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ABSTRACT

The following dissertation examines several aspects of numerical simulations for

turbomachinery flows modeled with an in-house Reynolds-averaged Navier–Stokes

solver. The impact of the turbulence model on the solution is also explored in this

work. Additionally, the effects of different solution limiters, including both a new

and modified limiter, are examined.

This dissertation also presents a new grid generator that was tailored for tur-

bomachinery geometries. The grid generator uses a combination of structured grid

blocks to discretize a single blade passage domain. Structured grid blocks can also

be placed at the blade tip, allowing for the modelling of tip leakage flows.

A number of canonical cases were used to validate the additions and modi-

fications to the flow solver. Among these cases were the inviscid flow through a

convergent-divergent nozzle and a turbulent flat plate. It is shown that the new and

modified limiters perform similarly to the existing limiter functions, and in some

cases out-perform their predecessors.

The flow solver is further validated against two turbomachinery cases: an annu-

lar turbine vane and a transonic fan. Comparisons with experimental data are made

in both cases. The effects of turbulent inlet conditions and the under-relaxation of

the turbulence equations are examined for the turbine vane geometry. Two novel

rubbing configurations are presented and examined in the turbulent transonic fan

case. Additionally, a transonic fan case which includes the tip leakage flow is also

presented and compared against the rubbing cases.
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CHAPTER I

INTRODUCTION

I.1. Statement of the Problem

The emphasis in current aero-engine design is in increasing the overall efficiency

of the system. This includes improving the aerodynamic and structural characteris-

tics of turbomachinery components to result in higher aerodynamic efficiencies and

lower component weights. The net results of this effort are improved fuel burn char-

acteristics and reduced operating costs. This work will focus on the aerodynamic

characteristics of the flow through rotating and stationary blade rows.

Improving the aerodynamic characteristics of a turbomachine is no easy task as

the flow is inherently unsteady, three-dimensional, and turbulent. Two of the three

main components of a turbomachine, the compressor and the turbine, are made up

of multiple rows of rotors and stators. In a multi-row environment, the relative

motion of the blade rows results in a flow that can only be unsteady [Smith, 1955].

The different blade rows interact with one another through potential flow effects and

primarily by the wakes shed by the blades and any other structure embedded in

the flow [Parker & Watson, 1972]. The influence of the shed wakes is not limited

to the stator or rotor just downstream. The wake can travel through the adjacent

downstream row and effect the following row [Sanders & Fleeter, 2002; Key et al.,

2010]. The effect of these multi-row interactions is to act as a source of unsteady

aerodynamic forcing, which can lead to increased fatigue and even failure in the
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affected turbomachinery components.

Multi-row effects can be ignored by examining a rotor (or stator) row in isola-

tion. However, sources of flow unsteadiness and non-uniformity, known as secondary

flows, can still be found. Secondary flows, which are naturally present in the multi-

row environment, are defined by Smith [1955] as the difference between an idealized

axisymmetric flow and the actual flow. Secondary flows include, but are not limited

to, passage vortices, tip leakage flow, tip leakage vortex, and corner vortices [Lak-

shminarayana & Horlock, 1963; Langston, 2001]. An illustration of these secondary

flows, originally from Lakshminarayana & Horlock [1963], is shown in Fig. I.1. As an

example, in turbine cascades, secondary losses due to the passage and corner vortices,

typically result in between 33% [Denton, 1993] to upwards of 50% [Langston, 2001]

of the total aerodynamic losses. Aerodynamic losses due to skin friction, boundary

layer growth, and separation along the surface of the blades account for nearly the

rest.

Computation fluid dynamics (CFD) is the primary tool in use today for designing

and optimizing turbomachinery components such that the effect of secondary and

profiles losses are attenuated. The most obvious components to optimize are the

blades themselves. Weingold et al. [1997], using Euler analysis, developed a bowed

compressor stator which can either delay or suppress the formation of corner vortices,

resulting in efficiency increases on the order of 1%. Lee & Kim [2000] used a Navier–

Stokes solver to optimize the stacking line of a stator from a single axial compressor

stage, resulting in a 1.1% increase in efficiency. Rubechini et al. [2012] were able

to increase the efficiency of a 17-stage by 0.24% by optimizing the shape of all of
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Figure I.1: Compressor secondary flows. Reproduced from Lakshminarayana & Hor-

lock [1963].

the turbine’s stators using Navier–Stokes analysis. Blade shapes are not the only

component that can be optimized. Brennan et al. [2003] used CFD analysis to

optimize the shape of a high pressure turbine’s end walls for a predicted efficiency

improvement of 0.4%.

Unfortunately, the wall clock time required to generate solutions for non-trivial

geometries using CFD can be prohibitive to a designer, even with modern computers.

Wall clock times can range from several days to on the order of a week or more
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depending on the size of the mesh. This is undesirable when a large number of

cases need to be run for a design process; for example, Brennan et al. [2003] needed

upwards of 144 individual CFD simulations to optimize a turbine stage.

The use of reduced order models (ROM) based on proper orthogonal decom-

position (POD) offers hope in reducing the overall computational time in a design

study. POD based ROMs are used to reconstruct a solution from a set of optimal

spatial and temporal modes extracted from a given ensemble of data, where the

reconstructed solution can be at flow conditions other than what is defined by the

ensemble. The ensemble of data can come from experimental data or numerical data

from a full order model (FOM), such as a Navier–Stokes solver. POD has been previ-

ously applied to external flow design optimizations [LeGresley & Alonso, 2000], and

to turbomachinery flow applications [Cizmas & Palacios, 2003; Brenner et al., 2013].

Cizmas et al. [2008] have shown that for a two-dimensional fluidized bed simulation

that the POD based ROM was an order of magnitude quicker than the FOM used,

and two orders of magnitude faster when acceleration techniques were introduced.

This reduction in computational time means that a design point which may have

taken several days to compute can now be done in hours.

As one would expect, the quality of the data ensemble will affect the accuracy

of the ROM’s prediction. As such, this work is focused on improving the quality

of results generated by an in-house Navier–Stokes solver for turbomachinery flows,

known as UNS3D [Flitan & Cizmas, 2003]. Two turbomachinery flows are considered

in this work. The first case is a turbine vane geometry tested by Goldman & McLallin

[1977] and Goldman & Seasholtz [1982], referred to herein as the Goldman annular
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cascade. The benefit of the vane geometry is that all of the modifications can be

assessed without the additional complication of system rotation. To evaluate the

solver for rotating turbomachinery cases, the solver was applied to the first rotor

of a two-stage transonic fan developed at NASA Lewis, known as Rotor 67 [Urasek

et al., 1979].

I.2. Background

Before the advent of computers made it possible to routinely solve the three-

dimensional Euler or Navier–Stokes equations, engineers reduced the problem to

two-dimensional domains on which simplified Euler equations could be solved. The

earliest technique is known as the mean line method, in which the flow was computed

between blade rows at the local mean radius. This method was developed by How-

ell [1945a,b] for compressors and for turbines by Ainley & Mathieson [1951]. The

throughflow method was developed as an extension of the mean line method. Here,

two-dimensional inviscid solutions were computed along streamlines in the hub-to-

tip meridional plane concurrently with the inviscid flow on stream surfaces in the

blade-to-blade direction [Wu, 1952]. As expected, the mean line and throughflow

methods result in highly idealized flows.

A better approximation of the flow can be reached by solving the three-dimensional

compressible Euler equations. The predictions made in locales for which boundary

layer thicknesses are thin will be more accurate than those where thicker boundary

layers or separation prevail [Cumpsty, 2004, p. 94]. Denton [1975] provided the early

framework for finite volume based Euler solvers for both two- and three-dimensions.
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For this work, Denton used a cell centered scheme with overlapping cells. This early

work was not without its shortcomings. It suffered from a lack of entropy conserva-

tion and shock smearing, all of which Denton [1983] addressed through an improved

implementation of the original method. Using a similar three-dimensional Euler

solver, Chima & Strazisar [1983] were able to accurately predict shock structures,

flow Mach numbers, and turning angles at different flow conditions for an experimen-

tally tested transonic compressor rotor. It was found, as a consequence of neglecting

viscous effects, that the Euler solver over-predicted the downstream total pressure

and under-predicted the downstream relative Mach numbers [Chima & Strazisar,

1983].

Viscous effects must be included in the governing equations for the accurate

prediction of secondary flows and the resultant losses. As a stopgap until solutions

to the compressible Navier–Stokes equations became more feasible, Denton [1986]

introduced viscous effects into a 3D Euler analysis by replacing the viscous terms

of the momentum equations with an empirically determined distributed body force

and neglecting the viscous terms found in the energy equation. Denton found that

this method could provide a reasonable qualitative prediction of the viscous effects,

but only if the necessary empirical input was chosen wisely.

Solutions of the Navier–Stokes equations, in particular the Reynolds-Averaged

equations, provide the means to predict the complex flows found within turboma-

chines without the need for ad-hoc empirical input. Reynolds averaging allows the

governing equations to be solved on reasonably sized grids by representing the tur-

bulence in the form of the Reynolds-stress tensor [Blazek, 2005, p. 232]. The most
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common approach to dealing with the Reynolds-stress tensor has been to apply the

Boussinesq hypothesis, which introduces the eddy viscosity [Blazek, 2005, p. 235].

A multitude of turbulence models can then be chosen from to close the governing

equations by determining the local value of the eddy viscosity.

Some of the earliest solutions to the three-dimensional Navier–Stokes equations

for turbomachinery flows were done by Hah [1984], Hah & Leylek [1987], and Dawes

[1988]. Hah [1984] used a finite volume scheme with higher order upwinding, and

closed the governing equations using an algebraic Reynolds-stress model. The solver

by Hah & Leylek [1987] wrote the governing equations using finite differences, uti-

lizing a third-order accurate upwinding relaxation scheme and a two equation κ− ε

turbulence model for closure. Both models required a pressure correction step to

enforce mass conservation. Similar to Hah, Dawes [1988] wrote the governing equa-

tions using a finite volume formulation. However, Dawes [1988] differed by writing

the equations in the relative frame of reference (rotor reference frame) and chose the

mixing length Baldwin-Lomax turbulence model [Wilcox, 2010, p. 81].

Chima & Yokota [1990] and Chen et al. [1997] developed 3D Navier–Stokes

solvers which were written in the relative frame of reference, but using velocity com-

ponents in the absolute, or laboratory, reference frame. This approach allows for the

steady-state solution of the governing equations to be found, since it is in a rotor rel-

ative reference frame, while simplifying the application of the boundary conditions.

Both solvers used the thin-layer approximation for the Navier–Stokes equations with

the Baldwin-Lomax turbulence model. The thin-layer approximation retains only

the gradients that are in the wall normal direction, as they are assumed to domi-
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nate [Blazek, 2005, p. 445]. Chima & Yokota [1990] used an explicit finite difference

scheme to discretize the governing equations, while Chen et al. [1997] utilized an

implicit finite volume scheme. Chima [1998b,a] improved upon the original solver

by adding multi-block grid and multistage capabilities, and Chima & Liou [2003]

saw to the addition of upwinding schemes and the addition of the κ− ω shear stress

transport (SST) turbulence model by Menter [1993].

The flow within the Goldman annular cascade was predicted by Subramanian

& Bozzola [1987] using a finite volume formulated 3D Navier–Stokes solver with

closure by the Baldwin-Lomax turbulence model. The vane surface critical velocity

ratios predicted by Subramanian & Bozzola were found to be a good match to the

experimental values. Their solutions also showed the presence of the secondary flows

spawned by the formation of a horseshoe vortex at the vane’s leading edge. Chima

& Yokota [1990], using the previously discussed 3D Navier–Stokes solver, were also

able to predict the development of a horseshoe vortex at vane leading edge near the

endwalls. Their predicted vane surface pressures also showed excellent agreement

with the measured values. However, Chima & Yokota found that the solver over-

predicted losses. Arnone et al. [1993] also predicted the flow within the annular

cascade using a 3D Navier–Stokes solver which employed implicit residual smoothing

and the Baldwin-Lomax turbulence model. Arnone et al. were able to capture

the development of the cascade’s secondary flows, and showed excellent qualitative

agreement with the measure pressure distributions and downstream losses. Chima

& Liou [2003] revisited the Goldman vane cascade with an improved version of the

1990 solver. Using newly implemented upwinding schemes and the Baldwin-Lomax
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turbulence model, Chima & Liou found that upwinding the convective fluxes resulted

in predictions of the downstream turning and wake profiles that match more closely

to the measured values than the original central difference scheme.

Pierzga & Wood [1985] presented a detailed comparison between a 3D inviscid

analysis, which included boundary layer effects by using an effective body, and the

experimentally determined flow of Rotor 67. Overall, their analysis showed good

agreement with the experimental data for all of the operating points simulated.

Predicted relative Mach number contours at several spanwise locations were a qual-

itative match to the laser anemometry data for the majority of the operating points

presented, indicating excellent shock capturing capability [Pierzga & Wood, 1985].

However, their analysis at the maximum flow (choked flow) operating point predicted

the location of the shock on the upper span of the blade to be further downstream

than what the experimental data showed. Subramanian & Bozzola [1987] showed

that the correct shock location, at the max flow condition, could be predicted with

the inclusion of viscous effects.

Additionally, Chima [1991], Hah & Reid [1992], Adamczyk et al. [1993], Jennions

& Turner [1993], Arnone [1994], Arima et al. [1999], and Doi & Alonso [2002] have

all simulated the flow within Rotor 67 using Navier–Stokes solvers. All of the au-

thors found good agreement between their prediction and the experiment in terms of

performance prediction, relative Mach number contours, and shock capturing across

a range of operating points. Both Adamczyk et al. [1993] and Jennions & Turner

[1993] examined the effect of the tip clearance height on the performance of the rotor,

finding that increased tip clearances resulted in reduced performance due to higher
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losses. Jennions & Turner found that simply doubling the height of the clearance

could decrease the peak efficiency by approximately 1.2% and reduced the stall flow

rate by roughly 12.5%. The literature showed that the maximum flow rate tended to

be under-predicted by the viscous solvers. Reported flow rate differences ranged from

as low as 0.48% [Arima et al., 1999] to as high as 1.32% [Arnone, 1994], with Chima

[1991] and Jennions & Turner [1993] showing a 1.2% difference between prediction

and experiment. Doi & Alonso [2002] suggested that reduced values in mass flow rate

and total pressure may be due to a structural deformation, which naturally occurs

due to rotational and aerodynamic forces, that is not modeled.

I.3. Original Contributions

This dissertation builds upon the previous work by Kim [2003] and Gargoloff

[2007] with the goal of expanding the capabilities of the given computational tools,

and developing new tools necessary for accurate computation of turbomachinery

flows. In addition to improving the computational tools, the intention of this work

was also to further build the knowledge base regarding the computation of turboma-

chinery flows.

A grid generation tool specifically designed for turbomachinery geometries was

developed in collaboration with Matula [2014]. The grid generator uses a structured

multi-block grid system to define the turbomachinery flow path and geometry, includ-

ing the modelling of tip clearance flows. A turbomachinery solution post processor

was also developed to work in conjunction with the grids generated by the new grid

generation tool. The post processing tool has the capability to generate appropri-
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ately averaged flow quantities at arbitrary axial locations, as well as extracting other

extracting other pertinent flow information.

A radially varying outlet boundary condition was implemented to facilitate more

accurate predictions of turbomachinery flows. The outlet static pressure was defined

using the axisymmetric radial momentum equation to allow for a natural spanwise

variation in pressure, as opposed to a uniform distribution. The turbulence model,

the κ−ω SST model, was also updated in this work. In addition to updated the model

constants to the most recent values, the definition of the eddy viscosity was modified

to make it frame invariant. A modification to the Multi-directional Limiting Process

(MLP) limiter from the literature was implemented to improve solution convergence

when using said limiter. The modification to the MLP limiter was also applied to

the Venkatakrishnan limiter. To the author’s knowledge, this is the first time the

MLP limiter modification has been applied to the Venkatakrishnan limiter.

A pair of turbomachinery cases were considered to evaluate the accuracy of

the improved flow solver. In the first case, a turbine vane was used to test the

implementation of the new outlet boundary. In addition, the turbine vane geometry

was used to examine what effect the inlet turbulence conditions and the under-

relaxation of the turbulence equations have on the overall solution.

In the second case, the performance characteristics of a transonic fan operat-

ing at the design wheel speed were computed for both inviscid and turbulent flow

conditions. Two novel rubbing configurations1 and a realistic tip clearance flow

configuration were considered for the turbulent simulations. Both the merits and

1The rotor tip is allowed to “rub” against the outer endwall
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disadvantages of the two rubbing configurations were explored. The effect of the

choice of solution limiter on the overall solution was examined for both the inviscid

and turbulent clearance flow cases.

I.4. Dissertation Outline

Chapter II presents the governing equations of the flow, and discuses Reynolds

averaging and equation non-dimensionalization. The first part of Chapter III presents

the new turbomachinery grid generator. Following the topic of grid generation in

Chapter III, the flow solver, the discretized equations, and the boundary conditions

are presented. In Chapter IV, the results from the validation of the solver improve-

ments are presented. Inviscid results for a convergent-divergent nozzle, both purely

subsonic and with a shock, and a NACA 0012 airfoil in supersonic freestream are pre-

sented to compare and contrast the effectiveness of the higher-order limiters tested.

Turbulent flat plate results are then given to validate the improvements to the turbu-

lence model. Chapter V compares the predicted turbulent flow through an annular

turbine vane row against experimental data. Chapters VI and VII present invis-

cid and turbulent results, respectively, for a transonic fan with comparison to both

measured and simulated data from the literature. The conclusions drawn from the

numerical results presented herein, and recommendations for future work are given

in Chapters VIII and IX, respectively.
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CHAPTER II

PHYSICAL MODEL

This chapter opens with a statement of the equations which describe the motion

of a viscous fluid. Next, averaging techniques used to approximate turbulent flows

are presented. This is followed by a description of the turbulence model used to

close the system of averaged equations. Finally the nondimensionalization of the

governing equations is discussed.

II.1. Navier–Stokes Equations

Viscous fluid flow is described by three basic equations: conservation of mass,

conservation of momentum, and conservation of energy. The conservation of momen-

tum equations are also known as the Navier–Stokes equations. However this moniker

is also used to group the three sets of conservation equations under one name. The

term Navier–Stokes equations will be used henceforth in this dissertation to describe

the full set of governing equations. The equations, assuming Einstein notation and

in the absence of external forces, are shown below.

∂ρ

∂t
+
∂ (ρui)

∂xi
= 0

∂ (ρui)

∂t
+
∂ (ρujui)

∂xj
= ρgi −

∂p

∂xi
+
∂τij
∂xj

∂ (ρE)

∂t
+
∂ (ρHui)

∂xi
=

∂

∂xj

(
k
∂T

∂xj
+ uiτij

)
+ q̇

(2.1)
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The gravitational force, gi, and the heat source, q̇, are included in the definition of

the Navier–Stokes equations for completeness, but they will be ignored herein.

For a Newtonian fluid the components of the viscous stress tensor are given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

∂uk
∂xk

δij . (2.2)

The bulk viscosity, λ, is defined using Stokes’ hypothesis, which is given by

λ+
2

3
µ = 0 . (2.3)

Substituting (2.3) into (2.2) yields the below equation, which defines the form of the

viscous stress tensor components used in this dissertation.

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
(2.4)

The total energy per unit mass and the total enthalpy are respectively given by

the following formulae.

E = e+
uiui

2
(2.5)

H = h+
uiui

2
(2.6)

The working fluid is assumed to be a calorically perfect gas. The thermodynamic

properties of a perfect gas are related by the equation of state, given by

p = ρRT . (2.7)

R in the above equation is the specific gas constant, and for dry air has a value of

287.16 J kg−1K−1. The enthalpy and internal energy per unit mass are defined as

h = cpT and e = cvT , respectively.
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The Sutherland equation, given by (2.8), is used to define the dynamic viscosity

as a function of temperature. The constants found in the Sutherland equation are,

for air and in SI units, C = 1.458× 10−6 kg

ms
√
K

and S = 110.4K.

µ =
CT 3/2

T + S
(2.8)

Equation 2.9 defines the thermal conductivity coefficient, where Pr is the Prandtl

number. The Prandtl number is assumed to be constant throughout the flow, and

has the value Pr = 0.72 for air.

k = cp
µ

Pr
(2.9)

II.2. Favre- and Reynolds–Averaged Navier–Stokes Equations

Most flows of interest to researchers and engineers are turbulent. Even with

modern improvements in computing power, the direct numerical simulation of tur-

bulent flows represents an intractable problem to all but idealized low Reynolds

number cases. The enormity of the problem is the result of the requirement to suffi-

ciently resolve the length and time scales, resulting in grid sizes that scale with Re9/4

and CPU times with Re3 [Blazek, 2005, p. 227]. An approximation of the turbulent

flow is sought for the computation of flows with realistic Reynolds numbers.

Reynolds averaging is the method used to approximate incompressible turbulent

flows. The averaging is accomplished by decomposing the state variables into mean

and fluctuating components. The governing equations are then solved for the the

mean quantities. The Reynolds decomposition of a general scalar variable is given

by

ℵ = ℵ̄+ ℵ′ , (2.10)
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where ℵ̄ is the mean component and ℵ′ is the fluctuating component. The mean

component is defined by a time average, as shown by (2.11). The period, T , over

which the quantity is averaged is large compared to the time scale of the turbulence.

ℵ̄ = lim
T→∞

1

T

∫ t0+T

t0

ℵ dt (2.11)

For compressible flows, Favre averaging is utilized for some of the variables

instead of Reynolds averaging. Doing so removes additional terms that arise due to

density fluctuations. Similarly to Reynolds averaging, the variables are split into a

mean and a fluctuating component, as shown in (2.12). Now the averaged quantity,

ℵ̃, is a density weighted average, as defined by (2.13).

ℵ = ℵ̃+ ℵ′′ (2.12)

ℵ̃ =
1

ρ̄
lim
T→∞

1

T

∫ t0+T

t0

ρℵ dt (2.13)

Applying Reynolds averaging to density and pressure, and Favre averaging to

the remaining variables in (2.1) results in [Blazek, 2005, p. 234]

∂ρ̄

∂t
+
∂ (ρ̄ũi)

∂xi
= 0

∂ (ρ̄ũi)

∂t
+
∂ (ρ̄ũjũi)

∂xj
= − ∂p̄

∂xi
+

∂

∂xj

(
τ̃ij − ρ̄ũ′′i u′′j

)
∂
(
ρ̄Ẽ
)

∂t
+
∂
(
ρ̄H̃ũi

)
∂xi

=
∂

∂xj

(
k
∂T̃

∂xj
− ρ̄ũ′′jh′′ + ũi

(
τ̃ij + ρ̄ũ′′i u

′′
j

))
,

(2.14)

which are known as the Favre- and Reynolds-Averaged Navier–Stokes equations.

Herein the equations will be referred to as the RANS equations for simplicity.
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The viscous stress tensor in (2.14) is defined using (2.4) but with Favre-averaged

velocity components. The definitions for the total energy and total enthalpy are now

given, respectively, by [Wilcox, 2010, p. 249]

Ẽ = ẽ+
1

2
ũiũi + κ

H̃ = h̃+
1

2
ũiũi + κ ,

(2.15)

where κ = ũ′′i u
′′
i /2 is the Favre-averaged turbulent kinetic energy.

Favre and Reynolds averaging introduces two additional terms to the govern-

ing equations. They are the Favre-averaged Reynolds stress tensor, −ρ̄ũ′′i u′′j , and

the turbulent heat flux vector, ρ̄ũ′′jh
′′. This creates an underdetermined system of

equations. As a result, approximations are introduced to close the equations.

The Boussinesq eddy-viscosity hypothesis is used to approximate the Favre-

averaged Reynolds stress tensor. The Boussinesq approximation gives the Reynolds

stress term to be

τFij = −ρ̄ũ′′i u′′j = µT

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3

∂ũk
∂xk

δij

)
− 2

3
ρ̄κδij , (2.16)

where µT is the eddy viscosity. The eddy viscosity is computed by the turbulence

model. The last term in (2.16) is required to provide the proper trace of τFij ; however,

it is often neglected and will be done so here [Blazek, 2005, p. 236].

The typical approximation for the turbulent heat flux vector is based on the

Reynolds analogy, and is given by

ρ̄ũ′′jh
′′ = −kT

∂T̃

∂xj
, (2.17)

where kT is the turbulent thermal conductivity coefficient. The turbulent thermal
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conductivity coefficient is given by

kT = cp
µT
PrT

, (2.18)

where PrT is the turbulent Prandtl number. As with the Prandtl number, the tur-

bulent Prandtl number is assumed to be constant over the flow field. The turbulent

Prandtl number has a value of 0.9 for air.

Equation 2.14 can be rewritten, using (2.9) and (2.16)-(2.18), as

∂ρ̄

∂t
+
∂ (ρ̄ũi)

∂xi
= 0

∂ (ρ̄ũi)

∂t
+
∂ (ρ̄ũjũi)

∂xj
= − ∂p̄

∂xi
+
∂τ̃ij
∂xj

∂
(
ρ̄Ẽ
)

∂t
+
∂
(
ρ̄H̃ũi

)
∂xi

=
∂

∂xj

[
cp

(
µ

Pr
+

µT
PrT

)
∂T̃

∂xj
+ ũiτ̃ij

] (2.19)

with

τ̃ij = (µ+ µT )

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3

∂ũk
∂xk

δij

)
. (2.20)

Over-bars and tildes are dropped from the equations herein for convenience.

II.3. Turbulence Modeling

A turbulence model is needed to compute the eddy viscosity introduced into

the RANS equations by the Boussinesq hypothesis. Two equation models provide a

complete model in that the turbulence can be modeled without prior knowledge of

the turbulent structure [Wilcox, 2010, pg. 122]. The most widely used two equation

models are the κ− ε and κ−ω models. Each model is not without drawbacks, which

are succinctly summarized by Menter [1993] and will not be repeated here.

The model chosen for this work is the two equation κ−ω Shear Stress Transport
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(SST) eddy viscosity model by Menter [1993, 1994]. The SST model blends together

the standard κ − ε and κ − ω models to utilize each model’s strengths without

suffering their weaknesses. The SST model transitions from the κ− ω model in the

inner region of the boundary layer to the κ − ε model in the outer wake region.

The SST model also improves prediction in regions of adverse pressure gradients by

accounting for the transport of turbulent shear stress in the formulation of the eddy

viscosity. Improvements to the original SST model by Hellsten [1998] and by Menter

et al. [2003] have been used in this work.1 The transport equations for κ and ω are

given below.

∂ (ρκ)

∂t
+
∂ (ρujκ)

∂xj
= Pκ − β∗ρωκ+

∂

∂xj

[
(µ+ σκµT )

∂κ

∂xj

]
(2.21)

∂ (ρω)

∂t
+
∂ (ρujω)

∂xj
=
ρα

µT
Pκ − βρω2 +

∂

∂xj

[
(µ+ σωµT )

∂ω

∂xj

]
+ 2ρ (1− F1)σω2

1

ω

∂κ

∂xj

∂ω

∂xj

(2.22)

From left to right, the terms on the right hand of the above equations represent

production, dissipation, and diffusion. The extra term on the right hand side of (2.22)

defines the cross diffusion. The production term in both equations is given by

Pκ = τFij
∂ui
∂xj

=

(
µT

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
− 2

3
ρκδij

)
∂ui
∂xj

. (2.23)

1A typographical error exists in [Menter et al., 2003] in the definition of the production term of

the ω equation, which was corrected in [Menter, 2009].
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The constants of the model are computed as a blended value of the κ − ω and

κ− ε constants. The constants are computed using

ℵ = F1ℵ1 + (1− F1)ℵ2 ,

where ℵ1 is any κ−ω constant, ℵ2 is any κ− ε constant, and ℵ is the corresponding

blended constant. The constants for the base models are given in Table II.1. The

values given for α1 and α2 are taken from Menter et al. [2003] and differ slightly from

the original definitions [Menter, 1993, 1994].

Table II.1: κ− ω (1) and κ− ε (2) model constants.

σK1 = 0.850 σK2 = 1.000

σω1 = 0.500 σω2 = 0.856

β1 = 0.075 β2 = 0.0828

α1 = 5/9 α2 = 0.440

β∗ = 0.09

The function F1 is computed from

F1 = tanh
(
arg4

1

)
(2.24)

with

arg1 = min

[
max

( √
κ

0.09ωy
,

500µ

y2ρω

)
,

4ρσω2κ

CDκωy

]
, (2.25)

where y is the distance to the nearest wall and CDκω is given by

CDκω = max

(
2ρσω2

1

ω

∂κ

∂xj

∂ω

∂xj
, 10−10

)
. (2.26)
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The definition of CDκω uses the most recent value for the limiter by Menter et al.

[2003].

The eddy viscosity for the SST model is given by [Hellsten, 1998; Menter et al.,

2003]

µT =
a1ρκ

max (a1ω, |Sij|F2)
, (2.27)

where a1 = 0.31, and |Sij| =
√
SijSij is the magnitude of the strain rate tensor,

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.28)

The magnitude of the strain rate tensor is used such that the formulation of the eddy

viscosity is frame invariant [Hellsten, 1998]. The function F2 is defined as

F2 = tanh (arg2) (2.29)

with

arg2 = max

(
2

√
κ

0.09ωy
,

500µ

y2ρω

)
. (2.30)

II.4. Equation Nondimensionalization

The governing equations presented so far have been written in terms of dimen-

sional variables. As a result, the solutions of the equations will be dependent on

the choice of units selected by the end user. These dimensional results may not

be readily comparable to other results found in the literature. Nondimensionalizing

the governing equations results in solutions that are in terms of useful and easily

referenced nondimensional parameters such as Mach number or Reynolds number.

In addition to providing easily compared results, nondimensionalization also re-

duces the computational burden by shrinking the differences in magnitude between

21



the variables. For instance, at sea level, atmospheric pressure is five orders of mag-

nitude larger than density and three orders of magnitude greater than temperature.

With nondimensionalization, the magnitudes of the three variables of state become

roughly the same.

The nondimensionalization used in this work is the same used by Kim [2003].

The dimensional variable definitions for the variables found in the Navier–Stokes

equations are given below.

x̌i =
xi
l

ť =
tc∞
l

ǔi =
ui
c∞

ρ̌ =
ρ

ρ∞

p̌ =
p

ρ∞c2
∞

Ě =
E

c2
∞

Ȟ =
H

c2
∞

Ť =
T

T∞

µ̌ =
µ

µ∞
µ̌T =

µT
µ∞

(2.31)

II.4.1. Nondimensional RANS Equations

To arrive at the nondimensional form of the RANS equations, the dimensional

variables in (2.19) and (2.20) are substituted for their nondimensional form us-

ing (2.31). The reference variables introduced by (2.31) are then collected on the

right hand side of the equation. After cancellations and grouping of the remaining

reference variables, the nondimensional RANS equations are given by

∂ρ̌

∂ť
+
∂ (ρ̌ǔi)

∂x̌i
= 0

∂ (ρ̌ǔi)

∂ť
+
∂ (ρ̌ǔjǔi)

∂x̌j
= − ∂p̌

∂x̌i
+
∂τ̌ij
∂x̌j

∂
(
ρ̌Ě
)

∂ť
+
∂
(
ρ̌Ȟǔi

)
∂x̌i

=
∂

∂x̌j

[
čp
Re∞

(
µ̌

P r
+

µ̌T
PrT

)
∂Ť

∂x̌j
+ ǔiτ̌ij

]
,

(2.32)

where

τ̌ij =
µ̌+ µ̌T
Re∞

(
∂ǔi
∂x̌j

+
∂ǔj
∂x̌i
− 2

3

∂ǔk
∂x̌k

δij

)
. (2.33)
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The above nondimensional equations look nearly identical to the dimensional

equations, except for the presence of a reference Reynolds number,

Re∞ =
ρ∞c∞l

µ∞
. (2.34)

The nondimensional specific heat term in the energy equation is given by

čp =
1

γ − 1
,

and is derived by using the definitions c∞ =
√
γRT∞ and cp = γR/ (γ − 1).

II.4.2. Nondimensional κ− ω SST Equations

The nondimensionalization of the turbulence model equations is conducted in

the same manner as that of the RANS equations. The nondimensional turbulence

model variables are given by

κ̌ =
κ

c2
∞

ω̌ =
ωl

c∞
. (2.35)

Substituting (2.31) and (2.35) into (2.21)–(2.23) results in the nondimensional tur-

bulence model equations:

∂ (ρ̌κ̌)

∂ť
+
∂ (ρ̌ǔjκ̌)

∂x̌j
= P̌κ − β∗ρ̌ω̌κ̌+

1

Re∞

∂

∂x̌j

[
(µ̌+ σκµ̌T )

∂κ̌

∂x̌j

]
(2.36)

∂ (ρ̌ω̌)

∂ť
+
∂ (ρ̌ǔjω̌)

∂x̌j
=
ρ̌αRe∞
µ̌T

P̌κ − βρ̌ω̌2 +
1

Re∞

∂

∂x̌j

[
(µ̌+ σωµ̌T )

∂ω̌

∂x̌j

]
+ 2ρ̌ (1− F1)σω2

1

ω̌

∂κ̌

∂x̌j

∂ω̌

∂x̌j
,

(2.37)
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with

P̌κ =

(
µ̌T
Re∞

(
∂ǔi
∂x̌j

+
∂ǔj
∂x̌i
− 2

3

∂ǔk
∂x̌k

δij

)
− 2

3
ρ̌κ̌δij

)
∂ǔi
∂x̌j

. (2.38)

As with the RANS equations, the nondimensional equations are nearly identical

to their dimensional form save for the presence of the reference Reynolds number,

given by (2.34). All of the model constants are unchanged. The nondimensional

eddy viscosity is given by

µ̌T
Re∞

=
a1ρ̌κ̌

max
(
a1ω̌,

∣∣Šij∣∣F2

) , (2.39)

with
∣∣Šij∣∣ =

√
ŠijŠij and Šij = 1

2
(∂ǔi/∂x̌j + ∂ǔj/∂x̌i). The blending functions are

still given by (2.24) and (2.29). The nondimensional blending function arguments

are given below.

arg1 = min

[
max

( √
κ̌

0.09ω̌y̌
,

1

Re∞

500µ̌

y̌2ρ̌ω̌

)
,

4ρ̌σω2κ̌

CDκωy̌

]
(2.40)

CDκω = max

(
2ρ̌σω2

1

ω̌

∂κ̌

∂x̌j

∂ω̌

∂x̌j
, 10−10

)
(2.41)

arg2 = max

(
2

√
κ̌

0.09ω̌y̌
,

1

Re∞

500µ̌

y̌2ρ̌ω̌

)
(2.42)
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CHAPTER III

NUMERICAL METHODS

This chapter begins with a description of the mesh generation process used to

construct grids suitable for turbomachinery simulations. Following this, the numeri-

cal methods used to solve the governing equations are described. The parallelization

of the numerical methods are then briefly described. Finally, the averaging tech-

niques used to compute the turubomachinery performance are described.

III.1. Turbomachinery Grid Generation

As will be shown later in this chapter, the governing equations are to be solved

at discrete points within the domain of interest. A grid which accurately captures

the geometry of the domain while maintaining an acceptable level of grid quality is

therefore required. The purpose of this section is to detail how that grid is generated

for annular turbomachinery domains.

An in-house turbomachinery grid generator, known as TGG, was developed to

construct the computational grids to be used in this work. TGG is a multi-block

grid generator which can be used for both rotors and stators. The grid generator

can also generate clearance grids to accurately capture the region between blade tip

and the adjacent casing. The steps of the grid generation process are:

1. Construct meridional grid

2. Intersect rotor/stator geometry with meridional grid
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3. Generate blade-to-blade grids to define the blade passage

4. Optionally generate set of blade tip clearance grids

5. Optionally generate an inlet extension H-grid

6. Optionally generate an outlet extension H-grid

7. Construct grid relationships and output mesh

The following subsections describe the above steps in the grid generation process. A

description of the grid generator’s input file can be found in Appendix F.

III.1.1. Meridional Grid Generation

The meridional grid is a two dimensional grid in (x, r), with index dimensions

(I2D, K2D), that defines the flow path between the inner and outer walls. The

meridional mesh also serves as the foundation for which the blade-to-blade grids

are built upon. Blade-to-blade grids are constructed on each spanwise layer of the

meridional mesh. To save computational time, the number of meridional layers

should be much less than the desired number final grid layers.

The definitions of the flow path end walls are read as input to the grid generator.

A description of the file format used to input the paths can be found in Appendix F.

The streamwise boundaries of the meridional mesh domain are set by user defined

points. These points are used to define edges, which are then intersected with the

given end wall profiles, as shownin Fig. III.1. Cubic spline interpolation is used to

determine the points of intersection.
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Figure III.1: Defining the meridional grid with user prescribed boundaries. “◦” define

endwall profiles, “−−” are user defined grid boundaries, and “•” are intersected

boundary points.

Once the boundary points have been intersected with the given profiles, the pri-

mary meridional mesh is then constructed in the region labeled “Blade” in Fig. III.1.

First, the definitions of the inner and outer wall profiles are refined by adding equally

spaced points between the intersected boundary nodes using a cubic spline. Cubic

Bezier curves are used to connect the hub and tip wall nodes between the inlet and

outlet boundaries. The cubic Bezier curves are defined such that the curves are

perpendicular at the endwalls. A linear Bezier curve is used at the inlet and outlet

boundaries.

The Bezier curves used to define the grid are computed with equally spaced

points from the hub wall to the tip wall. The points can optionally be redistributed so

that they are clustered near the walls. Clustering near the endwalls is recommended

when constructing grids with viscous spacings.
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Figure III.2 shows a typical meridional mesh for the “Blade” region. A vector

of arc length distribution, ~Sk = [s1, s2, . . . , sI2D]T , is computed for each grid layer

of constant k-index. The arc length vectors are stored for later use in constructing

the blade-to-blade grids. Meridional grids for the “Inlet” and “Outlet” regions in

Fig. III.1 are only constructed later if the optional inlet and outlet grids are desired.
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Figure III.2: Typical blade-to-blade meridional mesh showing the indicial coordinate

system and spanwise arc length distribution vector, ~Sk.
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III.1.2. Blade Surface Definition

The coordinates defining the blade shape are given as input to the grid generator

in cylindrical coordinates. The coordinates must fully define a number of spanwise

sections of the blade, including the leading and trailing edges. The coordinates start

at the trailing edge and wrap clockwise around the blade, with the trailing edge

point being repeated. It is assumed that the sections are stacked from hub to tip. A

description of the blade surface definition file can be found in Appendix F.

After input, the point distribution of each section is modified to have the desired

number of points and grid spacing as set by the user. Then the blade surface is

intersected with each layer of the meridional mesh to find the local blade cross

section. Cubic spline interpolation is used to compute the intersection. The resulting

cylindrical coordinates of the airfoil and the arc length of the meridional layer at each

point of intersection are stored for later use.

III.1.3. Blade-to-Blade Grids

A multi-block configuration consisting of one O-grid and four H-grids (O-4H)

was chosen for the blade-to-blade grids. Figure III.3 shows the layout of the grid

blocks. Blocks four and five in Fig. III.3 are generated as a single block before being

split in two.

The base three-dimensional blade-to-blade grids are built by generating two-

dimensional grids at each spanwise layer of the meridional mesh and then stacking

them together. As a result, a coordinate transformation is required for the con-

struction of the two-dimensional grids. The reduced coordinates chosen for the two-
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dimensional grids are (s, r̄θ) coordinates. The variable s is the meridional arc length,

r̄ is the average of the leading and trailing edge radii, and θ is the cylindrical coor-

dinate. The meridional arc length was chosen to allow for an easy conversion back

to cylindrical coordinates using the meridional mesh.

2

3

4

5

1

s

rθ

Figure III.3: O-4H multi-block blade-to-blade grid layout with block numbers.

The boundaries for each two-dimensional mesh are set by the boundaries of

the meridional mesh at the current spanwise location, the intersected blade geom-
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etry, and the user specified pitch. The initial H-grids are generated algebraically

and a hyperbolic O-grid is constructed around the blade section. An iterative el-

liptic smoothing algorithm developed by Matula [2014] is used to ensure smooth

transitions between the grid blocks and maintain an acceptable level of grid quality.

The smoothing algorithm is based upon the previous work by Thompson et al. [1974]

and Yamamoto & Engel [1997]. Each grid block is smoothed individually during each

smoothing iteration. Internal block boundaries are handled by using the neighboring

block’s internal nodes as boundary conditions for the block being smoothed.

Once the grids have been smoothed, the meridional mesh is used to transform

the coordinates back into cylindrical coordinates. Functions for (x, r) in terms of s

are known from the definition of the meridional mesh. Using these functions with

cubic spline interpolation allows for the calculation of the base blade-to-blade grid’s

(x, r) coordinates. The θ coordinate is computed by simply dividing by the local r̄.

Up to this point, grids have only been constructed on the meridional layers.

However, the actual grid will contain many more layers with a desired spanwise grid

clustering. To accommodate this, cubic spline interpolation is used to generate the

full set of grid layers using the base blade-to-blade grid as the background mesh.

III.1.4. Blade Tip Clearance Grids

Optionally, a set of grids can be generated to allow for the flow to be solved

in the clearance region between the blade tip and the end wall. A multi-block grid

configuration was chosen to allow for excellent matching with the surrounding blade-

to-blade O-grid, while maintaining good grid quality. Figure III.4 shows a portion
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of a single layer of the chosen O-H grid configuration near the leading and trailing

edges.

TRAILING EDGELEADING EDGE

Figure III.4: Blade tip clearance grid (white shaded region) leading and trailing edge

detail showing the block boundaries (red edges).

Unlike the blade-to-blade grids that were constructed on a subset of layers,

clearance grid layers are built at each layer of the blade-to-blade grid in the clearance

region. Spanwise clustering of the blade-to-blade grid layers is used to define the

thickness of the clearance region and the distribution of the clearance grid layers.

Figure III.5 shows an example of the spanwise clustering of the blade-to-blade and

clearance grids. Consult Appendix F for details on specifying the grid distribution

and clearance thickness.

The inner-most layer of the blade-to-blade O-grid serves as the boundary for
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Figure III.5: Typical blade tip clearance grid slice.

each layer of the clearance grid. The three-dimensional coordinates of the boundary

are reduced to a two-dimensional set of (x, r̄θ) coordinates. The initial grids are

generated algebraically, and then elliptically smoothed in the same manner as the

blade-to-blade grids. Radial basis function interpolation is used to compute the radii

of the points on each layer to complete define the three-dimensional coordinates of

the grid.
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III.1.5. Inlet and Outlet Grids

H-grids can be optionally appended to the blade-to-blade grids to move the inlet

and outlet boundaries further away from the blade passage. While it is possible to

extend the flow domain using only the blade-to-blade grids, using dedicated extension

grids provides for a higher quality mesh in the blade passage region of the flow.

The (x, r) coordinates for the H-grids are found by generating auxiliary merid-

ional grids in the regions labeled as “Inlet” and “Outlet” in Fig. III.1. The spanwise

spacing of the grid layers is taken from the adjoining blade-to-blade grids. The

streamwise spacing of the grid nodes is set to match closely with the spacing of the

blade-to-blade grid to provide for a smooth transition between grids. A constant

value of θ from the blade-to-blade grid is used throughout the grid.

III.1.6. Near-Wall Grid Spacing

The spacing of the grid next any wall is an important grid parameter that factors

into the quality of the solution, especially viscous solutions. The user has control

over the spacing adjacent to the endwalls, the primary surface of the blade, and the

very tip of the blade if blade tip grids are present.

In general, the wall spacings are applied uniformly to the grid. Wall spacings are

always applied uniformly to grid points that are adjacent to both endwalls and at the

tip of the blade in the spanwise direction. The reader is directed to Appendix F for

the description of the input parameters that are needed to apply these wall uniform

spacings.

The user has two options when specifying the grid spacing adjacent to the pri-
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mary blade surface. First, the user can uniformly apply the dimensional wall spacing

across the entire blade surface. This first option serves as the default option in the

grid generator. Optionally, the grid spacing next to the blade surface can be varied

in both the chordwise and spanwise directions.

To generate a grid with varying wall grid spacings, the user specifies the nondi-

mensional grid spacing parameter y+, which will be held constant. The dimensional

grid spacing can then be computed from the definition of the y+ number, and is

given by

y1 =
νy+

u∗
.

The friction velocity is defined in the usual way as u∗ =
√
τw/ρ.

The laminar equation for the wall shear stress, τw = 0.332ρU∞Re
−1/2
x , was used

for the calculation of the friction velocity. The length required by the Reynolds

number is computed as the distance along either the pressure or suction side of the

blade section. The wall spacing at the leading edge is computed as an average of

the points on either side due to the discontinuity that occurs at x = 0. The laminar

equation was chosen over the turbulent approximation due to the thinner nature of

the laminar boundary layer.

From these equations it is apparent that something must be known about the

flow for which the grid will be used to simulate. The user must choose an appropriate

freestream density, kinematic viscosity, and velocity profile to completely define the

above equations. Any number of points greater than or equal to two can be used

to define the spanwise variation in freestream velocity. The information about the

flow is kept in a separate input file, detailed in Appendix F. The units of the given
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freestream conditions must be consistent with the units of the mesh.

III.2. Flow Solver: UNS3D

The equations of motion are solved using an in-house flow solver called UNS3D

[Flitan & Cizmas, 2003], which stands for Unstructured, Unsteady Three-Dimensional.

Previously, UNS3D has been used to solve turbomachinery flows [Kim, 2003; Brenner

et al., 2013], aeroelastic flows [Gargoloff, 2007], and aeroacoustic problems in cav-

ity flows [Liliedahl et al., 2011]. Most recently, UNS3D has been applied to solving

aerothermodynamic problems in the hypersonic flow regime [Brown et al., 2014].

The governing equations are discretized using the finite volume method (FVM),

requiring that the equations be expressed in integral form. A cell-vertex spacial

discretization was used with a median-dual sub-mesh. As a result, the values of the

volume averaged state vector are stored at the vertices of the primary mesh. Cell-

vertex was chosen over cell-centered due to its flexibility with mixed element meshes,

its smaller memory requirements, and for being the less computationally expensive

of the two methods.

For a given dual mesh cell, the flux surface integral is approximated as a sum-

mation of numerical quadratures on its faces. The Godunov method is used to

compute the inviscid fluxes [Godunov, 1959]. The local Riemann problem at each

dual mesh interface is solved one of two ways. The first is Roe’s approximate Rie-

mann solver [Roe, 1981, 1986], with the Harten entropy fix [Harten & Hyman, 1983].

The second is a modified Roe scheme, known as RoeM, which uses additional func-

tions based on the Mach number to prevent shock instabilities [soo Kim et al., 2003].
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Unless otherwise stated, the chosen Riemann solver is the Roe with Harten entropy

fix scheme.

Three different methods are available in UNS3D for the evaluation of the gra-

dients at the mesh vertices. They are the Green-Gauss method [Kim, 2003], the

least-squares method [Kim, 2003], and the least-squares with QR decomposition

(LSQR) [Anderson & Bonhaus, 1994; Haselbacher & Blazek, 2000; Gargoloff, 2007].

The gradients are evaluated exactly for linearly varying functions on mixed grids

by the least-squares method [Haselbacher & Blazek, 2000]. As such, and to avoid

matrix inversion, the LSQR method was considered the default method, and used

for all simulations herein unless otherwise noted.

Second-order spatial accuracy was obtained by using piecewise linear reconstruc-

tion [Barth & Jespersen, 1989]. Solution limiting is required when using second-

order accuracy to prevent nonphysical oscillations in regions of large gradients, such

as in the vicinity of shocks. The limiters used in this work were the Dervieux

[1985], Venkatakrishnan [1995], and the Multi-dimensional Limiting Process (MLP) [Park

et al., 2010; Park & Kim, 2012] limiters. A modification to the Venkatakrishnan lim-

iter originally applied to the MLP limiter [Park & Kim, 2012] was also applied to

the standard Venkatakrishnan limiter used in this work. The modification will be

discussed in a later section of this chapter.

An explicit four stage Runge-Kutta method was used to integrate the discrete

form of the governing equations. The scheme used is second-order accurate in time.

Convergence acceleration techniques are also used to decrease the wall clock time

for steady simulations. Both local time stepping [Jameson et al., 1981] and implicit
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residual smoothing [Jameson et al., 1986] are used.

The above paragraphs are meant to serve as an overview of the methods used by

the flow solver. Refer to Kim [2003] and Gargoloff [2007] for a complete description of

the numerical methods mentioned. What follows is a description of the Navier–Stokes

equations written in a rotating reference frame. The piecewise linear reconstruction is

then presented so that the modification the Venkatakrishnan limiter constant can be

properly introduced. Finally, the implementation of the turbulence model equations

is given.

III.2.1. Navier–Stokes Equations in the Rotating Reference Frame

For rotational flows, it is convenient to write the governing equations in a ref-

erence frame which rotates with the domain of interest. Doing so allows the flow

to be solved in a steady manner. Casting the equations in a rotating relative frame

introduces two source terms to the momentum equations to account for centrifugal

and Coriolis forces [Blazek, 2005, p.438].

The governing equations in the rotating, or relative, reference frame are written

in terms of relative velocities, and as such, we wish to define the relationship between

the relative and absolute velocities. Figure III.6 illustrates the velocity vectors as-

sociated with a point, p, in the rotating reference frame with the axis of rotation

aligned with the inertial x-axis. The absolute velocity can be defined as the sum-

mation of the relative and transport velocities. The transport velocity defines the

movement of the point about the axis of rotation, and is given by ~V = ~ω × ~r. The

relative velocity can then be defined as ~W = ~U − ~ω × ~r.
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Figure III.6: Velocity diagram for a point rotating about the inertial x-axis.

For this work, the frame’s rotation was confined about the inertial x-axis,

such that ~ω = {ωx, 0, 0}T . As a result, the transport velocity is defined as ~V =

{0, −zωx, yωx}T , and the relative velocity is given by

~W =


u1

u2 + zωx

u3 − yωx


. (3.1)

The governing equations in the relative frame can be cast in terms of absolute

velocity components [Chima & Yokota, 1990; Chen et al., 1997]. This is done by sub-

stituting (3.1) into the governing equations (see Appendix B). Equation 3.2 presents

the integral form of the Navier–Stokes equations in the relative frame, but written
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in terms of absolute velocities.

∂

∂t

∫
Ω

~QdΩ +

∮
∂Ω

(
~Fc − ~Fv

)
dS =

∫
Ω

~GdΩ (3.2)

The conservative state vector in (3.2) is given by ~Q = {ρ, ρu1, ρu2, ρu3, ρE}T .

The convective flux vector, viscous flux vector, and source vector are given, respec-

tively, by

~Fc =



ρW

ρu1W + pnx

ρu2W + pny

ρu3W + pnz

ρHW + pV


~Fv =



0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxΘx + nyΘy + nzΘz


~G =



0

0

ρu3ωx

−ρu2ωx

0


(3.3)

W = ~W · n̂ is the contravariant velocity, and V = ~V · n̂ is the normal component of

the transport velocity. The components of the shear stress tensor are given by

τxx = µ
2

3

(
2
∂u1

∂x
− ∂u2

∂y
− ∂u3

∂z

)
τyy = µ

2

3

(
2
∂u2

∂y
− ∂u1

∂x
− ∂u3

∂z

)
τzz = µ

2

3

(
2
∂u3

∂z
− ∂u1

∂x
− ∂u2

∂y

)
τxy = τyx = µ

(
∂u1

∂y
+
∂u2

∂x

)
τxz = τzx = µ

(
∂u1

∂z
+
∂u3

∂x

)
τyz = τzy = µ

(
∂u2

∂z
+
∂u3

∂y

)
.

(3.4)

The viscous stress work and heat conduction terms in the viscous flux vector are
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given by

Θx = u1τxx + u2τxy + u3τxz + k
∂T

∂x

Θy = u1τyx + u2τyy + u3τyz + k
∂T

∂y

Θz = u1τzx + u2τzy + u3τzz + k
∂T

∂z
,

(3.5)

where the thermal conductivity coefficient, k, was previously defined by (2.9), re-

peated below for convenience. For air, the Prandtl number is Pr = 0.72.

k = cp
µ

Pr
(2.9)

III.2.1.1. Semi-Discrete Form

We wish to express (3.2) for each cell in the discretized domain. This done by

introducing the numerical approximations for the volume and surface integrals found

in the governing equations. The time derivative will remain exact for the time being.

As a result, the equations obtained are known as the semi-discrete equations.

The vector of conservative variables is volume averaged and stored at the vertices

of the mesh. For a given vertex, i, the volume averaged state vector is given by

~qi ≡
1

Ωi

∫
Ω

~QidΩ .

For this work, the mesh is assumed to remain fixed throughout the simulation. As a

result, the time rate of change of the state vector for a given dual mesh cell may be

written as

∂

∂t

∫
Ω

~QidΩ = Ωi
∂~qi
∂t

. (3.6)

The source vector is assumed to be constant throughout a cell. Meaning the
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volume integral of the source vector may be expressed as∫
Ω

~GidΩ = Ωi~gi . (3.7)

The surface integral in (3.2) is expressed as an approximation by summing the

fluxes through each face of the cell. It is enough to assume a constant value for

the flux at the midpoint of the face to remain second-order accurate. Therefore, the

surface integral of the fluxes can be written as∮
∂Ω

(
~Fc − ~Fv

)
dS ≈

NF∑
j=1

(
~Fc − ~Fv

)
j
Sj , (3.8)

where NF is the number of faces for cell i, and Sj is the area of the current face.

Substituting (3.6)–(3.8) into (3.2) results in the semi-discrete form of the gov-

erning equations, given by (3.9). The bracketed terms in (3.9) are known collectively

as the residual, ~Ri.

∂~qi
∂t

= − 1

Ωi

[
NF∑
j=1

(
~Fc − ~Fv

)
j
Sj − Ωi~gi

]
=

~Ri

Ωi

(3.9)

The discrete form of the equations are formed once the temporal discretization

is accounted for. See Kim [2003] for a discussion on the temporal discretization.

III.2.2. Piecewise Linear Reconstruction

Second-order spatial accuracy is achieved by using piecewise linear reconstruc-

tion [Barth & Jespersen, 1989]. This method assumes that the solution variation

within a cell is piecewise linear. The solution gradients at the mesh vertex are re-

quired for the reconstruction.

The reconstruction is used to define the left and right states needed to compute
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the fluxes through a face. For a given volume averaged scalar variable, q, the left

and right states are given by

qL = qi +
1

2
Φi (∇qi · ~rij)

qR = qj −
1

2
Φj (∇qj · ~rij) ,

(3.10)

where Φ is a limiter function, ∇q is the gradient of q, and ~rij is the direction vector

that points from i to j. Figure III.7 illustrates the piecewise linear reconstruction

for a one dimensional case.

q
q

jqRq
jq

Cell i Cell j

x

L

iq

iq

∆

∆

Figure III.7: Linear reconstruction of a scalar variable, q.

A limiter function is needed to prevent nonphysical oscillations in the solution in

regions with large gradients. For example, this would include the area in the vicinity

of a shock. As seen in (3.10), the limiter acts upon the gradient, functioning as a

slope limiter. In regions of large discontinuities, the limiter tends toward a value of
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zero. A value of zero results in a monotinicity preserving first-order accurate constant

reconstruction.

The Dervieux [1985], Venkatakrishnan [1995], and MLP [Park et al., 2010; Park

& Kim, 2012] limiter functions were used in this work. The MLP limiter used was the

MLP-u2 limiter [Park & Kim, 2012]. The MLP-u2 and Venkatakrishnan limiters are

discussed below. Refer to Gargoloff [2007] for a description of the implementation of

the Dervieux limiter.

At the vertex i, the Venkatakrishnan limiter is given by ΦV
i = min

{
φV
i 1, . . . , φ

V
iNv

}
;

where φV
ij is given by (3.11), and Nv is the number of vertices connected by edge to

i. Figure III.8 (left half) defines the limiter’s stencil. In (3.11) qmaxi and qmini are

the local maximum and minimum values, respectively, of the variable. They are

defined using the vertices connected to and including vertex i. The direction vector,

~rij, points to the dual mesh boundary as shown in Fig. III.8. The Venkatakrishnan

function, ϕ, is given by (3.12).

φ
(V)
ij = min



ϕ
(
qmaxi −qi
∇qi·~rij

)
if ∇qi · ~rij > 0

ϕ
(
qmini −qi
∇qi·~rij

)
if ∇qi · ~rij < 0

1 otherwise

(3.11)

ϕ
(a
b

)
=

1

b

[
(a+ ε2) b+ 2b2a

a2 + 2b2 + ba+ ε2

]
(3.12)

At the vertex i, the MLP limiter is defined as ΦM
i = min

{
φM
i 1, . . . , φ

M
iNc

}
. Here,

φM
ij is given by (3.13), and Nc is the number of dual mesh vertices associated with

the vertex i. Figure III.8 (right half) defines the stencil for the MLP limiter. qmaxj

44



j

r

r

Venkatakrishnan MLP

i

j

i

Figure III.8: Stencils for the Venkatakrishnan (−−) and MLP (− · ·−) limiters in

two dimensions; “◦” denote primary grid vertices, “�” are dual mesh vertices, “�”

denote vertices used to compute variable extremum for a dual mesh vertex j.

and qminj are defined as the maximum and minimum values of the variable from the

vertices associated with the dual mesh vertex j, as shown in Fig. III.8. Equation 3.12

is used to define ϕ in (3.13), making the limiter the MLP-u2 limiter [Park & Kim,

2012].

φ
(M)
ij =


ϕ
(

max
{
qmaxj −qi
∇qi·~rij ,

qminj −qi
∇qi·~rij

})
if ∇qi · ~rij 6= 0

1 otherwise

(3.13)

The ε2 term in (3.12) is used to control the amount of limiting applied. Venkatakr-
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ishnan [1995] gives the definition to be

ε2 = (C∆x)3 , (3.14)

where C is a constant, and ∆x is a measure of the local spatial discretization. For

very large values of C, the limiter tends towards being unlimited, and a value of zero

corresponds to no limiting. In this work C has a default value of 5.0, and (∆x)3 is

represented by the volume of the local dual mesh cell, Ωi.

A potential issue with the basic definition of ε is that it based solely on the

geometry. Large variations in the cell volumes included in the limiter’s stencil could

prevent the detection of smooth flow regions. This would cause the limiter to become

active in a region where it is not needed, which in turn would negatively impact

convergence.

Wang [2000] suggested making ε a function of q only. Park & Kim [2012]

posit that ε should maintain a connection to the spatial accuracy, and introduced

a new definition for based upon the local spacial discretization and flow variation.

Their new definition was used with the MLP-u2 limiter to create the MLP-u2 (new)

limiter [Park & Kim, 2012].

The ε definition by Park & Kim was implemented for both the Venkatakrishnan

and MLP-u2 limiters in UNS3D as a user defined option. Herein limiters using this

new ε definition are denoted with the suffix “-ε2”, and “-ε1” is used when the original

definition is used by the limiter.1 The Park & Kim definition is given by

ε2 =
K1

1 + θ
∆qi ,

1The MLP-ε1 and MLP-ε2 limiters correspond to the MLP-u2 and MLP-u2 (new) limiters found

in Park & Kim [2012].
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where ∆qi = qmaxi − qmini is the maximum variation of the local flow. For the

Venkatakrishnan limiter, qmaxi and qmini are the maximum and minimum values of

the variable from the vertices connected to and including vertex i. For MLP, the

extremum are taken from the vertices enclosed by the stencil in the right half of

Fig. III.8. The parameter θ is the ratio of the local flow variation to the local

measure of spatial discretization, and is defined as

θ =
∆qi

K2∆x3/2
=

∆qi

K2

√
Ωi

.

The constants K1 and K2 were assigned a value of 5.0 in accordance to Park & Kim

[2012].

III.2.3. Turbulence Model Implementation

The turbulence equations share a similar form to those of the Navier–Stokes

equations. As such, they can be written in integral form similarly to (3.2). Equa-

tions 2.21 and 2.22 can therefore be written as

∂

∂t

∫
Ω

~QTdΩ +

∮
∂Ω

(
~Γc − ~Γv

)
dS =

∫
Ω

~ΠdΩ . (3.15)

The conservative turbulent state vector is defined as ~QT = {ρκ, ρω}T . The vectors

defining the convective and viscous-like fluxes are given, respectively, by

~Γc =

ρκWρωW

 ~Γv =

nxτ
κ
x + nyτ

κ
y + nzτ

κ
z

nxτ
ω
x + nyτ

ω
y + nzτ

ω
z

 , (3.16)

where, again, W is the contravariant velocity as defined on page 40. The “shear

stress” components given in (3.16) are defined as

τκℵ = (µ+ σκµT )
∂κ

∂ℵ
τωℵ = (µ+ σωµT )

∂ω

∂ℵ
,
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where x, y, or z can be substituted for ℵ. The vector of source terms is given by

~Π =

 Pκ −Dκ

ραPκ/µT −Dω + CD

 , (3.17)

where Pκ is the production term defined by (2.23). In (3.17), Dκ and Dω define the

dissipation of κ and ω, respectively, and are defined by (3.18) and (3.19). The cross

diffusion term, CD, is given by (3.20), and the blending function, F1, was defined

by (2.24).

Dκ = β∗ρωκ (3.18)

Dω = βρω2 (3.19)

CD =
2ρσω2

ω
∇κ∇ω (1− F1) (3.20)

It is evident from (3.16) that the turbulence equations have been written in the

rotational reference frame. Therefore, it is prudent to mention that the production

term, Pκ, as well as the definition for the eddy viscosity are invariant. The model

constants were defined in Table II.1 on page 20.

A limiter is applied to the production of turbulent kinetic energy to prevent

spikes in the eddy viscosity, and to prevent turbulence build up in stagnation re-

gions [Menter, 1993; Menter et al., 2003]. Equation 3.21 defines the production lim-

iter. The value of the constant coefficient multiplying the dissipation of k in (3.21)

was suggested by Menter et al. [2003].

P̃κ = min (Pκ, 10 ·Dκ) (3.21)

The numerical methods used to solve the Navier–Stokes equations were applied

to (3.15) as the two sets of equations share the same form. Menter [1993] showed the
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solution of the turbulence equations to be nearly independent of the scheme and its

accuracy used to solve the equations. As a result, the convective fluxes are computed

using Roe’s approximate Riemann solver with a first-order constant reconstruction.

The viscous fluxes are computed using averaged gradients.

The source terms can dominate the turbulence equations, leading to the equa-

tions becoming stiff. One way to alleviate this is to treat the source terms implicitly.

To do this, we start with the discrete form of (3.15). For a given cell, i, and at time

n, the discrete form of the turbulence equations are given by

∆~q nT,i = −∆ti
Ωi

[
NF∑
j=1

(
~Γnc − ~Γnv

)
j
Sj − ~πni Ωi

]
.

Here ~qT,i and ~πi are, respectively, the volume averaged turbulent state vector and

the volume averaged vector of source terms. Evaluating the source term at the next

time step yields

∆~q nT,i = −∆ti
Ωi

[
NF∑
j=1

(
~Γnc − ~Γnv

)
j
Sj − ~πn+1

i Ωi

]
. (3.22)

Using a Taylor series, the source term at the next time step can be approximated as

~πn+1
i ≈ ~πni + ∆~q nT,i

∂~π

∂~qT

∣∣∣∣n
i

. (3.23)

Menter [1993] suggests the linearized form of the derivatives found in the series

expansion be given by

∂~π

∂~qT
≈

−Dκ/κ 0

0 − (|CD|+ 2Dω) /ω

 . (3.24)

By substituting (3.23) into (3.22), we arrive at

∆~q nT,i = −∆ti
Ωi

[
N∑
j=1

(
~Γnc − ~ΓnV

)
j
Sj − ~πni Ωi

]
+ ∆ti∆~q

n
T,i

∂~π

∂~qT

∣∣∣∣n
i

.
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Defining the residual, ~Ri, as the quantity inside the brackets of the above equation

and collecting like terms on the left hand side gives(
¯̄I−∆ti

∂~π

∂~qT

∣∣∣∣n
i

)
∆~q nT,i = −∆ti

Ωi

~Rn
i .

Multiplying both sides by the inverse of the matrix from the left hand side of the

above equation yields the final discrete form of turbulence equations, given by

~q n+1
T,i = ~q nT,i −

∆ti
Ωi

¯̄Υn
i
~Rn
i , (3.25)

where the matrix ¯̄Υn
i is defined as

¯̄Υn
i =

(1 + ∆tDκ/κ)−1 0

0 (1 + ∆t (|CD|+ 2Dω) /ω)−1

 .

III.3. Boundary Conditions

The boundary conditions used to set the flow conditions are discussed in this

section. The boundary conditions needed for turbomachinery simulations include

wall, inlet, outlet, and periodic boundary conditions. The wall, inlet, and outlet

boundary conditions are discussed herein. Refer to Kim [2003] for a discussion on

the periodic boundaries. Also included at the end of this section are the boundary

conditions needed by the turbulence model.

The boundary conditions in UNS3D are primarily applied weakly as boundary

fluxes [Whitaker, 1993]. This is opposed to directly applying the boundary conditions

to the boundary nodes. Intermediate values of the state variables are computed at

quadrature points on the boundary faces. The computed intermediate values are

used as one side of the Riemann problem in the flux calculation for the adjacent
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boundary node. A first-order constant reconstruction is used when computing the

boundary fluxes. Figure III.9 shows the quadrature points, open circles, for a dual

mesh cell adjacent to a boundary in two dimensions.

Figure III.9: Flux quadrature points (◦) for a boundary adjacent dual mesh volume

(−−).

III.3.1. Wall Boundaries

At the wall boundaries the contravariant velocity, W , is set to zero. This no

penetration condition results in the boundary flux for the continuity equation to

vanish, and is the only necessary condition for inviscid flows. For the no-slip con-

dition, the absolute velocity components are set to zero for stationary walls and to

~V = [0, −zωx, yωx]T for rotating walls. Unlike any other boundary conditions, the

no-slip condition is strongly enforced at the boundary; meaning the wall velocity is
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applied directly to the boundary vertices. As a result, the momentum equations are

no longer required to be solved at the wall.

For the no-slip boundaries, the only contributions to the energy flux are pw

(
~V · n̂

)
and k∇Tw. Assuming an adiabatic wall condition results in ∇Tw · n̂ = 0. The contri-

bution to the energy flux from the wall boundary vanishes entirely for an adiabatic,

stationary wall.

III.3.2. Subsonic Inlet

Only subsonic inflow is considered in this work. The subsonic inlet requires

one condition be set by the interior of the flow and four conditions from upstream.

Here the outgoing Riemann invariant from the interior is used in conjunction with

the total pressure, total temperature, and two flow angles being specified upstream.

Refer to Blazek [2005, p. 287] for a description of how the intermediate states are

computed.

III.3.3. Subsonic Outlet

The subsonic outlet condition is defined using four states from the interior and

one imposed external state. Entropy, tangential velocity, speed of sound, and total

pressure are taken from the interior. The imposed downstream condition is the static

pressure, pb. Refer to Kim [2003] for a description of how the intermediate states are

computed at the boundary for a constant external pressure.

Imposing a constant value for the external static pressure, while logical for exter-

nal flows, is not necessarily prudent for internal flows in which the flow is turned. For
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the internal flow case the static pressure is determine by integrating the axisymmetric

radial momentum equation [Chima & Yokota, 1990], given by

dp

dr
=
ρv2

θ

r
, (3.26)

where vθ = (u2z − u3y) /r. The integration requires that the pressure be specified at

one end of the profile. The pressure was imposed at the hub in this work.

Circumferentially averaged values of density and tangential velocity were used

for the integration due to the axisymmetric nature of (3.26). The radii were taken

from the vertices along one of the periodic faces. The integration was approximated

using the trapezoidal rule. The resultant pressure profile was used as the basis

to find the pressure at each outlet boundary face quadrature point through linear

interpolation.

III.3.4. Turbulence Boundary Conditions

Boundary conditions at the inlet, outlet, and walls must be specified for the

turbulence model. The turbulence boundary conditions at the inlet and outlet are

applied weakly in the same manner as the flow boundary conditions. The wall

turbulence boundary conditions are applied directly to the wall vertices.

The freestream turbulence intensity and turbulent length scale are specified by

the user at the inlet. The freestream turbulence intensity is given by [Blazek, 2005,

p. 246]

IT |∞ =

√
2
3
κ∞∥∥∥~U∞∥∥∥

2

, (3.27)
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and the freestream turbulent length scale is given by [Menter, 1993]

`T |∞ =

√
κ∞

0.09ω∞
. (3.28)

Equations 3.27 and 3.28 are rearranged to define the freestream conditions for κ and

ω, which are what is imposed by the turbulence inlet condition within the flow solver.

The resultant definitions for the freestream conditions are given in (3.29).

κ∞ =
3

2

(∥∥∥~U∞∥∥∥
2
IT |∞

)2

ω∞ =

√
κ∞

0.09 `T |∞
(3.29)

The boundary conditions at the wall are given by [Menter, 1993]

κw = 0 ωw =
60µw

0.075ρw (∆y)2 , (3.30)

where ∆y is the distance from the wall to the nearest interior point. A zero gradient

for both turbulence variables is specified at the outlet.

III.4. Parallelization

The flow solver was previously parallelized to decrease the wall clock times re-

quired to achieve convergence [Kim, 2003]. The parallelization uses the Message

Passing Interface (MPI) to facilitate communication between processors. The solu-

tion domain is decomposed into multiple blocks, one for each processor, and with

each block overlapping the adjacent block by a single cell. Unlike the previous work

by Kim [2003], which decomposed the domain in a single direction, the current

work uses a multi-directional domain decomposition strategy [Brown, 2016]. Refer

to Brown for a detailed description of the parallel solution strategy.
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III.5. Turbomachinery Performance Analysis

This section discusses the post-processing steps taken to compute the thermo-

dynamic performance parameters of a turbomachine row. This includes the different

averaging techniques used and the calculation of equivalent values, efficiencies, and

thermodynamic property ratios. A separate program from the flow solver was written

and used for the solution post-processing.

The post-processing program extracts the solution from cuts upstream and

downstream of the blade row. The cuts are made on planes of constant x, and

their locations are user specified. The extracted properties of the flow on these grids

are averaged to produce both spanwise profiles and overall averages.

Dual mesh faces are constructed to compute the geometric information required

for the averaging. Figure III.10 shows a portion of an idealized extracted grid, black

solid grid, with the corresponding dual mesh in grey. The normal vector at a given

(j, k) location, as shown in Fig. III.10, is defined as n̂ = ~Sjk/Sjk, where the area

based vector is given by [Blazek, 2005, p. 82]

~Sjk =
1

2


∆zA∆yB −∆yA∆zB

∆xA∆zB −∆zA∆xB

∆yA∆xB −∆xA∆yB

 ,

and ∆ξA = ξ4 − ξ2 and ∆ξB = ξ3 − ξ1 for ξ = x, y, z. The numbered indices

correspond to the numbering shown in Fig. III.10 for the dual mesh face. The area

of the face is given by Sjk =
∥∥∥~Sjk∥∥∥

2
.

Velocities, flow angles, and the intensive properties of the flow are averaged

using an area average. The area average is defined as
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Figure III.10: Defining geometric quantities using an idealized extracted grid (black,

solid) and the corresponding mesh duals (grey, dashed).

ϕ̄ =
1

S

∫
ϕdS ,

where ϕ represents any variable of interest. Although total temperature is an inten-

sive property, it is appropriate to compute its average using a mass average [Cumpsty

& Horlock, 2006]. The mass averaged total temperature is given by
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T̄0 =
1

ṁ

∫
T0dṁ .

Based on the recommendation of Cumpsty & Horlock [2006], the total pressure

was work averaged as opposed to mass averaged. Work averaging the total pressure

results in an average value that produces the correct work input or output for an ideal

compressor. The work averaged total pressure is defined as [Cumpsty & Horlock,

2006]

p̄0 =


∫
T0dṁ∫ (

T0/p
γ−1
γ

0

)
dṁ


γ
γ−1

.

The thermodynamic performance parameters can be computed once average

values are obtained at the upstream and downstream planes. The total pressure

ratio is defined as

π∗ =
p̄0,2

p̄0,1

,

where the subscripts “1” and “2” refer, respectively, to the upstream and downstream

locations. The adiabatic efficiency is defined as [Howell, 1945b]

ηad =
(π∗)(γ−1)/γ − 1

T̄0,2
T̄0,1
− 1

,

and the polytropic efficiency is given by [Howell, 1945b]

ηpc =
γ − 1

γ

ln (π∗)

ln
(
T̄0,2
T̄0,1

) .
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The computed mass flow rate and the specified wheel speed have been corrected

to standard sea level conditions. The correction is done so that the results can be

readily compared against those found in literature. The sea level equivalent mass

flow rate and wheel speed are given, respectively, by [Hill & Peterson, 1992, p. 296]

ṁEQ =
ṁ
√
θ

δ
NEQ =

N√
θ
, (3.31)

where θ = T0,1/Tstd and δ = p0,1/pstd. Here Tstd = 288.3 K and pstd = 101325 Pa.

The total conditions are defined as the total conditions specified in the input file to

the flow solver.
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CHAPTER IV

VERIFICATION AND VALIDATION RESULTS

This chapter presents the results from the verification and validation tests that

were conducted to assess the modifications made to UNS3D. The results from the

higher order limiter verification are presented first. The results for a turbulent flat

plate geometry are then presented.

A convergent-divergent nozzle and an isolated airfoil in a supersonic freestream

were used to test the modification of the Venkatakrishnan and MLP limiters found

within UNS3D. Both flows were assumed to be inviscid. The two geometries are also

used to compare the effectiveness of the original limiters found in UNS3D.

IV.1. Convergent-Divergent Nozzle

This section presents the numerical results for two inviscid convergent-divergent

nozzle flows. The two flows examined are: (1) purely subsonic flow and (2) subsonic-

supersonic-subsonic flow with a normal shock. These are excellent test cases as

analytic results are available (see Appendix C) for comparison.

These tests served two purposes. The first was to verify that using the Park

& Kim [2012] definition for ε2 in the Venkatakrishnan and MLP limiters did not

adversely affect the solution. The second purpose of these simulations was to quantify

the apparent order of accuracy for the given limiters.
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IV.1.1. Nozzle Definition and Grid Generation

The variation in nozzle area was the same as that used by Liou [1987]. Equa-

tion 4.1 defines the nozzle area with respect to the streamwise coordinate. Figure IV.1

shows the resultant nozzle shape. The length of the nozzle was 10 in. (0.254 m) and

the throat was located at x = 5 in. (0.127 m). The cross sectional area of the throat

was 1 in.2 (6.4516× 10−4 m2).

A(x)

Athroat

=


7
4
− 3

4
cos
[(

2x
l
− 1
)
π
]

x ≤ l/2

5
4
− 1

4
cos
[(

2x
l
− 1
)
π
]

x > l/2

, 0 ≤ x ≤ l (4.1)
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]
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Figure IV.1: Convergent-divergent nozzle profile.

Four computational grids of increasing refinement were constructed for the given

geometry. The grids are constructed entirely of hexahedral elements with equally

spaced grid layers in the streamwise direction. Each grid layer consists of an H-grid

in the interior, which is surrounded by O-grid. The finest mesh, called the “super-

fine” mesh herein, was constructed first. Lower refinement grids were constructed

by removing every other point along each edge of the next finest grid. Figure IV.2
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illustrates the general configuration of the grid, as well as showing a detail of the

grid refinement.

A nondimensional grid spacing parameter, h, was defined for each of the four

grids as h = ∆x/∆xSF . ∆x is the uniform distance between grid layers, and ∆xSF is

the distance between layers for the super-fine mesh. Table IV.1 details the number

of nodes and the nondimensional grid spacing parameter for each grid used in this

study.

X
Y

Z

Figure IV.2: Medium nozzle grid and grid refinement detail.
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Table IV.1: Convergent-divergent grid dimensions

Grid Name Total Nodes h

Coarse 3,045 8

Medium 22,673 4

Fine 175,041 2

Super-fine 1,375,745 1

IV.1.2. Case Overview

Both the subsonic and normal shock cases utilized the same reference and reser-

voir conditions. The outlet static pressure was varied to set the type of flow within

the nozzle. The parameters used to define the flow for both cases can be found in

Table IV.2.

Table IV.2: Nozzle flow initial and boundary conditions.

Reference Conditions Reservoir Conditions

p∞ = 101325.0 Pa p0 = 104190.585 Pa

T∞ = 288.3 K T0 = 290.435 K

M∞ = 0.2 –

Exit Pressure Conditions

Subsonic case: pe/p0 = 0.89

Normal shock case: pe/p0 = 0.835
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Six cases based on desired solution accuracy and limiter selection were defined.

Each case was run on every grid and for both flow conditions. The six cases were

defined as:

1. First-order accurate1

2. Second-order accurate using the Dervieux limiter

3. Second-order accurate using the Venkatakrishnan limiter with the original ε2

formulation (Venka-ε1)

4. Second-order accurate using the Venkatakrishnan limiter with the flow based

ε2 formulation (Venka-ε2)

5. Second-order accurate using the MLP limiter with the original ε2 formulation

(MLP-ε1)

6. Second-order accurate using the MLP limiter with the flow based ε2 formulation

(MLP-ε2)

1First-order accuracy was obtained using a constant construction at the cell faces as opposed to

piecewise linear for second-order accuracy.
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IV.1.3. Solution Post-Processing Methodology

This section defines the methods used to post-process the results obtained from

the convergent-divergent nozzle simulations. The method used to compare two so-

lutions is presented first. Then the method used to compute the solution order of

accuracy is given.

The difference between two solutions computed on the same mesh was quantified

by computing the root mean square (RMS) of the absolute percent difference at each

value location. The absolute percent difference was defined as

∆ =
|ℵ1 − ℵ2|
ℵ1

(4.2)

where ℵ is the solution variable of choice and the subscript gives the solution number.

The RMS of the solution difference was computed once the absolute percent difference

between solutions was computed at every point using

∆RMS =

√√√√ 1

N

N∑
i=1

∆2
i (4.3)

where N is the number of data points in the set.

The apparent order of accuracy was computed for each of the cases given in the

previous section. The apparent order was calculated using [Celik et al., 2008]

p =
|ln (ε32/ε21)|

ln (r21)
(4.4)

where r21 = h2/h1 and εji = ℵj − ℵi for the quantity of interest, ℵ. The subscripts

“1”, “2”, “3” denote the level of grid refinement, with “1” being for the most refined

mesh. For this work, the subscript “1” corresponded to the super-fine mesh, “2” to

the fine mesh, and “3” to the medium mesh.
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The quantity of interest used to compute the apparent solution orders was the

absolute percent error of mass flow rate. The absolute percent error was defined

by (4.2) with ℵ1 being the analytic value and ℵ2 being the computed value for the

given grid and case.

IV.1.4. Subsonic Flow

This section presents the results of the six aforementioned cases for the subsonic

flow through a convergent-divergent nozzle. The convergence histories of each case

are presented first. The solution along the center-line of the nozzle is then presented.

Finally, the computed order of accuracy of each solution is given.

IV.1.4.1. Convergence History

Each subsonic case was initialized using the reference flow conditions given in

Table IV.2. The solution was then computed using the desired solver options un-

til the residuals dropped five orders in magnitude. Figure IV.3 shows the density

convergence histories for each case and grid. The convergence of the other variables

were found to be quantitatively similar to density and were therefore not shown.

The convergence of the modified MLP and the new Venkatakrishnan limiter

solutions mirrored the convergence of their predecessors for the majority of the sim-

ulations on each grid. Differences between the residual convergence of the -ε1 and

-ε2 solutions became apparent as the solution neared the convergence criterion. On

the medium grid (Fig. IV.3b), the Venka-ε1 solution experienced numerical fluc-

tuations near the end of the simulation while the Venka-ε2 solution convergence
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remained smooth throughout. The MLP-ε1 limiter solutions displayed stalled con-

vergence trends on both the fine and super-fine grids, whereas the MLP-ε2 solutions

converged cleanly in both cases.
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Figure IV.3: Subsonic convergent-divergent nozzle density residual histories.
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IV.1.4.2. Center-line Solution

The computed Mach numbers along the center-line were compared against the

analytic solution for each case and grid, as shown in Fig. IV.4. The predicted stream-

wise variations in Mach number showed good qualitative agreement with the analytic

solution, with the agreement growing stronger as the grid was refined. The best quan-

titative agreement between prediction and the analytic solution was found using the

Venkatakrishnan and MLP limiters. No discernible differences were seen between the

-ε1 and -ε2 limiter solutions on any grid. The Dervieux limiter gave better results

than when the solver was run first-order, but not as good as the other limiters tested.

The differences between the -ε1 and -ε2 solutions were computed using (4.2) for

the Mach number and the three thermodynamic state variables along the center-

line. The RMS of the differences were then computed using (4.3) to quantify the

difference in solutions for a given grid. Figure IV.5 illustrates the variation in solution

differences for both the Venkatakrishnan and MLP limiters.

The largest differences occurred on the coarse grid, and were on the order of

10−1% for both limiters. The computed solution differences decreased as the grid

size was increased. The rate at which the differences decreased was, on average,

consistent with second-order, as illustrated in Fig. IV.5.
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68



10-5

10-4

10-3

10-2

10-1

100 Venkatakrishnan

Mach
p/p0
T/T0
ρ/ρ0
O(1)
O(2)

10-5

10-4

10-3

10-2

10-1

100 101

Nondimensional Grid Spacing, h [-]

MLP

R
M
S
 
P
e
r
c
e
n
t
 
D
i
f
f
e
r
e
n
c
e
 
[
%
]
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tions computed using the -ε1 andn -ε2 variants of the Venkatakrishnan (top) and

MLP (bottom) limiters.
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IV.1.4.3. Solution Order of Accuracy

Computed values of the mass flow rate at the nozzle throat and exit were used

to determine the apparent solution order of accuracy. An absolute percent error

between the computed and analytic values of mass flow rate was computed using the

method outlined in Section IV.1.3. The analytic mass flow rate for the given flow

conditions was ṁa = 0.1538 kg/s.

The mass flow rate error decreased with an increase in grid size for all six cases

at both streamwise locations, as illustrated in Fig. IV.6. Both the first-order solution

and the second-order Dervieux limiter solution exhibited a first-order reduction in

the mass flow rate error at both streamwise locations. The rate at which the error

decreased for the solutions computed using each versions of the remaining limiters

was found to be consistent with second-order.

Table IV.3 presents the apparent solution orders, computed using (4.4), for all six

subsonic nozzle cases. Better than second-order accuracy was obtained when using

either versions of the Venkatakrishnan and MLP limiters. Using the -ε2 versions of

the Venkatakrishnan and MLP limiters resulted in higher apparent orders than when

using their predecessors. Using the Dervieux limiter resulted in an apparent solution

order consistent with first-order accuracy.

The apparent solution orders were lower at the nozzle exit than at the throat

for all cases examined, as evident in Table IV.3. The lower solution orders at the

nozzle exit are due to the proximity of the outlet boundary condition. The outlet

boundary condition, as with all of the other boundary conditions, is implemented in

a first-order manner. As a result, the order of the solution near any boundary will
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Figure IV.6: Subsonic convergent-divergent nozzle mass flow rate percent error varia-

tion with grid size. “O(1)” and “O(2)” represent first- and second-order convergence

rates, respectively.
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be reduced towards first-order.

Table IV.3: Subsonic convergent-divergent nozzle apparent solution orders.

First-Order Dervieux Venka-ε1 Venka-ε2 MLP-ε1 MLP-ε2

Nozzle Throat 0.80 0.98 2.22 2.36 2.24 2.32

Nozzle Exit 0.72 0.88 2.06 2.09 2.01 2.00

Average Value 0.76 0.93 2.14 2.22 2.12 2.16

IV.1.5. Normal Shock Flow

The section presents the results of the six aforementioned cases for the flow

through a convergent-divergent nozzle with a normal shock present. The conver-

gence histories of each case are presented first. Secondly, some numerical “shock

instabilities” that were observed are discussed. The solutions along the center-line

of nozzle are compared. Finally, the apparent orders of accuracy for each case are

presented.

IV.1.5.1. Convergence History

The converged subsonic flow results were used as the initial solution for their

respective normal shock flow cases. The flow solver was run in an identical fashion

to the subsonic cases, with only the outlet pressure being modified according to

Table IV.2. The “five order of magnitude” convergence criterion was applied to the
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cases herein.

The residual convergence for the solutions which utilized the -ε2 limiter variants

were qualitatively identical to that of the -ε1 limiter variant residual histories, as

shown in Fig. IV.7. Only the density residuals are shown in Fig. IV.7 due the

similarity of the other variable residuals. The residual convergence for solutions

using either MLP limiter were seen to stall on the three finest grids. Convergence

stall was also exhibited by both Venkatakrishnan limiter solutions on the super-fine

grid. In all cases in which residual convergence stall occurred, the -ε2 limiters resulted

in marginally lower residual values. Solutions using the Dervieux limiter were seen

to converge on all grids.
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Figure IV.7: Normal shock convergent-divergent nozzle density residual histories.

IV.1.5.2. Numerical “Shock Instabilities”

The Venkatakrishnan constant, defined as C in (3.14), was increased for the

Venka-ε1 solution on the super-fine grid in an effort to obtain solution convergence.

The value of C was increased from its default value of five until the solution residuals

converged. It was found that the solution would converge for C ≥ 175, as shown in

Fig. IV.8. It should be noted that C = 175 is not necessarily the minimum value of
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C which will result in residual convergence, but only the first value for which residual

convergence was observed.
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Figure IV.8: Normal shock convergent-divergent Venka-ε1 density residual histories

on the super-fine grid for increasing limiter constant values.

Contours of the Mach number were extracted along the z = 0 plane for solutions

which used three different values of C, as shown in Fig. IV.9a. For the default value

of C = 5, the contours revealed a smooth solution leading up to the normal shock and

a “streaky” solution downstream of the shock. The smoothness of the downstream

solution was improved as C was increased until the contours became completely

smooth at C = 175.

The solution was further examined by extracting contours of maximum-normalized
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vorticity magnitude along the same plane, as illustrated in Fig. IV.9b. Large amounts

of vorticity was seen to be emanating from and streaking downstream of the normal

shock for the case which used the default C value. These streaks of vorticity have

been previously used to characterize a numerical shock instability by Kitamura et al.

[2009], referred to herein as the “streaking vorticity shock instability”2.

It was found that increasing C had the effect of reducing the amount of vorticity

that was generated by the normal shock, as shown in Fig. IV.9b. The converged

solution, C = 175, did not exhibit an vorticity streaks downstream of the shock.

From this result, it was concluded that the stall residual convergence observed for

the Venka-ε1 solution on the super-fine grid was the result of the “streaking vorticity

shock instability”, and that increasing C was a viable method of eliminating the

instability.

The “streaking vorticity shock instability” was also found in the MLP-ε1 and

MLP-ε2 solutions on the medium, fine, and super-fine grids. Starting with the

medium grid, simulations with the MLP-ε1 limiter were computed with increasing

values of the limiter constant, C. A value of 300 was required for the solution resid-

uals to converge. As the limiter constant was increased the character of the stalled

residual convergence changed, as shown in Fig. IV.10. The pattern of the stalled

residual history went from being flat to being sinusoidal, which indicated that a

different cause for the stalled converged was likely.

2Reffered to as the “Stage 2” shcock instability by Kitamura et al. [2009].
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(a) Mach number. (b) Maximum-normalized vorticity magni-

tude.

Figure IV.9: Normal shock convergent-divergent nozzle Venka-ε1 solutions on the

super-fine grid for different values of the limiter constant.

No streaking vorticity was seen to be emanating from the normal shock for the

cases with the sinusoidal residual histories. Instead, it was found that the posi-

tion of the shock was periodically changing. The shock position was seen to move

downstream one grid layer before returning to its original position. The retreat of

the shock to its original position occurred at the minimum point of the residual

oscillation. From this result, it was concluded that the stalled, flat residual history

corresponded to the “streaking vorticity shock instability” and the sinusoidal residual
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Figure IV.10: Normal shock convergent-divergent MLP-ε1 density residual histories

on the medium grid for increasing limit constant values.

history corresponded to a numerical “moving shock instability”.

Similarly with the medium grid solution, the limiter constant was increased for

the MLP-ε1 solutions on the fine and super-fine grids until convergence was achieved.

Figure IV.11 shows the resultant unstable and stable points for each grid, where a

stable point was defined as a point for which the residuals converged. The “moving

shock instability” was observed on the fine grid for large values of C, but not on the

super-fine grid. A very large value of the limiter constant, C = 900, was required for

convergence on the fine grid.

The use of large limiter constants with the MLP-ε1 limiter to achieve convergence

was not without consequence. The converged solutions on the medium and fine grids
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Figure IV.11: Normal shock convergent-divergent MLP-ε1 numerical “shock insta-

bility” map for different values of the limiter constant. Convergence was achieved at

“stable” points.

exhibited a large amount of overshoot at the front of the normal shock, as shown

in Fig. IV.12a. The position of the normal shock was also shifted downstream, as

far as one cell length in the case of the medium grid. Examining the contours of

the MLP-ε1 limiter function, as defined by ΦM
i in Section III.2.2, showed that the

large limiter values resulted in unlimited solutions on the medium and fine grids.

The MLP-ε1 limiter function for density can be seen in Fig. IV.12b for the finest

grids, illustrating the unlimited nature of the solutions. The MLP-ε1 solution on the

super-fine grid remained limited due to a higher grid density.

IV.1.5.3. Center-line Solution

Figure IV.13 compares the streamwise variation of the Mach number computed

on each grid for the six stated cases against the analytic solution. Solutions shown
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Figure IV.12: Examination of the converged MLP-ε1 normal shock convergent-

divergent nozzle solutions. ΦM
ρ = 0 and 1 correspond to full and no limiting, re-

spectively.

for the Venka-ε1 and MLP-ε1 limiters were computed using the default value of C to

prevent solution unlimiting. The qualitative agreement between prediction and the

analytic solution improved as the grid size was increased.
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No noticeable difference was observed between solutions computed using the

Venka-ε1 and Venka-ε2 limiters. The story was also the same for both versions

of the MLP limiter except on the Fine mesh. On the fine mesh the MLP-ε1 and

MLP-ε2 solutions bracketed the analytic solution downstream of the shock. Even

though they showed good agreement with the analytic solution, the Dervieux limiter

solutions exhibited both over- and under-shoot in the vicinity of the normal shock.
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Figure IV.13: Normal shock convergent-divergent nozzle center-line Mach number

profiles for each grid.
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IV.1.5.4. Solution Order of Accuracy

Apparent solution orders were computed for the normal shock cases in the same

manner as was done for the purely subsonic cases in Section IV.1.4.3. Values of the

mass flow rate at the nozzle throat and exit were used from the three finest grids.

Two sets of solution orders were computed for the Venka-ε1 and MLP-ε1 limiter

solutions. In the first, only solutions which used the default limiter constant value

(C = 5) were considered. For the second set, the solution orders were computed

from the solutions with converged residual histories (C > 5).

The computed apparent solution orders are shown in Table IV.4. All of the

limiters tested resulted in apparent solution orders consistent with second-order ac-

curacy, regardless of whether the residuals converged or not. Solution orders that

were computed using mass flow rate values from stalled convergence cases were lower

than when all three cases converged, even when solution un-limiting occurred. The

Venka-ε2 limiter resulted in the highest solution order even with the solution conver-

gence stalling on the super-fine grid.
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Table IV.4: Apparent order of the normal shock solutions using the finest three grids.

Values in parenthesis were computed using mass flow rates from stalled convergence

solutions.

First-Order Dervieux Venka-ε1 Venka-ε2 MLP-ε1 MLP-ε2

Nozzle Throat 1.05 1.29
2.19

(2.13)
(2.12)

2.20

(2.14)
(2.15)

Nozzle Exit – 2.01
1.66

(1.30)
(1.76)

1.36

(1.06)
(1.16)

Average Value 1.05 1.65
1.92

(1.71)
(1.94)

1.78

(1.60)
(1.66)

IV.2. NACA 0012

This section presents the inviscid results for a NACA 0012 airfoil simulated at

supersonic freestream conditions. The freestream Mach number was 2, and the air-

foil was set at 0◦ angle-of-attack. This particular case was chosen as it was shown

by Venkatakrishnan [1995] to exhibit stalled convergence of the residuals. The pur-

pose of these simulations was to further examine the effectiveness of the Park & Kim

modification to the Venkatakrishnan and MLP limiters.

IV.2.1. Airfoil Definition and Grid Generation

A modified thickness profile was used to define the airfoil shape. The thickness

profile is given by [Fransson & Verdon, 1993, p. 880]

±yt =
t

0.2

(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4

)
(4.5)
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where t is the maximum thickness as a percentage of the chord, and 0 ≤ x ≤ 1. The

modification of the standard NACA equation is the coefficient of the quartic term.

The modification used creates a sharp trailing edge, as opposed to the blunt trailing

edge that results from the standard equation. For reference, the standard quartic

coefficient is 0.1015 [Abbott & Doenhoff, 1959, p. 113].

An unstructured grid was constructed using the commercially available grid

generation software called Pointwise [Pointwise, 2011]. The grid was constructed by

first generating a two-dimensional grid of unstructured triangles and then extruding

this layer a set distance. The resultant three-dimensional grid is made up of six node

prismatic elements.

The two-dimensional domain boundaries were placed fifty chords away from

the airfoil in all directions. Three hundred points were used to define the airfoil,

with nodes clustered at the leading and trailing edges. as illustrated in Fig. IV.14a.

The freestream domain was subdivided primarily by concentric circles about the

centroid of the airfoil. Points were clustered in the anticipated location of the bow

by subdividing the inner-most circular region using a Bezier curve, as illustrated in

Fig. IV.14b. The location of the shock clustering was refined by simulating the flow,

find the location of the shock, and manually moving the grid points to match the

shock location.

The unstructured two-dimensional grid was extruded once in the z-direction to

create a three-dimensional grid that was one cell thick. The thickness of the cell

was defined to be 10% of the chord. The resultant three-dimensional grid contained

10,586 nodes.
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(a) Airfoil detail.

(b) Shock clustering detail.

Figure IV.14: NACA 0012 unstructured grid.

IV.2.2. Boundary Conditions and Solution Strategy

Figure IV.15 illustrates the different boundary condition types, and their lo-

cations, that were applied to each two-dimensional layer. A symmetry boundary

condition was applied to the grid faces on the zmin and zmax planes.

The freestream conditions were set using standard air at sea level. The desired

freestream Mach number for this case was M∞ = 2. The inlet total pressure and
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temperature were computed isentropically from the freestream pressure, tempera-

ture, and Mach number. The outlet static pressure was defined to be the freestream

pressure. The inlet and outlet boundary conditions are summarized in Table IV.5.

FREESTREAM

WALL

I
N
L
E
T

FREESTREAM

O
U
T
L
E
T

Figure IV.15: Boundary conditions applied to the NACA 0012 flow domain. Sym-

metry boundaries are applied to the out of plane sides.

Table IV.5: NACA 0012 flow conditions.

Freestream Conditions Inlet Conditions Outlet Conditions

p∞ = 101325.0 Pa p0 = 792812.3 Pa pe = 101325.0 Pa

T∞ = 288.3 K T0 = 518.9 K

M∞ = 2.0 –

Solutions were computed with second-order accuracy using both variants of the
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Venkatakrishnan and MLP limiters3. Appendix D, starting on p. 250, contains a full

accounting of the flow solver options used for this case. Each simulation was started

from a uniform flow field and run for 10,000 iterations. The initial flow field was set

using the freestream conditions defined in Table IV.5.

IV.2.3. Convergence History

The solution residuals for each limiter solution pair were compared to examine

the effect of the Park & Kim limiter constant modification on the solution. It was

found for the Venkatakrishnan limiter that there was virtually no difference in the

residual histories, as shown by Fig. IV.16. Although there is no improvement to the

convergence of the residuals, it is important to note that there was not a negative

impact seen when using the Venka-ε2 implementation.

The story is a bit different for the MLP limiters. The residuals were seen to drop

approximately four orders of magnitude before stalling when using the MLP-ε1 im-

plementation with the default constant, C = 5. However, a clear improvement was

seen when using the MLP-ε2 limiter, as shown by Fig. IV.17. The MLP-ε2 limiter

allowed the solution residuals to converge nearly eight orders of magnitude without

stalling.

Both MLP solutions were re-computed with snapshots of the flow being ex-

tracted every 25 iterations in an effort to determine the cause of residuals stalling.

The pressure was normalized by the freestream pressure (pref = 101325 Pa), and

was sampled at a point, seen in Fig. IV.18, just upstream of the leading edge.

3Refer back to Section IV.1, page 63 for a description of the limiters.
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Figure IV.16: Supersonic NACA 0012 residual convergence histories with the

Venkatakrishnan limiters.

It was found from examining animations of the solution contours that the posi-

tion of the bow shock computed using the MLP-ε1 limiter was not stable, exhibiting

the numerical “moving shock instability” seen in Section IV.1.5.2. The shock solu-

tion determined by the MLP-ε2 limiter proved to be stable with no visible movement

of the shock. The sampled pressure histories from both solutions corroborate this

conclusion.

Figure IV.19 shows the extracted normalized pressure histories for both the

MLP-ε1 and MLP-ε2 limiters, and compares them to their respective residual histo-

ries. The figure shows that the pressure at the sample point has a periodic oscillatory

behavior when using the MLP-ε1 limiter with the default value for C. In addition to
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Figure IV.17: Supersonic NACA 0012 residual convergence histories with the MLP

limiters.

indicating shock movement, the oscillatory behavior of the pressure prevented local

solution convergence all around the airfoil. The lack of local convergence caused the

solution residuals to stall.

It was found that convergence could be achieved with the MLP-ε1 limiter by

increasing the limiter constant to C = 6 from the default value of five, as shown in

Fig. IV.19. The shock instability was seen to be present early on in the solution before

being suppressed by the limiter function. Figure IV.19 also shows that evolution of

the stable MLP-ε2 solution is much smoother than the MLP-ε1 solutions, as no shock

instabilities seem to be present at any stage of the solution calculation.
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Figure IV.18: Normalized MLP-ε1 pressure contours after 10,000 iterations. The

numerical probe is located at the location indicated by “�”.
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Figure IV.19: Sampled normalized pressure histories compared against their corre-

sponding residual histories. The sampling point is shown in Fig. IV.18.
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IV.2.4. Flow Field Comparison

All four solutions were found to be very similar both qualitatively and quanti-

tatively. Figure IV.20 shows the Mach number contours for each case. The figure

shows few differences between the solutions generated with the different limiters.

The noticeable differences occur just upstream of the shock in the form of small

“pockets” of higher Mach. However, the difference in the Mach number between

these “pockets” and the surrounding flow is very small, roughly ∆M ≈ 0.001.

The drag coefficient, CD, was used to quantitatively compare the four solutions.

The drag coefficient was defined in the typical manner as CD = D/ (qA). The drag,

D, is due to pressure forces only, and was computed by the flow solver. For the given

freestream conditions, the dynamic pressure was q = 283.5842 kPa. The reference

area was taken as the wall surface area from the computational grid, the value being

A = 0.1 m2. The computed drag coefficients are given in Table IV.6.

The table shows little variation in the computed drag coefficient between solution

methods. The largest absolute percent difference was found to be 0.296% between the

Venka-ε2 and MLP-ε1 solutions. The absolute percent differences between the limiter

options was found to be even smaller. The difference between the Venkatakrishnan

limiters was found to be 0.05%, and the difference between the MLP limiters was

0.0992%.
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(a) Venka-ε1 (b) Venka-ε2

(c) MLP-ε1 (d) MLP-ε2

Figure IV.20: NACA 0012 Mach number contours for each limiter solution.
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Table IV.6: NACA 0012 drag coefficients.

Venka-ε1 Venka-ε2 MLP-ε1 MLP-ε2

CD : 0.092462 0.092416 0.092689 0.092597
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IV.3. Turbulent Flat Plate

This section presents the results for turbulent flow over a zero pressure gradient

flat plate. Updates to the turbulence model had been made as a part of this work.

This case was chosen to test the implementation of these updates due to its simplicity

and its wide use in the literature. The particulars for this case were taken from NASA

Langley’s Turbulence Modeling Resource website [NASA, 2015].

IV.3.1. Domain Definition and Boundary Conditions

The computational domain for the flat plate geometry is given in Fig. IV.21.

The length, L, of the flat plate was 2 meters, and the height of the domain was L/2.

The domain inlet is positioned a distance of L/6 upstream of the plate’s leading edge.

The width, W , held constant for all four grids at L/200. The boundary condition

types that were applied to the domain are also indicated in the figure.

The boundary conditions for this case were set such that the freestream Mach

number was M∞ = 0.2. To that end, the inlet total conditions were p0 = 104190.471

Pa and T0 = 290.455 K. Standard conditions at sea level were assumed at the outlet.

The turbulent length scale and intensity were also set at the inlet, respectively, to

`T |∞ = 0.1 m and IT |∞ = 1%. Based on these turbulence inlet conditions, the

freestream viscosity ratio was µT/µ∞ = 3.3.

IV.3.2. Computational Grids

The four grids used for this test case were downloaded from the NASA Langley

website [NASA, 2013]. Each downloaded grid was a two-dimensional, structured grid.
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Figure IV.21: Flat plate computational domain. Given boundary conditions are:

inlet (I), symmetry (II), viscous wall (III), outlet (IV), and freestream (V).

The grid points were clustered near the leading edge of the plate and in the normal

direction to the plate surface. Figure IV.22 illustrates the grid point clustering on

the coarsest of the four grids.

Streamwise Coordinate, x [m]
-0.50 0.00 0.50 1.00 1.50 2.00

Figure IV.22: Coarse flat plate grid.
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The requisite three-dimensional grids for the flow solver were created by ex-

truding the downloaded two-dimensional grids once by ∆z = W to form a once cell

thick grid. A FORTRAN program was written to take the given two-dimensional

structured grids and “generate” corresponding three-dimensional unstructured grids.

The sizes of each grid and the height of the first cell adjacent to the plate

are presented in Table IV.7. The distance to the first node away from the wall is

presented nondimensionally as y+ numbers, where

y+ =
u∗y

ν
. (4.6)

The friction velocity needed in (4.6) is given by

u∗ =

√
τw
ρ
. (4.7)

The values for the y+ number in the table were estimated using Schlichting’s approx-

imations for τw [Schlichting, 1968, p. 598] evaluated at the midpoint of the plate,

x = 1 m.

IV.3.3. Solution Strategy

The solution strategy for the turbulent flat plate case was to initialize the flow

field using a laminar flow solution before activating the turbulence model. Once the

laminar flow was set, κ and ω were uniformly initialized throughout the field using the

specified inlet conditions. One thousand first-order simulations were completed first

to allow the turbulent solution to settle before switching to second-order accurate.

UNS3D was simulated using second-order accuracy, with the basic Venkatakrishnan

limiter, until the flow residuals either dropped five orders in magnitude or began to
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Table IV.7: Flat plate grid dimensions.

Grid IMAX JMAX KMAX NP
a y+b

Coarse 69 49 2 57 0.85

Medium 137 97 2 113 0.42

Fine 273 193 2 225 0.21

Super-fine 545 385 2 449 0.10

a Number of points on the flat plate in the x-direction
b Estimated value at x = L/2, Rex = 4.659× 106

level off. Implicit residual smoothing was used for the Navier–Stokes equations, but

not for the κ − ω equations. The reasoning behind the residual smoothing choices

will be explored at the end of this section. Consult Appendix D, p. 253, for a sample

input file for this case showing all the code options used.

The numerical results to be presented in this section are compared against the

experimental data generated by Wieghardt & Tillmann [1951]. The plotted experi-

mental data points were digitized from the paper by Yoder & Georgiadis [1999]. In

addition to plotting experimental data for the velocity profiles, the empirical equa-

tion for the logarithmic overlap region and the laminar sublayer are plotted. The

equation of the logarithmic overlap region is given by u+ = ln (y+) /0.41 + 5 [White,

2006, p. 416], and the laminar sublayer is given by u+ = y+ [White, 2006, p. 419].

In both equations u+ = u/u∗, where u∗ was previously defined by (4.7).
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IV.3.4. Grid Convergence Study

The overall solutions from the four grids were compared against one another

before examining the velocity profiles. This was done to choose one of the solutions

to examine in more detail. The convergence histories of the solution residuals have

been plotted in Figure IV.23. A plot of the w-velocity residual was omitted as the

flow is two-dimensional, and the variations in w are very small. The plot shows

that the residuals for all of the variables converged steadily, with the overall slope

of the convergence decreasing as the grid size was increased. Around one million

iterations were required for the super-fine grid to achieve a five order magnitude

drop in the flow residuals. One interesting point of fact is that the initial value

for the ω residuals is positive. However, the value quickly becomes negative within

roughly 1,000 iterations for all four grids.

It was found from looking at the computed distribution of the y+ number that

the estimates found in Table IV.7 were conservative estimates. The estimated values

were found to be approximately 20% higher than the computed values at x = 1

m. The computed distributions of y+ are compared against the estimated values in

Fig. IV.24. Arithmetic averages of the y+ number computed for each grid are also

given in the figure.

It was found that the reason for the large difference between estimated and com-

puted y+ numbers was due to the wall shear stress estimates, given by Schlichting’s

power law formulation, were higher than the computed values. Figure IV.25 shows

that Schlichting’s estimation of the skin friction coefficient is also a conservative es-

timate in comparison to the experimental data of Wieghardt & Tillmann [1951]. As

98



-12

-11

-10

-9

-8

-7

-6

 0  200  400  600  800  1000  1200

L
o
g
(

ρ 
R
e
s
i
d
u
a
l
s
)

Thousands of Iterations

Coarse
Medium

Fine
Super-fine

(a) Density residuals.
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(b) U-velocity residuals.
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(c) V-velocity residuals.
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(d) Pressure residuals.
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Figure IV.23: Flat plate solution residual comparison.
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the figure shows, the computed values of the skin friction coefficient tend towards

the experimental data as the grid is refined.
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Figure IV.24: Computed surface distributions of y+ for each flat plate grid. The

arithmetic mean of a given data set is given to the left of the curve. Values for the

estimates are given in Table IV.7.

IV.3.5. Turbulent Velocity Profiles

The fine grid solution, as opposed to the super-fine grid solution, was used

to compare the computed velocity profiles against experimental data and empirical

relations. Two factors motivated the selection of the fine grid solution. The first was

the similarity of the two solutions, as illustrated by Fig. IV.25. The second was wall
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Figure IV.25: Computed skin friction coefficient compared against experi-

ment [Wieghardt & Tillmann, 1951] and theory [Schlichting, 1968, p. 598]. Plotted

on a log-log scale.

clock time. The super-fine case required approximately 1.5 times more iterations to

achieve the same level of convergence as the fine grid case.

Velocity profiles were extracted at four streamwise locations. The velocity was

extracted directly from the grid points to avoid interpolation. As a result, the

Reynolds numbers of the extracted data points do not exactly match the experi-

mental Reynolds numbers. The largest difference in Reynolds numbers occurs at the

lowest value at 1.9% difference.

Figure IV.26 shows the extracted velocity profiles compared against experiment
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and empirical relations. Overall, it was found that UNS3D matched the experimental

data closely. The largest difference between the numerical and experimental results

were observed at the lowest Reynolds number examined. Here, the computed veloc-

ities in the outer region of the profile are roughly 10% higher than what was seen in

the experiment. However, Yoder & Georgiadis [1999] saw a similar over-prediction

in their predictions at this location as well.

IV.3.6. Effect of Implicit Residual Smoothing

It was stated earlier that implicit residual smoothing (IRS) was not used with

the κ − ω equations, even though it was being employed with the Navier–Stokes

equations. This was not the case prior to the turbulence model updates that were

made in this work. Previously, the same number of smoothing iterations were applied

to both the Navier–Stokes and κ− ω equations.

Neither the κ or ω equations showed good convergence trends with the previous

version, in which the κ−ω equations were smoothed. This is exemplified by the top

two plots in Fig. IV.27. In the plots, the convergence for both turbulence equations

is stalled, and worse yet, the sign of the residual for the ω equation remains positive

throughout the entirety of the simulation. On the other hand, the figure shows that

the turbulence equations residuals dropped several orders of magnitude when IRS is

turned off for the κ− ω equations.

The bottom two plots in Fig. IV.27 show that the convergence of the Navier–

Stokes equations was hindered by the stalled convergence of the turbulence equations.

The residuals for the flow equations were seen to drop roughly 3 orders of magnitude
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Figure IV.26: Fine flat plate grid extracted velocity profiles compared against exper-

iment [Wieghardt & Tillmann, 1951] and empirical relations [White, 2006, p. 416].

The Reynolds numbers given are from the computation.

before convergence stalled. As with the turbulence residuals, turning off IRS for the

turbulence equations improved the convergence of the flow equations. The stalled
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convergence previously observed was replaced by convergence of the variables. While

residuals for only two variables are shown in the figure, the trends shown are exhibited

by the remaining variables.
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Figure IV.27: Comparing fine grid residual histories for smoothed and not smoothed

κ− ω equations.

To get a better understanding of the problem at hand, the turbulence equation

variables were extracted from the flow field, such that profiles normal to the wall

could be constructed. The variables were extracted at Rex = 5.018×106 in the same
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manner as the velocity field was. The profiles of the turbulence variables for both

the case of using IRS and without using IRS on the κ − ω equations are shown in

Fig. IV.28.

What was found, and what the figure shows, is that the turbulence solution

for both variables was distorted in the near wall region when smoothing was used

on the turbulence equations. For the fine grid, the near wall region included the

first ten grid points above the wall. In contrast, the non-smoothed κ− ω equations

produced a result that smoothly approached the value of the boundary condition at

the wall. Although the figure only shows this phenomenon at a single point in the

flow, examination of the solution contours revealed that this poor solution feature

was prevalent throughout the near wall region of the domain, appearing as streaks

in the solution contours.

The distortion in the IRS case is most likely being caused by conflict between

the turbulence equation boundary conditions and the smoothing. The turbulence

boundary conditions are strongly enforced at all boundaries, meaning that the value

at the boundary is explicitly defined. To enforce this during the integration step, the

values of the residual4 at these nodes are set to zero, i.e. ~Ri = 0. The implicit residual

smoothing algorithm, as implemented in UNS3D, does not differentiate between

interior and boundary nodes. As a result, the residual that was once set to zero now

becomes non-zero, and will be updated during the integration to the next iteration.

At present, the solution to this problem is to simply avoid implicit residual

smoothing for the turbulence equations. However, it is possible that smoothing the

4Refer back to p. 50 for the definition of the turbulence equation residual.
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Figure IV.28: Profiles of κ and ω, extracted from the fine grid, comparing the effect of

using implicit residual smoothing (IRS) on the κ−ω equations at Rex = 5.018×106.

turbulence residuals could be beneficial in regions where flow separation dominates.

A more complete solution to this problem would be implementing selected smoothing,

in which boundary nodes where the boundary condition has been strongly applied

are skipped in the smoothing algorithm. This would ultimately entail much more

coding and thorough testing than time has allowed for, thus it will be left for future

work.

106



CHAPTER V

TURBINE VANE RESULTS

This chapter presents the results for the flow through an annular row of turbine

vanes. This case was used to evaluate UNS3D with a simple turbomachinery flow.

First, a set of baseline results are presented in the form of a grid convergence study.

Then the effect of applying different amounts of under-relaxation to the turbulence

equations is explored. Finally, a parametric study of the turbulent inlet boundary

conditions are presented.

V.1. Case Definition

The vane geometry is representative of a core turbine vane and is the same geom-

etry used in experiments by Goldman & McLallin [1977] and Goldman & Seasholtz

[1982]. The annular cascade has 36 untwisted, constant profile vanes. The vanes are

38.1 mm in height and have an axial chord of 38.23 mm. The diameter at the vane

tip was 508 mm, and the hub-to-tip ratio was given by Dhub/Dtip = 0.85. The radii

of both the hub and tip endwalls were defined as being constant.

V.2. Grid Generation

The computational grids used in these tests were constructed using the turbo-

machinery grid generator presented in Chapter III (p. 25). Periodicity was used to

simplify the domain from 36 vanes to a single vane. The inlet and outlet planes were

located 5.0 and 5.5 axial chords away, respectively, from the vane. The geometrical
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coordinates of the vane and the endwalls were taken from the test case material

supplied with the NASA turbomachinery flow solver SWIFT [Chima, 2003].

Three grids were constructed for these tests. Viscous wall spacing was evenly

applied to the grid adjacent to each wall boundary. Consecutively finer grids were

constructed by doubling the number of grid points and halving the grid spacing of

the previous grid. The relevant grid sizes for each grid are given in Table V.1. The

distances given in the table are given as inner variables, where the wall shear stress

has been estimated using the formula by Schlichting [1968, p. 598]. An example of

a typical turbine vane grid can be seen in Fig. V.1, and Fig. V.2 shows a close up a

single grid layer near the midspan of the vane. The input files used to construct the

grids can be found in Appendix E, starting on p. 271.

Table V.1: Turbine vane grid sizes and dimensions.

Grid IMAX
a KMAX

b Total Nodes y+c z+d

Coarse 111 50 271,400 1.80 2.30

Medium 221 100 2,134,200 0.90 1.15

Fine 443 200 17,315,600 0.45 0.58

a Number of points, per layer, defining the vane b Number of

layers in the spanwise direction c Distance to first node off

of the vane at the “mid-chord” (estimate) d Distance from

endwalls to first node at the vane leading edge (estimate)
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Figure V.1: Typical turbine vane computational domain.

V.3. Flow Conditions

The simulated flow conditions were derived from the conditions observed in the

experiments by Goldman & Seasholtz [1982]. The freestream Mach number was

used to set the total conditions at the domain inlet. For the desired freestream Mach

number, M∞ = 0.212, the inlet total pressure and temperature were determined to

be p0 = 104548.744 Pa and T0 = 290.891 K. The static conditions at the inlet were

assumed to be the standard values at sea level. The inlet turbulent length scale was

defined as 1/1000 of the midspan pitch, or `T |∞ = 3.8×10−5 m. The inlet turbulence

intensity was set as IT |∞ = 5%.

In the experiment, the ratio of the outlet static pressure at the hub to the inlet

total pressure was held fixed at pe,hub/p0,in = 0.65 [Goldman & Seasholtz, 1982].

However, for the simulations, the outlet pressure was set using the experimentally

determined value for the mass flow rate (ṁexp = 4.828 kg/s). Starting with the
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Figure V.2: Turbine vane midspan blade-to-blade grid detail (medium grid). Every

other point in the j-direction has been skipped for better figure clarity.

experimentally determined value, the outlet hub static pressure was adjusted until

the computed mass flow rate matched experiment. The coarse grid was used to

determine this adjusted back pressure due to its relatively small size. The outlet

hub static pressure determined on the coarse grid was then used as the boundary

condition for both the medium and fine grids. The resultant hub static pressure at

the outlet was found to be pe,hub = 65583.427 Pa. The resultant ratio of pressures
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was then pe,hub/p0,in = 0.627.

V.4. Solution Strategy

The solutions on the three grids were computed steady and second-order accu-

rate using the Dervieux limiter. For these cases, the RoeM flux scheme was used as

opposed to the basic Roe scheme. The residuals for the κ−ω equations were under-

relaxed on all three grids. An under-relaxation value of 1/2 was applied equally to

both equations on all three grids. For a detailed loot at the solver options utilized

in the case, the reader should consult the input file found in Appendix D (p. 256).

The solution was started from constant freestream conditions on both the coarse

and medium grids. The fields were initialized with constant pressure, density, and

velocity magnitude. The initial direction of the velocity was defined by the chord line

of the vane. Starting with this initial field, the solver simulated first-order accurate

inviscid for 500 iterations, followed by another 500 first-order laminar iterations.

Finally, the turbulence model was activated, with a uniform initial turbulence field

defined by the inlet conditions. Four thousand first-order turbulent iterations were

computed before switching to second-order accurate. The solver was run until the

reduction in the Navier–Stokes equation residuals approached or reached five orders

of magnitude.

The solution on the fine grid was started using the solution from a coarser grid

due to the large number of nodes contained in the fine grid. The medium grid

solution was interpolated onto the fine grid using the inverse distance weighting

method. Two thousand first-order turbulent iterations were run before switching
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the solver to second-order accurate. The solver was run until the residuals began

to level-off, which occurred after roughly a 4.5 order of magnitude decrease in the

residuals.

V.5. Convergence History

The residual histories for both the Navier–Stokes equations and the κ−ω equa-

tions, for each grid, can be seen in Fig. V.3. The Navier–Stokes equations were seen

to converge well on all three grids. On the other hand, the turbulence equations did

not exhibit as smooth of a convergent trend as the flow equations. As can be seen

in the Fig. V.3, the ω residuals exhibited quite a bit of “static” compared to all of

the other residuals and even experienced stalled convergence on the fine grid.

The turbulence model itself is most likely the primary culprit behind the poor

convergence of the κ − ω equations. Turbulence models based on the Boussinesq

hypothesis suffer when the there is a large amount of streamline curvature, boundary

layer separation and attachment, and in regions where secondary flows exist [Blazek,

2005, p. 237]. Upon further examination of the geometry used for the current case

(see Fig. V.2, p. 110) one could expect one or more of these flow features to be

present. At a minimum, large streamline curvature and secondary flows should be

expected.

V.6. Grid Convergence Study

Figure V.4 shows the variation in mass flow rate with grid size. With the

computed mass flow rate on the smallest mesh matching the experimental value, it
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Figure V.3: Turbine vane residual history plots for all three grids.
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was found that the computed mass flow rates were approximately 0.4% and 0.6%

higher than the experimental value on the medium and fine grids, respectively. It

can be seen in the figure that as the grid size increases, the change in computed mass

flow rate decreases. As a result, a grid independent solution should be found on a

grid with higher resolution than the finest used in this study.
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Figure V.4: Computed mass flow rate variation with grid size. Percent difference

given by %Diff = 1− ṁ/ṁexp, where ṁexp = 4.828 kg/s is the experimental value.

V.7. Comparison to Experiment

Isentropic Mach number distributions were computed at three spanwise stations.

Their locations corresponded to measurement locations found in the experiment such
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that a direct comparison with the experimental data could be made. The isentropic

Mach number was computed by solving

p01

p
=

(
1 +

γ − 1

2
M2

is

)γ/(γ−1)

for Mis. Here, p01 is the average inlet total pressure, and p is the static pressure on

the surface of the vane.

The computed isentropic Mach number distributions are compared against the

experiment in Fig. V.5. The computed profiles for all three grids show good qualita-

tive agreement with the experimental data. Very little difference was seen between

the three solutions along the suction side of the vane at any spanwise location. The

largest variations in the computed solution occurred on the pressure side of the vane

for x/c < 0.6. In this region, the medium and fine solutions were similar, and both

had slightly larger values of Mis than the coarse solution. Beyond x/c ≈ 0.6, the

curves for the three solutions collapsed onto one another.

Further comparison against the experiment was made by examining the flow

downstream of the vane. The computed solutions were extracted at a plane of con-

stant x and circumferentially averaged along each radial layer. The location of the

sampling corresponded to the measurement plane from the experiments and was 1/3

axial chords downstream of the vane. The circumferentially averaged solution was

used to generate spanwise profiles of flow angle, normalized static pressure, and total

pressure loss. The flow angle was defined as the angle between the axial and tan-

gential velocities, and the static pressure was normalized by the specified inlet total

pressure. The comparison between numerical and experimental results can be seen

in Fig. V.6.
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& Seasholtz, 1982]. Spanwise locations are measured from the hub.
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There was very little qualitative difference between the spanwise profiles con-

structed from each grid, as shown in Fig. V.6. The computed flow angles were found

to be in good agreement with the experimental data. The predicted total pressure

losses were found to show good qualitative agreement with the experimental data.

The total pressure loss profile generated on the coarse mesh showed the largest losses.

Predicted losses tended towards the experimental data as the grid size was increased.

Qualitatively, the predicted profiles of static pressure are in agreement with

the experimental data. The discrepancy in the magnitude of the static pressure

is the result of matching the experimental mass flow through the throttling of the

outlet static pressure. A lower outlet static pressure was required to match the

experimental mass flow rate, resulting in the lower values of p/p01 seen in Fig. V.6.

However, the predicted shape of the static pressure profile lends credence to the

proper implementation of the new outlet radial variation boundary condition.

One final comparison with experiment was done by comparing the total pressure

in the wake of the vane. Following Goldman & McLallin [1977], normalized total

pressure contours were extracted on a planar slice 1/3 axial chords downstream of

the vane’s trailing edge. The specified inlet total pressure was used to normalize the

predicted total pressure. The medium grid was selected for this comparison due to

the its relatively small size, with respect to the fine mesh, and the close similarity

between the medium and fine results.

Figure V.7 shows the comparison between the predicted total pressure and the

measured total pressure in the wake of the vane. The predicted wake profile showed

excellent qualitative agreement with the experimental data. In comparing the con-
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tour plots, it was seen that UNS3D under-predicts the total pressure in the bottom

10% of the span. The low total pressure region (p0/p01 ≤ 0.93) seen in the exper-

iment (shaded region of Fig. V.7b) was more compact, whereas the predicted low

pressure region is more circumferentially elongated. This results in the “bubble” of

over-predicted total pressure loss seen previously in Fig. V.6.
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V.8. Medium Grid Solution

Contours of the predicted Mach number at the midspan are shown in Fig. V.8.

The contours in the figure were taken from the medium grid. The predicted Mach

contours were found to be in excellent agreement with the flow predicted by Chima

& Yokota [1990] and by Chima [2003].

Figure V.8: Predicted turbine vane Mach contours at midspan (medium grid).

The estimated values of y+ found in Table V.1 were compared against the values

predicted by UNS3D for the medium grid. Contours of the predicted y+ number

along both sides of the vane and the hub casing are shown in Fig. V.9. It was found
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that the estimated values of y+ were greatly under-estimated.

The average y+ numbers predicted by UNS3D on the hub and tip casings, at

the leading edge, were 1.73 and 1.88, respectively. Whereas the estimated value was

1.15, upwards of a 60% difference between estimation and prediction. The story was

the same at the midspan of the blade. Here the average predicted value, ȳ+ = 1.7383,

was nearly 100% larger than the estimation.

(a) Suction Side (b) Pressure Side

Figure V.9: Predicted y+ numbers along the turbine vane and hub surfaces.

The cause for this under-estimation of y+ is undoubtedly due to the fact that

the flow is being accelerated by the turbine vane. As a result of the flow acceleration,

the edge velocity, in this case the inlet freestream, used to originally estimate the

y+ number was too low. A more appropriate edge velocity to use for the estimation

would be the average outlet velocity.

An iso-surface of normalized vorticity magnitude was used to identify the loca-

tion of the vortices near the end walls. Figure V.10 shows the vortex locations using
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a normalized vorticity magnitude of 1.5 · 10−2, and has been colored by percent span

to show depth. The figure shows the presence of a horseshoe vortex that formed near

the leading edge of the vane with both legs of the vortex being drawn into the pas-

sage. The pressure side leg of the horseshoe vortex ultimately becomes the passage

vortex [Langston, 2001]. The figure shows that the vortices extended between 5-10%

of the vane’s span away from the end walls into the freestream.

The flow was extracted on a grid plane of constant i at the leading edge of

the vane to further examine the vortical structures near both the end walls and the

leading edge. The velocity vectors tangent to the grid plane near the hub and the

tip end walls are shown in Fig. V.11. The figure shows a region of re-circulation

upstream of the vane near both end walls, indicating the presence of the horseshoe

vortices. Also shown in the figure details are the counter-rotating corner vortices

that form at the junctions between the vane’s leading edge and the end walls. The

predicted velocity field was found to be qualitatively similar to the one computed

by Arnone et al. [1993].

The liftoff of the passage vortex was visualized by examining the streamlines

immediately adjacent to the suction side of the vane. The streamlines were computed

as surface streamlines with the surface being defined as the j = 2 grid surface to

mimic an oil flow visualization technique. The resultant streamline are shown in

Fig. V.12a, and are compared against streamlines numerically predicted by Arnone

et al. [1993] in Fig. V.12b. The figures show that the result by UNS3D are similar

to those found in the literature. The distance along the span that the streamlines

were displaced near the tip was larger for UNS3D by approximately 10% of the span
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(a) Hub End Wall

(b) Tip End Wall

Figure V.10: End wall vortex locations given by a single iso-surface of normalized

vorticity magnitude. Contours are percent span from the nearest end wall.

in comparison to Arnone et al.. The reason for this difference is likely the size of the

inlet boundary layer. Arnone et al. [1993] allowed for the presence of a boundary

layer at the domain inlet, whereas UNS3D assumed uniform flow across the entirety

of the inlet.
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Figure V.11: Velocity vectors tangential to the leading edge grid plane showing the

end wall horseshoe vortices and the counter-rotating corner vortices.
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(a) UNS3D (b) Arnone et al. [1993]

Figure V.12: Streamlines near the suction side surface showing liftoff of the passage

vortex for: (a) current prediction and (b) prediction by Arnone et al. [1993].

V.9. Impact of Under-relaxing the κ− ω Equations

The purpose of this section is to examine what effect under-relaxing the turbu-

lence equations has on solution convergence, both for the κ − ω and Navier–Stokes

equations and on the solution itself. An under-relaxation factor of 1/2 was applied to

each turbulence equation in the results previously presented in this chapter. Results

for three additional under-relaxation factors are presented herein.

For completeness, the relaxation parameter is a modifier that acts upon the

time step. It can be used to either over-relax (increase ∆t) or under-relax (decrease

∆t) a given equation. The relaxation parameter, ϕR, can be applied individually

to each component of the discrete equation. The relaxed discrete form of the flow
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and turbulence equations, written for cell i at time step n, is written as ∆~q =

[ϕR1R1, . . . , ϕR7R7]T ∆t
Ω

. The sixth and seventh components of the preceding relaxed

discrete equation correspond, respectively, to the κ and ω equations.

Solutions were computed using the medium grid in the same manner as the

previously presented results. The only difference being the choice of relaxation pa-

rameter for the turbulence equations. The new under-relaxation parameters tested

were 1/100, 1/10, and 1. Each value was applied equally to both the κ and ω

equations. Because under-relaxation was applied equally and only to the turbulence

equations, the subscripts “6” and “7” are dropped herein in favor of ϕR.

It was found that using a greater amount of under-relaxation (ϕR → 0) resulted

in poorer convergence trends for the κ−ω equations. To illustrate this, the turbulence

equation residual histories for each value of ϕR have been plotted in Fig. V.13. The

κ equation residuals stalled for ϕR ≤ 1/10, and showed good convergent trends

for ϕR = 1/2 and ϕR = 1. Only the greatest amount of under-relaxation (ϕR =

1/100)) was able to suppress the oscillatory nature of the ω residuals. However, the

ω residual remained positive, and this under-relaxation parameter resulted in the

worst convergence for the κ equation.

It was also shown that the convergence of the flow equations was hindered by the

poor κ−ω convergence. This is best illustrated by Fig. V.14, where the residuals for

the flow equations are plotted for each value of ϕR tested. The residuals for both the

ϕR = 1/2 and ϕR = 1 cases roughly averaged a 5.5 order of magnitude drop. Neither

case showed signs of the residual leveling off, and the ϕR = 1/2 case exhibited the

best overall convergence. The residuals for the ϕR = 1/10 case appeared to level off
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Figure V.13: Turbine vane κ − ω residual history comparison for different under-

relaxation factors.

after dropping approximately 4.2 orders of magnitude, on average.

The largest amount of under-relaxation caused the flow equation residuals to

converge in a “bumpy” fashion, as shown in Fig. V.14. These flow residuals indicate

that the solver is having difficulty arriving at a steady solution, likely caused by

additional separation in the flow not found in the other cases. Even so, the residuals

for this case dropped by roughly 3.5 orders of magnitude, on average.

As before, spanwise profiles of flow angle and total pressure loss were extracted

1/3 axial chords downstream of the vane. The computed profiles are shown in

Fig. V.15, where the solid black lines correspond to the previously presented results.

It was found that the spanwise profiles for both the ϕR = 1/2 and ϕR = 1 cases

were nearly indistinguishable. The spanwise profiles for ϕR = 1/10 were very similar

overall to the lower under-relaxation cases. The primary difference was found in the
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Figure V.14: Turbine vane flow residual history comparison for different under-

relaxation factors.
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lower 20%, where the location of the highest total pressure loss was shifted slightly

upwards.

In the case of ϕR = 1/100, large differences were seen in the profiles for both

the flow angle and the total pressure loss in comparison to the other cases. The

differences were the greatest in the regions near the hub and tip walls. However,

the predicted flow characteristics towards the middle of the vane were quantitatively

similar to the other under-relaxation parameter results.

The most intriguing part of the spanwise profiles is in the first 20% of the span

for the ϕR = 1/100 case. Here it was seen that both flow parameters, most notably

for total pressure loss, had non-smooth spanwise profiles. This is the result of not

enough dissipation being added into the flow by the turbulence model, resulting from

a reduced time step size from the under-relaxation procedure. The small effective

time step becomes prohibitive to the κ−ω equations, preventing them from reaching

a useful or “converged” solution.

As with any turbomachinery case, secondary flows and separation are always

present, making these flows inherently unsteady. Using too much under-relaxation

removed the turbulence model’s ability to dampen out some of the unsteadiness so

that an average, steady solution could be found. The “bumpy” residuals in Fig. V.14

and the poor prediction in the near-endwall regions of the wake are evidence of this.

V.10. Inlet Turbulence Boundary Conditions

The purpose of this section is to show what effect the turbulence inlet boundary

conditions have on the solution. Both the turbulence intensity and length scale were
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Figure V.15: Downstream spanwise profiles of flow angle (α) and total pressure loss

(1 − p0/p01) for different under-relaxation factors. Experimental data by Goldman

& Seasholtz [1982].

varied in this study. The effect on the solution will be gauged by comparing the

residual histories of the equations and by looking at the solution downstream of the

vane.

The medium grid was again used for these numerical experiments. The flow

conditions were the same as those used in the grid convergence study in the main

part of this chapter. The original turbulence equation under-relaxation factor of 1/2

was used for these tests. The parameters being varied here are the inlet turbulent

intensity, IT |∞, and the inlet turbulence length scale, `T |∞. Table V.2 presents the

turbulent inlet condition combinations that were tested and gives the name assigned

130



to the specific case. These names found in the table will be used for case identification

herein.

Table V.2: Turbine vane turbulence inlet boundary condition test matrix.

aaaaaaaaa
`T |∞ [m]

IT |∞
1% 5% 10%

3.8× 10−5 GT01-a GT05-a† GT10-a

3.5× 10−4 GT01-b GT05-b GT10-b

† Baseline case previously presented in main part of

current chapter.

The residual histories for the κ−ω equations are shown in Fig. V.16. It was found

that there was very little difference in the convergence of the turbulence equations for

the different inlet conditions tested. The five new cases followed the same convergent

trends of the baseline case (Case GT05-a).

The comparison of the flow equation convergence histories yielded similar results

to that of the turbulence equation convergence. The different inlet conditions did not

negatively impact the convergence of the flow equations, as shown in Fig. V.17. It

was found that convergence was slightly improved near the end of the simulation for

the cases which had both the largest two intensities and length scales (Cases GT05-b

and GT10-b).

Spanwise profiles of flow angle and total pressure loss were generated from a

planar cut 1/3 axial chords downstream of the vane for each case given in Table V.2.

The predicted spanwise profiles were compared against experimental data [Goldman

& Seasholtz, 1982], as shown in Fig. V.18. The predicted profiles were found to be

131



-11

-9

-7

-5

 0  50  100  150  200  250

L
o
g
(
A
v
e
r
a
g
e
 
R
e
s
i
d
u
a
l
)

Thousands of Iterations

κ

GT01-a
GT01-b
GT05-a
GT05-b
GT10-a
GT10-b

-4

-2

 0

 2

 4

 6

 0  50  100  150  200  250

Thousands of Iterations

ω

Figure V.16: Turbine vane κ− ω residual histories for the different inlet turbulence

conditions.

very similar, both qualitatively and quantitatively, regardless of the turbulence inlet

conditions used.
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Figure V.17: Turbine vane flow residual history comparison for the different inlet

turbulence conditions.
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(1−p0/p01) for different inlet turbulence conditions. Experimental data by Goldman
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CHAPTER VI

TRANSONIC FAN INVISCID ANALYSIS

This chapter contains results from the inviscid analysis of a transonic fan rotor

that was developed and tested at NASA Lewis [Urasek et al., 1979]. A complete

description of the rotor is first presented. Following this, the computational grid and

the boundary condition definitions are described. The calculation of a compressor

map speed line, at design wheel speed, is the presented. Finally, a study on the

impact of the choice of higher-order limiter on a single operating point solution is

presented.

VI.1. Case Description: NASA Rotor 67

Rotor 67 is the first-stage rotor of a two-stage fan developed at NASA Lewis [Urasek

et al., 1979]. The rotor has a low aspect-ratio of 1.53, and is made up of twenty-two

multiple-circular-arc blades. The hub and tip profiles of the rotor blade are shown

in Fig. VI.1a, and a portion of the full annular blade row can be seen in Fig. VI.1b.

The axial chords for the hub and the tip blade profiles are 9.104 cm and 4.029 cm,

respectively. The flow paths for the inner and outer walls are shown in Fig. VI.1c.

The NASA Rotor 67 geometry was chosen as the test case due to its wide use

in literature and the availability of geometry. The experimental data of Pierzga &

Wood [1985] and Wood et al. [1990] was used for comparison herein. The geometrical

coordinates for both the rotor and flow path were taken from the SWIFT test case

package [Chima, 2003].
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Figure VI.1: Rotor 67 blade and flow path geometry.

The design point for the rotor was a wheel speed of 16,043 RPM, a pressure ratio

of 1.63, and a mass flow rate of 33.25 kg/s. For the design tip speed of 428.9 m/s,

the relative tip inlet Mach number was 1.38. This relative tip velocity corresponds

to a Reynolds number, based on axial chord, of Reca = 1.32 × 106. The reported

maximum mass flow rates, which occur when the flow becomes choked, from the

experiments were 34.92 kg/s [Pierzga & Wood, 1985] and 34.96 kg/s [Wood et al.,

1990]. The flow rates found in both the experimental and predicted compressor map
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plots are normalized by their respective maximum flow rates.

In order to compute the rotor performance, the solution was extracted on planes

of constant x just upstream and downstream of the rotor. The location of the

upstream and downstream measurement planes were xP = −2.473 cm and xp =

11.011 cm, respectively, and are the same as those used in the experiment by Wood

et al. [1990]. Figure VI.2 shows the locations of the measurement planes in relation to

the rotor. The same measurement plane locations are used for every case presented

herein.
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Figure VI.2: Numerical measurement plane locations.
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VI.2. Computational Grid Description

The computational grid for the inviscid Rotor 67 case was constructed using

the turbomachinery grid generator presented in Section III.1 (p. 25). The flow was

assumed to be periodic, allowing for a single blade passage to be modeled. The rotor

blade was modeled using 131 points distributed along the surface of the blade in the

i-direction on 36 spanwise layers. This resulted in a grid with 299,844 unique nodes.

Uniform spacing was applied at each wall boundary. The grid spacing along the

surface of the blade was set such that y1/c
(h)
a = 1.675 × 10−3, and the grid spacing

normal to the endwalls was set as z1/c
(h)
a = 9.378 × 10−3. Here, c

(h)
a is the hub

axial chord. The grid generator input file in Appendix E (p. 278) gives a complete

description for all of the grid dimensions used. The complete computational domain

can be seen in Fig. VI.3, and Fig. VI.4 shows the details of the tip blade-to-blade

grid layer.

VI.3. Boundary Conditions

Three boundary conditions types, excluding periodicity, were applied to grid:

wall, inlet, and outlet. All of the walls were defined as rotating walls. The inlet

boundary was set five axial hub chords upstream of the hub leading edge. The outlet

was placed five axial hub chords downstream of the hub trailing edge. The large

distances to the inlet and outlet boundaries were chosen to minimize their effect on

the near-rotor solution as they are not non-reflecting boundaries.

Standard conditions at sea level were assumed for pressure and temperature at

the domain inlet. The total conditions were computed isentropically for an inlet Mach
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Figure VI.3: Full inviscid Rotor 67 computational grid with a detail of the inlet grid.

All “j” grid lines have been omitted for clarity.

Figure VI.4: Tip blade-to-blade grid for the inviscid Rotor 67 case.
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number of 0.55 and are given in Table VI.1. The outlet conditions were specified by

setting the static pressure at the hub. The outlet static pressure was throttled to

simulate different operating points on a speedline. The range of outlet static pressure

used can be found in Table VI.1.

The flow conditions, including the wheel speed, from the literature are given at

standard conditions, i.e. p01 = 101325 Pa and T01 = 288.3 K. As such, the reported

wheel speed must be adjusted to give an equivalent wheel speed if the same flow

conditions from the literature are to be matched. The equivalent wheel speed is a

function of the nominal wheel speed and the total conditions, as shown previously

in (3.31). The computed equivalent wheel speed and the equivalent pressure and

temperature ratios (δ and θ, respectively) are shown in Table VI.1 for this case.

Table VI.1: Inviscid Rotor 67 boundary conditions.

Freestream Conditions Inlet Conditions Outlet Conditions

p∞ = 101325.0 Pa p01 = 124452.598 Pa 0.85 ≤ phub/p01 ≤ 1.115

T∞ = 288.3 K T01 = 305.742 K

M∞ = 0.55 –

Equivalent Conditions

δ = 1.2283 – θ = 1.0605 – NEQ = 16520.0 RPM
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VI.4. Initial Operating Point Analysis

The outlet condition for the initial operating point was set at phub/p01 = 1.0.

Uniform freestream pressure, temperature, and velocity magnitude were used to

initialize the flow field. The initial relative velocity vector was aligned to the local

rotor chord. To start the flow, the solver was run first-order with the back pressure

being applied uniformly across the outlet until the residuals dropped five orders of

magnitude. At this point, the solver was then switched to second-order accurate

and run until the residual variation per iteration was negligible. The outlet static

pressure was determined using simple radial equilibrium for the second-order accurate

simulations. The higher-order limiter used was the Dervieux limiter. The second-

order input file for this operating point can be found in Appendix D (p. 259).

Figure VI.5 shows the residual histories for both the first-order and second-order

simulations of the initial operating point. The second-order accurate simulation

flow residuals dropped on average 3.3 orders of magnitude before their converged

stalled. However, solution convergence could be, and was, declared once the change

in the integral quantities of the flow (e.g. flow rate, pressure ratio, etc.) became

negligible [Venkatakrishnan, 1995]. A total of 60,000 iterations was found to be

sufficient to achieve this convergence criterion for the initial operating point.

VI.5. Compressor Map Analyses

This section discusses the analyses of a single compressor map speed line at

design wheel speed. First, the procedure used to construct the speed line is presented.

Following this, the solution residual histories for the speed line operating points are
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Figure VI.5: Inviscid Rotor 67 initial operating point residual histories.

discussed. Then the overall performance of the inviscid rotor is presented. Finally,

a more detailed examination of three operating points is given.

VI.5.1. Compressor Map Generation Procedure

The initial operating point’s second-order solution was used as the initial simu-

lation field for the other operating points on the speed line. of the other points along

the speed line. The second-order solution for an operating point with a slightly

higher, or lower, outlet pressure was started directly from the initial solution. The

same convergence criterion used for the initial operating point simulation was ap-

plied to the remaining operating point simulations. The closest converged operating

point solution would be used as the starting point as the desired outlet pressures
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moved further away from the initial value. In all, fourteen operating points were

simulated to construct the inviscid speed line. The outlet boundary conditions used

to construct the speed line can be found in Table A.1, on p. 218.

VI.5.2. Residual History Comparison

The density residual histories for all fourteen operating points are shown in

Fig. VI.6. The residual history for the other variables were qualitatively similar

to the density residuals and will not be presented here. Stalled convergence was

explicitly seen for all but two operating points, phub/p01 = 1.095 and 1.100.

The convergence of the residuals worsened as the back pressure was increased.

As a result, the number of iterations required to meet the convergence criterion

was increased by a factor of 3 in the worst performing cases. The convergence trend

observed with the higher back pressure operating points was unsurprising. Increasing

the back pressure pushes the solution towards the stall point, where the flow naturally

becomes more unsteady and less periodic.

Operating points with a lower back pressure than the initial operating point had

convergence rates similar to the initial point. The number of iterations required to

achieve convergence was only slightly more than what was needed by the initial point.

Convergence was also seen to stall after a smaller decrease in residual magnitude than

for the initial point.

143



-9

-8

-7

-6

-5

-4

 0  20  40  60  80  100  120  140  160  180

L
o
g
(
A
v
g
.
 

ρ 
R
e
s
i
d
u
a
l
s
)

Thousands of Iterations

phub/p01
=0.850

0.900

0.950

1.000

1.030

1.060

1.075

1.090

1.095

1.100

1.102

1.104

1.108

1.115

Figure VI.6: Density residual histories for the inviscid Rotor 67 speed line.

VI.5.3. Rotor Operating Line

This section presents the performance of the inviscid rotor at design wheel speed

at all of the computed operating points. The evaluation of the equivalent mass flow

rate is discussed first. Lastly, the compressor map speed line is presented.

Equivalent mass flow rate values were computed at the measurement planes

(see Fig. VI.2) for each operating point. The ratio of outlet to inlet flow rate varied

less than 0.1% for all of the operating points. The maximum predicted equivalent

flow rate was ṁmax = 35.0478 kg/s. The predicted maximum equivalent flow rate
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agreed very well with the reported experimental maximum flow rates. On average,

the predicted value was 0.3% higher than the experimental rates.

The computed performance parameters for each operating point were combined

together to form a compressor map speed line. Figure VI.7 shows the predicted

inviscid speed line compared against the experimental data by Pierzga & Wood

[1985] and Wood et al. [1990]1. Following Wood et al. [1990], the mass flow rate in

Fig. VI.7 has been normalized by the maximum flow rate. In general, the inviscid

analysis resulted in an over-prediction of total pressure ratio and adiabatic efficiency

for all values of normalized flow rate. However, this was not unexpected as viscous

effects and losses were not accounted for by this analysis.

VI.5.4. Select Operating Points

This section provides further analysis for the three operating points labeled in

Fig. VI.7: “maximum flow”, “near peak efficiency”, and “near stall”. The “maxi-

mum flow”, “near peak efficiency”, and “near stall” operating points corresponded to

the normalized outlet boundary conditions phub/p01 = 0.85, 1.09, and 1.108, respec-

tively. The inviscid analyses of the three operating points were compared against

the experimental data compiled by Pierzga & Wood [1985] and Wood et al. [1990].

Table VI.2 summarizes the performance characteristics of each operating point and

gives comparison to the experimental data.

1The data plotted in Fig. VI.7 are also tabulated in Table A.1 on p. 218.
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Figure VI.7: Predicted inviscid rotor performance at design wheel speed compared

against experimental data [Pierzga & Wood, 1985; Wood et al., 1990].
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Table VI.2: Predicted and measured rotor performance at maximum flow, near peak efficiency, and near stall.

Maximum Flow Near Peak Efficiency Near Stall

ṁ/ṁmax π∗ ηtt ṁ/ṁmax π∗ ηtt ṁ/ṁmax π∗ ηtt

UNS3D† 1.000 1.465 0.8619 0.988 1.793 0.9543 0.926 1.789 0.9282

Pierzga & Wood [1985]‡ 1.000 1.550 0.8722 0.991 1.608 0.9111 0.931 1.730 0.9149

Wood et al. [1990]\ 1.000 1.509 0.8686 0.992 1.647 0.9316 0.932 1.731 0.9017

† ṁmax = 35.05 kg/s ‡ ṁmax = 34.92 kg/s \ ṁmax = 34.96 kg/s
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Table VI.2 confirms that the inviscid analysis, in general, results in an over-

prediction of total pressure ratio and adiabatic efficiency. The exception, in this case,

lies at the maximum flow operating point where the analysis resulted in an under-

prediction of both performance parameters. The under-prediction can be explained

by the experimenter’s choice of operating point to label as the “maximum flow”

operating point. Figure VI.7 shows experimental data points which lie below the

indicated maximum flow points. Had any of these operating points been chosen by

the experimenters, then the analysis would then have provided an over-prediction

for this operating point.

Contours of the relative Mach number were extracted at 70% of the span2 for

the three operating points. The predicted flow fields were compared against laser

anemometry data collected and processed by Pierzga & Wood. The experimental

data includes the locations of the bow and passage shocks that were indicated by

the measured data. The experimental shock locations are shown as the thick dashed

lines in the following figures.

Figure VI.8 compares the predicted and measured flow fields for the maximum

flow operating point. The analysis provided a good prediction of the upstream flow

field in comparison to the measured data. However, at this operating point, the

predicted flow between the rotor blades was qualitatively different than the experi-

mentally measured passage flow. The analysis showed that the flow was accelerated

through the entire length of the blade passage until meeting a passage shock, located

2Percent span is measured from the hub.
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at the trailing edge. While a passage shock was present in the real flow, its location

was much further upstream than what was predicted in the analysis.

The inviscid flow predicted by UNS3D at maximum flow was found to be qual-

itatively similar to the inviscid flows predicted by Pierzga & Wood [1985] and Sub-

ramanian & Bozzola [1987] for the same operating point. Both authors predicted

the same location of the passage shock as the current work. Subramanian & Boz-

zola [1987] went on to show that the experimentally measured flow field could be

predicted with the inclusion of viscous effects.

Figure VI.8: Predicted (left) and measured [Pierzga & Wood, 1985] (right) relative

Mach number contours at maximum flow, and at 70% span.

Figures VI.9 and VI.10 compare the predicted inviscid and experimentally mea-

sured flow fields at the near peak efficiency and near stall operating points, respec-

tively. Both figures indicate good qualitative agreement between the inviscid analysis

and experiment for these operating points. The analysis resulted in lower relative
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Mach numbers leaving the rotor passage. As a result, higher static pressure increases

across the rotor were achieved by the simulations.

Figure VI.9: Predicted (left) and measured [Pierzga & Wood, 1985] (right) relative

Mach number contours near peak efficiency, and at 70% span.

VI.6. Effect of Higher-Order Limiters

This section presents the effect of the choice of higher-order limiter on the in-

viscid solution. In the previous analyses, the Dervieux limiter was used exclusively.

For this study, both versions of the Venkatakrishnan and MLP limiters, as defined

in Section III.2.2, were used for a single operating point simulation. The initial op-

erating point (phub/p01 = 1) was chosen such that all of the simulations were started

from the original converged first-order solution.

The higher-order limiter simulations were run until the solutions were suffi-
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Figure VI.10: Predicted (left) and measured [Pierzga & Wood, 1985] (right) relative

Mach number contours near stall, and at 70% span.

ciently converged using the previous convergence criterion. Figure VI.11 shows the

convergence of the density residuals of the Venkatakrishnan and MLP limiters com-

pared against the previous Dervieux limiter result. It was found that the standard

Venkatakrishnan (Venka-ε1) and MLP (MLP-ε1) limiters resulted in the worst re-

duction in residual magnitude. Using the ε2 modification with both limiters allowed

for a slight improvement in convergence level. The modified Venkatakrishnan lim-

iter (Venka-ε2) performed the best with the modification, reaching a density residual

magnitude reduction of 3.4. For comparison, the Dervieux limiter also reached a

density residual magnitude reduction of 3.4.

The solutions for the higher-order limiter cases were extracted at the measure-

ment planes to compute equivalent mass flow rates, total pressure ratios, and adi-

abatic efficiencies for each case. The computed rotor performance parameters are
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Figure VI.11: Density residual histories for the initial inviscid Rotor 67 operating

point using different higher-order limiters.

collected in Table VI.3, where they are compared against the original Dervieux solu-

tion. The table shows that both versions of the Venkatakrishnan and MLP limiters

resulted in slightly higher values for all of the computed performance parameters.

The maximum absolute percent differences for mass flow rate, total pressure ratio,

and adiabatic efficiency were 0.24%, 0.42%, and 0.35%, respectively. The Dervieux

limiter, however, resulted in a solution with a ratio of outlet to inlet mass flow rate

slightly closer to unity than all of the others. From the table, one could state that

the solutions were nearly identical.

The extracted solutions at the downstream measurement plane for each case

were circumferentially averaged at each grid plane to construct spanwise profiles
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Table VI.3: Initial operating point rotor performance with respect to the limiter

used.

Limiter ṁeq [kg/s] ṁout/ṁin π∗ ηtt

Dervieux 35.023 0.9992 1.664 0.9174

Venka-ε1 35.106 0.9976 1.669 0.9205

Venka-ε2 35.105 0.9977 1.669 0.9206

MLP-ε1 35.061 0.9986 1.671 0.9197

MLP-ε2 35.062 0.9985 1.670 0.9194

of static pressure and absolute flow angles. Both downstream profiles are shown

in Fig. VI.12, where the static pressures have been normalized by the specified inlet

total pressure. The downstream pressure profiles were nearly quantitatively identical.

The downstream radial profiles of absolute flow angle were qualitatively similar. In

comparison to the Dervieux limiter solution, the Venkatakrishnan and MLP limiters

produced slightly more turning in the upper 60% of the blade’s span and slightly

lower turning in the bottom 40%. The largest observed difference of 1.8◦ took place

at 100% span, between the Dervieux and Venka-ε1 limiters.

Contours of the relative Mach number were extracted at 70% span for all five

limiter cases. The contour plots are collected in Fig. VI.13, where the Dervieux

limiter case was the one used in the previous compressor map speed line analysis.

The computed contours showed that all five limiters produced nearly identical flows.

The most notable difference was that in both versions of the Venkatakrishnan limiter,

153



 0

 20

 40

 60

 80

 100

0.9 1.0 1.1 1.2 1.3

P
e
r
c
e
n
t
 
S
p
a
n
 
[
%
]

Normalized Static
Pressure, p/p01

 [-]

Dervieux
Venka-ε1
Venka-ε2
MLP-ε1
MLP-ε2

 0

 20

 40

 60

 80

 100

35 40 45 50 55

Absolute Flow
Angle, α [deg]

Figure VI.12: Higher-order limiter solution comparison using downstream profiles of

normalized static pressure and absolute flow angle.

there was small bubble of faster flow present just off the blade’s surface at about 50%

of the axial chord.

A more subtle difference between Dervieux and the other limiters was found

in the Mach contours around the passage shock near the trailing edge. With the

Dervieux solution, the relative Mach contours were more tightly packed in the region

near the suction side, and the contour lines appear more “serrated” in the approx-

imate region where the shock front was located. On the other hand, the relative

Mach contours for both the Venkatakrishnan and MLP appear much cleaner with

less “serration” in the contours and a more uniform gradient across the shock region.

These solution differences in the vicinity of the passage shock are the result of the
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limiters themselves and explain the slight differences in downstream flow angle that

were observed.
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(a) Venka-ε1 (b) Venka-ε2

(c) MLP-ε1 (d) MLP-ε2

(e) Dervieux

Figure VI.13: Predicted relative Mach number contours at 70% span for different

higher-order limiters.
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CHAPTER VII

TRANSONIC FAN TURBULENT ANALYSES

The chapter presents the results of the turbulent analyses for two transonic fan

rotor configurations. In the first configuration, the rotor is allowed to “rub” against

the outer casing, as was done for the analysis in the previous chapter. The flow

around the tip of the rotor was included in the second configuration via the use of

tip clearance grids. The NASA Rotor 67 geometry was once again used for these

analyses. The details of the rotor geometry are not repeated in this chapter, and as

such, the reader is referred back to Section VI.1 (p. 135) for a detailed description.

The first section of this chapter describes the methodology used to compute

the operating lines for both rotor configurations. The rubbing rotor configuration,

in which two wall boundary definitions are explored, is then presented. The last

section presents the realistic rotor configuration which includes the tip leakage flow.

Comparisons with experimental data are given for both geometry configurations.

VII.1. Operating Line Generation Procedure

This section describes the procedure used to generate the rotor’s operating line.

The outlined solution strategy was used for each rotor configuration found in this

chapter. Any deviations from the given procedure for a specific case will be high-

lighted in the appropriate sections.

The simulation of the operating line began with the calculation of a single op-

erating point, referred to herein as the “initial operating point”. The flow solution
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was initialized for this operating point using a previously computed inviscid solution.

Nearest node interpolation was used to transfer the inviscid solution onto the turbu-

lent mesh. The turbulence field was uniformly initialized from the inlet turbulence

boundary conditions.

The same solver options, unless otherwise noted, were used throughout the

simulations found in this chapter. Gradients were evaluated via least-squares with

QR decomposition (LSQR), and the Dervieux limiter was used with the second-order

simulations. Outlet conditions were set using the method described in Section III.3.3.

Both turbulence equations were under-relaxed by a factor of 0.75 and no relaxation

was applied to the flow equations.

At the initial operating point, the flow solver was first simulated with first-order

accuracy for 100,000 iterations. The first-order simulation allowed for the formation

of boundary layers and to give both the flow and turbulence solutions the opportunity

to settle. The flow solver was then simulated using second-order accuracy until the

convergence criteria had been satisfied.

The convergence criteria for the calculation of all operating points was based

on the integral properties of the flow: mass flow rate, total pressure ratio, and

adiabatic efficiency. Convergence was declared once the absolute change in each

integral quantity had become sufficiently small. A value of 0.01% was used as the

convergence threshold value.

The initial operating point was used as the basis to compute the remaining

operating points found on the operating line. Each new operating point was initial-

ized from the closest converged operating point solution. Each operating point was
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simulated with second-order accuracy in the same manner as the initial operating

point.

The outlet static pressure was varied to achieve the different operating points.

The pressure was lowered from the value at the initial operating until the mass

flow rate no longer varied, indicating choked flow. On the other side of the initial

operating point, the pressure was raised until the rotor solution exhibited “stall”.

VII.2. Rubbing Configuration

This section presents the solutions for two rubbing Rotor 67 cases. The two

cases differed in the implementation of the viscous wall boundary in the domain.

The computational grid that was used for both cases, and the boundary conditions

that were applied are discussed first. Secondly, the compressor map speed lines at

design wheel speed for both cases are presented. Finally, a more detailed analysis of

the solution at select operating points is given.

VII.2.1. Computational Grid

This section covers the generation of the computational grid used for both rub-

bing cases. The in-house grid generator described in Section III.1 was used to build

the grid, and the input file used can be found in Appendix E, starting on p. 280.

The general configuration and size of the grid is first presented. Finally the domain

decomposition used to prepare the grid for parallel simulations is discussed.

A single blade passage was constructed using the O-4H configuration. Additional

H-grids were added to move the inlet and outlet boundary planes five axial hub chords
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away from the rotor. For a given grid layer, 167 grid points were used to define the

local airfoil section, with 173 being used to define the passage between two rotors.

The tip layer blade-to-blade grid can be seen Fig. VII.1a. Grid points were clustered

at both the leading and trailing edges as shown in Fig. VII.1b–c. One hundred thirty

five grid layers were used to define the span of the rotor. In all, the grid contained

2,474,550 unique nodes.

The distance to the first node away from the rotor surface was varied in both the

streamwise and spanwise directions. The variation in cell height was achieved using

the method previously described in Section III.1.6. The upstream velocity profile

required by the method was taken from the performance data compiled by Urasek

et al. [1979].1 The minimum first cell height was computed to be 4.8 × 10−5 cm at

the leading edge of the tip profile. The difference in cell heights for a given grid layer

are evident in Fig. VII.1b–c, and the overall variation in first cell height for this grid

is shown in Fig. VII.2.

Constant viscous spacing was applied to both the hub and tip endwalls. The

viscous spacing along the hub endwall was specified as z
(h)
1 = 1.83 × 10−4 cm. The

tip endwall spacing was set as half of the hub spacing, z
(t)
1 = 9.144× 10−5 cm.

The computational grid was split using domain decomposition in for parallel

computations. The grid was split into 40 blocks by first equally subdividing the

domain five times along the spanwise grid layers. Then each of the five spanwise

blocks were split into two blocks according a pitch-normalized angle. Finally the

grid blocks were split equally four times in the axial direction. Figure VII.3 shows

1The relative velocity magnitudes were taken from Reading 1393, found in Table IX(c).
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(a) Blade-to-Blade Grid

(b) Leading Edge Detail

(c) Trailing Edge Detail

Figure VII.1: Turbulent rubbing Rotor 67 tip layer blade-to-blade grid. Every other

jth grid point has been removed for clarity. Leading and trailing edge details are

shown at the same magnification level.

the resultant domain decomposition that was used. On average, the decomposed

grid blocks contained approximately 75,000 nodes, or roughly 3% of the original grid

nodes.

161



Figure VII.2: First cell height variation across the rotor surface.

Figure VII.3: Domain decomposition breakdown for the turbulent rubbing Rotor 67

grid. Each color represents a separate processor block.
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VII.2.2. Boundary Conditions

This section presents the boundary conditions that were applied to the two

turbulent rubbing rotor cases. The three boundary conditions that were applied to

the grid were: inlet, outlet, and rotating viscous wall (applied to all walls). As was

previously stated, the inlet and outlet boundaries were moved five axial hub chords

away from the rotor to reduce the impact of any reflected waves on the solution.

The option exists in UNS3D to allow only a certain portion of the rotating walls

to actually rotate with the given wheel speed. A wall boundary node is allowed to

rotate if its axial location, xb, satisfies xrle ≤ xb ≤ xrte, where xrle and xrte are

defined in Fig. VII.4. The rotational speed of the walls is set to zero when the axial

location of the wall boundary node falls outside of the given range, as illustrated by

the dark grey regions in Fig. VII.4.

The two turbulent rubbing cases are differentiated by how the wall boundary

conditions were utilized. In the first case, known as R67TR-a, xrle = −1030 cm

and xrte = 1030 cm; that is to say, that all of the rotating walls were allowed to

rotate. For the second case, called R67TR-b, xrle = −1.374 cm and xrte = 9.365 cm.

The values chosen correspond to the location of the rotating hub in the experiments

by Wood et al. [1990]. The resultant surfaces that are allowed to rotate are shown

in Fig. VII.4 as the light grey surfaces.

A third option for the wall boundary conditions would be to specify that the

tip endwall be completely fixed, and apply rotating wall boundary conditions to the

blade and hub endwall. Aside from still allowing the rotor to rub against the tip

endwall, this configuration is the most representative of the actual machine. However,
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Figure VII.4: Defining the allowable region (light grey surfaces) for which rotat-

ing wall boundaries can rotate. The figure shows the rotation boundaries for Case

R67TR-b.

using this wall boundary configuration in UNS3D resulted in solution divergence very

early in all attempted simulations with this configuration. The location at which the

solution diverged was always found to be at the intersection of the blade tip and the

endwall. No suitable explanation was found for the cause of the divergence. The

wall boundary configurations of the cases described within this section were derived

as a direct result of the divergence issues encountered.

The freestream and inlet flow conditions used for both cases were identical to

those used previously in the inviscid simulations. The same was true of the equivalent

wheel speed. These conditions have been repeated in Table VII.1 for completeness.
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The total range of normalized static pressure used in the simulation of both cases is

also given in Table VII.1. The maximum normalized static pressure that was used

in either of the two cases was 1.04, which approximately 8% less than the maximum

outlet static pressure achieved with the inviscid simulations.

The turbulence conditions within the computational domain were set by the

turbulence intensity and length scale at the inlet. Using the results of the turbine

vane study as a guide, the turbulence intensity was set to 3%. The turbulent length

scale was set based on the distance between the blade tip and the outer endwall,

`T |∞ = 1.04 mm. Using the prescribed inlet turbulent quantities, the ratio of vis-

cosities at the inlet was computed to be (µT/µ)∞ = 44.7.

Table VII.1: Turbulent rubbing Rotor 67 boundary conditions.

Freestream Conditions Inlet Conditions Outlet Conditions

p∞ = 101325.0 Pa p01 = 124452.598 Pa 0.864 ≤ p
(h)
2 /p01 ≤ 1.04

T∞ = 288.3 K T01 = 305.742 K

M∞ = 0.55 –

Inlet Turbulence Conditions

`T |∞ = 1.04 mm IT |∞ = 3%

Equivalent Conditions

δ = 1.2283 – θ = 1.0605 – Neq = 16520.0 RPM
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VII.2.3. Compressor Map Speed Line Analyses

This section presents the results of a compressor map speed line analysis for

both rubbing configurations. A nonphysical boundary solution that was observed

for case R67TR-b is presented first. The calculation of the operating points and a

definition for “stall” are then discussed. Finally the performance of the rotor across

the range of operating points is presented for both cases.

Speed lines for both viscous wall boundary configurations were computed using

the procedures presented in Section VII.1 with two exceptions. The flow at the initial

operating point for case R67TR-b was initialized using a uniform flow field with the

relative velocity aligned to the local chord. Also, the outlet static pressure was

assumed to be constant across the span during the first-order simulation of R67TR-

b. Sample input files for the flow solver can be found for both rotor configurations

in Appendix D, starting on p. 263.

VII.2.3.1. Nonphysical Boundary Solution

A peculiarity observed for Case R67TR-b was that at a single point in the

flow the solution became nonphysical. The nonphysical point was located 0.94c
(t)
a

ahead of the leading edge at the periodic boundaries of the tip grid layer, as shown

in Fig. VII.5a. The axial location of this point also corresponded to the point to

x = xrle. What made this nonphysical point peculiar was that its affect on the

solution was limited to the nodes immediately adjacent, and did serve as a detriment

to the overall solution. Figure VII.5b shows that at most five nodes on the tip grid

layer were affected by the bad point. The nonphysical solution was seen to permeate
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up to 15 points in the spanwise direction away from the wall, but again, the affect of

the nonphysical solution on the surrounding nodes was constrained as observed on

the tip grid layer.

The viscous rotating wall boundary condition was called into question due to

the location of the point being at x = xrle. However, a thorough inspection of

the boundary condition yielded no answers as the implementation of the boundary

condition was verified. Ultimately, the existence of the nonphysical point was deemed

to be “OK” because it was not affecting the solution anywhere else in the domain,

and because a realistic overall solution was obtained in spite of it. The nonphysical

point would be found in all other operating point solutions as well, but again, no

affect of the point on the rest of the predicted flow was evident in any case.

VII.2.3.2. Operating Point Simulations

This section describes the calculation of the operating points that were used to

define the speed line for each configuration. Ten operating points for case R67TR-

a and eight for case R67TR-b were simulated. The boundary conditions for each

operating point are given in Table A.2 and Table A.3 for cases R67TR-a and R67TR-

b, respectively.

The density and turbulent kinetic energy residual histories at four operating

points for each case are shown in Fig. VII.6. The four cases, in order of increasing p
(h)
2 ,

correspond to: maximum flow, an intermediate point, the final point before stall, and

the first stall point. The figure shows that only 1 to 2 orders of magnitude decrease

in the density residuals was achieved in either case for the non-stall operating points.
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(a) Nonphysical Point Locations (b) Grid Details

Figure VII.5: Static temperature contours showing the nonphysical solution point

for Case R67TR-b on the tip grid layer. Thick vertical lines in (b) are at x = xrle.

The remaining four flow residuals exhibited trends similar to the density residual.

The decrease in magnitude of the solution residuals, for any variable, decreased

as the back pressure was increased until stall occurred. Once stall occurred the

residuals would show a divergent trend and increase multiple orders of magnitude

before decreasing once more, as shown in Fig. VII.6.
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(b) Case R67TR-b

Figure VII.6: Density and turbulent kinetic energy second order residual histories

for both turbulent rubbing Rotor 67 cases.

VII.2.3.3. Defining Stalled Flow

The stalled rotor flow was characterized by large regions of separated and re-

versed flow in the upper 15% span of the rotor. The region of reversed flow that

occurred during stall for Case R67TR-a is illustrated in Fig. VII.7 using iso-surfaces

of negative axial velocity. Downstream of this reversed flow region, the axial velocity

was an order of magnitude smaller than the relative velocity in the y-direction. As
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Figure VII.7: Iso-surfaces of axial velocity showing large regions of reversed flow

indicating stall for Case R67TR-a.

a result, the flow direction tended to be more tangential than axial. Mass flow rate

served as an excellent indicator of stall due to these poor flow conditions. During

stall, the mass flow rate would drop quickly to be on the order of half of the maxi-

mum flow rate, ṁstall/ṁmax ≈ 0.5. Three of the ten operating points for R67TR-a

resulted in stall, while one for R67TR-b stalled.

VII.2.3.4. Rotor Operating Line

This section presents the overall performance characteristics predicted by the

turbulent simulation of the two rubbing configurations. The maximum mass flow

rates for each grid configuration are first discussed. The compressor map speed line

for both cases is then presented. Finally, the spanwise variation of the flow at “near

peak efficiency” is discussed.
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The predicted maximum equivalent mass flow rates computed at the upstream

measurement plane are summarized in Table VII.2. For the two cases, the predicted

mass flow rates were lower than the measured values. For case R67TR-a, in which all

the walls were rotated, the maximum predicted mass flow rate was 3.2% lower than

experiment. The predicted maximum flow rate for case R67TR-b, where only a small

portion of the walls rotated, was closer to the experimental values with a difference

of 2.1%. The differences in both cases were larger than the largest difference found

in the literature, which was 1.32% [Arnone, 1994].

Table VII.2: Maximum mass flow rates for both turbulent rubbing Rotor 67 cases

with comparison to experiment [Pierzga & Wood, 1985; Wood et al., 1990].

R67TR-a R67TR-b Pierzga & Wood Wood et al.

33.834 kg/s 34.215 kg/s 34.92 kg/s 34.96 kg/s

R67TR-a had a lower maximum flow rate compared to R67TR-b due to the

inclusion of the rotating endwalls. With the wall boundary conditions written using

absolute velocities, the absolute velocity of the wall is equal to local wall speed. As

a result, flow is entrained in the direction of the rotation and causes a deficit in the

axial velocity near the endwalls. Slower axial flow near the end walls means less mass

flow rate in these regions, which reduces the overall mass flow rate of the machine.

This effect is most notable at the tip endwall where the rotational speed results in

an absolute Mach number of 1.4 upstream of the rotor.

The flow was extracted and averaged at the measurement planes for each op-
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erating point and case to construct the speed lines shown in Fig. VII.8. The mass

flow rates for each data set have been normalized by the maximum value to provide

better qualitative comparison between data sets. The operating points that experi-

enced stall have been excluded from the plots as cases the fell well outside the range

of the experimental data.

It was found that for the points simulated, the operating range of the rotor

was approximately half of the range measured in the experiments. The simulation

of additional points could increase the operating envelope of the rotor. This was

not done as finding the “near peak efficiency” point was the desired goal. However,

the difference in p
(h)
2 between the stalled and not stalled points was relatively small.

This would indicate that only one or two additional operating points could be feasibly

added to increase the predicted operating range.

The predicted adiabatic efficiency, ηtt, of the rotor showed good agreement for

the operating points simulated as shown in Fig. VII.8. The “near peak efficiency”

point was defined as the point at which maximum efficiency occurred. The adiabatic

efficiencies at “near peak efficiency” are summarized in Table VII.3 for both cases.

The predicted efficiencies for both cases were within 1.8% of the measured values.

The predicted “near peak efficiency” points occurred at normalized mass flow rates

that were 0.8% lower than the measured point.

The predicted total pressure ratios, π∗, were found to qualitatively match the

trend of the experimental data, as shown in Fig. VII.8. Values predicted at “near

peak efficiency” for each rubbing case are summarized in Table VII.3. In general,

rubbing case R67TR-b quantitatively matched the experimental data much closely
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Figure VII.8: Predicted Rotor 67 performance for two turbulent rubbing configura-

tions compared against experiment [Pierzga & Wood, 1985; Wood et al., 1990].
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than R67TR-a. At “near peak efficiency” R67TR-b was 0.43% and 2.8% less than

the values reported by Pierzga & Wood [1985] and Wood et al. [1990], respectively.

The differences for case R67TR-a were much higher with the predicted pressure

ranging between 7-10% lower than the measured values. The differences between the

predicted and measured pressure ratio increased as the back pressure increased for

case R67TR-a.

Table VII.3: Comparison between predicted and measured rotor performance at

“near peak efficiency” for two turbulent rubbing Rotor 67 cases.

Data Set ṁ/ṁmax π∗ ηtt

R67TR-a 0.985 1.492 0.9144

R67TR-b 0.984 1.601 0.9160

Pierzga & Wood [1985] 0.991 1.608 0.9111

Wood et al. [1990] 0.992 1.647 0.9316

Predicted values of static pressure on the hub endwall are shown plotted against

measured values at the downstream measurement location in Fig. VII.9. The trends

shown in Fig. VII.9 are qualitatively similar to those seen in the plot of total pressure

ratio in Fig. VII.8. Due to the rotation of the endwalls, much lower static pressures

were predicted with case R67TR-a than in the experiment. Case R67TR-b was a

better quantitative match with the experimental data. For case R67TR-b, at “near

peak efficiency”, the predicted normalized hub pressure was p(h)/p01 = 1.007, which

was within 0.5% of the experimental data. The predicted pressure at the hub for
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case R67TR-a was 2% lower than the measured values.
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Figure VII.9: Comparison of predicted and measured [Pierzga & Wood, 1985; Wood

et al., 1990] downstream hub static pressures for each operating point. Predicted

pressures are at the downstream measurement location.

At “near peak efficiency”, the predicted spanwise profiles of static pressure at

the upstream and downstream measurement locations qualitatively agreed with the

experimental data, as shown in Fig. VII.10. Both grid configurations resulted in

nearly identical upstream pressure profiles. Downstream of the rotor, the static

pressure was under-predicted by case R67TR-a, in which all of the walls rotated

with speed Neq. On the other hand, case r67TR-b was a better quantitative match

to the measured data. The downstream profile for R67TR-a was seen to “bend”

slightly away from the measured data near the tip. This is due to the influence
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of the wall’s rotation on the radial equilibrium of pressure on the outlet, as it is a

function of the tangential velocity. For R67TR-a, the tangential velocity was higher

than what would be expected due to entrainment by the endwalls.

Figure VII.10 shows that for the majority of the span, the predicted absolute

flow angles were an excellent qualitative match to the measured data. The major

deviation from measurement occurred with case R67TR-a near the endwalls. This

was not unexpected due to the expected influence of the rotating endwalls on the

near wall flow. The plot of absolute flow angle in Fig. VII.10 illustrates very well the

reason for the lower R67TR-a mass flow rates. The high amount of turning over a

much larger region of the span shown in the figure near the end walls for R67TR-a

illustrates the axial velocity deficit near the endwalls that was previously discussed.

VII.2.4. Relative Mach Number Contours

In this section, contours of relative Mach number for both rubbing cases are

compared against the measured flow at the “max flow” and “near peak efficiency”

operating points. Only a single spanwise location, 70% span, is presented for brevity.

Flow contours at additional spanwise locations for each operating point can be found

in Appendix A, starting on p. 221.

For the “max flow” operating point, the predicted relative Mach number con-

tours for both cases, shown in Fig. VII.11, qualitatively agreed with the measured

flow contours. The relative Mach number just upstream of the rotor leading edge

and at the inlet of the rotor passage was slightly under-predicted in both cases by

approximately Mrel = 0.05. The passage shock was located in a more realistic posi-
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Figure VII.10: Comparing spanwise profiles of predicted static pressure and abso-

lute flow angle against measurement [Wood et al., 1990] for both rubbing Rotor 67

configurations at “near peak efficiency”.

tion than what was predicted by the inviscid simulation of the “max flow” operating

point. However, the passage shock still appears to be at bit further downstream than

what was observed in the experiment.

Very few noticeable differences were found between the two predicted flow fields

at “max flow”. The main difference between the two solutions occurred within the

passage between rotors, upstream of the shock. The flow for R67TR-b maintained

more of its speed through the passage near the suction side boundary layer, indicated

by a larger region encompassed by the Mrel = 1.25 contour level.

At the “near peak efficiency” point, the predicted flow contours were the best

qualitative match to experiment in the region upstream of the rotor leading edge.
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(a) R67TR-a (b) R67TR-b

(c) Pierzga & Wood [1985]

Figure VII.11: Predicted and measured [Pierzga & Wood, 1985] relative Mach num-

ber contours (∆Mrel = 0.05) at 70% span for the “max flow” operating condition.
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Figure VII.12 compares the predicted flow fields for each rubbing case with the

measured flow. As with the “max flow” point, the flow appeared slightly slower

upstream of the rotor.

The biggest difference between both predicted flows and the experiment occurred

at the inlet of the blade passage. Both predicted flow fields had decelerated flow at

the passage inlet. Whereas in the experiment, the passage shock decelerated the

flow at approximately 25% of the chordwise distance into the passage, as shown by

the short, bold, dashed line in Fig. VII.12c. In both simulations, the sonic line was

also much closer to the passage inlet than what was observed in experiment. By

visual comparison, the predicted “near peak efficiency” flow contours more closely

resembled the measured “near stall” contours, shown in Fig. VII.12d.

By comparing the two predicted flow fields, it was observed that the flow was

decelerated more as it passed through the blade passage in case R67TR-b. Fig-

ures VII.12a–b reaffirmed the higher static pressure rise that was shown in Fig. VII.10.

The sonic line in R67TR-b was also found further downstream in the passage than

in R67TR-a, in which the sonic line sat roughly at the passage inlet. The upstream

flow field for both cases were nearly identical.
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(a) R67TR-a (b) R67TR-b

(c) Pierzga & Wood [1985]

“Near Peak Efficiency”

(d) Pierzga & Wood [1985]

“Near Stall”

Figure VII.12: Predicted and measured [Pierzga & Wood, 1985] relative Mach num-

ber contours (∆Mrel = 0.05) at 70% span for the “near peak efficiency” operating

condition.
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VII.3. Tip Leakage Flow Configuration

This section presents the analyses of the realistic Rotor 67 configuration in which

a clearance gap exists between the rotor tip and endwall. First, the computational

grid and boundary conditions are presented. Following this, the primary speed line

analyses of the rotor are discussed, and the flow specific operating points are exam-

ined. The effect of the choice of higher order limiter is then finally explored.

VII.3.1. Computational Grid

This section details the computational grid used for the numerical studies found

herein. The size and dimensions of the blade-to-blade and tip clearance grids are

presented first. The domain decomposition done in preparation of parallel simula-

tions is then presented. The grid generator input file for the current grid can be

found in Appendix E, starting on p. 283.

The computational grid used in Section VII.2 served as the basis for the current

grid. The blade-to-blade grid blocks for the current grid shared all of the grid di-

mensions of its predecessor except the number of spanwise grid layers. The number

of spanwise layers was increased from 135 to 175 layers to account for the inclu-

sion of the tip clearance grids. Refer back to Section VII.2.1 for any details on the

blade-to-blade grids.

The tip clearance region was discretized using an O-H grid configuration, as

shown in Fig. VII.13. The clearance gap was defined as 1 mm [Wood et al., 1990].

Forty spanwise grid layers were used to define the tip clearance region, leaving 135

spanwise layers to define the rotor. The viscous spacing in the direction normal to
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the rotor tip was z
(r)
1 = 1.22×10−4 cm. The viscous spacing at the endwall remained

unchanged from the old mesh with a value of z
(t)
1 = 9.144× 10−5 cm.

The clearance O-grid had an IMAX of 167 and was determined by the dimension

of the blade passage O-grid. The JMAX dimension of the clearance O-grid was 25,

and the JMAX dimension of the clearance H-grid was 9. The IMAX dimension for the

clearance H-grid was computed as a function of the previous three dimensions. The

resultant set of clearance grids had 191,000 unique nodes. The size of the complete

turbulent Rotor 67 grid was 3,387,830 unique nodes.

The computational grid was split into forty grid blocks for parallel computations

in the same manner detailed at the end of Section VII.2.1. The grid was split first

five times along the spanwise direction. Then each of the five resultant grid blocks

were split twice in the periodic direction. Finally, each grid blocks were split four

times in the axial direction. On average, each of the final grid blocks contained

approximately 101,000 nodes, or roughly 3% of the original grid nodes.

VII.3.2. Boundary Conditions

This section presents the application of the boundary conditions to the compu-

tational grid and the specific values used with the flow solver. Rotating viscous wall

boundaries were applied to the hub endwall and rotor surfaces. The tip endwall was

defined as a fixed viscous wall boundary. Inlet and outlet boundaries were applied

in the same manner as with the rubbing cases.

The freestream, inlet, and outlet boundary conditions are summarized in Ta-

ble VII.4. The same freestream and inlet total conditions that were used for the
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(a) General Configuration

(b) Spanwise Layer Distribution (c) Leading Edge Detail

Figure VII.13: Rotor 67 tip clearance grids.

preceding Rotor 67 cases were once again applied to the current case. The range of

outlet pressures used in the current study differed slightly from previous studies with

a lower minimum p
(h)
2 being used.
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Table VII.4: Turbulent Rotor 67 boundary conditions.

Freestream Conditions Inlet Conditions Outlet Conditions

p∞ = 101325.0 Pa p01 = 124452.598 Pa 0.849 ≤ p
(h)
2 /p01 ≤ 1.02

T∞ = 288.3 K T01 = 305.742 K

M∞ = 0.55 –

Inlet Turbulence Conditions

`T |∞ = 1.04 mm IT |∞ = 3%

Equivalent Conditions

δ = 1.2283 – θ = 1.0605 – Neq = 16520.0 RPM

VII.3.3. Compressor Map Speed Line Analyses

This section presents the analyses of the compressor map speed line at the

design wheel speed for the realistic Rotor 67 configuration. First, the effect of the

gradient method on the solution is presented. An addendum to the operating line

calculation procedure previously outlined in Section VII.1 is given. Finally, the

predicted performance of the rotor is given and discussed.

VII.3.3.1. Effect of Gradient Method

This section presents the effect of the choice of gradient evaluation method on the

solution. The initial operating point was used in this analysis because each separate

simulation could be run identically with the exception of the gradient method. With

exception to the gradient method, the initial operating point was computed using
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the procedure outline in Section VII.1.

The initial operating point simulation using the LSQR gradient method exhib-

ited poor convergence trends, as illustrated in Fig. VII.14. As similar poor con-

vergence trends had been observed when using either the Venkatakrishnan or MLP

limiter options, the initial operating point was simulated using the other gradient

calculation methods available: least-squares (LS) and Green-Gauss (GG). These ad-

ditional simulations were computed exactly as the LSQR simulation had been, with

the only difference in the input being the choice of gradient method.
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Figure VII.14: Turbulent Rotor 67 initial operating point residual histories for the

flow (left) and turbulence (right) equations.

Figure VII.15 compares the density and turbulence residuals from the three

separate gradient method simulations. The density residual was only shown because
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the other flow residuals shared the same trend as the density residual. The solution

residuals showed convergent trends when the gradient method was anything other

than LSQR. In addition to the convergent trends, the residual behaviour was more

smooth and organized than what was seen with LSQR. This fact was especially true

of the ω residual convergence. The little spikes shown with the least-squares and

Green-Gauss residual curves were the result of restarting the simulation, and the

residuals were seen to quickly drop to their pre-restart values.
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Figure VII.15: Turbulent Rotor 67 initial operating point residual histories for dif-

ferent gradient evaluation methods.

The solution was also found to change appreciably when the gradient evaluation

method was changed. Table VII.5 presents the rotor performance from the flow at the

measurement planes for each gradient evaluation method. The predicted performance
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parameters from the least-squares and Green-Gauss solutions were nearly identical;

on the order of a percent of a percent difference in values. By comparison, the

LSQR solution under-predicted the mass flow rate, total pressure ratio, and adiabatic

efficiency by 1.5%, 1.6%, and 0.1%, respectively.

Table VII.5: Turbulent Rotor 67 initial operating point performance variation with

gradient calculation method.

Gradient Method
Mass Flow Rate,

ṁeq [kg/s]

Total Pressure

Ratio, π∗ [-]

Adiabatic

Efficiency, ηtt [%]

Least-Squares w/QR 33.813 1.517 88.896

Least-Squares 34.320 1.542 88.994

Green-Gauss 34.323 1.542 89.019

From the differences observed with the convergence and the solution, it was ex-

pected that there was a coding bug hidden within the LSQR subroutines. Inspection

of the relevant subroutines turned up no implementation issues. What was found,

however, was that the LSQR formulation that was implemented by Gargoloff [2007]

was an un-weighted LSQR formulation [Anderson & Bonhaus, 1994; Haselbacher &

Blazek, 2000].

It is known that the un-weighted LSQR method results in the inaccurate ap-

proximation of the gradients in regions where the flow varies non-linearly [Anderson

& Bonhaus, 1994; Mavriplis, 2003]. Mavriplis [2003] showed that the un-weighted

LSQR largely under-predicted the gradients for non-linearly varying functions in re-
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gions of the mesh which contained high aspect ratio elements with large amounts of

surface curvature. Such regions are common along any curved boundary with viscous

spacing.

Large inaccuracies in the gradient evaluation can result in the degradation of the

overall solution [Mavriplis, 2003]. The degradation occurs because accurate values

of the gradients are needed to compute the viscous fluxes and the source terms of

the turbulence equations. Mavriplis [2003] showed that using a LSQR formulation

weighted by the inverse distance to the adjacent nodes greatly improved the accuracy

of the gradient calculation. The basic least-squares gradient method implemented

by Kim [2003], and used above, used the inverse-distance weighting.

VII.3.3.2. Operating Line Generation Procedure Addendum

With exception to the gradient evaluation method, the operating points were

computed in the manner described in Section VII.1. Two gradient evaluation meth-

ods were used to compute the remaining operating points. The first was the un-

weighted LSQR method. The un-weighted method was used because it was not a

known issue at the time, and it was only after all of the data had been collected that

the gradient evaluation issue came to light. The second gradient evaluation method

use was the Green-Gauss method. It was chosen because it was the first gradient

method implemented in UNS3D, and as such was perceived to be the most “fleshed

out” of the gradient methods. Time restrictions ultimately prevented any additional

operating point simulations using the basic least-squares implementation.

The LSQR and Green-Gauss results are labeled in all plots herein as R67TC-
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LSQR and R67TC-GG, respectively. The outlet boundary conditions and a summary

of the results at each operating point for the LSQR simulations can be found in Ta-

ble A.4. Table A.5 contains the same information for the Green-Gauss operating line

simulations. A sample input file for a LSQR simulation can be found in Appendix D,

starting on p. 266.

VII.3.3.3. Rotor Operating Line

The predicted performance characteristics for the rotor, using both un-weighted

LSQR and Green-Gauss gradient methods, are presented herein. First, the mass

flow rates at the “max flow” operating point are first given. The compressor map

speed line, at design wheel speed, is then presented and discussed. Finally, the flow

downstream of the rotor at the “near peak efficiency” operating point is examined.

The predicted flows are compared against experimental data and against the better

of the two previously discussed rubbing configurations, case R67TR-b.

The “max flow” operating point was defined as the operating point for which the

lowest outlet static pressure was used to simulate the flow. As a result, the largest

predicted mass flow rate occurs at this point. The “near peak efficiency” operating

point was defined a little differently for the LSQR and Green-Gauss gradient evalu-

ation cases. For LSQR, the “near peak efficiency” point was chosen as the operating

point with the highest adiabatic efficiency. For Green-Gauss, the operating point

just to right of the point at which maximum adiabatic efficiency occurred was cho-

sen. The reason for the difference in definition was because the LSQR simulations

resulted in an attenuated outlet pressure range, as will be shown later in this section,
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that fell below measured values for “near peak efficiency”.

Table VII.6 gives the predicted maximum mass flow rates for the two clearance

flow cases. Also given are the measured maximum flow rates and the predicted value

from case R67TR-b for comparison. The maximum flow rate predicted with LSQR

was 0.8% smaller than the flow rate predicted when Green-Gauss was used, and was

2.1% less than the average measured value. The difference between the Green-Gauss

result and the averaged measured value was 1.33%, which was comparable with the

value obtained by Arnone [1994].

Table VII.6: Predicted and measured [Pierzga & Wood, 1985; Wood et al., 1990]

equivalent maximum mass flow rates (kg/s) for turbulent Rotor 67.

Tip Clearance Flow
Rubbing Flow† Pierzga & Wood Wood et al.

LSQR Green-Gauss

34.215 34.481 34.215 34.92 34.96

† Rubbing configuration R67TR-b

The compressor map speed lines for the two clearance flow cases can be seen in

Fig. VII.16. The mass flow rates for each speed line have been normalized by their

respective maximum. The predicted curves of total pressure ratio and adiabatic effi-

ciency for both clearance flow cases showed qualitative agreement with the measured

curves. The curves generated using Green-Gauss gradient evaluation were a much

better quantitative match to measurement than the LSQR result. The Green-Gauss

result was also a very close match to the values predicted by the rubbing configura-
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tion, which used un-weighted LSQR gradient evaluation.

It was found that the operating ranges, in terms of normalized mass flow rate,

were smaller than that predicted by the rubbing configuration. This was true for

both Green-Gauss and LSQR. The range predicted by the Green-Gauss speed line

was slightly smaller than that predicted by LSQR. However, this result should be

taken with a grain of salt as no effort was undertaken to find the true stall point due

to time constraints. The simulation of additional operating points at smaller ∆p
(h)
2

increments should extend the range of both speed lines further to the left of the plot.

Figure VII.17 compares the predicted hub endwall static pressure at the down-

stream measurement plane against experimental data for both gradient method so-

lutions. Using LSQR resulted in static pressures that were smaller overall than when

using Green-Gauss. The static pressures predicted with Green-Gauss were a better

quantitative match to experiment, as shown in Fig. VII.17. The Green-Gauss results

also matched the predicted hub pressures from the best rubbing case (R67TR-b).

Spanwise profiles of static pressure and absolute flow angle were constructed

by circumferentially averaging the flow at both measurement planes. The resultant

spanwise profiles for both gradient method solutions at “near peak efficiency” are

presented in Figure VII.18, where they are compared against measurement and the

rubbing configuration, case R67TR-b. Both clearance flow solutions showed excellent

qualitative agreement with the measured profiles, for both pressure and flow angle.

Quantitatively, the static pressure profiles from the Green-Gauss gradient evaluation

case were a closer match to measurement than LSQR.

The only discernible difference in the flow angle occurred downstream near the
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Figure VII.16: Predicted Rotor 67 performance for two turbulent clearance flow

cases compared against experiment [Pierzga & Wood, 1985; Wood et al., 1990] and

a turbulent rubbing configuration (R67TR-b).
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Figure VII.17: Normalized hub static pressures measured at the downstream mea-

surement location. Circled data points are at “near peak efficiency”.

rotor tip. The flow angles predicted when using Green-Gauss were closer to the

measured values than LSQR. Gradients play a much larger role in this region of the

flow due to the tip leakage flow and the vortices that are generated as a result. It is

not a surprise then that Green-Gauss outperformed LSQR in this region.

VII.3.4. Relative Mach Contours

Contours of the relative Mach number at a given spanwise station for the “max

flow” and “near peak efficiency” operating points are presented for both clearance

flow cases. The predicted flows at 70% span are compared against predicted contours

from the best rubbing configuration, case R67TR-b, and against the measured flow.

Relative Mach number contours at 30% and 90% span can be found in Appendix A,
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Figure VII.18: Comparing spanwise profiles of predicted Rotor 67 static pressure

and absolute flow angle against measurement [Wood et al., 1990] at “near peak

efficiency”.

starting on p. 226.

Figure VII.19 shows the predicted flow fields at the “max flow” operating point,

and compares them against the previous rubbing result and experiment. The two

predicted flow fields were qualitatively similar to the measured flow field. The biggest

difference between experiment and prediction was the location of the passage shock.

Both predicted flow fields showed the passage shock sitting just upstream of the

trailing edge, whereas in the experiment, the shock sat further upstream towards

mid-chord.

The primary difference between the un-weighted LSQR and Green-Gauss gra-

dient evaluation cases was found in the passage between rotor blades. The passage

194



shock predicted by the Green-Gauss simulation was more compact and stronger than

what was found in the LSQR solution. This difference was attributed to the LSQR

gradients not being computed accurately in the region of the shock.

In comparing both clearance flow solutions to the rubbing flow solution it was

observed that the LSQR clearance flow best matched the rubbing flow. This was

to be expected as both solutions were computed using un-weighted LSQR. Both

clearance flows exhibited less separation along the aft portion of the rotor, as shown

by Figs. VII.19a–c.

At “near peak efficiency” it was observed that both the LSQR and green-Gauss

solutions were a good qualitative match to the measured flow field, as shown in

Fig. VII.20abd. The Green-Gauss solution was the best match to the measured flow

field. Again, the Green-Gauss solution resulted in a more compact passage shock,

whereas the was more diffuse with LSQR. The relative Mach number contours at

the additional spanwise locations given in Appendix A showed that Green-Gauss

gradient evaluation was superior to the un-weighted LSQR in predicting the flow

field across the rotor’s span at “near peak efficiency”.

The two clearance flow solutions were also qualitatively similar to the rubbing

configuration solution, as shown in Figs. VII.20a–c. The LSQR predicted passage

flow was a better qualitative match to the rubbing case than the Green-Gauss solu-

tion. In both the LSQR and rubbing cases, the flow was decelerated less through the

passage than what was predicted by Green-Gauss. The amount of separation that

was apparent along the aft portion the rotor was less for the Green-Gauss case than

the LSQR and rubbing cases.
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(a) Clearance Flow: LSQR (b) Clearance Flow: Green-Gauss

(c) Rubbing: R67TR-b (d) Pierzga & Wood [1985]

Figure VII.19: Predicted and measured [Pierzga & Wood, 1985] relative Mach num-

ber contours (∆Mrel = 0.05) at 70% span for the “max flow” operating condition.

196



(a) Clearance Flow: LSQR (b) Clearance Flow: Green-Gauss

(c) Rubbing: R67TR-b (d) Pierzga & Wood [1985]

Figure VII.20: Predicted and measured [Pierzga & Wood, 1985] relative Mach num-

ber contours (∆Mrel = 0.05) at 70% span for the “near peak efficiency” operating

condition.

197



VII.3.5. Effect of Higher-Order Limiters

This section examines the effect of the higher-order limiter on the predicted

performance of the rotor at the initial operating point. The additional limiters

examined were the Venka-ε1, Venka-ε2, and MLP-ε2 limiters. The MLP-ε1 limiter was

not tested because the inviscid test of the limiters revealed little difference between

Venka-ε1 and MLP-ε1.

The initial operating point simulations for the additional limiters were run in

the same manner as was described in Section VII.3.3.1. The un-weighted LSQR

gradient method was used exclusively for the limiter tests as they were completed

before the gradient method survey in Section VII.3.3.1 was completed. The Dervieux

solution, computed using Green-Gauss gradients, is used herein as the reference

solution because it was the closest overall match to the measured rotor.

Figure VII.21 shows the solution convergence for the different limiter simula-

tions. Only the density residual was shown as the convergence trends of the other

flow variables were qualitatively similar. Both Venkatakrishnan limiters and the

MLP limiter, MLP-ε2, showed poor convergence trends for every variable. Severe

residual convergence stall was observed, limiting the order of magnitude reduction

for the residuals to less than one for the Venkatakrishnan limiters and about one

for MLP-ε2.

In addition to poor convergence of the variable residuals, both Venkatakrishnan

limiters exhibited poor convergence of the integral properties of interest. This was

especially true of the adiabatic efficiency, as shown in Fig. VII.22. The MLP-ε2 and

Dervieux limiter solutions did not exhibit this poor overall convergence behavior.
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Figure VII.21: Comparison of the turbulent Rotor 67 residual convergence histories

with higher-order limiter choice at the initial operating point.

Average values of the rotor performance characteristics were computed due to

the lack of convergence observed with both Venkatakrishnan limiters. Error bars were

computed for each average using the standard error of the values used. Table VII.7

presents both the average and the error bars associated with each performance vari-

able for the limiters tested. The last five data points were used to average both

Venkatakrishnan data sets, and three were used for the other cases.

Both Venkatakrishnan limiters and MLP-ε2 resulted in lower average values for

mass flow rate and total pressure ratio than the Dervieux limiter solution. This was

true with both Green-Gauss and LSQR. The difference between the limiters tested

in this section and the Green-Gauss/Dervieux solution was 2% for the mass flow
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Figure VII.22: Comparison of the turbulent Rotor 67 adiabatic efficiency convergence

histories with higher-order limiter choice at the initial operating point.

rates and 4% for total pressure ratio. The computed average values for adiabatic

efficiency were within 0.5% of the reference solution, despite a lack of convergence

by the Venkatakrishnan solutions.

The spanwise profiles of static pressure and absolute flow angle at both mea-

surement planes for both Venkatakrishnan limiters and MLP-ε2 were found to be

qualitatively similar to the reference solution, as shown in Fig. VII.23. The spanwise

variation of the flow upstream of the rotors were nearly identical for the limiters

tested here and with the LSQR/Dervieux solution. The downstream profiles for

both Venkatakrishnan limiters and MLP-ε2 were quantitatively similar to one an-

other; however, they resulted in under-predicted values of both static pressure and

flow angle. The most noticeable feature observed with the limiters examined in this

section was an inflection point in the downstream profile of absolute flow angle at

around 5% span from the hub.
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Table VII.7: Comparing averaged turbulent Rotor 67 performance characteristic

variations with higher-order limiter choice at the initial operating point.

Higher-Order

Limiter

Mass Flow Rate,

ṁeq [kg/s]

Total Pressure

Ratio, π∗ [-]

Adiabatic

Efficiency, ηtt [%]

Dervieux† 34.3221± 6× 10−4 1.5417± 2× 10−4 89.01± 4× 10−3

Dervieux] 33.8134± 6× 10−4 1.5163± 9× 10−5 88.89± 4× 10−4

Venka-ε1
] 33.6746± 7× 10−4 1.4820± 2× 10−4 89.04± 1× 10−1

Venka-ε2
] 33.6744± 7× 10−4 1.4819± 1× 10−4 89.27± 8× 10−2

MLP-ε2
] 33.6816± 8× 10−4 1.4838± 4× 10−5 89.41± 3× 10−3

† Gradients evaluated using Green-Gauss ] Gradients evaluated using un-weighted LSQR

The inflection point in the spanwise distribution of the downstream flow angle

was the result of a large separated region of flow on the last third of the rotor’s

suction side. The large separated region, shown in Fig. VII.24a, resulted in a vortex

which traveled up along the rotor’s trailing edge until it lifted off and entered the

wake flow. Both the Venka-ε2 and MLP-ε2 limiters resulted in a qualitatively similar

flow field as shown in Fig. VII.24a for Venka-ε1.

The Dervieux solution, Fig. VII.24b, resulted in a compact region of separation

at the trailing edge near the hub, resulting in lower flow deviation. The choice

of gradient evaluation did not result in a qualitatively different flow field as the one

shown in Fig. VII.24b. The trailing edge separation region near the hub has reported

as being observed in numerical simulations [Chima, 1991; Jennions & Turner, 1993;

Arima et al., 1999]. Chima [1991] also predicted the spanwise traveling trailing edge
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Figure VII.23: Comparing spanwise profiles of static pressure and absolute flow

angle, at both measurement planes, for turbulent Rotor 67 with different higher-

order limiters. Solution is at the initial operating point.

vortex, however the predicted separation region was not as immense as what was

observed for Venka-ε1, Venka-ε2, and MLP-ε2 solutions.

Examining contours of relative Mach number at 70% span showed that the

predicted Venka-ε1, Venka-ε2, and MLP-ε2 flow structures were qualitatively identi-

cal. All of the Venkatakrishnan based limiter solutions exhibited a larger separated

region on the suction side of the rotor than either of the Dervieux solutions, as

shown in Fig. VII.25. Although not shown, the Venkatakrishnan based limiter so-

lutions showed more separation along the entire span, similar to what is shown in

Fig. VII.25. The higher amount of separation along the span accounts for the lower

downstream pressure and absolute flow angle that was observed with these cases.
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(a) Venka-ε1 (LSQR)

(b) Dervieux (Green-Gauss)

Figure VII.24: View looking downstream of relative velocity streamlines which show

the separated region near the trailing edge and hub for Rotor 67 at the initial oper-

ating point.
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(a) Dervieux (Green-Gauss) (b) Dervieux (LSQR)

(c) Venka-ε1 (LSQR) (d) Venka-ε2 (LSQR)

(e) MLP-ε2 (LSQR)

Figure VII.25: Predicted initial operating point turbulent relative Mach number

contours (∆Mrel = 0.05) comparing higher-order limiters at 70% span.
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CHAPTER VIII

CONCLUSIONS

This chapter presents the conclusions taken from the numerical results presented

in the preceding chapters. This dissertation offered a new Venkatakrishnan solution

limiter based upon the ε2 definition by Park & Kim [2012]. In addition, the MLP

limiter was modified to utilize the newer ε2 definition. The usefulness of the new

and modified limiters were evaluated using both canonical and turbomachinery test

cases. Enhancements to the turbulence model and outlet boundary condition were

also completed as a part of this work. The following conclusions were drawn from

the numerical simulations found in this work:

1. The new Venkatakrishnan limiter was found to offer improvement over the base

version of the limiter for cases in which convergence was disrupted. For cases

in which no convergence issues were observed, the new Venkatakrishnan limiter

performed in a manner very similar to the base version. Solutions computed

using both limiter versions were found to agree quantitatively.

2. The modified MLP limiter also showed improvement over the base version of

the limiter in some cases. The modified limiter behaved similarly to the base

version when poor solution convergence was not an issue. Solutions computed

using both limiter versions were found to agree quantitatively.

3. Application of implicit residual smoothing to the turbulence model equations

prevented the convergence of the model variables, κ and ω. The convergence
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of the mass, momentum, and energy equations was observed to stall due to

the non-convergence of the turbulence model. The cause was found to be

inaccurate turbulence boundary conditions that resulted from the smoothing

of the boundary nodes. The near-term solution was to avoid smoothing the

κ− ω equations.

4. Excessive under-relaxation of the turbulence equations was found to prevent

the evolution of the turbulence field. As a result, the quality of the flow solution

was degraded, and the convergence of all equations hindered. Values of under-

relaxation greater or equal to 1/2 were found to be usable.

5. The turbulent flow through an annular turbine vane row was simulated using

the flow solver. The predicted vane surface pressures and the predicted flow

in the wake of the vane showed excellent agreement with the experimentally

measured flow. The flow solver was also able to capture the salient features

of the flow associated with turbomachinery flows. These features included:

horseshoe vortices that form at the leading edge of the vane near the endwalls,

the passage vortices which are born from the leading edge horseshoe vortices,

and the lift-off of said passage vortices.

6. The inviscid prediction of a transonic fan rotor showed good agreement with

measured data. As was expected, the inviscid solutions over-predicted the total

pressure ratios and the adiabatic efficiencies; however, the predicted mass flow

rates were in excellent quantitative agreement with experiment.

7. The turbulent flow through a transonic fan rotor with no tip leakage flow
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was computed using the flow solver for two boundary condition configurations.

All viscous endwalls were assumed to rotate with the rotor in the first, and

only a segment of both endwalls, which bounded the rotor, were assumed to

rotate in the second. Both cases showed qualitative agreement with experiment.

However, both cases showed serious flaws. The case in which all walls rotated

resulted in the largest under-prediction of all performance parameters. The

second case suffered from an unexplained numerical issued with resulted in a

non-physical point in the flow at all operating points. As such, neither case

was found to be useful.

8. The turbulent flow through a transonic fan rotor with the tip leakage flow

modeled was successfully computed. The best agreement with experiment was

found using the Green-Gauss gradient method with the Dervieux limiter. The

un-weighted least squares with QR (LSQR) was found to be unsuitable for

simulating rotating geometries.
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CHAPTER IX

FUTURE WORK

The goal of this sought to improve the accuracy of the numerical simulation

of turbomachinery flows. Based upon the results of this effort, the following work

should be done to further this goal:

1. Investigate in detail the hypothesis that the solution limiters were responsi-

ble for instigating the numerical “shock instabilities” that were found for the

convergent-divergent nozzle flows with normal shocks. Studies exploring differ-

ent grid configurations and the use of gradient methods other than un-weighted

LSQR should be included.

2. Develop an improved implicit smoothing algorithm which does not smooth

boundary nodes for equations which have hard set values. The dampening

of high frequency numerical errors that is associated with implicit residual

smoothing could prove useful for further improving the convergence of the

turbulence equations. Also, the impact on the flow must be addressed as many

of the flow equation boundary conditions for viscous flows are rigidly enforced.

3. Develop a weighted LSQR gradient method suitable for turbomachinery flows.

The new algorithm would overcome the observed shortcomings of the un-

weighted LSQR gradient method.

4. Further investigate the accuracy of the flow solver for turbomachinery aerome-

chanical flows.
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APPENDIX A

SUPPLEMENTAL TRANSONIC FAN RESULTS

This appendix contains tables and figures that supplement the data presented

in Chapters VI and VII for the NASA transonic fan rotor known as Rotor 67. See

Section VI.1 for a detailed description of the rotor.

The purpose of this appendix is to tabulate the data used to generate the com-

pressor map speedlines presented in the main body, and to provide the reader with

additional data that could be used for future comparison. The supplemental data is

grouped based upon the case it belongs to, and is ordered according to its introduc-

tion in the main body.

Notes

• The “Case ID” given in the speed line tables corresponds to the directory name

in which the corresponding data is stored.

• All given pressures have been normalized by p01 = 124452.598 Pa.

• Percent span was measured from the hub.
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A.1. Inviscid Rotor 67

Table A.1: Inviscid Rotor 67 compressor map speed line outlet pressure boundary

condition and results summary.

Input Result

Case ID p
(h)
2 /p01 ṁeq [kg/s] π∗ ηtt

R009‡ 0.850 35.0478 1.46532 0.86189

R008 0.900 35.0474 1.52765 0.88015

R007 0.950 35.0442 1.59497 0.89885

R001\ 1.000 35.0228 1.66414 0.81737

R002 1.030 34.9826 1.70679 0.92846

R003 1.060 34.8929 1.75053 0.94016

R015 1.075 34.8108 1.77285 0.94650

R004[ 1.090 34.6394 1.79344 0.95429

R005 1.095 34.4215 1.79501 0.95759

R006 1.100 33.2429 1.78375 0.93955

R010 1.102 33.0458 1.78491 0.93671

R011 1.104 32.8505 1.78622 0.93395

R012] 1.108 32.4388 1.78919 0.92815

R013 1.115 31.5688 1.79549 0.91588

‡ “Max flow” operating point \ Initial operating point [ “Near
peak efficiency” operating point ] “Near stall” operating point
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A.2. Turbulent Rotor 67: Rubbing Configuration

• R67TR-a: All viscous walls rotate with speed Neq.

• R67TR-b: Only the viscous wall boundary faces between xrle and xrte rotate

with speed Neq.

Table A.2: Turbulent Rotor 67: Rubbing case R67TR-a compressor map speed line

outlet boundary condition and results summary.

Input Result

Case ID p
(h)
2 /p01 p

(h)
m2/p01

† ṁeq [kg/s] π∗ ηtt

P004/R001‡ 0.8643 0.9116 33.8344 1.4497 0.8761

P002/R001 0.8819 0.9244 33.8085 1.4702 0.8843

P001/R004\ 0.8999 0.9376 33.7723 1.4920 0.8930

P003/R001 0.9179 0.9514 33.7060 1.5149 0.9024

P005/R001 0.9363 0.9670 33.5581 1.5395 0.9106

P006/R001[ 0.9550 0.9821 33.3290 1.5635 0.9144

P009/R001 0.9642 0.9876 32.6508 1.5697 0.9049

P010/R001] 0.9690 0.9232 16.7300 1.5888 0.8821

P007/R001] 0.9741 0.9207 18.9436 1.5976 0.8875

P008/R001] 0.9936 0.9349 18.1848 1.6282 0.8928

† Hub static pressure at downstream measurement plane
‡ “Max flow” operating point \ Initial operating point
[ “Near peak efficiency” operating point ] Stalled flow encountered
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Table A.3: Turbulent Rotor 67: Rubbing case R67TR-b compressor map speed line

outlet boundary condition and results summary.

Input Result

Case ID p
(h)
2 /p01 p

(h)
m2/p01

† ṁeq [kg/s] π∗ ηtt

P004/R001‡ 0.8643 0.9054 34.2151 1.4382 0.8627

P001/R002\ 0.8999 0.9326 34.1732 1.4791 0.8781

P005/R001 0.9363 0.9600 34.0915 1.5238 0.8938

P007/R001 0.9741 0.9909 33.8809 1.5744 0.9105

P008/R001[ 0.9936 1.0070 33.6605 1.6012 0.9160

P009/R001 1.0050 1.0170 33.3286 1.6165 0.9145

P010/R001 1.0100 1.0208 33.1420 1.6225 0.9129

P011/R001 1.0200 1.0279 32.7625 1.6340 0.9095

P012/R001] 1.0400 1.0412 16.2432 1.7027 0.8973

† Hub static pressure at downstream measurement plane
‡ “Max flow” operating point \ Initial operating point
[ “Near peak efficiency” operating point ] Stalled flow encountered
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(a) R67TR-a (b) R67TR-b

Figure A.1: Predicted relative Mach number contours (∆Mrel = 0.05) at 30% span

for “max flow”.

(a) R67TR-a (b) R67TR-b

Figure A.2: Predicted relative Mach number contours (∆Mrel = 0.05) at 90% span

for “max flow”.
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(a) R67TR-a (b) R67TR-b

(c) Pierzga & Wood [1985]

Figure A.3: Predicted and measured [Pierzga & Wood, 1985] relative Mach number

contours (∆Mrel = 0.05) at 30% span for “near peak efficiency”.
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(a) R67TR-a (b) R67TR-b

(c) Pierzga & Wood [1985]

Figure A.4: Predicted and measured [Pierzga & Wood, 1985] relative Mach number

contours (∆Mrel = 0.05) at 90% span for “near peak efficiency”.
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A.3. Turbulent Rotor 67: Clearance Flow Configuration

Table A.4: Turbulent Rotor 67 compressor map speed line outlet boundary condition

and results summary using the Dervieux limiter and the un-weighted LSQR gradient

method.

Input Result

Case ID p
(h)
2 /p01 p

(h)
m2/p01

† ṁeq [kg/s] π∗ ηtt

P006/R001‡ 0.8493 0.8900 34.2146 1.4164 0.8524

P002/R001 0.8643 0.9039 34.1885 1.4354 0.8602

P005/R001 0.8999 0.9330 34.0596 1.4759 0.8777

P001/R001\ 0.9363 0.9604 33.8125 1.5165 0.8890

P007/R001 0.9552 0.9744 33.6308 1.5383 0.8936

P003/R001 0.9741 0.9888 33.4061 1.5611 0.8975

P008/R001[ 0.9839 0.9964 33.2609 1.5734 0.8988

P009/R001 0.9883 0.9998 33.1252 1.5781 0.8981

P010/R001 0.9910 1.0019 33.0726 1.5816 0.8983

P004/R001] 0.9936 0.9770 29.4456 1.5087 0.8520

† Hub static pressure at downstream measurement plane
‡ “Max flow” operating point \ Initial operating point
[ “Near peak efficiency” operating point ] Stalled flow encountered
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Table A.5: Turbulent Rotor 67 compressor map speed line outlet boundary condi-

tions and results summary using the Dervieux limiter and the Green-Gauss gradient

method.

Input Result

Case ID p
(h)
2 /p01 p

(h)
m2/p01

† ṁeq [kg/s] π∗ ηtt

P006/R006‡ 0.8493 0.8914 34.4807 1.4298 0.8511

P002/R006 0.8643 0.9076 34.4696 1.4503 0.8579

P001/R006\ 0.9363 0.9661 34.3229 1.5419 0.8902

P003/R006 0.9741 0.9925 34.1015 1.5877 0.9034

P004/R006[ 0.9936 1.0062 33.8839 1.6106 0.9081

P011/R006 1.0050 1.0147 33.6769 1.6232 0.9100

P012/R006 1.0100 1.0186 33.5121 1.6281 0.9098

P013/R006] 1.0200 0.9929 29.2152 1.5498 0.8643

† Hub static pressure at downstream measurement plane
‡ “Max flow” operating point \ Initial operating point
[ “Near peak efficiency” operating point ] Stalled flow encountered
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(a) Un-weighted LSQR (b) Green-Gauss

Figure A.5: Predicted relative Mach number contours (∆Mrel = 0.05) at 30% span

for “max flow”.

(a) Un-weighted LSQR (b) Green-Gauss

Figure A.6: Predicted relative Mach number contours (∆Mrel = 0.05) at 90% span

for “max flow”.
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(a) Un-weighted LSQR (b) Green-Gauss

(c) Pierzga & Wood [1985]

Figure A.7: Predicted and measured [Pierzga & Wood, 1985] relative Mach number

contours (∆Mrel = 0.05) at 30% span for “near peak efficiency”.
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(a) Un-weighted LSQR (b) Green-Gauss

(c) Pierzga & Wood [1985]

Figure A.8: Predicted and measured [Pierzga & Wood, 1985] relative Mach number

contours (∆Mrel = 0.05) at 90% span for “near peak efficiency”.
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APPENDIX B

GOVERNING EQUATION VELOCITY TRANSFORMATION

The derivation of the Navier-Stokes equations written in a rotating reference

frame but cast in terms of absolute velocities is presented herein. The absolute

velocity is defined as

~U = ~W + ~V , (B.1)

where ~W is the relative velocity, and ~V is the transport velocity. The transport

velocity, defined in Eq. B.2, for a given point is given as the cross product between

the rotation vector of the frame and a point. Only rotation about the x-axis, ~ω =

[ωx, 0, 0, ]
T , is considered. The relative velocities are then expressed in terms of

absolute velocity components by rearranging Eq. B.1 and using Eq. B.2, as shown

by Eq. B.3.

~V = ~ω × ~r =

∣∣∣∣∣∣∣∣∣
i j k

ωx 0 0

x y z

∣∣∣∣∣∣∣∣∣ =


0

−zωx
yωx

 (B.2)

~W =


w1

w2

w3

 =


u1

u2 + zωx

u3 − yωx

 (B.3)

B.1. Conservation of Mass

The integral form of the continuity equation in the rotating reference frame is

given by
∂

∂t

∫
Ω

ρdΩ +

∮
∂Ω

ρ
(
~W · n̂

)
dS = 0 . (B.4)
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Applying the divergence theorem results in the differential form of the equation.

That is ∫
Ω

[
∂ρ

∂t
+∇ ·

(
ρ ~W
)]

dΩ = 0

∂ρ

∂t
+∇ ·

(
ρ ~W
)

= 0

∂ρ

∂t
+
∂(ρw1)

∂x
+
∂(ρw2)

∂y
+
∂(ρw3)

∂z
= 0 .

Substituting equation B.3 yields into the above differential equation yields

∂ρ

∂t
+
∂(ρu1)

∂x
+

∂

∂y
[ρ(u2 + zωx)] +

∂

∂z
[ρ(u3 − yωx)] = 0

∂ρ

∂t
+
∂(ρu1)

∂x
+
∂(ρu2)

∂y
+
∂(ρu3)

∂z
=
∂(ρyωx)

∂z
− ∂(ρzωx)

∂y
. (B.5)

Equation B.5 is the final form of the continuity equation in the rotating reference

frame cast in terms of absolute velocity. Transforming B.5 to integral form results

in the starting equation, B.4.

B.2. Conservation of Momentum

The integral form of the momentum conservation equations in the rotating ref-

erence frame is given by

∂

∂t

∫
Ω

ρ ~WdΩ +

∮
∂Ω

ρ ~W
(
~W · n̂

)
dS =

∫
Ω

ρ
(
~fe + ~fcor + ~fcen

)
dΩ−

∮
∂Ω

p
(
¯̄I · n̂

)
dS

+

∮
∂Ω

(¯̄τ · n̂) dS (B.6)

where ¯̄I is the identity matrix and ¯̄τ is the stress tensor, which is given by

¯̄τ =


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 .
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The components of the viscous stress tensor in the rotating reference frame are

defined by

τxx = µ
2

3

(
2
∂w1

∂x
− ∂w2

∂y
− ∂w3

∂z

)
τyy = µ

2

3

(
2
∂w2

∂y
− ∂w1

∂x
− ∂w3

∂z

)
τzz = µ

2

3

(
2
∂w3

∂z
− ∂w1

∂x
− ∂w2

∂y

)
τxy = τyx = µ

(
∂w1

∂y
+
∂w2

∂x

)
τxz = τzx = µ

(
∂w1

∂z
+
∂w3

∂x

)
τyz = τzy = µ

(
∂w2

∂z
+
∂w3

∂y

)

(B.7)

where µ is the dynamic viscosity. The external forces, ~fe, are assumed to be zero for

the derivation. The Coriolis force per unit mass is given by

~fcor = −2
(
~ω × ~W

)
= −2

∣∣∣∣∣∣∣∣∣
i j k

ωx 0 0

w1 w2 w3

∣∣∣∣∣∣∣∣∣ =


0

2w3ωx

−2w2ωx

 .

The centrifugal force per unit mass is given by

~fcen = −~ω × (~ω × ~r) = −

∣∣∣∣∣∣∣∣∣
i j k

ωx 0 0

0 −zωx yωx

∣∣∣∣∣∣∣∣∣ =


0

yω2
x

zω2
x

 .

Combining the forces acting on the system into a single term results in

~fr =


0

yω2
x + 2w3ωx

zω2
x − 2w2ωx

 (B.8)
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Using B.8 with B.6 and applying the divergence theorem yields the differential form

of the momentum conservation equations, i.e.,∫
Ω

∂(ρ ~W )

∂t
dΩ +

∫
Ω

∇ ·
(
ρ ~W ⊗ ~W

)
dΩ =

∫
Ω

ρ~frdΩ−
∫

Ω

∇ · p¯̄I dΩ

= +

∫
Ω

∇ · ¯̄τdΩ∫
Ω

[
∂(ρ ~W )

∂t
+∇ ·

(
ρ ~W ⊗ ~W + p¯̄I− ¯̄τ

)
− ρ~fr

]
dΩ = 0

∂(ρ ~W )

∂t
+∇ ·

(
ρ ~W ⊗ ~W + p¯̄I− ¯̄τ

)
= ρ~fr .

Substituting the components of B.3 into B.7 results in the shear stress tensor

components written in terms of absolute velocities. The form of the transformed

equations is identical to the original form only with wi replaced by ui, where i =

1, 2, 3. This is proven through the differentiation of the transport velocity, i.e.,

∂~V

∂x
=
∂v2

∂y
=
∂v3

∂z
= 0

∂v2

∂z
+
∂v3

∂y
= ωx − ωx = 0 .

B.2.a. X-Momentum Equation

The differential form of the x-momentum equation in the rotating reference

frame is given by

∂(ρw1)

∂t
+
∂(ρw1w1)

∂x
+
∂(ρw1w2)

∂y
+
∂(ρw1w3)

∂z
+
∂p

∂x
− τ1 = 0

where τ1 = (∇ · ¯̄τ )̂ı. Equation B.3 is used with each term to cast the equation in

terms of absolute velocity. Applying the velocity transformation gives

∂(ρu1)

∂t
+
∂(ρu1u1)

∂x
+
∂(ρu1(u2 + zωx))

∂y
+
∂(ρu1(u3 − yωx))

∂z
+
∂p

∂x
− τ1 = 0

∂(ρu1)

∂t
+
∂(ρu1w1)

∂x
+
∂(ρu1w2)

∂y
+
∂(ρu1w3)

∂z
+
∂p

∂x
− τ1 = 0 . (B.9)
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B.2.b. Y-Momentum Equation

The differential form of the y-momentum equation in the rotating reference

frame is given by

∂(ρw2)

∂t
+
∂(ρw2w1)

∂x
+
∂(ρw2w2)

∂y
+
∂ρ(w2w3)

∂z
+
∂p

∂y
− τ2 = ρ

(
yω2

x + 2w3ωx
)

where τ2 = (∇ · ¯̄τ)̂. Applying B.3 term by term in the differential equation gives

∂(ρw2)

∂t
=
∂(ρu2)

∂t
+
∂(ρzωx)

∂t
,

∂(ρw2w1)

∂x
=
∂(ρ(u2 + zωx)u1)

∂x

=
∂(ρu2u1

∂x
+
∂(ρu1zωx)

∂x

=
∂(ρu2u1

∂x
+ zωx

∂(ρu1)

∂x
,

∂(ρw2w2)

∂y
=
∂(ρ(u2 + zωx)

2)

∂y

=
∂(ρ(u2u2 + 2zωxu2 + (zωx)

2))

∂y

=
∂(ρu2u2)

∂y
+ 2zωx

∂(ρu2)

∂y
+ (zωx)

2∂ρ

∂y
,

∂(ρw2w3)

∂z
=
∂(ρ(u2 + zωx)(u3 − yωx))

∂z

=
∂(ρ(u2u3 + u3zωx − u2yωx − yzω2

x))

∂z

=
∂(ρu2u3)

∂z
+
∂(ρu3zωx)

∂z
− ∂(ρu2yωx)

∂z
− ∂(ρyzω2

x)

∂z

=
∂(ρu2u3)

∂z
+ zωx

∂(ρu3)

∂z
+ ρu3ωx − yωx

∂(ρu2)

∂z
− ρyω2

x

− zωx
∂(ρyωx)

∂z
,

and

ρ
(
yω2

x + 2w3ωx
)

= ρyω2
x + 2ρωx(u3 − yωx)

= ρyω2
x + 2ρωxu3 − 2ρyω2

x

= 2ρωxu3 − ρyω2
x .
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Rewriting the differential equation with the transformed terms and noting term can-

cellations gives

∂(ρu2)

∂t
+ zωx

∂ρ

∂t
+
∂(ρu2u1)

∂x
+ zωx

∂(ρu1)

∂x
+
∂(ρu2u2)

∂y
+ 2zωx

∂(ρu2)

∂y

+ (zωx)
2∂ρ

∂y
+
∂(ρu2u3)

∂z
+ zωx

∂(ρu3)

∂z
+����ρu3ωx − yωx

∂(ρu2)

∂z
−HHHρyω2

x

− zωx
∂(ρyωx)

∂z
+
∂p

∂y
− τ2 = ���

1
2ρu3ωx −HHHρyω2

x .

Intelligently grouping the zωx terms together yields

∂(ρu2)

∂t
+
∂(ρu2u1)

∂x
+
∂(ρu2u2)

∂y
+
∂(ρu2u3)

∂z
+
∂p

∂y
− τ2 + zωx

[
∂ρ

∂t

+
∂(ρu1)

∂x
+
∂(ρu2)

∂y
+
∂(ρu3)

∂z

]
+ zωx

∂(ρu2)

∂y
− yωx

∂(ρu2)

∂z
+ (zωx)

2∂ρ

∂y

− zωx
∂(ρyωx)

∂z
= ρu3ωx

where the bracketed terms are the left hand side of the continuity equation. Substi-

tuting B.5 and observing the cancellations due to the substitution results in

∂(ρu2)

∂t
+
∂(ρu2u1)

∂x
+
∂(ρu2u2)

∂y
+
∂(ρu2u3)

∂z
+
∂p

∂y
+ zωx

[
�
��

��∂(ρyωx)

∂z
−
Z
Z
ZZ

zωx
∂ρ

∂y

]
+ zωx

∂(ρu2)

∂y
− yωx

∂(ρu2)

∂z
+
HH

HHH
(zωx)

2∂ρ

∂y
−
�
��

�
��
�

zωx
∂(ρyωx)

∂z
= ρu3ωx .

Combining the remaining ∂/∂y and ∂/∂z derivatives and using B.3 yields the final

form of the equation, i.e.,

∂(ρu2)

∂t
+
∂(ρu2w1)

∂x
+
∂(ρu2w2)

∂y
+
∂(ρu2w3)

∂z
+
∂p

∂y
− τ2 = ρu3ωx . (B.10)

B.2.c. Z-Momentum Equation

The differential form of the z-momentum equation in the rotating reference frame

is

∂(ρw3)

∂t
+
∂(ρw3w1)

∂x
+
∂(ρw3w2)

∂y
+
∂(ρw3w3)

∂z
+
∂p

∂z
− τ3 = ρ

(
zω2

x − 2ρw2ωx
)
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where τ3 = (∇ · ¯̄τ)k̂. Applying B.3 term by term to the given differential equation

gives

∂(ρw3)

∂t
=
∂(ρu3)

∂t
+
∂(ρyωx)

∂t
,

∂(ρw3w1)

∂x
=
∂(ρ(u3 − yωx)u1)

∂x

=
∂(ρu3u1)

∂x
− ∂(ρu1yωx)

∂x

=
∂(ρu3u1)

∂x
− yωx

∂(ρu1)

∂x
,

∂(ρw3w2)

∂y
=
∂(ρ(u3 − yωx)(u2 + zωx))

∂y

=
∂(ρ(u3u2 + u3zωx − u2yωx − yzω2

x))

∂y

=
∂(ρu3u2)

∂y
+
∂(ρu3zωx)

∂y
− ∂(ρu2yωx)

∂y
− ∂(ρyzω2

x)

∂y

=
∂(ρu3u2)

∂y
+ zωx

∂(ρu3)

∂y
− yωx

∂(ρu2)

∂y
− ρu2ωx − yωx

∂(ρzωx)

∂y
− ρzω2

x ,

and

∂(ρw3w3)

∂z
=
∂(ρ(u3 − yωx)2)

∂z

=
∂(ρ(u3u3 − 2u3yωx + (yωx)

2))

∂z

=
∂(ρu3u3)

∂z
− 2yωx

∂(ρu3)

∂z
+ (yωx)

2∂ρ

∂z
.

Rewriting the differential equation with the transformed terms and noting term can-

cellation gives

∂(ρu3)

∂t
− yωx

∂ρ

∂t
+
∂(ρu3u1)

∂x
− yωx

∂(ρu1)

∂x
+
∂(ρu3u2)

∂y
+ zωx

∂(ρu3)

∂y

− yωx
∂(ρu2)

∂y
−����ρu2ωx − yωx

∂(ρzωx)

∂y
−HHHρzω2

x +
∂(ρu3u3)

∂z
− 2yωx

∂(ρu3)

∂z

+ (yωx)
2∂ρ

∂z
+
∂p

∂z
− τ3 = −���

1
2ρu2ωx −HHHρzω2

x .
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Rearranging the differential equation and intelligently grouping the yωx terms gives

∂(ρu3)

∂t
+
∂(ρu3u1)

∂x
+
∂(ρu3u2)

∂y
+
∂(ρu3u3)

∂z
+
∂p

∂z
− τ3 − yωx

[
∂ρ

∂t

+
∂(ρu1)

∂x
+
∂(ρu2)

∂y
+
∂(ρu3)

∂z

]
+ zωx

∂(ρu3)

∂y
− yωx

∂(ρzωx)

∂y

− yωx
∂(ρu3)

∂z
+ (yωx)

2∂ρ

∂z
= −ρu2ωx

where the terms in brackets are the left hand side of the continuity equation. Sub-

stituting B.5 and observing the resultant cancellations yields

∂(ρu3)

∂t
+
∂(ρu3u1)

∂x
+
∂(ρu3u2)

∂y
+
∂(ρu3u3)

∂z
+
∂p

∂z
− τ3− yωx

[
��

�
��∂(ρyωx)

∂z
−
Z
Z
Z
ZZ

∂(ρzωx)

∂y

]

+ zωx
∂(ρu3)

∂y
−
H
HHH

HHH

yωx
∂(ρzωx)

∂y
− yωx

∂(ρu3)

∂z
+
�
��

��
(yωx)

2∂ρ

∂z
= −ρu2ωx .

Combining the remaining ∂/∂y and ∂/∂z terms and using B.3 results in the final

form of the equation, i.e.,

∂(ρu3)

∂t
+
∂(ρu3w1)

∂x
+
∂(ρu3w2)

∂y
+
∂(ρu3w3)

∂z
+
∂p

∂z
− τ3 = −ρu2ωx . (B.11)

B.2.d. Final Integral Form

The integral form of the momentum conservation equations is obtained by ap-

plying the divergence theorem to the vector form of the derived equations. Combin-

ing B.9–B.11 results in

∂(ρ~U)

∂t
+∇ ·

(
ρ~U ⊗ ~W + p¯̄I− ¯̄τ

)
= ρ~fa (B.12)

where ~fa = [0, 0, u3ωx, −u2ωx, 0]T . Applying the divergence theorem to B.12 results

in the integral form of the equation, i.e.,

∂

∂t

∫
Ω

ρ~UdΩ +

∮
∂Ω

ρ~U
(
~W · n̂

)
dS =

∫
Ω

ρ~fa dΩ−
∮
∂Ω

p
(
¯̄I · n̂

)
dS

+

∮
∂Ω

(¯̄τ · n̂) dS .

(B.13)

236



B.3. Conservation of Energy

The integral form of the energy conservation equation in the rotating reference

frame is given by

∂

∂t

∫
Ω

ρErdΩ +

∮
∂Ω

ρI ~W · n̂dS =

∮
∂Ω

(
k∇T + ¯̄τ ~W

)
· n̂dS, (B.14)

where Er is the relative total energy and I is rothalpy. The relative total energy is

defined as [Blazek, 2005, p. 438]

Er = e+
1

2

∣∣∣ ~W ∣∣∣2 − 1

2

∣∣∣~V ∣∣∣2 , (B.15)

and the rothalpy is given by [Blazek, 2005, p. 439]

I = h+
1

2

∣∣∣ ~W ∣∣∣2 − 1

2

∣∣∣~V ∣∣∣2 . (B.16)

Applying the divergence theorem to B.14 results in the differential form of the equa-

tion,
∂ (ρEr)

∂t
+∇

(
ρI ~W

)
−∇

(
k∇T + ¯̄τ ~W

)
= 0 . (B.17)

Focus is first applied to the divergence of the product of shear stress and relative

velocity. Applying the chain rule, we obtain

∇
(

¯̄τ ~W
)

= ∇¯̄τ · ~W + ¯̄τ · ∇ ~W .

The second term on the right hand side of the above equation is equal to zero due to

the conservation of mass. Substituting Eq. B.3, and carrying out the algebra gives

∇
(

¯̄τ ~W
)

= ∇¯̄τ · ~U −∇¯̄τ · ~V

=
(
∇¯̄τ · ~U + ¯̄τ · ∇~U

)
−∇¯̄τ · ~V

= ∇
(

¯̄τ ~U
)

+ zωxτ2 − yωxτ3 .

Here, as before, τ2 = (∇¯̄τ) · ̂ and τ3 = (∇¯̄τ) · k̂. Substituting the above result back

into Eq. B.17 gives

∂ (ρEr)

∂t
+∇

(
ρI ~W

)
−∇

(
k∇T + ¯̄τ ~U

)
− zωxτ2 + yωxτ3 = 0 . (B.18)
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Next, the time derivative of the relative total energy is transformed. Substituting

Eq. B.3 into the definition of the relative total energy, Eq. B.15, gives

Er = e+
1

2

[
~W · ~W − ~V · ~V

]
= e+

1

2

[(
~U − ~V

)
·
(
~U − ~V

)
− ~V · ~V

]
= e+

1

2

[
~U · ~U + ~V · ~V − 2~U · ~V − ~V · ~V

]
= E − ~U · ~V .

Using the above result, the time derivative of the relative total energy can be written

as

∂ (ρEr)

∂t
=

∂

∂t

[
ρ
(
E − ~U · ~V

)]
=
∂ (ρE)

∂t
+
∂

∂t
[ρ (u2zωx − u3yωx)]

=
∂ (ρE)

∂t
+ zωx

∂ (ρu2)

∂t
− yωx

∂ (ρu3)

∂t
.

Finally, the velocity in the convective flux term is transformed. The rothalpy

can be written in terms of absolute velocities as

I = h+
1

2

(
~W · ~W − ~V · ~V

)
= H − ~U · ~V

= H + u2zωx − u3yωx

Applying the above result with Eq. B.3 to each component of the convective flux

term gives

∂ (ρIw1)

∂x
=

∂

∂x
[ρ (H + u2zωx − u3yωx)u1]

=
∂ (ρHu1)

∂x
+ zωx

∂ (ρu1u2)

∂x
− yωx

∂ (ρu1u3)

∂x
,
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∂ (ρIw2)

∂y
=

∂

∂y
[ρIu2 + ρIzωx]

=
∂

∂y
[ρ (H + u2zωx − u3yωx)u2 + ρ (H + u2zωx − u3yωx) zωx]

=
∂

∂y
[ρH (u2 + zωx)] + zωx

∂

∂y
[ρu2 (u2 + zωx)]− yωx

∂

∂y
[ρu3 (u2 + zωx)]

− ρu3u2ωx − ρu3zω
2
x

=
∂ (ρHw2)

∂y
+ zωx

∂ (ρu2w2)

∂y
− yωx

∂ (ρu3w2)

∂y
− ρu3u2ωx − ρu3zω

2
x ,

and

∂ (ρIw3)

∂z
=

∂

∂z
[ρIu3 − ρIyωx]

=
∂

∂z
[ρ (H + u2zωx − u3yωx)u3 − ρ (H + u2zωx − u3yωx) yωx]

=
∂

∂z
[ρH (u3 − yωx)] + zωx

∂

∂z
[ρu2 (u3 − yωx)]− yωx

∂

∂z
[ρu3 (u3 − yωx)]

+ ρu2u3ωx − ρu2yω
2
x

=
∂ (ρHw3)

∂z
+ zωx

∂ (ρu2w3)

∂z
− yωx

∂ (ρu3w3)

∂z
+ ρu2u3ωx − ρu2yω

2
x .

Substituting the transformed time and convective derivatives into Eq. B.18 and

combining like terms gives

∂ (ρE)

∂t
+
∂ (ρHw1)

∂x
+
∂ (ρHw2)

∂y
+
∂ (ρHw3)

∂z
−∇

(
k∇T + ¯̄τ ~U

)
+ zωx

[
∂ (ρu2)

∂t

+
∂ (ρu2w1)

∂x
+
∂ (ρu2w2)

∂y
+
∂ (u2w3)

∂z
− τ2 − ρu3ωx

]
− yωx

[
∂ (ρu3)

∂t

+
∂ (ρu3w1)

∂x
+
∂ (ρu3w2)

∂y
+
∂ (ρu3w3)

∂z
− τ3 + ρu2ωx

]
= 0 .

It is observed that the second and third set of bracketed terms in the above equation

are the partial forms of the y-momentum and z-momentum equations, respectively.

Substituting Eq. B.10 and Eq. B.11 into the above equation results in

∂ (ρE)

∂t
+∇

(
ρH ~W

)
−∇

(
k∇T + ¯̄τ ~U

)
+∇

(
p~V
)

= 0 . (B.19)

The integral form of the equation can be recovered by applying the divergence the-
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orem, giving

∂

∂t

∫
Ω

ρEdΩ +

∮
∂Ω

(
ρH ~W + p~V

)
· n̂dS =

∮
∂Ω

(
k∇T + ¯̄τ ~U

)
· n̂dS . (B.20)
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APPENDIX C

ANALYTIC NOZZLE SOLUTION

This appendix presents the analytic solution for a convergent-divergent nozzle.

The methodologies for both a purely subsonic flow and for a flow in which a normal

shock sits in the diffuser are given. Anderson [1995, see Ch. 7], was used as the

source for this material. Consult Fig. C.1 for the definitions of the variables used

herein.

t

Ae

M1

10
p

1A*

1A

2M

20
p

p
e

eM

e0
p

T
0

p
0

0
ρ

A
A(x)

2A*

x

Figure C.1: Defining the convergent-divergent nozzle. Normal shock quantities are

given in maroon, location given by dashed line.

It is assumed that the flow in the nozzle is steady, isentropic, and quasi-one-

dimensional. Using these assumptions the Navier–Stokes equations can be simplified

and analytically solved. Equation (C.1), which relates Mach number to only nozzle

area, is the result [Anderson, 1995, p. 286]. Equations (C.2)–(C.4)are then used to

find pressure, density, and temperature once the Mach number is known. A∗ in (C.1)
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is the critical area at which the flow is sonic, that is to say M = 1 when A/A∗ = 1.

(
A

A∗

)2

=
1

M2

[
2

γ + 1

(
1 +

γ − 1

2
M2

)](γ+1)/(γ−1)

. (C.1)

p

p0

=

(
1 +

γ − 1

2
M2

)−γ/(γ−1)

(C.2)

ρ

ρ0

=

(
1 +

γ − 1

2
M2

)−1/(γ−1)

(C.3)

T

T0

=

(
1 +

γ − 1

2
M2

)−1

(C.4)

The flow within the nozzle is determined by the choice of pe/p0. Ratios near

unity result in the flow being purely subsonic. Reducing the exit pressure results

in the flow becoming choked, with sonic flow at the throat and supersonic flow

downstream. In the choked case, the value of pe/p0 will determine whether the flow

downstream of the throat will be purely supersonic, or if a normal shock will be

formed to facilitate the necessary pressure rise to obtain the desired exit pressure.

C.1. Pure Subsonic Case

This section details the steps required to find the analytic nozzle solution for a

purely subsonic case. For the flow to be purely subsonic, the critical area must be

less than the throat area, At. In this case, the critical area is determined from the

specified pe/p0. The steps for finding the critical area and the analytic solution are

as follows:

1. Compute the exit Mach number, Me, using Eq. C.2, i.e.

pe
p0

=

(
1 +

γ − 1

2
M2

e

)−γ/(γ−1)

2. Compute the critical area using the known exit conditions and Eq. C.1, i.e.(
Ae
A∗

)2

=
1

M2
e

[
2

γ + 1

(
1 +

γ − 1

2
M2

e

)](γ+1)/(γ−1)

.
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3. Once the critical area is known, Eq. C.1–C.4 can be used directly to compute

the variation of the Mach number and the thermodynamic properties across

the nozzle.

C.2. Normal Shock Case

This section details the steps necessary to find the analytic solution for the case

in which the specified pe/p0 results in a normal shock sitting in the diffuser. For this

case we know the following:

• The shock location, found at A(xs) = A1, is decided by the value of pe/p0.

• The flow from the inlet to just upstream of the shock is isentropic, i.e. p01 = p0.

• The critical area upstream of the shock is constant and equal to the throat

area, A∗1 = At.

• The subsonic region downstream of the shock is isentropic such that p0e = p02 .

• The critical area downstream of the shock is similar to the critical area for the

pure subsonic case as it is a reference value that must be computed.

• Total temperature and mass flow rate are constant through a normal shock.

For the nozzle, the mass flow is given by [Anderson, 1995, p.359]

ṁ =
p0A

∗
√
T0

√
γ

R

(
2

γ + 1

)(γ+1)/(γ−1)

(C.5)

Finding the location of the shock is first step in computing the analytic solution.

The steps necessary to compute the shock location are:

1. Compute the exit Mach number using the fact that mass flow rate and total

temperature are constant across a normal shock. Equating (C.5) for just up-

stream and downstream of the shock gives p01A
∗
1 = p02A

∗
2. Using this equality,
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we can write
pe
p02

Ae
A∗2

=
pe
p01

Ae
A∗1

=
pe
p01

Ae
At

,

where the far right hand side is known from the given nozzle pressure ratio

and the geometry. The exit Mach number can then be found after multiply-

ing (C.1) and (C.2) together to replace the left hand side of the above equation,

i.e. [Anderson, 1995, p.360]

pe
p02

Ae
A∗2
≡ 1

Me

(
2

γ + 1

)(γ+1)/2(γ−1)(
1 +

γ − 1

2
M2

e

)−1/2

=
pe
p01

Ae
At

2. Once the exit Mach number is known, the total pressure ratio across the normal

shock can be computed using

p0,2

p0,1

=
p0,2

pe

pe
p0,1

,

where pe/p0,2 is given by Eq. C.2 with M = Me.

3. Using the total pressure ratio, the Mach number just upstream of the shock,

M1, is computed using the normal shock relation [Staff, 1953]

p0,2

p0,1

=

[
(γ + 1)M2

1

(γ − 1)M2
1 + 2

]γ/(γ−1) [
γ + 1

2γM2
1 − (γ − 1)

]1(γ−1)

(C.6)

4. The location of the shock, given by A1, can be directly computed using (C.1)

with M = M1 and A∗ = At.

Computing the analytic solution from the inlet to just upstream of the normal

shock is straightforward once the location of the shock is known. The Mach number in

the nozzle is given by (C.1), recalling that A∗1 = At. The thermodynamic properties

are then given by (C.2)–(C.4).

The critical area for the subsonic region downstream of the normal shock must

be computed before computing the analytic solution for this region. The critical

area is computed in the same manner as was used for the purely subsonic case.
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Equation (C.1) is used with the already computed exit Mach number to find the

critical area, namely(
Ae
A∗2

)2

=
1

M2
e

[
2

γ + 1

(
1 +

γ − 1

2
M2

e

)](γ+1)/(γ−1)

.

With the critical area known, the Mach number and thermodynamic properties can

then be computed using (C.1)–(C.4).

At this point we have an analytic solution that is based on two sets of total

conditions: p0 upstream of the shock, and p0e downstream of the shock. What we

desire is a solution based solely on the inlet total conditions. To achieve this, (C.2)

is multiplied by p02/p01 , and (C.3) is multiplied by ρ02/ρ01 . By equating mass flow

rates, the total pressure ratio can be expressed as

p02

p01

=
A∗1
A∗2

=
At
A∗2
.

Equation (C.3) is used to define the ratio of total densities:

ρ02

ρ01

=
ρ2

ρ1

(
1 + γ−1

2
M2

2

)1/(γ−1)(
1 + γ−1

2
M2

1

)1/(γ−1)

The ratio of static densities in the above equation can be replaced using a normal

shock relation [Staff, 1953] to yield

ρ02

ρ01

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

(
1 + γ−1

2
M2

2

)1/(γ−1)(
1 + γ−1

2
M2

1

)1/(γ−1)
.
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APPENDIX D

UNS3D INPUT FILES

The purpose of this appendix is to provide future users of UNS3D with a good

starting point for simulations of the same or similar geometry found in this work. One

input file is given per case, and any input parameters that were varied in this work

will be highlighted. The UNS3D User’s Manual [Cizmas, 2014] should be consulted

for the definitions of any input parameters found herein. Any input parameter not

specified is assumed to be assigned the default value by UNS3D.

One new addition to UNS3D that may or may not have been added to the user’s

manual at the time of this reading is the input parameter typlim opt. This param-

eter controls which definition of ε2 is used for the Venkatakrishnan based limiters.

The default value for the input parameter is 0. The acceptable values for typlim opt

for the limiters are summarized in Table D.1.

A sample batch file for an MPI job submission on the Ada HPC System at Texas

A&M is also given at the end of this appendix. Consult the supercomputing center’s

website1 for detailed information on submitting jobs to the desired HPC system.

1sc.tamu.edu
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Table D.1: UNS3D input parameters for the higher order limiter and their options.

typlim Name typlim opt Option Description

2 Venkatakrishnan

0 Original ε2 definition by Venkatakrishnan [1995] (Venka-ε1)

1 New ε2 definition by Wang [2000]

2 New ε2 definition by Park & Kim [2012] (Venka-ε2)

3 Dervieux 0 N/A

4 MLP
0 Original ε2 definition by Venkatakrishnan [1995] (MLP-ε1)

1 New ε2 definition by Park & Kim [2012] (MLP-ε2)
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D.1. Convergent-Divergent Nozzle

The input file given below is for the purely subsonic inviscid flow through a

convergent-divergent nozzle. The case is second-order accurate using the Venkatakr-

ishnan limiter, specifically Venka-ε1. Refer to Table D.1 for the appropriate input

parameters when changing the limiter type. The only necessary change to the bound-

ary conditions to generate a flow with a normal shock is to decrease the back pressure

(pback). For the normal shock case described in Section IV.1 (p. 59) use pback =

78142.9d0.

&cardf

title = "Inviscid Convergent-Divergent Nozzle"

tecplot_name = "plt/cdnozzle.plt"

dump_tecplot = T

/

&cardg

gridfile = "mesh/vol.mesh"

c2nfile = "mesh/c2n.def"

l2gfile = "mesh/loc2glob.dat_001"

/

&cardh

filedin = "out/none.out"

filedout = "out/run001.out"

/

&cardi

fileturin = "out/none.tur"

fileturout = "out/none.tur"

/

&cardk

/

&card0

inbc = 0

ioutbc = 1

ipex = 0

igeom = 1

ispet = 0

iwall = 3

deltafhat = 0.001

/

&card1

istep = 0
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iturm = 0

npseudotimesteps = 30000

mtime = 1

/

&card2

invis = T

lamin = T

iorder = 2

irhsm = 4

lsgg = 2

mstg = 4

typlim = 2

typlim_opt = 0

fluxtype = 1

/

&card2a

imp = F

/

&card3

cfl = 1.0d0

epss = 0.5

/

&card4

u0 = 0.2d0

/

&card5

ptot = 104190.585d0

ttot = 290.435d0

pback = 92729.6d0

/

&card6

pref = 101325.0d0

tref = 288.15d0

scale = 1.0d0

/

&card7

/

&card8

/

&card9

intev_freq = 1000

res_freq = 200

itersave = 1000

intev_freq_pt = 1000

res_freq_pt = 200
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/

&card10

/

&cardforced

/

&cardrom

/

&vortex

/

&cardprecon

/

D.2. Supersonic NACA 0012

The input file given below was used to compute the supersonic flow around

a NACA 0012 airfoil section. This particular simulation used the MLP-ε1 limiter

with the default value of the constant (venka c = 5.0d0). Refer to Table D.1 when

setting up simulations with different limiters and limiter options.

The major difference between this input file and all of the other input files in

this appendix is the selection of the inlet boundary condition. The supersonic inlet

condition (inbc = 5) is used here instead of the standard subsonic inlet condition.

&cardf

title = "Supersonic NACA 0012"

tecplot_name = "plt/naca.plt"

dump_tecplot = T

dump_yplus = F

rsdfile = "txt/001.dat"

/

&cardg

gridfile = "mesh/vol.mesh"

c2nfile = "mesh/c2n.def"

l2gfile = "mesh/loc2glob.dat_002"

/

&cardh

filedin = "out/run001.out"

filedout = "out/run001.out"

/

&cardi

fileturin = "out/none.tur"
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fileturout = "out/none.tur"

/

&cardk

/

&card0

noblade = 1

inbc = 5 ! supersonic inlet bc

ioutbc = 1

ipex = 0

igeom = 1

ispet = 0

leak_outlet = F

iwall = 3

deltafhat = 0.001

/

&card1

istep = 0

iturm = 0

npseudotimesteps = 10000

mtime = 1

iramp0 = 0

iramp = 1

timestep = 0

iramp0_leak = 0

iramp_leak = 1

/

&card2

invis = T

lamin = T

iorder = 2

irhsm = 4

lsgg = 2

mstg = 4

typlim = 4

typlim_opt = 0

venka_c = 5.0d0 ! default value

fluxtype = 1

/

&card2a

imp = .false.

/

&card3

cfl = 0.8d0

epss = 0.5

/
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&card4

u0 = 2.0d0

/

&card5

ptot = 792812.3d0

ttot = 518.9d0

pback = 101325.0d0

/

&card6

pref = 101325.0d0

tref = 288.15d0

scale = 1.0d0

/

&card7

/

&card8

/

&card9

intev_freq = 500

res_freq = 50

itersave = 1000

intev_freq_pt = 500

res_freq_pt = 50

ires = 1

MonitorMaxMach = F

MaxMachThreshold = 2.5

reset_iter_counter = T

q_corrctn_limit = 1.0d-14

q_corrctn_ratio = 14

/

&card10

/

&cardforced

/

&cardrom

/

&vortex

/

&cardprecon

/
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D.3. Turbulent Flat Plate

The input file given below was used to compute the subsonic, turbulent flow

over a zero pressure gradient flat plate. This particular input file is for the second-

order accurate portion of the simulation. The input file can be modified for the

first-order start simulation by changing the value of iorder from 2 to 1, and by

changing npseudotimesteps to 1000.

&cardf

title = "Turbulent Flat Plate"

tecplot_name = "plt/fp.plt"

dump_tecplot = T

dump_yplus = F

dump_v3 = F

rsdfile = "txt/fp.002.dat"

case_name = "yp/wc2"

relative_V = F

/

&cardg

gridfile = "mesh/vol.mesh"

c2nfile = "mesh/c2n.def"

l2gfile = "mesh/loc2glob.dat_008"

/

&cardh

filedin = "out/fp001.out"

filedout = "out/fp002.out"

/

&cardi

fileturin = "out/fp001.tur"

fileturout = "out/fp002.tur"

/

&cardk

/

&card0

noblade = 1

inbc = 0

ioutbc = 1

ipex = 0

igeom = 1

ispet = 0

leak_outlet = F

iwall = 3

deltafhat = 0.001
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/

&card1

istep = 1

iturm = 1

npseudotimesteps = 150000

mtime = 1

iramp0 = 0

iramp = 1

timestep = 0

iramp0_leak = 0

iramp_leak = 1

/

&card2

invis = F

lamin = F

iorder = 2

irhsm = 4

lsgg = 2

mstg = 4

typlim = 2

typlim_opt = 0

fluxtype = 1

/

&card2a

imp = .false.

/

&card3

cfl = 1.0d0

epss = 0.5

/

&card4

u0 = 0.2d0

tintens = 0.01d0

tlength = 0.1d0

/

&card5

ptot = 104190.471d0

ttot = 290.455d0

pback = 101325.0d0

/

&card6

pref = 101325.0d0

tref = 288.15d0

scale = 1.0d0

/
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&card7

/

&card8

/

&card9

debug = F

echo = F

intev_freq = 5000

res_freq = 500

itersave = 10000

intev_freq_pt = 5000

res_freq_pt = 500

ires = 1

MonitorMaxMach = .true.

MaxMachThreshold = 2.5

reset_iter_counter = F

Force_l = .true.

q_corrctn_limit = 1.0d-9

/

&card10

resrlx(6) = 1.0d0

resrlx(7) = 1.0d0

/

&cardforced

/

&cardrom

/

&vortex

/

&cardprecon

/
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D.4. Goldman Turbine Vane

The input file given in this section was used to compute the baseline flow for the

results presented in Chapter V. This particular input file is the final restart input

file needed to achieve convergence on the medium grid. As such, this input file is

step up for steady, second-order, turbulent flow. Consult the text of Chapter V

for a description of the solution strategy, which included both inviscid and laminar

simulations for the coarse and medium grids.

&cardf

title = "Rotor 67: Turbulent, IPEX=0"

tecplot_name = "plt/006.plt"

dump_tecplot = T

dump_yplus = T

rsdfile = "txt/006.dat"

case_name = "yp/LR67"

relative_V = F

/

&cardg

gridfile = "mesh/vol.mesh"

c2nfile = "mesh/c2n.def"

XleXteRte = "mesh/XleXteRte"

l2gfile = "mesh/loc2glob.dat_040"

ijkfile = "mesh/outlet_ij.def"

/

&cardh

filedin = "out/r005.out"

filedout = "out/r006.out"

/

&cardi

fileturin = "out/sst005.out"

fileturout = "out/sst006.out"

/

&cardk

/

&card0

noblade = 36

inbc = 0

ioutbc = 1

ipex = 1

igeom = 0

ispet = 0

256



leak_outlet = F

iwall = 3

deltafhat = 0.001

/

&card1

istep = 1

iturm = 1

npseudotimesteps = 80000

mtime = 1

iramp0 = 0

iramp = 1

timestep = 0

iramp0_leak = 0

iramp_leak = 1

/

&card2

invis = F

lamin = F

iorder = 2

irhsm = 4

lsgg = 0

mstg = 4

typlim = 3

fluxtype = 3

preconditioned = F

/

&card2a

imp = .false.

/

&card3

cfl = 0.3d0

epss = 0.5

dtimedim = 1.0d0

/

&card4

u0 = 0.212d0

tintens = 0.05d0

tlength = 3.8d-5

/

&card5

ptot = 104548.744d0

ttot = 290.891d0

pback = 65583.427d0

twall = 288.000d0

/
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&card6

pref = 101325.0d0

tref = 288.3d0

scale = 1.0d0

/

&card7

/

&card8

/

&card9

debug = F

echo = F

intev_freq = 250

res_freq = 50

itersave = 10000

intev_freq_pt = 250

res_freq_pt = 50

ires = 1

MonitorMaxMach = .true.

MaxMachThreshold = 2.5d0

reset_iter_counter = F

Force_l = .true.

q_corrctn_limit = 1.0d-9

q_corrctn_ratio = 10

/

&card10

resrlx(1) = 1.0d0

resrlx(2) = 1.0d0

resrlx(3) = 1.0d0

resrlx(4) = 1.0d0

resrlx(5) = 1.0d0

resrlx(6) = 0.5d0

resrlx(7) = 0.5d0

/

&cardforced

def_type = "none"

cascade = F

/

&cardrom

/

&vortex

/

&cardprecon

eps_minur = 0.5d0

/
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D.5. NASA Rotor 67

This section includes samples of the input files used for the simulations presented

in Chapters VI and VII. The input files given are for one specific simulation. Details

on how to modify the input file for other operating points or numerical tests are

given at the end of the input file.

D.5.a. Inviscid Anlysis

This section first presents a typical input file for the second-order, inviscid sim-

ulation of Rotor 67. Lastly, the outlet pressure boundary conditions and a summary

of the pertinent results are tabulated for the compressor map speed line operating

points.

The Dervieux limiter was used for all but the cases associated with the higher-

order limiter tests. Roe with the Harten entropy fix was used to compute the con-

vective fluxes. Refer back to Section VI.4 (p. 141) for a more detailed description of

the solution strategy.

D.5.a.i. Initial Operating Point

The input file given in this section was used to compute the second-order solution

for the initial operating point presented in Section VI.4. This particular input file

is the first of two, and requires the first-order solution restart file (I0L.out). The

second input file restarts the solution computed by the given input file. The only

differences between the input files, other than modifying the restart file parameters,

are:

• Increasing npseudotimesteps from 500 to 55000

• Increasing cfl from 0.6d0 to 0.75d0

• Changing reset_iter_counter from T to F
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The same input file can be used to compute the first-order solution by setting: iorder

to 1, ipex to 0, and istep to 0.

&cardf

title = "Rotor 67: Inviscid, IPEX=0"

tecplot_name = "plt/O2.plt"

dump_tecplot = T

dump_yplus = F

rsdfile = "txt/004.dat"

case_name = "yp/r67"

relative_V = T

/

&cardg

gridfile = "mesh/vol.mesh"

c2nfile = "mesh/c2n.def"

XleXteRte = "mesh/XleXteRte"

l2gfile = "mesh/loc2glob.dat_012"

ijkfile = "mesh/outlet_ij.def"

/

&cardh

filedin = "out/I0L.out"

filedout = "out/r004.out"

/

&cardi

fileturin = "out/none.out"

fileturout = "out/none.out"

/

&cardk

/

&card0

noblade = 22

inbc = 0

ioutbc = 1

ipex = 1

igeom = 0

ispet = 0

leak_outlet = F

iwall = 3

deltafhat = 0.001

/

&card1

istep = 1

iturm = 0

npseudotimesteps = 5000

mtime = 1
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iramp0 = 0

iramp = 1

timestep = 0

iramp0_leak = 0

iramp_leak = 1

/

&card2

invis = T

lamin = T

iorder = 2

irhsm = 4

lsgg = 2

mstg = 4

typlim = 3

fluxtype = 1

/

&card2a

imp = F

/

&card3

cfl = 0.6d0

epss = 0.5

dtimedim = 1.0d0

/

&card4

u0 = 0.59d0

/

&card5

ptot = 124452.598d0

ttot = 305.742d0

pback = 124452.598d0

/

&card6

pref = 101325.0d0

tref = 288.3d0

scale = 1.0d0

/

&card7

/

&card8

omegax = 16520.0d0

/

&card9

debug = F

echo = F
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intev_freq = 250

res_freq = 25

itersave = 500

intev_freq_pt = 250

res_freq_pt = 25

ires = 1

MonitorMaxMach = T

MaxMachThreshold = 2.5d0

reset_iter_counter = T

Force_l = T

q_corrctn_limit = 1.0d-9

q_corrctn_ratio = 10

/

&card10

/

&cardforced

def_type = "none"

cascade = F

/

&cardrom

/

&vortex

init_vortex = F

/

&cardprecon

eps_minur = 0.1d0

/

D.5.a.ii. Compressor Map Speed Line

The primary modification to the input file to compute a different operating

point was to change the outlet static pressure in the second-order input file given in

the previous sub-section. The solution for each operating point would be restarted

from the closest completed simulation, so the correct restart file (filedin) would

also need to be supplied in the input file. Table A.1 (p. 218) lists the outlet static

pressure (at the hub) used for each operating point simulated. The static pressures

have been normalized by the inlet total pressure, p01 = 124452.598 Pa.
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D.5.b. Turbulent Analysis: Rubbing

This section contains the input file for the second-order accurate, turbulent

simulation of Rotor 67 with no tip clearance flow. The input file for the initial

operating point for case R67TR-b is presented first, and is followed by instructions

on how to set case R67TR-a and generate speed lines for both cases. Refer to

Section VII.2 for a description of the cases and solution strategies. Assume code

default values for variables not provided in the input file.

&cardf

title = "Rotor 67: Turbulent/Rubbing/Initial Point"

tecplot_name = "plt/001.plt"

dump_tecplot = T

dump_yplus = T

dump_v3 = F

rsdfile = "txt/001.dat"

case_name = "yp/R67"

relative_V = T

/

&cardg

gridfile = "mesh/vol.mesh"

c2nfile = "mesh/c2n.def"

XleXteRte = "mesh/XleXteRte"

l2gfile = "mesh/loc2glob.dat_040"

ijkfile = "mesh/outlet_ij.def"

/

&cardh

filedin = "../F002/out/r001.out"

filedout = "out/r001.out"

/

&cardi

fileturin = "../F002/out/sst001.out"

fileturout = "out/sst001.out"

/

&cardk

/

&card0

noblade = 22

inbc = 0

ioutbc = 1

ipex = 1

igeom = 0
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ispet = 0

leak_outlet = F

iwall = 3

deltafhat = 0.001

/

&card1

istep = 1

iturm = 1

npseudotimesteps = 200000

mtime = 1

iramp0 = 0

iramp = 1

timestep = 0

iramp0_leak = 0

iramp_leak = 1

/

&card2

invis = F

lamin = F

iorder = 2

irhsm = 4

lsgg = 2

mstg = 4

typlim = 3

typlim_opt = 0

fluxtype = 1

/

&card2a

imp = .false.

/

&card3

cfl = 0.6d0

epss = 0.5

dtimedim = 1.0d0

/

&card4

u0 = 0.55d0

tintens = 0.03d0

tlength = 1.04d-3

/

&card5

ptot = 124452.598d0

ttot = 305.742d0

pback = 112000.0d0

/
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&card6

pref = 101325.0d0

tref = 288.3d0

scale = 1.0d0

/

&card7

/

&card8

omegax = 16520.0d0

xrle = -1.374d-2

xrte = 9.365d-2

/

&card9

debug = F

echo = F

intev_freq = 200

res_freq = 10

itersave = 5000

intev_freq_pt = 200

res_freq_pt = 10

ires = 1

MonitorMaxMach = T

MaxMachThreshold = 2.5d0

reset_iter_counter = T

Force_l = T

q_corrctn_limit = 1.0d-9

q_corrctn_ratio = 10

/

&card10

resrlx(1) = 1.0d0

resrlx(2) = 1.0d0

resrlx(3) = 1.0d0

resrlx(4) = 1.0d0

resrlx(5) = 1.0d0

resrlx(6) = 0.75d0

resrlx(7) = 0.75d0

/

&cardforced

def_type = "none"

cascade = F

/

&cardrom

/

&vortex

init_vortex = F
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/

&cardprecon

eps_minur = 0.4d0

/

The same input file from above can be used with rubbing case R67TR-a by

removing the input variables xrle and xrte, from &card8, so that the default values

are used by UNS3D.

D.5.b.i. Compressor Map Speed Line

The compressor map speed lines for each case were generated by modifying the

back pressure in the above input file. Consult Table A.2 to find the hub outlet

back pressures used for case R67TR-a. Table A.3 provides the boundary condition

schedule for case R67TR-b.

D.5.c. Turbulent Analysis: Clearance

This section contains the input file for the second-order accurate, turbulent

simulation of Rotor 67 with a modeled tip clearance. The input file for the initial

operating point is given first. Additional details on computing the flow using different

gradients, higher-order limiters are given after the input file is presented. Finally,

instructions on computing the speed line are given. Assume default values for all

variables not explicitly defined.

&cardf

title = "Rotor 67: Turbulent/Initial Point"

tecplot_name = "plt/002.plt"

dump_tecplot = T

dump_yplus = T

dump_v3 = F

rsdfile = "txt/002.dat"

case_name = "yp/R67"

relative_V = T

/

&cardg

gridfile = "mesh/vol.mesh"
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c2nfile = "mesh/c2n.def"

XleXteRte = "mesh/XleXteRte"

l2gfile = "mesh/loc2glob.dat_040"

ijkfile = "mesh/outlet_ij.def"

/

&cardh

filedin = "out/r001.out"

filedout = "out/r002.out"

/

&cardi

fileturin = "out/sst001.out"

fileturout = "out/sst002.out"

/

&cardk

/

&card0

noblade = 22

inbc = 0

ioutbc = 1

ipex = 1

igeom = 0

ispet = 0

leak_outlet = F

iwall = 3

deltafhat = 0.001

/

&card1

istep = 1

iturm = 1

npseudotimesteps = 100000

mtime = 1

iramp0 = 0

iramp = 1

timestep = 0

iramp0_leak = 0

iramp_leak = 1

/

&card2

invis = F

lamin = F

iorder = 2

irhsm = 4

lsgg = 2 ! LSQR

mstg = 4

typlim = 3 ! Dervieux
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typlim_opt = 0

fluxtype = 1

/

&card2a

imp = .false.

/

&card3

cfl = 0.6d0

epss = 0.5

dtimedim = 1.0d0

/

&card4

u0 = 0.55d0

tintens = 0.03d0

tlength = 1.04d-3

/

&card5

ptot = 124452.598d0

ttot = 305.742d0

pback = 116525.0d0

/

&card6

pref = 101325.0d0

tref = 288.3d0

scale = 1.0d0

/

&card7

/

&card8

omegax = 16520.0d0

xrle = -1.374d-2

xrte = 9.365d-2

/

&card9

debug = F

echo = F

intev_freq = 200

res_freq = 10

itersave = 5000

intev_freq_pt = 200

res_freq_pt = 10

ires = 1

MonitorMaxMach = T

MaxMachThreshold = 2.5d0

reset_iter_counter = F
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Force_l = T

q_corrctn_limit = 1.0d-9

q_corrctn_ratio = 10

/

&card10

resrlx(1) = 1.0d0

resrlx(2) = 1.0d0

resrlx(3) = 1.0d0

resrlx(4) = 1.0d0

resrlx(5) = 1.0d0

resrlx(6) = 0.75d0

resrlx(7) = 0.75d0

/

&cardforced

def_type = "none"

cascade = F

/

&cardrom

/

&vortex

init_vortex = F

/

&cardprecon

eps_minur = 0.4d0

/

Green-Gauss or basic least-squares may be used for gradient evaluation by

switching lsgg to 0 or 1, respectively. Consult Table D.1 on how to change the

input parameters typlim and typlim_opt to use the different limiters.

D.5.c.i. Compressor Map Speed Line

The above input file can be used to compute the two speed lines that were

presented in Section VII.3. The gradient method is changed through the parameter

lsgg, as mentioned just above. The additional operating points are found using the

outlet boundary schedules tabulated in Tables A.4 and A.5.

D.6. Ada HPC System Batch File Example for MPI

#BSUB -J R67_SC07_P1R001 # job name
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#BSUB -L /bin/bash # always here

#BSUB -W 65:00 # sets wallclock limit (65 hours)

#BSUB -n 40 # assigns 8 cpus/cores for execution.

#BSUB -R "span[ptile=20]" # assigns 8 cores per node.

#BSUB -M 5000 # sets to 5,000MB the per process

#BSUB -R "rusage[mem=1000]" #

#BSUB -R "select[nxt]" # node-type

#BSUB -o stdout1.%J # directs the job’s standard output to

# stdout1.jobid

cd $LS_SUBCWD # change to directory where job was submitted

module load intel # loads the INTEL software tool chain

mpirun -np 40 ./uns3d input.007 > $LS_SUBCWD/uns3d.input07 # execute
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APPENDIX E

TURBOMACHINERY GRID GENERATOR INPUT FILES

This appendix contains the namelist format input files for the turbomachinery

grid generator known as TGG, which was presented in Chapter III. The description

of every variable and the necessary ancillary files for the grid generator was given in

Appendix F. The units (e.g. feet or meters) for each case will be indicated in the

preamble of each subsequent subsection.

E.1. Turbine Vane

This section contains the TGG input files for the three turbine vane grids dis-

cussed in Chapter V. Refer to Appendix F for the description of the variables given.

Any variable not given is assumed to have the code assigned default value. The file

names for the coarse, medium, and fine grids are, respectively, GT00.nml, GT01.nml,

and GT02.nml. The geometry and the grid spacings given in each input file are in

feet.

E.1.a. Coarse Grid

&GRID_SIZE

IMAX1 = 111,

JMAX1 = 21,

KMAX = 50,

KBLH = 2,

KBLT = 15,

KBLB = 15,

IMAX2 = 10,

JMAX2 = 19,

IMAX3 = 14,

JMAX3 = 9,

JMAX4 = 23,

JOFREEZE = 12,

I2D = 15,

K2D = 5,
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/

&GRID_DIMS

S1MAX = 0.01d0

DSMIN = 2.4d-5

DSMAX = 4.0d-3

USE_DSMAX = F,

DSRA = 0.452d0

DSLE = 2.0d-3

DSTE = 8.0d-5

DSHUB = 3.6d-5

DSTIP = 3.6d-5

DELTAH = 1.15d-3

DELTAT = 6.0d-4

DELTAB = 6.0d-4

/

&GRID_CTRL

KCLUSS = 1,

B1_EPS1 = -6.0d0,

B1_EPS2 = 0.0d0,

B1_ALPHA = 1.0d0,

OMEGA = 0.5d0,

ITER = 500

PMAG = 0.7d0,

QMAG = 0.8d0,

SINGDIST = 2.0d-3, 2.0d-3

IROT = 108, 108

/

&CAP_GRID

HUBCAP = F,

TIPCAP = F,

dscap = 3.28084d-3,

dscap = 2.5d-3,

dsclus = 4.0625d-6

jc1max = 11,

jc2max = 35,

kcmax = 70,

iadj_le = 25,

iadj_te = 25,

citer = 1000,

citerl = 1,

avg_corner = 0.5d0,

omegax = 0.3d0,

rext = 5.0d0,

sext = 8.0d0,

/
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&PAD_GRID

inletH = T

outletH = T

ilmax = 17

irmax = 25

/

&BOUNDS

XBH = -0.65d0, -0.045d0, 0.17d0, 0.8d0

RBH = 0.65d0, 0.65d0, 0.65d0, 0.65d0

XBT = -0.65d0, -0.045d0, 0.17d0, 0.8d0

RBT = 0.84d0, 0.84d0, 0.84d0, 0.84d0

/

&CTRLS

CONFIG = 2,

BLADEFILE = "input/gold.dat",

FLOWPATH = "input/gold.path",

UGRID = "vol.ugrid",

TECFILE = "vol.plt",

XTRANS = 0.0d0

ROTATING = F,

VANE = T,

DEBUG = F,

DBG_PLT(1) = F,

DBG_PLT(2) = F,

DBG_PLT(3) = F,

DBG_PLT(4) = F,

DBG_PLT(5) = F,

DBG_PLT(6) = F,

DBG_PLT(8) = F,

/

SINGMAG

2.000000 1.000000 1.000000 5.000000

2.000000 1.00000 1.000000 5.0000

SINGFADE

0.300000 0.300000 0.300000 0.300000

0.3000000 0.300000 0.300000 0.300000

E.1.b. Medium Grid

&GRID_SIZE

IMAX1 = 221,

JMAX1 = 41,

KMAX = 100,

KBLH = 2,
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KBLT = 15,

KBLB = 15,

IMAX2 = 20,

JMAX2 = 35,

IMAX3 = 25,

JMAX3 = 15,

JMAX4 = 45,

JOFREEZE = 25,

I2D = 15,

K2D = 5,

/

&GRID_DIMS

S1MAX = 0.01d0

DSMIN = 1.2d-5

DSMAX = 4.0d-3

USE_DSMAX = F,

DSRA = 0.452d0

DSLE = 1.0d-3

DSTE = 4.0d-5

DSHUB = 1.8d-5

DSTIP = 1.8d-5

DELTAH = 1.15d-3

DELTAT = 6.0d-4

DELTAB = 6.0d-4

/

&GRID_CTRL

KCLUSS = 1,

B1_EPS1 = -3.0d0,

B1_EPS2 = 0.0d0,

B1_ALPHA = 1.0d0,

OMEGA = 0.5d0,

ITER = 500

PMAG = 0.7d0,

QMAG = 0.4d0,

SINGDIST = 1.5d-3, 1.2d-3

IROT = 215, 215

/

&CAP_GRID

HUBCAP = F,

TIPCAP = F,

dscap = 3.28084d-3,

dscap = 2.5d-3,

dsclus = 4.0625d-6

jc1max = 11,

jc2max = 35,
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kcmax = 70,

iadj_le = 25,

iadj_te = 25,

citer = 1000,

citerl = 1,

avg_corner = 0.5d0,

omegax = 0.3d0,

rext = 5.0d0,

sext = 8.0d0,

/

&PAD_GRID

inletH = T

outletH = T

ilmax = 35

irmax = 50

/

&BOUNDS

XBH = -0.65d0, -0.045d0, 0.17d0, 0.8d0

RBH = 0.65d0, 0.65d0, 0.65d0, 0.65d0

XBT = -0.65d0, -0.045d0, 0.17d0, 0.8d0

RBT = 0.84d0, 0.84d0, 0.84d0, 0.84d0

/

&CTRLS

CONFIG = 2,

BLADEFILE = "input/gold.dat",

FLOWPATH = "input/gold.path",

UGRID = "vol.ugrid",

TECFILE = "vol.plt",

XTRANS = 0.0d0

ROTATING = F,

VANE = T,

DEBUG = F,

DBG_PLT(1) = F,

DBG_PLT(2) = F,

DBG_PLT(3) = F,

DBG_PLT(4) = F,

DBG_PLT(5) = F,

DBG_PLT(6) = F,

DBG_PLT(8) = F,

/

SINGMAG

2.000000 1.000000 1.000000 2.000000

2.000000 1.00000 1.000000 3.00000

SINGFADE

0.300000 0.300000 0.300000 0.300000
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0.3000000 0.300000 0.300000 0.300000

E.1.c. Fine Grid

&GRID_SIZE

IMAX1 = 443,

JMAX1 = 81,

KMAX = 200,

KBLH = 2,

KBLT = 15,

KBLB = 15,

IMAX2 = 40,

JMAX2 = 70,

IMAX3 = 50,

JMAX3 = 30,

JMAX4 = 91,

JOFREEZE = 50,

I2D = 15,

K2D = 5,

/

&GRID_DIMS

S1MAX = 0.01d0

DSMIN = 6.0e-6

DSMAX = 4.0d-3

USE_DSMAX = F,

DSRA = 0.452d0

DSLE = 5.0d-4

DSTE = 2.0d-5

DSHUB = 9.0d-6

DSTIP = 9.0d-6

DELTAH = 1.15d-3

DELTAT = 6.0d-4

DELTAB = 6.0d-4

/

&GRID_CTRL

KCLUSS = 1,

B1_EPS1 = -15.0d0,

B1_EPS2 = 0.0d0,

B1_ALPHA = 1.0d0,

OMEGA = 0.5d0,

ITER = 1000

PMAG = 0.5d0,

QMAG = 0.4d0,

SINGDIST = 3.0d-4, 3.0d-4
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IROT = 430, 430

/

&CAP_GRID

HUBCAP = F,

TIPCAP = F,

dscap = 3.28084d-3,

dscap = 2.5d-3,

dsclus = 4.0625d-6

jc1max = 11,

jc2max = 35,

kcmax = 70,

iadj_le = 25,

iadj_te = 25,

citer = 1000,

citerl = 1,

avg_corner = 0.5d0,

omegax = 0.3d0,

rext = 5.0d0,

sext = 8.0d0,

/

&PAD_GRID

inletH = T

outletH = T

ilmax = 70

irmax = 100

/

&BOUNDS

XBH = -0.65d0, -0.045d0, 0.17d0, 0.8d0

RBH = 0.65d0, 0.65d0, 0.65d0, 0.65d0

XBT = -0.65d0, -0.045d0, 0.17d0, 0.8d0

RBT = 0.84d0, 0.84d0, 0.84d0, 0.84d0

/

&CTRLS

CONFIG = 2,

BLADEFILE = "input/gold.dat",

FLOWPATH = "input/gold.path",

UGRID = "vol.ugrid",

TECFILE = "vol.plt",

XTRANS = 0.0d0

ROTATING = F,

VANE = T,

DEBUG = F,

DBG_PLT(1) = F,

DBG_PLT(2) = F,

DBG_PLT(3) = F,
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DBG_PLT(4) = F,

DBG_PLT(5) = F,

DBG_PLT(6) = F,

DBG_PLT(8) = F,

/

SINGMAG

2.000000 1.000000 1.000000 2.000000

3.000000 1.00000 1.000000 4.00000

SINGFADE

0.200000 0.300000 0.300000 0.200000

0.2000000 0.200000 0.200000 0.200000

E.2. Rotor 67

This section contains the TGG input files for all of the NASA Rotor 67 cases

presented in Chapters VI and VII. Refer to Appendix F for the description of the

variables given. Any variable not given is assumed to have the code assigned default

value. The geometry and the grid spacings given in each input file are in feet.

E.2.a. Inviscid Rotor 67

&GRID_SIZE

IMAX1 = 131,

JMAX1 = 17,

KMAX = 36,

IMAX2 = 17,

JMAX2 = 21,

IMAX3 = 19,

JMAX3 = 25,

JMAX4 = 25,

JOFREEZE = 3,

I2D = 15,

K2D = 15,

/

&GRID_DIMS

S1MAX = 0.015d0

DSMIN = 5.0d-4

DSMIN = 1.0d-3

DSMAX = 4.0d-3

USE_DSMAX = F,

DSRA = -0.47d0
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DSLE = 3.75e-4

DSTE = 3.0d-4

DSHUB = 2.8e-3

DSTIP = 2.8e-3

/

&GRID_CTRL

B1_EPS1 = -3.0d0,

B1_EPS2 = 0.0d0,

B1_ALPHA = 1.0d0,

OMEGA = 0.5d0,

OMEGA = 0.4d0,

ITER = 2500,

PMAG = 0.3d0,

QMAG = 1.d0,

SINGDIST = 3.0d-3, 3.0d-3

IROT = 4, 4

/

&CAP_GRID

HUBCAP = F,

TIPCAP = F,

dscap = 3.28084d-3,

dsclus = 4.0d-5,

jc1max = 9,

jc2max = 3,

kcmax = 20,

iadj_le = 20,

iadj_te = 20,

citer = 600,

citerl = 1,

avg_corner = 0.7d0,

omegax = 0.01d0,

rext = 10.0d0,

sext = 0.5d0,

/

&PAD_GRID

inletH = T

outletH = T

ilmax = 30

irmax = 45

/

&BOUNDS

XBH = -1.5d0, -0.05d0, 0.356d0, 1.775d0

RBH = 0.20d0, 0.3d0, 0.38d0, 0.38d0

XBT = -0.2d0, -0.01d0, 0.31d0, 0.5d0
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XBT = -1.5d0, -0.01d0, 0.31d0, 1.775d0

RBT = 0.842d0, 0.842d0, 0.842d0, 0.81d0

/

&CTRLS

CONFIG = 2,

BLADEFILE = "input/geom.dat",

FLOWPATH = "input/r67_ext.path",

UGRID = "vol.ugrid",

TECFILE = "vol.plt",

XTRANS = 0.0d0

FSURF = -4,

ROTATING = T,

VANE = F,

DEBUG = F,

DBG_PLT(1) = F,

DBG_PLT(2) = F,

DBG_PLT(3) = F,

DBG_PLT(4) = F,

DBG_PLT(5) = F,

DBG_PLT(6) = F,

DBG_PLT(8) = F,

/

SINGMAG

3.000000 3.000000 3.000000 3.000000

3.000000 3.000000 3.000000 3.00000

SINGFADE

0.7500000 0.7500000 0.7500000 0.7500000

0.200000 0.3000000 0.2000000 0.2000000

E.2.b. Turbulent Rotor 67: Rubbing

&GRID_SIZE

IMAX1 = 155,

IMLE = 25

IMTE = 15,

JMAX1 = 75,

KMAX = 135,

IMAX2 = 11,

JMAX2 = 27,

IMAX3 = 11,

JMAX3 = 27,

JMAX4 = 25,

JOFREEZE = 30,

I2D = 15,
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K2D = 15,

ICLUSB = T,

IMCLUSB = 15,

IC_LEFT = 33,

IC_RIGHT = 41,

/

&GRID_DIMS

S1MAX = 2.0d-2

DSMIN = 5.15625d-5

DSMAX = 1.5d-4

USE_DSMAX = F,

DSRA = -0.47d0

DSLE = 2.5d-5

DSTE = 1.0d-4

DSHUB = 6.0d-6

DSTIP = 3.0d-6

DELTAH = 1.8d-3

DELTAT = 1.8d-3

DELTAB = 6.0d-4

VARY_Y1 = T,

YPLUS = 2.0d0

EVEN_LETE = T,

LETE_SPAN = 0.00, 0.5d0, 1.0d0

DSLE_AF = 6.0d-3, 4.75d-3, 3.125d-3

DSTE_AF = 5.5d-3, 5.0d-3, 3.1d-3

/

&GRID_CTRL

KCLUSS = 1,

B1_EPS1 = -15.0d0,

B1_EPS2 = 0.0d0,

B1_ALPHA = 1.0d0,

OMEGA = 0.6d0,

ITER = 5000

PMAG = 0.2d0,

QMAG = 0.55d0 !0.55d0,

SINGDIST = 0.0015d0, 0.0035d0

IROT = 9, 9

INEX_EQUALDT = T

/

&CAP_GRID

HUBCAP = F,

TIPCAP = F,

dscap = 2.5d-3,

dsclus = 4.0625d-6

jc1max = 5,
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jc2max = 17,

kcmax = 70,

iadj_le = 20,

iadj_te = 20,

citer = 100,

citerl = 1,

avg_corner = 0.5d0,

omegax = 0.3d0,

rext = 1.0d0,

sext = 10.0d0,

/

&PAD_GRID

inletH = T

outletH = T

ilmax = 35

irmax = 35

/

&BOUNDS

XBH = -1.5d0, -0.05d0, 0.356d0, 1.775d0

RBH = 0.20d0, 0.3d0, 0.38d0, 0.38d0

XBT = -1.5d0, -0.01d0, 0.31d0, 1.775d0

RBT = 0.842d0, 0.842d0, 0.842d0, 0.81d0

/

&CTRLS

CONFIG = 2,

BLADEFILE = "input/geom.dat",

FLOWPATH = "input/r67_ext.path",

UPSTRMFILE = "input/velin_100pwhspd.dat",

UGRID = "vol.ugrid",

TECFILE = "vol.plt",

XTRANS = 0.0d0

FSURF = -4 ! set fixed surfaces to rotating

ROTATING = T,

VANE = F,

DEBUG = F,

DBG_PLT(1) = F,

DBG_PLT(2) = F,

DBG_PLT(3) = F,

DBG_PLT(4) = F,

DBG_PLT(5) = F,

DBG_PLT(6) = F,

DBG_PLT(8) = F,

/

SINGMAG

2.00 1.00 1.00 1.00
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3.00 3.00 3.00 3.00

SINGFADE

0.70 0.70 0.70 0.70

0.70 0.50 0.50 0.70

E.2.c. Turbulent Rotor 67: Clearance

&GRID_SIZE

IMAX1 = 155,

IMLE = 25

IMTE = 15,

JMAX1 = 75,

KMAX = 175,

IMAX2 = 11,

JMAX2 = 27,

IMAX3 = 11,

JMAX3 = 27,

JMAX4 = 25,

JOFREEZE = 30,

I2D = 15,

K2D = 15,

ICLUSB = T,

IMCLUSB = 15,

IC_LEFT = 33,

IC_RIGHT = 41,

/

&GRID_DIMS

S1MAX = 2.0d-2

DSMIN = 5.15625d-5

DSMAX = 1.5d-4

USE_DSMAX = F,

DSRA = -0.47d0

DSLE = 2.5d-5

DSTE = 1.0d-4

DSHUB = 6.0d-6

DSTIP = 3.0d-6

DELTAH = 1.8d-3

DELTAT = 1.8d-3

DELTAB = 6.0d-4

VARY_Y1 = T,

YPLUS = 2.0d0

EVEN_LETE = T,

LETE_SPAN = 0.00, 0.5d0, 1.0d0

DSLE_AF = 6.0d-3, 4.75d-3, 3.125d-3
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DSTE_AF = 5.5d-3, 5.0d-3, 3.1d-3

/

&GRID_CTRL

KCLUSS = 1,

B1_EPS1 = -15.0d0,

B1_EPS2 = 0.0d0,

B1_ALPHA = 1.0d0,

OMEGA = 0.6d0,

ITER = 5000

PMAG = 0.2d0,

QMAG = 0.55d0 !0.55d0,

SINGDIST = 0.0015d0, 0.0035d0

IROT = 9, 9

INEX_EQUALDT = F

/

&CAP_GRID

HUBCAP = F,

TIPCAP = T,

dscap = 3.3d-3,

dsclus = 4.0d-6

jc1max = 9,

jc2max = 25,

kcmax = 40,

iadj_le = 20,

iadj_te = 20,

citer = 500,

citerl = 1,

avg_corner = 0.5d0,

omegax = 0.3d0,

rext = 1.0d0,

sext = 8.0d0,

/

&PAD_GRID

inletH = T

outletH = T

ilmax = 35

irmax = 35

/

&BOUNDS

XBH = -1.5d0, -0.05d0, 0.356d0, 1.775d0

RBH = 0.20d0, 0.3d0, 0.38d0, 0.38d0

XBT = -1.5d0, -0.01d0, 0.31d0, 1.775d0

RBT = 0.842d0, 0.842d0, 0.842d0, 0.81d0

/

&CTRLS
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CONFIG = 2,

BLADEFILE = "input/geom.dat",

FLOWPATH = "input/r67_ext.path",

UPSTRMFILE = "input/velin_100pwhspd.dat",

UGRID = "vol.ugrid",

TECFILE = "vol.plt",

XTRANS = 0.0d0

FSURF = -3

ROTATING = T,

VANE = F,

DEBUG = F,

DBG_PLT(1) = F,

DBG_PLT(2) = F,

DBG_PLT(3) = F,

DBG_PLT(4) = F,

DBG_PLT(5) = F,

DBG_PLT(6) = T,

DBG_PLT(8) = F,

/

SINGMAG

2.00 1.00 1.00 1.00

3.00 3.00 3.00 3.00

SINGFADE

0.70 0.70 0.70 0.70

0.70 0.50 0.50 0.70
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APPENDIX F

TURBOMACHINERY GRID GENERATOR MANUAL

– Version 300 –

F.1. Introduction

Turbomachinery Grid Generator (TGG) is a three-dimensional grid generation

code for turbomachinery blades. TGG can generate grids for both linear and annular

cascades for use with the flow solver known as UNS3D using an unstructured UGRID

format grid file. The code uses a structured multi-block grid system to discretize a

single blade passage. The blade passage is discretized using an O-4H multi-block

configuration. The structured grid blocks are converted to an unstructured format

in the final step.

Additional grid blocks can be added to enhance the grid or model different

aspects of the given turbomachinery flow. H-grids can be add upstream and down-

stream of the main O-4H block to extend the distance from the boundaries to the

blade. TGG also offers the ability mesh the region between the tip of a rotor or

stator and the adjacent endwall. For this task, an O-H grid block set is used to

discretize the space “inside” a blade for a given clearance distance.

This manual describes how to both compile and use this code. The compilation

and general execution of TGG is discussed first. Secondly, the input files needed by

TGG are described. Lastly, the output from TGG is described.

F.2. Compiling and Running TGG

TGG is written completely in FORTRAN, and can be compiled using the make-

file included with the source code. TGG does require the Lapack and Blas libraries.

These libraries should be compiled using the user’s compiler of choice prior to the
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compilation of TGG. The LIBS entry of the makefile must be updated to reflect the

location of the Lapack and Blas libraries. To compile TGG, change to the top source

directory and execute the following command: make -f makefile. The resultant

executable will be called tgg.

TGG is executed via command line statements. The executable should be copied

or symbolically linked (recommended) to the directory in which the code input files

are located. The command line statement to execute TGG is: ./tgg <input file>.

The name of desired input is the only argument, <input file>, to be passed to TGG.

The main input file will be presented in the following chapter. Of note, the default

geometry type for TGG is for annular cascades. Linear cascades can be created using

IGEOM=0, as will be shown in Section F.3.a.vii.

F.3. Input Files

This section describes the input files required by TGG to construct the desired

turbomachinery grid. The files described within this section are the main input file,

the flowpath description file, the blade geometry description file, and an optional

freestream description file.

F.3.a. Main Input File

The main input file is a namelist format file. The name of the main input file is

given to TGG by way of a code argument. For example: ./tgg input.nml, where

input.nml is the name of the file. Additional information is also contained after the

last namelist card at the end of the file. Each namelist as well as the after-namelist

variables are defined below.

F.3.a.i. &grid size

Defines the number of grid points in each block. Refer to Fig. F.1 for grid block

locations and (i, j) origins.
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KMAX Total number of grid layers from hub to tip in the complete
grid. Integer. Default = 25

IMAX1 Total number of i grid points in Block 1. Must be odd. Inte-
ger.

JMAX1 Total number of j grid points in Block 1. Integer.

IMAX2 Total number of i grid points in Block 2. Integer.

JMAX2 Total number of j grid points in Block 2. Must be odd. Inte-
ger.

IMAX3 Total number of i grid points in Block 3. Integer.

JMAX3 Total number of j grid points in Block 3. Must be odd. Inte-
ger.

JMAX4 Total number of j grid points in Block 4. Must be odd. Inte-
ger

J0FREEZE Number of j layers adjacent to the blade surface in the O-
grid (Block 1) that are not smoothed by the elliptical solver.
Use variable to adequately capture the boundary layer as the
orthogonality of the un-smoothed hyperbolic O-grid is main-
tained. Integer. Default = 15

I2D Total number of i grid points used to define the meridional
grid. See Fig. F.2a. Integer.

K2D Total number of meridional grid layers (or k-layers). See
Fig. F.2a. K2D ≥ 4 for final production run, but can be set to
2 or 3 if DBG_PLT(6) = T. Integer.

KBLH Number of spanwise layers clustered near the hub endwall.
Used if KCLUSS = 2. See Fig. F.4. Integer.

KBLT Number of spanwise layers clustered near the tip endwall.
Used if KCLUSS = 2. See Fig. F.4. Integer.

KBLB Number of spanwise layers clustered around the tip of the
blade for clearance flow cases (HUBCAP or TIPCAP = T). Used
only if KCLUSS = 2. See Fig. F.4b–c. Integer.

IMLE Number of evenly spaced points placed around the leading
edge if EVEN LETE = T. Must be an odd. Integer
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IMTE Number of evenly spaced points placed around the trailing
edge if EVEN LETE = T. Must be odd. Integer

F.3.a.ii. &grid dims

Defines the physical dimensions of the grid using user specified units (m, mm, ft,

etc.). Additional surface clustering is also defined by this card.

S1MAX Height of the un-smoothed O-grid around the airfoil section.
See Fig. F.3. Height will change when smoothed. Real

DSMIN Uniform first cell height adjacent to the blade surface. See
Fig. F.3. Real

DSMAX Initial grid spacing adjacent to O-grid outer boundary. See
Fig. F.3. Spacing will not be maintained during grid smooth-
ing procedure. Only used if USE DSMAX = T. Real

USE DSMAX If T the O-grid spacing along constant i lines are set using a
double sided spacing with DSMIN next to the airfoil and DSMAX
at the O-grid boundary. Logical. Default = F

DSRA Ratio of the pressure side surface arc-length (TE→LE) to the
entire surface arc-length (TE→TE). Used to set the location
of the leading edge. Real. Default = 0.5

DSLE Surface spacing applied on either side of the leading edge point
(defined using DSRA). See Fig. F.3. Used if EVEN LETE = F.
Real

DSTE Surface spacing applied on either side of the trailing edge point
(i = 1). See Fig. F.3. Used if EVEN LETE = F. Real

DSHUB Grid spacing used to set a uniform first grid height off of the
hub endwall. See Fig. F.4. Real

DSTIP Grid spacing used to set a uniform first grid height off of the
tip endwall. See Fig. F.4. Real

DELTAH Height of clustered grid layer region near the hub endwall
(single sided clustering using DSHUB and KBLH). See Fig. F.4.
Only used if KCLUSS = 2. Real

DELTAT Height of clustered grid layer region near the tip endwall (sin-
gle sided clustering using DSTIP and KBLT). See Fig. F.4. Only
used if KCLUSS = 2. Real
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DELTAB Height on either side of the blade tip in which grid layers are
clustered using a single sided clustering (DSCLUS and KBLB).
See Fig. F.4b–c. Only used if HUBCAP or TIPCAP = T and
KCLUSS = 2. Real

ICLUSB If true, the original grid spacing around the airfoil is mod-
ified by adding points between two specified i-index points
(IC LEFT and IC RIGHT). The points between the selected
nodes are removed and replaced using a user specified number
of points (IMCLUSB). A double sided grid spacing algorithm is
used to smoothly add the new points with the initial spac-
ings being proportional to the neighboring grid spacing. The
corresponding points on the opposite surface are also modi-
fied in the same manner to maintain periodicity. See Fig. F.3.
Logical. Default = F

IMCLUSB Number of points added to each side of the airfoil if ICLUS =
T. IMAX1 = IMAX1+ 2(ICLUSB−IC RIGHT+IC LEFT−1). See
Fig. F.3. Integer

IC LEFT Left endpoint of the airfoil surface clustering region. Can be
chosen to be on either the pressure side or the suction side so
long as IC LEFT < IC RIGHT. See Fig. F.3. Integer

IC RIGHT Right endpoint of the airfoil surface clustering region. Must
be greater than IC LEFT. See Fig. F.3. Integer

VARY Y1 Determines the method for which the viscous spacing is ap-
plied to the airfoil surface. Logical
F Constant spacing using DSMIN (default)
T Blasius boundary layer solution used to find

streamwise varying y1 for a specified, constant y+.
Requires a user specified freestream velocity profile
(UPSTRMFILE).

YPLUS Desired blade surface y+ number used to find y1. Used if
VARY Y1 = T. Real. Default = 1.0

EVEN LETE Sets the grid point spacing around the leading and trailing

edges of each airfoil section. Logical
F Spacing at leading and trailing edges set using DSLE

and DSTE, respectively. (default)
T Grid points are evenly spaced around the leading

and trailing edge points.
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DSLE AF Percentage of the total surface arc-length that defines the
equally spaced leading edge region. Vector of length 3, where
each component corresponds to a given spanwise location
(LETE SPAN). Real

DSTE AF Percentage of the total surface arc-length that defines the
equally spaced trailing edge region. Vector of length 3, where
each component corresponds to a given spanwise location
(LETE SPAN). Real

LETE SPAN Vector of length 3 that defines the normalized spanwise lo-
cations of DSLE AF and DSTE AF. Real. Default = (/0.0d0,
0.5d0, 1.0d0/)

F.3.a.iii. &grid ctrl

B1 EPS1 Implicit artificial dissipation for the hyperbolic O-grid algo-
rithm. Use value less than 0. Real. Default = -3.0

B1 EPS2 Explicit artificial dissipation for the hyperbolic O-grid algo-
rithm. Use value less than or equal to 0; however, start with
0. Real. Default = 0.0

B1 ALPHA Volume relaxation factor for the hyperbolic O-Grid algorithm.
Values less than 1 result in diminishing volumes. Recommend
using default value. Real. Default=1.0

OMEGA Smoothing relaxation factor. Real. Default=0.1

ITER Total number of elliptic smoothing iterations. Integer. De-
fault=3000

PMAG O-grid orthogonality control function parameter. The orthog-
onality of the grid maintained further away from the airfoil
surface for lower values of PMAG. Real. Default=0.3

QMAG O-grid spacing control function parameter. The original grid
spacing is maintained further away from the airfoil surface for
lower values of QMAG. Real. Default=0.5

SINGDIST Ideal length for the edges connected to the “singularity”
points, open circles in Fig. F.1. Varied linearly from hub to
tip. SINGDIST is array of length 2. Real
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singdist(1) Defines variable on hub grid layer; con-
stant at all four points

singdist(2) Defines variable on tip grid layer; constant
at all four points

IROT Moves the original i = 1 point to i = IROT. See Fig. F.3.
Can be useful for geometries with large stagger angles. How-
ever, only a single value can be applied to the entire blade;
therefore, the default value is recommended for highly twisted
blades. Integer(vector of length 2). Default=1

F.3.a.iv. &cap grid

Specifies the addition of the clearance flow grids adjacent to either the hub or tip

endwalls. Only one set of grids can be constructed, i.e. HUBCAP and TIPCAP can not

both be T.

HUBCAP Flag for generating clearance flow grids adjacent to the hub
endwall. Logical
F No grids constructed. (default)
T O-H grids constructed

TIPCAP Flag for generating clearance flow grids adjacent to the tip
endwall . Logical
F No grids constructed. (default)
T O-H grids constructed

DSCAP Distance from adjacent endwall to the end of the blade. See
Fig. F.4bc. Real

DSCLUS Distance from blade tip layer to each adjacent grid layer.
Use to set the viscous spacing on the blade tip surface. See
Fig. F.4bc. Real

KCMAX Number of grid layers in the clearance region (includes endwall
and blade tip layers). See Fig. F.4bc. Integer

JC1MAX Number of j grid layers in the cap H-grid. Must be odd. See
Fig. F.5a. Integer

JC2MAX Number of j grid layers in the cap O-grid. See Fig. F.5a.
Integer
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CITER Number of elliptic smoothing loops to run. Grid boundaries
updated at beginning of loop. Integer. Default=600

CITERL Number of iterations per smoothing loop. One is usually suf-
ficient. Integer. Default=1

AVG CORNER Weighting factor used to smoothly set H-grid corner points.
See Fig. F.5b. Real. Default=0.7

OMEGAX Smoothing relaxation factor. Real. Default=0.5

REXT O-grid orthogonality control function parameter. The orthog-
onality of the mesh is maintained further towards the center
of the cap grid for lower values of REXT. Real. Default=20.0

SEXT O-grid spacing control function parameter. The original O-
grid spacing along constant i grid lines is maintained further
into the domain for lower values. Real. Default=20.

IADJ LE Variable no longer used. Here for backwards compatibility.
Integer

IADJ TE Variable no longer used. Here for backwards compatibility.
Integer

F.3.a.v. &pad grid

Defines the additional upstream and downstream H-grids used to pad the

blade-to-blade O-4H grid set.

INLETH Specifies creation of an upstream H-grid. Logical
F No H-grid created. (default)
T Generate H-grid

OUTLETH Specifies creation of a downstream H-grid. Logical
F No H-grid created. (default)
T Generate H-grid

ILMAX Total number of grid points in the streamwise direction (i-dir.)
that define the upstream H-grid. Integer

IRMAX Total number of grid points in the streamwise direction (i-dir.)
that define the downstream H-grid. Integer
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F.3.a.vi. &bounds

Defines the meridional bounds of the blade-to-blade grid blocks, the optional

upstream H-grid, and the optional downstream H-grid.

XBH Axial locations of the grid block boundaries along the hub
surface. Vector length of 4. See Fig. F.2a. Real

RBH Radial locations of the grid block boundaries along the hub
surface. Vector length of 4. See Fig. F.2a. Real

XBT Axial locations of the grid block boundaries along the tip sur-
face. Vector length of 4. See Fig. F.2a. Real

RBT Radial locations of the grid block boundaries along the tip
surface. Vector length of 4. See Fig. F.2a. Real

F.3.a.vii. &ctrls

Defines additional code control, filenames, and boundary condition flags.

CONFIG Defines the blade-to-blade grid topology. Integer
1 O–H grid set + triangles (defunct)
2 O–4H grid set (default)

IGEOM Defines the geometry type. Integer
0 Linear cascade geometry
1 Annular cascade geometry (default)

BLADEFILE Defines the filename for the given blade geometry file. See Sec-
tion F.3.c for file format. Character. Default = “rotor.def”

FLOWPATH Defines the filename for the given flowpath geometry file.
See Section F.3.b for file format. Character. Default =
“flowpath.def”

UGRID Defines the filename for the output .ugrid format grid file.
See Section F.4.a for file format. Character. Default =
“vol.ugrid”

TECFILE Defines the filename for the output unstructured Tecplot data
file. See Section F.4.c for file format. Character. Default =
“rotor.plt”

294



UPSTRMFILE Defines the filename for the input freestream velocity distri-
bution definitions file. See Section F.3.d for file format. Char-
acter. Default: “upstrmV.dat”

IBPA Inter-blade phase angle in degrees. Used to define the number
of blade passages to be constructed: n = 360/IBPA. A value
of 0 results in one blade row. Integer. Default = 0

PITCH Linear distance between blades in a linear cascade. Used to
set the periodic boundaries only for igeom = 0. Real. Default
= 1.0

XTRANS Axial translation factor for the input blade geometry. Real.
Default = 0.0

ROTATING Sets the system rotation parameter and determines the hub
boundary condition. Logical
F Assumes ωx = 0; hub boundary condition set using

FSURF (default)
T Assumes ωx 6= 0; hub boundary condition set using

RSURF

VANE Set the boundary conditions on the blade and hub surfaces.
Logical
F Blade surface set using FSURF; hub surface set by

ROTATING (default)
T Blade surface set using RSURF; hub surface set by

RSURF

DEBUG The entry into each subroutine and other information is
printed to screen when activated. Logical. Default = F

DBG PLT Logical vector which generates intermediate plot files at key
grid generation locations. See Table F.1 for output locations.
Logical. Default = F

DBG BREAK Causes TGG to exit early after the blade-to-blade grids have
been constructed on the meridional grid layers (if dbg plt(6)
= T). Use when initially constructing the grid with K2D = 3
or 4 for quick turnaround times. Logical. Default = F

INLET UNS3D consistent inlet boundary condition flag. Integer. De-
fault = -1

OUTLET UNS3D consistent outlet boundary condition flag. Integer.
Default = -2

FSURF UNS3D consistent fixed wall boundary condition flag. Integer.
Default = -3
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RSURF UNS3D consistent rotating wall boundary condition flag. In-
teger. Default = -4

SYMMETRY UNS3D consistent symmetry boundary condition flag. Only
used for linear cascade geometries. Integer. Default = -7

MASTER UNS3D consistent master periodic boundary condition flag.
Integer. Default = -100

SLAVE UNS3D consistent slave periodic boundary condition flag. In-
teger. Default = 0

F.3.a.viii. Post Namelist Input

Two variables used to control the grid around the “singularity” points, open

circles in Fig. F.1, are defined after the last namelist card. The two variables defined

are SINGMAG and SINGFADE. Both variables are used to control how rigidly SINGDIST

is maintained at the “singularity” points. The two variables are used to specify an

exponential decay in the computation space about the singularity point:

fs(`) = SINGMAG · exp (−SINGFADE `) , ` = 1, 2, . . . , nce

where ` is a logical distance and nce is the number of edge segments connected to

the “singularity” point along a continuous edge. The recommended starting value

for SINGMAG is 0 for all four singularity points. The value should be increased if the

surrounding grid looks poor. Values for SINGFADE are typically between 0 and 1.

The variables are defined in the input file such that the variable name is given

first followed by two lines of four values. SINGMAG must come first and the names of

the variables must be given otherwise an error will occur. An example of how the

two variables must appear in the input file is given below.

SINGMAG

2.00 1.00 1.00 1.00

3.00 3.00 3.00 3.00

SINGFADE

0.70 0.70 0.70 0.70

296



0.70 0.50 0.50 0.70

Each line for a given variable corresponds to values for the hub and tip grid

layers, with hub values on the first line. The four values for each grid layer correspond

to individual “singularity” points. The order corresponds to the Roman numerals in

Fig. F.1.

F.3.b. Flow Path Definition

The flow path is defined by the shape of the hub and tip endwalls. For annular

geometries, the hub and tip endwall profiles are defined using the meridional coordi-

nates (x, r), as shown by the open circles in Fig. F.2a. The meridional coordinates

of the endwalls are read from an external file, whose name was defined in the main

input file by the variable FLOWPATH in &ctrls. The snippet of FORTRAN code used

to read the file is:

read(io,*) nph, npt ! # points hub; # points tip

read(io,*) ( x0h(n), n = 1,nph ) ! hub endwall x-coordinates

read(io,*) ( r0h(n), n = 1,nph ) ! hub endwall r-coordinates

read(io,*) ( x0t(n), n = 1,npt ) ! tip endwall x-coordinates

read(io,*) ( r0t(n), n = 1,npt ) ! tip endwall r-coordinates

No external file is required to define the flow path of a linear geometry. The

arrays defined in &bounds are used to set the flow path for linear geometries. The z

coordinate of the hub endwall is hard set to 0. The distance between the hub and

tip surfaces are given by: rbt(2) - rbh(2).

F.3.c. Blade Surface Definition

The blade geometry is defined by an external ASCII file, whose name was defined

in the main input file by the variable BLADEFILE in &ctrls. Cylindrical coordinates

are used to define the blade geometry for annular geometries, and Cartesian coordi-

nates for linear geometries.
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The file header defines the number of points to be read, the number of blades

around the annulus, and the format of the given geometry description. The header

of the input file is read using the FORTRAN snippet:

read(io,*) nbs, npb, nblade, merid

where

nbs Number of spanwise blade sections used to define the geometry
of the blade.

npb Number of points defining each blade section. Must be a
constant number for each section.

nblade Number of blades around the annulus. Used to define the
pitch for annular geometries.

merid Defines the format of the given geometry description.

0 Complete definition of blade sections (including
leading and trailing edges). Blade sections are
stacked from hub to tip. Grid points are given
starting at the trailing edge and then wrapping
clockwise around the blade section back to and re-
peating the trailing edge. This is the only us-
able option as of V.300.

2 Each blade section is defined by separate upper and
lower surface arrays with no leading and trailing
edge definitions. Leading and trailing edge circles
are added automatically by TGG. Blade sections
are stacked from hub to tip, and points go from
the leading edge to trailing edge. This option is
not fully implemented as of V.300.

After the header, the geometry description is read based on the value of merid.

For linear geometries y replaces θ and z replaces r. For merid=0 the blade geometry

is read by:

do k = 1,nbs

read(io,*) ( xx(i, k), i = 1,npb) ! x

read(io,*) ( tt(i, k), i = 1,npb) ! theta (y)

read(io,*) ( rr(i, k), i = 1,npb) ! radius (z)
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end do

For merid=2 the blade geometry is read by:

do k = 1,nbs

read(io,*) (xbl(i,k), i = 1,npb) ! x (both surfaces)

end do

do k = 1,nbs

read(io,*) (rbl(i,k), i = 1,npb) ! r (both surfaces)

end do

do k = 1,nbs

read(io,*) (t1bl(i,k), i = 1,npb) ! theta (upper surface)

end do

do k = 1,nbs

read(io,*) (t2bl(i,k), i = 1,npb) ! theta (lower surface)

end do

F.3.d. Freestream Profile Definition

The radially varying freestream conditions needed to specify a constant y+ on

the blade surface are read from an external ASCII file. The name of the file is

given in &ctrls by the variable UPSTRMFILE. The units of the variables found in the

freestream definitions file must match the grid units of the mesh, e.g. m/s with m.

The freestream definition file is made up a namelist card at the top of the

file followed by the velocity profile. The namelist card is called &freestream, and

contains three variables:

nvmax Number of spanwise velocity values to read. Integer. Default
= 2

rho Freestream density, in grid consistent units. Real. Default =
1.225 kg/m3

mu Freestream dynamic viscosity, in grid consistent units. Real.
Default = 1.716× 10−5 kg/(m s)

The file can be read using the following FORTRAN snippet:
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read(1,freestream)

do n = 1,nvmax

read(1,*) pspin(n), velin(n)

end do

pspin is the percent span in percent (0 ≤ pspin ≤ 100) of the given profile. velin

is the velocity profile in grid consistent units (m/s, cm/s, ft/s, etc.).

F.4. Output Files

This section describes the relevant output files that are generated by TGG.

These files include the resultant grid file, the additional files used by the flow solver

(UNS3D), and the different Tecplot data files to visualize the constructed grid.

F.4.a. Unstructured Grid File

The primary output file is the unstructured grid file which completely describes

the constructed mesh. The grid file utilizes the UGRID format. The name of the file

was given by UGRID in the input file. The FORTRAN code used to write the grid

file is given below. The FORTRAN code provided does not include the cell-to-node

connectivity for tetrahedral and pyramidal cell types as nctets=0 and ncpent5=0 is

always true.

write(io,*) nnode, nbtrias, nbquads, nctets, ncpent5, ncpent6, nchexs

do i = 1,nnode ! cartesian grid coordinates

write(io,*) x(i), y(i), z(i)

end do

do i = 1,nbtrias ! triangular bndry face connectivity

write(io,*) (bf2n3(i,j), j = 1,3)

end do

do i = 1,nbquads ! quadrilateral bndry face connectivity

write(io,*) (bf2n4(i,j), j = 1,4)

end do
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do i = 1,nbtrias ! triangular bndry face types

write(io,*) bcid3(i)

end do

do i = 1,nbquads ! quadrilateral bndry face types

write(io,*) bcid4(i)

end do

do i = 1, ncpent6 ! prismatic cell-to-node connectivity

write(io,*) (c2n6(i,j), j = 1,6)

end do

do i = 1,nchexs ! hexahedral cell-to-node connectivity

write(io,*) (c2n8(i,j), j = 1,8)

end do

F.4.b. Ancillary Flow Solver Files

The flow solver must be provided additional information for annular geometry

cases for flow initialization and to simplify boundary condition calculations. Infor-

mation for flow initialization is contained with the file XleXteRte. Either ijk.def

or outlet ij.def must be present when using the radially varying back pressure

option for the outlet boundary condition. The description of the three files now

follows.

F.4.b.i. Annular Flow Initialization: XleXteRte

The flow initialization file is an un-formatted file which defines a unit relative

velocity vector at each grid point. The direction of the relative velocity vector at

a node is set using slope of the mean camber line at the given axial location. The

format of the file is given by the following FORTRAN snippet:

write(iox) nnode ! number of nodes

do i = 1,nnode

write(iox) uu(i), vv(i), ww(i) ! unit rel. velocity components

end do
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F.4.b.ii. Complete Structured-to-Unstructured Pointer: ijk.def

The structured nature of the grid is retained by the pointer variable ijk wihtin

TGG and by the external file tgg.def. The purpose of tgg.def is to provide the

flow solver with the structured grid connectivity so that boundary faces may be

quickly identified without excessive logic, computation, or parallel communication.

The file can also be used to generate block structured Tecplot data files for solution

post-processing.

The format of ijk.def is similar to that of a PLOT3D format file. Grid block

sizes are given first, followed by arrays of the unstructured node number for a given

(i, j, k). A list of each grid block with additional information, such as type, is given

at the very end of the file. The FORTRAN code used to write ijk.def is given

below.

write(io,*) ng, maxval(iimax), maxval(jjmax), maxval(kkmax)

do n = 1,ng

write(io,*) iimax(n), jjmax(n), kkmax(n)

end do

do n = 1,ng

write(io,*) &

(((ijk(i,j,k,n), i=1,iimax(n)), j=1,jjmax(n)), k=1,kkmax(n))

end do

do n = 1,ng

write(io,*) gtype(n), iimax(n), jjmax(n), kkmax(n), ilu(n), &

ilt(n), nhub(n), ntip(n), nin(n), nex(n), 1

end do

The following is a description of the variables found within ijk.def:

ng Number of grid blocks

iimax Maximum i grid dimensions for each block

jjmax Maximum j grid dimensions for each block
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kkmax Maximum k grid dimensions for each block

ijk Structured-to-unstructured pointer. Gives unstructured node
number for a given (i, j, k)

gtype Specifies the grid block type
1 Inlet or outlet H-grid
10 O-grid in the O-4H grid block set
11 Any H-Grid in the O-4H grid block set
12 Clearance grid H-grid
13 Clearance grid O-Grid

ilu Not currently used, set to zero

ilt Not currently used, set to zero

nhub Links the clearance grids, located adjacent to the hub endwall,
with the O-4H O-grid
> 0 O-grid block number connected to clearance grids
−1 Identifies the clearance H-grid
< −1 For clearance O-grids. Gives block number of the

connected clearance H-grid. Use abs. value

ntip Links the clearance grids, located adjacent to the tip endwall,
with the O-4H O-grid. The same number system as nhub is
used for ntip

nin Identifies which block(s) the domain inlet is located within
0 No inlet boundary present
333 Inlet boundary is split across three H-grids of the

O-4H blade-to-blade block set
999 Inlet boundary is located in the upstream “inlet”

H-grid

nex Identifies which block(s) the domain outlet is located within
0 No outlet boundary present
333 Outlet boundary is split across three H-grids of the

O-4H blade-to-blade block set
999 Outlet boundary is located in the downstream

“outlet” H-grid

F.4.b.iii. Outlet Structured-to-Unstructured Pointer: outlet ij.def

In some instances the grid may not be fully structured, such as when config=1

is used. However, the domain outlet is still “structured” as it was built using grid
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layers of increasing height and made up of quadrilaterals. Therefore a structured-to-

unstructured pointer file for the outlet boundary mesh can be constructed.

The format of the outlet pointer file is identical to that of ijk.def, with only

one grid “block” being written. The FORTRAN code used to write outlet ij.def

is given below followed by a description of the variables found within the file. All

hard-coded values should not be modified, else errors will occur within the flow solver.

write(io,*) 1, 1, jrmax, kmax

write(io,*) 1, jrmax, kmax

write(io,*) ((( ojk(i,j,k), i=1,1), j=1,jrmax), k=1,kmax)

write(io,100) -2, 1, jrmax, kmax, 0, 0, 0, 0, 0, 0, omx

write(io,110) "gtype", "imax", "jmax", "kmax", "i1", "i2", "nhub", &

"ntip", "nin", "nex", "om-x"

jrmax Composite maximum j grid dimension

kmax Maximum k grid dimension

ojk Gives unstructured node number for given (j, k) on the outlet
boundary

gtype The value “-2” indicates outlet boundary, and must not be
changed

omx Indicates rotating flow – not currently used by flow solver
0 No rotation
1 Rotation present (ROTATING=T or VANE=F)

F.4.c. Unstructured Tecplot Data File

An unstructured Tecplot data file is generated for annular geometries only. The

name of the file is defined by the variable TECFILE in the &ctrls card of the input file.

The Tecplot data file contains initial velocity field (what is written to XleXteRte).

The FORTRAN code used to write the data file is given below.

write(iot, *) ’variables= "x", "y", "z", "u", "v", "w", "|V|", "r"’

write(iot,*) ’zone T="hexahedrals", datapacking=point, nodes=’, &
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nnode, ’, elements=’, nchexs+ncpent6,’, zonetype=febrick’

do i = 1,nnode

write(iot,*) x(i), y(i), z(i), uu(i), vv(i), ww(i), &

sqrt(uu(i)**2 + vv(i)**2 + ww(i)**2), &

sqrt(y(i)*y(i) + z(i)*z(i))

end do

! Write the cell-to-node connectivity for the tecplot file

do i = 1,nchexs ! hexahedral cells

write(iot,*) (c2n8(i,j), j = 1,8)

end do

do i = 1,ncpent6 ! prismatic cells

write(iot,*) (c2n6(i,j), j = 1,3), c2n6(i,3), &

(c2n6(i,j), j = 4,6), c2n6(i,6)

end do

F.4.d. Structured Tecplot Data File

A structured block format Tecplot data file is generated for config=2 grids

(both annular and linear). The purpose of the file is to allow the user to examine the

each grid block individually. The name of the data file is hard-coded as O4H.plt. A

snippet of FORTRAN code is provided below illustrating how the file is written for

a single grid block. Each “zone” segment would be repeated for every grid block in

the mesh.

open(io, File="O4H.plt", status="replace", action="write")

write(io,*) "variables = x, y, z, percent_span"

! The following zone segment is repeated for every grid block

write(io, ’(A,A,3(A,I4),A)’) ’zone T="’,trim(title),’", I=’, &

im, ’, J=’, jm, ’, K=’, km, ’, datapacking=block’

write(io,’(30(G21.13,1x))’) x

write(io,’(30(G21.13,1x))’) y

write(io,’(30(G21.13,1x))’) z

write(io,’(30(G21.13,1x))’) p
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F.4.e. Tecplot Data Files For Debugging

A number of Tecplot data files can be optionally written during the grid gen-

eration process for “debugging” purposes. The files can be written by setting the

logical index value of DBG PLT to T. The available debug Tecplot data files are given

in Table F.1.

The most useful is index 6, which generates a data file for the O-4H grids that

were generated on the meridional grid layers. Using this option, with DBG BREAK,

allows for a quick look at the grid before all of the grid layers are added and output

files generated. It is highly suggested that this debug option combination, along with

2 ≤ K2D ≤ 4, be used during initial grid construction until the user is satisfied with

the resultant grid. Once satisfied, increase K2D back to a reasonable number (like

15), and turn off both debug options.
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Table F.1: Turbomachinery grid generator debug Tecplot data file descriptions.

Array
File Name File Description

Index

1 blade input.plt Input blade geometry as read by TGG. Also
includes any coordinate transformations (e.g.
XTRANS 6= 0)

2 blade redist.plt Input blade geometry after the IMAX1 points
have been added and clustered around each
blade section.

3 meridgrid.plt Meridional grid used to define the flow path
and blade geometry

4 blade inrsct.plt Blade geometry after intersection with merid-
ional grid

5 Not currently in use

6 merid blade2blade.plt Structured O-4H grid blocks generated on the
meridional grid layers. A clearance O-H grid
layer is generated on either the hub or tip grid
layer if either HUBCAP or TIPCAP is T, respec-
tively.

7 Not currently in use

8 Not currently in use
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