assessed short and long-term proliferation using a donor-
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matched study design. For all five canine donors, adipose and synovium proliferated 

more rapidly when compared to marrow derived MSCs. In our short-term assay, we 

utilized DNA quantification to assess proliferation of cMSCs plated at clonal density of 

100 cells/cm2 (350 cells/3.5 cm2 well) over a 10-day time course. Using this method, 

adipose cMSCs proliferated more rapidly than synovium, and synovium more rapidly 

than marrow MSCs, although the latter finding was not statistically significant. 

Importantly, regardless of their source, substantial cMSCs proliferation is observed from 

day five to day ten, consistent with the lag and logarithmic phases of proliferation 

reported in human MSCs (Sakaguchi et al., 2005). In our long-term passaging assay, 

cMSCs were plated at 100 cells/cm2 (15,000 cells/150 cm2 plate) and assessed by 

manual counting over five sequential passages to simulate large scale expansion. 

Population doubling of synovium, marrow, and adipose cMSCs were significantly 

different. Population doubling of all cell preparations decreased with subsequent 

passages. Adipose and synovium cMSCs exhibited significantly higher population 

doubling rates as compared to marrow cMSCs. Additionally, the long-term passaging 

assay confirmed the finite capacity of cMSCs to self-renew, a known property of MSCs 

in other species. The discrepancy in proliferation between the short term proliferation 

assay (day 0-10) and our long-term passaging assay (day 0-5) can be contributed to the 

difference in methods utilized for quantifying MSCs and the total number of cells seeded 

in each assay (350 total cells assayed by fluorometric DNA quantification versus 5,500 

total cells assayed over time via manual counting). Collectively, our results indicate that 
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if rapid proliferation of cMSCs is needed for a specific translational application in the 

dog, adipose and synovium should be considered as the source of MSCs.  

An important criterion of MSCs is the ability to differentiate from a progenitor 

state to a cell with a specific mesenchymal lineage. Our goal was to describe optimized 

differentiation assays relying heavily on existing canine MSC differentiation literature 

(Neupane et al., 2008; Volk et al., 2005; Volk et al., 2012) and to evaluate tri-lineage 

differentiation of cMSCs using our donor matched study design and multiple canine 

donors. This optimization involved development of specific plating densities, FBS ratios, 

application of matrix substrates, mechanical scoring of well, and development of ideal 

differentiation media “recipes” to improve the differentiation of cMSCs. We believe the 

methods and results reported herein will be useful for investigators unfamiliar with 

MSCs, as well as for investigators relying heavily on in vitro differentiation results to 

select a source of cMSCs for translational studies.  

We examined the adipo-, osteo-, and chondro-genic differentiation capabilities of 

15 preparations of canine MSCs. Adipogenic differentiation was confirmed in all cell 

preparations using the optimized adipogenic protocol. Importantly, the morphology and 

size of lipid vacuoles produced after adipogenic differentiation varied based on the tissue 

source of cMSCs. Adipose and synovium cMSCs produced classic, large, grape-like 

lipid clusters compared to the small, diffuse vacuoles produced by bone marrow derived 

cMSCs. These morphologic findings were confirmed by quantification of Oil Red O 

staining. The superior adipogenic differentiation of adipose-derived MSCs is not 

surprising due to the pericellular cues that are likely provided to adipose cMSCs in their 
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native environment. Interestingly, synovium performed as an intermediate in adipogenic 

assays, forming large grape-like lipid vacuoles, but forming them with less frequency 

when compared to adipose tissue. Additional mechanistic studies evaluating the PPARγ 

signaling axis would be necessary to further assess our findings.   

 Our lab is specifically interested in use of cMSCs in translational bone healing 

studies. In order to determine if an ideal tissue source exists for these studies, we 

compared the osteogenic differentiation of cMSCs isolated from synovium, marrow, and 

adipose tissues using a short-term kinetic ALP activity assay and the long-term 

monolayer ARS mineralization assay. While quantifiable PCR and microarrays are 

considered by some to be more modern methods of assessing osteogenic differentiation 

of MSCs, generating and validating canine PCR primers can be a challenge due to the 

fact that the sequence of many canine mRNA transcripts associated osteogenic 

differentiation are predicted sequences based on whole-genome sequencing. We selected 

the ALP activity assay because it is a kinetic assay requiring living cells to catabolize an 

ALP substrate. This assay has been shown to detect early osteogenic differentiation due 

to the fact that ALP is required to hydrolyze phosphate for eventual bone mineralization 

in the form of calcium phosphate deposition (Alves et al., 2011; Ashton et al., 1985; 

Brey et al., 2010) and it has been previously evaluated in the canine MSC literature 

(Volk et al., 2005; Volk et al., 2012). In 2005, Volk assessed the osteogenic 

differentiation of canine marrow MSCs and demonstrated that a combination of 

ascorbate-2-phosphate and rhBMP-2 were necessary to detect ALP activity in early 

osteogenic marrow-derived cMSC cultures (Volk et al., 2005). The results of the present 
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study evaluating 15 cell lines from three canine mesenchymal tissues confirm that 

rhBMP-2 supplementation is necessary to detect ALP activity in early canine osteogenic 

cultures. One potential explanation for our findings and those of Volk is: species-specific 

differences in bone biology or the loss of BMP-2 expression after cMSC isolation and 

culture result in an absence of endogenous (cMSC derived) BMP-2 in canine osteogenic 

differentiation cultures.   

Early osteogenic differentiation as assessed by ALP activity was widely variable 

across the three tissue sources of cMSC. While none of the cMSC cell preparations 

displayed ALP activity in control (CCM) or OBM at seven days of culture, synovium 

and bone marrow cMSCs exhibited a strong response to rhBMP-2 when compared to 

adipose derived MSCs, with bone marrow consistently exhibiting the highest ALP 

activity within each donor. These findings are not surprising given that adipose MSCs 

were isolated from fat, and that signaling pathways such as PPARγ compete with 

osteogenic signaling pathways such as canonical Wnt during differentiation (Bennett et 

al., 2002; Farmer, 2005; Krause et al., 2010; Moldes et al., 2003; Takada et al., 2009a; 

Takada et al., 2009b). Interestingly, all three tissue sources of cMSCs produced calcium-

binding mineral in long-term monolayer cultures, although mineralization did not occur 

in cultures in which rhBMP-2 was not supplied (not shown). Using quantification of 

ARS, adipose and synovium cMSCs demonstrated higher ARS values in some donors, 

although these differences were not significant when evaluated collectively across all 

donors. Our long-term osteogenic results suggest that while adipose cMSCs appear to be 

refractory to early osteogenic differentiation (even in the presence of rhBMP-2), adipose 
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derived cMSCs are capable of transitioning to osteogenic cultures over time. 

Alternatively, adipose derived cMSCs may utilize alternative mineralization pathways in 

vitro, such as the pathways associated with dystrophic mineralization of vascular 

calcification (Doherty et al., 2003; Vattikuti and Towler, 2004). Thus, investigators 

considering adipose tissue as a source for cMSC osteogenic cells should closely consider 

both osteogenic induction media and number of days in culture to optimize osteogenic 

differentiation. The performance of synovium cMSCs in our osteogenic assays was not 

surprising given the prior synovium MSC literature (Innes et al., 2013; Sakaguchi et al., 

2005; Yokoyama et al., 2005). Synovium MSCs have been shown to exhibit robust ARS 

stain in long-term cultures (Sakaguchi et al., 2005), although to our knowledge early 

osteogenic differentiation of synovium MSCs has not been previously examined using 

the ALP activity assay.   

In contrast to the adipogenic and osteogenic differentiation assays, the well-

described serum-free micromass chondrogenesis technique did not require major 

adjustments for use with cMSCs. Using this technique, all fifteen cMSC preparations 

formed chondrogenic pellets. When assessing pellet size using morphometry, synovium 

and adipose cMSC produced larger pellets as compared to bone marrow, but 

demonstrated reduced staining for proteoglycan (toluidine blue) and collagen type II 

when assessed histologically. Despite their small size, bone marrow derived 

chondrogenic pellets were the only cell preparations to consistently have intense staining 

for proteoglycan (toluidine blue) and collagen type II (immunohistochemistry); however, 

one obvious limitation regarding the chondrogenic capacity of marrow cMSCs is the 
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reduced pellet size when compared to synovium and adipose cMSCs. Synovium 

provided intermediate chondrogenic results, with pellets considerably larger than those 

produced by marrow cMSCs containing toluidine blue and collagen type II staining 

slightly reduced as compared to marrow cMSCs. Additional work is necessary to 

optimize cMSC chondrogenesis to produce larger micromass pellets with high intensity 

staining for proteoglycans and collagen type II for canine translational cartilage repair 

studies.  

Many investigators now include immunomodulatory capacity as an inherent 

characteristic of MSCs, but this has not been substantially documented for cMSCs. 

Therefore, our goal was to determine whether cMSCs from various sources had the 

universal capacity to inhibit some key features of the innate immune response and to 

determine if the source of cMSCs affected this process using a simplified macrophage-

based assay.   

In the present report, we evaluated the ability of cMSCs to modulate secretion of 

two key inflammatory cytokines in an LPS-induced murine macrophage (RAW cell) co-

culture system. When LPS was added to RAW cells, there was a robust secretion of 

TNF-α that could be measured by ELISA. Inclusion of cMSCs resulted in a significant 

and dose-dependent decrease in the measured concentration of secreted murine TNF-α. 

Furthermore, this response was observed for all 15 cMSC cell preparations and the tissue 

source of cMSCs did not appear to affect the reduction of measured TNF-α.  

It has recently been suggested that MSCs are not constitutively 

immunosuppressive and require activation or licensing to initiate immunomodulatory 
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effects (English, 2012; English et al., 2007; Liotta et al., 2008). Our immunomodulation 

results portray that activation of specific toll-like receptors (TLRs) may license MSCs 

differently, with TLR3 activation driving anti-inflammatory properties, and TLR4 

activation leading to a pro-inflammatory response through IL-6, IL-8, or TGF-β 

production (English, 2012; Németh et al., 2008). TLRs have been implicated in this 

process, and LPS is a known ligand of TLR4. Although LPS has been shown to activate 

through ligand-receptor binding, recent studies depict non-canonical pathway signaling 

in which immune response is elicited without LPS-TLR4 binding (Kayagaki et al., 2013; 

Waterman et al., 2010). This differential licensing through canonical and non-canonical 

mechanisms may explain our IL-6 results, namely that inclusion of cMSCs in LPS-

stimulated co-cultures resulted in an increase in the measured concentration of murine 

IL-6. The rationale for increased production of IL-6 in response to MSCs exposed to 

inflammatory stimuli has been to initiate a pro-inflammatory pathogen clearance 

mechanism (Bouffi et al., 2010). This may occur through the NF-κβ pathway and PGE 

production (Choi et al., 2011; Németh et al., 2008) but further studies are needed to fully 

appreciate the primary signaling pathways.  

In conclusion, in this study we successfully isolated MSCs from canine 

synovium, bone marrow, and adipose tissues. While all cMSC preparations exhibited 

characteristics of MSCs using in vitro assays optimized for the canine species, both 

tissue of origin and donor affected cMSC performance. Synovium cMSCs exhibit robust 

short- and long-term osteogenic differentiation. Combining their ease of isolation, CFU 

potential, rapid proliferation, and presence within the intra-articular niche, synovium 
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MSCs appear to be an excellent choice for orthopedic translational cell-based studies. 

While marrow cMSCs have a lower CFU potential and proliferate more slowly, our 

findings indicate that marrow cMSCs are capable of marked short-term and long-term 

osteogenic differentiation and produce chondrogenic pellets that stain intensely for 

proteoglycan and collagen type II, making bone marrow an excellent source of cMSCs 

for orthopedic applications. Given the inability of adipose cMSCs to demonstrate 

detectible ALP activity even in the presence of substantial BMP-2 supplementation, 

adipose tissue may not be an ideal source for osteogenic cells if short-term cultures are 

required; however, adipose tissue produces large numbers of cMSCs with high CFU and 

proliferation potential. Moreover, adipose cMSCs produce calcium rich long-term 

monolayer osteogenic cultures, and thus may be suitable for long term culture of tissue 

engineering constructs. Interestingly, cMSCs isolated from synovium, marrow, and 

adipose tissue appear to modulate TNF-α levels in LPS-stimulated macrophage co-

culture assays, suggesting that all tissue sources may be useful in immunomodulatory 

translational studies. Our results provide insight into important similarities and 

differences between cMSCs and will prove useful for investigators considering these 

canine tissues for large animal translational studies.  



107 

CHAPTER IV 

COMPARISON OF CONVENTIONAL AND NOVEL FABRICATION 

METHODS FOR POLYETHYLENE GLYCOL DIACRYLATE (PEG-DA) 

HYDROGELS AS THREE-DIMENSIONAL (3D) SCAFFOLDS FOR 

CANINE ARTICULAR CARTILAGE TISSUE ENGINEERING 

SUMMARY 

Tissue engineering approaches using 3D scaffolds and progenitor cells, such as 

multipotent stromal cells (MSCs), represent a promising treatment for restoring the 

osteochondral interface in focal cartilage lesions. Synthetic hydrogel scaffolds 

constructed of poly(ethylene)glycol-diacrylate (PEG-DA) have been extensively 

investigated for numerous applications, including cartilage tissue engineering. In an 

effort to extend their properties, our collaborative group, led by Dr. Melissa Grunlan 

recently developed a method of fabricating PEG-DA hydrogels using solvent induced 

phase separation (SIPS) with a solvent-casted particulate-leaching system (SCPL), 

thereby creating a series of tunable interconnecting pores throughout the scaffold to 

improve opportunities for cell proliferation, migration, and tissue in-growth. The 

presence of pores within PEG-DA hydrogel scaffolds has the potential to confront 

several limitations of conventional fabrication methods. Addressing the inability of cells 

to migrate within the construct in addition allowing for host tissue to migrate into the 

scaffold. While this SIPS/SCPL-PEG-DA system holds much promise, the ability of 

SIPS/SCPL-PEG-DA hydrogels to serve as viable scaffolds for cells has yet to be 

examined. The objective of this study was to compare PEG-DA hydrogels fabricated 

with “conventional” photoinitiators, Igracure 651 or Igracure 2959, and the novel 
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SIPS/SCPL hydrogels as putative scaffolds for cell adhesion, survival, and proliferation 

in preparation for articular cartilage tissue engineering work. The secondary objective of 

this study was to evaluate the biocompatibility of PEG-DA hydrogel scaffolds in vivo. 

Due to our lab’s expertise and long-term goals, we utilized bone marrow cMSCs for in 

vitro studies. Using a 21-day time course, cell-scaffold co-cultures were assessed with 

live-dead staining, lactate dehydrogenase (LDH) cytotoxicity assay, proliferation, 

storage modulus, and SEM. Canine MSCs seeded on SIPS/SCPL-PEG-DA hydrogels 

exhibited significantly greater proliferation when compared to those photoencapsulated 

within conventional hydrogels. Cell attachment, spreading, and proliferation on 

SIPS/SCPL-PEG-DA were confirmed using SEM. Canine MSCs cultured on 

SIPS/SCPL-PEG-DA hydrogels exhibited minimal cytotoxicity when assessed by live-

dead staining, whereas those cultured within conventional hydrogels demonstrated 

substantial cytotoxicity. These findings were confirmed using the LDH assay. Lastly, 

using the rat subcutaneous and intra-articular implant models, SIPS/SCPL-PEG-DA 

hydrogels were biocompatible, as determined by an appropriate vascular, cellular, and 

fibrous tissue response 21 days post-implantation. In summary, this study demonstrates 

that the fabrication method of PEG-DA hydrogel scaffolds has important effects on 

cMSC survival and proliferation. PEG-DA hydrogels fabricated via SIPS/SCPL may be 

preferential to conventional PEG-DA hydrogels for articular cartilage tissue-engineering 

scaffold studies utilizing cMSCs.  
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INTRODUCTION 

Articular cartilage has poor intrinsic healing potential. Consequently, 

developmental and degenerative joint diseases in humans and veterinary species, such as 

OC and traumatic joint injuries, are chronic and progressive diseases. They are 

characterized by articular cartilage degradation, thinning, inflammation, and fibrosis. 

Regardless of the inciting cause (trauma, OC, genetics, cyclical fatigue over time, etc.), 

focal articular cartilage lesions predictably progress to widespread, generalized OA of 

the joint. The global economic impact of OA in humans has been estimated to be 60 

billion dollars per year (Buckwalter et al., 2004). In the United States alone, 

approximately 52.5 million adults are affected by OA and an estimated growth to 67 

million by 2030 is predicted (Barbour et al., 2013). In the domestic veterinary species, 

approximately 70% of canines over two years of age are also afflicted by OA. OA 

affects quality of life, economic productivity, and life expectancy in humans and 

domestic animals (Woolf and Pfleger, 2003; Ytrehus et al., 2007). Additionally, high OA 

prevalence in dogs places considerable strain on the medical system and financial burden 

on clients/owners without many viable treatment options.   

Traditional treatment of small, focal cartilage lesions are divided into two broad 

categories: medical management and surgical intervention. Medical management 

through use of NSAIDs or corticosteroids focuses on alleviation of pain and reduction of 

joint inflammation. Although effective, medical management typically requires life-long 

treatment (Moran et al., 2003). Long-term administration of medications such as 

NSAIDS and corticosteroids carries some risk of major complications due to significant 
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side effects. Additional medical management options can be explored for patients who 

fail to respond completely to oral medications; including direct injection of joint 

lubricants or anti-inflammatory agents, physical therapy, weight management, and non-

traditional treatments such as acupuncture (Adams et al., 1995; Brandt et al., 2000; 

Christensen et al., 2005; Katz et al., 2013; Takeda and Wessel, 1994).  

Due to the fact that medical management is not a curative treatment, surgical 

intervention often becomes necessary. The first line of defense for early, focal cartilage 

lesions and OA focus on minimally invasive surgical treatments such as arthroscopic 

surgical debridement, microfracture to induce fibrocartilage formation, OAT, and ACI. 

While these treatments are minimally invasive and provide short-term alleviation of 

pain, they may not provide the desired long-term resolution of symptoms and clinical 

signs. Thus, major surgical intervention becomes necessary. These treatments include 

partial or total joint replacement. Although joint replacement can be highly effective, it 

is costly and not without its own complications such as incomplete restoration of 

function, implant loosening, infection, luxation, or fracture (Clohisy et al., 2004; 

Ranawat, 1986).   

Translation of promising treatment strategies for articular cartilage injuries from 

rodent models to humans represents a significant hurdle for cell-based therapies. While a 

number of large animal species have been used to bridge the gap from rodents to humans 

(Hatsushika et al., 2014; Horie et al., 2009; Horie et al., 2012b; Kon et al., 2000; Murphy 

et al., 2003), the dog represents the most compelling model species for cell-based tissue 

engineering studies. A recent review highlights the advantages of using dogs and other 
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companion animals for translational cell-based clinical trials (Hoffman and Dow, 2016). 

From a biomechanical perspective, the canine skeleton undergoes loading in a manner 

that approximates that of the human skeleton (Bergmann et al., 1984; Liebschner, 2004). 

In addition, due to their response to learned behaviors such as treadmill exercise, dogs 

have been used to develop new therapies for cardiovascular and orthopedic diseases 

(Bockstahler et al., 2007; Kiviranta et al., 1988). For these reasons, canine models of 

osteoarthritis, anterior cruciate ligament repair, meniscal injury, and non-union fractures 

are well described (Arnoczky and Warren, 1983; Johnson et al., 1989; Liu et al., 2006; 

Nelson et al., 1988; Pond and Nuki, 1973; Shortkroff et al., 1996). For many of these 

reasons, the occurrence of adverse events in canine clinical trials appears to more 

reliably predict adverse events in humans. As such, performing clinical trials in dogs 

may allow investigators to more effectively identify and predict adverse events in 

humans.   

Due to the limitations of current treatment options and the increasing economic 

impact of OA in human and veterinary populations, development of new treatment 

strategies, focusing on tissue repair or replacement are necessary. One increasingly 

popular strategy to repair or replace injured tissues is the use of regenerative medicine, 

specifically tissue engineering. Tissue engineering utilizes a combination of cells, 

scaffolds, and biologically active factors in order to repair, restore, or replace injured 

tissues. While not a true tissue engineering treatment, one method currently in use in 

human and veterinary medicine involves the direct injection of autologous or allogeneic 

MSCs into the injured joint (Black et al., 2008; Black et al., 2007; Ferris et al., 2014; 
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Guercio et al., 2012; Wong et al., 2013). Although injected cells appear to provide relief 

of symptoms and clinical signs, these affects are likely transient due to the rapid 

clearance of MSCs from the site of injection. MSCs can be obtained from a variety of 

tissue types (Sakaguchi et al., 2005) and are capable of in vitro (and in some cases in 

vivo) differentiation into specialized cells in response to environmental cues. While 

these characteristics make MSCs an exemplary candidate for tissue engineering, the 

ideal delivery method to localize cells at the site of injury has yet to be determined. 

Recent studies have shown over 90% of MSCs injected at a site of injury are not present 

24 hours post application (Krause et al., 2010). Another experimental animal study 

showed that injected MSCs could not be detected at 7 days post injection in a meniscal 

injury model (Horie et al., 2012b) . Moreover, recent work has shown that joint fluid 

from dogs with OA induces substantial cytotoxicity to cMSCs (Kiefer et al., 2015). This 

study by Kiefer et al. certainly brings into question the efficacy of MSC injections and 

raises questions on the ethics of autologous MSC injections in the presence of limited 

evidence-based medicine (Jeffery and Granger, 2012; Prockop and Olson, 2007).  

Given the current limitations of direct injection of MSCs detailed above, a tissue 

engineering approach involving specific scaffolds for cell retention and tissue 

regeneration is a promising alternative for restoring the native osteocondral interface. 

The current clinical focus of cartilage tissue engineering is to develop methods with 

consistent regenerative potential, capable of forming hyaline cartilage that can be 

implemented using surgically feasible techniques and ultimately, minimally invasive 

methods of delivery.  
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Current articular cartilage tissue engineering methods employ 3D scaffolds as a 

means of delivering cells and biologic agents. While polymers such as collagen, alginate, 

and polyurethane have been used in articular cartilage tissue engineering studies, the 

most common component of such constructs is PEG. PEG is considered the “gold 

standard” of synthetic biopolymers and has been extensively investigated as a scaffold 

material for the regeneration of numerous types of tissues (Pasut, 2014). PEG based 

hydrogels have been shown to be hydrophilic, tissue compatible, and tunable to 

necessary specifications (Bailey et al., 2012; Bailey et al., 2013; Gacasan et al., 2016; 

Rafat et al., 2008; Wallace et al., 2001). In particular, PEG based hydrogels are 

especially popular because of their immunologically inert properties, preventing non-

specific protein adhesion that would induce immune and inflammatory responses (Bailey 

et al., 2012; Pasut, 2014). The ability of PEG based scaffolds to act as “biologic blank 

slates” enables targeted control of cellular response through the addition of specific 

cytokines and growth factors (Burdick et al., 2002; Lu and Anseth, 2000; Mason et al., 

2001; West and Hubbell, 1995). This ability to incorporate the chemical and physical 

cues necessary for tailored cell adhesion and differentiation may allow for the creation of 

tissue engineering therapies customized for an individual or injury. While these 

properties are advantageous, PEG based scaffolds are not without limitations such as 

poor media exchange, oxygen inhibition at the cell-macromer interface, free radical 

propagation, cross-linking networks resulting in shrinkage and incomplete double bond 

conversion, and others (Park et al., 2007). The potential consequences of the 

aforementioned fabrication limitations include the inability of cells to migrate with 
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hydrogel constructs, increased apoptosis, and reduction of host tissue integration. Thus, 

current PEG fabrication methods present obstacles for cell-based scaffold advancement 

in tissue-engineering strategies. Further confirming these obstacles, to date, articular 

cartilage tissue engineering studies employing PEG scaffolds have not proven effective 

for restoring the osteochondral interface. This is likely due to the inability to reproduce 

the structure, function, and biomechanical properties of natural tissue within the 

scaffold, and the inability of the scaffold to interface, or bond, with healthy host tissue 

(de Girolamo et al., 2015). 

In order to overcome the limitations of PEG-DA scaffolds fabricated through 

conventional methods, our collaborative group, led by Dr. Melissa Grunlan, developed a 

series of novel PEG hydrogel fabrication technique termed SIPS/SCPL (Bailey et al., 

2012; Gacasan et al., 2016). This method creates a series of interconnecting pores within 

the scaffold with the goal of enhancing cell attachment, proliferation, migration, and 

tissue ingrowth (Gacasan et al., 2016). In the present study we compared PEG-DA 

hydrogels fabricated with conventional methods to SIPS/SCPL-PEG-DA hydrogels as 

putative scaffolds for cMSCs tissue engineering constructs. Our null hypothesis is that 

fabrication method would have no effect on cell attachment, cytotoxicity, proliferation, 

or mechanical properties of cell-hydrogel constructs. Results detailed herein identify a 

synthetic hydrogel scaffold fabrication system that is compatible with cMSCs and is 

shown to integrate with surrounding tissue when implanted into a rat model. Our results 

provide insight into hydrogel fabrication techniques in combination with cMSCs, this 

work will prove useful for further articular cartilage tissue engineering strategies. 
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MATERIALS AND METHODS  

Tissue Collection and Cell Isolation  

Passage 1, bone marrow-derived cMSCs were thawed and expanded as 

previously described in Chapter III. The clinical portion of this study was performed 

under the supervision of the Texas A&M University IACUC and an AUP (2015-0072). 

Briefly, canine bone marrow was obtained via bone marrow aspirate of the proximal 

humerus using a 15 gauge Illinois biopsy needle while under general anesthesia. 

Nucleated cells were isolated from bone marrow using gradient centrifugation (Ficoll-

Paque Plus, GE Health Care Biosciences, Piscataway, NJ) using previously described 

techniques (Pittenger, 2008). Following centrifugation at 1800 x g for 30 minutes, 

mononuclear cells were removed, washed twice with 15mL of Hank’s Balanced Salt 

Solution (HBSS, Invitrogen, Carlsbad, CA), quantified, and assessed for viability using a 

hemocytometer and trypan blue exclusion. Nucleated marrow cells were plated at 30,000 

cells/cm2 in 150 mm diameter tissue culture dishes in CCM containing α-MEM, 100 

units/ml penicillin, 100 µg/ml streptomycin (Invitrogen), and 10% premium select fetal 

bovine serum (PS-FBS; Atlanta Biological, Inc., Flowery Branch, GA). Cells were 

incubated at 37°C and 5% humidified CO2 for 24 hours. Plates were washed with PBS to 

remove non-adherent cells followed by media exchange. This process was repeated daily 

for two additional days. Culture dishes were subsequently monitored for expansion of 

the primary cell population (Passage 0) with media exchange performed every other day. 

Upon reaching 70% confluence (5-12 days) cells were lifted with 0.5% trypsin/EDTA 

solution (Invitrogen) and re-seeded at 100 cells/cm2 for expansion of Passage 1 cells. 
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Media exchanged was performed every other day until 70% confluence was reached. 

Passage 1 cells were cryopreserved in α-MEM with 5% DMSO (Sigma-Aldrich, St. 

Louis, MO) and 30% FBS in preparation for subsequent experiments. For these assays, 

passage 1 cells were thawed, plated, and subsequently expanded as passage 2 cultures. 

Cells were confirmed as MSCs using the classification as described by Dominic et al. in 

2006 (Dominici et al., 2006). This included morphological assessment, colony forming 

capacity, flow cytometry, and tri-lineage differentiation. Prior to each experiment, 

passage 2 cMSCs were washed with PBS, trypsinized (Invitrogen), neutralized with 

FBS, and centrifuged. Cells were washed in an additional 10 mL volume of α-MEM to 

remove residual serum and subsequently counted via hemocytometer in preparation for 

hydrogel studies. 

Polyethylene Glycol Diaacrylate (PEG-DA) Synthesis  

PEG-DA (3.4kDa) was synthesized as previously reported (Bailey et al., 

2012). Briefly, PEG-3400 (23.5 g, 7.0 mmol), Et3N (1.95 ml, 14.0 mmol) and 

acryloyl chloride (2.27 ml, 28.0 mmol) were reacted overnight under N2 

atmosphere to obtain PEG-DA. The product was washed with K2CO3, precipitated 

in ether and dried under reduced pressure (14.7 psi) (13.8 g, 59% yield). 1H-NMR 

end-group analysis determined the Mn of resultant PEG-DA to be 3393 g/mM 

(~3400 g/mM). 

“Conventional” Hydrogel Fabrication with Encapsulation of cMSCs  

Hydrogels containing cMSCs were fabricated in planar slab formation as 

previously described(Munoz-Pinto et al., 2012). Briefly, hydrogels were prepared by the 
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photopolymerization of: PEG-DA (3.4 kDa), ACRL-PEG-DA-RGD (3.9 mg/mL), PBS, 

and one of two photoinitiators (10µL/mL). Photoinitiators consisted of either 1) Igracure 

651: consisting of 2,2-dimethyl-2-phenyl-acetophenone (DMAP, Sigma-Aldrich, St. 

Louis, MO) in 1-vinyl-2-pyrrolidinone (NVP, Sigma) or 2) Igracure 2959: consisting of 

100mg 2-hydroxy-4’-(2-hydroxyethoxy)-2-methylpropiophenone in 70% ethanol. PEG-

DA Solutions were prepared using 10% weight by 90% volume ratio of PEG-DA to 

PBS, and photoinitiator sequentially added at 10µL/mL. Final solution was vortexed and 

.22µm polyethersulfone (PES) membrane filtered. Sterile precursor solution was used to 

resuspend cells at a concentration 1x106 cMSCs/mL. After cell resuspension, solution 

was immediately added to 1.5mm prefabricated glass molds and exposed to longwave 

ultra-violet (UV) light (UV-Transilluminator, 6mW/cm2, 365nm). Using Igracure 651, 

UV exposure was limited to 2 minutes, while the use of photocatalyst Igracure 2959 

required UV exposure for 6 minutes. After removal from the mold, 1.5mm thick planar 

gels were washed in PBS and 8mm diameter disks created using a sterile skin biopsy 

punch (Acuderm; Fort Lauderdale, FL). 1.5mm x 8mm disks were transferred to sterile 

48-well non tissue-culture polystyrene wells for long-term culture and experimental 

analysis. 

SIPS/SCPL Hydrogel Fabrication and cMSC Seeding  

Cylindrical porous hydrogel constructs were fabricated as recently described 

(Gacasan et al., 2016) by first placing 3g of a 5% weight NaCl to water mixture into a 

3mL glass vial (OD = 15 mm) with the appropriate salt size. The mixture was then 

centrifuged (4000 RPM, 10 minutes) and dried overnight at room temperature creating a 
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salt template. Precursor solutions were prepared at total macromer concentrations of 

30% weight 3.4 kDa PEG-DA to total mass of solution in dichloromethane (DCM) with 

10µL of photoinitiator (30% weight DMAP in NVP) per milliliter of solution. Solutions 

were added to the salt template (~1 mL), sealed, and centrifuged at 2000 rpm for 5 

minutes to distribute the macromer solution. The vials were subsequently cured for 6 

minutes via exposure to ultra-violet light (UV-transilluminator, 6 mW cm-2, 365nm). 

After air-drying overnight to remove solvent, hydrogel cylinders were removed from the 

vial, sectioned to 1.2mm using a vibratome (LEICA VT1000S), and subsequently 

soaked in deionized (DI) water for 48 hours at 100rpm to allow for swelling and 

leaching of salt, remaining DCM, and any impurities to create hydrated disks (15mm 

diameter x 1.5mm height). After final elution, hydrogels were sterilized with room 

temperature incubation of 70% ethanol washes at 2-, 4-, and 18-hours with PBS washes 

occurring between. Following the 18-hour ethanol wash, two PBS washes were 

performed with additional overnight PBS wash. At the end of final PBS wash, 1.5mm 

high x 8mm wide disks were created using a sterile skin biopsy punch as described 

above. Individual disks were transferred to 48-well plates, 1x104 bone marrow MSCs in 

50µL of CCM were applied to the monolayers of each disk. Cell seeded hydrogels were 

allowed 30 minutes of incubation before adding 500µL of CCM to each well.  

Cell Adhesion and Visual Assessment of Viability  

Cell seeded hydrogels were prepared as described above and cultured in CCM 

containing 10% FBS. After 1-, 3-, 10-, and 21-days (n=3 gels per time point) medium 

was removed and two PBS washes performed. After final PBS wash, medium was 
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removed and 500 µL of fresh PBS containing 0.2 µM calcein (Sigma) and 100µg/mL 

propidium iodide (Botinium, Hayward, CA) were added to each hydrogel. Hydrogels 

were incubated at 37°C for 30 minutes and evaluated for live/dead staining using an 

Olympus microscope and fluorescent microscopy. Images were merged and overlays 

produced using SPOT software (version 5.1; Sterling Heights, MI). 

Cytotoxicity 

Hydrogels containing cMSCs were cultured for 24- and 72-hours without media 

exchange to assess cytotoxicity. At day 1 and 3, conditioned culture media (n=3) were 

collected in 200µL aliquots and stored at -20°C. Media was allowed to thaw on ice and 

assessed for LDH levels following manufacturer’s instructions for an LDH Cytotoxicity 

assay kit (Roche, Indianapolis, IN). As a cellular and comparative control, conditioned 

media were also collected from passage 2 cMSCs cultured on traditional two-

dimensional (2D) tissue-culture plastic. 

Cell Proliferation  

To assess proliferation of cMSCs on conventional vs. SIPS/SCPL PEG-DA 

hydrogel scaffolds, cMSCs were encapsulated or seeded as described above in triplicate. 

At pre-determined time points (1, 3, 10, and 21 days) hydrogels were washed with PBS, 

transferred to 1.7mL Eppendorf tubes, and placed in DNA quantification buffer 

consisting of: 500µL PBS containing (100mM) Trizma HCL (Sigma) and (1mM) 

Magnesium Chloride (Sigma) as previously described (Krause et al., 2011). After 

application of DNA quantification buffer, hydrogels were manually homogenized with 

RNAse free (pestles) and stored at -20°C. On the day of analysis, samples were allowed 
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to thaw to room temperature. Collagenase (1mg/mL; Sigma), HindIII (1U/mL, 

Invitrogen, Carlsbad, CA), and EcoRI (1U/mL; Invitrogen) were added to the sample 

tubes and allowed to incubate at 37°C overnight. The following morning tubes were 

centrifuged at 15,000 X g for 20 minutes and supernatant suspensions transferred to an 

opaque 96-well plate. Sytox Orange (Life Technologies) was added to samples at a 

1:1000 dilution and absorbance determined via automated plate reader (HT Synergy, 

BioTek, Winooski, VT) and Gen3Bio software. Individual cell numbers were 

determined by referencing a pre-determined linear standard curve containing a known 

number of cMSCs. 

Scanning Electron Microscopy  

At pre-determined time points (1, 3, 10, and 21 days), hydrogel disks containing 

cMSCs were washed twice with PBS and fixed with 4% paraformaldehyde (Electron 

Microscopy Sciences; Hatfield, PA) for one hour at room temperature. Afterwards, disks 

were dehydrated in a graded ethanol series. Following the final dehydration step, 

hydrogels were flash frozen in liquid nitrogen for one minute and lyophilized overnight 

at -50°C and 0.02mBar of vacuum (Labconco Centri Vap Gel Dryer System, Kansas 

City, MO). The following day, hydrogels were gold sputter coated and imaged with a 

field emission scanning electron microscope (FEI Quanta 600 FE-SEM) at an 

accelerated electron energy of 10keV as previously described (Bailey et al., 2012).  

Dynamic Mechanical Analysis  

At pre-determined time points (1, 3, 10, and 21 days), three groups of hydrogel 

disks (n=5 disk/group) were analyzed for biomechanical properties over time. Groups 
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consisted of: 1) hydrogel disks without cells, cultured in CCM; and 2) hydrogel disks 

containing cMSCs, cultured in CCM. Prior to analysis, culture media were removed and 

hydrogel disks manually blotted for preparation of compression analysis. Compression 

analysis was performed as previously described (Bailey et al., 2013). Storage modulus 

(G’) was measured in compression with a dynamic mechanical analyzer (TA Instruments 

Q800) equipped with parallel-plate compression clamp with a diameter of 40mm 

(bottom) and 15mm (top). Disks samples were clamped between plates, and tested in a 

multi-frequency strain mode (1 to 30Hz). Frequency output was quantified and mean ± 

standard deviation calculated.  

Biocompatibility- Subcutaneous Studies 

In vivo biocompatibility studies were approved by the Texas A&M University 

IACUC committee under protocol #2015-0072 and an approved AUP. Based on results 

of in vitro studies reported below, and the intended use of SIPS/SCPL-PEG-DA 

scaffolds in the intra-articular (IA) space, subcutaneous biocompatibility studies were 

limited to the SIPS/SCPL-PEG-DA hydrogel scaffolds. Based on previous studies 

proving the biocompatibility of PEG (Burdick et al., 2002; Wallace et al., 2001) and our 

efforts to reduce the number of live animals utilized in our study, we elected to limit 

evaluation of hydrogel scaffolds in the subcutaneous space to the SIPS/SCPL-PEG-DA 

condition, as this construct appeared to be most promising based on our in vitro and 

comparative intra-articular in vivo studies. Hydrogels were prepared as previously 

described and 3mm high x 6mm wide plugs were created using a sterile skin biopsy 

punch. Sterile plugs were implanted subcutaneously in the caudolateral area of 12-week-
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old Sprague-Dawley rats (n=10 rats/treatment group). Sample size for number of rats 

needed was determined based on previous literature and the ISO-10993-6 standard. 

Anesthesia was induced via isoflurane, and a surgical plane of general anesthesia was 

maintained using mask inhalation of isoflurane (2%-3.5% adjusted to effect). After 

induction, rats received 0.05mg/kg of buprenorphine via intraperitoneal injection and 

5mg/kg of enrofloxacin via intramuscular injection. In addition, rats received 5ml/kg of 

warm 0.9% Lactated Ringer’s solution subcutaneously. The hair was clipped and 

removed from dorsal midline. A sterile surgical preparation was performed using 

alternating scrubs of chlorohexidine and sterile saline. Using sterile technique, a 3cm 

skin incision was made on the caudal aspect of the dorsal midline. One small 

subcutaneous pocket was generated on the left side of the midline using a combination 

of blunt and sharp dissection. A single hydrogel plug fabricated with the small pore 

SIPS/SCPL-PEG-DA fabrication method was applied on the left side of midline. Care 

was taken to place implants caudal to the last rib and cranial to the ilial wing, in a 

location preventing secondary trauma to the implants by hind-leg scratching. After 

irrigation, subcutaneous and dermal tissues were closed using 4-0 Monocryl™ suture in 

a simple interrupted pattern and intradermal pattern, respectively. Rats were recovered 

from anesthesia and observed everyday for 21 days. At 21 days, a period expected to 

coincide with resolution of acute inflammation, rats were humanely euthanized using 

CO2 asphyxiation and fixed with 10% neutral buffer formalin in preparation for 

histological examination.   

  



 

 123 

Biocompatibility- Intra-Articular Studies 

 This study was approved by the Texas A&M University IACUC committee 

under protocol #2015-0072 and an approved AUP. Based on results of in vitro studies 

reported below, and the intended use of PEG-DA scaffolds in the intra-articular (IA) 

space, intra-articular biocompatibility studies were performed using conventional PEG-

DA hydrogels fabricated using Igracure 651 as well as hydrogels fabricated using the 

SIPS/SCPL-PEG-DA technique. Hydrogels were fabricated using sterile technique as 

described above and 3mm high x 2mm wide plugs created using a sterile skin biopsy 

punch. Sterile plugs were implanted into the trochlear groove of the femoropatellar joint 

of 12-week-old Sprague-Dawley rats. Briefly, after induction of anesthesia and pre-

medication as described above, hair was clipped and removed from the left stifle 

followed by a sterile surgical preparation using alternating scrubs of chlorohexidine and 

sterile saline. Using sterile technique, a 3cm skin and subcutaneous incision was created 

on the craniolateral aspect of the stifle. A lateral parapatellar arthrotomy was created 

using a #15 blade and the patella was luxated medially. The midline of the femoral 

trochlea was located. A 1.94mm wide x 3mm deep defect was created within each 

trochlea using a high-speed drill and constant saline irrigation. A single hydrogel plug 

fabricated with either Igracure 651-PEG-DA or small pore SIPS/SCPL-PEG-DA was 

manually inserted into the defect. Care was taken to ensure the exposed surface of each 

gel was flush with the tangential surface of adjacent cartilage. After irrigation, joint 

capsule and fascia lata were closed using 4-0 Monocryl™ suture in a simple interrupted 

pattern. Skin and subcutaneous tissue was closed using 4-0 Monocryl in an intradermal 
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pattern. At 21 days, rats were humanely euthanized as described above. Operated limbs 

were removed and skin, subcutaneous tissues, and musculature dissected. Limbs 

containing the femur, tibia, patella, patellar tendon, and intact joint capsule were fixed 

with 10% neutral buffer formalin in preparation for histological examination.  

Histologic Assessment  

Following formalin fixation, femur and skin specimens containing hydrogel 

implants were routinely processed and slides prepared for histological evaluation. 

Briefly for subcutaneous samples, skin with subcutis containing the hydrogel implant 

were sectioned perpendicular to the skin surface through the implant, photographed to 

document gross appearance and hydrogel location, and routinely processed for paraffin 

embedding. Once embedded, serial sections (5µm thick) were created using a rotary 

microtome (Mirom HM 355 S, ThermoFisher Scientific, Waltham, MA). Sections were 

slide mounted, stained (hematoxylin: Electron Microscopy Services, Hatfield, PA and 

esosin: Ricca Chemical Company, Arlington, TX; or trichrome: Ricca Chemical 

Company), and coverslipped. Briefly, for intra-articular samples, hindlimb skin and 

superficial musculature was removed after formalin fixation. A micro x-ray unit (X-tek 

Systems, Ltd., Herts, United Kingdom) was used to take orthogonal views (lateromedial 

and craniocaudal) of each formalin-fixed specimen for identification of the hydrogel site. 

After micro x-rays, stifles with associated portions of femur and tibia were submerged in 

formalin decalcification solution (Formacal-4, Statlab Medical Products, McKinney, 

TX) and placed on an oscillating mixer for 44-52 hours. Specimens were removed from 

decalcification solution, thoroughly rinsed with deionized water, and placed in isotonic 
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phosphate-buffered saline until sectioning. Orthogonal micro x-ray images were used to 

approximate sagittal sectioning to create stifle hemisections. Each hemisection was 

routinely processed, embedded in paraffin, and serially sectioned (5µm thick) using a 

rotary microtome. Sections were mounted, stained, and coverslipped as described above. 

A board-certified veterinary pathologist and veterinary pathology resident, blinded to 

treatment group, evaluated each hydrogel implant using a semi-quantitative, ordinal 

scoring system for inflammation, angiogenesis, and fibrosis using modifications to 

previous described methods (Karahan et al., 2001). Within each category, the ordinal 

scoring systems ranged from 0-5 (0=none observed, 1=minimal, 2=mild, 3=moderate, 

4=marked, 5=severe) in which zero represents complete lack of a response and 5 

represents a maximum response 

Statistics 

Descriptive and analytic statistics for in vitro studies were generated and were 

reported as mean ± standard deviation. Results of in vitro assays were assessed using 

ANOVA and Tukey’s post-hoc. For in vivo biocompatibility studies, ordinal data sets 

were compared using the Fisher’s exact test. Significance was established at p<0.05. 

Descriptive and analytical statistics were performed with GraphPad Prism 6.0 (GraphPad 

Software, La Jolla, CA) and JMP Pro 11 (JMP® Pro 11.0.0, Cary NC). 
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RESULTS 

Canine MSC Characterization  

Marrow derived cMSCs were characterized using criteria established by 

Dominici (Dominici et al., 2006). Cells were adherent to tissue culture plastic and 

exhibited a spindle-shaped morphology (Figure 4.1A). When seeded at clonal density 

and incubated 21 days without media exchange, cMSCs demonstrated CFU capacity 

(Figure 4.1B). Additionally, cMSCs exhibited adipo-, osteo-, and chondrogenic ability 

(Figure 4.1,C-E) when assessed using differentiation methods optimized for canine 

MSCs (Chapter 3). Additionally, cells were positive for CD 9, 44, 90, and 105 and were 

negative for CD 34 and 45 when assessed by flow cytometry (data not shown). 

Collectively, these results confirmed that the cells used in subsequent studies met 

established criteria for MSCs  

PEG-DA Hydrogel Fabrication  

Figure 4.2 demonstrates the gross appearance of PEG-DA hydrogel scaffolds 

fabricated using conventional and SIPS/SCPL fabrication methods. Conventional PEG-

DA hydrogels fabricated using Igracure 651 and Igracure 2959 were visually translucent 

polymer mesh structures with well-defined peripheral edges (Figure 4.2A). In contrast, 

SIPS/SCPL fabricated hydrogels contained an interconnecting series of 268 ± 35µm 

pores (voids within the hydrogel), resulting in a slightly opaque hydrogel with indistinct 

margins. Regardless of fabrication method, hydrogels were 1.5mm high x 8mm wide 

disks. The porous nature of the SIPS/SCPL-PEG-DA hydrogel is clearly visible in  
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Figure 4.1. Characterization of canine bone marrow MSCs. A) Representative 10x 
objective phase contrast microscopy image of bone marrow cMSCs demonstrating the 
classic plastic-adherent, spindle shaped morphology typical of MSCs (bar=100µm). B) 
Representative photograph of a CFU plate from freshly isolated bone marrow cells. C) 
Microscopic images of osteogenic cultures fixed and stained with Alizarin Red after 21 
days of culture in OBM containing 200ng/mL rhBMP-2 (bar=125µm). D) Microscopic 
images of adipogenic cultures fixed and stained with Oil Red O after 21 days of culture 
in adipogenic media (Bar= 25µm). E) Microscopic images of chondrogenic micromass 
cultures fixed and assessed for proteoglycan (toluidine blue) and collagen type II content 
(immunohistochemistry) after 21 days of culture in chondrogenic media (bar=150µm).  
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Figure 4.2A. Importantly, the SIPS/SCPL process is tunable, allowing modulation of 

pore size for specific applications. To demonstrate this property, the SIPS/SCPL method 

(Figure 4.2B, top row) was tuned/modulated using varying salt sizes to created pores 

termed “small” (181 ± 29µm), “medium” (268 ± 35µm), or “large” (459 ± 69µm). In 

order to more clearly demonstrate the effect of salt size on pore size, SEM was 

performed on small, medium, and large SIPS/SCPL-PEG-DA hydrogels (Figure 4.2B, 

bottom row). These images demonstrate the interconnectivity of the pores in addition to 

the variation in pore dimensions.  

cMSC Morphology and Viability 

 To assess morphology and viability of cMSCs seeded on PEG hydrogel 

scaffolds, preliminary studies were performed to confirm cellular attachment would 

occur when cMSCs were seeded upon the surface of hydrogel constructs (data not 

shown). Upon successful completion of 2D monolayer attachment, 3D assessment of 

cMSC attachment was assessed in three-dimensions. Canine MSCs were encapsulated in 

conventional PEG-DA or seeded on SIPS/SCPL-fabricated hydrogels and cultured for 1, 

3, 10, and 21 days. Viability was assessed with live/dead staining (Figure 4.3). 

Representative 10x objective overlay images of live and dead fluorescence demonstrated 

a marked increase in number of propidium iodide (red=PI positive) stained cMSCs in 

both Igracure-651 and Igracure-2559 as compared to SIPS/SCPL fabricated hydrogels. 

Additionally, while cMSCs stained positive for calcein in both conventional hydrogel 

scaffolds, the number of calcein positive cells subjectively decreased over the 21-day 

time course. Moreover, cMSCs appeared as rounded, isolated cells in both conventional  
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Figure 4.2. Varying PEG-DA hydrogel fabrication methods. PEG-DA hydrogel 
constructs were prepared using conventional photoinitiators Igracure 651 and Igracure 
2959 of SIPS/SCPL for evaluation with canine bone marrow MSCs. A) Representative 
gross images of Igracure 651 (left), Igracure 2959 (center), and SIPS/SCPL (right) 
fabricated hydrogels demonstrating 3D properties (1.5mm high x 8mm diameter). B) 
SIPS/SCPL hydrogels were fabricated with varying salt sizes: “small” (181 ± 29µm), 
“medium” (268 ± 35µm), and “large” (459 ± 69µm). Representative gross images (top 
row) demonstrating a low magnification effect of salt size on SIPS/SCPL scaffold 
properties (bar=2mm). Representative SEM (bottom row) images demonstrating the 
effect of salt size on scaffold pore interconnectivity (bar=500µm).  
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hydrogel systems and the number of cells present within these scaffolds remained 

constant over the 21-day time course. In contrast, there was robust calcein staining of 

cMSCs cultured on the SIPS/SCPL-fabricated PEG-DA scaffolds containing “medium” 

pore sizes (268µm ± 35µm). Although occasional PI positive cells were noted, the vast 

majority of cMSCs were calcein positive. In addition, at all time points cell morphology 

was spindle-shaped. Lastly, the number of cells present within the SIPS/SCPL-fabricated 

hydrogels displayed subjective dramatic increase over the 21-day time course based on 

live/dead staining, whereas the number of cells in conventional PEG-DA hydrogels was 

subjectively reduced. These results suggest that encapsulation of cMSCs in conventional 

PEG-DA hydrogels results in substantial loss of viability and the confinement of cells to 

a rounded or spherical morphology. In contrast, culture of cMSCs on SIPS/SCPL-

fabricated hydrogels resulted in robust cell viability, development of a spindle-shaped 

morphology, and an increase in cells number over time.  

Effect of Pore Size on Cell Morphology and Viability as Assessed by Live/Dead Staining  

 To further determine the effect of pore size on cell morphology and viability, 

SIPS/SCPL hydrogels were fabricated with a series of small, medium, or large 

interconnecting pores. Cells were seeded onto SIPS/SCPL hydrogels and were assessed 

at 1, 3, 10, and 21 days for viability and cell morphology using live/dead staining. 

Representative 10x objective overlay images (Figure 4.4) demonstrate an increase in 

calcein positive cells over time with scarce PI positive cells, regardless of hydrogel pore 

size or time point. As with medium pore SIPS/SCPL hydrogels, cells cultured on small 

and large pore SIPS/SCPL hydrogels demonstrated spindle-shaped/mesenchymal  
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Figure 4.3. cMSC morphology and viability when seeded in varying fabrication methods 
of PEG-DA hydrogels. Bone marrow cMSCs encapsulated in conventional PEG-DA or 
seeded on SIPS/SCPL-fabricated hydrogels were culture for 1, 3, 10, and 21 days. At 
each pre-determined time point hydrogels containing cMSCs were assessed for live 
(green=calcein positive) and dead (red=propidium iodide positive) fluorescence. 
Representative 10x fluorescent overlay images of cell-encapsulated, photoinitiator 
Igracure 651- (top row) and Igracure 2959- (center row) fabricated hydrogels 
demonstrating an isolated, rounded morphology and increased propidium iodide 
staining. In contrast, representative 10x fluorescent overlay images of cell-seeded, 
medium SIPS/SCPL-fabricated hydrogels (bottom row) exhibit robust calcein staining 
with spindle-shaped cell morphology (bar=125µm).   
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Figure 4.4. Effect of SIPS/SCPL pore size on cMSC cell morphology and viability. 
SIPS/SCPL hydrogels were fabricated with a series of small (181 ± 29µm), medium 
(268 ± 35µm), and large (459 ± 69µm) interconnecting pores. Bone marrow cMSCs 
were seeded onto the various pore size SIPS/SCPL-fabricated hydrogels and cultured for 
1, 3, 10, and 21 days. At each pre-determined time point, hydrogels containing cMSCs 
were assessed for live (green=calcein positive) and dead (red=propidium iodide positive) 
fluorescence. Representative 10x fluorescent overlay images, demonstrating robust 
calcein staining and spindle-shape cell morphology for cMSC-seeded small (top row), 
medium (center row), and large (bottom row) SIPS/SCPL-fabricated hydrogels 
(bar=125µm).   
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morphology and subjectively increased in number to cover more surface area of the 

hydrogels over time. These results suggest that SIPS/SCPL-fabricated hydrogels 

containing pores of varying sizes appear to be effective hydrogel scaffolds for cMSCs. 

Cell Stress/Cytotoxicity as Assessed by Lactate Dehydrogenase (LDH) 

Cytotoxicity of cMSCs cultured in PEG-DA hydrogel scaffolds was assessed by 

assaying LDH levels in conditioned media at day 1 and 3 (Figure 4.5A). Canine MSCs 

cultured in conventional hydrogels fabricated with Igracure 651 exhibited significantly 

increased LDH levels at day 1 as compared to cMSCs cultured on 2D tissue culture 

polystyrene plastic (p<0.0001), but levels were significantly reduced when evaluated at 

day 3 (p<0.05). Canine MSCs cultured in conventional hydrogels fabricated with 

Igracure 2959 exhibited significantly decreased LDH levels at both day 1 and day 3 

when compared to 2D cultures (p<0.0001). Canine MSCs cultured on SIPS/SCPL 

hydrogels exhibited significantly reduced LDH levels at both day 1 and day 3 when 

compared to 2D cultures (p<0.0001). Importantly, LDH levels were significantly 

(p<0.0001) reduced in the SIPS/SCPL-fabricated hydrogels as compared to conventional 

hydrogels fabricated with Igracure 651 or 2959 at day 1. Additionally, at day 3, 

SIPS/SCPL-fabricated hydrogels exhibited significantly reduced LDH levels compared 

to 2D, Igracure 651 (p<0.0001), and Igracure 2959 (p<0.05). 

Proliferation 

Proliferation assays were used to assess growth characteristics of canine bone 

marrow MSCs cultured on PEG-DA hydrogel scaffolds and to confirm results from 

Figures 4.3 and 4.4 (Figure 4.5B,C). There was no significant difference in the number  
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Figure 4.5. Assessment of cMSC cytotoxicity and proliferation in varying fabrication 
methods of PEG-DA hydrogels. Bone marrow cMSCs on traditional 2D tissue-culture 
(TC) plastic, encapsulated in conventional PEG-DA, or seeded on SIPS/SCPL-fabricated 
hydrogels were cultured for 1 and 3 days. At each time point, conditioned media were 
collected for evaluation of cell stress/cytotoxicity as assessed by LDH levels. A) 
Representative LDH concentrations (mean ± SD) for all conditions. Asterisks denote 
significance as statistically compared to 2D TC plastic cultured cells: (*) p<0.05, (****) 
p<0.0001. Letters denote significance differences between conventional and 
SIPS/SCPL-fabricated hydrogels (p<0.05). Proliferation for cell encapsulated 
conventional PEG-DA or cell-seeded, SIPS/SCPL-fabricated hydrogels was determined 
at 1, 3, 10, and 21 days (n=3 hydrogels/fabrication method). Mean cell number was 
determined using DNA quantification. B) Mean ± SD proliferation of cMSC-
encapsulated, conventional hydrogels, demonstrating baseline or decreased proliferation 
rates. C) Mean ± SD proliferation of cMSC-seeded, SIPS/SCPL fabricated hydrogels, 
demonstrating increased proliferation rates at 10 and 21 days. Note: for panels B and C, 
asterisks denote significant differences in cell number: (**) p<0.01; (****) p<0.0001.  
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of canine MSCs recovered from conventional hydrogels fabricated with Igracure 651 at 

any of the pre-determined time points (p=0.19). There was a significant decrease 

(p<0.01) in cell number after 21 days for cMSCs recovered from conventional hydrogels 

fabricated with Igracure 2959 (Figure 4.5B). In contrast, significant increases in cMSC 

cell number was present in the SIPS/SCPL hydrogels at days 10 (p<0.0001), and 21 

(p<0.0001) (Figure 4.5C). Furthermore, all three pore sizes (small, medium, and large) 

exhibited significant (p<0.0001) increases in cell number over 21 days. When comparing 

conventional and SIPS/SCPL-fabricated hydrogels, there were significant increases in 

the number of recovered cells in the SIPS/SCPL-fabricated hydrogels (p<0.0001). These 

results demonstrate that PEG-DA hydrogel fabrication technique has a direct impact on 

the proliferation of cMSCs. Specifically, the number of cMSCs cultured in SIPS/SCPL-

fabricated hydrogels increased over time, whereas the number of cMSCs for 

conventional hydrogels remained unchanged and in some cases decreased over time. 

These results confirm the subjective visual assessment of increased cell number in 

SIPS/SCPL-fabricated hydrogels over time (Figure 4.3).  

Scanning Electron Microscopy (SEM) 

To further assess cell morphology and spreading of the varying pore size 

SIPS/SCPL-fabricate hydrogel scaffolds, SEM was performed to obtain high 

magnification images. Canine MSCs were seeded onto to SIPS/SCPL gels and assessed 

at 1, 3, 10, and 21 days for cell monolayer appearance (day 1 and 3 data not shown). 

Representative 200X images at day 10 and 21 (Figure 4.6A) subjectively confirm 

live/dead-imaging results that SIPS/SCPL-fabricated hydrogels containing pores of  
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Figure 4.6. SEM and DMA of cMSC seeded SIPS/SCPL fabricated hydrogels. 
SIPS/SCPL hydrogels were fabricated with a series of small, medium, and large 
interconnecting pores. Bone marrow cMSCs were seeded onto various pore size 
SIPS/SCPL-fabricated hydrogels and cultured for 1, 3, 10, and 21 days. At each pre-
determined time point, hydrogels containing cMSCs were assessed for cell morphology, 
spreading, and biomechanical properties. A) Representative 200x magnification SEM 
images, demonstrating cMSCs-hydrogel attachment and cell spreading on small (left 
column), medium (center column), and large (right column) pore SIPS/SCPL hydrogels 
at 10 (top row) and 21 (bottom row) days (bar=125µm). Arrows denote hydrogel-
adherent cells. Storage modulus (G’) was assessed using DMA and 10Hz data recorded 
and plotted as mean ± SD. B) Representative storage modulus (G’) quantification (mean 
± SD) of cMSC-seeded, SIPS/SCPL-fabricated hydrogels (n=5 hydrogel fabrication 
method/day). Asterisks denote significance when compared to day 1. (*) p<0.05; (***) 
p<0.001.   
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varying sizes appear to be effective hydrogel scaffolds for cMSCs. Interestingly, cells 

seeded on medium and large pore size SIPS/SCPL-fabricated hydrogels appear to cover 

more scaffold surface area and displayed increased cell processes. These increased cell 

processes are evident in the cells’ ability to span the pore vacancies.  

Dynamic Mechanical Analysis (DMA) 

To assess the biomechanical properties of conventional or SIPS/SCPL-fabricated 

hydrogels cultured with cMSCs over time, storage modulus (G’) was measured by DMA 

to assess gel stiffness at each time point. Canine MSCs cultured with small pore size 

SIPS/SCPL-fabricated hydrogel scaffolds exhibited significantly increased storage 

modulus as compared to medium or large pores at all time points (p<0.0001) (Figure 

4.6B). There were significant increases in storage modulus at day 21 as compared to day 

1 in medium (p<0.05) and large (p<0.001) pore hydrogels. These data demonstrate that 

small pore size SIPS/SCPL hydrogel scaffolds display increased stiffness as compared to 

medium or large pore hydrogels, but that the stiffness of medium and large pore 

SIPS/SCPL-fabricated hydrogels increases over time. 

Biocompatibility  

Hydrogel implants and surrounding tissue were histologically evaluated to 

determine biocompatibility.  

Subcutaneous SIPS/SCPL hydrogel implants were surrounded by a thin (10-

200µm) capsule composed of mature, well-organized fibrous connective tissue (Figure 

4.7A). Within the capsule, tissue reaction was similar in all sections, with uniform, 

consistent invasion of hydrogel pores (Figure 4.7B,C). Hydrogel margins were line by a 
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layer of cells comprising abundant epithelioid macrophages with frequent multinucleated 

giant cells (Figure 4.7D) accompanied by minimal to moderate fibroplasia, mild to 

moderate fibrosis, neovascularization, and small to moderate numbers of lymphocytes, 

and plasma cells. Occasional sections had scant to moderate numbers of eosinophils. 

Changes to connective tissues and skeletal muscle in immediate contact with the 

hydrogel were minimal. Trichrome staining confirmed the presence of a well-organized, 

mature collagen capsule surrounding the hydrogels and minimal to mild fibrosis within 

hydrogel interstices.  

Conventional and SIPS/SCPL-fabricated hydrogels implanted intra-femorally 

were histologically evaluated to determine biocompatibility. SIPS/SCPL-fabricated 

hydrogels exhibited consistent tissue invasion of hydrogel pores (Figure 4.8A) resulting 

in a trabecular network of fibrous connective tissue with neovascularization and 

occasional woven bone formation (Figure 4.8B). Woven bone often extended from 

adjacent epiphyseal trabeculae along connective tissue struts (osteoconductive) and also 

formed novel islands within central portions of intra-porous connective tissue ingrowth 

(osteoinductive). Small, often discontiguous bands of fibroplasia and fibrosis surround 

the outer hydrogel margins, but did not form a discrete capsule as seen with 

subcutaneous hydrogel implants (Figure 4.8A). Inflammation is mild to moderate and 

characterized by a layer of epithelioid macrophages and multinucleated giant cells along 

the hydrogel interface, with fewer numbers of lymphocytes, plasma cells, and rare 

eosinophils. Epithelioid macrophages and multinucleated giant cells occasionally have a 

finely granular appearance to the cytoplasm, suggesting hydrogel phagocytosis. The   
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Figure 4.7. Subcutaneous SIPS/SCPL hydrogel implant biocompatibility. A) 
Representative H&E stained, 4x magnification (bar=40µm) image of a SIPS/SCPL 
hydrogel within the subcutaneous tissue 21 days post-surgical implantation. Widespread 
ingrowth of fibrous connective tissue and neovascularization is observed within the 
hydrogel pores while the hydrogel periphery contains only a small fibrous connective 
tissue capsule. B) Representative H&E stained, 10x magnification (bar=60µm) image 
detailing fibrous connective tissue and neovascularization of hydrogel pores. Mild 
hypercellularity is present within the fibrous trabeculae. C) Representative Trichrome 
stained, 10x magnification (bar=60µm) image indicating the presence of collagen (blue) 
within connective tissue trabeculae. D) H&E stained, 40x magnification (bar=25µm) 
image exhibiting H&E staining of epithelioid macrophages and foreign-body giant cells 
lining the hydrogel interface. Small numbers of lymphocytes and plasma cells are also 
present throughout the fibrous connective tissue intercalated within the hydrogel pores.   
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Figure 4.8. SIPS/SCPL hydrogel intra-femoral biocompatibility. A) Representative 
H&E stained, 2x magnification (bar=50µm) image of a SIPS/SCPL hydrogel exhibiting 
increased fibrous connective tissue porous ingrowth, with woven bone formation within 
connective tissue trabeculae. B) 20x magnification (bar=20µm) of the boxed region in 
Panel A denoting numerous islands of woven bone within connective tissue trabeculae 
(blue arrowheads). Additionally the presence of numerous small caliber vessels was 
noted (black arrow head), indicative of good neovascularization of connective tissue 
trabeculae.  
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subarticular bony plate overlying the hydrogel implant at the surgical site is often 

incomplete and lacks fibrocartilage (Figure 4.8A). Of note, four (4/20, 20%) femora with 

SIPS/SCPL hydrogels had small fragments of hydrogels that were displaced into the 

intra-articular space. Hydrogel fragments typically adhered to the synovium (Figure 

4.9A) and invoked localized granulomatous inflammation with increased collagen and 

mild synovial hyperplasia (Figure 4.9B).  

In contrast to SIPS/SCPL-fabricated hydrogels, conventionally fabricated 

hydrogels were devoid of tissue ingrowth (Figure 4.10A). Inflammation was minimal to 

mild and limited to the peripheral hydrogel interface, comprising a single discontinuous 

layer of epithelioid macrophages and multinucleated giant cells (Figure 4.10B), with 

very rare lymphocytes, plasma cells, and eosinophils. Occasionally, inflammatory cells 

were absent, resulting in direct contact of the hydrogel with the adjacent epiphyseal 

trabecular bone along the longitudinal cranial and caudal axes. Despite direct hydrogel 

contact, bony reaction is not observed at these sites (Figure 4.10C). Fibroplasia/fibrosis 

peripheral to the hydrogel was absent to very minimal. Notably, conventional hydrogel 

implants consistently demonstrated the reconstitution of a broad plate of subchondral 

bone covered by a layer of articular fibrocartilage (Figure 4.10A) at the surgical site 

overlying the implant.  

Statistical evaluation indicated no significant differences between conventional 

and SIPS/SCPL-fabricated hydrogels in regards to eosinophilic, neutrophilic, and 

granulomatous inflammation, periarticular changes, bone marrow progenitor cell 

proliferation/maturation, and femoral articular cartilage alteration. However, significant   



 

 142 

 

 

 

 

 

 
Figure 4.9. Intra-articular hydrogel displacement. A) 4x magnification (bar=125µm), 
H&E stained images displaying a small fragment of SIPS/SCPL hydrogel retained 
within the synovial recesses of the caudal femur. B) 40x magnification (bar=25µm) 
image of area noted by blue arrowhead in Panel A. Displaced hydrogel fragment adhered 
to the synovium and surrounded by granulomatous inflammation, increased collagen, 
and mild synovial hyperplasia.   
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Figure 4.10. Conventional hydrogel intra-femoral biocompatibility. A) Representative 
H&E stained, 2x magnification (bar=50µm) image exhibiting the absence of tissue 
ingrowth into the gel matrix. Additionally, minimal peripheral inflammatory infiltration 
is present. Of note, woven bone spans the surgical site (bony bridging) and is covered by 
a layer of fibrocartilage (blue arrowheads). Wrinkling and retraction of the hydrogel is 
artifactual. B) H&E stained, 20x magnification (bar=35µm) image of the hydrogel-
intrafemoral interface. Peripheral inflammation at the hydrogel interface comprises 
multinucleated giant cells and epithelioid macrophages, with rare lymphocytes and 
plasma cells. C) H&E stained, 40x magnification (bar=25µm) image detailing the 
hydrogel interface devoid of inflammatory cells, allowing for direct bony contact. The 
hydrogel-bone interface is quiescent and does not appear to elicit any reaction from 
adjacent bony trabeculae.   
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Figure 4.11. Intra-articular SIPS/SCPL hydrogel implant biocompatibility. Ordinal 
scoring of key biocompatibility features evaluated using decalcified, paraffin-embedded, 
H&E stained sections containing conventional (Igracure 651) or SIPS/SCPL fabricated 
PEG-DA hydrogels, or sham surgical site (control, no hydrogel). Intra-femoral implant 
(or control) has a significant effect on the presence of subarticular bony formation, 
ingrowth of fibrous connective tissue, woven bone formation within implant site, and 
degree of angiogenesis, (*) p<0.0001.  
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differences between SIPS/SCPL-fabricated and conventional hydrogels included the 

development of subarticular bony bridging (p<0.0001), ingrowth of fibrous connective 

tissue into the hydrogel matrix (p<0.0001), development of woven bone within the 

hydrogel matrix (p<0.0001), neovascularization within the matrix (p<0.0001), and 

presence of lymphocytes and plasma cells (p<0.0184) (Figure 4.11).  

Artifactual hydrogel changes induced as a result of routine paraffin processing 

were observed for both conventional and SIPS/SCPL-fabricated hydrogels and included 

wrinkling, mild to moderate attenuation, and/or fragmentation. 

 

DISCUSSION 

The objective of this study was to compare PEG-DA hydrogels fabricated with 

conventional (photoencapsulated) and SIPS/SCPL methods as potential scaffolds for 

cMSC articular cartilage tissue engineering. We selected PEG-DA because of the 

increasing evidence in the literature describing the tunable, biocompatible, and 

immunologically inert nature of PEG-DA hydrogel scaffolds (Bailey et al., 2012; Bailey 

et al., 2013; Pasut, 2014; Rafat et al., 2008; Wallace et al., 2001). Based on our results, 

we reject our hypothesis that fabrication method would have no effect on cellular or 

mechanical properties of cMSCs-hydrogel constructs. Visual and quantitative 

assessment of appearance, proliferation, cytotoxicity, and histology demonstrated that 

SIPS/SCPL hydrogels were superior as compared to conventional fabrication techniques.  

Recent studies have suggested that MSCs in combination with conventional 

PEG-DA based scaffolds as a viable option for translation to clinical therapies (Buxton 
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et al., 2007; Munoz-Pinto et al., 2012; Shin et al., 2005) due to the proven success of 

MSC incorporation, subsequent cellular response to scaffold-tethered growth factors, 

and mechanical construct changes. While these findings are encouraging for 

conventional PEG based tissue-engineering scaffolds, successful translation to the in 

vivo setting using a number of animal models has yet to be fully accomplished. This 

may be due to scaffold limitations such as poor media exchange, oxygen inhibition at the 

cell-macromer interface, free radical propagation, increase cross-linkage resulting in 

shrinkage, and smaller mesh/pore size (Bryant and Anseth, 2002). For these reasons, our 

group aimed to enhance porosity and interconnectivity by introducing a series of 

interconnecting pores within the PEG-DA hydrogel scaffolds using a novel SCPL 

fabrication technique. Increased porosity and interconnectivity likely provides a more 

conducive environment for media exchange and cell movement; thus facilitating 

increased in-growth of surrounding tissue. This was confirmed when analyzing 

SIPS/SCPL-cMSC constructs, as they displayed traditional spindle-shaped morphology, 

increased fluorescent staining, proliferation, and tissue in-growth as compared to 

conventionally prepared hydrogels. Moreover, cell stress/cytotoxicity as assessed by 

LDH concentrations was reduced in SIPS/SCPL hydrogels. Histologic analysis revealed 

extensive intraporous connective tissue permeation in subcutaneous and intrafemoral 

SIPS/SCPL hydrogel implants. Additionally, intrafemoral hydrogel implants 

demonstrated the formation of woven bone formation within nascent connective tissue 

ingrowth, indicating a microenvironment suitable for osseous regeneration. 
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To further evaluate the SIPS/SCPL system pore size was altered to include small 

and large pore comparisons. As with initial studies using the medium pore size 

hydrogels, no increased cell stress/cytotoxicity was present in any of the pore sizes when 

assessed by LDH levels. Additionally, live/dead fluorescent staining was increased over 

the 21 day time period. Furthermore, surface area coverage was visually evident between 

the varying pore sizes. Small pore hydrogels appeared to be confluent with cell 

monolayers while maintaining pore interconnectivity and integrity. As pore size 

increased the scaffold surface remained inundated with cells but did not have the 

intensity of fluorescent staining the small pore hydrogels exhibited. One rationale for 

this may be smaller area to which cells had access when adhering to the reduced pore 

size structures. Another potential rationale relates to the cells’ ability to be more spread 

out due to the larger surface area. Rationale for the second hypothesis can be supported 

when evaluating proliferation (Figure 4.5C) and SEM (Figure 4.6A). Qualitative SEM 

data demonstrated that cells on medium and large pore size hydrogels appeared to cover 

more hydrogel surface area, spanning the pores with lamellipodia/filopodia like cell 

processes. In agreement with this concept, cell number was relatively similar across all 

pore sizes at 21 days of culture.  

Articular cartilage contains unique properties due to its ability to respond to 

frictional, compressive, shear, and tensile mechanical loads assessed by the joint, such as 

the knee and hip. Tissue-engineering constructs have aimed at reproducing native 

mechanical properties in an effort to restore function. Storage modulus or stiffness (G’) 

of industrial materials such as steel (200GPa) and wood (10GPa) exhibit significantly 



 

 148 

higher mechanical stiffness when compared to mechanical properties of healthy 

cartilage, in which G’ ranges from 0.45MPa to 0.80MPa (Mansour, 2003). These values 

are significantly lowered as degeneration and disease of focal lesions and osteoarthritis 

progress (Buschmann et al., 1999). One pitfall in translating synthetic PEG-DA-based 

biomaterials into clinical treatment strategies has been the inability to mimic native 

biomechanical properties of cartilage. Previous studies evaluating PEG-DA-based SIPS 

scaffolds for cartilage tissue engineering found constructs to range from 60kPa to 75kPa. 

This was a promising finding due to the higher mechanical stiffness when compared to 

previously describe conventionally prepared hydrogels, Igracure 651 and Igracure 2959 

(Bailey et al., 2012; Bryant and Anseth, 2002; Gacasan et al., 2016; Zhang et al., 2011). 

Based on these previous studies, the present study evaluated PEG-DA-based 

SIPS/SCPL-fabricated hydrogels’ storage modulus (G’) using dynamic mechanical 

analysis (DMA). SIPS/SCPL hydrogels displayed decreased (in an order of magnitude) 

G’ (~20mPa to 40mPa) as compared to previously described SIPS hydrogels (Bailey et 

al., 2012). When assessing pore size differences, small pore size SIPS/SCPL hydrogels 

exhibited substantially higher G’ (~50mPa) as compared to medium or large pore sizes 

(~20mPa). Collectively, conventional hydrogels are stiffer as compared to SIPS/SCPL-

fabricated hydrogels. Furthermore, increased pore size decreases G’. Contributing 

factors believed to be responsible for these observations are 1) the increasing 

macroporous morphology, reducing hydrogel surface area as compared to conventional 

hydrogels; 2) increased pore sizes, leading to less hydrogel structure. As seen in gross 

and SEM images, increased pore size correlates decreased amount of scaffold material 
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needed to support mechanistic changes. Although, SIPS/SCPL-fabricated hydrogels do 

not approach mechanical properties of native cartilage or conventional hydrogels, one 

promising finding was observed in the increased G’ with increased time across all pore 

sizes. This increasing stiffness may be due cMSCs synthesis and secretion of 

extracellular matrix. Further studies are needed to determine if these data can be 

confirmed and subsequently enhanced to provide a more similar biomechanical structure 

to that of native cartilage.  

While the results presented herein provide a promising avenue for future 

translational studies, our study is not without pitfalls. One such is example is the 

decreased mechanical strength as compared to conventional hydrogels or native 

cartilage. Albeit concerning, this obstacle is navigable by modulating hydrogel 

properties using previously described chemical compounds such as 

polydimethylsiloxanestar (PDMSstar) (Bailey et al., 2012; Munoz-Pinto et al., 2012). 

These recent studies detail the ability of PDMSstar to direct MSC differentiation to 

osteogenic lineage while increasing the storage modulus of the scaffold. Additionally, 

the percentage of PEG-DA and the molecular weight of PEG may also be adjusted to 

improve hydrogel stiffness. Another route of study to enhance cMSC-hydrogel 

constructs, particularly the SIPS/SCPL system, involves cellular influence. Results 

presented above evaluate cells for viability, morphology, and growth characteristic but 

not for differentiation capacity. Future studies should include the study of tissue specific 

differentiation media, incorporation of growth factors in the hydrogel, and the addition 

of biocompatible polymers, such as PDMS, to evaluate the cellular modulation capacity 
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in an effort to create the optimal cell-based scaffold. Optimizing mechanical properties 

and hydrogel architecture of the SIPS/SCPLS system are important areas of future focus 

in order to minimize the potential for scaffold fragmentation and displacement within the 

joint space. It is possible that targeted changes to scaffold architecture and 

biomechanical properties will result in a more robust subchondral bone plate, as was 

observed with the conventionally fabricated intra-articular PEG-DA hydrogel implants.  

Confirmed through our statistical analysis, subarticular bone (the subchondral 

plate) and articular fibrocartilage restoration was largely absent in SIPS/SCPL-fabricated 

hydrogels (Figure 4.8A) whereas a layer of subchondral bone and established 

fibrocartilage were consistently present overlying conventional hydrogels (Figure 4.9A). 

Additionally, occasional small hydrogel fragments were noted remotely within the 

synovial lining of the joint. When present, these small fragments were associated with 

focal and mild granulomatous response (4.10). Combining the limited subchondral bone 

and fibrocartilage healing in the SIPS/SCPL hydrogels with the observance of remote 

hydrogel fragments suggest that either hydrogel architecture, biomechanical properties, 

of both, resulted in insufficient biomechanical support for restoration of the subchondral 

plate.  

The restoration of subchondral bone in the knees that received conventional 

PEG-DA hydrogels likely occurred due to an increased stiffness of hydrogel when 

compared to those fabricated via SIPS/SCPL. However, the comparatively dense 

composition of the conventional PEG-DA hydrogels significantly inhibited tissue 

ingrowth, including fibroplasia/fibrous connective tissue formation and 
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neovascularization (Figure 4.9A,B). Although lymphocyte and plasma cell infiltration 

was more significant in SIPS/SCPL hydrogels (p<0.0184), cellular infiltration was 

minimal to mild and this scoring difference likely reflects a relative increase in overall 

cellularity given extensive intraporous tissue invasion. To summarize, the results of our 

intra-articular PEG-DA hydrogel scaffold in vivo study suggest that while the 

conventional PEG-DA hydrogel scaffolds allowed a more robust healing of the 

subchondral plate and an associated layer of fibrocartilage that bridged the articular 

surface in most cases, there was zero incorporation or “bonding” of conventional PEG-

DA hydrogels with the subchondral bone, as evidence by a complete lack of fibrous 

tissue, bone, or vascular ingrowth. In contrast, PEG hydrogels fabricated via SIPS/SCPL 

allowed marked tissue ingrowth, including fibrous tissue, neovascularization, and 

consistent islands of bone both in the periphery of the hydrogel constructs, but also 

interspersed more deeply within the hydrogels. While these findings confirm tissue 

ingrowth and improved bonding of the SIPS/SCPL system, we believe the 

biomechanical properties of the SIPS/SCPL system explain why the subchondral bone 

and fibrous tissue incompletely covered the articular cartilage lesions in these knees.  

We propose that the next generation of hydrogel scaffolds contain a series of 

interconnecting pores for improved cell survival via attachment, proliferation, and 

migration events (encouraging tissue ingrowth and bonding), but that the biomechanical 

properties of the SIPS/SCPL be improved using the methods described above, or through 

“hybridization” of these two systems, namely a hydrogel scaffold in which 90% or more 

of the scaffold contains pores fabricated through SIPS/SCPL, but that the superficial 
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portion of the scaffold in contact with the joint space be composed of a stiffer zone of 

conventionally fabricated PEG-DA hydrogel.  

In conclusion, the ability to modulate scaffold properties of pore size and 

interconnectivity is of the utmost importance in regards to developing an optimal cell 

infused construct for focal lesions of articular cartilage. In this study we have identified a 

synthetic hydrogel scaffold fabrication method that is compatible with bone marrow 

cMSCs and is shown to integrate with surrounding tissue when implanted in vivo in 

experimentally induced osteochondral defects. This work is foundational for further 

development of the SIPS/SCPL-PEG-DA hydrogel scaffolds for focal osteochondral 

lesions, experimental and translational animal studies, and in the future, veterinary and 

human clinical trials.  
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CHAPTER V 
 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

This dissertation outlines the importance of OC and focal cartilage injury, both of 

which lead to progressive joint OA. The purpose of the research presented herein is to 

explore the use of tissue engineering strategies utilizing cMSCs and novel 3D hydrogel 

scaffolds as a mechanism for treating focal cartilage lesions in the clinical setting. While 

the focus of the present work is orthopedic injuries, the results are more broadly 

applicable to cell-matrix interactions, the selection and use of tissue-specific MSCs for 

tissue engineering strategies, and the development of custom tissue engineering 

scaffolds, or “devices”, to restore structure and function to injured tissues. 

First, in Chapter II, a well-described, 3D, serum-free collagen system was used 

as a model system to demonstrate the importance of growth factors and cell-matrix 

interactions in 3D environments. The role of molecular cell signaling, protein 

expression, and proteinase activation were examined; specifically, the role of PDGF-BB 

and MMP influence on human osteosarcoma invasion in 3D collagen type I matrices. In 

Chapter III, canine MSCs were isolated from synovium, bone marrow, and adipose 

tissue and comprehensively characterize using a donor-matched study and assays 

optimized for the canine species. Characterization was assessed on CFU potential, 

differentiation markers, mRNA expression, proliferation rates, immunomodulatory 

capabilities, and tri-lineage differentiation. Lastly, in Chapter IV, using previously 

characterized cMSCs (Chapter III), two PEG based hydrogel fabrication methods were 

compared in vitro. Additionally, these scaffolds were evaluated for biocompatibility in 
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vivo in both the cutaneous and intra-articular spaces. Collectively, these studies have the 

potential to impact the field of regenerative medicine, specifically tissue engineering, in 

the context of articular cartilage injury and repair.  

In Chapter II, the ability of PDGF-BB to stimulate human OSA cell (MG-63) 

invasion and MMP expression was explored. In particular, study results elucidated the 

specific MT-MMPs involved in 3D collagen type I proteolysis and invasion. Using a 

well-described, quantifiable, serum-free, 3D collagen invasion system, human MG-63 

osteosarcoma cells were seeded on 3.75mg/mL collagen type I matrices containing 

varying dosages of PDGF-BB. Using this system, cells were evaluated in a biologic, 

serum-free environment in which the experimental conditions and supplemental media 

were known.  MG-63 invasion was assessed in response to PDGF-BB, and the 

requirement for both PDGF-BB and MMPs was demonstrated using MMP inhibitors, 

tyrosine kinase receptor inhibitors, and knockdown of MMP gene expression. 

Collectively, these studies demonstrated that MG-63 cells undergo significant invasion 

in response to PDGF-BB in a dose- and time-dependent manner. Furthermore, MT1-

MMP was shown to be the central MMP involved in MG-63 cellular invasion into 

collagen type I matrices, while soluble MMPs such as MMP-1 and MMP-2 were shown 

to be less critical. Despite these pre-clinical observations, one limitation to translational 

use would be that only one cell line of osteosarcoma was evaluated. To further advance 

the field, multiple osteosarcoma cell lines should be assessed for similar responses to 

PDGF-BB prior to considering translational treatment targets. Using data found herein, 

investigators may wish to quantify the MMP profile of other osteosarcoma cell lines, and 
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to confirm their specific roles in invasion responses. In addition, specific molecular 

signaling proteins that are initiated in response to PDGF-BB and subsequent 

involvement in increased transcription and translation for downstream protein expression 

need to be further elucidated. These collective studies would provide important target 

therapies for potential translational treatments.   

In Chapter III, a comprehensive isolation and characterization study of cMSCs 

was performed using a donor-matched study design. Canine MSCs were successfully 

isolated from synovium, bone marrow, and adipose tissues of five individual canine 

donors during surgical treatment for CCL rupture. Nucleated cells were isolated and 

expanded for subsequent studies. Cells were shown to be spindle-shaped, adherent to 

tissue culture plastic, and exhibited a flow cytometry profile typical of MSCs in other 

species. In addition, all cell preparations displayed positive expression for genes 

associated with plasticity or multi-potency. Using assays optimized for the canine cells, 

it was determined that significant differences in cMSCs existed based on tissue source 

and individual donor variability. While all cMSCs exhibited positive expression of 

plasticity-associated markers, NANOG, OCT4, and SOX2, and likewise demonstrated 

CFU capacity, synovial and adipose MSCs proliferated more rapidly and displayed 

higher CFU potential. In osteogenic assays, synovial and marrow cMSCs exhibited 

markedly superior ALP activity as compared to adipose MSCs, although adipose cMSC 

osteogenic differentiation improved with ARS staining of long-term assays. Adipose 

cMSCs exhibited superior adipogenic differentiation. In evaluating chondrogenic 

studies, synovial and adipose cMSCs formed larger chondrogenic pellets although 
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proteoglycan and collagen type II staining varied across cell lines and appeared to be 

more intense in bone marrow pellets. Lastly, it has been recently accepted that 

immunomodulation is a fundamental component of MSCs. To determine if cMSCs 

possess immunomodulatory potential, we established a macrophage/cMSC co-culture 

assay, the first of its kind in the field of cMSCs. Murine macrophages were cultured 

alone or in combination with increasing numbers of cMSCs. Cultures were supplied with 

LPS to initiate activation of macrophages and a subsequent immune response. 

Conditioned culture media were collected and assessed for murine TNF-α and IL-6 

concentrations. These cytokines were used as general indicators of the murine 

macrophage’s inflammatory response to LPS. Significant decreases were observed in 

TNF-α concentration levels with increasing number of cMSCs, regardless of the tissue 

or donor source. In contrast to TNF-α results, IL-6 concentrations were significantly 

increased with increasing cell numbers of cMSCs. Moreover, adipose cMSCs induced a 

significant increase in IL-6 when compared to other tissue sources of cMSCs. Based on 

our comprehensive characterization study, it was determined that all cell preparations 

met established criteria for MSCs. This work will prove useful as a foundation for 

investigators interested in using cMSCs for translational tissue-engineering studies. 

However, future studies are necessary to determine if the tissue source is relevant in the 

context of injection of cMSCs in solution to palliate joint pain, or in the context of using 

cMSCs in combination with 3D scaffolds as tissue engineering devices. The question 

can be stated succinctly as: “Are cMSCs more efficacious in treating focal joint injury 

and OA through tissue engineering strategies/devices or as a therapeutic injection?” To 
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fully answer this question, further work must be performed to analyze the properties of 

cMSCs in both the in vitro and in vivo environments. One key focus for the strategy of 

using cMSCs as a symptomatic agent is the role of cMSCs-toll-like receptor binding and 

subsequent immunomodulatory signaling. Determining the presence and role of specific 

receptors, molecular signaling, and pathways of cMSCs is utmost importance. 

Additional optimization must also be performed to thoroughly understand the 

mechanistic route in which cMSC affect pro- and anti-inflammatory responses. Clearly 

defining the response of cMSCs to local cues, in both the in vitro and in vivo, will enable 

hypothesis-driven studies, evaluation of dosing and dose frequency studies, and 

ultimately lead to properly designed clinical trials (appropriately powered and 

controlled) to determine whether injection of cMSCs in solution into injured joint spaces 

is efficacious.  

In regards to the use of cMSCs as a component of tissue engineering “devices”, 

the ability to drive cMSC differentiation through biologic or synthetic cues is an 

appealing treatment option. One of the main goals of the lab is to develop novel tissue 

engineering strategies for use in osteochondral and osteoarthritic clinical treatments. To 

this end, studies were performed in Chapter IV to evaluate bone marrow cMSCs in 

combination with PEG-DA hydrogels fabricated with conventional or novel methods. 

PEG hydrogels were selected for evaluation due to the fact that they have been shown to 

be tunable and immunologically inert (biocompatible). These studies proved that 

conventionally fabricated PEG hydrogels with photoinitiators Igracure 651 and Igracure 

2959 were not optimal for improved cell health or proliferation of canine bone marrow 
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MSCs. To navigate these obstacles, we evaluated a newly described SIPS/SCPL 

fabrication system. This novel fabrication method created a series of interconnecting 

pores allowing for more accessible media exchange, cell motility, and cell proliferation. 

Bone marrow cMSCs cultured on SIPS/SCPL prepared hydrogels proved to be a highly 

promising cell-scaffold combination, as determined by significant cell proliferation, 

adherence, and spreading as compared to conventionally prepared hydrogels. The 

promising results of these initial studies led to further evaluation of cMSCs on the 

SIPS/SCPL PEG-DA hydrogel system. SIPS/SCPL prepared hydrogels were adjusted to 

modulate pore size from ~181µm to ~459µm and further evaluated in combination with 

bone marrow cMSCs. These studies further confirmed the increased adherence, 

proliferation, and spreading of cMSCs, regardless of the size of the interconnecting 

hydrogel pores. Moreover, mechanical testing exhibited an increased storage modulus 

(i.e. the hydrogels became stiffer) at day 21 as compared to Day 1. These data in 

combination with proliferation and cell morphology results suggest that increased 

cMSCs are coating the SIPS/SCPL hydrogel scaffolds. It is likely that the cMSCs are 

also depositing provisional matrix proteins.   

Due to the impressive performance of the SIPS/SCPL system in vitro, 

comparative studies were performed assessing both the “conventional” Igracure 651 

hydrogel and SIPS/SCPL hydrogels in vivo in the intra-articular space. “Conventional” 

and SIPS/SCPL prepared hydrogels were implanted into 12-week old Sprague-Dawley 

rats and evaluated at 21 days. Results of these studies demonstrated that while the 

conventional PEG-DA hydrogel scaffolds allowed a more robust healing of the 
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subchondral plate and an associated layer of fibrocartilage that bridged the articular 

surface in most cases, incorporation or “bonding” did not occur with the subchondral 

bone. In contrast, PEG hydrogels fabricated via SIPS/SCPL encouraged tissue ingrowth 

(consistent with our in vitro experiments) and led to islands of bone in the peripheral and 

deep zones of the scaffolds. As detailed in Chapter IV, we propose that the next 

generation of hydrogel scaffold contain a series of interconnecting pores for cell 

attachment, tissue ingrowth and bonding with adjacent host tissues, but that the 

superficial zone of the SIPS/SCPL hydrogel scaffold be modulated to markedly increase 

stiffness or that the scaffold be “hybridized” with a thin, yet stiff layer of conventionally 

fabricated PEG-DA hydrogel at the joint surface.  

While these studies provide a foundation for use of the SIPS/SCPL hydrogel 

system for translational articular cartilage tissue engineering studies, further in vitro and 

laboratory animal studies are likely necessary prior to moving to a large animal or 

human setting. Important questions remain surrounding the influence of scaffold 

properties and culture media. Does lineage specific culture media as described in 

Chapter III influence differentiation within 3D scaffolds? Experiments to address this 

question would involve comparing control culture conditions with osteogenic or 

chondrogenic differentiation media using differentiation assays, histology, and real-time 

PCR analyses. Does the modulation of tensegrity (mechanical properties of the scaffold) 

or addition of chemical substrates induce differentiation of MSCs to a specific 

phenotype? One such additional chemical compound that should be studied is PDMSstar. 

PDMSstar is a polymer previously shown to be incorporated into PEG-based scaffolds, 
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altering structural properties and exhibiting inherent osteoinductive properties (Bailey et 

al., 2012; Munoz-Pinto et al., 2012). Initial studies performed in our lab evaluating 

cMSCs cultured in the presence of PDMSstar indicated that there was no significant 

detriment of PDMSstar on cMSC cell health, adhesion, or proliferation. Unfortunately, 

this study currently remains as preliminary data, as it was determined that PDMSstar did 

not remain fully incorporated within the PEG-DA scaffold. However, some degree of 

PDMSstar was present within the scaffold. Thus the results of our preliminary PDMSstar 

experiments leads to the question of the effect of PDMSstar on cMSC viability, 

proliferation, and differentiation. Further analysis and modifications to methods for fully 

incorporating PDMSstar are necessary prior to initiation of PDMSstar studies.  

In conclusion, when comparing the conventionally-fabricated hydrogels to the 

SIPS/SCPL system, bone marrow cMSCs exhibited increased cell-scaffold adhesion, 

viability, and proliferation on PEG-DA hydrogels fabricated using the SIPS/SCPL 

system. Moreover, tuning SIPS/SCPL scaffold pore size did not cause any significant 

differences to the aforementioned assessments. 

 Further exploration of cMSCs in combination with both biologic and synthetic 

scaffolds should be considered to develop a tissue-engineering device for the treatment 

of osteochondral lesions such as OC, small traumatic joint injuries, or focal OA. 

Collectively, this dissertation outlines the importance of OC, traumatic cartilage injury, 

OA, and the use of 3D scaffolds as a potential tissue engineering treatment in the clinical 

setting. Work presented herein clearly demonstrates the modulation of both biologic and 
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synthetic 3D systems for translation into in vivo studies. These data may lead to novel 

treatments of OC and OA in clinical patients, both human and veterinary.  
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APPENDIX 

 

Appendix 1.1 Colony forming unit (CFU) assay for all 15 cell preparations. Colony 
forming unit (CFU) potential of primary cell populations for all 15 donors was assessed. 
1x103 total cells (synovium and adipose) or 4.5x105 total cells (marrow) were seeded on 
55 cm2 plates (n=3) and incubated for 21 days without media exchange. Plates were 
stained with 0.01% Crystal Violet and colony counts were performed on each plate. 
Representative photographs of CFU plates for each tissue from each individual donor.  
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Appendix 1.2. Colony forming unit efficiency. Colony forming unit (CFU) potential of 
primary cell populations for all 15 tissue samples. 1x103 total cells (synovium and 
adipose) or 4.5x105 total cells (marrow) were seeded on 55 cm2 plates (n=3) and 
incubated for 21 days without media exchange. Plates were stained with 0.01% Crystal 
Violet and colony counts were performed on each plate. CFU efficiency is defined as the 
number of colonies present divided by total number of seeded cells. Data are reported as 
mean ± SD (n=3 plates/tissue). A-E) Individual donor CFU efficiency. F) All donor 
CFU efficiency organized in descending order.  
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Appendix 1.3. Colony forming unit (CFU) mean colony area. Colony forming unit 
(CFU) mean colony area of primary cell populations for all 15 tissue samples. 1x103 
total cells (synovium and adipose) or 4.5x105 total cells (marrow) were seeded on 55 
cm2 plates and incubated for 21 days without media exchange. Plates were stained with 
0.01% Crystal Violet and individual colony area measured (n=3 plates/tissue) using 
ImageJ software. CFU mean colony area is defined as colony surface area (cm2) divided 
by the number of colonies. Data are reported as mean ± SD. A-E) Individual donor CFU 
mean colony area. F) All donor CFU mean colony area organized in descending order.  
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Appendix 1.4. Flow cytometry for all 15 cell preparations. A-E) Percentage positive 
cells from synovium, marrow, and adipose cMSCs isolated from five individual canine 
donors. F) Mean ± SD percentage positive cells synovium, marrow, and adipose cMSCs 
isolated from all five canine donors.   
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Appendix 1.5. Short-term proliferation rates of cMSCs from synovium, bone marrow, 
and adipose tissues. Short-term proliferation was determined over a 10 day time course. 
Passage 2 cells were seeded at 100 cells/cm2 in CCM on 12-well plates (n=3 wells/cell 
line) with media exchange every other day. A-E) Mean cell number from each 
individual donor was determined daily using DNA quantification. F) Scatter-plot 
demonstrating proliferation of all cell lines at days 5 and 10. Each data point represents 
the cell number for an individual cell line (bar=mean).   
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Appendix 1.6. Long-term proliferation rates of cMSCs from synovium, bone marrow, 
and adipose tissues. Long-term proliferation was determined over a 5 passage, 25 day 
time course. Passage 2 cMSCs were seeded at 100 cells/cm2 in CCM on 55 cm2 plates 
(n=3 plates/cell preparation/passage) with media exchange every other day. At 5 day 
intervals, cells were washed, trypsinized, recovered, cell number determined using a 
hemocytometer, and re-plated at 100 cells/cm2. Long-term proliferation rates were 
determined using the population doubling equation. A-E) Individual population 
doubling. F) Scatter-plot for all 15 cMSC preparations (mean ± SD) at Passage 1 and 5. 
Each data point represents the population-doubling rate for an individual cMSC 
preparation (bar=mean population doubling rate across the 5 donors).  
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Appendix 1.7. Adipogenesis of synovium, marrow, and adipose of an individual cMSC 
donor. Passage 2 cMSCs were cultured in quadruplicate wells in CCM or modified 
adipogenic media with media exchange twice weekly. At 21 days, cells were formalin 
fixed and evaluated for lipid accumulation with Oil Red O (bar=25µm).  
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Appendix 1.8. Adipogenesis of synovium, marrow, and adipose of an individual cMSC 
donor. Passage 2 cMSCs were cultured in quadruplicate wells in CCM or modified 
adipogenic media with media exchange twice weekly. At 21 days, cells were formalin 
fixed and evaluated for lipid accumulation with Oil Red O (bar=25µm).  
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Appendix 1.9. Adipogenesis of synovium, marrow, and adipose of an individual cMSC 
donor. Passage 2 cMSCs were cultured in quadruplicate wells in CCM or modified 
adipogenic media with media exchange twice weekly. At 21 days, cells were formalin 
fixed and evaluated for lipid accumulation with Oil Red O (bar=25µm).  
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Appendix 1.10. Adipogenesis of synovium, marrow, and adipose of an individual cMSC 
donor. Passage 2 cMSCs were cultured in quadruplicate wells in CCM or modified 
adipogenic media with media exchange twice weekly. At 21 days, cells were formalin 
fixed and evaluated for lipid accumulation with Oil Red O (bar=25µm).   
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Appendix 1.11. Adipogenesis of synovium, marrow, and adipose of an individual cMSC 
donor. Passage 2 cMSCs were cultured in quadruplicate wells in CCM or modified 
adipogenic media with media exchange twice weekly. At 21 days, cells were formalin 
fixed and evaluated for lipid accumulation with Oil Red O (bar=25µm).   
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Appendix 1.12. Oil Red O quantification of adipogenic synovium, bone marrow, and 
adipose cMSCs. Passage 2 cMCs were cultured in quadruplicate wells and supplied with 
CCM or adipogenic media.  At 21 days, cells were formalin fixed and evaluated for lipid 
accumulation with Oil Red O. A-E) Oil Red O quantification (mean ± SD) for five 
individual donors. F) Extraction values for adipogenic conditions for all 15 cell lines. 
CCM values have been subtracted from adipogenic values. Data are reported in 
descending order for each tissue.   
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Appendix 1.13. Short-term osteogenesis of synovium, marrow, and adipose cMSCs from 
an individual donor. Short-term osteogenesis was determined using the alkaline 
phosphatase activity (ALP) assay. Passage 2 cMSCs were cultured in CCM, OBM, or 
OBM + rhBMP-2 for 7 days and evaluated for the ability to convert the colorless 
substrate PNPP to colorimetric PNP over time. ALP activity was determined by 
spectrophotometer (absorbance 405nM) over a 20-minute time course. A-C) Kinetic 
ALP activity results for synovium, bone marrow, and adipose cMSCs preparations from 
an individual donor are shown. D) ALP activity normalized to cell number by DNA 
quantification for synovium, bone marrow, and adipose from an individual donor are 
shown.  
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Appendix 1.14. Short-term osteogenesis of synovium, marrow, and adipose cMSCs from 
an individual donor. Short-term osteogenesis was determined using the alkaline 
phosphatase activity (ALP) assay. Passage 2 cMSCs were cultured in CCM, OBM, or 
OBM + rhBMP-2 for 7 days and evaluated for the ability to convert the colorless 
substrate PNPP to colorimetric PNP over time. ALP activity was determined by 
spectrophotometer (absorbance 405nM) over a 20-minute time course. A-C) Kinetic 
ALP activity results for synovium, bone marrow, and adipose cMSCs preparations from 
an individual donor are shown. D) ALP activity normalized to cell number by DNA 
quantification for synovium, bone marrow, and adipose from an individual donor are 
shown.  
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Appendix 1.15. Short-term osteogenesis of synovium, marrow, and adipose cMSCs from 
an individual donor. Short-term osteogenesis was determined using the alkaline 
phosphatase activity (ALP) assay. Passage 2 cMSCs were cultured in CCM, OBM, or 
OBM + rhBMP-2 for 7 days and evaluated for the ability to convert the colorless 
substrate PNPP to colorimetric PNP over time. ALP activity was determined by 
spectrophotometer (absorbance 405nM) over a 20-minute time course. A-C) Kinetic 
ALP activity results for synovium, bone marrow, and adipose cMSCs preparations from 
an individual donor are shown. D) ALP activity normalized to cell number by DNA 
quantification for synovium, bone marrow, and adipose from an individual donor are 
shown.  
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Appendix 1.16. Short-term osteogenesis of synovium, marrow, and adipose cMSCs from 
an individual donor. Short-term osteogenesis was determined using the alkaline 
phosphatase activity (ALP) assay. Passage 2 cMSCs were cultured in CCM, OBM, or 
OBM + rhBMP-2 for 7 days and evaluated for the ability to convert the colorless 
substrate PNPP to colorimetric PNP over time. ALP activity was determined by 
spectrophotometer (absorbance 405nM) over a 20-minute time course. A-C) Kinetic 
ALP activity results for synovium, bone marrow, and adipose cMSCs preparations from 
an individual donor are shown. D) ALP activity normalized to cell number by DNA 
quantification for synovium, bone marrow, and adipose from an individual donor are 
shown.  
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Appendix 1.17. Short-term osteogenesis of synovium, marrow, and adipose cMSCs from 
an individual donor. Short-term osteogenesis was determined using the alkaline 
phosphatase activity (ALP) assay. Passage 2 cMSCs were cultured in CCM, OBM, or 
OBM + rhBMP-2 for 7 days and evaluated for the ability to convert the colorless 
substrate PNPP to colorimetric PNP over time. ALP activity was determined by 
spectrophotometer (absorbance 405nM) over a 20-minute time course. A-C) Kinetic 
ALP activity results for synovium, bone marrow, and adipose cMSCs preparations from 
an individual donor are shown. D) ALP activity normalized to cell number by DNA 
quantification for synovium, bone marrow, and adipose from an individual donor are 
shown.  
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Appendix 1.18. Short-term osteogenesis of synovium, marrow, and adipose cMSCs from 
an individual donor. A-E) ALP activity normalized to cell number by DNA 
quantification from each individual donor as shown Supplemental figures 13-17. F) 
Scatter plots demonstrating ALP activity for all 15 cMSC preparations organized by 
tissue and media condition. Each data point represents the ALP activity per cell for an 
individual cMSC preparation and a given media condition (bar=mean across the 5 
donors).  



 

 206 

 

Appendix 1.19. Long-term osteogenesis of synovium, marrow, and adipose of an 
individual  cMSC donor. Passage 2 cMSCs were cultured in triplicate wells in CCM or 
ODM with media exchange twice weekly. After 21 days of culture in CCM (left column) 
or ODM + 200ng/mL of rhBMP-2 (middle and right columns) monolayers were fixed in 
10% formalin and stained with ARS. Plates were photographed (left and middle 
columns) and imaged with 10X objective light microscopy (right column) to document 
ARS accumulation (bar=125µm).   
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Appendix 1.20. Long-term osteogenesis of synovium, marrow, and adipose of an 
individual  cMSC donor. Passage 2 cMSCs were cultured in triplicate wells in CCM or 
ODM with media exchange twice weekly. After 21 days of culture in CCM (left column) 
or ODM + 200ng/mL of rhBMP-2 (middle and right columns) monolayers were fixed in 
10% formalin and stained with ARS. Plates were photographed (left and middle 
columns) and imaged with 10X objective light microscopy (right column) to document 
ARS accumulation (bar=125µm).  
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Appendix 1.21. Long-term osteogenesis of synovium, marrow, and adipose of an 
individual  cMSC donor. Passage 2 cMSCs were cultured in triplicate wells in CCM or 
ODM with media exchange twice weekly. After 21 days of culture in CCM (left column) 
or ODM + 200ng/mL of rhBMP-2 (middle and right columns) monolayers were fixed in 
10% formalin and stained with ARS. Plates were photographed (left and middle 
columns) and imaged with 10X objective light microscopy (right column) to document 
ARS accumulation (bar=125µm).  
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Appendix 1.22. Long-term osteogenesis of synovium, marrow, and adipose of an 
individual  cMSC donor. Passage 2 cMSCs were cultured in triplicate wells in CCM or 
ODM with media exchange twice weekly. After 21 days of culture in CCM (left column) 
or ODM + 200ng/mL of rhBMP-2 (middle and right columns) monolayers were fixed in 
10% formalin and stained with ARS. Plates were photographed (left and middle 
columns) and imaged with 10X objective light microscopy (right column) to document 
ARS accumulation (bar=125µm).  
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Appendix 1.23. Long-term osteogenesis of synovium, marrow, and adipose of an 
individual  cMSC donor. Passage 2 cMSCs were cultured in triplicate wells in CCM or 
ODM with media exchange twice weekly. After 21 days of culture in CCM (left column) 
or ODM + 200ng/mL of rhBMP-2 (middle and right columns) monolayers were fixed in 
10% formalin and stained with ARS. Plates were photographed (left and middle 
columns) and imaged with 10X objective light microscopy (right column) to document 
ARS accumulation (bar=125µm).   
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Appendix 1.24. Long-term osteogenesis of synovium, marrow, and adipose cMSCs. 
Passage 2 cMSCs were cultured in triplicate wells in CCM or ODM with media 
exchange twice weekly. After 21 days of culture in CCM or ODM + 200ng/mL of 
rhBMP-2 monolayers were fixed in 10% formalin and stained with ARS. A-E) ARS 
extraction (mean ± SD) for each individual donors. F) ARS extraction values (mean ± 
SD) for all 15 cMSC preparations. CCM values have been subtracted from osteogenic 
values to facilitate presentation of results. Data are reported in descending order for each 
tissue.  
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Appendix 1.25. Chondrogenesis of synovium, marrow, and adipose of an individual 
cMSC donor. Passage 2 cMSCs were evaluated for chondrogenesis using the micromass 
pellet technique. 5x107 cells from each cMSC preparation were pelleted in triplicate and 
incubated for 21 days in chondrogenic medium with media exchange twice weekly. 
Pellets were photographed (gross images, bar=300µm), formalin fixed, and sectioned for 
histology. Pellets were positive for proteoglycan (toluidine blue) and collagen type II 
(10X objective, bar=150µm).  
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Appendix 1.26. Chondrogenesis of synovium, marrow, and adipose of an individual 
cMSC donor. Passage 2 cMSCs were evaluated for chondrogenesis using the micromass 
pellet technique. 5x107 cells from each cMSC preparation were pelleted in triplicate and 
incubated for 21 days in chondrogenic medium with media exchange twice weekly. 
Pellets were photographed (gross images, bar=300µm), formalin fixed, and sectioned for 
histology. Pellets were positive for proteoglycan (toluidine blue) and collagen type II 
(10X objective, bar=150µm). 
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Appendix 1.27. Chondrogenesis of synovium, marrow, and adipose of an individual 
cMSC donor. Passage 2 cMSCs were evaluated for chondrogenesis using the micromass 
pellet technique. 5x107 cells from each cMSC preparation were pelleted in triplicate and 
incubated for 21 days in chondrogenic medium with media exchange twice weekly. 
Pellets were photographed (gross images, bar=300µm), formalin fixed, and sectioned for 
histology. Pellets were positive for proteoglycan (toluidine blue) and collagen type II 
(10X objective, bar=150µm). 
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Appendix 1.28. Chondrogenesis of synovium, marrow, and adipose of an individual 
cMSC donor. Passage 2 cMSCs were evaluated for chondrogenesis using the micromass 
pellet technique. 5x107 cells from each cMSC preparation were pelleted in triplicate and 
incubated for 21 days in chondrogenic medium with media exchange twice weekly. 
Pellets were photographed (gross images, bar=300µm), formalin fixed, and sectioned for 
histology. Pellets were positive for proteoglycan (toluidine blue) and collagen type II 
(10X objective, bar=150µm). 
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Appendix 1.29. Chondrogenesis of synovium, marrow, and adipose of an individual 
cMSC donor. Passage 2 cMSCs were evaluated for chondrogenesis using the micromass 
pellet technique. 5x107 cells from each cMSC preparation were pelleted in triplicate and 
incubated for 21 days in chondrogenic medium with media exchange twice weekly. 
Pellets were photographed (gross images, bar=300µm), formalin fixed, and sectioned for 
histology. Pellets were positive for proteoglycan (toluidine blue) and collagen type II 
(10X objective, bar=150µm).  
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Appendix 1.30. Chondrogenesis of synovium, marrow, and adipose of an individual 
cMSC donor. Passage 2 cMSCs were evaluated for chondrogenesis using the micromass 
pellet technique. 5x107 cells from each cMSC preparation were pelleted in triplicate and 
incubated for 21 days in chondrogenic medium with media exchange twice weekly. 
Pellets were photographed, formalin fixed, and sectioned for histology. A-E) Pellet 
morphometry for each individual donor (mean ± SD). F) Pellet area (mm2) of 
chondrogenic pellets for all 15 cMSC preparations. Data are reported in descending 
order for each tissue.  
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Appendix 1.31. Immunomodulation of murine TNF-a by synovium, marrow, and 
adipose cMSCs. Passage 2 cMSCs (1x103–50x103) were co-cultured with 1x104 murine 
macrophage cells in 12 well plates in CCM (n=3 wells/condition). After 24hrs, LPS 
(0.5µg/mL) was added to co-cultures to activate macrophages and to assess cMSCs 
immunomodulation. After 18hrs, media were collected and ELISA performed to 
determine the concentration of secreted murine TNF-a. A-E) Murine TNF-a 
concentrations (mean ± SD) for all individual donors. RAW + LPS denotes TNF-a 
concentration from murine macrophages (RAW cells) in the absence of cMSCs (positive 
control).   
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Appendix 1.32. Immunomodulation of murine TNF-a by synovium, marrow, and 
adipose cMSCs. Passage 2 cMSCs (1x103–50x103) were co-cultured with 1x104 murine 
macrophage cells in 12-well plates in CCM (n=3 wells/condition). After 24hrs, LPS 
(0.5µg/mL) was added to co-cultures to activate macrophages and to assess cMSCs 
immunomodulation. After 18hrs, media were collected and ELISA performed to 
determine the concentration of secreted murine TNF-a. A-E) Data from each individual 
donor in Supplemental Figure 25 were transformed to reflect the percentage change in 
TNF-a relative to the RAW + LPS positive control. F) Comparative analysis across all 
15 cMSC preparations reported as mean ± SD.  
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Appendix 1.33. Immunomodulation of murine IL-6 by synovium, marrow, and adipose 
cMSCs. Passage 2 cMSCs (1x103–50x103) were co-cultured with 1x104 murine 
macrophage cells in in CCM (n=3 wells/condition). After 24hrs, LPS (0.5µg/mL) was 
added to co-cultures to activate macrophages and to assess cMSCs immunomodulation. 
After 18hrs in LPS stimulated co-culture, media were collected and ELISA performed to 
determine the concentration of secreted murine IL-6. A-E) Murine IL-6 concentrations 
(mean ± SD) for all individual donors. RAW + LPS denotes IL-6 concentration from 
murine macrophages (RAW cells) in the absence of cMSCs (positive control).  
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Appendix 1.34. Immunomodulation of murine IL-6 by synovium, marrow, and adipose 
cMSCs. Passage 2 cMSCs (1x103–50x103) were co-cultured with 1x104 murine 
macrophage cells in 12-well plates in CCM (n=3 wells/condition). After 24hrs, LPS 
(0.5µg/mL) was added to co-cultures to activate macrophages and to assess cMSCs 
immunomodulation. After 18hrs in LPS stimulated co-culture, media were collected and 
ELISA performed to determine the concentration of secreted murine IL-6. A-E) Data 
from each individual donor in Supplemental Figure 27 were transformed to reflect the 
percentage change in IL-6 relative to the RAW + LPS positive control. F) Comparative 
analysis across all 15 cMSC reported as mean ± SD. 




