
ON THE EFFECTS OF TEXTURE AND STRAIN-PATH CHANGES ON THE

DUCTILE FRACTURE OF MG ALLOYS

A Dissertation

by

SHAMIK BASU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Amine A. Benzerga
Committee Members, Ibrahim Karaman

Ramesh Talreja
Jyhwen Wang

Head of Department, Ibrahim Karaman

August 2016

Major Subject: Materials Science & Engineering

Copyright 2016 Shamik Basu



ABSTRACT

Increasing need for weight reduction to improve fuel efficiency and reduce emis-

sions makes Magnesium alloys ideal candidates for structural applications, notably 

in transportation. However, limited formability at room temperature along with 

catastrophic failure after limited necking are among the drawbacks that limit their 

application. Plastic anisotropy is often invoked to rationalize low formability of 

strongly anisotropic materials. However, analysis based on homogenization theory 

suggests that certain forms of plastic anisotropy may hinder void growth under any 

triaxial stress state or loading orientation. Here, two textures produced through Equi-

Channel Angular Extrusion (ECAE), a severe plastic deformation technique were 

investigated and compared with the well-known rolling texture. Deformation 

anisotropy and damage accumulation were investigated at room temperature. A suite 

of analytical measurements and observations were carried out to characterize the 

microstructure in the as-rolled, post-processing and post-deformation states under 

multiaxial stress states. Their connection to macroscopic fracture strains and frac-ture 

mode (normal versus shear) was elucidated using postmortem fractography and 

microscopic analysis. A simple model was proposed to rationalize the trends. The ma-

jor findings suggest that anisotropy can be altered to aid ductility. The trends were 

well captured by the model and can help guide new processing routes. Any progress in 

fundamental understanding of limiting factors affecting ductility of Mg alloys must 

translate into tangible metrics in Mg sheets. For this reason, part of this work was 

aimed at addressing aspects of anisotropy and failure in Mg sheets through some 

punch stretching tests. In sheet metal forming, it is customary to use forming limit 

diagrams (FLDs) to determine formability limits. An important limitation of FLDs
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is that they are strictly valid under proportional loading conditions. However, metal 

forming operations involve various non-proportional loading paths. In addition, it is 

not clear whether the formability of Mg sheets is determined by plastic instabilities 

such as necking or by fracture. For these reasons, understanding the effect of strain 

path changes on the ductility, flow and ductile fracture of these alloys is important. In 

particular, a thorough experimental study of Mg sheet fracture under combined 

tension and shear was conducted during a five-month visit to Texas A& M Qatar 

in Doha. Digital image correlation was extensively used to obtain whole field strain 

maps. An extensive set of finite element analyses were subsequently carried out 

to extract key information from the experiments regarding stress distributions and 

stress state indicators. Using this combined experimental/computational methodol-

ogy, the fracture loci of the sheet were obtained according to various definitions. The 

designed program enables a comparison to be made  between the fracture loci with and 

without load path change.
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1. INTRODUCTION

1.1 Motivation

The growing need for lightweight structures is important to address both energy

and environmental concerns. Magnesium alloys have been very attractive materials

for applications that require energy efficiency. Due to their light weight and high

strength to weight ratio they have been projected as prime candidates for applications

such as transport industry[1]. There are many applications in which cast magnesium

alloys are currently used e.g., racing cars and helicopters. However their application

has been restricted to only small scale due to the high cost of production and low

formability of these alloys for complex shapes and geometries. The limited ductility

and poor formability at room temperature is mainly attributed to the absence of

sufficiently active deformation systems[2]. This is a result of the large differences in

critical resolved shear stress of basal and non-basal slip systems.

The design of these lightweight alloys has to meet certain specifications of stiff-

ness, strength, formability, durability and impact and damage tolerance based on

its applications. In the current approach the stiffness and strength issues are met

through some ad hoc methodology during alloy development stages. However, forma-

bility or impact tolerance are met later though some costly post processing. These

inefficient approaches to material design is due to lack of understanding of the ma-

terial system and lack of robust models that can connect macroscale and microscale

features such as grain size, texture and inclusions.

A lot of studies in the recent few years have been dedicated more towards un-

derstanding the plastic flow behavior and strengthening of Mg alloys[3, 4, 5, 6, 7,

8, 9]. However, little is known about the damage and fracture behavior of these
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alloys inspite of the pressing issues of limited formability and poor ductility[10, 11,

12]. Mg alloys are inherently anisotropic due to the HCP crystal structure (c/a ra-

tio) and processing by conventional thermo-mechanical processes such as rolling and

extrusion induced strong textures. The strong basal texture in wrought magnesium

alloys leads to strong anisotropy. It is a general belief that this strong anisotropy in

plastic flow is responsible for poor ductility in Mg alloys. Research in the last two

decades have been dedicated to alleviate these shortcomings by developing knowledge

about the complex deformation mechanisms and structural manipulations to reduce

or suppress the anisotropy. WE43, which exhibits isotropic behavior by addition of

rare earth (RE) metals, was considered better than AZ31 in terms of ductility[13].

However, these ductilities are only characterized under uniaxial loading conditions.

When studied under triaxial loadings by some researchers recently, the results were

surprisingly low as shown in Fig. 1. Hence it is important to characterize ductility

under a wide range of stress triaxialities.

Mukai et. al.[15] were the first to process AZ31 by ECAE processing to improve

the ductility more than twofold. This improvement in ductility was attributed to

the randomness in texture. Agnew et. al.[16] challenged the claims of Mukai[15] and

repeated the experiments and showed that the texture was not random by performing

experiments in different principal and off-axis directions. Most directions showed

similar or poorer response than the conventionally extruded alloy. The latter[16]

concluded that ECAE produces stronger texture than the conventional processes.

However, the authors in [16] did not provide a rationale for the increase in ductility

observed in most directions as compared to as-rolled AZ31. Meanwhile, most other

efforts on texture engineering have focused on generating random textures or atleast

weak textures, that is on eliminating the anisotropy.

The main hypothesis of this research is that the plastic anisotropy of Mg alloys
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can be engineered to yield materials with good strength and ductility combinations.

This is guided through an indicator for characterizing the effect of anisotropy on

ductility in a material. This anisotropy effect on ductility (AED) factor also known

as the h-factor emerges in the nonlinear homogenization problem of Benzerga and

Besson[17] who obtained the effective behavior of a porous material made up of a

plastically anisotropic matrix along with a damage growth law in the form of the

void volume fraction. They modeled the matrix as a Hill type orthotropic material.

The AED or h-factor emerged as a scalar invariant of Hill’s anisotropy tensor. Later

Keralavarma and Benzerga[18] extended the early model[17] to couple void shape/ori-

entation effects with matrix anisotropy effects. In their model too the AED directly

affects void growth, hence ductility. This micromechanical model predicts the influ-

ence of plastic anisotropy on cavity growth in a material. A value greater than 2 for
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this factor would mean beneficial effects on ductility.

This motivated the study to aim at altering/tailoring the anisotropy to obtain

suitable textures that would aid ductility. ECAE has been proved to be an effective

method to improve mechanical properties in a material by reduction in grain size

[5]. Through this method texture can also be modified. It should be mentioned that

some investigators [19, 20, 21, 22] have also tried to use ECAP to modify the texture,

but often with the intent to reduce the texture intensity based on the common belief

that a strong texture causes a reduction in ductility. Processing routes chosen were

carefully guided by VPSC(Visco-Plastic Self-Consistent) models to choose paths that

would aid processability. The experiments performed would help corroborate/falsify

the hypothesis based on microscopic evidence.

To sum up, there is need for understanding the role of texture on damage ac-

cumulation processes that ultimately affect the ductility in Mg alloys. This would

help us guide crystal plasticity to design new manufacturing processes that would

not only mitigate the adverse effects of anisotropy but also tailor it for improved

processablity and performance.

Any progress in fundamental understanding of limiting factors affecting ductility

of Mg alloys must translate into tangible metrics in Mg sheets, as the final product

e.g. in the transportation industry. For this reason, part of this work will address

aspects of anisotropy and failure in Mg sheets. In sheet metal forming, it is cus-

tomary to use forming limit diagrams (FLDs) to determine formability limits. An

important limitation of FLDs is that they are strictly valid under proportional load-

ing conditions. However, metal forming operations involve various nonproportional

loading paths. In addition, it is not clear whether the formability of Mg sheets is

determined by plastic instabilities such as necking or by fracture. For these reasons,

another topic this thesis addresses is the effect of strain path changes on the duc-
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tility of Mg alloys. Plasticity is path dependent and hence ductile fracture which

involves large plastic deformation before failure is also path dependent. Hence it is

important to understand the effect of these strain path changes on flow and ductile

fracture. The initial part of this study aimed at understanding the effect of this

non-proportionality under relatively simple conditions by choosing a material which

is (i) mostly isotropic; and (ii) fails due to progressive cavitation. Cavitation here

refers to the usual processes of void nucleation, growth and coalescence[23]. Guided

by previous theoretical analyses[24], an experimental program was designed to probe

the path-dependence of the fracture locus in ductile materials. The designed program

enables to make a comparison between the fracture loci with and without load path

change. It also allows qualitative comparisons to be made with previously published

theoretical results.

Industrial metal forming processes involve complex deformation histories which

consist of numerous strain path alterations. A reasonable understanding of the frac-

ture mechanisms and the effect of anisotropy on the formability of complex material

systems like Mg alloys is of prime importance. A good way of representing formability

data is by use of forming limit diagrams (FLDs)[25, 26]. However, FLDs are strictly

applied to proportional loading conditions. Formability operations strongly depends

of the deformation history and in real applications have complex loading histories[27,

28]. Also, Mg alloys have a tendency to shear localize and hence deformation under

these conditions are highly non-proportional.
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1.2 Objectives

The following are the research objectives of this dissertation.

1. Investigate the effect of plastic anisotropy on the ductility of polycrystalline

Mg alloys at fixed chemical composition and grain size. This involves textural

modifications by means of severe plastic deformation in collaboration with the

group of Prof. Karaman at TAMU. This is a purely hypothesis-driven research

based on prior theoretical work in the field. As we demonstrated the success

of this approach, we hopefully will open the door to engineering rather than

suppressing the anisotropy of this class of advanced metallic materials.

2. Good ductility does not always translate into good formability, especially in

materials prone to shear rupture, such as Mg alloys. This objective also in-

volved a collaborative work with Prof. Karamans group for the processing part

but also with Prof. Kridli and Dr. Ayoub at Texas A& M Qatar for conducting

large-scale sheet metal forming experiments for demonstration purposes.

3. Investigate the ductile fracture of Mg sheets under combined tension and shear.

Shear failure is major concern in various sheet metals, especially Mg. Also, this

part will focus on the regime of low stress triaxialities, which has been a subject

of active research over the past decade. The experimental setup for this part

of the research was designed from the ground up and realized during a visit to

Texas A& M Qatar in collaboration with the team of Prof. Mansoor.

4. Investigate the effect of non proportional loading on the fracture locus of a Mg

alloy.

• Demonstrate on a model material the sensitivity of fracture locus to load-

path changes. What is required of the model material is that (i) it is
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isotropic; (ii) it has established failure mechanisms. This research has

appeared in a journal publication.

• Carry out a similar investigation in Mg sheets, which are strongly aniso-

topic and their fracture mechanisms are still debated.
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2. ANISOTROPY EFFECTS ON DUCTILITY

2.1 Introduction

Plastic anisotropy is often invoked to rationalize the low formability of magnesium

alloys at low homologous temperatures [29, 30]. Mg alloys are inherently anisotropic

as a result of their hexagonal-close-packed crystalline structure. Furthermore, con-

ventional thermo-mechanical processing, such as rolling, leads to sharp textures and

associated anisotropy at the polycrystalline level [31, 32]. This anisotropy is due to

large differences in critical resolved shear stress (CRSS) of basal and non-basal slip

systems with the non-basal slip activated only at elevated temperatures [33]. The

activated systems are often too few to satisfy the basic strain compatibility criteria

[34] and the two independent slip systems have both their Burgers vector parallel to

the basal plane. Thus, the anisotropy-induced incompatibility in plastic deformation

is believed to trigger stress concentrations, hence failures [5]. Twinning is an addi-

tional mode of deformation that helps satisfy the Taylor criterion [35, 36]. However,

twinning is a polar mechanism that can only accommodate limited amount of strain.

In addition, the twinned volume undergoes sudden reorientation and this may lead

to strain localization, hence failure [37].

Research in the last two decades has been dedicated to alleviating the negative

effects of anisotropy. An important aspect of this is uncovering the complex deforma-

tion mechanisms [31, 4, 5, 6, 7, 8, 9]. In addition, two major approaches have been

followed which aim at suppressing or reducing the anisotropy via structural manip-

ulations. The first consists of alloying so as to narrow down the wide gap between

CRSS values, for example through the type, shape and habit planes of precipitates.

For instance, alloying by addition of RE and Y has been shown to generate weak tex-
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tures, as opposed to conventionally processed Mg alloys [38, 39, 40, 30]. As a result,

improvement in strength was achieved without compromising uniaxial ductility [41,

42, 43]. In addition, RE based alloys such as WE43 are plastically quasi-isotropic

with no noteworthy tension-compression asymmetry. What is less emphasized in the

literature, however, is that the removal of plastic flow anisotropy in RE alloys is not

accompanied by an enhancement in ductility, which makes the connection between

strong anisotropy and poor ductility questionable. In fact, Kondori and Benzerga

[44] have shown quite recently that the notch ductility of WE43 is much reduced

compared with that of AZ31. It appears therefore that mere texture weakening may

not be the engineering solution of choice to enhance the ductility of Mg alloys.

Another approach to mitigating plastic anisotropy has consisted of thermome-

chanical processes, such as severe plastic deformation. Thus, Mukai et al. [15]

showed that equal-channel angular extrusion (ECAE) followed by annealing at 300◦C

improved the ductility of initially textured AZ31 alloy along the extrusion direction

by more than twofold. They attributed the improvement in ductility to a presumably

random texture, induced by the specifically chosen ECAE route (4Bc). Agnew et al.

[16] repeated the same experiments and confirmed the ductility enhancement along

the extrusion direction. However, these authors performed, in addition, uniaxial

tests along various principal and off-axes directions. The data in [16] showed clear

evidence of directionality in plastic flow, consistent with a distinct texture, albeit

different from the starting rolling (basal) texture. The data in [16] also revealed

that while the ductility was lower in one particular orientation, all other orientations

were either comparable or better than the as-received alloy. Agnew et al. concluded

that ECAE produces stronger texture than conventional processing methods. How-

ever, they did not provide a rationale for the increase in ductility observed in most

directions when compared to as-rolled AZ31.
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The above two findings, namely (i) the lack of success in improving room temper-

ature ductility by suppressing texture; and (ii) the (unexplained) increase in ductility

concurrent with strong anisotropy, indicate that anisotropy-ductility relationships are

more complex than previously believed. The early findings in [15] and [16] showed

promise but clearly have not been capitalized upon. The aim of this work is to de-

velop a mechanistic framework within which possibly contradicting effects of plastic

anisotropy on ductility can be rationalized, irrespective of the inherent directionality

in properties. The basis of this rationale is as follows. Contingent upon the activa-

tion of ductile failure by void growth to coalescence [45, 46], a mean-field analysis

based on homogenization theory suggests that certain forms of plastic anisotropy

may hinder void growth under any triaxial stress state or loading orientation [17].

For relatively simple forms of anisotropy that ignore tension-compression asymmetry

altogether, the resistance to void growth depends to first order upon a scalar invari-

ant of the anisotropy tensor [17]. This scalar is here referred to as the Anisotropy

Effect on Ductility (AED) index. The fundamental hypothesis of this work is that

this AED index can be tuned through processing to enhance ductility at comparable

strength levels.

To test the hypothesis, three materials with potentially different degrees of plastic

anisotropy were used. The first is as-received hot-rolled AZ31B. The other two were

processed using ECAE, a method of severe plastic deformation [47, 48] which has

proven effective in altering textures in addition to the usual grain refinement [16, 49].

To isolate the effect of texture, all processed materials were heat treated to restore

the hardening capacity and grow the grain size back to the regime of the as-rolled

material. Plastic flow anisotropy is characterized in full 3D, both in compression

and tension. The AED index was thus calculated for each material/texture. Next,

the ductility of each material was characterized using (i) the same uniaxial tension
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specimens aimed at characterizing the anisotropy; and (ii) round notched bars, as

in [50]. The first set of data enables probing directionality of ductility for each

material. In the second set, the notched specimens were tested along the extrusion

direction only due to specimen dimensions and limited material. Finally, correlations

between the various measures of fracture strain and the AED index were sought and

rationalized on the basis of the micromechanistic model.

2.2 Theory

The hypothesis underlying this work is that the plastic anisotropy of Mg alloys can

be modified to deliver materials with enhanced ductility at comparable strength. The

basis for this is the theory of void growth in anisotropic materials, as articulated in

[51, 17] and further developed in [52, 18]. Consider for simplicity a Hill-type material

with no tension/compression asymmetry. The yield condition reads:

σ2
eq ≡

3

2
s : h : s = σ̄2 (1)

where σeq is the Hill equivalent stress, s is the stress deviator, h the fourth order

anisotropy tensor, and σ̄ the flow stress in an arbitrarily chosen reference direction.

In axes pointing onto the principal directions of orthotropy, the above equation can

be expanded into the following explicit form:

σ2
eq =

3

2

(
h1s

2
11 + h2s

2
22 + h3s

2
33 + 2h4s

2
23 + 2h5s

2
31 + 2h6s

2
12

)
= σ̄2 (2)

where the anisotropy coefficients hi are related to those used by Hill [53]; see [17]

and [54] for further details.

The micromechanics of void growth in anisotropic materials of the type (2) is
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captured in the following equation [17, 46]:

ḟ

ε̇eqf
≈ 3

h
sinh

(
3

h
T

)
(3)

where f is the void volume fraction, ε̇eq is the effective plastic strain rate, T is the

stress triaxiality ratio, and h is a scalar invariant of tensor h used in (1). In terms of

the hi coefficients entering the yield condition (2), this scalar invariant is given by

h = 2

[
2

5

h1 + h2 + h3

h1h2 + h2h3 + h3h1

+
1

5

(
1

h4

+
1

h5

+
1

h6

)] 1
2

(4)

Equation (3) shows that the rate of growth of porosity, ḟ , in a plastically deforming

material is dependent on the ’degree of anisotropy’ of the material, as lumped in

the h factor. This factor is a potent one since it appears inside the exponential

term. Thus, small changes in h could lead to large variations in void growth rate.

Examination of equation (4) reveals that h = 2 for an isotropic von Mises material

(since all hi’s are then equal to 1). According to this theory, values of h greater

than 2 would decrease the porosity rate, on average, while values less than 2 would

lead to an increase in porosity rate. This would hold for any triaxiality T and most,

if not all loading directions. Hence, the h factor may be used as an index for the

anisotropy effect on ductility. In what follows, we shall refer to it as the AED index.

In practice the hi coefficients are determined either based on yield stresses or

anisotropy strain ratios. The two methods deliver the same set of values insofar as

Schmid’s law holds. For example, Benzerga [54] developed the equations relating the

hi coefficients to the strain ratios. These relations are recalled in Appendix A. The

dual relations in terms of yield stresses may be found, for example, in [55].

A quadratic yield criterion such as (2) has obvious limitations when it comes to
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modeling the anisotropy in Mg alloys. It is assumed therefore that the AED index

(or h factor) is robust enough to apply to more complex materials. Note that in some

Mg alloys, the tension–compression asymmetry gradually decreases upon straining,

although it is large initially. It is emphasized that the objective here is to estimate

the AED index on the basis of the Hill anisotropy coefficients that provide the closest

fit to experimental data, not advocate using a quadratic yield criterion to model the

plasticity of Mg. Better constitutive models are now available, e.g., see [56, 57] and

references therein. However, for such constitutive models the relationships between

model parameters and anisotropy strain ratios are not readily available in closed

form.

2.3 Experimental Procedure

2.3.1 Materials

The as-received material is commercial alloy AZ31B (H24 temper) with nominal

composition (3.33 Al, 0.88 Zn, 0.21 Mn, balance Mg, all in %wt) in the form of hot

rolled 1”-thick plate. The microstructure and two pole figures are shown in figure 2.

Figure 2: As-rolled microstructure and texture of a hot rolled AZ31B plate.
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The material has an average grain size of 20-25µm and a distinct basal texture.

The principal directions of the plate are referred to as R, T, N for rolling, transverse

and normal directions, respectively (figure 3a).

Figure 3: Schematic showing the die geometry used for performing severe plastic
deformation using ECAE and the direction convention used for the directions on the
billet after processing.

In order to produce materials having the same chemical composition and average

grain size, severe plastic deformation was used by means of equal-channel angular

extrusion (ECAE). Two 25mm×25mm×150mm billets were cut from the plate and

passed through a 90◦ ECAE die with sharp corners (figure 3b). A backpressure of

20 MPa and an extrusion rate of 4.57mm/min at 200◦C were the parameters used

to process the material without surface cracks. Two routes were used with multiple

(four) passes to obtain different textures. In route A, the billet orientation is not

changed between two successive passes, while for route C the billet is rotated by 180◦

about the extrusion axis after each pass are referred to as 4A and 4C. For the ECAE

processed materials, the principal directions are denoted E, F, L for the extrusion,

flow and longitudinal directions, respectively (figure 3b).

The material obtained after ECAE is a material that has been hardened by
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heavy shear strains causing grain size reduction. In order to compare the processed

materials with the as-received one, the processed billets were heat treated for 24

hours at 350◦C so as to grow the grain size back to its value in the as-received plate.

With this procedure, the grain size is nominally controlled and the only independent

variable is the texture, hence the degree of plastic anisotropy. A line intercept method

was used to determine the average grain size. X-ray diffraction (XRD) was used at

time intervals of 0, 2, 10 and 24 hours to verify that the processing induced texture of

each route was not altered during annealing. This was accomplished by using small

coupons of 4A and 4C material taken from the billet’s mid-section in a Bruker-AXS

D8 X-ray diffractometer with Cu Kα radiation using a 5◦ grid size and an 85◦ sample

tilt.

2.3.2 Microstructure Characterization

Optical microscopy was used to characterize the initial and processed microstruc-

tures. Metallographic sections from different planes were prepared by cutting samples

using a diamond saw, ground with SiC paper and fine polished using 1µm diamond

solution and 0.3µm colloidal silica suspensions. Water was used during grinding only.

In particular, the solutions used for fine polishing were alchohol based; this includes

the diamond solution and the lubricant. Ethanol was used for rinsing and sometimes

acetone as ultrasonic cleanser. For etching, acetic picral solution (4.2 g picric acid,

10 ml acetic acid, 70 ml ethanol and 10 ml water) was used for time periods up to

5s. The materials that were processed without annealing had a quicker response to

the etching process due to the higher stored energy from processing.
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2.3.3 Mechanical Tests

2.3.3.1 Uniaxial Tests

In each billet, round compression and flat tension specimens were cut out along

the three principal directions E, F and L in addition to three off-axes directions,

at 45◦ from a principal direction in a principal plane. Each off-axis direction is

referred to using the two letters defining the principal plane. For example, EF is

the direction at 45◦ from E in the E–F plane. Cylindrical specimens are generally

preferred in characterizing anisotropy [50]. However, due to limited availability of

material, flat specimens had to be used in tension. Two specimens were used per

test condition. The geometry of the specimens used is shown in figure 4a & (b) for

compression and tension, respectively. Since ECAE leads to undeformed ends in the

billets, these ends were truncated and all specimens were carved out of regions of

(nominally) uniform deformation.

All tests were performed at room temperature on a MTS servo-hydraulic frame at

a nominal strain rate of 5×10−4 s−1. The axial strain was measured in tension using

a MTS axial extensometer. For compression a nickel based lubricant was used to

prevent early barreling. All compression pins failed in shear and broke in two pieces.

Fracture strain εf is defined as the sum of the lateral strains in the two principal

directions at load drop as seen in equation 5.

εf
L = ln

(
ΦE

Φ0

)
+ ln

(
ΦF

Φ0

)
(5)
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Figure 4: Geometry of samples used for mechanical property and for fracture charac-
terization. From left to right, the samples used are cylindrical compression pins for
compression tests, axis-symmetric smooth bar for obtaining tensile properties and
axis-symmetric notched bars of RN10 and RN2 geometries for fracture under triaxial
stress state.
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2.3.3.2 Measurement of Anisotropy Ratios

Given a loading orientation, say L, and a loading mode (tension or compression)

define the true axial and transverse strains as follows:

εL = ln

(
H

H0

)
; εX = ln

(
ΦX

Φ0

)
(6)

where H and H0 denote current and initial gage heights, respectively, X refers to

a transverse direction (either E or F when loading along L), and ΦX and Φ0 are

the current and initial diameters, respectively. In pin compression, initially circular

cross-sections become oval so that ΦX refers specifically to the “oval’s diameter”

along X. In flat tensile specimens, ΦX refers to either the width or thickness of the

current cross-section.

With that as basis, the anisotropy strain ratio for loading along L is then defined

as

RL =
εE

εF

(7)

The other two strain ratios, RE and RF, are defined following a cyclic permutation

(L,E,F) [54, 55]. For off-axis loading, say along the EF direction, the anisotropy

strain ratio is conveniently defined as:

REF =
εFE

εL

(8)

where the FE direction stands for the dual direction perpendicular to EF in the E-F

plane. The other two off-axis strain ratios, RFL and RLE, are defined in a similar way.

These strain ratios are akin the so-called Lankford coefficients, albeit the definitions

differ. They also generalize the notion of r-value used in sheet metal forming.
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To enable the measurement of diameters ΦX entering the definition of transverse

(or lateral) strains in equation (6) all compression tests were interrupted multiple

times. Fewer interruptions were made in tension, typically two or less, including

just before the macroscopic load drop. All dimensions were measured using a high-

precision micrometer so that strains were measured with an accuracy of 0.1%. Once

the strain ratios are determined, the anisotropy coefficients hi are obtained using the

equation 9, then used to determine the AED index in equation (4) rewritten in the

billet axes as:

h = 2

[
2

5

hE + hF + hL

hEhF + hFhL + hLhE

+
1

5

(
1

hFL

+
1

hLE

+
1

hEF

)] 1
2

(9)

2.3.3.3 Round Notched Bar Test

Round cylinders were also cut using wire electro-discharge machining (EDM)

along the extrusion direction. From these cylinders, axis-symmetric notched bars

were machined. These notched bars are usually employed in fracture studies [58, 59].

In strongly anisotropic materials such as Mg, introduction of a notch plays a dual

role since it also allows to investigate the effect of triaxial loading on the mechanical

anisotropy. Since the stress state is triaxial inside the notch, there are two equal

minor principal stresses σ in addition to the major axial stess Σ such that σ < Σ.

Stress triaxiality, T, is defined as the ratio of hydrostatic stress to the von mises

stress. A geometrically based notch severity parameter, ζ defines the severity of the

notch where:

ζ = 10 ∗ R
Φ

(10)

Taking the notch height as a gauge length, a nominal strain rate of 3× 10−4s−1

was imposed in all cases. In the notched bars, the use of an axial extensometer would
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be pointless unless the gauge is restricted to the height of the notch, which is difficult

given the size of our specimens. Continuous measurement of diameter reduction was

done using a custom made knives mounted on a MTS clip-on gage, which together

makes the setup of the radial extensometer[60]. The strain is measured along one of

the principal directions at the minimum cross-section. Due to anisotropy, the test was

interrupted multiple times and the measurements along the other principal direction

was recorded. Definition of strain remains the same as in the case of compression

samples. Crack initiation is detected by an abrupt change in the macroscopic slope

in the load vs diameter reduction curve and is defined as strain to failure.

2.3.4 Fractography

All surfaces of fractured notched specimens were observed in FEI Quanta 600

SEM. Since Mg is notorious for quickly oxidizing in air the surfaces were observed

shortly after each experiment. The surfaces were sprayed with silicone immediately

after fracture and placed in desiccators under vacuum prior to observations. Yet,

each sample could be observed only once even with care taken to prevent oxidation.

After the fracture surfaces were observed in SEM, one half of the specimen was

sectioned longitudinally using EDM and metallographically prepared and observed

under both OM and SEM in the E-F and the E-L planes. The aim was to observe the

extent of damage beneath fracture surfaces. Fine polishing was done as described

above with particular care given so as not smear out voids smaller than a few microns

in size. When voids were found to initiate at second-phase particles, dispersion

spectroscopy was used to characterize their composition. Similar techniques were

used in [50, 61].
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2.4 Results

2.4.1 Processed Textures and Microstructures

The textures obtained by ECAE processing are shown in Figure 5 and compared

with the as-rolled texture.

Rolling

4A

4C

Figure 5: Figure showing the alteration of texture by the process of ECAE by fol-
lowing different process routes and obtaining 2 different processing routes 4A and
4C at 200C which is used as the material for this study.

The texture of material 4A has rotational symmetry about the flow plane normal.

A single pass through route A leads to a rolling-like texture. Subsequent route-A

passes strengthen this texture by reorientation to a very similar texture after each

pass. On the other hand, route C is a redundant strain path whereby the direction

of simple shear is reversed after each pass. However, the second pass does not erase
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the texture developed in the first, demonstrating path dependence in deformation

induced textures.

Figure 6: Figure showing evolution of the grain size due to the annealing heat treat-
ment. The initial microstructure is shown for (a) 4A , (b) 4A after annealing for 24
hours at 350◦C

The outcome of the post-processing heat treatment is shown in Figure 6 for

material 4A. The as-processed material exhibits a fine grain microstructure (Fig. 6a)

with few large grains elongated along the extrusion direction, as often reported for

this particular route [9]. Fig. 6b shows the microstructure after annealing at 350◦C

for 24 hours. Similar dual grain size distribution was observed in the annealed

microstructure. The average grain size was d̄ ∼ 3µm and d̄ ∼ 15µm before and after

annealing, respectively. For reference, the as-received AZ31 material had d̄ ∼ 20µm

and the annealing was done to recover the microstructure and grow the grains back
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to the regime of the as-received material so as to focus on texture effects only.

Figure 7: Figure showing the texture evolution during the process of annealing for
material 4A at different time steps (a) initial (b) 2 hours (c) 10 hours (d) 24 hours.

Figure 7 shows the evolution of texture during annealing. The texture was not

significantly altered during the process of annealing.

The result of annealing on the microstructure of material 4C is shown in Fig. 8.

It is known that the microstructure of the as-processed material is more uniform in

this route. This is indeed confirmed by Fig. 8a. The same applies to the annealed

microstructure shown in Fig. 8b. For this material, the average grain sizes were
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Figure 8: Figure showing evolution of the grain size due to the annealing heat treat-
ment. The initial microstructure is shown for (a) 4C , (b) 4C after annealing for 24
hours at 350◦C

d̄ ∼ 3µm and d̄ ∼ 18µm before and after annealing, respectively; compare with

d̄ ∼ 20µm for the as-received material.

Figure 9 shows the evolution of texture during the process of annealing for the

material processed through route 4C. Here too minimal change in texture occurs

subsequent to annealing.

2.4.2 Stress-strain Behavior

As mentioned in Section 2.3.3.1 each ECAE processed material was tested along

six orientations, both in tension and compression. In addition, results for the as-

received material tested along three principal directions were taken from [62]. Details

about the tensile stress–strain curves for all orientations will be shown later in the

context of discussing the directionality of ductility. Here, it suffices to recall that
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Figure 9: Figure showing the texture evolution during the process of annealing for
material 4C at different time steps (a) initial (b) 2 hours (c) 10 hours (d) 24 hours.
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material 4A exhibits the usual tension compression asymmetry in all orientations

whereas material 4C exhibits asymmetry when tested along the flow direction F;

The other two principal directions (E and L) had negligible tension-compression

asymmetry in yield but some in subsequent flow, in keeping with previously published

results [21]. Typical nominal stress versus logarithmic strain responses in tension

along the extrusion direction are shown in Fig. 10 for both 4A and 4C materials and

compared with the response of the as-received material loaded along the processing

(rolling) direction.
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Figure 10: Force vs displacement response for smooth bars along extrusion direction
processed by 4A and 4C routes compared with the as-received AZ31.

26



2.4.3 Anisotropy Ratios

To estimate the AED index of each material using (9) and the equations (see

Appendix B) the anisotropy strain ratios must be reported. As described in Sec-

tion 2.3.3.2 the evolution of the strain ratios was followed in compression through

frequent test interruptions whereas up to two measurements were made in tension.

Fig. 11 shows the evolution of the strain ratios with plastic strain for material 4A in

compression.

The five ratios reported in the figure (RE and RF for principal directions, REF,

RFL and RLE for off-axes directions) are those that appear in the equations (see

Appendix B). Furthermore, to avoid data clutter the results are grouped in two sets.

In the first, Fig. 11a, the strain ratio keeps evolving with plastic strain with no

indication of a steady-state behavior. In the second set, Fig. 11b, the two ratios RLE

and RE exhibit a steady state behavior after a transient, as discussed in [50] for as-

received AZ31. These trends underscore the complex evolving plastic anisotropy in

the material and will be further discussed in Section 2.5. In tension, the existence of

a steady state could not be ascertained because of a restricted set of measurements.

In all six loading orientations, the strain ratios were determined at sufficiently large

strains prior to fracture.

The evolution of the anisotropy strain ratios with plastic strain is shown for

material 4C in Fig. 12 using the same principle for grouping the data sets as in

Fig. 11. Interestingly, here the two ratios that exhibit clear steady state are RE

and RFL. The RX values are generally greater for material 4C than for material 4A

despite the more “distributed” character of the texture in 4C (see Fig. 5.)
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Figure 11: R-values plotted along with evolution of strain in compression along
3 off-axis and 2 principal directions for material processed through route 4A split
according to (a) directions that did not reached a stable state called transient stage
(b)directions where ratios reached a stable regime
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Figure 12: R-values plotted along with evolution of strain in compression along
3 off-axis and 2 principal directions for material processed through route 4C split
according to (a) directions that did not reached a stable state called transient stage
(b)directions where ratios reached a stable regime.
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2.4.4 AED Index

Next, the AED index, or h factor in equation (9), may be calculated at any stage.

Here, near terminal values of the strain ratios were used consistently, since these were

always available in tension. The results are reported in Fig. 13 for all three materials

in both tension and compression. For the as-received material the data is taken from

[50, 55].
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Figure 13: Anisotropy indicating factor (AED) under compression and tension for
as-rolled sheet, 4A and 4C

A few remarks are in order based on the theory of Section 2.2. In the as-received

material, the AED index takes values smaller than 2 either in tension or compression.

This suggests that its anisotropy is of the bad kind. By way of contrast, material
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4C exhibits AED values larger than 2 whereas material 4A has the AED > 2 in

tension but < 2 in compression. Thus, when voids are present, it is expected that

the rank ordering of tensile ductility be: as-received, 4A then 4C in increasing order.

The values in compression are provided for completeness. It is not clear whether the

theory can be invoked to make projections for ductility under compressive loading.
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Figure 14: Evolution of AED factor with strain for as-received, 4A and 4C material

To examine the robustness of this order of the AED index, Fig. 14 shows its

evolution with plastic strain based on the systematic investigation of the compression

case. Remarkably, the AED values obey the same rank ordering as for terminal

values at all stages. Presumably, the same holds for tension. Also, the variations

with plastic strain of the AED values (Fig. 14) are not as erratic as some strain-ratio
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values (Figs. 11 and 12).

2.4.5 Notch Ductility

In characterizing resistance to ductile fracture, any measure of uniaxial ductility

(elongation to fracture, area reduction or the logarithmic measure adopted here)

should be supplemented with at least a measure of notch ductility [46]. This is

because of the widely documented stress-state dependence of ductility, as partly

embodied in the fundamental equation (3) via the triaxiality term. In the case of

Mg alloys, this is further required due to recent findings by Kondori and Benzerga

that (i) the notch ductility of Mg alloy AZ31 is greater than its uniaxial ductility

(adopting comparable measures) [50]; and (ii) the notch ductility of WE43 alloy, on

the other hand, deteriorates quite drastically with notch severity [44]. Therefore,

even when uniaxial ductility is enhanced, further checks are needed for the notch

ductility.

Fig. 15 compares the responses of the notched bars loaded along E (or R for the

as-received material. Clearly, the fracture strains follow the rank order suggested by

the AED index, i.e., material 4C is more ductile than 4A, which is more ductile than

the as-received alloy. The peculiar shape of the load-deflection responses is because

a load cell of large capacity was used on relatively small specimens. This, however,

does not alter the order of fracture strains, for example as estimated based on area

reduction. While it may be argued that material 4C exhibits a softer response, the

limit loads in the 4A and as-received specimens are comparable. Finally, it is worth

noting that for each material the fracture strain is greater in the notched bar than

it is in the smooth bar. This confirms and generalizes the trend first revealed in [50]

for as-received AZ31.
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Figure 15: Force vs displacement response for shallow notched bars(RN10) processed
by 4A and 4C routes compared with the as-received AZ31. These samples were used
to characterize fracture under triaxial loading conditions.
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2.4.6 Directionality in Ductility

While both the uniaxial and notch ductilities seem to follow the AED-based

projections, it is expected that the ductility depends on loading orientation. To

quantify this, Fig. 16 reports the fracture strains measured for uniaxial tension along

all six orientations.

To facilitate comparison, the fracture strain for a given orientation is normalized

by its value for the as-received material. With this definition, values above unity in-

dicate an increase in ductility with respect to the as-received alloy for a given loading

direction. For the three off-axis orientations, the fracture strain was normalized by

that of the 4A material because the data was not available for as-received material.

What is plotted in Fig. 16a is the strain to failure initiation, that is at the load drop

in the global response. The latter is shown for all loading orientations in Fig. 17.

By way of variation, Fig. 16b reports the strain to complete rupture, as inferred

from area reduction measurements post-mortem. The trends are insensitive to the

measure used. It is clear that ductility is found to be enhanced in all directions,

even if the increase is modest in some orientations. Not only this figure establishes a

correlation between the AED index and ductility, irrespective of orientation, it also

shows a 70% increase in ductility in certain orientations.

A good way of representing the fracture under varied stress state is by presenting

a failure locus. It is a plot relating the strain-to-failure with the stress triaxiality.

The locus is unique under proportional loading conditions. For non-proportional

loadings the strain-to-failure is plotted against some strain-weighted average of the

stress triaxiality ratio the fracture locus not only is non-monotonous, it is not one-

to-one [63]. Even in lab samples it is impossible to have a situation of proportional

loading. However, the samples tested here were close to proportionality. To obtain
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Figure 16: Correlation between the improvement in ductility with the evolution of
the AED index along the 3 principal and 3 off-axis directions for the 3 materials (a)
strain at failure initiation (b) strain at rupture. The plots have been normalized by
the smallest value of ductility along a particular direction which is the value for the
as-received material. Since the values were not available for the as-received material
in the off-axis directions, the values of 4A material was used instead.
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Figure 17: Stress strain curves under uniaxial loading in tension along the three
principal and 3 off-axis directions for (a) 4A and (b) 4C materials
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the evolution of stress triaxiality FEM calculations need to be performed as the

stress-state cannot be obtained from experiments. This part is not discussed here

and hence as the history of the triaxiality is unknown for the samples, the strain-

to-failure is plotted with the sample type. As we move along the axis the stress

triaxiality increases. Under uniaxial loading condition in compression and tension

the value of stress triaxiality is -1/3 and 1/3 respectively before barelling or necking

occurs.

2.4.7 Fracture Mechanisms

Figure 18: Fracture surface of RN10 specimen (a)-(c) 4A and (d)-(f) 4C samples
showing dimpled fracture surface with particles in the dimples showing ductile frac-
ture mechanisms are active.

The fracture surfaces of notched specimens of 4A and 4C materials both exhibit a

dimpled character, Fig. 18. Initially smooth flat tensile specimens also exhibited some

isolated regions with dimples for some loading orientations. However, longitudinal
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cuts (not shown) invariably show shear rupture, if only partial. This is consistent

with the findings in [50] for as-received AZ31. The dimpled character of fracture

surfaces in notched specimens is clear indication that the well established cavitation

processes are active in both materials. Zooming into the fractographs, second-phase

particles may be observed in many dimples (see Fig. 18b and e) suggesting that

damage occurred due to void nucleation at these particles and subsequent growth to

coalescence.

In order to gain further insight into the damage mechanisms, longitudinal sec-

tions of broken bars were prepared (see Section 2.3.4). They are shown in Fig. 20.

Interestingly, sections in E–L planes (Fig. 20a and b) show slightly slant fracture

surfaces. Higher resolution observations (not shown) do not show extensive damage

sites in such sections. On the other hand, longitudinal sections in E–F planes where

the crack path is macroscopically flat (as opposed to slant) reveal extensive damage

beneath the surface. An example is shown in Fig. 20c in the case of 4C material.

Fig. 19 illustrates some close-ups of individual damage sites in Fig. 20c.

The various stages of void formation at second-phase particles, void enlargement

and coalescence can be observed.

It appears therefore that damage develops in some rather anisotropic fashion.

Although not fully investigated here, this sequence of events was studied in some

detail by Kondori [55] in as-received AZ31. He showed that the above evidenced

processes of cavitation lead to formation of larger blunted cracks which run parallel

to one principal direction (here the flow direction F). As there are multiple such

macrocracks in the specimen they link up by shear localization and shear rupture.

This may explain the slanting observed in E–L sections or the macro-splits observed

directly onto fracture surfaces of Fig. 18a and d.

Fig. 21 shows some high-resolution SEM images of damage nucleation sites, here
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mainly second-phase particles. Analysis by EDS reveals that the particles are Al–Mn

rich. The dominant nucleation mechanism is by particle cracking, although lower-

resolution images may suggest decohesion at the poles.

To sum up, the fractography analyses reveal that cavitation processes are active

in both processed materials. Cavitation occurs at Al–Mn second-phase particles,

mostly by cracking. Also, this cavitation extends far beyond the fracture surface

and may not be evident in all planes of view.

2.5 Discussion

In the Mg literature, the phrase “texture engineering” is invoked to mean, nearly

systematically, reducing, weakening or randomizing the texture altogether [30]. Such

engineering is predicated on the premise that the strong texture of wrought Mg al-

loys is deleterious to fracture resistance. The work initiated here aims at shifting

the design paradigm toward engineering, not suppressing, the anisotropy of wrought

metallic materials, in particular Mg alloys, for example via their texture. The ratio-

nale for this is two-fold: the lack of success in demonstrating that the more isotropic

Mg alloys are considerably more ductile at ambient temperature; and a hypothesis

based on mechanistic understanding of ductile damage.

Over the past decade, significant efforts have been devoted to texture weakening

in Mg alloys, notably by addition of RE elements; for a review see [30]. In the most

successful realizations of this concept, the following attributes have clearly been

demonstrated:

1. up-to-random levels of texture with recrystallization playing a key role;

2. no tension–compression asymmetry (on strength);

3. finer grains, hence higher strength; and
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4. solute segregation to grain boundaries as a key solute-related mechanism that

retards recrystallization.

Many studies also claim that the ductility is improved in RE alloys. Fair examination

of the results, including for WE43 alloy [44], shows however that the ductility is at

best the same as in commercially available alloys such as AZ31. The mere fact that

ductility levels of AZ31 have barely been retained indicates that anisotropy–ductility

correlations are more complex than widely reported. The situation is in fact worse.

In a recent study, two of the authors have shown that the notch ductility of WE43

alloy, with RE elements, is poor in comparison with that of AZ31 [44].

The work undertaken here is hypothesis driven. The hypothesis, which emanates

from the theory of void growth in anisotropic plasticity, may be restated as follows:

plastic anisotropy affects ductility to first order and this effect may be captured

by the AED index. If confirmed, the hypothesis will enable to make projections

regarding ductility levels on the sole basis of plastic anisotropy measurements, and

by way of consequence, establish a new design paradigm whereby material attributes

responsible for the anisotropy, such as textures, may be reverse engineered to obtain

desired values of AED indices. Evidently, such reverse engineering would require a

suite of other experimental and modeling tools to be established.

In this paper, focus has been laid on testing the validity of the said hypothesis. In

order to do so, several materials sharing the same chemical composition and average

grain size, but possessing different levels of plastic anisotropy had to be prepared.

In addition, cavitation had to be established as the main damage mechanism (oth-

erwise, the correlation in Fig. 16 which is in keeping with the hypothesis, would be

fortuitous). Then, establishing a correlation between plastic anisotropy and ductil-

ity required that measurements of both be carried out. Several ways and definitions
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of each are possible. For plastic anisotropy, what is important is that the full 3D

anisotropy had to be characterized. Indeed, the AED index involves contributions

from all six anisotropy coefficients (the hi) with the shear coefficients having more

weight; see equation (4). For ductility, it was important to verify not only the di-

rectionality but also the stress state dependence, i.e. notch ductility in addition to

uniaxial ductility (recall that the latter is comparable between AZ31 and WE43 al-

loys whereas the former is much better in AZ31 [44]). In the literarture, both plastic

anisotropy and ductility of Mg alloys are poorly characterized. The anisotropy is

often reported in terms of r-values for sheet metals, or in terms of loadings along

principal directions, whereas the ductility is often reported for initially smooth bars.

2.6 Conclusions

ECAE induces texture in Mg alloys which leads to anisotropy in flow and fracture.

Engineering this could lead to improvement in ductility. The AED factor was capable

of capturing the trends observed in ductility. Definition of ductility must me probed

over a variety of stress states. There is a need to investigate the competing effects

of plastic anisotropy on enhancing ductility & causing shear failure. The success

of the AED factor will help guide new processing routes to obtain textures aiding

ductility. Through this anisotropy indication factor the microstructure and texture

can be controlled and help improve the formability of these alloys which is the final

motive of these kind of studies.
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Figure 19: Magnified images capturing damage initiation sites under the fracture
surface along ED-FD plane shown in 20

.

Figure 20: Profile of the fractures specimens showing macroscopic failure mode. The
polished section under the fracture surface when viewed under optical microscope
shows the failure profile for (a) 4A uniaxial (b) 4C uniaxial (c) 4A RN10 bar (d) 4C
RN10 bar.
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Figure 21: SEM images showing damage initialtion sites on ED-FD plane along with
EDS plots of the particles participating in the damage process.
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3. ANISOTROPY EFFECTS ON FORMABILITY

3.1 Introduction

Energy saving is a major concern especially in transportation industry for im-

proved fuel economy and reduced emission levels [64, 65, 66, 67]. Light weight, high

strength-to-weight ratio and their vast abundance in the earth makes magnesium

alloys ideal candidates for lightweight structural applications where energy saving is

a major concern [1, 68]. Most magnesium alloy components are manufactured for

casting applications through processes like high-pressure die casting[69]. Wrought

alloys in particular have been reported to have better mechanical properties than

their casting counterparts [70]. Despite the huge advantages, the use of magnesium

alloys in wrought form is rather limited compared to aluminium, steel and cast iron.

Limited formability at room temperature along with catastrophic failure after lim-

ited necking are among the drawbacks that limit their application in industries with

sheet metal forming applications [71].

The cold workability of wrought magnesium alloy products is limited, mainly due

to the hexagonal close-packed crystal structure of magnesium and its limited number

of independent slip systems [2, 72]. Due to this major limitation, a vast majority

of Mg parts with small and thick geometries are fabricated by die casting processes

[67, 73]. Warm forming processes at low strain rates can improve formability of Mg

alloys by activation of additional slip systems [74, 75, 76, 77, 78, 79, 80, 81, 82,

83, 84]. However, at elevated temperatures (> 300◦C) additional problems related

to oxidation can complicate manufacturing [78, 79, 80, 81]. Therefore, to enable

widespread use of wrought Mg, an important current objective is fabrication of Mg

alloy sheets capable of being rapidly ( > 10−3s−1) formed at low levels of elevated
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temperatures (< 200◦C). In general, formability not only depends on temperature

and materials characteristics (chemistry, microstructure, anisotropy), but also on

stress state and processing techniques, including such aspects as friction, tool ge-

ometry, shape of the deformation zone and prior deformation [85, 86]. Accordingly,

warm forming by methods such as deep-drawing and isothermal superplastic blow

forming processes has been extensively studied by researchers for production of Mg

sheet metal components.

Several studies have focused on formability of Mg alloy sheets by deep drawing at

different forming temperatures and strain rates [67, 73]. The tooling system for Mg

alloys sheet forming is quite complex leading to an expensive product cost because

of the elevated forming temperature between 250◦C and 400◦C. The deep forming

of Mg sheets is a very adequate process that can be used for the manufacture of

complex part geometries. It was highlighted by several studies [75, 87, 88, 89, 90]

that heated tools are required for the manufacturing of component geometries from

Mg sheet. Since Mg alloys are still not widely used as structural materials, formability

data remain scarce. In this paper we try to probe that does engineering anisotropy

(texture) guided by theory [17] lead to improved formability at low temperatures by

performing biaxial stretch tests.

AZ31b has tensile elongation in the range of 20% comparable to Al alloys, yet

very poor formability at room temperature. However, at temperatures higher than

175◦C it shows better formability. In a recent study, Basu et al.[91], have experi-

mentally shown that engineering the anisotropy and not suppressing it can lead to

improvement in ductility. Anisotropy in this case is altered through texture modi-

fications via Equi-Channel Angular Extrusion (ECAE) which is a method of severe

plastic deformation (SPD). This method is effective in altering the texture by intro-

ducing large amounts of shear strain at the intersection of the entry and exit channel
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of the die [47, 48, 21]. Two different textures produced through different processing

routes via ECAE are compared to as-rolled texture. This could be rationalized based

on a scalar invariant of the anisotropy matrix obtained through a homogenisation

solution. The authors confirmed the predictions of the model [17] that values of

this scalar invariant less than 2 are bad for ductility and values greater than 2 are

good for ductility. The question arising is that, can this finding be extended to the

improvement in stretch formability of these alloys.

Any progress in fundamental understanding of limiting factors affecting ductility

of Mg alloys must translate into tangible metrics in Mg sheets, as the final product

e.g. in the transportation industry. Hence we extend the processing used by Basu et

al.[91] to sheet material and compare different textures produced by Equal Cannel

Angular Plate Extrusion (ECAPE) to the rolled AZ31b to see the effect of texture

engineering on formability. Hence, three starting textures (one as-received and two

processed) were actually used in this part. The as-receivedeived material refers sim-

ply to EDM cutting of thin sheets out of the as-receivedeived plate. In order to keep

the formability test matrix reasonable, the detailed investigation of temperature and

strain rate effects on damage accumulation in as-receivedeived AZ31 sheets was car-

ried out using uniaxial tension specimens. The formability tests were carried out at

three different temperatures for all three sheet materials. Study of deformation under

biaxial stress state is not enough to comment on the stretch formability. However,

this paper did not aim at characterizing the formability of these alloys, instead, it

was aimed at making a qualitative comparison between 3 different processed textures

keeping all other effects such as grain size and others aside.
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3.2 Materials

The starting material used is a commercial magnesium alloys AZ31B H24 temper

with nominal composition (3.33 Al, 0.88 Zn, 0.21 Mn, balance Mg, all in %wt)

in the form of hot rolled sheets. Plates of dimension 150mm x 150mm x 13mm

were processed using Equal Channel Angular Plate Extrusion (ECAPE) tool. A

backpressure of X MPa and an extrusion rate of 4.57mm/min through the 90 die

with sharp corners were the parameters used to process the material without cracks.

Two different processing routes were adopted: Route 4A (no rotation between passes)

and route 4Bcp (90 CW rotation around the plate normal) both processed at 200◦

C. The alphabet in each case denotes the nomenclature of the route through which

the material has been deformed while the number denotes the number of passes

undergone. Completely crack-free processing was possible only using route 4Bcp.

The plate processed through route 4A had minor cracks near the edges. It is worth

mentioning that the Bcp route used in this study is completely a new route and

different from the traditional Bc route used for bar specimens where the rotation is

about the extrusion axis. The present Bcp route in the plate tool is not accessible

in the billet ECAP tool. The plates were oriented such that the extrusion direction

were initially aligned with the rolling direction. Due to geometrical restrictions of

the ECAPE die, only one initial texture could be used with the basal poles parallel

to the extrusion direction as shown in Fig. 22.

Sheet specimens of dimensions 60 mm x 60 mm x 1.65 mm were cut out from

these ECAPE processed plates using Electro Discharge Machining (EDM). 3 sheets

could be obtained through the thickness and 4 different locations on the plate. Care

was taken to avoid the edges and stay away from the top and the bottom surfaces

in order to stay in the uniformly deformed region. The material obtained after
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Figure 22: Schematic of ECAP die for processing of 150 mm x 150 mm x 13 mm
plates. The starting texture used was basal, as the basal poles are parallel to the
extrusion direction. ED: Extrusion direction, LD: Longitudinal direction, FD: Flow
direction.

48



ECAE is a material that has been hardened by heavy shear strains causing the

grain size reduction. In order to compare with the conventionally rolled alloys, the

microstructure needs to be recovered off the loss in strain hardening capacity due to

ECAE and grown back to the grain size regime of the reference material. Hence a

heat treatment which was used in the recent study by Basu et al., was employed in

this case. The processed plats were heat treated at 350◦C for 24 hours. A Bruker-

AXS D8 X-ray diffractometer(XRD) with Cu Kα radiation on a sample from the

plate’s mid-section was used to get (0002) and (101̄0) pole figures using a 5◦ grid size

and an 85◦ sample tilt.

In Fig.22 the notion of directions followed are RD, TD and ND refer to Rolling

direction, transverse direction and normal directions respectively. The in plane direc-

tions are the rolling and transverse directions while the normal is through thickness

or out of plane direction. The same directions when translated to ECAE are de-

noted as ED, LD and FD which refer to extrusion, longitudinal and flow directions

respectively. The ED and FD being the in-plane directions. This nomenclature will

be used for further reference in the course of this paper.

3.3 Microstructure Characterization

Optical microscopy was used to characterize the initial and processed microstruc-

tures. To obtain the mirostructure of the material, metallographic samples from

different planes were cut using a diamond saw, ground with SiC paper and fine pol-

ished using 1µm diamond solution, 0.3µm colloidal silica suspensions. Water was

used during grinding only. The solutions used for polishing were alchohol based and

an alchohol based lubricant was used for polishing purposes. Ethanol was used for

rinsing and sometimes acetone as ultrasonic cleanser. For etching, acetic picral so-

lution (4.2 g picric acid, 10 ml acetic acid, 70 ml ethanol and 10 ml water) was used
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for time periods upto 5s. The alloys which were processed without annealing had

a quicker response to the etching process due to the higher stored energy from the

processing.

3.4 Mechanical Tests

3.4.1 Uniaxial Tests

Flat tension specimens were cut out along the three principal directions E, L

and F directions. These experiments were aimed at measuring the yield and flow

behavior of these materials, understand the evolution of plastic anisotropy with plas-

tic strain and obtain the strains to failure. Two samples were tested per condition

to increase confidence in the scatter. These tension experiments were performed at

room temperature on a MTS servo-hydraulic test frame at a constant strain rate of

5 x 10 −4 s−1. Fracture strain εf is defined as strain at which the load drop occurs.

This fracture strain here is the logarithmic strain based on area reduction measure

at the load drop. ‘

3.4.2 Stretch Formability Test Using Olsen Punch Setup

Biaxial stretch formability tests were performed at room temperature (RT) using

the Olsen tool set. Sheet specimens were cut of dimensions mentioned in section3.2.1

from the ECAPE processed plates were used in this study. These specimens were

tested both under as-processed conditions and after annealing to recover the mi-

crostructure and were compared to the as-receivedeived material (rolled AZ31b).

The Olsen tool set is an instrumented double action servo hydraulic press with a

maximum punch load of 60,000 lb and maximum clamping load of 75,000 lbs. A

schematic of the Olsen formability test frame with dimension are given in Fig.23.

The Erichsen formability test is identical to the Olsen formability test with an

exception of test dimensions. Limiting Dome Height test (LDH), it is a more com-
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Upper Die

Lower Die
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Figure 23: Schematic drawing of Olsen/Erichsen formability test setup. It comprises
of 3 parts; upper die, lower die and the punch or plunger.
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monly used test in evaluating the formability of sheet metals. The LDH test, which

uses a 4” punch diameter, is the test used in the auto industry for sheet metal forma-

bility assessment. However, we could not use the LDH test in our study because it

requires a 7” x 7” specimen size. Thus, the Erichsen test was selected due ti ma-

terial restriction as the process of ECAPE led to limited material at disposal for

characterization. Also, since our study was to compare specimens relative to each

other based on their thermo-mechanical processing histories, rather than to establish

a formability limit, the Erichsen test was adequate. The punch speed was 0.05 mm/s

and the 133 kN clamp load was applied to ensure pure stretching. After the test,

specimens were analyzed and it was evident that the material was not drawn into

the die, but instead biaxially stretched. The picture of the punch setup is shown in

Fig. 24. The specimen is clamped in between the pair of dies shown on the right of

Fig. 24 and the punch of diameter 1.25” is used to deform the sheet specimen under

biaxial tension.

3.5 Results

3.5.1 Processed Textures and Microstructures

The resultant microstructures and textures obtained through processing through

ECAPE route 4A and 4Bcp at 200◦C are shown in Fig. 25(c)-(f) are compared to

the as-rolled texture in Fig.25(a)(b).

Single pass through A route, exhibits similar texture to rolling texture. Sub-

sequent route A-passes serve to strengthen this texture by reorientation to a very

similar texture after each subsequent pass. The textures possess rotational symme-

try about the flow plane normal. Route Bcp is a redundant strain path where the

simple shear of the 4 passes results in zero net shear. However, these steps does not

erase the texture developed in the earlier pass, demonstrating the path dependence
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Figure 24: Geometry of the punch setup used in this study. The figure on the left
shows the punch and to the right are the geometry of the die in which the plate was
tested.
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Figure 25: Optical microstructure of the (a) as-rolled AZ31 plate (c) 4A (e) 4Bcp
and textures of (b) as-rolled AZ31 (d) 4A (f) 4Bcp.
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in deformation induced textures. The initial rolled plate possessed a grain size of

25µm and the processed ECAPE sheets posses approx 4µm grain size. The ECAPE

followed by annealing at 350◦C for 24 hours led to an average grain size of approx

20µm. A line intercept method was used to determine the average grain size.

3.5.2 Stress-strain Behavior

Flat tension samples and compression samples were used to characterize the flow

behavior of the processed materials in compression and tension. Typical nominal

stress versus nominal strain responses in tension and compression along the principal

directions of extrusion are shown in Fig. 26 exhibiting the usual tension-compression

asymmetry.

3.5.3 Punch Response

Room temperature biaxial stretch formability tests were performed using an

Olsen tool set on the EDM cut sheets sliced from as-rolled and ECAPE processed

plates. The ECAPE processed sheets were heat treated at 350◦C for 24 hours to

recover the microstructure and purely compare texture effects on the formability of

these magnesium sheets. Formability was evaluated by the limiting dome height

(LDH) value, i.e., the value at which a macroscopic load drop occurs leading to the

formation of a crack.

Fig. 27 shows the deformed samples under biaxial stretch and gives an idea

about the test matrix used for these experiments. All the tests were stopped as soon

as a load drop was observed in the macroscopic load displacement curve leading

to formation of a macroscopic crack. The room temperature response for the 3

materials is shown in Fig. 28. From the above figure we see that the material 4Bcp

shows more than 200% improvement in the value of dome height while 4A showed a

poorer formability result than the as-rolled material.
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Figure 26: Room temperature stress-strain response under tension and compression
for (a) as-rolled (b) 4A and (c) 4Bcp
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Figure 27: Deformed test matrix used to characterize biaxial stretch formability of
AZ31 processed by different processing routes.
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Figure 28: Load vs dome height for stretch punch tests performed using an Olsen
punch setup on ECAPE + annealed processed thought 4A and 4Bcp at 200◦C com-
pared to that of rolled AZ31 plate.
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Further sheets of these materials were also tested at slightly elevated temperatures

than room temperature (60◦C and 100◦C) to compare the temperature effects on the

formability results. The force vs dome height response is shown in Fig. 29 for (a)

as-rolled (b) 4A (c) 4Bcp. From the figure we can see that the as-rolled material

shows little temperature effect when the temperature changes from room temperature

to 100◦C. 4A shows huge temperature dependence in the range investigated on its

formability. The cup height is seen to improve by 100% when temperature was

elevated from room temperature to 100◦C. Material 4Bcp shows no temperature

dependence in the range investigated.

3.6 Discussion

Lack of success in techniques aimed at suppressing or reducing the anisotropy

indicates that texture/anisotropy-ductility relationships are more complex than pre-

viously believed. This led to a new paradigm, “Engineer not suppress anisotropy

to improve ductility”. The recent studies by Basu et al.[91] showed that texture

can indeed be engineered to obtain better ductility. This could be rationalized and

guided by an anisotropy indicating factor “h” which emerges from the micromechan-

ical calculation done by Benzerga et al. [17] of a hill type material. The success

in improving the ductility of AZ31 by 2 fold as suggested by the invariant led the

authors to check if the above findings could be extended to the formability of these

materials. The findings for material processed by 4Bcp route (see Fig. 28) indicate

success as such high values of dome height at room temperature were not reported

earlier in the literature.

Fig. 30 shows the trends obtained in the formability data. The improvement

in formability from as-received to 4A to 4Bc was observed for all temperatures ex-

cept at room temperature as seen in Fig. 30 (a). The temperature dependence on
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Figure 29: Load vs dome height for stretch punch tests performed using an Olsen
punch setup on (a) rolled AZ31 sheet specimens compared to ECAPE + annealed
processed thought (b) 4A and (c) 4Bcp at 200◦ C.
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the formability of each material is shown in Fig. 30(b). Materials as-received and

4Bc show minimal effect on formability in the range of temperature studied. Ma-

terial processed via 4A however, shows huge improvement in formability with the

temperature range investigated.

Poorer response for 4A at room temperature was against expectations as the

AED indicator and findings from uniaxial ductility indicate better results. Basu et

al.[91] showed in their recent study that the AED in compression is of the bad type

in 4A, although it is not clear that compressive states are relevant here. However,

the anisotropy in biaxial loading has not been thoroughly characterized. Minimal

variation of the limit cup height with temperature in as-received material and 4Bc

indicate that the texture does not facilitate for activation of softer mechanisms with

minor change in temperature studied here. However, improvement of formability

with nominal increase in temperature for 4A suggests that the mechanisms aiding

ductility were not easily activated at room temperature. Also the evolution of the

stress state may play a role in generating plastic instabilities and causing early failure

in 4A material.

3.7 Summary

Commercial 13mm-thick AZ31 hot rolled plates have been successfully ECAPE

processed at 200◦C using different routes and multiple passes to modify the initial

wrought microstructure. Loss of hardening capacity if the material was recovered by

heat treatment at 350◦C for 24 hours which was similar to the heat treatment used by

Basu et al. [91]. Sheet specimens were cut out of ECAPE processed plates. A punch

experiment was carried out using an Olsen type punch. The results showed two major

trends; 4Bcp showed highest dome height at room temperature and although 4Bcp

and As-received AZ31 showed minimal temperature effects in the range probed, 4A
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Figure 30: Limiting cup height(LCH) with respect to (a) material type as-received,
4A and 4Bcp (b) temperature. Each data set corresponds to a particular temperature
and materials respectively for each figure.
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which showed poor formability at room temperature, exhibits strong temperature ef-

fects causing marked improvement in the dome height within the temperature range

probed. These advances in ECAP processing enabled an investigation of texture ef-

fects at fixed grain size on both the ductility and punch formability of Mg alloys. The

findings introduce a paradigm shift that strong plastic anisotropy can demonstrate an

enhancement of low-temperature ductility as well as formability, irrespective of load-

ing orientation or stress state. Engineering the anisotropy by texture modifications

could lead to improvement in ductility and formability at low temperatures.
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4. DUCTILE FRACTURE UNDER SHEAR DOMINANT LOADINGS

4.1 Introduction

Failure mechanisms in ductile materials are broadly divided into failure due to

cavitation and shear localization. In important applications such as sheet metal

forming, material undergoes complex deformation paths. Often shear rupture occurs.

Such failure is associated with the formation of shear bands[92] which may occur in

the absence of a shear component in the remote loading. This is however, different

from failure in shear where the remote loading is shear dominated. Several studies

in the literature have aimed at understanding the transition from one mechanism to

the other by introducing external shear loading and thus modifying the local stress

state. Data for experiments involving combined tension and shear remain scarce as

these experiments involving shear loadings are difficult to perform.

Hancock & Mackenzie[93] and the Beremin group (1981)[94] documented the

strong dependence of the strain to failure upon stress triaxiality. Stress triaxiality

ratio is related to the ratio of the first invariant of the stress tensor to the second

invariant. These authors tested notched bars of different notch acuity. These studies

established strain to failure as a monotonically decreasing function of stress triaxiality

and rationalized it on the basis of void growth theory [95, 96]; also see [97]. One

question is how this would translate to the regime of low triaxiality. Prediction of a

failure measure in the low triaxiality regime still poses to be a challenging problems

in the mechanics of materials community.

In a pioneering work, Johnson and co-workers from the South West Research In-

stitute comprehensively studied failure under shear in 12 different materials systems

using thin-walled torsion tubes[98, 99].

63



Figure 31: Equivalent strain to fracture vs average stress triaxiality (Bao and
Wierzbicki, 2004)[100], Effective plastic strain to failure initiation versus stress tri-
axiality (Barsoum and Faleskog, 2007)[100], (Haltom et al., 2013)[101]
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Fig 31 shows some of the most prominent low triaxiality experiments conducted

in the past decade [100, 102], reported fracture strains which were significantly lower

at low stress triaxialities. Later, experiments by Haltom et al.[101] showed that the

value of the fracture strain increases with decrease in the average stress triaxiality

which is similar to extrapolation of the Hancock & Mackenzie[93] curve.

Bao and Wierzbicki(2004)[100] conducted a series of tests as shown in Fig.32(a)

including upsetting tests and shear tests on 2024-T351 aluminum alloy using com-

pression specimens and butterfly specimens respectively to capture the relation be-

tween the equivalent strain to fracture versus the average stress triaxiality. Numer-

ical simulations using ABAQUS were performed for calculating the evolution of the

equivalent strain at fracture and the average stress triaxiality. They also report sig-

nificant drop in ductility in the low triaxiality regime, with εf in pure shear reaching

a value of 0.2. Barsoum and Faleskog(2007)[102] conducted tension and torsion ex-

periments on double notched tube specimens as shown in fig32(b). The effective

plastic strain, and the stress triaxiality were determined in the center of the notch

at failure with the help of ABAQUS simulations. They too report significant drop in

ductility in the low triaxiality regime. Haltom et al. (2013)[101] conducted tension

and shear experiments on tubular specimens as shown in Fig.32(c). Their results

show the strain to failure monotonically increases as T decreases, a result that is in

contrast with previously reported results for Al alloys. In addition, the measured

failure strains are significantly larger than previously reported values. Haltom et al.

(2013)[101] explained the difference in results on grounds that experimental setup

and diagnostic methods used can have significant influence on the results especially

when resorting to indirect methods of estimating the stresses and deformations at

failure.

In sheet metal forming applications, the state of stress is plane stress and hence
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(a)

(b)

(c)

Figure 32: Samples to characterize fracture loci under shear dominant loading by (a)
Bao and Wierzbicki, 2004[100] (b) Barsoum and Faleskog, 2007[100] and (c) Haltom
et al., 2013[101] (Courtesy of Nithin Thomas
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the stress in the third principal direction is insignificant. Therefore, it is important

to determine the degree to which the metal can undergo thinning in different parts of

the pressing. In addition, presence of plastic anisotropy in sheet metals also affects

directional response of yielding and incompatibility in deformation.

The aim of this research is to understand how sheet materials behave and rupture

under combined tension and shear i.e. in the low triaxiality regime. Magnesium al-

loys are prime candidates for lightweight applications and hence the primary choice

of candidate for this study. High cost of production through conventional sheet

forming processes and low formability at ambient temperatures further limit ap-

plication of sheet metals. Combining casting and additional rolling has shown to

reduce production cost of AZ31 sheets considerably commonly known as Twin-roll

casting (TRC)[103]. Reducing the number of rolling passes, decreasing the tempera-

ture and producing a resultant material with finer microstructure makes TRC sheets

more economic and displays better mechanical properties than its conventionally

produced wrought counterpart. Understanding the behavior of this material under

these shear dominated loadings (combined tension and shear) is a must in order to

improve the formability and in-service performance of these alloys.

Thin-walled torsional loading leads to most uniform shear-stress state[104, 105,

106], however, tubular specimens are expensive to machine[107] and are not feasi-

ble in sheet specimens. Hence, modified arcan tests [108, 109, 110] were carried

out to perform tests with combined tension and shear loadings. This was aimed

at understanding the effect of low stress triaxialities on fracture, which has been

a subject of active research over the past decade. These tests are similar to the

Iosipescu tests[111], however, they pose greater advantages than the latter in terms

of a more compact geometry that reduces bending effects and friction due to bearing

friction[112, 113]. Arcan experiments can probe a variety of mixed-mode loadings
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with a higher range of shear dominated failures stress-states. The initially designed

Arcan experiments were disc/S shaped specimens which were later modified to have

a separate holder and and interchangeable butterfly shaped specimen[108]. These

were earlier used in numerous studied to understand composite failure. Recently,

these tests have caught attention in metal sheet forming industry to carry out tests

under mixed mode loading conditions[110, 114].

Macroscopic strains are measured at the local scale using digital image correlation

(DIC) method and used to characterize the constitutive response of the material.

Local displacements at the vicinity of the notches were obtained and analysis based

on the effect of the effect of mix-mode loading on the ductile crack initiation was

apportioned. Some preliminary numerical simulations were carried out to extract

the evolution of stress triaxiality and lode parameter at failure locations using an

associated flow model and a hardening curve identified experimentally using smooth

specimens.

4.2 Experiments

4.2.1 Experimental Procedure

The starting material in this study is TRC AZ31 which is further rolled to a form

a sheet of final thickness of 3 mm. This material was provided by POSCO. The

nominal chemical composition of the material is Mg 95.4%, Al 3.32%, Zn 0.803%,

Mn 0.304%, and Si 0.147% with and average grain size of 8.2 µm. All samples

were CNC cut along the rolling direction from the same sheet. Basic mechanical

characterization of this material has been carried out by Rodriguez et al. and Dogan

et al.[115, 62] in tension and compression at various strain rates.

The material response of the material was characterized using flat tensile tests

along the rolling(L), transverse(T) and the planar off-axis direction (LT) as shown
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in Fig. 33.

Figure 33: Tensile tests in TRC AZ31 sheet along the rolling, transverse and 45◦

between the principle directions.

Arcan specimens were machined out of a sheet with dimensions 150 mm x 150

mm. This specimen geometry has been used by several authors in the literature,

majorly for testing composites. The geometry had to be redesigned due to greater

sheet thickness and to prevent material deforming in the grip region. The size of

the grip region was increased while keeping all other geometry same as used by

Ghahremaninezhad et al.[110]. This was suggested through 3D FEM calculations.

An additional screw/pin was added in the center to prevent twisting and provide

more uniform deformation.
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Figure 34: (a) Arcan experimental setup with the DIC cameras. (b) Sample geometry
for Arcan specimen used (c) Sample holder that can orient the sample along different
loading orientations. Each hole on the holder rotates the sample by 15◦.

The sample was clamped in between two pairs of semi-circular discs as shown

in Fig. 34(a) with the help of three screws. The holes on the outer edge of the

holder are used to orient the samples along various loading directions. Each shift

of a hole will lead to a 15 degree shift of the holder. Hence the range of the angles

that can be probed using these experiments is between 0◦ and 90◦ with an interval of

15◦, 0◦ denoting shear loading and 90◦ denoting tensile loading. Experiments were

performed on a MTS insight screw driven tensile test machine as shown in Fig. 34(a)

with a load cell capacity of 30 kN. A modified arcan test setup was designed and built

in order to vary the stress state between close to pure shear and tensile loadings with

the available uniaxial machine. The test setup comprised of a holder which acts as a

mode of rotating the sample and thus varying the loading orientation. The sample

as shown in Fig. 34(b) was attached in between the holders. The test setup is shown

in Fig. 34(c) where the sample is oriented for shear loading conditions.

Fig. 35 shows the schematic of an arcan test in any random test orientation.

The arrows indicate the direction of the loading. The angle α defines the angle

between the direction of loading and the minimum cross-section (line connecting the
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(a)

(b)

Figure 35: (a)Schematic of the arcan plate specimen showing the loading orientation
and the measurements of the macroscopic strain measures at different scales. (b)
Geometry of the Arcan specimen with dimension in both mm and inch. Rolling
direction is along the vertical orientation of the specimen.
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notch roots). The rectangles at the upper half and lower half of the specimen refer

to the position of reflecting tapes used for recording laser extensometer elongation

data. The laser was used as a way to extract macroscopic strains along the loading

direction to get more accurate measure than the machine reported displacement.

Figure 36: Locations at which local displacements and strains were reported for each
specimen.

The shaded region indicates the region over which digital image correlation was

used. Fig. 36 shows the area over which the whole field measurements using DIC

were made. In all testing conditions the coordinate system was reoriented such that

the x-axis was set to be along the minimum section. The displacements were obtained

along the vertical lines as shown in Fig. 36 and displacements were obtained along the

2 principal directions of the defined coordinate system of the specimen. The points

above and below the notch area were used to extract the relative displacements.

In order to keep the gage length constant points were placed at ±3mm about the

minimum section. Displacement along the x-direction is termed as u and one along

the y-direction is termed v. The macroscopic load was decomposed into components

along these principal directions and are named T and N for the x-direction and the
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y-direction components. Equation 11 denotes the definition of T and N where α is

the nominal angle of loading.

T = F cosα , N = F sinα (11)

Local strains were obtained from the DIC along the line connecting the notch

roots. This is the line that traverses through the minimum section of the specimen

as shown in Fig. 36. The strain εxx, εxy and εyy were extracted at 3 different

locations; center of the line, maximum location of the strain and the averaged strain

over the line. εzz was calculated in all cases using the incompressibility criterion i.e.

εxx+ εyy + εzz = 0. This is an assumption made in many experimental reports([31]for

example). However, recent findings show it is questionable[116]. An attempt has

been made therefore to measure the out-of-plane strains. An equivalent measure

of strain was defined as shown in equation 12. This is plotted along a stress-like

measure of force normalized by the initial minimum sectional area.

εeq =

√
2

3
[ε2xx + ε2yy + ε2zz + 2ε2xy] (12)

The advantage of using 3D DIC is that the out of plane deformation can also be

quantified. z-displacement was obtained from the full field measurement of the DIC

and was plotted along the centerline running through the minimum section. The

strain εzz was calculated using the relation given in equation 13.

εzz = ln
( t
t0

)
= ln

(
1− 2w

t0

)
(13)

Where, t0 is the initial thickness of the sheet material, t is the current thickness

and w is the displacement of a material point out of plane. The reduction in the
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sheet thickness along the minimum section and along vertical lines as shown in Fig.

36 was compared from among specimens of different orientations. The reason for not

calculating strains using εzz and using incompressibility lies in issues of not being able

to get rid of rigid body rotations of the specimen as enough area was not analyzed

from the DIC.

4.2.2 Global Response

The load displacement curve under different loading conditions is shown in Fig.

37. These are obtained by plotting the applied load versus the elongation ∆L along

the loading direction as recorded by the laser extensometer along the tapes as shown

in Fig. 35(a). This is merely aimed to show macroscopic trends in the data.
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Figure 37: Force versus displacement response for experiments without path change.
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It can be observed that failure is delayed as the sample orientation changes from

tensile dominant loading to shear dominant loading. It is evident that the load levels

reduce towards more shear dominant loading. However, displacements in Fig. 37

were obtained by recording the displacements of tapes along the loading direction

and no lateral displacements could be recorded due to limitation of the laser. With

the help of Digital Image Correlation we could obtain the displacements at any point

in the gage area shown in Fig.36.

The force was resolved into components along the two principal directions; T

denotes transverse force along the x-direction and N corresponds to normal force

along the y-direction. Both vertical and horizontal displacements were extracted

from the DIC. The normal component of the force shown as N in Fig. 38 was plotted

against the vertical component of the displacement v. The transverse component of

the force T is plotted against the horizontal displacement u. Both 0◦ and 90◦ do not

have the normal and transverse component of the force respectively, which explains

why the plots are blank. For all mixed mode loading conditions the shear component

of the loading accounts for the majority of the deformation.

4.2.3 Whole-field Strain Maps

The evolution of each component of strain εxx, εxy and εyy is shown in this section.

The strain maps are obtained at 20%, 50% and 90% of failure strain (∆L/L0). Three

different specimens are compared in these maps; 0◦, 45◦ and 90◦ to distinguish the

effects of tensile, shear and mixed mode loadings on the evolution of each component

of strain.

The evolution of εyy as seen in Fig. 39 shows that the value of this strain measure

is negligible in the 0◦ sample. Late into the deformation, antisymmetric localization

of εyy is seen to develop above and below the notch root along the y-direction. This
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Figure 38: Force versus displacement plot resolved for experiments for different ori-
entations (a) 0◦ (b) 30◦ (c) 45◦ (d) 60◦ (e) 90◦. In each plot the normal and shear
forces are N and T, resp. and their work-conjugate displacements are denoted u and
v, resp.
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Figure 39: εyy strain maps in the specimens loaded under 0◦, 45◦ and 90◦ at δL/L0 =
0.2, 0.5 and 0.9.
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indicates the development of these strains due to presence of large deformation. This

leads to structural modifications that cannot prevent these strains from evolving.

α = 450α = 00 α = 900
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50%

deformation

90%

deformation

Figure 40: εxx strain maps in the specimens loaded under 0◦, 45◦ and 90◦ at δL/L0 =
0.2, 0.5 and 0.9.

Fig. 40 shows the evolution of εxx of the specimens loaded along 0◦, 45◦ and 90◦

orientations. It was observed that in case of 0◦ loading, the deformation is quite anti-

symmetric with tensile strains and compressive strains along two diagonally opposite

positions above and below the notch. In case of 45◦ loading there is some localiza-

tion of εxx seen in a band connecting the notch roots which intensifies with further

deformation. The 90◦ sample shows localization in the notch root with compressive
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strains early on in the deformation process.
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Figure 41: εxy strain maps in the specimens loaded under 0◦, 45◦ and 90◦ at δL/L0 =
0.2, 0.5and0.9.

The evolution of εxy is shown in Fig. 41. In the case of 0◦ specimen a localized

band connecting the notch roots is evident at very early stages of plasticity. The

band localizes further with deformation leading to much higher values of strains in

the band with progressing deformation. The band has a fibrous texture with fibers

running perpendicular to the major band orientation. A few perpendicular bands

become more prominent with progressing deformation. The 45◦ samples shows a

band forming in the minimum section during deformation and intensifies with further
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deformation. The value of the εxy is considerably high in the 0◦ and 45◦ samples when

compared to the other strain components. The 90◦ sample shows an anti-symmetric

deformation pattern in this strain measure. One would expect εxy to be zero during

the deformation under tensile dominant loadings. However, due to the presence of

the notch, some shear strains are observed to develop near the notch. In fact, closer

examination suggests that the shear strains are negligible away from the notch.

The 45◦ oriented samples show a narrow band forming along the minimum sec-

tion during deformation similar to that seen in Fig. 41. However, the strain levels

are lower compared to values of εxy indicating that the deformation in shear is an

easier mode of deformation than tensile deformation, although the remote boundary

conditions prescribe equal displacements in both x and y directions. Specimen ori-

ented along 90◦ shows strong localization around the notch roots at moderate levels

of deformation. This intensifies with deformation and leads to very high values of

strains at the localized positions compared to the strain levels in the rest of the

sample.

The distribution of the strain at different locations along the centerline connecting

the notch roots at various stages of the deformation is shown in Fig. 42.

Fig. 42 shows the distribution of equivalent strain in samples of each orientation

at different stages of the deformation. The figures indicate the distribution of strains

along the minimum section remains nearly uniform except near the notch roots. This

increase in the value of strain near failure indicates localization in bands leading to

high values of localized strains. These plots, to some extent, confirm that failure in

all samples except the 90◦ orientation, where the maximum location of the strain is

at the notch root.

With the help of 3D DIC, strains in the thickness of the specimen could be

obtained to understand qualitative trends in the z-displacements. Fig. 43 shows
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Figure 42: Equivalent strain distribution during different stages of deformation in
samples with different orientations (a) 0◦ (b) 30◦ (c) 45◦ (d) 60◦ (e) 90◦. The blue, red
and green curve show the evolution of the strain at incipient plasticity, δL/L0 = 0.5
and close to experimentally observed failure strain.
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Figure 43: Z-displacement, w, in the minimum section of the sample orientation (a)
0◦ (b)45◦ (c) 90◦.
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the evolution of z-displacements along the line running through the notch roots for

samples oriented along 0◦, 45◦, 90◦. Similarly vertical extensometers were placed at

three different locations on the sample as shown in Fig. 44.

0 20 40 60 80

−0.1

−0.05

0

0.05

0.1

0.15

Position

Z
d
is
p
la
ce
m
en
t(
m
m
)

Left

Right

Center

0 10 20 30 40 50 60
−0.1

−0.06

−0.02

0.02

0.06

Position

Z
d
is
p
la
ce
m
en
t(
m
m
)

Left

Right

Center

(a) (b)

0 20 40 60 80 100 120
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Position

Z
d
is
p
la
ce
m
en
t(
m
m
)

Left

Right

Center

(c)

Figure 44: Z-displacement, w, along vertical lines at 3 different locations near the
notch roots and at the center of the specimen(a) 0◦ (b)45◦ (c) 90◦. The dashed lines
indicate displacement at an intermediate level of deformation.

The presence of non symmetric values of strains at the two edges of 90◦ indi-

cates twisting in the sample during deformation due to sheet material testing issues.
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These twisting issues amplify further in shear dominant loading conditions. These

corrections could be made to get rid of the effect of the twisting on the z-stains, by

taking measure away from the plastic region. This was not accessible to us as the

data was analyzed at a different location and did not have access to the test setup.

However, having the DIC strain maps enabled the observation of these behaviors and

the extent to which these affect sheet material testing.

Fig. 45 shows the total force normalized by the minimum section with respect to

an equivalent measure of strain in the minimum section. This strain was extracted

at the center, maximum location and averaged over all points along the minimum

section. All the values of εavgeq , εceneq & εmaxeq are plotted for each loading orientation.

The difference in the value of the εavgeq and εceneq reduces from the tensile dominant

loadings to the shear dominant loadings. This indicates that the deformation gets

more uniform along the cross-section with increased shear dominant loadings. εmaxeq

is more or less found to exceed both the value of equivalent strain at the center and

the average indicating that the maximum strain is not at center.

Fig. 46 indicates that the strain to failure increases as we change sample orien-

tation from tensile dominant loading to shear dominant loading.

4.2.4 Fracture Initiation and Crack Path

Fig. 47 shows the mode of failure under different loading orientations. When

loading a thin sheet one can get two types of shear failure: one in a plane containing

the thickness as seen in case of the 90◦ and the other one in the plane of the sheet

itself. 0◦ shows a step-like fracture surface which is macroscopically flat in nature.

30◦ and 45◦ as shown in Fig. 47(b)and(c) exhibit slanted cracks in-plane away from

the notch root, this propagate into the sample away from the minimum section and

tends to move into the grip section. The fracture surface however, shows a out-of-
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Figure 45: Force versus equivalent strain plot resolved for experiments for different
orientations (a) 0◦ (b) 30◦ (c) 45◦ (d) 60◦ (e) 90◦.
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Figure 46: Force versus equivalent strain response for Arcan experiments.

plane slant which is observed in the 90◦ specimen. In the case of 60◦, Fig. 47(d)

shows the crack initiates at a location away from the notch like in the case of 30◦

and 45◦ however, soon another crack forms at symmetric position on the other notch

and leads 2 slanted cracks propagating in different directions and finally joined by

another in-plane slant crack making a s-shaped fracture profile. The fracture surface

however, shows a out-of-plane slanted fracture in the initial 2 crack ligaments. The

crack that connects these two ligaments has a flat fracture surface as exhibited by

the 0◦ specimen. Finally, Fig. 47(e) shows a shear like fracture surface on the 90◦

oriented sample with a flat crack along the minimum section.

To understand crack initiation and crack path, Fig. 48 shows the strain local-

ization in the sample when loaded along different orientations. Except for the 90◦
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Figure 47: Failure mode in samples tested under various orientation of loading. In
all cases the loading direction is vertical.
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Figure 48: Strain localization in the gage section of representative specimens of (a)
0◦, (b) 30◦ (c) 45◦ (d) 60◦ & (e) 90◦
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loading all other conditions exhibit a localized band during the process of loading. All

the bands exhibit a characteristic fibrous nature with secondary localization bands

running perpendicular to the primary localized band. Greater the amount of shear,

stronger the localization. This fibrous behavior in the localization bands is even seen

at early stages of plastic deformation in the material. The 90◦ orientation exhibits

a localization at the notch region. No fibrous localization is observed indicating

that presence of shear loading leads to this kind of behavior in the microstructure

which indicates the role of anisotropy in activating some deformation mechanisms

along these directions and get stronger with increasing values of shear. The major

deformation during loading along the basal plane is attributed to easy basal glide.

However, due to presence of compressive stresses in the basal plane, activation of

extension twinning {101̄2} occurs. This is considerably easy to active and is ex-

pected in the early stages of deformation. Due to the activation of these twins in the

shear band region, the material possesses two texture components, corresponding to

the parent and twinned volumes. This reoriented material is now susceptible to even

stronger basal glide leading to formation of those strong secondary bands. Strong de-

formation in these bands lead to localization of deformation in these bands leading to

incompatibility of deformation and thus failure. This phenomenon is only observed

in the presence of shear component in the loading. Similar observations are made

during the process of ECAE where the material undergoes large shear deformations

leading to formations of localized bands[dogan15].

Fig. 49 shows the progression of damage in a shear loading condition. Fig. 49(a)

shows the formation of localized strains in a narrow band in the minimum section

of the sample. The fibrous bands which are smaller than the main band branch

perpendicular to the rolling direction and a few of them are more prominent. One of

these bands propagates to form a crack perpendicular to the loading as seen in Fig.
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(a) (b) (c)

Figure 49: Strain localization in bands perpendicular to the loading direction in a
zero degree test. With progression in strain one of these bands propagate to form a
crack. Further a second crack is formed at another location. These cracks join up
through a crack along the loading direction.

49(b) and very high strains are measured along that band. The length of the crack

propagated is similar to the initial length of the fibrous band. Another band starts

propagating at another location nearer to the other notch and finally these cracks

are connected through a major crack developing along the localized band connecting

the notch roots. This leads to a step-like fracture surface as seen in Fig. 47(a).

4.2.5 Failure Loci

Failure loci is an engineers way of representing a measure of failure strain with

respect to the stress state. There could be various possible definitions of this plot. As

none of these measures are intrinsic to the material, the commonly referred measures

are shown here with the orientation of the sample. The value of the failure strains

at maximum, average and at the center of the specimen were plotted with respect

to the orientation of each specimen during loading as shown in Fig. 50. The figure

indicates that all measures of strain to failure show a decreasing trend as the shear

component of the deformation reduces. The case of 45 degree shows more or less

uniform distribution of the strain along the cross section as the value of the maximum,
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Figure 50: Failure strain with respect to orientation of the sample at maximum,
center and averaged over the cross-section.
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average and center strains coincide. The value of the strain at the center is in close

agreement to the value of the average strain along the cross section.

4.3 Analysis

4.3.1 Identification of Material Plastic Behavior

The plastic part of the tensile curve shown in Fig.33 along rolling direction prior

necking was used to obtain the hardening behavior. It is a common practice to fit

the hardening curve using a power law. However, the hardening response was not

captured well using a power law. Hence, a tabulated true stress true strain response

upto large strains was determined.

Anisotropy was introduced using Hill anisotropic potential. The values were

determined by experimental investigation through characterizing the anisotropy of

the matrix. The anisotropy in plane of the sheet was calibrated using the stress

ratios obtained from experiments shown in Fig. 33. The yield stress in any direction

was normalised by the yield stress in the rolling direction as shown in table 1.

Plastic Strains σ11 σ22 σ12 σ33 σ23 σ13

Yield Stress 0% 67 90 82 n/a n/a n/a

Stress Ratio 0.74 1.00 0.91

Yield Stress 2.5% 184 215 188 n/a n/a n/a

Stress Ratio 0.85 1.00 0.87

Yield Stress 5% 214 240 216 n/a n/a n/a

Stress Ratio 0.86 1.00 0.88 1.32 0.92 0.97

Table 1: Yield stress and stress ratios at different values of plastic strain used for
characterizing the anisotropy of the material.
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These yield stress ratios were used to check how well the anisotropy was captured

using a simple hill’s anisotropic potential. Single element calculations were carried

out in rolling, transverse and the intermediate off-axis directions using the hardening

fit obtained and the yield stress ratios from the experiments. Yield stress ratios

obtained at onset of plasticity, 2.5%, and 5% plastic strain were used to calibrate

the material model. It was found that the yield stress ratios obtained at 5% plastic

strain led to good fit with experimental plots.

It is clear that the above representation of anisotropic plasticity is approximate

at best for at least two reasons. Firstly, the 3D anisotropy of Mg is quite complex, as

for example examined experimentally by Kondori[117]. For sheet metal, it is difficult

to conduct experiments through the thickness. Therefore, the only data used was in

plane tension data. Secondly, the hardening law used will not be able to represent

S-shaped hardening curves when extension twinning is active (for example when

compression stresses perpendicular to the c-axis (or sheet normal) arise. This will

be discussed further below.

4.3.2 Numerical Procedure

Arcan specimens were modeled using Abaqus model1 with C3D8R (Eight-node

linear brick element with reduced integration) elements as shown in Fig. 52. The

specimen is only modeled till the center of the loading pins as shown in Fig. 35 (b)

to be as close as possible to the applied boundary conditions. The top loading ends

are not included for simplicity. The mesh was gradually refined near the minimum

section of the specimen. There are a total of 4̃000 elements in plane with 10 element

along the thickness direction. Displacement boundary conditions were applied at

the top and the bottom surfaces of the specimen to mimic the experiments. The

1Version 6.12, Simulia, Inc. and Dassault Systèmes
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Figure 51: Near plane stress single element calculation representative of sheet spec-
imen

bottom surface was fixed along the x and y directions and rotation about the z axis

was restricted, however, contraction along z-axis was allowed. Rigid body rotation

was avoided by encastring one node on the bottom surface. Displacement boundary

condition was applied on the top surface depending on the loading orientation. For

conditions with combined tension and shear the displacements were provided in the

same ratio as that reported in the experiments.

4.3.3 Global Response

The force displacement response showing comparison between experiments and

the model are shown in Fig. 53 for 0◦, 30◦, 45◦, 60◦ and 90◦ orientations. The

macroscopic force-displacement response was obtained the same way as that obtained

from the experiments. The normal force, N, was obtained by obtaining the sum of

resultant force along the y-direction with respect to the y-displacement, v. Similarly,

resultant force along x-direction, T, was plotted with respect to the x-displacement,

u. The result is compared to the data at the center and near the edge.
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Figure 52: 3D FEM mesh of Arcan specimens modeled using Abaqus with C3D8R
elements.

The model used based on planar anisotropy did not provide a good fit (not shown

here) for the tension data calibrated using tensile tests on AZ31 TRC sheets. Planar

anisotropy here refers to the material response being anisotrpoic only along the plane

of the sheet, as this was the data available from experiments on sheet material, since,

it was difficult to perform out of plane tests on sheets. On further investigation, it

was found the out of plane anisotropy was the reason for this discrepancy. Fig. 54

shows the z-strain using a planar isotropy assumption. We observe that considerable

necking is seen which is not observed in the experiments. AZ31 posesses a strong

the basal texture with the c-axis of the crystals oriented normal to the sheet plane.

Hence, it is difficult for this material to contract along the c-axis. Since the out-of-

plane stress ratios of the sheet were inaccessible from the experiments performed, we

obtained them from the anisotropy ratios provided in [117] which correspond to plate

materials (bulk AZ31). The anisotropy ratios are reported in table 1. The anisotropy

ratios have been seen to vary a lot with strain and hence the values were obtained

at later stages when the values saturate. These are explained in detail in chapter 2

and [117]. Fig. 54 shows the resultant εzz using the 3D anisotropy and we see lesser
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Figure 53: Force versus displacement plot from analysis superimposed on experi-
ments for different orientations (a) 0◦ (b) 30◦ (c) 45◦ (d) 60◦ (e) 90◦. The solid
lines are experimental results shown above. The dashed lines shows numerical anal-
ysis results. These simulations were interrupted at load drop corresponding t0 the
experiments.

96



necking in the material which is consistent with the experimental observations.

Figure 54: εzz strain maps in the specimens loaded under 90◦ comparing the planar
anisotropic response to the calculation using 3D anisotropic.

It is observed that the model is capable of capturing the macro-response along

90◦. Since the model did not have a damage indicator, the calculations were stopped

when the displacement, v, at the center of the specimen matched the final experimen-

tal value. 0◦ showed close match in the load levels, however, the hardening response

does not match with that observed in the experiments. This could be because of two

reasons; firstly the incapability of the model to capture the anisotropy or secondly

because of change in the angle α during the loading. Although an off-axis orientation

was considered in identifying the plastic anisotropy, the latter exhibited similar hard-

ening behavior to L and T directions. In the shear experiments one could imagine

the activation of extension twinning (as a result of compression stresses normal to the
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c-axis), either because of notch effects or because of microstructural heteroheneities.

In fact the global force displacement curve in Fig.53 shows a small inflection point

which is reminiscent of S-shaped curves when Mg is loaded along certain orienta-

tions. The other directions show poorer fit to the experimental data. 60◦ shows

the closest fit while 30◦ shows the poorest fit, indicating that closer the model is to

tension, the better the fit is. Inspite of this imperfect fit to the experimental data all

at once (which is not surprising given the simplicity of the plasticity model used) we

will use these calculations to extract key stress state indicators, which we believe are

less sensitive to anisotropy, namely the stress triaxiality and Lode parameter. Fur-

ther improvements to this approach will require a much more sophisticated plasticity

model, such as crystal plasticity [118] or a multisurface model[119].

4.3.4 Strain and Stress Maps

Fig. 55 shows the contours of the component of plastic strain in the Y-direction

(εyy) at various levels of deformation (δL/L0 = 0.2, 0.5 and 0.9). and for different

loading orientations viz. 0
◦

45
◦

and 90
◦
. Plastic strain εyy indicate similar trends in

all specimen orientations, plotted at various deformation levels, as shown in Fig. 55.

For shear dominated loading, anti-symmetric tensile-compressive regions with lower

magnitudes are seen, gradually developing into a single band of tensile strain towards

the end of deformation. For mixed-mode loading, a similar pattern in the shape and

magnitude of the tensile-compressive εyy regions and the subsequent tensile band is

observed, with a slight shift corresponding to introduction of tensile component in

the applied loading at the boundary.

Fig. 56 shows the contours of the component of plastic strain in the X-direction

(εxx) at various levels of deformation 20%, 50%, and 90% and for different loading

orientations viz. 0
◦

45
◦

and 90
◦
. The leftmost column shows the evolution of plastic
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Figure 55: εyy strain maps in the specimens loaded under 0◦, 45◦ and 90◦ at δL/L0 =
0.2, 0.5 and 0.9.

strain εxx when the applied loading is shear dominated. At a lower level of defor-

mation (δL/L0 = 0.2), as seen in the top left figure, tensile and compressive strains

start to develop in an anti-symmetric manner, above and below the notches. With

increasing load, at higher deformation level (δL/L0 = 0.5), these tensile-compressive

regions grow in size and magnitude and when the deformation reaches δL/L0 = 0.9

of its total magnitude, the tensile strains are suppressed whereas compressive strain

dominate to form a localized band. This band is due to the loss of notch integrity

resulting from geometry changes.

With the introduction of a tensile component in the applied loading, as seen in

the 45
◦

case, formation of the aforementioned compressive band occurs at a rela-

tively lower level of deformation. Subsequent increase in applied loading and overall

deformation leads to a further widening of this region of compressive strains and is

followed by initiation another region of higher compression with higher strain mag-

nitude but smaller size at the notches. When α = 90
◦
, the applied loading is purely

tensile and the evolution of the corresponding plastic strain εxx is shown in the right-
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most set of figures. Here, tensile εxx strain is distributed throughout the specimen

whereas compressive strains begin to appear at the notches. Unlike the dominant

strain band seen in shear dominated and mixed loading cases, regions of compressive

strain in the purely tensile case start evolving from the notches and increase in size

and magnitude, indicating a localization of contraction at the notch root.

Figure 56: εxx strain maps in the specimens loaded under 0◦, 45◦ and 90◦ at δL/L0 =
0.2, 0.5 and 0.9.

Fig. 57 shows the contours of the component of shear strain in the XY-direction

(εxy) at various levels of deformation (δL/L0 = 0.2, 0.5 and 0.9.) and for different

loading orientations viz. 0
◦

45
◦

and 90
◦
. As the shear component of the deformation

increases, the formation of a localized band occurs in very early stages of deformation.

With increased level of deformation in the 0
◦

specimen, the band widens and grows

in magnitude. In the later stages of the deformation a narrow localized band forms

along the minimum section of the specimen, with the maximum values occurring

slightly away from either notches. These maximum regions do not lie on a straight
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line due to loss of the notch integrity. In case of the 45
◦

specimen, the band forms

at an angle to the line connecting the notch roots. Further deformation leads to

formation of maximum values developing above and below the notch root which are

connected by a narrow band of slightly lower magnitude. Shear strains are not seen

to evolve till very later stages of deformation in the 90
◦

specimen. In the later stages

of deformation anti-symmetric strains develop in a small region above and below the

notch.

Figure 57: εxy strain maps in the specimens loaded under 0◦, 45◦ and 90◦ at δL/L0 =
0.2, 0.5 and 0.9.

Fig. 58 shows the z contraction and the magnitude of the strains along the z-

direction for for different loading orientations viz. 0
◦

45
◦

and 90
◦
. We observed

that the z-contraction was minimum for the 0
◦

specimen and maximum for the 45
◦

specimen. There is a positive and a negative band seen in the 0
◦

specimen which is

not symmetric. This is because there is very little z-strain observed during the initial

stages of the deformation. Later due to structural effects loss of notch equity, the
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formation of necked regions are observed in the specimens which are not symmetric

about the center. The tensile specimen exhibits the strain distributed around the

notch area while the 45
◦

specimen shows a narrower localized band of z-stain forming

at the notch root.

Figure 58: εzz strain maps in the specimens loaded under 0◦, 45◦ and 90◦.

In addition to the evolution of the components of strain across the specimen,

evolution of stresses in the specimen is available from the FEM calculations that

were not possible to extract from the experimental campaign. This sheds light on

how stresses developed and how the loading orientation affected each component of

the stress tensor. This also elucidates how the localization occurred in the specimen

and how this could have impacted the failure mode and the initiation location of the

crack. The absolute values of stresses are questionable for specimens other than 0

and 90 due to misfit exhibited in the load displacement response as seen in Fig.53.

Similar observations are made in case of evolution of the longitudinal stresses (σyy)

in the specimen as shown in Fig. 59 close to fracture strains. As seen in case of σxx
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the stresses are more or less anti-symmetric above and below the notch root for the

case of 0◦ specimen and with increase in orientation angle α, the tensile dominance

of the stresses increase. As opposed to the case of σxx evolution, the stresses σyy are

seen to localize at an angle to the minimum section and the magnitude and width

of this localization increases with increase in α.

Figure 59: σyy strain maps in the specimens loaded under 0◦, 30◦, 45◦, 60◦ and 90◦

orientations.

Fig. 60 shows the evolution of σxx in all specimen orientations close to fracture.

It is observed that as the stress state changes from shear dominated to tensile dom-

inated, the anti-symmetric distribution of the stresses as seen in 0◦ specimen is lost

and the tensile stresses dominate in a band above and below the notch region parallel

to the minimum section. These lines connect the edges in case of 90◦, which shows
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the greatest magnitude of lateral stress.

Figure 60: σxx strain maps in the specimens loaded under 0◦, 30◦, 45◦, 60◦ and 90◦

orientations.

Fig. 61 ahows the evolution of σxy in all specimen orientations close to fracture

strains. This shows an anti-symmetric evolution of stress state in case of 90◦ and

change in value of α form 90 to 0 leads to formation of a localized band around the

minimum section. The band is formed at an angle if the boindary condition is not

shear dominated or tensile i.e. for 30◦, 45◦ and 60◦. Maximum magnitude if the shear

strains are seen to be at the above and below the notches for all conditions except

0◦, where the maximum is seen to exhibit in the minimum section of the specimen

connecting the notch roots.
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Figure 61: σxy strain maps in the specimens loaded under 0◦, 30◦, 45◦, 60◦ and 90◦

orientations.

4.3.5 Triaxiality and Lode Parameter Evolution

While the absolute values of stresses are expected to carry errors resulting from

the imperfect fit to global load deflections responses, the ratios of stress invariants

to each other are expected to be only slight affected by such imperfections. Fig. 62

shows the distribution of stress triaixility across the specimen close to failure. This is

intended to show the evolution of the stress state with orientation. The evolution of

the stress triaixiality is seen to show similar trends as discussed in case of evolution of

σyy. This is because the magnitude of σyy is maximum and would affect the evolution

of T. In the minimum section of the specimen, 0
◦

sample shows minimum value of

stress triaxiality and the tensile dominant condition shows the maximum magnitude.

Fig. 63 shows the distribution of Lode parameter across the specimen close to
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Figure 62: Spatial distribution of Stress triaxiality in 0◦, 30◦, 45◦, 60◦ and 90◦

specimen.

failure. This is intended to show the evolution of the stress state with the orientation.

In all orientations the value of L is 1 near the notch root. It is observed that the

value of lode parameter stays close to 1 for all intermediate orientations i.e. 30◦,

45◦ and 60◦. The extreme conditions i.e. 0◦ and 90◦ show values of lode parameter

varying within the minimum section. Presence of shear causes a change of sign of the

lode parameter above and below the notch anti-symmetrically. This occurs through

a transition region where the values change from -1 to 1. With introduction of tensile

loadings, the value of this band narrows along with the region containing the values

of lode parameter of -1.

The values of the stress triaxiality and lode parameter were extracted at locations

of interest from the above shown contours to obtain the evolution of these stress

state indicators with plastic strain. Fig. 64 shows the evolution of stress triaixiality
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Figure 63: Spatial distribution of Lode parameter in 0◦, 30◦, 45◦, 60◦ and 90◦ speci-
men.

and lode parameter with evolution of strain at the edge of the specimen in the

minimum section, center of the specimen, average along the minimum section and at

the location where failure is observed to occur from DIC images obtained from the

experiments. In all set of curves the ’x’ indicates the strain at which the calculations

were stopped. These correspond to the experimentally observed values of strains.

In Fig. 64 (a) shows the evolution of the stress traixiality with strain at different

locations on the sample. It is observed that the initial stress state is close to 0 and

later emerges to small values greater than zero. This is due to structural effects

as observed in the contours above. It is observed that the nodes very close to the

edges, show a different slope for the evolution of stress state. The stress state at

this location is seen to initially be zero and then quickly grows to higher values.

Its is also observed that the strain at the edge evolves the least till fracture is met.
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With the introduction of some tensile load the values of the stress triaxiality is seen

to increase with increase in orientation angle α at all locations in the specimen,

however, the edge stays close to traixiality of 1/3. Another interesting observation

is that as the orientation of the specimen changes from shear dominated to tensile

dominated, the strain at the edge increases from being the least measure of strain to

being the highest measure of strain. As the value of triaxiality at the edge remains

close to 0.33, the value of the triaxiality increases and becomes greater than 0.33

form orientation α >= 60. Strain at failure location is found to be the largest value

observed as failure in those conditions did not occur in the minimum section and

was found to be above and below the notch.

The lode parameter evolution for each loading orientation is also plotted in Fig.

64. The lode parameter starts from a zero value initially for shear dominant loading

and then increases rapidly. For other orientations, the lode parameter stays close to

1 at almost all locations. The only exception is the 90◦ orientation where the lode

parameter away from the edge are seen to start at 0 and evolve to values lesser than

1.

4.3.6 Failure Loci

Fig. 65 shows the triaxiality evolution with strain at each location of interest

for different orientations. It is seen clearly from all plots that the value of stress

triaxiality increases with increase in orientation angle α. The strain at fracture

at the center and edge clearly decreases with increase in shear dominant loadings.

However, the value of T at the edge is close to 1/3 for all loading conditions except 0◦.

This is because the failure is at a location close to the edge for all loading orientations

except 0◦ loading. Although a clear trend is seen in the center and average value of

strain, no clear trend is seen in the strain to failure versus average triaxiality plot.
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Figure 64: Evolution of Stress Triaxiality and Lode parameter with plastic strain in
specimens along orientations (a) 0 (b) 30 (c) 45 (d) 60 (e) 90. The data is presented
at different locations in the specimen; edge, center, averaged along the minimum
section and at failure location.
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Figure 65: Stress triaxiality, T, versus the local strain ε̄ at that location in Arcan
specimens. Each plot shows the evolution of T at notch root, center of the specimen,
at failure location and averaged over the cross-section. The (x) refers to the value of
ε̄ at which load drop occurred in the experiments, i.e., ε̄c.
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Fig. 66 show the locus of lode parameter with strain to failure at various locations.

The lode parameter is seen to vary from zero to values less than 1 in 0◦ and 90◦

specimens and for all intermediate test the lode parameter is found to be 1. There

is no clear trend seen in the effect of changing lode parameter on the failure strain.
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Figure 66: Lode parameter, L, versus the local strain ε̄ at that location in Arcan
specimens. Each plot shows the evolution of L at notch root, center of the specimen,
at failure location and averaged over the cross-section. The (x) refers to the value of
ε̄ at which load drop occurred in the experiments, i.e., ε̄c.

4.4 Discussion

The previous work by Basu and Benzerga[63] has shown that there is no locus that

is intrinsic to the material that can be extracted from real life experiments. This

is because a fracture strain extracted from any experiment is generally specimen-

geometry dependent. This dependence manifests through the more or less severe
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nonproportional nature of the loading. This deviation from proportionality is even

more prominent in low triaixility experiments and hence there is a need to understand

that any of the loci plotted in these experiments are not claimed to be intrinsic to

the material. In practice, however, it is often convenient to represent the failure

loci of a material by plotting the strain to failure as a function of the average or

terminal stress triaxiality. This is typically done to compare various materials or

to report experimental results. In the experiments by [63] the lode parameter was

constant due to axisymmetric geometry and the triaxiality was as close as possible

to proportionality. In these current experiments, due to geometry of the specimen

both T and L vary with strain and hence a failure loci of ε̄c as a function of both T

and L must be plotted.

Five different loading orientations were used to probe the region of low triaxilaity

and comment on how the failure strains compare to that observed by a few prominent

experiments in the literature [100, 102, 101] in the low triaxiality regime as shown

in Fig 31. With the help of Digital Image Correlation technique it was possible to

extract the value of local strain components at various locations across the sample.

This led us to obtains strain from not only sites of interest but also obtain the location

at which failure initiates. In shear dominant loadings, this is difficult to obtain from

experiments, as the failure is sudden in most of these loadings. These findings shed

light on the failure in structural metal sheets especially of light weight alloys like Mg

alloys and help guide experiments and models in predicting sheet metal failure.

In an ideal situation2 the fracture loci must have an asymptote at T = 1/3

irrespective of the material[120]. However, in real life experiments, this is not the

situation. There would exist a finite value of ε̄c at that value of T. The question now

2Strictly holds for materials with pre-existing voids and failing by microvoid growth to coales-
cence
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Figure 67: Failure strain with respect to orientation of the sample at maximum,
center and averaged over the cross-section.
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arises as to what would happen to the fracture loci for values of T < 1/3. Does the

locus keep rising as would be expected from extrapolating the Hancock-Meckenzie

[93], or would it be a decreasing function as reported by some authors[100, 102].

Fig. 67 (a) and (b) shows the failure loci of failure strains at different locations

with respect to the strain weighted value of stress triaxiality and lode parameter

respectively. It is observed that the failure loci based on stress triaxiality shows

a different trend based on the location at which the value of the stress indicator

is obtained. We see that if the stress traixiality is obtained at the center of the

specimen or averaged over the minimum section, we obtain trends similar to that

shown by Haltom et al.[101] i.e. the value of strain to failure increases with decreasing

triaxility as shown in Fig 31. This is similar to the extrapolation of the Hancock &

Mackenzie[93] curve to triaxialities lesser than 1/3. However, on assigning the failure

location to the edge of the specimen, we see that the strain to failure decreases and

then increases to when the loading becomes shear dominant. The initial part of the

curve is similar to the trend shown by [100, 102]. However, none of these authors

reported values of ε̄c to increase with the loading changing to shear dominant loading.

When compared with the strains at failure location as observed in the experiments,

the fracture strain seems to be insensitive to the triaxiality in this regime probed. All

the curves except the one obtained at the observed failure initiation location exhibit

highest value of ε̄c in shear dominant loading.

The loci of ε̄c as a function of the Lode parameter shows that with varying Lode

parameter over a wide range i.e. from 0 to 1, we observe that there is minimal

variation of the failure strain with the average lode parameter except for the case of

the values assigned at the edge. The shear dominant loading 0◦ shows variation of

failure strain with change in Lode parameter. This is however, not a good measure of

failure strain as the failure does not initiate near the edge of the specimen under that
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loading orientation. Overall, this was the first study to plot the value of measure of

strain to failure as a function of Lode parameter. Since,minimal variation is seen in

the value of the strain to failure with change in Lode parameter, we can claim that

there is minimal effect of the Lode parameter on the failure strain.
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Figure 68: Reconstruction of average shear strain at fracture versus strain rate plot
[99], to compare performance of Mg alloy AZ31 to other structural alloys.
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This study also enabled us to understand how Mg sheets performed under shear

dominant loadings which is not studied at all in the literature. This sheds light on

how the materials performs under shear dominant loadings and how shear localization

occurs in the material. Plotting the performance of this materials with the pioneering

work of [98, 99], comparing the failure under shear for different structural alloys as

shown in Fig. 68 indicate that Mg sheets can posses comparable ductility to various

structural Al alloys.
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5. HISTORY EFFECTS ON DUCTILITY*

5.1 Introduction

This work is motivated by the recent theoretical analyses of Benzerga et al.[24] 

who examined the effect of loading path on the fracture locus of ductile materials 

by means of micromechanical finite-element calculations of a periodic unit cell con-

taining a central void. In the cell model, fracture is identified with an abrupt drop 

of stress carrying capacity of the cell due to plastic flow localization in the intervoid 

ligament and elastic unloading elsewhere. The unit cells were subjected to several 

proportional loading paths, characterized by constant values of stress triaxiality. The 

strain-to-failure was recorded for each path and the locus relating it to triaxiality 

was thus uniquely determined. The process was repeated for a set of nonproportional 

loading paths. For these cases, the strain-weighted average of stress triaxiality was 

used to plot the fracture locus. With these definitions, it was found that the failure 

locus for nonproportional loadings differs substantially from that for radial paths. Of 

particular importance are the cases where the strain to fracture decreased by a large 

amount as a result of nonproportional loading. One aim of this work is therefore to 

examine experimentally the validity of the findings of . Structural materials usually 

do not contain initial voids, and if they do the voids are not distributed periodically. 

In addition, load/strain path changes may affect the hardening behavior of the ma-

terial in ways that were not represented accurately in the cell model where a simple 

J2 flow model was adopted with power law hardening.

More broadly, this study aims at understanding the effects of load path changes

*Parts of this chapter are reprinted with permission from ”On the path-dependence of the 
fracture locus in ductile materials: Experiments” by Basu S. and Benzerga A.A., 2015, International 
Journal of Solid and Structures 71 (2015), pp. 7990, Copyright (2016) by Basu, S.
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and pre-straining on the ductility of materials. Industrial metal forming processes

involve complex deformation histories which consist of numerous strain path alter-

ations. Pipe reeling processes as well as cold bending, ground movement or simply

accidental loading result in pre-straining the constituent materials. The effect of pre-

strain on the fracture toughness of steels was investigated by Clayton and Knott[121],

Amouzouvi and Bassim[122] and Sivaprasad et al.[123] among others. A common

trend is that prestrains in excess of some critical value are usually found to affect ad-

versely the toughness. The critical prestrain is comparable with the uniform strain,

and this establishes some connection between the decrease in toughness and the de-

crease in hardening capacity with prestraining. However, the effect of prestrain on

the intrinsic damage and fracture mechanisms is not well understood. In another

set of studies, the effect of non proportional loading was investigated in initially

crack-free specimens of various steels [124, 125, 126]. Various kinds of deviations

from a characteristic fracture locus obtained with no path change were evidenced

but incompletely rationalized.

In the present work, the material is chosen so that cavitation induced failure

prevails under tensile loadings. Cavitation here refers to the usual processes of void

nucleation, growth and coalescence [23]. In addition, the loading conditions are cho-

sen so that shear failure is avoided. Axisymmetric stress states are known to be

more stiff with respect to shear banding [127]. Therefore, axisymmetric smooth and

notched bars are exclusively used. Other types of specimens have gained interest in

recent years in order to induce combined tensile and shear stress states [128, 129,

101]. The basic fact, however, that not all laboratory specimens can be mapped onto

a characteristic fracture locus remains largely understated in the literature. Consider

for instance some fracture strain nominally associated with a given specimen geome-

try. For this fracture strain to be characteristic of the material two conditions must
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be met. First, a stress state indicator such as the triaxiality should undergo minimal

variations in time at the location of crack initiation. Incidentally, spatial variations

of triaxiality should also be minimized. Second, specimen level plastic instabilities,

such as necking or shear banding, must be avoided. These conditions are rarely

met stricto sensu in any specimen of any material. Nevertheless, deviations from

the ideal characteristic locus may vary significantly from one specimen geometry to

another. While triaxiality evolution post-necking is most often accounted for in re-

porting fracture loci, the strong nonproportionality inherent to shear band formation

is commonly disregarded. As a result, the nominal fracture strain obtained from, or

mapped onto the load-deflection curve is often erroneously associated with the triax-

iality (or the stress state indicator) that was prevalent for most of the deformation

history. Such nominal fracture strain may be representative of the specimen as a

structure, not of the constituent material at the stress state prevalent prior to the

onset of the plastic instability. As it turns out, the above two conditions are most

closely met in round notched bars. By way of consequence, these specimens are also

ideal for imparting controlled step-variations in triaxiality.

Ludwik and Scheu[130] tested specimens with circumferential notches of vary-

ing depth and sharpness. Mechanical analysis of these specimens naturally led to

introducing the stress triaxiality parameter as the ratio of the mean normal stress

to some deviatoric stress measure. Lode[131] subjected tubes of iron, copper, and

nickel, to combined tension and internal pressure and examined the effect of interme-

diate principal stresses on yielding. Orowan[132] carried out some pioneering work

to explain the physics of ductile fracture. He rationalized why the stress state arising

from the geometry would concentrate plasticity-induced damage to the center of the

specimen. Bridgman[133] developed a correction method to obtain the uniaxial true

stress-strain relations beyond necking. Mackenzie et al.[93] and the Beremin group
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(1981) documented the strong dependence of the strain to failure upon stress triaxi-

ality and rationalized it on the basis of void growth theory [95]; also see Needleman

and Tvergard[97]. In the past decade, several groups have revivified the interest in

the Lode effect; see [129, 101] and references therein. One cannot emphasize enough

that what is measured in these experiments is some apparent, not intrinsic fracture

locus. The apparent locus may be affected by extrinsic factors such as the occur-

rence of plastic instabilities or emergence of strong gradients, as indicated above and

discussed later.

Reduction of the vehicular weight by using lighter materials led to interest in

magnesium alloys, with a superior strength to weight ratio compared to steel and

aluminum. Wrought alloys in particular have been reported to have better mechan-

ical properties than their casting counterparts [70]. Forming processes are among

the most important metal-working operations to produce part tailored for specific

applications. Failures such as wrinkling, springback, necking and splitting can lead

to invalidating the part. One of the main limitations in industrial forming processes

seems to be the appearance of localized necking. In addition presence of strong

anisotropy in wrought Mg alloys lead to limited formability at room temperature

along with catastrophic failure after limited necking, limiting their application in

industries with sheet metal forming applications [71].

The limiting strains at the onset of localized necking can be predicted using a FLD

[25, 26]. Numerous experimental [134, 135] results show that the formability of the

material strongly depends on the loading history and on the plastic anisotropy of the

rolled sheet. Complex industrial forming processes involving non-linear strain paths,

and abrupt changes in the strain ratio invalidate the hypothesis of proportional

loading. This strain path sensitivity in sheet materials is mainly classified in the

literature into load reversal [136, 137] and orthogonal load path changes[138, 139].
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While load reversal showed Bauschinger effect for most materials leading to lowering

of stresses on loading after the prestrain stage, a sudden increase in the stresses were

seen to emerge after reloading with orthogonal strain-path changes.

Very little study has been carried out on the effect of load path changes involving

combined tension and shear loadings and how presence of a prestrain can affect

the failure in metal sheets since failure by shear localization is a big issue in sheet

material. This problem becomes even more technologically important for Mg sheets

where the deformation is affected by the presence of strong anisotropy induced due

to crystallographic orientation and due to thermo-mechanical processing. Presence

of strong anisotropy is seen to aid early localization of stresses and thus failure.

The chapter is organized as follows. The experimental procedure is presented

in Section 5.2. This includes tests with and without path change, a nominal def-

inition of strain to failure that solely relies on experimental measurements, post-

necking measurements in simple tension, and fractography. In addition experiments

involving load-path changes in Mg sheets involve two different loading paths. The

experiments without path change are discussed in chapter 4. Section 5.5 lays out

the computational procedure used to infer the large-strain hardening behavior of the

material as well as triaxiality variations in all specimens. All results are gathered

in Section 5.6 and discussed in Section 5.8.

5.2 Experimental Procedure: Model Material

5.2.1 Material

The material used in this study is a medium-carbon A572 Grade-50 steel (0.23 C,

1.35 Mn, 0.05 S, 0.4 Si, all in %wt) supplied as a 2-inch cold-rolled thick plate. This

steel is commonly used in applications that require high strength to weight ratio.

The microstructure is ferrito-pearlitic with an average grain size of 25 µm, Fig. 69.
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Figure 69: Microstructure of A572 steel with ferrite (bright phase) and pearlite
(dark phase) revealed using a 5% nital solution. The rolling and through-thickness
directions are horizontal and vertical, respectively.

This material is chosen because the microscopic damage mechanisms are well

known. Under tensile loadings void nucleation occurs at rather small strains, either

at sulfides or oxides. Significant progressive cavitation occurs until a macroscopic

crack initiates induced by the coalescence of the largest voids; see e.g. [58]. Post-

mortem fractography was used to ascertain the fracture mode in all tested speci-

mens. The choice of a thick cold-rolled plate for this investigation is also expected to

minimize complications associated with plastic anisotropy, which is typical of these

microstructures when hot-rolled, much thinner plates are considered [58].

For the latter part of the study the materials used was a rolled sheet of Twin-roll

cast AZ31b. Modified Arcan specimens were machined out from these sheets using

CNC lathe. The geometry of the sample and the test setup are mentioned in detail
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in above chapter.

5.2.2 Experiments Without Path Change

Slender rectangular bars were cut from the plate in the rolling direction, machined

into 16 mm diameter cylinders then lathe machined into round notched (RN) bars

and fine-polished in the notched region, Fig. 70(b). The diameter at the notch root

was φ0 = 5.12mm. The notch acuity is described by the dimensionless parameter

ζ = 10 ∗R/φ0 with R the notch radius, Fig. 70(c).

(a) (b) (c)

Figure 70: Representative round specimen geometries: (a) smooth bar; (b) notched
bars; (c) Definition of notch acuity parameter ζ.

The three specimen geometries depicted in Fig. 70(b) have ζ values of 9.3, 4.6

and 1.5. The lower the value of ζ the sharper the notch and the higher the stress

triaxiality. In addition, wider diameter (φ0 = 9.2mm) smooth tensile bars were
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machined with a gage length of 66 mm, Fig. 70(a). The wider diameter was chosen

in anticipation of the second set of experiments to be described next.

All specimens shown in Fig. 70 were deformed until rupture using a servo-hydraulic

MTS machine with load cell capacity of 110 kN. Special threaded holders with 16

mm diameter were machined using the lathe to mount the samples on the machine.

The cross-head speed was adjusted from one specimen to another so as to minimize

variations in the nominal strain rate. The latter is defined as the cross-head displace-

ment divided by the height of the notch. If the cross-head speed is kept the same

then the strain rate in the sharpest RN bar would be up to two orders of magnitude

higher than in the shallowest notch. This would eventually lead to uncertainties in

interpreting the results. With this adjustment, the strain rate was in the range of

10−4 to 10−3s−1 for all specimens with no incidence on the active damage mecha-

nisms. In addition to the load and cross-head displacement, an axial strain based

on a gage length L0 = 25.4mm was recorded using an Epsilon extensometer. Also,

some measurements of diameter reduction were made, the details of which will be

described in Section 5.2.4.

5.2.3 Experiments With Path Change

In the second set of experiments the following steps were involved:

• Loading 1: four wide-diameter (φ0 = 9.2mm) smooth tensile bars were pre-

strained up to incipient necking, i.e., to a strain ε∗ = 0.24. At this stage, their

diameter was φ∗ = 8.15mm.

• Each predeformed smooth bar was unloaded and a notch of desired acuity ζ

was machined in the central region. The values of ζ = 10 ∗ R/φ∗ investigated

were 10.4, 3.5, 1.7 and 0.87, with R denoting the notch radius as above. There

is some uncertainty on the uniformity of the sharpest notch (ζ = 0.87) around
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the circumference.

• Loading 2: the notched bars were loaded to rupture using the same machine

at a nominal strain rate within the same range.

This process is illustrated in Fig. 71 for one specific ζ.

Figure 71: Rendering of the steps of a typical non-proportional loading experiment:
the initial smooth bar is prestrained to ε∗ = 0.24; a notch is machined; the notched
bar is deformed to fracture.

From what precedes, it appears that the designed loading program mimics a

step-jump in triaxiality, as investigated by [24].
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5.2.4 Strain to Failure

Following the literature, e.g., [140, 141] an average strain in the minimal section

at the notch root is defined as

ε̄ = 2 ln
φ0

φ
(14)

where φ is the current diameter. Hence, an appropriate measure of strain to failure,

ε̄c, in notched bars is commonly defined as the value of ε̄ when φ = φc at crack

initiation. This stage is identified with the knee in the load F versus diameter

reduction ∆φ = φ0 − φ curve in sufficiently small specimens, Fig. 72(c).

Another measure of ductility is ε̄f or the strain to complete fracture (i.e., separa-

tion of the specimen in two pieces), which is based on φf . As illustrated in Fig. 72(c),

a crack propagates inside the specimen between stages (c) and (f) and this means

that deviations from constant stress triaxiality are strong after crack initiation. For

this reason, ε̄c is considered a better measure of ductility even if ε̄f is more convenient

to obtain.

In some notched bars, a custom-made radial extensometer was used, as in recent

work [50], to measure ∆φ. It consists of a pair of knives with adjustable flexibility

mounted on a clip-on MTS extensometer, Fig. 72(a). The knifes, which are made

of Inconel 718, were machined with ultra-high precision2 and have graded thickness

with tip-thickness of 0.4mm. Given the good ductility of this steel, the ability of

the notched bars to contract was beyond the range of the extensometer. Since the

diameter reduction was not continuously recorded all the way to fracture, at least

one realization per test condition was interrupted at specific intervals to measure

φc using a caliper. The initial and final diameters, φ0 and φf respectively, were

measured using a digital caliper and a laser device. Also broken samples were placed

2by Piper Precision, Inc., Friendswood, TX.
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(a) (b)

(c)

Figure 72: Radial strain measurements. (a) Custom-made radial extensometer
mounted on sharp notched bar. (b) Sketch of post-necking diameter measurement
in a tensile bar. (c) Typical load versus diameter reduction in a notched bar of a
similar steel [58] showing the initial yielding, limit load, drop in the force associated
with macrocrack initiation, stage (c), stable crack growth and final rupture, stage
(f). Adapted from [45].

127



under a microscope to measure φf after separation of surfaces.

5.2.5 Post-necking Measurements

The simple tension tests include a necking-induced loading path change. This

will be taken into account when presenting the results. Some smooth bar tests were

also interrupted multiple times (over 30 instances) beyond necking to measure φ at

the neck as sketched in Fig. 72(a). It is not possible to ensure where the neck would

form and hence the radial extensometer could not be used. Although the post-

necking diameter measurements alone are not sufficient to obtain the large strain

hardening response of the material, they enable further comparisons with finite-

element calculations of post-necking deformation.

5.3 Data in Literature

Four sets of published experiments have been analyzed using the simple fracture

theory[Thomas16]. The first three are taken from Refs. [124, 142, 126] while the

fourth set is from our recent experiments [63]. The loading paths considered in

the first three studies are schematically shown in Fig. 73. All authors investigated

loadings of Type 1, as per the above classification. In addition, Schiffmann et al.

[142] considered mixed loadings reminiscent of a combination of Type 1 and Type 2.

5.3.0.0.1 Type 1 loading: Marini et al. [124] investigated step jumps in nominal

triaxiality (Fig. 73a) whereas Schiffmann et al. [142] and Chae et al. [126] studied

step drops of triaxiality (Fig. 73b and d). In experiments, as the triaxiality is not

directly controlled, such paths were imparted using notched bars as follows. Marini et

al. [124] prestrained a shallow notched bar (T0 > 1/3) to various levels of (effective)

prestrain ε∗.

This was followed by two different step jumps using sharper notches (T ∗ > T0 >

1/3), and the specimens were then loaded to failure, as depicted in Fig. 73a. The
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(a)

(b)

(c)

(d)

Figure 73: Schematics of experimental loading paths considered by (a) Marini et al.
[124]; (b),(c) Schiffmann et al. [142]; and (d) Chae et al. [126]. Details are provided
in Table 2
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strains to failure were reported in [124]. In practice, each notched bar is defined by a

notch acuity parameter ζ equal to ten times the notch radius to notch root diameter.

The parameters defining their experiments are reported in Table 2.

Material ζ0 prestrain ε∗ ζ∗ Source
10 0.07 4
10 0.31 4
10 0.46 4

A508 10 0.55 4 Marini et al. [124]
10 0.07 2
10 0.31 2
10 0.46 2
10 0.55 2
2 0.13 5.3
2 0.17 5.3

FeE690 2 0.22 5.3 Schiffmann et al. [142]
∞ 0.55 2
∞ 0.55 4
∞ 0.55 8.6
2.5 0.03 10

HY-100 2.5 0.07 10 Chae et al. [126]
∞ 0.23 10.4

A572 ∞ 0.23 3.9 Basu and Benzerga [63]
∞ 0.23 1.7
∞ 0.23 0.9

Table 2: Summary of experiments from the literature.

Schiffmann et al. [142] started with a sharp notch (ζ = 2 so that T0 > 1/3) pre-

strained to three different strain levels then machined smaller bars with a shallower

notch (Table 2) so that 1/3 < T ∗ < T0 (Fig. 73d). The experiments of Chae et al.

[126] were essentially similar, albeit for a different material (Table 2). For the sake

of brevity, the analyses of their experiments are omitted here. Finally, the recent

experiments of Basu and Benzerga [63] complements the above three sets by explor-
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ing the case of lowest preloading triaxiality T0 = 1/3 and four different reloading

triaxiality T ∗ but for a single value of the prestrain (Table 2). In all studies, a set

of standard notch bar experiments were also carried out with no path change. The

resulting fracture loci serve as reference.

5.3.0.0.2 Type 2 loading: Every standard tensile testing of an initially smooth bar

may fit in this category for materials whose plastic hardening can be approximated

by a power-law. In the above cited works, such data was reported in [142] and [63].

In both, T0 = 1/3 and ε∗ = εn. Such paths are not included in Table 2.

5.3.0.0.3 Mixed Loading: Schiffmann et al. [142] also considered the loading path

depicted in Fig. 73c. It is realized in two steps. In the first, a smooth bar is loaded

beyond necking so that T0 = 1/3 and ε∗ > εn. In the second step, notched bars with

three different notch geometries were machined inside the neck of the predeformed

bar and loaded to failure, thus leading to step jumps in triaxiality. This loading path

is also included in Table 2 where ζ → ∞ refers to the smooth bar and ζ∗ is for the

machined notches. Note that the first step of loading itself is amenable to a Type 2

loading with induced ε∗ equal to the necking strain.

5.4 Experimental Procedure : Mg Sheets

All the above experiments above were aimed at performing load path changes

by introduction of a step jump in stress-triaixiality by introduction of a notch after

prestraining in uniaxial tension. These were aimed at probing the region of medium

to high triaxiality regime. The current experimental campaign is designed to check

the effect of strain path change in the low-triaxiality regime. The experimental setup

used in this study is the same as shown in 4. The sample and the holder used in

this case is shown in Fig. 34. Two different load paths were probed in this study.

Path 1 as shown in Fig. 74 involves prestraining the specimen in tension (α = 90◦)
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followed by reloading it in in different orientation of loading. Orientation here refers

to the angle α shown in Fig. 35(a). Path 2 as shown in Fig. 74 involves preloading

in shear (α = 0◦) upto a certain ε∗ followed by reloading at a different angle of α.

Figure 74: Schematic of the loading paths probed using these experiments. Path 1
involves prestraining under uniaxial loading followed by step decrease in the stress
triaxiality by changing orientation of the sample. Path 2 involves prestraining under
shear dominant loading followed by step jump in triaxiality.

The value of the prestraining was kept constant for each path of the experiment.

The tests were interrupted when the load level reached 10.8 kN and 6.8 kN for path

1 and 2 respectively. These turned out to be close to the levels close to 50% of the

equivalent strain in each material. The sample was then unloaded and the system

involving the holder and the sample as shown in Fig. 74(c) was rotated to the

reloading orientation α. For both loadings the reloading value of α is separated by

15◦ from one loading to the other. The second step involved reloading all the way

to failure under that loading orientation. The strain to failure after path change can

be reported as the total accumulated strain from both steps of the deformation or

in form of the strain in the second step of the deformation which will be termed as

residual strain from now.
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Digital Image correlation was used to obtain the evolution of local strains in the

specimen. Since data was extracted for the tension and the shear condition earlier in

no-path change experiments, the data for the initial step will not be shown here and

only step 2 of the loading will be compared. The definitions of the quantities used

in force displacement response and for obtaining the equivalent strain measurement

are kept similar to the ones in the experiments without path mentioned in section

4.2.

5.5 Numerical Procedure:Model Material

5.5.1 Principle

Elasto-plastic finite element calculations have been carried out using the com-

mercial software ABAQUS3 in order to (i) identify the material’s hardening response

up to large plastic strains; and (ii) evaluate triaxiality evolution in the various speci-

mens. The plastic behavior was modeled using rate-independent J2 flow theory with

isotropic hardening. The hardening curve was supplied as tabulated data following an

iterative procedure to be described below. In the simulation of the experiments with

path change, the effect of prestrain on hardening is readily accounted for by disre-

garding the tabulated stress–strain data for effective strain values lower than ε∗. This

is straightforward since all material points in the predeformed smooth bar undergo

similar deformation. Any potential effect of kinematic hardening upon load path

change is neglected. Also, the effect of strain-rate sensitivity at room temperature in

the steel was minimized in the experiments by limiting strain-rate variations among

the various specimens. Due to symmetry a quadrant of each smooth or notched spec-

imen was meshed respectively using 1323 and 1443 4-noded axisymmetric elements

with reduced integration (CAX4R), Fig. 75.

3Version 6.12, Simulia, Inc. and Dassault Systèmes
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Figure 75: Finite element meshes and contours of effective stress in the smooth bar
(ζ =∞) and some notched bars.
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Displacement boundary conditions were applied at the top surface of each speci-

men. The calculations were stopped when the diameter reduction at the notch root

was equal to ∆φc at crack initiation, as determined experimentally.

5.5.2 Large Strain Behavior

The mesh of the smooth tensile bar included part of the loading ends (grips) so as

to induce necking, as shown in Fig. 75(a). The true stress–strain hardening response

was determined iteratively as follows. First, power-law hardening was assumed and

identified on the basis of the true uniaxial stress–strain response prior to necking.

Tabulated stress-strain data that match the power-law were used. The simulated

load versus elongation response was compared with the experimental one using the

same gauge length L0. The difference between the two introduced an error function.

The latter was used as a basis to correct the post-necking stress-strain tabulated

data iteratively (see Appendix A).

An alternative way to obtain an estimate of the large-strain true stress–strain

response is Bridgman’s correction method. Implementing this method, however,

requires continuous measurement of the neck cross section as well as the radius of

curvature of the neck, and this requires video-monitored testing. Efforts of this kind

are typical for polymers, e.g. [143], but were not pursued here.

5.5.3 Prestrain Effects

In the theoretical loading paths triaxiality variations are imposed by design. How-

ever, in the experimental loading paths they need to be determined with some level of

accuracy. To achieve this, finite element calculations were carried out to simulate the

actual load path changes in the various experiments in Table 2 using ABAQUS. The

plastic behavior was modeled using rate-independent J2 flow theory with isotropic

hardening. Any potential effect of kinematic hardening due to load path change is
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neglected. The calculations were terminated when the remotely imposed displace-

ment, as reported by the various authors, reached a value corresponding to the onset

of failure. In all experiments, failure is assumed to have initiated at the center of the

specimen, as was explicitly mentioned in some of the sources.

For the experiments by Basu and Benzerga [63] the hardening curve was sup-

plied as tabulated data following an iterative procedure to account for large strain

corrections beyond necking. More details are provided in [63]. In the simulation of

the experiments with path change, the effect of prestrain on hardening is readily ac-

counted for by disregarding the tabulated stress–strain data for effective strain values

lower than ε∗ for the data in [63]. This is straightforward since all material points in

the predeformed smooth bar undergo the same loading path prior to necking.

Figure 76: Procedure to account for prestrain effects on hardening in the finite
element simulations.
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For other experiments in the literature, the best power-law fit to the hardening

curve was used, as the data provided in [124, 142, 126] was not sufficient to extract

more accurate hardening laws at large strains. Nevertheless, the implication of such

imperfections on the evolution of triaxiality is expected to be small. A more impor-

tant issue is that in these experiments the first step involves deforming a notched bar

so that the distribution of plastic strain in the specimen at the instant of load path

change is nonuniform. The effect of predeformation on the hardening law to be used

in the reloading step simulation must therefore be obtained in some approximate

way. The following procedure was followed, which is represented schematically in

Fig. 76. At the instant of load path change (i.e., when ε = ε∗) the distribution of

effective plastic strain p is known. An accurate method would consist of project-

ing the fields at that instant onto the smaller notched specimen (shown in dashed).

This would enable among other things to keep any residual stress field that would

have resulted from the first loading step. For simplicity however, the effective plas-

tic strain averaged over the minimal section of the smaller bar was retained as an

indication of an average, supposedly uniform, plastic strain, p̄, with no associated

residual stress. Thus, in the second step, the portion of the hardening curve past p̄

is retained for subsequent analysis. This procedure allows to account for the natural

loss in hardening capacity that follows prestraining.

5.5.4 Triaxiality Variations

The stress triaxiality ratio (or simply the triaxiality T ) is defined as the mean

normal stress σm = σkk/3 divided by the von Mises effective stress σeq. In uniaxial

loading (smooth bars prior to necking) T = 1/3 is constant and uniform. This is

not the case in the notched bars. In general, the triaxiality is a field which varies

with the accumulated plastic strain p so that one can write T (x; p(x)) where x is the
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position vector.

In associating a nominal triaxiality to a given specimen with notch acuity ζ one

may simply use the triaxiality, T loc, at the center of the specimen, since that is

where the macroscopic crack initiates (Fig. 72(c)). Alternatively, one could average

the triaxiality within the minimal cross-section to account for spatial gradients:

〈T 〉 ≡ 2

φ

∫ φ/2

0

T (r) r dr (15)

The evolution of both local and global triaxialities, according to the above definitions,

were extracted from the finite-element simulations.

5.5.5 Fracture Loci

Unless the triaxiality is kept strictly constant throughout deformation, the only

fracture locus that can be defined on the basis of experiments alone is the locus relat-

ing the strain to failure ε̄c defined in Section 5.2.4 versus the notch acuity parameter

ζ. However, ζ is a geometric parameter that is implicitly related to a stress state

indicator such as triaxiality. Here, three definitions of the fracture locus are adopted

in order to show later the robustness of the conclusions drawn.

One convenient way to define the fracture locus is to obtain the curves giving the

local triaxiality, T loc, versus the strain measure ε̄ in equation (14) up to ε̄ = ε̄c, i.e.,

at crack initiation. Fracture would then be identified with the locus T loc
c versus ε̄c,

where T loc
c is the triaxiality at fracture. A dual plot consists of plotting ε̄c against

the strain-weighted average of T loc:

T̄ loc =
1

ε̄c

∫ ε̄c

0

T loc(ε̄) dε̄ (16)

For proportional loading, the two dual definitions deliver the same locus.
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A second definition consists of obtaining the curves of the local triaxiality at frac-

ture, T loc
c , versus the local plastic strain p, similar to the loci provided, for example,

by [97]. The effective strain at failure, pc, is mapped onto the global condition. ε̄ = ε̄c.

A dual plot is the local strain to failure, pc, versus the corresponding strain-weighted

average of T loc:

¯̄T loc =
1

pc

∫ pc

0

T loc(p) dp (17)

A third definition is based on terminal values in curves giving the global triaxiality

〈T 〉 defined in (15) versus the global strain ε̄. A dual plot is ε̄c against the following

strain-weighted average of 〈T 〉:

〈T 〉 =
1

ε̄c

∫ ε̄c

0

〈T 〉(ε̄) dε̄ (18)

Definition (3) is the most convenient. However, it relates a local measure of stress

state to a global measure of strain. Definition (4) relates local quantities whereas

definition (5) relates global ones.

5.6 Results:Model Materials

Fractography examinations confirmed that all tested specimens, including the

pre-strained ones, have failed by a process of void nucleation, growth and coalescence.

Fig. 77 shows fracture surfaces of selected specimens.

The macro-fractographs show that the initially circular sections remain essentially

circular. Along with the discontinuous diameter reduction measurements in some

cases, this shows that plastic anisotropy is insignificant in the A572 steel plate,

as expected. The fractographs clearly reveal the dimpled character of the fracture

surface. Images taken at much higher magnification revealed second-phase particles

that sometimes remained attached to the material inside dimples. Energy dispersion
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Figure 77: Scanning electron microscopy images of representative fracture surfaces
of various notched bars. The fractographs confirm void nucleation, growth and coa-
lescence as the main damage mechanisms in the steel.
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spectroscopy (EDS) analysis enabled to identify the particles as either manganese

sulfides (MnS) or carbides. It is also likely that alumina particles act as damage

initiation sites.

Curves of the load, F , normalized by the initial cross-sectional area, A0, versus

elongation, δL/L0, are shown for the notched bars without path change in Fig. 78(a)

and with path change in Fig. 78(b).

The dual effect of notch severity on increasing the net axial stress required for

plastic flow and on decreasing the strain to failure is evident in both figures. In

Fig. 78(b) the initial part corresponds to pre-loading uniaxially to the same (total)

prestrain of ε∗ =0.24, as described in Section 5.2. The values of both measures of

strain to failure: at crack initiation, ε̄c, and at fracture, ε̄f , are reported in Table 3

(see Section 5.2.4). The format ∞–ζ is used for the experiments with path change

to indicate a significant change in the radius of curvature of the notch. In this

format, the notation “∞” refers to prestraining a smooth tensile bar (no notch).

The particular case of the smooth tensile bars where the change in ζ is induced by

large post-necking deformation is included under the experiments with path change.

The load–elongation response of the initially smooth tensile bar is shown in

Fig. 79.

The response exhibits a yield plateau typical of mild steel. Superposed onto this

plot are two calculated load–elongation responses: one using the power-law hardening

rule (dashed), the other using the tabulated hardening law that provides the best

fit to the experimental response as per the procedure of Section 5.5.2 (see Appendix

for details). Both hardening curves account for the initial yield plateau in tabulated

form. It is worth noting that the value of the initiation strain ε̄c reported for the

smooth bar in Table 3 (first row of second column) is not extracted from the load–

elongation response in Fig. 79. Instead, it is based on the discontinuous diameter
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Figure 78: Load normalized by the initial cross-sectional area versus gauge length
elongation for representative tests (a) without path change; (b) with path change.
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Figure 79: Measured versus computed load–elongation curves.
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No path change With path change

ζ ε̄c ε̄f ζ ε̄c ε̄f

∞–ζneck 1.49 2.12

9.3 1.08 1.27 ∞–10.4 1.08 1.21

9.3 — 1.33 ∞–10.4 — 1.23

4.6 0.97 1.10 ∞–3.5 0.82 1.03

4.6 — 1.08 ∞–3.5 — 0.98

1.5 0.72 0.93 ∞–1.7 0.75 0.81

1.5 — 0.97 ∞–1.7 — 0.83

∞–1.7 — 0.84

∞–0.87 0.50 0.59

∞–0.87 0.55 0.58

∞–0.87 — 0.56

∞–0.87 — 0.57

Table 3: Measured strains to crack initiation, ε̄c, and final rupture, ε̄f , as defined
in Section 5.2.4. The values of ε̄f are averaged over up to three realizations (see
Supplementary material online).

reduction measurements (Section 5.2.5).

Fig. 80(a) shows that the hardening curve of the material obtained as a result of

the heuristic procedure lies below the power-law curve. For illustration, the power law

overestimates the flow stress by about 75 MPa at a strain of 2.0. The corresponding

evolution of the strain hardening rate is depicted in Fig. 80(b). The hardening rates

of the power law and the corrected law are similar prior to necking then gradually

deviate from each other at large strains.
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Figure 80: (a) Two hardening curves used in the finite-element simulations (beyond
the yield plateau). (b) Corresponding hardening rates.

145



The heuristic procedure of Section 5.5.2 is based on the force–elongation re-

sponse. The latter is not intrinsic to the material and depends on the geometry of

the specimen. For this reason, one may question whether the hardening curve ob-

tained using this procedure is representative. An additional check was made using

the post-necking diameter measurements of Section 5.2.5.

Fig. 81(a) shows the experimental data of force, F , versus diameter reduction,

∆φ. The last recorded point was slightly before crack initiation and serves as basis for

estimating ε̄c for the smooth bar, Table 3. It was not possible to record the descending

part of the curve as for the notched bar experiments. The data is compared with the

computed F–∆φ curve where ∆φ is twice the displacement of the surface node at the

neck. From this data one can plot the true axial stress, σ22 ≡ F/A with A = 4πφ2

the current cross-sectional area, as a function of true axial strain estimated based

on the ε̄ measure at the neck assuming plastic incompressibility throughout. This

can be done for both experiments and computations. The comparison is depicted in

Fig. 81(b). Both results in Fig. 81 increase confidence in the representativity of the

hardening law reported in Fig. 80(a). All subsequent finite-element calculations of

notched bars are carried out using this hardening law in tabulated form.

The computed force versus elongation responses are compared with their exper-

imental counterparts for the three notched bars without path change and the four

pre-strained bars (with path change) in Fig. 82(a) and Fig. 82(b), respectively.

The calculations in the latter figure account for the effect of pre-strain on hard-

ening as described in Section 5.5.1. The computed curves match rather well the

experimental ones up to the load drop. This indicates that the plasticity in the

notched bars is well captured. The discrepancy noted for the ζ = 0.87 specimen,

Fig. 82(a), is likely due to the difficulty to realize a notch of such acuity, as pointed

out in Section 5.2.3. The essential fact remains that the incidence on normalized
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Figure 81: Refined analysis of post-necking response via the interrupted test tech-
nique. (a) Force versus diameter reduction, ∆φ, up to abrupt load drop at macroc-
rack initiation. (b) Axial true stress versus (total) true strain (assuming incompress-
ibility) up to large strains.
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Figure 82: Calculated versus measured force-displacement responses of the notched
bars: (a) without path change; (b) with path change (second step of loading only).
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quantities, such as the triaxiality ratio, is small and without incidence on the central

result.

As indicated above, the main objective of the finite-element calculations is to

quantify the evolution of stress triaxiality in the specimens. This can now be ad-

dressed with good confidence placed in how the plasticity is captured in the notched

bars. In what follows, details are only given for the local triaxiality, T loc, which is

evaluated at the Gauss point of the central element in each notched bar that is the

closest to the center of the specimen. Furthermore, T loc is given as a function of

the global strain ε̄. The other two local (T loc versus p) and global (〈T 〉 versus ε̄)

relations are given as Supplementary Material online. Fig. 83(a) shows the evolution

of triaxiality in the notched bars without path change whereas Fig. 83(b) gives the

same in the pre-strained bars.

As expected, T loc undergoes little variation in the plastic regime up to a strain

ε̄ ∼ 0.6. Beyond this strain, the notch integrity changes in that the parameter ζ

itself begins to evolve thus leading to an increase (or sometimes a slight decrease)

in triaxiality. The variations are particularly significant in the bars with shallow

notches where a neck develops at the notch root. It is worth noting that for sharp

notches (ζ ≤ 1.7) the triaxiality is maximum near the notch root in the early stages

of deformation. However, upon sufficient straining (ε̄ > 0.05) the location of the

maximum shifts to the center. There was no indication in the experiments that

cracking initiated near the surface.

Both series of loading paths to fracture are superposed in one plot in Fig. 84.

For the pre-strained bars, the uniaxial pre-loading is included. Consistent with the

definitions in Section 5.5.5 the terminal triaxiality T loc
c versus ε̄c defines a fracture

locus. Recall that ε̄c is associated with the knee in the load-deflection curve as per

Section 5.2.4. The terminal values are shown as filled squares for the experiments
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Figure 83: Stress triaxiality, T loc, versus the global strain ε̄ in the notched bar
specimens: (a) without prestraining; (b) with a 0.24 prestrain. The (x) refers to the
value of ε̄ at which macrocrack initiation occurred in the experiments, i.e., ε̄c.
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Figure 84: Evolution of stress triaxiality with global strain in representative exper-
iments up to crack initiation. The plots are obtained by superposition of those in
Fig. 83, adding the prestrain where appropriate and including the smooth bar spec-
imen. The solid line is an exponential fit to the data without prestrain. The dotted
line is obtained by translation of the solid one by ε∗. Scatter may be inferred from
Table 3 or supplementary material online.
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with no path change and as diamonds for the experiments with path change. The

solid line joining the squares is a trend line used as a guide for the eye indicating the

fracture locus with no path change. Interestingly, three data points corresponding

to the experiments with path change fall close to that trend line. On the other

hand, the two specimens that undergo the largest triaxiality variations beyond pre-

straining, i.e., the ζ = 0.87 specimen and the tensile bar, break at a strain beyond

the trend line. These results, along with the dashed trend line in Fig. 84, will be

further discussed in Section 5.8.

Fig. 85 shows the fracture loci corresponding to both series of experiments in

terms of the strain to failure ε̄c versus the strain-weighted average of triaxiality T̄ loc

defined by (16). For each series of experiments, the locus is dual to the corresponding

locus in Fig. 84. Equation (16) is specified further as

T̄ loc =
ε∗

ε̄c
T0 +

1

ε̄c

∫ ε̄c

ε∗

σm

σeq

dε̄ (19)

where ε∗ = 0.24 and T0 = 1/3. In this kind of plots, load path changes impart

a peculiar shape to the fracture locus. Obviously, this results from the averaging

procedure. However, it illustrates the fact that multiple values of the fracture strain

may be associated with the same average triaxiality, in keeping with the theoretical

results of [24]. The datum corresponding to simple tension (where strong triaxiality

variations are necking-induced) is included in the variant plot of Fig. 85(b). Note

that the association of ε̄c with the knee in the load-deflection curve introduces an

uncertainty. In the present material, the maximum error is ±0.02 strain, which is

well within the experimental scatter.
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Figure 85: Dual fracture loci of those shown in Fig. 84. (a) Global strain to frac-
ture ε̄c based on (14) versus the local ε̄-weighted triaxiality T̄ loc in (16) for the two
sets of experiments. (b) Same plot including the smooth bar datum point. Strain
measurement error in notched bars is ±0.01; see Supplementary material online for
scatter.
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5.6.1 Data in Literature

Experimental nonradial loading paths described in Section 5.3 were analyzed

using the simple fracture theory. For each set of experiments, actual loading paths

were determined using the finite element calculations described in Section 5.5 and

the fracture parameter (R/R0)c was calibrated using models which will be discussed

below.

5.6.1.1 Experiments of Marini et al.

Marini et al. [124] considered Type 1 loading, as sketched in Fig. 73a. Calculated

triaxiality versus effective strain paths experienced by a material point at the location

of failure initiation are shown in Fig. 86a for their experiments. The ‘X’ symbol

here denotes the onset of failure as inferred from the experiments. The results in

Fig. 86a are consistent with those of similar calculations in [124]. In particular, some

anomalies in the data are to be noted. While reloading at a high triaxiality leads to

lowering the fracture strain for most prestrain values, the data corresponding to ε∗ =

0.47 seems inconsistent. No information was provided on neither the repeatability

of this trend nor the applied strain rates. Also included in the figure are the three

data points (squares) corresponding to experiments with no path change. These

nominally define the radial fracture locus from Marini et al.

On plotting their findings on a strain to failure versus average stress triaxial-

ity locus (Fig. 86b) it is observed that there are deviations from the radial locus.

However, no overall trend can be deduced.

5.6.1.2 Experiments of Schiffmann et al.

Schiffmann et al. [142] considered Type 1 loading of the triaxiality step drop kind,

as sketched in Fig. 73b. Calculated T–ε paths at the location of failure initiation
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Figure 86: (a) Stress triaxiality, T, vs strain for a few load paths realized by [124].
Different prestrain levels are denoted by different colors and there are two different
values of step jump in stress triaxiality at each prestrain. (b) strain to fracture
versus the strain weighted triaxiality T̄ for the two sets of experiments described in
Fig 86(a).
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Figure 87: (a) Evolution of stress triaxiality with strain for a few loading paths for
[124] with the analysis data superimposed on the experimental plots as dashed lines.
Each path comprises of a step jump to 2 different values of stress triaxiality ratio
after a prestrain to different values of ε∗. Each color represents the different prestrain
levels under step 1 of loading. (b) Failure loci for proportional and non-proportional
loading paths shown in fig. 86(a).
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Figure 88: Load paths for loadings adopted by Schiffmann et al.[142] (a) step jump &
(b) step decrease. (c) Failure loci in the strain to fracture versus the strain-weighted
triaxiality T̄ for the data shown in Fig 88(a)&(b).
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are shown in Fig. 88a where the large ‘X’ symbol again stands for failure from their

experiments; also see Table 2 for path parameters. Also included in the figure are

four data points (squares) corresponding to experiments with no path change as

reported in [142]. The loading paths shown dashed in the figure are idealized paths

(strict T step drops). The small ‘x’ symbol in these corresponds to onset of failure

as predicted by the model. The analytical model used to fit the radial experimental

data had C=0.6775 and a ( R
R0

)c = 1.25. Discrepancies aside, the results indicate that

the fracture strains lie below the radial fracture locus.

Schiffmann et al. [142] also considered the mixed type loading sketched in

Fig. 73c. Calculated T–ε paths at the location of failure initiation are shown in

Fig. 88b along with idealized paths shown in dashed. As above, the large ‘X’ and

small ‘x’ symbols stand for measured [142] and predicted fracture strains (extended

model); also see Table 2 for path parameters. As in Fig. 88a, the four experimental

data points (squares) defining the nominal radial locus are included. The discrep-

ancies here between measured and fracture strains are much smaller. Here, the key

observation is that the fracture strains lie above the radial fracture locus

When the results of Schiffmann et al. [142] for both types of loading are plotted

on a εf–T̄ locus (Fig. 88c) deviations from the radial locus are noted, just like for the

data of Marini et al. in Fig. 86b. However, once again no overall trend stands out. On

the other hand, when predictions based on the simple theory are superposed onto the

experimental data, it is possible to rationalize the trends, although the unavoidable

quantitative discrepancies come in the way of a clearer picture. We emphasize that

solely based on the data, it is difficult to uncover the fundamental trend because the

data is limited for a given choice of prestrain.
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Figure 89: (a) Evolution of stress triaxiality with global strain in representative
experiments up to crack initiation by [63]. The solid line refers to the data from the
experiments while dashed lines are obtained superimposing the model predictions on
the experimental data. (b) Fracture loci of the loadings shown in Fig.89(a) with the
results of the model plotted in solid lines
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5.6.1.3 Experiments of Basu & Benzerga

Basu and Benzerga [63] considered Type 1 loading that complements the experi-

ments in [124, 142]. The paths they studied are sketched in Fig. 73d. Calculated T–ε

paths at the location of failure initiation for some of their experiments are shown in

Fig. 89a (solid lines). Path and model parameters were provided in Tables 2. Ide-

alized paths used in fracture prediction are shown dashed as above and the square

data points correspond to experiments with no path change from [63]. Also, the

‘X’ and ‘x’ symbols bear the same meanining as in preceding figures. On the basis

of the theoretical analyses[144], specifically the results for T0 = 1/3, the predicted

fracture points ‘x’ are expected to lie on a curve translated from the radial locus by

the amount of prestrain, here 0.23. This holds, albeit approximately due to model

imperfections to be further discussed below. Analytical function given in equation

20 is used to calibrate the radial curve.

Ṙ

R
= 0.427 exp

(
3

2

Σm

σ̄

)
ε̇ (20)

Here too, if the data are represented in the εf–T̄ plot (Fig. 89b) then the following

is observed. First, the deviations from the radial locus are much clearer than in

previously published experiments; for reference see Fig. 86b and Fig. 88c for the

data in [124] and [142], respectively. This is due to the consideration of very sharp

notches (ζ < 2) upon load path change in [63]. In addition, the simple fracture theory

rationalizes the trend (solid line in Fig. 89b) inspite of the quantitative discrepancy.
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5.7 Results: Mg Sheets

5.7.1 Global Response

The force in step 2 of the loading was resolved into components along the two

principal directions as shown in section4.2; T denotes transverse force along the x-

direction and N corresponds to normal force along the y-direction. Both vertical and

horizontal displacements were extracted from the DIC with corrections for rigid body

motion. The normal component of the force shown as N in Fig. 90 were plotted

against the vertical component of the displacement v. The transverse component

of the force T is plotted against the horizontal displacement u. It is observed that

the transverse component of the load displacement curve shows a higher hardening

rate as seen from the slope of the curves indicating that the material hardens more

rapidly in shear. One possible reason for this is that some compressive stresses

develop in the plane of the sheet. Although not dominant, such compressive stresses

must be accommodated, which leads to positive through-thickness strains in some

regions. The latter can be accommodated through some pyramidal slip but also

some extension twinning, which is known to be a soft deformation system. Also,

when extension twinning is active, the stress-strain curve typical exhibits the S-

shape. Detailed analysis of such phenomena would require crystal plasticity or lower

scale simulations.

It was observed that the force displacement plots show similar trends to that seen

in no path change experiments; with increase in angle α the value of T decreases and

the value of N increases. Similarly, the resolved force versus displacement response

for step 2 of path 2 is shown in Fig. 91 for all loading orientations. The difference that

was observed from the no path change experiments is that the hardening response

for the step 2 of the loading reduced compared to both load path changes and no
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Figure 90: Force versus displacement plot resolved for experiments for different
orientations (a) 0◦ (b) 15◦ (c) 30◦ (d) 45◦ (e) 60◦ (f) 75◦ after prestraining in
tension(α = 90◦).
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path change experiments. The hardening for the normal part of the loading is seen

to improve with increase in reloading α.

5.7.2 Strains at Different Locations

Digital image correlation strains indicate similar trends in the evolution of compo-

nents of the strain tensor in experiments with path change compared to the samples

without path change. The evolution of decomposed force with the respective de-

composed measure of strains was plotted at the maximum, center and the average

values for step 2 of loading paths as shown in Fig.104 and Fig.105. As seen in step

2 of strain path change involving prestraining in tension, on reloading in step 2, we

observe that the hardening of the stress strain response reduces slightly.

Figure 106 and Fig.107shows the decomposed force with the respective decom-

posed measure of strains evolution after strain path change involving prestraining in

shear. It is seen that reloading after prestraining in shear leads to similar load levels

after reloading, however, the hardening rate is reduced. The values of the strains

are smaller compared to the experiments without path change. The value of strain

at the the max location is seen to drastically increase in most of the loading in the

tensile part of the loading, indicating the presence of a moment as a result of the

top and the bottom loading screws not being aligned in a straight line due to the

prestrain. The figures are reported in the Appendix as the figures were bulky.

5.7.3 Load Paths

Fig.92 shows the normalized load versus equivalent strain plot at center, max-

imum location and averaged over the minimum section. This is plotted for the

complete loading path 1. The common prestrain for all samples remain the same

followed by reloading under different loading orientations.

No stark differences are seen from the no path change experiments, except that
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Figure 91: Force versus displacement plot resolved for experiments for different
orientations (a) 15◦ (b) 30◦ (c) 45◦ (d) 60◦ (e) 75◦ (f) 90◦ after prestraining in
shear(α = 0◦).
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Figure 92: Force versus displacement response for experiments with path change for
step decrease involving prestraining under orientation 90◦ followed by reloading at
different orientations to failure.
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the response in the low angle α loadings are lumped closer together in terms of load

levels and comparable ductility. There is an increase in ductility under 75◦ loading

compared to the 60◦. The 60◦ plot shows a flat part in the curve after load drop

indicating that the sample does not undergo complete failure.
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Figure 93: Force versus displacement response for experiments with path change
for step jump involving prestraining under orientation 0◦ followed by reloading at
different orientations to failure.

Fig.92 shows the normalized load versus equivalent strain plot at center, max-

imum location and averaged over the minimum section. This is plotted for the

complete loading path 1. The common prestrain for all samples remain the same

followed by reloading under different loading orientations. As observed, the total
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load path shows comparable ductility levels compared to the experiments without

path change. The only exception in this case is the 90◦ orientation that shows im-

provement in ductility with the path change.

5.7.4 Failure Loci
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Figure 94: Total failure strain with respect to orientation of the sample at maximum,
center and averaged over the cross-section for path 1 involving prestraining in tension.

Finally the value of the total failure strains at maximum, average and at the

center of the specimen were plotted with respect to the orientation of each specimen
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during loading as shown in Fig. 94 to show the loci of failure for path 1 of the loading,

which involves prestraining in tension followed by reloading at a different orientation

till complete failure. The trend observed is the value of the strain to failure totaled

over the whole path shows a decreasing trend overall with the first and the last data

points 0◦ and 75◦ being slight outliers in all measures of failure strains.
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Figure 95: Total failure strain with respect to orientation of the sample at maximum,
center and averaged over the cross-section for path 2 involving prestraining in shear.

Fig.95 shows the loci of failure strain at various locations of the sample after
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prestraining in shear. The strains reported are the total strains over the whole path

of the loading. It is observed that the failure strains in all measures decreases with

increase in angle of orientation α till the loading is predominantly shear. As the

loading orientation changes to predominantly tensile the value of the failure strain

at the maximum locations increases, while the center and the average strain keep

reducing. The only exception is the orthogonal loading 90◦ where all measures of

strain to failure increases and to values that are greater than most other loadings.

Fig.96 shows comparison of the failure loci under each measure of ε̄c with the

same measure of strain for no path change. It can be seen in Fig.96(a), (b) and

(c) that the values of the failure strains with or without path change coincide for a

few loading orientations, however, a few orientations show lower or greater values of

strains compared to no path change experiments.

Fig.97 shows the value of the failure strain as a loci of the orientation angle α

at maximum, center and average locations. Strains at failure at different locations

indicate that the value with path change show higher values of ε̄c than the experi-

ments without path change. This difference is found to be the highest in the case of

reloading α = 90◦.

5.8 Discussion

5.8.1 On the Notion of Fracture Locus

When all components of the stress tensor are increased proportionally and the

ductile material deforms to fracture4, the ratio of any two stress invariants, properly

nondimensionalized, remains constant. Hence, not only the stress triaxiality T but

also the Lode parameter, L, remain constant in the course of deformation. An

intrinsic fracture locus may be defined in terms of the strain-to-failure ε̄c viewed as

4In the present context, fracture means incipient macroscopic cracking.
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Figure 96: Total failure strain for path 1 at (a) maximum (b) center and (c) average
location for experiments with and without path change shown in filled and unfilled
symbols respectively.

170



0 15 30 45 60 75 90
5

10

15

20

25

30

35

40

45

Orientation (α)

ǫm
a
x

e
q

| f

 

 

Path Change

No Path Change

0 15 30 45 60 75 90
5

10

15

20

25

30

Orientation (α)
ǫc

e
n

e
q
| f

 

 

Path Change

No Path Change

(a) (b)

0 15 30 45 60 75 90
5

10

15

20

25

30

Orientation (α)

ǫa
v
g

e
q
| f

 

 

Path Change

No Path Change

(c)

Figure 97: Total failure strain for path 2 at (a) maximum (b) center and (c) average
location for experiments with and without path change shown in filled and unfilled
symbols respectively.
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a function of T and L.

An important fact that is understated in the recent literature is that, with the

above definition, the intrinsic fracture locus of a ductile material is not accessible to

experimental measurement for it is impossible, in general, to impose constant-T and

L loadings. Deviations from proportionality in real experiments are more prominent

at very low (e.g., simple tension or shear) or very high (crack tip) triaxiality. The aim

of this and previous companion work has been to explore the type and magnitude of

deviations from the so-defined intrinsic locus that would follow from non-proportional

loadings. In the computations of [24] the intrinsic locus was readily accessible because

T and L were held strictly constant. Here, the round notched bar experiments realize

a locus that is the closest to the intrinsic one. The latter is represented by the solid

lines in Figs. 84 and 85. It is emphasized that the trend line is strictly valid within

the investigated range of triaxiality. Any extrapolation outside this range requires a

theory of ductile damage.

5.8.2 On the Interpretation of Deviations

The magnitude of deviation from the nominally intrinsic locus clearly depends

on what definition is adopted for the fracture locus under nonproportional loadings,

as may be inferred by comparing Figs. 84 and 85. There is duality between the

two loci (ε̄c versus either the terminal or average triaxiality). This duality obviously

disappears under proportional loading but can be exacerbated for certain types of

nonproportional loadings. Here, with the choice made for uniaxial preloading (T0 =

1/3) and a step-jump in triaxiality, the largest deviations are obtained when the

strain-weighted average triaxiality is used (Fig. 85).

The reason for this is two-fold. Obviously, the use of a strain-weighted average

of triaxiality over the loading path is one. This, however, is not sufficient as the
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damage accumulation rule must be nonlinear. Indeed, analysis shows that a dam-

age accumulation rule that is linear in T would deliver indistinguishable loci under

proportional and step-jump in T type loadings [24]. In view of the active damage

processes (Fig. 77) it is expected that the rate of increase of damage (mainly in the

form of porosity in this material) is rather exponential in T within the range ex-

plored. In fact, the use of triaxiality averaging is neither sufficient nor necessary for

the emergence of large deviations from the intrinsic (or proportional) fracture locus.

For instance, [144] have shown that for a step-decrease in triaxiality, the largest devi-

ations from the intrinsic locus are often obtained when using the ε̄c versus terminal,

not average, triaxiality.

[24] rationalized the difference between the computed fracture loci under propor-

tional and nonproportional loading on the basis of (i) the exponential dependence

of void growth on stress triaxiality; and (ii) the averaging of stress triaxiality over

the loading path. To some extent, the same rationale applies here. The reader is,

therefore, referred to the companion paper for more details. In what follows, focus

is laid on interpreting the results in Figs. 84 and 85 with due respect given to dif-

ferences between numerical and actual experiments. Indeed, the steel used in the

experiments does not contain initial voids and when the latter nucleate they are

not distributed periodically, as assumed in the cell model studies. In addition, load

path changes affect the hardening behavior of the material in ways that were not

included in the cell model calculations. There are other differences, of course, but

they play a secondary role. For example, there is a potential effect of the material’s

rate-sensitivity. Given the care taken to minimize nominal strain-rate variations in

the experiments, this effect is small.

Consider first the fracture loci in Fig. 84. When the analysis framework initiated

in [24] and further developed recently by [144], is applied to a step-jump in triaxiality
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(as realized here with T0 = 1/3) the fracture locus is found to be a simple translation

of the intrinsic locus by the amount of prestrain ε∗. The translated locus is shown

dashed in the figure. In other words, the fracture strains should lie on the translated

curve. Clearly, there is no trend for this happening in Fig. 84: the datum for the

smooth bar overshoots while three other points lie on the intrinsic locus; this seems

fortuitous. There are two reasons for this behavior. The first is rooted in the decrease

in the hardening capacity of the material after prestraining, which was not accounted

for in the above-mentioned analyses. The lower the hardening rate the faster the rate

of void growth, e.g., [145]. One way to verify this is to anneal the specimens after

unloading from step 1 and prior to machining the notched bars for step 2 loading.

This work is underway and will be reported elsewhere, given that the outcome would

not affect the essential message of the present work. The second reason is that

the analytical model used by [144] does not predict any net void growth during

prestraining at T0 = 1/3, which is the exact micromechanical response; see [45]

for an overview of void shape effects. In the real experiments, if nucleation occurs

during prestraining, some void growth does take place in uniaxial loading due to a

particle-induced void locking phenomenon [146]; see Fig. 3.4 in the monograph by

[45].

In summary, the experimental fracture loci in Fig. 84 are in qualitative agreement

with the theoretical results: cell model simulations [24] and analytical [144]. The

quantitative differences result from the fact that (i) some porosity growth occurs

during prestraining in the experiments but not in the simulations or analytical model;

and (ii) void growth in the pre-strained notched bars accumulates faster than in the

bars loaded straight to failure due to a lower hardening rate in the former. Both

effects contribute to the ductility under load-path-change being lower than expected.

This in turn makes the effect of this type of nonpropotional loading worse than
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expected on the basis of theory.

5.8.3 Sensitivity of Trends to Fracture Locus Definition

When the fracture strain is plotted against the average triaxiality the deviations

from the nominally intrinsic locus are large for the type of loadings considered here

(Fig. 85). This deviation has to do with the averaging procedure. Having intro-

duced other definitions of fracture loci in Section 5.5.5, the question arises as to how

sensitive the reported trends are to the specific choice of fracture locus definition.

Fig. 98(a) depicts the locus of local effective plastic strain at failure, pc, versus

¯̄T loc, the average local triaxiality defined in (17). Also, Fig. 98(b) shows the locus

of global strain to failure ε̄c versus 〈T 〉, the strain-weighted and spatially averaged

triaxiality, defined in (18).

It is emphasized that all six definitions (the above three and their dual plots with

terminal triaxialities) collapse into a unique locus (the intrinsic one) under spatially

uniform proportional loading. For the sake of brevity, the metadata needed to make

Fig. 98 is omitted and provided as Supplementary Material online. Examination of

Figs. 85 and 98 shows that the quantitative details vary from one plot to the other

but that the qualitative trends are preserved.

Interestingly, the locus labeled ”without path change” is less sensitive to the

adopted definition. This is consistent with this locus being close to the intrinsic

one. However, obtaining the latter over a broader range of triaxialities is difficult,

if at all possible. As mentioned above, the intrinsic fracture locus, in its full extent,

is not accessible to experimentation alone. In practice, what can be measured are

(an infinity) of fracture loci under nonproportional loadings out of which laboratory

experiments single out a small subset. As such, these loci inform indirectly about

the damage constitutive response of the material. In particular, it would be deficient
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Figure 98: (a) Loci of local strain to fracture pc versus the local p-weighted triaxiality
¯̄T loc in (17) for the two sets of experiments. (b) Loci of global strain to fracture ε̄c
based on (14) versus the global ε̄-weighted triaxiality 〈T 〉 in (18).
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to use an experimentally measured fracture locus to construct a fracture model.

5.8.4 Reanalysis of Data in Literature

Nearly three decades after the publication of the first experiments on this topic

by Marini et al. [124] it is fair to say that the picture on nonproportional loading

effects in ductile fracture was at best cloudy. On the one hand, the various inves-

tigators indicate that the nonproportional loading paths do not end on the radial

fracture locus [124, 142, 126, 63]. On the other hand, interpretations of the various

experiments have remained elusive and sometimes conflicting. In addition, when the

fracture strain εf is plotted versus the strain-weighted average triaxiality the data

appears so clustered that the trends are inconclusive; see for instance Fig. 86b and

Fig. 88c. Here again, the simple theory proved useful in providing a rationale for

the experimental trends, some of which were reported in this paper (Figs. 87b, 88c

and 89b.)

Reanalysing data from the literature and understanding trends with the help of an

analytical model have helped us confirm the loading histories predicted by the model

in this paper. In general, effects of nonproportional loading can manifest in various

ways. The general scenario is quite complex because of unavoidably intertwined

history effects on both damage-free plasticity and plasticity-induced damage. Even

when kinematic hardening is small, as is probably the case in the steels used in the

experiments [124, 125, 142, 126, 63], the loss of isotropic strain hardening capacity

due to prestraining must be accounted for in any quantitative prediction. The simple

fracture theory above is insensitive to strong hardening effects since the term Σe/σ̄,

which involves the matrix flow stress, is lumped into the triaxiality. In part, this

explains the discrepancy noted between the measured and predicted fracture strains

in the various results reported above. Another factor is that the idealized loading

177



paths impart some additional errors compared with the actual paths calculated by

finite elements.

Another aspect that is worth discussing in the context of nonradial loading ex-

periments on steels is potential complications associated with the onset of cleavage,

as reported for example by Enami [147]. In the experimental results from the cited

literature [124, 125, 142, 126] it was not clear whether the authors had maintained

the same nominal strain rate in the notched region upon reloading in step 2. For ex-

ample, Basu and Benzerga carefully rescaled the remote displacement rates in their

experimemnts so as to ensure the same nominal strain rate prior to and after path

change. This is important because if the remote displacement rate is kept the same,

then the strain rate inside the notch would be much higher, thus possibly leading to

fracture by cleavage. This is illustrated in Fig. 99

showing fractographs from additional experiments not reported in [63]. In turn,

such spurious strain rate effects may also explain some inconsistencies in the data

found in the literature. In all experiments reported in [63] cleavage was avoided when

extremely sharp notches were used in the reloading step.

5.8.5 History Effects on Failure under Combined Tension and Shear

It is important to realize how history of deformation can effect failure in sheet

metal. This is important as most metal forming processes involve complex deforma-

tion histories. Many of these steps may involve prestraining the metal in tension or

shear of complex mixed mode loadings. The experiments performed here are aimed

at studying the effect of load path changes on ductile fracture in sheet material. Two

different load paths were applied here to study how these would affect the failure

strains. We have seen in Fig.96 and Fig.97, how the total strains are affected by these

load path changes. It is however important to compare how each prestraining would
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(a)

(b)

Figure 99: Fracture surfaces of A572 steel specimens with notch acuity ζ = 0.9
prestrained in tension (see Table 2) and reloaded at a strain rate of (a) ε̇ ∼ 5 10−4s−1;
and (b) ε̇ ∼ 2 10−2s−1.
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affect the residual ductility in the material, defined as the ductility of the specimen

exclusive of the prestrain, whether in shear or tension, is the failure strain is step 2

of loading..

Fig.100 shows how prestraining in tension affects the residual ductility. In this

case the value of the residual ductility is only plotted at the average location and

the other measures are not plotted as the average strain is representative of the

trends observed. We see that there is a clear reduction in the residual ductility due

to prestraining in tension. However, the reduction is comparable to the amount of

prestrain applied. The only outlier in this is the path involving reloading in 30◦

after prestraining. This could be amenable to effect of anisotropy on activation of

deformation systems or due to scatter in the data. The latter seems to be more

probable as the data point for no path change experiments also lies away from the

failure loci formed by experiments without path change.

Fig.101 shows how the residual ductility is affected by prestraining in shear dom-

inant loading. The material was prestraining in shear upto 0.5ε̄f and then loaded in

various orientation involving combined tension and shear. Fig.97 did not show any

clear indication of how load path changes the ductility in the material. Here the

prestraining ductility is plotted with the reloading orientation. We observe that for

all reloading orientations except 90◦ orientation, there is a drastic decrease in the

ductility with shear prestrain.

It must be noted that in both paths the materials were prestrained to 0.5ε̄f

of their corresponding orientations. These values however, vary drastically as the

material exhibits higher ductility under shear dominant loading. The only exception

observed in the trends is how orthogonal path changes affect the failure strain. It can

be commented that tensile prestrain reduces ductility under shear dominant loading

while shear prestrain followed by tensile loading leads to slight increase in ductility.
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Figure 100: Residual strain after prestraining for path 1 averaged over the minimum
section for experiments with and without path change shown in filled and unfilled
symbols respectively.
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Figure 101: Residual strain after prestraining for path 2 averaged over the minimum
section for experiments with and without path change shown in filled and unfilled
symbols respectively.
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Figure 102: Failure mode in samples tested under various orientation of loading after
prestraining in tension(α = 90◦). In all cases the loading direction is vertical.
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Fig. 102 shows the mode of failure under different reloading orientations after

prestraining in tension. The fracture surfaces show flat failure surface as seen in the

case of shear dominant loadings for no path change experiments. In most of the

cases the failure initiates in the notch regions. For orientations 0◦ and 15◦ the faiure

initiates near the notch root and leads to complete failure. However the angle of the

fracture surface changes due to orientation of the loading. In the case of loadings

α>15◦ the failure initiates at the opposite edges and is connected by in plane shear

failure. The 60◦ specimen did not undergo complete failure. No crack was seen to

deviate into the bulk of the material as seen in a few loading orientations for no path

change experiments.

Fig.103 shows the failure mode in experiments involving prestraining in shear

followed by reloading along other orientations. These fractured specimens show the

trend similar to that seen in path 1 sample for values of α<60◦. The fracture is

initiated above and below the notch root and connected through in plane shear

localization. For samples 60◦ and 75◦ the fracture mode involves two cracks starting

at opposite locations above and below the notch root and do not connect by in-plane

shear localization. Instead these cracks keep propagating independently till one of

the ligament fails. The 90◦ specimen failed indicating an inclined fracture surface

indicating out of plane shear. This was also observed in the 90◦ specimen for no path

change experiments.

5.9 Summary

Nonproportional loading paths to fracture have been investigated in steel, as a

simpler model material, then in Mg sheet metal. The conditions in the steel were

such that (i) failure was cavitation dominated; and (ii) no shear failure occurred.

The loading paths were triaxiality step-jumps which mimic those considered in the
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Figure 103: Failure mode in samples tested under various orientation of loading after
prestraining in shear(α = 0◦). In all cases the loading direction is vertical.
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cell model studies by [24]. When the strain to failure initiation is plotted against

some strain-weighted average of the stress triaxiality ratio the fracture locus not only

is non-monotonous, it is not one-to-one. For the same value of average triaxiality

several values of the strain to failure can be realized. The effect can be quite severe

since the latter can decrease by a large factor. These findings are consistent with

the theoretical predictions of [24]. Any qualitative differences between the two in-

vestigations are due to the decrease in hardening capacity induced by prestraining

as well as to the absence of initial voids in the experiments.

Examination of alternative definitions of the fracture loci has shown that the

above findings are robust. A major premise of this work has been that the in-

trinsic fracture locus of a material is accessible experimentally only over a narrow

range of stress states. A major implication of the above findings is that positing

a critical-strain failure criterion for ductile materials on the basis of experimental

measurements alone can lead to significant errors. In particular, specimen geome-

tries that are notorious for promoting shear-banding induced failure are not suitable

to construct the intrinsic fracture locus. The fracture strains associated with such

geometries only represent those specimens and not the constituent material at the

stress state prevalent prior to the onset of instability.

Re-analysing the data from the literature[63, 124, 142] demonstrates that the

results for a step loading used in this study can carry over to other non-radial loading

paths. While deviations from non-proportionality are large, there are significant

regimes over which deviations are milder.

Both the theoretical–computational predictions [24] and the experiments were for

a specific kind of nonproportional loading paths. The question arises generally as

to whether such large deviations from the intrinsic fracture locus would persist for

other types of nonproportional loadings. This is being investigated and findings will
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be reported elsewhere.

Load path change on ductile fracture of Mg sheets indicate that prestraining

in tension and shear lead to damaging the material, however, the effect is mild

during tensile prestrain and significantly high during shear prestrain. Orthogonal

path change involving shear prestrain followed by tensile loading lead to increase in

residual ductility with path change.
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6. CONCLUSIONS AND FUTURE WORK

Failure mechanism in ductile metals would involve one or a combination of ductile

fracture (based on initiation, growth and coalescence of voids), shear fracture (based

on shear band localisation), instability with localised necking (followed by ductile

or shear fracture inside the neck area). The failure strains under these mechanisms

would depend majorly on strain rate, temperature, anisotropy, stress state and his-

tory of loading. In this thesis, their has been an attempt to study the effects of each

of these factors on the failure mechanism of a technologically important alloy.

Low density, high specific strength, good castability, good machinability, im-

proved corrosion resistance, availability in abundance, excellent electrical and ther-

mal conductivity and recyclablility are among the few advantages that make it ideal

candidate for structural applications. However, in order to have high strength and

ductility of applications such as the transportation industry, these alloys must be

used in the wrought form. Poor cold workability and failure with limited post-necking

ductility have restricted the application of these alloys. Strong plastic anisotropy in-

duced by thermo-mechanical processing has often been blamed as the major reason

for poor mechanical performance.

In this study, the main hypothesis was to engineer this anisotropy to improve

ductility. This was guided through micromechanical calculations that suggested that

certain forms of anisotropy can be beneficial for ductility. This measure of anisotropy

is lumped in a scalar invariant(AED factor) whose value must be above a thresh-

old value in order to expect improved ductility irrespective of the direction. Equal

Channel Angular Extrusion was used to engineer texture in Mg alloys and thus

anisotropy. Three different materials with different values of AED factor were used.
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The AED factor was capable of capturing the trends observed in ductility. Definition

of ductility was probed over a variety of stress states which indicated some interest-

ing findings. There is also a need to investigate the competing effects of plastic

anisotropy on enhancing ductility & causing shear failure. The success of the AED

factor will help guide new processing routes to obtain textures aiding ductility.

The final motive of these studies are to improve the formability of these alloys at

low homologous temperatures and hence the above hypothesis was used to study if

engineering the texture could lead to improvement of formability. Punch experiments

using a Olsen type punch was used to check the formability of ECAE processed plates.

Effect of variation of warm temperature on the formability of these textures plates

was checked. The findings corroborate with the hypothesis stated earlier. One of the

alloys showed marked temperature effect while the others did not.

Important applications such as sheet metal forming, may involve complex loadings

and deformation paths. Failures may be classified into failure in shear vs failure by

shear rupture. Experiments involving the combined tension and shear were aimed

at understanding how Mg sheets performed under shear dominant loadings which

is not studied at all in the literature. With the help of Digital Image Correlation

local strains could be measured at different locations and initiation of fracture could

be tracked. Numerical simulations using ABAQUS helped understand the evolution

of stress state. Plotting the failure loci as a plot of failure strain as function of

the average triaxiality and Lode parameter for experiments in the shear dominant

region. Results indicate that failure strain is geometry dependent and depending on

the location assigned to it, the trend in the failure loci can vary, none of which are

intrinsic to the material. In all measures of strain to failure, there is limited effect of

varying lode parameter, even though a wide range of lode parameter is probed.

Metal forming processes involving non-linear strain paths, and abrupt changes in
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the strain ratio invalidate the hypothesis of proportional loading. In general, effects

of nonproportional loading can manifest in various ways. The effect was initially

tested on a model material (steel) where the damage mechanism was known to be

via. ductile fracture mechanisms. The path dependence of the fracture locus was

observed and the extent of the deviations were quantified. Reanalysing the data

in the literature demonstrates that the above obtained results can carry over to

other non-radial loading paths. The effect of load path changes were probed in

Magnesium alloy sheets by prestraining in tension and shear. It was observed that

the prestraining both in tension and shear reduced the residual ductility, however,

the effect was more prominent in shear prestrains. The rate of loss of hardening

capacity of the material was found to be strongly affected by the anisotropy of the

material. Further, simulations with load path changes need to be carried out to

probe the effect of stress state on the failure loci under load path changes.
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Figure 104: Normalized force versus εxy plot resolved for experiments for different
orientations (a) 0◦ (b) 15◦ (c) 30◦ (d) 45◦ (e) 60◦ (f) 75◦ at center, maximum locations
and average over the minimum section after prestraining in tension(α = 90◦).
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Figure 105: Normalized force versus εyy plot resolved for experiments for different
orientations (a) 0◦ (b) 15◦ (c) 30◦ (d) 45◦ (e) 60◦ (f) 75◦ at center, maximum locations
and average over the minimum section after prestraining in tension(α = 90◦

.

211



0 1 2 3 4 5 6 7 8
εxy (%)

0

50

100

150

200

T
/S

0
 (

M
P
a
)

εmaxxy

ε avgxy

ε cenxy

0 1 2 3 4 5 6 7 8
εxy (%)

0

50

100

150

200

T
/S

0
 (

M
P
a
)

εmaxxy

ε avgxy

ε cenxy

(a) (b)

0 1 2 3 4 5 6
εxy (%)

0

20

40

60

80

100

120

140

160

180

T
/S

0
 (

M
P
a
)

εmaxxy

ε avgxy

ε cenxy

0.0 0.5 1.0 1.5 2.0 2.5 3.0
εxy (%)

0

20

40

60

80

100

120

140

T
/S

0
 (

M
P
a
)

εmaxxy

ε avgxy

ε cenxy

(c) (d)

0.0 0.2 0.4 0.6 0.8 1.0
εxy (%)

0

10

20

30

40

50

60

70

80

T
/S

0
 (

M
P
a
)

εmaxxy

ε avgxy

ε cenxy

(e)

Figure 106: Normalized force versus εxy plot resolved for experiments for different
orientations (a) 0◦ (b) 15◦ (c) 30◦ (d) 45◦ (e) 60◦ (f) 75◦ at center, maximum locations
and average over the minimum section after prestraining in shear(α = 0◦

.
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Figure 107: Normalized force versus εyy plot resolved for experiments for different
orientations (a) 0◦ (b) 15◦ (c) 30◦ (d) 45◦ (e) 60◦ (f) 75◦ at center, maximum locations
and average over the minimum section after prestraining in shear(α = 0◦
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APPENDIX B

The following relationships hold between the anisotropy coefficients entering the

quadratic Hill criterion (1) and the strain ratios defined in Section 2.3.3.2:

hF
hE

= 1− 3(RERF − 1)

RERF − 2RE − 2
(21)

hL
hE

= 1− 3RE(RF − 1)

RERF − 2RE − 2
(22)

hFL
hE

= −1

2

(2RLF + 1)(RE + 1)

RERF − 2RE − 2
(23)

hEL
hE

= −1

2

(2RLE + 1)(RE + 1)RE

RERF − 2RE − 2
(24)

hEF
hE

= −1

2

(2RFE + 1)(RERF + 1)

RERF − 2RE − 2
(25)

These relations are adapted from [17]; see [54] for details. Since the yield criterion is

expressed in terms of the stress deviator only, the yield locus is entirely determined by

specifying the above five ratios to any one of the six anisotropy coefficients (here hE

was chosen). If the yield stress σ̄ appearing on the right hand side of equation (1) is

specified, say for uniaxial loading along the E direction, then the following constraint

holds:

4hE + hF + hL = 6 (26)

which in turn determines the absolute magnitudes of the hi coefficients, hence the

AED index in equation (4).
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