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ABSTRACT 

 

Metal–organic frameworks (MOFs) are newly emerging inorganic–organic hybrid 

porous materials with diverse crystalline structures, high surface areas, and tunable pores. 

This dissertation primarily focuses on design and synthesis of MOFs as well as the 

development of synthetic methodologies to target stable MOFs with desired 

functionalities.  

In the second section, a linker exchange strategy was developed as a route to 

functionalize a mesoporous MOF, PCN-333, through thermodynamic control. This 

strategy allowed a facile incorporation of a variety of functional groups into the 

mesoporous MOF without compromising integrity of the parent MOF.  

In the third section, a dual-exchange method was studied using a sequential linker 

exchange and metal metathesis on PCN-333(Fe) to achieve a chemically robust 

mesoporous Cr-MOF with desired functional group. Dual exchange showed the potential 

of this method to be a general approach to highly stable Cr-MOFs with desired functional 

groups upon selection of appropriate MOF template. 

In the fourth section, a new Zn-MOF, SO-PCN, was designed and synthesized as 

a host of two dye linkers. SO-PCN showed energy transfer between the 2D porphyrinic 

photosensitizer layer and the photochromic switch pillar in the framework. Using 

photochromic reaction of the linker in SO-PCN, a reversible control of singlet oxygen 

generation was demonstrated. The catalytic activity of SO-PCN was also studied for 

photooxidation of 1,5-dihydroxynaphthalene. 
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In the fifth section, a new synthetic strategy to incorporate multiple functional 

molecules within the MOF nanoparticles was demonstrated for control of 1O2 generation 

for PDT. This strategy was developed to improve several inherent limitations from SO-

PCN in the previous section. First, a Zr-MOF nanoplatform showed much improved 

stability in aqueous media, compatible under physiological conditions. This strategy 

allows for tuning of the ratios between the photosensitizer and the switch molecule within 

the Zr-MOF nanoparticles, thus enabling maximization of the 1O2 generation 

controllability. As a result, MOF nanoparticle formulation showed an enhanced PDT 

efficacy with superior 1O2 control compared to that of homogeneous molecular analogues. 

In the sixth section, size-controlled synthesis of Zr-based porphyrinic MOF 

nanoparticles was studied through a bottom-up approach. The study provided mechanistic 

insights about the size control of the porphyrinic Zr-MOF nanoparticles. Size-dependent 

cellular uptake and ensuing PDT efficacy were also investigated to optimize the size of 

the MOF nanoparticles for PDT. Additionally, folic acid modification on the Zr6 node in 

the MOF showed further enhanced PDT efficacy via active targeting, demonstrating 

multifunctional MOF nanoplatform. 

In summary, methodologies to allow functionalization of highly stable MOFs have 

been designed and studied. Conceptual utilizations of MOF nanoparticles for biomedical 

applications have also been demonstrated with stable MOF nanoparticles, showing the 

advantages of the MOF formulation. The findings in this dissertation provide design 

principle and possible options for preparing targeted MOFs as required in desired 

applications. 
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NOMENCLATURE 

 

2D two-dimensional 
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EDS Energy-dispersive X-ray Spectroscopy  

FW Formula Weight 

MOF Metal–Organic Framework 

NMR Nuclear Magnetic Resonance 

PCN Porous Coordination Network 

PDT Photodynamic Therapy 

PSM Postsynthetic Modification 

PXRD Powder X-Ray Diffraction 

SEM Scanning Electron Microscopy 

TEM Transmission Electron Microscopy 

TGA Thermogravimetric Analysis 

XPS X-ray Photoelectron Spectroscopy 
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1. INTRODUCTION 

 As a new class of inorganic–organic hybrid materials, metal–organic frameworks 

(MOFs) have been rigorously explored as advanced porous materials.1 The limitless 

combination of organic and inorganic building blocks in MOFs allow diverse 3D 

crystalline structures with high internal surface area and well-defined molecular level of 

functionality with remarkable accessibility, thus making MOFs viable for various 

applications, which might have not been readily achievable from other conventional 

porous materials, including activated carbons, mesoporous silica, and zeolites.2-4 With 

these features, recently MOFs have become a useful tool for deciphering fundamental 

questions in chemistry, including a mechanistic study of a controversial intermediate with 

crystallographic analysis, a well-defined energy transfer platform, and gas storage and 

separation.5-7 

 

Figure 1.1 Topological illustration of representative 3D MOFs. 
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Unlike other conventional porous materials constructed from extremely robust 

covalent bonds or ionic bonds, however, prototypical MOFs suffered from weak chemical 

stability due to the relatively labile coordination bond and void space in the framework. 

Particularly, in the early stage of MOF development, the combination of hard base, 

carboxylate containing linkers (L) and soft acid metal species [M(II); M = Zn, Cu] has 

been extensively adopted, which results in labile M-L bonds according to hard soft acid 

and base (HSAB) theory.8,9 Consequently, most MOFs tend to undergo decomposition 

when applied in harsh chemical environments. Such instability has been the most 

challenging problem for early MOFs to be practically utilized. To maximize the utility of 

MOFs in various applications, therefore, their chemical stability has to be a prime 

consideration to guarantee their advantageous features to be fully utilized. To improve 

chemical stability of the MOFs, there are two major strategies commonly adopted: (1) 

using the combination of high valent metal species [e.g., Al(III), Fe(III), Cr(III), Zr(IV)] 

and carboxylate linkers, giving rise to robust M-L bonds from stronger electrostatic 

interaction; (2) a combination between soft acid metal species [e.g., Cu(II), Ni (II)] and 

soft base containing linkers, including imidazolate, pyrazolate, or thiolate, leading to 

stronger orbital interactions.10,11 As a result of robust M-L bonds in the framework, these 

MOFs exhibit extraordinary stability against attacks from reactive chemical species. 

Although the stability of MOFs was improved by involving robust M-L bonds, 

synthesizing these MOFs is very difficult because more stable M-L bonds are less 

reversible during the growth of MOFs, inhibiting crystallization.12 Aside from such 

synthetic difficulty to get stable MOFs, when functionalization is concerned for specific 
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use, obtaining highly crystalline products of stable MOFs out of the functionalized linkers 

from direct synthesis becomes extremely challenging for the following reasons. First, the 

preinstalled functionality on the linker is likely to undergo decomposition or side reactions 

under the harsh synthetic conditions of stable MOFs (e.g., high temperature and acidic 

environment).10 In addition, the functionalization prior to MOF synthesis could alter the 

molecular geometry of the linker, leading to undesired products. Therefore, development 

of synthetic strategies to obtain a stable MOF platform with both desired functionalities 

and wanted structure is of great importance in terms of exploring a broad applicability of 

MOFs. 

 Aside from the predesigned functions on the building blocks in the framework, the 

morphology and size of the MOFs could also play a critical role in many aspects of 

practical applications. In this regard, controllability of MOF nanoparticles can further lead 

to a fine-tuning of their properties with synthetic tunability to establish multiple 

functionalities into one platform. Therefore, the control of size and morphology of 

targeting MOFs is highly desired to optimize the performance of MOFs for target 

applications.13 

 While an extensive research effort has been made to discover new MOF structures, 

MOFs as a class of nanomaterials with such controllability have been significantly 

understudied, though the understanding of crystal growth could provide us insights to take 

the advantage of controllability of MOFs. Because MOF growth can be greatly simplified 

as traditional coordination chemistry using a ligand substitution process, studies of MOF 

growth could provide important insights about their controlled growth both in morphology 
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(phase selectivity) and size. Together with the findings in chemical stabilization and 

functionalization of stable MOFs, understanding of MOF nanocrystal growth control 

could thus prove a powerful tool for optimization of materials and further grant this class 

of materials to be promising in desired applications. 

 

 
 
Figure 1.2 Routes to functionalized stable MOF nanoplatform. 

 

 In this dissertation, synthetic methodologies to tackle the challenges mentioned 

above in targeting specific MOFs have been developed. Starting from questioning MOF 

growth process, the understanding of MOF growth via thermodynamics and kinetics 

analysis in MOF systems is discussed. Two approaches to achieve highly stable MOFs 

with desired functionality were developed via postsynthetic dual exchange and in situ 

incorporation of multiple functionalities. Through combination of the presented synthetic 

strategies, fine-tuning of the MOF products, including their size, morphology, and tunable 

function-density of the multiple functional species in the MOF, has been realized. As a 
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result, judiciously designed MOFs were successfully demonstrated for biomedical 

applications (i.e., photodynamic therapy) where stability, functionality, and controllability 

allowed for screening of the best performing materials.  



 

 6 

2. STRUCTURE-ASSISTED FUNCTIONAL ANCHOR IMPLANTATION IN 

ROBUST METAL‒ORGANIC FRAMEWORKS WITH ULTRALARGE PORES* 

2.1 Introduction 

 Ordered mesoporous materials have been extensively studied because of their 

potential toward practical applications including heterogeneous supports for catalysis, 

separation, enzyme immobilization, drug delivery, and sensing taking advantage of their 

high surface areas and large pores.3,14-17 In particular, for large guest molecules such as 

organometallic species, nanoparticles, and enzymes the mesoporosity is of great 

importance.18,19 Traditional mesoporous materials including mesoporous silica, 

mesoporous carbon, and metal oxides have paved the ways for such applications, but there 

are major limitations to these materials such as lack of structural diversity (e.g., pore 

geometry) and versatile functionality. Moreover, to effectively prevent leaching of the 

immobilized species, postsynthetic modification of functional groups to covalently anchor 

the guest species is highly desired. However, it has been challenging due to the lack of 

easily modifiable sites in these traditional mesoporous materials.20-22 

 In the last two decades, metal–organic frameworks (MOFs) have emerged as a 

class of promising organic–inorganic hybrid materials that are composed of metal 

ions/clusters and bridging organic linkers.1 Due to their tunable structures derived from a 

judicious selection of inorganic building blocks and the molecular-level design of organic 

linkers, MOFs can provide tailor-made structures for desired applications compared with 

                                                

*Reproduced with permission from Park, J.; Feng, D.; Zhou, H.-C., J. Am. Chem. Soc. 2015, 137, 1663–
1672. Copyright 2015 American Chemical Society. 
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conventional mesoporous materials.23-25 Apart from the structural diversity of MOFs, their 

three-dimensional (3D) cavities can facilitate the accessibility of the guest molecules. 

Therefore, mesoporous MOFs with predesigned covalent anchors (pendant functional 

groups) can serve as ideal platforms to immobilize functional species. 

 However, most MOF materials reported to date are mainly restricted to a 

microporous regime.26-35 Even for mesoporous MOFs, the accommodation of large 

molecules into the pores such as bulky catalysts or enzymes is challenging because such 

large entities will take up a substantial volume of the pore.10,36 As a result, efficient 

diffusion is slowed, and the accessibility of incoming species will be reduced substantially. 

In addition, introduction of covalent anchors could further reduce the original pore size, 

leaving even less space to immobilize large species. Most importantly, an excellent 

stability of the framework is a prerequisite to guarantee the framework intactness, 

especially with inclusion of immobilized guests working in harsh conditions. However, 

most reported mesoporous MOFs show relatively weak chemical stability.37-39 Therefore, 

stable MOFs with ultralarge pores and functional groups are highly desired. 

 Herein we report a facile route to functionalize PCN-333(M) (M = Fe and Sc), a 

robust MOF isoreticular to MIL-100 with ultralarge pores (∼5.5 nm), via postsynthetic 

ligand exchange that is assisted by structural integrity of PCN-333. A wide range of 

functional groups were introduced into the PCN-333(M) while maintaining the porosity 

and crystallinity of the parent framework. Furthermore, several experiments were 

performed to illustrate a better understanding of the ligand exchange process in PCN-

333(Fe). Ultimately, introduction of a secondary functional group into functionalized 
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PCN-333 was successfully demonstrated through click chemistry. These findings will 

allow for functionalized PCN-333(M) to be used as a useful scaffold for a variety of 

promising applications by taking advantage of facile functionalization, framework 

robustness, and ultralarge pores which allow for more possible chemistry within the MOF. 

2.2 Experimental section 

Materials 

 All starting materials and solvents were used as received without further 

purification from commercial suppliers. (Alfa Aesar, Sigma-Aldrich, TCI America, 

Cambridge Isotope, Oakwood Products) Silica gel (40−42 µm) was purchased from 

Silicycle Inc. The abbreviation for some solvents and reagents were listed here: 1,2-

Dimethoxyethane (DME), CH2Cl2 (DCM), N,N-dimethylformamide (DMF), N,N-

diethylformamide (DEF), dimethylsulfoxide (DMSO), and tetrahydrofuran (THF). 

Instrumentation  

 Synthetic manipulations that required an inert atmosphere (where noted) were 

carried out under nitrogen using standard Schlenk techniques. Nuclear magnetic resonance 

(NMR) spectra were recorded on Mercury 300 spectrometer and Varian Inova 500 

spectrometer. The chemical shifts are given in units of δ (ppm) relative to 

tetramethylsilane (TMS) where δ (TMS) = 0, or referenced to the residual solvent 

resonances. Splitting patterns are denoted as s (singlet), d (doublet), t (triplet), q (quartet), 

m (multiplet), and br (broad). Powder X-ray diffraction (PXRD) was carried out on a 

Bruker D8-Focus Bragg-Brentano X-ray powder Diffractometer equipped with a Cu 

sealed tube (λ = 1.54178) at 40 kV and 40 mA. Thermogravimetric analyses (TGA) were 
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conducted on a Shimadzu TGA-50 thermogravimetric analyzer from room temperature to 

600 °C at a ramp rate of 2 °C/min in a flowing nitrogen atmosphere. Fourier transform 

infrared (IR) measurements were performed on a Shimadzu IR Affinity-1 spectrometer. 

Fluorescence spectra were recorded on PTI QuantaMaster series spectrofluorometer. N2 

adsorption-desorption isotherms at 77 K were measured by using a Micrometritics ASAP 

2420 system. A high-purity grade (99.999%) of gases was used throughout the adsorption 

experiments. Prior to adsorption measurement, the sample was activated by solvent 

exchange (in several cycles using fresh acetone), followed by degassing at elevated 

temperature (150 °C) for 5 h. 

Synthesis 

 General procedure of hydrolysis: To a round bottomed flask, methyl ester 

compound (~500 mg) was dissolved in a mixture of THF and MeOH (100 mL, v/v = 

1:1), and 50 mL 2 M KOH solution was added. The mixture was stirred and refluxed 

overnight at 40 °C. The organic phase was evaporated under reduced pressure. The 

resulting aqueous phase was diluted to ca. 100 mL and acidified with 6 M HCl. 

Resulting precipitates were collected, washed thoroughly with water, and dried to 

afford corresponding acid products. 

 
Scheme 2.1 Synthetic scheme of L1. 
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 2,4,6-tri-p-tolyl-1,3,5-triazine (1). To a three neck flask, AlCl3 (20 g) was 

dissolved in dry toluene and heated to 60 °C. C3N3Cl3 (S1, 8.3 g) was then added 

portionwise for an hour and the mixture was stirred overnight. Then resulting red sticky 

oil was poured into a large amount of ice water to quench the catalyst and extracted with 

CHCl3. After removing solvent, a crude product was precipitated out from methanol to 

yield a needle-like solid. Resulting solid was recrystallized from hot toluene to afford a 

white needle-like crystalline solid (10 g, 63%). 1H NMR (300 MHz, CDCl3): δ = 8.64 (d, 

6 H), 7.35 (d, 6 H), 2.46 (s, 9 H). 

 4,4′,4′′-s-triazine-2,4,6-triyl-tribenzoic acid (L1). To a 500 mL three-necked 

flask 1 (2.78 g) was dissolved in acetic acid (70 mL) and then 4.4 mL of H2SO4 was added. 

A solution of chromium oxide (7.2 g) in acetic anhydride (4.8 mL) was carefully added 

into the reaction flask with an ice bath. The resulting dark-green slurry was stirred 

overnight. The reaction mixture was poured into 250 mL cold water, stirred 1 h to well 

mixed, and filtered. The solids were washed with water to remove chromium acid. 

Dissolve the white solid in 200 mL 2 M NaOH solution. After the unreacted starting 

material was removed by filtration, the solution was acidified with 6 M HCl solution to 

give white crude product (until pH < 3). Resulting crude product was then filtered and 

dried. Recrystallization from DMF afforded pure product as a white solid (3.0 g, 86%). 

1H NMR (500 MHz, DMSO-d6): δ = 13.35 (s, 3 H), 8.85 (d, 6 H), 8.20 (d, 6 H). 
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Scheme 2.2 Synthetic scheme of L2. 
 

L2 was synthesized according to the literature procedure. 1H NMR (500 MHz, DMSO-

d6): δ = 8.09 (d, 6H), 8.06 (d, 6H), 8.04 (s, 3H). 

 

 
Scheme 2.3 Synthetic scheme of L3. 

 

 Dimethyl 2'-hydroxy-5'-(4-(methoxycarbonyl)phenyl)-[1,1':3',1''-terphenyl]-

4,4''-dicarboxylate (3). A mixture of 2,4,6-tribromophenol (S4, 3 g, 9.06 mmol), (4-

(methoxycarbonyl)phenyl)boronic acid (S3, 14.6 g, 91.1 mmol), Na2CO3 (6.7 g, 63.2 

mmol), Pd(OAc)2 (200 mg, 5 mol%) were dissolved in distilled water (100 mL) and 

degassed DMF (100 mL), and heated to 60 °C overnight under nitrogen atmosphere. 

Afterwards, the reaction mixture was poured into water, and pH value was adjusted to ~ 

5. The resulting crude was filtered and washed with water. The crude product was purified 

by flash column chromatography on silica gel using progressively more polar to 1:1 

mixture of hexanes: EtOAc as the mobile phase to afford 3 as a pale pink solid (3.6 g, 
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80%). 1H NMR (300 MHz, CDCl3): δ = 8.17 (d, 4H), 8.10 (d, 2H), 7.68 (m, 6H), 7.59 (s, 

2H), 3.95 (s, 9H). 

 5'-(4-carboxyphenyl)-2'-hydroxy-[1,1':3',1''-terphenyl]-4,4''-dicarboxylic 

acid (L3). Compound 3 (500 mg) was hydrolyzed by following the general procedure 

described above to afford L3 a light-brown solid (410 mg, 90%). 1H NMR (500 MHz, 

DMSO-d6): δ = 12.95 (s, 3H), 8.02 (d, 4H), 7.97 (d, 2H), 7.87 (d, 2H), 7.77 (d, 4H), 7.65 

(s, 2H). 

 

 
Scheme 2.4 Synthetic scheme of L4. 
 

 Dimethyl 2'-amino-5'-(4-(methoxycarbonyl)phenyl)-[1,1':3',1''-terphenyl]-

4,4''-dicarboxylate (4). A mixture of 2,4,6-tribromoaniline (S4, 3.3 g, 10.0 mmol), 4-

(methoxycarbonyl)phenyl)boronic acid (S3, 7.2 g, 40.0 mmol), CsF (6.0 g, 40.0 mmol), 

Pd(PPh3)4 (578 mg, 5 mol%) were dissolved in degassed 1,2-dimethoxyethane (300 mL), 

and heated to 130 °C to reflux overnight for 3 d under nitrogen atmosphere. Afterward, 

the solvent was dried under reduced pressure. The residue was washed with distilled H2O 

and then extracted with CH2Cl2 followed by drying with anhydrous MgSO4. After the 

solvent was removed, the crude product was purified by flash column chromatography on 

a silica gel (hexanes: EtOAc = 5: 1) to afford 4 as a light brown solid (4.16 g, 84%). 1H 
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NMR (300 MHz, CDCl3): δ = 8.18 (d, 4H), 8.08 (d, 2H), 7.66 (m, 6H), 7.45 (s, 2H), 3.96 

(s, 9H). 

 2'-amino-5'-(4-carboxyphenyl)-[1,1':3',1''-terphenyl]-4,4''-dicarboxylic acid 

(L4). Compound 4 (500 mg) was hydrolyzed by following the general procedure 

described above to afford L4 as a light-brown solid (435 mg, 95%). 1H NMR (300 MHz, 

DMSO-d6): δ = 8.10 (d, 4H), 7.98 (d, 2H), 7.85 (d, 2H), 7.74 (d, 4H), 7.52 (s, 2H), 4.74 

(s, 2H). 

 
Scheme 2.5 Synthetic scheme of L5. 
 

 Azido-2-bromoethane (9). To dibromoethane (S5, 5 g, 27 mmol) dissolved in 

DMF (18 mL) sodium azide (1. 04 g, 16 mmol) was added portion-wise for 4 h. The 

reaction was then diluted with ether and the organic layer was washed with water. The 

organic layer was dried with MgSO4 and concentrated under vacuum to afford 9 as a pale 

yellow oil (2.95 g, 73%). 1H NMR (300 MHz, CDCl3) δ = 3.72-3.62 (m, 2H), 3.48 (t, 2H).  

 Dimethyl 2'-(2-azidoethoxy)-5'-(4-(methoxycarbonyl)phenyl)-[1,1':3',1''-

terphenyl]-4,4''-dicarboxylate (5). To a solution of compound 3 (500 mg, 1.07 mmol) 

and K2CO3 (442.6 mg, 3.195 mmol) in DMF (8 mL) was added compound 9 (800 mg, 

5.35 mmol). The mixture was stirred at 60 °C 12 hours, and water was added. Afterwards, 

the crude product was extracted with dichloromethane and dried under reduced pressure. 
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The crude product was purified by flash column chromatography (hexanes: EtOAc = 6:1) 

to afford 5 as a pale yellow oil (574 mg, 95%). 1H NMR (500 MHz, DMSO-d6): δ = 8.08 

(dd, 4H), 8.04 (d, 2H), 8.00 (d, 2H), 7.88 (dd, 4H), 7.83 (s, 2H), 3.96 (s, 9H), 3.13 (t, 2H), 

3.05 (t, 2H). 

 2'-(2-azidoethoxy)-5'-(4-carboxyphenyl)-[1,1':3',1''-terphenyl]-4,4''-

dicarboxylic acid (L5). Compound 5 (380 mg) was hydrolyzed by following the general 

procedure described above to afford L5 as an ivory solid (350 mg, 99%). 1H NMR (500 

MHz, DMSO-d6): δ = 13.04 (br, 3H), 8.05 (dd, 4H), 8.01 (d, 2H), 7.95 (d, 2H), 7.84 (dd, 

4H), 7.79 (s, 2H), 3.52 (t, 1H), 3.32 (t, 1H), 3.13 (t, 1H), 3.05 (t, 1H). 

 

 
Scheme 2.6 Synthetic scheme of L6. 
 

 Dimethyl 2'-(allyloxy)-5'-(4-(methoxycarbonyl)phenyl)-[1,1':3',1''-

terphenyl]-4,4''-dicarboxylate (6). To a solution of compound 3 (600 mg, 1.208 mmol) 

and K2CO3 (501 mg, 3.63 mmol) in DMF (8 mL) was added S6 (365.4 mg, 3.02 mmol). 

The mixture was stirred at 65 °C 12 hours, and water was added. Afterwards, the crude 

product was extracted with dichloromethane and dried under reduced pressure. Resulting 

crude product was purified by flash column chromatography (hexanes: EtOAc = 6.5:1) to 

afford 7 as a white oil (520 mg, 80%). 1H NMR (500 MHz, CDCl3): δ = 8.11 (dd, 6H), 
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7.74 (d, 4H), 7.70 (d, 2H), 7.62 (d, 2H), 5.39 (qd, 1H), 4.89 (d, 1H), 4.84 (d, 1H), 3.96 (s, 

9H), 3.74 (d, 2H). 

 2'-(allyloxy)-5'-(4-carboxyphenyl)-[1,1':3',1''-terphenyl]-4,4''-dicarboxylic 

acid (L6). Compound 6 (500 mg) was hydrolyzed by following the general procedure 

described above to afford L6 a light-yellow solid (460 mg, 100%). 1H NMR (500 MHz, 

DMSO-d6): δ = 13.03 (br, 3H), 8.04 (d, 4H), 8.00 (dd, 2H), 7.95 (d, 2H), 7.83 (d, 4H), 

7.78 (s, 2H), 5.40 (qd, 1H), 4.90 (d, 2H), 3.75 (d, 2H). 

 

Scheme 2.7 Synthetic scheme of L7. 
 

 Dimethyl 5'-(4-(methoxycarbonyl)phenyl)-2'-(prop-2-yn-1-yloxy)-[1,1':3',1''-

terphenyl]-4,4''-dicarboxylate (7). To a solution of compound 3 (500 mg, 1.07 mmol) 

and K2CO3 (414.6 mg, 3.21 mmol) in DMF (8 mL) was added S7 (238 mg, 2.14 mmol). 

The mixture was stirred at 60 °C 12 hours, and water was added. Afterwards, the crude 

product was extracted with dichloromethane and dried under reduced pressure. Resulting 

crude product was purified by flash column chromatography (hexanes: EtOAc = 6:1) to 

afford 7 as a pale yellow oil (519 mg, 96%). 1H NMR (300 MHz, DMSO-d6): δ = 8.17-

8.05 (m, 6H), 7.76 (d, 4H), 7.68 (d, 2H), 7.63 (d, 2H), 3.96 (s, 9H), 3.93 (s, 2H), 2.13 (s, 

1H). 
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 5'-(4-carboxyphenyl)-2'-(prop-2-yn-1-yloxy)-[1,1':3',1''-terphenyl]-4,4''-

dicarboxylic acid (L7). Compound 7 (510 mg) was hydrolyzed by following the general 

procedure described above to afford L7 a light-yellow solid (465 mg, 99%). 1H NMR 

(500 MHz, DMSO-d6): δ = 8.01 (m, 4H), 7.97 (d, 2H), 7.86 (d, 2H), 7.75 (d, 4H), 7.72 (s, 

2H), 3.95 (d, 2H), 3.24 (t, 1H). 

 

 
Scheme 2.8 Synthetic scheme of L8. 
 

 (R)-dimethyl 5'-(4-(methoxycarbonyl)phenyl)-2'-(2-methylbutoxy)-

[1,1':3',1''-terphenyl]-4,4''-dicarboxylate (8). To a solution of compound 3 (2.0 g, 4.28 

mmol) and K2CO3 (0.7 g) in DMF (30 mL) was added S8 (1.2 g). The resulting mixture 

was heated to 60 °C for 12h. The crude mixture was extracted with dichloromethane, 

washed thoroughly with water, and dried to afford 8 as an ivory powder (2.1 g, 93%). 1H 

NMR (CDCl3) δ = 8.11 (m, 6H), 7.72 (m, 6H), 7.61 (s, 2H), 3.95 (m, 9H), 3.05 (m, 2H), 

1.24 (m, 1H), 1.01 (m, 1H), 0.78 (m, 1H), 0.49 (m, 6H). 

 (R)-5'-(4-carboxyphenyl)-2'-(2-methylbutoxy)-[1,1':3',1''-terphenyl]-4,4''-

dicarboxylic acid (L8). Compound 8 (500 mg) was hydrolyzed by following the general 

procedure described above to afford L8 a white solid (400 mg, 86%). 1H NMR (500 MHz, 
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DMSO-d6) = 13.01 (br, 3H), 8.02 (m, 6H), 7.94 (d, 2H), 7.81 (d, 4H), 7.78 (s, 2H), 3.05-

2.98 (ddd, 2H), 0.95 (m, 1H), 0.76 (m, 2H) ,0.46 (d, 3H) ,0.37 (t, 3H). 

 

 
Scheme 2.9 Synthetic scheme of 14. Reagents and conditions a) i) TFA, THF, 12 h, r.t., 
ii) DDQ, CH2Cl2, 5 h, r.t., iii) TEA, BF3·OEt2, 12 h, r.t., 49%; b) propargyl bromide, 
K2CO3, acetone, 12 h, reflux. 
 

 5,5-difluoro-10-(4-hydroxyphenyl)-1,3,7,9-tetramethyl-5H-dipyrrolo[1,2-

c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide (13). To a solution of S11 (1 g, 8.19 mmol) 

and 2,4-dimethylpyrrole (1.85 mL, 18.02 mmol) in THF (150 mL) was added several 

drops of trifluoroacetic acid under a nitrogen atmosphere. The mixture was stirred at 

ambient temperature for 6 h, and the solution of 2,3-dichloride-5,6-dicyano-p-

benzoquinone (2.05 g, 9.01 mmol) in THF (100 mL) was added. The resulting mixture 

was stirred continuously for another 5 h. After the addition of triethylamine (25 mL) and 

BF3·OEt2 (31 mL) dropwise to the reaction mixture with an ice-water bath, the mixture 

was kept stirring at ambient temperature overnight, then filtered through Celite. The crude 

compound was washed with CH2Cl2 and the combined filtrate was evaporated to dryness. 

The residue was re-dissolved in CH2Cl2 and the solution was washed with 15% aqueous 

NaHCO3 solution followed by water. The organic portion was dried over anhydrous 

MgSO4, then evaporated. The crude product was purified by column chromatography on 
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silica gel using progressively more polar 50:1 to 9:1 (hexanes: EtOAc) as a mobile phase 

to afford 13 as an orange solid (1.2 g, 43%). 1H NMR (500 MHz, CDCl3): δ = 7.15 (d, 

2H), 6.97 (d, 2H), 5.99 (s, 2H), 4.95 (br, 1H), 2.56 (s, 6H), 1.45 (s, 6H). 

 5,5-difluoro-1,3,7,9-tetramethyl-10-(4-(prop-2-yn-1-yloxy)phenyl)-5H-

dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide (14). To a solution of 

compound 13 (300 mg, 0.882 mmol), K2CO3 (609.5 mg, 4.41 mmol) in dried acetone (100 

mL) was added propargyl bromide (524 mg, 4.41 mmol). The mixture was heated to 55 °C 

and stirred for 12 h. Resulting mixture was evaporated to dryness and purified by column 

chromatography on silica gel using progressively more polar 50:1 to 15:1 (hexanes: 

EtOAc) as an eluent to afford 14 as a deep pink solid (175 mg, 53%). 1H NMR (500 MHz, 

CDCl3): δ = 7.20 (d, 2H), 7.09 (d, 2H), 5.98 (s, 2H), 4.76 (d, 2H), 2.55 (s, 6H), 2.17 (s, 

1H), 1.42 (s, 6H). 

 Synthesis of PCN-333(Fe). H3TATB (60 mg), anhydrous FeCl3 (60 mg), and 

trifluoroacetic acid (0.6 mL) were dissolved in 10 mL of DEF. The mixture was heated in 

150 °C oven for 12 h until a brown precipitate formed. The resulting brown precipitate 

was centrifuged and washed with fresh DMF several times. Yield (based on ligand) = ~ 

85%. 

 Synthesis of PCN-333(Sc). H3TATB (80 mg) and anhydrous ScCl3·6H2O (200 

mg) were dissolved in 10 mL of DMF. The mixture was heated in 150 °C oven for 2 h 

until a white precipitate formed. The resulting white precipitate was centrifuged and 

washed with fresh DMF several times. Yield (based on ligand) = ~ 85%. 
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 Direct synthesis of PCN-260. BTB (10 mg), FeCl3 or Fe2CoO(CH3COO)6 (10 

mg), and acetic acid (0.25 mL) in 2 mL of NMP were ultrasonically dissolved in a Pyrex 

vial. The mixture was heated in 150 °C oven for 24 h. After cooling down to room 

temperature, dark brown crystals were harvested by filtration. 

 Direct synthesis of PCN-262. OH-BTB (10 mg), FeCl3 or 

Fe2NiO(CH3COO)6 (10 mg), and acetic acid (0.20 mL) in 2 mL of DMF were 

ultrasonically dissolved in a Pyrex vial. The mixture was heated in 150 °C oven for 15 h. 

After cooling down to room temperature, dark brown crystals were harvested by filtration. 

General procedure for ligand exchange of PCN-333(Fe)  

 First, synthesized PCN-333(Fe) (ca. 50 mg) was thoroughly washed with hot 

DMF, and the isolated sample was then incubated with a stock solution of BTB or BTB 

derivatives (50–55 mg in DMF) at different temperatures (rt, 85 °C, 100 °C). Upon 

completion of ligand substitution, the supernatant was removed to examine whether there 

was TATB that came from the parent MOF after the exchange of ligand. The aliquot of 

supernatant was filtered through a syringe filter to exclude the possibility of exchanged 

PCN-333(Fe) crystals remaining, and ligands were recovered by acidification with few 

drops of 1 M HCl, followed by washing with water. The resulting precipitates were dried 

and analyzed by 1H NMR spectroscopy. 

MOF digestion  

 Approximately 15 mg of each ligand exchanged PCN-333(Fe) sample was 

digested with 37% HCl, refluxed overnight, and washed with water until a neutral pH was 
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reached. DMSO-d6 (0.6 mL) was added to dissolve the ligands. The 1H NMR spectrum 

(500 MHz) of exchanged PCN-333(Fe) was collected at room temperature (∼21 °C). 

Click reaction  

 Compound 14 (5 mg) was added to a mixture of azide-BTB exchanged PCN-

333(Sc) (10 mg) and CuI (0.5 mg) in THF (1.0 mL) in a 4 mL vial. The reaction mixture 

was stirred at 60 °C for 20 h. The resulting precipitate was collected by centrifugation, 

washed thoroughly with DMF followed by acetone, and dried to afford a light brown solid 

in quantitative yield. 

2.3 Results and discussion  

 
Figure 2.1 Structure of PCN-333 with three different cages. (a) Structure of PCN-333 
with three different cages. (b) Structure of PCN-262, direct synthesis product from OH-
BTB. 
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Direct synthesis of isoreticular structure of functionalized PCN-333(Fe) 

 Most recently, our group reported a mesoporous MOF, PCN-333, which consists 

of a trimeric metal cluster and tritopic linker, 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoic acid 

(TATB).40 PCN-333 [M3O(OH)(TATB)2] (M = Fe, Al, Sc) exhibits the largest cage of 5.5 

nm among all reported MOFs (Figure 2.1). Meanwhile, the trivalent metal nodes endow 

PCN-333 with excellent chemical stability allowing for its utilization under harsh 

conditions. Therefore, decoration of PCN-333 with covalent anchors would provide a 

great platform to immobilize versatile functional species, especially those in the 

nanoscale, which cannot be successfully accomplished by other MOFs. 

 

 
Scheme 2.10 (a) Library of ligands involved in exchange in PCN-333. (b) Schematic 
illustration of solid-liquid phase ligand exchange. 
 



 

 22 

 Having examined the PCN-333 structure, we chose 1,3,5-benzenetribenzoic acid 

(BTB) to exchange TATB due to the structural resemblance including molecular size and 

connectivity. As a result of the 2-position on the central benzene ring of BTB allowing for 

chemical derivatization (Scheme 2.10a), the functionalized BTB derivative was expected 

to introduce various covalent anchors into the mesoporous PCN-333. A series of ligands 

bearing different functional groups were synthesized. The covalent anchor was designed 

to occupy only a small portion of the pores while leaving most space available for the 

immobilization of large guest species. Therefore, we intuitively attempted a direct 

synthesis of functionalized PCN-333 from preinstalled functional groups on the BTB 

derivatives. Direct synthesis was performed by using the kinetically tuned dimensional 

augmentation (KTDA) method with preformed cluster Fe3(O)(CH3COO)6 as a starting 

material to obtain isoreticular structures of PCN-333 with BTB and OH-BTB.41 Although 

large single crystals of Fe-MOFs, PCN-260, and PCN-262 were harvested, respectively, 

single crystal X-ray diffraction revealed different structures even in the presence of the 

same inorganic building block, Fe3(O)(COO)6, as in PCN-333 (Figure 2.1b). 



 

 23 

Figure 2.2 Scheme of ligand exchange in (a) supertetrahedron in PCN-333. (b) One face 
of supertetrahedron in PCN-333 showing the distance (top) and the angle (bottom) in the 
bent geometry. (c) Schematic illustration of M-O dissociation. 
 

 As shown in Figure 2.2a, the structure of PCN-333 is built from a supertetrahedron 

unit, of which each face is a TATB linker. Although TATB does not adopt 

perfect D3h symmetry in the framework, six oxygen atoms on TATB reside in the same 

plane which gives rise to a stable tetrahedral cage in C3v symmetry from bent geometry 

(Figure 2.2b). However, coplanar D3h symmetry of BTB is highly energetically unfavored 

due to the repulsion between H atoms on the central benzene ring and the three peripheral 

benzene rings. With BTB derivatives, the attached functional groups on the central 

benzene ring would cause additional steric hindrance resulting in even higher energy of 

the coplanar geometry. Considering in situ MOF synthesis, when possible inorganic nodes 

have a negligible energy difference, a major product is dominated by energy demands of 

linkers. Because free rotation of single bonds in the BTB derivative allows the linker to 

stay in a lower energy conformation in solution, TATB and BTB derivatives could lead to 

different structures with the same inorganic node, Fe3(O), where preferential conformation 
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of linkers dominates the final products. Although the isostructure of PCN-333 constructed 

with BTB has been reported,35 the functionalized isoreticular structure of PCN-333 cannot 

be achieved through the direct synthetic approach. 

Structure-assisted ligand exchange process 

 Due to ligand conformation dominating the framework growth process in direct 

synthesis leading to an unwanted structure, we turned to the postsynthetic ligand exchange 

method.42-64 Postsynthetic ligand exchange (PSE) and solvent-assisted linker exchange 

(SALE) have appeared as powerful routes to modify a parent MOF in which the ligand 

exchange occurs in relatively stable MOFs with a functionalized incoming ligand. For 

instance, Cohen and co-workers studied ligand exchange in UiO-66(Zr), and several MIL 

series with bromo and amino analogues of the original ligands.49,54,64 The Hupp group also 

demonstrated solvent-assisted linker exchange in a ZIF series.45,46 Also, using stepwise 

ligand exchange strategy, establishment of extended isoreticular structures has been 

studied.43,53,55 To establish a versatile platform having large pores and chemical stability 

via postsynthetic ligand exchange in PCN-333(Fe), we started from BTB, the simplest 

form bearing a resemblance to TATB, as the exchanging ligand. With thoroughly washed 

PCN-333(Fe), ligand exchange was performed via a biphasic (solid–liquid) manner as 

illustrated in Scheme 1b. To exclude a dissolution–recrystallization pathway, the 

exchange reaction was performed under lower temperature than that of the MOF synthetic 

condition.  

 Despite many noticeable examples that have shown postsynthetic ligand exchange 

in stable MOFs, there has not yet been a successful example demonstrating ligand 
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exchange in extremely stable mesoporous MOFs, such as MIL-100 and MIL-101, 

although both MOFs have been widely employed in many applications. Surprisingly, a 

successful ligand exchange was achieved in PCN-333(Fe) by using BTB as the incoming 

ligand. In general, most ligand substitution reactions in octahedral complexes undergo a 

dissociative pathway. The rate-determining step in the dissociative pathway is known to 

be a breaking of metal–ligand (M–L) bond.65,66 Similarly, the ligand exchange process in 

MOF can be generalized to the principle in coordination chemistry that the M–L bond 

should be dissociated to exchange ligands. MIL-101 and MIL-100 have been reported as 

extremely robust frameworks, suggesting strong coordination (M–L bond) in these two 

MOFs which in turn leads to an extremely slow bond dissociation rate for the ligand 

exchange. One reason that could account for this is the strong electrostatic interaction 

between carboxylates and the high Z/r valued trivalent metal ions used in these MOFs. To 

achieve an effective ligand exchange, therefore, longer reaction time and/or higher 

temperature might be expected in these frameworks. 

 However, the exchanging environment provides not only extra carboxylates (from 

incoming ligands) but also solvent molecules as competing reagents, both of which could 

destruct the framework by forming fractions or amorphous products. Therefore, in the 

extremely robust MIL-101 and MIL-100, the frameworks could be severely damaged 

before an apparent exchange happens. On the contrary, PCN-333(Fe), an isoreticular 

structure of MIL-100, showed successful ligand exchange. As the bond nature is identical 

in both frameworks, the elongation of the linker could explain the exchange event. Unlike 

common coordination complexes, each linker in MOFs binds to multiple metal nodes. 
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Considering that a complete ligand exchange of a linker includes breaking of all 

coordinated carboxylates, the case where only one of them is dissociated while the others 

remain bound onto the framework prevents total dissociation. Consequently, the structural 

restraint from multiple coordination sites impedes complete ligand dissociation, which 

eventually slows the ligand exchange in the framework. In addition, when the connectivity 

of the linker is higher, it takes more steps for the complete ligand dissociation, resulting 

in a more difficult exchange process. Furthermore, for similar linkers of differing length, 

the extent of such restraint varies. For instance, assuming d in Figure 2.2b (describing only 

one binding site) stands for a distance allowing for efficient dissociation–association of 

the ligand exchange. When the dissociation is happening (moving distance to d), longer 

linker l takes a smaller angle θ compared to that of shorter linker l′, which would result in 

less strain to the remaining coordination sites on the linker. If l gets infinitely longer, then 

the structural restraint from each coordination site becomes negligible, and the 

dissociation process in the MOF would be similar to the case of a small coordination 

complex in a homogeneous system. Therefore, ligand exchange can happen more easily 

in isoreticular structures constructed with longer linkers. 

 In the supertetrahedron of PCN-333, Fe3(O) clusters act as vertexes. The dihedral 

angle between the carboxylate plane and the Fe3(O) plane is inherently determined by the 

octahedral coordination environment of each Fe atom. However, it is not precisely 

compatible to be directly connected in the triangular face of a perfect tetrahedron (0.281°) 

as shown in Figure 2.2b. Thus, TATB must adopt a bent geometry to hold three Fe3(O) 

clusters in the supertetrahedron unit. This generates a distance of about 1.6 Å between the 
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center of TATB and the ideal triangular plane formed by six oxygen atoms in the 

tetrahedron, which suggests TATB would bear high energy (Figure 2.2b). Although bond 

dissociation happens between the carboxylate and Fe, such an energetically unfavorable 

conformation would still facilitate the dissociation in order to lower the energy of the 

linker. In the meantime, TATB is almost twice as large as benzene-1,3,5-tricarboxylic acid 

(BTC), which makes all cages in PCN-333 much larger than that in MIL-100, and thereby 

such extra space allows for faster diffusion of both incoming and dissociating ligands to 

further promote the ligand exchange process in PCN-333. All structural features of PCN-

333 including the greatly bent conformation of TATB, less mutual restriction between 

each coordinating site because of its larger size (compared to MIL-100), and extremely 

large pores assist the ligand exchange in spite of the strong M–L bond, all combined make 

this system the first example of successful ligand exchange in highly robust mesoporous 

MOF with tritopic linkers. 
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Optimization of ligand exchange in PCN-333(Fe) with BTB 

 

 
Figure 2.3 NMR studies of ligand exchange. (a) Relative TATB (%) in supernatant at 
different temperatures (incubation time = 24 h). (b) Time-dependent relative TATB (%) 
in supernatant (incubation temperature = 85 °C). (c) Ratio of exchanged BTB (%) in PCN-
333(Fe) incubated at different temperatures (incubation time = 24 h). (d) Ratio of 
exchanged BTB (%) in PCN-333(Fe) at different incubation times (incubation temperature 
= 85 °C). (e) Comparison of BTB exchange ratio (%) in PCN-333(Fe) upon provision of 
fresh stock solution. (f) BTB exchange ratio (%) in PCN-333(Sc) as a function of 
incubation time. 
 
 Systematic studies to further investigate the ligand exchange process in PCN-

333(Fe) were performed. First, PCN-333(Fe) was incubated for 24 h in BTB stock solution 

at different temperatures [room temperature (rt), 85 °C, 100 °C]. Upon completion of 

ligand exchange, the relative composition of the ligands (BTB was used excess amount) 

was analyzed by 1H NMR of the resulting supernatant. The ligand exchange reaction at 

room temperature showed the lowest content of TATB (∼1%) while both higher 

temperatures (85 °C, 100 °C) yielded higher contents of TATB (∼11% for both) coming 
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out from the parent MOF, which indicates the ligand exchange was facilitated at higher 

temperatures (Figure 2.3a). Next, the ligand exchange process was investigated for 

different incubation times. The supernatants of BTB exchanged PCN-333(Fe) samples 

were taken after different incubation times at 85 °C. The 1H NMR spectroscopy showed 

the supernatant incubated for 3 h was composed of ∼7% of TATB relative to BTB and the 

ratios of TATB gradually increased as incubation time increased up to 24 h. However, the 

exchange ratios were saturated at a longer period of exchange process (72 h), and almost 

the same concentrations of TATB were obtained (∼11%) (Figure 2.3b). 

 
Figure 2.4 PXRD patterns of synthesized materials. 
 

 As supernatant analyses merely indicate the exchange event indirectly, 1H NMR 

spectroscopy of digested MOFs was performed to determine the absolute composition of 
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exchanged PCN-333(Fe). Due to the high chemical stability of exchanged PCN-333(Fe), 

the samples were treated with concentrated HCl (37%) and refluxed for 12 h to be 

digested. The digested sample that was incubated at room temperature showed 22% 

exchange of BTB. Consistent with the previous observations from the supernatant, the 

samples exchanged at 85 and 100 °C showed higher extent of exchange, 34% and 33%, 

respectively (Figure 2.3c). The effect of incubation time was also examined on the 

digested samples. The exchange ratios gradually increased from 29% (3 h exchanged 

sample) to ∼34% (12–72 h exchanged samples) (Figure 2.3d). Similar to the results from 

supernatant studies, the composition of BTB did not increase with extension of incubation 

time longer than 24 h. Ligand exchange in PCN-333(Fe) showed a faster rate of exchange 

in that approximately 30% exchange could be achieved within 3 h under mild conditions. 

Also, these findings clearly showed promise that the degree of exchange can be modulated 

by controlling temperature and exchange time. Powder X-ray diffraction of these samples 

indicates that the structural integrity of parent PCN-333(Fe) was well-retained after the 

ligand exchange (Figure 2.6a). 

 After discovering the previous result, we further sought to find whether the 

exchange ratio could become higher or whether there would be a maximum extent of 

exchange within a capacity allowing the retention of framework. To drive the equilibrium 

of the system forward, the supernatant was exchanged with fresh BTB stock solution every 

24 h. Ligand exchange was performed by following the routine procedure at 85 °C. A 

higher BTB exchange ratio (∼45%) was achieved when the fresh stock solution was 

provided after 24 h during 48 h of exchange. However, there was no significant increase 
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when fresh BTB solution was subsequently provided each day for longer periods of time 

(Figure 2.3e). 

 

 

Figure 2.5 Entropy and enthalpy changes of the system during ligand exchange. (a) Gibbs 
free energy change of the system for ligand exchange in PCN-333. (b) Enthalpy change 
of the system during ligand exchange. 
 
 
Thermodynamics behind ligand exchange in PCN-333 

 Having observed that the exchange ratio stopped increasing after a certain point 

despite successive provision of fresh incoming ligands while maintaining crystallinity of 

PCN-333(Fe), we further sought to understand the process in our system. At the very 

beginning of the ligand exchange process, the drastic entropy increase (ΔSsys) results in a 

negative ΔGsys, which spontaneously drives the exchange reaction forward. When the 

concentration of TATB in solution increases up to a certain point, ΔSsys would be 

insufficient to maintain the negative value of ΔGsys, and eventually, an equilibrium is 

established where ΔGsys = 0. Such rationale is consistent with the experimental results that 

the maximum exchange ratio was observed for each batch of BTB exchanged sample. 

 Thus, the exchange of fresh BTB stock solution reinitiated the high entropy 

increasing process. To some extent, a new equilibrium was established, but over time the 

exchange ceased again. Ideally, the ligand exchange process could keep going close to full 
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exchange (∼100%) upon successive provision of fresh incoming ligands. In the case of 

PCN-333, however, the exchange process was terminated when the system reached a 

certain exchange ratio regardless of whether refilling of fresh BTB solution occurred 

(Figure 2.3e). This may imply the total enthalpy change (ΔHa + ΔHb) is no longer the same 

value as in the circumstance of low BTB exchange ratio in PCN-333. In other words, 

ΔHb becomes an even larger positive value whereas ΔHa remains the same, which leaves 

the framework in high energy when more BTB molecules are inserted after the maximum 

tolerance that PCN-333 can bear until its destruction. As a result, the ligand exchange can 

hardly be driven further by the entropy change (ΔSsys) due to the huge enthalpy increase 

(ΔHa + ΔHb) and the saturation point appears. Theoretically, raising the temperature 

(increasing TΔSsys value) could overcome such enthalpy increase (ΔHa + ΔHb) to further 

drive the ligand exchange process. However, the increased temperature could also destroy 

the framework as previously discussed. Thus, a balance must be struck by controlling 

temperature to affect optimum ligand exchange process while maintaining framework 

integrity. 
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Figure 2.6. Characterization of BTB exchanged PCN-333(Fe). (a) PXRD patterns of BTB 
exchanged PCN-333(Fe) for different incubation times. Ligand exchange was performed 
at 85 °C. (b) N2 sorption isotherms of BTB-exchanged PCN-333(Fe) performed at 
different temperatures. (c) N2 sorption isotherms of BTB-exchanged PCN-333(Fe) for 
different incubation times at 85 °C. (d) N2 sorption isotherms of BTB exchanged PCN-
333(Fe) for different incubation times at 100 °C.  
 

 To examine whether an exchange saturation point (maximum exchange ratio) lies 

on the thermodynamic equilibrium, we further carried out a reverse ligand exchange 

reaction using extra TATB to replace the inserted BTB in the exchanged PCN-333. When 

TATB from the solution replaces the inserted BTB in the framework, the enthalpy change 

will be inversed to a negative value, −(ΔHa + ΔHb). Because the entropy change maintains 

a similar trend (a positive value), the overall change in Gibbs free energy will become 

negative to spontaneously drive the exchange process (reverse reaction). As expected, 

after soaking BTB-exchanged PCN-333(Fe) into TATB solution for 12 h at 85 °C, the 

composition of BTB in the reversibly exchanged PCN-333(Fe) decreased from ∼35% to 

 



 

 34 

less than 6% with well-retained crystallinity, validating the explanation for the presence 

of the exchange saturation point in the system. 

 As previously discussed, framework destruction is inevitable during the ligand 

exchange process due to the competing association–dissociation at the M–L bond from 

extra ligands in the solution and some solvent dissociatives such as formate. When the 

exchange is extremely slow, the framework can be destroyed before evident exchange 

happens, which would result in unsuccessful exchange as in the case of MIL-101 and MIL-

100. In order for successful ligand exchange in the robust MOF, optimization becomes 

important to balance the exchange ratio and framework intactness. To optimize such a 

balance of the exchange ratio, porosity and crystallinity of exchanged PCN-333(Fe), the 

nitrogen sorption measurement and PXRD were employed. As shown in Figure 5b, when 

the exchange reaction was conducted for 24 h at different temperatures, the lower 

temperature (rt) gave the better porosity than that of higher temperatures (85 °C, 100 °C). 

Although a slight decrease in porosity (∼13%; relative to the parent MOF) was observed 

for the samples treated at higher temperatures, they still exhibited high porosity. We then 

examined whether the incubation time affects the porosity as well. For the exchanged 

PCN-333(Fe) incubated at 85 °C, shorter reaction time (12 h) rendered better porosity than 

that of longer exchange time (24 h) (Figure 2.6c). 
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Figure 2.7 (a) Photographs of PCN-333(Fe) samples after ligand exchange with different 
BTB derivatives (after activation). (b) PXRD patterns of exchanged PCN-333(Fe) with 
different BTB derivatives. (c) Nitrogen sorption isotherms of PCN-333(Fe) exchanged 
with different BTB derivatives. Incubation temperature = 85 °C. Incubation time = 12 h. 
 

Ligand exchange with various functional groups 

 One of the most valuable advantages of MOFs over other conventional porous 

materials is synthetic versatility from the design of diverse ligands. Utilizing the powerful 

tool of organic chemistry, we sought to expand our library of ligands to accommodate 
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various functional groups in PCN-333(Fe) through the structure-assisted ligand exchange 

process. Most incoming BTB derivatives with various substituents at the 2-position of the 

central benzene ring (Scheme 2.10a) were synthesized from OH-BTB via a simple 

nucleophilic substitution reaction with excellent quantitative yields. 

 

Table 2.1 Summary of N2 sorption isotherm measurement. 

Ligand Exchange ratio (%)a N2 uptake 
(cm3/g, STP)b 

BET surface area 
(m2/g) 

BTB 35.0 1797 3903 
OH-BTB 
NH2-BTB 
azide-BTB 

27.5 1657 3595 
NH2-BTB 18.0 1632 3448 
azide-BTB 31.0 1676 3559 

alkene-BTB 26.5 1587 3391 
alkyne-BTB 
chiral-BTB 

39.4 1631 3463 
chiral-BTB 27.3 1679 3624 

aLigand exchange was performed at 85 °C for 12 h. bN2 sorption was measured at 77 K. 
 

 Ligand exchange of BTB derivatives in PCN-333(Fe) was performed by adopting 

the optimized condition from BTB exchange studies (85 °C, 12 h). A 12 h period of 

incubation time was chosen as a shorter reaction time and gave better porosity with 

compatible extent of exchange. Photographs of the exchanged samples are shown in 

Figure 2.7a. Notably, distinctive color changes were observed for the samples exchanged 

with OH-BTB (olive) and NH2-BTB (dark brown), which clearly indicate the 

incorporation of different ligands. To determine the exchange ratio for each ligand, 1H 

NMR spectra of the digested samples were taken. The exchange ratio for each ligand is 

summarized in Table 2.1. Presumably due to different enthalpy changes (ΔHb) of each 

ligand before and after ligand exchange resulting from their different solubility as well as 
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steric and/or electronic effects, each ligand showed different extent of exchange ranging 

from 18.0% to 39.4% under identical conditions. Nevertheless, all of the functionalized 

BTB ligands were successfully exchanged into PCN-333(Fe) with significant exchange 

ratios. Figure 2.7b shows well-maintained crystallinity of exchanged samples regardless 

of the functional groups (Figure 2.7b).  
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Figure 2.8 IR spectra of azide-BTB exchanged PCN-333(Fe). Inset: magnification of 
characteristic azide group stretching band at ~ 2100 cm-1. 
 

 Particularly, infrared (IR) spectroscopy of the azide-BTB exchanged PCN-333(Fe) 

shows a characteristic stretching band at 2106 cm–1, which is indicative of the presence of 

an azide group (Figure 2.8). The porosity of each exchanged PCN-333(Fe) sample was 

then evaluated by N2 adsorption measurements at 77 K. As expected, the total uptake of 

each sample slightly decreased after the exchange with a functionalized ligand 

(Figure 2.7c). However, it is worth noting that the decrease in total pore volume of 
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exchanged PCN-333(Fe) compared to that of the parent material was not critical 

(approximately decreasing in a range from 7% to 18%, Table 2.1). To the best of our 

knowledge, our materials exhibit one of the highest N2 uptakes among all reported 

mesoporous MOFs with functionalized covalent anchors.39,55 Slight shifts to the lower 

pressures in steps of the N2 adsorption isotherm, in comparison to that of the parent 

material at approximately 0.32 P/P0 and 0.44 P/P0, were observed suggesting changes in 

pore size due to the incorporation of ligands with substituents. DFT pore size distribution 

analysis showed that the smallest pore, which corresponds to the supertetrahedron unit, 

was affected the most by appended functional groups on the BTB derivatives compared 

to that of parent MOF. For example, the pore size distribution of the PCN-333(Fe) 

exchanged with azide-, alkene-, alkyne-, and chiral-BTB that contains larger functional 

groups showed a sharper shift in distribution toward the smaller pores than that of BTB, 

OH-BTB, or NH2-BTB exchanged PCN-333(Fe). In comparison, the middle-sized cages 

and the largest cages are less affected. Assuming the inserted BTB derivatives are well-

distributed, the exchange extent exceeding 25% would suggest at least one face of the 

supertetrahedron is replaced. While the additional functional groups reduce the available 

space inside of the smallest cage, the middle-sized and especially the largest cages are 

much less affected due to their inherent ultralarge pores. Therefore, characteristics of 

mesoporous PCN-333 should be mostly preserved after the implantation of the functional 

anchors. 
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Figure 2.9 Click reaction of azide-BTB exchanged PCN-333(Fe). (a) IR spectra of azide-
BTB exchanged PCN-333(Fe) having different ratios of azide-BTB. (b) Comparison of IR 
spectra of before/after click reaction with azide-BTB exchanged PCN-333(Fe). 
 

Introduction of secondary functionality 

 After successful implantation of covalent anchors into PCN-333, further 

examinations were performed on azide-functionalized PCN-333(M) (M = Fe, Sc) to 

demonstrate introduction of secondary functionality via click chemistry.39,44,67 As 

previously found, before reaching the exchange saturation point providing fresh stock 

solution of the incoming ligand increased the exchange ratio. 
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 Taking this into account, the characteristic peak of the azide group at 2106 cm–

1 was monitored by infrared spectroscopy upon increasing the azide group ratio. As fresh 

stock solution was continuously provided, a more prominent azide stretching band at 2106 

cm–1 was observed in the exchanged sample which indicates the incorporation of more 

azide-BTB ligands in PCN-333(Fe) (Figure 2.9a). Knowing this, a click reaction between 

the azide-functionalized PCN-333(Fe) and methyl propiolate was performed in the 

presence of CuI in DMF (65 °C, 20 h). The disappearance of this azide IR peak at 2106 

cm–1 shown in Figure 2.9b suggests a successful anchorage of methyl propiolate as well 

as completion of the click reaction. The PXRD pattern of the clicked sample also 

confirmed well-maintained crystallinity owing to the robustness of PCN-333(Fe) (Figure 

2.10). 

 

 
Figure 2.10 Comparison of PXRD patterns of before/after click reaction of methyl 
propiolate and azide-BTB exchanged PCN-333(Fe). 
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 To investigate the potential utility of functionalized PCN-333, we further sought 

to expand our experimental design by introducing 4,4-difluoro-4-bora-3a,4a-diaza-s-

indaene (BODIPY), a well-known fluorophore due to its excellent photochemical stability, 

tunable photophysical properties, and high quantum yield. Fluorescence measurements 

involve high sensitivity and rapid implementation, and thus fluorophores such as BODIPY 

derivatives can be widely employed in the MOF field. However, the incorporation of 

fluorophores in MOF as ligands would take substantial synthetic efforts while the 

anchorage of such compounds to a functionalized MOF through a postsynthetic approach 

is more practical.44,68,69 To illustrate our concept, terminal alkyne functionalized BODIPY 

(14) was synthesized to perform a click reaction with azide-functionalized PCN-333(Fe). 

Although the IR spectrum suggests a successful click reaction on PCN-333(Fe), attempts 

to observe fluorescence from BODIPY-clicked PCN-333(Fe) were not successful due to 

the presence of Fe(III) which can quench the emission of BODIPY (Figure 2.11). To avoid 

the interference from the Fe(III) node, we chose colorless PCN-333(Sc) to show the click 

reaction more clearly. 
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Figure 2.11 IR spectra of before/after click reaction of 14 and azide-BTB exchanged 
PCN-333(Fe)  
 
 

 
Figure 2.12 (left) Azide-BTB exchange ratio (%) in PCN-333(Sc) for different incubation 
times. (right) IR spectra of azide-BTB exchanged PCN-333(Sc) that having different ratios 
of azide-BTB.  
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 The exchanged samples with different ratios of the azide group were prepared by 

changing the stock solution as previously found. The extent of azide-BTB exchange was 

determined by 1H NMR spectroscopy upon digestion of samples (Figure 2.12). 

Considering carboxylates bind less strongly to Sc(III) than Fe(III), ligand exchange in 

PCN-333(Sc) should occur more easily. As observed in the exchanging process, ligand 

exchange in PCN-333(Sc) reached an equilibrium quickly because of the easier M–L bond 

dissociation (Figure 2.3f). However, the thermodynamic equilibrium of the exchange 

process was almost independent from M–L bond nature as we analyzed and a slightly 

lower extent of the exchange saturation point was observed in BTB exchange. 

Nonetheless, azide-functionalized BTB showed a comparable exchanged ratio in PCN-

333(Sc) as in PCN-333(Fe).  
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Figure 2.13 (a) Click reaction scheme performed on PCN-333(Sc) with BODIPY 
fluorophore. Photographs are before and after BODIPY introduction on PCN-333(Sc). (b) 
Solid-state fluorescence emission spectra of azide-BTB exchanged PCN-333(Sc) (blue) 
and BODIPY-clicked PCN-333(Sc) (red). λex = 450 nm. (c) Comparison of solid-state 14 
and BODIPY-clicked PCN-333(Sc) (left). Photographs of (i) pristine PCN-333(Sc), (ii) 
azide-BTB exchanged PCN-333(Sc), and (iii) BODIPY-clicked sample in both solid-state 
and suspension (right). 
 

 The click reaction of azide-functionalized PCN-333(Sc) and alkyne-BODIPY (14) 

was successfully performed with a catalytic amount of CuI in THF (65 °C, 21 h) 

(Figure 2.13a). To our delight, BODIPY-clicked PCN-333(Sc) showed strong 
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fluorescence in both suspension and solid-state. Notably, the emission of BODIPY-

clicked PCN-333(Sc) in the solid state is green (λ = 550 nm; Figure 2.13b) suggesting that 

the clicked dye behaves as a monomeric dye, while dye aggregates (14) showed a red 

emission (Figure 2.13c). After close examination of the structure of PCN-333, it is very 

likely that the large pores provide enough space for clicked dyes to be spatially separated 

thereby emitting as single dye molecules. A click reaction on the samples containing 

different loading of azide groups showed that higher loading of azide groups resulted in a 

slight red shift in emission maxima (Figure 2.14). 

 

   
Figure 2.14 (left) Fluorescence emission spectra of azide-BTB exchanged PCN-333(Sc) 
and 14 clicked MOFs in acetone. λex = 450 nm. (right) Solid-state fluorescence emission 
spectra of azide-BTB exchanged PCN-333(Sc) and 14 clicked MOFs. λex = 450 nm. 
 

2.4 Conclusions 

 In summary, a facile functionalization assisted by structural attributes of PCN-333 

has been studied while maintaining the integrity of the parent MOF including ultralarge 
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pores, chemical robustness, and crystallinity. The foregoing results showed a promise that 

the extent of exchange can be tailored by varying temperature, concentration, or 

incubation time as potential applications may require. Furthermore, a variety of functional 

groups can be incorporated into PCN-333 via this strategy to covalently anchor guest 

species. Along this line, introduction of a secondary functionality was successfully 

performed via a click reaction with a BODIPY fluorophore. We anticipate the 

functionalized PCN-333 can serve as a stable platform for further chemistry to be explored 

in future applications. 
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3. DUAL EXCHANGE IN PCN-333: A FACILE STRATEGY TO CHEMICALLY 

ROBUST MESOPOROUS CHROMIUM METAL–ORGANIC FRAMEWORK 

WITH FUNCTIONAL GROUPS* 

3.1 Introduction 

 As an emerging class of inorganic–organic hybrid materials, metal–organic 

frameworks (MOFs) have gained growing attention as advanced porous materials.1 The 

unique combinations of organic/inorganic building blocks that compose these materials 

allow diverse functions leading to various applications.23-25,70-76 Among many features of 

MOFs, mesoporosity is of great interest due to the prospect of hosting large guest 

molecules such as organometallic complexes, nanoparticles, and enzymes, creating 

diverse applications with MOFs.10,28,77-79 Aside from such encapsulation within the large 

pores, molecular level design of organic ligands provides tailor-made structures and 

functionalities for targeted applications.80-85 

 It would be ideal if a mesoporous MOF could be directly synthesized from the 

ligand with a predesigned functionality. It has been shown, however, that in many cases 

this does not lead to a desired product due to the changes in molecular geometry of the 

ligand upon addition of functional group.55,86 As a classic tactic for the aforementioned 

difficulty, postsynthetic exchange has greatly promoted the functionalization of MOFs.42-

46,48-53,55-58,61-63,66,87-92  However, most parent MOFs require that postsynthetic processes 

occur under mild conditions to maintain their integrity. Despite the advances of 

                                                

*Reproduced with permission from Park, J.; Feng, D.; Zhou, H.–C., J. Am. Chem. Soc., 2015, 137, 11801–
11809. Copyright 2015 American Chemical Society. 
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postsynthetic exchange and solvent assisted linker exchange, introduction of various kinds 

of reactive functional groups is still challenging. Also, such methods usually involve labile 

metal–ligand (M–L) bonds in the MOF, suggesting a latent instability of the parent 

material. Therefore, the resulting product with postsynthetically inserted functional ligand 

still needs to overcome the stability issue. 

 With growing attention, MOFs have been utilized in various applications, 

including catalysis, sensing, biomedical imaging, as well as the areas of gas storage and 

separation.23-25,70-73,75,76 As MOF applications have gained broader impacts in materials 

science, it gradually requires even more sophisticated design of materials encompassing 

their compatible stability in targeted applications (i.e., aqueous stability for biomedical 

applications), as well as pore size and shape. As a result, demands for framework 

robustness have increased in pursuit of applicability of MOF in more complex systems.32-

34,41,93-103 However, most reported mesoporous MOFs suffer from weak chemical stability, 

mainly arising from the labile M–L bond in those frameworks.26,29-31,38 Also, reticular 

chemistry which usually involves the extension of linkers to obtain larger pores tends to 

weaken the stability of frameworks.27,104,105 Therefore, extremely inert M–L bond is highly 

encouraged to increase the stability of MOFs with mesopores. 

 On the basis of literature reporting, Cr(III) based clusters might be strong 

candidates to serve as an inorganic node to support mesoporous MOFs as compared to 

other trivalent metal species due to the kinetic inertness of Cr(III).93,106-109 However, such 

inert Cr–carboxylate bonding also impedes the direct synthesis of chromium MOFs (Cr-

MOFs), resulting in few Cr-MOF examples.93,106,108,109 Although postsynthetic metal 
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metathesis has led to obtaining MOFs that cannot be synthesized directly,39,66,110-126 there 

is only one successful example where almost complete exchange, via a microporous 

Cr(II)-MOF intermediate, has yielded a Cr(III) MOF.127 Moreover, the successful 

synthesis of Cr-MOFs typically involves water as a solvent, where solubility of larger 

organic ligands required to achieve larger pores can be rather poor.93,106-109 In particular, 

mesoporous structures are commonly limited to specific topologies, requiring a subtle 

control of synthesis to have the expected configuration of both inorganic and organic 

building blocks,35,108 which often limits the variation of synthetic conditions in Cr-MOF 

system. 

 In addition to the synthetic difficulties, the functionalization of Cr-MOFs has been 

a great challenge. For instance, functionalization through the ligand design in one of the 

most famous mesoporous MOFs, MIL-101(Cr) (MIL stands for Matérial Institut 

Lavoisier), has been limited to a small subset of functional groups, such as −Br, −NO2, 

and −SO3H, while relatively practical functional groups in organic reactions (e.g., −OH, 

−NH2) on the ligands often undergo decomposition under the hydrothermal condition 

(∼200 °C) required for synthesis.128 Although postsynthetic modification could somewhat 

alleviate such difficulties, the conflict between the harsh reaction conditions and inherent 

stability of the parent MOF still hampers the diversification of functionalization. In 

comparison, postsynthetic ligand exchange may be more suitable to diversify the library 

of functionalized Cr-MOFs. However, the inertness of Cr-MOF also impedes efficient 

postsynthetic ligand exchange processes.63,88 
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 Herein we present a stepwise exchange strategy of both ligands and metals, namely 

dual exchange in PCN-333(Fe) for the preparation of functionalized PCN-333(Cr) (PCN 

stands for Porous Coordination Network). After the dual exchange process, functionalized 

PCN-333(Cr) shows well preserved crystallinity, porosity, as well as enhanced chemical 

stability. Understanding of chemical dynamics along with the dual exchange in PCN-

333(Fe) may allow for a generalized route to functionalized Cr-MOFs, which will exhibit 

a maintained structural integrity of parent MOF with desired functional groups and 

enhanced stability. Furthermore, having studied the incorporation of various functional 

groups in PCN-333(Fe), dual exchange shows a great potential to employ many different 

functional groups in the highly stable Cr-MOF platform. 

3.2 Experimental section 

Instrumentation 

 Nuclear magnetic resonance (NMR) spectra were recorded on Varian Inova 500 

spectrometer unless otherwise noted. Powder X-ray diffraction (PXRD) was carried out 

on a Bruker D8-Focus Bragg–Brentano X-ray powder diffractometer equipped with a Cu 

sealed tube (λ = 1.54178) at 40 kV and 40 mA. Fourier transform infrared (FT-IR) 

measurements were performed on a Shimadzu IR Affinity-1 spectrometer. Scanning 

electron microscope (SEM) was performed on QUANTA 450 FEG and energy dispersive 

X-ray spectroscopy (EDS) was carried out by X-Max20 with Oxford EDS system 

equipped with X-ray mapping. N2 adsorption–desorption isotherms at 77 K were 

measured by using a Micrometritics ASAP 2420 system. A high-purity grade (99.999%) 

of gas was used throughout the sorption experiments. Sample was activated by solvent 
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exchange (in several cycles using fresh acetone and hexanes), followed by degassing at 

elevated temperature (150 °C) for 2 h.  

Synthesis 

 Synthesis of PCN-333(Fe). H3TATB (60 mg), anhydrous FeCl3 (60 mg), and 

trifluoroacetic acid (0.6 mL) were dissolved in 10 mL DEF. The mixture was heated in 

150 °C oven for 12 h until a brown precipitate formed. The resulting brown precipitate 

was centrifuged and washed with fresh DMF five times. 

 Synthesis of PCN-333(Sc). H3TATB (80 mg) and ScCl3·6H2O (200 mg) were 

dissolved in 10 mL DMF. The mixture was heated in 150 °C oven for 2 h until a white 

precipitate formed. The resulting white precipitate was centrifuged and washed with fresh 

DMF five times. 

 General procedure for ligand exchange of PCN-333(Fe). First, as-synthesized 

PCN-333(Fe) (ca. 50 mg) was thoroughly washed with hot DMF and the isolated sample 

was then incubated with a stock solution of N3–BTB (50 mg in 10 mL of DMF) at 85 °C 

for 12 h. 

 General procedure for the preparation of PCN-333(Cr). Approximately 50 mg 

of as synthesized PCN-333(M) sample is initially immersed in the CrCl3·6H2O stock 

solution (200 mg in 10 mL of DMF) in 20 mL vial in a 150 °C oil bath. After 30 min of 

first incubation, the solution was decanted after centrifugation and additional 30 min of 

reaction was performed with new CrCl3·6H2O stock solution. Resulting product was then 

thoroughly washed with DMF five times. (Note: To preserve the morphology of the 

exchanged product, the reaction was not stirred, but refluxed. However, we observed the 
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exchange underwent slightly faster with stirring to yield similar exchanged metal ratio. In 

addition, according to our control experiment (pure CrCl3·6H2O in DMF), when heating 

at 150 °C is longer than 3 h, green precipitates gradually formed. Therefore, it is suggested 

not to leave the exchange reaction in mother solution too long at high temperature, to 

prevent possible formation of insoluble Cr formates or other unknown species, which are 

likely to affect porosity and crystallinity of the product.) 

 General procedure for metal metathesis of N3–PCN-333(Fe). Approximately 

10 mg of N3–PCN-333(Fe) samples are initially immersed in the CrCl3·6H2O stock 

solution (40 mg in 2 mL of DMF) at 150 °C oven. After 30 min of first incubation, the 

solution was decanted after centrifugation and additional 30 min of reaction was 

performed with new CrCl3·6H2O stock solution. Resulting product was then thoroughly 

washed with DMF five times. 

Sample activation procedure  

 Thoroughly washed samples underwent solvent exchange with acetone followed 

by hexanes at least five times, respectively and dried in a pre-heated 85 °C oven for 30 

min. Resulting powder was then activated for BET measurement at 150 °C for 2 h. 

MOF digestion  

 Approximately 10 mg of sample was digested with 37% HCl, refluxed overnight, 

and washed with water until a neutral pH was reached. DMSO-d6 (0.5 mL) was added to 

dissolve the ligands. The 1H NMR spectrum (500 MHz) was collected at room temperature 

(∼21 °C). 
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Supernatant analysis 

 Upon completion of treatment, the supernatant was removed to examine TATB or 

N3–BTB released from the parent MOF. The aliquot of supernatant was filtered through a 

syringe filter to exclude the possible presence of MOF crystals remaining and the ligands 

in supernatant were recovered by acidification with few drops of 1 M HCl, followed by 

washing with water. The resulting precipitates were dried and analyzed by 1H NMR 

spectroscopy. 

Click reaction  

 TEPP (50 mg) was added to a mixture of N3–PCN-333(Cr) (30 mg) and CuI (5 

mg) in DMF (7 mL) in a round-bottom flask. The reaction mixture was stirred at 60 °C 

for 28 h. The resulting precipitate was collected by centrifugation, washed thoroughly with 

DMF followed by acetone and hexanes, and dried to afford a dark purple solid in 

quantitative yield. 
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3.3 Results and discussion 

 
Figure 3.1 (a) Ligands in MIL-100 (BTC) and PCN-333 (TATB). (b) The largest cage in 
PCN-333. (c) Supertetrahedron in PCN-333. 
 

PCN-333: An ideal scaffold for functionalizable Cr-MOF with mesoporosity 

 Our group recently reported a mesoporous MOF, PCN-333,40 constructed from 

trivalent metal ions and isoreticular structure to MIL-100.93 Due to the larger size of 

composing ligand 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoate (TATB), extended version of 

benzene-1,3,5-tricarboxylate (BTC), PCN-333 exhibits larger pores (∼5.5 nm) than that of 

MIL-100 (∼2.9 nm), which allow the incorporation larger guest species as well as faster 

diffusion and provide sufficient room for chemical reactions in the mesopores (Figure 3.1). 

Having utilized the structural support of PCN-333, we recently studied a facile route to 

functionalize PCN-333(M) [M = Fe(III), Sc(III)] via postsynthetic ligand exchange.129 As 

a result of the ligand exchange, a variety of reactive functional groups were introduced 

into PCN-333 to covalently anchor the guest molecules. Despite the successful 
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introduction of various functional groups into PCN-333, however, its innate stability at 

the expense of the extended ligand to achieve larger pore still remains a challenge for its 

utilization in harsh chemical conditions for MOFs (e.g., water) due to the relative lability 

of the Fe(III)– or Sc(III)–carboxylate bonds in aqueous environment. Having reviewed the 

reported stability of Cr-MOFs, we conceived that PCN-333(Cr) with covalent anchors 

might serve as a better platform for the utilizations in harsh environment. However, a 

direct synthesis of PCN-333(Cr) is not trivial due to the conflict between the hydrothermal 

synthetic condition required for the synthesis of Cr-MOFs and the poor solubility of TATB 

in water. Moreover, even if PCN-333(Cr) was obtained, it would be challenging to 

introduce functional group into the framework through the postsynthetic ligand exchange, 

because the kinetic inertness of Cr(III) prevents an effective ligand exchange process. 

Therefore, a stepwise exchange was considered to obtain functionalized PCN-333(Cr). 

Optimization for metal metathesis in PCN-333 

 Having determined that a functionalizable PCN-333(Cr) might serve as a useful 

platform by providing exceptional stability and diverse functionality with large room for 

chemical reactions within the pores, we designed a procedure to achieve the targeted 

product, namely dual exchange. Possible routes to functionalized PCN-333(Cr) via dual 

exchange were conceived as two main schemes as shown in Scheme 3.1: (1) Metal 

exchange followed by ligand exchange and (2) Ligand exchange followed by metal 

exchange. 

 Prior to examining a better strategy to obtain functionalized PCN-333(Cr), PCN-

333(Sc) and PCN-333(Fe) were tested for a Cr(III) metathesis to choose the most suitable 
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base MOF for successful dual exchange. PCN-333 was synthesized as previously reported. 

Because Cr(III) salts often yield insoluble formates due to DMF decomposition with long 

reaction time at high temperature, the reaction time was limited to preserve crystallinity 

and porosity while maintaining a high metal exchange ratio. After optimization for the 

reaction time, the following Cr(III) metathesis in PCN-333(M) was performed for 1 h by 

replacement of CrCl3·6H2O stock solution in DMF after the first 30 min of reaction. 

 To investigate an optimal exchange reaction temperature, first, PCN-333(Sc) and 

PCN-333(Fe) were incubated for 1 h (by changing stock solution after first 30 min) in 

Cr(III) stock solution at 85 and 150 °C in preheated ovens. Interestingly, both PCN-

333(Sc) and PCN-333(Fe) showed no apparent color changes upon metathesis at 85 °C 

(Figure 3.2b,c). Energy-dispersive X-ray (EDX) spectra revealed low exchange ratios of 

both samples (37.0% for PCN-333(Sc/Cr) and 23.0% for PCN-333(Fe/Cr)), and especially 

poor powder X-ray diffraction (PXRD) patterns of PCN-333(Sc) (Figure 3.2). Notably, 

PCN-333(Sc) showed slightly higher Cr(III) exchange ratio than that of PCN-333(Fe) at 

85 °C, while showing no PXRD pattern, which suggests its lability, whereas at 150 °C, 

both samples generally showed much higher Cr(III) exchange ratios than those at lower 

temperature [64.8% for PCN-333(Sc/Cr) and 99.8% for PCN-333(Fe/Cr)]. 
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Figure 3.2 (a) Exchanged Cr(III) ratios in PCN-333(Sc) (left) and PCN-333(Fe) (right) 
after metal metathesis at different temperatures for 1 h. (b-c) Photographs and PXRD 
patterns of PCN-333(Sc) (b) and PCN-333(Fe) (c) after metal metathesis at different 
temperatures for 1 h. 
 

 In particular, Cr(III) metathesis from PCN-333(Fe) showed near complete 

exchange along with well-maintained crystallinity and porosity, which were confirmed by 
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PXRD (Figure 3.2c) and N2 sorption at 77 K, respectively (Figure 3.3). On the other hand, 

the diffraction of PCN-333(Sc) almost completely disappeared after the Cr(III) metathesis. 

It is reasoned that these results are due to the discrepancy between dissociation rates of 

leaving metal species in the framework and incoming metal species from the solution. For 

instance, in our previous study of ligand exchange in PCN-333, the successful ligand 

exchange was carried out at low temperature (85 °C), which suggests it gives enough 

energy to overcome the energy barrier of Sc(III)–carboxylate or Fe(III)–carboxylate bond 

dissociations within the framework. Closely looking at the metal metathesis process, the 

M–L bond dissociation is required for both incoming metal complex and metals in the 

parent MOF to accomplish the overall exchange process. Even though the temperature is 

sufficient enough for the ligand dissociation in the framework, much slower ligand 

dissociation in the incoming Cr(III) complex can still be a rate limiting step. Therefore, 

the Cr(III) metathesis at low temperature was not successful. On the other hand, when the 

given energy is enough for breaking Cr(III)–X (i.e., Cl–) bond from Cr(III) salts and 

following association with the open carboxylates in the framework after Fe(III) 

dissociation for successful exchange, Cr(III) exchange reached to higher exchange ratio 

in both cases (Figure 3.2a). When it comes to the retention of framework structure, 

however, the metathesis in PCN-333(Fe) was superior to PCN-333(Sc), presumably due 

to the relative robustness of PCN-333(Fe) resulting from the slower Fe(III)–carboxylate 

dissociation rate than that of PCN-333(Sc) allowing compatible exchange environment 

with Cr(III) association. Particularly, in the metal metathesis of labile PCN-333(Sc) 

platform, the framework would undergo significant destruction by free Cr(III) and 
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decomposed reactive species from DMF before obvious metal metathesis happened.127 

After discovering the previous result, PCN-333(Fe) was chosen as a platform for studying 

the dual exchange. 

 
Figure 3.3 (a) Photographs of PCN-333(Fe) and PCN-333(Cr) exchanged at 150 °C. (b) 
N2 sorption isotherm of PCN-333(Fe) and PCN-333(Cr) at 77 K. 
 

 
Figure 3.4 (a) Entropy change and (b) enthalpy change of the system during the ligand 
exchange. 
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Analysis of dual exchange 

 Following up on our previous study, exploring the chemical dynamics of ligand 

exchange in PCN-333,129 we further sought to expand our observations and 

rationalizations focused on changes of entropy and enthalpy during the dual exchange. As 

was discussed in the previous study, the entropy change of the system (ΔSsys), comprising 

a solid-state MOF and exchanging solution during the ligand exchange, was assumed to 

be largely dependent on ΔS in solution, as ΔS in the solid state MOF may be negligible. 

Thus, the ligand exchange process in PCN-333 was driven by a drastic entropy increase 

(ΔSsys
LE > 0) upon the provision of excess amount of the exchanging ligands (Figure 3.4). 

Similarly, the entropy change of the system during the metal metathesis (ΔSsys
MM) follows 

the same concept (Figure 3.5); thus, it yields a positive ΔSsys
MM due to the excess input of 

Cr(III) in solution to replace Fe(III) in the framework. In Ssys standpoint, therefore, both 

ligand exchange and metal metathesis should have entropy contributions for the desired 

exchanges from the excess of exchanging entries. 

 

 

Figure 3.5 (a) Entropy and (b) enthalpy change of system during the metal metathesis. (c) 
Gibbs free energy of system during the metal metathesis in PCN-333. 
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 When it comes to the enthalpy analysis of the ligand exchange process in PCN-

333, as the degree of exchange increases the enthalpy of the system (Hsys) also increases 

(ΔHsys > 0) due to the insertion of BTB (1,3,5-benzenetribenzoate) derivatives with 

unfavored conformation in the framework (Figure 3.6). For this reason, although the large 

ΔSsys at the early stage of ligand exchange could drive the exchange reaction forward, the 

system establishes an equilibrium with a certain ratio of ligand exchange. 

 

 
Figure 3.6 Structures of TATB and BTB derivative (OH-BTB). Top view (left) and side 
view (right) showing preferred non-planarity of BTB derivative.  
 

 However, metal metathesis between Fe(III) and Cr(III) accompanies the changes 

in M–L bond nature, comprising the framework, whereas the bond nature in the ligand 

exchange remains the same as Fe(III)–L bond (L represents carboxylate) in the 
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framework. Meanwhile, metal metathesis also involves changes of enthalpy in solution. 

For example, Fe(III) ions, coming out from the framework replace Cr(III) in the provided 

CrX6 complex (X = Cl–, DMF), resulting in FeX6 species in solution. Consequently, there 

are two processes involving enthalpy changes of the system: (1) ΔHFe, corresponding to 

the enthalpy change of Fe(III) from the MOF to the solution; (2) ΔHCr corresponding to 

the enthalpy change of Cr(III) species from solution to the MOF. Thus, the enthalpy 

change of the system can be represented as ΔHsys = ΔHFe + ΔHCr. 

 Understanding of ΔHsys during metal metathesis can be interpreted by focusing on 

electrostatic interaction and orbital interaction upon the exchange event. First, the Cr(III) 

has a smaller ionic radius than that of high spin Fe(III), leading to a larger Z/r value.130 

Considering carboxylate (L) is also a harder Lewis base compared to ligands, X, when 

Cr(III) coordinates to the carboxylates in the framework, the electrostatic interaction 

becomes stronger, providing larger enthalpy change upon metathesis compared to 

Fe(III).131 
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Figure 3.7 Analysis of the orbital interaction contribution to ΔHsys using ligand field 
theory with a simplified coordination environment (Oh) for the metal metathesis process 
in PCN-333. 
 

 Aside from the electrostatic interaction, the orbital interaction also changes for 

each metal species along with the metathesis. To compare the changes in orbital 

interaction, which contributes to ΔHsys, ligand field theory (LFT) was applied to simplify 

the given scenario. Although the actual coordination environment for the M(III) (M = Cr 

or Fe) in the framework gives rise to a C4v symmetry due to the two different axial ligands 

and that for MX6 species in the solution may even vary, herein we assumed Oh symmetry 

for both cases to simplify the analysis of the contributions from the coordinating ligands 

to ΔHsys. 

 Considering ligands X in solution are relatively weaker field ligands than 

carboxylate (L),132 and the metal-carboxylate (M–L) bonds are dominant in the 
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framework, the changes in the coordinating ligands upon metathesis will have impacts on 

ΔHsys. For example, when Cr(III) is exchanged from solution into the framework, 

the d orbital splitting energy changes from ΔO
X to ΔO

L (Figure 3.7). As Cr(III) 

has d3 configuration, such coordination environment change gives out a net ligand field 

stabilization energy (LFSE) of −1.2(ΔO
L – ΔO

X). Therefore, from the Cr(III) standpoint, as 

ΔO
L is larger, the system gets more stabilized. On the other hand, because Fe(III) adopts 

high spin d5 configuration with weak field ligands, the LFSE is canceled out from its two 

electrons in eg orbitals, resulting in no stabilization impacts from the exchange event. 

Overall, the system gets more stabilized after metal metathesis from the orbital interaction 

aspect. In short, while both electrostatic interaction and orbital interaction go through the 

changes during the metal metathesis, the absolute value of ΔHCr is more likely to be larger 

than that of ΔHFe, making the ΔHsys negative and the overall metal metathesis from PCN-

333(Fe) to PCN-333(Cr) an exothermic process. Thus, the metal metathesis from PCN-

333(Fe) to PCN-333(Cr) can be considered as a both entropically and enthalpically 

favored process. 

 According to the findings in the previous section, the metal metathesis is optimized 

at high temperatures (150 °C). Interestingly, we found the metatheses of from Sc(III) to 

Cr(III) and Fe(III) to Cr(III) at 85 °C showed very low exchange ratios, suggesting indeed 

Cr(III)–X bond has to be sufficiently activated by high temperature. Such high 

temperature not only provided sufficient energy for Cr(III)–X bond dissociation, but also 

allowed a short reaction time, avoiding a long exposure of MOF in the reactive 

environment which further guarantees the framework intactness. Moreover, owing to the 
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high reaction temperature, the entropy contribution to ΔGsys is magnified from 

the TΔS term, which pushes the exchange more forward. In particular, our optimized 

metathesis involves the exchange of fresh the CrCl3·6H2O solution after first 30 min of 

exchange; and thus this can remove the Fe(III) in the solution to facilitate an entropy 

driven process, further driving the reaction forward to the almost fully exchanged PCN-

333(Cr). 

 

 
Scheme 3.1 Energy Diagrams of Two Possible Dual Exchange Routes to Functionalized 
PCN-333(Cr). 
 

Functionalization of PCN-333(Cr) through dual exchange 

 Considering the previous results, schematic energy diagrams representing possible 

dual exchange pathways are summarized in Scheme 3.1. Pathway 1 (path 1) shows a case 

where the dual exchange to get the functionalized PCN-333(Cr) in an order of ligand 

exchange followed by metal metathesis. As shown in path 1, each step involves 

kinetically and thermodynamically favored process as analyzed the given temperature was 

sufficient to drive the reactions forward. From the framework standpoint, path 1 involves 
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a dissociation of Fe-carboxylate bonds at each step, which takes less energy than breaking 

Cr–carboxylate bond. 
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Figure 3.8 PXRD patterns of as-synthesized materials. 
 

 On the other hand, path 2, in which the functionalization (ligand exchange) is 

done after Cr-MOF formation (metal metathesis), requires a large amount of energy to 

overcome the barrier of Cr–carboxylate bond dissociation for the ligand exchange step. 

Therefore, to obtain functionalized PCN-333(Cr), thermodynamically favored path 1 was 

chosen for the double exchange in the following experiments. However, to confirm our 

hypothesis, path 2 was also examined for its feasibility for dual exchange. Having 

prepared PCN-333(Cr) by the optimized condition as previously described, first a ligand 

exchange in PCN-333(Cr) was tested via path 2 as shown in Scheme 3.1. For an incoming 

ligand, one of BTB derivatives having an azide group (N3–BTB; shown in Figure 3.9a) 

was chosen as a model inserting ligand because of its versatile utilities in many 
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applications and allowance of click reaction after successful implantation of functional 

group, so as to confirm the feasibility of a secondary chemical reaction onto dual 

exchanged PCN-333(Cr). The ligand exchange followed the optimized condition (85 °C, 

12 h) from our previous study wherein the exchange condition guarantees the crystallinity 

and porosity.129 As a result of dual exchange following the path 2, though crystallinity of 

PCN-333(Cr) was retained after going through the ligand exchange, 1H NMR analysis of 

supernatant of reaction revealed that no TATB released from PCN-333(Cr) under the 

given condition, as expected. 

 

 
Figure 3.9 (a) N3–BTB used for ligand exchange and photographs of N3–PCN-333(Fe), 
N3–PCN-333(Cr), and N3–PCN-333(Cr) after click reaction. (b) N2 sorption isotherm of 
N3–PCN-333(Fe), N3–PCN-333(Cr), and N3–PCN-333(Cr) after click reaction. (c) PXRD 
patterns of N3–PCN-333(Fe) and (d) N3–PCN-333(Cr) after different treatments. 
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Having demonstrated path 2 is not suitable to realize dual exchange on the PCN- 

333(Fe) platform, we then sought to optimize path 1 to obtain the dual exchanged product. 

Again the ligand exchange from TATB to N3–BTB in PCN-333(Fe) was performed as 

previously stated. 1H NMR study confirmed that the ligand exchange ratio in PCN- 

333(Fe) showed a similar N3–BTB ratio to the previous report (∼30%). Also, the N3–BTB 

inserted PCN-333(Fe) (N3–PCN-333(Fe)) showed well retained crystallinity and porosity 

(Figures 3.8 and 3.9). In addition, a characteristic stretching band of the azide group at 

2106 cm–1 was observed from infrared (IR) spectrum of N3–PCN-333(Fe). As a second 

step of dual exchange in path 1, the previously optimized condition for metal metathesis 

was then applied to obtain the azide functionalized PCN-333(Cr) (N3–PCN-333(Cr)). 

After 1 h of Cr(III) metathesis, the dual exchanged sample was prepared accompanying 

with an obvious color change from bright yellow to green (Figure 3.9a). EDX results 

revealed that ∼97% of Fe(III) in N3–PCN-333(Fe) was exchanged to Cr(III) without 

compromising its crystallinity (Figure 3.9 and Table 3.1).  

Table 3.1 Summary of dual exchange 

Entry 
N2 uptake 
(cm3/g)a 

Pore volume 
(cm3/g) 

Exchanged Cr 
(%)b 

PCN-333(Fe) 1985 3.07 n/a 
PCN-333(Cr) 1838 2.84 ~99 

N3-PCN-333(Fe) 1663 2.57 n/a 
N3-PCN-333(Cr) 1707 2.64 ~97 

Clicked-PCN-
333(Cr) 1033 1.60 n/a 

aN2 sorption was measured at 77 K. bBased on EDX results.
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Figure 3.10 DFT pore size distribution of samples obtained from N2 sorption isotherm at 
77 K. 
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Figure 3.11 IR spectra of double exchanged N3-PCN-333(Cr).  

 

 Additionally, 1H NMR analysis of supernatant of Cr(III) exchange reaction 

showed no detectable TATB or N3–BTB ligands leaching out from the parent MOF, which 

further suggests there is minimal destruction of framework as supported by PXRD. As 

shown in Figure 3.9b, the porosity of N3–PCN-333(Cr) was almost perfectly retained 

compared to its starting material, N3–PCN-333(Fe). According to DFT pore size 

distribution, a reduced pore size of the smallest pore in both N3–PCN-333(Fe) and N3–

PCN-333(Cr) was observed (Figure 3.10). This suggests the presence of functional group 

on the N3–BTB affected the smallest cage most. However, as we analyzed in the previous 

study, the middle-sized cages (∼4.5 nm) and the largest cages (∼5.5 nm) remained less 

affected due to their extralarge size. Thus, dual exchanged PCN-333(Cr) also showed well 
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preserved characteristics of mesoporosity after going through a sequential exchange of 

ligands and metals. IR spectrum of N3–PCN-333(Cr) clearly showed the azide stretching 

band, which further confirms the undamaged functional group after the dual exchange 

process (Figure 3.11). In addition, after the metal metathesis from Fe(III) to inert Cr(III) 

of azide functionalized PCN-333, significantly enhanced stability than that of the parent 

material was observed. For instance, PXRD patterns showed that crystallinity of N3–PCN-

333(Cr) remains intact after submersion in deionized water for 7 days whereas that of N3–

PCN-333(Fe) showed gradually decreasing crystallinity upon the identical treatment. 

Moreover, N3–PCN-333(Cr) showed well maintained crystallinity in harsh conditions, 

such as in 1 M HCl and 10 mM NaOH after treatment for 24 h, while N3–PCN-333(Fe) 

was dissolved under the same conditions (Figures 3.9c,d). These findings suggest that dual 

exchange can be used as a means to prepare functionalized Cr-MOF. Expectedly, our 

results show successful dual exchange process via path 1, but not via path 2. This may 

seem different from a work by Cohen and co-workers that has studied a similar concept, 

called tandem exchange,49 which is the only example involving both ligand exchange and 

metal metathesis within one framework yet to our best knowledge. Tandem exchange 

allowed for the preparation of microporous heterometallic zeolitic imidazolate 

frameworks (ZIFs), where two routes (e.g., different sequences of exchanges similar to 

Scheme 3.1) showed very similar results out of any pathway because of the similar lability 

of Zn–imidazolate and Mn–imidazolate bonds. Nonetheless, considering the different M–

L bond natures and structures of each MOF, our rationalizations still validate the 

unfeasibility of dual exchange via path 2, while supporting path 1 in the current work and 
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the results of Cohen’s work. As we have demonstrated the successful ligand exchange in 

PCN-333(Fe) with a variety of BTB derivatives, other functional groups could also be 

introduced into PCN-333(Cr). Therefore, dual exchange strategy not only provides a facile 

route to obtain extremely robust Cr-MOFs, but also allows a generalized functionalization 

method of highly stable Cr-MOFs, which can vastly expand the scope of MOF 

applications. 

 
Figure 3.12 (a) TEPP used for the click reaction in N3-PCN-333(Cr). (b) IR spectra of N3-
PCN-333(Cr) before and after the click reaction. (c) SEM-EDX mapping of N3-PCN-
333(Cr) after the click reaction. 
 
 
Click reaction in N3–PCN-333(Cr) 

 Having dual exchanged MOF prepared, a click reaction was performed on N3–

PCN-333(Cr) to demonstrate the introduction of large entity (Table 3.1). To illustrate our 

concept, meso-tetra(4-ethylphenyl)porphyrin (TEPP) was synthesized due to its two-

dimensional large size (18 Å × 18 Å), which will demonstrate the feasibility of covalent 
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anchorage of a large guest molecule in the dual exchanged platform. The center of TEPP 

was metalated with Zn(II) aiming to achieve information about its spatial distribution by 

scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX). With 

this in mind, the click reaction between the N3–PCN-333(Cr) and Zn-TEPP was performed 

in the presence of CuI in DMF (60 °C, 28 h) with stirring. The completion of reaction was 

determined by the disappearance of the azide band at 2106 cm–1 in the IR spectrum as 

shown in Figure 3.12b. The color of sample changed from green to dark purple upon the 

anchorage of Zn-TEPP in PCN-333(Cr), indicating successful incorporation of the 

strongly colored porphyrin (Figure 3.9a). In addition, the PXRD pattern of the clicked 

MOF also showed unaltered diffraction peaks, suggesting the robustness of PCN-333(Cr) 

scaffold (Figure 3.8). In parallel, porosity of N3–PCN-333(Cr) was also examined. Figure 

3.9b showed reduced N2 uptake, which distinctly indicates the inserted TEPP does take up 

the corresponding pore volume in the MOF. Nevertheless, even after the incorporation of 

such large entity, the material still retains sufficient porosity (pore volume 1.60 cm3/g) 

which may allow a volumetric capacity for further generations of guest molecules 

inclusion in PCN-333(Cr). As the size of TEPP is larger than the smallest cages (11 Å) in 

PCN-333, but much smaller than the middle sized cages (45 Å) and the largest cages (55 

Å), theoretically Zn-TEPP can only occupy the middle sized cages and the largest cages. 

Expectedly, the pore size distribution showed the decreased size of middle cages and 

largest cages, as well as significantly decreased pore volume of those two cages while the 

smallest cage is not much affected after N3–BTB insertion, which matches well with our 

size analysis (Figure 3.13). Next, we further sought to visualize positions of Zn-TEPP in 
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the PCN-333(Cr). As shown in Figure 3.12c, SEM/EDX mapping of this sample shows 

the inserted Zn-TEPP molecules via click reaction are well distributed throughout the 

crystals, indicating the exchanged ligands are well dispersed and the click reaction 

occurred evenly in the MOF through the efficient diffusion utilizing its large pores. 

Considering an ideal atomic ratio between M(III) and ligands in PCN-333(M) is 3:2 by 

structure, the ratio of ∼5:1 between Cr(III) and N3–BTB is expected in the framework, 

based on the ∼30% of ligand exchange. In accordance with this analysis, the EDX results 

of clicked-PCN-333(Cr) matched well (Cr:Zn = 4.86:1), which further supports most azide 

group in the MOF reacted with the large guest molecule, TEPP, as well as successful 

incorporation of N3–BTB (Table 3.2). 

 

Figure 3.13 Comparison of DFT pore size distributions before and after the click reaction 
with TEPP (obtained from N2 sorption isotherm at 77 K). 
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Table 3.2 Summary of EDX results. Numbers presented in the table were the average of 
at least three independent measurements. *Standard Deviation. 

Sc 
(atomic %) 

Fe 
(atomic %) 

Cr 
(atomic %) 

Cr Exchange 
Ratio (%) *SD (%)

PCN-333(Sc/Cr) 
at 85 °C 2.99 n/a 1.77 37.03 ±3.79 

PCN-333(Sc/Cr) 
at 150 °C 2.08 n/a 3.68 64.83 ±2.12 

PCN-333(Fe/Cr) 
at 85 °C n/a 4.83 1.56 23.02 ±8.34 

PCN-333(Fe/Cr) 
at 150 °C n/a 0.02 5.02 99.79 ±0.30 

N3-PCN-
333(Fe/Cr) 
at 150 °C 

n/a 0.09 4.4 97.48 ±3.56 

Fe 
(atomic %) 

Cr 
(atomic %) 

Zn 
(atomic %) Cr:Zn ratio 

Clicked-N3-PCN-
333(Cr) 0 3.69 0.76 4.86:1 

3.4 Conclusions 

In summary, a dual mode of postsynthetic exchange (dual exchange), involving a 

sequential exchange of ligands and metals in PCN-333(Fe) has been studied for the 

preparation of functionalized PCN-333(Cr). These results illustrate a possible step forward 

for the functionalization of mesoporous Cr-MOFs that allow covalent anchors for guest 

molecules, sufficient room (extralarge pore) for the introduction of secondary 

functionality, and exceptional stability from inert Cr(III). In addition, our rational design 

and analyses of dual exchange process give a comprehensive understanding of chemical 

dynamics in PCN-333 during dual exchange, following up our previous study of ligand 

exchange in this platform. The dual exchanged Cr-MOF, N3–PCN-333(Cr) showed 

maintained integrity of the parent MOF, functionality, and enhanced chemical stability. 
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Meanwhile, dual exchange strategy may allow incorporation other wanted functional 

groups into PCN-333(Cr) platform, as noted. These findings have enabled the preparation 

of functionalized PCN-333(Cr) with a design flexibility to be utilized as a stable platform 

for a variety of desired applications by exploiting facile functionalization, enhanced 

chemical stability, and extremely large pores which will allow for more possible chemistry 

with MOFs. 
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4. PHOTOCHROMIC METAL–ORGANIC FRAMEWORKS: REVERSIBLE 

CONTROL OF SINGLET OXYGEN GENERATION* 

4.1 Introduction 

 Singlet oxygen (1O2) is a reactive oxygen species (ROS) which can be generated 

by cellular metabolism, redox chemistry, or photosensitization between a photosensitizer 

and molecular oxygen (3O2) upon irradiation.133-138 The development of a photosensitizer 

for the generation of singlet oxygen is of great interest owing to potential applications 

including industrial wastewater, photochemical synthesis, and photodynamic therapy 

(PDT).139-146 While progress has been made to advance photosensitizers, more recently 

the design of a system in which the production of singlet oxygen is can be controlled or 

activated, upon environmental changes or interaction with biomolecules or nanomaterials, 

has attracted growing attention.139,147-153 However, such methods often involve irreversible 

or passive interaction, which may lead to imprecise control over 1O2 generation. In this 

sense, a system which inherently bears a photosensitizer and control functionality could 

be ideal to achieve controlled generation of singlet oxygen. 

 Photochromic molecules, which upon photoirradiation exhibit a reversible 

transformation between isomers having different properties, hold considerable promise 

for optical switches as a control unit in smart materials.154-156 Of the many photochromic 

compounds, dithienylethene (DTE) derivatives are one of the most promising class of 

compounds because of their thermal stability, rapid response, and fatigue resistance.154,157-

                                                

*Reproduced with permission from Park, J.; Feng, D.; Yuan, S.; Zhou, H.-C. Angew. Chem. Int. Ed. 2015, 
54, 430–435. Copyright 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 
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160 By employing the DTE photochromic switch and a porphyrinic photosensitizer in a 

homogeneous bicomponent system, Feringa et al. have recently demonstrated reversible 

control of singlet oxygen generation.161  

 Attachment of the catalyst onto solid support materials, such as silica or metal 

oxides, has shown the potential to integrate distinctive attributes of both homogeneous 

and heterogeneous catalysis.162-164 For instance, a heterogeneous system of two or more 

incompatible components could be of great value because of the ability to accommodate 

various functionalities as well as efficient recovery and recyclability. Along these lines, 

researchers have strived to design a photosensitizer in a hybrid material form to 

incorporate these features into one system for photocatalysis.165-173 However, most of the 

approaches suffer from synthetic difficulty, leaching, and improper spatial 

arrangement.162,167,174 

 Metal–organic frameworks (MOFs) are an emerging class of porous materials and 

have captured widespread research interest because of their design flexibility and viability 

in potential applications such as gas storage/separation, sensing, and catalysis.1,70,71 More 

recently, MOFs have been explored as light-harvesting platforms.6,175-179 Because MOFs 

provide highly ordered structures in proximity to each other but not in direct contact, 

incorporation of chromophores as linkers to construct MOFs gives rise to an efficient 

platform for energy transfer. As a result of the structural diversity and tunability of MOFs, 

it is very convenient to introduce multiple functional moieties into the framework, thus 

making MOFs as ideal candidates for realizing cooperative functionalities based on 

periodic arrangement on a molecular scale.180 Meanwhile, leaching of each component 
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can be alleviated on account of the strong coordination bond. Moreover, the porous feature 

of MOFs allows all the functionalities within the framework to be accessible by incoming 

reactants regardless of their solubility. 

 Herein, we present two MOFs, namely PC-PCN (photochromic porous 

coordination network) and SO-PCN (singlet oxygen-generating porous coordination 

network) which contain 1,2-bis(2-methyl-5-(pyridin-4-yl)thiophen-3-yl)cyclopent-1-ene 

(BPDTE) as a photochromic switch. Notably, a molecular dyad system which contains a 

photochromic switch and photosensitizer was well established with SO-PCN. The 

reversible control over 1O2 generation through a competition of energy transfer pathways 

upon irradiation at specific wavelengths in SO-PCN was studied. Also, SO-PCN was 

demonstrated as a heterogeneous catalyst for photooxidation of 1,5-dihydroxynaphthalene 

(DHN). 

4.2 Experimental section 

Materials 

 All starting materials and solvents were used as received without further 

purification from commercial suppliers. 2-Chloro-5-methylthiophene was purchased from 

Alfa Aesar. Silica gel (40 − 42 µm) was purchased from Silicycle Inc. The abbreviation 

for some solvents and reagents were listed here: N,N-dimethylformamide (DMF), 

dimethylsulfoxide (DMSO), acetonitrile (MeCN), tetrahydrofuran (THF), and ethyl 

acetate (EtOAc). 
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Instrumentation 

 Synthetic manipulations that required an inert atmosphere (where noted) were 

carried out under nitrogen using standard Schlenk techniques. Nuclear magnetic resonance 

(NMR) spectra were recorded on Mercury 300 spectrometer and Varian Inova 500 

spectrometer. The chemical shifts are given in units of δ (ppm) relative to 

tetramethylsilane (TMS) where δ (TMS) = 0, or referenced to the residual solvent 

resonances. Splitting patterns are denoted as s (singlet), d (doublet), t (triplet), q (quartet), 

quin (quintet), m (multiplet), and br (broad). Single crystal diffraction data set was 

collected at 110 K on a Bruker APEX CCD diffractometer with MoKα radiation (λ = 

0.71609 Å). Powder X-ray diffraction (PXRD) was carried out on a Bruker D8-Focus 

Bragg-Brentano X-ray powder Diffractometer equipped with a Cu sealed tube (λ = 

1.54178) at 40 kV and 40 mA. UV-Vis spectra were recorded on Shimadzu UV-2450 

spectrophotometer. Fluorescence spectra were recorded on Horiba Fluorolog 

spectrofluorometer. Fourier transform infrared (IR) measurements were performed on a 

Shimadzu IR Affinity-1 spectrometer.  High resolution electrospray ionization mass (ESI-

MS) spectra was obtained at Texas A&M university mass spectrometry facility. 
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Synthesis 

 
Scheme 4.1 Synthetic scheme of 3 
 

 1,5-Bis-3-(2-chloro-5-dimethylthienyl)-1,5-pentadione (1). To a mixture of 2-

Chloro-5-methylthiophene (5 g, 37.7 mmol) and glutaryl chloride (3 g, 17.95 mmol) in 

nitromethane (150 mL) was added AlCl3 (5.3 g, 39.5 mmol) under N2 atmosphere at 0 °C. 

The solution was then stirred for 4 h at room temperature. Afterward, the reaction mixture 

was poured onto ice-water and the resulting mixture was extracted with CH2Cl2. The 

combined organic layers were dried over anhydrous MgSO4, the solvent was removed in 

vacuo and the resulting crude product was purified by column chromatography (silica, 

hexanes: EtOAc = 30:1) to yield 1 as a light yellow solid (84%).1H NMR (500 MHz, 

CDCl3): δ = 7.18 (s, 2H), 2.86 (t, 4H), 2.66 (s, 6H), 2.06 (quin, 2H). 13C NMR (125 MHz, 

CDCl3): 194.9, 147.7, 134.9, 126.8, 125.3, 40.5, 18.1, 16.1. 

 1,2-bis(5-chloro-2-methylthiophen-3-yl)cyclopent-1-ene (2). TiCl4 (3.9 g, 20.7 

mmol) was dissolved cautiously in ice-cooled dry THF (200 mL) under N2 atmosphere 

whereupon the solution turned yellow. To the mixture was added Zn powder (1.63 g, 25 
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mmol) and the resulting mixture was stirred for 45 min at 65 °C. Afterwards, the reaction 

was cooled to 0 °C with an ice bath and compound 1 (3 g, 8.3 mmol) was added and was 

reheated to 65 °C for 4 h. A few drops of saturated aq. K2CO3 solution was added to the 

mixture followed by filtration over Celite and washing with EtOAc, and the filtrate was 

dried over anhydrous MgSO4. The crude product was purified by column chromatography 

(silica, pure hexanes) to afford 2 as a pale yellow solid (91%). 1H NMR (500 MHz, 

CDCl3): δ = 6.58 (s, 2H), 2.71(t, 4H), 2.02 (qiun, 2H), 1.88 (s, 6H). 13C NMR (125 MHz, 

CDCl3): δ = 134.8, 134.4, 133.3, 126.7, 125.2, 38.3, 22.8, 14.2. 

 1,2-bis(2-methyl-5-(pyridin-4-yl)thiophen-3-yl)cyclopent-1-ene (3). To a two-

neck round bottom flask, 1,2-bis(5-chloro-2-methylthiophen-3-yl)cyclopent-1-ene (2.44 

g, 7.41 mmol) and dry THF (30 mL) were added under nitrogen atmosphere. The resulting 

mixture was cooled with an ice bath and 2.5 M n-BuLi (6.52 mL, 16.3 mmol) was slowly 

added. During the addition the mixture turned dark pink. Upon completion of addition, it 

was stirred for another 30 min at the same temperature. Subsequently, tris-n-butylborate 

(5.12 g, 6.0 mL, 22.23 mmol) was added and the resulted orange solution was allowed to 

warm up to room temperature and stirred for 1h. Concurrently to another two-neck flask 

equipped with a condenser, Pd(PPh3)4 (500 mg, 5 mol%) was suspended in THF (25 mL) 

and the resulting mixture was heated at 70 °C. After 30 min, aqueous 2.5 M K2CO3 (30 

mL), ethylene glycol (10 drops), 4-bromopyridine hydrochloride (3.16 g, 16.3 mmol) were 

added.  Afterwards, previously prepared reaction mixture was slowly added to this orange 

solution. The mixture was heated at 70 °C overnight until complete consumption of 

starting materials and cooled to room temperature followed by addition of water (20 mL). 
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Crude was extraction with diethyl ether and the combined organic phases were dried over 

anhydrous MgSO4, the solvent was removed under vacuum and the resulting crude 

product was purified by column chromatography (silica, pure acetone) to yield 3. The 

product was obtained as a light violet solid in 91% yield. 1H NMR (500 MHz, CDCl3): δ 

= 8.55 (d, 4H), 7.43(d, 4H), 7.28 (s, 2H), 2.87 (t, 4H), 2.14 (quin, 2H), 2.05 (s, 6H). 

 
Scheme 4.2 Synthesis of M-TCPP 
 

 5,10,15,20-Tetrakis(4-methoxycarbonylphenyl)porphyrin (TPPCOOMe). To 

refluxed propionic acid (100 mL) in a 500 mL three-neck flask were added pyrrole (3.0 g, 

0.043 mol) and methyl p-formylbenzoate (6.9 g, 0.042 mol), and the mixture was refluxed 

for 12 h in dark. After the reaction mixture was cooled to room temperature, crystals were 
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collected by filtration to afford purple crystals (1.9 g, 21% yield). 1 H NMR (300 MHz, 

CDCl3 ) δ = 8.81 (s, 8H), 8.43 (d, 8H), 8.28 (d, 8H), 4.11 (s, 12H), 2.83 (s, 2H). 

 [5,10,15,20-Tetrakis(4-carboxyphenyl)porphyrinato]-Zn(II). The obtained 

ester compound (0.75 g) was stirred in THF (25 mL) and MeOH (25 mL) mixed solvent, 

to which a solution of KOH (2.63 g, 46.95 mmol) in H2O (25 mL) was introduced. This 

mixture was refluxed for 12 h. After cooling down to room temperature, THF and MeOH 

were evaporated. Additional water was added to the resulting water phase and the mixture 

was heated until the solid was fully dissolved, then the homogeneous solution was 

acidified with 1 M HCl until no further precipitate was detected. The violet solid was 

collected by filtration, washed with water and dried in vacuum. FTIR (KBr): ν= 3438 (m), 

3040 (m), 2665 (w), 1680 (s), 1605 (s), 1565 (m), 1504 (m), 1423 (s), 1316 (m), 1291 (s), 

1182 (m), 1105 (m), 1002 (s), 867 (m), 798 (s), 768 (m), 720 (m) cm-1. 

 [5,10,15,20-Tetrakis(4-methoxycarbonylphenyl)porphyrinato]-Fe(III) 

Chloride. A solution of TPP-COOMe 0.854 g (1.0 mmol) and FeCl2·4H2O (2.5 g, 12.8 

mmol) in 100 mL of DMF was refluxed for 6 h. After the mixture was cooled to room 

temperature, 150 mL of H2O was added. The resultant precipitate was filtered and washed 

with 50 mL of H2O for two times. The obtained solid was dissolved in CHCl3, followed 

by washing three times with 1 M HCl and twice with water. The organic layer was dried 

over anhydrous magnesium sulfate and evaporated to afford quantitative dark brown 

crystals. FTIR (KBr): ν= 3444 (m), 3034 (w), 2634 (w), 1702 (s), 1614 (s), 1570 (m), 

1404 (s), 1311 (m), 1277 (s), 1204 (m), 1180 (m), 1106 (m), 1004 (s), 862 (m), 799 (s), 

770 (s), 721 (m) cm-1. 
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 Synthesis of PC-PCN. BPDTE (9 mg), DBTCB (10 mg), Zn(NO3)2.6H2O (35 

mg), and tetrafluoroboric acid (one drop) in 2 mL of DMF were ultrasonically dissolved 

in a 4 mL Pyrex vial. The mixture was heated at 85 ºC in a pre-heated oven for 18 h. After 

cooling to room temperature, a light yellow crystal was harvested. 

 Synthesis of SO-PCN. H2-TCPP (10 mg), Zn(NO3)2.6H2O (35 mg) in 2 mL of 

DMF/DEF were ultrasonically dissolved in a 4 mL Pyrex vial. The mixture was heated at 

85 ºC in a pre-heated oven for 2 h. After that, BPDTE (9 mg) and tetrafluoroboric acid (1 

µL) were added and the mixture was heated for 12 h. After cooling to room temperature, 

purple crystals were harvested.  

Instrumental set-up and general procedure 

 Spectrophotometric grade CH3CN was used for spectroscopic measurements 

(Acros). Zn-TCPP was excited by 405 nm CW laser and laser power was measured by a 

laser powermeter (Thorlabs). Visible irradiation was provided using a fiber optic coupled 

halogen lamp (150 W, AmScope) combined with a 450 nm long pass filter (Thorlabs). UV 

irradiation was made using a 365 nm spectroline lamp (0.2 amp). To close the BPDTE 30 

min of UV irradiation was employed, while 2 h of visible light was irradiated to re-open 

the BDPTE pillar. 

 Prior to addition of the DPBF, SO-PCN was washed thoroughly with hot DMF 

followed by acetonitrile until no residual ligands in the supernatant were detected by UV-

Vis spectroscopy. Acetonitrile was bubbled with oxygen for 20 min before the 

measurements, where experiments are conducted in the presence of oxygen. For the 

control experiment in which the absence of oxygen was required, stock solution and 
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reaction medium were bubbled with nitrogen flow for 30 min. All stock solutions and SO-

PCN samples prepared were kept in the dark before the measurements. 

4.3 Results and discussion 

 Porphyrin derivatives have been widely used for 1O2 generation because of their 

well-known photochemistry and high efficiency in light harvesting.140 The dithienylethene 

derivative, BPDTE, serving as a photochromic switch can undergo a reversible 6π 

electrocyclic reaction upon photoirradiation at distinct wavelengths (e.g., ultraviolet or 

visible). The open and closed forms of BDPTE resulting from photoisomerization exhibit 

distinctive absorption properties, and can provide different energy transfer pathways for 

photosensitizers to control the 1O2 generation (Figure 4.1a,c). As one of the most 

frequently used linkers in porphyrinic MOFs, tetrakis(4-carboxyphenyl)-porphyrin 

(TCPP) has been extensively explored to construct different MOFs.6,177,181 Particularly, 

pillar-layer three-dimensional (3D) frameworks, which are constructed from TCPP mixed 

with linear dipyridyl linkers, have been widely studied because of the ease of design and 

synthesis. Simultaneously, BPDTE, having dipyridyl heads, is ideal for forming the pillar-

layer structure with TCPP to provide a solid-state platform for the controlled generation 

of singlet oxygen.  
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Figure 4.1 (a) Photoisomerization of BPDTE under UV and visible light. (b) Structures 
of ligands consist of 2D layers in PC-PCN and SO-PCN, respectively. (c) UV-Vis spectra 
of H4Zn-TCPP and two different forms of BPDTE. 
 

 Such structures lead to a paddlewheel-type of inorganic building block and gives 

rise to a 1:1 ratio between the photosensitizer (TCPP) and the photochromic switch 

(BPDTE), and precisely matches the stoichiometry in an ideal energy transfer process. We 

selected Zn2+ as the inorganic species, because its d10 configuration is unlikely to disturb 

the energy transfer between TCPP and BPDTE. In general, photoisomerizations rarely 

occur in crystals because a large structural change is extremely unfavorable in the solid 

state. As an exceptional example, DTE derivatives undergo only a small structural change 
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upon photoisomerization and therefore photochromism in the single crystalline phase can 

be achieved.182 Thus BPDTE in the framework may still retain its photochromic property 

without significant alteration or breaking of the 3D structure. 

 The solvothermal reaction of BPDTE, TCPP (no metal), Zn(NO3)2⋅6H2O in DMF 

and tetrafluoroboric acid at 85 °C for 15 hours resulted in platelike, dark-purple single 

crystals (SO-PCN). Although some of the single crystals are large enough in two of the 

three dimensions, because of the limited thickness of the crystals, diffractions from certain 

directions are too weak to determine the overall structure. Since the crystal growth 

behavior differs with the variation of the metal species within the TCPP center, as 

observed for a series of Zr-MOFs,33,183  we tried other metallo-TCPP (M-TCPP, where M 

is Cu, Co, Ni, Mn, and Fe) species and obtained much thicker crystals using Fe-TCPP. 

With better diffraction patterns, the space group of SO-PCN was determined to be 

P4/mmm, which has a unit cell parameter of a≈16.63 Å and b≈22.28 Å. From the solved 

structure, porphyrin layers are clearly observed while the pillars are missing because of 

the random orientation of the pillars resulting from the free rotation of the single bonds. 

However, the distance between Zn2 paddlewheels in the adjacent layers precisely matches 

the length of BPDTE, which indicates the formation of our expected structure. The 

simulated structure showed good agreement with the experimental PXRD pattern of SO-

PCN. 1H NMR spectrum, upon digestion of SO-PCN, shows a 1:1 ratio between Zn-TCPP 

and BPDTE, and further confirms the structure. 
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Figure 4.2 Illustration of reversible photochromic reaction in PC-PCN. Colorless single 
crystal (left, bulk in yellow) turns blue (right, bulk in purple) upon UV irradiation (λ=365 
nm) and it goes back to colorless form under visible light (with λ=450 nm cut-on filter). 
Single crystals are highlighted in the insets. 

 

 Intuitively, direct evidence showing the presence of BPDTE in SO-PCN could be 

a color change of BPDTE upon photoirradiation. However, the dark-purple Zn-TCPP 

impedes the observation of the color change from the photochromic pillar. Hence, we 

chose a colorless tetratopic carboxylate linker DBTCB, which has been reported to form 

a similar structure with TCPP, to show the photochromism of the BPDTE pillar (Figure 

4.1b). Under similar solvothermal conditions, a colorless flake-shaped single crystal of 

PC-PCN, which has a light-yellow color in the bulk sample, was obtained (Figure 4.2). 

Single-crystal X-ray diffraction of PC-PCN shows dipyridine coordination but the BPDTE 

pillar was not clearly solved because of the significant disorder as discussed above. PC-

PCN exhibits the same layer to layer distance (21.69 Å) as in SO-PCN and also exhibits a 

1:1 ratio between BPDTE and DBTCB, thus further validating SO-PCN as our expected 

structure. When the open form of PC-PCN in the bulk was irradiated under ultraviolet 

(UV) light, deep-purple crystals of PC-PCN were clearly observed by the naked eye within 

10 minutes, and suggests the pillar ligands were closed. Irradiation with visible light 
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(λ>450 nm) was performed on these purple crystals to re-open the closed pillars and the 

recovery of the light-yellow color was observed in 1 hour. We further examined the 

photochromic reaction in a single crystal to single crystal fashion in PC-PCN. As shown 

in Figure 4.2, single crystallinity of PC-PCN was almost completely maintained upon 

alternating irradiation, thus demonstrating excellent structural reversibility of the BPDTE 

pillar within the framework. 

 

 

Figure 4.3 (a) Proposed mechanism of energy transfer (EnT) in SO-PCN. (b) Illustration 
of switching operation in SO-PCN. 

 
 Having demonstrated the photoisomerization of BPDTE in PC-PCN, we then 

examined SO-PCN for regulating 1O2 generation. To evaluate the ability of SO-PCN in 

generating singlet oxygen, 1,3-diphenylisobenzofuran (DPBF), a well-known 1O2 
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scavenger, was used to detect the 1O2 produced in our system. Upon oxidative degradation 

of DPBF by 1O2, the absorption of DPBF at λ=410 nm decreased, thus serving as an 

indication of the singlet oxygen generated. First, the experiment was carried out using a 

visible light source (λ>450 nm) at room temperature to examine the photosensitizing 

ability of SO-PCN. Prior to addition of the probe, SO-PCN was washed thoroughly with 

hot DMF followed by acetonitrile until no residual ligands in the supernatant were 

detected by UV-Vis spectroscopy. Acetonitrile was bubbled with oxygen for 20 minutes 

before the measurements. 

 

Figure 4.4 (a) Absorbance decay of DPBF (left) and the corresponding spectra in the 
presence of SO-PCN (right). (b) Emission spectra of SO-PCN showing reversibility. (c) 
Comparison of decay rate of DPBF upon on/off switching. 
 

 As a control experiment, DPBF (50 µM) in acetonitrile without SO-PCN was 
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irradiated by visible light (λ>450 nm). Only a negligible decrease in the absorbance of 

DPBF was observed during 150 seconds of irradiation, and indicates DPBF was stable 

under these conditions. Knowing this, we examined the photosensitization of the open 

form of SO-PCN (1.42 µmol) using DPBF (50 µM) in 2.8 mL of acetonitrile. Upon 

irradiation, the absorbance at λ=410 nm showed a complete degradation within 150 

seconds, thus suggesting excellent photosensitizing ability of SO-PCN (Figure 4.4a). 

 

 
Figure 4.5 Scheme of switching operation in SO-PCN. 

 
 Next, we investigated the control of the switch (BPDTE) embedded in SO-PCN 

for 1O2 generation upon photoisomerization. Figure 4.3a illustrates a proposed mechanism 

of control of 1O2 generation in SO-PCN by an energy transfer (EnT) process. Energy 

transfer of excited Zn-TCPP is known to be dependent on triplet energy of BPDTE161,184-

186 because of different photophysical properties of its isomers. When Zn-TCPP in SO-

PCN is excited, the triplet energy of 3[Zn-TCPP]* can follow different pathways for 

energy transfer depending on the state of BPDTE. For example, 1O2 can be generated when 

the EnT process occurs from 3[Zn-TCPP]* in the open form of SO-PCN to 3O2 (Path 1 in 

Figure 4.3a). Another pathway is based on the energy state of closed form of BPDTE, 
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which lies at a lower energy than that of 3[Zn-TCPP]*, thus the energy transfer takes place 

to the closed BPDTE and results in quenching of 1O2 generation. The feasibility of 

reversible energy transfer of the TCPP-BPDTE dyad in SO-PCN was evaluated by 

recording emission spectra. We chose a Soret band (λ=420 nm) to excite the SO-PCN to 

circumvent potential interference of the switching operation (Figure 4.5). The emission 

spectrum of open SO-PCN shows emission maxima at λ=605 nm and λ=655 nm in CH3CN 

(λex=420 nm). To close the BPDTE pillars in SO-PCN, UV light (λ=365 nm) was used. 

The emission was gradually quenched by EnT to the closed BPDTE and no further 

quenching was observed after 30 minutes. Recovery of emission upon photoisomerization 

was subsequently carried out with visible light (λ>450 nm), and a complete recovery was 

made in 120 minutes (Figure 4.4b). 

 
Figure 4.6 Control experiments showing absorbance decay of (green) pure DPBF in the 
absence of SO-PCN and (blue) DPBF with the closed form of SO-PCN in the absence of 
oxygen. 
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 After validating reversibility in SO-PCN, the system was excited by a λ=405 nm 

CW laser to examine the controlled 1O2 generation by on/off switching (Figure 4.3b). 

Evolution of 1O2 with the open form of SO-PCN was monitored by UV/Vis spectra every 

10 seconds. Over the course of 60 seconds with 6 mW cm−2 of laser power, 30 % of DPBF 

absorption decreased compared to its initial absorption, whereas the closed form of SO-

PCN showed an approximately 15 % decrease in absorbance at λ=410 nm. A steeper slope 

of the open form of SO-PCN suggests the energy of 3[Zn-TCPP]* was transferred to 3O2 

to generate 1O2, while that of the closed form was quenched by closed BPDTE, thus 

resulting in less efficient 1O2 generation (Figure 4.4c). When we attempted to perform a 

control experiment, we found that the laser irradiation led to a complete degradation of 

DPBF in the absence of SO-PCN within 60 seconds (Figure 4.6). Presumably because of 

the light sensitive nature of DPBF, the laser significantly affected DPBF solution in the 

absence of other chromophores. To obtain a practical blank of our system, we further 

examined the system with DPBF and the closed form of SO-PCN. An N2 saturated solvent 

was employed to suppress the supply of oxygen so that we could examine the system 

solely with photodegradation of DPBF in the presence of closed SO-PCN (other 

chromophores). Interestingly in this control experiment, the rate and extent of decrease in 

absorption at λ=410 nm of DPBF were very similar to previous experimental data of the 

closed SO-PCN with oxygen (Figure 4.6), and further confirms that a successful switching 

operation, using photoisomerization of BPDTE towards 1O2 generation in SO-PCN, was 

demonstrated. 
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Figure 4.7 (a) Photooxidation of DHN catalyzed by SO-PCN in the presence of oxygen 
and light irradiation. (b) UV-Vis spectra of photooxidation of DHN in CH3CN catalyzed 
by SO-PCN. Inset: Absorbance of juglone (λ=419 nm) as a function of reaction time.  
 

 In addition to the ability to generate singlet oxygen, we further sought to study 

potential use of SO-PCN as a heterogeneous catalyst. Catalytic performance was 

demonstrated by photooxidation of DHN, which is mediated by 1O2 and resulted in the 

corresponding oxidized product juglone (Figure 4.7a). The photooxidation was carried out 

with 0.036 mmol of DHN in acetonitrile with 10 % SO-PCN (open form) under visible 

light irradiation (λ>450 nm). As the reaction occurred, the absorption peaks of the starting 

material at λ=298 nm and 330 nm decreased, whereas a characteristic peak of juglone 



 

 96 

around λ=419 nm increased. After 30 hours, a significant decrease in absorption of DHN 

was observed, while leaching was not seen (Figure 4.7b). 

4.4 Conclusions 

 In summary, through a classical pillar-layer structure, we have developed two 

photochromic MOFs, PC-PCN and SO-PCN. Photochromism has been successfully 

realized in PC-PCN while maintaining its single crystallinity. In particular, as a solid-state 

material which inherently integrates a photochromic switch and photosensitizer, SO-PCN 

has demonstrated reversible control of 1O2 generation. Meanwhile, SO-PCN shows 

catalytic activity towards photooxidation of DHN. Based on the photophysical properties 

of the chromophore dyads realized within the MOF regime, our findings can be extended 

to the design of materials for potential applications in photocatalysis, photoswitching, and 

sensing. 
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5. CONTROLLED GENERATION OF SINGLET OXYGEN IN LIVING CELLS

WITH TUNABLE RATIOS OF THE PHOTOCHROMIC SWITCH IN METAL–

ORGANIC FRAMEWORKS* 

5.1 Introduction 

The development of photosensitizers that can control the generation of singlet 

oxygen (1O2) has gained increasing attention in photodynamic therapy (PDT) research to 

reduce nonspecific damage from undesirably generated 1O2.147,148 PDT is a minimally 

invasive cancer treatment using cytotoxic 1O2 that is generated by energy transfer (EnT) 

from an excited photosensitizer to molecular oxygen (3O2) upon appropriate light 

irradiation.187,188 In this regard, the addition of an activation step provides another layer of 

selectivity on top of the localized nature of PDT, which is based on the directed light 

placement at the tumor site. As such, PDT with an activatable photosensitizer becomes an 

appealing therapeutic option whose sensitizing ability is activated in response to target 

stimuli.147,189-191 However, common activation mechanisms often involve irreversible or 

passive means. Therefore, the capability of controlling 1O2 generation in a non-invasive 

and reversible manner is highly desired in photosensitizers. 

To address this issue, a molecular dyad consisting of a porphyrinic photosensitizer 

and a dithienylethene (DTE) derivative as a molecular switch to reversibly turn on/off the 

1O2 generation was reported.154,161,192-194 However, the delivery of such a complex system 

*Reproduced with permission from Park, J.; Jiang, Q.; Feng, D.; Zhou, H.-C., Angew. Chem. Int. Ed. 2016,
55, 7188–7193. Copyright 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 
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with multiple components is a formidable challenge in biological environments owing to 

the different molecular properties of each component, resulting in distinctive cell response 

or permeability.195,196  

As a promising class of nanocarriers, metal–organic frameworks (MOFs) have 

captured extensive research interest because of their high porosity, synthetic tunability, 

and structural diversity.1,13,197 Recently, MOFs have been studied as an efficient platform 

for energy transfer between linkers because of the highly accessible and spatially discrete 

linkers in the framework.100,177,186,198-201 Herein we show energy transfer-based 1O2-

controlled PDT using a Zr-MOF as a nanocarrier, in which the photosensitizing system 

installed in the MOF pores can control the 1O2 generation using a photochromic switch. A 

widely employed photosensitizer, porphyrin140 and a DTE derivative were successfully 

incorporated into the Zr-MOF with adjustable ratios. Our strategy, therefore, allows 

optimization of the energy transfer for 1O2 control via fine-tuning of the ratios between 

two dyes incorporated into the MOF, as well as a successful delivery of the dyad into cells. 

5.2 Experimental section 

Materials 

Terephthalic acid (BDC) and 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic 

acid (HEPES) were purchased from Sigma-Aldrich. Tetrakis(4-carboxyphenyl)porphyrin 

(H2TCPP) was purchased from Frontier Scientific. Dulbecco’s modified Eagle medium 

(DMEM/HIGH GLUCOSE 1X) were purchased from HyClone, GE Life Sciences. Fetal 

bovine serum (FBS) was purchased from Gibco, Thermo Fisher Scientific. Cell culture 
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reagents were purchased from Invitrogen. Singlet Oxygen Sensor Green were purchased 

from Life Technologies (USA). Cell Counting Kit-8 (CCK-8) was obtained from 

Beyotime Institute of Biotechnology. Other chemicals were of at least analytical grade and 

were used as received. All aqueous solutions were prepared with Milli-Q water generated 

from a Milli-pore system (Bedford, MA). All other not mentioned starting materials and 

solvents were used as received without further purification from the following suppliers 

(Alfa Aesar, Sigma-Aldrich, TCI America, Cambridge Isotope, Oakwood Products, Fisher 

Scientific). The abbreviation for some solvents and reagents were listed here: N,N-

dimethylformamide (DMF), ethyl acetate (EtOAc), and dimethylsulfoxide (DMSO).  

Instrumentation 

Synthetic manipulations that required an inert atmosphere (where noted) were 

carried out under nitrogen using standard Schlenk techniques. Nuclear magnetic resonance 

(NMR) spectra were recorded on Varian Inova 500 spectrometer. The chemical shifts are 

given in units of δ (ppm) relative to tetramethylsilane (TMS) where δ (TMS) = 0, or 

referenced to the residual solvent resonances. Splitting patterns are denoted as s (singlet), 

d (doublet), t (triplet), q (quartet), quin (quintet), m (multiplet), and br (broad). Powder X-

ray diffraction (PXRD) was carried out on a Bruker D8-Focus Bragg-Brentano X-ray 

Powder Diffractometer equipped with a Cu sealed tube (λ = 1.54178) at 40 kV and 40 mA. 

N2 sorption isotherms at 77 K were measured by using a Micrometritics ASAP 2420 

system with high-purity grade (99.999%) of gases. UV-Vis spectra were recorded on 

Shimadzu UV-2450 spectrophotometer. Fluorescence spectra were recorded on a Hitachi 

F-4600 spectrometer (Hitachi Co. Ltd., Japan) with Xe lamp as the excitation source at 
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room temperature. Visible irradiation was provided using a fiber optic coupled halogen 

lamp (150 W, AmScope) combined with a 450 nm long pass filter (Thorlabs). UV 

irradiation was made using a 365 nm spectroline lamp (0.2 amp) unless otherwise noted. 

Dynamic light scattering and Zeta potential were measured at 25 °C on a Zetasizer Nano 

ZS ZEN3600 analyser (Malvern Instrument Ltd, UK). Singlet oxygen was generated from 

a CEL-S500 xenon lamp with separate passing filter (power density was 100 mW/cm2). 

Confocal laser scanning microscopy (CLSM) images were performed on an Olympus 

FV1000-IX81 CLSM and a Leica TCS SP confocal system (Leica, Germany). TEM 

images were taken on a transmission electron microscopy (JEOL JEM-2100F, Japan) 

operated at an acceleration voltage of 200 keV by dropping solution onto a carbon-coated 

copper grid. SEM image were recorded on a scanning electron microscopy (Hitachi 

S4800, Tokyo, Japan) operates at 10 keV. Energy-dispersive X-ray spectroscopy (EDS) 

characterization were taken on a scanning electron microscopy (Hitachi S4800, Tokyo, 

Japan) operates at 15 keV. X-ray photoelectron spectroscopy (XPS) was performed on an 

ESCALab 220i-XL electron spectrometer from VG Scientific using 300 W Al Kα 

radiation.  

Cell culture 

 Murine melanoma cell line B16F0 (called as B16) was supplied by KeyGEN 

Biotech. Co., Ltd. Cells were cultured in high-glucose DMEM supplemented with 10% 

(v/v) FBS and 1% antibiotics (penicillin/streptomycin, 100 U/mL) at 37 °C under a 5% 

CO2 atmosphere.  
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Cytotoxicity assay 

 The cytotoxicity of materials was tested on B16 cells using a standard CCK-8 

assay, as previously described. Cells were plated at a density of 1×104 /well in a 96-well 

cell culture plate at 37 °C under 5% CO2 atmosphere for 24 h. The cells were treated with 

increasing concentrations (20, 40, 60, 80, 100 µM) of samples (100 µL/well) as treatment 

group, treated with free DMEM (100 µL/well) as control group for 24 h at 37 °C under a 

5% CO2 atmosphere respectively. Afterward, the cells were grown in a fresh DMEM for 

another 24 h. Then combined CCK-8/DMEM solution (10 µL/100 µL) was added to each 

well for additional 1 h incubation under the same condition. An enzyme-linked 

immunosorbent assay (ELISA) reader (infinite M20, Tecan, Austria) was used to measure 

the OD450 (Absorbance value) of each well. The following formula was used to calculate 

the viability of cell growth: Cell Viability (%) = [(As-Ab) / (Ac-Ab)] ⋅ 100% 

Each independent experiment was performed in triplicate (As = OD value of treatment 

group, Ac = OD value of control group and the Ab = OD value of blank well). 
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Synthesis 

 
Scheme 5.1 Synthetic scheme of BCDTE. 

 

 1,5-Bis-3-(2-chloro-5-dimethylthienyl)-1,5-pentadione (1). To a mixture of 2-

Chloro-5-methylthiophene (5 g, 37.7 mmol) and glutaryl chloride (3 g, 17.95 mmol) in 

nitromethane (150 mL) was added AlCl3 (5.3 g, 39.5 mmol) under N2 atmosphere at 0 °C. 

The solution was then stirred for 4 h at room temperature. Afterward, the reaction mixture 

was poured onto ice-water and the resulting mixture was extracted with CH2Cl2. The 

combined organic layers were dried over anhydrous MgSO4, the solvent was removed in 

vacuo and the resulting crude product was purified by column chromatography (silica, 

hexanes: EtOAc = 30:1) to yield 1 as a light yellow solid (84%).1H NMR (500 MHz, 

CDCl3): δ = 7.18 (s, 2H), 2.86 (t, 4H), 2.66 (s, 6H), 2.06 (quin, 2H). 13C NMR (125 MHz, 

CDCl3): 194.9, 147.7, 134.9, 126.8, 125.3, 40.5, 18.1, 16.1. 

 1,2-bis(5-chloro-2-methylthiophen-3-yl)cyclopent-1-ene (2). TiCl4 (3.9 g, 20.7 

mmol) was dissolved cautiously in ice-cooled dry THF (200 mL) under N2 atmosphere 

whereupon the solution turned yellow. To the mixture was added Zn powder (1.63 g, 25 
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mmol) and the resulting mixture was stirred for 45 min at 65 °C. Afterwards, the reaction 

was cooled to 0 °C with an ice bath and compound 1 (3 g, 8.3 mmol) was added and was 

reheated to 65 °C for 4 h. A few drops of saturated aq. K2CO3 solution was added to the 

mixture followed by filtration over Celite and washing with EtOAc, and the filtrate was 

dried over anhydrous MgSO4. The crude product was purified by column chromatography 

(silica, pure hexanes) to afford 2 as a pale yellow solid (91%). 1H NMR (500 MHz, 

CDCl3): δ = 6.58 (s, 2H), 2.71(t, 4H), 2.02 (quin, 2H), 1.88 (s, 6H). 13C NMR (125 MHz, 

CDCl3): δ = 134.8, 134.4, 133.3, 126.7, 125.2, 38.3, 22.8, 14.2. 

 1,2-Bis(5-(4-ethyloxycarbonylphenyl)-2-methylthien-3-yl)cyclopent-1-ene (3). 

1,2-bis(5-chloro-2-methylthiophen-3-yl)cyclopent-1-ene (2) (2.00 g, 6.07 mmol) was 

dissolved in 60 mL of anhydrous THF and n-BuLi (2.5 M in hexane, 6.56 mL, 16.40 

mmol) was added dropwise at 0 °C. The solution was then stirred and warmed to room 

temperature for 30 min. Then, tri(n-butyl) borate (4.91 mL, 18.22 mmol) was added in 

one portion and the resulting mixture was stirred at room temperature for 1 h. In the 

meantime, ethyl 4-bromobenzoate (2.92 mL, 18.22 mmol) was dissolved in 20 mL of THF 

with Pd(PPh3)4 (0.70 g), and the mixture was stirred at room temperature for 15 min then 

heated to 80 °C. An aqueous solution of Na2CO3 (2 M, 50.0 mL) and the previously 

prepared solution of the borylated bisthienylcyclopentene were slowly added and the 

mixture was stirred at 80 °C for 16 h. After cooling to room temperature, 100 mL of water 

were added and the mixture was extracted with 50 mL of diethyl ether three times. The 

combined organic phases were washed with brine, dried over MgSO4. Purification by 

column chromatography (silica, petroleum ether: EtOAc = 10:1) afforded compound 3 
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(2.4 g, 71%) as a pale yellow solid. 1H NMR (500 MHz, CDCl3): δ (ppm) = 7.99 (d, 4 H), 

7.53 (d, 4 H), 7.12 (s, 2 H), 4.37 (q, 4 H), 2.85 (t, 4 H), 2.10 (quin, 2H), 2.02 (s, 6 H), 1.40 

(t, 6H). 13C NMR (126 MHz, CDCl3): δ (ppm) = 166.34, 138.57, 138.54, 137.01, 136.24, 

134.77, 130.20, 128.63, 125.48, 124.82, 60.93, 38.48, 23.03, 14.59, 14.39. 

 1,2-Bis(5-(4-carboxyphenyl)-2-methylthien-3-yl)cyclopent-1-ene (4) 

(BCDTE). 1,2-Bis(5-(4-ethyloxycarbonylphenyl)-2-methylthien-3-yl)cyclopent-1-ene 

(3) (1.0 g, 1.8 mmol) was suspended in 160 mL 1,4-dioxane/H2O (v:v = 1:1), and 2 g of 

KOH solution was added. The mixture was stirred overnight under reflux. The pH value 

was adjusted to ~pH 2 using 2 M HCl. The resulting white precipitate was collected by 

centrifugation, washed with water, and dried under vacuum to afford BCDTE (0.94 g, 

99%). 1H NMR (500 MHz, DMSO-d6): δ (ppm) = 12.93 (s, 2H), 7.92 (d, 4H), 7.66 (d, 

4H), 7.47 (s, 2H), 2.85 (t, 4 H), 2.07 (quin, 2H), 1.93 (s, 6H). 13C NMR (126 MHz, DMSO-

d6): δ (ppm) = 166.93, 137.83, 137.66, 137.07, 135.36, 134.29, 130.21, 129.05, 126.05, 

124.67, 38.12, 22.32, 14.16. 

 

Figure 5.1 Products by addition of the starting materials together when dissolving (left) 
and addition of BA stock solution to the mixture of BDC and ZrOCl2·8H2O in DMF 
(right). 
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 UiO-66 nanoparticles. Terephthalic acid (BDC) (15 mg, 0.09 mmol), zirconyl 

chloride octahydrate (ZrOCl2·8H2O) (20 mg, 0.062 mmol), and benzoic acid (BA) (200 

mg, 1.6 mmol) in 3 mL of N,N-dimethylformamide (DMF) were ultrasonically dissolved 

in a Pyrex vial. The reaction mixture was stirred (300 rpm) at 90 °C for 2.5 h. After the 

reaction is done, UiO-66 nanoparticles were collected by centrifugation (15000 rpm, 20 

min) followed by washing with fresh DMF for 3 times. The resulting UiO-66 nanoparticles 

were suspended in DMF for further characterization and analysis. 

 Note: The sequence of adding starting materials was important to obtain 

nanoparticles. All starting materials had to be added together with other starting materials 

to yield UiO-66 nanoparticles (Fig. S1, left). When BDC and ZrOCl2·8H2O were 

dissolved and stayed longer than ca. 5 min before the addition of BA, the reaction did not 

form nanoparticles, but clear solution under given reaction condition (Fig. S1, right). 

Therefore, this finding was applied in the following syntheses as well. 

 Sample 1. H2TCPP (0.5 mg, 0.0006 mmol), BDC (15 mg, 0.09 mmol), 

ZrOCl2·8H2O (20 mg, 0.062 mmol), and BA (200 mg, 1.6 mmol) in 3 mL of DMF were 

ultrasonically dissolved in a Pyrex vial. The reaction mixture was stirred (300 rpm) at 90 

°C for 2.5 h. The oil bath was covered with aluminum foil to avoid lights. After the 

reaction is done, nanoparticles were collected by centrifugation (15000 rpm, 20 min) 

followed by washing with fresh DMF for 3 times. The resulting nanoparticles were 

suspended in DMF for further characterization and analysis. 

 Sample 2. H2TCPP (0.5 mg, 0.0006 mmol), BCDTE (1 mg, 0.002 mmol), BDC 

(15 mg, 0.09 mmol), ZrOCl2·8H2O (20 mg, 0.062 mmol), and BA (200 mg, 1.6 mmol) in 
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3 mL of DMF were ultrasonically dissolved in a Pyrex vial. The reaction mixture was 

stirred (300 rpm) at 90 °C for 2.5 h. The oil bath was covered with aluminum foil to avoid 

lights. After the reaction is done, nanoparticles were collected by centrifugation (15000 

rpm, 20 min) followed by washing with fresh DMF for 3 times. The resulting nanoparticles 

were suspended in DMF for further characterization and analysis. 

 Sample 3. H2TCPP (0.5 mg, 0.0006 mmol), BCDTE (5 mg, 0.01 mmol), BDC (15 

mg, 0.09 mmol), ZrOCl2·8H2O (20 mg, 0.062 mmol), and BA (200 mg, 1.6 mmol) in 3 

mL of DMF were ultrasonically dissolved in a Pyrex vial. The reaction mixture was stirred 

(300 rpm) at 90 °C for 2.5 h. The oil bath was covered with aluminum foil to avoid lights. 

After the reaction is done, nanoparticles were collected by centrifugation (15000 rpm, 20 

min) followed by washing with fresh DMF for 3 times. The resulting nanoparticles were 

suspended in DMF for further characterization and analysis. 

 Sample 4. H2TCPP (0.5 mg, 0.0006 mmol), BCDTE (10 mg, 0.02 mmol), BDC 

(15 mg, 0.09 mmol), ZrOCl2·8H2O (20 mg, 0.062 mmol), and BA (200 mg, 1.6 mmol) in 

3 mL of DMF were ultrasonically dissolved in a Pyrex vial. The reaction mixture was 

stirred (300 rpm) at 90 °C for 2.5 h. The oil bath was covered with aluminum foil to avoid 

lights. After the reaction is done, nanoparticles were collected by centrifugation (15000 

rpm, 20 min) followed by washing with fresh DMF for 3 times. The resulting nanoparticles 

were suspended in DMF for further characterization and analysis. 

 Sample 5. H2TCPP (0.5 mg, 0.0006 mmol), BCDTE (15 mg, 0.03 mmol), BDC 

(15 mg, 0.09 mmol), ZrOCl2·8H2O (20 mg, 0.062 mmol), and BA (200 mg, 1.6 mmol) in 

3 mL of DMF were ultrasonically dissolved in a Pyrex vial. The reaction mixture was 
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stirred (300 rpm) at 90 °C for 2.5 h. The oil bath was covered with aluminum foil to avoid 

lights. After the reaction is done, nanoparticles were collected by centrifugation (15000 

rpm, 20 min) followed by washing with fresh DMF for 3 times. The resulting nanoparticles 

were suspended in DMF for further characterization and analysis. 

 Sample 6. H2TCPP (0.5 mg, 0.0006 mmol), BCDTE (20 mg, 0.04 mmol), BDC 

(15 mg, 0.09 mmol), ZrOCl2·8H2O (20 mg, 0.062 mmol), and BA (200 mg, 1.6 mmol) in 

3 mL of DMF were ultrasonically dissolved in a Pyrex vial. The reaction mixture was 

stirred (300 rpm) at 90 °C for 2.5 h. The oil bath was covered with aluminum foil to avoid 

lights. After the reaction is done, nanoparticles were collected by centrifugation (15000 

rpm, 20 min) followed by washing with fresh DMF for 3 times. The resulting nanoparticles 

were suspended in DMF for further characterization and analysis. 

 Sample 7. BCDTE (20 mg, 0.04 mmol), BDC (15 mg, 0.09 mmol), ZrOCl2·8H2O 

(20 mg, 0.062 mmol), and BA (200 mg, 1.6 mmol) in 3 mL of DMF were ultrasonically 

dissolved in a Pyrex vial. The reaction mixture was stirred (300 rpm) at 90 °C for 2.5 h. 

The oil bath was covered with aluminum foil to avoid lights. After the reaction is done, 

nanoparticles were collected by centrifugation (15000 rpm, 20 min) followed by washing 

with fresh DMF for 3 times. The resulting nanoparticles were suspended in DMF for 

further characterization and analysis.  

 Synthesis of large batch of samples. The syntheses can be scaled up to five times 

of that of the small batch scale while maintaining stoichiometry. 
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Table 5.1 Summary of synthetic conditions. 

Samples BDC (mg) TCPP (mg) BCDTE (mg) 
UiO-66 NP 15 n/a n/a 

1 15 0.5 n/a 
2 15 0.5 1 
3 15 0.5 5 
4 15 0.5 10 
5 15 0.5 15 
6 15 0.5 20 
7 15 n/a 20 

 

Transmission electron microscopy (TEM) 

 MOF nanoparticles were washed with fresh DMF three times to remove residual 

starting materials, then washed with pure water three time to remove excess DMF. The 

resulting samples were re-dispersed in water for the preparation. TEM images were taken 

on a JEOL JEM-2100F, operated at an acceleration voltage of 200 keV by dropping 

solution onto a carbon-coated copper grid. Image-Pro Plus software (version 5.1) was used 

to calculate the average size.  

 

 
Figure 5.2 TEM image of UiO-66 nanoparticles. Scale bar = 200 nm. 
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Figure 5.3 TEM images of samples 1 – 6. Scale bars = 200 nm. 

Scanning electron microscopy (SEM) 

MOF nanoparticles were washed with fresh DMF three times to remove excess 

starting materials, then washed with pure water three times to remove excess DMF. The 

resulting samples were re-dispersed in water for preparation. SEM images were recorded 

on a Hitachi S4800 (Tokyo, Japan), operated at 10 keV by dropping solution onto a silicon 

wafer, then dried in air.  

Figure 5.4 SEM images of UiO-66 nanoparticles and samples 1-6. Scale bars = 200 nm. 
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Table 5.2 Summary of nanoparticle sizes from the TEM and SEM images. 

Samples TEM diameter (nm) SEM diameter (nm) 
UiO-66 62 ± 8 76 ± 6 

1 52 ± 6 69 ± 5 
2 49 ± 6 68 ± 4 
3 53 ± 6 63 ± 4 
4 48 ± 6 68 ± 4 
5 48 ± 3 64 ± 4 
6 48 ± 3 66 ± 4 

 

 DLS and ζ-potential measurement in water were conducted on a Zetasizer Nano 

ZS ZEN3600 analyzer (Malvern Instrument Ltd, UK) equipped with a 50 mW single laser 

diode (633 nm). Scattered light was detected at 165° and analyzed using a log correlator 

over 120 accumulations. The peak averages of histograms from number distributions out 

of 120 accumulations were reported as the Z-average diameters of the particles. The ζ-

potential of the particles in suspension was obtained by measuring the electrophoretic 

movement of charged particles under an applied electric field. The ζ-potential was 

measured at twelve regions in the flow cell, and a weighted mean was calculated. These 

twelve measurements were used to correct for electro-osmotic flow that was induced in 

the cell due to the surface charge of the cell wall. Each sample was measured three times. 

 

Table 5.3 Physiochemical properties of samples. 
Samples DLS (nm) PDI ζ potential (mV) 

1 70 ± 19 0.080 31.6±6.90 
2 68 ± 20 0.133 32.4±5.52 
3 68 ± 19 0.122 35.6±6.70 
4 68 ± 20 0.127 35.2±6.11 
5 73 ± 20 0.076 35.0±6.24 
6 65 ± 24 0.276 31.3±7.86 
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5.3 Results and discussion 

While incorporation of the desired functional molecules as linkers of the MOF 

could be straightforward, there are several major obstacles to be applied in living cells for 

the desired 1O2 control. First, porphyrin and DTE derivatives are not suitable for 

constructing stable MOFs, compatible in physiological environments owing to their large 

sizes.202 Moreover, classical mixed-linker strategies to incorporate multiple functionalities 

often employ labile coordination bonds, resulting in an instability of the framework in 

aqueous media.203 In particular, the mixed-linker strategy usually yields a locked ratio 

between pre-designed functional molecules in the framework when the linkers are not 

topologically identical,31,204,205 which could inherently limit the tuning of the system for 

targeted application. Therefore, a system, where the ratio between photosensitizer and 

photochromic switch can be tuned in the MOF, is highly desired to optimize the 

controllability of 1O2 generation. 

We chose UiO-66 as a base platform to build a photosensitizing MOF system that 

can realize a reversible control of 1O2 generation for PDT. As an archetype of Zr-MOF, 

UiO-66 exhibits excellent chemical stability through coordination bonds between high 

valent ZrIV and carboxylate. 96,206 Meanwhile, 2,12-connected fcu-a net of UiO-66 allows 

for many sub-networks, including bcu-a, reo-a, hxg-a, or high-defect frameworks.207-210 

Accompanied with the reduced connectivity, available coordination sites on Zr6 clusters 

[Zr6O4OH4(COO)12] can be generated for the introduction of the functionalities via 

postsynthetic modification.211 However, the narrow pore window and small pore size of 

UiO-66 hinder the entrance of large DTE and porphyrin derivatives into the framework 
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when postsynthetically approached. Therefore, we turned to an in situ insertion of these 

molecules into UiO-66 nanoparticles with a thermodynamic controlled synthesis. 

 

Figure 5.5 (a) Structures and photoisomerization of BCDTE and (b) structure of TCPP. 
(c) UV-Vis absorption spectra of BCDTE (30 µM) and TCPP (2 µM). Inset: photographs 
of BCDTE open (left) and closed (right) isomers. (d) Proposed scheme of 1O2 control via 
competitive EnT pathways upon photoisomerization. 

  
In order to incorporate the photosensitizing system (dyad), derivatization of DTE 

and porphyrin cores to 1,2-bis(5-(4-carbonxyphenyl)-2-methylthien-3-yl)cyclopent-1-

ene (BCDTE) and a free-base tetrakis(4-carboxyphenyl)-porphyrin (TCPP) was 

implemented for their potential coordination to Zr6 cluster (Figure 5.5a,b). Because the 
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energy transfer efficiency for switching on/off the 1O2 generation is highly dependent on 

the molar ratios between the photosensitizer and photochromic switch,161 we designed 

photosensitizing systems in UiO-66 nanocarriers (1–6) by increasing the feed ratio of the 

BCDTE switch at a constant amount of TCPP for fine-tuning of the photosensitization 

and switching ability. 

 

 

Figure 5.6 (a) Defective structure of UiO-66 with inserted TCPP and BCDTE, and a 
proposed binding scheme of TCPP and BCDTE on Zr6 cluster. (b) SEM image of sample 
6. Scale bar = 100 nm. (c) UV-Vis absorption spectra of samples 1–6, normalized at the 
same concentration of TCPP. (d) PXRD patterns of UiO-66 nanoparticles and samples 
1–6.  

 
Interestingly, the optimized synthetic condition modified from the reported 

synthesis of UiO-66 nanoparticles, 212,213 where TCPP and BCDTE were simply added 

with other starting materials, could produce a pure phase of UiO-66 nanoparticles rather 

than a mixture of different MOFs (Figure 5.6). It is reasoned that the superior 
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thermodynamic stability of UiO-66 inhibits possible formation of BCDTE-Zr-MOF, while 

the growth of TCPP-Zr-MOF, despite its high thermodynamic stability, was controlled by 

the low dose of TCPP.214 Therefore, the single phase of UiO-66 can be targeted regardless 

of the complexity of the system. Meanwhile, both TCPP and BCDTE, containing multiple 

carboxylates, can readily participate in the coordination of Zr6 clusters by partially 

substituting terephthalate linkers during the growth of UiO-66 (Figure 5.6a). Once TCPP 

and BCDTE were installed inside the framework, the "ship-in-a-bottle" effect resulting 

from the small pore windows of UiO-66 and the robustness Zr-COO bonds can prevent 

the leaching of the inserted functionalities, thus maintaining the desired ratio after the 

synthesis.215 More importantly, since TCPP and BCDTE are not serving as the linkers, our 

design allows for tuning the molar ratios between two dyes upon varying synthetic 

conditions, as well as the proximity of the dyes within the MOF nanoparticle for efficient 

energy transfer. 

 
Table 5.4 UV-Vis spectroscopically determined ratios between BCDTE/TCPP in samples 
(1–6). 

Samples BCDTE/TCPP Ratio 
1 n/a 
2 1.0 
3 4.2 
4 8.1 
5 10.5 
6 11.4 

 
TEM and SEM images of 1–6 show approximately 70 nm of spherical 

nanoparticles with a high uniformity and a narrow size distribution (Figure 5.6b and 

Figures 5.2-5.4). After confirming the phase purity of 1–6 (Figure 2d), the ratio between 
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BCDTE and TCPP in each sample was then determined by UV/Vis spectra (Table 5.4). 

Adjustable ratios of the incorporated molecules were further confirmed by XPS and EDS 

data (Tables 5.5,5.6). The homogeneity of the dyad in the samples was also confirmed by 

UV/Vis spectroscopy showing linear responses of each compound in the MOF (Figure 

5.7) and TEM/EDS mapping results (Figure 5.8). 

 
Figure 5.7 Absorbance of BCDTE (λabs = 330 nm) and TCPP (λabs = 421 nm) in 3, 
respectively, as a function of stock volume of 3.  
 
 
Table 5.5 Contents of S and Zr in the samples from EDX characterization. 
 

Samples S (Atomic%) Zr (Atomic%) S/Zr Ratio 
1 0.03±0.03 4.40±0.46 0.007±0.006 
2 0.06±0.01 4.24±0.35 0.014±0.001 
3 0.22±0.06 4.10±0.23 0.054±0.012 
4 0.36±0.12 3.48±0.94 0.100±0.009 
5 0.60±0.11 4.39±0.36 0.136±0.013 
6 0.61±0.10 3.67±0.49 0.166±0.007 
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Figure 5.8 TEM/EDS mapping of sample 6. Scale bars = 500 nm. 

 
Table 5.6 Summary of XPS results. Contents of S2p, N1s and Zr3d in samples (1-6). 

Samples S2p 
(Atomic %) 

N1s 
(Atomic %) 

Zr3d 
(Atomic %) S/Zr Ratio 

1 0.1 1.51 5.35 ∼0.02 
2 0.3 1.44 5.39 ∼0.06 
3 0.52 1.58 4.94 ∼0.11 
4 0.77 1.3 4.96 ∼0.16 
5 0.85 1.44 4.53 ∼0.19 
6 1 1.46 4.7 ∼0.21 
 

The 1O2 generation controllability of the photosensitizing systems 1–6 was tested 

upon photoisomerization. A proposed mechanism for the control of 1O2 generation is 

centered on competitive energy transfer pathways of TCPP emission between closed 

BCDTE and 3O2 (Figure 5.5d). Representative photoisomerization of BCDTE isomers 

was shown in Figure 5.5c, exhibiting distinctive changes in absorption profile. Depending 

on the form of BCDTE isomers, therefore, the excited energy of TCPP can take different 

S Zr 

S+Zr TEM 
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energy transfer routes as shown in Figure 5.5d. For instance, when the BCDTE switch is 

in the open form, the energy transfer occurs from 3TCPP* to 3O2, resulting in 1O2 

generation.161 On the other hand, the closed BCDTE upon UV irradiation quenches the 

1O2 generation due to possible EnT pathway to the closed BCDTE over 3O2. To validate 

the feasibility of photoisomerization of BCDTE in UiO-66 nanoparticles, we prepared a 

sample only with BCDTE in UiO-66 (7) using the same synthetic strategy. Upon UV 

irradiation (λ=302 nm) on the open form of BCDTE at UiO-66, the maximum absorbance 

of BCDTE was observed in 10-15 s, while prolonged UV irradiation led to a decrease in 

absorbance (Figure 5.10a). The reverse reaction was also tested with a visible irradiation 

(λ>450 nm) and a near complete recovery was achieved in 15 min (Figure 10b). It is worth 

noting that sample 7 shows much faster photoisomerization than that of other reported 

MOFs in which the photochromic molecules were incorporated as the linker.186,216,217 

Knowing this, sample 6 was also tested for the photoisomerization. The reversible 

photoisomerization was clearly observed on a similar time frame while showing 

characteristic bands of both TCPP and BCDTE (Figure 5.9). 
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Figure 5.9 UV-Vis absorption spectra of open and closed isomers of 6. 

 

 Because the emission of TCPP could strongly indicate the results of proposed 

energy transfer, the viability of regulating energy transfer pathways in our system was 

then evaluated by fluorescence spectroscopy. The photosensitizing system 6 was chosen 

because the highest ratio of BCDTE over TCPP would result in the greatest quenching 

ability. The system was excited at the Soret band (λ=420 nm) of TCPP to avoid possible 

intervention of the switching operation. The emission spectrum of 6 with the open switch 

(denoted as 6-o) shows an emission maximum at 650 nm. To this sample, UV irradiation 

was applied to close the BCDTE switch in 6. As expected, the emission at 650 nm was 

quenched upon UV irradiation, suggesting energy transfer occurred to the closed BCDTE 

as proposed (Figure 5.10c). Reverse photoisomerization of BCDTE was subsequently 

carried out with visible irradiation (λ>450 nm), and a recovery of emission was achieved 

in 15 min, consistent with UV/Vis spectroscopic studies. Next, reversibility of the system 

was monitored by recording changes in emission intensity at 650 nm by alternating cycles 

of switching on/off. Slight loss of fatigue resistance was observed as cycles proceeded, 
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which may be attributed to the substituent effect on DTE switch as studied in literature.218 

Nevertheless, in system 6, the BCDTE to TCPP ratio can be as high as around 11:1, in 

which the emission of TCPP can be sufficiently quenched by a high concentration of the 

closed form of BCDTE. 

 

 

Figure 5.10 (a) Changes in the UV-Vis absorption of sample 7 upon UV irradiation at 
302 nm and (b) recovery of UV-Vis absorption of 7 upon visible irradiation (λ > 450 nm 
with long pass filter) in DMF. (c) Emission spectra of open and closed isomers of 6. λex 
= 420 nm. (d) Changes in emission intensity of 6 at 650 nm over few cycles of 
photoisomerization. λex = 420 nm.  
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Figure 5.11 (a) Irradiation time-dependent SOSG fluorescence response incubated with 
the closed form of samples 1–6 upon 420 nm irradiation for photosensitization. λex = 504 
nm, λem = 550 nm. (b) In vitro PDT efficacy of sample 1 and 6-c at various concentrations 
in B16 melanoma cells. Incubation time = 24 h. Irradiation time = 30 min. c-f) CLSM 
images of B16 cells treated with 20 µM of samples 1 and 6, respectively (middle row). 
Cells treated with (c) FBS free DMEM as a control; (d) sample 1; (e) sample 6-o; (f) 
sample 6-c for 60 min, respectively. The corresponding DIC images are shown at top 
row. Fluorescence intensity profiles within the line across B16 cells are shown at bottom 
row. Scale bars = 20 µm. 

 



 

 121 

After validating the reversible nature, [BCDTE]-dependent 1O2 controllability was 

then examined with the closed form of BCDTE in each sample to compare the quenching 

efficiency of 1O2 generation. The generated 1O2 was monitored by turn-on fluorescence of 

singlet oxygen sensor green (SOSG). Samples 1–6 (closed forms) were irradiated by 420 

nm (100 mW/cm2) to generate 1O2. As expected, the 1O2 quenching efficiency was 

proportional to the concentration of BCDTE switch in each system (Figure 5.11a). In 

particular, 6 showed almost a near complete quenching of 1O2 upon turn-off operation, 

suggesting energy transfer to 3O2 was indeed more efficiently inhibited by the higher 

concentration of the closed BCDTE in 6. 

 

 
Figure 5.12 PXRD patterns of UiO-66 nanoparticle soaked in HEPES buffer (0.01 M, pH 
7.4, 37 °C). 
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Figure 5.13 Colloidal stability of UiO-66 nanoparticles in water for seven days. Cumulant 
results were recorded for hydrodynamic meter. Data are means ± s.d. (N = 3). 

 

Having confirmed their 1O2 controllability as well as effective photosensitization, 

we then evaluated the applicability of the systems in live cells. First, stability of the 

nanocarrier was examined in aqueous media where PXRD and dynamic light scattering 

(DLS) data showed no obvious destruction of the framework over a week (Figures 5.12 

and 5.13). In vitro PDT studies were then carried out using B16 melanoma cells, a skin 

cancer model. Imaging capability of the material was examined by 1, composed of only 

TCPP in UiO-66 nanoparticles, showing a strong red fluorescence, indicative of the 

emission from the photosensitizer (Figure 5.11d). Next, B16 cells were treated with 6-o 

(the same TCPP equiv), exhibiting red emission as intense as 1, which suggests the excited 

energy of TCPP was not disturbed by the open switch in 6 (Figure 5.11e). Switching ability 

of 6 was then validated by the cells incubated with the closed 6 (denoted as 6-c), which 

shows a negligible fluorescence as a result of the proposed energy transfer to the closed 
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form of BCDTE (Figure 5.11f). In addition, cell viability tests show low cytotoxicity of 

materials 1–6 to B16 cells at various concentrations for as long as 48 h (Figure 5.14). 

 
Figure 5.14 Cell viability of B16 cells incubated with samples (1-6) at various 
concentrations for 48 h. Data are means ± s.d. N = 3. 

 

 

 

Figure 5.15 (a) Proposed delivery of the photosensitizing system (BCDTE and TCPP) 
via MOF nanoparticle formulation (left) and a mixture of small molecules in solution 
(right). (b) Comparison of in vitro PDT efficacy between 6-c and 6-o at various 
concentrations in B16 cells upon irradiation at 420 nm. Incubation time = 24 h. Irradiation 
time = 30 min. (c) Comparison of in vitro PDT efficacy between open and closed forms 
of free BCDTE/TCPP mixture at various concentrations in B16 cells upon irradiation at 
420 nm. Incubation time = 24 h. Irradiation time = 30 min.  
 

0 20 40 60 80 100
0

20

40

60

80

100

120

C
el

l V
ia

bi
lit

y 
(%

)

Concentration (µM)

 Sample 1  Sample 2  Sample 3
 Sample 4  Sample 5  Sample 6



 

 124 

Next, in vitro PDT efficacy was examined in B16 melanoma cells. While various 

control groups showed no apparent phototoxicity, sample 1 showed a significant PDT 

efficacy (Figure 5.11b). In particular, the cells treated with 6-c showed almost no PDT 

efficacy, clearly supporting our hypothesis that energy transfer-based control of 1O2 

generation was indeed realized in cell model (Figure 5.11b). To further confirm this 

concept, we directly compared PDT efficacy between 6-c and 6-o. As shown in Figure 

5b, the PDT results indicate that switching operation can turn on 1O2 generation in 6-o, 

enabling desired control of 1O2 for PDT through the photochromic switch. As a control 

experiment, the switching ability and ensuing PDT efficacy of a homogeneous mixture of 

BCDTE and TCPP molecules (without MOF nanoparticle formulation) were tested at the 

same concentrations as those in 6. Interestingly, PDT efficacy of the small molecule 

system (open BCDTE/TCPP mixture) was less effective than that of 6-o, further 

supporting the improved PDT efficacy by enhanced permeability and retention (EPR) 

effect, of which the improved delivery was achieved by the UiO-66 nanocarrier (Figure 

5.15b,c). In particular, the results indicate that delivery of the mixture to target cells with 

their optimized molar ratio might be challenged presumably due to biological barriers 

(e.g., different cell permeability), suggested by noticeable loss of 1O2 control (green in 

Figure 5.15c). Furthermore, the failure of maintaining effective local concentration of the 

homogeneous mixture of the dyad in the cells may also result in a significantly diminished 

control for 1O2 quenching (Figure 5.15a). Therefore, in situ incorporation of multiple 

functionalities in MOF nanoparticle not only enhanced the delivery and PDT efficacy of 

the photosensitizing system over the molecular analogues, but also can be an attractive 
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strategy to maintain the pre-designed system with multiple components (i.e., the 

optimized ratio) for desired applications. 

5.4 Conclusions 

In summary, our strategy of the in situ incorporation of the multiple functionalities 

in the MOF nanoparticle has been successfully demonstrated with a tunable ratio of the 

photochromic switch for the control of 1O2 generation. This method also shows great 

potential for protected delivery of an integrated photosensitizing system as desired, 

allowing enhanced in vitro PDT efficacy with superior controllability of 1O2 generation, 

using a MOF formulation compared to that of homogeneous mixture of the dyad.  
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6. SIZE-CONTROLLED SYNTHESIS OF PORPHRYINIC METAL–ORGANIC 

FRAMEWORK AND FUNCTIONALIZATION FOR TARGETED 

PHOTODYNAMIC THERAPY* 

6.1 Introduction 

 Nanotechnology has shown great potential for cancer treatment due to the unique 

properties of nanomaterials, including optical, electrical, and magnetic behaviors. 

Meanwhile understanding the interactions between the nanomaterials and biological 

systems with respect to their size, shape, and surface chemistry is of significant importance 

when designing nanomaterials to improve the precision of cancer therapy.219-222 Current 

nanomaterials in cancer therapy have evolved to improve specific accumulation at the 

tumor site with two major mechanisms: passive and active targeting. Passive targeting is 

often referred to as the enhanced permeability and retention (EPR) effect, while active 

targeting is achieved by coating targeting ligands onto the nanomaterials that can promote 

cellular uptake at the tumor sites.223,224 

 With conventional nanomaterials, however, achievement of such targeting 

modalities is often complex, because nanomaterials are usually employed as carriers of 

therapeutics or imaging agents, of which their inherent traits are hardly modifiable at a 

molecular level.196 Recent studies reveal that physical parameters of nanomaterials have 

shown a strong correlation to cellular processes.225-230 However, engineering of 

                                                

*Reproduced with permission from Park, J.; Jiang, Q.; Feng, D.; Mao, L.; Zhou, H.-C., J. Am. Chem. Soc., 
2016, 38, 3518–3525. Copyright 2016 American Chemical Society. 
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nanoparticles to carry a single variable for studying a targeted parameter remains a 

daunting challenge with formulations of conventional nanoparticles, because these often 

depend on more than one single factor.231 Thus, such systems could disturb interpretation 

of the pure effects of the targeted parameter under controlled conditions, against other 

dependent variables. Therefore, it is of critical importance to integrate functionality into 

materials while having controllability of size and shape with no significant alteration of 

their designed physicochemical properties, as well as with a high degree of uniformity.231-

233 

 As an emerging modality of cancer treatments, photodynamic therapy (PDT) has 

gained attention due to its minimally invasive nature and innate selectivity upon a 

localized irradiation at the tumor sites.187,234 PDT requires a combination of light, a 

photosensitizer (PS), and tissue oxygen to generate cytotoxic singlet oxygen (1O2) that can 

damage tumors. Although porphyrin derivatives are widely employed photosensitizers in 

PDT, the effective delivery of porphyrinic molecules to the tumor sites still leaves much 

to be desired due to their hydrophobic nature.195 Alternatively, nanomaterials have been 

involved as carriers for PDT therapeutics, but these examples often show limitations of 

imprecise control of loading, increased toxicity, leaching, and instability.232,235,236 As an 

emerging class of porous materials, metal–organic frameworks (MOFs) have earned a 

significant amount of attention due to their superior design flexibility from their 

components of organic linkers and inorganic building blocks.1,237 Despite broad interest 

in the synthesis of new MOFs, formulations of MOFs as nanomaterials have been 

relatively underdeveloped but a few synthetic methods (e.g., microwave, modulating 
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chemical, spray-drying) have been applied.213,238-240 Thus, expanding the study of 

nanomaterials with the design flexibility of MOFs at a molecular level can greatly 

diversify the core function of nanoparticles, broadening the scope of applications beyond 

the traditional use of their pores as carriers.13,197,241-246 For instance, MOFs can integrate 

photosensitizers in periodic arrays, significantly reducing quenching of excited energy in 

a minimal volume, while allowing the accessibility of substrates due to their porous 

features. 25,177,198 In that regard, having MOFs as a base platform of nanomaterials can be 

advantageous due to their structural and chemical tunability via a bottom-up design. Here 

we show size-dependent targeted photodynamic therapy with porphrynic Zr-MOF 

nanoparticles, PCN-224. The size-dependent cellular uptake and ensuing PDT were 

studied with various sizes of PCN-224 nanoparticles with an imaging and a therapeutic 

modality from the porphyrinic linker. In addition, further functionalization with folic acid 

(FA) onto the Zr6 cluster in the MOF was also demonstrated, showing enhanced PDT 

efficacy owing to the active targeting of the modified MOF nanomaterial. 

6.2 Experimental section 

Materials 

 Folic acid and 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid (HEPES) 

were purchased from Sigma-Aldrich. Tetrakis(4-carboxyphenyl)porphyrin (H2TCPP) was 

purchased from Frontier Scientific. Dulbecco’s modified Eagle medium (DMEM/HIGH 

GLUCOSE 1X) were purchased from HyClone, GE Life Sciences. Fetal bovine serum 

(FBS) was purchased from Gibco, Thermo Fisher Scientific. Cell culture reagents were 

purchased from Invitrogen. Cell Counting Kit-8 (CCK-8) and Mito Tracker Green FM dye 
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were obtained from Beyotime Institute of Biotechnology (Beijing, China). Hoechst 33342 

was obtained from Solarbio (Beijing, China). Lyso Tracker Green DND-26 and Singlet 

Oxygen Sensor Green were purchased from life technologies (USA). Other chemicals 

were of at least analytical grade and were used as received. All aqueous solutions were 

prepared with Milli-Q water generated from a Milli-pore system (Bedford, MA). All other 

not mentioned starting materials and solvents were used as received without further 

purification from the following suppliers (Alfa Aesar, Sigma-Aldrich, TCI America, 

Cambridge Isotope, Oakwood Products, Fisher Scientific). The abbreviation for some 

solvents and reagents were listed here: N,N-dimethylformamide (DMF), and 

dimethylsulfoxide (DMSO).  

Instrumentation 

 Synthetic manipulations that required an inert atmosphere (where noted) were 

carried out under nitrogen using standard Schlenk techniques. Powder X-ray diffraction 

(PXRD) was carried out on a Bruker D8-Focus Bragg-Brentano X-ray powder 

Diffractometer equipped with a Cu sealed tube (λ = 1.54178) at 40 kV and 40 mA. N2 

sorption isotherms at 77 K were measured by using a Micrometritics ASAP 2420 system 

with high-purity grade (99.999%) of gases. UV-Vis spectra were recorded on Shimadzu 

UV-2450 spectrophotometer and TU-1900 spectrophotometer (Beijing Purkinje General 

Instrument Co. Ltd., China). Fluorescence spectra were recorded on a Hitachi F-4600 

spectrometer (Hitachi Co. Ltd., Japan) with Xe lamp as the excitation source at room 

temperature. Dynamic light scattering and Zeta potential were measured at 25 °C on a 

Zetasizer Nano ZS ZEN3600 analyser (Malvern Instrument Ltd, UK). Singlet oxygen was 
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generated from a CEL-S500 xenon lamp (Ceaulight, Beijing) with separate passing filter 

(power density was 100 mW/cm2). Confocal laser scanning microscopy (CLSM) images 

were performed on an Olympus FV1000-IX81 CLSM and a Leica TCS SP confocal 

system (Leica, Germany). Inductively coupled plasma mass spectrometry (ICP-MS) was 

carried out on an Agilent 7700x series ICP-MS instrument. TEM images were taken on a 

transmission electron microscopy (JEOL JEM-2100F, Japan) operated at an acceleration 

voltage of 200 keV by dropping solution onto a carbon-coated copper grid. 

Cell culture  

   Human cervical carcinoma cell line (HeLa cells) and human lung adenocarcinoma 

cell line (A549 cells) were supplied by Peking Union Medical College Hospital (Beijing, 

China). Cells were cultured in high-glucose DMEM supplemented with 10% (v/v) FBS 

and 1% antibiotics (penicillin/streptomycin, 100 U/mL) at 37 °C under a 5% CO2 

atmosphere. 

ICP-MS analysis 

 Inductively coupled plasma mass spectrometry (ICP-MS) was carried out on an 

Agilent 7700x series ICP-MS instrument. Cells were cultured in 35 mm glass-bottomed 

dishes at a density of 1.0x106/well. After incubation with different concentrations of 

PCN224 nanoparticles for certain time, the cells were digested with 0.25% pancreatin at 

37 °C for 60 seconds and centrifuged at 2000 rpm for 5 min. Precipitations were lysed in 

nitric acid at 200 °C for 1 h, then re-suspended in 5% nitric acid overnight for the 

preparation. For ICP-MS analysis, 20 µL of the cell lysates was diluted to 2 mL with Milli-

Q water. ICP-MS calibration standards was used for preparing the calibration curves, of 
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which Zr4+ concentrations were 0, 0.01, 0.1, 1, and 10 ppb (µg/mL). The isotope detected 

was 90Zr, and the readings were made in He gas mode. 

Synthesis of single crystalline PCN-224 

 Single crystalline PCN-224. 5,10, 15, 20 -Tetrakis (4-carboxyphenyl)porphyrin 

(H2TCPP) (10 mg, 0.013 mmol), zirconyl chloride octahydrate (ZrOCl2·8H2O) (30 mg, 

0.093 mmol), and benzoic acid (BA) (300 mg, 2.4 mmol) in 2 mL of N,N-

Dimethylformamide (DMF) were ultrasonically dissolved in a Pyrex vial. The reaction 

mixture was heated in the 120 °C oven for 24 h. After cooling down to room temperature, 

dark purple crystals were harvested by filtration. 

Variation of DMF 

 80 mL DMF sample. H2TCPP (100 mg, 0.13 mmol), ZrOCl2·8H2O (300 mg, 0.93 

mmol), and benzoic acid (2.8 g, 23 mmol) were dissolved in 80 mL of DMF in a 250 mL 

round bottom flask and the mixture was stirred (300 rpm) at 90 °C for 5 h. After the 

reaction is done, PCN-224 nanoparticles were collected by centrifugation (15000 rpm, 30 

min) followed by washing with fresh DMF for 3 times. The resulting PCN-224 

nanoparticles were suspended in DMF for further characterization and analysis. 

 100 mL DMF sample (reference condition). H2TCPP (100 mg, 0.13 mmol), 

ZrOCl2·8H2O (300 mg, 0.93 mmol), and benzoic acid (2.8 g, 23 mmol) were dissolved in 

100 mL of DMF in a 250 mL round bottom flask and the mixture was stirred (300 rpm) at 

90 °C for 5 h. After the reaction is done, PCN-224 nanoparticles were collected by 

centrifugation (15000 rpm, 30 min) followed by washing with fresh DMF for 3 times. The 
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resulting PCN-224 nanoparticles were suspended in DMF for further characterization and 

analysis. 

 120 mL DMF sample. H2TCPP (100 mg, 0.13 mmol), ZrOCl2·8H2O (300 mg, 

0.93 mmol) and benzoic acid (2.8 g, 23 mmol) were dissolved in 120 mL of DMF in a 250 

mL round bottom flask and the mixture was heated at 90 °C for 5 h under stirring. After 

the reaction is done, PCN-224 nanoparticles were purified by centrifugation (15000 rpm, 

30 min) followed by washing with fresh DMF for 3 times. The resulting PCN-224 

nanoparticles were suspended in DMF for further characterization and analysis. 

 140 mL DMF sample. H2TCPP (100 mg, 0.13 mmol), ZrOCl2·8H2O (300 mg, 

0.93 mmol), and benzoic acid (2.8 g, 23 mmol) were dissolved in 140 mL of DMF in a 

250 mL round bottom flask and the mixture was stirred (300 rpm) at 90 °C for 5 h. After 

the reaction is done, PCN-224 nanoparticles were collected by centrifugation (15000 rpm, 

30 min) followed by washing with fresh DMF for 3 times. The resulting PCN-224 

nanoparticles were suspended in DMF for further characterization and analysis. 

Variation of benzoic acid 

 2.2 g benzoic acid sample. H2TCPP (100 mg, 0.13 mmol), ZrOCl2·8H2O (300 mg, 

0.93 mmol), and benzoic acid (2.2 g, 18 mmol) were dissolved in 100 mL of DMF in a 

250 mL round bottom flask and the mixture was stirred (300 rpm) at 90 °C for 5 h. After 

the reaction is done, PCN-224 nanoparticles were collected by centrifugation (15000 rpm, 

30 min) followed by washing with fresh DMF for 3 times. The resulting PCN-224 

nanoparticles were suspended in DMF for further characterization and analysis. 
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 2.6 g benzoic acid sample. H2TCPP (100 mg, 0.13 mmol), ZrOCl2·8H2O (300 mg, 

0.93 mmol), and benzoic acid (2.6 g, 21 mmol) were dissolved in 100 mL of DMF in a 

250 mL round bottom flask and the mixture was stirred (300 rpm) at 90 °C for 5 h. After 

the reaction is done, PCN-224 nanoparticles were collected by centrifugation (15000 rpm, 

30 min) followed by washing with fresh DMF for 3 times. The resulting PCN-224 

nanoparticles were suspended in DMF for further characterization and analysis. 

 2.8 g benzoic acid sample. H2TCPP (100 mg, 0.13 mmol), ZrOCl2·8H2O (300 mg, 

0.93 mmol), and benzoic acid (2.8 g, 23 mmol) were dissolved in 100 mL of DMF in a 

250 mL round bottom flask and the mixture was stirred (300 rpm) at 90 °C for 5 h. After 

the reaction is done, PCN-224 nanoparticles were collected by centrifugation (15000 rpm, 

30 min) followed by washing with fresh DMF for 3 times. The resulting PCN-224 

nanoparticles were suspended in DMF for further characterization and analysis. 

 3.0 g benzoic acid sample. H2TCPP (100 mg, 0.13 mmol), ZrOCl2·8H2O (300 mg, 

0.93 mmol), and benzoic acid (3.0 g, 24 mmol) were dissolved in 100 mL of DMF in a 

250 mL round bottom flask and the mixture was stirred (300 rpm) at 90 °C for 5 h. After 

the reaction is done, PCN-224 nanoparticles were collected by centrifugation (15000 rpm, 

30 min) followed by washing with fresh DMF for 3 times. The resulting PCN-224 

nanoparticles were suspended in DMF for further characterization and analysis. 

 3.3 g benzoic acid sample. H2TCPP (100 mg, 0.13 mmol), ZrOCl2·8H2O (300 mg, 

0.93 mmol), and benzoic acid (3.3 g, 27 mmol) were dissolved in 100 mL of DMF in a 

250 mL round bottom flask and the mixture was stirred (300 rpm) at 90 °C for 5 h. After 

the reaction is done, PCN-224 nanoparticles were collected by centrifugation (15000 rpm, 
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30 min) followed by washing with fresh DMF for 3 times. The resulting PCN-224 

nanoparticles were suspended in DMF for further characterization and analysis. 

Variation of H2TCPP 

 50 mg H2TCPP sample. H2TCPP (50 mg, 0.07 mmol), ZrOCl2·8H2O (300 mg, 

0.93 mmol), and benzoic acid (2.9 g, 24 mmol) were dissolved in 100 mL of DMF in a 

250 mL round bottom flask and the mixture was stirred (300 rpm) at 90 °C for 5 h. After 

the reaction is done, PCN-224 nanoparticles were collected by centrifugation (15000 rpm, 

30 min) followed by washing with fresh DMF for 3 times. The resulting PCN-224 

nanoparticles were suspended in DMF for further characterization and analysis. 

 75 mg H2TCPP sample. H2TCPP (75 mg, 0.09 mmol), ZrOCl2·8H2O (300 mg, 

0.93 mmol), and benzoic acid (2.9 g, 24 mmol) were dissolved in 100 mL of DMF in a 

250 mL round bottom flask and the mixture was stirred (300 rpm) at 90 °C for 5 h. After 

the reaction is done, PCN-224 nanoparticles were collected by centrifugation (15000 rpm, 

30 min) followed by washing with fresh DMF for 3 times. The resulting PCN-224 

nanoparticles were suspended in DMF for further characterization and analysis. 

 100 mg H2TCPP sample. H2TCPP (100 mg, 0.13 mmol), ZrOCl2·8H2O (300 mg, 

0.93 mmol), and benzoic acid (2.9 g, 24 mmol) were dissolved in 100 mL of DMF in a 

250 mL round bottom flask and the mixture was stirred (300 rpm) at 90 °C for 5 h. After 

the reaction is done, PCN-224 nanoparticles were collected by centrifugation (15000 rpm, 

30 min) followed by washing with fresh DMF for 3 times. The resulting PCN-224 

nanoparticles were suspended in DMF for further characterization and analysis. 
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 125 mg H2TCPP sample. H2TCPP (125 mg, 0.16 mmol), ZrOCl2·8H2O (300 mg, 

0.93 mmol), and benzoic acid (2.9 g, 24 mmol) were dissolved in 100 mL of DMF in a 

250 mL round bottom flask and the mixture was stirred (300 rpm) at 90 °C for 5 h. After 

the reaction is done, PCN-224 nanoparticles were collected by centrifugation (15000 rpm, 

30 min) followed by washing with fresh DMF for 3 times. The resulting PCN-224 

nanoparticles were suspended in DMF for further characterization and analysis. 

 150 mg H2TCPP sample. H2TCPP (150 mg, 0.19 mmol), ZrOCl2·8H2O (300 mg, 

0.93 mmol), and benzoic acid (2.9 g, 24 mmol) were dissolved in 100 mL of DMF in a 

250 mL round bottom flask and the mixture was stirred (300 rpm) at 90 °C for 5 h. After 

the reaction is done, PCN-224 nanoparticles were collected by centrifugation (15000 rpm, 

30 min) followed by washing with fresh DMF for 3 times. The resulting PCN-224 

nanoparticles were suspended in DMF for further characterization and analysis. 

Thermodynamic analysis 

 When the concentration of the system is diluted to 1/n, the concentration of PCN-

224 monomer can be represented as the following.  

PCN-224monomer = [𝑍𝑟$ 𝑇𝐶𝑃𝑃 (.*] =
-×[/01 23 45×

4
6]× 7899×46

4.:

23×46
45  

= -×[/01 23 45]×[7899]4.:

[23]45
×𝑛<.*   (eq 1) 

 Similar to the variable of TCPP, [𝑍𝑟$(𝐵𝐴)(A]  is also proportional to 

𝑍𝑟$(𝑇𝐶𝑃𝑃)(.* . Therefore, a similar trend of size change in PCN-224 particles was 
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expected when varying the amount of Zr source. However, as ZrOCl2·8H2O undergoes 

severe hydrolysis and generates large amount of HCl, increasing the amount of Zr source 

led to significant protonation of porphyrin center in TCPP leading to a formation of 

different phase.  

ln𝐾 = E∆G∅

I7
= − ∆K∅

I7
+ ∆M∅

I
 (eq 2) 

 For the equilibrium constant (K), theoretically, temperature change can affect K 

value, thus influencing the concentration of PCN-224 monomer. Since the formation of 

MOF is an exothermic process (negative ∆𝐻∅), increasing the reaction temperature will 

result in a decreased K value, thus resulting in decreased monomer concentration (eq 2). 

However, because the impact of temperature on K is not linear in a range that can 

guarantee phase purity of MOF, the effect of temperature was not fully studied to tune the 

size of PCN-224 nanoparticles.  

6.3 Results and discussion 

Size-controlled synthesis of PCN-224 nanoparticles 

 In MOFs, each linker is spatially isolated by the framework, thus greatly 

preserving its molecular property regardless of dimensions. As a result, MOFs can be fully 

utilized as are small molecules, while their built-in properties are not affected by particle 

size.24 We conceived that this feature would allow for maximization of passive targeting 

by screening optimal size of MOF nanoparticles for PDT. To investigate size-dependent 

targeted PDT, a Zr(IV)-based porphyrinic MOF was chosen as a model system to test our 

hypothesis. Zr(IV) is known for relatively good biocompatibility while its high valence 
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allows strong electrostatic interaction with the carboxylate linkers in the MOF for the 

framework robustness.96,247 Meanwhile, the photosensitizing ability as well as the 

emissive nature of the porphyrinic linker endows the theranostic modality of MOF, 

making this platform multifunctional. The concept of PDT was demonstrated by Lin and 

co-workers during the course of our study. Nonetheless, we believe that the investigation 

of size and other factors on a suitable platform (e.g., controlled morphology) would allow 

us to study a correlation between MOF nanoparticles and cellular uptake for maximization 

of therapeutic efficacy, addressing a gap in the literature.  

 

 

Figure 6.1 Illustration of PCN-224 structure. (a) 6-connected Zr6 cluster 
(Zr6O4(OH)4(H2O)6(OH)6(COO)6), tetratopic linker (tetrakis (4-carboxyphenyl)porphyrin 
(H2TCPP)), and 3D nanoporous framework of PCN-224. (b) A cubic unit of PCN-224 and 
schematic illustration of spherical PCN-224 nanoparticles on the basis of building of cubic 
units, yielding different sizes. 
 



 

 138 

 Of the many reported porphyrinic Zr-MOFs, PCN-224 was considered as a strong 

candidate due to its extraordinary chemical stability and nanoporous channels, allowing 

efficient diffusion of molecular oxygen.33,34,183 Most importantly, the cubic space group 

of PCN-224 would allow for isotropic growth of crystals, enabling clearer size evaluation 

without having to carry dependent variables along with the size variation (e.g., aspect 

ratio, thickness in a rod, or a plate morphology) (Figure 6.1). Therefore, we chose PCN-

224 as a model system for studying the particle size effect for targeted PDT.183 

 However, downsizing of PCN-224 from a millimeter scale to nanoscale upon 

varying the synthetic condition was not trivial due to the easy formation of unwanted 

phases. To overcome such difficulty, thermodynamic analysis was attempted along with 

the manipulation of synthetic conditions to tune the size of PCN-224 to nanoscale. In 

principle, MOF formation can be simplified as ligand substitution reactions on the metal 

clusters.41,240 This simple coordination chemistry enables us to derive an equilibrium of 

MOF formation. In the specific example of PCN-224 synthesis, the equilibrium of the 

PCN-224 monomer [Zr6 (TCPP)1.5] formation can be simplified as eq 3 where excessive 

benzoic acid (BA) was employed as a competing reagent that is assumed to competitively 

coordinate to Zr6 cluster, forming Zr6(BA)12. In this work, the PCN-224 monomer was 

defined as a soluble species with a negligible scattering contribution, where the formula 

of Zr6(TCPP)1.5 is derived from a repeating unit of PCN-224 (H2O and extra OH– in the 

Zr6 cluster are ignored). Therefore, the formation of the PCN-224 monomer can be 

summarized as eq 4. 

 (eq 3) 
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 (eq 4) 

 Ideally, manipulation of any factor in eq 4 would cause a change in the 

concentration of the PCN-224 monomer, which would eventually affect the particle size 

through the nucleation step.213,248-250 However, our attempts to directly tune these factors 

(e.g., benzoic acid) from its synthetic condition of millimeter-sized single crystals failed 

to reduce the size to nanoscale, while giving phase impurity, presumably due to the 

dramatic change in the ratios between each reactant. 

Table 6.1 Effect of the reaction volume on the particle size. 
DMF (mL) D (nm)a PDI 

80 225.7 ± 30.2 0.005 
100 95.9 ± 24.0 0.103 
120 71.6 ± 18.2 0.080 
140 42.1 ± 11.0 0.191 

 

Table 6.2 Effect of benzoic acid (competing reagent) on the particle size. 
Benzoic Acid (g) D (nm)a PDI 

2.2 23.8 ± 6.8 0.239 
2.6 60.2 ± 15.7 0.086 
2.8 94.1 ± 24.2 0.132 
3.0 182.8 ± 46.6 0.072 
3.3 232.5 ± 51.8 0.055 

 

Table 6.3 Effect of H2TCPP on the particle size. 
H2TCPP (mg) D (nm)a PDI 

50 280.4 ± 36.3 0.032 
75 110.4 ± 30.0 0.197 
100 84.1 ± 23.2 0.215 
125 64.8 ± 18.0 0.196 
150 57.9 ± 15.5 0.177 
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 Thus, we embarked on downsizing PCN-224 by diluting the system to preserve 

the phase purity from unchanged stoichiometry between reactants, while aiming to create 

more MOF monomers, which would result in smaller particles (Tables 6.1-6.3). Upon five 

times of dilution from its single crystal synthetic condition, PCN-224 nanoparticles with 

a size of ∼90 nm, based on dynamic light scattering (DLS) in DMF, were achieved and 

this condition was established and denoted as a reference condition for the following 

investigation. Then, we sought to realize a precise size control of the particles in the nano 

regime by utilizing different impact of size-tuning ability of each factor as analyzed. 

According to eq 4, for instance, the concentration of PCN-224 monomer is strongly 

dependent on the concentration of BA due to the high order of [BA]12 in the equation, 

suggesting a significant impact of [BA] on the size of PCN-224 nanoparticles. Starting 

from the reference condition, when the amount of BA was varied with a ∼200 mg interval 

from 2.2 to 3.3 g, the size of PCN-224 nanoparticles increased from 24 to 232 nm (Table 

6.2). The tuning of the particle size in a narrower range was observed from variation of 

[TCPP] due to a lower order ([TCPP]1.5) in the equation, making it a suitable variable for 

fine-tuning (Table 6.3). These results are also consistent with our thermodynamic analysis. 

For instance, according to eq 4, the increased amount of BA would result in decreased 

number of the PCN-224 monomer in the system, thus yielding larger nanoparticles. 

Similarly, varying the concentration of TCPP can also change the concentration of the 

monomer in an opposite trend to BA, which can also be predicted by eq 4. Therefore, 

adjustment of each factor in eq 4 allows fine-tuning of the size of PCN-224 nanoparticles. 

These results also suggest that understanding the size tunability of each factor holds great 
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potential in providing design insights for nanomaterials that require such control in diverse 

future applications.  

Figure 6.2 Characterization of PCN-224 nanoparticles. (a) Size-dependence of emission 
spectra (λex = 420 nm). Inset: 90 nm-PCN-224 dispersed in water under (left) ambient light 
and (right) UV irradiation (λ = 365 nm), respectively. (b) N2 adsorption isotherms of PCN-
224 (bulk sample, 90 nm-PCN-224 before and after the water treatment (37 °C, 24 h). (c) 
Powder X-ray diffractions of PCN-224 nanoparticles after stability test (0.1 M HEPES, 
pH 7.4, 37 °C). 
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Figure 6.3 PXRD of PCN-224 samples with BA variation. 
 

 Among the variables, the set varied with the concentration of benzoic acid was 

chosen for detailed studies, due to an ease of variable control and a broad range of sizes. 

Powder X-ray diffraction (PXRD) data clearly show the pure phase of PCN-224 (Figure 

6.3). To further confirm our hypothesis that the identity of MOF nanoparticles will not be 

altered by size variation, photophysical properties of the BA-varied set were tested by 

UV–vis and fluorescence spectroscopy. In absorption spectra, a slight red shift was 

observed as the particle size increased along with more scattering, as expected from typical 

observation in nanomaterials (Figure 6.4). Interestingly, their emission profiles, which are 

closely related to the photosensitization to generate 1O2, show the same emission maxima 

(λem = 650 nm) for any size of samples, indicating the molecular level of design is well 

maintained regardless of their size (Figure 6.2a). 
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Figure 6.4 Absorption spectra of PCN-224 samples with different sizes varied by BA.  
 

 Having confirmed this unaltered molecular property of different sizes of PCN-224 

nanoparticles, the stability of the framework in aqueous media was then examined. 

In Figure 6.2b, N2 sorption of nanoparticles showed well maintained porosity compared 

to that of bulk crystalline PCN-224. Notably, after 24 h of water treatment at 37 °C, the 

porosity of PCN-224 nanoparticles was still preserved only with a slight decrease in 

N2 uptake probably due to the inevitable destruction of the framework under aqueous 

condition (Figure 6.2b). PXRD data also confirmed that PCN-224 nanoparticles can retain 

their crystallinity in buffer (0.1 M HEPES, pH 7.4, 37 °C) for 2 days while gradually 

decreasing in crystallinity over 7 days (Figure 6.2c). In particular, PXRD data revealed 

that PCN-224 nanoparticles treated with cell culture medium, DMEM for 24 h maintained 

the crystallinity. These results indicate that PCN-224 nanoparticles would remain intact 

as the MOF until PDT treatment, considering typical cellular internalization and 



 

 144 

irradiation time for the treatment. To our surprise, PCN-224 nanoparticles can also be well 

dispersed in both DMF and H2O in the absence of additional surfactant (Figure 6.2a inset). 

With most other conventional nanoparticles, surfactants are often required to prevent 

strong interparticle interaction for better dispersibility. Perhaps due to the 3D cubic grid-

like porous structure of PCN-224 as well as its spherical morphology, it may provide 

tangential contact between particles, allowing minimal interaction on their surface. The ζ 

potential of PCN-224 nanoparticles of ∼20 mV also supports their moderate dispersibility 

(Table 6.4).  

 

Table 6.4 Summary of physicochemical properties of PCN-224 nanoparticles.  
PCN-224 label BA (g) TEM (nm) Dh (nm) PDI ζ potential (mV) 

30 nm 2.2 33 ± 4 65 ± 3 0.246 19.6±6.41 
60 nm 2.6 59 ± 5 114 ± 3 0.067 25.3±6.27 
90 nm 2.8 91 ± 8 137 ± 2 0.053 19.8±7.15 
140 nm 3.0 144 ± 7 197 ± 1 0.035 22.7±5.92 
190 nm 3.3 189 ± 11 255 ± 2 0.025 20.7±5.59 

 

Table 6.5 Physiochemical properties of PCN-224 samples with different sizes varied by 
BA. 

Sample 
label 

TEM diameter 
(nm) Dh (nm) PDI ζ potential (mV) 

30 nm 33 ± 4 65 ± 3 0.246 19.6±6.41 
60 nm 59 ± 5 114 ± 3 0.067 25.3±6.27 
90 nm 91 ± 8 137 ± 2 0.053 19.8±7.15 
140 nm 144 ±7 197 ± 1 0.035 22.7±5.92 
190 nm 189 ± 11 255 ± 2 0.025 20.7±5.59 
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Figure 6.5 TEM images and cellular studies of PCN-224 nanoparticles. (a) TEM images 
of PCN-224 nanoparticles of 30, 60, 90, 140, and 190 nm. (b) Cellular uptake of PCN-224 
samples with different sizes at various incubation time. Concentration = 20 µM. (c) 
Cellular uptake of different sized PCN-224 nanoparticles at various concentrations. 
Incubation time = 24 h. Data are based on ICP analysis of the Zr concentration internalized 
into HeLa cells. Data are means ± s.d. (N = 3). 
 
 
Passive targeting: particle size-dependent cellular uptake and PDT 

 Although the effect of physical dimension of some other nanoparticles (i.e., gold 

nanoparticles, carbon nanotubes) for cellular uptake has been studied, it has been known 

that their correlations are also significantly affected by the composition of the 

nanomaterials.14 Considering only a rare example can be referred as a study of the size-
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related cellular response with MOF nanomaterials,206 PCN-224 model platform, covering 

a broad range in interest of biological studies, can provide important design insight for 

future study in MOF size-cell interaction. To determine the size-dependent cellular 

response, five size fractions, ranging from 30 to 190 nm, based on transmission electron 

microscopy (TEM) results, were applied to HeLa (human cervical cancer) cells (Table 

6.4 and Figure 6.5a). Quantitative analysis of uptake of the nanoparticles was achieved 

using inductively coupled plasma mass spectrometry (ICP-MS) upon cell digestion. To 

begin, time-dependent cellular uptake of PCN-224 nanoparticles was studied to obtain 

insight for kinetics of endocytosis. The cellular uptake showed a plateau around 12 h for 

each fraction (Figure 6.5b). Dose-dependent uptake of PCN-224, ranging from 0.5 to 40 

µM (TCPP equiv), was also carried out. Interestingly, ICP results indicate that different 

amount of Zr entered into the cells, suggesting the different sizes of particles indeed 

resulted in different cellular responses (Figure 6.5c). Notably, 90 nm-PCN-224 showed 

the highest amount of Zr uptake in cells which also suggests the greatest uptake of TCPP 

by MOF structure, among other sizes (Figure 6.6a). 

Table 6.6 Calculated numbers of PCN-224 nanoparticle uptake in each cell. 

Samples Zr/particle (mol) Zr/cell (mol) TCPP/cell (mol) Nparticle/cell 
30 nm-PCN-224 4.95⋅10-21 2.32⋅10-14 5.80⋅10-15 4.68⋅106 
60 nm-PCN-224 3.96⋅10-20 2.78⋅10-14 6.95⋅10-15 7.01⋅105 
90 nm-PCN-224 1.34⋅10-19 4.00⋅10-14 1.00⋅10-14 2.99⋅105 
140 nm-PCN-224 5.03⋅10-19 1.46⋅10-14 3.65⋅10-15 2.90⋅104 
190 nm-PCN-224 1.26⋅10-18 8.20⋅10-15 2.05⋅10-15 6.51⋅103 
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Figure 6.6 Cellular response and PDT efficacy of PCN-224 nanoparticles. (a) Size-
dependent cellular uptake of PCN-224 nanoparticles. Incubation time = 24 h. (b) 
Cytotoxicity of 90 nm-PCN-224 in HeLa and A549 cells at various concentrations for 48 
h. (c) Control experiments of cytotoxicity in HeLa cells upon light irradiation of 420 and 
630 nm in the absence and presence of 90 nm-PCN-224. Irradiation time = 30 min. (d) 
Comparison of PDT efficacy between different sized PCN-224 nanoparticles and free 
TCPP molecules. Data are means ± s.d. (N = 3). 
 
 
 Having examined size-dependent cellular uptake of PCN-224 nanoparticles, PDT 

efficacy of the five size fractions, each at 20 µM, were tested for HeLa cells under 

irradiation at Soret band (420 nm). Among these five fractions, 90 nm-PCN-224 showed 

the best PDT efficacy of 81%, while 190 nm-PCN-224 gave the lowest efficacy of 49% 

in agreement with the results of cellular uptake (Figure 6.6d). Markedly, free 

photosensitizer (TCPP linker only) showed only 47% in PDT efficacy at the same 
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concentration, which further confirms our hypothesis that MOF nanoparticle formulation 

and the size screening can optimize the performance of the given photosensitizer. 

Interestingly, the PDT efficacy does not show much correlation with the number of 

nanoparticles inside the cells where we converted Zr content to the number of particles 

(Table 6.6). Rather, 90 nm-PCN-224 with a moderate number of particles internalized 

shows the greatest PDT efficacy as a result of the highest Zr/TCPP uptake (Figure 6.6d) 

while showing no evident toxicity of the material itself even at high concentration after 48 

h incubation (viability of ∼90% at 100 µM) (Figure 6.6b). These results clearly show a 

strong correlation between PDT efficacy and the TCPP concentration in the cells, rather 

than the number of particles. Such correlation, therefore, indicates that TCPP linkers in 

PCN-224 nanoparticles are fully utilized regardless of the particle size, as are small 

molecules, resulting from the 3D nanoporous structure of PCN-224 while preference for 

internalization was determined by the size of MOF nanoparticle. It is important to note 

that these results address the need for insights in the design/selection of MOFs, because 

the density of desired function in the framework is proportional to the size, while the size 

parameter is another determinant for optimizing the dynamics between materials and cells. 
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Figure 6.7 (left) Singlet oxygen generation of 90 nm-PCN-224 under 420 nm and 630 nm 
light irradiation. (right) Size-dependent in vitro PDT efficacy of PCN-224 nanoparticles 
in HeLa cells upon 420 nm (blue bars) and 630 nm (red bars) irradiation, respectively. 
Concentration = 20 µM. Incubation time = 24 h. Irradiation time = 30 min. (mean ± s.d., 
N = 3) 
 

 Because TCPP can absorb the light at Q bands other than its Soret band, we further 

investigated the PDT efficacy of the size optimized PCN-224 nanoparticles (90 nm) under 

irradiation at 630 nm, which would provide better tissue penetration in practice. Although 

the irradiation at 420 nm showed slightly better 1O2 generation than at 630 nm due to the 

strong absorption of the Soret band in singlet oxygen generation study, PDT efficacy of 

90 nm PCN-224 under 630 nm irradiation could reach as high as ∼80%, which is almost 

the same as the efficacy under 420 nm irradiation (Figure 6.6c). Presumably due to the 

highly dense assembly of TCPP in PCN-224, while the framework prevents the 

aggregation of photosensitizers, O2 molecules in cells might have sufficient contact with 

surrounding photosensitizers. Consequently, the weaker absorption of TCPP at 630 nm 

irradiation may be compensated by sufficient interaction between O2 and photosensitizers 

inside of PCN-224 nanoparticles, resulting in similar efficacy (Figure 6.7). In addition, the 
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subcellular localization of PCN-224 in HeLa cells was confirmed with fluorescent 

staining. Notably, the red fluorescence of PCN-224 matches well with the green 

fluorescence from Lyso Tracker and Mito Tracker, while showing negligible overlap 

between PCN-224 and nucleus, indicating the PCN-224 nanoparticles are mostly localized 

in the cytoplasm (Figure 6.8). 

 

 

Figure 6.8 Subcellular localization of PCN-224 nanoparticles by staining with organelle 
markers, Hoechst 33342, Lyso Tracker, and Mito Tracker green. 
 

Active targeting: folic acid modification on PCN-224 nanoparticles 

 Folate is a commonly used ligand for targeting folate receptor (FAR) abundant 

tumor cells, including ovarian tumors, to enhance the delivery of 

nanoparticles/drugs.251,252 Therefore, we further sought to build an active targeting 

modality in our platform through postsynthetic folic acid (FA) modification on the surface 

of 90 nm-PCN-224. Because there are available binding sites on the Zr6 cluster in PCN-

224, the carboxylate end of folate could be attached to Zr6 clusters by coordination (Figure 
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6.9a).253 However, as previous results suggest that the size of nanoparticles will also affect 

the uptake, the degree of FA functionalization was designed to bear a minimal size 

expansion to prepare comparable sizes. A series of FA modified 90 nm-PCN-224 was 

prepared by reaction with different stoichiometries of 1/8, 1/4, and 1/2 equiv of FA to the 

available Zr binding sites. The size of samples was confirmed by TEM and DLS, which 

showed the modification extent, not involving drastic changes in size and surface charge 

(Table 6.7). Also, the characteristic absorption band of FA confirmed the different degree 

of FA functionalization as well as quantification of actual FA loading of each sample 

(Table 6.8). 1O2 generating ability of PCN-224 nanoparticles after the FA modification 

remains almost the same as pristine PCN-224 nanoparticles, providing a good control to 

evaluate the influence of FA modification. In order to test the active targeting upon FA 

modification, the PDT efficacy of samples was tested with HeLa cells, known for FAR  

abundant cell line.254 As a result, 1/4FA-PCN-224 showed the most potency: more than 

90% of PDT efficacy, which is an enhancement from unmodified PCN-224 under the same 

condition (Figure 6.9b). Although any degree of FA modification provided an 

enhancement from the unmodified sample, the lesser enhancement from 1/8FA-PCN-224 

may result from insufficient FA density than that of 1/4FA-PCN-224, whereas 1/2FA-

PCN-224 showed the least enhancement perhaps due to the size expansion (Figure 6.9b). 

Overall, this improvement in PDT efficacy shows the great potential of this system of 

which the maximization of the desired function can be achieved through optimizations of 

both physical and chemical properties of the MOF nanoplatform. 
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Table 6.7 Physiochemical properties of FA modified PCN-224 nanoparticles with varying 
loading ratios. 

FA/PCN-224 TEM (nm) Dh (nm) PDI ζ potential (mV) 
0 91 ± 8 137 ± 2 0.053 20.3±4.69 

1/8FA 98 ± 8 143 ± 2 0.091 17.0±4.23 
1/4FA 102 ± 10 156 ± 1 0.213 19.2±4.99 
1/2FA 110 ± 11 175 ± 4 0.178 16.6±3.90 

 

 

 

Table 6.8 Quantification of actual folate loadings on 90 nm-PCN-224 sample (10 µM). 
Based on the chemical formula of PCN-224, each TCPP linker corresponds to four Zr 
atoms. As the concentration of our material (Cpcn) is based on TCPP, the concentration of 
Zr will be 4хCpcn. Since each Zr6 contains 6 available positions for the further coordination 
of carboxylate, ideally each Zr atom corresponds to one folic acid if full occupation of the 
available coordination sites on Zr6 cluster were assumed.  

FA/Zr 
stoichiometry 

FA Concentration (µM) Actual FA/Zr 
ratio (Cl /4Cpcn) Initial (Ci) 

Supernatant 
(Cs) 

Loaded 
(Cl = Ci - Cs) 

0 0 0 0 0 
1/8 5 3.80 1.20 ~3/100 
1/4 10 7.61 2.39 ~3/50 
1/2 20 16.02 3.98 ~1/10 
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Figure 6.9 In vitro PDT study of FA functionalized 90 nm-PCN-224. (a) Scheme of FA 
functionalized PCN-224 nanoparticle and proposed internalization. (b) In vitro PDT 
efficacy of FA functionalized (FA equivalent of 0, 1/8, 1/4, 1/2) 90 nm-PCN-224 at 
various concentrations in HeLa cells. Irradiation at 420 nm for 30 min for PDT. (c) ICP 
analysis of cellular uptake of unfunctionalized and FA functionalized 90 nm-PCN-224 at 
various concentrations in HeLa and A549 cells. Incubation time =24 h. (d,e) Comparison 
of in vitro PDT efficacy of pristine PCN-224 and 1/4FA-PCN-224 in (d) HeLa cells and 
(e) A549 cells. (f) CLSM images of HeLa and A549 cells incubated with pristine PCN-
224 and 1/4FA-PCN-224 samples. Red channel images were obtained from pristine or FA 
functionalized PCN-224. The blue channel images were obtained from Hoechst 33342 
(nucleus). Concentration =20 µM. Incubation time =60 min. Scale bars =20 µm. (g) CLSM 
images of HeLa cells without any treatment (top row); treated with 1/4FA-PCN-224 
(middle row); coincubated with excess amount of free FA (1 mM) and 1/4FA-PCN-224 
(bottom row). Concentration =20 µM. Incubation time =60 min. Scale bars =20 µm. Data 
are means ± s.d. (N = 3). 
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 To further confirm the effect of active targeting, both FA modified and unmodified 

90 nm-PCN-224 were applied to FAR-negative cell line, A549 as a control experiment. 

Interestingly, FA functionalized PCN-224 showed no apparent advantages over 

unmodified nanoparticles both in uptake and ensuing PDT efficacy, rather it showed even 

less merit (Figure 6.9c,e). Likely due to different size preferences for permeability of the 

particles in A549 cells, a slight increase in size of PCN-224 upon FA modification showed 

rather negative impacts on the uptake in FAR negative A549 cells (Figure 6.9c–f). In 

parallel, a competition assay was implemented with 1/4FA-PCN-224 in the presence of 

an excess amount of free FA as a competing ligand for folate receptor.255 Indeed, HeLa 

cells treated with the excess free FA (1 mM) showed much weaker fluorescence in 

confocal microscopy images, indicating functionalized FA on the MOF was involved in 

the uptake event through receptor-mediated endocytosis (Figure 6.9g). 

6.4 Conclusions 

 Through thermodynamic analysis, the size of PCN-224 nanoparticles was 

successfully tuned to a range that is of interest to biological studies (30–190 nm). Our 

hypothesis is successfully proved by preferential cellular uptake of 90 nm-PCN-224 and 

its remarkable PDT efficacy over other sizes, including free TCPP linkers. These results 

clearly demonstrate the fabrication of photosensitizer as MOF nanoparticles followed by 

the optimization of their size parameter indeed play a critical role for improving cellular 

response. Together with our findings in size-controllable synthesis of MOF nanoparticles, 

the PCN-224 nanoplatform demonstrates active targeting modality for further 

enhancement of PDT efficacy, of which the enhancement was obtained by postsynthetic 
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FA modification onto Zr6 cluster. Meanwhile, the potential of theranostic modality was 

demonstrated from the porphyrinic linker in the MOF in cancer cell model. Having 

confirmed the preserved molecular properties of the incorporated linker, invariable to 

MOF sizes, we envision that combination of the synthetic tunability of MOF on the 

molecular scale and its size controllability can create useful tools for specific needs in 

desired applications through chemical, physical, and structural design of MOF 

nanoplatform. 
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7. SUMMARY 

 To tackle some challenges that MOF materials face for broad application, this 

dissertation focused on synthetic methodologies to functionalization of stable MOFs. In 

sections 2 and 3, the strategies of designed functional linker exchange and/or dual 

exchange including metal metathesis successfully demonstrated the introduction of 

functionality and enhanced chemical stability in a mesoporous MOF platform. Possible 

rationales in regards to the observations have also been discussed from a thermodynamics 

and kinetics standpoint, providing a useful insight for these findings to be generalized for 

other MOF systems. 

In section 4, a new 3D MOF consisting of 2D porphyrinic layers pillared by 

photochromic molecular switches was synthesized. This mixed linker MOF was 

demonstrated for the control of 1O2 generation via energy transfer by taking advantage of 

the well-defined structure of the MOF in a periodic array. The features of MOFs 

guaranteed high accessibility for substrates, while preventing quenching of dyes, which is 

detrimental for energy transfer. 

However, the classical Zn-based pillar-layer strategy often yields MOFs with weak 

chemical stability and limits adjusting molar ratios of component linkers due to the 

topological incompatibility. To address this issue, the in situ incorporation of multiple 

functionalities in a highly stable Zr-MOF was proposed for the fine-tuning of the energy 

transfer efficiency to control 1O2 generation. This strategy shows great potential for the 

protected delivery of the integrated photosensitizing system as optimized, allowing 

enhanced in vitro PDT efficacy with superior 1O2 controllability upon MOF formulation 
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compared to that of the homogeneous mixture of the dyad. In terms of PDT, however, 

excitation at longer wavelength of light is highly desired. Therefore, future works will be 

directed toward preparing upconversion MOF nanoplatform, where the photosensitizer in 

the MOF can be excited by near infrared irradiation allowing better practicality in cancer 

treatments. 

In summary, the findings and discussion in this dissertation could provide useful 

tools for the rational design of MOFs for use in specific applications while also placing 

these materials at the forefront of interdisciplinary study.  
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