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ABSTRACT 

The exponentially weighted moving average (EWMA) method is a widely used 

univariate process monitoring technique. This conventional EWMA technique is normally 

designed to optimize the out of control average run length (ARL1) specific to a fixed in 

control average run length (ARL0). This design procedure of EWMA technique is based 

on some assumptions – the evaluated process residuals are Gaussian, independent and 

contain moderate level of noise. Violation of these assumptions may adversely affect its 

fault detection abilities. Wavelet based multiscale representation of data is a powerful data 

analysis tool and has inherent properties that can help deal with these violations of 

assumptions, which thus improve the performance of EWMA through satisfying its 

assumptions. 

The main purpose of this work is to develop a multiscale EWMA technique with 

improved performance over the conventional technique and establish a design procedure 

for this method to optimize its parameters by minimizing the out of control average run 

length for different fault sizes and using a specified in control average run length assuming 

that the residuals are contaminated with zero mean Gaussian noise. 

Through several comparative studies using Monte Carlo simulations, it has been 

shown that the multiscale EWMA technique provides a better performance over the 

conventional method. Multiscale EWMA is shown to provide smaller ARL1 and missed 

detection rate with a slightly higher false alarm rate compared to the conventional EWMA 

technique not only when both the techniques are designed to perform optimally but also 
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when data violate the assumptions of the EWMA chart. The advantages of the multisca le 

EWMA method over the conventional method are also illustrated through their application 

to monitor a simulated distillation column. 
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NOMENCLATURE 

SPM Statistical Process Monitoring 

CUSUM Cumulative Sum 

MA Moving Average 

EWMA Exponentially Weighted Moving Average 

PLS Partial Least Squares 

PCA Principal Component Analysis 

CVA Canonical Variate State Space 

SPC Statistical Process Control 

UCL Upper Control Limit 

LCL Lower Control Limit 

ARL1 Out of Control Average Run Length 

ARL0 In Control Average Run Length 

AR Autoregressive 

SW Shapiro-Wilk 

ACF Autocorrelation Function 
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1. INTRODUCTION

Process monitoring is essential for proper operation of various engineer ing 

systems. The goal of statistical process monitoring (SPM) is to detect the occurrence of 

faults (fault detection) and the nature of operational changes that cause a process to deviate 

from its desired target (fault diagnosis). Thus, process monitoring involves two main tasks: 

fault detection and fault diagnosis. There are various types of fault detection techniques, 

which will be discussed later. However, fault detection needs to be followed by fault 

diagnosis that aims at locating the root cause of the process change and enables the process 

operators to take necessary actions to correct the situation (process recovery), thereby 

returning the process back to its desired operation. In this way, the product quality can be 

maintained and safe operation can be assured. In this work, improving the task of fault 

detection is addressed. 

The term fault here is generally defined as a shift from the target value of a variable 

or a calculated parameter associated with a process [1]. Fault detection methods can be 

classified into three categories [2]: 

I. Model-based methods

II. Data based methods

III. Knowledge based methods

In model based approaches, measured data of a process variable are compared with 

a model. This model is obtained from basic understanding about the process and is 

expressed in terms of mathematical relationships between the process inputs and outputs 
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[3][4]. Diagnostic observers, parity relations, Kalman filters and parameter estimation 

techniques are some of the frequently used model based approaches. The effectiveness of 

the model based methods depends on the accuracy of the process model. But in practice, 

it can be very difficult task to derive an accurate model, especially if the process involves 

a large number of inputs and outputs. 

Knowledge based methods provide an alternative approach to the model based 

approach in the case of complex processes with incomplete knowledge or when analyt ica l 

models are not available. Examples of knowledge based methods include causal analysis  

and expert systems [2][5][6]. 

Data based methods, on the other hand, rely on the availability of process data, 

from which process information can be extracted and used for fault detection and 

diagnosis [7][8][9]. In this category of methods, historical process data are collected by 

measuring key process variables under fault free conditions which are then used to 

construct an empirical model. This empirical model is later used to find out the residuals, 

which quantify the difference between the observed value of a variable and the expected 

value of that variable predicted by the process model. These residuals are then evaluated 

to monitor the process.  

Several data based techniques can be found in the literature. These techniques are 

divided into two different classes depending on the number of variables that are being 

monitored: univariate and multivariate techniques[10]. Univariate process monitor ing 

techniques are used to monitor a single variable, while multivariate techniques are used to 

monitor multiple process variables. The univariate techniques include the Shewhart, 
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cumulative sum (CUSUM) chart, moving average (MA) and the exponentially weighted 

moving average (EWMA) chart. Multivariate monitoring techniques, on the other hand, 

include partial least square (PLS) [11], principal component analysis (PCA) [12], 

canonical variate state space (CVA) [13], and others. The scope of this work is limited to 

the univariate SPM techniques. 

Among the univariate techniques, Shewhart chart is one of the simplest charts. It 

evaluates the raw residuals, i.e., it doesn’t use any filter to process the residuals. The 

Shewhart chart has been shown capable of detecting large faults or large shifts in the mean 

of a process variable. This is because the Shewhart chart only considers the most recent 

data sample in fault detection, which makes it not very sensitive to small changes in the 

data. Other univariate techniques apply linear filters on the residuals to improve their 

sensitivities to small shifts, such as the CUSUM and EWMA techniques. Another 

advantage of these filters is that they reduce the noise content in the data. However, it is 

known that linear filters are not very effective in removing noise from real data because 

they operate at a single scale, i.e., they work at a fixed scale or frequency and discard all 

features in the data that are above a certain frequency level [14][15]. In practice, however, 

process data are multiscale in nature due to the changes that occur in the process at 

different times and different frequencies. So the mismatch between the nature of the 

measured data and the nature of the linear filters makes the traditional statistical process 

control (SPC) methods inappropriate to deal with practical data. Non-linear filters like 

wavelet based multiscale filtering have shown much promise in dealing with real data 

[15][16] [17][18]. 
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Another limitation associated with the existing univariate fault detection methods 

is that these methods assume the measured data are independent and normally distributed 

(Gaussian). Real process data, however, don’t usually follow these assumptions, which 

deteriorates the performance of these conventional monitoring methods. Multisca le 

wavelet based method has showed inherent ability to deal with those assumptions [15], 

which helps improve the effectiveness of process monitoring, especially for correlated 

data [19][20]. Therefore, the objective of this work is to utilize the advantages of 

multiscale wavelet based representation to improve the monitoring performance of the 

EWMA control chart, especially for the detection of faults with small magnitudes. A 

design procedure for optimizing the EWMA parameters (which is based on minimizing 

the out of control average run length) will be developed. Also, the performance of the 

developed multiscale EWMA technique will be assessed and compared with its 

conventional time domain counterpart in the cases where the data are autocorrelated and 

non-Gaussian. The different techniques will be compared using three performance indices, 

which include the missed detection rate, false alarm rate, and the average run length. 

In the next sections, a review on some of the popular univariate control charts will 

be presented, followed by a description of the main research objectives of this work. 

1.1. Literature review 

In this section, descriptions of the commonly used univariate control charts are 

presented along with, their advantages and limitations. 
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1.1.1. Conventional univariate monitoring techniques 

1.1.1.1. Shewhart chart 

Walter Shewhart first developed Shewhart chart in the 1920s [21]. It was intended 

to monitor quality of a manufacturing process at different stages. It is widely used in the 

field of statistical quality control because of its computational simplicity which makes it 

easy to implement. Only three features are needed to design a Shewhart chart – a center 

line (C) or a mean value, the upper control limit (UCL) and the lower control limit (LCL) 

[22]. 

The shewhart chart can be of different types depending on the parameters that are 

being monitored. To monitor the average level of a process variable, the mean chart (�̅�) is 

used. On the other hand, the Range chart or standard deviation (S) chart is used to monitor 

the sample process variation or spread. Shewhart chart is usually used to monitor the 

sample mean. In some occasions, the mean chart is coupled with the range chart or S chart 

when robustness against the variability in the observations is required. The simultaneous 

use of both the mean and range chart ensures the capture of almost all important features 

hidden in the data as only one chart may not be able to do that. 

The sample mean of a particular process variable, x can be computed by the 

following equations [22]:  

𝑥𝑖 =  ∑
𝑥𝑖𝑗

𝑛

𝑛

𝑗=1

 

�̿� =  ∑
𝑥𝑖

𝑘

𝑘

𝑖=1
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where, n and k represent the subgroup size and the number of subgroups respectively. The 

number of subgroups usually represents the number of sensors that measure a particular 

variable. So, the subgroup size k is equal to 1 when only one sensor measures the variable 

and then 𝑥𝑖 equals to �̿�. When a single variable is being monitored by multiple sensors, 

then sub-grouping is required. 

The upper and lower control limits are defined as follows: 

𝑈𝐶𝐿, 𝐿𝐶𝐿 =  𝑥 ̿ +  𝐿 𝑛 

𝐿 𝑛 =  
𝑐𝜎

√𝑛
 

where, σ represents the standard deviation of the priori data when there are no faults in the 

data and c is a constant which is computed using a nomogram. When a process sample 

observation falls outside the control limits, then this indicates that the process mean has 

shifted from the target value, �̿�. 

So, it is evident that the control limits have to be chosen carefully, which depend 

on the Ln value. Generally a value of 3σ is used for the parameter Ln [23] because finding 

accurate values of c from nomogram for different processes is very difficult. Similar 

equations have been used to compute the center line, upper and lower control limits for 

the R and S chart[24]. 

As indicated earlier, the Shewhart chart can’t detect relatively small faults, so it 

is not advisable to use it in fault detection when small deviations from the process mean 

are expected. In fact, the Shewhart chart is only able to detect faults larger than three 

times the standard deviation of the original signal [25], which is a major drawback of the 

Shewhart chart. This inability to detect small mean shifts is due to the short memory of 
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the Shewhart chart as it only considers the current process measurement. Other control 

charts have longer memory as they average past samples to compute their detection 

statistics. The weighing used to compute the detection statistic for various charts are 

shown in Figure 1. 

 

 
 

 

Figure 1: A schematic representation of the weightings used to compute the 

detection statistics used in various univariate SPC charts. 

 

 
 

1.1.1.2. CUSUM chart 

An effective alternative to the Shewhart chart is the cumulative sum (CUSUM) 

chart. It was first introduced by Page in 1954 [26]. The design of the conventional CUSUM 

chart involves computing the CUSUM statistic which is defined by the following equation 

[27]: 
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𝑆𝑖 =  ∑(𝑥𝑗 − 𝜇0)

𝑖

𝑗=1

 

This quantity Si is plotted against the sample number i where 𝜇0 is the mean value 

of the process variable under fault free conditions. The CUSUM statistic can also be 

computed recursively as follows: 

𝑆𝑖 = (𝑥𝑖 −  𝜇0) + 𝑆𝑖−1 

When several observations are available at each time sample, then the observation xj is 

replaced by average of all the observations at a particular sample time, 𝑥�̅�. 

To detect a particular fault in the process, the one-sided CUSUM charts are used 

by plotting the following statistic [27]: 

𝑆𝑖 =  𝑚𝑎𝑥[0,𝑥𝑖 − (𝜇0 + 𝐾)] 

where, K is the reference value to detect a shift in the mean of size Δ. K is defined as 

follows: 

𝐾 =  
∆

2
 

When Si exceeds a decision interval H, then it is assumed that mean of the process variable 

has shifted from the targeted value by a margin of Δ. The value of H can be computed as: 

𝐻 =  
𝑑∆

2
  where 𝑑 = (

2

𝛿2) ln(
1− 𝛽

𝛼
) and 𝛿 =  

∆

𝜎𝑥

 

where, α and β are the type I and type II error probabilities respectively and 𝜎𝑥 is the 

standard deviation of the process variable. 

The most popular form of the CUSUM chart, however, is the two-sided CUSUM 

chart. The positive and negative CUSUM statistics are calculated as follows: 
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𝑆𝐻(𝑖) =  𝑚𝑎𝑥[0,𝑥𝑖 − (𝜇0 + 𝐾) +  𝑆𝐻(𝑖−1)] 

𝑆𝐿(𝑖) =  𝑚𝑎𝑥[0,(𝜇0 − 𝐾) − 𝑥𝑖 + 𝑆𝐿(𝑖−1)] 

When SH(i) and SL(i) exceed the decision interval or the control limits, then it is assumed 

that the process is not in control. Computation of the control limits require knowledge 

about probability density function of the distribution of process variable, which is usually 

hard to obtain. So, a practical experience is important in designing a CUSUM chart. 

Control limits of 4σ or 5σ are suggested to provide a reasonable detection for a mean shift 

of around 1σ in the process data [23]. 

The CUSUM chart can perform better than the Shewhart chart in detecting relatively small 

mean shifts although it can result in more false alarms or type I errors. 

1.1.1.3. EWMA chart 

The exponentially weighted moving average chart was first introduced in the 

literature by Roberts in 1959 [28]. Since then it has been widely used as forecasting tool 

[29] and also as a tool for process monitoring and diagnosis [30]. The EWMA control 

scheme is easy to implement. The design of EWMA control scheme includes computation 

of the EWMA statistic and the upper and lower control limits. 

The EWMA statistic can be computed as follows 

𝑍𝑖 =  𝜆𝑥𝑖 + (1 − 𝜆)𝑍𝑖−1 ,       0 < 𝜆 ≤ 1 

where, λ is called a smoothing parameter, which changes the memory of the detection 

statistic. 
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EWMA is also known as a geometric moving average method, because the EWMA 

statistic can also be written as a moving average of the current and past observations as 

follows: 

𝑍𝑖 =  𝜆 ∑(1 − 𝜆)𝑗 𝑥𝑖−𝑗

𝑖−1

𝑗=0

+ (1 − 𝜆)𝑖𝑍0 

The above equation shows that the weights assigned to past observations decrease 

exponentially, giving the name of the EWMA technique. The upper and lower control 

limits are defined in terms of the standard deviation of the EWMA statistic and are 

computed as follows: 

𝑈𝐶𝐿, 𝐿𝐶𝐿 =  µ0  ± 𝐿𝜎𝑧 =  µ0  ± 𝐿𝜎√
𝜆

(2 − 𝜆)
 [1 − (1 − 𝜆)2𝑖]  

where, µ is the standard deviation of the observations. The last term in the bracket quickly 

converges to zero as the number of observation increases and thus the control limits can 

be computed as follows: 

𝑈𝐶𝐿,𝐿𝐶𝐿 =  µ0  ± 𝐿𝜎√
𝜆

(2 − 𝜆)
  

Whenever, the control statistic falls outside the range of the control limits, the 

process is considered to be out of control. To use the EWMA method, the choice of the 

smoothing parameter needs to be made carefully. Generally, a value in the range of 0.2 to 

0.3 is found reasonable [27]. However, in practice, the optimum choice of the smoothing 

parameter depends on the size of the mean shift to be detected. For large mean shifts, large 

values of λ are needed, while smaller values of λ are needed to detect smaller mean shifts 
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more quickly [31][32]. This can be attributed to the fact that, when λ equals 1, the value 

of the EWMA statistic only uses the most recent observation. This makes the EWMA 

chart equivalent to the Shewhart chart, which is only capable of detecting large faults. On 

the other hand, for very small values of λ, the EWMA method becomes similar to the 

CUSUM, which is more capable of detecting smaller shifts. 

Furthermore, all the fault detection charts described earlier rely on some 

assumptions, which include: 

 There is a moderate level of noise in the data. 

 The process data are independent, i.e., uncorrelated  

 The process data follow a normal or Gaussian distribution. 

Practical data, however, don’t usually satisfy these assumptions. As a result, the 

performance of these control chart deteriorates. Several indicators are used to analyze the 

performance of a control chart. Those indicators are described in the next section. 

1.1.2. Indicators for monitoring process performance 

The most commonly used indicators for assessing the performance of process 

monitoring performance include the out of control average run length (ARL1) and false 

alarm rate. In this work, these two indicators will be used along with the missed detection 

rate, which quantifies the effectiveness of detection achieved by the fault detection 

method. 

False alarm, which is also known as a type I error, represents the case where the 

SPC declares the presence of a fault when in reality there isn’t any fault in the process. In 
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other words, control chart shows an out of control signal when the process is actually in 

control. 

Missed detection, on the other hand, means the SPC chart fails to detect a fault 

when actually a fault exists in the process, which is also a type II error. 

Missed detection and false alarms are illustrated in the Figure 2, in which the 

highlighted area represents a fault region, while the all other areas are fault free. Therefore, 

points in the fault free region that fall outside the control limits are false alarms, while any 

point inside the fault region, but within the control limits, is a missed detection. 

 

 
 

 

Figure 2: Schematic representation of false alarm and missed detection. 

 

 
 

The average run length, on the other hand, is the average number of samples a fault 

detection method takes before it declares the presence of a fault. Average run length can 

be used to characterize both types of error, I and II. The in control average run length 

(ARL0) is the average number of observations a control chart takes to show an out of 
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control signal when the process is in control. ARL0 corresponds to a type I error. On the 

other hand, out of control average run length (ARL1) represents the average number of 

observations that a control chart takes to declare a fault after a fault occurs, which 

corresponds to a type II error. These average run lengths are illustrated in figure 3. 

 

 
 

 

Figure 3: Schematic representation of average run length 

 

 
 

For a good control chart performance, all three indicators (ARL1, missed detection 

rate and false alarm rate) need to be as small as possible. But in practice, however, a 

control chart that is designed to respond quickly to certain changes in the process mean 

value will become sensitive to high frequency effects or noise. As a result, false alarm rate 

during normal operation will increase [33]. On the other hand, if one wants to reduce the 

false alarm rate by expanding the control width this can eventually increase the missed 

detection rate and out of control average run length. So this means that there is a trade-off 

between the false alarm rate and missed detection rate. This is illustrated in the following 
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figure where control width and smoothing parameter of EWMA chart has been varied for 

a fixed fault size of 1σ. 

 
 
 

 

Figure 4: Trade-off between false alarm rate and missed detection rate. 

 
 
 

Figure 4 shows that, it’s not possible to decrease all the indicators at the same time, 

so it is very important to prioritize the indicators before designing the EWMA chart. By 

doing so, one can make sure that the control chart gives optimum performance in terms of 

a selected indicator. The selection of the indicator normally depends on the process 

requirement. 

1.2. Research objectives 

As discussed earlier, violating the assumptions of the conventional univar iate 

monitoring techniques (such as EWMA) degrades their performances. Multisca le 

representation has inherent abilities to deal with those assumptions and thus can help 
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improve the effectiveness of these techniques. Therefore, the main objective of this work 

is to utilize the advantages of multiscale representation of data to improve the fault 

detection abilities of the EWMA control chart, especially under violation of its 

assumptions, i.e., when the data have large noise content, autocorrelation, or non-Gaussian 

distribution. Specifically, the following objectives will be sought in this work: 

 Assess the performance of EWMA under the violation of its assumptions 

 Develop a multiscale EWMA fault detection method that combines the 

advantages of multiscale representation and those of the EWMA technique 

 Develop a design procedure for optimizing the parameters of the multisca le 

EWMA technique based on ARL1 

 Compare the performances of the multiscale EWMA and the connventiona l 

EWMA techniques using their optimum parameters 

 Comparing the performances of the multiscale and conventional EWMA 

techniques under the violation of the main assumptions 

 Provide possible directions for future research work 
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2. MONITORING USING EWMA CHARTS  

 

While the Shewhart chart takes into account only the current data sample to 

evaluate the process performance, the CUSUM and EWMA charts consider a weighted 

sum of past observations. The CUSUM chart gives equal weight to all past observations, 

while the EWMA chart gives more importance to the more recent observations [27]. Both 

of the CUSUM and EWMA charts perform almost equally in detecting small mean shift 

but the EWMA chart is somewhat easier to set up and operate. Moreover, since the EWMA 

statistic is weighted average of all past and current observations, it is less sensitive to the 

normality assumption [23]. For these reasons, the EWMA chart has been chosen to study 

for this work as a model of conventional univariate technique. 

2.1. Design procedure of the conventional EWMA technique 

EWMA technique has been studied extensively by many researchers, and its 

properties and design procedures are well established [34][31][35]. The following design 

procedure of the conventional EWMA technique based on ARL1 has been developed [35]: 

 Choose an acceptable value of ARL0, in control average run length 

 Specify the minimum fault size that needs to be detected as quickly as 

possible, and determine the value of λ which produces the lowest ARL1 for that specific 

fault size. 

 Find the value of the control width L, which along with the value of λ 

(found from previous step) provides the required ARL0 value. 
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Plots that can be used to find these optimum EWMA L and λ combinations for 

different ARL0 values are available in [35]. In this work, an attempt is made to reproduce 

those curves by simulation so that similar plots can be constructed for the multisca le 

EWMA technique in later stages. 

To illustrate how to reproduce these plots, an ARL0 value of 500 has been selected 

as an example. Then, training fault free data consisting of 8192 zero mean Gaussian 

observations having a unit standard deviation are used to find out different combination 

of λ and L values such that each combination gives an in control average run length (ARL0) 

of 500. A Monte Carlo simulation of 5000 realizations is used for each combination to be 

sure that these combinations in fact give the specified ARL0. The following figure is 

constructed using all of these combinations. 

 
 

 

 

Figure 5: Combination of λ and L for ARL0 500. 
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To select the optimum combination that gives the lowest ARL1, faulty testing data 

having the same length as the training data and a fault of size equal to the standard 

deviation of the data (i.e., 1σ) are generated. Then the EWMA chart is applied to the testing 

data using all the combinations of λ and L values shown in Figure 5 to see which 

combination gives the lowest ARL1 value. This combination of L and λ values is the 

optimum for a fault size of 1σ.  A Monte Carlo simulation is used for each combination to 

get statistically meaningful results. The same procedure is repeated for different fault 

sizes, which provides the results shown in Figure 6. 

 

 
 

 

Figure 6: Optimal λ for different fault size for ARL0 500. 

 
 
 

Optimum values of λ and L for different fault sizes found by simulation are 

compared with the values obtained from Crowder[35] in Table 1 below. The values are 

sufficiently close which validate the simulations in this work. 
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Table 1: Comparison of optimum values of L and λ with those obtained from 

literature. 

Fault size ARL0 Optimum width, L Optimum λ 

Simulated 
value 

Reported 
in 
Crowder 

[35] 

Simulated 
value 

Reported 
in 
Crowder 

[35] 

0.5 500 2.615 2.61 0.05 0.05 

1.0 2.861 2.87 0.12 0.13 

1.5 3.007 3.0 0.27 0.25 

2.0 3.054 3.04 0.4 0.37 

2.5 3.081 3.08 0.52 0.52 

3.0 3.091 3.09 0.68 0.68 

3.5 3.094 3.09 0.79 0.8 

4.0 3.095 3.09 0.89 0.89 

 

 
 

Having verified the design procedure for the conventional EWMA technique based 

on lowest ARL1 values for different fault sizes, EWMA method can be used to assess how 

it performs under violation of its assumptions. The assessment will be performed in terms 

of all three indicators, ARL1, false alarm rate and missed detection rate. 

2.2. Assessing the performance of the EWMA chart under violation of assumptions 

2.2.1. Assessing the impact of high noise levels in the data on the performance of the 

EWMA chart 

In this section, the impact of different measurement noise levels on the 

performance of EWMA technique proposed by the previous section will be assessed. For 

that purpose, training data (without fault) consisting of 8192 samples are generated. These 

data have zero mean and, unit variance and follow a Gaussian distribution. These training 

data are used to compute the control limits using a EWMA chart. Then, testing data having 
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the same length are generated and faults of magnitudes of ±1 are introduced between 

samples 2000-3000 and 4500-5000. The control limits obtained from the training data are 

applied on the EWMA statistics computed using the testing data to detect the fault and to 

compute the three indicators- ARL1, false alarm rate and missed detection rate. A Monte 

Carlo simulation of 5000 realizations is performed to get statistically meaningful results. 

This whole simulation is then repeated for different values of noise ranging from 0.03 to 

2 times standard deviation (σ) of the data. 

The results of this Monte Carlo simulation, which are shown in Figures 7 and 8 

show that- the ARL1 and missed detection rate increase, while the false alarm rate remains 

relatively constant with a slight decrease at higher noise levels. 

 
 

 

 

Figure 7: Impact of noise level on ARL1 values for the conventional EWMA chart. 
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Figure 8: Impact of noise level on the false alarm and missed detection rates of the 

conventional EWMA chart. 

 

 
 

To get proper understanding of what actually happens when the noise level 

increases, one can take a look at the EWMA control chart of an individual realization. The 

EWMA statistic of the testing data along with its control limits are shown for different 

noise levels (σ = 0.5,1, and 1.5) in Figure 9. These figures show that at a very high noise 

level (e.g., σ = 1.5), the EWMA chart fails to detect the fault most of the time. This is due 

to the fact the high noise level masks the fault and makes it harder to properly detect the 

fault, which results in higher missed detection rates and ARL1. 
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Figure 9: EWMA statistics for different noise levels. 

 
 
 

The false alarm rate, on the other hand, remains relatively constant for different 

noise levels because the control chart itself adjusts the control width by widening and 

shrinking depending on the level of noise in the data. The initial relative high rate of false 

alarm for low noise level is due to the combination of two reasons – narrow control width 

and inertia effect. The inertia effect normally occurs for low values of λ. In this simulat ion 

low value of λ (obtained from the plot) is used because fault size is relatively low and it is 

known that low values of λ can detect small faults quickly. Low value of λ means it gives 
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low weight to the new data. As a result, when a shift occurs, the EWMA statistic takes 

some time to detect this sudden shift. In Figure 9, for a noise level of 0.5σ, when the 

process returns to the normal value from a negative shift, the EWMA chart fails to track 

this change instantaneously, which causes few false alarms. For high noise levels, this 

inertia effect gets nullified by the widened control width. 

2.2.2. Assessing the impact of autocorrelation in the data on the performance of 

EWMA chart 

Autocorrelation is the presence of correlation between a data samples and previous 

samples. The run length properties of traditional EWMA technique can be affected by the 

presence of autocorrelation in the data. For example, the ARL0 value can be much smaller 

than what it is designed for when the data have positive correlation [36][37]. Since the 

design procedure for conventional EWMA chart assumes independent samples, its 

performance can degrade in the case of autocorrelated data. In this section, performance 

of EWMA chart is assessed in the presence of autocorrelation. 

Autocorrelation in the data can be quantified using various models. A commonly 

used model is the autoregressive (AR) model, in which the data are represented by a linear 

sum of previous measurements and random noise. An AR model of order p is defined as 

follows [38]: 

�̃�𝑡 =  ∅1�̃�𝑡−1 + ⋯ + ∅𝑝�̃�𝑡−𝑝 + 𝜉𝑡 

where, ∅𝑖 are the autoregressive coefficients for different lagged measurements, �̃�𝑡 is the 

deviation from the targeted process variable µ and 𝜉𝑡 is random noise which is usually 

assumed to be a random Gaussian variable with zero mean and unit variance. For this 
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work, a simple AR (1) model is used to simulate autocorrelated data, and is assumed to 

have the following form: 

�̃�𝑡 =  ∅1�̃�𝑡−1 + 𝜉𝑡 

To assess the effect of autocorrelation, training and testing data, both of 8192 

observations, are generated using an AR (1) model, and a fault of ±1σ size is introduced 

on the testing data between samples 2000-3000 and samples 4500-5000. The control limits 

calculated using the training data, which are then applied on the testing data statistics to 

find out the ARL1, false alarm rate and missed detection rate. A Monte Carlo simulat ion 

of 5000 realizations is performed to have meaningful results. This same simulation is 

repeated for different autoregressive coefficients ranging from 0.1 to 1. Smaller values of 

coefficient mean lower autocorrelation and bigger values represent higher autocorrelation. 

The results of these simulations are illustrated in Figures 10 and 11. 

Figure 10 shows that, out of control average run length remains almost constant at 

a value of 10 for a wide range of autoregressive coefficient, ∅1. This value of ARL1 is 

actually equal to the optimum ARL1 value designed to detect a fault of size of 1 in presence 

of no autocorrelation in the data. Figure 10 also shows that ARL1 increases at relative ly 

very high values of autoregressive coefficients. Such high level of autocorrelation is not 

very common in practice, so it can be concluded that the effect of autocorrelation on ARL1  

is not significant in practice. 
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Figure 10: Impact of autocorrelation on ARL1 for the conventional EWMA chart. 

 

 
 

 

Figure 11: Impact of autocorrelation on the false alarm and missed detection rates 

for the conventional EWMA chart. 

 
 

 
On the other hand, the false alarm rate and missed detection rate increase gradually 

for larger autoregressive coefficients as shown in Figure 11. To further illustrate the 
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deterioration in performance of the EWMA chart in the presence of autocorrelation in the 

data, the EWMA control chart of individual realizations for two different values of ∅1are 

shown in Figures 12 and 13. These Figures clearly show that the performance of EWMA 

deteriorates at larger autocorrelation levels. 

 
 

 

 

Figure 12: Impact of autocorrelation on the performance of EWMA chart for an 

autoregressive coefficient value of 0.3. 

 

 
 

 

Figure 13: Impact of autocorrelation on the performance of EWMA chart for an 

autoregressive coefficient value of 0.9. 
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2.2.3. Assessing the impact of deviation from normality in the data on the performance 

of the EWMA chart 

The conventional EWMA chart assumes that residuals follow a normal or 

Gaussian distribution. However, this assumptions may not always be true. In this section, 

the impact of deviation from normality in the data on the performance of EWMA chart is 

assessed.  

To simulate non-Gaussian data, several distributions can be used, which include 

the chi-square distribution, the lognormal distribution, the gamma distribution, the 

Weibull distribution etc. In this work, a chi-square distribution with varying degrees of 

non-normality is used to simulate non-Gaussian data. 

The chi-square distribution is a special case of the gamma distribution [39]. The 

probability density function of a gamma distributed random variable, x, is defined as 

follows: 

𝑓(𝑥) =  
𝜆𝑟𝑥 𝑟−1𝑒−𝜆𝑥

г(𝑟)
, 𝑓𝑜𝑟 𝑥 > 0 

where, λ > 0 and r > 0. This distribution becomes chi-square distribution when λ = 
1

2
 and r 

= 
𝑘

2
. So, the probability density function of the chi-square distribution has the following 

form: 

𝑓(𝑥) =  
𝑥

𝑘
2

−1
 𝑒

−
𝑥
2

2
𝑘
2 г(𝑟)
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where, k represents the degrees of freedom value. Different degree of non-normality can 

be produced by varying this degree of freedom value. The degree of non-normality in data 

can be measured in various ways, which can be categorized as follows [40]: 

 Graphical methods 

 Moment type tests methods 

 Other tests designed specifically to test for normality 

Graphical methods include plots of either the raw data or the plot of probability 

density functions of the data. Example of raw data plots are histogram, stem and leaf plots, 

box plots (skeletal). On the other hand, probability plots include normal quantile plots (Q-

Q), percentile plots (P-P) etc. These graphical methods visualize differences between the 

empirical distribution and the theoretical distribution like a normal distribution of the data 

and are not convenient to investigate the deviation from normality of the process data. 

Moment type tests include skewness and kurtosis tests and are frequently used to 

quantify the degree of normality of a particular distribution of data. Skewness roughly 

check normality by measuring the degree of symmetry of a distribution. A normally 

distributed data is symmetrical. So, skewness of a normally distributed data is zero. A 

deviation from this zero value, either positive or negative, represents a skewed distribution 

with long tail to right or left side of the distribution respectively [41]. The skewness 

coefficients bigger that 1 or less than -1 indicate fair amount of skewness and thus 

deviation from normality. Kurtosis measures the peakedness of the distribution or 

heaviness of the tail. If a variable is normally distributed then its kurtosis value is 3. A 

kurtosis value of less than 3 indicates a thicker tailed and lower peaked distribution 
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compared to a normal distribution [42]. Though this sample moment type tests are 

commonly used, they are not adopted in this work to measure the deviation from 

normality. Because both the kurtosis and skewness are sensitive to outliers. These outliers 

can cause inaccurate values of kurtosis or skewness, which consist of a very little portion 

of the data sample and may result from measurement errors.  

Besides the graphical method and moment type tests method, various other 

methods are available to test normality and include sample entropy, Kullback-Leiber, 

relative entropy and similar metrics [43][44][45]. In this work, the Shapiro-Wilk test is 

used to measure the degree of non-normality which also falls in this category and is a 

powerful univariate normality test. The Shapiro-Wilk metric value has a range between 0 

and 1. Values closer to 1 means the data follow a distribution closer to normal, while 

values closer to 0 represents distributions that are further away from normality. 

In this simulation, which is intended to assess the effect of deviation from 

normality on the performance of EWMA, training and testing data sets consisting of 8192 

observations each, are generated using a chi-square distribution, and faults having 

magnitudes of ±1σ are introduced in the testing data between samples 2000-3000 and 

samples 4500-5000. The control limits are computed using the training fault free data, and 

are then used to evaluate the faulty testing data using the three indicators - ARL1, false 

alarm rate and missed detection rate. This simulation is performed for different degrees of 

freedom values which correspond to different Shapiro-Wilk statistics, i.e., different 

degrees of non-normality. A Monte Carlo simulation of 5000 realizations is performed to 

obtain statistically meaningful results, which are shown in Figures 14 and 15.  
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Figure 14: Impact of deviation from normality on ARL1 for the conventional 

EWMA chart. 

 

 
 

 

Figure 15: Impact of deviation from normality on the false alarm and missed 

detection rates for the conventional EWMA chart. 

 
 

 
It is seen from Figures 14 and 15 that all three indicators, ARL1, false alarm rate 

and missed detection rate, do not change significantly with the Shapiro-Wilk statistic. 

These indicators remain almost constant even though the data deviate from normality. 



 

31 

 

These simulation results validate the fact that the EWMA technique is insensitive to non-

normality in the data [27].  

To explain these results, individual EWMA realizations for two different values of 

Shapiro-Wilk statistics are investigated. Figures 16 and 17 show the EWMA control charts 

along with their histogram for Shapiro-Wilk statistics 0.6953 and 0.9881 respectively. 

 
 

 

 

 

Figure 16: Impact of deviation from normality on the performance of EWMA 

chart, SW = 0.6953. 
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Figure 17: Impact of deviation from normality on the performance of EWMA 

chart, SW stat = 0.9881. 

 
 
 

From Figure 16 and 17, it is clear that there is not much difference in the plots of 

EWMA statistics for the two cases even though the histograms show that the two data sets 

have different degrees of non-normality.  

In summary, it can be seen from the simulations performed to assess the impact of 

violating the normality, independence, and noise content assumptions made in the 

development of the EWMA fault detection method that these violations in the 

independence and noise level assumptions can seriously degrade its performance. In this 

work, wavelet based multiscale representation of data will be used to deal with these 

assumptions and thus to help improve the performance of EWMA. More information 

about multiscale representation and its advantages for process monitoring will be 

presented in the next chapter. 
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3. WAVELET BASED MULTISCALE REPRESENTATION 

 

In this chapter, wavelet based multiscale representation of data will be introduced , 

followed by a discussion on its advantages for process monitoring that can help improve 

the performance of EWMA. 

3.1. Introduction to wavelet based multiscale representation 

Real process data or signals are normally a combination of various features such 

as measurement noise, process disturbances, process dynamics, and faults etc. These 

features usually contain varying contributions over time and frequency. For instance, a 

step fault in a signal is localized in time domain, but spans a wide range in the frequency 

domain, while correlated noise spans a wide range in the time domain but a small range 

in the frequency domain. So, effective feature extraction from such data requires 

representing the data at both time and frequency, which can be achieved by decomposing 

the data at multiple scales using wavelets. 

Multiscale decomposition algorithm was first developed by Mallat in 1989 [46], 

in which a signal is represented at multiple resolutions by expressing the data as a weighted 

sum of the orthonormal basis functions, called wavelets and scaling functions, that have 

the following form [47][48]:  

𝜃(𝑡) =  
1

√𝑠
 𝜃 (

𝑡 − 𝑢

𝑠
) 

where, s and u represent the dilation and translation parameters respectively and θ is the 

mother wavelet. A number of basis functions are available which can be used as wavelet 
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functions in multiscale decomposition, such as, the Daubechies and Haar basis functions 

[49][50]. 

In wavelet based multiscale data decomposition, low pass and high pass filters are 

applied on the data. For example, applying a low pass filter on the original data provides 

a coarser approximation of the data, which is called the first scaled signal (see Figure 18). 

The low pass filter is derived from a scaling function of the form: 

𝜙𝑖𝑗(𝑡) =  √2−𝑗  𝜙(2−𝑗𝑡 − 𝑘) 

where, j and k represent the discretized dilation and translation parameters respectively.  

The difference between the first scaled signal and the original data (called first detail 

signal, see Figure 18) can be computed by applying a high pass filter that is derived from 

a wavelet function of the form: 

𝜓𝑖𝑗(𝑡) =  √2−𝑗  𝜓(2−𝑗𝑡 − 𝑘) 

Repeating the application of the low pass and high pass filter provides scaled and detailed 

signal at various levels, which correspond to different frequencies. After applying the low 

pass and high pass filters, the original signal or data can be expressed as the sum of the 

last scaled signal and all detail signals from all scales, which can be mathematica lly 

expressed as follows [51]: 

𝑥(𝑡) =  ∑ 𝑎𝐽𝐾𝜙𝐽𝐾

𝑛2−𝐽

𝑘=1

+ ∑ ∑ 𝑑𝑗𝑘 𝜓𝑗𝑘(𝑡)

𝑛2−𝐽

𝑘=1

𝐽

𝑗=1

 

where, J and n represent the maximum possible decomposition depth and the length of the 

signal. This multiscale data representation procedure has been illustrated in Figure 18 [52]. 
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Figure 18: Schematic diagram for multiscale representation of data. 

 

 
 

Wavelet based multiscale decomposition is an effective data analysis tool that has 

been widely used in various applications including physical, medical, engineering and 

social sciences. It has also been found useful in improving the effectiveness of various 

fault detection methods such as PCA by developing a multiscale PCA monitoring method 

[48][53], which has been used in practice to improve monitoring wastewater treatment 

processes [54]. Some of the advantages of multiscale representation in process monitor ing 

are discussed next. 

3.2. Advantages of multiscale representation of data 

3.2.1. Noise feature separation 

Multiscale representation has the ability to separate noise from important features 

in the data. When data is decomposed at multiple scales by passing through low pass and 
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high pass filters, noise is effectively separated from the important features. Random noise 

in a signal normally are present over all the coefficients, while deterministic features in 

the data are captured in a few, but relatively large coefficients. The important features in 

the data are usually captured by the last scaled signals as well as any large wavelet 

coefficient (in the detail signals), while other small wavelet coefficients usually 

correspond to noise [14][55]. Thus, multiscale provides an effective method for noise-

feature separation as shown in 18. 

This advantage of noise-feature separation of multiscale representation of data has 

been used effectively for various application such as filtering time series genomic data 

[56]. 

3.2.2. Decorrelation of autocorrelated data 

Another advantage of multiscale wavelet based representation is that the wavelet 

coefficients of detail signals at different scales become approximately decorrelated even 

though the original data are autocorrelated [51]. 

To demonstrate the effect of multiscale decomposition on the level of 

autocorrelation in the detail signals at multiple scales, the autocorrelation function (ACF) 

is used. The ACF quantifies the magnitude of the correlation between data samples as a 

function of their separation [38]. Thus, it measures the memory of stochastic processes 

[51]. For uncorrelated data, the ACF shows zero values for all lags (time difference 

between two samples) except for lag zero, where it shows a value of unity. On the other 

hand, for correlated processes, ACF shows non-zero values for lags other that zero. 
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Figure 19 shows the detail signals obtained from a correlated signal (that represents 

an AR(1) model with an autoregressive model parameter of 0.7) and the corresponding 

ACF’s at different scales. Figure 19 clearly shows that even though the time-domain data 

are autocorrelated (where its ACF has non-zero values at lags other than zero), the detail 

signals are approximately decorrelated.  

 
 

 

 

Figure 19: Decorrelation of autocorrelated data at multiple scales. 
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3.2.3. Data are closer to normal at multiple scales 

Multiscale wavelet decomposition also makes the distribution of data closer to 

normal or Gaussian at multiple scales even if the original data follow non-normal 

distribution. Even though the effect of distribution on the performance of EWMA is not 

significant, transforming the data to be closer to normal helps satisfy its assumption better.  

To show the advantage of multiscale representation in providing detail signals that 

are closer to normal at multiple scales, histograms of a chi-square distributed signal as 

well as its detail signals at multiple scales are shown in Figure 20. The original time-

domain data have a Shapiro-Wilk statistic of 0.6953, which means it has a high degree of 

non-normality. Figure 20 shows that, as the decomposition depth increases, the detailed 

signals become more and more Gaussian. 
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Figure 20: Distribution of chi-squared data at multiple scales. 

 
 

 
So, wavelet based multiscale decomposition helps transform the data to be closer 

to normal at multiples scales despite their distribution in the time-domain doesn’t follow 

normal distribution. 

The above described advantages of multiscale representation clearly show that 

they can help satisfy the independence, normality, and noise level assumptions made by 
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various univariate fault detection methods, such as EWMA which is the method of interest 

in this work. Thus, utilizing multiscale representation should provide improvements to the 

performance of EWMA. However, performing multiscale fault detection in two separate 

steps (multiple filtering and then fault detection) may not provide the sought 

improvements since filtering may remove features that are important for fault detection. 

Thus, an algorithm that integrates fault detection using EWMA and multisca le 

representation is needed [52]. A multiscale EWMA fault detection method is presented in 

the next chapter. 
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4. WAVELET BASED MULTISCALE EWMA CHART 

 

In this chapter, an algorithm for wavelet based multiscale EWMA fault detection 

will be described. Then, a design procedure for optimizing the parameters of the multisca le 

EWMA technique based on the lowest ARL1 value will be presented. 

4.1. Process monitoring using Multiscale EWMA Chart 

The proposed multiscale EWMA monitoring technique consists of two phases [52] 

as shown in the Figure 21. In the first phase, fault free training data are normalized so that 

they have zero mean and unit variance, and are then decomposed at multiple scale using 

wavelet based multiscale decomposition. Then, the EWMA chart is applied to the detail 

signals at different scales as well as to the last scaled signal, and the control limits are 

computed at all scales. These control limits are used then to threshold the wavelet 

coefficients of detail signals. If any wavelet coefficient violates the control limits at a 

certain scale, all the wavelet coefficients at that scale are retained. If no violation of the 

limits occur at a certain scale, then all wavelet coefficients at that scale are ignored. The 

retained detail signals and the last scaled signals are then reconstructed to get the final 

reconstructed signal. Finally, EWMA is applied on the reconstructed signal to obtain the 

final multiscale EWMA detection statistic and the control limits. 

In the second phase, the testing data are decomposed at multiple scales using the 

same wavelet filters used in the training phase after normalizing the data using the same 

mean standard deviation obtained in training. The control limits obtained from the training 

phase are then applied to the detailed signals of the testing data at the respective scales 
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and also to the last scaled signal. At any scale, the wavelet coefficients that violate the 

control limits are retained while other that don’t violate the limits are ignored. Then, a 

reconstructed signal from all the retained coefficients is obtained. Finally, the previously 

obtained control limits from reconstructed training data are then applied on the EWMA 

statistic of the reconstructed testing data to detect possible faults. This algorithm is 

illustrated schematically in Figure 21. 

 
 

 

 

Figure 21: A schematic diagram of the multiscale EWMA fault detection algorithm. 
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The multiscale EWMA fault detection algorithm presented in Figure 21 provides 

a general framework for the implementation of multiscale EWMA, but it does not provide 

a strategy for selecting its parameters, namely the smoothing parameter, λ, and the control 

width, L. Applying the multiscale EWMA algorithm without optimizing these parameters 

may not provide better performance compared to the well-designed conventional EWMA 

technique for detecting specific fault sizes. In the next section, a procedure for selecting 

the optimum parameters used in the multiscale EWMA fault detection technique will be 

presented  

4.2. Design procedure of optimizing the parameters of the multiscale EWMA fault 

detection technique 

As indicated earlier, it is not possible to minimize all the monitoring performance 

indicators – ARL1, false alarm and missed detection rate at the same time for the 

conventional EWMA fault detection method, which is also true for the multiscale EWMA 

technique. So, to establish a design procedure for the multiscale EWMA technique, first 

of all, a method for optimizing its parameters based on an indicator needs to be established. 

The parameters optimized to provide lower ARL1 values, will not give lower false alarm 

rates and vice versa. In this work, ARL1 is used as a design basis to optimize the multisca le 

EWMA parameters and to establish a design procedure for its implementation. Selection 

of the ARL1 as a design basis allows faster detection of faults, which is desirable in online 

process monitoring. 
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In this section, a procedure of optimizing the parameters of the multiscale EWMA 

technique for a fixed ARL0 value will be discussed and then a design procedure of the 

implementation of the multiscale EWMA technique will be established. 

4.2.1. Optimizing the multiscale EWMA parameters 

The conventional EWMA fault detection method is associated with two parameters 

– control width, L and smoothing parameter, λ. The multiscale EWMA methods, however, 

brings in another parameter, which is the multiscale decomposition depth. For establishing 

a design procedure for implementing the multiscale EWMA method, all three parameters 

needed to be optimized to give a minimum ARL1 value, which is the used design criteria. 

To optimize the parameters – L and λ, a fault free training data consisting of 8192 

Gaussian samples having a zero mean and unit standard deviation are generated. The 

decomposition depth is selected to be 6 (around half the maximum decomposition depth, 

which is 13 since 213 = 8192). Then, the multiscale EWMA algorithm is used to find out 

different combinations of λ and L values such that each combination gives an in control 

average run length (ARL0) of 500. A Monte Carlo simulation of 5000 realizations is used 

for each combination to make sure that these combinations in fact give the specified ARL0. 

To find out these combinations, first of all, a fixed value of λ is assumed, and then different 

values of L are used to compute the ARL0 value. Among all of these combinations, the 

pair of L and λ that results in an in control average run length value of 500 is stored. This 

process is repeated for different values of λ, and in each case the value of L that results in 

an in-control average run length of 500 is stored. These obtained combinations of L and λ 

are used to generate the plots shown in Figure 22. 
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Figure 22: Combination of λ and L for in control average run length 500. 

Now, to select the optimum combination that gives the lowest ARL1, faulty testing 

data having the same length as the training data and a fault of size equal to the standard 

deviation of the data (i.e., σ) between samples 2000 to 3000 and a fault of size equal to -

1σ between samples 4500 to 5000 are generated. The size of the fault (±2.5𝜎) is selected 

here randomly, the same process will be repeated later for other fault sizes. Then, the 

multiscale EWMA algorithm is applied to the testing data using all the combinations of λ 

and L values shown in Figure 22 to see which combination gives the lowest ARL1 value, 

which is the optimum combination for a fault size of σ. A Monte Carlo simulation is used 

for each combination to get statistically meaningful results. The results of this 

optimization process are shown in Figure 23 that shows that optimum L and λ combination 

that minimize the ARL1 criterion for a fault size of 2.5σ.  
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Figure 23: 3-D plot of the optimization of parameters for fault size 2.5σ for 

multiscale EWMA chart for ARL0 value of 500. 

 The same procedure is repeated for different fault sizes, which provides the results 

shown in Figure 24, which is used to find out the optimum value of λ for different fault sizes. 

Figure 24: Optimal λ's for the multiscale EWMA chart for different fault sizes for 

ARL0 = 500. 
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As the optimum values of L and λ are available now for different fault sizes, the 

next step is to optimize the decomposition depth. Normally, noise can be reduced more by 

increasing the decomposition level. However, a larger decomposition depth will cause 

delay in detecting a fault in the time domain [20]. So selecting the optimum decomposition 

level is important to get full advantage of the multiscale algorithm. 

To examine the effect of decomposition depth on the performance of the multisca le 

EWMA technique, the following simulation study is performed. In this simulation, a 

training data set consisting of 8192 observations that follow zero mean Gaussian 

distribution is generated. Then the multiscale EWMA algorithm is applied on the training 

data using decomposition depth of one and the control limits for all detailed as well as for 

the reconstructed signal are computed. Then, multiscale EWMA is applied on a testing 

data set that is generated the same way as the training data set but with two faults having 

magnitudes of ±1𝜎 between samples 2000-3000 and samples from 4500-5000. The 

control limits obtained from the training data are used to detect faults in the testing data, 

and the ARL1, false alarm rate and missed detection rate are computed. The same 

simulation is repeated using different decomposition depths ranging from 1 -10. A Monte 

Carlo simulation using 5000 realization is performed for this study and the results are 

shown in Figures 25 and 26.  

Figure 25 shows that, the ARL1 value decreases sharply from a decomposition 

depth of 0 (which corresponds to the time domain or conventional EWMA) to a depth of 

1. This is an indication that multiscale EWMA method outperforms the conventiona l 

EWMA method with respect to ARL1. Then, the ARL1 reaches its lowest value at 
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decomposition depth of 6 and then it increases again for larger decomposition depths. 

These result show that increasing the decomposition depth improves the ARL1 (i.e., 

improves the speed of detection, but up to a certain depth beyond which the speed of 

detection deteriorates).  

 

 
 

 

Figure 25: Effect of decomposition depth on the ARL1 of the multiscale EWMA 

chart. 

 
 

 
The effect of decomposition depth on the false alarm and missed detection rates, 

on the other hand, is illustrated in Figure 26, which shows that multiscale EWMA provides 

improvement in terms of the missed detection rate and a slight increase in the false alarm 

rate with respect to the conventional method. Figure 26 also shows that both missed 

detection and false alarm rates are not significantly affected by the decomposition depth. 

Thus, Figures 25 and 26 show that the multiscale EWMA algorithm provides its best 

performance at a decomposition depth around half the maximum decomposition depth 
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(which is 6 in this simulated study). It is important to note that, applying multisca le 

EWMA, as in any multiscale technique, requires a dyadic data set. 

 
 
 

 

Figure 26: Effect of decomposition depth on false alarm and missed detection rates 

of the multiscale EWMA chart. 

 

 
 

With the help of these simulated results, a design procedure for the multisca le 

EWMA can be established, which will be presented in the next section. 

4.2.2. Design steps for the multiscale EWMA technique 

The design procedure of the multiscale EWMA technique consists of the following 

steps: 

 Choose an acceptable value of in control average run length (ARL0), which 

is taken as 500, in this work 

 Select the decomposition depth based on the length of the data (half the 

maximum decomposition depth is recommended) -data has to be dyadic 
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 Specify the minimum fault size that needs to be detected as quickly as 

possible, and determine the value of λ which provides the lowest ARL1 for that specific 

fault size. (using Figure 24) 

 Find the value of the control width L, which along which the value of λ 

(found from previous step) provides the required ARL0 value. (using Figure 22) 

In the next chapter, the performance of the multiscale EWMA described earlier 

will be compared with that of the conventional method from different perspectives to see 

which one gives better performance in fault detection. 
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5. PERFORMANCE COMPARISON BETWEEN THE 

CONVENTIONAL AND MULTISCALE EWMA CHARTS 

 

Both the conventional and multiscale EWMA techniques are designed to detect 

faults in the shortest possible time by minimizing the out-of-control average run length 

(ARL1). In this chapter, the performances of the two techniques will be compared using 

their optimally designed parameters. The two techniques will be compared using all three 

indices, ARL1, missed detection rate and false alarm rate. First, a comparison will be 

performed at different sizes of mean shifts when the assumptions of the conventiona l 

EWMA method are satisfied, which include the normality and independence of the 

residuals. Then, the performance will be compared when these assumptions are violated. 

5.1. Comparison between the performance of the conventional and multiscale 

EWMA techniques under no violations of the EWMA assumptions 

In this section, the performances of the conventional and multiscale EWMA 

techniques are compared at different sizes of mean shifts and using their optimal 

parameters to make sure that each technique provides its best performance. To perform 

this comparison, training data consisting of 8192 independent zero mean Gaussian 

observations are generated. The testing data are also generated in a similar manner but 

with additive faults of magnitude 1 between samples 2000-3000 and of magnitude -1 

between samples 4500 -5000. Then, the conventional EWMA technique is applied using 

L and λ values of 2.861 and 0.12, respectively, which are the optimum values to detect 
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fault of size 1. Similarly, the multiscale EWMA technique is applied on the same data with 

its own optimum parameter values, which are 2.41, 0.11 and 6 for L, λ and the depth, 

respectively. All three indices, ARL1, false alarm rate and missed detection rate are 

computed for both techniques and a Monte Carlo simulation of 5000 realization is 

performed to get meaningful results. Then, the same procedure is repeated for different 

fault sizes ranging from 0.5 to 4, and the simulation results are shown in Figures 27, 28 

and 29.  

Figure 27 shows that, for smaller fault sizes, the multiscale EWMA detects the 

faults significantly quicker than the conventional EWMA technique. For example, for a 

fault of size 0.5, the multiscale EWMA has an ARL1 value of 17.496 which is much 

smaller than the ARL1 value of the conventional EWMA, which is 27.731. However, for 

larger faults, both the techniques perform almost equally.  

 
 
 

 

Figure 27: Performance comparison between the conventional and multiscale 

EWMA charts in terms of ARL1 for different fault sizes. 
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Figure 28, on the other hand, which shows the comparison results in terms of false 

alarm rate, shows that the multiscale EWMA technique results in a slight increase in the 

false alarm rate compared to the conventional method, especially for small shift sizes.  

However, the difference between the false alarm rates for the two techniques are not too 

high and the maximum false alarm rate that the multiscale technique produces (for fault 

size of 0.5) is equal to 4.3%. These relatively higher false alarm rates are expected though 

as the technique is designed to give a minimum ARL1 which can increase the false alarm 

rate (see section 1.1.2). 

 

 
 

 

Figure 28: Performance comparison between the conventional and multiscale 

EWMA charts in terms of false alarm rate for different fault sizes . 

 
 

 
The comparison results between the conventional and multiscale EWMA 

techniques in terms of missed detection rate are shown in Figure 29, which shows that the 

multiscale EWMA technique provides improved performance over the conventional one 
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for most of the fault sizes except for very high fault sizes (for fault sizes of 3 – 4), where 

both the techniques perform almost equally.  

 
 
 

 

Figure 29: Performance comparison between the conventional and multiscale 

EWMA charts in terms of missed detection rate for different fault sizes. 

 
 

 
To explain the nonlinear behavior of the plots shown in Figure 29, it is important 

to understand how the false alarm and missed detection rates change for different values 

of L and λ for the multiscale EWMA technique. The effect of changing the control width 

(L) and smoothing parameter (λ) on the missed detection and false alarm rates are 

illustrated in Figure 30 for L values ranging from 1-4 and λ values ranging from 0.05-0.25. 

In this analysis, the noise level and fault sizes are kept fixed at 1 and ±1 respective ly. 

Figure 30 clearly shows a nonlinear behavior for the missed detection and false alarm rates 

at different L and λ values, which explains the nonlinear behavior observed in Figure 29. 
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Figure 30: Trade-off between false alarm and missed detection rate for the 

multiscale EWMA chart. 

 

 
 

In summary, Figures 28 and 29 show that although both the multiscale and conventiona l 

EWMA technique are designed to optimize the ARL1 criterion, the multiscale EWMA 

provides improvement in the missed detection rate, besides ARL1. So, even though the 

false alarm rate increases slightly, it is evident that the multiscale algorithm outperforms 

its conventional time domain EWMA.  

5.2. Comparison between the performances of the conventional and multiscale 

EWMA techniques under violations of the EWMA assumptions 

In this section, the performance of the multiscale EWMA chart will be assessed 

and compared with that of the conventional EWMA method under violation of EWMA 

chart assumptions. To compare the performances of the two EWMA techniques, the same 

data that were used in section 2.2 to assess the effect of noise level, autocorrelation and 

deviation from normality will be used here. The optimum parameters are used for the 
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respective techniques, which correspond to the fault size introduced in the data, which is 

1σ for all the cases. 

5.2.1. Comparison of performance using data with different level of noise 

In this study, the effect of the noise level on the performances of the conventiona l 

and multiscale EWMA methods is assessed. Here, the fault size is fixed at 1 and the noise 

standard deviation is varied from 0.01-2, and then in each case the ARL1, missed detection 

rate and false alarm rate are computed, and the results are shown in Figures 31 and 32. 

Figure 31 shows that- the multiscale EWMA chart gives better performance in terms of 

ARL1 value than the conventional method, especially at larger noise levels. The missed 

detection and false alarm rates, on other hand, are illustrated in Figure 32, which shows 

that the multiscale EWMA technique outperforms the conventional method with respect 

to the missed detection rate, while the false alarm rates are comparable for both techniques 

with a slight advantages in favor of the conventional method.  
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Figure 31: Performance comparison between the multiscale and conventional 

EWMA technique in terms of ARL1 for different level of noise in the data. 

 

 
 

 

Figure 32: Performance comparison between the multiscale and conventional 

EWMA techniques in terms of false alarm and missed detection rate for different 

level of noise in the data. 

 

 
 

To better explain the relative performances of the conventional and multiscale EWMA 

techniques, the detection statistics used in both methods are shown in Figure 33. It shows 

that the multiscale EWMA technique helps remove noise from the data through the 
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application of EWMA at multiple scales, which narrows the control limits of the final 

reconstructed signal. This helps provide a quicker detection of faults and a smaller missed 

detection rate, but at the expense of a slight increase in the false alarm rate compared to 

the conventional technique. Therefore, the multiscale EWMA method provides a better 

performance than the conventional method, especially at higher noise levels. 

 
 

 

 

 

Figure 33: Detection statistics for the conventional and multiscale methods in the 

case where the noise standard deviation equals 1.5. 

 

 
 

5.2.2. Comparison of performance using autocorrelated data 

In this section, the conventional and multiscale techniques are compared through 

their application on autocorrelated data, which are generated using an autoregressive 

model, AR(1). The value of the autoregressive parameter, is varied between 0.1 and 0.95 

and at each value the ARL1, false alarm rate, and missed detection rate are computed which 
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are shown in Figures 34 and 35. Figure 34 shows that- the multiscale EWMA method 

consistently provides smaller ARL1 values compared to the conventional EWMA almost 

for all values of the autoregressive coefficients. Figure 34 also shows that for the 

multiscale EWMA method, the ARL1 value remains almost constant except very high 

level of autocorrelation, where it still provides a quicker detection than the conventiona l 

EWMA technique. 

 
 

 

 

Figure 34: Performance comparison between the multiscale and conventional 

EWMA technique in terms of ARL1 for different level of autocorrelation in the 

data. 

 
 
 

Figure 35, on the hand, shows that the multiscale EWMA technique provides 

smaller missed detection than the conventional method for all levels of autocorrelation. 

The false alarm rate for the conventional method is smaller than that of the multisca le 
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technique, especially at high level of autocorrelation, i.e., large autoregressive model 

parameter. 

 
 
 

 

Figure 35: Performance comparison between the multiscale and conventional 

EWMA technique in terms of false alarm and missed detection rates  for different 

level of autocorrelation in the data. 

 

 
 

The advantages of the multiscale EWMA chart can be better illustrated by 

comparing the detection statistics for both techniques, which are illustrated in Figure 36. 

It shows that, again narrower control limits are obtained using the multiscale EWMA 

chart, which helps achieve a smaller ARL1 value and missed detection rate, but with a 

relative increase in the false alarm rate, especially at high levels of autocorrelation. In 

summary, the multiscale EWMA method outperforms its conventional counterpart using 

autocorrelated data. 
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Figure 36: Detection statistic for the conventional and multiscale methods in the 

case where the autoregressive coefficient equal to 0.5. 

 
 

 

5.2.3. Comparison of performance using non-Gaussian (chi-square) data 

In this section, the effect of deviation from normality is examined for the 

multiscale and conventional EWMA methods through their application on chi-square data 

at different degrees of non-normality, i.e., different values of Shapiro Wilk ranging from 

0.69 to 1. The results of the assessment are shown in Figures 37 and 38. Figure 37 shows 

that, for both techniques the ARL1 remains almost constant at different Shapiro Wilk 

values, and that the multiscale technique consistently provides smaller ARL1 values (i.,e, 

quicker detection) irrespective of the degree of non-normality. 
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Figure 37: Performance comparison between the multiscale and conventional 

EWMA technique in terms of ARL1 for non-Gaussian data (Chi-square). 

 
 

 
Similarly, the false alarm and missed detection rates also remain almost constant 

for both the techniques at different degrees of non-normality (see Figure 38). However, 

the multiscale EWMA method provides smaller missed detection rates but higher false 

alarm rates. 
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Figure 38: Performance comparison between the multiscale and conventional 

EWMA technique in terms of false alarm and missed detection rates for non-

Gaussian data (Chi-square). 

 
 
 

The performances of the conventional and multiscale EWMA techniques can also 

be compared by comparing their detection statistics, which are shown in Figure 39, which 

shows that, the multiscale EWMA technique provides faster detection by shrinking the 

control limits which result in higher false alarm rates. 
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Figure 39: Detection statistics for the conventional and multiscale methods in the 

case where the Shapiro Wilk equals 0.69. 

 

 
 

 
In summary, the multiscale EWMA technique outperforms the conventiona l 

EWMA technique not only when both the techniques are designed to perform optimally 

but also when data violate the assumptions of the EWMA chart. In the next chapter, the 

performances of both techniques will be evaluated using real application data. 
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6. APPLICATION OF THE MULTISCALE EWMA CHART 

 

In this chapter, real application data will be used to assess the effectiveness of the 

multiscale EWMA method as a monitoring technique. To do so, simulated distillat ion 

column data will be used. 

To simulate real process data, a distillation column consisting of 32 theoretical 

stages with a total condenser and a reboiler was simulated using Aspen Tech 7.2. The feed 

stream, which enters the column in a saturated liquid form at stage 16 with a mass flow 

rate of 1kg/mole.s and a temperature of 322 K, has compositions of 40 mole % propane 

and 60 mole % isobutene. The nominal operating conditions of the distillation column can 

be found in [57]. Dynamic data of the distillation column are generated by changing the 

feed and reflux flow rates from their nominal operating values, which is done by 

introducing step changes of magnitudes ±2% in the feed and reflux flow rates. After each 

step change, the process is given sufficient time to settle to a new steady state after which 

another step change is introduced. After introducing all step changes and reaching to a 

final steady state, 1024 observations that represent the process behavior are generated. All 

simulated data are assumed to be noise free, and therefore, the simulated data are 

contaminated with zero mean Gaussian noise to represent measurement errors. 

The objective of this example is to compare the performances of the conventiona l 

and multiscale EWMA methods through monitoring the composition of propane in the 

distillate stream using faults of different magnitudes. Since both techniques require 

evaluating residuals, a partial least squares (PLS) model is developed to predict the 
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residuals of the propane composition using temperature data at various trays of the column 

as well as the feed and reflux rates. 

The residuals obtained by this process are then divided into two set – training and 

testing, each consisting of 512 samples. Two step faults of magnitude ±2𝜎 are then 

introduced to the residuals between samples 201-250 and samples 401-450 of the testing 

data respectively, where σ is the standard deviation of the residuals. Then, the control 

limits are computed from the training data by using the corresponding optimum 

parameters for a fault size of 2σ of both techniques. Those control limits are then used to 

compute ARL1, false alarm rate and missed detection rates for both the techniques using 

the testing data. 

Figure 40, which shows the detection statistics for both the conventional and 

multiscale EWMA techniques, clearly shows that the multiscale EWMA technique 

provides a smaller missed detection rate (5%) compared to one obtained using the 

conventional technique (33%). However, the false alarm rate obtained using the multisca le 

technique (3.9%) is a little larger than what is obtained using the conventional technique 

(0.6%). On the other hand, the multiscale EWMA provides a little smaller ARL1 value (4) 

compared to the one obtained using the conventional technique (5).  
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Figure 40: Comparing the performances of the conventional and multiscale EWMA 

chart for a step fault of magnitude ±2σ in the residuals of simulated distillation 

column data. 

 

 
 

A similar comparison is performed using smaller fault sizes (±σ), and the results 

are shown in Figure 41. The detection statistics shown in Figure 41 show that the missed 

detection rate for the multiscale EWMA is smaller (19%) than the conventional EWMA 

(39%). The multiscale EWMA method provides relatively faster detection (ARL1=16) 

than the conventional method (ARL1=19).The false alarm rate is higher for the multisca le 

technique (6%) than for the conventional technique (1%). 
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Figure 41: Comparing the performances of the conventional and multiscale EWMA 

chart for a step fault of magnitude ±σ in the residuals of simulated distillation 

column data. 
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7. CONCLUSIONS AND FUTURE DIRECTIONS 

 

7.1. Concluding remarks 

Most univariate process monitoring techniques, such as EWMA, operate under 

three main assumptions – the residuals obtained from process data contain a moderate 

level of noise, are independent or uncorrelated, and follow a Gaussian distribution. The 

available optimized values of the EWMA parameters (L and λ), which are obtained by 

minimizing the out of control average run length (ARL1) for different fault sizes, are 

obtained by making these assumptions. In this work, it has been demonstrated by 

illustrative examples that, when the noise level increases, the performance of the optimally 

designed EWMA technique deteriorates. For example, for a noise level of 2σ, the missed 

detection rate and ARL1 increases to 80% and 33, respectively. Similarly, the effect of 

autocorrelation can be large, especially at high levels of autocorrelation. However, the 

deviation from normality does not seem to affect the performance of the EWMA 

technique. 

Wavelet based multiscale representation can help satisfy these assumptions as it 

has been shown that multiscale representation provides a good separation of noise from 

important features in the data, and that data become more independent and, closer to 

normal at multiple scales. Therefore, multiscale wavelet based representation is used in 

this work to improve the monitoring performance of the EWMA method. 

To utilize the advantages of wavelet based multiscale representation to improve 

the performance of EWMA, an algorithm that integrates the EWMA chart with multisca le 
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representation is developed. Also, a procedure for selecting the optimum parameters of 

multiscale EWMA technique which include L, λ and the decomposition depth for 

detecting different fault sizes as quickly as possible, is designed. This selection of 

parameters (L and λ) varies depending on the in control average run length (ARL0), the 

minimum fault size that needs to be detected and the type of residuals. Residuals can be 

contaminated with different levels of noise, can be autocorrelated, or non-Gaussian. 

however, in this work, the data are assumed to follow a zero mean Gaussian distribution, 

and the design is based on minimizing the out of control average run length ARL1 for an 

in control average run length 500. 

Then, the conventional and multiscale techniques are compared using the three 

indicators (ARL1, false alarm rate and missed detection rate) for different fault sizes when 

the optimum parameters for both techniques are used. The multiscale EWMA 

demonstrates better performance over the conventional EWMA in terms of ARL1 and 

missed detection rate by providing smaller values of these indicators, especially for 

smaller fault sizes. The conventional EWMA method is known for its ability to detect 

small faults quickly, however, the multiscale EWMA technique improves the detection 

speed even more. In terms of false alarm rate, the multiscale EWMA provides slightly 

higher values than the conventional EWMA technique but overall this small disadvantage 

gets outweighed by the improvement in the ARL1 value and the missed detection rate. 

The impact of violating the assumption of the conventional EWMA method on the 

performances of both techniques is then studied by comparing their performances under 

each violation. It has been shown that for noisy, autocorrelated and non-normally 
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distributed data, the multiscale EWMA provides smaller values for ARL1 and missed 

detection rate but higher values for false alarm rate compared to the conventional EWMA. 

When the data contain moderate to high levels of noise, the multiscale EWMA provides 

more than 30% reduction in ARL1 value and 25-35% reduction in missed detection rate at 

the expense of 1-2.5% overall false alarm rate. 

On the other hand, the multiscale EWMA provides almost 30% reduction in ARL1  

value over the conventional EWMA technique for wide levels of autocorrelation (almost 

for all values of the autoregressive coefficient when an AR(1) model is used to generate 

autocorrelated data). The multiscale EWMA technique also reduces the missed detection 

rate by half compared to the conventional EWMA method for all values of the 

autoregressive coefficient. However, there is significant increase in the false alarm rate of 

the multiscale EWMA over the conventional technique at high levels of autocorrelation 

(when the autoregressive coefficient is larger than 0.6). 

The deviation from normality in the residuals doesn’t seem to affect the 

performances of both the multiscale and conventional EWMA. All the three indices 

remain almost constant for different values of the Shapiro-Wilk statistic (the measurement 

of the degree in the data). The multiscale EWMA, once again, provides a better 

performance in terms of the ARL1 value and the missed detection rate by reducing their 

values to almost half of the values obtained using the conventional technique. The false 

alarm rate obtained by the multiscale EWMA technique is higher than the corresponding 

value obtained by the conventional technique, and reaches a maximum value of 14% 

compared to around 2% for the conventional method. 
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The performance of the developed multiscale EWMA chart in practice is also 

illustrated through its application to monitor the distillate composition of a simulated 

distillation column. The performance of the multiscale EWMA is measured for two 

different cases when two step faults of different sizes (σ and 2σ) are added on the residuals. 

In both cases, multiscale EWMA provides faster detection (smaller ARL1), lower missed 

detection rates and higher false alarm rates.  

It is clear through various comparative studies, that the multiscale EWMA method 

can provide a significant improvement in fault detection over the conventional EWMA 

method. This will also pave the way for further investigations to improve the effectiveness 

of fault detection even more, some of the suggested future research directions are 

described next. 

7.2. Future directions 

In this work, the developed multiscale EWMA technique has been shown to 

outperform the conventional EWMA technique. These results will lead to further research 

in the area as described below: 

 In this thesis, a method for determining the optimum multiscale EWMA 

parameters was developed for an in control average run length (ARL0) of 500. Extensions 

of such approach using other ARL0 are needed. 

 The multiscale EWMA method developed in this work is univariate, a 

multivariate version of EWMA has been developed. Therefore, developing a multisca le 

multivariate EWMA method can extend the advantages of multiscale EWMA to 

multivariate processes. 
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 The developed multiscale EWMA method is batch because multisca le 

representation used requires the entire data set a priori. Therefore, an online extension of 

the multiscale EWMA method is needed to allow monitoring online processes. 

 The developed multiscale EWMA method relies on minimizing the ARL1  

value for optimizing its parameters, which leads to a faster detection. However, using a 

different performance metric (which can be a combination of ARL1, missed detection rate, 

and false alarm rate) may lead to a better performance with respect to all indicators. 
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