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ABSTRACT 

 

 

The Poisson-gamma (PG) and Poisson-lognormal (PLN) regression models are among 

the most popular means for motor-vehicle crash data analysis. Both models belong to the 

Poisson-hierarchical family of models, which provides a straightforward framework for 

interpretation of parameters. Over the last two decades, highway safety researchers have 

increasingly favored a full Bayesian approach to estimation of Poisson-hierarchical 

models due to its theoretical and computational advantages. While numerous studies 

have compared the overall performance of alternative Bayesian Poisson-hierarchical 

models, little research has addressed the impact of model choice on the expected crash 

frequency prediction at individual sites. This dissertation takes a microscopic approach 

to comparing the models’ predictions and strives to identify possible trends e.g., that an 

alternative model’s prediction for sites with certain conditions tends to be higher (or 

lower) than that from another model. The practical importance of such trends is reflected 

most clearly when alternative models are utilized to identify hazardous highway sites 

(e.g., roadway segments, intersection, etc.) by ranking the sites with respect to their 

expected crash frequency.  

 

In addition to the PG and PLN models, this research formulates a new member of the 

Poisson-hierarchical family of models: the Poisson-inverse gamma (PIGam). The PIGam 

model was of special interest because of the heavy tail of the inverse gamma distribution 

and the conjectured potential of the PIGam model in dealing with highly over-dispersed 

data. Four field datasets (from Toronto, Texas, Michigan and Indiana) covering a wide 

range of over-dispersion characteristics were selected for analysis.  

 

This study discovered that the disparities between the alternative models predictions are 

mainly associated with the sites where the observed crash frequency is significantly 

larger or smaller than expected for a site with similar traffic and physical characteristics. 
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For both scenarios, it was demonstrated that the PIGam model tends to predict a higher 

expectation for crash frequency than would the PLN and PG models, in order. In 

consequence, sites with unusually high number of observed crashes are likely to be 

ranked higher (in terms of expected crash frequency) when the PIGam model is used 

instead of the PLN model, and similarly when the PLN model is used instead of the PG 

model.  

 

Furthermore, the disparities between alternative model predictions were found to be 

even more important when the calibrated models were applied to predict crash frequency 

at sites with no observed crash count. For all four datasets, the PIGam model tended to 

predict higher expected crash frequencies than did the PLN and PG models, in order. 

 

Finally, a comparison between the models goodness-of-fit using the deviance 

information criterion (DIC) refuted the conjecture that models with heavy-tailed 

distributions will certainly perform better as the data become more over-dispersed. The 

author believes that the relative goodness-of-fit of alternative models to a given dataset 

is too complicated to be reliably predicted before actually fitting the models. However, 

the study demonstrated that models with similar measures of goodness-of-fit may predict 

considerably different crash frequencies at individual sites. This dissertation identified 

the relationships between alternative models’ predictions at individual sites and 

described the resulting practical implications of choosing one model over another.   
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CHAPTER I    

INTRODUCTION 

 

 

This chapter introduces the research problem, lists the objectives, and outlines the 

structure of this dissertation.    

 

1.1 PROBLEM STATEMENT 

 

Over the past three decades, highway safety researchers have been concerned with 

developing statistical models to analyze motor vehicle crashes. The purpose of such 

models is to relate the frequency of crashes to the traffic, geometrical, and/or 

environmental characteristics of highway entities. Lord and Mannering (2010), and 

subsequently Mannering and Bhat (2014), provided excellent reviews on the alternative 

methods for statistical modeling of crash frequency data and described the inherent 

issues involved with crash data and different modeling approaches. Safety prediction 

models can be used to identify hazardous locations (a.k.a. hotspots) and to estimate the 

benefit of countermeasures in improving safety. 

 

A mass of published work in the field of crash data modeling has focused on evaluating 

the application of countless statistical models by comparing their goodness-of-fit (GOF) 

to field datasets. These studies seek to answer the question of “which model performs 

better?” Measuring the GOF of statistical models is not a straightforward task; 

researchers use a plenty of different methods for assessing the GOF. These methods can 

yield contradictive results in determining the model that performs the best.  
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Even if there was a consensus among researchers in employing a unique method for 

GOF assessment, the performance of different models would depend on the 

characteristics of the dataset to which they are fitted. Based on the model structure and 

application to a limited number of datasets, some studies have suggested that certain 

models are expected to perform better than other specified models for data with certain 

characteristics. For example, Geedipally et al. (2012) predicted that the heavy-tailed 

negative binomial-Lindley (NB-L) distribution is expected to outperform the negative 

binomial model for datasets with abundant zero crash observations and a long/heavy tail. 

While rules of thumb like the aforementioned may be valid, it is difficult to predict with 

certainty which model performs better before the models are actually fitted to the data. 

Therefore, one shall be very cautious when making conclusions of the type “one model 

is better than the other” based on a comparison of the models’ GOF to a few datasets. 

 

GOF analyses in the literature of crash data modeling have been focused on the overall 

fit of a model to an entire dataset. The important question that has been overlooked is 

“how are the site-specific predictions for expected crash frequency affected by model 

choice?” Is there a trend in the difference between the predicted crash frequencies of 

different models, e.g. that a model’s prediction for sites with certain conditions is higher 

(or lower) than that from a different model? This dissertation documents such a 

microscopic analysis for three hierarchical-Poisson regression models including the two 

most popular models in crash data analysis i.e., the Poisson-Gamma (PG) and Poisson-

lognormal (PLN), and a new model developed by the author: the Poisson-inverse gamma 

(PIGam*). The Poisson-Inverse Gamma model is formulated and added to this study to 

investigate the potential benefit of having a long/heavy-tailed mixing distribution (i.e., 

inverse Gamma) in handling datasets with unusually high crash count observations.  

 

 

___________ 

* The Poisson-Inverse Gamma model is abbreviated as “PIGam” to avoid confusion with the Poisson-

Inverse Gaussian (PIG) model, whose application to crash data has been investigated by Zha et al. (2016).  
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The impact of model choice on the predicted crash frequencies is most importantly 

revealed when crash prediction models are used to identify hazardous sites and rank 

them based on their crash proneness and hence priority for treatment. Rather than 

considering several candidate models and employing the best one (based on GOF 

comparisons) to rank highway entities for safety treatment, this study aims to add depth 

to our understanding of how the ranking of sites is influenced if each of the three 

considered models is selected. 

 

1.2 RESEARCH OBJECTIVES 

 

The objectives of this research are as follows: 

 

1) Identify individual sites in each dataset for which the three alternative models predict 

significantly different expected crash frequencies and detect their common 

characteristics. Exploring the data and expected crash frequencies predicted by 

alternative models may reveal important trends regarding the relative performance of 

the model, e.g., that a model will likely predict higher (or lower) crash frequencies 

than another model will for sites with certain characteristics.    

2) Investigate any possible relationship between the relative predictions of the models 

and the dispersion characteristics of datasets. For this purpose, the models will be 

fitted to four crash datasets ranging from mildly over-dispersed to severely over-

dispersed. 

3) Bridge the gap between the relative predictions of the models and the fundamental 

traits of the models’ mixing distributions (namely, gamma, lognormal, and inverse-

gamma).   
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1.3 DISSERTATION OUTLINE 

 

The outline of this dissertation is as follows: 

 

Chapter II provides background information regarding the challenges in crash data 

modeling and the characteristics of Bayesian hierarchical models. Models with 

widespread application in highway safety research (i.e., Poisson-gamma and Poisson-

lognormal) are introduced and Bayesian methods for estimating the models parameters 

are briefly discussed. 

 

Chapter III formulates the three alternative models considered in this research and 

describes the common structure of the models as well as their distinctive properties.     

 

Chapter IV describes the four crash datasets and the functional forms selected for 

modeling each dataset.  

 

Chapter V covers the assumptions made for fitting the alternative models to the data and 

presents the results of parameter estimation for every dataset.   

 

Chapter VI compares the predicted expectation for crash frequency at individual sites 

across the alternative models and investigates the data conditions that contribute to 

significantly different predictions between the considered models. In addition to the 

analysis for the existing sites in every dataset, application of the calibrated models for 

new sites without observed crash frequency is scrutinized and compared across the 

models.  

 

Chapter VII compares the fitted models from the GOF standpoint and explains the site-

specific conditions that result in a model providing a better fit than another.  
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Chapter VIII summarizes the analysis in this dissertation and draws conclusions 

regarding the differences between the predictions of alternative models based on the 

research findings.     

 

 

 

       

 

 

 



 

6 

 

CHAPTER II    

BACKGROUND 

 

 

This chapter provides the background information and literature review needed to 

understand the importance of the models selected for investigation in this dissertation, 

the mathematical structure of the models, and the methods for model estimation and 

evaluation. Section 2.1 provides background information regarding cross-sectional 

regression models for crash frequency prediction and reviews the important applications 

of these models in highway safety research. Section 2.2 presents the mathematical 

description of the structure of the Poisson-hierarchical class of regression models and 

introduces the models with widespread application in the body of highway safety 

literature.  Section 2.3 covers the common methods for estimating the parameters of 

crash regression models and discusses the advantages and limitations of the full 

Bayesian approach which is taken in this research. Finally, Section 2.4 introduces the 

common techniques to assess the performance of Bayesian hierarchical models.  

  

2.1 CROSS-SECTIONAL MODELS FOR CRASH PREDICTION 

 

The regression models that will be studied in this research are all of the cross-sectional 

type, meaning that the crash count observations are made from different units but all 

during a fixed period of time. In cross-sectional crash-frequency models, each 

observation comes from a unique geographical site (such as a highway segment, an 

intersection, etc.), the response variable is the number of observed crashes, and 

covariates (regressors) can include a range of traffic, geometrical, and environmental 

variables or factors.     

 

The response variable of crash-frequency models is a non-negative integer. As such, the 

traditional linear regression model, for instance, is not suitable. Numerous statistical 
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techniques are available for analysis of count data (Cameron and Trivedi, 1998; Hilber, 

2014). Among the most recognized methods is the generalized linear model (GLM) 

(McCullagh and Nelder, 1989). Most crash-frequency models are of this type where the 

mean of the response variable (number of crashes) is related to the linear predictor via a 

link function (such as a log link) and the response variable itself follows a discrete 

distribution from the exponential family (such as Poisson). The GLM framework is 

adopted in this research.  

 

Cross-sectional safety prediction models mainly serve two purposes: explaining the 

system and prediction. These models can explain the relationship between crash-

proneness (unsafety) and different characteristics of highway entities. In GLMs, for 

example, the calibrated model parameters directly indicate the magnitude of the 

influence of each variable on the expected number of crashes. Several researchers have 

used cross-sectional models to quantify the effect of changes in highway traits (by 

engineering interventions for instance) on the expected number of crashes (Tarko et al., 

1998; Lord and Bonneson, 2007; Wu et al., 2015; Wu and Lord, 2016). However, such 

inferences have been questioned by other researchers, such as Hauer (2010), who argue 

that regression models can only explain correlation but not causation.   

 

The predictive capability of safety performance models is crucial from the engineering 

aspect. Part C of the Highway Safety Manual (HSM, 2010), for example, is entirely 

devoted to predictive models and their applications in highway safety. Safety prediction 

models are used for the following important purposes: 

 

1) Assist highway designers to quantify the influence of each deign feature (lane width, 

lighting, etc.) on the (un)safety and compare alternative designs from the safety 

standpoint. 

2) Rank highway sites based on crash-proneness and identify the most hazardous 

locations (e.g., for safety treatment). 
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3) Provide an estimate for crash-proneness of sites with similar characteristics when 

using the EB method to estimate the impact of safety countermeasures on the 

expected number of crashes (Hauer, 1997). 

 

2.2 POISSON-HIERARCHICAL MODELS 

 

Because crashes are random events and typically independent of one another, the 

Poisson distribution is the intuitive means to describe the randomness in crash counts. In 

practice, however, the Poisson is rarely an appropriate distribution because the crash 

data are often over-dispersed (Poch and Mannering, 1996; Hauer, 2001; Mitra and 

Washington, 2006) i.e., the conditional variance of observed crash counts is greater than 

the mean, whereas the Poisson distribution is equi-dispersed (i.e., the mean equals the 

variance).  

 

The over-dispersion in crash count data is mainly attributed to the heterogeneity among 

the different sites (highway segments, intersections, etc.) where crash data are collected 

(Hauer, 2001; Washington et al., 2003). Although the effect of some important factors 

(such as traffic volume) on the expected number (mean) of crashes is usually accounted 

for by a regression model, some degree of heterogeneity is always believed to remain 

unobserved due to factors either unknown or known but hard to collect and include in 

the model. In addition, Lord et al. (2005) showed that the theory behind the fundamental 

crash process can per se give rise to over-dispersion. They argued that a crash count is 

the sum of a series of Bernoulli random variables, the trial being a vehicle/driver going 

through a site, with unequal probabilities of success (i.e., experiencing a crash), which 

gives rise to an over-dispersed distribution of crash counts.  

 

To accommodate the possible over-dispersion in crash data, researchers have extensively 

used mixed-Poisson models, where crash counts are assumed to have a Poisson 

distribution with a variable mean that follows an underlying distribution often referred to 
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as the mixing distribution. Mixed-Poisson models are indeed hierarchical, where at the 

first level of hierarchy, conditional on the mean, the observed crash counts are mutually 

independent and Poisson-distributed and at the second level, the unobservable mean of 

crash counts varies across sites with an assumed probability distribution.  

Importantly, the hierarchical Poisson models particularly suit the theoretical nature of 

crash frequency data. Such conceptual suitability, often referred to as “goodness-of-

logic”, has been sacrificed for a better statistical goodness-of-fit (GOF) in a number of 

regression models proposed for crash data analysis. For instance, Lord et al. (2005, 

2007) criticized the application of popular zero-inflated count models (as used by 

Shankar et al., 1997; Lee and Mannering, 2002; Kumara and Chin, 2003; Qin et al., 

2004, etc.), arguing that the inherent dual-state assumption in these models is 

inconsistent with the nature of crash data because no highway entity is completely safe 

and thus a long-term mean equal to zero is impossible. In contrast, the hierarchical 

Poisson models offer an interpretable structure where the error term captures the 

unmodeled differences between sites. 

 

Two types of mixed-Poisson models have gained extensive attention among highway 

safety researchers, Poisson-gamma and Poisson-lognormal. These models are introduced 

below but their mathematical formulation is presented in the next chapter.   

 

1) Poisson-Gamma (PG): When the Poisson parameter is assumed to have a gamma 

probability distribution, the mixed-Poisson distribution will have a closed form 

probability density function (pdf) which turns out to be that of the Negative Binomial 

(NB). The over-dispersion parameter (α) of the NB distribution captures the 

unmodeled heterogeneity (Miaou and Lord, 2003). The value of this parameter 

defines the relationship between the distribution mean and variance as Var(yi) = E[yi] 

+ αE[yi]
2
. The simplicity of model fitting and parameter interpretation has made the 

Poisson-Gamma/NB the most popular model in crash data analysis (Lord and 

Mannering, 2010). In its classical applications, modelers estimated the parameters 
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using the Maximum Likelihood Estimate (MLE) method (e.g. Maycock and Hall, 

1984; Hauer et al., 1989; Bonneson and McCoy, 1993; Vogt and Bared, 1998). 

Recently, the Poisson-Gamma models have also been estimated using Bayesian 

methods (Schluter et al., 1997; Miaou and Lord, 2003; Miaou and Song, 2005; Lord 

and Miranda-Moreno, 2008). 

 

2) Poisson-Lognormal (PLN): The Poisson-lognormal model results when the Poisson 

parameter is assumed to follow a lognormal distribution. Unlike the Poisson-Gamma 

model, the marginal distribution of the Poisson-lognormal model does not have a 

closed form and the model parameters cannot be estimated directly using the 

Maximum Likelihood Estimates (MLE) method. Despite the availability of Hinde’s 

(1982) numerical integration method to approximate the MLE parameters, the 

Poisson-lognormal safety performance models in the published studies have all been 

estimated using the Bayesian approach. The Poisson-lognormal model is potentially 

more flexible than the Poisson-Gamma (Lord and Mannering, 2010) and the model 

has become increasingly popular in crash data analysis over the past few years 

(Miaou et al., 2003; Aguero-Valverde and Jovanis, 2008; Aguero-Valverde, 2013). 

Highway safety researchers have also used multivariate Poisson-lognormal models to 

jointly model crash frequency by severity while accounting for the correlation among 

different severity levels (Park and Lord, 2007; Ma et al., 2008; El-Basyouny and 

Sayed, 2009).   

 

2.3 MODEL ESTIMATION METHODS 

 

The MLE method has traditionally been used to estimate safety performance model 

parameters. Nonetheless, the MLE method cannot be used straightforwardly where the 

marginal likelihood function is difficult to characterize such as in the Poisson-lognormal 

model. However, the development of such models and others with complex functional 

forms was greatly facilitated after the rediscovery of Markov Chain Monte Carlo 
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(MCMC) simulation methods (Besag et al., 1995; Gilks et al., 1996; Robert and Casella, 

1999) for model estimation from the Bayesian perspective. Unlike the traditional 

frequentist approach, the Bayesian approach to statistics aims to estimate the probability 

distribution of model parameters using the information in the observed data as well as 

the prior knowledge about model parameters. The drastic growth in the processing speed 

of personal computers and availability of Bayesian software programs, such as 

WinBUGS (Spiegelhalter et al., 2003) and MLwiN (Yang et al., 1999) has helped 

significantly in the increasing popularity of Bayesian models.  

 

The full (hierarchical) Bayesian estimation of safety performance models has been 

explored only in the last two decades (Schluter et al., 1997; Davis and Yang, 2001; 

Miaou and Lord, 2003; Carriquiry and Pawlovich, 2004; Miaou and Song, 2005; Park 

and Lord, 2007). Prior to FB models, however, the empirical Bayes method was 

introduced into the highway safety literature (Hauer and Persaud, 1983; Hauer, 1986, 

1992). The EB method basically uses the Bayes rule to combine the information from 

some reference population (or results of a regression model) with the observed crash 

counts at a certain site to estimate the expected (long-term) mean of crashes. There is 

extensive documentation and application of the EB method in highway safety especially 

in before-after studies to estimate the effect of safety countermeasure (Hauer, 1997; 

Persaud, 1998; Harwood et al., 2002; Persaud and Lyon, 2007; Fitzpatrick and Park, 

2009) and also in identification of hotspot locations (Persaud et al., 1999; Heydecker and 

Wu, 2001; Miranda-Moreno et al., 2005; Lord and Park, 2008). 

  

The full Bayesian approach has a fundamental advantage over the MLE and EB 

methods; it takes into account the uncertainty associated with model parameters and 

provides exact measures of uncertainty (Miaou and Lord, 2003). In the MCMC method, 

this is carried out by sampling from the posterior distribution of model parameters. The 

MLE and EB methods, on the other hand, ignore this uncertainty and thus overestimate 

the model precision (Carriquiry and Pawlovich, 2004; Goldstein, 2010; Park et al., 



 

12 

 

2010). This advantage of the full Bayesian approach is especially important when the 

sample size is relatively small (Miaou and Lord, 2003). 

 

The main challenge in taking the full Bayesian approach is the specification of prior 

distributions for model parameters. Many modern statisticians have investigated and 

documented this matter (e.g., Gelman et al, 2003; Rao, 2003; Carlin and Louis, 2008; 

Lee, 2012). In a hierarchical Poisson model, the mixing distribution is indeed the prior 

distribution for the Poisson parameter. The Poisson parameter prior distribution (gamma, 

lognormal, etc.) itself has one or more parameters for which so-called hyper-prior 

distributions needs to be presumed. In the absence of prior knowledge, it is 

recommended to use non-informative (a.k.a. vague or diffuse) hyper-priors with the idea 

to let the data “speak for itself.” The utilization of such hyper-priors would minimize the 

influence of the prior knowledge on the posterior distribution of model parameters. In 

crash data analysis, hierarchical Bayesian models with non-informative hyper-priors 

have been used by numerous studies (e.g., Miaou et al. 2003; Davis and Yang, 2001; 

Song et al., 2006; Miranda-Moreno et al, 2005; Park et al., 2010; El-Bayouny and Sayed, 

2012). 

 

Before closing this section, it is necessary to remind that all Poisson mixture 

distributions (and the respective Poisson-hierarchical modes) are obviously over-

dispersed and hence incapable of handling data characterized by under-dispersion i.e., 

variance less than the mean. Nevertheless, crash data exhibiting under-dispersion 

(conditional on the mean) are fairly rare and may be a sign of over-fitting i.e., including 

too many variables in the model.  However, modelers should always be wary about the 

possibility of under-dispersion especially when working with crash data with low sample 

means, as under-dispersion is more likely to prevail in such conditions (Oh et al., 2006; 

Khazraee et al., 2015). 
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2.4 BAYESIAN MODEL ASSESSMENT TECHNIQUES 

 

The performance of safety prediction models is often evaluated and compared using 

statistical GOF measures. In the Bayesian paradigm, measures such as the Bayes factor, 

Bayesian information criterion (BIC), and Watanabe-Akaike information criterion 

(WAIC), among others are used to assess and compare the performance of fitted models 

(Gelman et al. 2013). However, the GOF of Bayesian hierarchical regression models is 

most commonly compared using the deviance information criterion (DIC). This study 

adopts DIC as the main tool for GOF comparison between alternative models.  

 

Proposed by Spiegelhalter et al. (2002), the DIC is a Bayesian generalization of the 

Akaike Information Criterion (AIC), and is defined as: 

 

 DDIC D P           (2.1) 

 

where E(-2log(Pr( ))D y   is the expectation of the model deviance under the 

posterior distribution of the model parameters (collectively denoted as θ), and PD is the 

effective number of parameters, defined as:      

  

 ( )DP D D           (2.2) 

  

where ( )D  is the deviance under the posterior expectation of parameters.       

 

D  is a classical estimate of fit; a smaller D  indicates a better fit as it corresponds to a 

greater log-likelihood. PD is indeed a penalty for model complexity and ensures a fair 

comparison between competing models with different degrees of complexity. DIC is 

particularly useful when the posterior distributions of model parameters are obtained via 

MCMC simulation, which is the case for the models in this study. 
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2.5 CHAPTER SUMMARY 

 

Cross-sectional regression models are widely used in highway safety research to predict 

the expected number of crashes at individual road sites (roadway segments, 

intersections, etc.). These models assume the crash count observations at different sites 

to be independent and model the observed crash frequency as a function of site-specific 

characteristics including traffic, geometrical, and environmental variables. 

 

Although crashes are random events, the Poisson distribution usually fails to suit crash 

data analysis because crash data are often plagued by over-dispersion. The over-

dispersion in crash data is thought to originate from the unobserved heterogeneity among 

the sites, and can be addressed by assuming that crash counts at individual sites are 

Poisson-distributed with a mean that itself follows a continues distribution. Such 

assumption gives rise to mixed Poisson models which are hierarchical in nature. The two 

most commonly used models for crash data analysis i.e., Poisson-gamma and Poisson-

lognormal, are of this type.  

 

A Bayesian approach for model estimation is taken in this study because of its 

theoretical appeal as well as the capability of the MCMC algorithm to estimate models 

whose marginal likelihood function may not be algebraically characterized (including 

the Poisson-lognormal and Poisson-inverse gamma models). The DIC is adopted as a 

common tool for GOF comparison between Bayesian hierarchical models.  The next 

chapter describes the characteristics of the alternative models for analyzing crash data. 
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CHAPTER III    

ALTERNATIVE MODELS 

 

 

This chapter specifies the alternative Poisson-hierarchical regression models that are 

selected for analysis in this dissertation. Section 3.1 presents the general modeling 

assumptions and mathematical formulation of the models. Section 3.2 explains how the 

common structure of the models provides for a fair and facilitated comparison between 

models predictions. Finally, Section 3.3 describes the fundamental properties of the 

mixing distributions as the main source of variation between the models predictions.   

 

3.1 MODELS SPECIFICATION 

 

This research thoroughly evaluates and compares the crash frequency predictions of the 

following hierarchical Poisson regression models using a full Bayesian approach: 

 

1) Poisson-Gamma (PG) 

2) Poisson-Lognormal (PLN) 

3) Poisson-Inverse Gamma (PIGam) 

 

The first two models are commonly used in highway safety analyses, whereas the latter 

is new and its appropriateness for crash data modeling is to be examined.  

 

Let yi denote the number of crashes observed at the i’th site (road segment, intersection, 

etc.) during the study period. In Poisson hierarchical models, yi’s, when conditional on 

their mean mi, are assumed to be Poisson distributed: 

 

yi│mi  ~  Poisson(mi)       i = 1, 2, … , n  (3.1) 
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On the second level of hierarchy, the mean of the Poisson distribution is variable with an 

underlying mixing distribution: gamma, lognormal, and Inverse Gamma, respectively. In 

all models under study, the mean of the mixing distribution, μi, is modeled as a log-linear 

function of the prevailing traffic, geometric, and/or environmental variables: 

 

E( ) exp( )i i im X          (3.2) 

 

where Xi is the vector of covariates for Site i and β is the vector of unknown coefficients. 

Every mixing distribution selected for this study has two parameters. Below, these 

distributions are reparametrized in terms of their mean (µi) and a remaining hyper-

parameter (shape or scale) to structure the regression models: 

 

1) Poisson-Gamma (PG): The Poisson parameter (mean) follows a gamma distribution 

with shape parameter φ and scale parameter λi: 

 

11
Pr( , ) exp( )

( )

i
i i i

i i
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   φ, λi > 0 (3.3) 

E( )  = exp( )i i i im X          (3.4) 
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   (3.5) 

 

2) Poisson-Lognormal (PLN): The Poisson parameter follows a lognormal distribution 

with location parameter υi and shape parameter σ
2
: 

 

2
2
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(ln( ) )1
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E( ) exp( + ) = exp( )
2i i i im X         (3.7) 
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3) Poisson-Inverse Gamma (PIGam): The Poisson parameter follows an inverse gamma 

distribution with shape parameter φ and scale parameter λi: 
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( )

i i
i i i

i

m m
m
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  for φ > 1 (3.11) 

 

Please note that the PIGam model was developed by the author and no prior application 

of this model was found in the literature. To distinguish between the parameters of the 

PG and PIGam models, the shape parameters are accompanied by subscripts denoting 

the model name i.e., φPG for the Poisson-gamma and φPIGam for the Poisson-inverse 

gamma.  

 

3.2 COMMON MODEL STRUCTURE 

 

At this point, it is essential to fully understand the common structure of the selected 

hierarchical models and appreciate the important features shared by all three models.  

First, it is critical to distinguish between the two “mean” parameters used in the 

parameterization of the models: mi and µi. mi is the site-specific expected crash 

frequency which, a priori, follows a model-specific continuous distribution with mean µi 

and a model-specific hyper-parameter (φPG, φPIGam, or σ
2
). µi captures the effect of the 

covariates on the expected crash frequency through the regression model and may be 

interpreted as the prior expected crash frequency for sites with the same covariate values 
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(i.e., traffic, geometric, and/or environmental conditions) as those of Site i. The posterior 

distribution of mi (i.e., mi|X,y) combines the prior data from posterior µi with the 

observed crash frequency, and thus every E(mi|X,y) deviates from the respective 

E(µi|X,y). 

  

In the hierarchical models in this study, each mi is indeed a model parameter, whereas 

µi’s are determined based on a given fixed vector of covariates (Xi) and a variable vector 

of regression parameters (β). Therefore, every one of the alternative models have a total 

of n+p+1 parameters: n mi’s each from a unique site in the dataset, p regression 

coefficients, and an additional hyper-parameter which captures the dispersion 

characteristic of the data (φPG, φPIGam, or σ
2
). Compared to a non-hierarchical Poisson-

Gamma/Negative Binomial model with p+1 parameters, for example, it is evident that 

Bayesian hierarchical models are far more complicated.  

 

The similar number of parameters and structure provides for a reasonable comparison 

between the models’ performance and facilitates the comparison between their 

predictions for the expected crash frequency. No model can be presumed to take 

advantage of the higher number of parameters for its flexibility to fit the data. Also, site-

specific mi’s and µi’s as well as their relationship under each model can be directly and 

meaningfully compared, as carried out in Chapter 6.  

 

3.3 MIXING DISTRIBUTION PROPERTIES 

 

Given the common structure of the Poisson hierarchical models, the distinctive 

performance of the models is attributable to the fundamental characteristics of their 

mixing distributions (i.e., prior distribution for mi’s).   

 

Unlike the gamma distribution, the lognormal and inverse-gamma distributions are 

classified as heavy-tailed because their right tails are not exponentially bounded. 
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Moreover, the inverse-gamma distribution has a thicker tail than the lognormal 

distribution and, therefore, the lognormal distribution lies between the gamma and 

inverse-gamma distribution in terms of the tail thickness. The thicker tail, which is 

representative of greater probabilities for higher expected crash frequencies, can 

theoretically be beneficial when modeling data with frequent unusually high crash 

observations.   

 

The inverse gamma distribution is the distribution of the reciprocal of a variable that 

follows a gamma distribution. Since the gamma distribution is light-tailed, the inverse of 

a gamma-distributed variable has a very low probability in the vicinity of zero. This 

notion is evident in Figure 1, which compares the shape of the gamma, lognormal, and 

inverse gamma probability distribution functions (pdf’s) for four different combinations 

of mean and variance. It is interesting to note that the lognormal distribution lies 

between the gamma and inverse-gamma distributions almost in every important aspect 

including the probability density in vicinity of zero, probability density for very large 

values (i.e., tail thickness), mode, probability at mode, skewness, etc. As we move from 

the gamma distribution to lognormal and then to inverse-gamma, near-zero values for 

expected crash frequencies (mi’s) become less likely, and extremely high values for the 

expected crash frequency become more likely.  



 

20 

 

 

Figure 1. Probability distribution function of the gamma, lognormal, and inverse-gamma 

distributions for different mean-variance combinations 
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3.4 CHAPTER SUMMARY 

 

This chapter focuses on three specific models belonging to the Bayesian Poisson-

hierarchical class of count regression models, namely Poisson-gamma, Poisson-

lognormal, and Poisson-inverse gamma. The three models share a common structure in 

the sense that crash counts at individual sites are assumed to be Poisson-distributed with 

site-specific means that follow the model’s mixing distribution i.e., gamma, lognormal, 

and inverse gamma distribution, respectively. Furthermore, all selected models include 

only one hyper-parameter, in addition to the common number of regression parameters, 

which describes the shape of the mixing distribution. Such common structure and 

number of parameters facilitates the comparisons between the models predictions and 

provide a level ground for assessing the models GOF.    
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CHAPTER IV    

DATA DESCRIPTION AND MODELS FUNCTIONAL FORM 

 

 

This chapter describes the four datasets that are used for analysis in this dissertation and 

presents the functional forms assumed for modeling each of the crash datasets. All 

datasets are relatively large and are named after the city/state they are collected from: 

Toronto (Canada), Texas, Michigan, and Indiana. Section 4.1 presents the summary 

statistics for the four datasets. Section 4.2 to 4.5 presents further information about the 

Toronto, Texas, Michigan, and Indiana datasets, respectively.  

 

4.1 SUMMARY STATISTICS FOR THE FOUR DATASETS 

 

Table 1 presents the summary statistics for the variables in each dataset. The datasets 

were specifically selected to cover a commonplace range of dispersion characteristics. 

The over-dispersion parameter (α = 1/φ) of the traditional negative binomial (NB) GLM 

(estimated using the MLE method) is considered as a rough measure of conditional 

dispersion in the data (i.e., dispersion of the crash counts conditional on the modeled 

mean). The NB model over-dispersion parameter (αNB(MLE)) is 0.140, 0.391, 0.654, and 

0.888 for the Toronto, Texas, Michigan, and Indiana data, respectively. The source of 

data and the adopted functional form for each dataset are described in separate sections 

in the following. 
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Table 1. Summary statistics of the datasets in this study 

Variable Min. Max. Average (std. dev) Total 

Toronto Data      

 Crash count 0 54 11.6 (10.0) 10030 

 Major approach AADT
 
(in veh/day) (AADTmaj) 5469 72,178 28044.8 (10660.4) -- 

 Minor approach AADT(in veh/day) (AADTmin) 53 42644 11010.2 (8599.4) -- 

Texas Data      

 Crash count 0 97 5.2 (9.0) 5219 

 Segment length (in miles) 0.10 8.55 0.845 (1.051) 844.97 

 AADT(in veh/day) 264 56890 8611.7 (6660.4) -- 

Michigan Data      

 Crash count 0 29 0.8 (2.1) 796 

 Segment length (in miles) 0.001 4.04 0.19 (0.38) 193.02 

 AADT(in veh/day) 250 19990 4331.8 (3139.9) -- 

Indiana Data      

 Crash count 0 329 16.97 (36.30) 5737 

 Segment length (in miles) 0.009 11.53 0.89 (1.48) 300.09 

 AADT(in veh/day) 9,442 143422 30237.6 (28776.4) -- 

 Minimum friction reading in the segment (FRICTION)  15.9 48.2 30.51 (6.67) -- 

 Median width (in feet) (MW) 16 194.7 66.98 (34.17) -- 

 Pavement surface (1: asphalt, 0: concrete) (PAVEMENT) 0 1 0.77 (0.42) -- 

 Median barrier (1 if present, 0 if absent) (BARRIER) 0 1 0.16 (0.37) -- 

 Interior rumble strips (1 if present, 0 if absent) (RUMBLE) 0 1 0.72 (0.45) -- 

 

4.1 TORONTO DATA 

 

The Toronto dataset contains crash count data collected in 1995 at 868 four-legged 

signalized intersections in Toronto. The following common and simple functional form 

was adopted for this dataset: 

 

1 2

0 _ _i Maj i Min iF F
           (4.1) 
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where FMaj_i and FMin_i denote the average annual daily traffic (AADT) flow on the 

major and minor approaches to the intersection, respectively. 

 

4.2 TEXAS DATA 

 

The Texas dataset is a randomly selected sample of 1,000 rural multilane highway 

segments, where the crash counts indicate the total number of crashes observed during a 

five year period in the early 2000s. The data were originally obtained from Department 

of Public Safety (DPS) and the Texas Department of Transportation (TxDOT) and 

previously used in the NCHRP 17-29 project to develop safety prediction models for 

inclusion in the first edition of the Highway Safety Manual (HSM) (AASHTO, 2011). 

The original data included a total of 3,220 segments. 

 

Despite availability of other relevant covariates, simple traffic-only models were 

concentrated upon for this dataset. As specified earlier, the focus of this research is not 

to develop practice-ready crash prediction models but rather to evaluate and compare 

certain types of Poisson hierarchical models. The researcher is aware that flow-only 

models can be influenced by the omitted-variable bias (Lord and Mannering, 2010; 

Mitra and Washington, 2012), but this bias will likely not affect the results of the 

analyses presented in this work because the alternative models will have the same 

number of input variables. The adopted functional form for this dataset follows:  

 

1

0i iLF
           (4.2) 

 

where Fi is the AADT through the highway segment and L is the segment length. Here, 

the segment length is treated as an offset (i.e., its power is kept fixed at 1) because 

theoretically, the crash risk is expected to have a linear relationship with the segment 

length.  
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4.3 MICHIGAN DATA 

 

The Michigan dataset contains the single-vehicle crashes that occurred on rural two-lane 

highways in Michigan in 2006. Similar to the Texas dataset, a randomly selected sample 

of 1000 highway segments was taken from the original data and used for analysis. The 

database was collected for the Federal Highway Administrations’s (FHWA) Highway 

Safety Informations System (HSIS) and originally included a total of 33,970 roadway 

segments. The exactly same functional form as that for the Texas data was adopted for 

modeling the Michigan dataset: 

 

 1

0i iLF
           (4.3) 

 

In this dataset, about 67% of segments experienced no crashes in 2006. The selection of 

this dataset provides an opportunity to examine the performance of different models with 

data characterized by a large number of zeros, which is specifically common in road 

safety analyses. 

 

4.4 INDIANA DATA 

 

The Indiana dataset contained data collected for a five-year period (1995-1999) from 

338 rural interstate freeway segments in Indiana. The Indiana data is the most highly 

over-dispersed dataset considered in this study which includes a relatively large 

proportion of zero crash counts (about 36%) along with very high crash counts observed 

at some other sites. Unlike the previously mentioned simple model forms, as Table 1 

indicates, several roadway characteristic variables are included in the dataset to be used 

as additional covariates. The following functional form is used for Indiana data:  

 

1

6

0

2

exp( )i i j j

j

LF x
  



          (4.4) 
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where xj’s are the additional covariates listed in Table 1.   

  

4.5 CHAPTER SUMMARY 

 

This chapter presented the features of the four dataset used in this dissertation and 

outlined the functional forms adopted to model each dataset. The datasets and their 

covariates were specifically chosen with the intention that they cover a wide range of 

dispersion characteristic, from mildly over-dispersed to highly over-dispersed. This 

choice of data will provide the opportunity to compare the alternative models under 

various data scenarios. The next chapter describes the model fitting procedure and 

presents the model estimation results.     
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CHAPTER V    

MODEL ESTIMATION 

 

 

This chapter describes the assumptions used to fit the previously specified models to the 

datasets and presents the results of parameter estimation. Section 5.1 delineates the 

hyper-priors assumed for the hyper-parameters in each model, Section 5.2 describes the 

MCMC algorithms used to estimate models parameters, and Section 5.3 summarizes the 

posterior estimates for models parameters when fitted to each dataset.    

 

5.1 CHOICE OF HYPER-PRIORS 

 

A critical step in Bayesian modeling is the selection of hyper-prior distributions (Gelman 

et al. 2013; Lee 2012). In order to control for the potential influence of prior information 

on the performance of the competing models, non-informative (vague) prior distributions 

were considered for the models’ hyper-parameters in this step of the research. However, 

for large datasets such as the ones studied here, the choice of hyper-priors will not make 

a significant change in the parameter estimates. The following prior distributions were 

used:   

   

 Regression coefficients (all models):   

βj  ~ N(0 , σ
 
= 100)     for j = 0,1, 2, …, p 

 Poisson-gamma model:    

φPG ~ Uniform (0,+∞) 

 Poisson-lognormal model:   

σ 
-2 ~ Γ(0.01,0.01)  

 Poisson-inverse gamma:    

φPIGam ~ Uniform (1,+∞) 
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5.2 MCMC SIMULATION FOR POSTERIOR INFERENCE 

 

Posterior distributions of model parameters were estimated using the basic Markov 

Chain Monte Carlo (MCMC) simulation methods. The MCMC algorithms for all models 

were coded in the software R (R Core Team, 2014). An example of R codes used for 

estimating the models are presented in Appendix B. Except for mi’s in the PG model 

which were updated using a Gibbs sampler, sampling from other parameters was carried 

out using the Metropolis algorithm. The posterior distribution of each parameter was 

estimated using three chains with different initial values. A total of 20,000 MCMC 

iterations were obtained for each chain, the first 10,000 of which were discarded to 

diminish the influence of the starting values. Thus, a total of 30,000 (10,000 draws from 

three chains) were used to construct the posterior distributions. Gelman’s R̂ factor 

(Gelman et al., 2013) and visual inspection were utilized to ensure sufficient 

convergence. 

 

5.3 PARAMETER ESTIMATION RESULTS 

 

Appendix A presents the MCMC traceplots and the posterior distributions for the 

parameters in each model and dataset. Tables 2-5 summarize the posterior inference with 

the mean and standard deviation of the parameters.   

 

Table 2. Posterior Estimates of Model Parameters for Toronto Data 

Parameter Respective Variable 
PG PLN PIGam 

Mean (Std Dev.) Mean (Std Dev.) Mean (Std Dev.) 

ln(β0) Intercept -10.3066 (0.4702) -10.2786 (0.4541) -10.2502 (0.4602) 

β1 AADTmaj 0.6267 (0.0464) 0.6167 (0.0451) 0.6069 (0.0452) 

β2 AADTmin 0.6852 (0.0227) 0.6935 (0.0221) 0.7016 (0.0216) 

φPG  7.207 (0.6765)     

σ
-2

    7.266 (0.6525)   

φPIGam      8.439 (0.7217) 
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Table 3. Posterior Estimates of Model Parameters for Texas Data 

Parameter Respective Variable 
PG PLN PIGam 

Mean (Std Dev.) Mean (Std Dev.) Mean (Std Dev.) 

ln(β0) Intercept -7.0321 (0.3486) -6.9996 (0.3547) -6.9520 (0.3573) 

β1 AADT 0.9790 (0.0383) 0.9759 (0.0392) 0.9713 (0.0393) 

φPG  3.364 (0.3304)     

σ
-2

    3.426 (0.3283)   

φPIGam      8.439 (0.7217) 

 

Table 4. Posterior Estimates of Model Parameters for Michigan Data 

Parameter Respective Variable 
PG PLN PIGam 

Mean (Std Dev.) Mean (Std Dev.) Mean (Std Dev.) 

ln(β0) Intercept -2.6153 (0.6075) -2.6632 (0.6237) -2.6200 (0.5611) 

β1 AADT 0.4959 (0.0738) 0.5029 (0.7579) 0.5001 (0.0679) 

φPG  1.6123 (0.296)     

σ
-2

    1.6023 (0.269)   

φPIGam      2.6823 (0.3222) 

 

Table 5. Posterior Estimates of Model Parameters for Indiana Data 

Parameter Respective Variable 
PG PLN PIGam 

Mean (Std Dev.) Mean (Std Dev.) Mean (Std Dev.) 

ln(β0) Intercept -4.4795 (1.3987) -3.5237 (1.4019) -3.5516 (1.4174) 

β1 AADT 0.6909 (0.1300) 0.6224 (0.1335) 0.6287 (0.1297) 

β2 FRICTION -0.0264 (0.0105) -0.0300 (0.0109) -0.0297 (0.0102) 

β3 PAVEMENT 0.4201 (0.1913) 0.4947 (0.2106) 0.4781 (0.1988) 

β4 MW -0.0052 (0.0020) -0.0075 (0.0022) -0.0077 (0.0021) 

β5 BARRIER -3.0291 (0.2968) -4.1862 (0.4952) -5.2219 (0.3980) 

β6 RUMBLE -0.4005 (0.1812) -0.3185 (0.2038) -0.1779 (0.1941) 

φPG  1.1054 (0.1417)     

σ
-2

    1.0767 (0.1488)   

φPIGam      1.9052 (0.2053) 
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As Tables 2-5 suggest, only for the Indiana data the model choice resulted in 

significantly different estimates for the regression coefficients; in the other three 

datasets, the regression coefficients estimates varied only slightly across the alternative 

models. This finding was quite expected due to the relatively great number of input 

variables and the substantial over-dispersion remaining in the data even after including 

so many variables. From the practical point of view, the more input variables included in 

the modeling, the more important the choice of the model becomes especially if the 

regression coefficients are going to be used to determine crash modification factors 

(CMFs).  

 

5.4 CHAPTER SUMMARY 

 

The Bayesian models in this research were fitted to the study datasets using MCMC 

simulation algorithms for sampling from the posterior distribution of models’ hyper-

parameters. Diffuse hyper-prior were adopted to eliminate the potential influence of 

prior information on models performance and provide for a sensible comparison between 

models predictions. The model choice caused only small variation in estimates of the 

regression coefficients for the Toronto, Texas, and Michigan datasets, and significantly 

different estimates for the Indiana data, which included a greater number of covariates 

compared to the other datasets, and exhibited the highest degree of over-dispersion. The 

next chapter compares the alternative models in terms of their site-specific predictions. 

Chapter 7 will compare the models in terms of their goodness-of-fit to each dataset.   
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CHAPTER VI    

COMPARISON OF MODEL PREDICTIONS 

 

 

This chapter presents the most important analyses in this dissertation as it concentrates 

on individual sites and the variations in predicted crash frequencies resulting from 

application of the alternative models. In other words, the analysis focuses on the 

posterior distribution of individual mi’s (i.e., E(mi|X,y)) and how they are affected by the 

model choice. Section 6.1 provides the background information and introduces the two 

types of comparison between the models predictions that are carried out in this research: 

for sites with observed crash data in each dataset, and for new sites without observed 

crash data. These comparisons are presented in Section 6.2 and 6.3, respectively.     

       

6.1 INTRODUCTION 

 

Each dataset consists of n sites with an observed crash frequency during the specified 

study period. Given the Bayesian structure of the models, the posterior distribution of 

individual mi’s depend on the model parameters as well as the site-specific observed 

crash frequency, Yi. Section 6.2 investigates the relationship between the distribution of 

(mi|X,y), µi (the loglinear predictor determined by the covariates and model parameters), 

and Yi under each of the models. Such relationship affects the ranking of sites based on 

their crash proneness.  

 

Furthermore, it is common for safety analysts to use calibrated crash prediction models 

to predict the expected crash frequency at planned facilities that have not been 

constructed yet. Here, the main objective is to estimate the safety impact of each design 

feature (e.g., lane width, type of median barrier, signal phasing, etc.) and help decision 

making in the design/planning stage. Also, the observed crash frequency may not be 

available at existing sites for reasons such as limited resources for data collection, etc. 
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For such applications, the models’ prediction is not affected by the site-specific observed 

crash frequency and, as shown in Section 6.3, the pattern of the difference between the 

models’ predictions is quite different from that for the sites with observed crash count. 

 

In the comparisons in this chapter, m and µ variables are superscripted with the 

abbreviated name of the model with which they are associated; for example, µi
PLN

 is the 

µ of the i’th site when the Poisson-lognormal model is used.  

  

6.2 SITES WITH CRASH DATA  

  

This section includes three parts. First, the distinctions between the models predictions 

for the expected crash frequency at the sites in each dataset are analyzed in details. 

Second, the impact of these disparities on the ranking of sites based on crash proneness 

is manifested. Finally, the mean-variance relationship is plotted for the sites in each 

dataset. 

 

6.2.1 Distinctions between Expected Crash Frequency Predictions 

 

To investigate the distinctions between the predictions of the alternative models, the sites 

with the greatest absolute difference between the predicted E(mi|X,y) (expected crash 

frequency E(Yi) = E(mi|X,y)) by any two of the models were first identified. Table 6 lists 

these sites for each dataset. Also shown in Table 6 are the E(µi)’s associated with these 

sites. E(µi) is indeed the model’s prediction for the expected crash frequency based on 

the site characteristics before it is adjusted by the observed crash count (using the 

Bayesian structure of the model), which is determined from the posterior samples of the 

model regression parameters using the following equation:  

 

 
1

1
E  exp( )

T

i i t

t

µ
T 

  x        (6.1) 
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where 𝜷𝒕 is a sample from the vector of regression coefficients drawn at the t’th iteration 

of the MCMC algorithm, and T is the total number of iterations.  

 

All sites with considerably different predictions of expected crash frequency (shown in 

Table 6) share a common attribute: an observed crash frequency greatly different from 

the estimated E(µi). In other words, at all of these sites, the observed crash frequency (Yi) 

is significantly smaller or larger than the expected crash frequency at a site with similar 

traffic and geometric characteristics (i.e., E(µi)).  

 

As Figure 2 demonstrates, except for the Indiana dataset where the estimated vector of 

coefficients varies considerably across the models (see Table 5), the difference between 

the E(µi)’s estimated from different models were quite small for all sites. However, the 

main difference between the models arose from the different amount by which the 

posterior distribution of µi was shifted toward the observed crash count (Yi) to form the 

posterior distribution of the site-specific expected crash frequency (mi|X,y). This 

phenomenon is illustrated in Figure 3 for two sites in the Toronto dataset: Site #619 

where the observed crash count (Y619 = 5) is much smaller than E(µ619) estimated from 

every model, and Site #494 where the observed crash count (Y494 = 29) is much greater 

than E(µ494) estimated from every model (see the top two rows in Table 6).  
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Table 6. Sites with greatest difference between any two models’ predicted crash frequency 

Toronto Data 

Site 

Number 
Yi 

Poisson-Gamma Poisson-Lognormal 
Poisson- 

Inverse Gamma 
Max. difference btw  

predicted E(mi|X,y) 
E(µi) E(mi|X,y) E(µi) E(mi|X,y) E(µi) E(mi|X,y) 

619 5 28.48 9.73 28.61 11.41 28.77 13.18 3.45 

494 29 10.07 21.10 9.98 22.58 9.91 24.01 2.91 

424 42 16.61 34.31 16.78 36.11 16.97 37.22 2.90 

757 48 19.80 40.48 19.74 41.80 19.70 43.35 2.87 

533 53 25.30 46.89 25.46 48.46 25.64 49.63 2.74 

42 8 29.65 12.23 29.83 13.37 30.04 14.86 2.64 

15 1 16.08 5.65 16.22 6.97 16.36 8.11 2.46 

612 4 20.05 8.25 20.04 9.28 20.06 10.37 2.12 

Texas Data 

Site 

Number 
Yi 

Poisson-Gamma Poisson-Lognormal 
Poisson- 

Inverse Gamma 
Max. difference btw  

predicted E(mi|X,y) 
E(µi) E(mi|X,y) E(µi) E(mi|X,y) E(µi) E(mi|X,y) 

905 97 19.73 85.77 19.79 91.54 19.85 93.54 7.78 

900 22 3.91 13.64 3.92 16.53 3.92 18.21 4.58 

177 14 2.14 6.76 2.15 9.01 2.15 10.58 3.82 

855 24 7.00 18.48 7.05 19.94 7.12 20.83 2.34 

75 15 3.80 9.76 3.81 11.16 3.83 11.97 2.20 

170 20 5.51 14.51 5.55 15.88 5.60 16.63 2.12 

642 16 4.31 10.88 4.32 12.19 4.33 12.93 2.05 

537 9 1.39 3.62 1.39 4.68 1.41 5.66 2.04 

Michigan Data 

Site 

Number 
Yi 

Poisson-Gamma Poisson-Lognormal 
Poisson- 

Inverse Gamma 
Max. difference btw  

predicted E(mi|X,y) 
E(µi) E(mi|X,y) E(µi) E(mi|X,y) E(µi) E(mi|X,y) 

109 7 0.68 2.59 0.69 3.86 0.70 4.64 2.05 

997 7 0.84 2.98 0.85 4.10 0.87 4.82 1.84 

64 5 0.25 0.89 0.25 1.70 0.25 2.53 1.63 

498 6 0.65 2.19 0.65 3.14 0.66 3.74 1.55 

544 5 0.39 1.30 0.39 2.04 0.40 2.74 1.44 

761 3 14.81 4.16 15.06 4.56 15.32 5.45 1.29 

542 11 2.45 7.62 2.48 8.48 2.53 8.87 1.24 

895 29 15.43 27.73 15.57 28.36 15.89 27.24 1.12 

Indiana Data 

Site 

Number 
Yi 

Poisson-Gamma Poisson-Lognormal 
Poisson- 

Inverse Gamma 
Max. difference btw  

predicted E(mi|X,y) 
E(µi) E(mi|X,y) E(µi) E(mi|X,y) E(µi) E(mi|X,y) 

247 14 0.26 2.88 0.09 8.69 0.03 12.17 9.28 

258 27 2.64 19.74 2.66 24.69 3.06 25.24 5.50 

288 11 0.71 4.68 0.23 6.96 0.09 9.05 4.37 

302 122 116.30 121.94 148.39 122.97 173.99 118.90 4.07 

297 215 188.96 214.91 245.48 216.75 287.52 212.70 4.05 

67 108 61.55 107.19 72.64 105.03 85.55 108.49 3.46 

299 265 155.65 264.28 202.72 266.32 237.48 263.30 3.02 

63 121 47.82 119.20 53.69 118.77 54.84 121.60 2.84 
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Figure 2. Comparison of posterior E(μi)’s obtained by each model (except for Indiana data) 



 

36 

 

 

 

Figure 3. Posterior distribution of expected crash frequency (mi|X,y) and µi for Site #619 & 

Site #494 in the Toronto dataset  
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For both sites in Figure 3, as well as all other sites except those in the Indiana dataset, 

the posterior distribution of µi was quite similar across the three models. However, for 

Site #619, which experienced substantially fewer crashes than the estimated E(µi), the 

distribution of expected crash frequency from the PG model (mi
PG

) shifted toward the 

observed crash count more than did the distribution of mi
PLN

 and mi
PIGam

, in order. 

Conversely, for Site #494, which experienced substantially more crashes than the 

estimated E(µi), the distribution of mi
PG

 shifted toward the observed crash count less than 

did the distribution of mi
PLN 

and mi
PIGam

, in order. In both cases, the aforementioned 

phenomenon would result in E(mi
PG

|X,y) < E(mi
PLN

|X,y) < E(mi
PIGam

|X,y). As Table 6 

indicates, this trend was consistent among all sites (in Toronto, Texas, and Michigan) 

where the models predictions for the expected crash frequency were significantly 

different.  

 

It is of interest at this point to examine whether or not the aforementioned trend exists 

for all sites. Figure 4 to Figure 6 are constructed to illustrate how the relationship 

between E(mi|X,y) from different models is affected by the difference between the 

observed crash frequency and the posterior E(µi). For each dataset (except Indiana), 

E(mi|X,y)’s from every pair of models are compared in a separate scatter plot. In all these 

plots, the horizontal axis represents the difference between the observed crash frequency 

(Yi) and the average of the E(µi)’s estimated by using each of the two models considered. 

It must be noted that reference to Yi – E(μi) as “residual” is avoided to prevent confusion 

with Yi – E(mi|X,y) (both terms may be interpreted as residual). As discussed earlier, the 

difference between the E(µi)’s estimated using any two of the models were quite small; 

therefore, the horizontal axis is a measure of the difference between the observed crash 

frequency and E(µi) estimated from either of the models. The vertical axis indicates the 

difference between the E(mi|X,y)’s estimated using the two models being compared.  
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Figure 4. Difference between expected crash frequencies (E(mi|X,y)’s) estimated using any 

two of the candidate models as a function of the difference between observed crash 

frequency and the posterior E(µi) estimated using either of the models for the Toronto 

dataset 
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Figure 5. Difference between expected crash frequencies (E(mi|X,y)’s) estimated using any 

two of the candidate models as a function of the difference between observed crash 

frequency and the posterior E(µi) estimated using either of the models for the Texas dataset  
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Figure 6. Difference between expected crash frequencies (E(mi|X,y)’s) estimated using any 

two of the candidate models as a function of the difference between observed crash 

frequency and the posterior E(µi) estimated using either of the models for the Michigan 

dataset 
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Figure 4–6 reveal an important pattern regarding the site-specific predictions of the 

alternative models relative to one another: the previously described pattern (exemplified 

by Figure 3), which results in E(mi
PG

|X,y) < E(mi
PLN

|X,y) < E(mi
PIGam

|X,y), becomes more 

prevalent and pronounced as the difference between the observed crash count and 

posterior E(µi) increases. The trend dissipates as Yi - E(µi) becomes smaller and even 

reverses as it approaches zero, resulting in a large number of sites where E(mi
PG

|X,y) is 

slightly larger than E(mi
PLN

|X,y), and E(mi
PLN

|X,y) is slightly larger than E(mi
PIGam

|X,y). 

Consequently, the positive and negative differences between the predictions of different 

models balance off and none the models predict an overall higher or lower crash 

frequency compared to another. As Table 7 indicates, the total expected crash frequency 

(over all sites combined) is virtually equal across the three models and very close to the 

total observed crash frequency, indicating that none of the models predicts significantly 

biased mi’s for any of the datasets (including the Indiana dataset). 

 

Table 7. Total expected crash frequency (E(mi)) over all sites predicted by each model for 

each dataset 

Dataset 
Total Expected Crash Frequency, 

1

E( )
n

i

i

m


  
Total Observed Crash 

Frequency, 
1

n

i

i

Y


  
PG Model PLN Model PIGam Model 

Toronto 10031.23 10026.98 10030.67 10030 

Texas 5217.45 5221.59 5221.27 5219 

Michigan 795.77 795.54 797.22 796 

Indiana 5736.61 5738.24 5736.41 5737 

 

As Figure 4 to Figure 6 suggest, it is only for the sites with observed crash frequencies 

significantly different from their E(µi) that the models may deliver considerably different 

predictions; the E(mi
PG

|X,y) < E(mi
PLN

|X,y) < E(mi
PIGam

|X,y) relationship observed for 

most of such sites is, therefore, much more important than the relationship for the other 

sites. However, it should be noted that while the models may deliver significantly 

different predictions only for the sites with substantially different than expected 
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observed crash counts (as indicated in Table 6), such unusually higher or lower than 

expected observed crash counts do not necessarily guarantee a 

E(mi
PG

|X,y) < E(mi
PLN

|X,y) < E(mi
PIGam

|X,y) relationship. 

 

Finally, an explanation is due for why the models did not exhibit the same prediction 

patterns for the Indiana dataset. Among the considered datasets, the Indiana dataset was 

unique in that it contained six covariates (compared to one or two in the other datasets) 

and was plagued by extreme over-dispersion (conditional on the mean). These traits gave 

rise to a vector of regression coefficients that is highly sensitive to the model choice. As 

a result, the posterior E(µi)’s could vary drastically across the alternative models, 

invalidating the type of analysis in Figure 3 to Figure 6. In reality, a crash dataset with 

such very large over-dispersion given the number of covariates (six) is relatively rare. 

The Indiana dataset was included in the analysis to explore the comparative performance 

of the models under extreme over-dispersion scenarios, and the results warn that the 

patterns described in this section must not be extended to any dataset before ensuring 

that the models estimate fairly similar values for the vector of coefficients.  

 

6.2.2 Impact on Ranking of Sites by Expected Crash Frequency 

 

As described earlier, the distinctions between the alternative models predictions will 

directly influence an important application of crash prediction models: ranking of sites 

by their expected crash frequency and hence priority for safety treatment.  

 

The major distinction between the rankings of sites by the alternative models is 

attributable to the sites at which the alternative models predict substantially different 

expectations for crash frequency. Previously, these sites were characterized as those for 

which Yi is much smaller or greater than the posterior E(µi). In this section, since the 

focus is on hazardous sites, the analysis will be confined to sites with a Yi much greater 

than E(µi). These sites can be interpreted as sites that have experienced an unusually 
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high number of crashes given the prevailing traffic/geometric/environmental conditions. 

Therefore, this section compares the hazardous site rankings across the alternative 

models for the sites with the highest Yi – E(µi) (i.e., most unusually high number of 

observed crashes) in each dataset.  

 

Tables 8–10  list the 30 sites with the greatest Yi – E(µi) in the Toronto, Texas, and 

Michigan datasets, respectively, and indicate the ‘unsafety’ rank of every site by each of 

the alternative models. Similar to the previous analysis, E(µi) in Yi – E(µi) was estimated 

as the average of E(µi)’s predicted by each of the three alternative models, which are 

indeed very close to one another (see Figure 2). The Indiana dataset was again excluded 

because E(µi)’s varied considerably across the models. 

 

According to Tables 8–10, at all sites (with large Yi – E(µi)) with significantly different 

ranks by the alternative models, the PIGam model assigned a higher rank than did the 

PLN and PG models, in order. At sites where the aforementioned pattern was not 

observed, the site rank varied only slightly across the alternative models. Please note that 

from the practical standpoint, the variation in the ranking of sites is less important for 

lower-ranked (i.e., less hazardous) sites.      

 

The results of the analysis clearly demonstrate that sites with unusually high number of 

observed crashes (given the site’s traffic/geometric/environmental features) are likely to 

be ranked higher (in terms of expected crash frequency) when the PIGam model is used 

instead of the PLN model, and similarly when the PLN model is used instead of the PG 

model. The author believes that the described trend in ranking of sites by crash 

proneness is the most important practical implication of using different members of the 

Bayesian Poisson-hierarchical family of regression models in highway safety analysis. 

Tables 11–14 list the most hazardous sites and their rank by each of the alternative 

models for each dataset. As indicated by these tables, the model choice can have a 

significant impact on the ranking of hazardous sites.
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Table 8. Alternative model rankings of sites with the greatest Yi – Avg[E(µi)] in the Toronto dataset  

Site 

Number  
Yi 

E(µi) Yi – Avg[E(µi)]* 
E(mi|X,y) Rank 

PG PLN PIGam PG PLN PIGam PG PLN PIGam 

757 48 19.80 19.74 19.70 28.26 40.48 41.80 43.35 15 12 9 

533 53 25.30 25.46 25.64 27.53 46.89 48.46 49.63 7 5 3 

424 42 16.61 16.78 16.97 25.21 34.31 36.11 37.22 28 24 20 

402 54 31.76 32.03 32.33 21.96 49.89 50.36 50.68 1 1 1 

494 29 10.07 9.98 9.91 19.01 21.10 22.58 24.01 125 104 91 

480 42 23.09 23.16 23.24 18.84 37.48 38.04 37.99 19 18 19 

101 51 32.47 32.75 33.06 18.24 47.66 47.96 48.36 5 6 5 

217 38 20.48 20.60 20.73 17.40 33.41 34.39 34.10 34 28 29 

456 29 11.84 11.93 12.03 17.07 22.53 23.49 24.28 105 93 86 

644 40 22.76 22.97 23.19 17.02 35.83 36.69 36.25 23 20 23 

32 36 19.56 19.55 19.56 16.44 31.59 32.30 31.90 40 37 38 

170 33 17.65 17.64 17.65 15.35 28.57 29.46 29.31 54 51 50 

446 26 10.64 10.72 10.81 15.27 19.83 20.92 21.12 144 128 119 

10 34 19.14 19.32 19.51 14.67 30.00 30.23 29.83 47 46 48 

543 35 20.58 20.71 20.86 14.28 31.29 31.68 31.85 44 39 39 

395 38 23.70 23.90 24.12 14.09 34.67 35.27 35.23 26 26 26 

669 39 24.93 25.05 25.18 13.95 35.82 36.20 36.55 24 22 21 

175 47 33.07 33.24 33.44 13.75 44.49 45.08 45.76 8 8 8 

88 45 31.13 31.43 31.75 13.57 42.38 41.91 42.83 11 11 11 

85 37 23.31 23.54 23.79 13.45 33.78 33.94 33.72 30 29 31 

11 30 16.55 16.68 16.83 13.31 25.92 25.91 25.90 71 69 69 

317 22 9.09 9.18 9.28 12.82 16.34 17.05 18.11 190 183 169 

452 24 11.24 11.29 11.35 12.71 19.00 19.95 19.83 156 140 143 

661 46 33.14 33.29 33.47 12.70 43.78 43.89 42.91 9 9 10 

548 29 16.39 16.41 16.44 12.59 25.16 25.88 25.42 78 70 74 

719 36 23.93 24.11 24.31 11.88 33.18 33.83 33.71 35 30 32 

792 29 17.02 17.13 17.26 11.86 25.47 25.67 25.88 76 73 70 

537 29 17.01 17.15 17.30 11.85 25.44 25.44 25.46 77 77 73 

847 17 5.26 5.24 5.22 11.76 10.23 11.01 11.81 365 331 307 

732 44 32.06 32.31 32.59 11.68 41.87 41.78 41.74 12 13 13 

*  Avg[E(µi)] = Average[E(µi
PG

), E(µi
PLN

), E(µi
PIGam

)] 



 

45 

 

Table 9. Alternative model rankings of sites with the greatest Yi – Avg[E(µi)] in the Texas dataset  

Site 

Number  
Yi 

E(µi) Yi – Avg[E(µi)]* 
E(mi|X,y) Rank 

PG PLN PIGam PG PLN PIGam PG PLN PIGam 

905 97 19.73 19.79 19.85 77.21 85.77 91.54 93.54 1 1 1 

12 81 33.29 33.37 33.44 47.63 76.63 78.08 78.46 2 2 2 

769 72 42.78 42.87 42.93 29.14 69.92 69.74 69.61 3 3 3 

171 64 40.58 40.77 41.00 23.22 62.20 62.33 62.03 4 4 4 

446 34 11.48 11.56 11.65 22.44 28.88 30.18 30.80 27 23 22 

159 38 19.72 19.80 19.90 18.19 35.33 35.60 35.61 16 16 16 

709 53 34.61 34.80 35.04 18.18 51.31 51.42 51.27 8 8 8 

900 22 3.91 3.92 3.92 18.08 13.64 16.53 18.21 100 67 59 

511 29 11.50 11.54 11.58 17.46 25.04 25.91 26.29 34 33 32 

855 24 7.00 7.05 7.12 16.94 18.48 19.94 20.83 58 51 46 

839 31 15.20 15.25 15.30 15.75 28.13 28.74 28.77 28 28 28 

19 38 22.43 22.51 22.60 15.49 35.98 36.37 36.33 14 14 14 

375 58 43.23 43.23 43.16 14.80 56.87 56.82 56.47 6 6 6 

170 20 5.51 5.55 5.60 14.45 14.51 15.88 16.63 91 75 67 

179 32 18.88 18.99 19.11 13.01 29.98 29.43 29.25 24 26 25 

143 20 7.59 7.59 7.57 12.42 16.23 16.89 17.20 71 64 64 

480 17 4.85 4.89 4.94 12.11 12.05 13.15 13.81 110 103 96 

262 25 12.91 12.94 12.97 12.06 22.51 22.70 22.66 42 40 40 

177 14 2.14 2.15 2.15 11.85 6.76 9.01 10.58 218 162 135 

585 20 8.20 8.22 8.24 11.78 16.60 17.23 17.39 68 62 63 

642 16 4.31 4.32 4.33 11.68 10.88 12.19 12.93 123 111 105 

75 15 3.80 3.81 3.83 11.19 9.76 11.16 11.97 145 121 114 

818 28 16.85 16.95 17.09 11.03 26.12 25.28 25.20 33 34 34 

108 22 11.35 11.37 11.37 10.64 19.58 19.89 19.86 53 52 51 

595 16 5.40 5.44 5.49 10.56 11.95 12.56 12.94 111 108 104 

76 31 20.71 20.82 20.96 10.17 29.60 29.38 29.22 26 27 27 

591 35 24.84 24.96 25.12 10.03 33.79 33.66 33.36 17 17 17 

817 43 33.07 33.10 33.09 9.91 42.12 42.46 42.11 10 10 10 

708 14 4.49 4.51 4.55 9.48 9.94 10.59 10.97 141 131 125 

764 14 4.60 4.61 4.63 9.39 10.03 10.73 11.15 140 128 120 

*  Avg[E(µi)] = Average[E(µi
PG

), E(µi
PLN

), E(µi
PIGam

)] 
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Table 10. Alternative model rankings of sites with the greatest Yi – Avg[E(µi)] in the Michigan dataset  

Site 

Number  
Yi 

E(µi) Yi – Avg[E(µi)]* 
E(mi|X,y) Rank 

PG PLN PIGam PG PLN PIGam PG PLN PIGam 

895 29 15.43 15.57 15.89 13.37 27.73 28.36 27.24 1 1 1 

542 11 2.45 2.48 2.53 8.51 7.62 8.48 8.87 10 10 10 

899 19 10.67 10.85 11.03 8.15 17.92 17.73 17.04 4 4 4 

218 15 7.01 7.10 7.23 7.89 13.49 13.46 13.17 6 6 6 

911 12 4.37 4.44 4.52 7.56 9.94 10.29 10.17 8 8 8 

109 7 0.68 0.69 0.70 6.31 2.59 3.86 4.64 59 32 26 

997 7 0.84 0.85 0.87 6.14 2.98 4.10 4.82 46 27 22 

334 9 3.53 3.56 3.63 5.43 7.29 7.45 7.19 11 11 12 

498 6 0.65 0.65 0.66 5.35 2.19 3.14 3.74 74 42 32 

399 7 1.66 1.68 1.71 5.32 4.38 4.95 5.03 24 21 20 

114 16 10.71 10.79 11.02 5.16 15.29 14.82 14.75 5 5 5 

389 7 1.83 1.87 1.90 5.13 4.57 5.05 5.15 23 19 19 

963 6 1.09 1.10 1.12 4.90 3.09 3.69 4.00 43 33 29 

64 5 0.25 0.25 0.25 4.75 0.89 1.70 2.53 205 104 65 

544 5 0.39 0.39 0.40 4.61 1.30 2.04 2.74 134 84 57 

559 5 0.62 0.63 0.64 4.37 1.86 2.46 2.85 94 67 52 

665 5 0.73 0.74 0.75 4.26 2.06 2.64 2.90 86 58 47 

955 5 0.75 0.76 0.77 4.24 2.12 2.63 2.96 79 59 46 

353 7 2.96 3.00 3.06 3.99 5.58 5.55 5.34 17 15 17 

549 7 3.03 3.05 3.11 3.94 5.62 5.54 5.45 16 16 15 

943 5 1.37 1.38 1.41 3.61 3.05 3.38 3.24 44 38 39 

124 4 0.45 0.45 0.46 3.55 1.23 1.67 1.94 142 107 89 

713 4 0.70 0.71 0.72 3.29 1.71 2.04 2.12 104 83 81 

182 4 0.71 0.72 0.73 3.28 1.73 2.02 2.14 101 87 80 

762 5 1.69 1.72 1.75 3.28 3.39 3.51 3.38 36 35 37 

702 4 0.95 0.97 0.99 3.03 2.11 2.28 2.31 81 72 74 

774 4 1.07 1.07 1.10 2.92 2.25 2.43 2.31 72 68 75 

691 4 1.16 1.17 1.19 2.83 2.36 2.49 2.37 65 64 73 

359 4 1.25 1.27 1.29 2.73 2.46 2.57 2.45 63 61 68 

857 3 0.33 0.34 0.34 2.66 0.79 1.02 1.17 240 174 152 

*  Avg[E(µi)] = Average[E(µi
PG

), E(µi
PLN

), E(µi
PIGam

)] 
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Table 11. Alternative model rankings of the most hazardous sites in the Toronto dataset  

Site Number  Yi 

E(µi) E(mi|X,y) Rank 

PG PLN PIGam PG PLN PIGam PG PLN PIGam 

402 54 31.76 32.03 32.33 49.89 50.36 50.68 1 1 1 

393 51 43.36 43.68 44.04 49.89 49.07 49.68 2 2 2 

856 50 43.53 43.88 44.26 49.08 48.61 47.00 3 3 6 

738 50 41.90 42.23 42.60 48.79 48.54 48.62 4 4 4 

101 51 32.47 32.75 33.06 47.66 47.96 48.36 5 6 5 

832 48 44.72 44.79 44.90 47.54 46.91 46.60 6 7 7 

533 53 25.30 25.46 25.64 46.89 48.46 49.63 7 5 3 

175 47 33.07 33.24 33.44 44.49 45.08 45.76 8 8 8 

661 46 33.14 33.29 33.47 43.78 43.89 42.91 9 9 10 

418 44 37.02 37.25 37.51 42.86 42.07 41.79 10 10 12 

88 45 31.13 31.43 31.75 42.38 41.91 42.83 11 11 11 

732 44 32.06 32.31 32.59 41.87 41.78 41.74 12 13 13 

853 43 31.76 31.95 32.16 40.88 41.12 40.10 13 14 15 

667 42 34.39 34.66 34.96 40.68 39.99 40.26 14 15 14 

757 48 19.80 19.74 19.70 40.48 41.80 43.35 15 12 9 

663 40 34.45 34.70 34.98 39.02 38.81 38.82 16 17 17 

653 41 30.35 30.65 30.96 38.94 37.89 38.47 17 19 18 

535 41 29.88 30.15 30.45 38.80 39.44 39.03 18 16 16 

480 42 23.09 23.16 23.24 37.48 38.04 37.99 19 18 19 

497 39 28.81 28.99 29.20 36.96 36.44 36.35 20 21 22 

721 38 28.28 28.47 28.68 36.06 35.36 35.68 21 25 24 

426 35 41.60 41.93 42.29 35.92 36.11 35.51 22 23 25 

644 40 22.76 22.97 23.19 35.83 36.69 36.25 23 20 23 

669 39 24.93 25.05 25.18 35.82 36.20 36.55 24 22 21 

490 36 29.52 29.70 29.90 34.74 33.81 34.58 25 31 27 

395 38 23.70 23.90 24.12 34.67 35.27 35.23 26 26 26 

557 36 29.30 29.45 29.63 34.63 35.14 34.32 27 27 28 

424 42 16.61 16.78 16.97 34.31 36.11 37.22 28 24 20 

470 36 26.82 27.02 27.24 34.06 33.33 33.98 29 34 30 

85 37 23.31 23.54 23.79 33.78 33.94 33.72 30 29 31 
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Table 12. Alternative model rankings of the most hazardous sites in the Texas dataset  

Site Number  Yi 

E(µi) E(mi|X,y) Rank 

PG PLN PIGam PG PLN PIGam PG PLN PIGam 

905 97 19.73 19.79 19.85 85.77 91.54 93.54 1 1 1 

12 81 33.29 33.37 33.44 76.63 78.08 78.46 2 2 2 

769 72 42.78 42.87 42.93 69.92 69.74 69.61 3 3 3 

171 64 40.58 40.77 41.00 62.20 62.33 62.03 4 4 4 

922 59 63.76 64.00 64.28 59.27 58.41 58.03 5 5 5 

375 58 43.23 43.23 43.16 56.87 56.82 56.47 6 6 6 

340 52 58.43 58.49 58.48 52.35 51.75 51.33 7 7 7 

709 53 34.61 34.80 35.04 51.31 51.42 51.27 8 8 8 

897 47 41.76 41.88 42.01 46.63 45.80 45.46 9 9 9 

817 43 33.07 33.10 33.09 42.12 42.46 42.11 10 10 10 

465 41 42.57 42.65 42.72 41.13 40.92 40.47 11 11 11 

791 38 46.38 46.52 46.67 38.53 38.16 37.87 12 12 12 

739 36 52.24 52.44 52.66 37.01 37.21 37.05 13 13 13 

19 38 22.43 22.51 22.60 35.98 36.37 36.33 14 14 14 

23 35 49.57 49.55 49.42 35.92 35.95 35.78 15 15 15 

159 38 19.72 19.80 19.90 35.33 35.60 35.61 16 16 16 

591 35 24.84 24.96 25.12 33.79 33.66 33.36 17 17 17 

29 33 40.45 40.58 40.72 33.61 32.55 32.35 18 21 20 

698 33 36.98 37.11 37.27 33.35 33.04 32.68 19 18 19 

421 32 55.70 55.86 56.01 33.32 32.95 33.05 20 19 18 

699 33 32.77 32.86 32.96 33.01 32.56 32.14 21 20 21 

74 30 40.37 40.57 40.81 30.82 30.59 30.37 22 22 23 

315 31 24.51 24.53 24.52 30.19 30.14 29.78 23 24 24 

179 32 18.88 18.99 19.11 29.98 29.43 29.25 24 26 25 

32 31 22.64 22.64 22.60 29.89 29.55 29.24 25 25 26 

76 31 20.71 20.82 20.96 29.60 29.38 29.22 26 27 27 

446 34 11.48 11.56 11.65 28.88 30.18 30.80 27 23 22 

839 31 15.20 15.25 15.30 28.13 28.74 28.77 28 28 28 

475 29 22.01 22.10 22.20 28.04 27.38 27.05 29 30 30 

94 28 25.37 25.45 25.53 27.67 27.49 27.11 30 29 29 
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Table 13. Alternative model rankings of the most hazardous sites in the Michigan dataset  

Site Number  Yi 

E(µi) E(mi|X,y) Rank 

PG PLN PIGam PG PLN PIGam PG PLN PIGam 

895 29 15.43 15.57 15.89 27.73 28.36 27.24 1 1 1 

906 20 22.44 22.91 23.24 20.14 19.76 19.39 2 2 2 

120 18 21.63 21.94 22.34 18.24 17.90 17.56 3 3 3 

899 19 10.67 10.85 11.03 17.92 17.73 17.04 4 4 4 

114 16 10.71 10.79 11.02 15.29 14.82 14.75 5 5 5 

218 15 7.01 7.10 7.23 13.49 13.46 13.17 6 6 6 

289 12 10.08 10.13 10.35 11.71 11.44 11.11 7 7 7 

911 12 4.37 4.44 4.52 9.94 10.29 10.17 8 8 8 

232 9 15.37 15.58 15.87 9.60 9.35 9.38 9 9 9 

542 11 2.45 2.48 2.53 7.62 8.48 8.87 10 10 10 

334 9 3.53 3.56 3.63 7.29 7.45 7.19 11 11 12 

467 6 15.15 15.29 15.60 6.88 6.91 7.34 12 12 11 

401 6 8.59 8.68 8.85 6.42 6.18 5.94 13 13 13 

555 6 6.20 6.28 6.40 6.01 5.75 5.52 14 14 14 

516 6 4.74 4.81 4.90 5.68 5.40 5.28 15 17 18 

549 7 3.03 3.05 3.11 5.62 5.54 5.45 16 16 15 

353 7 2.96 3.00 3.06 5.58 5.55 5.34 17 15 17 

398 5 6.03 6.12 6.23 5.21 4.96 4.86 18 20 21 

603 5 5.96 5.98 6.11 5.20 4.92 4.77 19 22 24 

793 6 3.47 3.50 3.57 5.20 5.09 4.80 20 18 23 

254 4 7.94 8.01 8.18 4.67 4.56 4.66 21 23 25 

669 5 3.78 3.81 3.89 4.62 4.38 4.18 22 25 27 

389 7 1.83 1.87 1.90 4.57 5.05 5.15 23 19 19 

399 7 1.66 1.68 1.71 4.38 4.95 5.03 24 21 20 

705 4 5.25 5.31 5.41 4.31 4.07 4.01 25 28 28 

24 5 2.87 2.90 2.96 4.24 4.15 3.82 26 26 30 

666 5 2.75 2.77 2.83 4.18 4.03 3.77 27 29 31 

761 3 14.81 15.06 15.32 4.16 4.56 5.45 28 24 16 

403 4 4.21 4.25 4.34 4.06 3.87 3.62 29 31 34 

10 5 2.52 2.55 2.60 4.04 3.92 3.73 30 30 33 



 

50 

 

Table 14. Alternative model rankings of the most hazardous sites in the Indiana dataset  

Site Number  Yi 

E(µi) E(mi|X,y) Rank 

PG PLN PIGam PG PLN PIGam PG PLN PIGam 

65 329 197.76 235.96 278.80 328.25 329.69 329.40 1 1 1 

299 265 155.65 202.72 237.48 264.28 266.32 263.30 2 2 2 

297 215 188.96 245.48 287.52 214.91 216.75 212.70 3 3 3 

73 204 181.87 230.27 270.39 203.93 202.42 203.57 4 4 4 

300 145 155.80 203.37 238.69 145.04 144.86 142.28 5 5 5 

302 122 116.30 148.39 173.99 121.94 122.97 118.90 6 6 8 

63 121 47.82 53.69 54.84 119.20 118.77 121.60 7 8 6 

301 119 136.72 177.36 207.57 119.19 119.98 120.67 8 7 7 

67 108 61.55 72.64 85.55 107.19 105.03 108.49 9 9 9 

30 103 36.85 43.38 51.20 100.99 100.11 101.63 10 12 10 

291 100 118.62 154.32 180.82 100.21 100.39 100.26 11 10 11 

75 99 78.22 94.74 112.48 98.64 100.31 98.91 12 11 12 

74 97 59.18 68.22 80.44 96.09 95.02 94.87 13 13 13 

306 95 77.56 90.53 106.79 94.67 94.18 93.62 14 14 14 

42 94 67.42 76.59 91.72 93.47 92.94 93.30 15 15 15 

76 90 77.09 96.29 113.24 89.82 88.46 90.59 16 16 16 

268 87 53.43 64.58 76.12 86.34 85.10 85.67 17 17 17 

72 79 60.60 72.52 84.78 78.70 79.55 77.30 18 18 19 

71 79 38.23 45.79 53.70 77.88 77.77 78.30 19 19 18 

14 76 101.12 121.85 143.73 76.33 75.19 75.44 20 20 20 

295 75 87.56 114.68 134.51 75.10 74.26 75.01 21 21 21 

8 67 96.90 118.95 139.93 67.34 66.37 67.10 22 22 22 

253 66 53.47 63.52 74.90 65.61 65.21 64.91 23 23 23 

15 62 99.23 119.03 140.27 62.42 60.29 61.70 24 27 25 

102 62 49.54 63.24 74.29 61.67 62.40 60.10 25 24 26 

111 61 68.78 85.16 100.04 61.05 62.06 62.02 26 25 24 

29 60 65.61 78.59 92.62 60.13 60.33 59.39 27 26 27 

337 57 50.71 58.97 69.51 56.83 56.79 56.05 28 29 28 

338 57 50.71 58.97 69.51 56.79 56.60 55.44 29 30 30 

234 57 44.30 56.25 66.02 56.74 56.95 55.72 30 28 29 
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6.2.3 Mean-Variance Relationship 

 

The mean-variance relationship for the observed crash frequency (Yi) can be established 

by using the conditional variance identity: 

 

 Var( ) E(Var( )) Var(E( ))i i i i iY Y m Y m       (6.2) 

Var( ) E( ) Var( )i i iY m m         (6.3) 

 

The posterior samples of mi’s were used to determine the posterior mean-variance 

relationship for sites in each dataset. As Figure 7 indicates, the mean-variance 

relationship for sites in the datasets was not noticeably affected by the model being used. 
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Figure 7. Posterior mean-variance relationship for each dataset and model  
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6.3 SITES WITHOUT CRASH DATA  

 

This section includes two parts. First, the distinctions between the models predictions for 

expected crash frequency are analyzed for new sites without observed crash data. 

Second, the mean-variance relationship is plotted for the each model-dataset. 

 

6.3.1 Distinctions between Expected Crash Frequency Predictions 

 

The expected crash frequency at sites without crash history information (e.g. planned 

sites considered for construction) are typically predicted by regression models calibrated 

using a sample of sites of the same type and in the same jurisdiction. Without a site-

specific observed crash count affecting the prediction, the expected crash frequency at a 

new site will follow a model-specific distribution (gamma, lognormal, or inverse-

gamma) with mean exp( )i i  x  .  

 

A convenient way to compare the models predictions for sites without observed crash 

count is to compare µi’s, because µi is indeed equal to the expected crash frequency at a 

hypothetical new site with the same (modeled) characteristics as those of the i'th site in 

the dataset but with no available observed crash count. This comparison was carried out 

in Figure 2 and indicated that µi’s did not differ drastically except for the Indiana dataset. 

However, an important trend will be revealed if the difference between the models 

predicted E(µi)’s are magnified. Figure 8 to Figure 11 are constructed to investigate the 

relationship between the models predicted E(µi)’s as a function of the magnitude of the 

predicted E(µi)’s. For each dataset, E(µi)’s from every pair of models are compared in a 

separate scatter plot. In all these plots, the horizontal axis represents the E(µi) predicted 

by one of the two  model being compared, whereas the vertical axis indicates the 

difference between the two models predicted E(µi)’s.  



 

54 

 

 

Figure 8. Difference between Toronto dataset E(µi)’s estimated using any two of the 

candidate models as a function of the E(µi)’s estimated from one of the two models 

considered 
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Figure 9. Difference between Texas dataset E(µi)’s estimated using any two of the 

candidate models as a function of the E(µi)’s estimated from one of the two models 

considered 
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Figure 10. Difference between Michigan dataset E(µi)’s estimated using any two of the 

candidate models as a function of the E(µi)’s estimated from one of the two models 

considered 
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Figure 11. Difference between Indiana dataset E(µi)’s estimated using any two of the 

candidate models as a function of the E(µi)’s estimated from one of the two models 

considered 



 

58 

 

It was by no means unexpected that the difference between the models’ E(µi) predictions 

increase with the increase in the magnitude of E(µi); the difference between the 

alternative models’ coefficients for traffic volume causes a larger difference between the 

models’ E(µi)’s for sites with greater traffic volume and thus greater E(µi)’s. However, 

Figure 8 to Figure 11 clearly indicate that the PLN model tends to predict larger µi’s 

compared to the PG model and the PIGam model tends to predict larger µi‘s compared to 

PLN model. The figures also indicate that the E(µi
 PG

) < E(µi
 PLN

) < E(µi
 PIGam

) 

relationship becomes more prevalent and pronounced for larger E(µi)’s. Despite the 

magnitude of the differences between the models’ E(µi)’s being relatively small, the 

aforementioned relationship is an important finding because unlike the mi  predictions for 

sites with observed crash frequency (see Table 7), it results in each model over- or 

under-predicting µi’s (collectively, over all sites combined) relative to the other two 

models.   

 

Table 15. Total E(µi) over all sites predicted by each model for each dataset 

Dataset 
Total Expected Crash Frequency, 

1

E( )
n

i

i




  

PG Model PLN Model PIGam Model 

Toronto 10003.38 10035.07 10075.94 

Texas 5344.41 5366.73 5392.80 

Michigan 824.07 833.63 849.61 

Indiana 5306.06 6345.98 7332.74 

 

It is evident from Table 15 that the total predicted E(µi) can vary significantly depending 

on the model being used. The PIGam model over-predicts the expected crash frequencies 

(for all sites combined) compared to the PLN model and the PG model, in order. 

Another important observation is that the degrees of variation between models’ µi 

predictions increases as the datasets become more over-dispersed. As implied by Figure 

8 to Figure 11 and Table 15, the proportional (rather than absolute) difference between 
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predicted E(µi)’s become more variant across the models in the following order of the 

datasets: Toronto, Texas, Michigan, and Indiana, the same ranking of the datasets with 

respect to their NB model over-dispersion parameter (see Chapter IV). As expressed 

earlier, the variation in the models predictions for the Indiana dataset is of a far greater 

extent compared to the other datasets.      

    

6.3.2 Mean-Variance Relationship 

 

For sites without observed crash frequency, the calibrated model provides prior 

information through the estimated parameters. Unlike the original sites in the dataset, the 

expected crash frequency at these sites is not affected by an observed crash frequency 

and thus m follows a model-specific mixing distribution with mean µ . The “i” subscript 

was dropped because here the general relationship between the variables is sought rather 

than the relationship for numbered sites in a given dataset. The general relationship 

between mean and variance of sites without crash data can be established using the 

conditional variance identity in Equation 6.3:  

  

 Var( ) E( ) Var( )Y m m         (6.4) 

 

While E(m) is equal to µ in all models, Var(m) depends on the type of model and is 

parameterized in terms of µ and the model-specific hyper-parameter as described below: 

 

 PG: (shape ,scale )PGm Gamma         (6.5) 

PG  
        (6.6) 

2 21
Var( ) PG

PG

m   


        (6.7) 

 PLN: (location ,scale )m Lognormal        (6.8) 

2

exp( + )
2

         (6.9) 
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2 2 22 2Var( ) ( 1) ( 1)m e e e            (6.10) 

 PIGam: (shape ,scale )PIGamm Inverse Gamma       (6.11) 

1PIGam








      for φPIGam > 1 (6.12) 

2
2

2

PIGam PIGam PIGam

1
Var( )

( 1) ( 2) 2
m




  
 

  
 for φPIGam > 2 (6.13) 

 

Please note that although the PIGam model is defined for φPIGam > 1, the variance of the 

inverse-gamma distribution (and hence that of the PIGam model) is indeterminate for 

φPIGam > 2, which means it cannot be determined using Equation 6.13.  

 

For all three models, the variance of crash counts has a parabolic relationship with its 

mean. Hence, the mean-variance relationship can be summarized as: 

 

2Var( )Y            (6.14)

       

where α is the model-specific dispersion parameter as defined below:  

 

 
1

PG

PG




          (6.15) 

 
2

1PLN e            (6.16) 

 
PIGam

1

2
PIGam





   for φPIGam > 2    (6.17) 

 

Using the posterior samples of φPG, φPIGam, and σ
2
, the expectation of the dispersion 

parameter, E(α), is determined for every model-dataset and presented in Table 16. Figure 

12 plots the mean-variance relationships for each dataset. As a substitute for the 

indeterminate mean-variance relationship of the PIGam model for the Michigan and 
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Indiana data, the variance was estimated for hypothetical sites with the same (modeled) 

characteristics as those of the sites in the dataset (hence the same set of µi’s) but with no 

available observed crash count. In order to do so, for each hypothetical new site i, 

posterior predictive 
im  samples were drawn from an inverse gamma distribution with 

mean µi and then, posterior predictive iY  samples were drawn from a Poisson 

distribution with mean 
im . Using the 30,000 posterior samples for each model 

parameters, 30000 samples of 
im  (and iY , in turn) were generated for each hypothetical 

new site. The iY  samples were used to estimate the expected variance of crash frequency 

at each site. 

 

Table 16. Over-dispersion parameter (α) for each model-dataset  

Dataset 
αPG αPLN αPIGam 

Mean (Std Dev.) Mean (Std Dev.) Mean (Std Dev.) 

Toronto 0.1399 (0.0127) 0.1489 (0.0143) 0.1573 (0.0179) 

Texas 0.3001 (0.0292) 0.3431 (0.0381) 0.4201 (0.0574) 

Michigan 0.6398 (0.1109) 0.9088 (0.2010) Indeterminate* 

Indiana 0.9192 (0.1161) 1.5995 (0.3537) Indeterminate* 

* because some φPIGam samples are less than 2, for which the variance is indeterminate as indicated in 

Equation 6.13.  

 

Table 16 and Figure 12 indicates that the difference between the mean-variance 

relationship of the three models increases as the data become more over-dispersed 

(ranging from the least over-dispersed data i.e., Toronto, to the most highly over-

dispersed data i.e., Indiana). In other words, in terms of the crash frequency prediction 

for sites with no crash data, the choice of the model is more important and consequential 

for more over-dispersed datasets.   
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Figure 12. Mean-variance relationship for sites with no observed crash data 
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6.4 CHAPTER SUMMARY  

 

In this chapter, the alternative models were compared based on their expected crash 

frequency predictions for individual sites. The analysis was carried out in two separate 

sections: Section 6.1 for the existing sites in each dataset, where models predictions are 

affected by the observed crash frequency, and Section 6.2 for new (or existing) sites 

where crash data are not available and the calibrated models are to be used for crash 

frequency prediction.  

 

For the sites with crash data, it was discovered that the disparities between the 

alternative models predictions were mainly associated with the sites where the observed 

crash frequency was significantly larger or smaller than expected for a site with similar 

traffic and physical characteristics. For both scenarios, it was demonstrated that the 

Poisson-gamma model inclined to predict a lower expectation for crash frequency than 

would the Poisson-lognormal and Poisson-inverse gamma models, in order. For sites 

where the observed crash frequency was in the vicinity of the expectation for the given 

site characteristics, however, the reverse of the aforementioned pattern was observed. 

Nonetheless, from the practical standpoint, the latter trend is not nearly as important as 

the former because it results in relatively small variations between the alternative models 

predictions.  

 

The disparities between alternative model predictions were found to be even more 

important when the calibrated models were applied to predict crash frequency at sites 

with no observed crash count. For all four datasets, the Poisson-inverse gamma model 

tended to predict higher expected crash frequencies than did the Poisson-lognormal and 

Poisson-gamma models, in order. The difference between the models predictions grew 

larger for sites with higher crash frequency expectations. Furthermore, the difference 

between the models predictions for the expectation and variance of crash frequency 

increased in the same order that the over-dispersion in the datasets did, implying that the 
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model choice becomes more consequential for more over-dispersed data. Next chapter 

will compare the alternative models in terms of their goodness-of-fit.      
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CHAPTER VII    

GOODNESS OF FIT ANALYSIS 

 

 

This chapter compares the goodness-of-fit (GOF) of the Bayesian hierarchical regression 

models in this dissertation. Section 7.1 presents the conventional GOF assessment where 

the models overall fit to datasets are compared using the deviance information criterion 

(DIC), as introduced in Chapter 3. The main goal is to test the conjecture that models 

with heavy/long-tailed distributions would outperform a light-tailed distributions such as 

the tradition Poisson-gamma in terms of statistical fit to highly over-dispersed data. 

Section 7.2 proposes a site-specific approach to GOF assessment where the models fit to 

data will be explored at individual sites level. The objective of the latter analysis is to 

detect latent trends in relative GOF of alternative models to observed crash count at 

individual sites with common features. Simply stated, the research strives to answer the 

following question: “Are there sites with certain common characteristics where a certain 

model can be expected to provide relatively better (or worse) fit to the site-specific 

observed crash count than would the other alternative models?”        

 

7.1 OVERALL GOODNESS-OF-FIT 

 

As explained in Chapter 2, the DIC is selected for GOF analysis in this research because 

of its popularity in Bayesian hierarchical model selection and its straightforward 

calculation when posterior distribution of model parameters are estimated using MCMC 

simulations. The mathematical expression of the DIC was described in Section 2.4. 

Denoting the vector of model parameters with θ,  is conveniently estimated by 

averaging the posterior θ samples, and D  is estimated as the average of the model 

deviance for each θ sample. Table 17 presents the DIC values obtained for each model-

dataset, as well as the DIC breakdown into its two components, D  and PD.   
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Table 17. Deviance information criterion and its components for each model-dataset  

Dataset 
Poisson-Gamma Poisson-Lognormal Poisson- Inverse Gamma 

D  PD DIC D  PD DIC D  PD DIC 

Toronto 4321.0 458.2 4779.2 4340.8 456.3 4797.0 4376.7 447.2 4823.9 

Texas 3496.4 397.7 3894.1 3488.5 403.7 3892.2 3503.2 397.5 3900.8 

Michigan 1567.4 178.3 1745.7 1556.1 203.3 1759.3 1576.9 202.7 1779.6 

Indiana 1298.2 190.4 1488.5 1273.4 189.6 1463.0 1287.9 180.2 1468.1 

 

 

The three models in this study have the same number of parameters and very similar 

structures. However, as Table 17 confirms, the same number of parameters for these 

hierarchical models does not necessarily translate to similar effective number of 

parameters (PD). Since every site’s expected crash frequency (mi) is a parameter, 

posterior mi’s that are too close to the observed Yi’s may be a sign that a model is over-

fitting the data. 

 

A rule of thumb in comparing the DICs of alternative models is that a difference of more 

than 10 constitutes a disparity between the models’ fit to the data (MRC Biostatistics 

Unit, 2016). As such, for both the Toronto and Michigan datasets, the PG model 

performs significantly better than the PLN model and the PLN model significantly better 

than the PIGam model. For the Texas dataset, the PG and PLN models perform equally 

well and only slightly better than the PIGam model. Finally, for the Indiana dataset, the 

PLN model performs slightly better than the PIGam model while both models fit the 

data substantially better than the PG model. It is also noteworthy that unlike most other 

modeling aspects discussed so far, the DIC of the PLN model does not necessarily fall 

between that of the PG and PIGam models.   

 

As argued in the introduction to this study, it is virtually impossible to forecast the 

relative GOF of alternative models for a given dataset before the models are actually fit 

to the data. The results in Table 17 refute the conjecture that a heavy-tailed distribution 
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will certainly perform better as the over-dispersion in data increases. For example, the 

Michigan data is more over-dispersed than the Texas data (as measured by αNB(MLE), see 

Chapter 4), but the light-tailed PG model performs better (relative to the other two 

models) for the Michigan dataset.            

 

7.2 SITE-SPECIFIC GOODNESS-OF-FIT 

 

While the DIC values can provide little insight into the fundamental differences between 

the alternative models, it is useful to take a microscopic look at the constituent 

components of the DIC and seek a relationship between the overall GOF of the models 

and their site-specific predictions for the expected crash frequency. This analysis is in 

alignment with the general focus of this study on the distinctions between the site-

specific predictions of the considered models. 

 

Replacing PD from Equation 2.2 into Equation 2.1, the DIC can be reformulated as: 

                    

DIC 2 ( )D D           (7.3) 

 

The following equations describe how the DIC of the considered models can be broken 

down into site-specific components:  

 

 DIC 2 E[ - 2 log(Pr( )] [-2 log(Pr( )]  Y Y      (7.4) 

,

1 1 1

1DIC 2 [ 2log( Pr( )] [-2 log( Pr( )]
n nT

i i t i i

t i i

Y m Y m
T

  

        (7.5) 

,

1 1 1

1DIC 2 [ 2 log(Pr( ))] [-2 log(Pr( ))]
T n n

i i t i i

t i i

Y m Y m
T

  

        (7.6) 

,

1 1 1

1DIC 2 [ 2 log(Pr( ))] [-2 log(Pr( ))]
n T n

i i t i i

i t i

Y m Y m
T

  

        (7.7) 
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where mi,t is the t’th sample from the posterior distribution of mi, and T is the total 

number of MCMC samples. In deriving Equation 7.5 from Equation 7.4, please note that 

mi’s are assumed to be mutually independent (see Chapter 3). Finally, let 

-2 log(Pr( ))i i iD Y m  define the component of the deviation for site #i, as opposed to the 

total model deviation, -2 log(Pr( ))D  Y m . Then, the total DIC can as well be expressed 

as a sum of site-specific components (DICi’s): 

 

1 1

DIC [2 ( )]
n n

i i i i

i i

DIC D D m
 

          (7.8) 

    

The breakdown of the DIC into site-specific components is important because it 

provides the opportunity to investigate the contribution of each site (observation) to the 

overall GOF of each model. The lower a DICi value, the better the model has fit the 

crash count observation at site #i. The study of the DICi’s across the models may reveal 

sites with certain common characteristics where a certain model provide relatively better 

(or worse) fit than the other alternative models. 

 

Since Yi│mi is Poisson-distributed under all three models, a posterior E(mi) closer to the 

observed Yi will generally result in a larger log-likelihood and thus a smaller DICi. 

Simply stated and quite intuitive, the model fit improves as the predicted expectation for 

crash frequency approaches the observed crash count. The pattern of DICi’s across the 

models is therefore closely related to the differences between the models predictions for 

mi’s, which were discussed in detail in Chapter 6. It was demonstrated in Chapter 6 that 

the distinctions between the models’ mi prediction for a specific site is a function of the 

difference between the respective μi (i.e., expected crash frequency at a site with similar 

modeled characteristics but with no crash count observation) and the observed crash 

frequency (Yi). Thus, in the GOF analysis herein, the variations of DICi’s across the 

models are also investigated as a function of Yi – E(μi).  
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Due to the large number of data points and relatively small differences between DICi’s 

from the three models, a cumulative DIC plot will be more useful in illustrating the 

differences between the models and revealing the trends. These plots, presented in 

Figure 13 for the Toronto, Texas, and Michigan dataset, are constructed as follows.  

 

First, the sites in each dataset are ranked based on their Yi – E(μi). As shown in Figure 2, 

E(μi)’s from the three models are very close to one another (except for the Indiana 

dataset which is not included here) and thus, it is reasonable to determine [Yi – E(μi)]’s 

based on the average of the E(μi)’s obtained from each of the three models. Once the 

sites are ranked in the increasing order of Yi – E(μi), the cumulative DIC (i.e., the sum of 

DICi’s for all sites with a smaller or equal Yi – E(μi)) is calculated for each of the models. 

In this analysis, the interest is in the difference between the DIC’s of the models and 

thus, instead of the cumulative DIC function for each model, the difference between the 

DIC functions is plotted in Figure 13. The PG model is assumed as the base model and 

the vertical axis indicates how much larger or smaller the cumulative DIC of the PLN 

and PIGam models are compared to that of the PG model. The cumulative DIC plots 

exhibit a similar trend for all three datasets; four intervals of Yi – E(μi) are identified and 

the respective regions are numbered in every plot and explained below. 
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Figure 13. Difference between the cumulative DIC (defined as the sum of DICi’s for all sites 

with a smaller or equal Yi – E(μi)) of PLN and PIGam models and that of the PG model as 

a function of Yi – E(μi) for Toronto, Texas, and Michigan datasets 

* Cumulative DIC of considered model (PLN or PIGam) – Cumulative DIC of PG model   

† where E(μi) is calculated as average E(μi) obtained from PG, PLN, and PIGam models 
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Interval 1 corresponds with large negative values of Yi – E(μi) and thus includes the sites 

where the observed crash frequency is much smaller than expected for a site with similar 

(modelled) characteristics. For such sites, as discussed in the previous chapter, a 

E(mi
PG

|X,y) < E(mi
PLN

|X,y) < E(mi
PIGam

|X,y) relationship is likely to be observed, which 

results in a closer fit (hence a smaller DICi) for the PG model compared to the PLN and 

PIGam models (in order). In consequence, the cumulative DIC function of the PLN and 

PIGam models (in order) will grow faster than that of the PG model. In Figure 13, this 

trend is very evident in the Toronto dataset, but not as noticeable in the Texas and 

Michigan datasets. Nonetheless, please note that the size of the difference between the 

cumulative DIC functions is quite small in both Texas and Michigan datasets. As 

mentioned in Chapter 6, a large difference between E(μi) and Yi does not always result in 

a E(mi
PG

|X,y) < E(mi
PLN

|X,y) < E(mi
PIGam

|X,y) relationship. However, when this 

relationship is not observed, the difference between the E(mi|X,y)’s from the three 

models (and hence the respective DICi’s) are quite small.          

 

Interval 2 starts at the approximate point where the trend in the differential cumulative 

DIC functions reverses. The boundary between Interval 1 and 2 is variant across the 

datasets and is loosely defined based on shape of the cumulative DIC functions. In 

contrast, the endpoint of Interval 2 (and the beginning of Interval 3) is strictly defined as 

zero (Yi – E(μi) = 0). Therefore, Interval 2 includes the sites where the observed crash 

frequency is slightly or moderately (depending upon the dataset) smaller than expected 

for a site with similar characteristics. As described in Chapter 7, for sites with small 

negative or positive value of Yi - E(µi), a E(mi
PG

|X,y) > E(mi
PLN

|X,y) > E(mi
PIGam

|X,y) 

relationship is usually observed, which translates to mi
PIGam 

|X,y 
 
being closer to Yi than is 

mi
PLN

|X,y and mi
PIG

|X,y
 
 (in order). The resulting relationship between the DICi’s (i.e., 

DICi
PIGam 

< DICi
PLN 

< DICi
PG

) causes the differences between the cumulative DIC’s of 

the models to decrease.  
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In terms of the relationship between the models’ E(mi) predictions and the closeness of 

E(mi)’s to Yi’s (and thus site-specific DICi’s), Intervals 3 and 4 are the mirror image of 

Interval 2 and 1, respectively. In Interval 3, the 

E(mi
PIGam

|X,y) < E(mi
PLN

|X,y) < E(mi
PG

|X,y) relationship is prevalent, while in Interval 4, 

a E(mi
PG

|X,y) < E(mi
PLN

|X,y) < E(mi
PIGam

|X,y) relationship is likely to occur. Because in 

both of these intervals Yi is greater than E(μi), the aforementioned relationships results in 

DICi
PG 

< DICi
PLN 

< DICi
PIGam

 in Interval 3 and DICi
PIGam 

< DICi
PLN 

< DICi
PG

 in Interval 

4. Consequently, the site-specific GOF trends described in this section can be integrated 

with the analysis results in Section 6.1 and summarized in Figure 14. In interpreting this 

figure, it is critical to note that the displayed trends are the relationships that are merely 

more likely to occur than the other possible relationships; one shall not expect all 

observations falling in the same interval to exhibit similar trend.       

 

 

Figure 14. General trends for alternative models predictions and site-specific goodness of 

fit as a function of Yi - E(µi)  

 

Finally, it is noteworthy that in Figure 13, the amount of change in the differential 

cumulative DIC functions in Intervals 2 and 3 is greater than that in Intervals 1 and 4. 

This phenomenon is caused not because the differences between the DICi’s of the three 

models are greater for sites in Intervals 2 and 3 (it is indeed the opposite), but because 

these intervals include many more sites than Intervals 1 and 4. Table 18 indicates the 

approximate boundaries between the four intervals of Yi – E(μi) and reports the 
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percentage of sites falling in each interval. It is interesting to note that among the three 

datasets considered here, the one for which the PLN and PIGam models fit the best (i.e., 

Texas) is the dataset which includes the greatest share of sites with very large [Yi – 

E(μi)]’s. The PIGam and PLN models (in order) are expected to provide better fit for 

such observations.    

 

Table 18. Four intervals of Yi – E(μi) defined for each dataset (except Indiana) and the 

percentage of sites falling in each interval 

Interval 
Toronto Data Texas Data Michigan Data 

Range % of sites Range % of sites Range % of sites 

1 (-∞,-6.7] 9% (-∞,-5.7] 6% (-∞,-1.1] 7% 

2 (-6.7,0] 46% (-5.7,0] 56% (-1.1,0] 69% 

3 (0,10.0] 41% (0,5.3] 32% (0,4.0] 22% 

4 (10.0,+∞) 5% (5.3,+∞) 6% (4.0,+∞) 2% 

 

 

It must be reminded that the Indiana data was not included in the analysis in this section 

for the same reason that it was excluded in the analysis in Section 6.1: the significantly 

different predictions of E(μi) across the alternative models prevents categorization of 

sites (observations) based on their Yi – E(μi).  

 

7.3 CHAPTER SUMMARY 

 

In this chapter, first the overall GOF of the alternative models were compared for every 

dataset using the DIC. The results did not signal an apparent relationship between the 

models relative GOF and the conditional (on mean) over-dispersion of datasets (as 

measured by the dispersion parameter of the traditional negative binomial generalized 

linear model). Next, the overall DIC was broken down into site-specific constituents 

which were then compared across the models. It was demonstrated that, similar to the 

trends for the models predictions for expected crash frequency (see Section 6.1), the 
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relationship between site-specific GOFs of alternative models were a function of Yi – 

E(μi) i.e. the difference between the observed crash frequency and the expected crash 

frequency at a site with similar characteristics. Accordingly, the range of [Yi – E(μi)]’s 

can be divided into four intervals with a unique combination of site-specific prediction 

and GOF trend that is likely to be observed for most sites in the interval. 
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CHAPTER VIII    

SUMMARY AND CONCLUSIONS 

 

 

This chapter summarizes the methodology and findings of this dissertation and draws 

conclusions based on the research results. Section 8.1 provides a summary of the 

research methodology, Section 8.2 summarizes the important analysis results, and 

Section 8.3 concludes the research by listing the practical implications of the study 

findings in the practice of highway safety analysis.  

 

8.1 SUMMARY OF METHODOLOGY 

 

This dissertation focused on the application of Bayesian Poisson-hierarchical regression 

models for motor-vehicle crash data analysis with the objective to explore the 

distinctions between alternative models in terms of their crash frequency predictions at 

individual sites with given characteristics. The Bayesian Poisson-hierarchical family of 

models was chosen for this dissertation for two reasons: their popularity and theoretical 

appropriateness for crash count data analysis. In these models, crash counts at individual 

sites (Yi’s) are assumed to be mutually independent and Poisson-distributed with a 

Poisson parameter/mean (mi) that itself follows a model-specific continuous distribution 

(called mixing distribution) with mean μi. The generalized linear modeling (GLM) 

framework was adopted to model μi as a loglinear function of traffic and physical 

characteristics of the highway site (roadway segments or intersections). 

 

The research was limited to three alternatives models: the two most commonplace 

models for crash data analysis i.e., the Poisson-gamma (PG) and Poisson lognormal 

(PLN), and a new model formulated and proposed for the purpose of this study, the 

Poisson-inverse gamma (PIGam). The hierarchical Bayesian structure of the models 

adjusted every μi (i.e., the crash frequency expectation given the input variables) using 
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the respective crash count observation (Yi) to deliver a posterior crash frequency 

expectation (mi) that often lied between μi and Yi. In addition to a common structure, the 

three models comprised of the same number of parameters ( = number of observations + 

number of input variables + 2), which provided for a facilitated and sensible comparison 

between models predictions.  

 

Given the common structure of the alternative models, all differences in models 

performance may be attributed to the fundamental characteristics of their mixing 

distributions: gamma, lognormal, and inverse-gamma. Unlike the gamma distribution, 

the inverse-gamma distribution has a long/thick tail, while the lognormal distribution lies 

in between the gamma and inverse-gamma distributions in terms of tail thickness (and 

other shape properties for a given mean and variance). Following the claims of a few 

other studies, it was hypothesized that the models corresponding with heavy-tailed 

distributions (PLN and PIGam, in order) will provide better statistical fit as the over-

dispersion in data increases. This conjecture was tested by selecting four datasets from 

Toronto, Texas, Michigan, and Indiana that covered a wide range of conditional over-

dispersion. The conditional over-dispersion (i.e., over-dispersion conditional on the 

modeled mean) was loosely estimated using the over-dispersion parameter of the 

traditional frequentist negative binomial GLM.  

 

The dissertation deviated from the conventional model selection studies in the following 

sense: rather than ranking the alternative models based on their overall goodness-of-fit 

(GOF) and predictive performance, the research focused on the magnitude of models 

predictions for the expected crash frequency at individual sites. The goal was not to 

determine the model that outperforms the others (globally or for certain datasets), but to 

investigate how the model choice can affect the expected value for crash frequency at 

sites with certain characteristics. Lacking a preset agenda, the author enjoyed the 

freedom to explore the modeling results to identify trends that would help safety analysts 

to comprehend the practical implications of opting for one model over the other.         
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The Bayesian models were estimated using MCMC simulation from the posterior 

distribution of parameters. Non-informative hyper-priors were assumed for the models’ 

hyper-parameters to eliminate the potential effect on the models estimation and let the 

data speak for themselves.     

 

8.2 SUMMARY OF RESEARCH FINDINGS 

 

For the Toronto, Texas, and Michigan data, the alternative models resulted in very close 

estimates for the regression coefficients and hence μi’s. The functional form of the model 

for the Toronto dataset included three regression coefficients, while that for the Texas 

and Michigan datasets included only two. The Indiana dataset was very different from 

the other datasets in the sense that it included eight covariates that were all found to be 

statistically significant. The relatively great number of regression coefficients, coupled 

with the extreme over-dispersion remaining even after inclusion of so many covariates, 

resulted in considerably different estimates for the regression coefficients of the 

alternative models, and hence μi’s that may vary drastically across the models. It was 

interesting to note that for all datasets, the posterior estimates of the PLN model 

coefficients were in between those of the PG and PIGam models, indicating an apparent 

link between the shape properties of the three mixing distributions and the performance 

of their respective Poisson-hierarchical models.         

 

By identifying the sites with the greatest difference between the models mi predictions, 

an important trend was discovered. In every dataset except Indiana, all sites at which the 

posterior E(mi) varied significantly across the alternative models shared a common trait: 

an observed crash frequency (Yi) that is substantially smaller or larger than the 

expectation for a site with similar modeled characteristics, as estimated by the posterior 

E(μi). This phenomenon was caused by the different amounts by which the posterior 

distribution of μi, which varied only slightly across the models, shifted toward the 

observed crash count under different alternative models. For either the case where E(μi) 
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was substantially larger or smaller than Yi, the described phenomenon would result in the 

PG model predict a lower E(mi|X,y) than the PLN and PIGam models, in order. 

 

It is important to note that while the aforementioned trend was observed for all sites 

(except those in Indiana) where the posterior E(mi) varied significantly across the 

models, not every site with substantially different  Yi  and E(μi) indicated a E(mi
PG

|X,y) < 

E(mi
PLN

|X,y) < E(mi
PIGam

|X,y) relationship. Based on the analysis results, it can only be 

said that for sites where Yi differs significantly from E(μi), the E(mi
PG

|X,y) < E(mi
PLN

|X,y) 

< E(mi
PIGam

|X,y) relationship was more prevalent than any other relationship between 

E(mi|X,y) of the alternative models. In addition, the likelihood of observing the 

E(mi
PG

|X,y) < E(mi
PLN

|X,y) < E(mi
PIGam

|X,y) relationship and the difference between 

E(mi|X,y) of the alternative models generally (not absolutely) increased as the difference 

between Yi  and E(μi) grew larger. 

 

On the other hand, for most sites where the posterior E(μi) was relatively close to Yi, the 

previously described relationship was reversed to E(mi
PG

|X,y) > E(mi
PLN

|X,y) > 

E(mi
PIGam

|X,y), although the differences between E(mi|X,y)’s were quite small. The 

opposite relationships between E(mi|X,y) predictions of alternative models for the two 

sets of sites (where Yi is significantly different from E(μi) or relatively close to it) 

resulted in a balanced total expected crash frequency (for all sites combined) across the 

alternative models. Consequently, none of the models predicted significantly biased 

posterior mi’s compared to another model, although the E(mi|X,y) predictions at certain 

sites varied considerably. Similar to the coefficient estimates, the PLN model predictions 

for E(mi|X,y)’s usually remained between those from the PG and PIGam models, 

signaling another link between the models performance and fundamental properties of 

their respective mixing distributions.   

 

Furthermore, the deviance information criterion (DIC) was used to compare the overall 

fit of the alternative models to each dataset. The results did not indicate a clear 
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relationship between the conditional over-dispersion in the datasets and the GOF of the 

alternative models, refuting the conjecture that mixing distributions with thicker tails 

will necessarily result in a better fit as the conditional over-dispersion in data grows. The 

author believes that the relative GOF of the alternative models for a given dataset is too 

complicated to be predicted with certainty based on a simple statistic before the model 

are actually fitted to data.  

 

However, in alignment with the microscopic approach of this research, the DIC was 

broken down into site-specific components. The purpose was to analyze the contribution 

of each site/observation to the overall “lack-of-fit” of the model as measured by DIC. 

The analysis in Chapter 7 indicated that similar to the trends for the models predictions 

for expected crash frequency, the relationship between site-specific GOFs of alternative 

models is a function of Yi – E(μi) i.e. the difference between the observed crash 

frequency and the expected crash frequency at a site with similar characteristics. 

Accordingly, the range of [Yi – E(μi)]’s can be divided into four intervals with a unique 

combination of site-specific prediction and GOF trend that is likely to be observed for 

most sites in the interval. Figure 14 illustrated these intervals and summarized the most 

important findings of this research. 

 

It is important to note that the aforementioned patterns could not be examined for the 

Indiana data because the alternative models resulted in very different regression 

coefficients and thus posterior E(µi)’s, preventing the type of analyses carried out for 

other datasets as explained above. The disparity between the models regression 

coefficients for the Indiana data is attributable to the relatively great number of 

covariates (six) and the substantial conditional over-dispersion (even after the six 

covariates were included in the models).  

 

Finally, this research found the disparities between alternative model predictions to be 

even more important when the calibrated models were applied to predict crash frequency 
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at sites with no observed crash count. For all four datasets, the Poisson-inverse gamma 

model tended to predict higher expected crash frequencies than did the Poisson-

lognormal and Poisson-gamma models, in order. The difference between the models 

predictions grew larger for sites with higher crash frequency expectations. Furthermore, 

the difference between the models predictions for the expectation increased in the same 

order that the over-dispersion in the datasets did, implying that the model choice 

becomes more consequential for more over-dispersed data. 

 

8.3 PRACTICAL IMPLICATIONS 

 

Based on the analyses in this dissertation, the choice of the mixing distribution in the 

Poisson-hierarchical family of generalized linear models can have important practical 

implications especially for two specific applications.  

 

The first important application is when regression models are used to identify hazardous 

sites and rank them based on their crash proneness and hence priority for treatment. For 

this application, the important disparity between the models performance is associated 

with sites where the observed crash frequency is unusually higher or lower than what is 

typically expected at a site with similar characteristics.  

 

For example, consider a very low-traffic intersection that experiences 20 crashes in a 

given year and a major arterial intersection that experiences no crashes in the same year. 

The alternative models are more likely to predict considerably different crash frequency 

expectations for these sites than they are for other sites with normal observed crash 

frequency (e.g., major intersections with many crashes and minor intersections with few 

crashes). Based on the analysis results, for sites with either unusually high or low 

observed crash frequency, the PG model is likely to predict a lower crash frequency 

expectation than would the PLN and PIGam models, in order. Although the 

aforementioned relationship does not hold for all sites with unusually high or low 
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observed crash frequencies, the likeliness of the relationship to hold is expected to 

increase as the difference between expected and observed crash frequencies grow (i.e., 

observed crash frequency becomes more unusual). Consequently, the PIGam model is 

inclined to rank the sites with unusual observed crash frequencies higher (in terms of 

crash proneness) than would the PLN and PG models, in order.  

 

However, highway safety analysts should be warned that the patterns explained above 

cannot be expected to hold true if the alternative models estimate considerably different 

regression coefficients for a certain dataset. As was the case for the Indiana dataset in 

this study, disparate estimates for regression parameters are prevalent when a relatively 

great number of covariates are included in modeling. For such cases, one may not 

straightforwardly determine whether the observed crash frequency for a site is too 

different from expected because the crash frequency expectation can differ drastically 

across the models.       

 

The second important application is when the alternative models are used to predict the 

expected crash frequency at new sites with no crash data (such as planned facilities that 

have not been constructed yet). For such conditions, the PIGam model tends to predict 

higher expected crash frequencies than does the PLN and PG models, in order. The 

difference between the models predictions is likely to grow larger for more over-

dispersed datasets. It is critical for practitioners to be aware of such relative bias when 

applying different models in the Poisson-hierarchical family for prediction purposes.   

 

8.4 FUTURE RESEARCH 

 

Although this research revealed important trends regarding the predictions of the 

alternative models at individual sites, it did not find a specific relationship between the 

overall GOF of the alternative models and simple characteristics of the datasets. Clearly, 

appropriateness of the alternative models for given datasets is too complicated to be 
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indicated by a simple statistic such as the conditional over-dispersion (as examined in 

this study). However, important relationships between the relative GOF of the alternative 

models may be discovered if the analysis is carried out using simulated data. Data 

simulation will provide control over different data characteristics. Therefore, future work 

will use extensive simulated data to further investigate the relative GOF of the 

alternative models as a function of different data conditions. 
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APPENDIX A    

MODEL ESTIMATION RESULTS 

 

 

This appendix presents the MCMC traceplots and posterior distributions for the 

parameters in each model and dataset, where each chain is drawn with a distinct color 

(black, red, or green). The posterior distributions of the models’ parameters are 

constructed using the samples from the three chains after the first 10000 sample from 

each chain are discarded.  
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Toronto Data, Poisson-Gamma Model 

 

 

 

 

  

 

 

 

φPG 

 

 

φPG 

 

 

F
re

q
u

en
cy

 

Iteration 

 

 
 

ln(β0) 

 

Iteration 

 

 

  ln(β0) 

F
re

q
u

en
cy

 



 

94 

 

Toronto Data, Poisson-Gamma Model 
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Toronto Data, Poisson-Lognormal Model 
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Toronto Data, Poisson-Lognormal Model 
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Toronto Data, Poisson-Inverse Gamma Model 
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Toronto Data, Poisson-Inverse Gamma Model 
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Texas Data, Poisson-Gamma Model 
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Texas Data, Poisson-Lognormal Model 
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Texas Data, Poisson-Inverse Gamma Model 
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Michigan Data, Poisson-Gamma Model 
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Michigan Data, Poisson-Lognormal Model 
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Michigan Data, Poisson-Inverse Gamma Model 
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Indiana Data, Poisson-Gamma Model 
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Indiana Data, Poisson-Gamma Model 
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Indiana Data, Poisson-Gamma Model 
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Indiana Data, Poisson-Gamma Model 

 

 

 

 

 

  

 

 

 

β5 

 

 

β5 

 

 

F
re

q
u

en
cy

 

Iteration 

 

 
 

β6 

 

Iteration 

 

 

β6 

 

F
re

q
u

en
cy

 



 

109 

 

Indiana Data, Poisson-Lognormal Model 
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Indiana Data, Poisson-Lognormal Model 
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Indiana Data, Poisson- Lognormal Model 
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Indiana Data, Poisson-Lognormal Model 
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Indiana Data, Poisson-Inverse Gamma Model 
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Indiana Data, Poisson-Inverse Gamma Model 
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Indiana Data, Poisson-Inverse Gamma Model 
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Indiana Data, Poisson-Inverse Gamma Model 
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APPENDIX B    

R CODES FOR MODEL ESTIMATION 

 

 

This appendix presents the R codes used to estimate the alternative models through the 

MCMC algorithm. As the purpose is illustrating the method, the codes used for the 

Indiana dataset are provided here. Separate codes were written for the Poisson-gamma, 

Poisson-lognormal, and Poisson-inverse gamma models. 
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  Indiana Data, Poisson-Gamma Model 

 

 

data <- read.csv("IN-data-norm-all.csv") 

 

# n = number of units 

n = dim(data)[1] 

# y = the number of observed crashes, the first column of data 

y = data[,1] 

# off = the vector of offset values 

off = data[,8] 

# X = matrix of coveriate values (n rows, p columns) 

X = data 

X[,1] = c(rep(1,n)) 

X = X[c(-8)] 

# p = number of model covariates (including intercept) 

p = dim(X)[2] 

 

# beta = vector of coefficients (p rows, 1 column) 

# y~Poisson(m) 

# m~Gamma (shape=phi,rate=phi/mu) 

# mu(i) = exp(X(i)*beta+offset) 

# beta(i) ~ Normal (nu(i),sigma(i)) 

# phi ~ uniform[0,1000] 

 

#Prior parameters 

nu = c(rep(0,p)) 

sigma = c(rep(100,p)) 

 

MCMC = 20000 

 

#chain 1 initial values 

m1 = c(rep(1,n)) 

beta1 = c(-2.448,0.687,-0.027,0.4296,-0.0052,-3.026,-0.398) 

phi1 = 1.12  

PHI1 = NULL 

Dev1 = NULL 

MCMC1 = MCMC 

BURNIN1 = 10000 

BETA1=matrix(rep(0,MCMC1*p),ncol=p) 

M1=matrix(rep(0,MCMC1*n),ncol=n) 

 

#chain 2 initial values 

m2 = c(rep(1,n)) 

beta2 = c(-5,0,-0.05,0,-0.01,-6,-0.8) 

phi2 = 2.12  

PHI2 = NULL 

Dev2 = NULL 

MCMC2 = MCMC 

BURNIN2 = 10000 
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BETA2=matrix(rep(0,MCMC*p),ncol=p) 

M2=matrix(rep(0,MCMC2*n),ncol=n) 

 

#chain 3 initial values 

m3 = c(rep(1,n)) 

beta3 = c(0,1.4,0,0.8,0,0,0) 

phi3 = 0.1  

PHI3 = NULL 

Dev3 = NULL 

MCMC3 = MCMC 

BURNIN3 = 10000 

BETA3=matrix(rep(0,MCMC3*p),ncol=p) 

M3=matrix(rep(0,MCMC3*n),ncol=n) 

 

# Function to calculate sum of m(i)/exp(X(i)*beta+offset) for i=1:n 

expsum <- function (beta,m){ 

   result = 0 

 for (u in 1:n) { 

 result = result + m[u]/exp(sum(X[u,]*beta)+off[u]) 

   } 

   return(result) 

} 

 

#Chain 1 

for (i in 1:MCMC1){ 

 # update m 

 for (j in 1:n){ 

  m1[j]=rgamma(1,y[j]+phi1,scale=(1+phi1/exp(sum(X[j,]*beta1)+off[j]))^(-1)) 

 } 

 # update phi 

 cand = phi1 + 0.1*rnorm(1) 

 if (cand <=0) cand =phi1 

 logr = n*(cand*log(cand)-log(gamma(cand))-phi1*log(phi1)+log(gamma(phi1))) - (cand - 

phi1)*(sum(beta1*colSums(X))+sum(off) + expsum(beta1,m1) - sum(log(m1)))     

 if( logr > log(runif(1)) ) phi1 = cand 

 # update beta 

 for (j in 1:p){ 

  if ( j == 1 ) cand = beta1[j] + 0.08*rnorm(1) 

  if ( j == 2 ) cand = beta1[j] + 0.03*rnorm(1) 

  if ( j == 3 ) cand = beta1[j] + 0.003*rnorm(1) 

  if ( j == 4 ) cand = beta1[j] + 0.12*rnorm(1) 

  if ( j == 5 ) cand = beta1[j] + 0.0015*rnorm(1) 

  if ( j == 6 ) cand = beta1[j] + 0.2*rnorm(1) 

  if ( j == 7 ) cand = beta1[j] + 0.11*rnorm(1) 

  betacand = beta1 

  betacand[j] = cand 

logr = -phi1*(colSums(X)[j]*(cand-beta1[j])+ expsum(betacand,m1) - 

expsum(beta1,m1)) + log(dnorm(cand,nu[j],sigma[j]))-

log(dnorm(beta1[j],nu[j],sigma[j]))  

  if( logr > log(runif(1)) ) beta1[j] = cand 

 }  

 if( i>BURNIN1 ){ 

  PHI1 = c(PHI1,phi1) 
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  BETA1[i-BURNIN1,]=beta1 

  M1[i-BURNIN1,]=m1 

  #Calculate conditional deviance 

  loglikelihood  = 0 

  for (z in 1:n){ 

   loglikelihood = loglikelihood + dpois(y[z],m1[z],log=TRUE) 

  } 

  Dev1[i-BURNIN1]=-2*loglikelihood 

 } 

} 

 

rej = c(rep(0,p)) 

for (r in 1:p){  

 for (u in 2:MCMC1){ 

  if (BETA1[u,r] == BETA1[u-1,r]) rej[r] = rej[r] + 1 

 } 

} 

rejbeta1 = 1-rej/MCMC1 

 

rej=0 

for (u in 2:MCMC1){ 

 if (PHI1[u-1] == PHI1[u]) rej = rej + 1 

} 

rejphi1 = 1 - rej/MCMC1 

 

#Chain 2 

for (i in 1:MCMC2){ 

 # update m 

 for (j in 1:n){ 

  m2[j]=rgamma(1,y[j]+phi2,scale=(1+phi2/exp(sum(X[j,]*beta2)+off[j]))^(-1)) 

 } 

 # update phi 

 cand = phi2 + 0.1*rnorm(1) 

 if (cand <=0) cand =phi2 

logr = n*(cand*log(cand)-log(gamma(cand))-phi2*log(phi2)+log(gamma(phi2))) - (cand - 

phi2)*(sum(beta2*colSums(X))+sum(off) + expsum(beta2,m2) - sum(log(m2)))     

 if( logr > log(runif(1)) ) phi2 = cand 

 # update beta 

 for (j in 1:p){ 

  if ( j == 1 ) cand = beta2[j] + 0.08*rnorm(1) 

  if ( j == 2 ) cand = beta2[j] + 0.03*rnorm(1) 

  if ( j == 3 ) cand = beta2[j] + 0.003*rnorm(1) 

  if ( j == 4 ) cand = beta2[j] + 0.12*rnorm(1) 

  if ( j == 5 ) cand = beta2[j] + 0.0015*rnorm(1) 

  if ( j == 6 ) cand = beta2[j] + 0.2*rnorm(1) 

  if ( j == 7 ) cand = beta2[j] + 0.11*rnorm(1) 

  betacand = beta2 

  betacand[j] = cand 

logr = -phi2*(colSums(X)[j]*(cand-beta2[j])+ expsum(betacand,m2) - 

expsum(beta2,m2)) + log(dnorm(cand,nu[j],sigma[j]))-

log(dnorm(beta2[j],nu[j],sigma[j]))  

  if( logr > log(runif(1)) ) beta2[j] = cand 

 }  
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 if( i>BURNIN2 ){ 

  PHI2 = c(PHI2,phi2) 

  BETA2[i-BURNIN2,]=beta2 

  M2[i-BURNIN2,]=m2 

  #Calculate conditional deviance 

  loglikelihood  = 0 

  for (z in 1:n){ 

   loglikelihood = loglikelihood + dpois(y[z],m2[z],log=TRUE) 

  } 

  Dev2[i-BURNIN2]=-2*loglikelihood 

 } 

} 

 

rej = c(rep(0,p)) 

for (r in 1:p){  

 for (u in 2:MCMC2){ 

  if (BETA2[u,r] == BETA2[u-1,r]) rej[r] = rej[r] + 1 

 } 

} 

rejbeta2 = 1-rej/MCMC2 

 

rej=0 

for (u in 2:MCMC2){ 

 if (PHI2[u-1] == PHI2[u]) rej = rej + 1 

} 

rejphi2 = 1 - rej/MCMC2 

 

#Chain 3 

for (i in 1:MCMC3){ 

 # update m 

 for (j in 1:n){ 

  m3[j]=rgamma(1,y[j]+phi3,scale=(1+phi3/exp(sum(X[j,]*beta3)+off[j]))^(-1)) 

 } 

 # update phi 

 cand = phi3 + 0.1*rnorm(1) 

 if (cand <=0) cand =phi3 

logr = n*(cand*log(cand)-log(gamma(cand))-phi3*log(phi3)+log(gamma(phi3))) - (cand - 

phi3)*(sum(beta3*colSums(X))+sum(off) + expsum(beta3,m3) - sum(log(m3)))     

 if( logr > log(runif(1)) ) phi3 = cand 

 # update beta 

 for (j in 1:p){ 

  if ( j == 1 ) cand = beta3[j] + 0.08*rnorm(1) 

  if ( j == 2 ) cand = beta3[j] + 0.03*rnorm(1) 

  if ( j == 3 ) cand = beta3[j] + 0.003*rnorm(1) 

  if ( j == 4 ) cand = beta3[j] + 0.12*rnorm(1) 

  if ( j == 5 ) cand = beta3[j] + 0.0015*rnorm(1) 

  if ( j == 6 ) cand = beta3[j] + 0.2*rnorm(1) 

  if ( j == 7 ) cand = beta3[j] + 0.11*rnorm(1) 

  betacand = beta3 

  betacand[j] = cand 

logr = -phi3*(colSums(X)[j]*(cand-beta3[j])+ expsum(betacand,m3) - 

expsum(beta3,m3)) + log(dnorm(cand,nu[j],sigma[j]))-

log(dnorm(beta3[j],nu[j],sigma[j]))  
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  if( logr > log(runif(1)) ) beta3[j] = cand 

 }  

 if( i>BURNIN3 ){ 

  PHI3 = c(PHI3,phi3) 

  BETA3[i-BURNIN3,]=beta3 

  M3[i-BURNIN3,]=m3 

  #Calculate conditional deviance 

  loglikelihood  = 0 

  for (z in 1:n){ 

   loglikelihood = loglikelihood + dpois(y[z],m3[z],log=TRUE) 

  } 

  Dev3[i-BURNIN3]=-2*loglikelihood 

 } 

} 

 

rej = c(rep(0,p)) 

for (r in 1:p){  

 for (u in 2:MCMC3){ 

  if (BETA3[u,r] == BETA3[u-1,r]) rej[r] = rej[r] + 1 

 } 

} 

rejbeta3 = 1-rej/MCMC3 

 

rej=0 

for (u in 2:MCMC3){ 

 if (PHI3[u-1] == PHI3[u]) rej = rej + 1 

} 

rejphi3 = 1 - rej/MCMC3 

 

 

time <- proc.time() - ptm 

 

PHI = c(PHI1[10001:20000],PHI2[10001:20000],PHI3[10001:20000]) 

BETA = rbind(BETA1[10001:20000,],BETA2[10001:20000,],BETA3[10001:20000,]) 

M = rbind(M1[10001:20000,],M2[10001:20000,],M3[10001:20000,]) 
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Indiana Data, Poisson-Lognormal Model 

 

 
data <- read.csv("IN-data-norm-all.csv") 

 

# n = number of units 

n = dim(data)[1] 

# y = the number of observed crashes, the first column of data 

y = data[,1] 

# off = the vector of offset values 

off = data[,8] 

# X = matrix of coveriate values (n rows, p columns) 

X = data 

X[,1] = c(rep(1,n)) 

X = X[c(-8)] 

# p = number of model covariates (including intercept) 

p = dim(X)[2] 

 

# beta = vector of coefficients (p rows, 1 column) 

# y~Poisson(m) 

# m~Lognormal (mu,sigma2) 

# mu(i) = X(i)*beta + offset(i) - sigma2/2 

# beta(i) ~ Normal (nu(i),sigma(i)) 

# invsig2 ~ gamma (k,rho)  

 

#Prior parameters 

nu = c(rep(0,p)) 

sigma = c(rep(100,p)) 

k=0.01 

rho=0.01 

 

MCMC=20000 

 

#chain 1 initial values 

m1 = c(rep(1,n)) 

beta1 = c(-2.448,0.687,-0.027,0.4296,-0.0052,-3.026,-0.398) 

invsig2_1 = 4  

INVSIG2_1 = NULL 

Dev1 = NULL 

MCMC1 = MCMC 

BURNIN1 = 10000 

BETA1 = matrix(rep(0,MCMC1*p),ncol=p) 

M1 = matrix(rep(0,MCMC1*n),ncol=n) 

 

#chain 2 initial values 

m2 = c(rep(1,n)) 

beta2 = c(-5,0,-0.05,0,-0.01,-6,-0.8) 

invsig2_2 = 5  

INVSIG2_2 = NULL  

Dev2 = NULL 

MCMC2 = MCMC 
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BURNIN2 = 10000 

BETA2 = matrix(rep(0,MCMC2*p),ncol=p) 

M2 = matrix(rep(0,MCMC2*n),ncol=n) 

 

#chain 3 initial values 

m3 = c(rep(1,n)) 

beta3 = c(0,1.4,0,0.8,0,0,0) 

invsig2_3 = 6  

INVSIG2_3 = NULL 

Dev3 = NULL 

MCMC3 = MCMC 

BURNIN3 = 10000 

BETA3 = matrix(rep(0,MCMC3*p),ncol=p) 

M3 = matrix(rep(0,MCMC3*n),ncol=n) 

 

# Function to calculate sum of (log(m(i))- X(i)*beta + 0.5/invsigma2)^2 for i=1:n 

funcsum <- function (beta,m,invsigma2){ 

   result = 0 

 for (u in 1:n) { 

 result = result + (log(m[u])-sum(X[u,]*beta) - off[u] +0.5/invsigma2)^2 

   } 

   return(result) 

} 

 

#Chain 1 

for (i in 1:MCMC1){ 

 # update m 

 for (j in 1:n){ 

  cand = m1[j] + 1*rnorm(1) 

  if (cand <=0) cand = m1[j] 

logr = (y[j]-1)*(log(cand)-log(m1[j])) - (cand - m1[j]) - 

0.5*invsig2_1*((log(cand)-sum(X[j,]*beta1)-off[j]+0.5/invsig2_1)^2-

(log(m1[j])-sum(X[j,]*beta1)-off[j]+0.5/invsig2_1)^2) 

  if( logr > log(runif(1)) ) m1[j] = cand 

 } 

 # update invsig2 

 cand = invsig2_1 + 0.4*rnorm(1) 

 if (cand <=0) cand = invsig2_1 

logr = 0.5*n*(log(cand)-log(invsig2_1)) - 0.5*(funcsum(beta1,m1,cand)*cand - 

funcsum(beta1,m1,invsig2_1)*invsig2_1) + log(dgamma(cand,k,rho)) - 

log(dgamma(invsig2_1,k,rho)) 

 if( logr > log(runif(1)) ) invsig2_1 = cand 

 # update beta 

 for (j in 1:p){ 

  if ( j == 1 ) cand = beta1[j] + 0.08*rnorm(1) 

  if ( j == 2 ) cand = beta1[j] + 0.03*rnorm(1) 

  if ( j == 3 ) cand = beta1[j] + 0.003*rnorm(1) 

  if ( j == 4 ) cand = beta1[j] + 0.12*rnorm(1) 

  if ( j == 5 ) cand = beta1[j] + 0.0015*rnorm(1) 

  if ( j == 6 ) cand = beta1[j] + 0.2*rnorm(1) 

  if ( j == 7 ) cand = beta1[j] + 0.11*rnorm(1) 

  betacand = beta1 

  betacand[j] = cand 
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  logr = -0.5*invsig2_1*(funcsum(betacand,m1,invsig2_1)-funcsum(beta1,m1,invsig2_1)) 

  if( logr > log(runif(1)) ) beta1[j] = cand 

 }  

 if( i>BURNIN1 ){ 

  INVSIG2_1 = c(INVSIG2_1,invsig2_1) 

  BETA1[i-BURNIN1,]=beta1 

  M1[i-BURNIN1,]=m1 

  #Calculate conditional deviance 

  loglikelihood  = 0 

  for (z in 1:n){ 

   loglikelihood = loglikelihood + dpois(y[z],m1[z],log=TRUE) 

  } 

  Dev1[i-BURNIN1]=-2*loglikelihood 

 } 

} 

 

rej = c(rep(0,p)) 

for (r in 1:p){  

 for (u in 2:MCMC1){ 

  if (BETA1[u,r] == BETA1[u-1,r]) rej[r] = rej[r] + 1 

 } 

} 

betaaccratio1 = 1-rej/MCMC1 

 

rejinvsig2=0 

for (u in 2:MCMC1){ 

 if (INVSIG2_1[u-1] == INVSIG2_1[u]) rejinvsig2 = rejinvsig2 + 1 

} 

invsig2accratio1 = 1 - rejinvsig2/MCMC1 

 

#Chain 2 

for (i in 1:MCMC2){ 

 # update m 

 for (j in 1:n){ 

  cand = m2[j] + 1*rnorm(1) 

  if (cand <=0) cand = m2[j] 

logr = (y[j]-1)*(log(cand)-log(m2[j])) - (cand - m2[j]) - 

0.5*invsig2_2*((log(cand)-sum(X[j,]*beta2)-off[j]+0.5/invsig2_2)^2-

(log(m2[j])-sum(X[j,]*beta2)-off[j]+0.5/invsig2_2)^2) 

  if( logr > log(runif(1)) ) m2[j] = cand 

 } 

 # update invsig2 

 cand = invsig2_2 + 0.4*rnorm(1) 

 if (cand <=0) cand = invsig2_2 

logr = 0.5*n*(log(cand)-log(invsig2_2)) - 0.5*(funcsum(beta2,m2,cand)*cand - 

funcsum(beta2,m2,invsig2_2)*invsig2_2) + log(dgamma(cand,k,rho)) - 

log(dgamma(invsig2_2,k,rho)) 

 if( logr > log(runif(1)) ) invsig2_2 = cand 

 # update beta 

 for (j in 1:p){ 

  if ( j == 1 ) cand = beta2[j] + 0.08*rnorm(1) 

  if ( j == 2 ) cand = beta2[j] + 0.03*rnorm(1) 

  if ( j == 3 ) cand = beta2[j] + 0.003*rnorm(1) 
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  if ( j == 4 ) cand = beta2[j] + 0.12*rnorm(1) 

  if ( j == 5 ) cand = beta2[j] + 0.0015*rnorm(1) 

  if ( j == 6 ) cand = beta2[j] + 0.2*rnorm(1) 

  if ( j == 7 ) cand = beta2[j] + 0.11*rnorm(1) 

  betacand = beta2 

  betacand[j] = cand 

  logr = -0.5*invsig2_2*(funcsum(betacand,m2,invsig2_2)-funcsum(beta2,m2,invsig2_2)) 

  if( logr > log(runif(1)) ) beta2[j] = cand 

 }  

 if( i>BURNIN2 ){ 

  INVSIG2_2 = c(INVSIG2_2,invsig2_2) 

  BETA2[i-BURNIN2,]=beta2 

  M2[i-BURNIN2,]=m2 

  #Calculate conditional deviance 

  loglikelihood  = 0 

  for (z in 1:n){ 

   loglikelihood = loglikelihood + dpois(y[z],m2[z],log=TRUE) 

  } 

  Dev2[i-BURNIN2]=-2*loglikelihood 

 } 

} 

 

rej = c(rep(0,p)) 

for (r in 1:p){  

 for (u in 2:MCMC2){ 

  if (BETA2[u,r] == BETA2[u-1,r]) rej[r] = rej[r] + 1 

 } 

} 

betaaccratio2 = 1-rej/MCMC2 

 

rejinvsig2=0 

for (u in 2:MCMC2){ 

 if (INVSIG2_2[u-1] == INVSIG2_2[u]) rejinvsig2 = rejinvsig2 + 1 

} 

invsig2accratio2 = 1 - rejinvsig2/MCMC2 

 

#Chain 3 

for (i in 1:MCMC3){ 

 # update m 

 for (j in 1:n){ 

  cand = m3[j] + 1*rnorm(1) 

  if (cand <=0) cand = m3[j] 

logr = (y[j]-1)*(log(cand)-log(m3[j])) - (cand - m3[j]) - 

0.5*invsig2_3*((log(cand)-sum(X[j,]*beta3)-off[j]+0.5/invsig2_3)^2-

(log(m3[j])-sum(X[j,]*beta3)-off[j]+0.5/invsig2_3)^2) 

  if( logr > log(runif(1)) ) m3[j] = cand 

 } 

 # update invsig2 

 cand = invsig2_3 + 0.4*rnorm(1) 

 if (cand <=0) cand = invsig2_3 

logr = 0.5*n*(log(cand)-log(invsig2_3)) - 0.5*(funcsum(beta3,m3,cand)*cand - 

funcsum(beta3,m3,invsig2_3)*invsig2_3) + log(dgamma(cand,k,rho)) - 

log(dgamma(invsig2_3,k,rho)) 
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 if( logr > log(runif(1)) ) invsig2_3 = cand 

 # update beta 

 for (j in 1:p){ 

  if ( j == 1 ) cand = beta3[j] + 0.08*rnorm(1) 

  if ( j == 2 ) cand = beta3[j] + 0.03*rnorm(1) 

  if ( j == 3 ) cand = beta3[j] + 0.003*rnorm(1) 

  if ( j == 4 ) cand = beta3[j] + 0.12*rnorm(1) 

  if ( j == 5 ) cand = beta3[j] + 0.0015*rnorm(1) 

  if ( j == 6 ) cand = beta3[j] + 0.2*rnorm(1) 

  if ( j == 7 ) cand = beta3[j] + 0.11*rnorm(1) 

  betacand = beta3 

  betacand[j] = cand 

  logr = -0.5*invsig2_3*(funcsum(betacand,m3,invsig2_3)-funcsum(beta3,m3,invsig2_3)) 

  if( logr > log(runif(1)) ) beta3[j] = cand 

 }  

 if( i>BURNIN3 ){ 

  INVSIG2_3 = c(INVSIG2_3,invsig2_3) 

  BETA3[i-BURNIN3,]=beta3 

  M3[i-BURNIN3,]=m3 

  #Calculate conditional deviance 

  loglikelihood  = 0 

  for (z in 1:n){ 

   loglikelihood = loglikelihood + dpois(y[z],m3[z],log=TRUE) 

  } 

  Dev3[i-BURNIN3]=-2*loglikelihood 

 } 

} 

 

rej = c(rep(0,p)) 

for (r in 1:p){  

 for (u in 2:MCMC3){ 

  if (BETA3[u,r] == BETA3[u-1,r]) rej[r] = rej[r] + 1 

 } 

} 

betaaccratio3 = 1-rej/MCMC3 

 

rejinvsig2=0 

for (u in 2:MCMC3){ 

 if (INVSIG2_3[u-1] == INVSIG2_3[u]) rejinvsig2 = rejinvsig2 + 1 

} 

invsig2accratio3 = 1 - rejinvsig2/MCMC3 

 

INVSIG2 = c(INVSIG2_1[10001:20000],INVSIG2_2[10001:20000],INVSIG2_3[10001:20000]) 

BETA = rbind(BETA1[10001:20000,],BETA2[10001:20000,],BETA3[10001:20000,]) 

M = rbind(M1[10001:20000,],M2[10001:20000,],M3[10001:20000,]) 
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Indiana Data, Poisson-Lognormal Model 

 

 
data <- read.csv("IN-data-norm-all.csv") 

 

# n = number of units 

n = dim(data)[1] 

# y = the number of observed crashes, the first column of data 

y = data[,1] 

# off = the vector of offset values 

off = data[,8] 

# X = matrix of covariate values (n rows, p columns) 

X = data 

X[,1] = c(rep(1,n)) 

X = X[c(-8)] 

# p = number of model covariates (including intercept) 

p = dim(X)[2] 

 

# Function to calculate sum of exp(X(i)*beta+offset)/m(i) for i=1:n 

expsum <- function (X,beta,m,off){ 

   result = 0 

 for (u in 1:length(m)) { 

 result = result + exp(sum(X[u,]*beta)+off[u])/m[u] 

   } 

   return(result) 

} 

 

# beta = vector of coefficients (p rows, 1 column) 

# y~Poisson(m) 

# m~Inverse-Gamma (mu,phi) 

# mu(i) = exp(X(i)*beta) 

# beta(i) ~ Normal (nu(i),sigma(i)) 

# phi ~ uniform[0,1000] 

 

#Prior parameters 

nu = c(rep(0,p)) 

sigma = c(rep(100,p)) 

 

MCMC=20000 

 

#Chain 1 initial values 

m1 = c(rep(1,n)) 

beta1 = c(-2.448,0.687,-0.027,0.4296,-0.0052,-3.026,-0.398) 

phi1 = 2.12  

PHI1 = NULL 

Dev1 = NULL 

MCMC1 = MCMC  

BURNIN1 = 10000 

BETA1=matrix(rep(0,MCMC*p),ncol=p) 

M1=matrix(rep(0,MCMC*n),ncol=n) 
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#Chain 2 initial values 

m2 = c(rep(1,n)) 

beta2 = c(-5,0,-0.05,0,-0.01,-6,-0.8) 

phi2 = 3.12  

PHI2 = NULL 

Dev2 = NULL 

MCMC2 = MCMC  

BURNIN2 = 10000 

BETA2=matrix(rep(0,MCMC*p),ncol=p) 

M2=matrix(rep(0,MCMC*n),ncol=n) 

 

#Chain 3 initial values 

m3 = c(rep(1,n)) 

beta3 = c(0,1.4,0,0.8,0,0,0) 

phi3 = 1.12  

PHI3 = NULL 

Dev3 = NULL 

MCMC3 = MCMC  

BURNIN3 = 10000 

BETA3=matrix(rep(0,MCMC*p),ncol=p) 

M3=matrix(rep(0,MCMC*n),ncol=n) 

 

#Chain 1 

for (i in 1:MCMC1){ 

 # update m 

 for (j in 1:n){ 

  cand = m1[j] + 1*rnorm(1) 

   if (cand <= 0) cand = m1[j] 

logr = -cand + m1[j] - (phi1-1)*exp(sum(X[j,]*beta1)+off[j])*(1/cand-1/m1[j]) + (-

phi1+y[j]-1)*(log(cand)-log(m1[j])) 

  if( logr > log(runif(1)) ) m1[j] = cand 

 }  

 # update phi 

 cand = phi1 + 0.05*rnorm(1) 

 if (cand <=1) cand = phi1 

logr = (cand - phi1)*(sum(beta1*colSums(X))+sum(off)) - expsum(X,beta1,m1,off)*(cand-phi1) 

+  sum(log(m1))*(-cand+phi1) + n*(log((cand-1)^cand/gamma(cand))-log((phi1-

1)^phi1/gamma(phi1))) 

 if( logr > log(runif(1)) ) phi1 = cand 

 # update beta 

 for (j in 1:p){ 

  if ( j == 1 ) cand = beta1[j] + 0.08*rnorm(1) 

  if ( j == 2 ) cand = beta1[j] + 0.03*rnorm(1) 

  if ( j == 3 ) cand = beta1[j] + 0.003*rnorm(1) 

  if ( j == 4 ) cand = beta1[j] + 0.12*rnorm(1) 

  if ( j == 5 ) cand = beta1[j] + 0.0015*rnorm(1) 

  if ( j == 6 ) cand = beta1[j] + 0.2*rnorm(1) 

  if ( j == 7 ) cand = beta1[j] + 0.11*rnorm(1) 

  betacand = beta1 

  betacand[j] = cand 

logr = phi1*colSums(X)[j]*(cand-beta1[j])-(phi1-1)*(expsum(X,betacand,m1,off) - 

expsum(X,beta1,m1,off)) + log(dnorm(cand,nu[j],sigma[j]))-

log(dnorm(beta1[j],nu[j],sigma[j])) 
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  if( logr > log(runif(1)) ) beta1[j] = cand 

 } 

 if( i>BURNIN1 ){ 

  PHI1 = c(PHI1,phi1) 

  BETA1[i-BURNIN1,]=beta1 

  M1[i-BURNIN1,]=m1 

  #Calculate deviance 

  loglikelihood = 0 

  for (z in 1:n){ 

   loglikelihood = loglikelihood + dpois(y[z],m1[z],log=TRUE) 

  } 

  Dev1[i-BURNIN] = -2*loglikelihood 

 } 

} 

 

rej = c(rep(0,p)) 

for (r in 1:p){  

 for (u in 2:MCMC1){ 

  if (BETA1[u,r] == BETA1[u-1,r]) rej[r] = rej[r] + 1 

 } 

} 

rejbeta1 = 1 - rej/MCMC1 

 

rej=0 

for (u in 2:MCMC1){ 

 if (PHI1[u-1] == PHI1[u]) rej = rej + 1 

} 

rejphi1 = 1 - rej/MCMC1 

 

#Chain 2 

for (i in 1:MCMC2){ 

 # update m 

 for (j in 1:n){ 

  cand = m2[j] + 1*rnorm(1) 

   if (cand <= 0) cand = m2[j] 

  logr = -cand + m2[j] - (phi2-1)*exp(sum(X[j,]*beta2)+off[j])*(1/cand-1/m2[j]) + (-

  phi2+y[j]-1)*(log(cand)-log(m2[j])) 

  if( logr > log(runif(1)) ) m2[j] = cand 

 }  

 # update phi 

 cand = phi2 + 0.05*rnorm(1) 

 if (cand <=1) cand = phi2 

logr = (cand - phi2)*(sum(beta2*colSums(X))+sum(off)) - expsum(X,beta2,m2,off)*(cand-phi2) 

+  sum(log(m2))*(-cand+phi2) + n*(log((cand-1)^cand/gamma(cand))-log((phi2-

1)^phi2/gamma(phi2))) 

 if( logr > log(runif(1)) ) phi2 = cand 

 # update beta 

 for (j in 1:p){ 

  if ( j == 1 ) cand = beta2[j] + 0.08*rnorm(1) 

  if ( j == 2 ) cand = beta2[j] + 0.03*rnorm(1) 

  if ( j == 3 ) cand = beta2[j] + 0.003*rnorm(1) 

  if ( j == 4 ) cand = beta2[j] + 0.12*rnorm(1) 

  if ( j == 5 ) cand = beta2[j] + 0.0015*rnorm(1) 
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  if ( j == 6 ) cand = beta2[j] + 0.2*rnorm(1) 

  if ( j == 7 ) cand = beta2[j] + 0.11*rnorm(1)  

  betacand = beta2 

  betacand[j] = cand 

logr = phi2*colSums(X)[j]*(cand-beta2[j])-(phi2-1)*(expsum(X,betacand,m2,off) - 

expsum(X,beta2,m2,off)) + log(dnorm(cand,nu[j],sigma[j]))-

log(dnorm(beta2[j],nu[j],sigma[j])) 

  if( logr > log(runif(1)) ) beta2[j] = cand 

 } 

 if( i>BURNIN2 ){ 

  PHI2 = c(PHI2,phi2) 

  BETA2[i-BURNIN2,]=beta2 

  M2[i-BURNIN2,]=m2 

  #Calculate deviance 

  loglikelihood = 0 

  for (z in 1:n){ 

   loglikelihood = loglikelihood + dpois(y[z],m2[z],log=TRUE) 

  } 

  Dev2[i-BURNIN2] = -2*loglikelihood 

 } 

} 

 

rej = c(rep(0,p)) 

for (r in 1:p){  

 for (u in 2:MCMC2){ 

  if (BETA2[u,r] == BETA2[u-1,r]) rej[r] = rej[r] + 1 

 } 

} 

rejbeta2 = 1 - rej/MCMC2 

 

rej=0 

for (u in 2:MCMC2){ 

 if (PHI2[u-1] == PHI2[u]) rej = rej + 1 

} 

rejphi2 = 1 - rej/MCMC2 

 

#Chain 3 

for (i in 1:MCMC3){ 

 # update m 

 for (j in 1:n){ 

  cand = m3[j] + 1*rnorm(1) 

   if (cand <= 0) cand = m3[j] 

  logr = -cand + m3[j] - (phi3-1)*exp(sum(X[j,]*beta3)+off[j])*(1/cand-1/m3[j]) + (-

  phi3+y[j]-1)*(log(cand)-log(m3[j])) 

  if( logr > log(runif(1)) ) m3[j] = cand 

 }  

 # update phi 

 cand = phi3 + 0.05*rnorm(1) 

 if (cand <=1) cand = phi3 

logr = (cand - phi3)*(sum(beta3*colSums(X))+sum(off)) - expsum(X,beta3,m3,off)*(cand-phi3) 

+  sum(log(m3))*(-cand+phi3) + n*(log((cand-1)^cand/gamma(cand))-log((phi3-

1)^phi3/gamma(phi3))) 

 if( logr > log(runif(1)) ) phi3 = cand 
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 # update beta 

 for (j in 1:p){ 

  if ( j == 1 ) cand = beta3[j] + 0.08*rnorm(1) 

  if ( j == 2 ) cand = beta3[j] + 0.03*rnorm(1) 

  if ( j == 3 ) cand = beta3[j] + 0.003*rnorm(1) 

  if ( j == 4 ) cand = beta3[j] + 0.12*rnorm(1) 

  if ( j == 5 ) cand = beta3[j] + 0.0015*rnorm(1) 

  if ( j == 6 ) cand = beta3[j] + 0.2*rnorm(1) 

  if ( j == 7 ) cand = beta3[j] + 0.11*rnorm(1)  

  betacand = beta3 

  betacand[j] = cand 

logr = phi3*colSums(X)[j]*(cand-beta3[j])-(phi3-1)*(expsum(X,betacand,m3,off) - 

expsum(X,beta3,m3,off)) + log(dnorm(cand,nu[j],sigma[j]))-

log(dnorm(beta3[j],nu[j],sigma[j])) 

  if( logr > log(runif(1)) ) beta3[j] = cand 

 } 

 if( i>BURNIN3 ){ 

  PHI3 = c(PHI3,phi3) 

  BETA3[i-BURNIN3,]=beta3 

  M3[i-BURNIN3,]=m3 

  #Calculate deviance 

  loglikelihood = 0 

  for (z in 1:n){ 

   loglikelihood = loglikelihood + dpois(y[z],m3[z],log=TRUE) 

  } 

  Dev3[i-BURNIN3] = -2*loglikelihood 

 } 

} 

 

rej = c(rep(0,p)) 

for (r in 1:p){  

 for (u in 2:MCMC3){ 

  if (BETA3[u,r] == BETA3[u-1,r]) rej[r] = rej[r] + 1 

 } 

} 

rejbeta3 = 1 - rej/MCMC3 

 

rej=0 

for (u in 2:MCMC3){ 

 if (PHI3[u-1] == PHI3[u]) rej = rej + 1 

} 

rejphi3 = 1 - rej/MCMC3 

 

time <- proc.time() - ptm 

 

PHI = c(PHI1[10001:20000],PHI2[10001:20000],PHI3[10001:20000]) 

BETA = rbind(BETA1[10001:20000,],BETA2[10001:20000,],BETA3[10001:20000,]) 

M = rbind(M1[10001:20000,],M2[10001:20000,],M3[10001:20000,]) 


