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ABSTRACT

The Gulf of Mexico has 39 estuaries, in which most of them are characterized

as bar-built, shallow bay estuaries. Located at the northwest Gulf of Mexico, the

Mission Aransas Estuarine Research Reserve is an area with 750 km2 with 6 bays.

The second largest bay is named Copano Bay, an area with 200 km2 that has two

main river sources, from Mission River and Aransas River, which are the only

source of fresh water to the system. The bay is opened at one tidal channel at the

south that exchanges salty water with Aransas Bay. As part of the monitoring sys-

tem for Copano Bay, we used the two stations located at the east and west sides

of the bay to understand the temporal variability of salinity in the bay. Because

the salinity pattern is not as well defined as the temperature profile, we used a 3D

hydrodynamic model (ROMS) to analyze how changes in river discharge, precip-

itation and winds will affect the bay. After running the simulations for 5 years,

from January/2010 to December/2014, we found that the salinity of the bay is

controlled by flooding events on the upper bay and by tides on the channel side.

During ’wet years’ (2010 and 2015), the salinity is kept in a range between 10

gkg�1 and 25 gkg�1. For ’dry years’, where the discharge is low, the salinity was

kept in a range of 30 gkg�1 to 45 gkg�1, considered hypersaline conditions. The

year of 2011, considered a ’transition year’, had the lowest river discharge and

precipitation, causing the salinity to increase at a constant rate. By comparing the

east and west sides, we saw that the east side is barely influenced by river dis-

charge, responding mostly to the tides, while the west side is mostly influenced

by the river discharge. The flooding events are responsible for an increase in ver-

tical and horizontal stratification. A closer look at local events showed the water

column took longer to stabilize, after a change in wind due to a storm or front,

under hypersaline conditions than under normal years.
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1. INTRODUCTION

Sturges and Lugo-Fernandez (2005) describe the Gulf of Mexico as ”a jewel

among the natural resources of the western hemisphere”. The authors show how

important the Gulf is in supporting fisheries, to the oil and gas industry, and how

all kinds of ecosystems, including estuaries, wetlands, beaches, are combined to-

gether as a source of recreational, research and economical activities.

The circulation in the Gulf has many elements that make this region a very

unique region to the study of physical oceanography. It starts in the deep water

circulation with the Loop Current, the dominant current in the Gulf. According

to Oey et al. (2005), the formation of Loop Current is at the Yucatan Channel, a

region on the western side of the channel by the south of the Gulf. Being a western

boundary current, the Loop Current can reach velocities of 1.5 to 1.8 ms�1, as

strong and important as the Gulf Stream.

One of the main characteristics of the current is the detachment of anticyclonic

eddies from the main flow that drift to the west of the Gulf (Sturges et al., 2005).

These eddies have approximately 300 km in diameter and can reach depths as

deep as 1000 m. As they go further into the Gulf, there is a constant exchange be-

tween deep water and continental shelf waters. This process is responsible for the

input of nutrients and fresh water in both directions and depends on the position

of the Loop Current, the topography and on atmospheric forcing (Sturges et al.,

2005).

Over the continental shelf, the flow responds to a series of processes, such as

the seasonality of river discharge, winds, hurricanes and precipitation. Accord-

ing to Danchuk and Willson (2011), the discharge from the Mississippi river, the

main contributor of fresh water to the Gulf, has its highest values during spring

and lowest during fall. The smaller rivers and estuaries depend on precipitation

and the volume of water of their contributors, which may vary depending on the
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precipitation in regions that are sometimes far from the Gulf. There is also a vari-

ability in the wind pattern. Bianchi et al. (1999) says that during fall and winter,

the wind flows from east and northeast towards southwest, and during spring and

summer they flow from southwest towards northeast. Starting on June 1st until

November 30th, the hurricane season is an important feature in the Gulf. Since the

sea surface temperature increases during summer, the complex dynamics of the

Gulf contributes to the generation and propagation of hurricanes that come from

the Caribbean Sea. These events are often related to changes in the dynamics of

the open sea and can cause many losses by reaching coastal areas.

Figure 1.1 shows a schematic representation of the circulation of Gulf of Mex-

ico by showing the Loop Current, the warm-core eddy associated, the Yucatan

Channel and the Gulf Stream along the east coast of the United States.

All these features combined together lead to a complex environment in which

coastal and deep waters interact together creating a more susceptible environment

to natural disasters such as hurricanes or algae blooms or man-made disasters

such as oil spills. Understanding the dynamics of the Gulf of Mexico circulation

from the Loop Current to the small bays is of major importance in preventing

and remedying any harmful situation to the economy or to the health of the Gulf.

As mentioned before, the Gulf has a well marked seasonality of river discharge,

winds and even hurricanes. By knowing how these variables work together from

a big (the entire Gulf) to a small (a small bay) scale can lead to answers when

dealing with climate changes and oceanographic processes that are common in

the Gulf.

The next sections will discuss the importance of the estuaries and bays in the

Gulf, focusing on Copano Bay, a small and shallow bay located northwest of the

Gulf.
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Figure 1.1: Schematic circulation of the Gulf of Mexico. (Oey et al., 2005)

1.1 The Estuaries of the Gulf of Mexico

Following the classification system proposed by Fairbridge (1980), which con-

siders the physiography of each estuary, Bianchi et al. (1999) states that the Gulf

of Mexico has four kinds of estuaries: bar-built, coastal plain, bar-built + coastal

plain and sometimes deltas. The differences of each type result in different regimes

of interaction between fresh and salty water. Thus, the authors also identified all

types of estuaries according to the classification proposed by Pritchard (1955): salt

wedges, partially mixed, vertically homogeneous and sectionally homogeneous.

Each one of the 39 estuaries in the Gulf are influenced by fresh water and sed-

iment supply, winds, storms, hurricanes, rains, tides, interaction with coastal cur-
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rents and some other processes in a short-term scale. Considering a long-term

scale, they rely on changes in sea-level and climate changes. Even though tides

in the Gulf do not have a big range (predominantly diurnal, microtidal environ-

ment), the tidal currents are still considered important for the circulation in many

of the tidal inlets along the Gulf. It is important to understand that each estuary

has its own geomorphology and characteristics, so each responds differently to

local forcing conditions.

Among all the different types, the most common type of estuary in the Gulf is

the broad, shallow, bar-built estuaries. Examples may be Aransas Bay, Galveston

Bay and most estuaries northwest of the Gulf. According to Rayson et al. (2015),

just like many estuaries in the Gulf, Galveston Bay has a small tide range (around

0.5 m) and a significant seasonality in the river discharge. At the same time, the

authors also found that the mouth of the estuary can also depend on the variability

imposed at the the mouth of the bay, where salty or less salty waters may enter

the estuary depending on the conditions.

In a attempt to estimate the time scales in Galveston Bay, Rayson et al. (2016)

used a three-dimensional hydrodynamic model under high discharge and low

discharge conditions. The authors found longer residence time in the upper estu-

ary and shorter residence time closer to the mouth of the estuary, a more dynami-

cal region affected by tides and water level fluctuations caused by wind stress and

barometric effects. The low residence times around the upper estuary responded

to the increase in river discharge and high-flow conditions. The results showed

that the residence time in the bay responded differently depending on the region

of the bay. Due to the long distance between the Trinity River and the estuary

mouth (around 60 km), the two regions responded separately, i.e. when the res-

idence time was long close to the river (because of the low discharge) it was still

short close to the Gulf.

Compared to Galveston Bay, the Aransas Bay estuarine complex has a simi-
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lar dynamic. The main source of fresh water to the system is through Mission

and Aransas Rivers, while the only source of salty water is through a tidal inlet

in contact with the Gulf of Mexico. The distance between these two points is ap-

proximately 45 km and in between the two lies Copano Bay, a shallow and broad

bay with one opened channel that exchanges water with Aransas Bay and with 2

main sources of river discharge.

The next sections will describe the characteristics of Aransas Bay estuarine sys-

tem and Copano Bay.

1.1.1 Mission - Aransas Estuarine System

The Mission-Aransas National Estuarine Research Reserve (MANERR) is the

Western Gulf Biogeographic part of the National Estuarine Research Reserve Sys-

tem (NERRS). The system is a network established in 1972 as part of the Coastal

Zone Management Act, in which 28 coastal reserves, distributed in 21 states (Fig-

ure 1.2), are monitored in partnership with the National Ocean and Atmosphere

Administration (NOAA). More information on the reserve can be found at - http:

//missionaransas.org/.

In addition to protect and study estuaries all over the country, the NERRS also

focus on the study of climate changes, water quality, and habitat protection. To

reach these goals, each station is managed locally by a university or local agency,

considering that each estuarine reserve has different needs. The following are

attributed to the NERRS according to federal regulations, 15 CFR Part 921.1(b)

(Evans et al., 2015):

• Ensure a stable environment for research through long-term protection of

NERR resources;

• Address coastal management issues identified as significant through coor-

dinated estuarine research within the NERRS;
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Figure 1.2: Map of the National Estuarine Research Reserve System. (Evans et al.,
2015)

• Enhance public awareness and understanding of estuarine areas and pro-

vide suitable opportunities for public education and interpretation;

• Promote Federal, state, public and private use of one or more Reserves within

the NERRS when such entities conduct estuarine research; and

• Conduct and coordinate estuarine research within the NERRS, gathering

and making available information necessary for improved understanding

and management of estuarine areas.

An important part of the monitoring system is the acquisition and distribu-

tion of oceanographic (water quality) and meteorological data for each station.
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This type of data ensures a better monitoring of the estuarine conditions and help

understand circulation patterns, the salinity gradient, how the nutrients are dis-

tributed throughout the bays and how atmospheric events, such as storms or even

hurricanes, can affect the circulation.

This monitoring program in the Mission-Aransas NERR is made by five System-

Wide Monitoring Program (SWMP) stations localized along the estuary, being two

at Copano Bay (West and East), one at Aransas Bay, one at Mesquite Bay and one

at the Ship Channel, an opening that connects Aransas Bay to the Gulf of Mexico.

Being one of the largest reserves (3rd in the country), the Mission-Aransas re-

serve is a complex estuarine system with approximately 750 km2 of a range of

diverse habitats such as woodlands and seagrass meadows (Evans et al., 2015). It

is considered by Diener (1975) a typical Gulf of Mexico Estuary, where the bays

are usually very shallow, ranging from 0.6 m to 3.0 m and are separated from the

ocean by an offshore sand bar.

The system has a number of bays including Mission Bay as a tertiary bay, the

farthest one from the Gulf, Copano, Port and St. Charles Bays as secondary bays

and Mesquite, Aransas and Redfish Bays as primary bays, i.e., they are in contact

with the Gulf of Mexico water, being responsible for the salinity exchange in the

system (Evans et al., 2015; Pollack et al., 2011). This definition depends on the

size, characteristics, and geologic origin of each bay. Figure 1.3 shows how the

bays are distributed in the area, as well as the two water quality monitoring points

maintained by the SWMP Mission-Aransas system.

Because of its dynamics, this estuarine system has a very low mixing efficiency

(e <0.03), a parameter that shows the fraction of the tidal prism that is available

for mixing with the estuarine water. Also, according to Solis and Powell (1999),

the residence time of the bay is approximately one year. The salinity in the system

may vary due to changes in river discharge, precipitation and evaporation.

The system can also be affected by long-term oscillations. In a study to re-
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Figure 1.3: Mission-Aransas National Estuarine Research Reserve.

late fresh water inflow and the effects on the oyster community, Pollack et al.

(2011) also found correlations of El Niño Southern Oscillation (ENSO) and river

discharge in the bay. According to the authors, between 2007 and 2008, there were

periods of weak El Niño, followed by average conditions and then moderate La

Niña, that lasted until mid-year in 2008.

This variability caused higher river discharge and lower salinities during the

first months of 2007 (El Niño), followed by low precipitation and low river dis-

charge in the following year, causing high salinity. The final conclusions from
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citetpollack2011role were that the low salinities in 2007 lead to the decrease of oys-

ter population, followed by a slow increase in the next year, where higher salin-

ities helped the oysters against predators and their ecology supported the popu-

lation recovery. The importance and a quantitative analysis of river discharge to

the bays will be discussed in section 3.2.4.

Being the second largest bay in the Mission-Aransas estuarine system, Copano

Bay is an important part of the system because it connects the fresh water dis-

charge from Mission and Aransas rivers to the rest of the bays, being dependent

on river discharge, tides, winds and other atmospheric conditions. The study of

the circulation, salinity pattern and effects of river discharge on Copano Bay will

be the focus of this current work.

1.1.2 Copano Bay

As mentioned before in section 1.1.1, Copano Bay is a secondary bay at the

Mission-Aransas National Estuarine Research Reserve with a southwest-northeast

orientation. Like estuaries in the mostwestern part of Gulf of Mexico, it is a shal-

low and broad estuary with an average depth of 2 m, average tidal range of 0.2 m

and surface area of approximately 200 km2 (Nañez-James et al., 2009). The bottom

of the bay is mostly non vegetated, composed by sand and small portions of clay

and silt (Britton and Morton, 2014).

According to a water quality report issued by Mott and Lehman (2005), Co-

pano Bay is considered a molluscan shellfish growing area due to the presence of

the Eastern Oyster (Crassostrea virginica). The area is used recreationally and com-

mercially as a fishing area and for oyster farming. The surrounding areas of the

bay are mostly higher grasslands, rural areas, developing areas and, no industries.

The bay exchanges seawater with Aransas Bay through a 2.7 km channel located

at the south side of the bay with approximately 3 m deep and has two main river

sources, Mission River from the north and Aransas River from the west side. The

location where the two rivers enter the bay can be seen in Figure 1.3.
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Another contribution of the shallowness of the bay is that the circulation is

highly dependent on the wind. Changes in the wind patterns are responsible for

moving the water in or out of the bay. In case of northwesterly winds, tides are re-

duced at the bay, and most of the water is forced towards Aransas Bay. However,

in case of southeasterly winds, water is pushed into Copano bay enhancing tidal

activity. Mott and Lehman (2005) show a simple chart (Figure 1.4) with the pro-

posed circulation pattern for Copano Bay based on a southeasterly wind regime,

i.e. the most prevailing winds along Texas coast.

Figure 1.4: Water circulation in Copano Bay (Mott and Lehman, 2005).

Even though Copano Bay is a small bay, due to all external forcing such as

winds, tides and river inflow, the salinity pattern in the bay can and will change

depending on the meteorological conditions in a seasonal, monthly and even daily

scales. The salinity patterns at Copano Bay will be discussed in the next section.
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1.1.2.1 Salinity at Copano Bay

Figure 1.5 shows a 15 minute resolution time-series of salinity and temperature

from Jan/2010 to Dec/2015. The data were obtained from stations Copano West

and Copano East. The temperature profile, for all 5 years, shows a consistent

pattern, with low temperatures (around 5 �C) during winter months, and high

temperatures (around 30 �C) during summer. This pattern is repeated every year.

Figure 1.5: Surface salinity and temperature from stations Copano East and Co-
pano West located at Copano Bay.

For salinity, however, there is not a defined pattern. The figure shows that

between 2010 and 2011 salinity ranged from 5 gkg�1 to 15 gkg�1, increased in

2011 and had its highest values between 2012 and 2015, ranging from 20 gkg�1 to

hypersaline conditions, such as 45 gkg�1. The year of 2015 had a similar pattern

as 2010, with a range between 5 gkg�1 and 20 gkg�1.
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In a work about the salinity gradient in the MANERR reserve, Bittler (2011)

observed a strong salinity gradient between the west side and the south channel

of the bay in normal year conditions, such as 2008. The authors found lowest

salinity (around 20) close to the river source and highest (around 30 gkg�1) at the

ship channel. This difference causes a zone of mixing between the fresh water

coming from Aransas river and the salty water coming from Aransas Bay.

However, for a dry year such as 2009, the authors observed high values at all

sites, even close to the river source. In these conditions, salinities were higher

than 37 gkg�1 for the entire domain, with slightly higher values close to the river

source, indicating a strong evaporation and low fresh water inflow. In case of a

wet year, such as 2010, salinity is kept in a range of 10 gkg�1 to 20 gkg�1 along the

bay, with the lowest values close to the river sources.

Figure 1.6 shows the three distinct patterns for salinity distribution in Copano

Bay.
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Figure 1.6: Salinity distribution for a normal year (2008), a dry year (2009) and a
wet year (2010) according to Bittler (2011) .

Together with yearly fluctuations, Bittler (2011) also found daily fluctuations

related to tidal fluctuations. As expected, the daily fluctuations were more evident

close to the ship channel and decayed further into the bay. The response of the bay

to a rapid decrease in salinity also showed differences between the two regions.

Figure 1.7 shows a sharp decrease in salinity in the Copano West station in

a matter of hours (see November 23rd, 2009). At the same time, the station at

Copano East also had a drop on salinity, but over a longer period. This decrease

in salinity, due to a storm event or a jet of fresh water into the system, shows

that horizontal stratification of freshwater may weaken the response of the bay

depending on how far a point is from the river source. This rapid response of

salinity profiles to storm and/or increased fresh water events was also discussed

by Mooney and McClelland (2012). The other time series represent Mesquite Bay,
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the Shipping Channel and Aransas Bay. All locations can be seen in Figure 1.3.

Figure 1.7: Salinity time-series in 5 different points in the Mission-Aransas estuar-
ine system. The legends ’cwsal’ and ’cesal’ are for Copano West and Copano East
points, respectively. The other points are ’mbsal’ (Mesquite Bay), ’absal’ (Aransas
Bay) and ’scsal’ (Shipping Channel). Source: Bittler (2011) .

Because one of the objectives of the current work is to use numerical modeling

techniques to simulate the patters at Copano Bay and compare with the real data,

the next section will show a brief background on the current efforts of simulating

hydrodynamics of the bay.

1.1.3 Ocean Modeling and Copano Bay

Reports dating back from 2010 ( Gray (1987), Bittler (2011)) describe the state

of the art of ocean models used at the Mission-Aransas estuarine system. Guthrie

(2010) uses a variant of the BLEND model developed by Gray (1987), named

TxBLEND, a 2-D model that uses the finite-element method and an unstructured

grid to simulate velocities in both directions, salinity and sea level. To the new

version, the Texas Water Development Board (TWDB) added tides, river inflow

information from Texas, evaporation and salinity information for all seven major

estuaries in Texas.
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Other considerations mentioned by Guthrie (2010) are that the vertical stratifi-

cation should be negligible due to shallowness of the bays, the fluid depth is small

relative to the horizontal scale and density variations are also neglected. Due to

the high resolution of the model output, TWDB has applied the model to a variety

of projects, such as oil spill, environmental impact evaluations, salinity gradient

in estuaries, ecological studies, among others. More information can be found at

http://www.twdb.texas.gov/surfacewater/bays/models/.

With more advanced techniques and ocean models, there is currently an at-

tempt to implement three-dimensional models for all major estuaries. The work

of Zhang (2010) shows the implementation of the 3-D SELFE model to Corpus

Christi Bay as a test for the TWDB. Llike the TxBLEND model, SELFE also uses

unstructured grid.

The problem with unstructured grid models is that they do not represent well

vertical salinity gradients due to the loss of resolution at regions with low bathy-

metric gradient, such as Copano Bay, leading to a coarse resolution in places that

are shallow and relatively flat. Because of the low capacity in simulating the

effects of subtle changes in bathymetry or how the domain responds to winds

and/or tides, the model will not be able to resolve vertical gradients of salinity

and density, which are very important in regions under influence of river inflow,

rain and evaporation, regardless the shallowness of the region. The next sections

will show the implementation of a 3-D structured grid model to Copano Bay and

the effectiveness of this model in resolving shallow and broad estuaries.
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2. OBJECTIVES

In order to better understand circulation at Copano Bay and how the bay re-

sponds to different external forcing, my objectives are:

• Analyze the response of Copano Bay to changes in river discharge. As seen

before in section 1.1.2, Copano Bay has two different sources of fresh water,

but with no defined seasonal pattern, as we will show in Section 3.2.4. The

way the bay responds to the fresh water input may change over the years

after a higher or lower flooding event.;

• Characterize salinity behavior over the 6 years of simulation and compare

the results to real data. As seen in Figures 1.6 and Figure 1.5, the salinity at

Copano Bay responds differently to ’wet’ and ’dry’ years. Using the model

output and real data, the long-term salinity pattern will be discussed, as well

as short term changes that happen in a matter of hours, days and weeks due

to specific events, such storms and fronts. .

• Compare the difference in salinity between the west and east side of the bay

and between the surface and the bottom. The bay is constantly changing

the dynamics because of strong winds, evaporation, precipitation, river dis-

charge, and many other external conditions that can cause changes in water

density. Specially for a shallow domain, we expect to find horizontal and

vertical stratification since one side of the bay is close to a river source point

and the other side is close to the opened boundary that exchanges water

with Aransas Bay. ;
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3. METHODOLOGY

In physical oceanography, data acquisition and field work are valuable re-

sources to have a better understanding on the dynamics of a particular region.

However, due to the high cost of oceanographic expeditions and due to the need

of a long time-series of high resolution oceanographic data, a different approach

is needed to represent the complexity of coastal and oceanic processes.

In this context, the use of numerical modeling allows the study of oceanogra-

phy with a higher temporal and spatial resolution and the study of specific pro-

cesses and regions. Also, with the advance of computer power, ocean modeling

has become cheaper with time when compared to expeditions. Adding together

a prior knowledge of the region, observation data and modeling, one can have a

good overview of the processes in a region of interest. In this work, numerical

modeling was chosen as a tool to analyze the processes related to Copano Bay

described in sections 1 and 2.

3.1 The Regional Ocean Modeling System (ROMS)

The Regional Ocean Modeling System (ROMS) (Shchepetkin and McWilliams,

2005) was used for the simulations. ROMS is a widely used model developed at

Rutgers University together with other universities and oceanographic institutes.

ROMS has been used for tidally driven estuaries, high-latitude processes, river

plume dynamics and mesoscale activity Haidvogel et al. (2008).

ROMS is a free-surface, primitive equation model with terrain-following co-

ordinate levels in the vertical (known as � - coordinates) (Song and Haidvogel,

1994). This kind of coordinate is subject to an error due to the difference in the

horizontal pressure gradient between two cells, which depends on the steepness

of the bathymetry. However, by dividing the vertical component in a previously

defined number of layers,we can have an increase in the resolution closer to the
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surface or the bottom, depending on the experiment.

In the horizontal dimension, ROMS uses curvilinear coordinates that allows

both spherical and Cartesian coordinates, on a Arakawa-C grid (Arakawa and

Lamb, 1977). In this scheme, the velocities (u and v) are calculated in the center of

the four faces, as seen in Figure 3.1.

Figure 3.1: Cell of an Arakawa-C grid showing the points where the variables are
calculated. Haidvogel et al. (2008)

According to Shchepetkin and McWilliams (2005), the time integration in ROMS

comes from a decomposition of the variables in baroclinic and barotropic time-

steps. The evolution of tracers (temperature and salinity) and the 3-D velocities u

and v is calculated in the baroclinic time-step, also known as the internal model.

The 2-D vertically integrated velocities ubar and vbar are calculated during the

barotropic time-step, together with free-surface. This mode is also known as ex-

ternal mode. For every number of baroclinic time-steps there is a limited number
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of barotropic time-steps and the average of the external mode is used to compute

the values in the internal mode.

Haidvogel et al. (2008) and Warner et al. (2010) shows some other components

of the model such as biogeochemical model, sea-ice coupling and sediment trans-

portation and coupling with wave and atmospheric models.

3.2 Model Description and Configuration

In contrast to large scale oceanic models, coastal areas such as rivers and es-

tuaries are constantly under influence of tides, river mixing, local winds, river

plume and sediment transport. Depending on the geometry of the coastline, the

size of the estuary, the seasonality of river discharge and changes in wind direc-

tion and speed, coastal regions have a shorter time-scale to adjust to these changes

when compared to the open ocean.

In comparison to narrow estuaries, where a deep channel allows the exchange

of fresh and salty water between the coast and the upper estuary, broad and

shallow estuaries like Copano Bay behave more like the shelf seas. In this case,

due to its shallowness, the system is more susceptible to subtle changes in the

bathymetry, river input and processes such as precipitation and evaporation. Since

the bay is in a constant process of adjusting to external forces, a more incisive ap-

proach is needed to understand how these subtle changes work in Copano Bay.

3.2.1 Model Grid

The grid used for the simulations has a maximum/minimum of latitude at

28.23�N /27.98�N and a maximum/minimum of longitude at -96,95�W -97,25�W,

as seen in Figure 3.2. In the horizontal dimension, the grid is distributed in 607

points in the x-direction (approx 24 km) and 247 points in the y-direction (approx

10 km), which gives a horizontal resolution of 35 m. The vertical resolution is 20

�-layers.

The grid bathymetry derives from soundings that took place during 1935 to
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1991. The bathymetry data acquisition was part of a special project from the Hy-

drographic Survey Division at the National Ocean Service (NOS) to compile data

that could be used for nautical charts, showing the most important features of

each estuary (NOAA, 1998).

For the Aransas Bay estuarine system, there were 123,235 soundings, with a

horizontal resolution of 65 m. The depth range was 2.0 m to 16.1 m. A shore-

line relative to the Mean Lowest Low Water (0.3 m) was used to compute and

interpolate the depths. More information on the bathymetry can be found at

http://estuarinebathymetry.noaa.gov/bathy_htmls/G300.html.

The data was originally in Digital Elevation Model (DEM) format and were

extracted and interpolated to the grid. The data from Coapno Bay only had a

minimum depth of 0.5 m, and a maximum of 3.38 m, with an average depth of

1.15 m. The grid bathymetry can be seen in Figure 3.2.
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Figure 3.2: Grid bathymetry (m)

It is important to notice that Copano Bay id shallow bathymetry and has only

one open boundary, which is the connection to Aransas Bay in the south channel.

Because of that, some areas had to be cut off from the mask in order to better

represent the dynamics of the bay by keeping only depths deeper than a minimum

of 1.5 m. The removal of the masked regions did not affect the results and the

particularities of the bay.

3.2.2 Atmospheric Forcing

The configuration used here for Copano Bay has a very high resolution model

in such a small area. Due to its shallowness, the bay is more susceptible to even
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small changes in the atmospheric forcing. Because the bay is so small, we assumed

that the spatial resolution for the atmospheric conditions did not change over the

domain. Therefore, we used one single point from the atmospheric model over the

entire domain. The forcing evolved every-time step with a resolution of 3 hours.

The fluxes used to compute the atmospheric forcing were air temperature, pre-

cipitation rate, cloud coverage, air pressure, relative humidity, shortwave radia-

tion and net surface freshwater flux were also added to the simulations.

All the data were obtained from the European Center for Medium-Range Weather

Forecasts (ECMWF) global atmospheric reanalysis product known as ERA-Interim

(Dee et al., 2011). The ERA-Interim dataset is the substitute of the previous reanal-

ysis products ERA-15 and ERA-40 and the data are available from 1979 to present.

Part of the dataset for the ERA-interim product consists of a dataset previously

used for ERA-40 product. Most of the data were obtained from both satellites

and in-situ observations from ships, land stations, aircraft reports, buoys, pilot

balloons and stations all over the world. More information on the input data can

be found at Dee et al. (2011) and Uppala et al. (2005).

After the data are acquired, they are submitted to a quality control process to

detect errors such as problems with the equipment, completeness of reports and

error found when recording and/or transmitting the data. After this process, the

meteorological data is assimilated using a 4-dimensional variation analysis (4D-

Var) every 12 hours. The vertical resolution of the data is 60 vertical levels with 80

km of horizontal resolution. More information on the data and how to download

can be found at: http://apps.ecmwf.int.

3.2.3 Initial and Boundary Conditions

Because we could not find any climatology data or any other model output to

be used as an input data, the initial conditions of the model were based on the

salinity and temperature gradients between Copano Bay East and West stations.

The average temperature and salinity for January, 2010 was calculated and used to
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represent the range of the gradient. Figures 3.3 and 3.4 show the initial conditions

for the model, as well as the stations and the two main sources of river discharge.

Figure 3.3: Initial salinity with Copano East and Copano West water quality sta-
tions.
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Figure 3.4: Initial temperature with Copano East and Copano West water quality
stations.

The boundary conditions for the model were imposed through the southern

boundary, location of the shipping channel.

For the free surface conditions, sea surface height data were extracted from

the XTide software from David Flater (Flater, 2005). The data were taken from

the Copano Bay State Fishing Pier station, located at 97,0217�N/28,1138�W. This

software provides tides and currents predictions with resolution of one hour and,

according to the author, the algorithm used is the same one used by the National

Ocean Service in the U.S.

In order to better estimate meteorological tides and extreme events, in situ sea

surface height (SSH) data were downloaded from a NOAA station located at Co-

pano Bay. A low pass filter was used in the time series and the resulting series
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was added to the XTide dataset. By doing that we were able to capture both the

effects of tides and the effects of meteorological conditions in the sea level. Figure

3.5 shows the XTide series, the data, the low pass filter and the final SSH used in

the model for the year of 2010. We applied the same procedures for all the 6 years

of run.

Figure 3.5: Sea surface height at the southern boundary for 2010.

The values of temperature and salinity were obtained from the Aransas Bay

Water Quality station (MANERR Station 4) located at 97,0287�N/27,9798�W (NERRS,

2012), a station located just outside Copano Bay and close to the shipping chan-

nel. Six years of data were used with one hour resolution to be imposed to the

southern boundary. The location of the Aransas Bay station is seen at Figures 3.3

and 3.4.

The reason why Aransas Bay station was used to provide salinity and temper-

ature to the southern boundary was to make sure the conditions from the Gulf

were well represented in the model, since this station is located close to the ship-

ping channel with access to the Gulf waters.
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3.2.4 River Forcing

The river discharge data were downloaded from the USGS Current Water Data

for the Nation website (http://waterdata.usgs.gov/nwis/rt ) with daily

streamflow conditions in cf3s�1 for both Aransas River and Mission River. The

data were then converted to m3s�1. The discharge of both rivers can be seen in

figure 3.6.

It is important to notice here the difference in between years. The annual re-

ports from USGS Water Watch (http://waterwatch.usgs.gov) showed that

2010 and 2015 were considered ’wet’ years when compared to the period between

2012 and 2014, called ’dry’ years. These differences in river discharge throughout

the years have a great impact on the salinity pattern in Copano Bay and will be

explored in the next sections.

Figure 3.6: River discharge in m3/s for Aransas River and Mission River
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The discharges were then distributed in 4 river source points in the grid for

each river in order to avoid model instability, representing the freshwater inflow

from the north and from the west of the domain. The first and last points have

1/6 of the total discharge, while the second and third points have each 1/3 of the

total discharge for a given time. This setup resulted in a gradient of water inflow

along the river locations. The positions of the rivers are in Figure 1.3. Even though

both rivers have a low discharge rate when compared to other rivers in the Gulf of

Mexico, their contributions to the system are important to physical and biological

processes in Copano Bay.

For both rivers, the salinity was kept constant at 0 to simulate fresh water

inflow and a vertical discharge gradient was given being maximum at the surface

and zero at the bottom.

Because of the seasonal variation in temperature throughout the year, the ERA-

Interim air temperature of 2 m with a 3-hourly resolution was used to simulate

the water temperature from both rivers. This approach was used due to the lack

of data for river temperature in the region and due to the known interactions of

the air-sea layers. The time-series was chosen for a point near Copano Bay and

interpolated from a 3-hourly resolution to a 15-minutes resolution to match the

river discharge.

3.3 Experiments

As mentioned before in section 3.2.4, Copano Bay has two distinct patterns

over the years, representing low and high salinity due to the river discharge. In

order to capture the differences within each year, we decided to run the model for

5 years, from January/2010 to December/2015. Outputs of temperature, salinity,

density, velocities (u, v, ubar, vbar) and SSH were saved every two 2 hours and

all the simulations were made using the Texas A&M High Performance Research

Computing (http://hprc.tamu.edu/).
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3.3.1 Analysis of Observations and Model Validation

Before all the simulations, temperature and salinity data from Copano Bay

West and East water quality stations were analyzed along the 6 years to check

for any significant patterns. Also, river inflow and precipitation data were also

analyzed to see if there was some correlation between all four parameters.

The model validation was made by choosing two different points in the model

grid close to the Copano Bay East and West stations, and comparing the temper-

ature and salinity values at the surface with the real data. Due to different res-

olutions between the two datasets, the resolution of the stations was adjusted to

every 2 hours instead every 15 minutes to match the model’s temporal resolution.
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4. RESULTS AND DISCUSSION

4.1 Model Validation

As mentioned before in section 1.1.1, Copano Bay has two water quality sta-

tions named Copano East and Copano West. The salinity and temperature from

these stations were used to configure the model’s initial and boundary conditions

and were also used as a reference to the salinity pattern of the bay. In order to as-

sess our results we decided to use the time series from two points from the model

located at the same location as the two water quality stations. Because the obser-

vation points were in a different resolution (15 minutes) we converted the data to

a lower resolution (every 2 hours) to match the model’s output. The time series

comparison and a scatter plot comparing data and model output for temperature

is shown in Figure 4.1.

Figure 4.1: Temperature validation for the West and East sides of the bay.

From the figure, one can notice that the model represented well the seasonal
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changes in temperature, with low temperatures during the winter and fall months,

and higher temperatures during spring and summer. Since the temporal variabil-

ity of temperature do not depend much on the river discharge, the temperature

on the west side is similar to the east side. The correlation coefficient between the

model’s results and the observed data was r2= 0.96 for the east side and r2 = 0.98

for the west side.

Figure 4.2 shows the comparison between the model output and the real data

for the salinity at the surface. The upper panel shows that the model simulated

well the changes in salinity over the years for the west side, but overestimated

the values in some occasions, which can be seen in the negative values of the grey

lines. The correlation coefficient for the west side was r2 = 0.91. For the east side,

the model also simulated the changes over the years when compared to the real

data, resulting on r2 = 0.90. Next to both panels there is the scatter plot comparing

the data and the model results.

Figure 4.2: Salinity validation for the West and East sides of the bay.

30



As mentioned before, the use of a 2D model such as TxBLEND can result in

a worse prediction in temperature when compared to 3D models such as ROMS.

Figure 4.3 shows a comparison between ROMS and TxBLEND validations. For

the west side at the surface, ROMS has a r2 = 0.91, while TxBLEND has r2 = 0.78

at Aransas Bay. Even thought the periods are not the same, it is possible to see

that ROMS resolves better the salinity variability in the bay, by following the right

trend and episodic drops. The panels on the right show the comparison between

models and real data for both models. ROMS tends to overestimate the salinity

but the values are less sparse than the TxBLEND, which doesn’t have a well de-

fined pattern.

Figure 4.3: Comparison of surface salinity between ROMS and Copano West sta-
tion between January/2010 and December/2015 and comparison between the
TxBLEND model and the surface salinity at Aransas Bay between January/1987
and January/1990.
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One of the objectives of this work is to investigate the differences between

the east and west sides of the bay. Figure 4.4 shows the horizontal stratification

between the east and west sides of the bay for surface salinity and temperature.

As expected, the model captured the differences between the east and west for

both parameters, despite overestimating the difference in salinity during some

flooding events.

Figure 4.4: Differences between the Copano East and Copano West stations (red)
and ROMS locations on the east and west side for surface temperature and salin-
ity.

The model resolved the south channel of the bay and captured the horizon-

tal stratification between the east and west sides of the bay. Also, the long-term

salinity intrusion was accurately reproduced on the east and west sides, making

it suitable for studying how external forcing such as river discharge, precipitation
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and wind can alter the salinity in the bay.

4.2 Time Series Analysis of in situ data and model results

As discussed in section 3.2.4, there is clearly a difference in river discharge

over the period between 2010 and 2015. In order to better understand how these

differences affect the salinity patterns, salinity values (model and in situ) from the

the east and west side of the bay, as well as precipitation and river discharge, were

plotted as seen in Figure 4.5. The first row of the figure shows the salinity at the

surface and bottom for the west side of the bay, while the second row is for the

east side. The third row represents the difference of salinity values between the

east and west side and the fourth row the differences between the surface and the

bottom. For the fifth row, the precipitation data were integrated over the domain

and converted to m3s�1 to be comparable to the river discharge, which is also

plotted as a sum of the discharge from Mission and Aransas rivers. Both points

chosen to represent the model results were in the same location as the two water

quality stations previously discussed. One point is close to the Aransas River

discharge (west point) and the other point is close to the mouth of the bay (east

point).
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Figure 4.5: Salinity values for stations Copano East and West, precipitation in mm
and river discharge in m3s�1 for Aransas and Mission River (sum). All values are
from 2010 to 2015.

To analyze what caused the lows and highs salinity values in each year, we

decide to split the years into three different categories: ’wet years’, corresponding

2010 and 2015, where salinity was kept in a normal range, ’transition year’, which

corresponds to 2011, where salinity went from normal values to hypersaline con-
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ditions, and ’dry years’, being the period between Jan/2012 and Dec/2014, which

is a period with high salinity and low river discharge.

The first year, 2010, was considered a ’wet year’. The salinity on the west side

had a range of 2.9 gkg�1 to 22 gkg�1 (average 16.5 gkg�1) at the surface and 7.87

gkg�1 to 22.5 gkg�1 (average 16 gkg�1) at the bottom. For the east side, the salin-

ity range was 11 gkg�1 to 31 gkg�1 (average 20 gkg�1) and 13 gkg�1 to 33 gkg�1

(average 21.6 gkg�1) for the surface and bottom, respectively. The horizontal strat-

ification between the west and east side is represented by the positive values of

the third row. It is possible to see that the salinity on the east side is always higher

than the west side, most likely due to the constant exchange between Aransas Bay

and the east side. This difference can reach up to 17 gkg�1. For the west side how-

ever, the proximity to the river discharge causes a lower salinity range. Another

important feature is the difference in salinity between the bottom and the surface,

even considering the shallow depths. The fourth row shows that high discharge

periods cause a vertical gradient of salinity up to 12 gkg�1 between the surface and

the bottom. This condition was observed on both sides, with a weaker stratifica-

tion on the east side. To maintain this salinity pattern, the amount of freshwater

into the system was record in comparison to all of the other 5 years. During 2010,

a total volume of 122,924,676 m3 of fresh water was added to the system, being

58,766,690 m3 of river discharge and 64,157,986 m3 from precipitation.

The second year, 2011, a transition year, showed the lowest gradients for salin-

ity at the surface and bottom at both locations. The year started with one event

of high river discharge and precipitation around mid January that contributed to

a drop in salinity from 23 gkg�1 to 5.9 gkg�1 at the surface of the west location.

From February to December, the river discharge was very low, leading to a volume

of 1,993,222 m3 of fresh water into the bay, while precipitation contributed with

29,472,207 m3. The total input of freshwater for 2011 was 31,465,429 m3, about one

fourth of the volume of 2010. This low river discharge regime caused the salinity

35



to increase on both sides along the year, starting from 19 gkg�1 in January and

going up to 44.7 gkg�1 (average of 32.5 gkg�1) in December on the west side at

the surface. The east side of the bay ranged from 19 gkg�1 to 42 gkg�1 (average of

31.4 gkg�1). For the bottom, the gradients were also high. For the west side, the

range of salinity was from 17.4 gkg�1 to 44.7 gkg�1 (average of 32.5 gkg�1) and for

the east side it was from 19 gkg�1 to 44 gkg�1 (average of 32 gkg�1). A more care-

ful analysis of the second row shows that the salinity on the east side increased

until around October and stabilized, while the salinity at the west side kept in-

creasing and reached approximately 45 gkg�1. At some point, around November,

the difference in salinity between the east and west was 0, indicating no horizon-

tal stratification. After this point, the values became negative, indicating that the

west side was saltier than the east side. Among all the reasons for the increase

in salinity on the west side is the low river discharge, evaporation, and the fact

that the water on the west side is farther from the tidal channel, so they are less

influenced by the dynamics. As the surface became saltier at the west side, the dif-

ference between the bottom and surface also dropped, as indicated in the fourth

row by the grey lines, reducing the vertical stratification.

The period called ’dry years’, from 2012 to 2014, started with the west side

being saltier than the east side. According to Valle-Levinson (2010), the regime

where the upper estuary is saltier than the mouth, is called an inverse estuary.

The author says that in cases where evaporation exceeds river discharge, a hyper-

saline condition is created, where the salinity increases landward, instead of de-

creasing as expected in a normal condition. Considering the entire period of the

simulations, the river discharge had 1/3 the volume of the so called ’wet years’

2010 and 2015. The fresh water for the three years added together was 467,153,289

m3 from precipitation and 43,089,241 m3 from river discharge, resulting on a to-

tal of 510,242,531 m3 . The ranges of salinity for the west side at the surface and

bottom were 7.9 gkg�1 to 43.2 gkg�1 (average 36.7 gkg�1) and 25 gkg�1 to 43.2
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gkg�1 (average 36.9 gkg�1), respectively. For the east side the ranges were from 28

gkg�1 to 40 gkg�1 (average 34.9 gkg�1) and from 29 gkg�1 to 41.6 gkg�1 (average

35.3 gkg�1). During almost the entire period the west side was saltier than the

east side, except when there were some increase in precipitation and some river

discharge, as seen as the positive values in the third row, which follow the higher

values at the fourth row. Thus, the horizontal stratification with the upper bay

saltier than the mouth continued for a period of three years, indicating a long res-

idence time for the bay. The vertical stratification followed the gradients caused

by river discharge, specially between June/2012 and June/2013, where the higher

precipitation and some river discharge caused some stratification, dropping the

salinity from around 40 gkg�1 to 10 gkg�1 on the west side.

We assumed the bay as hypersaline by comparing the salinity of the bay with

the salinity at Aransas Bay. Figure 4.6 shows in situ data of salinity at Aransas

Bay, Copano East Bay and Copano West Bay for the period between Jan/2013 and

Dec/2015. It is possible to notice that during the period the salinity inside the bay

was slightly higher than the salinity at Aransas Bay, result of low evaporation, low

precipitation and lower depths.
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Figure 4.6: Salinity at Aransas Bay, Copano East and Copano West stations be-
tween Jan/2012 and Dec/2014.

The last year, 2015, was also considered a ’wet year’, not much because pre-

cipitation, but because river discharge. The contribution of river discharge to the

system was 50,883,113 m3 specially between March and July. The precipitation

rate for the period was 599,207,079 m3, resulting on a total of 110,803,192 m3 of

freshwater into the bay. During the first semester of 2015, the salinity decreased

from 35 gkg�1 to less than 10 gkg�1 in a few months, where 95% of the total river

discharge for 2015 was added to Copano Bay. As seen in the third row, after a few

months, the difference between east and west became positive again, indicating

that the east side was again saltier than the west side. The salinity range from

the east side at the surface was 7.5 gkg�1 to 33 gkg�1 (average of 23.9 gkg�1) and

at the bottom was 9.4 gkg�1 to 33.7 gkg�1 (average of 24.9 gkg�1). For the west

side, the range was 1.9 gkg�1 to 35.8 gkg�1 (average 20.7 gkg�1) and between 3.79

gkg�1 to 35.8 gkg�1 (average 21.4 gkg�1) for the surface and bottom, respectively.

The vertical stratification followed the river discharge and reached its maximum

when river discharge was also maximum.
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The classification proposed by Bittler (2011) that showed 2010 as a ’wet year’

was also seen in the model’s results, indicating that the captured the horizontal

stratification. As in 2009, considered a ’dry’ year by the authors, the model also

captured the hypersaline conditions and the horizontal gradient between the west

(now saltier) and east (now fresher) sides. During the entire period analyzed, the

salinity at the bottom was always higher than at the surface, even under hyper-

saline conditions. This indicates that the bay always have some vertical stratifi-

cation, which can be stronger or weaker depending on the river discharge (west

side) and the tides (east side). It is also important to notice here that in some pe-

riods high precipitation did not mean high discharge. In fact, the period between

2012 and 2014 had an average of 150,000,000 m3 of precipitation distributed over

three years, but had a very low river discharge. The opposite is also true. Between

March and July of 2015, the river discharge increased with no significant increase

in precipitation. There are some factors that can explain this discrepancy:

• Both Aransas and Mission rivers receive water from other rivers in different

regions of Texas that may have a different precipitation regime than Copano

Bay;

• The river discharge is not measured at Copano Bay, but a few miles up-

stream, causing differences in what is measured and what portion of fresh

water reaches the bay.

Understanding how interannual changes can influence the salinity dynamics

at Copano Bay is important to look at changes in a long time scale. This informa-

tion can be used to analyze climate changes, seasonal patterns and how the bay

responds to an increase(decrease) in precipitation and/or river discharge. How-

ever, it is also important to understand the dynamics of processes that happen in

scales that can vary from hours to weeks, such as a change in the wind direction

due to a storm event, a subsequent increase in precipitation and river discharge,
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and finally the adjustment of the bay to these events. Some examples of these

episodes are the salinity drops in 2010 and some episodes between 2012 and 2014,

where the salinity went from a hypersaline condition to low salinity (around 10

gkg�1). The next sections will look deeper into the short time scale processes that

cause the salinity to drop from 40 gkg�1 to 10 gkg�1 in a matter of days, causing

changes in horizontal and vertical stratification.

4.3 Analysis of Local Events

The first case studied was during January of 2010. The top panel of Figure

4.7 shows how the wind direction changed over time, the second panel shows

the precipitation and river discharge levels, while the third and fifth panels show

the salinity at the surface and bottom for the west and east side, respectively. In

order to analyze the horizontal stratification, the fourth panel shows the salinity

difference between the east and west side. The dashed lines are used here to mark

the moment when each event started, i.e. when the wind changed, when salinity

started to drop on both sides.
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Figure 4.7: Representation of wind speed and direction, precipitation and river
discharge, salinity on the west side, difference between the east and west sides
and salinity for the east side for January of 2010.

As shown in the figure, around the 15th of January at 08:00 am, the wind di-

rection changed from northwest to southwest, probably due to a front or a storm

event. Followed by the change in wind direction, the peak of precipitation was 4

hours later, with almost 111,645 m3 of fresh water, represented by the red dot in
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the figure. The second red dot shows the peak of river discharge, which happened

18 hours after the peak of precipitation. This input of fresh water reflected on the

salinity on the west side 4 hours after the peak of precipitation. This response was

stronger at the surface, where the salinity went from around 11 gkg�1 to 3 gkg�1

in a few hours, and went back to the previous value after 2 days and 6 hours,

as indicated by the red dotted line. As seen in the black line at the third panel,

the salinity at the bottom did not change with the fresh water input, indicating

strong vertical stratification at that point. Before the salinity dropped, the differ-

ence between the east and west side for the bottom and surface was practically

the same. As the wind started and the fresh water entered the bay, the differ-

ence increased to around 15 gkg�1 at the surface but did not change much at the

bottom, increasing from 6 gkg�1 to 8 gkg�1 only. The difference also stabilized

after approximately 2 day. Because of the constant exchange of salty water with

Aransas Bay, the East side only responded to the fresh water input around 1 day

after the peak in river discharge. Still, the changes in salinity were only seen at the

surface, with a moderate drop from 16 gkg�1 to 13 gkg�1, which shows that the

freshwater is diluted closer to river source and doesn’t have the strength to cause

significant change at the mouth of the bay. The input of fresh water either from

rain or river caused both vertical and horizontal stratification. Before the rain, the

water was completely mixed, with the same salinity at the surface and bottom.

The stratification started and lasted for only one day in response to the fresher

water.

The figure for the second case has the same setup as the first one, but for a

’dry year’. As discussed before in section 4.2, in cases where the river discharge

and precipitation are low, the salinity of the bay increased up to 45 gkg�1, creat-

ing a hypersaline condition. The third panel of Figure 4.8 shows that the salinity

dropped from 40 gkg�1 to 10 gkg�1 due to an increase in precipitation and (mod-

erate) increase in river discharge.
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Figure 4.8: Same as Figure 4.7 but for February/2013.

First, the northern winds weakened for a few days and changed the direction

on 02/03/2013 around 10:00 pm. The response from precipitation started on the

same day, where the peak reached 60 m3s�1 of fresh water. A day before the wind

changed, the river discharge had its peak with 40 m3s�1. The third panel shows

that the bay went from a mixed environment to a stratified one after two days of
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the maximum river discharge. This event dropped the salinity from hypersaline

(40 gkg�1) conditions to fresh water values (around 8 gkg�1). Just like the last

case, salinity dropped at the surface, while the bottom did not respond instantly

to the input of fresh water, dropping only 5 gkg�1. The time interval from the

moment where salinity at the surface dropped and went back up close to the pre-

vious values was around 3 days. A comparison with the previous case, where the

estuary recovered in 1 day, indicates that due to the high gradient imposed by the

fresh water input, the hypersaline condition would take longer to be stable again.

The fourth row shows that due to the drop in salinity, the estuary went from an

inverse estuary to a normal estuary, where the upper bay was fresher than the

mouth of the bay. The maximum difference of salinity between the two stations

were approximately 25 gkg�1, showing the sensibility of the high salinity to the

fresh water. On the east side, the response from precipitation and river discharge

was felt 3 days after the west side, and only with an increase in the difference

between the surface and the bottom.

The last case here presented is during May of 2015. During this period, the

river discharge reached its maximum in 6 years, with a fresh water input of 420

m3s�1 around May 12th. Figure 4.9 shows the third case.
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Figure 4.9: Same as Figure 4.7 but for May/2015.

As seen in the figure, around 05/12/2015, the wind changed the direction from

northwest to west. After a few hours, there was the peak of river discharge and

precipitation with approximately 514,381 m3 (precipitation + river discharge) of

fresh water into the bay. The response of the salinity on the west side was one day

after the river discharge, causing the salinity to go from 20 gkg�1 to less than 5
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gkg�1. This drop on salinity continued for almost a week before the water column

was mixed again. It is important to notice here that Copano Bay started 2015 as

a hypersaline bay. The fourth row of the figure shows that before the fresh wa-

ter input, the west side was saltier than the east side and it was necessary a high

amount of fresh water to make the west side fresher again and for the salinity to

stay stable. This change only occurred after this high discharge and high precipi-

tation event. The positive values in the fourth row indicate that the estuary went

from an inverse estuary to a normal estuary after the dried period. Also, one can

notice that the salinity on the west side dropped from 20 gkg�1 to 10 gkg�1 and

became stable with a lower salinity than before. This shows that for a higher river

discharge than the average flux, the salinity on the west side will not be able to

recover to the same value as before even after the vertical stratification has ended.

The east side of the bay barely responded to the big amount of fresh water, hav-

ing only a small drop on salinity of 5 gkg�1, which resulted in a weak vertical

stratification.

From the three cases presented here, there is a relationship between the amount

of fresh water that was put into the system, the salinity previous to the event, the

gradient caused by the fresher water and the amount time the west side of the bay

took to recover from that fresh water. As discussed before, the first case shows

that even with an amount of approximately 138,016 m3, the salinity stabilized af-

ter 1 day. This is due to the low gradient (around 7 gkg�1) between the fresher

water and the previous water in the bay. However, for the second case, the salin-

ity dropped from 45 gkg�1 to approximately 10 gkg�1 (gradient of 35 gkg�1) with

an input of approximately 7,240 m3s�1 (river + precipitation peaks) and went back

to normal after 3 days, showing that even for a small input of fresh water, the gra-

dient caused by the low salinity water in comparison to the hypersaline condition

will take longer to adjust. In the third case, the salinity went from a inverse estu-

ary situation to a normal situation with the input of approximately 514,381 m3s�1

46



of fresh water added to the system.

Thus, it is clear that for the estuary to restore its salinity, it depends on the

amount of fresh water, specially through river discharge, the lowest salinity reached

during the event, the gradient caused by the drop on salinity, the evaporation and

the salinity before and after the storm event. How some of these parameters can

be used to estimate after how long the bay can adjust to specific events will be

now discussed.

The blue dots in the last 3 figures represent the lowest salinity reached for the

west side of the bay after the precipitation and river discharge events. After this

point, we assumed that the salinity started recovering and reached stable values,

leading to a mixed water column again. The time between this point and to reach

a stable condition varied among the 3 different cases. The first case had a lag of

2 days, the second case a lag of 2 days and 08 hours and the last case the lag was

3 days and 08 hours. By using the lowest value of salinity during the event, the

number of hours that the salinity took to stabilize and the salinity value consid-

ering a mixed water column, we decided to use an exponential decay function to

check the rate of salinity change per hour. Here, the amount of time needed for

the salinity to recover is less than before, since in this case we started counting

from the moment the salinity reached its minimum value, which is different from

when the salinity dropped in the first case. Equation 4.1 is as follows:

S(t) = S0� (S0� Sf)(e�t/⌧ ) (4.1)

Here, S(t) is the salinity changing over time, Sf is the lowest salinity after the

river discharge and S0 is the salinity before (or after) the fresh water event, con-

sidering a mixed water column where the salinity at the surface and bottom are

the same. t is the number of hours and ⌧ is the mean lifetime. This last variable is

related to the exponential decay constant � as in ⌧ = 1/�.

We applied Equation 4.1 to 4 different cases (3 cases mentioned before and
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1 other case) in order to estimate a generic value for ⌧ , which could be used to

estimate the time the west side of the bay would take to go from stratified to com-

pletely mixed. For each case an exponential decay curve was generated from the

lowest salinity point to the stable salinity value. The time t was chosen based on

difference of hours between the two points, while the value for S0 was used as an

average of salinity values of a period after the salinity stabilized. Here, we con-

sidered the values before and after the fresh water input would be similar. Figure

4.10 shows the curve and parameters for 4 different cases, as well as the salinity

between the lowest value and the time where the water column was mixed.

Figure 4.10: Four different cases of salinity estimated growth based on different
initial conditions.
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The salinity gradient between the lowest value to the stable value reflects each

different regime. The first case, top left on the figure, the lowest salinity was

at 3.7 gkg�1 and stabilized back in 11.09 gkg�1 after 2 days. The second case,

top right in the figure, shows the minimum salinity as 10.86 gkg�1 but a higher

stable salinity at 33.72 gkg�1. The salinity values took approximately 2.5 days

to be reestablished. The third case, represented by the left lower panel, shows

that the salinity took around 3.5 days to be maintained around 6.38 gkg�1, after a

minimum of 3.16 gkg�1. The last case here shows that the salinity recovered from

approximately 3.52 gkg�1 to 16.74 gkg�1 in 3 days. Even though different values

of ⌧ were used, we roughly estimated a value of 10 hours to be used to estimate

the change in the salinity over a certain period. In this case, for Copano Bay, even

for different regimes, where the salinity can be as high as 45 gkg�1 or as low as 2

gkg�1, Equation 4.1 can be re-written as:

S(t) = S0� (S0� Sf)(e�t/10) (4.2)

Just a reminder that the equation is only an approximation, since it is a rough

estimate of the salinity. Since the salinity pattern also depends on other param-

eters such as the distance from the mouth and the currents, equation 4.2 can be

used to first estimate how salinity changes over time after an event of fresh water

discharge and to compare how the west side of the bay responds in comparison

to the east side. As seen in the 3 different cases presented here, the response of

the east is weaker than at the west side, since it depends more on the salinity from

Aransas Bay, and not much from the salinity at the west side.

4.3.1 East vs West

As seen before in sections 4.2 and 4.3, there is a difference in salinity comparing

the east and west side of the bay. In normal conditions, the east side is saltier

than the west side due to the proximity of the west side to the river discharge.

49



However, this situation may change into an inverse estuary considering a period

of low river discharge and precipitation, causing the west side to be saltier than

the east side.

Based on the 3 cases shown before, this section will show model results to

discuss how far the fresh water plume goes into the east side depending on the

wind, amount of fresh water and the time scales. Following Figure 4.10, we will

also discuss the adjustment of the estuary for each case.

Figure 4.11 shows the evolution of the surface salinity after a river discharge

event during January/2010. The first panel to the left shows the salinity on the

west side around 12 gkg�1 and around 17 gkg�1 on the east side. It is possible

to see the line of 15 gkg�1 around the tidal plume. Following the time line to the

second panel, the wind starts to change from northwest to southwest at 01/15

22:00 pm, followed by the peak of river discharge 10 hours after that. The peak

was distributed in 100 m3s�1 from Mission River and 61 m3s�1 from Aransas river.

A day after the change in the wind direction, the fresh water plume reached its

maximum distance further from the river point, which is represented by the fourth

panel, pushing the 15 gkg�1 water into Aransas Bay. This point of intrusion can be

seen in figure 4.7 as the salinity on the east side had a small drop. The fourth panel

also shows the wind weakened allowing the plume to go further into the bay. The

discharge continued high, around 140 m3s�1 decreasing after 2 days, where the

plume was mainly concentrated to the north and west sides of the bay, probably

due to the wind (fifth panel). The last panel shows that on the 22nd day of January

the river discharge was low and the salinity on the west side was lower than the

first panel due to the fresh water input. This value (around 10 gkg�1) continued

stable during January showing that the west side is less influenced by the tides.

The salinity at the east side followed the tidal regime and the input of saltier water

from Aransas Bay. As seen in the last 3 panels, the plume was retracted due to the

intrusion of fresher water into the system, specially from Mission River.
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Figure 4.11: Evolution of a river discharge event during January/2010.
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The second case took place during Feb/2013. The first panel of Figure 4.12

shows the salinity at the west side around 41 gkg�1, i.e. higher than the east side.

After two days when the wind changed directions from northwest to southwest,

the maximum river discharge came on the 6th with 40 m3s�1 of fresh water (34

m3s�1 from Aransas River and 6 m3s�1 from Mission River). As discussed before,

since the measurement of fresh water discharge is not at Copano Bay, there might

be a lag of time before the fresh water actually enters the system. In this case, the

lag was 2 days after the peak of river discharge, as seen in the fourth panel. The

fifth panel shows that the fresher water was limited to the northwest side of the

bay, with salinity around 30 gkg�1. After 6 days of the peak of river discharge

the west became saltier than the east side again. There are a few considerations

about this case. First, the fresh water turned the estuary from an inverse estuary

to a normal estuary, with the upper estuary fresher than the mouth. The salinity

took around 6 days to go back to the previous value, i.e. around 40 gkg�1, which

shows that since the salinity decreased to values as low as 10 gkg�1, it took more

time for the estuary to recover and go back to a hypersaline condition. Also, the

amount of river discharge in this case was 1/4 the amount of the first case. Before

we showed that the input of fresh water caused the salinity on the west side to

stay lower than before even after the river discharge ceased and the wind turned

back to northwest direction. This is not the case here. The salinity profile shows

that this volume was not enough to sustain the low salinity values just like the

first case. With no influence from fresh water, the east side remained with salinity

around 32 gkg�1 during the entire period.
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Figure 4.12: Evolution of a river discharge event during February/2013.
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The amount of fresh water necessary to change the estuary from a hypersaline

regime to normal conditions was discussed before in Section 4.2. The last case

shows how this change happened because of the highest input of river discharge

in 6 years. The first semester of 2015 added a high volume of fresh water to Co-

pano Bay, which changed the salinity from 45 gkg�1 to 20 gkg�1. However, even

with the high flux of fresh water in the bay, the inverse estuary condition lasted

for other 5 months into 2015, only changing after a high discharge event. This first

panel of Figure 4.9 shows that the salinity at the west side is higher than the east

side (20 gkg�1 compared to 13 gkg�1). The river peak was at 05/12 20:00 pm, with

420 m3s�1 of fresh water into Copano Bay, being 267 m3s�1 from Aransas River

and 153 m3s�1 from Mission River. The first signal of fresh water started after 6

hours of the river discharge peak and the wind changed direction after two days

as seen in the fourth panel. With a huge amount of fresh water in the Bay, the

plume reached its maximum 4 days after the wind changed. The salinity in front

of Aransas and Mission River was as low as 5 gkg�1. This change in the regime

caused the salinity on the west side to decrease from 20 gkg�1 to 10 gkg�1 in a

matter of days, causing the estuary to switch from inverse to normal. Just like

the first case, the big volume of fresher water helped by keeping the low salinity

along the bay for a longer period, specially on the west side. The east side did not

change much even with the decrease in salinity on the upper bay, keeping a range

between 15 gkg�1 and 20 gkg�1. This might be related to the wind pattern, where

the northwest winds kept the river plume closer to the river mouths.
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Figure 4.13: Evolution of a river discharge event during May/2015.
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A number of factors can and will influence the changes in salinity at Copano

Bay, such as tides, river discharge, evaporation and precipitation. Due to the low

depth, the bay is constantly influenced by wind changes, which can come with an

increase in precipitation and/or river discharge. This change will cause vertical

and horizontal stratification that will be intensified because of the dynamics. As

seen in the first and last case, a high river discharge can cause a decrease on the

salinity of the upper bay, but do not affect much the east side of the bay, which is

more influenced by the tides and the salinity from Aransas Bay. The results show

that even though the two locations (east and west) are relatively close (around

20 km), they are still separated by the dynamics, where the west side is highly

influenced by the river and the east side by the tides. These assumptions are

confirmed because of the low depth, considering the fact that a small change on

the surface will affect the whole water column. The second case shows that the

salinity stayed high along the west side because of the low interaction with the

tidal plume and almost no river discharge. The 3 years period only confirm the

results shown by Bianchi et al. (1999), who estimated a residence time of one year

for Aransas and Copano Bay.

Besides the amount of fresh water, the adjustment of the bay also depends on

the initial salinity before the event. The first and second case had a difference

between the lowest salinity and the initial salinity of 10 gkg�1 to 15 gkg�1. For the

second event, this difference was 30 gkg�1. The second case took a longer time to

recover from the drop on salinity when compared to the other two cases, showing

that to mix the water column from 10 gkg�1 to 40 gkg�1 takes longer than to mix

from 10 gkg�1 back to 20 gkg�1.

Regarding the vertical stratification, the east side is weakly stratified due to

the (mostly) higher salinity from Aransas Bay, but it is not influenced by the west

side at all. The salinity pattern on this side will indeed be similar to the west side

over the years, but the local events have more influence over the west than over
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the east side. The west side, on the other hand, can be highly stratified and for a

long period depending on the amount of fresh water. Even though it’s stronger,

the stratification on the west side is more dependable on atmospheric forcing and

river discharge, while the stratification on the east side is more constant, only

depending on the tidal cycle. The rate in which the salinity respond to sporadic

events can completely change the dynamics of the bay, which will have influence

over biological and chemical processes in the bay.

4.4 Property Histograms

For this section we used the volume-weighted probability density function

(PDF) to calculate the portion of salinity, temperature, density, vertical stratifi-

cation and horizontal stratification for each time step (8 hours resolution) over the

6 years of simulations. This function is based on a range for each variable (known

as bins), where the total volume of water in each class of a determined property

can be computed by multiplying the PDF by the total volume of the bay. The out-

put is a histogram that shows the range in which the concentration of a property

is higher.

In order to exemplify the analysis, Figure 4.14 shows the histograms based on

the PDF analysis for the first case from Section 4.3, which took place during Jan-

uary/2010. Starting from the analysis of salinity, the figure shows that for the first

week of the month, the salinity of the bay was around 13 gkg�1, followed by the

density, which showed only one major density class with water around 15 kgm�3.

After the first week, the temperature of the bay dropped from 13 �C to around 7
�C, which caused density to increase and split in two different water masses, one

with 15 kgm�3 and another one with 17 kgm�3. This drop in temperature, proba-

bly due to a front or storm, was not followed by salinity, which was kept constant

around 13 gkg�1. Also, this first drop barely affected the vertical and horizontal

stratification, considering the fact that the horizontal stratification kept a constant

range between 10-5.5 and 10-6 and the vertical stratification practically followed the
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tides.

As mentioned before, without any river discharge, the vertical stratification

in the bay is controlled by the input of salty water from Aransas Bay, which

mostly affects the east side. The west side remains mixed most of the time. By

mid-January a flood event happened with an input of 160 m3s�1 of fresh water

into the bay. For the temperature, this event only caused a minor drop, but not

enough to stop the constant increase rate. For salinity, however, one can notice

some parcel of water with salinity lower than 10 gkg�1 and also a slight drop in

salinity around the 15th from 12 gkg�1 to 10 gkg�1. The other parameters also re-

sponded to this input of fresh water. The horizontal stratification increased the

range from 10-5.5/10-6.0 to -10-5.0/10-5.5, indicating the west side was now fresher

than the east side. This decrease in salinity after the river discharge expanded

the salinity range in the bay, where the lower limit is now around 10 gkg�1 and

the upper limit around 15 gkg�1, showing that the amount of fresh water was big

enough to cause a decrease in the overall salinity of the bay (before the range was

from 12 gkg�1 to 14 gkg�1). The vertical stratification also had a peak during the

flooding event, which was shown before as the difference between the salinity at

the surface and at the bottom. Following the drop on salinity at the west side,

the density only dropped by 1 kgm�3, but now with a bigger range between 15

kgm�3 and 17 kgm�3. This new range resulted in two different water masses as

seen around the 20th day of the month. Around the 25th, the temperature dropped

again causing a slight increase in density but without a change in salinity. It is

important to notice here that the density of the bay follows the salinity profile, as

expected, but without a river event, the salinity doesn’t change much, meaning

that small changes in density are caused by the temperature, since the two are in-

versely proportional, i.e. an increase in temperature causes a decrease in density.
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Figure 4.14: Volume-weighted probability density function for horizontal strati-
fication (M2), vertical stratification (N2), density (Rho), salinity, temperature and
river discharge (m3s�1) for January/2010 .
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Now we follow the same analysis for each year. Again, the same approach

used in Section 4.2 will be used here, where each period is considered as a ’dry

year’, ’transition year’ or ’wet year’ depending on their characteristics. Figure

4.15 shows the histogram plot for each property and how they changed over the

years.
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Figure 4.15: Volume-weighted probability density function for horizontal strati-
fication (M2), vertical stratification (N2), density (Rho), salinity, temperature and
river discharge (m3s�1) between Jan/2010 and Dec/2015.
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The year of 2010 started with two events of high river discharge in January/2010

and February/2010. These events caused a drop on salinity on the west side, re-

sulting on two different water masses, one with density below 15 kgm�3, which

occupied the west side of the bay, and one with density values around 17 kgm�3,

occupying the east side of the bay, in constant exchange of salty water with Aransas

Bay. This scenario lasted for around 6 months, where the density followed the

salinity trend. As seen in the figure, there were some local events (March/2010,

June/2010 and Aug/2010) that caused changes in salinity, density, temperature

and horizontal stratification. These events are usually associated to a front or

storm event that caused the water temperature to go down. As seen between

March/2010 and April/2010, the horizontal stratification increased coinciding with

a decrease in temperature and increase in density and salinity. During these peri-

ods, there is no dominant water mass and the salinity and density are spread over

a larger range. After these events, an increase in river discharge and precipitation

collapsed the the salinity and density range, resulting on one single water mass in

the bay, as seen between July/2010 and mid-August/2010.

The response to a high river discharge event around September/2010 caused

a maximum of horizontal and vertical stratification, followed by a rapid decrease.

This pattern can also be seen in Figure 4.5, third row, where right after the dif-

ference in salinity at the surface between the east and west side reached its max-

imum, around 20 gkg�1, the west side recovered faster than the east side due to

strong winds that collapsed the horizontal stratification, causing the difference

between them to go negative, i.e. the west side was saltier than the east side. Dur-

ing the following months the horizontal stratification increased again followed

by the constant increase rate of salinity and density. As mentioned before for the

first case, the density follows the salinity pattern, but it’s the temperature that will

have effect on small and more subtle changes in density. During 2010, as a result

of high precipitation and river discharge, the range around vertical stratification
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was high throughout the year, with changes depending on the river discharge.

The year of 2011 had only one major river discharge event, which was around

mid-January/2011. This event was followed by a slight drop in salinity and den-

sity, but did not affect much the stratification in the bay. By the beginning of Febru-

ary/2011 the temperature dropped from 25 �C to 5 �C causing a small increase in

density, which led to two distinct water masses in the bay between February/2011

and March/2011. Because of the low river discharge and relatively low precipi-

tation, the salinity and density of the bay increased at a constant rate, while the

temperature followed the expected pattern, i.e. high temperatures during sum-

mer and lower during winter. During this period, the horizontal stratification

decreased, considering that the west site only became saltier over time. As dis-

cussed before, from October/2011 to December/2011, the salinity on the east side

of the bay stabilized around 40 gkg�1, while the salinity on the west side kept

increasing, what caused an increase in the horizontal stratification over the last

three months. During this period one can see that the density split in two distinct

water masses, one less salty on the east side (around 40 gkg�1) and one saltier on

the west side (around 45 gkg�1). The small perturbations in density in the last 2

months were mainly caused by changes in temperature. The vertical stratification

had its lowest range during summer months, where the winds are more stable

and point north. Between the first and last three months, the range of vertical

stratification increased due to changes i wind direction, fronts and storms. This

response from the winds can also be seen on the low range of temperature during

spring and summer.

The third period, named before as ’dry years’, is the period between Jan-

uary/2012 and December/2014. It started in 2012 with practically no river dis-

charge and two distinct water masses between January/2012 and mid-April/2012.

The water mass with the higher salinity, which started on the west side, occupied

a larger portion of the bay, as seen in the upper limit of the density and salin-
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ity profiles. During this period, the horizontal stratification had a slight increase

and only started to drop around May/2012, after a high precipitation event. This

event reduced the different between the west and east sides, which resulted in one

main water mass in the bay. This condition coincided with a period with higher

and more constant precipitation rates, which kept the salinity and density stable

for 5 months. By the end of the year, as precipitation levels decreased, the hori-

zontal and vertical stratification increased, since the west side became saltier than

the east side again. Again, changes in temperature caused perturbations in the

density levels. The following two years, 2013 and 2014, had a similar pattern as

2012. Both years started with a two different classes of salinity and density, had

a increase in vertical and horizontal stratification due to river discharge and/or

rain events, which unified the two water masses in the bay, reducing the stratifi-

cation for a few months, and had final months with increasing stratification and

density. Just like 2011, range for vertical stratification was lower during summer

and higher during fall and winter.

From the three ’dry years’, one can notice that the salinity and density patterns

respond to river the river discharge and precipitation by decreasing the difference

in salinity between the west and east sides. However, since the volume of fresh

water into the system is so small when compared to the total volume of the bay,

this response will not cause a drastic change in salinity and/or density, meaning

that the fresh water can reduce the stratification for a few months, but the evapo-

ration will eventually cause the west side to be saltier than the east. During three

years the bay alternated between an inverse estuary, which coincided to the fall

and winter months, and a normal estuary, which coincided with the rainy seasons,

between spring and summer.

The last year, 2015, had the maximum river discharge, which caused the estu-

ary to go from an inverse estuary pattern to a normal one. The year started with

the salinity around 35 gkg�1 and density around 32 kgm�3. These values only
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changed around March/2015, when the river discharge and precipitation started,

followed by an gradual increase in horizontal and vertical stratification. Until

May/2015, the west side of the bay was still saltier than the bay. After this month,

with a maximum river discharge of 400 m3s�1 around mid-May/2015, the salinity

and density had its largest range, varying from 10 gkg�1 to 35 gkg�1 for salinity

and from 10 kgm�3 to 30 kgm�3 for density. The pattern found here is similar

to the ones found in 2010, but in a much bigger scale. During this period, which

lasted for almost 5 months, there was no clear separation between 2 water masses,

since the bay was still adjusting from the river discharge. After reaching its max-

imum during the flood event, the horizontal and vertical stratification gradually

decreased showing an effort of the bay to go back to a mixed, non-stratified state.

The last three months of 2015 show one water mass in the bay, with salinity around

25 gkg�1 and density around 22 kgm�3. The perturbations in density followed the

perturbations in temperature.

The comparison between the 3 different periods highlight the differences be-

tween each year, depending on the amount of river discharge and precipitation.

During ’wet years’, the stratification and changes in salinity are limited to the river

discharge, since after an event the bay would have two different water masses and

would only recover with a lower density and salinity. The horizontal stratification

would increase due to the fresh water and would stay in a level higher than before,

since now part of the bay, specially the west side, is filled with fresher water. The

vertical stratification, which had a higher range when compared to other years,

practically followed the tides, mostly because the exchange between the east side

of the bay and Aransas Bay. The peaks on vertical stratification are associated to

the river discharge. The ’dry years’, however, have an opposite pattern. Since the

west side is saltier than the east side, the presence of two water masses are due to

the hypersaline state, and not due to river or precipitation. During the spring and

summer seasons, the precipitation and some river discharge may drop the salin-
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ity on the west side, reducing the horizontal and vertical stratification. However,

since the salinity in the bay is already high, the low river discharge doesn’t have

the strength to overcome evaporation, causing the west side to become saltier

than the east side after a few months. This pattern is seen after the rainy seasons,

where density is split again in two water masses. For a ’wet year’ the river dis-

charge increases stratification, and for a ’dry year’ the river discharge reduces the

stratification.

Based on equation 4.3, the black line on the first row of Figure 4.15 shows

the calculation of horizontal stratification only considering the two points that we

used as being close to Copano East and West stations. Since they are just two

points and they are very close to the river discharge and the south channel, the

values for horizontal stratification may differ from the bay. The terms for Equation

4.3 are: g = 9.8 ms�2 as gravity, �⇢ is the difference in density between the two

points, here considering only the surface, L is the distance between the two points,

which is approximately 16 km, and ⇢0 =1025 kg/m�3 is the reference density.

M2 = (g ⇤�⇢)/(L/⇢0) (4.3)

First, the values of horizontal stratification are lower than in the bay because

here we consider only the two points, but not the processes in between them. The

horizontal stratification between only these points only confirmed what we found

for the bay. As we can see, the years we considered ’dry years’ and ’transition

year’ had well defined pattern of high vertical stratification during fall and winter,

and a drop during summer and spring. For 2010 and 2015, considered ’wet years’,

what controlled the vertical stratification between these two points was the input

of fresh water in the bay. The values reached it maximum with the fresh water

and dropped after flooding events, indicating an attempt of salinity to adjust to

the fresh water income. the river discharge events.
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5. CONCLUSION

Copano Bay is a very particular environment, with a shallow interior, narrow

mouth and sporadic river discharge. The system is influenced by winds, tides and

two main rivers: Aransas River and Mission River. This configuration is common

in many bays in the Gulf of Mexico, but due to the small size (approximately 200

km2), the scale of processes that affect the bay are in an order of hours to days.

The proposed division in three different classes (’wet year’, ’dry year’ and

’transition year’) to show the salinity patterns in the bay showed satisfactory re-

sults when trying to understand how the inter annual precipitation and river dis-

charge regime would affect the salinity throughout the years.

The first analysis of the time series of salinity at the east and west side of the

bay, compared to the precipitation and river discharge levels, showed that in years

where the precipitation and river discharge are high, such as 2010 and 2015, the

salinity of the bay would stay in a range between 10 gkg�1 to 25 gkg�1, with spo-

radic drops in salinity due to river discharge events. The results also showed that,

during these years, the difference between the surface and the bottom salinity can

go as high as 20 gkg�1 on the west side and as high as 10 gkg�1 on the east side.

This difference is because the west side is more influenced by the river discharge

and the east side by the salty water coming from Aransas Bay. The difference

between the east and west side was also evidenced, showing an increase in hori-

zontal stratification during flooding events.

The transition between the ’wet years’ and ’dry years’ was 2011. During this

year, the river discharge and precipitation was very low, causing the loss of fresh

water (evaporation) to overcome the input of fresh water from precipitation and

river discharge. Because of that, salinity in the bay increased at almost a constant

rate, which cause a decrease in vertical stratification and horizontal stratification.

After 9 months, the salinity stabilized on the east side, while it kept increasing on
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the west side. This caused the west side to be saltier than the east side, resulting

on a inverse estuary.

During the period between January/2012 and December/2014, the salinity

was kept in a range 25 gkg�1 and 40 gkg�1, characterizing a hypersaline state

when compared to the salinity at Aransas Bay. Almost no river discharge hap-

pened in 3 years and the precipitation was also low when compared to 2010 and

2015. This pattern led to the maintenance of the inverse estuary state, indicated

by the negative values in Figure 4.5, third row.

The second analysis, based on local events, showed how the change in wind

direction would affect the salinity of the bay in a scale of hours and/or days.

The first case showed that during January/2010, a high precipitation and river

discharge event caused the salinity to drop on the west side by 8 gkg�1 and to

recover after 2 days. This event did not cause much difference on the east side.

The second event, during February/2013, showed how a hypersaline state would

be affected by the input of fresh water into the system. After the wind changed,

the salinity at the surface dropped from 41 gkg�1 to 10 gkg�1, and it took 3 days

to recover to the previous state. The reason why the salinity took one extra day

to recover is probably due to gradient between the fresh water and the water in

the bay. The bay would take longer to go from 10 gkg�1 to 41 gkg�1 than from 7

gkg�1 to 15 gkg�1. The last case, during May/2015, the maximum river discharge

episode within 5 years, caused the estuary to go from inverse to normal. The

estuary took now a week to adjust to the river discharge and the final salinity was

lower than before, indicating a change in the entire bay. For all three cases the

salinity on the east side did not change much.

Based on the point where the salinity in the bay reached its lowest value and

started to adjust, we estimated approximately how long the bay would take to

go from vertically stratified to mixed again. Equation 4.2 shows that the half life

for the salinity to start adjusting is approximately 10 hours, which is a very short
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time. This is probably due to the small size of the bay. As mentioned before, this

is just an estimate, since it depends on many other factors such as the amount of

fresh water, the salinity before the event, the wind and the dynamics.

The plots on the model’s output on Section 4.3.1 shows the evolution of the

river plume for all the three cases. The results showed that regardless of the

amount of fresh water, the river plume doesn’t reach the mouth of the bay, which

is controlled by the tide. This shows that the difference between the east and

west side is very well marked. Without any river discharge, the west side will

be mostly mixed, while the east side will be weakly stratified due to the constant

water exchange with Aransas Bay. As the fresh water enters the system, the west

side becomes stratified and the horizontal stratification along the bay is induced.

However, since the volume of fresh water is small compared to the total volume

of the bay, the plume stays trapped by the north and northwest sides of the bay.

The last analysis showed how the density changed over time in the bay, and

how it was affected by temperature and salinity. Also, the results showed the

response of vertical and horizontal stratification to changes in density and salin-

ity. Considering first a normal condition, without any river discharge, for a ’wet

year’, the horizontal stratification is due to the salty water coming from Aransas

Bay, which affects mostly the east side. The vertical stratification follows the tides

and the density range shows one main water mass. After a flooding event, the

vertical stratification is maximum, coinciding with an increase in the horizontal

stratification. The input of fresh water causes a larger range of salinity and the

density to split in two different water masses, one with lower salinity correspond-

ing to the west side of the bay, and one with a higher salinity, corresponding to the

east side of the bay. In this case, the input of fresh water increases the horizontal

stratification.

The second case, where the levels of river discharge and precipitation are low,

and the bay is in a hypersaline state, the year starts with two water masses with
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different density and salinity. The upper limit of density corresponds to the west

side, considering the fact that this side is saltier than the east side, while the lower

limit corresponds to the side closer to the mouth of the bay. As the rainy sea-

sons approach, followed by some river discharge, the salinity on the west side

decreases, causing a decrease on horizontal stratification. In this case, the input of

fresh water contributes to west side and east side to be more similar.

For both cases, the temperature changed as expected, i.e. higher temperatures

during summer and lower during winter. However, due to extreme events, subtle

drops on temperature would cause small perturbations on density, although not

enough to change the trend, which followed the salinity pattern.

One other thing that should be mentioned is that, according to Valle-Levinson

(2010), inverse estuaries have a more sluggish flux than normal estuaries, which

can affect the dynamics of the bay, specially on the west side. Considering that

Copano Bay is a source of fish and oyster farming, during the dry season, when

the upper bay is saltier than the mouth, the system is more susceptible to water

quality problems and to pollutants. Understanding the dynamics under these ex-

treme conditions is also important for the economy and a matter of public health.

Overall, the model validation showed that the three-dimensional model was

good at representing the trends in salinity and temperature. Even though we only

had data at the surface, the results give a good insight on how the salinity changes

in a vertical scale.

As a final conclusion, one can see that even though the mouth of Copano Bay

is dominated by the tides, the changes in salinity of the bay is mainly controlled

by the river discharge located away from the mouth, at the west side. The vari-

ations of the salinity volume due to tides have little effect on the bay, but the

input of river discharge can cause a decrease in the overall salinity depending on

the amount of fresh water. Still, considering the fact that the adjustment time of

the bay is greater than forcing time scale, such as the river discharge, tides and
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changes in the wind direction, Copano Bay can be considered an unsteady es-

tuary, where the shallow depths will cause the bay to be mostly mixed with the

possibility of having stratification depending on the river input. There is a clear

difference in the behavior of the bay regarding the east and west sides, and the

’wet years’ and ’dry years’ that should be taken in account for the next studies.
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6. FUTURE WORKS

As mentioned before in the first section, the monitoring system for Copano

Bay only uses a 2D model to describe the salinity pattern in the bay. By neglecting

the vertical stratification, the previous works have been applying the models to

oil spills, to ecology studies, in a way that the small changes in density are now

well represented.

In the future, this work will be sent to the scientific committee of the Mission

Aransas National Estuarine Research Reserve, in order to contribute to their re-

search on Copano Bay and Mission-Aransas estuary.

Also, more data is needed to better understand the dynamics of Copano Bay.

Since the system is so complex, small changes at the surface can and will cause

perturbations in density and stratification. By measuring the salinity, tempera-

ture and velocities not only at the surface, but also at the bottom, the models can

better estimate horizontal and/or vertical stratification, which will have influence

on oyster farming, on the economy, and how the bay responds to pollution and

hypersaline conditions.
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