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ABSTRACT

Surface roughness, a fundamental characteristic of atmospheric ice particles, is es-

sential for defining an appropriate particle morphologymodel to simulate optical properties

of atmospheric particles. This dissertation presents a dynamic stochastic parameterization

approach based on combining the discrete differential geometry and stochastic partial dif-

ferential equations to generate particle overall shapes and the degree of surface roughness.

The scattering of light by particles modeled as Gaussian spheroids with size parameters

up to 300 is simulated with the Invariant Imbedding T-Matrix (II-TM) method to inves-

tigate the effect of particle surface roughness on the single-scattering properties, includ-

ing the phase matrix, single-scattering albedo, and extinction efficiency. It is shown that

high-frequency oscillations of the phase matrix with respect to scattering angle are grad-

ually suppressed as the degree of roughness increases. The dissertation presents a more

thorough method of roughened particles in light scattering computation than various ad

hoc methods reported in the literature. We discuss how surface roughness influences the

Muller matrix patterns of ice particles. These results also enable better understanding of

microphysics on ice surface and more accurate parameterization of atmospheric ice parti-

cles. We show that surface irregularity changes the phase matrix elements dramatically.

An analysis of optical modeling of mineral dust aerosols as Gaussian spheroids is pre-

sented. The modeling results are compared with experimental measurements of feldspar

to validate the applicability of roughened model particles. The Gaussian spheroids shows

better data fitting than smooth spheroids. Furthermore, we analyze population density and

ii



shape distributions of Gaussian spheroid for different mineral dust species. In addition to

the scattering study, we propose a new Monte Carlo method for radiative transfer based on

the Metropolis algorithm.
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NOMENCLATURE

PSTD Pseudo-Spectral Time Domain method

CPML Convolution perfectly matched layer

IGOM Improved geometric-optics method

FEM Finite element method

IITM Invariant-Imbedding T-Matrix

DDA Discrete Dipole Approximation

DDG Discrete Differential Geometry

QFT Quantum Field Theory

BM Boltzmann Machine

MRF Markov Random Field

KPZ Kardar–Parisi–Zhang
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1 INTRODUCTION

The optical properties of ice crystals play an essential role in atmospheric radiative

properties of ice clouds and ice fogs. Various factors, such as shapes, sizes and orientations

affect the scattering properties by atmospheric ice particles. Compared with these, less

attention has been paid to the surface roughness effects on light scattering. However, due

to the surrounding environment, ice particles' surface can be roughened on a meso-scopic

scale, and that such roughness can have an non-negligible effect on radiative equilibrium.

Therefore, a effective ice geometry model will help us in simulating optical scattering of

ice particles.

In addition, atmospheric aerosols, especially dust particles play a significant part

in the global radiative, chemical, physical and biological processes. It is estimated that

mineral dust accounts for 30-50% of the total weight of atmospheric aerosols. Dust parti-

cles result in a direct radiative forcing when absorbing and emitting radiation, and act as

cloud nucleation nuclei affecting the global radiation equilibrium indirectly. Hence, the

modeling of dust particles has a substantial role in estimating their radiative properties. In

addition, dust particles can mix into snow or glacier ice and reduces their albedo, whiche

increases the melting rate and acts as a radiatiwon feedback.

This dissertation was initially motivated by the geometric modeling of atmospheric

particles. We studied the optical scattering and radiation properties of ice and dust parti-

cles modeled by a stochastic growth model. After incorporating differential geometry, we
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established the connection between surface growth and surface geometry. Futhermore, we

applied similar ideas to build a relation between the geometry of curves and the ray tracing,

and proposed a path integration formulation and variance reduction algorithm for Monte

Carlo ray tracing.

1.1 Summary of Original Contributions

The work in this dissertation builds on Maxwell's electromagnetic theory and Boltz-

mann's transport framework. The computation techniques used in this dissertation in-

volves invariant imbedding T-Matrix, pseudo-spectral time domain method, and Monte

Carlo methods. Our new contributions are as follows:

A surface growth model for optical scattering by roughened particles. We introduce

surface growth theory to particle geometry modeling. Traditional surface growth theory

on R2 is extended to a closed surface in R3. We build the connection between surface

growth theory and the differential geometry of a surface. We also connect the relation

between stochastic differential equations, the Gaussian Markov random field and discrete

differential geometry for our surface growth model.

Optical scattering properties of roughened ice and dust particles. We simulate the

optical scattering for ice and dust particles using our surface growth model particle.

Metropolis Monte Carlo radiative transfer algorithm. We propose a variance reduc-

tion Monte Carlo method that is able to solve the photon Boltzmann equation more effi-

ciently. We first introduce a Frenet curve to describe the ray propagation, in which we have
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explained the ray using the discrete differential geometry of the curve. The photon trans-

port equation is formulated in a completely new path integral framework. We interpret our

method as a generalized version of the classical Heisenberg model.

1.2 Organization of the Dissertation

This dissertation is divided into a total of 5 chapters. Chapter 2 presents the basics

of scattering theory and computational methods, as well as a new compressed orientation

averaging scheme and new inverse modeling method based on the Boltzmann machine

neural network model. In Chapter 3, we propose a surface growth model for modeling

the geometry of roughened particles, where the Langevin equation is solved assuming a

discrete differential geometry of the surface. In Chapter 4, we simulate optical scattering

by dust particles and propose a Metropolis Monte Carlo radiative transfer algorithm by

analog of the Heisenberg model in statistical physics. We summarize the conclusions in

Chapter 5.
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2 THEORY AND COMPUTATION OF SCATTERING AND

RADIATION

Light scattering by atmospheric particles including ice crystals, dust, soot, and aggre-

gates, has been studied for several decades with wide applications in remote sensing, atmo-

spheric micrhophysics and climate research[1, 2]. A wave optics treatment of electromag-

netic or light wave scattering involves solving the Maxwell's equations. About one cen-

tury ago, mie [3] first considered spherical particles scattering of electromagnetic waves.

Later, Stratton[4], Born and Wolf[5] presented comprehensive and precise foundations of

Mie theory in their classic books. Many computational techniques have been proposed and

used for solving the electromagnetic wave scattering problem, such as spectral methods,

finite-dierence method, finite-element method, and discrete dipole approximation(DDA

method[6, 7, 9]. Nearly all of these methods are used in light scattering computation of

atmospheric particles. With increasing complexity and particle sizes, the need for solving

high frequency problem for complex 3D shapes is increasing.T his triggers a need for fast

and efficient computational methods for light scattering[1].

2.1 Theory of Scattering

First, let us review the field scattering theory using Feynman's path integral formu-

lation. We follow the approach in [10, 11].

The Lagrangian density for macroscopic electromagnetic fields is given by
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L =
1
2
(E ·D−B ·H) (2.1)

Using the relations D = εE, B = µH (Here ε and µ are the permittivity and perme-

ability), we obtain the electromagnetic action:

S =
1
2

∫ T

0
dt

∫
d3x(E∗ · εE−H∗ ·µH)

=
1
2

T
∞

∑
n=−∞

∫
d3x(E∗ · εE−H∗ ·µH)

where we have expanded the electric field E in terms of the Fourier series E(x, t) =

∑∞
n=−∞ E(x,ωn)e− jωnt ,ωn = 2πn/T .

Substituting Maxwell's equations into above equation, we have the action only de-

pends on E

S(T ) =
1
2

T
∞

∑
n=−∞

∫
d3x[E∗ · (I− k−2

n ∇×∇×)E+ k−2
n E∗ ·VE] (2.2)

where

V= Ik2
n(ε(ωn,x)−1) (2.3)

is the potential operator.

According to the Euler-Lagrange variational principle, the field equation reads

(H0−V)E(x,ω) = k2
0IE(x,ω)

where

H0 = ∇×∇×

5



The corresponding free field Green function G0(k) is

(H0− k2
0I)G0 = Iδ (x−x′) (2.4)

In coordinate representation, the Green function of the free field becomes

G0(ω,x,x′) = (I− k−2
0 ∇⊗∇′)

e− jk0|x−x′|

4π|x−x′|
(2.5)

We arrive at the Lippmann-Schwinger [] equation:

E = Einc +G0VE (2.6)

After iteratively solving the Lippmann-Schwinger euqation, we obtain the T operator

T= V
I

I−G0V
= VGG−1

0 (2.7)

Scattered field and incident field are related through T operator,

Esc =G0TEinc (2.8)

2.2 Computation Methods of Scattering

2.2.1 Spectral Methods and T-Matrix

Spectral methods originate from solving partial differential equations (PDEs) with

series expansion[13]. When we solve a PDE by separation of variables in certain coor-

dinates (e.g. cartesian, cylindrical or spherical coordinates), we use orthogonal functions

such complex exponential, Bessel, spherical Bessel, spherical harmonics as basis. More

and one century ago, Debye, Lorenz, andMie independently solved the scattering by spher-

ical particles with spectral methods. Without going into details, we write the expression
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for the incident field and scattered field using vector spherical wave functions.

Einc = ∑
l,m

almMreg
lm +blmNreg

lm

Esc = ∑
l,m

clmMout
lm +dlmNout

lm

From the Lippmann-Schwinger equation derived in the above section, a matrix represen-

tation for the T operator can be obtained using a volume integral equation:clm

dlm

=

T EE
lml′m′ T EM

lml′m′

T ME
lml′m′ T MM

lml′m′


al′m′

bl′m′


E,M represent the polarization type. We have used Einstein summation convection here.

2.2.2 Pseudo-Spectral Methods

Another class of spectral methods is to approximate the functions by using inter-

plants of nodes, which are called Pseudo-Spectral methods[9]. A principle advantage of

the pseudo-spectral methods is that its computing complexity can be considerably reduced

with the use of fast Fourier transform(FFT).

For example, Fourier Pseudo-Spectral methods apply FFT to approximate the differ-

ential operator as follows:

∇xϕ(x) = F−1
x [ikxFx]ϕ(x), (2.9)

The F is the FFT operator, F−1 is its inverse.

It is straightforward towirte governing equations for time dependentMaxwell's equa-

tions as follows:

Ex|n+1/2
i, j,k = Ex|n−1/2

i, j,k +
∆t

εr|i, j,k
{F−1

y [ jkyFy(Hz)]|ni, j,k−F−1
z [ jkzFz(Hy)]|ni, j,k}

7



Ey|n+1/2
i, j,k = Ey|n−1/2

i, j,k +
∆t

εr|i, j,k
{F−1

z [ jkzFz(Hx)]|ni, j,k−F−1
x [ jkxFx(Hz)]|ni, j,k}

Ez|n+1/2
i, j,k = Ez|n−1/2

i, j,k +
∆t

εr|i, j,k
{F−1

x [ jkxFx(Hy)]|ni, j,k−F−1
y [ jkyFy(Hx)]|ni, j,k}

Hx|n+1
i, j,k = Hx|ni, j,k−

∆t
µr|i, j,k

{F−1
y [ jkyFy(Ez)]|ni, j,k−F−1

z [ jkzFz(Ey)]|n+1/2
i, j,k }

Hy|n+1
i, j,k = Hy|ni, j,k−

∆t
µr|i, j,k

{F−1
z [ jkzFz(Ex)]|ni, j,k−F−1

x [ jkxFx(Ez)]|n+1/2
i, j,k }

Hz|n+1
i, j,k = Hz|ni, j,k−

∆t
µr|i, j,k

{F−1
x [ jkxFx(Ey)]|ni, j,k−F−1

y [ jkyFy(Ex)]|n+1/2
i, j,k }

i, j,k are indexes of nodes, n is time index and ∆t is the time step. A scattered field formu-

lation is used here. In Fig. 2.1, we compare the the Muller matrix computed by IITM and

PSTD for hexagonal prism with refractive index 1.3, size parameter kL = 50 .

2.2.3 Finite Element Method

It is quite challenging to particle solve scattering problem with complex geometric

shape. Finite-element method(FEM) is an excellent method which allows PDE solving

with ultra high resolution and complex geometric description, and higher-order conver-

gence. In this section, we introduce FEM as a computational tool for solving the scattering

problem.

Let us consider the problem of a scalar field scattering. We define the energy func-

tional through the path integral, which sums all configurations of the fields constrained by

the boundary conditions. The Lagrangian density is

L =
1
2
(ϕ(1− k−2∆)ϕ −ϕV ϕ)

where V = k2(1−n2), n is the refractive index for example, k is the wave number. In the
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Figure 2.1: Mueller matrix computed by PSTD versus IITM
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functional integral, we will sum over configurations of the field. The ground state energy

of the scalar field can be obtained, and the overlap between the initial state of the system

with the final state after time T can be expressed as a functional integral with the field:

⟨ϕ f |e−iHT |ϕi⟩=
∫

Dϕe− jS

If the initial and final states are set equal and summed over the resulting functional

integration leads to

Z = Tre− jHT

The partition function that describes this system at temperature 1/β is defined by

Z = Tre−βH

and the free energy F of the field is

F =−1/β lnZ

When we replace the integral by the maximum value of the integrand, corresponding

to themost probable configuration of the field (Saddle point approximation)we get itsmean

field solution. Z = Zsp, and the corresponding saddle point free energy is

βFsp =−lnZsp =min(S)

The Rayleigh-Ritz method is used to extremize the free energy functional over a prop-

erly constructed subspace Uh of the admissible fields U . And finite element method can

also be formulated through both the Rayleigh-Ritz method and weighted-residual Galerkin

method. Hence, a connection between FEM and QFT can be formulated through the path

integral approach.
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Numerical simulation and results

Scattering is formulated by a scalar Helmholtz equation in frequency domain:

(∆+
ω2

c2 n2)ϕsc(x,ω) = finc (2.10)

Hereafter, we omit the subscript of ϕ . The exterior boundary is treated using a per-

fectly matched layer (PML)[15, 14, 16]. In the mid 1990s, Jeanne-Pierre Berenger first

proposed the idea of a perfectly matched layer(PML)[17, 17], an articial absorbing bound-

ary regions to make possible a finite computational domain in wave propagation simu-

lations. The PML is designed to have the characteristics that electromagnetic waves of

arbitrarily polarization and any frequency impinging on a PML region will be absorbed

in the medium without reection. Several formulations of PML have been proposed. A

split field formulation of Maxwell's equations was used in Berenger's original PML. After

that, it was illustrated by Chew et. al.[19] that Berenger's PML is equivalent to expressing

Maxwell's equation in complex-stretched coordinates. Sacks et al. later proposed a uni-

axial perfectly matched layer(UPML)[14], in which the PML is considered as an artificial

anisotropic medium.

Complex-Frequency Shifted (CFS) stretched parameters j, in the stretched coordinate

formulation are expressed as

s j = 1+ i
σ j

ω
(2.11)

where σ j is conductivity for absorbing the incident wave to the PML region, i =
√
−1, The

11



parameters are spatially scaled to eliminate the reflection waves.

σ j(x j) =


|x j−l j|2

d2 σ∗j , l j ≤ x j ≤ l j +d,

0, otherwise.
(2.12)

Here l j is the x j-coordinate of the PML interface, d is the thickness of the PML layer, and

σ∗i is the maximum value of σ j at x j = l j +d. In the whole computational domain, we can

use a unified formulation,

(∇ ¯̄a∇+
ω2

c2 n2b)ϕ = finc (2.13)

where

¯̄a =


s2s3
s1

0 0

0 s1s3
s2

0

0 0 s1s2
s3

 (2.14)

and b = s1s2s3. Fig. 2.2 shows the incidence of harmonic plane into the PML. In the table

below, we show the errors of 1D PML with a normal incident harmonic plane wave as we

refine the mesh by double the resolution each time

For a FEM discretization, the Helmholtz equation is first transformed into a weak

formulation. In dealii, we use the Galerkin approach to get the system matrix. In the end,

Table 2.1: Performance of PML

Refinement L2 error L∞ error

1 0.053667 0.095451
2 0.0134613 0.0239318
3 0.0033727 0.0059828
4 8.47613e-4 1.50216e-3
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[H]

Figure 2.2: Normal incidence with harmonic plane wave on PML
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Figure 2.3: Different views of a free propagating spherical wave.

after triangulation and integration. we arrive at system linear equations:

Ax = b (2.15)

In the simulation, we have used a Q1 element but the extension to Qp is quite simple using

deal.ii[20].Fig. 2.3 shows a sample solutotion for a spherical wave.

It should be noted that we just use a simple square mesh to discretize the domain.

All these simulations are based on FEM in which a sparse LU decomposition provided

by UMFPACK is chosed instead to solve the linear system. Since thhe deal.ii interface

to UMFPACK is given by the SparseDirectUMFPACK class, it is very straightforward to

implement. In fig. 2.4, a scalar wave scattered by an dielectric sphere with refractive index

2.0 has been given.

2.3 Particles' Orientation and Direction Statistics

In scattering simulations, the computed optical properties are usually averaged by

taking a random orientation assumption. The orientations of particles compose a sampling

14



Figure 2.4: Imaginary part of ϕ . Figure 2.5: Real part of ϕ .

space, which can be described with a probability distribution on Sn. In the real atmo-

sphere, aerodynamic forces tend to orient the drifting particles nearly horizontally. This

configuration is dynamically stable in small Renold's number, and correcting forces from

tiny deviations also restore their orientation. In the studies of oriented particles, previ-

ous works often assume that the orientation of ice plates follows a Gaussian distribution.

However, the Gaussian distribution is defined on Rn instead of on Sn. The analog of the

Gaussian distribution on a sphere is Von Mises-Fisher distribution[21]. Let us first review

the direction statstics in this section. The probability distribution function(PDF) f (ϕ ,θ ,ψ)

of particle orientations is defined through Euler angles ϕ ,θ ,ψ with normalization:∫ 2π

0

∫ π/2

−π/2

∫ 2π

0
f (ϕ ,θ ,ψ)dϕsinθdθdψ = 1

We write Von Mises-Fishe distribution on S2 as an example is

fF(x; µ,κ) =CF(κ)exp(κµT x)

Here κ is a non-negative real number, µ is the mean unit vector on the sphere, x =

15



(sinθcosϕ ,sinθsinϕ ,cosθ) and the normalization constantCF

CF(κ) =
κ

4πsinhκ

For quasi-horizontally orientated ice plates, µ = (0,0,1) . Integrating out the azimuthal

freedom, the proposed PDF becomes

fh(θ ;κ) =
κ

2sinhκ
exp(κcosθ) (2.16)

with normalization ∫ π/2

−π/2
fh(θ ;κ)sinθdθ = 1

If we define a uniform distribution of particle orientation, it is quite efficient to derive

the average scattering/aborbtion cross sections from the T-Matrix method.

⟨Csc⟩ =
2π
k2 Tr TT

† (2.17)

⟨Cabs⟩=−
2π
k2 Tr[

1
2
(T +T†)+TT†]

An pptical quantity such as the cross section can be viewed as a direction distribution

on the sphere. A given spherical function f (θ ,ϕ) can be expressed in terms of spherical

harmonics (e.g. see fig 2.5):

f (θ ,ϕ) =
n

∑
l=0

l

∑
m=−l

xl,mYl,m

where the variable θ is the polar angle with θ ∈ [0,π) and ϕ is the azimuthal coordinate

with ϕ ∈ [0,2π). where xm
l is the spherical harmonic coefficient given by the inner product

xm
l = ⟨ f ,Y m

l ⟩. The function is considered sparse if the coefficient vector has few nonzero

components.
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Figure 2.6: Spherical harmonics expansion of a spherical function.
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The spherical harmonic functions form the canonical orthogonal basis for functions

on the sphere and are defined as

Yl,m(θ ,ϕ) =

√
2l +1

4π
(l−m)!
(l +m)!

Pm
l (cosθ)eimϕ

where the first term is a normalization factor to ensure Yl,m(θ ,ϕ) has unit energy, and

Pm
l (cosθ) are the associated Legendre functions. In his dissertation θ ∈ [0,π] denotes the

co-latitudemeasured from the positive z-axis and ϕ ∈ [0,2π] denotes the azimuthmeasured

counter-clockwise from the positive x-axis.

Nevertheless, according to the well-known sampling theorem, it seems impossible

to remove some components without causing causing a negative impact on the resolution.

Now, suppose that a signal x ∈ RN is sparse in some basis x = Ψx′, which means x′ has

k (k ≪ N) nonzero entries. Then a measurement matrix Φ ∈ Rm×N is used to sense x

and obtain a measurement vector f ∈ Rm. The central idea of compressed sensing[22,

23] is that it is possible to reconstruct sparse signals of scientific interest accurately and

sometimes exactly by a number of incoherent samples which is far smaller than N. In

general, such a recovery of x by performing l0-minimization is a NP-hard problem. An

alternative procedure called l1-minimization is usually used:

minx′||x′||l1 subject to y = ΦΨx′ = ϒx′,

This is a convex optimization problem, and many numerical algorithms apply for its solu-

tion.

To formulate a compressed model for orientation averaging, the simulated results

are viewed as the measured data, and spherical harmonics are viewed as the measurement
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matrix. A sparse spherical harmonic coefficient vector can be recovered from a smaller

number of measurements than classically required as a unique minimizer of

x∗ = arg min||x̃||1 such that Ax̃ = f ,

where ||x̃||1 = ∑N
n=1 |x̃n| and x∗ is the vector of recovered spherical harmonic coefficients.

Since we have made a uniformly random distributed assumption for the particle ori-

entations, it appears appropriate to sample evenly on the sphere. For this purpose, the area

represented by every sample point should be almost the same. As an appealing choice, he

Fibonacci lattice provides a way to distribute each point almost the same area, and is easier

to construct.

Our goal is to compute the spherical harmonic measurement matrix up to lmax. The

arguments for a spherical function are a set of spherical points (θ ,ϕ), which are Fibonacci

lattice in our case. Hence, we can formulate a linear system for orientation averaging as

follows:



A1,1 A1,2 . . . A1,k

A2,1 A2,2 . . . A2,k

...
... . . . ...

Ak,1 Ak,2 . . . A2,k





x1

x2

...

xk


=



f1

f3

...

fk


where j = l2 + l +m+1, and k = (lmax +1)2. Note that we use an indexing scheme that

assigns a unique index j to every pair (l,m). Because each is an estimate of the original

19



coefficient for j = l2 + l +m+1, we can reconstruct the original function as

f̂ (θ ,ϕ) =
lmax

∑
l=0

l

∑
m=−l

x̂l,mYl,m(θ ,ϕ)

After that, l1 minimization can be used to represent and reconstruct the spherical function.

This is a convex optimization problem, and many numerical algorithms apply for

its solution. This differs from classical signal processing (the sensing matrix elements

can be independently selected from a random distribution). Instead, only the rows of the

sensing matrix can be randomly measured in ). The problem considered now is to recon-

struct a state from measured insufficient data. Computer simulation has been performed to

demonstrate the effectiveness of the aforementioned scheme. All the recovery processes

were implemented in C++ For l1-minimization, we adopt a linearized Bergman iteration

algorithm[24].

2.4 Inverse Radiative Transfer

2.4.1 Bayesian Inverse Modeling

Roughly speaking, inverse transport is a mathematical approach for estimating the

state parameters of a system using the radiative observations of that system. The radiation

transport through the medium is governed by the following radiative transfer equation,

which is a specific form of the Boltzmann equation.

(t ·∇+ c)L(x, t) = b
∫
S2

fs(t, t′)Ldt′+ J(x,ω)

Given remote sensing measurements such as from a satelllite, there are many methods to

make the estimate the geophysical state of the earth. Bayesian methods are often used as
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a tool to obtain an optimal solution of the states. Here, we briefly review the traditional

Bayesian approach.

Consider a geophysical quantity we are interested, for example optical depth of the

cloud. We have an apriori estimate of its value x±σx. (σx is the standard deviation.) A

measurement of the radiance (y±σy) has been obtained. A realtion ship between them can

be obtained through Boltzmann equation:

y = f (x)±σ

Following the Bayesian approach, we have

p(x|y)∼ exp[−(x′− x)
2σ2

x
− (y− f (x))

2σ ′2y
]

The Bayesian approach has achieved tremendous results in geophysical sciences. How-

ever, we have to add about smoothing constraints to make the solution unique. In the

following section we will introduce another method (Boltzmann machine)[25] that we be-

lieve will lead to more natural results, especially for a high dimensional inverse problem.

2.4.2 Inverse Modeling with Boltzmann Machine

A Boltzmann machine BM, interpreted as a neural network model, is a stochastic

binary machines inspired by statistical physics[26]. The BM came from the formal equiv-

alence between statistical physics and the dynamic behavior of neural networks named

after the physicsist Ludwig Boltzmann. The Boltzmann machine is a network of stochas-

tic processing units for learning important aspects of an unknown probability distribution

by using an observed data set for traning. Training a Boltzmann machine is equivalent to
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making statistical inference about the unknown parameters from the training data. Boltz-

mann machines can be regarded as undirected graphical models or Markov random fields

with interaction terms need to learn. Boltzmann machines can also belong to the Ising

class. Generally speaking, the learning algorithm of a BM is quite slow. Instead, topolog-

ically restricted Boltzmann machines (RBMs) is often used as a substitute to enhance the

learning speed. In a probabilistic graph of the BM there are two layer nodes, visible and

hidden nodes. All nodes are connected with each other. In RBMs[26], each node is only

interacting with the nodes in the other layer. There are no intra-layer connections among

the nodes meaning no direct interectation between the same type of particles.

However, it is still computationally expensive to compute the likelihood functin and

its gradient using a RBM for statistical inference. Thus, Markov chainMonte Carlo is often

employed to sample approximations of the likelihood function and its gradient of a RBM.

Here, a Markov chain Monte Carlo (MCMC) method via Gibbs sampling is applied to this

problem. After learning, an RBM provides a representation of the probabilistic distribution

for the underlying training data. Therefore, the input data can be evaluated with the RBM.

In this section, both the sampling schemes and applications of RBMs will be discussed.

Probabilistic graphical models, also called probabilistic networks, encode complex

probability distributions over high dimensional space by mapping conditional dependence

and independence properties between random vectors on a graph structure. In graphical

models, the random vectors correspond to nodes, and probabilistic interactions between

them are represented by edges.
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Graphical models can be divided into two classes according to the interaction type-

-directed graph models(Bayesian Network) and undirected graph models also knowns

Markov random fields. RBMs belong to Markov random fields.

Markov random fields are useful in modeling a variety of phenomena where one

cannot naturally ascribe a direction to the interaction between nodes in a graph. The pro-

totype of the Markov random field is the Ising model, a mathematical model of magnetism

in statistical physics. In Ising model, spins are represented by binary discrete variables.

The interactions between spins, arranged in a lattice, is limited to nearest neighbors. And

the two-dimensional square-lattice Ising model is one of the simplest statistical models to

show a phase transition.

Statistical physics is a probabilistic approach to studymacroscopic properties involv-

ing a large number of degrees of freedom[27]. In physics, themacrostateM of amany-body

system is phenomenologically characterized in terms of thermodynamic coordinates which

obey the laws of thermodynamics. Instead of solving a large number of Hamiltonian equa-

tions corresponding to a single state, statistical mechanics studies the ensemble of system

microstates {x} and the probability distribution of the equilibrium ensemble.

Suppose that we have a system of N binary random variables xi that can take the

values 1. For example, the random variables can represent the spins in some lattice as the

Ising model. In thermal equilibrium, the probability density function of each microstate

will be given by the Boltzmann distribution[27]:

p(x|T,ϕ) = 1
Z(T,ϕ)

e−βH (x) (2.18)
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H(x) is the corresponding energy of each system state and β = 1/T (Boltzmann's constant

kB is set to be 1). The partition function is

Z(T,ϕ) = ∑
x

e−βH (x) (2.19)

The PDF of system energy is given by

p(H) =
1

Z(T,ϕ)
e−βF(H) (2.20)

where F = H−T S is the Helmholtz free energy. Since p(H) has a sharp peak at a most

probable energy which minimizes F(H), we have

F =−T lnZ (2.21)

The energy of of spin configuration {xi} for the Ising model is given by

H =− ∑
<i, j>

wi jxix j−∑
i

hixi, (2.22)

where {hi} is external magnetic fields, wi j is the interaction between spins at sites i and

j. The first sum is over the neighbor bonds (Fig. 2.7 shows a simulation using Ising

model.). We define M = ∑i xi as the magnetization. Now, we can construct a undirected

graph G = (V,E) with Ising model, each spin is represented by one node in the set V and

interaction between neighbour spins are denoted by edge set E[26].

By analogy with Ising model, the energy of the Boltzmann machine is defined as

H = ∑
<i, j>

bi jxix j +∑
i

hixi (2.23)

Invoking the Gibbs distribution, we assign each microstate x of the network a probability

density function that as above.

Given a sample data, we would like to learn and make predictions. Boltzmann ma-
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Figure 2.7: Ising model with N = 100, T = 2.26918
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chine learning is unsupervised learning which means learn the parameters of an unknown

distribution from sample data. Usually, maximum-likelihood estimation is explored to

make the inference of the parameters. For MRFs, this corresponds to finding th coeffi-

cients in the energy function of MRF that maximizes the probability of a given data set.

Training or learning means finding the parameters that maximize the likelihood function

given the training data set[26].

In general, it is not possible to find the maximum likelihood estimation of parameters

analytically for the Gibbs distribution of an MRF.

lnL (θ |S) = ln
l

∏
i=1

p(xi|θ) =
l

∑
i=1

lnp(xi|θ) (2.24)

While maximizing the log-likelihood function corresponds to minimizing the distance be-

tween model distribution p and data distribution q, which is measured by the Kullback-

Leibler divergence (KL divergence)

KL(q||p) =
∫

dxq(x) ln
q(x)
p(x)

= ∑
x
[q(x) lnq(x)−q(x) ln p(x)] (2.25)

The usual method to find maximum of a function is optimization by gradient ascent.

First, update the parameters iteratively:

θ t+1 = θ t +η
∂

∂θ t (lnL (θ t |S)) (2.26)

where η ∈ R+ is the learning rate constant.

However, computing the gradient of log-likelihood directly leads to a exponential

computational complexity[26]. To avoid this computational burden, MCMC methods are
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explored to calculate the ensemble expectations approximately.

In the following, we will turn to the topic of Markov chains. Let us consider an MRF

with finite degrees of freedom first. The system microstates are distributed according to

the Gibbs distribution. Our goal is to generate states from the desired Gibbs distribution.

The MRF evolves in a discrete time evolution. Each time step, the system occupies a

microstate. In a Markov chain, the transition from one state to another is probabilistic,

where the row vector πα(t) denote the probability distribution of being in the state {α} at

time t. And thematrixPβα denotes the probability that stateα moves to β . Before studying

the equilibrium behavior, we summarize some important properties of the transitionmatrix:

Time evolution. The probability vector at step t +1 is

πβ (t +1) = ∑
α

πα(t)Pαβ (2.27)

Nonnegativity. The matrix elements are probabilities, so

0≤ Pβα ≤ 1 (2.28)

Normalization: The state α always change to another possible state β , so

∑
β

Pβα = 1 (2.29)

The transition matrix P has the following eigenvalues and eigenvectors:

πλ ·P = λπλ (2.30)

If a Markov chain[27] reaches equilibrium after a long time, the state vector will not

be changed under the time evolution which means the equilibrium probability distribution

vector has the eigenvalue 1. The state is called a recurrent state if the Markov chain returns
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to it with probability 1, otherwise it is called a transient state, which the chain will never

return. A Markov chain can also have periodicity, in which states can be partitioned into

disjoint classes, and in such a loop that all the transitions from one class lead to the next

one finally return to the original one such as 1→ 2→ 3→ ··· → 1. If all states of a

Markov chain are accessible to each other in finite steps, the Markov chain is said to be

irreducible. Ergodicity of a Markov chain means that the long time spent by the chain in

one state corresponds to its steady-state probability, hereafter ensemble averages can be

used as time averages.

Since the transition matrix has an eigenvale 1, it is easy to find that its eigenvec-

tor with all positive components must have eigenvalue λ0 = 1 for an ergodic Markov

chain[27].Therefore, an ergodic Markov chain has a unique time-independent equilibrium

state π∗, that is the corresponding eigenvector multiplying a rescale factor.

In thermal equilibrium, the probability flux out from one state equals the probability

flux into that state:

π∗ ·P = π∗ (2.31)

In order to achieve equilibrium distribution, we need to ensure that the system is Marko-

vian, ergodic, and also satisfies detailed balance.

The Metropolis algorithm was named after Nicholas Metropolis, who along with

Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller,

first proposed it for calculating the states from the canonical ensemble[27]. It can be shown

that this popularmethod satisfies the detailed balance condition. Metropolis Algorithm step
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are as follows:

(1) Pick a spin randomly;

(2) Compute the energy difference ∆H for flipping it;

(3) If ∆H < 0 flip it; if ∆H > 0 flip it with the probability e−β∆H.

Near the Cure temperature Tc, the single-spin flip algorithm becomes quite slow

known as the correlation time diverges. Wolff improved on the idea of Swendsen and

Wang, camping upwith a brilliant algorithm to flip the spin cluster each time. Wolff Cluster

Algorithm[27]:

(1) Pick a spin randomly, record its direction, then flip it;

(2) For each of the four neighboring spins, if its direction is the same with the host,

flip it with a probability p;

(3) For each new flipped spins, repeat the procedure (2).

Due to the finite probability for spin flipping, the Wolff algorithm is ergodic and

Markovian. It also satisfies the detailed balance.

In statistics and statistical physics, Gibbs sampling generates aMarkov chain with the

Gibbs distribution as the equilibrium distribution such as the Metropolis algorithm when

direct sampling is difficult. Non-stationary transition probabilities are generated with the

Gibbs sampling method. The basic idea of Gibbs sampling is to construct a Markov chain

by updating each variable subsequently given the state of all the others.

Consider a MRF, random vector X of lenth N. The probability of a particular con-

figuration in the total sampling space is the joint probability distribution of X. The time
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evolution of an MRF constructs a chain of microstates. First, randomly choose a vari-

able xs, s∈V,V = {1, ...,N}with a probability given by a positive probability distribution.

Then, to flip it or not is based on its conditional probability given the states (xv)v∈V\s on

the other nodes.

It is noteworthy that Gibbs sampling belongs to the class of Metropolis-Hastings

algorithms. All MCMC algorithms of this class generate the transitions of a Markov chain

in two steps. First, a candidate state is picked randomly from a Boltzmann distribution.

Then, the candidate state is v̈otedẗo be the new state of theMarkov chain with an acceptance

probability which ensures that the detailed balance holds.

There often exists many local minima in the free energy landscape of the Gibbs dis-

tribution, separated by barriers. Conventiaonal Monte Carlo sampling are quite slow due

to the suppression of tunneling through these barriers. One promising solutions so far is

parallel tempering Monte Carlo[28]. This algorithm aims to overcome free-energy barri-

ers by simultaneously simulating several replica of the target system each with a different

temperature. The system can thus escape metastable states in higher temperature replica

and return to lower temperature ones. Time complexity of it is several orders of magnitude

smaller than a single fixed temperature Monte Carlo simulation.

Given an ordered set ofM non-interacting copies of the system, let them run in paral-

lel at different temperatures {T1,T2, ...,TM}. After a fixed number of simulations, exchange

of two copies at neighboring temperatures Ti and Ti+1 are accepted with a transition prob-
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ability:

Pi j = min{1,exp[(∆i,i+1H)(1/Ti+1−1/Ti)]} (2.32)

where ∆i,i+1H = Hi+1−Hi It should be noted that the update probability obeys detailed

balance. The acceptance probabilities and the number of temperatures needed are related

to the functional behaviors of the specific heat density.

The RBM (see fig 2.8) is the building block of deep Learning with a bipartite graph

structure as shown in the figure above. It consists of visible nodes representing the ob-

servables, and hidden nodes which capture the feature between the observables. There are

interaction terms only between these two group of nodes. In the binary RBMs, the random

variables (V,H) take values (v,h) ∈ {0,1}m+n (m and n are the numbers of visiable and

hidden nodes.) and the probability of configuraton is given by the Boltzmann distribution

p(v,h) = e−H (v,h) with the energy functional:

H (v,h) =−
n

∑
i=1

m

∑
j=1

wi, jhiv j−
m

∑
j=1

b jv j−
n

∑
j=1

cihi (2.33)

For all i ∈ {1, ...,n} and j ∈ {1, ...m}, wi j is the interaction term between the units Vj and

Hi and b j and ci are bias corresponding to visiable and hidden variables.

The graph of an RBM has only inter-layer connections, but not intra-layer interac-

tions. In other words, this means that the variables are conditionally independent given the

state of variables in the other layer:

p(h|v) =
n

∏
i=1

p(hi|v) and p(v|h) =
n

∏
i=1

p(vi|h) (2.34)

We move to Gaussian RBMs since it is more useful, GRBMs can be viewed as a hybrid
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multple Gaussian models with hidden nodes. The energy function of the GRBMs can be

writen as

H (v,h) =
1
2

m

∑
j=1

(v j−b j)
2

σ2
i

−
n

∑
i=1

m

∑
j=1

wi, jhiv j−
n

∑
j=1

cihi (2.35)

The conditional independence properties makes Gibbs sampling especially easy. A

so-called block Gibbs sampling can be performed in the following: sampling a new hidden

field state based on p(h|v) and sampling a visible field state v based on p(v|h). Then, the

marginal distribution of the visible variables becomes

p(v) = ∑
h

p(v,h) (2.36)

Hence,

p(v) =
1
Z

m

∏
j=1

e
(v j−b j)

2

2σ2
i

n

∏
j=1

(1+ eci+∑m
j=1 wi jv j) (2.37)

The RBM can be regarded as a stochastic feed-forward neural network[26] with one

layer of nonlinear processing units. The conditional probability of hidden and visiable

units are

p(hi = 1|v) = sigmoid(
m

∑
j=1

wi jv jσ2
j + ci) (2.38)

and

p(v j = v|h) = Norm(σ2
j

n

∑
i=1

wi jhi +b j,σ2
j ) (2.39)

The log-likelihood gradient of an RBMs can be written as the sum of two expecta-

tions. The expectation of the energy gradient under the condition on the training sample
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can be computed efficiently due to its factorization property:

∑
h

p(h|v)∂E(v,h)
wi j

= ∑
h

p(h|v)hiv j

= ∑
h

n

∏
k=1

p(hk|v)hiv j

= ∑
hi

∑
h−i

p(hi|v)p(h−i|v)hiv j

= ∑
hi

p(hi|v)hiv j ∑
h−i

p(hi|v)p(h−i|v)

= p(hi = 1|v)v j

= sigmoid(
m

∑
j=1

wi jv j + ci)v j

For the expectation of the energy gradient under the RBM dis tribution, the computation

becomes intractable for regular sized RBMs because its complexity grows still exponen-

tially. The derivative of the log-likelihood functionover the weight wi j becomes

∂ lnL (θ |v)
∂wi j

= ∑
h

p(h|v)∂E(v,h)
wi j

+∑
vh

p(h,v)
∂E(v,h)

wi j

= ∑
h

p(h|v)hiv j−∑
v

p(v)∑
h

p(h|v)hiv j

= p(hi = 1|v)v j−∑
v

p(v)p(hi = 1|v)v j

For the mean value of this derivative over a training data set, the following formulas are

obtained:

∆wi j =< hiv j >data −< hiv j >model (2.40)
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Similarly, we obtain the derivatives:

∆b j =< v j >data −< v j >model (2.41)

and

∆ci =< hi >data −< hi >model (2.42)

To avoid the exponential complexity of summing over all values of the visible vari-

ables when calculatingthe log-likelihood gradient one can approximate this expectation

with a Gibbs sampler. However, this requires stll need to run theMarkov chain long enough

to ensure equillibrium.

Common remote sensing scheme take multiple images of the same area with multi

view angles. Based on the photon transport, we propose a network for atmospheric quati-

ties.

H (v,s,h) =
1
2 ∑

j=1

(v j− f (s))2

σ2
vi

+
1
2 ∑

j=1

(s j−a j)
2

σ2
si

−∑
i=1

∑
j=1

wi, jhis j−∑
j=1

cihi (2.43)

s is the geophysical state vector (e.g. clould optical depth).

Given the radiance measurement, we would like to infer the posterior distribution

over the latent variables. Based on a preview model[30], we propose a two step inference

method.

Step 1: p(h|s,v)

In this step, we sample the hidden vector conditional on the state vector and visiable

vector. Since this is a GRBMs with an additional term, it is easy to implement the sampling

procedure.
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Step 2: p(s|h,v)

Sampling the state vector is a little bit curbsome, due to the comlicated dependence

forward model and visiable radiance. Linearized kernel can be used to simplify the com-

putationa.

Learning is the most challenging and important part. We may use EM algorithm to

solve this problem. First we sample (s,h) according to the conditional distribution de-

scribed, and then optimize the log-likelihood function.

∆θ =−rE[
∂

∂θ
H (v,s,h)] =−r

∫
p(a,h|v;θ−)

∂
∂θ

H (v,s,h)dadh

r is the learning rate. MCMC samples can be explored to approximate above integrad as a

sum.
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Figure 2.8: Restricted Boltzmann topology with 5 visible units and 6 hidden units.
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3 SURFACE GROWTHMODEL AND SCATTERING

In this section 1, a random field model is explored to model the shapes of atmospheric

particles. A random field h(x) on Rn is a function whose value are random variables for

x. Many natured phenomenare random fields such as cosmic background radiation[47, 35]

and optical speckle field patterns[47]. In the context of surface roughness, random fields

are extendsively used for unveiling the physical meaning and topological properties of

a roughened surface. However, to our understanding, random fields have not yet been

exploited for modeling the surface roughness of ice crystals[33, 34], although nearly all

previous work can been considered as subclass of Gaussian random fields(GRF) in some

kind. Due to geometric simplicity and well understood physical meaning, our modeling

uses GRFs.

A GRF h(x) (height function of the surface) arises from the random superposition of

waves:

h(x) = ∑
k

A(k)cos(k ·x+ϕk) (3.1)

where A(k) is an amplitude spectrum that depends only on the magnitude of the wave

vectors x. The uncorrelated random phases ϕk are uniformly distributed in the range [0,2π].

The power spectrum isP(k)=A(k)2, containing the two-point correlation of random fields.

The statistical properties of h(x) are entirely encoded by the power function P(k) and the
1Reprinted with permission from '́Optical scattering simulation of ice particles with surface roughness

modeled using the Edwards-Wilkinson equation'́ by J. Zhang etc., 2016, J. Quant. Spectrosc. Radiat. Transf.
178, p325--335, Copyright 2016 by Elsevier.
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moments generated from it.

Now, let us consider nonequilibrium dynamics of surfaces[10]. Expanding the sur-

face area in terms of the slope, we obtain its energy density:

H ≈ ν
2
(∇h)2

where h is the height function of the surface and ν represents "surface tension". A poten-

tial energy function can also be added the function, specifiedly the gravitational potential

energy of fluid[32].

H =
1
2
[ν(∇h)2 +aV (h)] (3.2)

The corresponding linear Langevin equation is

∂
∂ t

h(x, t) = ν∇2h−ah+η(x, t) (3.3)

where η is the radom force, and this equation can be solved by using Fourier transforms.

The solution at time t is

h(k, t) = h(k,0)e−(νk2+a)t +
∫ t

0
dτe−(νk2+a)(t−τ)η(k,τ)

If starting with a flat surface, the average of surface height is zero, and the height variance

grows as

⟨h(k, t)∗h(k′, t)⟩= (2π)2δ 2(k−k′)(1− e−2(νk2+a)t)
T

νk2 +a
(3.4)
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After transforming to the coordinate space, we obtain

⟨h(0, t)h(x, t)⟩ =
∫

d2k
∫

d2k′e−ik′xδ 2(k−k′)(1− e−2(νk2+a)t)
T

νk2 +a

=
∫

d2ke−ikx(1− e−2(νk2+a)t)
T

νk2 +a

= T
∫ ∫

e−ikr cosθ 1− e−2(νk2+a)t

νk2 +a
kdθdk

= 2πT
∫ J0(kr)(1− e−2(νk2+a)t)

νk2 +a
kdk

Let Λ = 1/l0 be the cutoff. When a = 0, we get

⟨h(x, t)h(x, t)⟩ ∝
∫ Λ

0
(1− e−2νk2t)

1
k

dk (3.5)

= ln[1+2νt/l2
0 ] (3.6)

where we have a correlation length lc =
√

2νt.

Now, considering the equilibrium case,

h(k,ω) = χ(k,ω)η(k,ω)

where χ = 1
−iω+νk2+a is the suseptibility. According to the fluctuation-dissipation

theorem[27], we obtain

C(k,ω) =
2T
ω

ℑχ(k,ω)

3.1 Particle Modeling: Surface Growth Approach

Particle shape irregularity is an important factors that determine the single-scattering

properties of atmospheric particles such as ice crystals in cirrus clouds [2, 36, 37, 38, 39].

It is necessary to improve the current level of knowledge about particle surface rough-

ness to better understand the microphysical process of atmospheric particle formation and
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evolution [33, 34, 40]. In the literature, the effect of particle overall shape on the optical

properties draws much more attention than the counterpart associated with particle surface

texture, i.e., the degree of surface roughness [41, 50, 61, 64, 65, 66] although there is an

increasing awareness of the importance of particle surface roughness [33].

Many particle surfaces in nature are rough to some degree. The dynamics of ice

particle surfaces involve a lot of complicated physical processes such as deposition, evap-

oration, coalescence and collision [32]. For large ice particles, modeling of surface mi-

crophysics has attained considerable success [46]. Various ice particle habits such as bul-

lets, columns, plates, and aggregates have been observed and studied. Recently, some

experiments were successfully conducted in generating and imaging ice particle morphol-

ogy under different conditions, and it is found the degree of roughness structure depends

on ambient temperature, supersaturation and some other factors. The classic method for

studying surface dynamics of roughness growth is based on phenomenological stochastic

partial differential equations. The solutions have revealed various interesting linear and

nonlinear behaviors. However, to the best of the authors' knowledge, modeling roughness

morphology is limited to a plane or a sphere [47, 67, 68]. In [50], surface roughness was

generated through a Gaussian random field over 2D plane, then 2-D roughened patches

were glued together to form a roughened hexagonal prism. This method seems simple and

straightforward, but mismatch and overlap between surfaces may occur along the edges.

In [49], the so-called pseudo-random surface roughness is proposed to model a spherical

roughened particle. Radical Gaussian random perturbation is imposed on the points on
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a spherical surface. The problem with this model is that there is no correlation between

points on the roughened surface, leading to 'white noise', which substantially deviates from

a natural particle surface. In addition, the roughness generated by these models is not re-

lated to the surface physics of natural particles, and the resultant surface roughness may

not be physically rational. To overcome these drawbacks, we attempt to generate surface

roughness on a general geometry in a uniform manner.

Because the behavior of roughness development is described by continuous stochas-

tic partial differential equations, it is difficult to solve on object with arbitrary geometry.

From computational perspective, we must express the underlying equations in discrete

space and numerically solve them. Discrete Differential Geometry (DDG) theory [52] re-

tains key geometric properties of the continuous counterpart and has been innovatively ap-

plied to geometry modeling such as surface parameterization and remeshing. In this study,

we apply this method to solve the stochastic partial differential equations on arbitrary 3D

geometric objects and develop a stochastic parameterization model for the roughened ice

particles. It should be pointed out that the present method is also applicable to modeling

the morphology of other atmospheric particles such as highly irregular dust particles.

For the present light scattering simulations, we use the invariant imbedding T-Matrix

method (II-TM) computational program developed by Bi et al. [53], which is applicable

to particles with arbitrary shapes. Note, II-TM was first introduced by Johnson [54], for

axially symmetric particles, who derived the T-Matrix using a volume integral equation for-

mulation and applied the invariant imbedding technique to accelerate the computation. The
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T-matrix assumes linearity of the system (linear permittivity/permeability and Maxwell's

equations). It can also be derived using other frameworks such as the boundary element

method or the discrete dipole approximation method [55].

3.1.1 Surface Growth

Various growth mechanisms have been proposed for modeling surface morphologies

[32]. In this section, we briefly introduce a common growth model and extend it to model

ice particles in the atmosphere. To begin with, assume molecules evaporate or condense

randomly on a surface and the growth direction is along the local surface normal. Within

this framework, the height function h(x, t) of the surface (relative to the original shape as

reference) as it grows is governed by the famous Kardar-Parisi-Zhang (KPZ) [57] equation:

∂h
∂ t

= ν∇2h+
λ
2
(∇h)2 +η (3.7)

It should be noted that original KPZ equation is derived on a 2D plane. Here we have made

an assumption that it is appropriate for 3D surfaces. The random evaporation/condensation

of molecules is represented by Gaussian random variable η(x, t) with

E[η(x, t)] = 0 (3.8)

E[η(x, t)η(x′, t ′)] = 2σ2δ (x−x′)δ (t− t ′) (3.9)

Here, σ is its standard deviation. The linear term ν∇2h (ν > 0) serves to smooth out the

surface. It describes the thermal equilibrium between phases(water vapor and ice). The

nonlinear term (λ/2)(∇h)2 is from the geometric origin [57]. It renders the equation quite

nontrivial, however a detailed discussion will be out of our scope.
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If λ = 0, the growth is dominated by the evaporation/condensation processes. The

nonlinear equation becomes the linear Edwards-Wilkinson (EW)[58] equation:

∂h
∂ t

= ν∇2h+η (3.10)

Geometrically, the equation describes that random deposition η is flattened out by the

term ∇2h and attains a dynamic equilibrium over time (Fig. 3.1). For simplicity, we re-

strict our consideration to the EW model. Since the atmospheric particles are suspended

in the air, the random deposition or evaporation of molecules occurs on the surface of the

ice particles. The ice particle surface grows along the surface normals, smoothed out by

the diffusion process. Through this process, the singularities around the edges/corners of

faceted particles are gradually eliminated. Recent experiments [34, 40] seem to support

this model.

3.1.2 Discretization of Stochastic Partial Differential Equation

For a smooth surface in 3D, it is easy to define the normal direction--the unique

direction orthogonal to all tangent vectors. But there are no unique normals for points re-

siding at corners or along edges. Moreover, it is computationally challenging to determine

the configuration of a continuous random surface even with modern computers. To solve

these difficulties, we discretize the continuous stochastic surfaces with a triangular mesh.

Then, to solve the stochastic partial differential equations on a discrete surface, we must

seek an appropriate way to define the differential operator and the surface normal at each

vertex on the mesh.

To begin with, multiplying∇2h from the left with a test function ϕ , we then transform
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to the weak formulation ⟨∇ϕ ,∇h⟩.

Following the idea of the finite element method (FEM), we seek an approximation h̃

of the true solution h in a finite dimensional reduced space:

h̃ = ∑
j

h jϕ j(x) (3.11)

where {ϕi} are basis functions (linear hat functions in our case)and minimize ||h̃− h||.

Substituting equaton above into the weak formulation, we get

⟨∇ϕi,∇h̃⟩= ∑
j

h j⟨∇ϕi,∇ϕ j⟩ (3.12)

where

⟨∇ϕi,∇ϕ j⟩=
∫

Ω
dx∇ϕi(x) ·∇ϕ j(x) (3.13)

and Ω is the domain for integration. The self quadrature of ϕk [52],

⟨∇ϕk,∇ϕk⟩=
1
2
(cotα + cotβ ) (3.14)

where α and β are the interior angles at the remaining two vertices. For mutual quadrature

of hat functions associated with two vertices on the same triangle, we obtain

⟨∇ϕi,∇ϕ j⟩=−
1
2

cotγ (3.15)

where γ is the angle opposite to the edge with vertices i and j in Fig. 3.2.

Finally, the discrete Laplacian of the height function at each vertex i is given by the

Cotan formula[52, 32]:

(∇2h)i =
1
2 ∑

j
(cotα j + cotβ j)(h j−hi) (3.16)

where α j and β j are angles across from the same edge. For time integration, the forward

Euler scheme is frequently used for approximating the time derivative of height function.
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Figure 3.1: Physics of surface growth.

The whole system becomes

hi+1 = hi +νδ t(∇2h)i +ηi (3.17)

where δ t is the time step for the discretized EW equation and ηi is a Gaussian random

variable at that vertex. The correlation length is estimated to be
√

2nνδ t, n is the number

of time steps we could set mannully.

In this section, we have applied the stochastic partial differential equation approach to

model random particle morphology. Differential operators are linked with their geometric

origin. Via this approach, a homogeneous roughness can be defined on arbitrary geometric

objects as in Fig. 3.4.
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(a) Surface normals (b) Micro-surface element

Figure 3.2: Triangulation and surface normals.

3.1.3 Height and Slope Statistics

In above sections, we have described random rough particles by the local surface

height deviation from smooth particle surfaces. To unveil the connection between our

model and previous models, it is necessary to given a quantitative analysis of the statisti-

cal characteristics of the model particle associated with the definitions of its parameters.

Furthermore, in many applications roughness is classified by the surface height or slope

distribution. As an example, we now consider the height and slope statistics of a 2D plane

generated by our approach.

It is noted that the height of an EW surface obeys a Gaussian distribution (h ∼

Norm(0,w2), where w is the standard deviation of the surface height). Similarly, it is

straightforward to demonstrate that the distribution of local slope is also normal [32].

Once distributions are known, we could generate rough surfaces in either deterministic

(our model) or stochastic sense [2]. In stochastic models, a deterministic rough surface is

replaced by a simplified random surface with a modified scattering distribution function
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Figure 3.3: Particles with standard deviations (from left to right) 0.00, 0.01, 0.02
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Figure 3.4: Estimated height and slope distribution from a roughened plane

Figure 3.5: Plot of
√

σ̂2 against ŵ.
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that matches the reflection and refraction of the surface. For example , Yang and Liou [2]

introduce a Tilted-Facet (TF) model by exploring a 2-DGaussian distribution to investigate

the surface roughness of the ice crystal:

P(∇h) =
1

πσ 2 exp(−|∇h|2/σ2) (3.18)

where the slope ∇h = (∂h
∂u ,

∂h
∂ v ), and u, v are orthonormal coordinates in the local frame. It

is obvious |∇h|2 ∼Weibull(a = σ2,b = 1). The assumption underlying TF model is that

particle surface detail is not important, and only the far-field scattering pattern matters. To

simplify the problem, rays that strikes the surface twice are also ignored. A comparison

between these two methods is very interesting, and Liu et. al. make a good attempt in [50].

However, as we have noted above, their model suffers severe chanllage near edges. It also

fails to give a concrete test about the surface statistics. All of these make this model highly

problematic. Now we would like to remedy these problems with our surface growth model

and develop standard statistics tests.

To begin with, the time of simulation is fixed, so the correlation length is fixed as

well. Since the width of the surface height and the variance of the surface slope are related

with each other through the correlation length as illustrated in [32], we test the response of

slope to the change of surface height. To simplify the problem, |∇h|2 is tested instead of the

2 slope components. Fig. 3.4 shows the height and slope distribution with the estimated

parameters. And Fig. 3.5 illustrates the scatter plot of σ̂2 agaist ŵ, and the regression line.

The confidence intervals corresponding to each parameter are given as well. The

95% confidence intervals for average height are [-0.0001, 0.000], [-0.0001, 0.0001], and
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[-0.0003, 0.001] respectively. The 95% confidence intervals for ŵ are [0.0100, 0.0100],

[0.0190, 0.0210], and [0.0390, 0.0420] respectively. The 95% confidence interval of b is

[0.9484, 1.0042] for all Weibull distributions. And the 95%confidence intervals for σ̂2 are

[0.0752, 0.0815], [0.3008, 0.3261], and [1.2032, 1.3044] respectively.

Due to linearity of the system (linear permittivity/permeability and Maxwell equa-

tions), a good approximation for most atmospheric optical phenomena, the T-matrix ansatz

is valid. Expanding the incident fields in terms of regular vector spherical functions, we

obtained the T-matrix from theT operator[59, 11]. IITMdiscretizes the scatterer into spher-

ical shells and computes the T-matrix of the shells in a recursive manner.

3.2 Numerical Simulation and Results

In simulations, we model the ice particles discretely using triangular mesh with up to

10000 triangular elements. 3 typical model ice particles(sphere, spheroid and hexagon) are

chosen for comparison with their roughened counterparts. All numerical simulations are

done with IITM software, which is written in standard Fortran90 and uses both OpenMP

and MPI standards for communications, allowing it to run in a parallel manner. Twenty

cores are used for each size parameter and cpu time goes up to 40 hrs due to the symmetry

breaking. A representative refractive index of 1.3 is used for simulating scattering of visible

light.

Figs. 3.6-3.8 show the density plots of the reduced Mueller matrix(P11, P12/P11, and

P22/P11) for the EW particles(spheres, spheroids, and hexagonal prisms) with refractive
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Figure 3.6: Mueller matrix ensembles for roughened spheres
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Figure 3.7: Mueller matrix ensembles for spheroids.
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Figure 3.8: Mueller matrix ensembles for hexagonal prisms.
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index 1.3. All the elements are shown as functions of scattering angle and the size param-

eter ka, where a is the parameter of each smooth particle. Adaptive integration step sizes

are used to resolve the roughened surfaces of the particles more accurately. Overall, as we

increase the standard deviation σ , the phase function becomes smoother.

For EW spheres, the diagrams of P12/P11 are full of obvious local extrema due to

the optical interference [60]. The increase of σ results in smoother patterns, especially

for larger sizes. The explanation for smoother pattern comes from the smoothing effect

of statistical orientation averaging. While the size dependence can be explained with the

partial wave analysis, since surface height at larger particle size are larger and trigger out

more wave components. The roughness effects on P22/P11 of EW spheres are more pro-

found, and values are dramatically decreased from 1 for backward directions. Apparently

with the growth of roughness, the particle show more pronounce non-spherical features.

It should be noted that wrinkles in the diagrams becomes more evident as the roughness

increases. The profile of the particle remains due to the uniformly generated roughness,

so we attribute above the pattern feature to the edge effect. For EW spheroids and prisms,

the interference pattern is much less distinct, this can be also traced back to the statistical

orientation averaging of non-spherical particles. The plots for P22/P11 of EW spheroids

illustrate the global sink near 100 deg, while for EW hexagonal prisms the steepdecent

direction points to the right corner.

In addition, these figures seem to indicate that the roughness degree should be de-

fined with respect to the wavelength instead of the particle size. They confirm that small
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scale roughness (≪ wave length) has little effect. However, as the roughness grows and

approaches wavelength, the phase matrix images are blurred. The surface roughness ran-

domizes the surface currents and smoothes out the face field behavior of the scattered

wave. This has been proved in many theoretical and experimental scattering studies for

a 2D roughened surface. Here, similar conclusions are seen for 3D particles. Hence, we

divide the roughness into the same three categories≪, ∼ and≫ wavelength as with 2D

surface scattering. In general, small scale roughness has little effect, large scale roughness

in which local principle remains true, geometric optics approximation could be applied.

For medium roughness, full wave method should be employed to study its impact.

Figs. 3.9-3.11 compare a single size parameter (ka = 50) of each model particle.

Roughness smooths out the high frequency oscillations and decreases the polarization and

depolarization. For an EW sphere, the roughness results in a side scattering enhance-

ment for P11, and decrease P22/P11 dramatically. For EW spheroids, roughness illus-

trates anomalous backscattering enhancement. Generally, it increases P12/P11 and P22/P11

in the forward directions and reduces them in the backward directions. But for other

elements(P33/P11,P34/P11, and P44/P11), the roughness smooths the curves and increases

them gradually. For EW hexagons, roughness reduces the 22 deg and 46 deg halos, as ob-

served in many other works. It also smooths out the linear polarization and decreases the

depolarization over the scattering angles.Other elements show similar response to rough-

ness except P44/P11, which indicates a reverse in the trend of the curves. However, the

sensitivity of roughness are not related to their relative value of variance versus particle
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Figure 3.9: Mueller matrix computed by II-TM for EW spheres
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Figure 3.10: Mueller matrix computed by II-TM for EW spheroids.
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Figure 3.11: Mueller matrix computed by II-TM for EW hexagonal prisms
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radius but is related to the wavelength of incident waves. For a smooth ice crystal, the

angular distribution of P11 indicates symmetric features of ice crystals. However, such

symmetric features of P11 are averaged out as the height of the surface increases.

Figs. 3.12-3.14 show the extinction efficiency and asymmetry factor for these model

particles as functions of size parameter ka. To compute reduced scattering cross sections

involving spheres, spheroids and hexagons, we set the volume equivalent sphere as the

base geometric cross section. For example, for Gaussian spheres, the radius of a smooth

sphere is used as the reference. Bottom curves show the scattering cross section for the

roughened particles. The figures show roughness as a perturbation that results in distin-

guishable impact only for height that is comparable with wavelength. We see that three

curves approach each other for small sizes. In this case, radiation from the two resonances

add up incoherently, and the reduced cross section is a sum of two shape functions.
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Figure 3.12: Extinction efficiency and asymmetry factor for EW spheres.
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Figure 3.13: Extinction efficiency and asymmetry factor for EW prolates.

61



Figure 3.14: Extinction efficiency and asymmetry factor for EW hexagon prisms.
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4 MONTE CARLO RADIATIVE TRANSFER IN DUST MEDIUM

Aerosols are not only essential for cloud formation but also modify the climate by

absorbing solar radiation. Mineral dust originating from the suspension of earth minerals is

one of the most frequently observed atmospheric aerosol. The equilibrium between lofting

and setting of dust aerosols can be attributed to the influence of both anthropogenic activi-

ties and deserts. The spatial and temporal fluctuations of mineral dust concentrations have

a notable impact on the regional and global radiation equilibrium. The main difficulties in

monitoring dust aerosols lie in the uncertainty of its refractive index and effective model-

ing of its morphology[72]. An effective model particle will extend our understanding of

dust size and shape distribution and lead to more accurate retrieval in remote sensing[63].

A spheroidal model particle seems to be a superior candidate as the standard model

particles for dust aerosols[73]. Simulations and measurements also indicate that spheroid

simulates aerosol optical properties more effective than other existed non-spherical model

particles such cube, Gaussian random sphere [72, 65, 64, 61, 66]. However, dust

aerosols are highly irregular in shape, and such irregularity has non-negligible effect

on single scattering properties of atmospheric particles. In general, more complicated

particles does shows better performance than spheroid in recovering the dust shape

distribution[71, 74, 62]. Recently, a physics based surface growth model for ice particle

has been introduced[78]. In the present work, we extend this idea to model dust aerosols

by exploring roughened spheroid with Gaussian random texture.
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There are many works about validation of model particles. In this section, we ex-

amine the performance of our model particles by comparing the simulations results with

the experimental measurements for feldspar at two wavelengths. A Gaussian spheroid

overcome the drawback of other models , for example spheroidal model particles tend to

overestimate the effective radii for dust ensembles. We illustrate that a quasi-consistent

shape distributions guess for different wave lengths. And we predict that a class of Gaus-

sian particles can show better aerosol retrieval in satellite remote sensing.

We set the aspect ratio and size based on smooth particles, and employ the flexibility

from the stochastic particles. A short validation for this wisdom is discussed. A priori

estimate of the randomization should be linked with the our Gaussian spheroid. We hope

our new model partly solve the difficulties for modeling aerosol size distribution, shape

and refractive index in a unified manner.

In[78] , a surface growth model is proposed to model the ice particles. Yang et.

al.[2] related roughness effects to local slope statistics, while [78] use correlation length

and surface height deviations to characterize the stochastic particles. In this section, we use

the standard deviation of surface height was the roughness metric. We also introduce the

ratio of roughened and smooth particle surface area (γ = Ar/Ao, in fig 4.1. γ = 1.6) [32]

as another quantity of roughness. Ao is the sruface area of a smooth particle, the average

syrface area of a particler is written as

Ar =<
∫
[1+(∇h)2]1/2dx > (4.1)

In particular, it has been noted that the above equation becomes Ar ≃ As+
1
2 <

∫
(∇h)2dx>
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dx for small roughness |∇h| ≪ 1, which unveils the connection between the average sur-

face area of hybrid particle and its average local slope. This new roughness metric also

reflects physical/chemical properties of aerosol particles since the surface area of aerosols

determines the air-aerosol interaction, For a large aerosol particle, the surface area also

determines the radiation power according to the Stefan-Boltzmann law [11]

The Invariant imbedding T-matrix method (II-TM) [53] is a superior method for

computing the light scattering properties of non-spherical particles. II-TM computes the

T-Matrix via a volume integral equation formulation and taking advantage of invariant

imbedding technique. Once the T-Matrix is computed, the optical properties of particles

(such as scattering cross sections and phase matrix) can be obtained easily.

Before we talk about the scattering property, we would like to introduce two con-

cepts for probability distributions.The first is Shannon's information entropy [69] which

measures the information of a probability distribution which is defined as

S =−
∫

dxp(x) ln(p(x)) (4.2)

To classify the similarity between different distributions, we introduce the distance

between the two distributions p and q is given by Kullback-Leibler-divergence [70]:

KL(p||q) =
∫

p(x) ln[p(x)/q(x)]dx (4.3)

Since phase function can be considered as a probability density function, we apply Shan-

non entropy and KL-Divergence to quantify the difference between phase functions. We

compare the non-absorbing Gaussian spheroid with size parameter ka = 50. It takes about

50 hours for 20 cpus for particle sizparametere ka = 50, and the memory usage is 100 GB.
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The refractive index of feldspar at this wavelength is estimated to be 1.31.

Fig. 4.2 (top) shows the Shannon entropy as a function of size parameter ka. The

pattern shows the entropy will decrease overall and fluctuate around certain sizes. For

size parameter larger than 20, the curve of Shannon entropy begin to split. The surface

roughness increase the Shannon entropy for each size. In fig. 2 (bottom), it illustrates

that as the roughness metric increase, also the KL-divergence increases wit a larger size

parameter.

Fig. 4.3 shows the Müller matrix element for size parameter ka = 50 and aspec ratio

ε = a/b = 2. It shows rughness has little impact on phase function for angles smaller than

5 deg. But it decreases the phase function from 5 to 40 deg approximately, whilelifting the

curve at almost all angles after 40 degree with the largest effect on 180 deg. For the linear

polarization, the surface roughness changes the pattern dramatically. All local extrema are

smoothed out, increasing surface roughness will drive the curve to a smoother one while he

negative value minima near 175 deg is kept. For P22/P11, the effect is even more obvious.

Increasing surface roughness decreases value and variance of the curve. Other phasematrix

elements are also changed remarkably.

The optical scattering of aerosol particles is size dependent. We simulate light scat-

tering by dust aerosols within size range 1-300 by combining II-TM with IGOM. The

refractive index is set to be m = 1.5 + 0.001i. The size distribution is statistically estimated

from the observations. Specifically, we use the particle volume distribution in our calcu-

lation. For the particle shape, we have used a power distribution ξ n, where n is estimated
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to be n = 3 [73].

We compare our results with the measurement data from the Amsterdam Light Scat-

tering Database. It can be approximated with the power law, whereas, at m, there are

significant deviations from this trend. To overcome this problem geometric optics method

is often explored to compute the large size particles. Such a patch has provided satisfactory

comparisions to the measured light-scattering response.

Fig. 4.4 shows the recovered curve versus measured data. The simulated data show

quite good agreement between measyrements and simulation results. The only unsatis-

factory element is P12/P11, where Gaussian spheroids underestimate the value. However,

from previous papers, facets particles show better agreement for linear polarization. This

indicates that natural aerosols have facets, which cannot be ignored in the modeling.

All evidence in our study shows that Gaussian spheroid model particle gives a better

fitting of observed light scattering by aerosols. Gaussian spheroid reproduce most of the

Müller matrix elements, but underestimates the linear polarization. A faceted feature is

necessary for better modeling of the linear polarization of aerosols.

4.1 Radiative Transfer with Metropolis Algorithm

Radiative transfer equations (RTEs) or Boltzmann equation [75] do not have ana-

lytic solutions in general, various numerical techniques are explored to solve this integro-

differential equation such as spectral methods, FEM, and Monte Carlo methods[76]. In

this dissertation, we will apply the Monte Carlo method to solve RTEs (e.g. fig. 4.5 and
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Figure 4.1: Gaussian-spheroid particles

4.6). Monte Carlo integration is a statistical sampling method to estimate the values of

integrals. Averaging over repeated independent Monte Carlo samples until the average

converge. For integrating low-dimensional smooth functions, other numerical integration

methods like trapezoidal integration are very efficient. However, for sufficiently complex

high dimensional functions, which are common in RTEs, rates of convergence for con-

ventional methods are not satisfactory. Therefore, we explore the Monte Carlo method to

solve high-dimensional complex integro-differential RTEs.

Variance is a fundamental concept for quantifying the performance of a Monte Carlo

method. The main disadvantage of Monte Carlo method is that the algorithm converges to

the correct result at a rate of O(n−1/2). To reduce the error by one half, we have to evalu-

ate four times as many samples. In Monte Carlo radiative transfer, this generally implies
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Figure 4.2: Shanoon Entropy and KL-Divergence.
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Figure 4.3: Müller matrix
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Figure 4.4: Measurement
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that > 1,000,000 rays must be traced for computing the radiance which is quite expen-

sive in computing time. In this chapter, we first review fundamental concepts of Monte

Carlo methods. Then we describe techniques to improve the convergence rate including

importance sampling and the Metropolis algorithm[75].

4.1.1 Monte Carlo Integration

Suppose that we need to integrate a 1-D function f (x) over interval x ∈ [a,b]. The

Monte Carlo estimator of the integrand is then the average of f (x) uniformly sampled over

domain [a,b]:

I =
∫ b

a
f (x)dx = E[ f ] (4.4)

In addition, the variance of the integration with function f (x) in the interval x∈ [a,b] yields

a much simpler expression:

Var[ f ] = E[ f 2]−E[ f ]2 (4.5)

This shows that the error for aribitrary diemensional integration scales as −1/
√

N

where N is the number of samples. This means that is the number of samples taken in

Monte Carlo sampling is completely independent of the dimensionality.

Good Monte Carlo algorithm should reduce the variance as much as possible for a

fixed sample number N. The simplest approach for reducing variance in Monte Carlo is

importance sampling. Importance sampling draws the random variables x are drawn from

some a probability density function p(x) similar to function f (x).

It should be noted that the limitation of probability density function p(x) is that it
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must be positive definite. Extending this estimator to multiple dimensions or complex

integration domains is straightforward. In next sub-section, we will introduce a Metropolis

algorithm to reduce the variance of the Monte Carlo integration.

4.2 Metropolis Algorithm

The Ising model is a mathematical model in statistical physics in which the inter-

actions between spins, arranged in a lattice, is limited to nearest neighbors. On the other

hand, the Metropolis algorithm works quite well in simulating 2-D Ising model except

close to the Curie temperature. In these cases, relaxation times diverge when approaching

the Curie temperature (critical slowing down). Hence, more efficient algorithms like clus-

ter algorithm are needed to solve this problem. In this section, we introduce the Metropolis

and Wolff cluster algorithm through 2-D Ising model. Critical slowing down phenomena,

autocorrelation times as well as the finite size scaling are usually analyzed[75].

The Ising Hamiltonian: The energy of of spin configuration {xi} for the Ising model

is given by

H =− ∑
<i, j>

wi jxix j−∑
i

hixi, (4.6)

where {hi} is external magnetic field, wi j is the interaction between spins at sites i and j.

The first sum is over the neighbor bonds. We define M = ∑i xi as the magnetization.

When we perform simulations using Ising model, the initial configuration is quite

crucial for it usually determines how much computation time is needed we need to attain

the equilibrium states. When starting at low temperature, it makes sense to begin with
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an ordered configuration in which all spins have the same direction, whereas for a high

temperature, it would be better to start at a configuration with randomly assigned spins. It

would be difficult to guess a suitable initial configuration at a general given T . Sometimes,

we may need more Monte Carlo sweeps before the system reaches the most probable states

if we unfortunately made a poor estimate. The number of sweeps to reach a equilibrium

configuration is known as the thermalization.

The variance of the data in equilibrium can be obtained

σ2
O− =

1
N
[σ2

Oi
+2

N

∑
k=1

(< O1O1+k >−< O1 >< O1+k >)(1− k
N
)], (4.7)

where, due to the last factor (1− k/N), the k = N term may be trivially kept in the sum-

mation.

We also introduce the autocorrelation time

τ ′O,int =
1
2
+

N

∑
k=1

A(k)(1− k
N
), (4.8)

where the normalized autocorrelation function ϕ(t) for overvables is defined as

A(k) =
< O1O1+k >−< O1 >< O1+k >

σ2
Oi

(4.9)

4.2.1 Discrete Differential Geometry of 3D Curves

In this section we introduce the discrete differential geometry (DDG) of 3-D curves.

We borrow some ideas from protein folding [77]. Let us start with Frenet equations for
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continuous curves

d
ds


n

b

t

=


0 τ −κ

−τ 0 0

κ 0 0




n

b

t


where the curve γ , t is the tangential direction, n is b is

t =
d
ds

γ

Also

b = t×n

d
ds

t =−κn

The curvature of the curve is

κ(s) = |κn|= 1/r

We define ti as the ray's unit propagation directions. The unit binomal vector is

ni = ti−1− (ti−1 · ti)ti

and the unit normal vector is

bi = ti×ni

And

cosθi+1,i = ti+1 · ti

cosϕi+1,i = bi+1 ·bi
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ni+1

bi+1

ti+1

=


cosθ cosϕ cosθ sinϕ −sinθ

−sinϕ cosϕ 0

sinθ cosϕ sinθ sinϕ cosθ




ni

bi

ti


where we have used Euler angles θ ∈ [0,π], ϕ ∈ [0,2π]. The coordinates of the same point

in these two frames are connected by the Euler rotation matrix

R(ϕ ,θ ,ψ = 0) = Rz(ψ = 0)Ry(θ)Rz(ϕ)

where

Rz(ϕ) =


cosϕ sinϕ 0

−sinϕ cosϕ 0

0 0 1



Ry(θ) =


cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ



Rz(ψ) =


cosψ sinψ 0

−sinψ cosψ 0

0 0 1


Boltzmann equation is

(t ·∇+ c)L(x, t) = b
∫
S2

f (t, t′)Ldt′+ J(x,ω)

G(t;x′−x) = exp(−
∫ t(x′−x)

0
b(x′+ st)ds)δ (n(x−x′))δ (b(x−x′))H(t(x−x′))
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H is the Heaviside step function. Substitute the Green function to RTE, we obtain

Lippmann-Schwinger type equation[12]:

L = Linc +GVL

We could solve Lippmann-Schwinger equation using Born series[75]. Here, we ex-

plore Monte Carlo method to solve this equation (e.g. see fig. 4.7). First, we introduce a

path integral formulation for radiative transfer:

L j =
∫

dγexp(−H (γ))

=
1
M

M

∑
n=0

exp(−H (γ j
n))

Total

L =
∞

∑
j=0

L j (4.10)

The energy functional corresponding to path γ j

H (γ j) =−Σi(ln f (ti, ti+1)−di)− jlna

After the approximation, the energy functional of path γ j

H (γ j) = Σi(αti · ti+1 +di)− jlna

that is

H (γ j) = Hbending +Hstretching +C

Here, we separate the bending energy and stretching energy. Hbending = −Σiln f (ti, ti+1)

is classical Heisenberg model[27] like energy (see equation below). In principle, we could

sampling the propagation directions according to Gibbs distribution 1
Z e−Hbending first and

then the optical depth afterwards.
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HHeisenberg =−κ ∑
<i, j>

si · s j

Now, we will try to implement the MCRTwith Metropolis-Hasting algorthm. accep-

tance probbility:

a(γ ,γ ′) = min{1, π(γ ′)T (γ ′|γ)
π(γ)T (γ |γ ′)

}

We write out pseudo code of our algorithm And the Metropolis algorithm for sam-

Algorithm 1: Path Integral Radiative Transfer
1 Heisenberg Sampler (dinit , tinit);
Input : Arbitrary equilibrium state dinit , tinit
Output: d, t

2 for i = 1; i < mutations; i++ do
3 t(i)← t;
4 for s = 1 to sites do
5 sample t(i+1)

s ∼ p(t(i)); //Metropolis algorithm
6 sample d(i+1)

s ∼ p(ds|d, t(i+1));
7 end
8 t← t(i+1);
9 end

pling the direction:

In the following, we derive some analytical results for 2-D curves (e.g. fig 4.8).

H = − ∑
<i, j>

ln fs(ti · t j) (4.11)

≈ κ ∑cosϕi (4.12)

fs is the 2-D scattering phase function. The inner product of two direction vectors is

tm · tn = cos(ϕm + ...+ϕn−1) = ℜe−i(ϕm+...+ϕn−1)
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Algorithm 2:Metropolis-Hasting Algorithm of the Generalized Heisenberg Model
1 Metropolis (γ);
Input : Initial path γ
Output: New path γ ′

2 γ ′ = PathMutate(γ);
3 a(γ ′,γ) = min{1, π(γ ′)T (γ ′|γ)

π(γ)T (γ|γ ′) };
4 if uniRand(0,1)< a(γ ′,γ) then
5 γ ′ = γ;
6 H (γ ′) = H (γ);
7 end
8 return γ ′;

The expectation value of inner product of two direction vectors is

E[⟨tm, tn⟩] = ℜ
n−1

∏
k=m

E[e−iϕk ] = {
∫

dϕ cosϕ exp[− ln fs(cosϕ)]∫
dϕ exp[− ln fs(cosϕ)]

}n−m

Then we make a ansatz that as N → ∞, E[⟨tm, tn⟩] ∝ exp(−|n−m|/l0). We obtain

the correlation length

l0 = ln−1{
∫

dϕ cosϕ exp[− ln fs(cosϕ)]}

Here, the correlation is related to the average of scattering angle cosϕ . Finally, we can

calculate the end to end distance

E(R2) = ∑
m,n
⟨tm, tn⟩= ∑

m,n
exp(−|n−m|/l0)

As N→ ∞, we have

E(R2)≈ N coth(
1

2l0
)

Similarly, we can also write out results for the 3-D curves using our discrete Frenet curve

formulation.
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Figure 4.5: Transmitance for various optical depth
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5 CONCLUSION

In this dissertation, we have constructed a surface growth model for atmospheric ice

particles via a stochastic partial differential equation approach. We unveil the connection

between our model and previous models. We also simulated the light scattering by surface

growth model particles via II-TM. The results indicate that roughness should be classified

according to the wavelength besides the particle size. For roughness (≪ wave length), we

can ignore the impact on particles optical properties. For roughness (∼ wave length), we

analyze its impact on light scattering. The roughness smooth out the phase function and

changes the polarization and depolarization properties of particles. Severe roughness (≫

wave length) is not considered in this study. Some superior geometric optics light scattering

softwares like IGOM work quite well for large particles with large scale roughness. We

also note that more insights about light scattering may be obtained by exploring the non-

linear mechanism for surface growth. Further study may involve the modeling of KPZ

particles.

Furthermore, we present a detailed formulation of optical modeling of mineral dust

aerosols in the framework of a surface growth model. The results have been compared

to the experimental measurements of typical dust species to validate the applicability of

this model. Due to the hybrid nature, it shows better data fitting than the smooth model

particles. Furthermore, we analyze population density and shape distributions of Gaus-

sian spheroid model particles for different mineral dust species. We illustrates a quasi-
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consistent shape distribution guess for different wave lengths. We also introduce the Shan-

non entropy and KL-Divergence to quantity the difference between phase functions.

With the framework of the path integral, we propose a Metropolis Monte Carlo ra-

diative transfer algorithm that is able to solve the RTEs. A Frenet formulation is first time

introduced to the radiation transport, in which we have explained the ray using the discrete

differential geometry of the 3D Frenet curve. The connection between our model and the

1D classical Heisenberg model is analysed and illustrated.
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