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ABSTRACT 

Scan-based delay test achieves high fault coverage due to its improved 

controllability and observability. This is particularly important for our K Longest Paths 

Per Gate (KLPG) test approach, which has additional necessary assignments on the 

paths. At the same time, some percentage of the flip-flops in the circuit will not scan, 

increasing the difficulty in test generation. In particular, there is no direct control on the 

outputs of those non-scan cells. All the non-scan cells that cannot be initialized are 

considered “uncontrollable” in the test generation process. They behave like “black boxes” 

and, thus, may block a potential path propagation, resulting in path delay test coverage 

loss. It is common for the timing critical paths in a circuit to pass through nodes influenced 

by the non-scan cells. In our work, we have extended the traditional Boolean algebra by 

including the “uncontrolled” state as a legal logic state, so that we can improve path 

coverage. Many path pruning decisions can be taken much earlier and many of the lost 

paths due to uncontrollable non-scan cells can be recovered, increasing path coverage and 

potentially reducing average CPU time per path. We have extended the existing traditional 

algebra to an 11-value algebra: Zero(stable), One(stable), Unknown, Uncontrollable, Rise, 

Fall, Zero/Uncontrollable, One/Uncontrollable, Unknown/Uncontrollable, 

Rise/Uncontrollable, and Fall/Uncontrollable. The logic descriptions for the NOT, AND, 

NAND, OR, NOR, XOR, XNOR, PI, Buff, Mux, TSL, TSH, TSLI, TSHI, TIE1 and 

TIE0 cells in the ISCAS89 benchmark circuits have been extended to the 11-value truth 

table. With 10% non-scan flip-flops, improved path delay fault coverage has been 
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observed in comparison to that with the traditional algebra. The greater the number of long 

paths we want to test; the greater the path recovery advantage we achieve using our 

algebra. Along with improved path recovery, we have been able to test a greater number 

of transition fault sites. In most cases, the average CPU time per path is also lower while 

using the 11-value algebra. The number of tested paths increased by an average of 1.9x 

for robust tests, and 2.2x for non-robust tests, for K=5 (five longest rising and five longest 

falling transition paths through each line in the circuit), using the eleven-value algebra in 

contrast to the traditional algebra. The transition fault coverage increased by an average 

of 70%. The improvement increased with higher K values. The CPU time using the 

extended algebra increased by an average of 20%. So the CPU time per path decreased by 

an average of 40%. In future work, the extended algebra can achieve better test coverage 

for memory intensive circuits, circuits with logic black boxes, third party IPs, and analog 

units. 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Path Delay Test  

Verification of the timing specification is one of the most important requirements 

before we can declare a digital chip as “Ready to Market” [1]. Failure to meet certain 

timing specifications may lead to incorrect circuit performance, set-up and hold time 

violations, or limited voltage or temperature operating range. A better design always has 

minimized timing margin in order to maximize the performance while reducing power 

consumption. To ensure that the circuit under test has met the required timing margin, 

delay testing is essential. For any kind of structural testing we need a fault model. Here 

the fault revolves around the timing specification. Hence, we need a delay model. 

Different delay models have been discussed in [2][3][4]. One of the most popular delay 

models is the path delay fault model. In a circuit we have local delay faults and distributed 

delay faults. The performance of the path delay fault model is very impressive in detecting 

both. The path delay in a circuit is a combination of on-path gate input-to-output delay 

and the interconnect delay. The delay can be further split into gate transport delay and 

interconnect propagation delay to facilitate the unique computation of the delay to every 

fan-out of every gate. Another delay, namely inertial delay, is required to analyze the glitch 

behavior of the circuit. In a path delay model, the path is generated using a two pattern 

test. The generation of the path starts from the Primary Inputs (PI) or Pseudo Primary 

Inputs (PPI) and then the path travels through the desired fan-outs, forms the path and 

finally finishes at some primary output (PO) or Pseudo Primary Output (PPO). The PI or 
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PPIs are used to launch the transitions into the circuit, and the responses are captured at 

the POs or PPOs. PPIs and PPOs are used in a scan-based test, since the PIs must remain 

fixed and POs ignored in a low-cost production tester [5]. The response time should match 

the desired specification. In order to detect the delay faults the PPO values must match the 

expected results. The two-pattern test is composed of an initialization vector and a test 

vector. The first vector sets the circuit to the desired initial state. The second vector is 

responsible for launching the transitions.  

 

1.1.1 Longest Path Delay  

A generic synchronous digital circuit is a combination of combinational logic and 

several flip-flops synchronized by a common clock. In a scan based test, a scan chain is 

formed by serially connecting the sequential elements of the circuit.  The flip-flops that 

are part of the chain are called scan flip-flops (SFFs). We can directly control the input 

nodes of the scan flip-flops, namely PPIs or Pseudo Primary Inputs, and we can directly 

observe the responses from the outputs of the scan flip-flops, namely Pseudo Primary 

Outputs or PPOs. The transitions flow from PPIs to PPOs via the combinational logic. All 

the gates that participate in the propagation of the transition are called on-path gates and 

the input of the gate that receives the transition is termed an on-path input [6]. The 

remaining input nodes of the gates are considered off-path inputs [6]. The path is a victim 

of a delay fault if the response time of the path is more than some pre-specified value. The 

delay of the path is the cumulative delay over all the gates and the interconnects on the 

path. Much prior work has been done on delay testing. Extensive studies on delay faults 
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can be found in [7][8][9][10][11]. Based on several experiments and basic intuition, it has 

been concluded that the longest path in a circuit has always been subject to the maximum 

delay fault. If we can test the longest path in a circuit to ensure that it is free from delay 

fault, many shorter length paths are also being tested automatically. Hence, generating a 

longest path in a circuit has always been very important. A circuit is actually a graph and 

detecting all the possible sensitizable paths in a graph is an NP-hard problem. A reasonable 

approximation or tractable approach is to generate a limited set of longest paths and test 

them to ensure timing margin correctness. In [12], an approach has been suggested to 

generate K Longest Paths Per Gate (KLPG). The biggest advantage of the approach is the 

ability to detect if more than one path of the gate performs slower than expected. The local 

delay defects are manifestations of slow gate performance and global process variations 

[13]. The KLPG approach is able to detect both.  

 

1.1.2 The Problem of Delay Test 

Figure 1 shows a schematic of a generic combinational digital circuit to explain 

the basic concept of the path delay fault model. These combinational blocks are the “Can 

of Worms” for the suspected delay faults. Figure 2 shows a combinational circuit that has 

three inputs x1, x2, x3 that are being fed by two vectors v1 and v2. (v1,v2) is the required 

vector pair as discussed above. v1 is the initialization vector and v2 is the test vector. The 

figure also shows the individual delays of each gate. y is the output of the circuit and based 

on the vector pair the circuit expects a rising transition at the output node y. The cumulative 

time delay for the rising transition is expected to be 7 time units. If any of the gates on the 
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path incurs any extra delay, the expected rising transition would appear at y node after the 

desired 7 time units. Figure 3 depicts the input/output transition where the shaded region, 

namely transient region, spans over the desired propagation delay. The extra delay in any 

gate due to defects, process variation, or noise would shift the output transition out of the 

shaded region. 

 

Figure 1. The combinational logic residing between the sequential logic 

(“Can of Worms” for delay faults) 

 

 

Figure 2. Delay Fault Problem in circuit 
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Figure 3. I/O transition and Transient region  

 

As shown in Figure 2, if the timing margin is 10 time units and the OR gate incurs 

an extra delay of 4 (total 6 units), then the output transition at y would happen at 11 time 

units, which naturally leads to a path delay fault.   

The total number of paths in a circuit is an exponential function of the number of 

gates in it and the fan-out number of each gate. If we consider all possible input vector 

pairs (v1,v2), “the longest delay combinational path” of the circuit under test is termed 

the critical path. The delay of the critical path of any circuit dictates the shortest possible 

clock period, i.e. the highest possible clock frequency of the circuit with correct 

functionality. A circuit can be declared free from delay faults if output transitions for any 

possible vector pair never exceed the clock period.  

 

1.2 The steps and the variants 

A path in a circuit represented at the logic gate level should be sensitized first using 

the preferred ATPG-based approach. The approach is a three-step process. 
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1.2.1 Sensitization, Propagation and Justification 

1. Fault Sensitization: In this step, the signal driving the fault site is forced to an 

opposite value from the fault value. This is done to distinguish between the 

correct circuit and the incorrect circuit.  

2. Fault Propagation: This step involves the propagation of the fault effect. It 

may use one or more paths from the PI/PPI to PO/PPO.  

3. Line Justification: In this step we check the consistency of off-path signal 

value assignments with respect to required values to be fed to the PI/PPIs. All 

the intermediate signal values get justified by assigning proper values to the 

PI/PPIs. If consistency is not found, the path is a false path.  

“A path is said to be testable if a rising/falling transition can propagate from the 

primary input to the primary output associated with the path, under certain sensitization 

criteria” [14][15][16][17][18][19]. An inconsistent or non-sensitizable path cannot be 

tested. For a fault or transition propagation to occur successfully, all the off-path inputs 

must have non-controlling values [5]. Figure 4 is a small example of the path sensitization 

requirement for the path a-c-d. If a transition is launched at node a, then side input b of 

the OR gate on the path must have the signal value 0. At the same time, the AND gate on 

the path requires b to be 1. Since we cannot simultaneously set non-controlling values on 

the AND and OR gate side inputs, path a-c-d is false. 
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1.2.2 The variants of Path Delay Test 

While defining a delay test, we need to mention what kind of delay we are 

interested in. Delay test of a path can be broadly classified into robust delay testing and 

non-robust delay testing. A circuit can have several delay faults. If the fault detection is  

 

 

Figure 4. Path that cannot be tested 

 

independent of the presence or absence of other remaining delay faults in the circuit, then 

we can consider that as a robust path delay fault test. On the contrary, if the fault can only 

be detected when no other fault is present, this is a non-robust delay test. Figure 5 explains 

these two variants of path delay test. 

 

 

Figure 5. Transitions getting propagated (Robust and Non-Robust Path) [6]  
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In this example, suppose the clock cycle is 7 time units. To operate correctly, all 

possible paths must have a delay of less than 7. If any path delay exceeds 7 units, that is a 

potential delay fault. The numbers shown on each gate in the figure are the propagation 

delay through them. We assume no interconnect delay. We can see very easily that among 

all the paths the longest is p3 and hence, it is the critical path. If paths p1, p2, p3 all incur 

extra delay and propagate the output transition after 7 time units, the output waveform 

would be right-shifted and fault detection would be performed. Now, say, only p2 and p3 

are faulty and p1 is not, then the rising transition from path 1 would be detected at 7 time 

units and would give a false impression of the circuit being correct. Hence, in spite of the 

p3 path being delayed, the extra delay from path p2 would never let the opposite value 

appear at the output capture time. Hence, the p3 path delay fault cannot be tested if there 

is a delay fault in p2. Clearly p3 is a non-robust path. For both kinds of tests, static 

sensitization criteria should be satisfied along with the launch of the transition at the start 

of the path using the test vector pair [5]. Robust test can be achieved if we can assure only 

one output transition, whereas for non-robust tests more than one output transition is 

permissible. It should be understood that all robust paths are also non-robust paths while 

the reverse is not true. Hence, non-robust path count can be termed as the total number of 

paths that can be tested (where we can identify the path under test). For robust paths, we 

need to ensure two things about the transition. First, the transition should be a real event, 

i.e an event that can exist without the help of other events. Second, it should be a 

controlling event, i.e it should not let other events happen prior to it. While using the two 

vector pattern (v1,v2), if the on-path transition is from a controlling (in v1) to non-
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controlling (in v2) value, it would block other transitions. Hence, the off-path input can be 

anything in v1 and non-controlling only in v2. If the on-path transition is from non-

controlling (in v1) to controlling (in v2), then the off-path inputs are expected to be non-

controlling in both vectors v1 and v2, in order to allow only one output transition. If these 

criteria are not met, the test is not robust. 

 

1.3 Scan based Delay Test 

In DFT (Design for Test) the most popular and effective approach is Scan-based 

Testing. Most individual sequential elements in a circuit are connected serially and thus 

provide full controllability of the outputs of those sequential units (PPOs) and full 

observability of the inputs of the sequential elements (PPIs). To facilitate scan operation, 

the flip-flops can be combined with multiplexer logic and form Scan-Flip-Flops (SFF). 

Figure 6 shows the internal structure of a SFF.  

 

 

Figure 6. Muxed D Scan cell (Combination of D Filp-Flop and 2:1 Mux) 
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A scan FF with an input multiplexer is also called a Muxed D Scan Cell. For scan 

operation, the cell ports are scan input (SI), scan output (SO) and the scan enable (SE). To 

extend the serial chain, the SO port of each scan cell is connected to the SI port of the 

neighboring cell.  

 

1.3.1 The operating modes 

Scan based designs have three operating modes. 

1. Shift: Assertion of the scan enable signal during clocking shifts the initialization 

vector (1st of the vector pair) into the SFFs. The clock frequency during shift is 

much lower than during functional operation, in order to simplify scan chain 

routing. 

2. Normal: Normal mode starts with the de-assertion of the SE signal. This is just 

the functional mode of the circuit operating at at-speed frequency. The second 

vector of the vector pair, i.e the transition or test vector, is applied in this mode. 

3. Capture: In this mode the circuit response is captured. SE is asserted and the 

captured result is shifted out of the chip. Normally Shift and Capture are 

overlapped. 

Figure 7 presents the high-level block diagram of a typical scan chain. The SO ports 

from individual SFFs are connected to the SI ports of the neighboring SFFs.   
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Figure 7. Scan Chain Block Diagram  

 

1.3.2 Two wide-spread approaches 

The scan-based designs are broadly classified into the following two approaches. 

 

1.3.2.1 Muxed D Scan based approach 

In Figure 8, we can see that the output ports of each SFF are connected to the 

Combinational Logic as Pseudo Functional Inputs (PPIs). Similarly, all the outputs of the 

combinational logic work as Pseudo Functional Outputs (PPOs) and are fed to the DI input 

ports of the SFFs. The Primary inputs (PIs) are X1, X2, X3 and the Primary Outputs (POs) 

are Y1 and Y2. These are the functional signals of the circuit under test. The PIs are driven 

by user inputs or the upstream logic. The POs can be observed directly and for the PPOs 

capture needs to be done at the SFF outputs of the scan chain. If a single scan chain 

becomes too long, we can break it into multiple chains with multiple SI and SO signals. 
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Figure 8. Muxed D Scan Based Design [5] 

 

1.3.2.2 Enhanced Scan based approach  

   A pair of vectors is used to launch transitions and finally capture the response at the 

SFF SO ports at functional speed. In delay testing, we use pair of vectors. Now these two 

independent vectors can jeopardize the initialization of the circuit. The problem seems 

solvable if we can somehow insert hold latches into each scan flip-flop.   Enhanced Scan 

Based design (Figure 9) is a suitable DFT architecture to achieve that. Here two bits of 

data can be applied simultaneously to the combinational logic. Vector v1 is stored in 

shifted in and then transferred to the D-latches with an UPDATE signal. The test vector 

v2, is then shifted into the scan chain while the UPDATE signal is de-asserted. Assertion 

of the UPDATE gain happens after v2 has been completely shifted in. This changes the 

values at the combinational logic inputs from v1 to v2 and thus the transition is launched 

into the combinational logic. The response is captured in the SFFs and scanned out.  
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Figure 9. Enhanced Scan Based Design [5]  

 

Using this Enhanced Scan approach, we achieve better delay coverage at the cost of 

area and delay overhead caused by the extra latches. False paths may also be activated, 

and thus cause over-testing. Several innovative clocking schemes have been proposed in 

[5][20][21] to get rid of the disadvantages.    

 

1.3.3 Clocking Schemes                                                                                              

If the circuit does not have enhanced scan, then the test vector must be generated 

from the initialization vector. Two clocking schemes are widely used to generate the test 

vector. 
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1.3.3.1 Launch on Shift (LOS)  

This clocking scheme is also called skewed load. In this scheme, the last shift 

pulse, launching the transition, is immediately followed by a capture clock pulse to capture 

the output test response. The second capture clock pulse is operated at functional speed. 

The SE signal must switch at functional speed between the last-shift launch clock pulse 

and the capture clock pulse. This essentially requires the SE signal to be implemented as 

a clock network. Figure 10 shows the Launch on Shift clocking scheme.  

 

 

Figure 10. Clocking Scheme for Scan (Launch on Shift) [5] 

 

1.3.3.2 Launch on Capture (LOC) 

The other name of this scheme is broadside or double capture. Figure 11 shows 

the clocking scheme used in this strategy. Two consecutive functional cycles are employed 

to launch the transition and capture the response. The advantage is not having any speed 

related constraint on the scan enable (SE) signal. SE is de-asserted after loading the test 

vectors. After waiting for SE to stabilize during dead cycles, the launch and capture cycles 

are applied to the CUT. This kind of clocking scheme requires more test vectors and results 
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in lower fault coverage in comparison to Launch on Shift. But the relaxed timing 

requirement on the SE signal has made this scheme very popular in high speed circuits. In 

addition, using the circuit response to generate the test vector eliminates many non-

functional transitions, reducing over-testing and yield loss. 

 

 

Figure 11. Clocking Scheme for Scan (Launch on Capture) [5] 

                                                                                                                                               

In addition to the above two clocking schemes, clock domain grouping based schemes are 

also used. One-hot clocking and staggered clocking are two alternative schemes in this 

arena leading to reduction in test time and power in scan mode.  

 

1.4 K Longest Paths Per Gate (KLPG) algorithm 

To increase fault coverage, we may need to test multiple paths through each fault 

site. The KLPG algorithm [22][23] tests K longest sensitizable paths through each gate. 

This algorithm is able to detect both slow-to-rise (STR) and slow-to-fall (STF) faults on 

gate inputs and outputs, as well as distributed delay faults. Figure 12 is the overall flow of 
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the algorithm. The PIs or PPIs serve as launch points and the POs or PPOs are the capture 

points. (In a low-cost production tester, only PPIs launch transitions, PPOs capture 

outputs, the PIs are fixed, and the POs are ignored). The first step is preprocessing, when 

static timing analysis deduces the maximum possible delay from each gate to the capture 

points. This delay does not consider logic constraints, and is termed the PERT delay. A 

path that has started at the launch point but has not reached the capture points is termed a 

partial path. The partial paths are initialized from the launch points. The upper bound of 

the delay of any partial path is measured in terms a metric called Esperance. Esperance is 

the delay of the partial path plus the PERT delay from the last node on the partial path to 

a capture point. Esperance is the upper bound of the delay of a partial path when it reaches 

a capture point [5].   

 

1.4.1 The steps 

The entire flow of the KLPG algorithm can be broken into three main steps: 

1. Path Initialization 

2. Partial Path Growth 

3. Path Justification 

Before path generation, controllability and observability (SCOAP) measures are 

computed for each gate [6]. The gates are rank ordered, with each gate being assigned the 

upper bound of the rank of the fan-in gates. This helps to determine the PERT delay [6] 

and SCOAP measures. The SCOAP measures also need the calculations of the fan-in and 

fan-out cones of each gate. Controllability is associated with the PIs/PPIs and dictates how 
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easily these lines can be set to the desired logic values. Observability measures how easily 

a line value can be propagated to a PO/PPO. Controllability is computed with a forward 

traversal of the circuit, and then observability is computed in a backward traversal, using 

the controllability values. 

During the second main step of KLPG, i.e. path generation, a gate is added in each iteration 

to the current partial path. When a partial path encounters a fan-out, it is split into different 

branches, generating additional partial paths. These intermediate partial paths are stored 

in a temporary pool, sorted in decreasing order of Esperance. In each iteration, the partial 

path with maximum Esperance is selected for extension by adding one gate to it. This 

generates a new partial path that is stored in the pool, and the iteration repeats. Each time 

a gate is added to an existing partial path for extension, constraints are added to the off-

path inputs of that gate, based on the robust/non-robust sensitization criteria. For a 

successful propagation through that gate, the off-path inputs need be assigned non-

controlling values. The sensitization constraints are propagated throughout the circuit 

using direct implications. If the constraints conflict with existing constraints, then the gate 

cannot be added to the partial path, and this path is rejected as false. If the partial path has 

not reached a capture point, false path elimination techniques are used in order to drop 

false paths. For example, if the minimum Esperance of a gate in a path is higher than the 

maximum Esperance of another gate in the same path, we conclude that path is false. 

When a partial path reaches a capture points, it becomes a complete path. We then perform 

final justification, to generate a test pattern that meets the path constraints. The entire 
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procedure explained so far is iterated again and again until sufficient number (K) of 

complete paths through the target line have been generated. 

 

 

Figure 12. The flow of the KLPG algorithm [5] 

 

To reduce the number of test patterns, compaction and compression is done on the 

test patterns. Both static and dynamic compaction are available in the system. Static 

compaction is done after test patterns have been generated, while dynamic compaction is 

performed by the justification engine during test generation. Dynamic compaction 

produces many fewer patterns, but at the cost of more justification runs, and maintaining 

a pool of partially-filled test patterns. For this work, the entire KLPG algorithm has been 

realized in the tool Codgen. 
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1.4.2 Pseudo Functional Testing 

 There are many paths in the circuit that are functionally infeasible. Test pattern 

generation may produce initialization or test vectors that do not occur in functional 

operation, activating functionally infeasible paths. This leads to over-testing and 

unnecessary test time and power. Pseudo functional test reduces this problem. In pseudo 

functional scan testing, the initialization and test vectors are the same or similar to 

functionally reachable states. The main challenge is identifying reachable states. Several 

techniques [24][25][26] have been developed, but have not been deployed due to their 

high cost. 

 

1.4.3 Pseudo Functional KLPG       

 In Launch on Capture, when the Scan Enable (SE) signal switches (between scan 

mode and functional mode), dead cycles are inserted to allow enough time for the SE to 

settle. During this time, off-chip currents in the power grid reach a quiescent state. The 

activation of launch and capture cycles at functional speed causes a sudden increase in 

off-chip current demand. The off-chip inductance limits the rate of increase in off-chip 

current. In the meantime, charge is consumed from on-chip capacitors, leading to a supply 

voltage droop. This is referred to as dI/dt noise. The voltage droop causes the circuit to 

operate slower than normal, which can lead to good chips being rejected as bad, termed 

test overkill. Figure 13 shows the voltage droop event on the power grid of an Intel Itanium 

processor [27].  
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Figure 13. Voltage Droop in power supply due to delay test inductance [28] 

 

As a solution, we need to give enough time for the voltage to stabilize before 

applying the at-speed test. Our solution is to apply a number of medium-speed functional 

cycles, termed preamble cycles, before the at-speed test. These extra cycles produce on-

chip activity that ramps the off-chip current to functional levels. At the same time, these 

cycles filter out many non-functional states, so that the launch state is closer to a functional 

state. Hence we term this approach pseudo functional KLPG (PKLPG) test [23][28]. 

Figure 14 shows the clocking scheme used for PKLPG. The assertion of SE signal happens 

only during scan-in and scan-out operations. 

 

 

Figure 14. Clocking scheme (Preamble cycles) used in PKLPG test [28] 

 



 

21 

 

1.5 Boolean Satisfiability 

1.5.1 SAT and CNF 

Circuit verification and testing are the fields where Boolean satisfiability is used 

extensively. A circuit is first represented in Conjunctive Normal Form (CNF) [29]. SAT 

solvers based on techniques like Boolean Constant Propagation (BCP) [30] and 

backtracking with conflict analysis learning are used to determine whether the CNF 

formula is satisfiable, and supply the test pattern that satisfies it. 

A CNF is a logical AND of several clauses which are the logical OR of several 

literals. The literals can have values either 0 or 1. The goal is get a proper combination of 

values (0 or 1) for every literal so that the entire expression finally is satisfied, i.e. has a 

logical true value. As an example, we can use the example of an AND gate. The logical 

AND operation is C = AB. The CNF representation of C is (~C + A)(~C + B)(~A + ~B 

+ C). The goal is to find suitable values for A, B, C so that the entire expression produces 

the value 1. This is possible only when A, B, C all have the value 1. This is exactly the 

behavior of an AND gate. The clause with three variables is called the  3-CNF form. 

Finding a satisfiable input set for any k-CNF with k being more than 2 is an NP-hard 

problem. The heuristics in modern SAT solvers can find solutions to most SAT problems 

in reasonable time. 

 SAT can be applied to generate vectors in ATPG. The obvious difficulty involves 

the incorporation of real delay values. The approach in [31] uses a mixed approach using 

structural and functional test. A structural approach is used to generate the paths and SAT 

is used for path justification. Techniques to speed up SAT solvers have been extensively 
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studied. In [31], dynamic SAT solving (DSS) uses the structural information of a circuit 

to reduce the solution search space. During CNF creation, much circuit structural 

information is lost. Heuristics such as Direction of Gates and Circuit Observability Don’t 

Cares (Cir-ODC) help in reducing solution time [31]. 

 

1.5.2 MiniSAT: The SAT in CodGen 

 MiniSAT [32] is an open-source SAT solver that is in use in CodGen. Final 

justification and dynamic compaction are the two stages where SAT is used extensively. 

In the KLPG algorithm, once a partial path becomes a complete path, all the values are 

assigned to the gates on that path and justification is performed. Since, a pair of vectors is 

used in the LOC scheme for launching the transition; there are two variables that are used 

for SAT solving in two time frames. If PKLPG is used, the circuit is unrolled in time and 

the SAT engine solves the problem in terms of the scan-in pattern. 

 

1.6 The need for an extended Algebra 

With the emergence of scan test, we have achieved the much-required 

controllability of all the flip-flop output nodes deeply hidden in the circuit. However, it is 

not feasible to make all flip-flops in a circuit into scan flip-flops. Commonly a few percent 

of flip-flops are non-scan flip-flops. There is no control on the output nodes of these non-

scan flops. These are uncontrolled signals from the perspective of testing. Hence, many 

possible signal propagation paths going through those nodes must be discarded, resulting 
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in a delay test with reduced path delay fault coverage. It is common for the timing critical 

paths in a circuit to pass through non-scan flops and so have poor test coverage.      

If the circuit is not a full-scan design, then the non-scan flip-flops may or may not 

be initialized after the scan-in of the first vector. Hence, all these non-scan flip-flops that 

cannot be initialized are considered “uncontrollable” in the test generation process. They 

behave like black-boxes and thus may block a potential path propagation, resulting in 

fewer paths being tested. 

 

 

Figure 15. Multiple Valued Algebras [34][35] 

 

We are already familiar with Roth's five valued algebra [34][35] used in 

combinational circuit stuck-at fault testing and Muth's nine-valued algebra [35] used to 

minimize unknown signal values during time-frame expansion based stuck-at testing of 

sequential circuits. Figure 15 shows these algebras. In this work, we extend the Muth 
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algebra by including the uncontrolled state as a legal logic state, with the goal of reducing 

pessimism in test generation. A more advanced algebra permits many path pruning 

decisions to be taken earlier, reducing test time, and many of the lost paths due to 

uncontrollable non-scan flops can be recovered, increasing path delay fault coverage. 

 

1.7 Structure of the Thesis 

 In this thesis, we present an extended algebra based approach that results in 

improved path coverage. There are 11 logic values being considered here for the formation 

of truth tables of basic logic entities. Two vector (initialization and test vectors) testing 

led to the decision of having 11 values: Zero (Stable), One (Stable), Unknown, 

Uncontrollable, Rise, Fall, Zero/Uncontrollable, One/Uncontrollable, 

Unknown/Uncontrollable, Rise/Uncontrollable, and Fall/Uncontrollable. Results have 

been obtained from runs on benchmark circuits for different values of K (i.e. number of 

long paths) to demonstrate the benefit of this algebra. 

 The organization of the thesis is as follows. In Chapter 1, we introduce the generic 

descriptions of design for test (DFT), delay testing, different scan based testing approaches 

and KLPG algorithms, along with the constructs used to implement it. Chapter 2 describes 

the motivation behind the work. The implementation details of CodGen are presented 

briefly in Chapter 3. In Chapter 4, we show the 11-value extended algebra and different 

truth tables used to represent logical entities. Chapter 5 summarizes the benchmark results 

showing improvements in path recovery, fault coverage and average CPU time per path. 
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In Chapter 6, we conclude our work with remarks on the future work that can be done 

based on this work.  
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2. MOTIVATION 

 

2.1 Controlling all the sequential elements? 

Billions of transistors on a single chip have made testing immensely complex [36]. We 

have already seen that how scan based approaches provide a cost-effective way to test the 

circuit logic behavior. Each sequential element in the chip is replaced by a SFF and those 

SFFs are connected serially to form a scan chain. In a modern chip with hundreds of 

thousands of sequential elements, multiple scan chains are used to limit chain length. Even 

so, shifting test patterns in and results out of the scan chains consumes the bulk of the 

digital logic test time.  

 In practice it is not possible to connect all flip-flops into scan chains, due to area, 

power or delay constraints. In addition, circuits contain elements such as embedded 

memories and register files that cannot be converted into scan chains. For those sequential 

elements, we cannot observe the values going into them or control the values coming out. 

These blocks act as black boxes producing uncontrollable values, blocking many 

functional paths. Hence, there is always a need for an approach that would lead to better 

coverage of paths for chips with unavoidable non-scan sequential elements.  

  

2.2 Path Generation in CodGen 

The pseudo functional KLPG algorithm has been implemented in a tool CodGen. Each 

partial path has an Esperance value associated with it. When a partial path has multiple 

fan-outs, Esperance is used to select the branch that leads to the potentially longest 
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complete. In the existing implementation, CodGen assumes that all the sequential 

elements in the circuit are SFFs. If a sequential element is not a SFF, the path being 

produced by KLPG would be a untestable, since either a transition could not be launched 

on the path, or the result could not be shifted out. Moreover, we do not have any 

controllability on the output nodes of those non-scan flops. For those uncontrollable nodes, 

many paths would be discarded due to direct implication and path justification failures and 

conflicts. 

 

2.3 Clocking Scheme (Coda Cycles for recovery) 

There is one way that can be implemented in the clocking scheme in order to move a 

captured FF value to a SFF. Additional functional cycles after the capture cycle, termed 

coda cycles, can be added before asserting the SE signal. The coda cycles are slow enough 

that there are no timing considerations. The clocking scheme for such an implementation 

is shown in Figure 16. Figure 17 shows the flowchart of the PKLPG algorithm.  

 

 

Figure 16. Use of Coda Cycles (at-speed delay testing) [28] 
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Figure 17. Pseudo Functional KLPG Algorithm (PKLPG) [28] 

 

2.4 Related previous work 

In [12] the KLPG algorithm is described in detail. It explains how the KLPG algorithm 

generates K longest paths per Gate. The KLPG algorithm is applicable for both sequential 

and combinational logic circuits. In [33] strategies are shown that extend the KLPG 

algorithm over multiple cycles. The longest path generation process is realized over all 

clock cycles. The metric being used for the determination of the longest path is called 

Esperance [12]. Justification is an important step of the KLPG algorithm. For justification 

test patterns are generated using a SAT engine. The details of the approach can be found 

in [37]. The entire work presented in this thesis is built on top of this existing software 

base. The collective name of these tools is CodGen. The goal of CodGen is to detect 

combined local/global defects. The work in [22] describes the problem of having non-scan 
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sequential elements such as an embedded memory in a circuit. The work in [22] justifies 

the need for an approach that brings more optimism in terms of path coverage out of those 

uncontrollable nodes. Other examples of the extension of traditional algebra for 

improvements in testing can found in Roth’s 5-value algebra [34] and Muth’s 9-value 

algebra [35].  
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3. IMPLEMENTATION 

 

3.1 KLPG Strategy for Path Generation 

In the existing CodGen implementation, preamble cycles can be inserted before 

the at-speed cycles. Usually all the sequential elements are assumed to be SFFs. Hence, 

the presence of non-scan flops leads to path coverage loss. As a remedy, coda cycles and 

observability-based backtracking can be used to propagate captured values from a non-

scan cell to a SFF. During the process of KLPG, the behaviors of the gates have been 

defined in truth tables. The direct implication step uses those values to deduce the paths. 

Extensions of those truth tables have been done to include the uncontrollable and auxiliary 

logic states. Using the extended tables, many paths are recovered in spite of the presence 

of non-scan flip-flops. The following section briefly explains the steps involved during a 

full cycle execution of the KLPG algorithm.   

 

3.2 Different CodGen constructs for gate processing 

            The first step of CodGen is targeted towards gate processing. It is composed of 

several sub-steps.  Each sub-step contributes the advancements as reported below.  

 

3.2.1 Parsing the HDL description of the circuits 

The current version of CodGen only understands Verilog HDL input. It parses the 

Verilog structural description of the and forms an intermediate gate network. The software 

has a class namely “Gate”. This class hosts the definitions of all the logical entities, 
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including AND, NAND, OR, NOR, XOR, XNOR, NOT, MUX, and BUFF. The behaviors 

of each of these entities have been captured in a header file TruthTable.h. Each entity has 

an individual truth table. The description of the sequential elements is present in a different 

Verilog file. It defines the serial connection of the flip-flops forming the scan chain (here 

we assume one scan chain). There is a provision for a separate file that contains scan 

attributes. The goal is to designate the flip-flops as scan or non-scan. The parser uses the 

scan attribute file along with the Verilog files.  

Each gate is assigned a unique GateID. The terminal nodes, i.e. PIs, PPIs, POs, 

PPOs are also assigned GateIDs to maintain consistency in the flow. The position of a gate 

(in terms of rank) from the input or output is used to define its level. Levelization [6] is 

performed for each gate of the circuit. SCOAP measurements of controllability and 

observability are then computed [6]. 

   

3.2.2 Assignment of delay to each gate 

There is a delay file that CodeGen uses to assign delay to each gate in the circuit. The 

delays will typically come from a cell library and perhaps back-annotation. If delays are 

not available, unit delays are assumed. If delay variation is provided, worst-case delays 

are used. The delay assignment is accomplished for both Rise and Fall transitions. 

 

3.2.3 Search space – The Fan-In/Fan-out cone  

The intermediate gate network (in-memory circuit structure) requires the knowledge 

of fan-in and fan-out cones of each gate. How fan-in and fan-out cone define the search 
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space the KLPG algorithm is shown in Figure 18. In Figure 18, the search space has been 

shown for gate g in terms of its fan-in and fan-out cone. The signal lines that we see within 

the cones are termed as on-path and the ones out of the cones contribute to the off-path or 

side-input set [6]. The values of the off-path inputs of gates should always be non-

controlling values. The non-controlling value assignments to the side-inputs are necessary 

for proper propagation of any transition from PPIs to the fault sites. 

 

 

 

 

 

Figure 18. Search space of KLPG flow [5] [33] 

 

3.2.4 Circuit initialization  

This step is responsible for deriving the controllability and observability of the gates 

based on the levelization value already calculated. CC0 and CC1 are the controllability 

metrics that define the ease with which a combinational logic node can be set to 0 or 1 

respectively. All the nodes with level 0 i.e. PIs and PPIs, have CC0 and CC1 values set to 

1. Then the controllabilities of the first logic level are computed, then the next level, and 

so on. Observability is computed starting from POs or PPOs. The POs and PPOs are 

assigned an observability (CO) value of 0. The analysis then proceeds by level backwards 

 



33 

in the circuit. Figure 19. shows a snapshot of a circuit along with the controllability and 

observability of each gate. 

Figure 19. Calculation of Controllability and Observability (SCOAP values) 

The numbers on each gate in Figure 19 denote the level of that particular gate. The 

combinational controllability (CC) and combinational observability (CO) values for each 

gate has been represented as (CC0,CC1) CO. 

3.3 Path generation (Path ending at PPO or input of SFF) 

In the existing version of KLPG, path generation starts from a SFF. There is a function 

“AimingPathGen” that creates a pool for the partial paths. This pool of partial paths 

iteratively keeps track of the paths that keep expanding by one gate in each iteration. The 

growth of a path is triggered by both Rise and Fall transitions. For each transition from a 

SFF, (K multiplied by i) defines the total numbers of iterations required. K is the parameter 
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that defines how many longest paths per gate are to be generated and i denotes the fan-out 

of a SFF.  

 Each iteration encounters the pool of partial paths sorted based on their Esperance 

value. The partial path with highest Esperance value is chosen for extension. The growth 

of the partial path stops when it reaches a PO/PPO. Once a PO/PPO is reached, the partial 

path becomes a complete path and is excluded from the partial path pool. The next partial 

path is taken if the total number of total paths through that gate has not reached K. 

Justification is performed on the complete path using the SAT engine, and the 

corresponding test pattern generated, if it exists. Figure 20. shows the typical Esperance 

based path growth in KLPG. 

 

Figure 20. Path growth (Esperance based path growth to obtain longest path) 

 

3.4 Time Frame Expansion 

The automatic test pattern generation logic in CodGen uses the time-frame expansion 

approach. The combinational logic of the circuit is replicated or expanded n times, where 
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n is the number of time frames considered. For a pair of time frames, two copies of the 

combinational logic are glued together, and thus creating a circuit model of double size. 

The circuit instance with time frame tag frame-1 receives its input from the copy of the 

circuit with time frame tag frame-0. The delay test vector pair is applied to the combined 

circuit. How time expansion is executed using the “Launch-on-Capture” (LOC) scheme is 

shown in Figure 21. 

 

Figure 21. Time Frame Expansion methodology (V1, V2 delay test vector pair) 

 

The primary aim of this step is to assign required logic values to a gate in the path 

so that the desired transition can be propagated successfully. If we want to propagate a 

rising transition, the frame-0 vector needs to be ‘1’ and frame-1 vector should be ‘0’.  

          Splitting into branches happens if the last gate on a partial path is followed by 

multiple fan-outs. For successful propagation of the transition through the path, 

sensitization constraints are applied on the side inputs of the path. Side inputs are expected 

to have non-controlling values for transition propagation to the fault site or PPOs or until 

the end of the path. Recursive direct implication is executed on the search space of each 
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gate [5]. The logical state change of any output node needs to also be propagated back to 

the downstream logic.   

 Failure in direct implication occurs when a feasible input combination cannot be 

applied to a gate due to logical inconsistencies or environment constraints (e.g. preset 

signals for a certain operating mode). If the same line is the side input of two different 

gates with different non-controlling values, only one assignment is possible. Thus, the 

other gate becomes incapable of propagating the transition, so the path is false. Figure 22 

gives an example of a conflict that prevents propagation of the transition on gi through 

gate gj. The search process must then consider propagation through gk. This process, 

termed search-space trimming. [5], reduces the path search space by avoiding infeasible 

regions. In this example, all paths through both gi and gj are false, and so will not be 

extended. 

 

 

Figure 22. Assignment conflict during Path sensitization 
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3.5 Final Justification 

Once a partial path becomes a complete path, it goes through a step called final 

justification. Until it is justified successfully, the path cannot be reported as a true path. In 

the situations where the path extends over multiple at-speed cycles, or coda, cycles, 

justification is done after the path has extended to the end of each cycle, to avoid searching 

over many cycles for a path that turns out to be false. 
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4. 11-VALUE ALGEBRA  

 

4.1 Beasts beyond control !!!! 

Real designs do not have 100% scan flip-flops. In real designs, some sequential 

elements cannot be initialized to a constant 0 or 1, even after simulating the test sequence 

through the scan procedure. There are many time critical paths where the extra delay 

caused by the MUX in the SFF cannot be allowed, Moreover, the embedded memories 

and register files provide limited access to the dense sequential logic inside them. There 

are many logic “black-boxes”, third party IPs, and analog units in every design whose 

input/output nodes are hard to observe or control. For all the above entities, it becomes 

extremely difficult to determine the output signal values. Those hard to predict signal 

values are assumed to be “uncontrollable”. The aim of SFF is to enhance controllability, 

but the presence of uncontrollable elements makes it difficult to  apply necessary 

constraints to side-inputs for successful propagation of transitions. Because of less 

controllability, many partial paths cannot be extended, which otherwise would have been 

complete paths. This reduces path delay fault coverage.  

 

4.2 The Eleven Values 

Our approach to dealing with uncontrollable values is to add more analysis to the 

logic value propagation, to reduce pessimism. Instead of outright rejection due to an 

uncontrollable side-input, is it possible for us to extend the logic truth tables that 

distinguishes between controllable and uncontrollable unknown values? The answer is yes 
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and is being done using the extended 11-value algebra. As our test set uses a two vector 

testing pattern, every final logic value of v2 (i.e. 0 and 1) has two variants depending upon 

the value of v1. If v1 is 0 and v2 is 1, then the value of the pattern is  Rise. If v1 is 1 and 

v2 is also 1, then the value of the pattern is Stable 1. Note that, in both cases v2 is 1. Just 

the value of v1 has created two situations of Rise and Stable 1. The same analysis is 

applicable when v2 is 0. Overall, Rise, Fall, Stable 1, and Stable 0 are different events and 

in our extended algebra they are treated as separate logic states. Along with these, we have 

the unknown logic value (i.e. X). Uncontrollable itself would be a legal logic state. 

Depending upon the logic behind it, each logic entity would lead to either a controllable 

value or some value that is beyond control. Hence, there are cases when a node either can 

have one among all the certain logic states (Stable 1/0, Rise/Fall, Unknown) or 

uncontrollable values. Stable 1/0, Rise/Fall, and Unknown logic levels can be merged with 

the uncontrollable logic state to create additional combined logic states. Here the 11 logic 

states are Stable 1, Stable 0, Rise, Fall, Unknown, Uncontrollable, Zero/Uncontrollable, 

One/Uncontrollable, Unknown/Uncontrollable, Rise/Uncontrollable, and 

Fall/Uncontrollable. The uncontrollable logic state is symbolized as u. When the test 

generation starts all the uncontrollable non-scan flip-flops, embedded memory elements, 

black-box outputs are assumed to be u. All the other lines are x i.e. unknown, but a known 

value can be assigned to them during test generation. For example, if we have an AND 

gate with one input as x and the second input as u (i.e. output of some uncontrollable logic 

entity), the possible outputs of the AND gate are either 0 (if x is 0) or u (if x is 1). We refer 

to this output value as 0/u. So, the AND gate output being uncontrollable depends on the 
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choice of the first input but not solely on the presence of an uncontrollable value on the 

second input.  

 

4.3  Use of Extended Algebra at Circuit Level 

In Figure 23 M1 is an uncontrollable entity, say a non-scan memory cell, while M2 

is a SFF. Using conventional three value (0,1,x) algebra, all the lines would be x. 

 

 

 

 

 

    (a) Search space trimming                                  (b) Scope of additional search 

Figure 23. Use of Extended Algebra  

 

n3 is the output of AND gate g1 whose input n1 is u and input n2 is x. The g1 output is 

0/u i.e. g1 can never be 1. In Figure 23(a) for paths through n4, the propagation through 

gate g2 requires side input n3 to be 1, which is not possible. Therefore all paths through 

g2 are false. This early determination reduces CPU time. Using the traditional algebra, 

this search space trimming would not have been done and finally would end up exploring 

many untestable paths. Here we also see that n5 can never be logic 1, so the transition 

delay faults can never be tested at n5. In Figure 23(b) we see the scope of additional path 

search leading to more coverage. Say, the partial path via n4 has grown to the level of gate 
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g2 (i.e. g2 is the last gate on the partial path). Now for successful propagation through gate 

g2, we require the side input n3 to be set at logic 0. Using the extended truth table, the n3 

node should have the logic value 0/u. If we perform direct implication to determine if can 

be set to 0, we easily find a solution by setting the controllable input n2 to 0. Hence, 

irrespective of n1 being assigned u an uncontrollable unit, g1 still produces the required 

off-path non-controlling value 0 for successful propagation through g2. Further direct 

implication is to be done on M2 now for ensuring n2 to be 0. If the traditional algebra had 

been used, then the direct implication would have stopped at g1.  Here, the use of extended 

algebra has paved the way for additional path search. 

 

 

Figure 24. Use of Extended Algebra for an ISCA89 S27 modified Circuit 
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 Figure 24. shows the use of extended algebra for extra path coverage using an 

example of an ISCAS benchmark circuit. In the modified s27 circuit, the flip-flops 

U50002 and U50003 are non-scan. The remainder of the flip-flops are SFFs. The outputs 

of U50002 and U50003 have been assigned the logic state u. For the path growth of the 

partial path through N4, we need to ensure that successful propagation happens via the OR 

gate U12. To achieve that, N13 should have the value 0. N13 is the output of an AND gate 

whose one of the inputs is u (the output of U50002). Therefore, we cannot do direct 

implication for N8. However, the other input N12 can be made 0 if the primary input N1 

is assigned 1. Hence, by assigning 1 to primary input N1, we can extend the partial path 

through N4, in spite of the presence of an uncontrollable unit in the off path. Similarly, the 

growth of the partial path through N6 is possible only when we can ensure a logic state 0 

for the line N17. Using the extended algebra, the value that can N17 would hold is 0/u. 

(logical AND of 0/u and x/u in extended truth table). We do not have any control on the 

value x/u. So the direct implication should be extended backward using U11 that produces 

either 0 or u (i.e. 0/u). The source of u in N14 (the output of U11) is the non-scan flop 

U50003. So we do not have any control over U50003. But the other input N2 can be made 

1, and thus assign 0 at N17. Hence, by assigning 1 to both N1 and N2 primary inputs, 

successful propagation of the transition through U15 can be ensured. Partial paths through 

N6 can be extended.  

 If we make a slight modification to the circuit by converting the U13 AND gate 

into a NAND gate, we get a 1/u value at the N17 net. U15 output becomes 0/u and net N5 

would be 1/u. It makes it impossible to produce 1 at U15 and 0 at net N5. We cannot test 
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the fault sites N5 and the output node of gate U15. All paths through N6 also go through 

U15. Hence, we cannot test faults at N6. Thus due to the inability to create/propagate 

transitions, we would not be able to test the paths passing through U15. Hence, we can 

trim off the associated fan-out logic. Figure 25 shows the trimming example that we have 

discussed so far.  

 

 

Figure 25. Logic trimming in ISCA89 S27 modified Circuit 

 

4.4 Realization of extended algebra in CodGen                                                                         

      We have focused on extending the work of [22] leading towards higher path delay 

fault coverage in the presence of non-scan cells, embedded memories and black boxes. 

The steps of realizing the extended algebra in CodGen are given below. 



 

44 

 

1. Extend the existing traditional algebra to an 11-value algebra. The 11 values being 

considered are zero (stable), pne (stable), unknown, uncontrollable, rise, fall, 

zero/uncontrollable, one/uncontrollable, unknown/uncontrollable, 

rise/uncontrollable, and fall/uncontrollable.  

2. Generate an extended truth table for each of the following logic cells: NOT, AND, 

NAND, OR, NOR, XOR, XNOR, PI, Buff, Mux, TSL, TSH, TSLI, TSHI, TIE1, 

and TIE0. Figure 19 shows the extended truth tables used in the work. 

3. We have assumed "Fall" and "Rise" to be controlling values for respective gates. 

(along with 0 and 1). This is applicable for both the original and extended algebras. 

Previously there was no consideration of Rise and Fall as controlling values. The 

reasons for pruning a path is that either the side input is a controlling value or XXX 

(i,e. u) or XX (i,e. output when the one of the inputs is u). In the 11-valued algebra, 

an optimistic approach is taken by allowing XXX and XX (i.e. 1_XXX, 0_XXX, 

X_XXX, Rise_XXX, Fall_XXX). 

4. Using a scan attribute construct, the percentages of non-scan and scan flip-flops 

have been tweaked to realistic values.  

5. There are up to 5 - 10% non-scan flip-flops in some circuits. Results have been 

generated for all ISCA89 circuits assuming approximately 10% non-scan flops. In 

the presence of non-scan flip-flops better path delay fault coverages have been 

observed in comparison to the results available using the traditional algebra.  
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6. Results have been obtained from runs for different values of K (i.e. number of long 

paths) to show the sustained improvement. Results have been generated for both 

robust paths and non-robust paths.  

 

4.5 The Extended Truth Tables 

            In this section, we show the individual truth tables used for different log entities. 

In Table 1 (a to k), we see tables for NOT, BUFF, AND, NAND, OR, NOR, XOR, XNOR, 

TSL, TSH, TSLI, TSHI. In these table, v1 having a non-u value and v2 having a u value 

has been assumed to be u, with the rationale that any transition to u is also uncontrollable 

(u). 

 

Table 1. Truth Tables of basic gates using 11-value algebra 

 

One input gates: 

 

(a) Truth tables for NOT, BUFF gates 
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Two input gates: 

(b) Truth table for AND gate 

 

 

 

(c) Truth table for NAND gate 
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(d) Truth table for OR gate 

 

 

(e) Truth table for NOR gate 
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(f) Truth table for XOR gate 

 

 

(g) Truth table for XNOR gate 
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(h) Truth table for TSL gate 

 

 

(i) Truth table for TSH gate 

 

 

 



 

50 

 

 

(j) Truth table for TSLI gate 

 

 

(k) Truth table for TSHI gate 
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5. EXPERIMENTAL RESULTS 

 

5.1 Robust path tests 

 Experimental results have been obtained for both Robust and Non-Robust path 

delay tests.  

 

5.1.1 Paths discovered with different K values and two algebras 

We have validated the expected path recovery advantage by running experiments 

on CodGen to discover paths from the ISCA89 benchmark circuits, using launch-on-

capture test patterns with no preamble cycles. Table 2 shows the number of robust paths 

discovered for different ISCA89 circuits using both the traditional algebra and the 11-

value algebra. The path count has been reported for different K values. Figure 26 shows 

the additional extra robust paths recovered for different ISCA89 benchmark circuits. The  

 

Table 2. Robust paths discovered with different K values using both algebras 
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type of circuit controls the path distribution and the number of paths being blocked due to 

uncontrollable non-scan (NS) flip-flops. The common trend that is evident here is, “The 

longer paths we want to cover, the greater the robust path recovery advantage we achieve 

using our algebra.” 

 

Figure 26. Improvements in Robust path recovery for different K values 

 

5.1.2 Faults detected with different K values and two algebras 

Table 3 shows the number of transition faults detected using robust tests in ISCA89 

benchmark circuits using both the traditional algebra and the 11-value algebra. As we 

explore more number of paths, the more number of transition faults get exposed to our test 

environment. For all the circuits we have observed an increase in the number of transition 

fault detection metric. This sub-section reports the advantages achieved in terms of 

transition fault count. The numbers of faults detected have been reported for different K 

values. Figure 27 shows the number of extra faults recovered for different ISCA89 

benchmark circuits. Here we can see that the more paths recovered, the more  
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Table 3. Faults detected in Robust path test with different K values using both 

types of algebra 

 

 

Figure 27. Improvements in Transition Fault recovery (Robust Test) 

 

fault sites that are tested. Thus, we see that the 11-value algebra results in enhancements 

in fault coverage. Whichever algebra is used, increasing the value of K always results in 

more testable faults than with lower values of K. The increase stops when all testable fault 
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sites have been detected. For s15850, we see that saturation has been reached for all values 

of K while using both the algebras. For s38584, fault detection reaches saturation at K=2. 

With lower K, many times back-tracking limits and max iteration counts prevents 

exploring more testable fault sites. Otherwise, the fault coverage should be the same for 

all K values. With increased K, more faults are detected fortuitously, increasing the fault 

coverage.                                                                                                                                                   

 

5.1.3 CPU runtime comparison with different K values and two algebras 

Table 4 reports the CPU time taken by each set of experiments. From the numbers 

we can easily see that in most of the cases the 11-value algebra approach has taken almost 

the same amount of time as the traditional algebra but has produced per path. 

Figure 28(a) to Figure 28(f) show the per-path CPU time for different circuits. 

From the figures, we can see that in most cases CPU time per path is reduced using the 

11-value algebra. We can infer from these results that in comparison to the traditional 

algebra, 11-value algebra discovers an average path faster. s38584 is the only circuit for 

which the traditional algebra consistently reports lower average CPU time, but only 

slightly lower.  
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Table 4. CPU time taken for Robust path test with different K values using both 

types of algebra 

 

  

 

   

Figure 28. (a) s5378 : Relative comparison of CPU time normalized over Robust 

path count  
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Figure 28. (b) s9234 : Relative comparison of CPU time normalized over Robust 

path count  

 

 

Figure 28. (c) s13207:Relative comparison of CPU time normalized over Robust 

path count 
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Figure 28. (d) s15850:Relative comparison of CPU time normalized over Robust 

path count 

 

 

Figure 28. (e) s38417:Relative comparison of CPU time normalized over Robust 

path count  
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Figure 28. (f) s38584:Relative comparison of CPU time normalized over Robust 

path count  

 

Any algebra with more logic values has inherently more computational complexity 

than an algebra with fewer values. Here, for s38584 the higher value complexity 

dominates over the early conflict resolution (untestable path detection). 

 

5.2 Non-Robust path tests 

 Almost the similar trends have been observed for Non-Robust tests also. The 

number we have obtained are presented in the following sections.  

 

5.2.1 Paths discovered with different K values and two algebras 

Table 5 shows the non-robust path counts of the ISCA89 circuits for different K 

values. The results have trends similar to the robust test. For the same circuit, the more 
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long non-robust paths we are interested in, the more paths are discovered. This increase is 

common for both the algebras. However, the 11-value algebra with larger values of K  

 

Table 5. Non-Robust paths discovered with different K values (2 types of algebra) 

 

 

has a larger advantage. Figure 29 shows the extra paths recovered from the 

ISCAS89 circuits while using the 11-value algebra in CodGen.  For s5378 and s13207 we 

observe the significant advantages of path recovery. For other circuits it is less. For s38584 

and s15850, the path recovery advantage is the same for all K values. These variations are 

due to differences in the nature of the circuits. The circuits with more recovery are the 

ones most impacted negatively by the presence of non-scan flip-flops. 

 

5.2.2 Faults detected with different K values and two algebras 

Just like the path counts, Table 6 shows the number of transition faults detected  

 

Benchmark 
circuits Gates

Total 
Flip-
flops

Non-scan 
ones

(around 
10%)

Non-Robust Paths being discovered

Using Traditional Algebra Using 11 value algebra

K=1 K=2 K=3 K=4 K=5 K=1 K=2 K=3 K=4 K=5

s5378 2993 179 20 93 138 177 210 285 542 980 1474 1879 2329

s9234 5844 211 20 46 78 78 78 78 52 86 88 90 92

s13207 8651 639 60 281 332 378 421 438 414 486 538 583 621

s15850 10833 534 50 80 80 80 80 80 90 90 90 90 90

s38417 22142 2426 240 744 752 756 760 764 751 761 767 772 777

s38584 23843 2636 260 312 314 314 314 314 316 316 316 316 316
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Figure 29. Improvements in Non-Robust path recovery 

 

for different values of K using both the algebras. As expected, we see the fault coverage 

getting better when the 11-vaue algebra is used. Increasing values of K finally result in  

 

Table 6. Faults detected in Non-Robust path test with different K values using both 

types of algebra 

 

 

0

500

1000

1500

2000

2500

s5378 s13207

449

133

842

154

1297

160

1669

162

2044

183

K=1 K=2 K=3 K=4 K=5

0

2

4

6

8

10

12

14

s9234 s15850 s38417 s38584

6

10

7

4

8

10
9

2

10 10
11

2

12

10

12

2

14

10

13

2

K=1 K=2 K=3 K=4 K=5

Extra path recovery for different K values



 

61 

 

increasing path count and higher fault coverage. We have deduced the extra faults 

detectable each time using the 11-value algebra in comparison to that of the traditional 

algebra (Figure 30). The advantage is greatest for s5378 and s13207. For the rest of the 

circuits there is a more modest advantage. 

 

 

Figure 30. Improvements in Transition Fault recovery in Non-Robust Path test 

 

5.2.3 CPU runtime comparison with different K values and two algebras                                                                                                                                                           

  Table 7 shows the CPU time taken by all the non-robust path recovery 

experiments. The total CPU time is almost the same for both algebras for each circuit. 

However, since the 11-value algebra recovers more paths, its per-path CPU time is lower 

in many cases, as shown in Figure 31(a) to Figure 31(f). Only s38417 and s38584 have 

lower CPU time using the traditional algebra. 
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Table 7. CPU time taken for Non-Robust path test with different K values using 

both types of algebra 

 

   

 

Figure 31. (a) s5378  

Relative comparison of CPU time normalized over Non-Robust path count  
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Figure 31. (b) s9234  

Relative comparison of CPU time normalized over Non-Robust path count  

 

 

Figure 31. (c) s13207  

Relative comparison of CPU time normalized over Non-Robust path count   
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Figure 31. (d) s15850  

Relative comparison of CPU time normalized over Non-Robust path count  

 

 

Figure 31. (e) s38417  

Relative comparison of CPU time normalized over Non-Robust path count  
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Figure 31. (f) s38584  

Relative comparison of CPU time normalized over Non-Robust path count  

 

Table 8. Longest Testable Path Lengths using both algebras 
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5.3 Comparison of longest testable path using both the algebras 

Table 8. shows the longest testable path lengths achieved for different circuits 

using both algebras. As we can see, in many cases, the 11-value algebra finds considerably 

longer paths in some circuits. This is critical for timing accuracy. 
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6. CONCLUSIONS AND FUTURE WORK  

  

In this work, improved path and fault coverage has been achieved using the 

extended 11-value algebra. In many cases, improvements have been observed in terms of 

per-path CPU time. We expect the gain to increase with a higher percentage of non-scan 

or uncontrollable flip-flops. 

            As future work, the impact of the extended value algebra will be evaluated on 

industrial circuits. In our experiments, the flip-flops have been converted to non-scan 

arbitrarily. The actual impact on path recovery will be more visible with realistic selection 

of non-scan flip-flops. Circuits with embedded memories are also ideal candidates to 

validate the advantage of 11-value algebra. 

 The current implementation does not take advantage of the pseudo functional test 

option. In this case, the non-scan flip-flops may be set during the preamble cycles. Treating 

these flip-flops as uncontrollable for every cycle is pessimistic, since they are only 

uncontrollable for the initial scan-in phase, and then enter functional (transparent) mode. 

We will evaluate cases where the cells are only uncontrollable in the initial input. This 

requires extending the SAT engine to support uncontrollable input values. 
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