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ABSTRACT 

  

The island of Bonaire is an isolated carbonate platform that is formed of Miocene 

to modern carbonate successions overlying a Cretaceous igneous basement. We show 

that the igneous basement of the island of Bonaire, Netherland Antilles controls the 

seafloor topography and subsequently governs the location of most of the carbonate 

deposits especially the Holocene coral reef and the downslope transport of sediment. Our 

analysis from this combined sedimentary study focuses on; 1) identifying the source of 

the islands main sediment supply, where sediment is derived from and quantifying the 

sediment budget; 2) evaluating the main sediment transport mechanisms throughout the 

system and indicating the most influential factor; 3) assessing sediment transport from 

the coast to the basin by identifying sediment pathways and their morphology; and 4) 

locating sediment accumulation zones in all areas of the offshore environment.  

To archive our objectives, we acquired ~172 km of 2D multichannel seismic 

reflection profiles on the western side of Bonaire to evaluate the marine environment off 

the coast of this isolated carbonate platform. By the integration of previous studies, both 

geological and geophysical, in addition to an assessment of Quaternary marine 

sedimentary processes within the system, we focus on the slope processes including 

sediment production and distribution. Production from both terrigenous and marine 

sources as well as transport mechanisms including mass transport and gravity driven 

downslope movement are studied. This study highlights the importance of understanding 

the morphology of the antecedent substrate on which a carbonate environment is 
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produced and how the climate and environment of Bonaire play a large role in sediment 

transport throughout our local system. The sediment processes observed in our study 

reveal contributing factors to the persistent carbonate production offshore Bonaire 

throughout the Quaternary and provide a modern analogue for other isolated carbonate 

platforms.  
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1. INTRODUCTION

The island of Bonaire is located roughly 60 miles off the north coast of 

Venezuela in the Caribbean Sea (Fig. 1.1). Along with Aruba and Curaçao, the islands 

make up a chain known as the ABC islands that are part of the Leeward Antilles Ridge, 

which is located within the tectonically complex South Caribbean Plate Boundary Zone 

(SCPBZ). Bonaire was initially formed by volcanism in the early Cretaceous and 

uplifted as a result of subduction of the Caribbean plate beneath the South American 

plate starting in the Oligocene (Gorney et al., 2007; Hippolyte and Mann, 2011) and is 

classified as an isolated carbonate platform (Read, 1985). The morphology and 

evolution of the island is influenced by glacio-eustatic sea level fluctuations, tectonic 

uplift and subsidence, and physical geographic factors (Alexander, 1961; Hippolyte and 

Mann, 2011; Sulaica, 2015). 

Carbonate production has occurred around the island since the early Pleistocene 

(Bandoain and Murray, 1974; De Buisonje, 1974; Sulaica, 2015). Four Pleistocene 

limestone terraces are exposed on land and formed due to sea level and tectonic 

influences (Alexander, 1961; Sulaica, 2015). The semiarid climate, location in warm 

tropical waters, and protection from high wave energy on the leeward (west) side of the 

island makes Bonaire an ideal region for coral growth and governed carbonate 

production since the Pleistocene (Taylor and Alfaro, 2005; van Duyl, 1985). Modern 

carbonate growth is expressed as a double-fringing reef on the west side of Bonaire with 

over 44 coral species (Green, 2012; Keller, 2011).  
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Holocene sediment within the Bonaire carbonate system is derived from two main 

sources; 1) sediment from the modern reef, both biogenically produced and bioeroded 

(Hall, 1999; Perry et al., 2012) and 2) climatic agents producing onshore erosion and 

run-off (Muhs et al., 2012; van Duyl, 1985). Previous studies state that sediment is 

predominantly located in grooves within the shallow marine terrace, <15 m water depth 

(Goreal and Land, 1974; van Duyl, 1985), and in sediment chutes that carry sediment 

from the shallow fore-reef to the deep fore-reef (Bak, 1977; Hall, 1999). 

This study will use and an integration of marine 2D seismic reflection profiles 

acquired off the west coast of Bonaire as well as an accumulation of previous land, dive, 

and geophysical studies to evaluate the Quaternary marine sediment system. We aim to 

answer question about the location and morphology of sediment pathways from the near 

to offshore environment, how the seafloor topography is affecting those pathways, and 

factors influencing sediment accumulation occurring within the system. Information 

about these sedimentary processes helps us define the factors that are contributing to this 

thriving reef environment that has limited sediment supply and is located in a semiarid 

climate, and provides a better understanding to analogous systems.  
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1.1 Geologic Background 

The island originated due to submarine volcanism during the early Cretaceous. 

During the mid to late Cretaceous into the Cenozoic, tectonic interaction between the 

Caribbean plate and the South American plate caused subsidence and shallow angle, 

southward-directed subduction (Gorney et al., 2007; Hippolyte and Mann, 2011; Silver 

et al., 1975). The plate collision lead to the development of an accretionary wedge as the 

sedimentary material from the Caribbean Plate underthrusts the South American plate 

(Kellogg, 1984; Levander et al., 2006). The tectonic activity from the plate motion 

resulted in a 600 km wide plate boundary zone (Fig. 1.1) known as the South Caribbean 

Plate Boundary Zone (SCPBZ) that spans from Northern Venezuela out to the 

Venezuelan Basin (Gorney et al., 2007; Silver et al., 1975). As the Caribbean plate 

moves at ~20 mm/yr to the east relative to South America, both compressional and 

extensional structures are created in this zone (Hippolyte and Mann, 2011; Pérez et al., 

2001; Trenkamp et al., 2002). 

The Leeward Antilles volcanic island arc was structurally uplifted along the plate 

boundary and in modern times is topographically expressed along the SCPBZ as the 

ABC islands. The island basement consists mainly of volcanic rock with structural 

deformation resulting from the accretion of the Leeward Antilles caused by the collision 

of the Caribbean and South American plate during the Cretaceous (Beets et al., 1977; 

Hippolyte and Mann, 2011). This formation is known as the Washikemba Formation and 
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ranges up to a few thousand meters thick with a composition consisting mainly of 

rhyolite and dacite (Beets et al., 1977). 

1.1.1 Climate, Physical Geography, and Sea Level History 

The climate of Bonaire is semiarid, receiving less than 60 cm of rain per year 

with a majority of that during the months of October through January (Taylor and 

Alfaro, 2005). Easterly trade winds constantly blow on the east side of the island at an 

average of ~7.2 m/s, while the west side is protected from strong wind speeds (Bak, 

1977). This creates wave heights up to 3.5 m high on the windward side of the island 

and less than 1 m on the leeward side (Taylor and Alfaro, 2005; van Duyl, 1985). The 

current flow around the island is governed by the Caribbean Current that flows from the 

southeast around Bonaire at an average of less than 0.5 m/s (Gordon, 1967; Sandin et al., 

2008). These typical values of wave heights, wind speed, and current flow are fairly 

constant year round and are only affected by large storms roughly every 4-5 years 

(Meyer et al., 2003). Storm occurrences that affect the island are sparse due to the 

location of the island being south of the Caribbean hurricane belt (Meyer et al., 2003). 

Glacio-eustatic sea level fluctuations have greatly influenced the morphology of 

Bonaire. During the Pleistocene, sea level variations and tectonic uplift resulted in four 

carbonate terraces to form around the island (Fig. 1.2) (Escalona and Mann, 2011; Muhs 

et al., 2012; Sulaica, 2015). During interglacial periods carbonate systems were 

deposited and subsequently exposed during glacial periods and uplift (Fig. 1.3) (Muhs et 
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al., 2012). Following the Pleistocene, the Last Glacial Maximum (LGM) occurred 

resulting in the sea level around the Caribbean to be 121± 5 m below current sea level 

(Fairbanks, 1989). Since then sea level has been on a rise during the Holocene and 

studied locally on Bonaire by Engel et al. (2014) using mangroves and lagoonal 

sediment cores (Fig. 1.4) 

 

1.1.2 Carbonate Deposition 

 

Pijpers (1933) published some of the first stratigraphic descriptions of the 

carbonates on Bonaire. Since then authors including, Bandoain and Murray (1974), De 

Buisonje (1974), Hippolyte and Mann (2011), and Sulaica (2015) have developed a 

more complete story of the carbonate stratigraphy through outcrop and core studies on 

land. Among the first succession of carbonate deposits are the thin, ~30 m thick, deposit 

of the Cretaceous Maastrichtian Ricon limestone. These are overlain by the Soebi 

Blanco conglomerate that is derived from both the Ricon limestone and the underlying 

volcanics (Pijpers, 1933). During the Miocene and through the Pliocene carbonate 

deposition continued and is exposed on land today as the Seroe Domi Formation (De 

Buisonje, 1974). The Seroe Domi can be identified based on its high angle dip and 

outcrops on the northern portion of the island (Fig. 1.5). 

Overlying the Seroe Domi is a sequence of Pleistocene carbonate terraces that 

are exposed throughout the island, on both the leeward and windward sides (Fig. 1.5). 

The terraces are a result of continuous deposition and subsequent erosion as tectonic 
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deformation and glacio-eustatic sea level changes. Alexander (1961) and Engel et al. 

(2010) have further classified terraces morphology on the ABC islands and related the 

unique characteristics of the terrace profiles to trade winds and wave patterns. Sulaica 

(2015) studied the four exposed terraces on Bonaire using thin sections made from hand 

samples and cores that also underwent XRD analysis. His results provided detailed 

facies descriptions of internal terrace strata and information regarding their 

paleogeographic evolution.  

 

1.1.3 Holocene Carbonate System 

 

Holocene Carbonate System around the island has been studied by numerous 

authors including Lucia (1968), Bak (1977), Hall (1999), Engel et al. (2010), Keller 

(2011), and Green (2012).The sediment supply for the island is mainly controlled by the 

climate and the modern reef. Onshore sediment studies in the southern portions of the 

island show sediment filling Pleistocene carbonate depressions. This strata has been 

studied utilizing outcrop data and cores and is classified as supratidal deposits during a 

relative sea level high (Lucia, 1968).  Holocene sediment also appears in three alluvial 

sites and multiple bokas (lagoons) around the island. This sediment is currently 

separated from the open ocean by a 9 m high ridge of coral rubble and is interpreted to 

be deposition from flooding during large storm events and lagoonal deposits from a pre-

existing high stand sea level (Engel et al., 2013b). Modern onshore processes generating 
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sediment are limited to minute volumes of sediment derived from erosion of the 

Pleistocene carbonates during rare high winds or heavy rainfalls.  

Sedimentation offshore is derived from carbonate reef production and marine 

organisms. The reef on the west side of Bonaire is classified as a double fringing reef 

with the first reef at depths of 10-40 m and the second at depths from 75-115 m (Keller, 

2011). The reef has over 44 different species and is comprised of hard coral, soft coral 

and algae, sponges, unlithofied sediment, and coral rubble (Green, 2012; Keller, 2011). 

In the modern system multiple marine species including the A. palmata reef zone, 

Porites Porites Montastrea and benthic foraminifera, among others, act as a constant 

source of biogenic sediment supply (Hall, 1999). Sea organisms, such as urchins, and 

Clinoid sponges also account for current sediment production due to bioerosion 

processes (Hall, 1999). All together though, the island has a relatively low sediment 

budget compared to that of other modern carbonate environments (Bak et al., 2005; 

Madden et al., 2013). The lack of abundant sediment accumulation helps protect the reef 

from sediment suffocation allowing it to be one of the most flourishing modern reefs 

(Green, 2012). 

 

1.1.4 This Study 

 

This purpose of this study is to perform a geophysical analysis of the Quaternary 

marine sedimentary system on the leeward side of Bonaire, by utilizing 2D marine 

seismic reflection data collected by our research group, bathymetry and classification 
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maps of near shore environments (Keller, 2011), and multiple dive studies of the modern 

reef (Bak, 1977; Focke, 1978; Green, 2012; Hall, 1999; van Duyl, 1985). Specific 

questions addressed include: (1) How is the seafloor topography affecting carbonate 

production, reef growth and sedimentation? (2) What are the main sources of sediment 

around the island and does their distribution vary? (3) What are the effects of common 

environmental factors on sediment distribution around the island? (4) Is sediment being 

trapped within the system and if so where and why is accumulation occurring in these 

locations? 

 

1.2 2D Marine Seismic Reflection Data 

 

This investigation into the Quaternary sedimentary processes of the Bonaire 

carbonate system will utilize multichannel seismic (MCS) dataset acquired in November 

2014. The survey includes ~172 km of 2D MCS data on the western coast of Bonaire 

(Fig. 1.6). The source used in the acquisition was a DuraSparker manufacturer by 

Applied Acoustics. The frequency used during acquisition ranged from 300 to 1200 Hz 

with a max power of 1200J. The data was recorded on a 144 m-long, 24 channel 

streamer with a channel spacing of 6.25m; each channel contained 4 hydrophones.  

The shot spacing for the survey was at 6-second intervals with an average boat 

speed of 4 knots resulting in an ~12.35 m shot spacing and a maximum of six fold.  The 

survey design included interconnected lines orientated in multiple directions to image 

carbonate growth patters, sedimentation patterns, and seafloor topography.  
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1.3 Methods: Processing and Interpretation 

 

The seismic dataset was processed using Paradigm processing software Echos. 

Beginning processing steps involved setting up the geometry to match our survey design 

and performing a coarse data quality check through each line to filter any bad channels 

or shots within the lines. Next a spectral frequency analysis was performed one each line 

in order to accurately perform a true amplitude recovery, automatic gain control, and 

bandpass filtering. These steps were followed by a deconvolution of the data signal, 

velocity analysis, and a normal moveout. Lastly, a stack, finite-difference time 

migration, and muting were to maximize image quality. Detailed processing steps are 

provided in the appendix.  

After processing, interpretations were made of the seafloor, carbonate packages, 

sedimentation, and faults using 2D Canvas and Section in the Paradigm suite. The 

seafloor was gridded individually in the north, central, and south areas of data collection 

sites using the Kriging algorithm in Paradigm.  
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2. OBSERVATIONS AND INTERPRETATIONS 

 

2.1 Vertical Resolution 

 

 Following the Rayleigh Criterion for vertical resolution, a reflective interface 

must be ~1/4 wavelength in thickness to discern between separate reflections (Sheriff, 

1992). This value can be determined by knowing velocity of the material and frequency 

information of the geophysical source since the wavelength equals velocity divided by 

frequency (Sheriff, 1992). As mentioned above the frequency of the sparker signal 

ranges from 300 HZ to 1.2 kHz. Spectral analysis reveals a dominant frequency of ~600 

Hz. We assume P-wave velocity values at the seafloor to be 1,800 m/s for marine 

sediments (Griffiths, 1981), 5,000 m/s for carboniferous limestone (Kahraman and 

Yeken, 2008), and 6,000 m/s for igneous rocks (Griffiths, 1981). With these assumed 

velocities this survey has vertical resolution values of ~0.75 m in sediment at the 

seafloor, ~2 m in carbonate rock, and ~2.5 m in igneous rock.  Knowledge of these 

values allows different scale interpretations dependent upon rock type. 

 

2.2 Acoustic Energy 

 

 In the majority of the 2D MCS dataset, the only seismic reflector is the seafloor. 

This is due to the high impendence contrast created from the acoustic energy traveling 

through the water column, at a velocity of 1,500 m/s and density of 1 g/cm3, and 
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immediately contacting the modern seafloor substrate, a hard rock surface comprised of 

carboniferous limestone and igneous rock (Griffiths, 1981; Soest et al., 2014). 

Carboniferous limestone has a velocity of 5,000 m/s and a density of ~2.4 g/cm3 

(Kahraman and Yeken, 2008) and igneous rocks have a velocity of 6,000 m/s and a 

density of ~3.0 g/cm3 (Griffiths, 1981). This significant difference between water 

properties and the properties of the hard rock substrate creates a large difference in the 

acoustic impedance which affects the reflection coefficient between the layers and 

subsequently the attenuation of the signal (Yilmaz, 2001). A majority of the acoustic 

energy bounces off the hard seafloor, back through the water column resulting in the 

reflection of a strong multiple throughout the data, and very little attenuation into the 

subsurface. This impedance contrast occurs from both the carbonate and igneous 

substrates making it nearly impossible to distinguish between the two rock types in our 

dataset.  

 

2.3 Seismic Observation of Sub-Seafloor Reflectors 

 

 Although the seafloor in the study region has created a high impedance contrast 

between the water and the hard rock substrate, throughout the survey six of the 2D 

seismic profiles contain reflectors beneath the seafloor: lines 12, 18, 25, 31, 32, and 37 

(Fig. 2.1). The buried reflectors are located near the seafloor at water depths ranging 

from 380 to 660 ms TWT, vary in length from 430 to 2,000 m and are concave up with 

varying degrees on concavity (Figs. 2.2 and 2.3). In each location coherent reflections 
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cannot be observed in the zone between the seafloor and this reflector. The maximum 

thickness of this zone ranges from ~40 to 60 ms. The sub-seafloor reflector acts as the 

base of this feature, that is bound by the seafloor and this reflector. The sub-seafloor 

reflectors can be sorted into groups based on their overall shape: 1) those located at the 

base of lens-shaped feature at the seafloor (Fig. 2.3d, e), and 2) reflectors that exhibit a 

hummocky or undulating pattern at the base of this feature (Fig. 2.3a-c, f). The reflectors 

at the base of the lens shaped features are laterally continuous, while the hummocky 

reflectors are laterally discontinuous (Figs. 2.2 and 2.3). The feature in line 32 has a 

unique characteristic from the other five lines; it is over 1,000 m longer than the other 

features observed in the subsurface and it creates a positive topographic relief on the 

slope (Fig. 2.4). The feature is lens shaped and bound at the top by the concave down, 

semi-discontinuous seafloor. The basal reflector of this feature is the sub-seafloor 

reflector, which is relatively flat and appears to have similar seismic characteristics of 

the surrounding seafloor (Fig. 2.4). The characteristics of this feature are unique and 

only observed in this one locality within the dataset however; it likely exists in other 

areas where we do not have coverage.  

 The feature in line 32, bound by the seafloor and the sub-seafloor reflector, 

occurs in deep water on a gently sloping seafloor and lacks internal structures. We 

interrupt this feature in line 32 to be a landslide where the sub-seafloor reflector is the 

base of the slide deposit. The process of sliding has been observed in the near-shore 

environment around Bonaire by divers (Hall, 1999; van Duyl, 1985), leading us to 

believe that this feature that we observe further offshore could be of similar nature. 
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Studies in the Great Bahama Bank (Principaud et al., 2015) and offshore Hawaii 

(Hampton et al., 2004) show features within high resolution seismic data that are bound 

by two coherent amplitude reflectors and that do not contain internal structures. Both 

studies interpret the features to be landslide deposits due to their seismic characteristics, 

which is significant since like Bonaire, they are isolated carbonate platforms with 

similar slope angles and environmental factors that can trigger gravity driven deposits. 

On the remaining seismic profiles, the subsurface reflectors sit at shallower water 

depths, ~300 m. We interpret these as regression sheets due to their lens shape, lack of 

internal reflections, and location on the slope. Lens-shaped features that lack internal 

reflectors seen in high resolution seismic reflection profiles off Molokai, Hawaii are 

interpreted to be transgressive sheets (Fig. 2.5) (Barnhardt et al., 2005). This system is 

significant because it is similar to Bonaire in that they both geographically located in 

unstable sea level regimes and have been affected by fluctuations of over 100 m that has 

resulted in erosion and deposition to lowstand sea levels (Barnhardt et al., 2005; Muhs et 

al., 2012). Both the regression and transgression of the shoreline can cause the 

displacement of sediment and carbonate material to occur within the system, as the 

material is moved based on sea level fluctuations. This interpretation of the sub-seafloor 

reflectors being the base of sea level regression deposits is based solely on seismic 

reflection data; direct sampling of these features is required to ground truth the seismic 

interpretations. 

 

2.4 Seafloor Topography 
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 This section outlines the observations and interpretations made on the 

topography of the seafloor on the leeward (west) side of Bonaire. The bathymetry maps 

derived from the seismic seafloor horizon pick enable us to analyze the seafloor 

morphology (Fig. 1.6). From these bathymetry maps we observe that the north region 

(Fig. 1.6a) has a significantly steeper offshore seafloor topography, as apparent by the 

close spacing of the contour lines compared to that of the central and south regions (Fig. 

1.6b, c) where the contour lines are spaced farther apart.  

 

2.4.1 Near-Shore Undulating Topography  

 

Undulating topographic depressions ranging from 60-400 m in width appear 

along the coastlines in the north and central regions of the survey (Figs. 2.6 and 2.7). 

These features are characterized by u-shaped dips in the topography. We classify these 

features as troughs. The troughs are wider than typical sediment channels in the Bonaire 

carbonate environment which range from a few meters in the reef (van Duyl, 1985) to a 

few tens of meters in water depths ~200 m deep (Keller, 2011). The troughs are 

surround by topographic highs with clear, high amplitude, continuous reflectors (Figs. 

2.8 and 2.10). Together, the highs and lows create an undulating pattern in the 

topography near the coastline that is located basinward of the modern reef and is 

observed within our data ~180-300 m offshore (Figs 2.6, 2.7, and 2.8). We do not have 

the data density coverage to determine the full extent of these features however; we 

know they are confined to within 1 km of the coastline. We interpret this undulating 
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topography to be geomorphology remnant of lithified carbonate rock. Alternatively, the 

seafloor substrate in this location could be the igneous platform however if that were the 

case we believe we would observe this topographic pattern in other localities randomly 

offshore. This undulating topography is seen only in the near-shore environment leading 

us to believe that it is more representative of specific coastal development, most likely 

carbonate rock.  

The near shore undulating topography cannot be observed in the southern region 

in the topographic grid. However, data coverage is sparse, and the closest strike seismic 

profile is ~1 km from the shoreline. The strike lines in the north and central regions 

demonstrate this pattern are within ~180 to 300 m of the shoreline (Fig 1.6). Therefore 

the trough features and undulating topography could also be present in the southern 

region but this area is not imaged in our dataset. 

 

2.4.2 Central and South Regions  

 

The seafloor topography extending farther offshore than the undulations 

described above forms elongated topographic highs and lows trending perpendicular to 

the western coastline in the central and south study regions (Fig. 2.6). Seafloor depths 

range from highs of ~90 ms TWT to depths over 1,200 ms TWT (Fig. 2.6). We observe 

five distinct elongated highs in the southern region and three in the central region that 

extended as far as 5 km from shore (Fig. 2.6). The data within our study does not show a 
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distinct basin drop off, leading us to believe that the full extend of the elongated 

topographic highs spans beyond our data coverage and continues farther offshore.  

 The elongated topographic highs are interpreted as igneous ridges with the ridge 

axis extending perpendicular offshore. Two linear igneous ridges outcrop on the east 

side of Bonaire and are oriented parallel to each other (Sulaica, 2015). This ridges have a 

maximum elevation of 180 m and 130 m above sea level and are not overlaid by 

carbonate rocks due to their subaerial exposure causing erosion of the carbonates 

(Sulaica, 2015). The observation of the igneous ridges on land is significant to the 

interpretation offshore because it allows us to make a correlation of the morphology 

from an outcropped studied feature to the morphology observed offshore. It is important 

to note the size of the ridges on land is relatively smaller than those observed offshore, 

however the morphology between the two is similar. We do not believe these ridge 

features are of carbonate origin due to their large size and offshore extent. Opposing the 

ridges, are topographic lows extending offshore and appear as valley like features with 

gradual decreasing depth toward the basin. Within our study these valleys reach depths 

of ~1,200 ms TWT and contain bowl-shaped topographic depression dispersed 

throughout the valley (Figs 2.6 and 2.9). We interpret the bowl-shaped topographic 

depressions to be small-scale catchment basins (Figs. 2.6 and 2.9). Similar morphologic 

features on the oceanic volcanic island of Hawaii, offshore of the Kilauea volcano, are 

interpreted as catchment basins (Fig. 2.11) (Smith et al., 1999).  The morphology 

offshore the Kilauea volcano is similar to Bonaire in that both locations are volcanic 

platforms, with steep slope angles, and topographic lows dispersed throughout the slope. 
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2.4.3 North Region 

 

  The steeply dipping north also shows characteristics of an undulating seafloor 

near the shoreline (Fig. 2.7). Seismic profiles oriented in the dip direction, perpendicular 

to the northern coastline, all contain hump-like features within ~110 to 180 m water 

depth and within a few hundred meters of the coastline (Fig. 2.12). Down slope from 

this feature, the seismic profiles in Zone A dip steeply offshore with only a slight change 

in topography around 675 to 825 m and continue to water depths of 930 m (Fig. 2.7). 

Seismic profiles in Zone B of the north region contain a more variable topographic 

signature with irregular highs throughout the down-dip potion of Zone B (Fig. 2.7, 

purple dotted box). The profiles in Zone B show a local high topographic feature 

offshore with a maximum depth of ~600 m water (Fig. 2.7). Profiles in Zone B extend as 

far offshore as the profiles in Zone A and C, however the Zone B profiles never reach 

the deep water depths of the profiles in the surrounding zones. Several profiles within 

Zone B show steep dip angles before the high topographic feature and have a thicker 

base at the slope break that thins into the high, down-dip features (Fig. 2.13). Zone C has 

similar characteristics to that of Zone A, with a steeply dipping slope downslope the 

initial hump like feature and reaching seafloor depths of ~900 m. Zone C contains 

additional topographic variations farther offshore that are moderate in size compared to 

Zone B followed by a quickly drop in depth basin ward (Fig. 2.7). 

 We interpret the hump like feature observed in the dip profiles to be the modern 

deep fore-reef edge due to its proximity to the shoreline, shape, and depth. This is a 
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common morphological feature observed in ramped and isolated carbonate 

environments around the world (Grammer et al., 2001; Pomar, 2001). Following the 

fore-reef edge Zone A’s steeply dipping topography is a result of the nature of the 

igneous basement in this region. We believe slope edge deposits from the modern reef 

could be spread along the igneous seafloor however no depositional facies are observed 

here. High amplitude seafloor reflectors on the slope edge are also observed in the 

offshore environment at the Great Barrier Reef in Australia where sediment dispersal 

was observed during geological studies but not resolved by seismic imaging (Hinestrosa 

et al., 2014). The slight change in topography seen in Zone A at depths ~900 to 1100 ms 

TWT does not have a clear morphology. This feature could be variations in the igneous 

formation or a debris slide from the reef. Due to higher wave energy in the north region 

of Bonaire and historic large-scale tsunami events (Engel et al., 2013a) it is assumed that 

carbonate material is ripped off the reef and transported basinward onto the igneous 

basement.  The irregular topographic highs throughout Zone B (Fig. 2.7) are unknown 

features with two developmental theories. One theory is that the irregular pattern in the 

seafloor is the result of structural deformation. The SCPBZ has a complex tectonic 

history that has resulted in regional and local faulting and folding throughout this area 

(Escalona and Mann, 2011). A local anticline has been interpreted on the north end of 

Bonaire during a land study (Hippolyte and Mann, 2011) and offshore in a geophysical 

study of the Venezuelan Basin  (Silver et al., 1975). This anticline could be the cause of 

the local topographic high in Zone B and subsequently caused structural deformation to 

occur, resulting in an irregular seafloor. 



 

 19 

A second theory for the structure is a mass transport complex. With a relatively 

high dip angle and observations of a thick base of reflectors at the slope break, this zone 

shows evidence of sliding as seen in analogous environments around the world 

(Mangipudi et al., 2014). Following the slide feature, we interpret that the irregular 

topographic high is the result of the transport of large carbonate material down slope 

(Figs. 2.7 and 2.14).  Principaud et al. (2015), discuss the transport of similar, large-

scale carbonate features within the Great Bahama Bank.  We interpret a wedge of coral 

debris or sediment to be trapped between the slope break and the topographically high 

feature. The seismic response within this wedge is chaotic and irregular in shape similar 

to that of rubble described by Grossman et al. (2006). The interpretation of the profiles 

in Zone C show a combination of features similar to Zones A and B profiles. Zone C has 

evidence of smaller scale mass transport, represented by irregularities in the seafloor 

topography however has slope angles compare to Zone A that quickly reach deep 

depths.  

 

2.5 Seismic Observations of Reflector Packages 

 

 Reflector packages are present in two distinct locations throughout the survey; 1) 

in undulating topographic lows perpendicular to the leeward coastline (Fig 2.8) and 2) in 

catchment basins within valleys of the central and south study regions (Figs. 2.6 and 

2.9). The packages of reflectors are thicker than the surrounding seafloor reflectors and 

range from 15 to 60 ms TWT thick (Figs. 2.8 and 2.9). Each package appears to contain 
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two to four, parallel to sub-parallel reflectors, some with lateral continuity (Fig. 2.10c), 

semi-continuous (Fig. 2.10b) and some laterally discontinuous (Fig. 2.10a).  

 We interpret the packages of reflectors to be confined sediment packages based 

on their seismic character and location in a topographic low. The reflector package 

characteristics are similar with that of topographic low deposits and channel deposits in 

other submarine carbonate systems (Fig. 2.15) (Faugeres et al., 1999; Grossman et al., 

2006; Hinestrosa et al., 2014). Grossman et al. (2006) shows that channel fill deposits 

consisting of thick unconsolidated carbonate sand and rubble offshore Oahu, Hawaii 

creates a seismic signature similar to our interpreted sedimentary packages. 

Additionally, the depositional environment at this location in Bonaire is similar to that of 

Oahu, Hawaii, which is dominated by limestone and volcanic substrate and carbonate 

sediment is predominantly deposited on the leeward side of the island.  

The reflector packages observed in the dip-oriented line also contain similarities 

to that of sediment fill and are located within catchment basins (Figs. 2.6 and 2.9). Like 

discussed in Chapter 2.4.2 the catchment basins are analogous to features seen offshore 

the Kilauea Hawaii volcano (Smith et al., 1999). The Kilauea seismic reflection data and 

the Bonaire seismic reflection data show similar seismic responses for sediment 

accumulation in these features. We interpret these features within our data to be 

catchment basins for downslope sediment movement based on this evidence. 

 

2.6 Modern Carbonate Factory 
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 At their most shallow depths, the summit of the ridge crests and the topographic 

highs along the coast line are shallow enough for modern carbonate production (Pomar, 

2001). We assume carbonate production is occurring at these locations although direct 

core or hand sampling was not done offshore during this survey to verify carbonate build 

up. Dive surveys have been performed by several researchers including Bak (1977), 

Focke (1978), van Duyl (1985), and Green (2012) confirming modern reef development 

in this depth zone throughout the leeward side of the island. The seafloor topography at 

these shallow depths is highly irregular and has a discontinuous reflector (Fig. 2.16). 

Modern carbonate systems around the world including offshore Hawaii and the Florida 

Keys shows seismic characteristics similar to what we observe on Bonaire, with highly 

irregular seafloors within the photic zone and interpret these features to be modern reefal 

growth (Grossman et al., 2006; Lidz et al., 2003; Lidz et al., 1997). This is significant to 

the observations made on the seafloor topography of Bonaire to help identify regions of 

modern carbonate growth. 

 

2.7 Mesophotic Zone Morphology 

 

 In addition to the seismic reflection profiles, we made observations on the 

bathymetry, backscatter, and still images acquired by Bryan Keller and a team of 

scientists from The University of Delaware and Virginia Institute of Marine Science 

(Keller, 2011). The data was collected in four zones on the west side of Bonaire from the 

shoreline to ~250 m offshore (Fig. 2.17). We use this seafloor data to extrapolate 
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observations from the seismic data closer to the shore where the seismic lines do not 

extend and to provide a more detailed interpretation in areas of data overlap.  

 Line 14 of the seismic data runs through the Marine Reserve study site in Zone 1. 

The sediment filled trough feature interpreted from the seismic data can be observed in 

Keller (2011) bathymetry map (Fig. 2.18a) and the classification map (Fig. 2.18b). The 

interpreted sandy bottom in the classification map spans ~600 m wide (Fig.2.18) and is 

interpreted to correspond to the trough feature from line14 (Fig. 2.8a). The observed 

depth shown in the bathymetry also correlates to the TWT seafloor measurement.  

Small sand channels at depths greater than 200 m are observed in the swaths 

from Zone 1 and appear to widen basinward. Zone 4 also shows sand chutes up to 10 m 

deep (Keller, 2011). The highest percent of sandy bottom coverage is located within the 

channel or chute features and farther offshore in deeper depths past the reef, in gradually 

dipping areas. We observe small areas of sandy bottom extending laterally in front of the 

modern reefs in the classification maps. The coverage of the sandy bottom in front of the 

reef is minimal compared to the sediment coverage within the channel and chute 

features. Additionally the results from Keller (2011) Zone 2 images also show a high 

percentage of sandy bottom classification between Bonaire and Klein Bonaire.  
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3.  DISCUSSION 

 

3.1 Tectonic and Sea Level Implications  

 

The island of Bonaire began as Cretaceous submarine volcanism on the 

transpressional South Caribbean Plate Boundary Zone between the Caribbean and South 

American plates (Fig. 1.1) (Hippolyte and Mann, 2011). It has since experienced 

tectonic uplift at a rate of ~5 cm/1000 years (Herweijer and Focke, 1978) as a result of 

shallow angle subduction of the Caribbean plate beneath the South American Plate 

(Gorney et al., 2007; Hippolyte and Mann, 2011) (Fig. 1.1). Tectonic uplift enabled the 

Cretaceous volcanics to reach depths shallow enough for carbonate production. Uplift, 

along with glacio-eustatic sea level fluctuations, resulted in the formation of a Miocene 

unit and of four Pleistocene carbonate terraces (Fig. 1.2) (Escalona and Mann, 2011; 

Muhs et al., 2012; Sulaica, 2015).  

Sulaica (2015) hypothesized that since the subduction of the Caribbean plate 

occurs ~120 km north of Bonaire at a shallow angle, the northern part of the island is 

more strongly influenced by uplift and subsequently the southern portion of the island 

experiences subsidence. Subsidence rates, however, are not quantified. The driving 

mechanism behind why subsidence is occurring in the south is still only hypothesized 

however; several publications support this claim that subsidence is in fact occurring 

(Lucia, 1968; Scheffers et al., 2013; Soest et al., 2014; Sulaica, 2015). Sulaica (2015) 

observes that the first terrace is ~9 m above sea level in northern Bonaire and then 
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disappears in the south below a lagoon covered with modern deposits. During a study of 

Holocene sedimentation on southern Bonaire, Lucia (1968) describes sediment filling a 

Pleistocene depression. Although the Pleistocene unit was not dated in that study, it can 

be assumed that it is a depression within the first or second terrace because the other 

terrace formations are older and do not extend that far south (Fig. 3.1) (Sulaica, 2015). 

In addition, a submersible dive was performed in the central and southern regions on the 

leeward side of Bonaire to explore the deep water reefs off the coast (Soest et al., 2014). 

The study found the modern reef was growing in situ on steep limestone rock. These 

findings give evidence that the Pleistocene carbonates do in fact extend to the southern 

portion of the island and in the offshore regions where they are overlaid by modern 

sedimentation and reefal growth. This leaves the question remaining to what extents 

offshore do the Pleistocene terraces stretch and can that information help support the 

theory of subsidence for the southern portion of the island and possibly predict 

subsidence rates.   

During the Last Glacial Maximum (LGM) sea level in the Caribbean was 121±5 

m below current sea level (Fairbanks, 1989). Since then sea level has been on the rise. 

Engel et al. (2014) constructed a local sea level curve for Bonaire that outlines the 

Holocene change in sea level (Fig. 1.4). If Bonaire has experienced ~5 cm/1000 years of 

uplift over the last 17,000 to 18,000 years (Herweijer and Focke, 1978), the current 

elevation of the island is ~0.85-0.90 m higher than during the LGM. We use the Engel et 

al. (2014) sea level curve and Herweijer and Focke (1978) uplift rates to infer an LGM 

paleo-shoreline around the north and central portions of the island on several of the 
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seismic lines. Since potential subsidence rates are not constrained in southern Bonaire, 

we only use sea level variation to construct the paleo-shoreline in the south. 

This estimated LGM shoreline allows us to identify several localities that could have 

been subaerially exposed during the LGM. 

 

3.2 Topographic Controls on Carbonate Growth and Sediment Production 

 

Numerous studies have been conducted on the modern carbonate system off the 

leeward coast of Bonaire observing reef production, morphology, and factors controlling 

the near shore environment (Bak, 1977; Focke, 1978; Green, 2012; Keller, 2011; van 

Duyl, 1985). These studies are in a maximum of 300 m water depth with a majority of 

the research within the first 100 m. Details on slope angles are confined to within 200 m 

offshore and are constrained by specific dive locations (Focke, 1978). Bak (1977) 

discusses reef profiles on the leeward side of Bonaire where he observes a shallow 

submarine terrace ranging from 20 to 250 m wide followed by a drop off of 5-15 m deep 

into a steeper slope to depths up to 55 m and a second drop off between 50 and 80 m 

deep. Similar morphology is seen throughout the leeward side with differences of the 

fore-reef terrace in the north being narrower and ending more abruptly than in the south 

where the terraces are more expansive.  Although these terraces are not sampled, and 

therefore cannot be directly related to the exposed terrace profiles on land, they show 

similar characteristics to the terraces on Bonaire described by Alexander (1961) and 

Sulaica (2015). These marine studies highlight the near shore topography but leave 
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unanswered questions about the topography farther offshore and how it relates to 

carbonate production and sedimentation transport and accumulation.  

The bathymetry grids derived from the seismic reflection data and the profiles of 

each individual line allow us to address some of these unknowns and provide 

information about the offshore environment beyond the modern reef. Due to the Marine 

Protected Area (MPA) that surrounds the island we could not acquire data at depths 

shallower than 80 m and within 150 m of the coastline. As a result, we did not image the 

reef profiles outlined by Bak (1977) and Keller (2011) and our results cannot confirm 

the nature of the terrace profiles or the double reef feature with the seismic data. 

However, our survey continues offshore and reveals the topographic structure basinward 

of the (Bak, 1977) and (Keller, 2011) datasets. 

Additionally, the survey provides a mean to update generalized bathymetry maps 

for the northwest and west side of Bonaire. Currently bathymetry contours are vague and 

generalized based on aerial photographs and satellite altimetry (Fig.3.2) (Engel et al., 

2013a; Scheffers, 2005; Scheffers et al., 2013). The horizontal resolution of these 

images is several kilometers and does not accurately depict the seafloor topography. 

 

3.2.1 Ridges and Valleys 

 

 The seafloor topography off the west side of Bonaire consists of irregular, ridges 

and valleys. This geomorphology is most likely controlled by the igneous basement 

Washikemba Formation. The ridges and valleys govern the location of modern reef 
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growth and guide sediment distribution offshore.  In the central and south regions linear 

ridges orientated perpendicular to the shoreline create sediment pathways towards the 

basin between Bonaire and Curaçao (Fig. 2.6). Between each ridge valleys contain 

catchment basements that act as sediment traps.  

 The summits of the ridge crests and topographic highs that are within ~200 m 

depth of current sea level have the potential to be producing modern carbonates (Pomar, 

2001). Although we are not imaging the main double reef structure observed by Keller 

(2011) because our reflection profiles do not extend close enough to shore, other 

carbonate species can prosper at greater depths. Deep-water sponges (Porifera) and other 

benthic species are studied at depths down to 248 m growing on moderately steep 

dipping slopes (Soest et al., 2014). These studies are all confined to near shore dive 

spots with the most distal survey extending offshore 1 km. This seismic study reveals 

several offshore, shallow locations atop linear ridges, for potential carbonate growth. To 

our knowledge divers, submersibles, or other geophysical studies have not evaluated 

these locations for modern growth. Within the study, we also observe that the low 

topographic nature of the valleys acts a primary mechanism to guide sediment flow 

offshore. 

 

3.2.2 Near-Shore Undulating Topography 

 

Irregular, undulating, sediment filled troughs are observed in the north and 

central study regions (Fig. 2.7). Seismic line 14 overlaps the deepest portion of the 
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swath data in Zone 1 from the Keller (2011) study (Fig. 2.17). Keller (2011) interprets 

the topographic lows to consist of sandy bottom and topographic highs to consist of 

coral rubble. Our seismic study has a vertical resolution of ~2 m in carbonate 

environments, making it possible to detect the accumulation of large carbonate rubble 

mounds. These rubble mounds are a plausible explanation for the irregular shape 

observed at the peaks of these topographic highs (Fig. 2.16). These features are not 

observed in lines farther offshore, implying that this system is limited to the near shore 

environment, within ~180-300 m of the coastline, with an uncertain basinward extent 

due to sparse data density. Similar coral rubble accumulations are observed on land on 

the west side of the island and classified as coral ridges along the coastline (Scheffers et 

al., 2013). These ridges are 2-3 m high and 40-80 m wide, were deposited due to wave 

events, and create a modern day barrier between the bokas and the open ocean 

(Scheffers et al., 2013). Keller (2011) seismic profiles and classification maps do not 

contain the resolution needed to map the extent of the coral rubble along the sea floor. 

We suggest that the same wave generated, environmental controls that developed the 

coral ridges now seen on land are occurring in the modern day marine environment.   

 

3.3 Sediment Sources 

 

  In this section we will discuss controlling factors over the sediment 

budget on the west side of Bonaire. There are two main contributors to the source of 

sediment that is observed offshore Bonaire: biogenic and bioeroded sediment from the 
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marine environment and onshore surface erosion. Based on the evidence below we 

suggest that the marine environment is the dominant contributor to the sediment source 

of Bonaire. 

 

3.3.1 Sediment from Marine Environment 

 

 The carbonate sediment production from a marine environment can be generated 

within three carbonate factories (or production systems): T (tropical), C (cool-water), 

and M (mud-mound) (Schlager, 2005). The dominant factory producing carbonate 

material in the modern day system around Bonaire is within the T factory meaning it is 

biotically controlled material that has precipitated from tropical autotrophic organisms 

and includes the modern, thriving, fringing, coral reef (Green, 2012; Schlager, 2005). 

This occurs within the top of the water column, generally with a depth window of ~100 

m which coincides with typical water depths of the photic zone (zone of light saturation) 

(Schlager, 2005). As previously mentioned the modern fringing reef system on the west 

side of Bonaire, that is producing material within the T factory, has been greatly studied. 

Carbonate precipitates like micrite that are also biotically induced, and indicative of 

material from the M factory could be produced at greater depths around Bonaire 

(Schlager, 2005), however to our knowledge have not been studied. 

Sediment production from the Bonaire marine environment is generated from 

two sources, sediment producers within the carbonate factories and marine driven 

erosion. The main component within the observed sediment offshore Bonaire is a sandy 
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rubble mixture (Bak, 1977). Autogenic processes including the health of the reef, wave 

patterns, water temperatures, sunlight, and the affect of bioeroders predominantly 

control sediment production offshore. 

 Biogenic carbonate sediment offshore Bonaire is predominantly produced within 

the T factory, which includes the coral reef (Focke, 1978; Hall, 1999; Schlager, 2005). 

The coral reef zone acts as a main contributor and is considered to be a “live” constant 

source of sediment for the modern system and includes, but is not limited to, 

Montastraea, Agaricia, Porites, Stephanocoenia, and Palmata genus (Green, 2012; 

Hall, 1999). In a census based sediment reef budget approach, Perry et al. (2012) 

estimates the net rate of carbonate production on the west side of Bonaire to be 9.52 to 

2.30 kg CaCO3 m-2 year-1. To our knowledge, the sediment budget in the marine 

environment, as a whole, is not quantified in any other study.  

The fore-reef edge is dominated by intense bioerosion (biological substrate 

erosion) and subsequent sediment production (Hall, 1999; Perry et al., 2012). Studies 

from other modern carbonate environments have concluded that sediment produced as a 

result of bioerosion is along the same order of magnitude as reefal growth (Bergman et 

al., 2010). Clinoid sponges and parrotfish are the prime bioeroders in the Bonaire system 

(Hall, 1999; Perry et al., 2012). Clinoid sponges use chemical etchants to attack the coral 

resulting in losses in neighboring islands up to 1-23% of the bulk material (Hall, 1999). 

One study around Bonaire has shown that bioerosion from parrotfish accounts for 2.10 

to 2.75 kg CaCO3 m-2 year-1 (Perry et al., 2012). Sea urchins are also a strong contributor 

to bioerosion and have been measured in Curaçao to account for a total of 2.88 kg/m2 per 
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year while feeding on both live and dead coral (Hall, 1999). While multiple studies on 

the exact sediment volume produced by each bioeroding agent at Bonaire has not been 

recorded and cannot be definitively stated, studies from the Maldives show that species 

like parrotfish account for greater than 85% of the sediment produced (Perry et al., 

2015) and studies in the Bahamas equate roughly half of the sediment supply to sponges, 

echinoderms, bivalves, grazing fish gastropods, and microoganisms (Bergman et al., 

2010). These organisms can cause destruction to the reef however are general observed 

feeding on dead coral substrate (Bergman et al., 2010; Hall, 1999). 

The dead coral rubble additional provides a source of sediment as the rubble is 

abraded due to wave energy and slowly starts to break down (Soest et al., 2014). Hall 

(1999) estimates annual accumulation of sediment on the fore-reef zone to be 5.5 

mm/year excluding sediment stored in reef framework, dissolved, or transported as 

suspended load. From the combined information provided during the geological studies, 

we infer that sediment production from the reef account for the majority of the overall 

supply to the system.  

 

3.3.2 Subaerial Surface Erosion 

 

 Physical erosion generating sedimentation onshore Bonaire is less studied and 

popularly generalized based on allogenic processes including sea level fluctuations, 

producing erosional wave driven notches in the Pleistocene terraces, and regional 

climate variables.  
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 The semiarid climate of Bonaire receives, on average, less than 60 cm of rain per 

year with the majority occurring from October to January (Taylor and Alfaro, 2005). 

Due to the easterly trade winds the leeward side of the island tends to be drier however 

during heavy showers and storm events water runs rapidly seaward in dried, narrow 

valleys, which serves to mobilize sediment (van Duyl, 1985). The trade winds also affect 

wave heights resulting in average heights of 2 to 3.5 m on the windward side and less 

than 1 m on the protected leeward side of the island (Taylor and Alfaro, 2005).  

 While wave energy can contribute to erosion, the leeward and windward coasts 

of Bonaire experience this process different. The high wave energy on the windward 

side generates substantially more sediment from erosion and is topographically 

expressed by sharp terrace cliffs. The more protected, the leeward (west), side is 

composed of rubble beaches and rocky shorelines. The rubble producing fringing reef on 

the leeward side prevents significant wave generated erosion and acts as a barrier for the 

onshore environment (Engel et al., 2013a).  

Notches are observed on the leeward side of Bonaire and seen in both the 1st and 

2nd terrace (Muhs et al., 2012; Sulaica, 2015). Although direct measurements estimating 

the amount of erosion occurring in these notches are not available, this autogenic 

process acts as a direct sediment supply to the marine environment. Additional small-

scale, autogenic sediment supplies occur periodically during coastal development. 

Although these are a small influence in modern time, they can produce expansive 

amounts of sand over geologic intervals, causing damage to the active reef.  
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Through glacial-sea level changes landlocked bocas on the west side of the 

island could have been a strong contributor to the sediment supply offshore. Studies 

from Lucia (1968) and Engel et al. (2014) discuss extensive Holocene sediments in dried 

up carbonate depression on the low-lying south and in modern day bocas. These systems 

however are now isolated from the open ocean due to large coral rubble ridges and do 

not supply sediment offshore with the possible exception of during seasonal floods 

(Engel et al., 2010). Overall terrigenous sediment volumes from the island are not 

quantified and we speculate that their contribution to the offshore system is minimal.   

 

3.4 Controls on Offshore Sediment Distribution 

 

 The transport of sediment on the leeward side of Bonaire is controlled by 

numerous factors including wave and current energy, topographic influences, tsunamis 

and storm events, and sea level fluctuation affects. The exact amount of sediment 

transport from each factor is difficult to quantify, however, evidence for each processes 

can be observed offshore within the seismic dataset and in previous studies. 

 

3.4.1 Wave Energy and Current Influences 

 

 As mentioned above, typical wave heights on the leeward side of Bonaire are 

less than 1 m. Caribbean currents flow around Bonaire from the southeast and are 

generally slow, less than 0.5 m/s, on the leeward side (Gordon, 1967; Sandin et al., 
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2008; Taylor and Alfaro, 2005). This low energy wave and slow current movement does 

not lead to large amounts of sediment transport. With the exception of the shallow A. 

palmata zone the modern reef is below the typical wave base. However, resuspension of 

sediments due to wave and current movement is common in reef environments and is 

observed on Bonaire (van Duyl, 1985). We believe that resuspension of sediment could 

account for the accumulation of sand along parts of the leeward shoreline but typical 

wave energy would not be sufficient enough to transport the larger pieces of coral rubble 

also seen along the shoreline.  

 

3.4.2 Topographic Influences and Sediment Pathways 

 

 The topography that is controlling sediment dispersion can be organized in two 

parts; (1) by transport across the reef environment, including the fore-slope, and (2) 

transport beyond the reef, basinward (Fig. 3.3). 

 Transport of sediment across the reef and fore-reef slope, ~10-300 m offshore, 

has shaped the reef morphology and is observed topographically throughout the reef 

framework and appears across the entirety of the leeward coastal stretch. The near shore 

shallow reef terrace consists of a spur and groove system. The spurs are composed of 

coral reef and vary in width from 1-10 m and alternate with sediment grooves not 

exceeding 13 m wide (van Duyl, 1985). They are situated in 1 to 8 m water depth and 

are commonly formed from wave action (Goreal and Land, 1974; van Duyl, 1985). 

These narrow grooves act as the sediment pathway along the near shore and into the 
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mid- to low- terrace zone before they terminate (van Duyl, 1985). The morphology then 

transitions into wider sediment pathways identified as sediment chutes that carry 

sediment from the shallow fore-reef to the deep fore-reef slope (Fig. 3.3) (Bak, 1977; 

Hall, 1999; van Duyl, 1985). The sediment chutes range in width from 15-30 m wide 

and steep angle of the slope facilities sediment evacuation from the reef (Hall, 1999). 

The bathymetry and backscatter data from Keller (2011) also observes sediment 

channels of this nature. Neither the geophysical data nor the dive data mentioned above 

discuss the thickness of the sediment within the chutes however, Hall (1999) states, as 

an order of magnitude calculation, that full distribution of the annual sediment 

production occurs throughout the sediment chutes within that year, resulting in the lack 

of in situ fore-reef sediment . Bak (1977), van Duyl (1985), and Hall (1999) all discuss 

the important nature of this sediment transport for the health of the reef and attribute this 

drainage of unconsolidated sediment downslope to be one of the strongest contributors 

to the modern thriving reef. 

 Once the sediment is transported past the modern reef system and into the deep 

fore-reef base, >300 m offshore, the large-scale topographic features observed in the 

seismic reflection data control transport (Fig. 3.3). In the north and central region the 

sediment first encounters the undulating trough features (Figs. 2.6 and 2.7). These 

topographic lows confine the sediment flow as it moves downslope. The sediment fill in 

the troughs ranges from 30-60 ms TWT thick. With an assumed sediment velocity of 

1,800 m/sec this equals ~22-45 m. The state of lithification of the sediment packages 

observed in the troughs is unknown. It can be assumed that troughs with continuous to 
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semi continuous sediment reflectors (Fig. 2.10b and c) are in a stage of progressive 

lithification while troughs with a discontinuous sediment reflector (Fig. 2.10a) 

potentially are composed of a mixture of lithified and unlithofied sediment. The 

classification map from Marine Reserve Zone 1 (Fig. 2.18b) (Keller, 2011) classify the 

surface of these troughs to be sandy bottom allowing the interpretation to be made that 

an unconsolidated layer, of unknown thickness, covers the top of the troughs. 

 As the sediment continues to move offshore the valley features act as the 

pathway for sediment transport to the basin (Figs. 2.6 and 3.3). Due to the large-scale 

nature of these features we make the assumption that sediment dispersion occurs. We 

observe the occasional accumulation of sediment along the valleys in small catchment 

basins with the remaining sediment speculated to continue to move downslope. 

Sediment movement basinward in distal environments is typically a production of 

gravity driven, down-slope creep (Goreal and Land, 1974). Other islands in the 

Caribbean, Jamaica and the Virgin Islands, experience similar sediment transport from 

carbonate environments into the relatively shallow island basins like the basin between 

Curaçao and Bonaire which only reaches depths of 1,700 m (Bak, 1977; Chaytor and ten 

Brink, 2015; Goreal and Land, 1974).  

The deepest sections of the valleys in the central and south regions and in zones 

A and C in the north region extend down to ~1,230 ms TWT, roughly 930 m water 

depth. The maximum depth between Bonaire and Curaçao is 1,700 m (Bak, 1977). The 

survey does not extend to the deepest sections of the basin between Bonaire and Curaçao 
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so we believe that deep basinward sediment transport continues past our survey until 

maximum depths are reached and the topography flattens.  

Sediment is being transported from the coast to the deep basin through four 

distinct morphological features. First, the sediment is transported through grooves and 

sediment chutes in the near shore environment. Then sediment flows through the 

undulating trough features within ~180-300 m from the shoreline, finally to disperse 

within the igneous topographic valleys (Fig. 3.3). 

 

3.4.3 Storm Events and Mass Transport 

 

 Fore-reef slopes on carbonate platforms that range from a 25-50° dip angle are 

prone to slope failures (Hall, 1999). The deep fore-reef slope of the Bonaire system 

reaches these angles and contain evidence of mass transport complexes. Slide scarps are 

documented in several dive locations around the island and have different morphologic 

features than slide scarps in terrestrial environments. The slide scarps around Bonaire 

are less arcuate and more tabular and leave a scarp with slope angles of ~40° (Hall, 

1999). A slide that occurred in the central region left a scarp 20 m wide, 16 m tall, and 6 

m deep, transporting a volume of ~1,900 m3 of carbonate material (Hall, 1999). The 

slide occurred at shallow water depths in unlithofied debris over a mobile carbonate mud 

transporting debris down to depths 50 m from the origin (Hall, 1999).  

 The sub-seafloor reflector in line 32 (Fig. 2.4) is interpreted to be the basal 

reflector of a mass transport or slide feature of carbonate material as well. The slide is at 
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the seafloor in 500 m water depth, is ~2 km long, and ~31 m thick. This slide is farther 

down slope and much larger in size than those described by Hall (1999). Additionally, 

the slide appears to be a more consolidated block-like feature, versus scattered debris. 

The difference in deposit geomorphology implies a difference in slide source material, 

and potentially difference in triggering factors.  

 Tropical storms impact Bonaire only every ~4-5 years due to location south of 

the Caribbean hurricane belt (Meyer et al., 2003). Storms have varying impacts on 

sediment transport on the leeward side of Bonaire; however generally do not disturb the 

coral reef in this location. On a relatively small scale, a storm will increase wave 

agitation on the reef, mobilizing sediment in the chutes and in the reef framework. 

Studies after Hurricane Lenny in 1999 showed sites where over 30 cm of sediment cover 

was removed from the reef system (Bries et al., 2004). At this scale the storm aided in 

sediment removal from the reef, but did not cause a significant amount of damage. 

Larger scale storms have a greater potential for reef destruction with their deeper-

reaching wave base. This is one explanation for the interpreted carbonate slide from line 

32. Suffocation of the reef can also occur if the storm causes a significant amount of 

surface erosion or brings sediment from offshore into the reef, however this is rare for 

Bonaire. Storms also have the ability to move sediment and reef material onshore from 

sand size particles, to coral rubble, and even large bounders (Engel et al., 2010; Engel et 

al., 2013b). This is most commonly the effect of category five storms or large tsunami 

events that create wave surges over that have the capability to transport boulder size 

material. Bonaire is vulnerable to the risk of tsunamis due to the complexity of the 
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tectonic regime it sits on (Engel et al., 2010). Onshore transport events are seen in the 

bokas around the island and in the form of boulders up to 70 m3 located on top of the 1st 

terrace (Engel et al., 2013a; Engel et al., 2013b). Isolated large blocks of this size are not 

observed offshore in the seismic data but a tsunami scale event could explain a peculiar 

topographic feature in the north study area. 

 Zone B of the north study area is observed to have a high topographic feature 

with an irregular morphology in the down-dip region (Fig. 2.7).  Two possible 

interpretations are made for the development of this unique structure, one being that of a 

mass transport complex. Large-scale slope failures on steep carbonate slopes, like the 

slopes observed in northern Bonaire, are common and can occur due to numerous 

factors. Mass transport complexes of large size are typically triggered due to extreme 

storm event or slope failure due to sea level variations or tectonic movement (Hampton 

et al., 1996). The occurrence of all three of these triggers is common in Bonaire and 

could be responsible for the unknown structure. A large-scale carbonate submarine mass 

transport complex along the Great Bahama Bank consists of megablocks up to several 

thousands of meters in size and contains similar irregularly shaped carbonate mounds 

(Principaud et al., 2015). The slide scar for this complex is at an angle of 25° and has a 

scar up to 1 km (Principaud et al., 2015).  

One major limiting factor to our interpretation of the feature is the composition. 

If the material was sampled and found to be composed of carbonate rock this 

interpretation would be highly plausible. The marine environment of Bonaire 

experiences multiple influences that could be factors in triggering mass transport, and 
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the irregular morphology of the feature resembles that of a reef like structure. If this is a 

mass transport complex, several questions remain: (1) why has the structure stopped on 

what appears to be the hinge axis of the local anticline (Hippolyte and Mann, 2011) and 

not continued under gravitational pull to the basin? (2) Can the slide scarp be identified 

and does it have similar characteristics of other carbonate slide scars on Bonaire? If this 

feature is a mass transport complex, the absence of a slide scarp could be contributed to 

timing and origin of the complex. Re-structuring of scarps is a common process in 

carbonate systems and observed in the near shore environment of Bonaire by (Hall, 

1999). The Hall (1999) study evaluates the process of slide scars developing into 

sediment chutes over geologic time. If this mass transport complex occurred 

significantly early in the evolution of the island, the slide scarp could be reworked, not 

mimicking recent scarp morphologies. Another explanation for the absence of a slide 

scarp could be that the mass transport complex originated subaerially, was detached 

from an outcropped formation, and transported into the offshore environment.  

It is important to recognize that the two main mass transports features that we 

observe in the data have different geomorphologic characteristics. The slide on line 32 

appears to be a more consolidated mass that has uniformly slid down the shallow slope 

in the south region of the dataset. The hypothesized mass transport feature in the north is 

more irregular in nature, displaying characteristics of an unconsolidated debris slide on 

steep topography resulting in a topographic high. These results indicate that different 

influences and environments that contributed to the triggering mechanism for each mass 

transport occurrence.  
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3.4.4 Sea Level Fluctuation Influences  

 

 Sea level fluctuations have greatly influenced the morphology of Bonaire and 

played a large role on affected sediment movement both on and offshore. Quaternary 

shoreline transgression moved sediment onshore as seen in bokas (Engel et al., 2010) 

and carbonate depressions in the south (Lucia, 1968). Shoreline regression at the LGM 

shifted carbonate production a few hundred meters deeper resulting in lowstand deposits 

farther downslope. This lowstand shoreline would have also exposed marginal shelf 

areas leading to an increase of erosion and transport to the new sea level. We see 

evidence for this due to the subsurface reflectors throughout the data that has been 

interpreted to be regression sheets. The regression sheets are located at water depths on 

around ~ 400 m (Figs. 2.2 and 2.3). Since the regression sheets do not appear to be 

localized to one region, it can be suggested that the physical cause regression driven 

sediment deposits affected the whole system; supporting the sea level control on the 

origin of those deposits. 

 

 

3.5 Sediment Accumulation and Traps 

 

 Sediment accumulation in the Bonaire modern isolated platform is low compared 

to typical carbonate systems where sediment depositional patterns and a stratigraphic 

record of the evolution of the system can be identified (Bak, 1977; Focke, 1978; Hall, 
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1999; Hampton et al., 2004; Playton et al., 2010). This depositional information 

typically shows sediment accumulation in numerous depositional patterns and is 

dependent on slope and margin morphology (Playton et al., 2010). With the nature of the 

offshore environment of Bonaire being that of an isolated carbonate platform with a 

steep antecedent seafloor, typical sediment accumulation or depositional patterns are not 

observed. Although other carbonate environments, like the Bahamas, are considered 

isolated a comparison in the slope morphology between that of the Bahamas and 

Bonaire is drastically different due to the high angle seafloor and narrow antecedent 

terrace formations of which the coral reef of Bonaire grows (Bergman et al., 2010; van 

Duyl, 1985). Additionally, Bonaire has developed morphologic features within the reef 

to aid in the movement of downslope sediment transport like the grooves and chutes, 

riding the reef of large sediment accumulation (Hall, 1999). The sediment that has 

accumulated offshore is seen moderately in the framework of the reef (Bak, 1977), in 

topographic lows including catchment basins and troughs, and between Bonaire and 

Klein Bonaire (Keller, 2011).   

 

3.5.1 Accumulation Within Modern Reef Areas 

 

 The majority of sediment in the modern reef is confined to the groves and chute 

features that move sediment downslope (Bak, 1977; Hall, 1999). Thin layers of sediment 

become trapped within turf algae and other common plant species in the reef (Bak, 

1977; Green, 2012). In the classification map of Marine Reserve Zone 1 (Fig. 2.18b) we 
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observe small, laterally-extending sandy bottom classification in front of each reef in the 

double reef feature. This sediment is most likely trapped in front of coral framework 

without sufficient energy to get moved through or around the reef. Coral abundance 

decreases downslope and the amount of sediment increases (Bak, 1977). Keller (2011) 

survey also shows a high coverage of sediment, ~50%, between Bonaire and Klein 

Bonaire. We interpret this sediment cover to be a result of Klein Bonaire acting as a 

barrier from the reef to the slope. Low wave energy between the two islands does not 

allowing for the same volume of transport to occur around Klein Bonaire and then down 

slope. Sediment thickness measurements in the near shore system do not exist and the 

seismic reflection profiles do not extend this far onshore, so the volume of sediment 

cover cannot be calculated.  

 

3.5.2 Catchment Basins and Troughs 

 

 Sediment accumulation seen on the seismic data is in catchment basins and in 

trough features. The thickest accumulation of sediments is recorded in the troughs and 

ranges from ~22 to 45 m. As discussed in Chapter 3.4.2 the degree of lithification of 

these sediments is unknown but the trough features act as a mechanism for confining 

sediment as it moves farther offshore. Extending down the valleys, in the central and 

south regions, sediment is also observed in small-scale catchment basins that are 

represented by local topographic lows within the valleys (Figs. 2.6 and 2.9). These 

catchment basins act as the last trap or accumulation zone between the near shore and 
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the deep basin. The package of reflections indicates the presence of sediment in the 

catchment basins, which tends to be significantly less than in the troughs. This result is 

expected as the majority of the sediment is originating in the near shore environment, 

sediment dispersal will decrease distally form the shore. Additionally, sediments moves 

downslope, which spread and disperse sediments resulting in thinning out sediment layer 

over the catchment basin and potentially continue into a downslope creep into the basin. 
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4. CONCLUSIONS 

 

The seismic reflection profiles around the leeward side of Bonaire have provided 

the means to better understand local sedimentation processes from the near shore 

environment to deep slope basin. The main findings for this project include: 

The Cretaceous submarine volcanism most likely controls the seafloor 

topography off the coast of Bonaire. The topography creates large ridges and valleys that 

we speculate continue beyond the extent of our data. The ridges and are shallow enough 

to promote the growth of carbonate material at current sea level. The valleys act as a 

large-scale guide for sediment transport to the basin. 

Undulating seafloor topography is present between the reef and deep valley/ridge 

features. The lows in the undulations are sediment-filled troughs and the highs show 

evidence for possible modern reefal growth or coral rubble ridges influenced by 

downslope processes, gravity, and perhaps ocean currents. 

There are two main modes of sediment transport, gravity driven downslope 

movement and mass transport. The sediment typically moves within a four-stage 

sediment pathway starting with grooves and sediment chutes in the near shore 

environment and transitioning into larger scale troughs and valleys farther offshore. 

These pathways widen basinward and cause sediment dispersal to occur distally from 

the coast. 
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Due to the morphology of the slope offshore Bonaire sediment accumulation is 

low on the island and does not show evidence of typical carbonate slope deposition. 

Relatively small amounts of sediment accumulation do occur in thin sheets trapped 

within the modern reef system, in troughs, and in local small-scale catchment basements 

within the valleys. The thickest accumulation of sediment is prevalent in the troughs.  
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5. SUMMARY AND IMPLICATIONS 

 

 This study details the geological and environmental controls that affect the 

sedimentary processes on the island of Bonaire. We seismically observe how Quaternary 

sedimentary processes and Holocene reef morphology are influenced by the seafloor 

topography. The nature in which the island was formed lends to steeply dipping slopes 

on the west side of Bonaire that allow for a fringing reef to grow along the narrow, 

shallow coastline. Farther offshore ridges and valleys extending perpendicular off the 

coastline dominate the topography. The valleys act as sediment pathways from the reef 

to the deep-water basin and the ridge crests are within the photic zone, allowing for 

potential coral reef growth to occur. Understanding the topographic expression of the 

seafloor provides a full picture of the sedimentary pathways from the near shore to the 

deep-water basin and allows us to make implications for the location of carbonate 

growth in the Holocene environment and speculate on where these processes occurred 

during paleo-sea level environments. 

 The dry climate and limestone terrace formations hinder sub-aerial erosional 

processes and produce minimal terrigenous sediment that is transported offshore. The 

main sediment source for the island is derived from modern carbonate production. 

Sediment from the modern reef is produced biogenically, largely in the A. palmata zone, 

and bioeroded due to sea urchins and other marine species. Although the system reveals 

only one significant sediment source, this study shows an active sediment distribution 
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network, with accumulation of sediment within the modern reef, troughs, and catchment 

basins and transport out of the near shore system to the deep-water basin.  

 This study provides an example of how sediment is distributed in semiarid, low 

weather systems, and the influence that the offshore morphology has on this distribution. 

Additionally, it highlights that sediment pathways in the reef provide a means for 

downslope sediment movement, ridding the modern reef from large amounts of 

sediment accumulation. These sedimentary processes, and the climatic setting, outline 

key contributors to the healthy, thriving Holocene reef on Bonaire and to the significant 

carbonate production throughout the Pleistocene.  The results from this study have direct 

implications for other, semiarid-arid carbonate producing environments that are limited 

in sediment supply. Key modern analogues include the Red Sea and other southern 

Caribbean islands. Understanding the sedimentary processes in similar systems can help 

account for the health and longevity of the living reef in these analogous environments. 
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APPENDIX A 

Seismic reflection processing 

This appendix is a summary of the workflow used to process the 2D 

multichannel seismic reflection data that was collected by our Texas A&M research 

team in 2014. Processing was performed using Paradigm’s Echos software. The data 

was recorded in SEG-Y format and imported using a SEG-Y loader in Paradigm. Figure 

A.1 show the processing flow used for each line and table A.1 details file input and 

output information for each job. A brief summary of the final operations performed at 

each step are as followed (## indicate the place holder for the line name value, ex. 

‘line01’):  

1. line##_1_geom.dat: Builds geometry tables including sample rate, data length,

pattern specifications from streamer design, and shot location information from

source. Figure A.2 and A.3 show raw data.

2. line##_2_geomapplystatic.dat: Reads SEG-Y into Echos from Paradigm

database and applies specified geometry information. Amplitude analysis is

performed in order to determine filtering needs (Fig. A.4). Results show a

bandpass filter of 300-400-1200-1400 Hz is the best standard across the dataset.

Additional notch filtering was needed for specific lines to increase image quality.

Lastly a static correction of 104 ms shift is performed on out of plane shots.

3. line##_3_cdpsort.dat: Sorts the output from line##_2_geomapplystatic.dat job

into CDP gathers.
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4. line##_4_brutestack.dat: Creates a trace stack using the normal stacking

algorithm in Echos with a scalar of 0.2. This stack was used to pick the water

bottom (WB##) as a horizon to use for subsequent jobs including deconvolution

and muting (Fig. A.8).

5. line##_5a_decon.dat: Applies a multichannel gapped predictive deconvolution.

Before deconvolution, shot gathers were shifted to each respective WB##

horizon pick using a static shift to hang the operation directly on the seafloor.

Specifications for deconvolution include an operator length of 80 ms long, gap

length of 1.5, and percentage of white noise 0.1% (Fig. A.5). After

deconvolution is applied the static shift is removed and an additional bandpass

filter is run.

6. line##_5b_sort.dat: Re-sorts the data output from line##_5a_decon.dat into CDP

gathers and applies a spherical divergence (or gain) correction.

7. line##_6_veldef.dat: Job that opens an interactive velocity picking tool (Fig.

A.6) for velocity analysis. Values were picked every 50 CDPs to get a coarse

sample rate and accurate model (Fig. A.7).

8. line##_7_stack.dat: Applies an normal move out (NMO) correction, velocity

function mute (mute##-for each respective line), and normal stacking algorithm

to stack the traces.

9. line##_8_fxmig.dat: Performs a FX migration on the stack data using stored

velocity picks, a lateral velocity smoothing of 200 and vertical velocity
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smoothing of 100. An additional water bottom mute is applied after migration. 

Final processed image after all jobs is shown in Figure A.9. 

Figure A.1: Seismic reflection data processing workflow. 
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Job Name Input File Output File 

line##_1_geom.dat NA NA 

line##_2_geomapplystatic.

dat  

line##_new line##_staticshots 

line##_3_cdpsort.dat line##_staticshots line##_ cdpsort 

line##_4_brutestack.dat line##_ cdpsort line##_ brutestack 

line##_5a_decon.dat line##_staticshots line##_ shots_decon 

line##_5b_sort.dat line##_ shots_decon line##_cdps_decon 

line##_6_veldef.dat line##_ cdps_decon vel##. dat 

line##_7_stack.dat line##_ cdps_decon line##_stack_post_vel 

line##_8_fxmig.dat line##_ stack_post_vel line##_ 

migrated_stack_migfx 

Table A.1: File input and output information for each job. 
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Figure A.2: Image of raw shot gathers prior to applying processing. Line15, shot 4400, 

channels 1-24. 
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Figure A.3: Accumulation of all shots in line15. Raw shot gathers prior to applying 

processing. 
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Figure A.4: Frequency analysis of raw shots from line 15 prior to processing (top). 

Frequency analysis after bandpass filtering applied (bottom). 
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Figure A.5: Auto-correlation of 10 traces in one shot gather; before (left) and right 

(after) deconvolution. 
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Figure A.6: Interactive velocity analysis window of Echos processing software zoomed 

into area of interest on line 15. Variable density image of stacked supergather of four 

CMPs (left). Coherence plot of seismic velocities with picked values (right). 
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Figure A.7: Root mean square velocity model of line 15. 
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Figure A.8: Brute stack of line 15 with bandpass filter and prior to any further 

processing. Vertical exaggeration ~4:1 
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Figure A.9: Stack of line 15 with final processing steps (NMO, deconvolution, stack, 

mute, and migration). Vertical exaggeration ~4:1 
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APPENDIX B

   FIGURES 

Figure 1.1: Tectonic setting of Bonaire, Leeward Antilles Ridge. Situated on the South 

Caribbean Plate Boundary Zone. Plate motion represented by GPS vector (black arrows) 

and tectonic provinces are separated by black dashed lines. Modified from Hippolyte 

and Mann (2011). 
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Figure 1.2: Terrace evolutional model demonstrating growth with respect to sea level 

and tectonic influences on the eastern side of Bonaire. Each color represents a different 

carbonate terrace package while the Cretaceous igneous basement is in white and black 

(Sulaica, 2015). 
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Figure 1.3: Pleistocene sea level curve relating interglacial periods and tectonic uplift to 

carbonate terrace formations. (a) Analogue to terrace formation on Bonaire (Muhs et al. 

2012). 
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Figure 1.4: Compilation of sea level curves since the Last Glacial Maximum. The most 

recent update in the thick grey solid line as determined by Engel et al. (2014).  
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Figure 1.5: Geologic map of Bonaire with associated stratigraphic column (Sulaica, 

2015) and interpreted anticline axis (Hippolyte and Mann, 2011; Silver et al., 1975). 
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Figure 1.6: Island of Bonaire with Texas A&M University marine seismic survey profile 

locations and names (black lines). Red boxes (A-C) outline the three different study 

regions. Seismic derived seafloor bathymetry for each region contoured every 100 m.   
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Figure 2.1: Map insets for the six seismic lines that contain sub-seafloor reflectors. Dark 

grey represents Bonaire coastline. Green highlights the location of the reflector on each 

respective line in the three regions (A) north, (B) central, (C) south. Line location shown 

in Fig. 1.6. 
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Figure 2.2: Seismic reflection profiles showing examples of the sub-seafloor reflector 

interpreted as the base of a regression sheet deposit (yellow lines). (A) Seismic line 12 

exhibits an example of a hummocky, discontinuous reflector. (B) Seismic line 

31exhibits lens shaped feature with continuous subsurface reflector as the base. Line 

locations shown in Fig. 1.6.  
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Figure 2.5: Seismic reflection image of the reef complex shelf on the leeward shore of 

Molokai, Hawaii. (B) Transgressive sheet interpreted on top of the antecedent substrate 

and inset displays modern coral reef growth (Barnhardt et al., 2005). 
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Figure 2.7: Seismic derived seafloor bathymetry for the north study regions contoured 

every 100 m. Possible mass transport complex in down-dip location of Zone B (dotted 

purple box). Undulating topographic highs along the coastline across all three zones 

(dashed back box).  
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Figure 2.8: Seismic reflection profiles showing the undulating seafloor profiles along the 

coast in the north and central study regions (A) Line 14, (B) Line 15, (C) Line 20. Each 

line shows topographic lows, which are interpreted to be sediment troughs. Notice the 

thick, high amplitude trough surrounded by the thin, clear topographic highs. Line 

location shown in Fig. 1.6. 
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Figure 2.10: Inset images from seismic reflection profiles in Fig. 2.6 showing sediment 

filled troughs. (A) Line 14, (B) Line 15, (C) Line 20. Notice the thick, high amplitude 

trough surrounded by the thin, clear topographic highs. (A) Chaotic and discontinuous 

sediment reflectors. (B) and (C) semi continuous to continuous sediment reflectors. 
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Figure 2.11: Single channel seismic reflection profiles off the oceanic volcano, Kilauea, 

in Hawaii. Catchment basins vary in size throughout the profiles and show seismic 

evidence of sediment accumulation (Smith et al., 1999). 
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Figure 2.14: Bathymetry and cross section views of mass transport processes of large 

carbonate mounds due to slope failure and gravity-flow deposits along the northwestern 

margin of the Great Bahama Bank (Principaud et al., 2015). 
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Figure 2.17: Four data collection zone locations that contain bathymetry, backscatter, 

and still images used to make observations in near shore locations and confirm 

interpretations from the marine seismic profiles (Keller 2011).  
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Figure 2.18: (A) Bathymetry and (B) classification map of the Marine Reserve location 

in Zone 1. Black transect over dark purple, sandy bottom, and dark blue, depths ~>200 

m corresponds to the sediment filled trough in figure 2.6. Modified from Keller (2011). 
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Figure 3.1: Map of Bonaire illustrating the extent of the four terraces outcropped on land 

(Sulaica, 2015). 
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Figure 3.2: Compilation of geologic studies of the coastal morphology and coastal 

environments around Bonaire and Klein Bonaire (Scheffers et al., 2013). Notice the 

vague bathymetry contours at 200 and 500 m that were interpreted, by the authors, using 

aerial photographs. 
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Figure 3.3: Schematic diagram of the four-stage sediment pathways off the coast of 

Bonaire. From the near-shore environment where sediment moves through grooves and 

chutes, widening to the offshore environment where sediment is transported through 

troughs and valleys. Image not to scale.  

 

 




