
PROGRAMMING WEB APPLICATIONS DECLARATIVELY

A QUALITATIVE STUDY

A Thesis

by

PAWAN KUMAR SINGH

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jaakko Järvi
Co-Chair of Committee, Jeff Huang
Committee Member, Alex Sprintson
Head of Department, Dilma Da Silva

August 2016

Major Subject: Computer Science

Copyright 2016 Pawan Kumar Singh

ABSTRACT

In the declarative programming approach of property models, a dataflow con-

straint system manages the behavior of a user interface. The dataflow constraint

system captures the user-interface logic as a set of variables and dependencies be-

tween those variables. This thesis builds on the prior work that realizes the property

models approach as a concrete library for web development called HotDrink. This

thesis evaluates the effectiveness of the declarative programming approach of prop-

erty models, describes the experience of implementing a medium-size web application

following the approach, and compares property models with existing web frameworks.

A particular focus is on how programming with property models helps programmers

to avoid defects related to asynchronous execution of responses to user events.

ii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Jaakko Järvi for

the continuous support, patience and immense knowledge. His guidance helped me

throughout, from theoretical concepts to research approach. The weekly meetings

and discussions have trained me a lot and helped me in becoming a better researcher.

I am also thankful for his constructive feedback I received while writing this thesis.

Besides my advisor, I would like to thank the rest of my advisory committee: Dr.

Alex Sprintson, and Dr. Jeff Huang, for their support and enthusiasm.

I would like to express my heartfelt thanks to my parents for their love and

support. I would like to thank Taujee for his continuous support and motivation. To

my siblings and friends: Pankaj Bhaiya, Menka Didi, Sweta Didi, Pushkar, Aarti,

Anurag, Anurag, Anindya, Anirrudh, Prannay and others, thank you for supporting

and helping me in difficult times.

iii

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

TABLE OF CONTENTS . iv

LIST OF FIGURES . vi

1. INTRODUCTION . 1

2. REVIEW OF TRADITIONAL WEB PROGRAMMING 3

2.1 Event Driven Programming . 3
2.2 Event Handling in JavaScript . 4
2.3 Asynchronous Programming . 5
2.4 Ajax and jQuery . 7

3. BACKGROUND . 9

3.1 Constraint Systems . 9
3.2 Property Models . 11
3.3 HotDrink . 12

4. METHODOLOGY . 17

4.1 Identification . 17
4.2 Prototyping . 18
4.3 Evaluation . 20

5. DEFECTS IN WEB APPLICATIONS . 21

5.1 Travel Booking . 21
5.1.1 Auto-complete Text-Box . 21
5.1.2 Multi-Tab Search Results . 24
5.1.3 Sliders . 29

5.2 Education . 30
5.2.1 Blackboard . 30
5.2.2 Gradescope . 32

iv

5.2.3 zyBooks . 33
5.2.4 Edmodo, Engrade, and, Vocareum 34

5.3 Industrial Interaction . 34

6. EXPERIMENT IMPLEMENTATION DETAILS 36

6.1 Website Features . 37
6.2 Solution Stack within MVVM . 39

6.2.1 View . 40
6.2.2 Model . 42
6.2.3 View-Model . 43

6.3 Key Implementations . 44
6.3.1 Observer-Observable . 44
6.3.2 Auto-complete Implementation 46
6.3.3 Flow of Data Requests . 48

7. RESULTS . 50

8. COMPARISON OF IMPLEMENTATION EFFORT 54

8.1 Knockout and ConstraintJS . 54
8.2 HotDrink . 56

9. FUTURE WORK . 59

10. CONCLUSION . 60

REFERENCES . 61

v

LIST OF FIGURES

FIGURE Page

3.1 Carpet Cleaning Estimator developed using HotDrink. 13

4.1 The MVVM architectural pattern in our prototype web application. . 19

5.1 Input suggestions of Auto-complete [7]. 22

5.2 New York gets selected when enter key is hit immediately after typ-
ing ‘New H’. This is an incorrect selection as we can observe in Figure
5.1 that shows that the correct matching entry is New Haven not New
York [7]. 24

5.3 Example of Multi-tab search results in NOAO Science Archive web-
site [3]. 25

5.4 A screenshot from the Priceline website. Search filters for the number
of stops and the duration of flight can be seen on the left side [28]. . . 26

5.5 Slider controls to filter results on the Kayak website. 29

5.6 Grade recorded as 0 instead of 50 in the Blackboard application when
the user types inputs swiftly [4]. 31

5.7 Rubric entry remained ungraded due to quick data entry in the Grade-
scope application [13]. 32

6.1 Screenshot of our travel booking website. 37

6.2 Screenshot of our travel booking website on a mobile browser. 38

6.3 Screenshot of our travel booking website showcasing multi-tab search
results. 39

6.4 Screenshot of our travel booking website showcasing user profile. . . . 40

6.5 Representation of an auto-complete text-box in terms of HotDrink
constraints. 48

6.6 Diagrammatic representation of the request flow in our web application. 49

vi

8.1 Data Visualization using D3 and HotDrink. 58

vii

1. INTRODUCTION

The support for developing asynchronous web applications has improved signifi-

cantly over the past decade. User interaction on the Web has become richer and web

applications have become more user friendly. One factor behind this development is

that programmers are taking advantage of asynchronous functionality with Ajax [22].

In asynchronous web applications, it is easier to deliver changes to an application’s

presentation layer without the need of the browser to make server requests repeat-

edly. Today, numerous web frameworks (mostly JavaScript based) exist for rich user

interface development, with easily programmable event handlers.

While asynchronous handling of user events can improve the user experience,

it complicates programming. Even though web applications are to a large extent

built using predefined software components, when the components are put together

their composition becomes a complex software artifact in itself. These compositions

are not reusable, and when code in individual components executes asynchronously,

the interactions are difficult to program correctly. This difficulty is due to complex

dependencies and a large amount of non-reusable code present in different event

handlers of rich user interfaces [18]. In these scenarios, it is difficult to ensure that all

data dependencies are fulfilled when new user events are triggered while past events

are still being processed [9]. This eventually gives rise to asynchronous programming

defects.

A possible solution to these challenges is the declarative UI programming ap-

proach called property models [18]. This approach aims for increasing reusability of

user interface code. A property model defines the data dependencies between the

different components of a user interface explicitly. When the value of a variable in

1

a particular component changes by a user event, a property model identifies which

other components must be changed and how. Concretely, a property model responds

to user events by resolving data dependencies and scheduling asynchronous compu-

tations for them [9, 18, 17, 11]. The HotDrink library is a concrete realization of

property models in JavaScript and TypeScript [9].

Currently property models are at an experimental stage and not yet a properly

validated idea. The approach seems promising but more experience with realistic

application programming is needed. This thesis is one step in providing such ex-

perience. This thesis reports on a qualitative evaluation of the effectiveness and

limitations of the declarative programming approach of property models for web ap-

plication development. The evaluation was carried out with the help of the HotDrink

library by building a medium-size realistic web application using HotDrink, together

with other JavaScript libraries, and then by analyzing the effort and experiences of

developing software with this approach.

In this thesis, we discerned some significant outcomes about the practice of de-

veloping user-interfaces with property models. The most important inference is that

property models can be used effectively to develop UI logic of modern web appli-

cations built with JavaScript templating libraries. Another important result is that

property models can be effectively use to build complex UI widgets that are not

prone to asynchronous programming defects.

2

2. REVIEW OF TRADITIONAL WEB PROGRAMMING

2.1 Event Driven Programming

In early days of computing, programs used to run in batch mode. The programs

read input files in batch operations, computed operations on the data and finally

emitted the results as output. The arrival of time-sharing and text-based terminal

systems made interactivity possible: programs asked for user input and provided

their responses based on this input. Later, graphical displays and pointing devices

transformed user interaction to a richer experience. This change was the result of the

event-driven programming model. In the event-driven programming model, events

in the form of mouse clicks, keystrokes, etc. decide the flow of a program.

The majority of all web applications are designed and implemented using the

event-driven programming model. When an event is triggered, the browser invokes

an associated event handling function to respond to the triggered event. Events can

occur in any order, there is no predetermined order for them. In the usual case, the

user’s actions determine, or at least affect, the sequence of events. The system can

also trigger events.

An event can be triggered because of three reasons:

1. User interaction with a GUI.

2. Web application’s periodic processes or response to user interaction.

3. Client operating system notification.

User interaction is the most common way due to which events are triggered in a

web application session [8]. The GUI of a typical web application is composed of a

set of forms or HTML controls. Each of these forms or controls recognizes a set of

3

events specific to its functionality. For example, a HTML element can recognize an

event that triggers whenever a user clicks that particular HTML element, or an event

that triggers when the value of the HTML element changes. Similarly, an event can

be triggered when a HTML page finishes loading or when a user presses a keyboard

key.

The web application’s objects can trigger events too. These events are primarily

periodic events that are executed to update the GUI with the latest information from

the server.

Lastly, the client operating system can trigger its own events. These events are

associated with permission access for hardware control or errors in executing the

GUI code block.

2.2 Event Handling in JavaScript

Event handling in JavaScript provides programmers the core technique of con-

trolling the GUI content, generate responses to user interaction, and maintain the

application flow. Over the past decade, event handling code has become central to

web programming [21].

Modern browsers support dynamic page rendering. With this feature, the browser

switches intermittently between processing client-code, rendering the presentation-

layer, and waiting for new events to trigger. This perpetual loop allows a web page to

be partially rendered even before the browser has completed fetching all the resources

associated with the page. Dynamic page rendering leverages JavaScript to execute

event driven actions and control web application behavior.

There are two ways in which event handlers can be implemented in JavaScript.

First approach is as HTML attributes. In this approach, JavaScript code is specified

as a value of a HTML attribute. In Listing 2.1, the onclick attribute of the

4

HTML input tag has been assigned some JavaScript code. This code creates an

alert popup. Multiline JavaScript code can be added by separating statements with

semicolons.

Listing 2.1: Use of HTML attributes

<input type="button" value="Submit" onclick="alert(’Hello’);"/>

The second approach involves assigning JavaScript code to a DOM Object’s prop-

erty. Each HTML document is a tree of HTML elements. This HTML tree has a

corresponding representation as a JavaScript object, the DOM tree. The attributes

of HTML elements are properties of objects in the DOM tree. In the above exam-

ple, onclick is an attribute of the input element, so by first finding the correct

object from the DOM tree and then binding a JavaScript function to the onclick

property of the object we can register an event handler for the onclick event of

the input element, as shown by Listings 2.2 and 2.3.

Listing 2.2: Specifying element names in HTML.

<form name="frmMain">

<input type="button" name="btnSubmit" value="Submit"/>

</form>

Listing 2.3: Using HTML elements to access properties of DOM object

document.frmMain.btnSubmit.onclick = function(){ alert(’Hello’);};

2.3 Asynchronous Programming

In early web applications, the browser made a request for a new presentation of

the current page for every user interaction that required data from the server. The

5

execution of JavaScript code on the client was blocked until the request had been

fulfilled by the server. This form of interaction is known as synchronous communica-

tion. The programming paradigm that supports developing applications with such

communication is called synchronous programming.

The major limitation of synchronous web applications is the large time interval

between each GUI update, or alternatively frequent updates that each freeze the ap-

plication for a moment. Even if a synchronous web application has been programmed

in such a way that it frequently refreshes itself with new information from the server,

individual refresh operations cause delays. For applications that rely on data that is

continuously updating, for example stock trading applications, synchronous commu-

nication does not provide an ideal user experience.

With the advent of Web 2.0 [25], asynchronous communication came into exis-

tence. In this form of communication, multiple requests between the client and server

can be submitted simultaneously, and the client continues to execute its JavaScript

code while the requests are being handled. This capability enabled web programmers

to develop web applications that can deliver continuously updated information to the

user. The programming paradigm of developing applications performing communi-

cation of such nature is referred to as asynchronous programming.

By using the request/response mechanism differently, one can achieve different

communication and update strategies. Three common models for asynchronous com-

munication are the polling, long-polling, and push models [27].

The polling model is the simplest communication mechanism. The client keeps

the GUI up-to-date by regularly sending a request to the server to see if there are

any new data. There is an inherent trade-off in the basic polling mode: good user

experience requires frequent polling, but frequent polling consumes both the client’s

and server’s resources. In the long-polling model the browser requests the server for

6

new information and the server only responds after there has been an update. Im-

mediately after the receipt of the server response, the browser sends another request,

so that there is constantly a request open. This immediate response by the browser

and waiting until there is a change by the server differentiate long-polling from the

simple polling model [27].

Like the other two models, the push model also initiates communication by the

client sending a request to the server. The response received from the server is,

however, kept open. This allows the client to keep an active connection with the

server. The server then sends a sub-message over the open connection every time

there is an update. This model maintains an open communication link between the

client and server at all times [27].

2.4 Ajax and jQuery

Ajax (Asynchronous JavaScript and XML) is the practical realization of asyn-

chronous communication in JavaScript. It enables the browser to update a web page

without the need to reload it. The Ajax protocol is complex and constructing data

for Ajax requests is tedious. The popular jQuery [32] library hides some of this

complexity and is commonly used for implementing client-server communication in

JavaScript programs.

Listing 2.4 shows an example of invoking an Ajax call using jQuery. In this

example, we are calling the Flickr web service [35] using jQuery’s ajax function.

The ajax function requires two important parameters: the web service URL and the

result’s data-type. In Listing 2.4, these parameters are represented by the variables

url and datatype, respectively. The variable url has been assigned the URL of

the Flickr web-service. The variable dataType has been assigned the json format.

Based on the success of the asynchronous call, the ajax function calls one of the two

7

functions, namely success and error. The last line of Listing 2.4 add a text-box

to the HTML Document.

Listing 2.4: Ajax call using jQuery.

$.ajax({

url: "http://www.flickr.com/services/feeds/photos_public.gne?

tags=cars",

dataType: json,

success: function (data) {

$("#results").val(data); },

error: function(error) {

console.log("Error: " + error); }

});

$("#body").appendTo("<input type="text" id="from" name="from"

/>");

The strength of asynchronous programming comes from the fact that asynchronous

computations do not interfere rendering of the web page. For example, the task of

adding a DOM element to the presentation layer on the last line of Listing 2.4 does

not depend on the completion of the ajax function. Independent asynchronous com-

putations provide a performance improvement for the web application. On the other

hand, asynchronous computations managed by event handlers seem to often exhibit

defects when complex tasks involving user inputs are performed. In Chapter 5, we

discuss in detail some prevalent defects in commercial websites. In Chapter 6, we

discuss the avoidance of asynchronous programming defects using the approach of

property models.

8

3. BACKGROUND

The proposed work is based on prior work done in the field of declarative GUI

programming at Parasol laboratory of Texas A&M University. This prior work builds

on hierarchical multi-way dataflow constraint systems [11] and introduces property

models as an abstraction for the GUI state [11, 17]. To place the proposed work in

a proper context, we discuss constraint systems, property models, and the HotDrink

library.

3.1 Constraint Systems

A constraint system represents a system of variables and constraints among those

variables. A constraint establishes a relationship between the variables. When the

constraint is true, it is considered to be satisfied. A constraint system ensures that all

constraints are satisfied. Whenever a constraint becomes unsatisfied, the constraint

system re-enforces it by updating variables associated with the constraint. This

update task (or computation) partitions the variables of the constraint as input and

output variables. This partitioning represents a direction of computation; not all

directions are feasible in a constraint [11].

The feasible computations for each constraint are expressed by a set of methods

known as constraint satisfaction methods (CSM). The code associated with a CSM

is considered a black box, and is provided by the programmer [18]. A multi-way

dataflow constraint has one or more methods that can enforce it. A multi-way

dataflow constraint system ensures that a set of multi-way dataflow constraints are

satisfied [15]. This is done by executing one method from each constraint. The

methods are executed in such an order that once a variable has been used by a

method as input, no other method updates the value of that variable [17]. Any

9

execution sequence that satisfies this property is called a valid execution order [9].

Solving a constraint system requires two steps. The first step is choosing the

methods (one from each constraint) for execution in an order such that it constitutes

a valid execution order. This selection of methods is called the plan [9, 16]. The

second step is executing the methods in the chosen valid execution order.

If a multi-way dataflow constraint systems has multiple plans it is called under-

constrained. For such systems, plans can be ordered based on a prioritization of

variables, and the best plan can be selected as a solution. This is done in the

following three steps.

In the first step, we add a stay constraint for each variable in the constraint

system. A stay constraint consists of a single variable and one method that out-

puts to the variable [16, 9]. As stay constraints are added, the system can become

over-constrained. In an over-constrained system, no execution order can enforce all

constraints.

In the second step, we prioritize the stay constraints to order partial solutions of

the system. The stay constraint whose variable has been updated most recently is

given the highest priority. The priorities build a hierarchy among the constraints [15].

This hierarchy corresponds to the order in which variables have been updated.

In the third step, the hierarchy of constraints is utilized to select the plan for

the highest priority constraints. Each plan represents a sequence of constraints it

enforces in a priority order from highest to lowest. The constraint system solver

selects the plan which is greatest in the lexicographical order [9].

In the context of property models, we define two editing operations for constraint

systems. These editing operations define how the View modifies the constraint sys-

tem. A touch operation promotes a constraint to the highest priority and a set

operation assigns a new value to a variable and performs a touch operation on the

10

stay constraint of the variable. A sequence of one or more touch and set operations

represents an edit of the system. The constraint system is solved whenever an edit

takes place [9].

3.2 Property Models

Traditionally GUI programming has been centered around events. The program-

mer develops the business logic of an application using callback subroutines that are

registered to relevant events [9]. The difficulties in developing rich user interfaces

using this approach have long been identified [18] and alternative solutions proposed.

Property models are one of the solutions.

A property model is an abstraction aimed at reducing the complexity of GUI pro-

gramming [18]. Property models derive GUI behavior from an explicit representation

of the data dependencies between different components of the GUI. Traditionally all

GUI behavior is managed using event handling code.

A property model consists of a constraint system and a declarative language for

describing variables and constraints among them [18]. In terms of functionality, a

property model resembles a spreadsheet. Setting the value of one variable leads to

recalculating dependent values [18]. When bound to a user interface of an application,

a property model captures the logic associated with the behavior of the user interface.

Architecturally, a property model cleanly fits the role of the View-Model in the

Model View View-Model [20] (MVVM) design pattern. A View-Model helps in con-

solidating the logic of a user interface’s behavior, independent of the View of the

application. A crucial role is played by data bindings in achieving this ability. The

data bindings provision the mapping of constraint system’s variables to the corre-

sponding components in the View. These data bindings help to translate changes in

the View to the property model and vice versa.

11

3.3 HotDrink

HotDrink is the implementation of property models. It is written in TypeScript,

a typed superset of JavaScript [15]. TypeScript can be compiled to plain JavaScript.

HotDrink as a JavaScript library can be used to develop the View-Model of a web

application, while at the same time other libraries can be used to implement the

View. HotDrink is thus non-intrusive.

The View-Model in HotDrink contains all the logic governing the GUI behavior

and state while the View is devoid of any such logic (usually it consists of just HTML

declarations). This helps in developing complex GUI behaviors without the use of

event handlers. The resulting code is clear, concise, and reusable [11].

The heart of the HotDrink library lies in the constraint system. In HotDrink,

programmers are required to explicitly specify each method associated with a con-

straint. A View-Model in HotDrink is said to be updated whenever the constraint

system is solved. An update can be triggered by adding a variable or a constraint,

changing a variable’s value, or by an explicit call [11].

HotDrink supports incremental development of a constraint system [11]. It means

that new variables and constraints can be added to the constraint system that is

already bound with the View. This allows the View-Model to adapt along with a

dynamic web user interface [11].

Bindings play an important part in the HotDrink library. They manage the

exchange of data between the View and View-Model. Bindings listen for a change in

the elements of the View and write the changed value to the corresponding variable in

the constraint system. They also listen for changes in the variables of the constraint

system and update the corresponding elements in the view [11].

User interaction with the View is captured by user events [11]. HotDrink responds

12

to user events by solving the constraint system and producing a new GUI state, which

is translated back to the View by data bindings [9].

Apart from the traditional HTML widgets, the HotDrink library also supports

defining bindings on custom GUI elements (non-native HTML elements built using

third party JavaScript libraries). This ability helps in extending HotDrink to support

Views developed by other JavaScript libraries.

Figure 3.1, presents an example of a web application developed using HotDrink.

We have named this web application as Carpet Cleaning Estimator. As suggested by

its name, this web application estimates the cost of carpet cleaning for an apartment.

The GUI of this web application consists of a text box, two checkboxes, and multiple

labels. The user needs to input the number of bedrooms in the text box. The

first checkbox needs to be checked if the staircase needs to be cleaned. The second

checkbox needs to be checked if scotch guard treatment is required. The estimated

total value of carpet cleaning is displayed below these inputs.

Figure 3.1: Carpet Cleaning Estimator developed using HotDrink.

Listing 3.1 describes the View of Carpet Cleaning Estimator. The View has been

built using HTML tags. The HTML tags in Listing 3.1 corresponds to labels and

text-boxes present in the View. For the sake of simplicity, we have presented the

HTML tags without the styling component.

13

Listing 3.1: View for Carpet Cleaning Estimator.

<label>Carpet Cleaning Estimate Calculator</label>

<label for="editRooms">No. of Bedrooms</label>

<input id="editRooms" type="text"/>

<label for="editStairs">Include Staircase</label>

<input id="editStairs" type="checkbox"/>

<label for="editSGT">Scotch Guard Treatment</label>

<input id="editSGT" type="checkbox"/>

<label for="esTotal">Estimated Total</label>

Listing 3.2: View-Model for Carpet Cleaning Estimator.

var component = new hd.ComponentBuilder()

.variable(’bedrooms’,0)

.variable(’staircase’,false)

.variable(’sgt’,false)

.variable(’estimate’)

.constraint(’bedrooms, staircase, sgt, estimate’)

.method(’bedrooms, staircase, sgt -> estimate’,

function(bedrooms, staircase, sgt) {

if (bedrooms <1) {return 0;}

var total = bedrooms*90;

if (staircase) { total += 50;}

if (staircase) { total += bedrooms*25;}

return total; })

.component();

var pm = new hd.PropertyModel();

pm.addComponent(component);

14

Listing 3.2 describes the View-Model of Carpet Cleaning Estimator. In the View-

Model, we are creating the property model object using a component. The component

defines the variables and the constraints between those variables. In other words,

the component defines a constraint system. The Carpet Cleaning Estimator has just

one constraint and that constraint has just one method. This method takes three

parameters representing the number of bedrooms, inclusion of staircase cleaning,

and scotch guard treatment, and computes the estimated total of carpet cleaning.

These parameters are bound to the three inputs from the View. The last two lines

of Listing 3.2 uses the component to create an instance of property model.

Listing 3.3: Bindings for Carpet Cleaning Estimator.

window.addEventListener(’load’, function() {

hd.bind({view: new hd.Edit(document.getElementById(’editRooms’)),

model: component.bedrooms });

hd.bind({view: new hd.Edit(document.getElementById(’editStairs’)),

model: component.staircase });

hd.bind({view: new hd.Edit(document.getElementById(’editSGT’)),

model: component.sgt });

hd.bind({view: new hd.Text(document.getElementById(’esTotal’)),

model: component.estimate});

});

Listing 3.3 describes the data bindings of the View. In this code, we are using

the addEventListener method to attach a property model to elements in the

GUI. In this code, we are referencing each element of the View by its element id. We

then bind each element with the variable that represents it in the View-Model. In

this code, we are creating data bindings for DOM elements representing the number

of rooms, staircase inclusion, scotch guard treatment, and estimated total. These

15

DOM elements are bound with the respective variables present in the property model.

Whenever the input values are edited by the user, the property model evaluates a

new value for the estimated cost, and data bindings reflect it immediately on the

View.

16

4. METHODOLOGY

Our research methodology consisted of three phases. The first phase assessed

how prevalent asynchronous programming defects are in modern web applications.

We studied causes and severity of these defects. The second phase involved the

development of a medium-size realistic web application. The GUI logic of this web

application was developed using the declarative programming approach of property

models. The web application was analyzed with different use-cases. These use-

cases showcase and test the behavior of its user interface. The use-cases involved

manipulating large data-sets over asynchronous tasks to assess the impact of this

approach on real web applications. In the final phase, we assessed and evaluated the

development experience.

4.1 Identification

To understand the severity of the problems in programming asynchronous GUIs,

we investigated web applications from different domains. The emphasis was on web

applications from the travel industry because of their feature-rich user interfaces and

massive user bases—in the United States, the minimum number of daily visits to the

30 most popular travel booking websites have been estimated to be between 300,000

and 1,000,000 [1]. We also investigated applications from education, healthcare,

and the online shopping industry. Based on our investigations, we concluded that

defects are so prevalent that these are not mere simple inconsistencies but indicate a

bigger methodological problem. The traditional design and implementation of web

application that centers around event handlers is responsible for the high occurrence

of defects [9].

17

4.2 Prototyping

To examine the challenges and benefits of our declarative programming approach

in developing web applications in practice, we chose to build a travel booking web

application. We developed this application with a popular JavaScript web framework

called AngularJS [12] combined with the HotDrink library. The aim of this combi-

nation was to assess if the usage of HotDrink limits or benefits the development of

modern web applications. This web application was developed using the MVVM [20]

design pattern.

As its name suggests, the Model-View-ViewModel pattern separates the appli-

cation into three parts. The first part, called View, is responsible for delivering

presentation changes to the user and capturing user actions. The View in our appli-

cation was developed using HTML and CSS.

The AngularJS library comes with rapid application development features. One

such feature is templating, which allows the library to control HTML on the browser’s

DOM level, rather than via string manipulation. Another strength of the AngularJS

library is the directives feature. This feature allows the library to extend existing

HTML widgets or create new ones by encapsulating custom behaviors on top of

existing ones.

The second part, the View-Model, is an abstraction of the View component. It

maintains the data of the View and provides the logic describing the View’s behavior.

It consists of GUI processing elements that are JavaScript objects from HotDrink

and AngularJS libraries.

In our solution, we are controlling the View with AngularJS objects, which in

turn are controlled by HotDrink objects. The responsibility of maintaining the data

dependencies lies with HotDrink while AngularJS captures user responses and man-

18

ages the View. AngularJS notifies HotDrink of changes in the View due to user

events. HotDrink assesses the changes and computes new dependent values. It then

notifies AngularJS to update the View elements with those new values.

Figure 4.1: The MVVM architectural pattern in our prototype web application.

The third and final part of the MVVM pattern is the Model. It is responsible for

the data and logic independent of the GUI. In our solution, the Model was developed

using a server-side runtime environment called NodeJS [6]. This runtime environment

19

uses a light-weight database called SQLite [14].

Figure 4.1 shows the diagrammatic representation of the MVVM architectural

pattern for our web application. In this diagram, we can clearly identify the software

stack for each component of the MVVM pattern.

4.3 Evaluation

In the evaluation of constructing the travel booking web application, we focused

on assessing the effort and experience from the developer’s perspective. We focused

on three aspects in particular. First, we compared the implementations of popular

web components (widgets) such as auto-complete text-boxes, sliders, and multi-tabs,

developed with and without HotDrink. Second, we observed challenges of using

HotDrink with existing JavaScript frameworks popular for rapid application devel-

opment. Finally, we compared HotDrink with other modern solutions that are being

used to tackle asynchronous programming defects.

20

5. DEFECTS IN WEB APPLICATIONS

In order to better understand the complexities and defects caused by combining

asynchronicity and event-handling, and how they manifest in modern web program-

ming, we analyzed web applications from multiple industries. These industries in-

clude online travel booking, education, and health-care. As a result of this analysis,

we present examples that show how asynchronous execution of programming logic

in web applications produce incorrect results [9].

5.1 Travel Booking

Online Travel Booking came into existence during mid-1990s and is ubiquitous

nowadays. Online Travel Booking applications vary from airlines’ own flight reser-

vation systems to travel aggregators and vacation package planners. These appli-

cations make it possible for travellers to plan and book trips at any time. In the

spring of 2015, around 59.8 million online travel bookings were made in United States

alone [31]. In terms of sales, Expedia Inc. was the largest travel agent in the world,

followed by Priceline Group and Orbitz.

In our sampling, we collected examples from 35 most popular travel booking

web applications. The measure of popularity was in terms of the daily unique visitor

count [1]. For each of these web applications, we evaluated their workflow for booking

a reservation for a simple itinerary. Our focus was on the HTML widgets which we

used in each step of the booking process. We will now discuss these widgets in detail.

5.1.1 Auto-complete Text-Box

An auto-complete text-box is one of the most common GUI elements present in

travel booking applications. See Figure 5.1 for an example. This GUI element assists

21

the user with suggestions to select the right string for input. The text entered by

the user is utilized for input as well as for generating the suggestions that matches

the input. The suggestions are generated using an asynchronous web-service call in

which the user-entered string is itself used as the input parameter. The suggestions

are displayed below the text box as a menu from which the user can select a matching

suggestion. If an item is selected from the suggestion menu, the content of the menu

decides the final input. If no matching suggestion is generated, the input string itself

becomes the final input.

Figure 5.1: Input suggestions of Auto-complete [7].

A common defect in auto-complete text-boxes appears, for example, in the fol-

lowing scenario. The user first types the input string “New ”, and the text-box gives

a suggestion list of cities whose name starts with “New ”. In this list “New York”

22

usually comes on the top (the list is often not in alphabetical order). If the user

modifies the keyword to “New H”, the list refreshes itself, and “New Haven” comes

as the top suggestion. If, however, instead of waiting for the list to refresh, the user

hits the enter key moderately quickly after entering the "H" character, the top

result from the previous suggestion, i.e., New York, gets selected as the resulting

value of the auto-complete text-box. As another manifestation of this defect, it is

entirely possible that the user types in P-A-R-I-S and hits enter, yet gets a search

for flights from Paragould, Arkansas.

The event handling mechanism of an auto-complete text-box revolves around four

pieces of information: the input-string, suggestion-list, current-selection, and final-

value. The first event handler captures keystrokes from the user as input-string. It

then requests a list of suggestions from the server based on input-string. We term

this list as suggestion-list. A second event handler gets triggered by arrow keys and

it selects an item from the suggestion-list. We term the currently selected item from

the suggestion-list as current-selection. A third event handler gets triggered by the

enter key and sets the current-selection as the final-value. The final-value serves

as the output of auto-complete text-box. All these event handlers are keypress event

handlers that are triggered when the user presses keyboard keys.

The reason that the user experiences inconsistencies with auto-complete text-

boxes is that newer event handlers are processed before older ones have completed.

Concretely, the keypress event-handler yields instead of blocking after it has sent the

server a request for new content for the suggestion-list, and by this allows the handler

for the enter keypress event to proceed with stale information [9]. In Section 6.3.2

we discuss an implementation of an auto-complete text-box using constraints, and

explain in details what the dependencies between different pieces of data are.

Out of 35 commercial travel websites we examined, 33 exhibited the above-

23

Figure 5.2: New York gets selected when enter key is hit immediately after typing
‘New H’. This is an incorrect selection as we can observe in Figure 5.1 that shows
that the correct matching entry is New Haven not New York [7].

described inconsistency. Figures 5.1 and 5.2 show an example of the inconsistency

manifesting in the popular travel website expedia.com.

The two websites that do not have this problem, kayak.com and makemytrip.

com, avoid it by avoiding asynchronicity altogether: they keep the auto-complete

text-box from accepting input until the suggestion list has been fully updated, which

is not particularly user-friendly.

5.1.2 Multi-Tab Search Results

By multi-tab search results we mean the presentation of search results from dif-

ferent queries in separate tabs. This functionality is similar to opening multiple tabs

in any modern web browser. Tabbed content helps in grouping related information

in the same view. This feature makes it possible to switch to another tab, that

24

has previously processed information, while information in the current tab is being

processed.

Figure 5.3: Example of Multi-tab search results in NOAO Science Archive website [3].

To give a concrete example of an application that supports multi-tab search re-

sults, we will take an example from archive.noao.edu. Figures 5.3 shows a

screenshot of search functionality present on this website. In this figure, we can

observe that different search results have been presented in individual tabs. Unlike

commercial travel booking applications, this website uses the server-side scripting

languages PHP and Pearl for building GUI. Due to extensive server-side script-

ing, this website is slow in responding to user interaction and not particularly user

friendly.

All the commercial travel booking websites we examined provide an elaborate

search functionality but do not present multi-tab search results. Most commercial

booking websites use the same search result pane and every new search completely

replaces the old results. A handful of commercial booking websites open new windows

for individual search results.

25

We suspect the biggest reason for why commercial travel booking sites do not

support multi-tab search results is the complexity of implementing such a design

using JavaScript event handlers. We obtained some confirmation to this conjecture

of ours from Expedia’s developers [30]. As a reason for why multi-tab search results

are not supported in Expedia’s user interface, the UI developers there cited the

complexity of client-side code when trying to combine multi-tab search results with

search filters, another feature in their GUI. A search filter is a widget that helps the

user in selecting a subset of information from a result set. A typical search filter

widget captures user input from check-boxes, radio buttons, or sliders. It then uses

this user input to restrict the result set.

Figure 5.4: A screenshot from the Priceline website. Search filters for the number of
stops and the duration of flight can be seen on the left side [28].

26

Figure 5.4 shows the screen-shot of search result filter from priceline.com.

The left side of this image shows search filters for the number of stops and the

duration of flight. The right side of this image displays the list of flights matching

the search criteria.

In our own experiment of implementing a flight reservation client using HotDrink,

we included both tabbed search results and search filters. In preparation for this,

we briefly outline a search filter implementation using explicit event handlers and

discuss how the overall software artifact becomes complex with multiple tabs.

Listing 5.1: HTML code snippet demonstrating search filters.

<input type="checkbox" ng-model="nonStops" value="false" id="non-

stop" />

<article data-ng-repeat="flight in (flights | filter:Filter.nonStops

)" class="result"/>

Listing 5.2: JavaScript code snippet demonstrating search filters.

app.filter(’nonStops’, function() {

return function(items, search) {

if (!search) { return items; }

var stopType = search.stopType;

if (!stopType || ’’ === stopType) {

return items; }

return items.filter(function(element, index, array)

{ return element.stopType.nonStop === true; });

};

});

Listings 5.1 and 5.2 show code snippets from the GUI referred to in Figure 5.4.

Listings 5.1 shows two HTML elements. The first HTML element is a checkbox for

27

selecting non-stop flights. The second HTML element is for the rendering of search

results. Listings 5.2 represents the event handling code written using the AngularJS

library to filter search results. The AngularJS code iterates the search result, selects

the flight entries that are non-stop, and returns the selected set of entries.

Listings 5.1 and 5.2 together represent code just for a single search filter criterion.

For each new criterion, a complete new event handler, a HTML tag, and data bindings

need to be added. The new event handler code will be very similar to Listing 5.2.

The new HTML tag will be similar to input element present in Listing 5.1. To add

the new data binding, the article element in Listing 5.1 will be modified. A new

filter will be piped after the existing one.

The complete search result page of priceline.com contains 22 criteria, which

means 22 event handlers manipulating the HTML element containing results. The

complete search-filter mechanism built with 22 event handlers becomes a complex

software artifact. If multiple-tabs comes into the picture, this scenario gets even

more complex. Every time a new tab is added, 22 event handlers are introduced to

the GUI.

A simplified approach can be achieved if a single set of 22 event handlers can

filter search results for each tab. In this approach, every time a tab is selected,

the set of search filters needs to perform two significant operations. First, save

filter criteria values for the previously selected tab. Second, recall the most recently

modified values for the newly selected tab. Saving and recalling the most recently

modified filter values is a complex task for event handlers, unless there is a persistence

mechanism. Transforming filter criteria values into persistent data will also likely

affect the performance of the GUI.

Out of the 35 surveyed web applications, none has the feature of multi-tab search

results. In our travel booking web application, we have implemented it using the

28

declarative programming approach of property models.

5.1.3 Sliders

Search results filters often feature one or two slider controls in addition to check-

boxes and radio-buttons. The sliders help in setting a range of values for the search

filters. Figures 5.5 shows the screen-shot of a slider control to filter flight search

results on kayak.com.

Figure 5.5: Slider controls to filter results on the Kayak website.

These slider controls can be moved with a mouse or arrow keys. When we experi-

mented with sliders and moved them with arrow keys in a swift manner, we observed

that they do not behave consistently. In such scenarios, the swift inputs from arrow

keys were reflected on the slider but the result set did not reflect the correct filtered

values.

The reason is as follows: upon pressing arrow keys, the associated event handler

gets triggered to retrieve a result set with new criteria. When these input requests

29

are swift and successive in nature, few of the inputs get lost. It is an asynchronous

programming defect similar to what we discussed in Section 5.1.1. The event handler

sends an asynchronous request to retrieve data with new criteria. The keypress event

handler, instead of blocking and waiting for new result set, goes ahead and modifies

the slider range immediately.

A majority of the booking applications that we examined have disabled input

from arrow keys. Out of 35 web application that we examined, 27 have sliders in

their GUI. Out of these 27 web application, 11 allow arrow keys to control sliders

and they all behave inconsistently with swift successive inputs.

5.2 Education

In the education industry, grading applications are becoming very popular. Ma-

jority of these systems are web-based and their implementations rely on JavaScript

frameworks to be able to provide rich GUIs to their users. We surveyed six grading

applications: Blackboard, Gradescope, Edmodo, Engrade, Vocareum, and zyBooks.

These applications were selected because of their wide adoption in educational in-

stitutions throughout the world. For example, the Blackboard application is being

used in approximately 17,000 schools across 100 countries [34]. Out of the six ap-

plications, we observed serious defects in three of them. Our analysis concentrated

on the work-flow and mechanisms for grade entry and automatic grading of answers

entered by students.

5.2.1 Blackboard

Blackboard is an online learning management environment and course manage-

ment system. It is used for publishing course content and for managing assignments

and grades. We examined the grading module of Blackboard. One of its main fea-

tures is an online spreadsheet for recording student grades. Each column represents

30

an assignment, exam, quiz or some other graded task. Each row represents a stu-

dent. To make grade entry smooth, the spreadsheet supports keyboard commands

for navigation. Hitting the enter key after entering a grade will move the cursor to

one row below the current row, in the same column.

Figure 5.6: Grade recorded as 0 instead of 50 in the Blackboard application when
the user types inputs swiftly [4].

In our experiment, we entered grades for students in the order they appear in the

spreadsheet. Thus, we entered a numeric grade, hit enter, entered another numeric

grade, hit enter, and so on. When we started doing this process quickly, we found

on several occasions that keystroke entries were missed. In Figure 5.6, we can observe

this behavior. It is a screen-shot of the grading spreadsheet from the Blackboard

application. In our experiment, we entered the grade 50 for each student. When we

started doing this process at a faster pace, the key ’5’ was missed and 0 was recorded

as the grade.

31

5.2.2 Gradescope

Gradescope is an application dedicated to grading. Instead of the simple numeric

entry of grades, Gradescope provides a customizable set of grading rubrics to grade

assignments. This methodology gives clarity to students in understanding their mis-

takes and ensures that the grader does not miss any sections. In a typical grading

process of Gradescope, the grader has to examine the submitted assignment, click

the appropriate rubric items, and finally click next for moving to the next ungraded

assignment. Gradescope supports this same functionality with keyboard shortcuts

as well.

Figure 5.7: Rubric entry remained ungraded due to quick data entry in the Grade-
scope application [13].

We used keyboard shortcuts to examine the grading procedure. Similar to the

32

clicking procedure, we used one keyboard shortcut to select the appropriate rubric

items, followed by another keyboard shortcut to view the next submission. When we

started doing this procedure in a swift manner, we encountered inconsistent behav-

ior. With a moderately swift input speed, the GUI can switch to the next assignment

entry before selecting the rubric items. This inconsistent behavior resulted into un-

graded or incompletely graded entries. Figure 5.7 shows a screenshot of Gradescope

application. In this screenshot, we can observe that the rubric entries (on the right)

are not recorded.

5.2.3 zyBooks

The zyBooks application is an interactive textbook. It uses rich media to enhance

the text book experience. We examined coding assignments in zyBooks. There are

two types of coding assignments in zyBooks. The first type does not provide any

code or hints. The students have to write the complete code in the provided area.

The second type are in the form of a cloze test. In a cloze test, certain portions

of code are removed and replaced with text-boxes. The students are required to fill

these text boxes with their answer code.

For the first type of assignments, we observed that the grading process was simple

and consistent. For the second type of assignments, we observed issues on multiple

occasions. The grading mechanism for second type of assignment is automatic and

runs simultaneously as the focus on the text boxes progresses forward. If the student

modifies a text box that was previously edited, the auto-grader mechanism does not

detect it at that time. The detection happens when the focus restarts from first line

of code and gradually reaches the target text box.

The GUI for the second type of coding assignments in zyBooks is a case of

inconsistent dependencies. The grading evaluation is taking place with event handlers

33

sequentially. These event handlers trigger on the focus event of text boxes. Unless all

the event handlers are triggered again in the sequence, incorrect evaluation persists.

These defects reiterate our claim that the problems of inconsistencies in user

interfaces are systematic in nature [9]. The issues are originating due to lack of

a programming paradigm which can handle the data dependencies in a consistent

manner.

5.2.4 Edmodo, Engrade, and, Vocareum

The remaining three applications we examined are Edmodo, Engrade, and, Vo-

careum. All three of these applications use simplistic UIs and minimalistic client-side

scripting. Due to more server side scripting, these applications are consistent in be-

havior but extremely slow.

5.3 Industrial Interaction

To better understand the software developer’s perspective, we contacted and

discussed with GUI developers of two organizations, Expedia India and zyBooks.

We presented them our findings and asked about the implementation mechanisms

they used and rationale for their design decisions.

In our discussions with Expedia India’s developers, we tried to find more informa-

tion about the issues with the auto-complete text-box and multi-tab search results.

Regarding the auto-complete text-box, they mentioned that they rely on jQuery’s

native auto-complete because it is difficult to create a completely new widget which

can support all browsers perfectly.

Regarding the reservations to implement multi-tab search results, they mentioned

two challenges. First, writing comprehensive search filters supporting multiple tabs

results in complex event handling code. Second, supporting complex GUI elements

in a tabbed structure has led to the crashing of the stylesheet mechanism in their

34

experiments.

In the second interaction, we met the two developers from the team of zyBooks.

The developers mentioned that the grading mechanism logic is solely dependent on

the event handlers. They are aware of the auto-grader issues and are working on

a new GUI which will have multiple active listeners to record grading, which they

think will solve the problems.

Our discussions with GUI developers indicate that in general developers are aware

of the quality problems that come with event-driven GUI programming, and even

with defects in their software. There are, however, no credible alternatives to event-

driven GUIs. Therefore, developers today try to cope with GUI defects (caused by

event-handling logic’s complexity) either by not implementing or restricting certain

features, or by patching up complex event-handling code from one revision to another.

35

6. EXPERIMENT IMPLEMENTATION DETAILS

In chapter 5, we examined commercial websites that have feature-rich user in-

terfaces. The focus of our examination was the event handling mechanism of these

applications. We observed that the event handlers in these applications are complex

in nature and many of them exhibit asynchronous programming defects.

We argued that a major reason for these defects is the inconsistent design of data

dependencies within event handlers. We know that the declarative approach (and

HotDrink) gives strong guarantees about respecting data dependencies [9]. We can

be assured that the kinds of defects we found will not appear if data dependencies

are designed and implemented using HotDrink. To test, however, whether HotDrink

can express the kind of feature-rich GUIs that appear in real practical systems, we

developed a medium-size travel booking application. The goal of this implementation

was not to present a fix to each individual kind of defect we found.

An additional goal of our implementation was to test if the declarative approach

of HotDrink is non-intrusive with other libraries commonly used in practical GUI

development. We wanted to present an example where HotDrink governs the logic

of a GUI whose visual aspects have been built using other JavaScript libraries.

We start this chapter with a discussion of the main features of our application.

We then, in Section 6.2, discuss the main technologies and frameworks we used in

addition to HotDrink. After that, in Section 6.3, we explain some key implementa-

tions by discussing the related programming paradigms and code examples. Finally,

in Section 6.3.3, we discuss the overall flow of data requests in our web application.

36

6.1 Website Features

The online travel booking application we developed for our experiment is a

medium-size realistic website. The focus in our application design was to create

a good user experience for a website visitor. We designed the GUI of our web appli-

cation to resemble the look and functionality of commercial booking websites. We

will now detail some important features of our website.

Figure 6.1: Screenshot of our travel booking website.

Our web application adapts to different screen sizes and dimensions. It is possible

to use the application across a wide set of devices from desktop to mobile browsers.

Figures 6.1 and 6.2 show the screenshots of our travel booking website from a desktop

browser and a mobile browser, respectively.

The website features a booking platform for flights, hotels, rentals, and cars.

37

Figure 6.2: Screenshot of our travel booking website on a mobile browser.

The focus of our experiment is on online flight reservations, so we populated this

functionality with a real database. We used a flight data-set of year 2012, provided

by openflights.org/data.

With a realistic database, our web application features searching of flights be-

tween major international airports of the world. The flight search functionality of

our web application has two significant features. The first feature is a consistent

auto-complete text-box. This auto-complete text-box exhibits a consistent behavior

irrespective of input speed variations. We will discuss the details of this implemen-

tation in Section 6.3.

The second significant search feature is multi-tab search results. The search dash-

board presents the results of individual searches in a tabbed manner. With this

feature, previous search results are not lost and the user can initiate a new search

while the current search results are loading. Figure 6.3 shows the screenshot of

multi-tab search results in our website.

The search results presented in individual tabs can be modified with search filters.

38

Figure 6.3: Screenshot of our travel booking website showcasing multi-tab search
results.

Each result tab has its own search filter. Figure 6.3 shows search filters for one of the

tabs. The search filters include check-boxes and sliders for restricting search data.

Our travel booking application features user profile management. The website

user can create their profiles and track their past bookings. This feature has been

modeled in the same manner as portrayed in commercial travel websites. Figure 6.4

shows the screenshot of user profile in our application.

We also worked on the typography and style-sheet of the website. We used easily

readable panels and frames to improve the user-friendliness and aesthetics of the

GUI.

6.2 Solution Stack within MVVM

We have designed our application using the MVVM architectural pattern. To

understand the solution stack of our website, we discuss each segment of the MVVM

pattern and describe the libraries and frameworks used in each segment. We will

39

Figure 6.4: Screenshot of our travel booking website showcasing user profile.

start the discussion with the View of our web application, followed by the Model and

the View-Model, respectively.

6.2.1 View

The View is the only part of the web application that a user actually interacts

with. The View represents the state of a View-Model. The View does not handle the

state of the application [11]. It represents the state visually and keeps itself in sync

with the View-Model. The View is composed of UI elements and the data bindings

associated with those elements. It requires events to capture user interaction and

exhibit responsive behavior.

The UI elements in our application are developed using HTML5 and jQuery UI.

The presentation theme and the style sheets have been developed using a library

called Bootstrap. We will now discuss the significance of these three languages and

libraries individually.

40

HTML5 is the fifth revision of the Hyper Text Markup Language. We selected

HTML5 because of its multiple advantages for a modern web application. The most

prominent advantage is its mobile-readiness, which means that it is fully supported

by browsers of hand-held devices. Another advantage is the legacy and cross browser

support. HTML5 also supports interactive and animated features in the GUI.

In our web application, we used multiple animated features to present HTML

elements. These animations were developed using the canvas element of HTML5.

The animations include a glowing effect on selected controls, disappearance of notifi-

cation messages, and a fading effect of pop-ups. These effects add aesthetic value to

the user experience. Apart from building UI elements, we used HTML5 extensively

for declaring data bindings. The data bindings in our implementation are two-way

bindings, which means that there is a synchronization between the HTML element

and the corresponding DOM object.

jQuery UI [33] is a library of popular GUI components built on the top of the

jQuery core library. It is composed of a set of HTML widgets, themes, and animation

effects that are difficult to develop using HTML alone. The following are the specific

widgets we have used from jQuery UI:

• Datepicker – We used this widget to select the journey dates.

• Progressbar – We used this widget to display the progress of producing results

of a request.

• SelectMenu – We used this widget to provide a theme-able menu instead of a

native HTML menu.

• Slider – We used this widget for filtering search results.

• Tabs – We used this widget to show multiple tabs on a single page.

41

• Tooltip – We used this widget to provide a useful theme-able tool-tip instead

of native tool-tips.

The Bootstrap library [26] helps the user in designing and building web applica-

tions which can be properly rendered in all devices irrespective of the device’s screen

size and browser type. Bootstrap is composed of HTML element and CSS classes.

The developer needs to build a single version of a web application and include Boot-

strap library for CSS classes. Our web application used Bootstrap library for all its

web pages.

6.2.2 Model

The model represents the actual data or information that the web application

displays. This information is in form of entities, a data-source, and business objects.

The Model is designed in a way that it is unaware of the details of the View or the

View-Model.

In our application, we have chosen NodeJS and SQLite to serve the model. SQLite

serves the role of a database while NodeJS serves as a runtime environment that

hosts the web application and provides data from the database as a service to the

View-Model.

NodeJS [6] is a highly scalable non-blocking I/O platform which is programmable

in JavaScript. In our application, we used NodeJS to develop a comprehensive set

of web-services. The web-services varies from simplistic ones, like providing airport

names, to complex ones that register a complete itinerary booking. We are using a

light-weight module of NodeJS called Express to run the server, host web-services

on it and support dynamically rendering HTML pages.

SQLite [14] is an embeddable SQL database engine. It does not require a server

process to provide database access. It organizes the database into a compressed set

42

of files and access is accomplished through standard read/write file operations.

We populated the SQLite database with the data-set obtained from openflights.

org/data.html. In our setup, the SQLite database receives SQL query requests

from NodeJS processes. The database engine of SQLite performs the query valida-

tion and executes the associated transactional operation. The result of the operation

is sent back to the NodeJS process.

6.2.3 View-Model

View-Model is an intermediary layer between the View and the Model. It contains

the logic to handle the View. The View-Model receives requests from the View. The

View-Model then interacts with the Model by invoking web-services. The View-

Model retrieves the required data and makes it available to the View for the display.

It also performs formatting of data to make it compatible with the View.

In our application, a careful combination of AngularJS and HotDrink libraries was

used to build the View-Model. The strength of AngularJS lies in the effective DOM

manipulation of HTML elements. Additionally, it supports partial views. Partial

views help in developing a reusable template for similar views of the web application.

The strength of the HotDrink library lies in its capability to capture the essence of

user interface behavior by a declarative specification of data dependencies [10]. The

HotDrink library guarantees that the View-Model produces consistent UI behavior.

In order for the View-Model to participate seamlessly with the View, we need

two-way data bindings. Both HotDrink and AngularJS libraries support two-way

data binding. AngularJS features HTML templating. This feature helps in gen-

erating sophisticated HTML using simple AngularJS code. Within this AngularJS

code, HotDrink data bindings are not recognized. On the other hand, when we use

simple HTML pages to support HotDrink data bindings, AngularJS is not utilized.

43

The restriction of using either AngularJS or HotDrink for data bindings came as a

challenge for our implementation.

In our application, we proceeded with two-way data bindings only for Angu-

larJS and used HotDrink exclusively for handling the View-Model. We used such a

combination because we wanted to utilize the templating capabilities of AngularJS

and the constraint handling capabilities of HotDrink at the same time. To make

the combination work, we used the Observer-Observable paradigm to arrange the

interaction between AngularJS and HotDrink. Whenever a change in the View hap-

pens, AngularJS captures the information and passes it to HotDrink. Whenever a

change in the View-Model takes place, HotDrink passes this information to Angu-

larJS. The AngularJS reflects this change to the View. Section 6.3.1 discusses the

Observer-Observable paradigm in detail.

6.3 Key Implementations

Until now in this chapter, we have discussed the significant features and the

technological stack of our travel booking website. In this section, we discuss some of

the key implementations that we developed for our travel booking website.

6.3.1 Observer-Observable

We opted for an Observer-Observable pattern within the View-Model of our web

application. Observer is an object which is subscribed to the state-change of an-

other object. Whenever the target object exhibits a change in its state, the Observer

is notified of the change. Observable is an object whose state is of interest to an-

other object. In a nutshell, the Observer object is subscribed to the changes in the

Observable object.

We developed our UI elements with the help of AngularJS. The UI elements also

have a two-way binding relationship with AngularJS objects. HotDrink registers

44

the AngularJS object as Observable and registers its own variable as Observer. For

each variable in HotDrink there exists an object property or a variable in AngularJS

to which the HotDrink variable is subscribed to. This mechanism migrates the

data dependency logic from AngularJS to HotDrink. The role of AngularJS is thus

restricted to generating UI elements, capturing user events and notifying HotDrink

about the change in state. We leave no computations to be performed by AngularJS.

HotDrink, on the other hand, examines the constraints, calculates the dependent

values and notifies AngularJS about changes. AngularJS immediately updates the

View.

Listing 6.1: Observer-Observable.

function Adapter(ngObject) {

this.ngObject = ngObject;

var that = this;

ngObject.onChange = function(){

that.sendNext(that.ngObject.ngVar); } }

Adapter.prototype = new hd.BasicObservable();

Adapter.prototype.onNext = function(val){

this.ngObject.hdVar = val;

ngObject.onChange = function onChange(){

hdVar.onNext(new Value);

}

hdVar.addObserver(onNext: function(val){

ngObject.ngVar = val; }); }

The code snippet in Listing 6.1 shows an example of Observer-Observable pattern

between objects of the AngularJS and HotDrink libraries. In this example, hdVar

represents a HotDrink variable. The AngularJS object is represented by ngObject

45

and ngVar represents a property of this object. The value of this property is being

observed by HotDrink variable hdVar.

We have used the Observer-Observable pattern to implement four features in

our web application. These features include an auto-complete text-box, multi-tab

results, result filters and the frequent flyer details retrieval. Modern travel booking

websites implement these features either in a restricted or inconsistent manner. The

HotDrink library simplifies the data dependency resolution for each of these features

and provides an elegant methodology for implementing such complex features. In

the next subsection, we discuss the implementation of the auto-complete text-box

controlled by HotDrink through the Observer-Observable pattern.

6.3.2 Auto-complete Implementation

In traditional auto-complete widgets, inconsistent behavior appears because asyn-

chronous executions violate the data dependencies within the widget. With the use

of HotDrink, these data dependencies are explicitly defined as constraints in a prop-

erty model. The property model ensures that all constraints are satisfied. If not, it

solves the unresolved constraints and makes the system valid again.

With this approach, an auto-complete widget can be defined with the use of four

variables. The variables are input-string, current-selection, suggestion-list, and final-

value [9]. We described these four pieces of information in Section 5.1.1 with respect

to event handlers. This time we define the auto-complete widget with constraints

between these variables.

In place of using the regular jQuery auto-complete widget, we are using a custom-

built auto-complete text-box. This custom auto-complete text-box has been built

using AngularJS. This auto-complete text-box looks the same as the traditional

widget, but it stores information in the form of the above mentioned four variables.

46

In this implementation, we have a same set of variables in HotDrink as well. The

data dependencies are captured by HotDrink. The AngularJS variables just serve as

the View with no logic. These variable are bound to the HotDrink variables.

Whenever the user hits a keystroke, AngularJS captures this information, notifies

HotDrink, and HotDrink updates the input-string variable with the user input. As

soon as this variable gets updated, the constraint system starts computing depen-

dent values. The suggestion-list gets computed first. A method that performs an

asynchronous web-service call is executed to retrieve the suggestions matching input-

string. The variable suggestion-list gets updated with these suggestions when the

web-service call is fulfilled. When the suggestion-list gets updated, HotDrink notifies

AngularJS. AngularJS updates the GUI to show suggestions for the first time.

When suggestions appear in the GUI, the user can select any suggestion using the

arrow keys. When this happens, AngularJS captures the index value of the selected

item and sends it to HotDrink. HotDrink then sets the value of current-selection

with this information.

The last variable is final-value. The computation of this variable requires input-

string, suggestion-list, and current-selection. The method that solves this constraint

uses the index value from current-selection to choose the appropriate item from

suggestion-list and updates final-value with this item. When final-value is changed,

AngularJS is notified of the update and it displays the output in the auto-complete

text-box.

Even when the inputs are entered with a swift speed, this mechanism ensures that

data dependencies are resolved in a systematic manner. The auto-complete text-box

designed with the system of data-constraints exhibits consistent UI behavior.

Figure 6.5 shows the diagrammatic representation of data dependencies in an

auto-complete text-box. In a similar manner, we formalized other complex widgets

47

Figure 6.5: Representation of an auto-complete text-box in terms of HotDrink con-
straints.

in our application into structures with explicit data dependencies. HotDrink played

the role of a constraint solver while AngularJS worked as a data binder in each of

them.

6.3.3 Flow of Data Requests

In this section, we discuss the overall structure of data transfers in our web

application. Figure 6.6 shows a diagrammatic flow of requests in our web application.

The flow of requests starts when the website is loaded for the first time. At the very

first time, HTML, CSS, and the associated JavaScript libraries are loaded in the

client browser. The Bootstrap library ports the rendered web pages to fit the display

of the device. AngularJS library uses partial views (or a master view) that are re-used

to show different web pages with minimum loading of resources. AngularJS follows

XHR or XMLHttpRequest, which ensures that the application supports HTTPS and

follow modern browsers’ same origin policy [23].

For simpler tasks like resource fetching, AngularJS sends request to the server

directly. For complex tasks like data constraint resolutions, AngularJS acts as a

mediator and passes requests to HotDrink. HotDrink examines the nature of user

48

Figure 6.6: Diagrammatic representation of the request flow in our web application.

interaction, assesses the impact on data constraints, and requests new data from the

server if necessary.

NodeJS fulfils the server requests. A requests is either a resource request or data

request. The resource requests involve images or HTML/CSS content. For fulfilling

data requests it generates SQL queries to the SQLite database. The results from the

database are formatted and sent back as a response to the HotDrink Library.

49

7. RESULTS

In this chapter, we describe our hypotheses and a qualitative analysis of our

implementation experiment.

Hypothesis 1: The programming approach of property models supports the imple-

mentation of web applications’ GUIs with at least moderate size and complexity.

In our experiment, we developed a web application for online travel booking.

This web application is moderate in size and features a relatively complex GUI. The

GUI of this web application is similar to a commercial travel booking website. We

used JavaScript templating libraries to design the GUI.

Majority of the GUI logic in our web application was implemented using con-

straints of property models. We did not encounter any scenarios that we could not

express as constraints.

The GUI functionalities expressed by constraints in our implementation vary in

their nature. Some of these functionalities are simple, such as calculating discounts,

total fare, etc. There are some functionalities that involve asynchronous querying and

data manipulation, like search-filters. Some of the functionalities express constraints

for advanced widgets like auto-complete text-box, sliders, etc.

In addition to expressing different kinds of GUI features, from trivial to sub-

stantial, using constraints, we tested the application built with constraints using a

large data-set. The database of our web application contains a real flight schedule

data-set of year 2012. It contains 14136 routes between 209 airports on 51 airlines.

We never faced any challenges in presenting this relatively large data-set on a GUI

using constraints.

50

With the successful implementations of GUI functionalities and large data-set

handling, we can say that the programming approach of property models and Hot-

Drink library are well-suited for developing the GUI of web applications with at least

moderate size and complexity.

Hypothesis 2: Property Models are not intrusive in nature.

In our experiment, we observed that JavaScript templating libraries rely solely

on event handling. These libraries can build professional looking GUIs but they

do not have a mechanism for managing dependencies for the programmer, which is

what property model provide. With this fact in mind, we explored the possibility

of combining a modern event handling based library and property models in the

same application. To make this combination work, we tested different techniques for

exploring communication between the objects of AngularJS (a JavaScript templating

library) and the HotDrink library.

We found that the Observer-Observable pattern is effective in combining these

two libraries. This design pattern enables the objects of these two libraries to send

notifications to one another whenever there is a change in state. This pattern helped

the two libraries to complement each other.

We used the Observer-Observable pattern to integrate AngularJS with HotDrink

in our web application. The combination proved to be successful and the templating

capabilities of AngularJS were utilized without any hindrance. We also conducted

an experiment to test the integration of a Data Visualization library called D3 [5]

with HotDrink. We again used the Observer-Observable pattern. The combination

ran successfully and visualizations were rendering without any issue.

With these successful experiments, we can state that the concept of property

models is not intrusive in nature. It allows other libraries to function seamlessly

51

when combined with property models using the Observer-Observable pattern.

Hypothesis 3: Property models support the implementation of responsive GUIs

better than event-driven programming does.

In our experiment, we used property models to program GUI widgets that han-

dle asynchronous executions. We observed that property models can handle the

asynchronous execution of data dependencies consistently. This is possible because a

property model maintains the sequence in which requests have been made and allows

asynchronous execution to take place as soon as, but no sooner than, the associated

input is available. This mechanism ensures that all variables contain the most recent

value available and no computation is ever based on stale values [9].

A significant example demonstrating the consistent handling of asynchronous

events is the auto-complete widget that we developed using HotDrink. In Sec-

tion 5.1.1, we discussed briefly the asynchronous execution problems associated with

the traditional auto-complete text-box. Later, in Section 6.3.2, we discussed the

detailed implementation of an auto-complete text-box using HotDrink. Our auto-

complete prototype serves as a reference for the implementation of any UI widget

that involves asynchronous computations.

In an another example, we used property models to resolve an ordering bug in

retrieving frequent flyer details. This bug occurs, e.g., in expedia.com, a com-

mercial travel booking website. Due to this bug, frequent flyer details can only be

fetched if the inputs are entered in the strict sequence of provided text-boxes. We

programmed the same functionality in our travel booking application with the help

of constraints. With no additional effort by the programmer, frequent flyer details

are always retrieved irrespective of the sequence of the inputs.

In our web application implementation, there are many examples (mentioned

52

in Section 6.3) that show how property models resolve common web application

defects. With such concrete examples, we can state that property models support

the implementation of a more responsive and consistent GUI compared to event

driven programming.

Hypothesis 4: Programming approach of property models reduces coding effort.

In our experiment, we tried to get a feel if the programming approach of prop-

erty models can reduce coding effort compared to event-driven programming. Our

experiment was concentrated on variety of tasks but we were not able to come up

with a concrete evidence that differentiates coding efforts. Therefore, we cannot say

anything definite based on our experiment. The two programming approaches are

fundamentally different.

Event driven programming is easily programmable with event handlers. Property

models require programmers to express the logic in terms of constraints. The code

written using event handlers results in a complex software artifact, whereas the code

written using property models results in a simpler software artifact. Our intuition is

that event handlers are easier to program initially but more difficult to debug than

property models. With event-driven programming it seems thus to be more difficult

to produce a full correct implementation of a GUI.

53

8. COMPARISON OF IMPLEMENTATION EFFORT

In this chapter, we first, in Section 8.1, describe the methodology of developing

a modern web application with constraint based web frameworks other than Hot-

Drink. Then, in Section 8.2, we compare it with the development effort following

our methodology of using HotDrink as a specialized ViewModel.

8.1 Knockout and ConstraintJS

The most popular web framework based on data-flow constraint is Knockout [29].

The important features of Knockout are declarative binding, observables, and depen-

dency tracking. Declarative bindings are the same as data bindings between DOM

elements and ViewModel objects. When a ViewModel variable is declared as observ-

able, Knockout ensures that any modification to this variable is reflected everywhere

and the associated datadependencies are updated. The implicit data dependency

detection and computation in Knockout is called dependency tracking.

Typically, Knockout is used to develop the ViewModel and the View is developed

with a JavaScript templating library. The most common complementary JavaScript

templating library to Knockout is Underscore [2]. There are more popular templating

libraries than Underscore, e.g., AngularJS and React, but using Underscore is most

tightly integrated with Knockout.

Underscore is used to develop HTML templates and to reuse templates for differ-

ent Views of a web application. Underscore supports Knockout’s declarative bindings

within its template code. This makes the combination of Underscore and Knockout

very powerful in developing UI logic.

Once the View has been designed, ViewModel is developed to define the behavior

of the View. With declarative binding, Knockout maintains two-way bindings. The

54

concept of observables helps in extending these bindings to data dependencies. Data

dependencies are not declared explicitly like in HotDrink. Instead, variables can be

declared observables and logic written to compute values for them.

Listing 8.1: Observable in Knockout.

var myViewModel = {

length: ko.observable(0),

breadth: ko.observable(0),

area: ko.computable(function () {

var value = this.length()*this.breadth();

return value;

}, this)

};

In Listing 7.1, we can observe that to make a variable Observable, we declare it

with function ko.observable(). To define a relationship, we declare a variable

with function ko.computable and define the logic in it between the required vari-

ables. In this example, length and breadth are observables. Whenever, length

or breadth is modified area will be computed again.

Another JavaScript library for constraint based programming is ConstraintJS [24].

It merges the concept of one-way constraints with Finite State Machines. With this

combination, the UI behavior is expressed in term of states. ConstraintJS supports

multiple Finite State Machines for defining the behavior of an individual UI element.

A simple example can be the check box. Depending on whether a check box is

in focus or not, or checked or not, there can be multiple states, and in each state

the data dependencies in a GUI can be different. UI behavior can be programmed

in ConstraintJS by defining different states of the UI element and declaring which

constraints are valid in each state.

55

Like Knockout, ConstraintJS also supports two-way bindings. Also, ConstraintJS

has been primarily developed for the ViewModel and it depends on other JavaScript

templating libraries for developing the View. The recommended templating library

for ConstraintJS is Handlerbar [19] as it supports the data bindings of ConstraintJS

inside template code.

To program the ViewModel using ConstraintJS, we need to declare variables

within the function cjs. ConstraintJS analyses all the variables and functions de-

fined under the cjs function and builds the data dependencies it finds. Whenever

there is a change in a variable, all the dependent values (which are defined in the

cjs function) are computed again. Listing 8.2, shows an example in ConstraintJS.

In this example, variable length and breadth have been declared with cjs func-

tion. Whenever length or breadth is modified, the variable area is automatically

updated.

Listing 8.2: Constraints in ConstraintJS.

var length = cjs(1); // length <- 1

var breadth = cjs(2); // breadth <- 1

var area = cjs(function(){

return length*breadth;}); // area <- length*breadth

area.get(); // returns 2

length.set(10); // length<-10

area.get(); // returns 20

8.2 HotDrink

The methodology of developing web applications using HotDrink, which we pre-

sented in the previous chapter, has significant advantages over Knockout and Con-

56

straintJS. One significant feature is the dependency mechanism of asynchronous

computations. Both Knockout and ConstraintJS express the data dependencies as

functions, converting the asynchronous nature of computations to synchronous [9].

Another advantage of HotDrink over Knockout and ConstraintJS is the ease of

expressing multi-way constraints. Knockout and ConstraintJS support one-way con-

straints. Both can simulate multi-way constraints through complicated mechanisms

but they do not support them as a native feature.

Third advantage of HotDrink is the explicit declaration of data dependencies in

form of a reusable data structure [9]. This data structure can serve as the foundation

for different algorithms. For example, one can identify variables directly edited by

the user and those computed by the system. This information can be used to simplify

GUI programming, e.g., for automatically enabling and disabling widgets [9]. Also,

the explicit declaration perhaps helps the programmer to better maintain a complete

picture of all the system’s constraints as compared to Knockout and ConstraintJS,

where constraints are detected by the system.

In our implementation, we used the Observer-Observable paradigm for HotDrink

to interact with the templating library AngularJS. Our implementation does not have

any preference for a particular templating library for developing the View. We can

use any templating library with HotDrink using the Observer-Observable paradigm.

To test the compatibility of HotDrink with more libraries, we developed complex

data visualizations using the D3 library [5] with HotDrink. Figure 8.1 shows the

screenshot of one such data visualization. In this visualization, the individual bubbles

represent countries. The x-axis represents the per-capita income and the y-axis

represents the life expectancy. The slider in the bottom can be used to find the

position of countries between 1800 to 2008. The relative positions of the bubbles are

computed in HotDrink and D3 is informed to reflect them in the View.

57

Figure 8.1: Data Visualization using D3 and HotDrink.

By clicking an individual bubble, we can see the path it traced. The path is

a collective representation of all the positional data points that a bubble element

can attain in this data-set. To easily obtain this data is possible due to another

capability of HotDrink, namely that it retains the older values of its variables, if

desired. The given screen-shot shows the path traced by the bubble representing the

United States.

Our implementation shows that HotDrink is an excellent choice to serve as a

GUI ViewModel. The implementation supports our claim that UIs with consistent

behavior can be successfully developed with declarative data-flow constraints. It also

shows that HotDrink can be used effectively with modern JavaScript libraries using

the Observer-Observable paradigm.

58

9. FUTURE WORK

In this section, we outline some of the future work that we plan to undertake in

this domain. There are research areas closely related to this thesis that we would

like to develop further.

We would like to investigate the possibility of using property models not only on

the client but also on the server. The question then becomes how to synchronize

the corresponding property models on the client and server sides. The existence

of JavaScript in server-side scripting provides an opportunity to use HotDrink in

exploring such mechanisms.

We would like to study caching mechanisms of web applications with property

models. Data intensive web application constantly make AJAX requests and cache

data on the client system. The approach of property models can formalize this

unstructured process into a set of dependencies. In such a system, property models

can evaluate the urgency of fetching updates from the server and reduce unnecessary

AJAX requests.

We would also like to explore HTML templating capabilities for HotDrink. With

such capabilities, HotDrink could possibly be used to build web applications with

fewer supporting libraries. Using fewer JavaScript libraries lessens the load of pro-

grammers, and can also reduce the load time and improve performance of web ap-

plications.

59

10. CONCLUSION

In this thesis, we present an in-depth analysis of using the declarative program-

ing approach of property models for web application development. We discuss our

implementation of a web application built with HotDrink, the concrete realization

of the property model approach. We explored the use of this library with popular

JavaScript web frameworks. We also compared this methodology with other declar-

ative programming approaches. Our conclusions are as follows:

• The declarative programming approach of property models fits the role of View-

Model and is well-suited for developing the GUI logic of web applications.

• Many asynchronous programming defects in web applications are avoided when

using the declarative programming approach of property models. A property

model ensures that data dependencies between the pieces of data in a GUI are

not violated by asynchronous executions of responses to user events.

• Complex web widgets like multi-tabs and search-filters can be programmed

effectively with property models.

• The Observer-Observable pattern can be used effectively to utilize the con-

straint system of property models on any View that has been built with JavaScript.

60

REFERENCES

[1] Alexa. Alexa — Top Sites by Category: Recreation/Travel. https://alexa.com/

topsites/category/Recreation/Travel, 2016.

[2] Ashkenas, J. Underscore.js. http://underscorejs.org, 2016.

[3] Association of Universities for Research in Astronomy. NOAO Science Archive.

http://archive.noao.edu/tutorials/query, 2016.

[4] Blackboard. BlackBoard Learn. https://tamu.blackboard.com, 2016.

[5] Bostock, M. D3.js — Data-Driven Documents. https://d3js.org, 2015.

[6] Dahl, R. Dockerizing a Node.js web app | Node.js. https://nodejs.org/en/docs/

guides/nodejs-docker-webapp/, 2016.

[7] Expedia Inc. Expedia Travel. http://expedia.com, 2016.

[8] Flanagan, D. JavaScript: The Definitive Guide, chapter 17.1, pages 447–455.

O’Reilly Media, 1005 Gravenstein Highway North, Sebastopol, CA 95472, USA,

2011.

[9] Foust, G., Järvi, J., and Parent, S. Generating reactive programs for graphical

user interfaces from multi-way dataflow constraint systems. In Proceedings of the

2015 ACM SIGPLAN International Conference on Generative Programming:

Concepts and Experiences, GPCE 2015, pages 121–130, New York, NY, USA,

2015. ACM.

[10] Foust, G., Järvi, J., and Freeman, J. Hotdrink: JavaScript MVVM library

with support for multi-way dependencies and generic, rich UI behaviors. https:

//github.com/HotDrink/hotdrink, 2015.

61

[11] Freeman, J., Järvi, J., and Foust, G. Hotdrink: A library for web user interfaces.

In Proceedings of the 11th International Conference on Generative Programming

and Component Engineering, GPCE ’12, pages 80–83, New York, NY, USA,

2012. ACM.

[12] Google Inc. AngularJS – Superheroic JavaScript MVW Framework. https:

//angularjs.org, 2015.

[13] Gradescope. Gradescope. https://gradescope.com, 2016.

[14] Hipp, D.R. About SQLite. https://www.sqlite.org/about.html, 2015.

[15] Järvi, J., Foust, G., and Haveraaen, M. Specializing planners for hierarchi-

cal multi-way dataflow constraint systems. In Proceedings of the 2014 Inter-

national Conference on Generative Programming: Concepts and Experiences,

GPCE 2014, pages 1–10, New York, NY, USA, 2014. ACM.

[16] Järvi, J., Haveraaen, M., Freeman, J., and Marcus, M. Expressing multi-way

data-flow constraint systems as a commutative monoid makes many of their

properties obvious. In Proceedings of the 8th ACM SIGPLAN Workshop on

Generic Programming, WGP ’12, pages 25–32, New York, NY, USA, 2012.

ACM.

[17] Järvi, J., Marcus, M., Parent, S., Freeman, J., and Smith, J. Algorithms for

user interfaces. In Proceedings of the Eighth International Conference on Gen-

erative Programming and Component Engineering, GPCE ’09, pages 147–156,

New York, NY, USA, 2009. ACM.

[18] Järvi, J., Marcus, M., Parent, S., Freeman, J., and Smith, J.N. Property mod-

els: From incidental algorithms to reusable components. In Proceedings of the

62

7th International Conference on Generative Programming and Component En-

gineering, GPCE ’08, pages 89–98, New York, NY, USA, 2008. ACM.

[19] Katz, Y. Handlebars.js: Minimal Templating on Steroids. http://handlebarsjs.

com/, 2016.

[20] Microsoft Corporation. The MVVM Pattern. https://msdn.microsoft.com/

en-us/library/hh848246.aspx, 2014.

[21] Mozilla Developer Network. Overview of Events and Handlers.

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Overview_

of_Events_and_Handlers, 2005.

[22] Mozilla Developer Network. Ajax | MDN. https://developer.mozilla.org/en-US/

docs/AJAX, 2016.

[23] Mozilla Developer Network. Same–origin policy — Web security. https:

//developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy, 2016.

[24] Oney, S., Myers, B., and Brandt, J. ConstraintJS: Programming interactive

behaviors for the web by integrating constraints and states. In Proceedings of

the 25th Annual ACM Symposium on User Interface Software and Technology,

UIST ’12, pages 229–238, New York, NY, USA, 2012. ACM.

[25] O’Reilly, T. What Is Web 2.0—O’Reilly Media. http://www.oreilly.com/pub/

a/web2/archive/what-is-web-20.html, 2005.

[26] Otto, M. and Thornton, J. Bootstrap. The world’s most popular mobile-first

and responsive front-end framework. http://getbootstrap.com, 2016.

[27] Paterson, I., Smith, D., Saint-Andre, P., Moffitt, J., Stout, L., and Tilanus,

W. XEP-0124: Bidirectional-streams Over Synchronous HTTP (BOSH). https:

//xmpp.org/extensions/xep-0124.html, 2014.

63

[28] priceline.com LLC. Priceline.com. http://priceline.com, 2016.

[29] Sanderson, S. Knockout : Introduction. http://knockoutjs.com/

documentation/introduction.html, 2016.

[30] Sarda, S. private communication, Expedia India, April 2016.

[31] Statista. Online activities: internet users who managed travel reservations online

within the last month (USA), 2015. http://www.statista.com/statistics/228736,

2015.

[32] The jQuery Foundation. jQuery. http://jquery.com, 2016.

[33] The jQuery Foundation. jQuery UI. http://jqueryui.com, 2016.

[34] Warren, A.M. Project-Based Learning Across the Disciplines: Plan, Manage,

and Assess Through +1 Pedagogy, chapter 4, pages 123–124. Corwin, 2455 Teller

Road, Thousand Oaks, CA 91320, USA, 2016.

[35] Yahoo. Flickr Services. https://www.flickr.com/services/api/, 2013.

64

