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ABSTRACT

In this work we study structural features of interest in the kagome lattice in order

to provide a better understanding of out-of-plane guidance of light within a defect in

a kagome lattice cladding. With the aid of electromagnetic simulation we build and

compare dispersion maps of select electromagnetic modes found within the hexagonal

air-holes of the lattice and modes found in defects introduced into the lattice. Then,

with the self-similarity of the lattice in mind, we arrive at a geometric explanation

for the appearance of defect guided modes within the continuum of cladding states.

Additionally, we study subsets of the kagome lattice related to band-gap structures

to see their influence on dispersion and show that regions of guidance are influenced

by band-gaps which appear for a subset of the kagome lattice. With these insights we

provide design considerations to further decrease loss and widen regions of guidance

in kagome-clad fibers.
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1. INTRODUCTION*

In recent times the kagome fiber has emerged as part of a class of optical fiber

which supports guided modes within it’s core, where these guided modes exist in

a continuum of cladding states. These types of fibers are inherently lossier than

those guiding via photonic band-gap (PBG), and while increasing the number of

cladding rings in a PBG fiber has a pronounced effect on loss, there is some debate

regarding the role played by the cladding rings in a kagome clad fiber [1–3]. The

advantage, however, is that they display a much broader range of guidance [4–6]. For

example, hollow fibers with a kagome cladding have been shown to enable efficient

multioctave supercontinuum generation [7] and pulse compression to sub cycle pulse

widths and gigawatt peak powers [8]. Guidance in this case is usually attributed

to an inhibited coupling between the core and cladding modes resulting from either

a large phase mismatch or low spatial overlap between the two modes [4], as in

Fig. 1.1 for example. The high loss regions occur around resonances of the glass

immediately surrounding the core [2,9] where lattice modes approach their cutoff [10],

and additionally no guided modes are found at the lower frequency edge [7]. While

this description has had success in that it provides an avenue to lower loss through

further inhibiting coupling, as can be seen in hypocycloid core designs [3, 11–13], it

fails to explain why the defect modes appear within the continuum of cladding states

in the first place or why they are found at the points in the continuum that they

are. There is mention of the defect modes’ relation to Von Neumann-Wigner bound

states [7]–states built up by diffractive interference from a local potential [14]–but

*Sections of text reprinted with permission from ”Modal analysis of kagome-lattice structures”
by H Perez, S Blakley, A M Zheltikov, 2015. Laser Phys. Lett., 12, 055102–055108, Copyright 2015
by IOP Publishing.
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no further discussion of the characteristics of the potential which enables them to

exist in this case. The guidance characteristics of microstructured fibers have been

shown to have a sensitive dependence on the cross-sectional geometry [15] which

can be illustrated by the following example pictured in Fig. 1.2: beginning with the

same triangular tube lattice preform, pressurizing either only the inside of the tubes

or instead all of the hollow regions during the draw we can produce either a PBG

fiber [15–21] or a kagome [4, 11, 22, 23] fiber, respectively, the two of which guide

light in fundamentally different ways [1, 4, 24]. In this work we study the influence

of structural features of the kagome lattice on guidance in a defect with the help

of a freely available software package which computes fully-vectorial eigenmodes of

Maxwell’s equations with periodic boundary conditions by preconditioned conjugate-

gradient minimization of the block Rayleigh quotient in a plane wave basis [25]. One

set of features we explore are those related to PBGs, inspired by an account in the

literature stating that an arrangement of rods placed at the node sites in the kagome

lattice gives rise to band-gaps [26], as well as the concentric hexagon model used

in [1, 2] which is shown to have a similar loss profile compared to the full structure,

even though the guidance characteristics of the simplified model bear more similarity

to the band-gap structure it approximates. Despite the kagome cladding lacking

PBGs, we shall provide evidence that band-gaps influence guidance characteristics

and density of states (DOS). The other structural feature we explore is inherent to

the kagome lattice, namely, the self-similarity at different length scales. Taking a

kagome lattice and scaling it up to a new lattice pitch Λ′ = mΛ where m is an odd

number, we can take this blown up structure and fit it over our original structure as

exemplified by Fig. 1.3. This leads us to a geometric explanation for the appearance

of guided modes and we see that this also affects the density of cladding states and

regions of guidance.
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(a) (b)

Figure 1.1: (a) Fast oscillations of the cladding mode vs (b) the fundamental defect
mode.

(a) (b) (c)

Figure 1.2: (a) An arrangement of tubes stacked into a triangular lattice can be
drawn to either (b) a PBG geometry or (c) a kagome lattice, the two of which can
be used to guide light in fundamentally different ways.

Figure 1.3: Kagome lattice with a larger scale kagome lattice overlaid and bolded
for clarity

3



2. SIMULATION RESULTS

Throughout our simulations the glass index was kept at a constant n = 1.4585

corresponding to the index of silica glass between the ultraviolet and mid-IR [27]. In

order to test the influence of the cladding on defect guided modes we simulated modes

for four different core sizes in two orientations as compared to the surrounding lattice.

These are shown below in Fig. 2.1. Modes were identified based on their transverse

power profile and we considered mainly the fundamental mode and the second and

third order circularly symmetric modes of the defect as well as lattice modes of the

same symmetry which appeared in the hexagonal air holes. The computed modes

have normalized frequency α = Λ/λ, where we have taken Λ to be the lattice pitch

and λ is the free space wavelength.

(a) (b) (c) (d)

Figure 2.1: The four cores used in this study. (a) single-cell defect offset 30◦ as
compared to lattice hexagons. Indicated within are the pitch Λ and glass thickness
t. (b) Larger core in the same orientation as (a). (c) Core in same orientation as
lattice hexagons. (d) 7-cell defect in same orientation as (c).

For a material of a given thickness t and refractive index n, there can be found

resonances where incident light of wavelength λ reflected from the material’s two in-
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terfaces destructively interfere. These wavelengths are given by λ = 2t
√
n2−1
m

where m

is a natural number. All modeled geometries were set to a transverse glass thickness

of t = 0.0346Λ, implying that the normalized resonance frequencies in our case are

found at Λ/λ = m(13.5954). Considering the glass surrounding the core of our fiber,

we should expect to find no guided mode at these resonance frequencies.

2.1 Effects of geometric self-similarity

With infinitely thin boundaries the self-similarly of the kagome lattice would be

exact, and we need not worry about glass resonance since it is inversely proportional

to glass width. However, given the finite thickness of our glass walls we must take

into account that the different scales will have different glass width to lattice pitch

ratios. We therefore calculated explicitly the modes for the next level scale kagome

lattice. In reference [28] the modes of the base lattice are rescaled in an attempt to

predict dispersion of overlaid lattices and defects. We would like to point out that

this is inaccurate since the major perturbation seen in the base lattice is near the

glass resonance of the core surround and by rescaling the base lattice modes they

have rescaled this resonance as well. The dispersion of modes found in a hexagonal

air hole in the kagome lattice–even if this air hole is a defect–has been shown to be

reasonably well predicted by the dispersion calculated for modes of a single dielectric

tube [10,28]. The effective index of a dielectric tube is given by neff = 1− 1
2

(
umnΛ
2πRα

)2

,

where α is normalized frequency, umn is the nth zero of the mth Bessel function Jm,

and the radius R of the air hole is approximated by R = 1
2
(R1 +R2) where R1 is the

apothem and R2 is the circumradius of the hexagonal air hole. Since dielectric tube

dispersion is in terms of cylindrical Bessel functions, we shall refer to these as ’cylinder

modes’ for the remainder of this work. For comparison, we plot below in Fig. 2.2

the modes found explicitly for the 3Λ case rescaled by the base lattice pitch along

5



with the corresponding cylinder modes, the base lattice modes rescaled to predict

the 3Λ case, and the base lattice modes. We see that the rescaled lattice modes

appear to be better predictors at frequencies below ∼4 and the cylinder modes are

a better approximation at higher frequency. Since the low frequency edge is avoided

in applications, we believe the cylinder modes are of more use. Also pictured in this

figure are the defect modes for the geometry shown in Fig. 2.1d which is basically

a hexagonal air-hole of the 3Λ scale lattice. Notice that the defect modes show

excellent agreement with the 3Λ lattice modes and even the base lattice modes show

some overlap with the higher order modes. This shows that a higher order circularly

symmetric mode from one of the larger scale lattices can be expected to coincide

with the fundamental or other low order circularly symmetric mode of the small

scale lattice. We can furthermore expect the same thing in the case of a defect in the

lattice. Essentially, modes in the hollow defect are possible because the lattice itself

shows modes within its hollow regions. Following this logic, higher order circularly

symmetric modes of the large scale sub-lattices such that the central spot fits within

the defect should coincide with modes found in the defect as illustrated in Fig. 2.3.

The frequency of the equivalent modes of a large scale lattice as compared to

those of the base lattice should be approximately equal when normalized by the

lattice pitch for that scale, and therefore will be of lower frequency when normalized

by the base lattice pitch. Thus, in the case of a lattice extending to infinity there

should be an ever increasing density of modes as we approach zero frequency. In the

finite structure enclosed within a fiber, the density of modes at the lower frequency

end will be limited by the largest sub-structure which can still be considered to be

a subset of a kagome lattice. In the interest of time we approximated the modes for

the next several scale levels with those for dielectric tubes of appropriate size–up to

13Λ based on largest scale hexagon seen in fibers in the literature [22]. For each scale

6



Figure 2.2: For comparison we plot the base lattice modes (red triangles), modes for
3Λ scale lattice (blue diamonds), rescaled base lattice modes (lime triangles), defect
modes for the geometry shown in Fig. 2.1d (black circles), and cylinder modes for
the defect (orange lines). Marked with the vertical line is the resonance of the core
surround at Λ/λ = 13.5954.

Λ′ = mΛ, m an odd number between 3 and 13, we calculated cylinder modes up to

order 2m and these can be seen in Fig. 2.4. Interestingly, we observe some empty

regions as well as regions with denser sets of these cylinder mode approximations.

Focusing on the low frequency end, where the curves are all very steep, we see that

this set of modes is responsible for the lack of defect modes found at low frequency

since a laser with a nonzero linewidth launched into the core will try to couple to

many modes of different spatial profiles and effective indices.

Next we overlapped the defect modes for each geometry and the cylinder modes

for each scale, removing any cylinder modes which did not overlap the defect modes.

7



(a) (b)

Figure 2.3: (a) A higher order mode with circularly symmetric center. (b) Kagome
lattice with a defect shown superposed over the mode shown in (a).

Figure 2.4: Base lattice modes shown in red triangles, modes for 3Λ scale lattice
shown in blue triangles, and modes for other relevant scales shown with teal lines.
Marked with the vertical line is the resonance of the core surround at Λ/λ = 13.5954.
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This is illustrated below in Figs 2.5 – 2.8 going from smallest to largest core. The

defect modes are seen to be enveloped by a set of cylinder modes where some are a

better approximation at lower frequency and others are a better approximation at

higher frequency. Additionally, for each core the defect modes are seen to overlap

more cylinder modes and become scattered at the low frequency end. These obser-

vations support the idea that the defect modes stem from the lattice and that the

diverging cylinder mode curves at the low end lead to no guided mode in experi-

ment. An experimental study might be able to explore wether a defect mode found

overlapping a dense sets is less lossy than one found in an empty region.

9



(a)

(b)

Figure 2.5: Defect mode dispersion (black circles) for the geometry shown in the
inset of (a) along with dispersion for nearby cylinder modes (teal lines), cylinder
modes for the defect mode size (red lines), and nearby modes from the 3Λ scale
lattice (orange triangles). (a) shows the lower frequency envelope and (b) shows the
higher frequency envelope. 10



(a)

(b)

Figure 2.6: Defect mode dispersion (black circles) for the geometry shown in the
inset of (a) along with dispersion for nearby cylinder modes (teal lines), cylinder
modes for the defect mode size (red lines), and nearby modes from the 3Λ scale
lattice (orange triangles). (a) shows the lower frequency envelope and (b) shows the
higher frequency envelope. 11



(a)

(b)

Figure 2.7: Defect mode dispersion (black circles) for the geometry shown in the
inset of (a) along with dispersion for nearby cylinder modes (teal lines), cylinder
modes for the defect mode size (red lines), and nearby modes from the 3Λ scale
lattice (orange triangles). (a) shows the lower frequency envelope and (b) shows the
higher frequency envelope. 12



(a)

(b)

Figure 2.8: Defect mode dispersion (black circles) for the geometry shown in the
inset of (a) along with dispersion for nearby cylinder modes (teal lines), cylinder
modes for the defect mode size (red lines), and nearby modes from the 3Λ scale
lattice (orange triangles). (a) shows the lower frequency envelope and (b) shows the
higher frequency envelope. 13



2.2 Band-gap related sub-structures

To explore the effects of band-gaps on guidance in the kagome lattice we con-

structed several models. Beginning with the concentric hexagon model of the kagome

lattice we found the band-gaps for a Bragg mirror with matching parameters. For

this particular multilayer film we found the existence of three narrow band-gaps cen-

tered around low normalized frequencies of 0.57, 1.11, and 1.61. PBGs are always

present for a multilayer film, however, complete band-gaps are only present for light

incident normal to the stack [29]. Therefore, we don’t expect these to play any

significant role in guidance.

In the literature can be found 2D band-gap structures in the form of tubes ar-

ranged in either a triangular lattice or a honeycomb lattice [30]. In Fig. 2.9 we

highlight a hexagonal and triangular subsection of the kagome lattice to be broken

off at the vertices in order to be viewed as either a triangular lattice of hexagonal

tubes or as a honeycomb lattice of triangular tubes. We began by looking for band-

gaps in the triangular lattice of hexagonal tubes and found that at the non-zero

starting distance we chose, the arrangement did display band-gaps and these dipped

below the air-line minutely. However, as we decreased the distance between tubes we

observed the band-gaps rise above the air-line and then disappear altogether. There-

fore, we concluded this model to not be useful for guidance in a kagome lattice. With

that result we abandoned the search for band-gaps in the honeycomb lattice as we

expected a similar outcome.

To explore the effect of any band-gaps stemming from the node sites of the kagome

lattice, we defined an effective node radius as half the average width of the glass when

crossed along the axis connecting the two hexagons on either side of the node and an

axis perpendicular to this. rnode = t
2
( 1√

3
+ 1), where t is the transverse thickness of

14



(a) (b) (c) (d)

Figure 2.9: (a) The different subset units of the kagome lattice highlighted. (b)
The nodes circled in red remain fixed at their location in the base lattice, while the
hexagons (green) and triangles (yellow) would be broken at the vertices and separated
spatially to be a (c) triangular and (d) honeycomb ’tube’ lattice, respectively.

the glass struts. The lattice air-hole modes were found to definitely be influenced by

the band-gaps found from the kagome-node lattice as can be seen below in Fig. 2.10.

No air-hole modes for the kagome lattice were found to exist within the band-gap

and even the continuity of the dispersion is seen to be cut by a band-gap dipping

below the air-line, suggesting that the band-gaps stemming from the nodes play a

role in defect guidance. Additionally, this band-gap coincides with a low DOS region

for the full lattice. Also shown in Fig. 2.10 are the air-hole modes for the 3Λ scale

kagome lattice and the band-gaps for the equivalent nodes. The relative node size for

this scale is smaller compared to the base lattice, and once again we see the kagome

lattice air-hole modes are bounded above by the band-gap. However, the gap dips

only minutely below the air-line, and thus, we expect larger nodes to be beneficial

for guidance.

Next we mapped dispersion for modes in a node lattice and a node lattice with

a ’7-cell’ defect in order to compare these to the analogous cases with a full kagome

lattice. In Fig. 2.11 we show that modes similar in profile to those found in the

full kagome lattice were found in the node lattice, but dispersion for these two sets

15



Figure 2.10: Base lattice modes shown in red triangles, band-gaps for matching node
size shown in blue squares. 3Λ scale lattice modes shown in green triangles, and
band-gaps for matching nodes for 3Λ scale node size shown in purple squares. Note
how the band-gap stemming from the base lattice node size cuts into the dispersion
curve for the base lattice modes, unlike for the 3Λ scale.

overlapped only slightly. For the 7-cell defect, however, Fig. 2.12 shows that the

mode profile as well as the dispersion of defect modes in each case is seen to agree

very well especially as frequency is increased, suggesting that the nodes of the kagome

lattice are a major contributor to defect guidance.

Defect mode dispersion going from smallest to largest core geometry can be seen

in Figs. 2.13 – 2.16 along with the band-gaps from the node lattices corresponding

to the base lattice and 3Λ lattice and the modes for those two lattices to see where

they fall in relation to each other. Comparing these figures, we see that the effect

on dispersion from enlarging the core is to push the low frequency edge to lower

16



(a) (b)

(c)

Figure 2.11: (a) Mode found in kagome lattice. (b) Mode found in node lattice. (c)
Comparison of full lattice modes (black) to analogous modes found in node lattice
(red), and band-gaps from the node lattice (blue).

frequency while also flattening the curve and lifting it closer to the air line for higher

frequencies. Near the glass resonance we observe that the perturbation from this

resonance is greatly reduced for the 7-cell defect. This can be explained by the fact

that the defect modes are further away in effective index compared to the base lattice

17



(a) (b)

(c)

Figure 2.12: (a) 7-cell defect mode found in kagome lattice. (b) ’7-cell’ defect mode
found in node lattice at about the same frequency. (c) Comparison of defect modes
found in full kagome lattice (black) to analogous defect modes found in node lattice
(red).

18



modes as well as further encompassed within the band-gaps of the base lattice nodes.

The small perturbation seen in Fig. 2.16 also indicates that perhaps the destructive

effects of the glass resonance can be overcome.

19



(a)

(b)

Figure 2.13: Dispersion map of low order circularly symmetric modes (black circles)
for core geometry shown in inset of (a), along with base lattice modes (red triangles),
band-gaps for the base lattice node size (blue squares), 3Λ scale lattice modes (green
triangles), and band-gaps for the 3Λ scale node size (purple squares). (b) is a zoomed
in version of (a). 20



(a)

(b)

Figure 2.14: Dispersion map of low order circularly symmetric modes (black circles)
for core geometry shown in inset of (a), along with base lattice modes (red triangles),
band-gaps for the base lattice node size (blue squares), 3Λ scale lattice modes (green
triangles), and band-gaps for the 3Λ scale node size (purple squares). (b) is a zoomed
in version of (a). 21



(a)

(b)

Figure 2.15: Dispersion map of low order circularly symmetric modes (black circles)
for core geometry shown in inset of (a), along with base lattice modes (red triangles),
band-gaps for the base lattice node size (blue squares), 3Λ scale lattice modes (green
triangles), and band-gaps for the 3Λ scale node size (purple squares). (b) is a zoomed
in version of (a). 22



(a)

(b)

Figure 2.16: Dispersion map of low order circularly symmetric modes (black circles)
for core geometry shown in inset of (a), along with base lattice modes (red triangles),
band-gaps for the base lattice node size (blue squares), 3Λ scale lattice modes (green
triangles), and band-gaps for the 3Λ scale node size (purple squares). (b) is a zoomed
in version of (a). 23



3. OUTLOOK AND CONCLUSIONS

We conclude with some design and operating suggestions which we believe will

enhance guidance in kagome clad fibers. First, we note that the low frequency region

remains to be avoided. In this region the cylinder mode curves are all very steep and

correspond to low order circularly symmetric modes of large scale lattices. Since any

real laser has a nonzero line width this implies that the light will try to couple to a

number of modes not only with very different propagation constants but also very

different mode profiles where some of those mode profiles may be larger than the

defect size, essentially killing the mode. Strut thickness, especially surrounding the

core, appears to be the major perturbing factor dictating high loss regions through

glass resonance effects. The location of this resonance is inversely proportional to

the thickness of the glass, and therefore thinning the struts should consequently

widen the regions of guidance. Increasing the node size should enlarge the region a

band-gap covers below the air-line while also increasing the number of gaps dipping

below the air-line. This will serve to separate the indices of refraction of the core

and lattice modes while also enclosing the core mode further within the band-gap.

Equivalently, and of more use given the suggestion for thin struts, increasing the

refractive index at the node sites should have the same effect. To accomplish this

we suggest modifying the glass tubes, perhaps through chemical vapor deposition,

before stacking them into a preform for drawing, as in Fig. 3.1.

Contrary to the current literature we expect to see an improvement in guidance

with an increase in number of cladding rings, however, because of the way the kagome

lattice scales we expect that very many cladding rings are required to see a significant

improvement. For a given set of lattice parameters, designing the core so that it’s
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(a) (b)

Figure 3.1: (a) A modified glass tube, where the modified segments are indicated in
red. (b) A preform stack of glass tubes of the type shown in (a), arranged so that
the modified segments of the tube lie at the node sites.

expected dispersion lies along a dense set of large-scale-lattice modes may also aid

in reducing loss.

We have one final remark regarding the coherence of the fundamental mode.

Between the high loss regions bounded below by the low frequency edge and above

by the first glass resonance, the core modes show some perturbations but not enough

perturbation that we expect modes to become mixed. This supports the idea that the

mode is coherent between these boundaries, and we expect also between subsequent

glass resonances. With the design considerations mentioned above we believe it may

be possible for the constructive interference which makes guidance in this structure

possible to beat out the destructive interference from the core surround, bridging

the gap between these low loss regions and making possible a fiber with ultra wide

regions of guidance.
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