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ABSTRACT 

 

The framework geology controls on modern barrier island transgression and the 

relationship of these controls to subsurface structure, hydrology, and island geomorphology 

are not well understood. Recent evidence suggests that alongshore variations in pre-

Holocene geology of barrier islands modify nearshore hydrodynamic processes and 

sediment transport, ultimately affecting how barrier islands will respond to storms and 

relative sea-level rise. Explorations of Holocene barrier island geology are usually based 

on cores to supplement bathymetric, onshore/offshore seismic and/or ground-penetrating 

radar (GPR) surveys. Alternative near-surface geophysical methods including 

electromagnetic induction (EMI) sensors are increasingly being used for coastal research 

because they are non-invasive, provide continuous subsurface information across a 

variety of sub-environments, are capable of characterizing large areas in a short time, 

and are considerably more cost effective than the abovementioned techniques. This 

dissertation demonstrates the utility of using EMI methods for mapping large-scale (10
1
 

– 10
2
 km) barrier island framework geology at Padre Island National Seashore (PAIS), 

Texas, USA. Instrument calibrations and tidal experiments suggest that although 

hydrology influences EMI signals along the beach, the effect of changing hydrology is 

not statistically significant over large spatial scales. For the first time, this study shows 

the importance of statistically modeling EMI spatial data and digital elevation model 

(DEM) extracted morphometrics to examine the statistical relationships (or lack thereof) 

between framework geology and geomorphology. A family of fractional autoregressive 
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integrated moving average ARIMA (p,d,q) models demonstrate each spatial data series 

is most accurately modeled by a single parameter, d, indicating a strong tendency 

towards long-range dependence (LRD) that suggests self-similarity. Dune height and 

EMI σa have nearly identical d-values (~ 0.35), which suggests a statistically significant 

connection between framework geology and dune height at a global scale (100 km). 

Variations in d at both regional (~30 km) and local (10 km) scales differ by varying 

degrees, providing further evidence that framework geology controls are more important 

at the largest spatial scales.  By integrating EMI and DEM morphometrics with 

multivariate analysis and ARIMA modeling, this study offers a robust and novel way for 

accurately quantifying the entire geological complexity of a barrier island using only 

three parameters (p,d,q). Moreover, this study shows that EMI sensors are 

complementary to and offer significant advantages over traditional methods in support of 

an improved understanding of large-scale barrier island transgression.  
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NOMENCLATURE 

 

AEM Airborne electromagnetic  

AR Autoregressive  

ARMA Autoregressive moving average 

ARIMA Autoregressive integrated moving average 

CSEM Controlled source electromagnetic 

DEM Digital elevation model  

DOI Depth of investigation 

EM Electromagnetic 

EMI Electromagnetic induction 

ERT Electrical resistivity tomography 

FARIMA Fractional autoregressive integrated moving average 

FEM Finite element method 

fBm Fractional Brownian motion 

fGn Fractional Gaussian noise 

GPR Ground-penetrating radar 

GPS Global positioning system 

GSSI  Geophysical Survey Systems Incorporated  

I Imaginary (in-phase) 

LiDAR Light detection and ranging  

LIN Low induction number 
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LRD Long-range dependence 

MA Moving average 

MHW Mean high water 

MLW Mean low water 

MLLW Mean lower low water 

MTL Mean tide level 

NOAA National Oceanographic Atmospheric Administration  

PAIS Padre Island National Seashore 

P-MODE In-line orientation 

PSD Power spectral density  

Q Quadrature (out of phase) 

R Statistical programming language 

RMSE Root-mean-square error 

R/S Rescaled-range  

RX Receiver  

S/N Signal-to-noise ratio  

TDEM Time-domain electromagnetic  

TEM Transient electromagnetic  

T-MODE Broadside orientation 

TX Transmitter 

VD Vertical dipole 

WT Water table 
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β Slope of PSD 

d Degree of differencing 

D Fractal dimension 

δ Skin depth 

h Instrument height (above the ground) 

H Hurst parameter 

kHz Kilohertz 

kyr Kilo year  

H0 Primary magnetic field 

HS Secondary magnetic field 

MHz Megahertz 

mS/m Milliseimens per meter 

μ Magnetic permeability 

Myr Million years 

p Order of autoregressive model 

q Order of moving average model 

s Coil separation (between TX-RX) 

σ Electrical conductivity  

σa Apparent conductivity  

σ
2 

Variance  
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CHAPTER I  

INTRODUCTION AND PROBLEM STATEMENT 

 

Many coastlines in the United States are comprised of barrier islands, which Hayes 

(2005, pg. 117) defines as: ‘‘An elongated, shore-parallel accumulation of 

unconsolidated materials (primarily sand), which is separated from the mainland by 

bays, lagoons, or wetland complexes.” These low-elevation coastal landforms consist at 

least 10% of the world’s coastline (Cromwell, 1971; Stutz and Pilkey, 2001, 2011). The 

total length and area of U.S. barrier islands, which span 18 states along the U.S. Atlantic 

and Gulf Coasts are ~ 3,700 km and 6,800 km
2
, respectively (Zhang and Leatherman, 

2011). Barrier islands are the first line of defense from storms and sea level rise that would 

otherwise directly impact environmentally and economically important areas of the coast 

(McBride et al., 1992). Along the Atlantic and Gulf Coasts of the United States, barrier 

islands are the predominant geomorphic features and are particularly susceptible to storm-

surge flooding and erosion in response to climate change and rising sea-level (Zhang and 

Leatherman, 2011). Globally, more than 60% (> 3.8 billion people) of the world’s 

population lives within 100 km of the coast (Vitousek et al., 1997). There is more than 1.4 

million people living on barrier islands, according to 2000 census data and the 

population densities of barrier islands are three times those of coastal states on average, 

with an increased population by 14% from 1990 to 2000 (Zhang and Leatherman, 2011). 

Despite the inherent risks of living on barrier islands, the U.S. is experiencing continued 

population growth along its coast. 
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With the threat of increased sea level rise, extreme storms and coastal flooding, there 

are considerable challenges for coastal scientists, engineers, policy makers, and the public 

for developing sustainable management strategies that support resilient coastal communities. 

Part of the problem in understanding the susceptibility of barrier response to sea level rise 

and storms is that few studies have investigated the large-scale evolution of the entire island, 

which has been suggested to be influenced by pre-existing geologic features to varying 

degrees (e.g., Belknap and Kraft, 1985; Riggs et al., 1995; Lazarus and Murray, 2011; Lentz 

and Hapke, 2011). Most work has been modeling studies at this scale and there is a need for 

field data to guide the models. For example, shoreline evolution has been shown to be 

controlled (in part) by geologic features that can vary over a wide range of spatial and/or 

temporal scales (e.g., McNinch, 2004; Hapke et al., 2010; Houser, 2012). Our ability to 

understand and predict this variability is still limited, leading to misinterpretation of 

coastal change information (Stive et al., 2002), which impedes informed decision 

making. This urgency, both to humans and to terrestrial and aquatic ecosystems, makes it 

imperative that we understand the multi-scale processes and interactions between geology 

and surface morphology in these dynamic and vulnerable coastal environments (see Talley 

et al., 2003).  

Previous studies suggest the underlying geology otherwise termed framework 

geology (in this study) of barrier islands can play a significant role in the evolution of coastal 

environments (Kraft et al., 1982; Belknap and Kraft, 1985; Evans et al., 1985; Riggs et al., 

1995; Short, 2010). For example, pre-existing structures such as paleo-channels, offshore 

ridge and swale bathymetry, and relict transgressive features have been suggested to 
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influence geologic variations along the coast (see McNinch, 2004; Hapke et al., 2010; Lentz 

and Hapke, 2011; Houser, 2012).  At the coastal plain scale (~ 10
2
 km), framework geology 

influences the structure of the coastal plain, that may include glacial, fluvial, tidal, and/or 

inlet paleo-valleys and channels (Belknap and Kraft, 1985; Demarest and Leatherman, 1985; 

Colman et al., 1990), and paleo-deltaic systems offshore or beneath the modern coastal plain 

(Coleman and Gagliano, 1964; Frazier, 1967; Otvos and Giardino, 2004; Twichell et al., 

2013; Miselis et al., 2014).  At the shelf scale (~ 10
1
 km), framework geology consists of 

feedbacks between geologic features and relict sediments within the littoral system (e.g., 

Riggs et al., 1995; Schwab et al., 2000; Rodriguez et al., 2001; Honeycutt and Krantz, 

2003) and is an important control on dune formation (Houser et al., 2008) and shelf 

features, including sand ridges (e.g., Browder and McNinch, 2006; Schwab et al., 2013).  

At the shoreface scale (< 1 km), framework geology involves meso-to-micro-scale 

sedimentological changes (e.g., Murray and Thieler, 2004; Schupp et al., 2006), 

variations in thickness of shoreface sediments (Miselis and McNinch, 2006), and spatial 

variations in sediment transport across the island (Houser and Mathew, 2011; Lentz and 

Hapke, 2011; Houser, 2012). However, most of what is known regarding barrier island 

framework geology is based on studies at relatively small spatial-scales (e.g., McNinch, 

2004; Hapke et al., 2010; Lentz and Hapke, 2011). 

Little is known about the large-scale (10
1
 – 10

2
 km) geologic structure of barrier 

islands and the important length-scales of subsurface features that may influence alongshore 

variations in surface morphology, which in turn affects island response to storms and sea-

level rise (i.e., transgression). Riggs et al. (1995) state that: “It is essential to understand 
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this geologic framework before attempting to model the large-scale behavior of these 

types of coastal systems….we must understand the detailed geologic framework 

underlying the shoreface and the inner shelf, as well as the physical dynamics operating 

within and upon regional segments of the shoreface system.” Therefore, detailed 

assessments of framework geology are critical for coastal management and risk evaluation 

for both natural and anthropogenically-modified barrier islands (Hapke et al., 2010; Lentz 

and Hapke, 2011; Lentz et al., 2013).  

Part of the difficulty in examining the relationships between framework geology 

and island morphology is that we cannot directly observe the large-scale framework 

geology below the surface using traditional labor intensive, low-resolution techniques 

such as coring. Thus, coastal scientists have increasingly turned to geophysical 

techniques including seismic imaging (e.g., Emery, 1969; Simms et al., 2006), ground-

penetrating radar (e.g., Leatherman, 1987; Jol et al., 1996; Heteren et al., 1998; Neal and 

Roberts, 2000; Buynevich and Fitzgerald, 2003), and more recently, electromagnetic 

induction (e.g., Seijmonsbergen et al., 2004; Vrbancich, 2009) to characterize the 

underlying geology along the coast. EMI sensors are an attractive alternative to 

conventional methods used for barrier island research because they are non-invasive, 

provide continuous subsurface information across a variety of sub-environments, are 

capable of characterizing large areas in a short time, and are considerably more cost-

effective than the abovementioned traditional geologic and/or geophysical techniques 

(Weymer et al., 2015b). However, EMI has been underutilized for several reasons 
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including: lack of awareness of the method by non-geophysicists, and data reliability 

(see George and Woodgate, 2002). 

The purpose of this dissertation is to demonstrate the utility of EMI in coastal 

geologic surveying and integrating EMI with aerial LiDAR data to quantify the 

important process-form relationships between framework geology and surface 

morphology with respect to island response to storms and sea-level rise. Previous studies 

at the coastal plain scale, shelf scale, and shoreface scale suggest that framework 

geology plays an important role in the large-scale evolution of modern coastlines, but the 

spatial correlation between subsurface structures (e.g., paleo-channels) and surface 

features (e.g., beach width, and dune height) is not known, or has only been 

demonstrated locally. Most geologic studies mentioned above have been conducted at 

relatively small or coarse spatial scales. This study is unique in its attempt to use EMI 

for higher resolution mapping over a much larger scale.  

 

Objectives   

The primary objective of this research project is to obtain field data of sufficient 

quality and quantity to allow a detailed evaluation of using EMI apparent conductivity data 

σa as a proxy for determining the geologic controls that may influence island transgression 

and evolution of the world’s longest undeveloped barrier island; Padre Island National 

Seashore (PAIS), Texas, USA. There are three working hypotheses driving the study design:   

1. Electromagnetic induction (EMI) is a viable method for investigating subsurface 

barrier island framework geology 
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2. Subsurface features are related to/mirrored in the surface morphology along the 

shoreline and foredune ridge 

3. Framework geology controls the current shoreline and dune morphology to 

varying degrees along the island  

In order to test these hypotheses, three research objectives must be met: 

1. Use EMI to measure variations in subsurface geology and hydrology along the 

shoreline of PAIS 

2. Analyze the long-range-dependent structure (or lack thereof) of alongshore EMI 

measurements and DEM-extracted morphometrics  

3. Determine, statistically, the spatial connections (or lack thereof) between EMI 

and DEM morphometrics along the island 

The fieldwork and analytical work that motivates these hypotheses and objectives is 

presented in the following chapters. 

 

 

Background 

Barrier island response to sea level rise and storms 

Over geologic timescales, change in sea-level is the dominant factor controlling 

barrier island evolution and migration. It is well documented that the framework geology 

also plays a significant role in determining how barrier island systems evolve (Kraft, 

1971; Kraft and John, 1979; Kraft et al., 1982; Belknap and Kraft, 1985; Riggs et al., 

1995; Dillenburg et al., 2000; Harris et al., 2005; Short, 2010). The overall configuration 
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of coastal barriers is primarily controlled by geologic features, which in turn influence 

wave refraction and attenuation, beach location, shape, type, morphodynamics and 

circulation. These processes govern sediment transport across the dunes and barrier 

system (Short, 2010). Consequently, geologic features also control contemporary 

response of the barrier island to extreme storms, and in turn the rate of island 

transgression to variations in sediment supply or an increase in mean sea-level (Houser, 

2012).  

Barrier island transgression is accomplished primarily by relative sea-level rise 

and extreme storms that are capable of breaching the dunes and depositing sediment to 

the back-barrier in the form of blowouts, washover fans and terraces (Morton and 

Sallenger, 2003; Stone et al., 2004; Houser, 2012). Houser (2012) suggests that the 

threshold storm surge required for foredunes to be overtopped or breached decreases as 

sea-level rises, and subsequently the probability of island overwash and island 

transgression increases. Dune scarping can also induce blowouts that are part of the 

transgression and can potentially create washover channels during extreme storms 

(Houser, 2012). Breaching and overwash is focused in areas where dune height is low 

(i.e., overwash regime), creating the potential for rapid transgression and even 

overstepping (Sallenger, 2000). The two-dimensional storm impact model proposed by 

Sallenger (2000) does not account for alongshore variability in dune height. Along 

relatively short sections of the same beach there can be significant differences in 

foredune height which may lead to different transgression histories alongshore (Weymer 

et al., 2015a). In areas where the dune heights are low, lateral dune erosion through the 
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expansion of washover conduits can develop, whereas, in areas where the dunes are high 

only the base of the dune is scarped and sediment is transported seaward.  

Morphodynamics of barrier islands are governed by changes in littoral sediment 

supply and sea level, as well as to the dynamic processes associated with storms (Hayes, 

1979; Houser et al., 2008; Davidson-Arnott, 2010; Houser, 2012). When a welded bar 

becomes subaerially exposed, it acts as a sediment source available for aeolian transport, 

thus enabling the foredune ridge to develop and migrate over time (Sherman and Lyons, 

1994; Aagaard et al., 2004). The precise location of overwash during storms and dune 

erosion depends on the correspondence of alongshore variations in the incident forcing 

and on existing gaps and low lying areas along the dune line (Dolan and Hayden, 1981; 

Suter et al., 1982; Orford and Carter, 1984). As gaps in the dune line are breached and 

the berm crest is exceeded, sediment is transported landward as overwash and deposited 

as washover fans and, possibly, terraces if dune breaching is more extensive alongshore 

(Morton et al., 2000; Sallenger, 2000; Donnelly et al., 2006; Matias et al., 2008; Matias 

et al., 2009). It is by this process that barrier islands (in the absence of human 

modification) keep pace with sea level rise and transgress as sediment is redistributed 

landwards by successive storm events. 

From the aforementioned discussion, the rate of island transgression depends on 

the washover as controlled by extreme storm events, related to the height and extent of 

the foredunes (see Sallenger, 2000; Masetti et al., 2008). The height of a dune when a 

storm makes landfall depends on the time since the previous storm, the level of erosion 

sustained in that storm and the rate of post-storm dune recovery (Houser and Hamilton, 
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2009). The rate of recovery, therefore, depends on the regional sediment budget (Psuty, 

1992), and the ability of sediment to be transported from the beach and backshore to the 

dune (Short and Hesp, 1982; Sherman and Bauer, 1993). The preserved sedimentary 

structures can provide a relative chronology of how the beach-dune system responds to 

and recovers from extreme storms and the implications for island response to relative 

sea-level rise (i.e., transgression) (Houser et al., 2015).  

 

Traditional methods for investigating barrier island geology 

Studies investigating the framework geology controls on barrier island transgression 

have primarily focused on a specific sub-environment within the barrier island system (e.g., 

inner-shelf, nearshore, beach, backbarrier, bay). In the analysis of large-scale coastal 

evolution, the data collection techniques available force an arbitrary compartmentalization of 

each sub-environment within the barrier island system. Inner-shelf  and nearshore studies 

mainly use bathymetric and seismic surveys respectively because these methods are best 

suited for shallow water and offshore environments (e.g., Riggs, 1979; Evans et al., 1985; 

Riggs et al., 1995; Foyle and Oertel, 1997; Schwab et al., 2000; Rodriguez et al., 2001; 

McNinch, 2004; Browder and McNinch, 2006). Conversely, beach and barrier studies have 

tended to use coring and/or remote sensing techniques (e.g., Otvos, 1970; Riggs et al., 1995; 

Fitzgerald and Van Heteren, 1999; Morton, 2002; Jackson et al., 2005; Mallinson et al., 

2010; Cooper et al., 2012). It is important to note that the various methods listed above are 

used for different aims.  
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Figure 1-1. Conceptual model showing the traditional and contemporary geologic and 

geophysical methods used for investigating barrier island framework geology across the 

coastal zone.  

 

 

Despite the utility of these methods, coring provides only point-source information 

and in many cases limited penetration depth, whereas seismic methods are not well suited 

for land-based surveys in unconsolidated, sandy sediments (Leatherman, 1987; Smith and 

Sjogren, 2006; Schrott and Sass, 2008). Thus, coastal researchers have turned to other 

geophysical techniques such as electrical resistivity tomography (ERT) and ground-

penetrating radar (GPR). Since the 1980’s, GPR techniques have continued to provide high-

resolution imagery of subsurface stratigraphy, thereby improving interpretations of geologic 
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controls on barrier island evolution (e.g., Leatherman, 1987; Van Heteren et al., 1994; Jol et 

al., 1996; Bristow et al., 2000; Neal and Roberts, 2000; Buynevich and Fitzgerald, 2003; 

Mallinson et al., 2010).  Because each method is best suited for a particular sub-

environment, only a few studies have integrated multiple methods to explore the role of 

geologic inheritance on large-scale barrier island evolution and few have covered the entire 

island (see Fisk, 1959; Evans et al., 1985; Williams et al., 1991; McBride et al., 1995; Harris 

et al., 2005; Kulp et al., 2005; Mallinson et al., 2010). 

There are alternative techniques available that have yet to be fully explored in 

coastal environments. For example, electromagnetic (EM) methods have potential for 

coastal environmental and engineering applications including; time-domain airborne 

transient electromagnetic (TEM) surveys (e.g., Vrbancich, 2009, 2012; Christensen and 

Halkjær, 2014), marine controlled-source electromagnetic (CSEM) surveys (e.g., Cheesman 

et al., 1993; Evans et al., 1999; 2000; Barker et al., 2012), and frequency-domain 

electromagnetic induction (EMI) surveys (e.g., Ruppel et al., 2000; Paine et al., 2004; 

Seijmonsbergen et al., 2004). EM sensors are designed to map subsurface geo-electric 

properties and, as such, they can help distinguish spatial variations in subsurface lithological 

and hydrological properties (including water content, porosity, clay content, etc). Despite the 

many benefits of using these different methods in combination, there are a number of 

limitations that need to be better understood before the EMI technique can be used with 

confidence in coastal applications for mapping barrier island geology. 
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Electromagnetic induction approach to assessing framework geology 

Portable handheld EMI profilers are designed to measure variations in subsurface 

electrical conductivity σ as it is related to changes in geology and hydrology. EMI 

responses typically are irregular and represent a spatial averaging of σ (i.e, apparent 

conductivity σa), which in turn integrates the effects of all its controlling physical 

properties (e.g., porosity, water content, salinity, etc.). Thus, is it reasonable to expect 

that EMI sensors are capable of detecting changes in σa as it is related to variations in 

lithology along the island, such as contrasts between sand and clay. It has been shown by 

Seijmonsbergen et al. (2004), Vrbancich (2009), and others that EMI methods can 

accurately and efficiently characterize the underlying geology along coastlines. For 

example, Seijmonsbergen et al. (2004) used the EM34 (albeit not a portable multi-

frequency EMI profiler) at 20 m station spacing and 20 m coil separation to acquire a 

14.5 km transect along a segment of the Dutch coast, Netherlands. Using this 

configuration, the depth of exploration (DOI) is ~15 m. Results from the study suggest 

that subsurface σa can be used as a proxy to distinguish the spatial distribution of 

Holocene coastal deposits and previously identified pre-Holocene paleo-channels near a 

former outlet of the Rhine River. Nonetheless, few studies have used EMI methods in 

coastal environments (Paine et al., 2004; Seijmonsbergen et al., 2004; Vrbancich, 2009; 

Nenna et al., 2013; Christensen and Halkjær, 2014; Delefortrie et al., 2014b), with the 

majority of these focusing on mapping saltwater intrusion. Most of these studies employ 

Geonics™ EM31, 34, 38 and similar frequency-domain sensors; Geonics™ EM47, 63 

and similar time-domain electromagnetic (TDEM) sensors in addition to various 
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airborne electromagnetic (AEM) systems. Previous coastal EMI studies have explored 

subsurface σ as it is related to framework geology (Seijmonsbergen et al., 2004; 

Vrbancich, 2009), classification of coastal wetlands (Paine et al., 2004), and 

investigation of coastal groundwater dynamics and pollution (Goldman et al., 1991; 

Fitterman and Deszcz-Pan, 1998; Nenna et al., 2013; Christensen and Halkjær, 2014).  

While the above studies demonstrate the value of EMI sensors for coastal 

research, most have not examined in detail the effects of changing hydrology as it is 

related to framework geology over different spatial-temporal scales. Although EMI 

sensors have shown promise for coastal applications (Paine et al., 2004; Seijmonsbergen 

et al., 2004; Delefortrie et al., 2014b), a number of issues primarily related to variations 

in subsurface hydrology are needed to fully assess the benefits and limitations of this 

new technique. Because barrier island hydrology is dependent on the framework geology, 

the alongshore variation in groundwater can either exaggerate or partially mask geologic 

features. For example, in the swash zone, non-linear effects of waves, currents and tides 

combine to produce a landward-increasing superelevation of the mean freshwater water 

table (Nielsen, 1990), creating differences between fresh and saltwater than may influence 

EMI response parameters (i.e., σa). Seasonal variations in precipitation (i.e., wet vs. dry 

conditions) have also been suggested to influence σa alongshore (Paine et al., 2004).  

 

Multivariate analysis, LRD, and FARIMA statistical modeling  

EMI and DEM morphometric signals can be viewed as a spatial data series and 

are not dissimilar from other geophysical time-series. For example, fluctuations in river 
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levels (Hurst et al., 1965), and El Niño phenomenon (Cimino et al., 1999) represent a 

time-series of which its statistical properties can be analyzed using fundamental tools for 

modeling non-stationarity, long-range dependence (LRD), self-similarity, and fractal 

dimensions (see Adelman, 1965; Beran, 1994; Taqqu et al., 1995; Eke et al., 2000; 

Everett and Weiss, 2002; Doukhan et al., 2003). LRD occurs when the autocorrelations 

within a series tend to zero like a power function, and so slowly that their sums diverge 

(Doukhan et al., 2003). It is often observed in nature and is closely related to self-

similarity (i.e., fractal dimensions). The intensity of LRD is related to the scaling 

exponent, or Hurst parameter H of a self-similar process, where 1/2 < H ≤ 1 indicates an 

increasing tendency towards such an effect (Taqqu, 2003). 

Some of the most commonly used statistical methods for analyzing LRD are 

called fractional autoregressive integrated moving average (FARIMA) models (see 

Hosking, 1981). FARIMA is a generalization of the ARIMA (p,d,q) process where the 

degree of differencing d is permitted to take on fractional values to better model LRD 

(see Hosking, 1981). These models are intrinsically dependent on H and are discussed in 

detail by Taqqu et al. (1995). An ARIMA model of a time or spatial data series is 

defined by three terms (p,d,q), where the goal is to determine the integer values (e.g., 0, 

1, 2, etc.) of p and q, and either the integer or the fractional values of d that most 

accurately model the patterns contained within the original data series. Different 

combinations of (p,d,q) provide important information on how the various length-scales 

within the framework geology relate to each other. As mentioned above, d is the 

differencing term that models LRD and it is normally inspected before p and q to 
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identify whether the process is stationary (i.e., constant mean and σ2
). If the series is 

nonstationary, it is differenced to remove either linear (d = 1) or quadratic (d = 2) trends, 

thereby making the mean of the series stationary and invertible (Cimino et al., 1999). 

This allows determination of the p and q parameters, which indicate the order of the 

autoregressive (AR) and moving-average (MA) components, respectively. Lazarus et al. 

(2011) have pointed out that geologic framework features, even if loosely spatially 

correlated with zones of shoreline change, could affect higher magnitudes of change 

over large spatial scales. They further suggest that shoreline change at small spatial 

scales (< 1 km) does not represent a peak in the shoreline change signal, and that change 

at larger spatial scales dominates the signal. This emphasizes the need for further studies 

to investigate long-term, large-scale shoreline change with respect to framework 

geology. 

 

EMI profiling as a new technique for investigating barrier island framework geology 

This study is designed to test the utility of EMI profiling as a new technique for 

mapping large-scale barrier island framework geology, and identifies some of the 

important applications, benefits, and limitations related to barrier island research. 

Examples of previous geologic framework studies highlighting traditional techniques 

used and their limitations relative to EMI are reviewed in Chapter II. The theory of the 

EMI method, background of portable EMI sensors, and the use of EM techniques in 

previous coastal research are also discussed.  A detailed account of field methods, 

instrument calibration, and the effect of changing hydrology on EMI signals with respect 
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to tidal fluctuations and seasonal effects is presented in Chapter III. In Chapters IV and 

V, signal processing techniques, statistical tests for LRD, and FARIMA models are used 

to explore the spatial connections of the long-range dependent structure between 

framework geology and island morphometrics (e.g., beach width, dune volume, and 

island volume). These chapters provide important insight into the geologic controls on 

modern barrier island transgression. Lastly, Chapter VI summarizes the key findings 

from this study and the benefits of EMI sensors for geologic framework research. 

Recommendations for future studies regarding this new method are proposed and offer 

potential for an improved understanding of EMI methods for coastal research. The results 

from this study will benefit coastal geomorphologists, geographers, geologists, engineers 

and planners concerned with examining the influence of geologic framework on modern 

barrier response to storms and rising sea-level. 
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CHAPTER II  

REVIEW OF ELECTROMAGNETIC INDUCTION FOR MAPPING BARRIER 

ISLAND FRAMEWORK GEOLOGY* 

 

Introduction 

Along sandy coastlines, stratigraphically-controlled bathymetric features modify 

hydrodynamic processes on the inner shelf and nearshore, in turn affecting beach 

morphodynamics along the adjacent shoreline (Riggs et al., 1995). This geologic 

framework has been suggested to play a considerable role in determining how barrier 

island systems evolve during storms and in response to local sea-level rise (Hoyt, 1967; 

Kraft, 1971; Kraft and John, 1979; Kraft et al., 1982; Belknap and Kraft, 1985; Riggs et 

al., 1995; Dillenburg et al., 2000; Honeycutt and Krantz, 2003; Harris et al., 2005; Lentz 

and Hapke, 2011). Processes in the nearshore environment including waves, currents and 

sediment transport exert important controls on nearshore and beach morphology 

(McNinch, 2004). However, antecedent geology has also been suggested to exert a first-

order control on nearshore morphology (e.g., sandbars), which can modify surf zone 

dynamics and influence beach morphology (McNinch, 2004; Schupp et al., 2006).  

The geology of a barrier island represents a time-integrated net depositional 

record of past coastal forcing, the sequence of which can be reconstructed using  

__________ 

*Reprinted with permission from “Using electromagnetic induction to explore the 

geologic framework of barrier islands” by B.A. Weymer, M.E. Everett, T.S., de Smet, C. 

Houser, 2015. Sedimentary Geology, 321, 11-24. Copyright [2015] by Elsevier.  
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traditional geologic principles (Riggs et al., 1995; Woodroffe, 2002). For example, most 

barrier island systems along the passive continental margins of the U.S. east and Gulf 

coasts are underlain by Pleistocene (or older) morphostratigraphic features such as 

incised river valleys (Schupp et al., 2006), inlet channels (FitzGerald et al., 2012) and relict 

transgressive features (Houser, 2012). These inherited features, in part, affect the exchange 

of sediment amongst the nearshore, beach and dune, and therefore determine how the island 

responds to individual storms (Riggs et al., 1995; Schupp et al., 2006; Houser et al., 2008). 

For example, evidence from Santa Rosa Island, Florida, suggests that ridge and swale 

bathymetric features along the shoreface are transgressive features that reinforce alongshore 

variations in dune height and storm response (Houser, 2012).  In this respect, the position 

and distribution of subsurface structures have significant implications for beach and dune 

morphology, which is a primary control on net barrier island response to rising sea level 

(Riggs and O’Connor, 1974; Riggs, 1979; Reinson, 1992; Jackson et al., 2005; Houser, 

2012). Specifically, alongshore variations in beach-dune morphology not only control storm 

impacts (i.e., the ratio between wave runup height and dune height), but also determine 

which areas across the island are most likely to experience overwash and/or blowouts, 

ultimately governing large-scale barrier transgression (Sallenger, 2000; Morton, 2002; 

Houser et al., 2008; Houser, 2013; Masselink and van Heteren, 2014). Therefore, an 

assessment of antecedent geology (i.e., geologic framework) is critical for coastal 

management and risk assessment for anthropogenically-modified barrier islands (Hapke et 

al., 2010; Lentz and Hapke, 2011; Lentz et al., 2013).  

Studies investigating the geologic framework controls on barrier island evolution 
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have primarily focused on a specific sub-environment within the barrier island system 

(Table 2-1). The cross-shore sequence of morpho-sedimentary sub-units was defined as a 

coastal tract by Cowell et al. (2003) and represents the continuum of mutually dependent 

morphological units. In the offshore direction, the barrier system consists of inner-shelf, 

nearshore, beach, barrier and lagoon backbarrier sub-environments (Cowell et al., 2003; Van 

Heteren, 2014). Conversely, the sub-environments in the alongshore direction include the 

barrier island system, tidal inlets and subtidal deltas. In the analysis of large-scale coastal 

evolution, the data collection techniques available force an arbitrary compartmentalization of 

each sub-environment within the barrier island system. Inner-shelf (e.g., Riggs, 1979; Foyle 

and Oertel, 1997; Schwab et al., 2000; Rodriguez et al., 2001) and nearshore (e.g., Evans et 

al., 1985; Riggs et al., 1995; McNinch, 2004; Browder and McNinch, 2006) studies mainly 

use bathymetric and seismic surveys, respectively, because these methods are best suited for 

shallow water and offshore environments. Conversely, beach and barrier studies (e.g., 

Otvos, 1970; Riggs et al., 1995; Fitzgerald and Van Heteren, 1999; Morton, 2002; Jackson 

et al., 2005; Mallinson et al., 2010; Cooper et al., 2012) have tended to use coring and/or 

remote sensing techniques. It is important to note that the various methods listed above are 

used for different aims. For example, seismic imaging provides information about structure 

but cannot be used for dating sediments and/or events. A more detailed discussion of the 

traditional methods for barrier island research, their benefits and limitations is given in 

section 3.  

 



 

20 

 

Table 2-1. A summary of the coastal sub-system, methods and scientific applications for 

each of the publications investigating geologic controls on modern barrier island 

evolution discussed in this review (Weymer et al., 2015). 
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Despite the utility of these methods, coring provides only point-source information 

and in many cases limited penetration depth, whereas the seismic method is not well suited 

for land-based surveys in unconsolidated, sandy sediments (Leatherman, 1987; Smith and 

Sjogren, 2006; Schrott and Sass, 2008). Thus, coastal researchers began to turn to other 

geophysical techniques such as electrical resistivity tomography (ERT) and ground-

penetrating radar (GPR). Used since the 1980’s, GPR techniques provide high-resolution 

imagery of subsurface stratigraphy, thereby improving interpretations of geologic controls 

on barrier island evolution (e.g., Leatherman, 1987; Van Heteren et al., 1994; Jol et al., 

1996; Bristow et al., 2000; Neal and Roberts, 2000; Buynevich and Fitzgerald, 2003; 

Mallinson et al., 2010).  Over the past decade, ERT has become an increasingly used method 

for time-lapse monitoring of saltwater intrusion dynamics (e.g., Bauer et al., 2006; 

Adepelumi et al., 2009; Martinez et al., 2009; Zarocca et al., 2011) and migration of 

contaminant plumes in coastal aquifers (e.g., Cassiani et al., 2006). Collectively, some of the 

strengths and weaknesses of each method used for barrier island studies are summarized in 

Table 2-2. Because each method is best suited for a particular sub-environment, only a few 

studies have integrated multiple methods to explore the role of geologic inheritance on large-

scale barrier island evolution (see Fisk, 1959; Evans et al., 1985; Williams et al., 1991; 

McBride et al., 1995; Harris et al., 2005; Kulp et al., 2005; Mallinson et al., 2010). 
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Table 2-2. The advantages and limitations of various geological, geophysical, 

bathymetric and remote sensing methods used for barrier island geologic framework 

research (Weymer et al., 2015).  

 

 

All geophysical techniques are ultimately constrained by subsurface hydrology 

including saltwater intrusion and groundwater table position. The relationship between 

subsurface geologic structures and hydrologic processes in barrier islands is not well known 
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(Horn, 2002). Most coastal hydrology studies have focused either on nearshore/swash zone 

hydrodynamics (e.g., Lanyon et al., 1982; Nielsen, 1990; Hegge and Masselink, 1991; 

Gourlay, 1992; Turner, 1993; Oh and Dean, 1994; Horn, 2002) or hydrologic processes in 

backbarrier/lagoon environments (e.g., Amdurer and Land, 1982; Kocurek et al., 1992; 

Nielsen, 1999; Stevens et al., 2009). With the notable exceptions conducted by Nielsen and 

Kang (1996), Reide Corbett et al. (2000), and Ruppel et al. (2000), there is a paucity of 

information regarding groundwater dynamics throughout barrier island systems.  Most 

coastal groundwater studies have relied on monitoring wells, piezometers and pressure 

transducers to monitor groundwater dynamics, such as the beach watertable response to low-

frequency and wave tidal forcing (Horn, 2002).   

There are alternative data collection techniques available that have yet to be fully 

explored in coastal environments. For example, a variety of electromagnetic (EM) methods 

have potential for coastal environmental and engineering applications including; time-

domain airborne transient electromagnetic (TEM) surveys (e.g., Vrbancich, 2009, 2012; 

Christensen and Halkjær, 2014), marine controlled-source electromagnetic (CSEM) surveys 

(e.g., Cheesman et al., 1993; Evans et al., 1999; 2000; Barker et al., 2012), and frequency-

domain electromagnetic induction (EMI) surveys (e.g., Ruppel et al., 2000; Paine et al., 

2004; Seijmonsbergen et al., 2004). EM sensors are designed to map subsurface geoelectric 

properties and, as such, they can help distinguish spatial variations in subsurface lithological 

and hydrological properties (including water content, porosity, clay content, etc). Whilst 

aerial TEM surveys are capable of characterizing large areas over land and water, they are 

not considered in this review (see Viezzoli et al., 2008; Auken et al., 2009; Vrbancich, 2009, 
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2012). Terrestrial EMI surveys are useful in coastal habitat classification, mapping 

subsurface lithology and monitoring groundwater dynamics (e.g., Paine et al., 2004).  

Despite the many benefits of using these different methods in combination, there are a 

number of limitations that need to be better understood before the EMI technique can be 

used with confidence in barrier island research.  

This paper reviews the theory and applications of the EMI geophysical method and 

identifies some of the important applications and problems related to barrier island 

geologic framework and groundwater research. First, a conceptual background on the 

spatial relationships between geomorphological features and EMI response parameters, 

or “signals” is discussed (Section 2.2). Examples of previous geologic inheritance 

research emphasizing the techniques used and their limitations relative to EMI is 

presented (Section 2.3). A basic overview of EM theory and EMI techniques with 

respect to coastal environments is then given (Section 2.4). Lastly, the paper summarizes 

the benefits of EMI sensors for geologic inheritance research and proposes 

recommendations for future studies to address key limitations.  

 

Geomorphological mapping using electromagnetic sensors 

Geologic features within barrier island systems occur naturally over a range of 

spatial scales (Figure 2-1). Large-scale geologic features including Pleistocene-Holocene 

fluvial/deltaic paleo-channels and incised river valleys that are remnant features from the 

last major glaciation (~20 kyr) and are found in most barrier island systems along the 

Atlantic and Gulf Coasts of the United States (e.g., Otvos, 1970; Kraft, 1971; Belknap 
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and Kraft, 1985; Morton et al., 1996; Foyle and Oertel, 1997; Browder and McNinch, 

2006; Mallinson et al., 2010). During the late Holocene transgression (~6 kyr), these 

features were commonly overtopped and subsequently buried (Figure 2-1A). Washover 

channels and blowouts develop within sections of the beach that have lower dune 

heights. These features occur over shorter length-scales ranging from tens to hundreds of 

meters (Figure 2-1B). Smaller geomorphic features such as embryo or protodunes, 

welded bars and beach cusps develop over even shorter length-scales, less than tens of 

meters (Figure 2-1C). It is argued that buried antecedent geology influences the various 

length-scales of modern geomorphic features alongshore (Houser, 2012). 

 



 

26 

 

 

Figure 2-1. Schematic diagram depicting hypothetical geologic features along a barrier 

island at a variety of length-scales. Below each feature is a hypothetical EMI signal, 

representing different wavelengths between geologic structures. The long wavelengths 

indicate large-scale geologic framework, such as paleo-channels (A). Meso-scale 

features (e.g., washover channels) occur at moderate wavelengths (B). Small-scale 

features (e.g., welded bars) occur at increasingly smaller wavelengths (C). Each higher-

frequency signal is superimposed on the lower-frequency signals, where the sum of all 

signals results in the complex, potentially non-stationary time series (D) (Weymer et al., 

2015).  
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Variations in geologic features and hydrology are directly related to changes in  

subsurface geo-electric properties measured by an EMI sensor. A hypothetical EMI 

response parameter, for example, apparent conductivity (σa), is shown as a spatial data 

series in the bottom panel of Figure 2-1, in which the lowest-wavenumber signals are 

associated with geologic features that occur over the longest length-scales (e.g., Figure 

2-1A). As the length-scale of the geologic features increases, so does the dominant 

wavenumber of the EMI signal (Figures 2-1B-C). The composite EMI spatial data series 

is shown in Figure 2-1D, where the overall signature is tsuperposition of many different-

scale sedimentary processses. The total apparent conductivity f(σa), for example, can be 

regarded as multiple-scale EMI responses piggy-backing on top of each other, i.e.  

𝑆𝑛(𝜎𝑎) = ∑ 𝑓(𝜎𝑎𝑖

𝑛
𝑖=1 )     (2.1) 

where, S and f are functions, and n is the number of important length scales. There is 

mutual inductive coupling “to first order” between the various geological structures of 

different length-scales, such that Equation (1) is only a first-order approximation to the 

actual EMI signal. By further investigating the various important length-scales with 

LiDAR, vibracores and other data types, it is sometimes possible to relate the length-

scales of variations observed in the EMI profiles to buried and exposed geological 

structures. Accordingly, an EMI spatial data series can be treated as if it is a time-series, 

and analyzed using fundamental tools for properties such as non-stationarity, long-range 

dependence, or long swings, etc. (see Adelman, 1965; Beran, 1994; Taqqu et al., 1995; 

Eke et al., 2000; Everett and Weiss, 2002; Doukhan et al., 2003).   
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Because an EMI data series is essentially a function of subsurface geoelectric 

properties, the groundwater dynamics within the barrier need to be taken into account 

when interpreting the data. The apparent electrical conductivity σa  measured by an EMI 

sensor is directly related to the overall distribution of saline and freshwater (Christensen and 

Halkjær, 2014). Within barrier islands, the hydrologic regime is further controlled by wave 

action, currents, tides, precipitation, atmospheric pressure, weather/climate and framework 

geology (Nielsen, 1999; Horn, 2002). Similar to the length-scale-dependent structure of 

spatially-varying geologic features described above (refer to Figure 2-1), water table 

fluctuations may also vary at a range of temporal scales from seconds (waves), to hours 

(tides) to days/months (precipitation events and seasonal effects).  Freshwater-saturated 

sediments and seawater are significantly more conductive than dry sand, therefore the 

location of the water table and the freshwater-seawater interface profoundly affect EMI 

response parameters, and is further discussed in section 2.4.6.  

 

Traditional methods of research into barrier island geologic inheritance  

Various geological, geophysical, bathymetric and remote sensing methods have 

been used to investigate the geologic controls on barrier island development and 

evolution (Table 2-2). The techniques chosen for a particular study are often determined 

by the sub-environment under investigation, as well as the aims and scale of the study. 

Most barrier coastlines are influenced by inherited geologic features (e.g., incised river 

channels) that occur beneath and seaward of the shoreface (Riggs et al., 1995). The 

studies reviewed in the following section are categorized into four general sub-
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environments within the barrier island system 1) inner-shelf, 2) nearshore, 3) beach, and 

4) backbarrier/lagoon. Examples of the main methods used in each sub-environment are 

presented and their advantages and limitations relative to EMI are discussed. Examples 

of EMI methods for coastal applications are further discussed in Section 2.4.4.  

(1)  Studies on the inner-shelf have almost exclusively used various seismic methods 

and/or coring techniques to investigate the influence of antecedent geology on the origin 

and evolution of barrier islands (e.g., Field and Duane, 1976; Foyle and Oertel, 1997; 

Schwab et al., 2000; Rodriguez et al., 2001). The first marine seismic surveys for this 

purpose were conducted in the 1980’s and remain the standard method for mapping 

stratigraphy beneath the seafloor. Marine seismic surveys are often validated by coring 

and/or borehole logging (down-hole logging), but can also be augmented by 

electromagnetic surveying (Cheesman et al., 1993; Evans et al., 1999; Evans et al., 

2000). Since the late 1990’s geophysicists have increasingly turned to marine controlled-

source electromagnetic (CSEM) methods for mapping fluid resistivities and providing 

bulk porosity estimates in areas previously characterized by seismic methods (Cheesman 

et al., 1993). It is important to note that marine CSEM methods use grounded (galvanic) 

sources and are different from the inductive techniques that are described in more detail 

in section 2.4.1.  In some instances seismic and/or borehole data are affected by highly 

resistive bodies (i.e., low conductivity) that present significant seismic imaging 

challenges because of velocity and density contrasts (Barker et al., 2012).  

The principle for using CSEM methods is based on the distribution and amount 

of seawater within seafloor sediments as well as the bulk resistivity structure of the 
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sediments. The electrical resistivity of sediment is directly related to porosity, which is 

also related to other physical properties including grain-size and texture (Evans et al., 

1999). Thus, variations in lithology as related to porosity can be estimated and 

interpreted from measurements of electrical resistivity/conductivity by a marine EM 

system (Cheesman et al., 1993; Evans et al., 2000). For example, Evans et al. (2000) 

conducted an EM survey off the New Jersey coast (USA) to map the porosity structure 

of the continental margin. Two areas were surveyed in water depths of ~70 m that have 

been shown to contain buried paleo-channels previously interpreted from seismic 

surveys. A towed frequency-domain EM system measured apparent resistivities at ~ 2, 7 

and 20 m depths below the seafloor, providing structural information of the underlying 

sediments (Evans et al., 2000). Apparent resistivity measurements were converted into 

porosity values allowing for detailed interpretations of the conditions under which the 

paleo-channels formed. Two distinct EM responses were measured across the 

seismically-imaged paleo-channels; one where higher (%) porosity matched the location 

of the channels, while the other failed to respond to the seismically observed channel 

(Evans et al., 2000). The EM response that captured the paleo-channels was located in an 

area where the channels incised the regional seismic reflector, whereas, the “failed 

response” was in an area where the paleo-channels did not incise the regional seismic 

reflector. Nevertheless, Evans et al. (2000) suggest that when combined with seismic 

and/or coring, EM surveys are a powerful tool to better understand offshore geologic 

structure.  

(2) Nearshore studies on framework geology have utilized cores, seismic surveys, 
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sidescan-sonar, chirp bathymetry and acoustic backscatter profiling sensors (e.g., 

Belknap and Kraft, 1985; Honeycutt and Krantz, 2003; McNinch, 2004; Browder and 

McNinch, 2006; Schupp et al., 2006). High-resolution bathymetric and sidescan-sonar 

surveys are particularly useful for investigating nearshore bathymetric features (e.g., 

ridges and troughs). These types of surveys are useful for imaging the surface of the 

seafloor but are not capable of providing subsurface information. As noted above, 

marine seismic methods provide high-resolution subsurface information but shallow 

nearshore water depths (< 30 m) present significant logistical challenges for collecting 

seismic data. Alternatively, marine CSEM methods can be conducted in relatively 

shallow water depths ~30 m (Evans et al., 1999). Although portable EMI sensors are 

typically used in land-based applications, it is possible that they could also be used in the 

nearshore if properly calibrated and secured on a vessel that can navigate shallow water 

depths. In theory, portable EMI sensors could potentially measure a continuous 

subsurface profile across the nearshore and into the beach environment.   

(3) Geologic framework studies regarding beach environments have been conducted 

by direct observation and beach profiling or by a combination of geologic, geophysical 

and remote sensing methods including cores, GPR, LiDAR and aerial photography (e.g., 

Riggs et al., 1995; Jackson et al., 2005; Mallinson et al., 2010; Lentz and Hapke, 2011; 

Lentz et al., 2013). Jol et al. (1996) suggest that although vibracoring provides 

inexpensive point-source information, this method provides limited depth penetration in 

unconsolidated sediments along coastal barriers. GPR may be able to accurately infer 

stratigraphic trends at cm-scale resolution along a continuous transect for hundreds of 
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meters to several kilometers, however. Therefore, they proposed that GPR is the most 

promising method available for coastal subsurface investigations. Presently, GPR 

remains one of the most powerful tools for investigating subsurface structures, however 

brackish/saline groundwater attenuates the GPR signal, often rendering the data 

uninterpretable (i.e., signal to noise ratio is too low). EMI signals can probe to greater 

depths because they operate at frequencies that are several orders of magnitude less than 

GPR (i.e., kHz instead of MHz). It is important to note that the physics are different 

between GPR and EMI, where the former propagates as a radar wave and the latter is a 

diffusive process. Nonetheless, EMI techniques can provide additional subsurface 

information over much larger areas in conductive environments compared to coring 

and/or GPR. Inductive methods are sensitive to conductive zones while galvanic 

methods are more sensitive to resistive zones. Herein, for the scope of this paper, we 

focus on EM methods with inductive sources.  

(4) Relatively few studies on barrier evolution have been conducted across the 

barrier and into bay/lagoon environments (e.g., Kraft, 1971; Kraft and John, 1979; 

Schneider and Kruse, 2003; Garrison et al., 2010). Most of the methods used for these 

studies include various types of coring, seismic and GPR. The width of barrier islands 

ranges from less than 1 km up to several km, in the latter case presenting significant 

logistical challenges for collecting data across highly variable topography and dense 

vegetation cover. Shallow seismic techniques do not provide the resolution needed for 

detailed stratigraphic interpretation. Leatherman (1987) suggested that seismic surveying 

alone is unlikely to produce meaningful results on barrier islands and stratigraphic 
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correlations are difficult based on borehole data. However, seismic surveys may be 

useful for subsurface investigations within the bays/lagoons. Coring is invasive and in 

some protected areas is not permissible across the barrier/tidal flats. GPR is a viable 

alternative; however, as mentioned earlier the radar signal is attenuated in saline 

environments such as tidal flats and problems with muddy sediments. In comparison, 

EMI surveys conducted by Paine et al. (2004) successfully mapped subsurface features 

across the entire barrier island system including wind-tidal flats in Mustang Island, 

Texas (USA). From the above examples it is evident that EMI sensors can be used across 

the entire barrier island system, thus providing complementary and in some instances 

unique geophysical data in support of conventional geological methods.  

 

The theory of the EMI geophysical method in coastal environments 

The electromagnetic geophysical method 

   There are two classes of controlled sources used in the electromagnetic 

geophysical method. Depending on the application, either a grounded type or an 

inductive type may be used. In the grounded (or galvanic) type, direct electrical contact 

with the ground is made using electric dipoles as in the resistivity method. Conversely, 

in the inductive type, direct electrical contact with the ground is avoided by using for 

example an insulated wire-loop source (Everett, 2013). For the scope of this paper, only 

the inductive loop sources will be considered, mainly because galvanic sources are not 

“portable” and/or “easy-to-use.” In the electromagnetic induction method the geologic 

medium under investigation, which could include a conductive target and its host, is 
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assumed to be electrically neutral. Any representative volume of the subsurface contains 

large, but equal numbers of positive and negative charge carriers. Some of the charge 

carriers are mobile while others are bound in place. Only the mobile charges play a role 

in shaping the low-frequency (quasi-static) EMI response (see Larsson, 2007). Everett 

(2013) explains that a voltage develops along any arbitrary closed path within a 

conducting body that is exposed to a time-varying magnetic field �⃗� (𝑡). The notation 

used here for the primary and secondary magnetic fields is �⃗� 𝑝 and �⃗� 𝑠 , respectively. In 

the CSEM method, the time variation of the primary �⃗�  field is controlled by the 

geophysicist. The mobile charge carriers migrate with an average drift velocity vd in 

response to the applied changing magnetic flux 
𝜕�⃗� 𝑝

𝜕𝑡
.  The electrical conductivity σ is 

related to the density and mobility of the charge carriers by: 

        𝜎 = 𝑛𝑞𝑚     (2.2) 

where n is the number density of mobile charges, q is the mobile charge carrier, and m is 

the charge-carrier mobility (Gueguen and Palciauskas, 1994; Kittel, 2004). The drift of 

mobile charges constitutes the induced current that acts as a secondary source of 

electromagnetic field, in turn generating the response measured by an EMI sensor.  

EMI signal penetration is limited by the conversion of the transmitted 

electromagnetic energy into kinetic energy of the mobilized subsurface charge carriers 

(Huang, 2005; Everett, 2013). Correspondingly, the depth probed by an EMI system 

depends on the rate of signal loss, or attenuation, in the subsurface. The higher the 

electrical conductivity σ, the greater the attenuation, thus reducing the depth of 
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investigation. The exponentially-decaying attenuation of signal with depth is known as 

the skin effect. The signal loses 1/e ~ 0.368 of its incident amplitude after penetrating 

one skin depth δ: 

       δ = √
2

μσω
=

√2𝑖

𝛾
        (2.3) 

where σ is the conductivity of the medium, μ is the magnetic permeability, ω = 2πf is the 

angular frequency and 𝛾 = √𝑖𝜔𝜇0𝜎 (McNeill, 1980). It is important to note that the term 

depth of investigation is not synonymous with skin depth. The depth of investigation is 

an empirical quantity and is affected by the heterogeneous geoelectrical properties of the 

medium as well as factors such as sensor sensitivity, accuracy, frequency, transmitter 

(TX) strength (dipole moment), coil configuration and offset, ambient noise, and data 

processing and interpretation methods (Huang, 2005). Under ideal conditions the depth 

of investigation is greater than the skin depth. However, in geologically complex and/or 

environmentally noisy areas, the depth of investigation can be less than the skin depth 

(Huang, 2005). In highly conductive barrier island systems, the depth of investigation is 

primarily affected by saltwater and/or changes in subsurface sand vs. clay content. Areas 

that have more saltwater (i.e., beach, tidal flat environments) reduce the depth of 

investigation, whereas areas that are drier, have thicker deposits of beach sand, or have 

reduced salinity (i.e., dunes, washover channels, valley-fill sequences) have a greater 

depth of investigation. 
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EMI response and computation of apparent conductivity  

 Finite-source excitation of a plane-layered Earth is a fundamental problem in 

near-surface applied geophysics (Everett, 2013). The electromagnetic response of a 

horizontal loop source of finite radius is controlled by the separation between the 

transmitting (TX) and receiving (RX) coils. Conversely, a loop of infinitesimal radius is 

called a “point dipole.” With a large offset, 𝑠 ≫ 𝑎, the response of a loop-source of finite 

radius a can be approximated as the response of a dipole point. For clarification, δ is the 

skin depth, a property of the medium, whereas s is the TX-RX offset, a property of the 

apparatus. The depth of investigation depends on both the TX-RX coil offset and the 

frequency, which increases either by increasing the TX-RX coil offset or by decreasing 

the frequency.  

The EM response of a uniform half-space for vertical magnetic dipole excitation 

is given by Frischknecht (1967), Ward (1967), Ward and Hohmann (1988) and others. 

The term uniform half-space used in this paper means the Earth has a uniform physical 

property value over the entire footprint of the geophysical sensor under consideration. 

For EMI sensors, if the TX/RX coils are both at height h above a uniform half-space, the 

secondary magnetic field Hs normalized by the primary field H0 at RX is: 

        (
𝐻𝑠

𝐻0
)
𝑣
= 𝑠3 ∫ 𝑅(𝜆)𝜆2∞

0
exp (−2𝜆ℎ)𝐽0(𝜆𝑠)𝑑𝜆  (2.4) 

where v denotes the response for a vertical dipole, s is the coil separation and J0 is the 

Bessel function of the zeroth order. The reflection coefficient R(λ) term can be written 

as: 
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𝑅(𝜆) =
𝜆−𝑢1

𝜆+𝑢1
     (2.5) 

where u1 for a homogenous half-space is: 

    𝑢1 = √𝜆2 + 𝑖𝑤𝜎𝜇0     (2.6) 

Most barrier islands are predominantly non-magnetic (i.e., mainly quartz sands), 

therefore μ = μ0, the permeability of free space. Under certain conditions the expressions 

(Equation 4) can be simplified, if 𝑠 ≪ 𝛿 is used, this is known as the low induction 

number (LIN) approximation (McNeill, 1980, 1996). The LIN approximation is related 

to the skin depth δ (Equation 3) where the ratio of the coil spacing s to the skin depth δ 

(i.e., s/δ) is defined as the induction number B: 

         𝛾𝑠 = √2𝑖𝐵      (2.7) 

If the coil separation is much less than the skin depth (𝑠 ≪ 𝛿), Equation 4 reduces to the 

simplified expression:  

𝜎𝑎 =
4

𝜔𝜇0𝑠2

𝐻𝑠

𝐻0
     (2.8) 

where 
𝐻𝑠

𝐻0
 are the imaginary parts while ω and s

2
 depend on the frequency and coil offset, 

respectively (McNeill, 1980). A more detailed discussion of the LIN approximation is 

explained in the next section. The complex quantity Hs/H0 when multiplied by 10
6
 is 

expressed in parts per million (ppm) and consists of a real (in-phase; I) and an imaginary 

(quadrature; Q) component. EMI sensors typically record these variables, along with 

apparent conductivity σa. Apparent conductivity σa is related to the complex quantity  
𝐻𝑠

𝐻0
 

by Equation 2.8. Since the ground is always heterogeneous, σa is actually a frequency-
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dependent, spatial average of the underlying conductivity distribution between the TX 

and RX coils within the sensor footprint (Everett and Weiss, 2002).  

Apparent conductivity is defined as the conductivity of a homogeneous half-

space that would produce the same response as the one measured over the real Earth 

with the same sensor (Huang and Won, 2000). Apparent conductivity has units [S/m], 

whereas the normalized in-phase (I) and quadrature (Q) responses [ppm] are 

dimensionless. Apparent conductivity may be derived from either the in-phase or 

quadrature responses (Won et al., 1996), moreover it can be defined in a variety of ways 

(Huang and Won, 2000). All definitions of σa reduce to the actual conductivity σ when 

the Earth is a uniform half-space, but yield different results when the Earth is 

heterogeneous. The output of commercial sensors is generally the LIN σa and conversion 

to the quadrature component is simply performed by division by a constant for a given 

coil configuration. For the context of this paper, only the conventional definition of σa 

based on Equation 8 developed by (McNeill, 1980) will be considered, because this is 

the definition that is used in Geonics™ and GSSI™ terrain conductivity sensors, which 

are commonly available commercial field instruments.  

 

Portable EMI sensors 

Unlike traditional EMI sensors which are bulky and operate at a single frequency, 

newer, portable profilers record multiple frequencies simultaneously. Portable sensors 

are popular because they are relatively inexpensive and can cover large distances over a 

short amount of time. Portable EMI sensors normally consist of a fixed TX/RX geometry 
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(Figure 2-2). There is a variety of lightweight sensors available on the market including 

GSSI™, Geophex™, Dualem™, PROMIS™, GF Instruments™ and Stratagem™ 

systems. For example, the GSSI Profiler EMP-400™ sensor shown in the figure operates 

at three discrete frequencies simultaneously, selectable from the range 1-16 kHz in 1 kHz 

increments (Geophysical Survey Systems, 2007).  The advantage of using multiple 

frequencies is based on the skin effect, as low-frequency signals probe deeper within the 

subsurface, whereas high-frequency signals are more sensitive to shallower structures.  

Depth sounding is achieved either by changing the separation between the TX/RX coils, 

which can be time-consuming, and moreover, it is difficult to maintain a precise coil 

separation. Additionally, depth sounding is also done by using several frequencies or by 

having multiple receivers at various coil spacings in a fixed housing (e.g., DUALEM 

421S). Scanning through a range of frequencies is equivalent to depth sounding. It is 

important to note that there is a complicated relationship between changing frequency 

vs. changing the TX-RX offset, and detailed sensitivity studies should be conducted 

(refer to Guillemoteau et al., 2015). For shallow surveys, the frequency sounding method 

offers high spatial resolution, fast survey speed, simple logistics, and good data precision 

(Won et al., 1996).  
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Figure 2-2. Example of a handheld GSSI Profiler EMP-400™ being used in the 

backshore environment at Padre Island National Seashore, Texas. The instrument is 

oriented in the vertical dipole (VD) orientation, in-line mode (P-mode). Person is facing 

in the direction of the profile. The fixed coil-separation between the transmitter (TX) and 

receiver (RX) is 1.21 m. Operating frequencies range from 1-16 kHz, where three 

frequencies can be recorded simultaneously during data acquisition. Image taken August 

6, 2013 (Weymer et al., 2015).  

 

 

Because EMI sensors are capable of probing multiple depths by varying the 

operating frequency, it is possible to map the underlying geoelectric depth structure. A 

common approach to differentiate changes in σa with depth is the use of EM inversion 

techniques (Santos et al., 2010), however, analysis of parameter uncertainty is equally 

important as an estimate of parameter values, but is unfortunately often overlooked 
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(Minsley, 2011). The notion that multi-frequency sensors are capable of depth sounding 

has been controversial in the EM geophysics community. McNeill (1996) argues that the 

use of multiple frequencies in a fixed-offset low induction number (LIN) instrument does 

not offer a significant advantage over a single-frequency system. McNeill (1996) suggests 

that in order to obtain useful geoelectric information about a layered Earth, a multi-

frequency EMI sensor with a short intercoil spacing (e.g., 1.21 m) would require a frequency 

range into the MHz range, whereas most conventional sensors operate in the tens of kHz 

range. However, in an extraordinarily conductive environment the apparent conductivity 

may be sensitive to different aspects of the layering at different frequencies (McNeill, 1996).  

Barrier islands are highly conductive environments and, as noted by McNeill (1980), 

as the terrain conductivity increases the instrument output σa is no longer proportional to the 

terrain conductivity. The LIN approximation breaks down and is especially critical for 

coastal EMI surveys (see Guillemoteau et al., 2015).  In other words, in conductive 

environments where σa > 50 mS/m, there is a departure of measured σa from “true” 

conductivity σ, reducing the depth of investigation and increasing measurement error. A 

growing number of studies have investigated the effects of high conductivity on EMI signals 

and have proposed correction factors that can be applied to resolve this dilemma (e.g., 

McNeill, 1980; Sudduth et al., 2001; Beamish, 2011; Delefortrie et al., 2014b). For example, 

Beamish (2011) examined the effects of high conductivity in a beach environment on the 

departure of the LIN condition using a handheld multi-frequency EMI sensor. Beamish 

(2011) demonstrates theoretically and experimentally that the magnitudes and form of 

the spatial EMI measurements may be increasingly distorted in a nonlinear fashion 
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across data sets displaying variable conductivity. Therefore, he developed a simple 

correction procedure and look-up table (nomogram) where the user can convert 

measured σa values into LIN-equivalent corrected σa for a specific coil configuration. It is 

argued that, since EMI sensors now have a wide, non-geophysical user base, investigators 

should take into account the LIN breakdown, especially if working in conductive (i.e., 

coastal) environments (Beamish, 2011).  

Other important issues that can affect the quality and interpretation of EMI data 

include random and systematic errors. Random errors from instrument and cultural noise can 

typically be reduced by applying a spatial low-pass filter to the data. However, 

systematic errors can have numerous sources including instrument calibration errors, 

drift, and improper data leveling (Minsley et al., 2012). These systematic errors are more 

difficult to account for and can negatively impact inversion of the data and ultimately 

data interpretation. Calibration methods have been developed to correct for errors in 

instrument gain, phase, and bias (Deszcz-Pan et al., 1998). For example, correction 

factors which minimize differences between measured and calculated values can be 

obtained by a least-squares method, thus reducing inversion misfit error.  Nonetheless, it 

is critical to ensure the instrument is properly calibrated in the field prior to each survey 

to account for environmental conditions and the presence of the operator. 

 

Past examples of coastal EMI surveys  

The majority of EMI applications in the coastal environment has focused on 

saltwater intrusion (e.g., Fitterman and Stewart, 1986; Fitterman and Deszcz-Pan, 1998; 
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Duque et al., 2008; Wiederhold et al., 2010; Kirkegaard et al., 2011; Delefortrie et al., 

2014b). Of these studies, most have utilized aerial TEM systems. To date, only a handful of 

coastal/barrier island studies known to the authors have used terrestrial EMI techniques to 

investigate subsurface geology and/or groundwater in relation to the surficial landscape 

(Paine et al., 2004; Seijmonsbergen et al., 2004; Weymer et al., accepted). For these studies, 

EMI surveys were either oriented in the cross-shore direction (Paine et al., 2004) or in the 

alongshore direction (Seijmonsbergen et al., 2004). The following section summarizes the 

advantages and drawbacks of using EMI techniques for coastal geologic framework 

research.   

In the cross-shore direction, Paine et al. (2004) used a Geonics EM38™ at 15 kHz to 

measure changes in σa at an exploration depth of 0.8 m (horizontal dipole mode) and 1.5 m 

(vertical dipole mode) at 20 m station spacing.  The objective of the study was to test 

whether a combination of EM and LiDAR data improve the accuracy and resolution of 

coastal wetland mapping that has traditionally been based on the analysis of aerial 

photographs and ground-based vegetation surveys. Two ~2.5 km transects were collected in 

December, 2003, across a variety of coastal sub-environments on Mustang Island (south 

Texas Gulf Coast). For example, the sub-environments that were mapped include the beach, 

dune, vegetated-barrier flat, fresh marsh, salt marsh, and wind-tidal flats. Paine et al. (2004) 

suggest that most coastal sub-environments have distinct average elevations, but relatively 

wide elevation ranges that potentially overlap other habitats and environments. Although 

LiDAR is useful for habitat classification from digital elevation models (DEM’s), dense 

vegetation cover may produce anomalous elevations that may be significantly higher than 
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the ground elevation, thus leading to the misclassification of a particular habitat. If the 

difference between the top of the vegetation mass and the ground surface is known, these 

heights can be subtracted to produce a corrected ground-surface elevation profile. 

Comparing LiDAR data with EMI surveys, Paine et al. (2004) suggest that changes in 

conductivity measured by the EMI sensor are inversely correlated to LiDAR-derived 

elevations. However, the relationship to elevation in the cross-shore is simply a 

demonstration of how the sensor is able to detect sand content, which may be independent of 

topography (i.e., in the alongshore direction). They also found that conductivity closely 

tracked changes in salinity across each coastal sub-environment and proposed that EMI data 

can be used to distinguish habitats and geomorphic units to the same level achievable as 

ground-based vegetation surveys. However, they recommended that further investigation is 

needed to address seasonal changes in salinity across the barrier island.   

In the alongshore direction, Seijmonsbergen et al. (2004) used a Geonics 

EM34™ oriented in the horizontal dipole mode with a coil separation and station 

spacing of 20 m, respectively. This configuration resulted in an exploration depth of ~ 15 

m, which is a roughly-defined parameter. A continuous 14.5 km-length EMI transect 

was collected along the backbeach and across a former outlet of the Rhine River to test 

the sensor’s ability to distinguish variations in subsurface lithology. The survey was 

conducted in an area that was previously characterized by drill hole data and these were 

used to validate the σa measurements. The results from their study suggest that coastal 

sediments can be classified according to their apparent conductivity. The range of σa values 

was categorized into three groups (i.e., low, medium and high). The first group of low σa 
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(20-45 mS/m) and low-variation amplitudes was interpreted as beach sands. The second 

group of medium σa values (20-90 mS/m) and large variability corresponded to clay and 

peat layers of varying thickness. A third group of high σa values (60-190 mS/m) and large 

variability was interpreted as clay rich brackish channel deposits. They further suggest that 

high σa values occur in areas where the conductive layer is thick and close to the surface. 

Although Seijmonsbergen et al. (2004) suggest that EMI surveys are a rapid, relatively 

inexpensive method to investigate subsurface lithology they also acknowledge that 

variations in salinity as a result of storm activity and/or sea-level change should be 

investigated in further detail (i.e., salinity vs. lithology tradeoff).   

 

Demonstration of EMI in support of this review 

To test the capability of a handheld portable EMI sensor in detecting subsurface 

changes in framework geology, a ~10 km alongshore EMI survey was collected Padre Island 

National Seashore, Texas (USA) to test how well the EMI sensor could detect a network of 

inferred (buried) Pleistocene streams identified by Fisk (1959).  A multi-frequency GSSI 

Profiler EMP-400™ was used in the inline vertical dipole mode and used 3, 10 and 15 kHz 

frequencies corresponding to skin depths of ~ 5, 3 and 2 m, respectively.  All of the EMI 

surveys were conducted in a region of previously identified Pleistocene fluvial paleo-

channels and streams (Fisk, 1959) as determined from ~3000 deep drive-sampler, rotary-

drill borings, near-surface cores and hand-dug surface pits. The study area is located within 

the central section of the National Seashore and is an ideal setting for testing the sensor 

because there is negligible infrastructure and cultural noise (e.g., no buildings, pipelines, 
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fences, railways, communication towers) to potentially interfere with the EM signal.  Prior 

to collecting the data, the GSSI Profiler EMP-400™ sensor was calibrated independently to 

the surrounding environment and also with the operator. Calibrations were performed in 

the backbeach environment to reduce any noise from breaking waves, etc. in the swash 

zone. If operators switched between surveys, a new calibration was performed the same 

way every time, for consistency. For a detailed description of the calibration procedures 

please refer to the user manual, which is available online as a free download 

(Geophysical Survey Systems, 2007).  

The 10 km-long EMI survey (Figure 2-3) traversed at least three previously inferred 

Pleistocene streams of varying width and presumably varying depth. Comparisons were 

made between the inferred channels by Fisk, measured σa values, and maximum dune height 

extracted from aerial LiDAR data. On Fig. 3C, the red curve indicates variations in σa, 

whereas the blue curve represents maximum dune height. On average, apparent conductivity 

decreases within the three interpreted paleo-channel regions. The lowest σa values are within 

the first channel and suggest a thicker sequence of valley fill material (i.e., more resistive 

beach sands). Comparisons of the locations of each paleo-channel as identified by the EMI 

sensor to those of Fisk (1959) are highlighted by the gray shaded regions on Figure 2-3. 

There is reasonable agreement between the locations for the first paleo-channel. There 

appears to be excellent agreement between the locations for the second channel shown by 

the minimum σa on the red curve. Conversely, there is a discrepancy between the locations  
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Figure 2-3. Location map of previously inferred Pleistocene streams identified by Fisk 

(1959). The regional distribution of the network of Pleistocene streams (dotted lines) that 

now lie beneath the modern barrier island system are shown in panel (A). The gray 

shaded region indicates the location of the 10 km alongshore EMI survey conducted in 

August 10, 2013 (B). A closer view (C) of the inferred paleo-channels (labeled 1-3) is 

compared to the alongshore variations in apparent conductivity (red curve) and 

maximum dune height (blue curve). A Savitzky-Golay smoothing filter (solid lines) was 

applied to the raw data (dotted lines) using AutoSignal™ V1.7. The smoothed lines are 

intended to highlight the long wavelengths in each data set. Maximum dune height was 

extracted from an aerial LiDAR survey (free online access) provided by the Army Corps 

of Engineers (USACE) and Joint Airborne LiDAR Bathymetry Technical Center of 

Expertise (JALBTCX) as part of the 2009 West Texas Aerial Survey project. A 25 m 

sampling window was used between consecutive points and the vertical and horizontal 

positional accuracy is 0.15 and 0.5 m, respectively (Weymer et al., 2015).  
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for the third channel suggesting that more surveys and coring are needed to confirm the 

exact location of the channel and the potential impacts on surface geomorphology.  

 EMI data are commonly displayed as apparent conductivity maps (2D contour 

plots), particularly for environmental and engineering coastal applications including 

saltwater intrusion, freshwater lens morphology and contaminant plume delineation 

(Stewart, 1982; Ruppel et al., 2000; Paine and Minty, 2005; Aziz et al., 2008; Triantafilis et 

al., 2011). However, EMI grids have not been collected to investigate the connections 

between geologic structures and alongshore variations in island morphology. An example of 

a 2D EMI grid survey is presented in Figure 4-2. Here, a 20 x 500 m grid survey was 

conducted in the backshore environment across a washover channel that was created during 

Tropical Storm Arlene, which made landfall (~ 64 km south of Corpus Christi, Texas, USA) 

near Padre Island on June 20
th
, 1993 (NOAA, 2014). Historical imagery from Google Earth

©
 

(1995, 2005, 2014) shows how the washover has recovered over the past two decades.  

Washovers can only recover in the absence of storm activity, which allows vegetation to 

establish and stabilize new foredunes (see Houser and Hamilton, 2009). This area was 

chosen to determine whether the EMI survey could reveal any relationship between 

subsurface σa and the location of the washover channel. Three frequencies were used by the 

sensor (3, 10, 15 kHz), providing a view into the conductivity structure at different depths, 

both within and outside the channel. Lower σa values observed inside the washover channel 

suggest a thicker layer of sand is present compared to the areas outside the channel where σa 

increases. Apparent conductivity increases at all three frequencies just outside of the channel 

(~100 m) suggesting a change in lithology. It is possible that the higher σa values indicate a 
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thinning of the sand layer such that a more conductive layer (e.g., clays/Pleistocene 

ravinement) is closer to the surface outside the channel. This hypothesis can be tested by 

taking cores within and outside the channel to validate the thickness of the sand layer that 

can control dune morphology (see Houser and Mathew, 2011). Regardless, the fact that a 

change in σa occurs within the channel suggests that the EMI sensor is capable of making 

reliable subsurface measurements to observed surface features.  
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Figure 2-4. Example of an EMI grid survey across the beach-dune environment. The 

10,000 m
2 
survey was conducted with a GSSI Profiler EMP-400™ and was acquired in 

~2 hours on November 29, 2013. Data was collected at 5 m line and station spacing and 

interpolated to a 1x1 m grid with ordinary kriging. Each panel represents a “depth slice” 

where the lowest frequency (3 kHz) corresponds to the deepest depth probed by the 

sensor. High σa values are in red, whereas low values are in blue. Shore-normal distance 

(m) starts at the backbeach (0 m) and traverses to the west (20 m). Satellite images 

courtesy of Google Earth
©

, 1995, 2005, 2014 (Weymer et al., 2015).  
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Conceptual model of groundwater effects on EMI signals 

 Since barrier island hydrology is dependent on the framework geology, the 

alongshore variation in groundwater can either exaggerate or partially mask paleo-channels 

in EMI surveys. For example, hydrology may have had an impact on the slight offset 

between the inferred paleo-channels and the lower σa values (see Figure 2-3). Although 

changing hydrology may alter EMI response parameters, it is still possible to make geologic 

interpretations so long as the hydrology is taken into consideration. The combined effects of 

each hydrologic factor on a hypothetical EMI signal are conceptualized in Figure 2-5. The 

hydrologic processes within a barrier island system are shown at two different length-scales, 

where Figures 2-5A-C represent hydrodynamics within the beach-dune system (tens of m) 

and Figures 2-5D-F illustrate larger-scale hydrologic variations across the entire barrier 

system (several km). In the swash zone, non-linear effects of waves, currents and tides 

combine to produce a landward-increasing superelevation of the mean freshwater water 

table (Nielsen, 1990). Nielsen observed that the mean water surface through the swash zone 

rises rapidly (Figure 2-5A), intersecting the beach face at a relatively high elevation (i.e., 

superelevation/overheight) before levelling off into the beach water table (Gourlay, 1992). 

Thus, the measured σa should be highest in the swash zone and decreases moving across the 

beach-dune system. Accounting for wave setup and tidal fluctuations (Figure 2-5B), the 

EMI signal likely varies over a tidal cycle where σa slightly increases during high tide and 

slightly decreases at low tide. The seasonal variations in precipitation (i.e., wet vs. dry 

conditions) have also been suggested to influence σa alongshore. During wet conditions the 

beach is saturated with rainwater, thereby increasing σa (Figure 2-5C). Conversely, during 
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dry conditions the water table lowers, resulting in lower σa and increasing the EMI sensor’s 

ability to probe to greater depths.  

 

Figure 2-5. Conceptual model of groundwater dynamics in a barrier island and their 

effect on the EMI signal. The left panels represent meso-scale hydrodynamics within the 

beach-dune environment, whereas the right panels characterize large-scale hydrology 

across the larger barrier island system. The overall trend in changing salinity (all panels) 

is represented by the color gradient from gray to white, where gray is higher salinity 

(i.e., σa) and white is lower salinity (σa). Within the beach-dune system, hydrologic 

effects on the EMI signal include; hydraulic gradients (A), wave and tidal influences (B), 

and seasonal effects (C). Across the barrier island, large-scale hydrologic effects include; 

differences in the level of the water table (D), density-driven convection (E), and 

seasonal variations, which influence free convection (F) (Weymer et al., 2015).  
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Groundwater dynamics also vary across the barrier island system (Gourlay, 1992; 

Nielsen and Kang, 1996; Nielsen, 1997, 1999). It has been suggested that infiltration from 

wave runup in the swash zone is the main factor in creating a landward-dipping water table 

across the barrier (Nielsen, 1999). Theoretically, an EMI signal across a barrier island with 

little to no relief should gradually decrease landwards. However, most barriers have highly 

variable topography extending from the fore-island dunes, across the vegetated barrier-flats 

and into the back-island dunes and bay margin. Studies by Paine et al. (2004) suggest that σa 

is negatively correlated with topography, and therefore a more representative EMI signal 

across the barrier is shown in Figure 2-5D. Stevens et al. (2009) investigated density-driven 

free convection within the backbarrier/wind-tidal flats of Padre Island National Seashore. 

They found that in certain hydrological situations, instabilities created by denser saline fluid 

overlying less-dense fluid can drive saline water to descend into fresh water, thereby causing 

lateral migration of saline water across the barrier (Figure 2-5E). In arid environments (e.g., 

south Texas coast, Persian Gulf), tidal flats exist adjacent to back-barrier environments. 

During the summer, evaporation exceeds precipitation and the surface of the flats dry out. 

Conversely, during the winter, low-pressure systems pond bay/lagoon waters against the 

barrier, thus flooding the tidal flats. The seasonal cycles of wet/dry conditions significantly 

influence groundwater dynamics across the barrier, where σa slightly decreases as the flats 

continue to dry (Figure 2-5F). In summary, there are many hydrologic factors that influence 

the overall spatial distribution of saline and freshwater in barrier island systems some of 

which may be site specific. Therefore, EMI surveys should be conducted systematically and 

carefully to test the predictions depicted in Figure 2-5. Because EMI measurements respond 
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almost entirely to the bulk subsurface electrical conductivity, it is suggested that EMI 

sensors offer great potential to advance the current understanding of barrier groundwater 

dynamics. 

  

Summary and future research 

The relationships between geologic framework, hydrology and modern barrier 

island transgression are not well constrained by conventional geological methods. 

Antecedent geology has been shown in many studies to influence contemporary 

morphodynamics. However, groundwater dynamics also play a significant role in the 

evolution of the modern barrier island system. Previous studies have investigated these 

two controls on barrier island transgression independently, and it is argued that linkages 

between subsurface hydrogeology and surficial features must be understood to 

accurately predict future change. Traditional methods such as coring, seismic and GPR 

(to some extent) have proven useful to address these issues, nevertheless, these 

techniques are either invasive or cannot provide continuous subsurface information 

across the entire coastal tract (i.e., inner-shelf, nearshore, beach, barrier and lagoon).  

EMI methods are a viable alternative to explore the geologic framework of 

barrier islands, because EMI sensors have a potential to provide subsurface information 

across the entire barrier island system. Traditional geological, geophysical and remote 

sensing methods work well within specific areas of the coast but these data sets must be 

integrated to give a complete picture of geologic framework across the entire coastal 

tract. In other words, it is argued herein that no other geophysical method besides EMI 
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can provide continuous subsurface coverage. EMI sensors provide high-resolution 

information regarding the complex feedbacks between antecedent geology and 

hydrologic conditions. When integrated with data from other methods, EMI techniques 

have direct implications for barrier island response to future storms and rising sea-level.  

 Although EMI methods show promise for future barrier island research, a 

number of key issues need to be resolved. Each cartoon depicted in Figure 2-5 illustrates 

the potentially confounding effects of changing hydrologic conditions on the EMI signal. 

Within the beach dune system, it is proposed that further work is needed to A) accurately 

characterize hydraulic gradients across the barrier island system, B) monitor wave and 

tidal effects on water table elevation, and C) understand seasonal hydrologic changes 

including precipitation and its influence on water table migration. Large-scale 

investigations across the barrier island system are also needed to D) monitor water 

elevations across the entire barrier, E) account for density-driven free-convection and 

lateral migration across the barrier island system, and F) monitor seasonal variations on 

large-scale barrier island groundwater dynamics. It is argued that subsurface hydrology 

is a proxy for framework geology. As the hydrologic effects on EMI sensors become 

better understood (i.e., Figures 2-5A-F) interpretations of framework geology will 

improve even further. In addition to these challenges, further study of decreases in 

exploration depth, breakdown of the LIN approximation and questions concerning a 

practical (absolute) calibration are crucial for improving our understanding of the 

limitations of EMI sensors in highly conductive coastal environments. Some of the 

emerging techniques for barrier island EMI studies include; inversion modeling for 
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multiple layers, geostatistical testing, and subsurface/surface integration with LiDAR 

morphometrics. It is proposed that EMI techniques are complementary to existing 

methods and can become a useful tool to study how subsurface hydrogeology governs 

modern barrier island transgression.  
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CHAPTER III  

DIFFERENTIATING TIDAL AND GROUNDWATER DYNAMICS FROM 

BARRIER ISLAND FRAMEWORK GEOLOGY: TESTING THE UTILITY OF 

PORTABLE MULTI-FREQUENCY EMI PROFILERS 

 

Introduction 

Portable multi-frequency electromagnetic induction (EMI) profilers have become 

a popular tool for near-surface geophysical applications because they are non-invasive, 

cover large areas over a short period of time, and are relatively inexpensive compared to 

other geophysical techniques. EMI profiling is designed to measure lateral variations in 

electrical conductivity σ, along a traverse, as opposed to sounding techniques which 

detect vertical variations in σ with depth (Frischknecht et al., 1991). The most commonly 

used source for EMI prospecting is a small current carrying loop, which is essentially a 

magnetic dipole (West and Macnae, 1991). There is a variety of profilers available on 

the market including the Geonics; GSSI™, Geophex™, Dualem™, PROMIS™, GF 

Instruments™ and Stratagem™ systems. Most profiling techniques operate in the 

frequency domain; however, many acquisition and interpretation procedures are 

available in the time domain (Nabighian and Macnae, 1991). A significant application 

of dipolar source EMI profiling is the detection of highly conductive ore bodies for 

mining, and many instrumentation and interpretation techniques have been developed 

specifically for this purpose (Frischknecht et al., 1991). EMI profiling for other uses is 

rapidly increasing for applications such as: groundwater, environmental, and engineering 
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studies (see Huang and Won, 2000; Everett, 2013). In the coastal environment, the use 

of EMI has focused on imaging saltwater intrusion for groundwater resource 

management (e.g., Nenna et al., 2013). Coastal EMI surveys for other purposes have 

been underutilized for several reasons including: lack of awareness of the method by 

non-geophysicists, and data reliability (see George and Woodgate, 2002). We present a 

case study to assess the use of EMI profiling techniques for a coastal investigation, 

namely for characterizing large-scale barrier island hydrogeology at Padre Island 

National Seashore (PAIS), Texas in southeastern United States. The geological pattern 

along the island is of inherent interest not only for testing EMI methods, but also for 

informing coastal managers at the National Park and in the State of Texas.  

 

Portable multi-frequency EMI systems 

Portable multi-frequency EMI profilers provide users with the flexibility of 

choosing between several operating frequencies, as well as varying the instrument’s 

orientation, height, and coil configuration (Won et al., 1996; Huang et al., 2008). Unless 

otherwise mentioned, “portable” means a lightweight sensor that is used by one person 

and can be operated in a continuous acquisition mode while walking. Unlike most 

traditional EMI sensors, which have separate transmitter (TX) and receiver (RX) coils 

connected by long cables, portable multi-frequency EMI profilers have a short, fixed 

separation between the TX and RX coils. For example, the GSSI Profiler EMP-400™ 

contains a TX coil that continuously emits a waveform containing multiple frequencies 

within the 1 – 16 kHz bandwidth, selectable at 1 kHz increments (Geophysical Survey 
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Systems, 2007; Huang et al., 2008). The RX coil measures the in-phase I and the 

quadrature (out-of-phase) Q components of the time-derivative of the secondary 

magnetic field (Won et al., 1996). The geometry of the GSSI Profiler EMP-400™ and an 

example of its use in the field is shown in Figure 3-1A. The coil separation s of the 

instrument is 1.21 m and the instrument height h used in this study is ~ 0.70 m. The 

system measures I and Q responses in parts per million (ppm), as well as σa in mS/m, 

which is a transform of the I and/or Q raw measurements (McNeill, 1980). The system 

sensor electronics are controlled by a wireless Bluetooth™ communications interface 

that is incorporated into a TDS RECON-400 Personal Digital Assistant (PDA). 

Additionally, GPS coordinates are recorded at each measurement location with a 

positional accuracy of ~ 1 m. 

Conventionally, the separation distance, or offset, between TX and RX coils is 

important for determining the maximum depth at which a target can be detected. 

However, with newer fixed offset profilers, the maximum depth to the target is 

controlled by changing the operating frequencies. In other words, the depth of 

investigation (DOI) for the instrument used in this study is a function of frequency: the 

lower the frequency, the deeper the investigation. The DOI may be defined as the 

maximum depth probed by a geophysics sensor (Huang, 2005). Despite a fixed offset, 

EMI profilers record the Earth response at several frequencies (Huang, 2005), although 

frequencies below 16 KHz may be within the low frequency approximation and data at 

different frequencies will be redundant in resistive environments. The DOI is affected by 

many other factors such as: sensor sensitivity, operating frequencies, background noise 
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level (Huang, 2005), and the physical properties (see Everett, 2013) of the subsurface 

(e.g., porosity, moisture content, temperature, and salinity). Nearby lateral variations in 

subsurface σ also influence the effective DOI at any given location along the profile. 

Understanding how these factors relate to the DOI is important for survey design, but is 

also dependent on the geomorphological environment (fluvial, aeolian, glacial, and 

coastal, etc.) under investigation.  
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Figure 3-1. Overview of the EMI handheld profiler configuration and conceptual model 

of the relationships between varying hydrology, lithology, and apparent conductivity σa. 

(a) Profiler parameters (left panel) and the GSSI Profiler EMP-400™ being used in the 

field (right panel) where, TX = transmitter, RX = receiver, coil separation s = 1.21 m, 

height above ground h = 0.7 m, σair and σground are the air and ground conductivities, 

respectively (after Huang et al., 2008). (b) Hypothetical EMI survey over changing 

lithology where lithology A σA is more conductive that lithology B σB. The EMI “signal” 

decreases across the less conductive sediments. (c) Generalized graph depicting 

variations in σa with respect to changes in hydrologic conditions. During dry conditions, 

the sensor is capable of probing greater depths. Conversely, during wet conditions σa is 

relatively homogenous, limiting the sensors ability to distinguish geologic features. 
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 Interpretation of EMI data is commonly based on measurements at a single 

frequency (Huang and Won, 2000). Here we focus on apparent conductivity values 

measured at three frequencies to differentiate variations in σ at depth. Apparent 

conductivity σa is defined as the conductivity of a homogeneous half-space that would 

have produced the same response as that measured over the real Earth with the same 

sensor, and is transformed from either the I or Q response (Won et al., 1996). In this 

study we present only raw EMI σa data and have not applied any form of post-

acquisition correction. In conductive environments, portable multi-frequency EMI 

sensors can be used for depth sounding since the frequency-dependent EM data are 

acquired at relatively high induction numbers 

𝜃 = √
𝜔𝜎𝜇

2
𝑠     (3.1) 

where, 𝜃 is the induction number for a plane wave, ω = 2πf is the angular frequency, σ is 

the ground conductivity, μ is the magnetic permeability, and s is the TX – RX offset. 

The collection of multi-frequency data at high induction numbers enables mapping σ 

variations with depth (Huang et al., 2008). However, not all portable conductivity meters 

(e.g., Geonics EM31) are based on the high induction number assumption. EMI profilers 

have less capability to resolve depth variations at low induction numbers (low 

conductivity or resistive ground) as the S/N ratio is low in this case. It is important to 

note that Equation (9) involves a plane wave, but does have significant validity for the 

magnetic dipole-dipole configuration used in the present study.  

A simple conceptual model (Figure 3-1B) illustrates how σa might vary with 

lithology along a barrier island. Figure 3-1B shows a sketch of the expected signals from 
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a hypothetical EMI survey over contrasting lithologies. Lithology A is more conductive 

than Lithology B and in a coastal environment, Lithology A could represent seawater-

saturated sand/clay layer underlying a more resistive sand layer (B). Figure 3-1C gives 

examples of how the EMI response might change across such a contrast. Factors 

including tides, waves, the location of the fresh/saltwater interface, and soil moisture 

content influence the σa signal. Changes in contrast by the replacement of freshwater 

with saltwater can potentially reduce the DOI.  During wet conditions, the EMI sensor 

does not probe very deeply because of high σ (e.g., salinity) that strongly attenuates the 

downward propagation of the EM field (dotted line). Conversely, during dry conditions 

σ is lower, therefore the sensor probes to greater depths (solid line) as the downward 

propagation is less attenuated.  

As described above, attenuation increases with σ, thus reducing the DOI. The 

attenuation of penetrating EM fields with depth is known as the skin effect. EMI depth 

penetration is constrained by the conversion of the transmitted electromagnetic energy 

into kinetic energy of the mobilized subsurface charge carriers (Huang, 2005; Everett, 

2013). A skin depth δ is the depth at which a plane wave vertically incident upon a half-

space has an amplitude which is 1/e of its incident amplitude (see Huang, 2005; Everett, 

2013), where  

𝛿 = √
2

𝜇𝜎𝜔
 .     (3.2) 

The DOI can be less than a single skin depth in areas with complex geology and/or a 

considerable amount of cultural noise (Huang, 2005). The skin depths for the various 

frequencies used, over the range of conductivities likely present within the study area, 
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are presented in Table 3-1. Typical σa values measured along the beach within the study 

area range between ~ 50 – 800 mS/m (seawater is ~ 3,200 mS/m). For these σa values, 

the three main frequencies used in this study (i.e., 3, 10, and 15 kHz) correspond to skin 

depths ranging from ~ 41.1 – 4.6 m. However, assuming the DOI is approximately 

proportional to the square root of δ as suggested by Huang (2005), the lower bound for 

the DOI at 3, 10 and 15 kHz varies between ~ 6.4 – 2.1 m. It is important to note that the 

DOI is under the sensor, which is ~ 0.7 m above the ground in this study (see Figure 3-

1A).      

 

Table 3-1. Theoretical skin depths (δ) in meters over the frequency bandwidth of the 

GSSI Profiler EMP-400™ for a range of apparent conductivities encountered across the 

coastal environment. Note: the relative magnetic permeability (μ/μ0) value of 1.0006 

(typical of soil and sedimentary rock) used in this table follows that given in Nettleton 

(1940) and Scott (1983).  

 

 

 



 

65 

 

Application of EMI methods in coastal studies 

The literature on near-surface applied EM geophysics is far-ranging (see Everett 

and Farquharson, 2012), from modeling and inversion offerings (McNeill, 1980; Sasaki 

and Meju, 2006; Santos et al., 2010; Guillemoteau et al., 2015) to case studies in 

unexploded ordnance (UXO), soil science, and archeology (e.g., Sudduth et al., 2001; 

Benavides et al., 2009; de Smet et al., 2012; Pincus et al., 2013).  Comparatively few 

studies have used EMI methods in coastal environments (e.g., Paine et al., 2004; 

Seijmonsbergen et al., 2004; Vrbancich, 2009; Nenna et al., 2013; Christensen and 

Halkjær, 2014; Delefortrie et al., 2014b), with the majority of these focusing on mapping 

saltwater intrusion. Most of these studies employ Geonics™ EM31, 34, 38 and similar 

frequency-domain sensors; Geonics™ EM47, 63 and similar time-domain 

electromagnetic (TDEM) sensors in addition to various airborne electromagnetic (AEM) 

systems. AEM surveys are important for coastal studies, but are beyond the scope of this 

paper. Previous coastal EMI studies have explored subsurface σ as it is related to 

geologic framework (Seijmonsbergen et al., 2004; Vrbancich, 2009), classification of 

coastal wetlands (Paine et al., 2004), and investigation of coastal groundwater dynamics 

and pollution (e.g., Goldman et al., 1991; Fitterman and Deszcz-Pan, 1998; Nenna et al., 

2013; Christensen and Halkjær, 2014).  

Seijmonsbergen et al. (2004) used the EM34 (albeit not a portable multi-

frequency EMI profiler) at 20 m station spacing and 20 m coil separation to acquire a 

14.5 km transect along a segment of the Dutch coast, Netherlands. Using this 

configuration, the DOI is ~15 m. Results from the study suggest that subsurface σa can 
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be used as a proxy to distinguish the spatial distribution of Holocene coastal deposits and 

previously identified pre-Holocene paleo-channels near a former outlet of the Rhine 

River. Paine et al. (2004) used the EM38 (a portable EMI profiler) with its ~1 m 

exploration depth at 20 m station spacing to collect two shore-normal transects at 

Mustang Island, Texas, USA. Their findings suggest that σa generally varies inversely 

with topography and that LiDAR and EMI data can be used together for characterizing 

different geomorphic environments to improve the accuracy of coastal habitat 

classification.  

A number of coastal studies have investigated saltwater intrusion and 

contaminant plumes using EMI sensors other than portable multi-frequency instruments. 

For example, Nenna et al. (2013) tested the feasibility of TDEM methods to identify 

hydraulic communication between a confined freshwater aquifer and an unconfined 

saline aquifer using a Geonics PROTEM 47. Data were acquired using center-loop and 

offset receiver geometries. The results suggest that TDEM methods can be used to 

characterize saltwater intrusion in coastal aquifer systems and infer the continuity of 

confining layers between saturated layers with different water qualities. A different 

approach employing transient AEM was used by Christensen and Halkjær (2014) to map 

North Sea coastal hydrology at a heavily polluted site in western Jutland, Denmark, 

which suggests that transient AEM systems can be used to delineate the extent of the 

pollution plume, the fresh/saltwater boundary, and the complex pattern of subsurface 

preferential flow channels along the coast. While the above studies demonstrate the 

value of EMI sensors for coastal research, most have not examined in detail the effects 
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of changing hydrology as it is related to framework geology over different spatial-

temporal scales.  

 

Research objectives 

The purpose of this study is to investigate the performance of a portable multi-

frequency EMI profiler for mapping the hydrogeologic structure of a highly conductive 

barrier island/wind-tidal flat system at Padre Island National Seashore (PAIS), Texas, 

USA.  Specifically, the calibration and measurement reproducibility of a GSSI Profiler 

EMP-400™ is assessed with respect to: 1) tidal influences on σa measurments, 2) 

detecting spatial variations in subsurface σa as it is related to geologic framework; 3) 

monitoring seasonal changes in groundwater conditions; 4) mapping the relationship 

between different coastal sub-environments and topography, both alongshore and across 

the barrier island/wind-tidal flat system. It is proposed that multi-frequency EMI 

profilers can be used for exploring quantitative performance characteristics with respect 

to fundamental issues in coastal geomorphology, such as interactions between 

antecedent geology and modern coastal processes. 

 

Description of the study area  

Padre Island National Seashore (PAIS) and the Laguna Madre wind-tidal flats are 

located within the south Texas Coastal Zone, ~ 40 km SSE of Corpus Christi, Texas, USA 

(Figure 3-2). This region has been the subject of numerous studies since the 1940’s (e.g., 

Fisk, 1959; Brown and Macon, 1977; Morton and McGowen, 1980; Weise et al., 1980; 
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Amdurer and Land, 1982; Kocurek et al., 1992; Morton et al., 2000; Stevens et al., 2009; 

Weymer et al., 2015b) investigating various aspects regarding the origin, geologic history, 

hydrology, and/or morphodynamic processes of PAIS and adjacent wind-tidal flats. 

Geologic interpretations based on seismic, borehole data, cores, and hand-dug trenches 

provide a relative chronology of the geologic history of the island, spanning the majority of 

the Pleistocene (~1.8 Myr) through the present (Brown and Macon, 1977; Gradstein et al., 

2008). Much of what is known about the geologic history of Padre Island is based on studies 

by Fisk (1959) and the Bureau of Economic Geology (Brown and Macon, 1977), and few 

attempts have since been made to further investigate the geomorphic evolution of the island 

and wind-tidal flats.  
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Figure 3-2. Location map of central PAIS and adjacent Laguna Madre wind-tidal flats in 

southern Texas, USA. EMI surveys are superimposed on satellite imagery. Shore-normal 

EMI transects are labeled as NS, CS, and SS corresponding to the northern, central and 

southern surveys, respectively. The entire 37 km alongshore survey (AS) crosses each of 

the shore-normal surveys. Repeat 2.5 km alongshore surveys are located ~ 2 km south of 

the CS, highlighted by the white box. Calibration and tidal experiments are positioned at 

the intersection of the AS and NS. 
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The existing premise is during the interglacial stages of the Pleistocene, when sea-

level was approximately the same as it is today, inland rivers and streams were connected to 

a network of deltas within broad embayments along the shoreline (Brown and Macon, 

1977). Fisk (1959) suggests that the Pleistocene ravinement surface in the region of the 

Laguna Madre Flats was deeply eroded by headwater tributaries of an entrenched valley 

system. Within the study area, there are as many as seven inferred late-Pleistocene streams 

that cut across the modern barrier island. Additionally, Pleistocene river deposits run parallel 

to the barrier, beneath the modern wind-tidal flats and may be part of the ancient delta 

system (Fisk, 1959).  

Sea level rose through the Holocene, flooding the pre-existing Pleistocene stream 

and river valleys. Some of the valleys became bays and estuaries along the modern Texas 

coast and were partly filled with transgressive fluvial, deltaic, and/or estuarine deposits as 

well as wind-blown sand from the barrier, and by washover events during extreme storms 

(Hayes, 1974).  When sea-level stabilized (~ 6 – 4 kya) sand shoals and offshore bars began 

to merge between the drowned-river valleys (Fisk, 1959).  In the late Holocene, the shoals 

became a series of emergent, low discontinuous sandy islands that aligned parallel with the 

mainland shoreline (Brown and Macon, 1977). As the smaller proto-islands accreted they 

merged to form a large, arcuate system of barrier islands and spits extending ~ 600 km from 

modern-day Bolivar Peninsula to South Padre Island (Houser and Mathew, 2011). 

Stratigraphic units inferred from seismic surveys and borehole data suggest that the base of 

the barrier-lagoon system consists of Pleistocene sand and mud overlain by shoreface sand 

and mud, washover and aeolian deposits, and lagoonal muds (Brown and Macon, 1977). The 
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depth to the Pleistocene ravinement surface (known as the Beaumont formation) has been 

suggested to vary considerably along the length of the barrier island (Fisk, 1959). The 

sediment thickness of modern shoreface sands is estimated to be ~ 2 – 3 m, whereas the 

thickness of the shoreface sands and muds is ~ 10 m (see Brown and Macon, 1977; page 56, 

Figure 15) or greater within the paleo-channels (Fisk, 1959). Accordingly, approximate σa 

values in the current study range from > 400 mS/m outside the channels to < 200 mS/m 

within the sand-filled channels, which are likely more resistive.  

Radiocarbon dates from shell samples suggest that the modern barrier and its 

hypersaline lagoon (Laguna Madre) began to form ~ 5 kya (Fisk, 1959), whereas Padre 

Island became a continuous barrier at ~ 3.7 kya (Brown and Macon, 1977). Laguna Madre 

became progressively isolated as Padre Island continued to grow, causing increased salinity 

in the lagoon and gradual development into a non-carbonate coastal sabkha (Amdurer and 

Land, 1982). The modern wind-tidal flats of Laguna Madre are anomalous compared to 

other coastal environments worldwide (Morton and Holmes, 2009). High evaporation 

rates, low rainfall, and isolation from tidal passes combine to produce a distinctive set of 

hydrologic and geomorphic conditions along the south Texas Coastal Zone. Wind is 

always an important factor in controlling coastal processes; however, the combination of 

low rainfall and high evaporation, prevailing southeasterly winds, and high temperatures 

in south Texas make aeolian processes even more important. Within the wind-tidal flats, 

sedimentation is dominated by aeolian and wind-tidal processes. Padre Island is 

microtidal and the mean and diurnal tidal levels within the study area are 0.38 m, 0.45 m, 

respectively (NOAA, 2015). Slight differences in elevation on the wind-tidal flats 
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markedly affect the frequency with which any given area is flooded, thus creating a 

complex of different sedimentary facies within the wind-tidal environment (Miller, 

1975).  

 

Methods 

North Padre Island is the longest undeveloped barrier island in the world and is an 

ideal location for testing the performance of coastal EMI profiling techniques. With the 

exception of a few buildings at the northern entrance of the National Seashore, there is no 

urban development within PAIS. Thus, interference of EM signals by cultural noise (e.g., 

communication towers, railways, pipelines, fences, etc.) is minimal to non-existent. For this 

study, all surveys were conducted in the central segment of the island ~ 65 km south of the 

main park entrance. This area is accessible only by four-wheel drive vehicles and is one of 

the most remote sections of the island. Locations of the EMI surveys were chosen based on 

geologic maps by Fisk (1959) and Brown and Macon (1977) to allow for comparisons 

between σa measurements and previously interpreted geologic features. A series of surveys 

using a GSSI Profiler EMP-400™ were performed along three shore-normal transects in 

the southern (SS), central (CS) and northern (NS) segments of the study area (Figure 3-2). A 

37-km-long alongshore survey (AS) was collected through the NS and SS. Additionally, 

repeat surveys over a period of ~ 1 year were taken within the AS to monitor the sensitivity 

of the profiler to seasonal changes in hydrologic conditions. Instrument calibration, 

measurement repeatability, and tests for the effect of tides on the EMI signal were performed 
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at the intersection (tie point) of the NS and AS and are described in detail in the following 

sections. 

 

Calibration tests 

 Despite the growing interest in using EMI techniques for coastal studies, the 

importance of performing instrument calibrations is often overlooked. Along the beach 

factors such as; storms, tides, waves, currents, and precipitation regulate the position of 

the water table (see Lanyon et al., 1982; Nielsen, 1990), in turn altering subsurface σ. As 

a result, σa measurements by an EMI sensor are sensitive to fluctuations of the water 

table in response to these forcing mechanisms (Weymer et al., 2015b). The GSSI 

Profiler EMP-400™ requires two calibrations prior to each survey (Geophysical Survey 

Systems, 2007). The first is a field calibration where the operator stands a distance of ~ 4 

m away from the instrument, placing the sensor on the ground to measure background 

noise/EM fields averaged over ~ 5 seconds at each frequency. Secondly, the instrument 

is calibrated with the operator holding it at a predetermined height above the ground 

(e.g., 0.7 m in this study). These “factory” calibrations must be performed before starting 

the survey, after changing batteries, and/or operators. However, other environmental 

factors and survey design unique to each study site should also be accounted for when 

calibrating the instrument. In the following discussion, we recommend several field 

calibrations that should be implemented for coastal surveys in addition to the existing 

standard GSSI calibration procedures.  
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Calibration tests were conducted on 03/30/2015 at various locations across the 

beach and at the NS and AS tie point (Figure 3-3). A diagram of the survey design is 

shown in Figure 3-3A. Based on the above-mentioned factors, there are three important 

calibrations necessary to determine measurement reliability. As will be demonstrated 

later in the results, σa varies significantly across the beach. Accordingly, the first 

calibration test examines how σa values change if the instrument is calibrated at different 

sub-environments across the beach (e.g., foreshore, backshore, beach-dune interface). 

For this test, the instrument was calibrated at 10 m intervals (e.g., C0, C10, C20) starting at 

mean tide level (MTL = C0) moving perpendicular to the shoreline and ending at the 

base of the foredunes (C50). After each calibration (h = 0.7 m) measurements were taken 

at a 1 m step-size along the same 50 m transect, parallel to the shoreline ~ 25 m from 

MTL. The results of the survey are shown in Figure 3-3B. The highest σa values 

correspond to calibrations performed closest to MTL and generally decrease with 

distance away from the shoreline. However, σa values are slightly higher when the 

profiler was calibrated closer to the beach-dune interface (i.e., C40, C50 m) than at C20 

and C30. The results suggest the profiler consistently measures the same trend in 

alongshore σa values, but there is a noticeable difference up to 100 mS/m between 

calibrations performed within 10 m of the MTL and calibrations performed ≥ 20 m from 

the MTL. To reduce the influence of high salinity and tides, it is suggested that 

calibrations be made > 25 m (or as far away as possible) from the MTL and that each 

subsequent calibration should be performed consistently the same distance away from 

the shoreline.  
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Figure 3-3.  (a) Survey design for instrument calibration and tidal experiments at the 

intersection of the AS and NS. (b) Alongshore surveys following each calibration point 

(e.g., C0 = 0 m landward from the MTL, C10 = 10 m from the MTL, and so on). The σa 

values are shown at 3 kHz for each survey. (c) Box and whisker plot of instrument drift 

measured at 0.1 m increments above the ground. (d) Time-series assessing instrument 

drift 0.7 m above the ground for each frequency at the tie point shown in 3a.   

 

 

The second calibration test examines how measurements vary when calibrations 

are made at different heights above the ground. Prior to each survey, the operator can 

adjust the height of the instrument usually ranging from 0.0 – 0.8 m, where 0.8 m is the 

maximum position the profiler can be carried comfortably. A series of ten measurements 

was recorded every ten seconds at 0.1 m intervals to assess signal drift at each height 

(Figure 3-3C). Tidal variation is assumed to be negligible as each sequence of 
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measurements was acquired within minutes. The least amount of drift occurs when the 

sensor is placed closest to the ground surface (0.0 m), while the standard deviation 

increases with height between 0.1 – 0.6 m. Readings at 0.7 m are also reasonably stable 

(± 3 mS/m); however, stability decreases again at 0.8 m. For all surveys in this study, 

data was acquired 0.7 m because there is minimal drift at this height, and we wanted to 

avoid additional noise at the ground surface from trash and debris that unfortunately is 

prevalent along the beach at PAIS. It is suggested that for beach surveys the instrument 

should be carried at 0.7 m above the ground to avoid unwanted noise at the surface and 

to maximize the efficiency of data acquisition, especially for long (> 10 km) surveys.  

The third calibration test examines signal drift over the battery life-cycle used to 

power the PDA. A continuous time-series of 600 measurements was acquired at ten 

second intervals over a period of ~ 100 minutes at each frequency (Figure 3-3D). 

Measurements were collected at the tie point (Figure 3-3A) 0.7 m above the ground to 

visualize signal drift at a stationary point. The drift at 3, 10, and 15 kHz frequencies 

varies between ~ 1 – 2 mS/m, which is at least an order of magnitude less than the 

variation of measurements collected for each survey in this study. Despite the small 

degree of noise at 3 kHz, the readings are reasonably stable at all frequencies and show 

no evidence of appreciable instrument drift. As noted by Abdu et al. (2007), error from 

signal drift is less significant in environments (e.g., coastal) where the S/N ratio is high. 

For coastal surveys covering a relatively small area, Delefortrie et al. (2014a) propose a 

drift-correction procedure using a calibration line that crosses the entire survey area over 

a short amount of time. Although useful, this procedure is not practical for the 37-km-
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long alongshore survey in the present study because it takes ~ 4 – 5 hours to acquire 10 

km of data. Along the beach, groundwater conditions can change over these timescales 

in response to tidal forcing. Thus, it is argued that a detailed account of tidal variation is 

more important for large-scale alongshore surveys than applying a drift correction to the 

spatial EMI data series. It is important to note that the calibrations described above are 

intended for walking surveys. Although beyond the scope of the present study, 

additional calibrations and drift corrections may be necessary if the instrument is being 

towed behind a vehicle (see Delefortrie et al., 2014a).  

 

Instrument orientation testing 

Test surveys were conducted on 05/18/2013 starting at the seaward side of the 

NS to determine: 1) consistency of σa measurements using different TX – RX boom 

orientations to check whether there is underlying 1D structure; 2) measurement 

reproducibility along the same transect acquired on the same day. Two vertical dipole 

(VD) orientations were tested: in-line (P-mode) with TX and RX coils aligned in the 

survey direction, and broadside (T-mode) with TX and RX coils aligned perpendicular to 

the survey direction. Differences between P-mode and T-mode signatures can be 

attributed to variations in the mutual electromagnetic coupling between the TX coil, the 

subsurface structure, and the RX coil. In other words, mutual coupling is affected by the 

relative geometry of the TX – RX configuration with respect to subsurface structure 

(Everett, 2013). Furthermore, the mutual coupling is the same for both modes if the 

subsurface is 1D. Both surveys were conducted at 0.5 m step-size along the same 100-m-
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long shore-normal transect, starting at the backbeach and traversing the foredune ridge. 

Responses acquired in the different modes at each frequency were nearly identical. 

However, a slight mismatch between the two modes is visible between 50 – 70 m along 

the survey line at 1 and 5 kHz frequencies, but is not significant at 15 kHz (Figure 3-4). 

There is a considerable amount of noise at 1 kHz; therefore 3 kHz was used as the lowest 

frequency for the remainder of the study. The anomaly is more noticeable with 

decreasing frequency and is more pronounced for the T-mode. This effect could be 

caused by a discontinuity from a shallow feature along the profile and should be more 

detectable at the lowest frequency because the EMI sensor has a larger sensitivity pattern 

(i.e., larger illuminated volume) at low frequency. The 3D sensitivity pattern also has 

larger extent in the direction parallel to the coil-coil line. Therefore, the 3D anomaly 

should be more pronounced on data acquired with the T-mode configuration (see Pérez-

Flores et al., 2012; Guillemoteau and Tronicke, 2015). The small quantified difference 

over this limited area justifies collecting data in one orientation, thus all subsequent 

surveys in this study were executed in P-mode. The small 3D effects from these tests 

suggest that geoelectrically the beach can be approximated as a 1D environment along a 

single transect.  
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Figure 3-4. Comparison of σa measurements taken with different profiler orientations: 

P-mode and T-mode. Each survey at 1 kHz (a), 5 kHz (b), and 15 kHz (c) was conducted 

along the same shore-normal transect starting from the backbeach (0 m) and moving 

west across the foredune ridge (100 m). Step-size for each survey was 0.5 m. 
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Repeatability tests 

Measurement repeatability tests were performed at PAIS and off-site at Texas 

A&M University campus, College Station, Texas.  At PAIS, repeat measurements were 

recorded at the intersection (i.e., tie points) of the CS and NS sites with the AS survey. 

The values and relative difference of σa measurements between the tie points (Table 3-2) 

show good agreement at each recorded frequency. The relative difference in σa values 

(dac) was calculated by:  

𝑑𝑎𝑐 = (
𝐴𝑥−𝐴𝑦

𝐴𝑦
)𝑥 100      (3.3) 

where, Ax is σa at the point where the two surveys intersect in the alongshore, or x-

dimension, and Ay is σa at the point where the two intersect in the shore-normal 

direction, or y-dimension. It is possible that the mismatch between values at each tie 

point can be attributed to measurement error because the positional accuracy of the EMI 

sensor’s GPS is ~ 1 m. Nonetheless, the overall agreement of σa values at each tie point 

provides further evidence that same-day measurements by the EMI sensor are 

reproducible.  
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Table 3-2. Tie points and relative difference of measured σa values between the 

alongshore and shore-normal surveys collected in August, 2013. The σa values in the 

upper rows are the tie points between the start of the 10 km alongshore survey (0 km) 

and the start of the central shore-normal survey (CS). The σa values in the lower rows are 

the tie points between the end of the 10 km alongshore survey (10 km) and the start of 

the northern shore-normal survey (NS).  

 

 

 3 kHz 10 kHz 15 kHz 

Alongshore (0 km) 677.657 573.961 519.914 

Central (0 km) 676.731 573.363 520.865 

Relative difference (%) 0.137 0.104 -0.183 

    

Alongshore (10 km) 619.374 536.981 481.833 

Northern (0 km) 600.619 517.821 473.218 

Relative difference (%) 3.12 3.70 1.82 

 

 

In addition to testing the profiler in a coastal environment, where the subsurface 

hydrology is both complex and dynamic, repeat surveys were performed on the campus 

at Texas A&M University in a loamy soil environment where the hydrology is 

presumably less spatially and temporally variable. Two surveys were conducted on 

11/11/2014 and 11/19/2014 along a 30 m transect at a 1 m step-size (Figure 3-5). The 

first survey was performed during dry conditions, whereas the second survey was taken 

a week later a few days after a rain event. A buried object (irrigation pipe) is visible 

between 12 – 15 m along the transect and allows a detailed comparison between each set 

of survey data. The approximate depth of the pipe is 2 – 3 m and the DOI is ~ 6.4 – 2.7 

m for the range of σa values measured at 3, 10, and 15 kHz (see Table 3-1). The spatial 

coherence of the signals at each frequency provides an indication of the quality and the 

repeatability of the measurements. Apparent conductivity is computed from the 
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measured secondary magnetic field. For a constant offset and a given homogeneous half-

space, the expected Im(Hs/Hp) response decreases as the frequency decreases. In this 

case, the theoretical response is too weak in comparison to the noise level from 

environmental effects. Nonetheless, the results suggest that the sensor is capable of 

taking reliable measurements at higher frequencies across different acquisition dates. 

 

Figure 3-5. Off-site repeatability tests performed on campus at Texas A&M University 

in College Station, Texas. The same frequencies (i.e., 3, 10, 15 kHz) were used at the 

off-site location as what was measured for all subsequent surveys in the study site 

(except Figure 3-4).  
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Results 

Tidal cycle experiments 

 Previous studies suggest that tidal motions play a substantial role in the position 

and fluctuation of the water table in sandy beaches (e.g., Lanyon et al., 1982; Nielsen, 

1990). Rising and falling tides should cause fluctuations in subsurface σ with respect to 

variations in the exchange of fresh and salt water over the course of the tidal cycle. It is 

reasonable to assume that this “tidal effect” influences the EMI response depending on 

when a survey is performed (i.e., during low or high tide). What is not known is the 

manner in which σa changes in response to tidal dynamics and how far inland this effect 

persists. Here, we present the results of three experiments investigating the behavior of 

EMI data over a 12-hour tidal cycle both alongshore and across the beach at the 

intersection of the NS and AS (see Figure 3-3A).    

 The tests were conducted on 03/30/2015 at 08:00, ~ 75 minutes after low tide at 

the tie point between NS and AS. Measurements were recorded (h = 0.7 m) every hour, 

for 12 hours, to monitor changes in σa (Figure 3-6). Tidal data were downloaded from 

the NOAA Tsunami Capable Tide Stations database 

(http://tidesandcurrents.noaa.gov/tsunami/). The closest ocean-facing tide station is the 

Bob Hall Pier, Corpus Christi, Texas (Station ID: 8775870) located ~ 70 km NNE of the 

study site. At the tidal station, water level data are referenced to mean lower low water 

(MLLW) and measurements are recorded at 1 minute intervals.  

 

http://tidesandcurrents.noaa.gov/tsunami/
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Figure 3-6. (a) Tidal cycle and step-function 3 kHz EMI response over a 12-hr sampling 

interval at the tie-point between the AS and NS. Tidal data was downloaded on October 

18
th

, 2015 from the NOAA website at: http://tidesandcurrents.noaa.gov/tsunami/#. The 

closest NOAA tidal station to the study site is the Bob Hall Pier, Corpus Christi, TX 

(Station ID: 8775870). Water level records are recorded at 1-minute intervals. (b) 48-

hour tidal cycle data prior to, during, and after the 12-hour EMI survey. Note: all water 

level data is referenced to mean lower low water (MLLW). 

 

 

The tidal data exhibit the mixed semidiurnal pattern that is characteristic of the 

region. The 12-hour survey captured two low tides of varying magnitude (~ 06:42 and 
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20:02), and one high tide (~ 14:39). Although the tidal signal exhibits a periodic trend, 

the EMI signal follows a more step-function-like pattern. At low tide, the σa values (~ 

695 mS/m) remain fairly constant for 4 hours and then suddenly jump to ~ 830 mS/m at 

12:00, preceding high tide by nearly 3 hours. The σa values remain consistently high up 

to 3 hours after high tide and suddenly drop to ~ 720 mS/m at 19:00. The EMI signal 

exhibits a lead/lag step-response that increases rapidly preceding the high tide then drops 

off slowly during falling tide. The σa values at the higher low tide (20:00) are on average 

~ 30 mS/m higher than values recorded at the lowest low tide (08:00).  

 The aforementioned effect can also be seen in two additional surveys that were 

performed over a 50 m alongshore transect and 50 m shore-normal transect (Figure 3-7). 

Both surveys were collected at 1 m step-size at the same location as the repeatability 

tests, i.e., at the intersection of NS and AS (refer to Figure 3-3A). The objective of these 

tests was to examine measurement repeatability along each transect during different 

stages of the 12-hour tidal cycle to better understand the effect of changing hydrologic 

conditions on the EMI signal. Each survey was repeated every hour for twelve hours, 

starting at 08:00 and ending the same day at 20:00. Both the alongshore and shore-

normal surveys were acquired in approximately five minutes, respectively. Two low  
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Figure 3-7. Shore-normal (a) and alongshore (b) 3 kHz repeat surveys measured over 

the course of a 12-hour tidal cycle. The profiler was oriented in P-mode for each survey 

and was calibrated at the same tie-point location (see Figure 3a) prior to each hourly 

survey. The dotted lines in both surveys correspond to measurements taken during low 

tide, whereas solid lines represent measurements made during high tide. The darkest 

lines represent the onset of high and low tides and gradually decrease in intensity with 

time. 
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tides and one high tide were captured during the surveys and the difference in water 

levels between the tides was ~ 0.3 m. Similar to the results shown in Figure 3-6, both the 

alongshore and shore-normal surveys suggest that there is a tide-dependent step response 

in σa. For example, σa values measured at both high and low tides are clustered together, 

delineated by the solid and dotted lines in the figure, respectively. With respect to the 

shore-normal surveys, the separation between high and low tide responses becomes 

smaller with distance inland. Nonetheless, a difference of up to ~ 50 mS/m occurs at the 

base of the foredune ridge. The highlighted area in Figure 3-7A delineates the zone 

where each alongshore survey was performed, where the difference- in σa values is ~ 80 

mS/m between high and low tides. Although σa values varied over the course of the tidal 

cycle, the overall trend in the data for each survey is consistent.  

 

Shore-normal EMI surveys 

Shore-normal EMI transects were performed across the barrier/wind-tidal flats at 

the southern (SS), central (CS) and northern (NS) sites in August, 2013. Each transect 

was collected at a 10 m step-size at 3, 10 and 15 kHz frequencies (Figure 3-8). The 

length of each transect for the NS, CS and SS sites are 1.9, 3.2, and 4.6 km, respectively. 

For each profile, the highest σa values correspond to the lowest elevations (i.e., beach, 

salt marsh and wind-tidal flats). Conversely, the highest elevations correspond to the 

lowest σa values (i.e., dunes and back-barrier dunes). Here we adopt terminology used  
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Figure 3-8. Shore-normal surveys and classification of each sub-environment for the 

northern (a), central (b), and southern (c) sites collected between August 7, 8 and 9, 

2013, respectively. Abbreviated labels for each environment are as follows: beach (B), 

dunes (D), vegetated-barrier flats (VBF), back-island dunes (BID), wind-tidal flats 

(WTFL), and salt marsh (SM). For each survey, the light gray, dark gray and black lines 

correspond to σa values measured at 3, 10 and 15 kHz, respectively. The step-size for 

each survey was 10 m. Topography data (dotted lines) was extracted from an open 

access dataset provided by the Army Corps of Engineers (USACE) and Joint Airborne 

LiDAR Bathymetry Technical Center of Expertise (JALBTCX) as part of the 2009 West 

Texas Aerial Survey project. The LiDAR data can be accessed through the NOAA 

Digital Coast Data Access Viewer at: http://coast.noaa.gov/digitalcoast/data/coastallidar. 

Topographic elevation was extracted from the LiDAR-derived DEM every 25 m along 

the northern, central and southern transect. The horizontal and vertical positional 

accuracy of the LiDAR is 0.15 and 0.5 m, respectively.  

http://coast.noaa.gov/digitalcoast/data/coastallidar
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by Paine et al. (2004) for classifying different coastal sub-environments across the 

barrier island system. Distinct sub-environments are labeled for each survey in Figure 3-

8 and are defined in the figure caption. The width of the island generally increases from 

north to south and the variety of coastal habitats also increases with island width. As a 

result, variations in the EMI signal related to changes in geomorphic environments 

become more pronounced from the NS to SS. For all surveys, σa measurements increase 

with decreasing frequency.  

In addition to σa measurements, topographic information was extracted from 

aerial LiDAR datasets for comparison with the EMI data. The aerial LiDAR survey was 

performed in 2009 by the Army Corps of Engineers (USACE) and Joint Airborne 

LiDAR Bathymetry Technical Center of Expertise (JALBTCX) as part of the West 

Texas Aerial Survey project to assess post-hurricane conditions of the beaches, barrier 

islands, and lakeshores along the Texas coast. The 2009 LiDAR dataset is the most 

recent one publicly available. Although there is a 4-year interval between the LiDAR 

and EMI surveys, Padre Island has not been directly impacted by a hurricane since 2008, 

when Hurricane Dolly struck south Padre Island as a Category 1 storm (NOAA, 2015). 

As a result, Padre Island currently is more stable than other islands along the Texas coast 

(i.e., Galveston, Matagorda, Bolivar Peninsula) which have been recently impacted by 

Hurricanes Rita and Ike (NOAA, 2015). The 1 meter resolution LiDAR-derived digital 

elevation model (DEM) used in this study was generated using an ordinary kriging 

algorithm at Texas A&M University. The entire study area was processed by dividing 

the entire point cloud into tiles approximately 8 km by 8 km. There was no single 
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semivariogram used in processing the LiDAR point cloud tiles because the exact 

semivariogram parameters are tile-dependent. The DEM was broken into tiles in order to 

facilitate processing and because the morphology of each tile is different, the 

semivariogram parameters will vary slightly between tiles. The processed DEM tiles 

were subsequently merged to produce the final DEM covering the entire study area.  

   

Alongshore EMI surveys 

Alongshore surveys (Figures 3-9, 3-10) were performed between November 

2013 through March 2015 to investigate the profiler’s ability to detect variations in 

framework geology and the location of previously inferred Pleistocene paleo-

valleys/paleo-channels (see Fisk, 1959; Brown and Macon, 1977). These paleo-channels 

lie between the CS and NS sites of the present study. The alongshore surveys are located 

within a 10-km section of the beach and intersect the CS and NS transects (see Figure 3-

2). Each survey was performed in the backbeach environment, ~ 25 – 35 m inland from 

the MTL (as indicated by wrack-line deposits), where the beach is drier and presumably 

less affected by the dynamic hydrology. Similarly to the shore-normal surveys, each 

transect was collected at a 10 m step-size at 3, 10 and 15 kHz frequencies. For 

comparison, the previously identified paleo-channels were digitized from Fisk (1959) 

using ArcGIS
™

 software and superimposed on satellite imagery (Figure 3-9). There is a 

high degree of variability in σa along the 10-km-long transect with values ranging from ~ 

50 – 800 mS/m. Average alongshore σa values are ~ 400 mS/m, consistent with  
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Figure 3-9. Alongshore EMI comparison with previously interpreted paleo-channels by 

Fisk (1959) and the approximate tidal states during data acquisition. The EMI survey 

was collected on October 11
th

, 2014. Distance in kilometers on the x-axis of the EMI 

survey. The gray shaded regions highlight the intersections of the paleo-channels 

corresponding (on average) to low σa values. Depth contours were manually digitized 

using ArcGIS™. Inferred Pleistocene streams are indicated by black-dotted lines and the 

EMI surveys are represented by the white-dotted lines. The repeat alongshore surveys 

(Figure 3-10) are denoted by the red-dotted lines.    

 

 

seawater-saturated beach sand. However, σa values decrease in certain places to < 200 

mS/m, indicating a change in lithology and/or groundwater conditions. The decrease in 

σa occurs roughly within the same areas where Fisk (1959) inferred the location of 

Pleistocene paleo-valleys/channels from seismic and core data.   

A comparison of three repeat surveys taken within a smaller 2.5 km segment of 

the AS (see Figure 3-9) shows the seasonal effects on the EMI signal over a period of ~  
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Figure 3-10. Comparison of 3 kHz repeat alongshore surveys within the AS collected on 

November 28
th

, 2013, February 2
nd

, 2014 and October 11
th

, 2014. Apparent conductivity 

values for each survey are superimposed on satellite imagery from National Agricultural 

Imagery Program (NAIP), 2012. Note: each image has the same scale, and σa is 

displayed using the same range in values (0 – 800 mS/m).  

 

 

one year between November 2013 and October 2014. All of the surveys are located 

within the boundaries of the interpreted paleo-channel region. The 3 kHz σa values in 

each panel are displayed using GPS positions recorded by the sensor. The tidal state 

during each survey was approximately at low tide and is assumed to be less significant 
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than the seasonal variation within the signal (Table 3-3). Figure 3-10 illustrates how σa 

varies between seasons (i.e., during wet and dry conditions). The σa values are highest in 

November 2013, a few days after a rainy period and elevated storm surge, resulting in a 

signal consistent with homogenous saturated substratum. Conversely, the lowest σa 

values correspond to the October 2014 survey when the beach was considerably drier. 

Here the σa signal shows more heterogeneity that is hypothesized to reflect the 

framework geology of the island. In general, the results suggest that the sensor probes 

deeper and is able to detect variations in geologic structure when the beach is drier.  
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Table 3-3. Daily tidal variations during each EMI survey. Survey times are listed 

relative to the high and low tides. Data was recorded by NOAA at the Padre Island 

(south end) tide station #4471 (26º 04.1’N, 97º 09.4’W). Note: reported times and 

heights correspond to high and low waters. Historical tidal data downloaded from 

NOAA’s Tides and Currents website: 

(http://tidesandcurrents.noaa.gov/historic_tide_tables.html) on April 15, 2015. 

 

Date  

(Time of survey) 

Time 

h   m 

Tide Height 

ft        cm 

Survey direction 

18 May, 2013 

(~10:00 – 11:00) 

01:34 

09:53 

17:21 

20:51 

Low 

Hi 

Low 

Hi 

0.5      15 

1.4      43 

0.8      24 

0.9      27 

NS test survey (Figure 3-4) 

7 August, 2013 

(~15:00 – 20:00) 

05:05 

09:53 

12:50 

21:10 

Hi 

Low 

Hi 

Low 

1.3      40 

1.1      34 

1.2      37 

0.1      03 

NS (Figure 3-8) 

8 August, 2013 

(~11:00 – 15:00) 

05:07 

10:09 

14:04 

21:42 

Hi 

Low 

Hi 

Low 

1.2      37 

1.0      30 

1.1      34 

0.2      06 

SS (Figure 3-8) 

9 August, 2013 

(~10:00 – 16:00) 

05:08 

10:34 

15:21 

22:18 

Hi 

Low 

Hi 

Low 

1.2      37 

0.8      24 

1.1      34 

0.3      09 

CS (Figure 3-8) 

29 November, 2013 

(~09:00 – 10:00) 

05:41 

14:13 

Low 

Hi 

0.3      09 

1.6      49 

Repeat AS (Figure 3-10) 

2 February, 2014 

(~10:00 -12:00) 

03:40 

10:53 

17:32 

23:31 

Hi 

Low 

Hi 

Low 

 1.0     30 

-0.2    -06 

0.9      27 

0.3      09 

Repeat AS (Figure 3-10) 

11 October, 2014 

(~08:00 – 20:00) 

11:14 

20:11 

Low 

Hi 

0.1      03 

2.1      64   

AS (Figures 3-9 and  3-10) 

30 March, 2015 

(~8:00 – 20:00) 

06:42 

14:39 

20:02 

Low 

Hi 

Low 

0.3      09 

1.3      40 

1.0      30 

Tidal and calibration experiments 

(Figures 3-3, 3-6, and 3-7) 

 

 

 

 

 

 

http://tidesandcurrents.noaa.gov/historic_tide_tables.html
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Discussion 

Groundwater dynamics within sandy beaches and barrier islands have been 

studied in detail (e.g., Nielsen, 1990; Nielsen and Kang, 1996; Nielsen, 1999; Horn, 

2002; Stevens et al., 2009) and have important implications for EMI investigations. 

Understanding the interaction between surface and groundwater flows is not only 

important quantifying beach profile evolution (Horn, 2002), but also has been shown in 

this study to influence σa measurements, complicating geologic framework 

interpretations. Nielsen (1999) suggests that the watertable under coastal barriers will be 

highest on the seaward side of the island because of wave action and tides. Nonlinear 

effects within the beach combined with wave and tidal forcing creates a landward-

increasing superelevation of the mean water table level, resulting in a net landward flow 

of subsurface groundwater and thinning of the freshwater lens in the backbarrier 

(Nielsen and Kang, 1996). It follows that fluctuations in the watertable alongshore and 

across the island should to some extent regulate EMI signals, however, this effect is 

suggested to be more pronounced for alongshore surveys in this study. Therefore, we 

choose to focus on the results of the alongshore surveys in the following discussion as 

the results of the shore-normal surveys are similar to findings by Paine et al. (2004) and 

have previously been discussed in depth.  

Results from the tidal experiments (see Figures 3-6 and 3-7) suggest that there is 

a tide-dependent step response in σa over a 12-hour tidal cycle. This phenomenon has 

also been observed by Nielsen (and others) in several studies along the eastern coast of 

Australia. Using 11 stilling wells to monitor the movement of the water table at 
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Barrenjoey Beach, north of Sydney, Australia, Nielsen (1990) observed three 

characteristics at one of the wells landward of the high water mark: 1) the minimum 

water level was substantially higher than the low tide level; 2) the variation of the water 

table was not sinusoidal, despite the near sinusoidal (semidiurnal) nature of the tides, and 

3) the maximum water level was a few centimeters higher than the high tide level. 

Nielsen (1990) suggests the resulting response of the water table level is a function of 

three mechanisms: formation of a seepage face around low tide, asymmetry of the 

boundary condition at the sloping beach face and the nonlinearity of the governing 

equations (Darcy’s law, continuity equation, and Boussinesq’s equation). In other words, 

the beach slope acts as a nonlinear filter such that water enters the porous medium across 

the beachface more easily than it leaves, because the infiltration at high tide is more 

efficient than draining at low tide Nielsen and Kang (1996). This effect is also observed 

in the current study and may explain the similar lead/lag step-like response in σa during 

the tidal cycle.  

The fluctuation of the water table with respect to storms, waves, and tides is a 

significant problem to consider when performing EMI surveys in the coastal 

environment, especially for alongshore surveys. For large-scale transects, σa 

measurements will vary at different locations across the beach and depend on the state of 

the tidal cycle when the surveys were performed. It is argued that a detailed account of 

tidal dynamics (e.g, low, rising, high, falling) is required for comparison with each EMI 

survey for data processing and reliable geologic interpretation (see Figure 3-9). 

Combining the tidal experiments demonstrated in this study with a detailed account of 
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tidal states provides an avenue forward in separating the complex groundwater vs. 

geologic signals embedded in the EMI spatial data series. There are free, publically 

available online resources for downloading accurate tidal information such as; the 

NOAA Tsunami Capable Tide Stations database. For example, the tidal variability for 

each survey during the study is given in Table 3-3, showing the time of the survey with 

respect to the tidal cycle. By knowing the difference in σa between high and low tides, 

the location across the beach in which the survey was performed, and the tidal state 

during the time of the survey, it is suggested that σa values can be adjusted to low tide 

values to remove the tidal effect. This effect is lowest closest to the dune line, however, 

at PAIS there is a considerable amount of topographic variation fronting the dunes that 

may alter the EMI signal as well as reduce the efficiency of data acquisition. Therefore, 

the optimal zone for alongshore profiling is ~ 25 – 35 m (Figure 3-7A), where the 

difference in σa between high and low tide is roughly the same as at the base of the 

dunes and there is insignificant topographic variability. Figure 3-7 shows that for both 

the alongshore and shore-normal repeat surveys the overall trend in the EMI signal is the 

same over the 12-hour tidal cycle. This suggests that signal processing techniques (e.g., 

transform functions) and time-series analysis can be used to model the variability of the 

EMI signal with respect to tidal forcing. This concept will be explored in future studies 

and has potentially important implications for understanding the complex interactions of 

groundwater with framework geology.   

Results from repeat alongshore EMI surveys demonstrate that σa varies 

considerably when measured during different seasons. Alongshore surveys during wet vs. 
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dry conditions show noticeably different σa values, but may also be masked by tidal effects 

and/or changing beach states following stormy or calm periods. The wet profile shows more 

evidence of fine-scale geological heterogeneity, whereas the dry profile shows a larger range 

between maximum and minimum σa values. During wet conditions, σa readings are 

consistently uniform and higher than during dry conditions, limiting the DOI and the 

sensor’s ability to detect changes in lithology. Conversely, during dry conditions the 

profiler can probe deeper into the resistive surface and is able to better detect lateral 

variations in the underlying geologic structure. This is because lithological σ contrasts 

are greater if the lithology is not water saturated. The effect of changing groundwater 

conditions on EMI signals is suggested to be more dominant at smaller spatial scales (<< 

10 km), but is not as important when looking at large-scale (> 10 km) geologic 

framework geology (see Weymer et al., 2015b). As mentioned previously, small-scale 

fluctuations of the EMI signal along a profile that result from dynamic hydrology can be 

statistically corrected. It is argued that geologic interpretations can be made for large-

scale barrier island investigations by removing the nonlinearities of the tidal effect.  

 

Conclusions 

The results of this study suggest that portable multi-frequency EMI profilers 

should be used with caution for geologic framework investigations in highly conductive 

barrier islands. Changing hydrologic conditions over different spatiotemporal scales 

influence EMI signals both alongshore and across the island, however, are suggested to 

be more significant for alongshore profiling. It is suggested measurements should be 
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acquired 0.7 m above the ground and that alongshore surveys be performed ~ 25 – 35 m 

inland from the MTL in order to maximize data acquisition time and to reduce the 

influence of changing tides. We recommend combining the instrument calibration and 

tidal protocol used in this study with detailed tidal records to separate the effects of 

hydrology and geology on the σa signal.  

Repeat alongshore surveys during different seasons show different σa values, but 

may also be masked by tidal effects and/or changing beach states. During wet conditions, 

subsurface σ is relatively uniform, limiting the DOI and the ability of the EMI sensor to 

detect subsurface variations in lithology. Conversely, during dry conditions the profiler 

probes deeper and is better able to detect variations in the underlying geologic 

framework. The effect of changing groundwater dynamics on EMI signals is suggested 

to be more significant at smaller spatial scales (<< 10 km), but is not as important when 

looking at large-scale (> 10 km) framework geology. In other words, σa measurements 

are best viewed in a relative sense for mapping the geologic framework of a particular 

coastline. Future studies investigating the rich statistical information contained within 

the EMI spatial data series will provide further insight into understanding the variation 

within the signal and interpreting the complex coastal processes that causes it. We 

propose that multiple EMI surveys are required along the same transect to account for 

the confounding effects of changing hydrologic conditions on EMI responses. For 

geologic framework investigations, EMI surveys should be performed in the backbeach 

environment during dry conditions when the water table is lower.  
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CHAPTER IV 

LONG-RANGE DEPENDENCE IN COASTAL-BARRIER 

ELECTROMAGNETIC INDUCTION SPATIAL DATA SERIES 

 

Introduction 

It has long been known that many aspects of geophysical observables will exhibit 

similar statistical properties regardless of the length or time scale over which the 

observations are sampled (Burrough, 1981). A famous example is the length 𝐿 of a 

rugged coastline (Mandelbrot, 1967), which increases without bound as the length 𝐺 of 

the ruler used to measure it decreases, in rough accord with the formula 𝐿(𝐺) ∽ 𝐺1−𝐷, 

where 𝐷 ≥ 1 is termed the fractal dimension of the coastline. Andrle (1996), however 

has identified limitations of the self-similar coastline concept, suggesting that a coastline 

may contain information that clusters at certain characteristic length-scales pertaining to 

local processes or structural controls. Recent evidence from Padre Island (Houser and 

Mathew, 2011), Fire Island (Hapke et al., 2010), and Santa Rosa Island (Houser et al., 

2008) suggests that the geomorphology of barrier islands is affected to varying degrees 

by the underlying framework geology and that this geology varies over multiple length-

scales and can be repeating. Little known about the large-scale geologic structure of 

barrier islands including the important length-scales of subsurface features that may 

influence alongshore variations in surface morphology, which in turn affects island 

response to storms and sea level rise.  



 

101 

 

Some of the geological factors that lead to the self-similarity of natural terrain 

variations, or lack of it, are reviewed by Xu et al. (1993). In essence, competing and 

complex morphodynamic processes operate over different spatiotemporal scales, such 

that the actual terrain becomes a complex superposition of the various effects of these 

processes (see Lazarus et al., 2011). Although landscapes are not continuously self-

similar (i.e., self-affine), it has been suggested that fractal dimensions capture some 

aspect of surface roughness over a limited range of scales that are not directly evident in 

conventional morphometric measures (e.g., slope gradient, profile curvature) (see Baas, 

2002). In coastal settings, there exist morphodynamic processes that lead to regular 

(non-fractal) terrain variations. For example, swash zone processes govern the size and 

spatial distribution of regularly spaced, small-scale (~ 10
1
 m) beach cusps. Over larger 

scales (~ 10
2
 – 10

3
 m), complex interactions between incident wave energy and 

nearshore ridge and swale bathymetric features can generate periodic alongshore 

variations in beach-dune morphology (e.g., McNinch, 2004; Houser, 2012) that are 

superimposed on larger-scale transport gradients (Tebbens et al., 2002). While coastal 

terrains might not be exactly or even statistically self-similar, it is reasonable to expect 

they should exhibit some degree of long-range dependence (LRD). Long-range 

dependence affects phenomena in which correlations between observations that are far 

apart (in space or time) decay like a power law, much slower than one would expect 

from independent data or data following a short-memory process such as autoregressive-

moving-average (ARMA) (Beran, 1994; Doukhan et al., 2003).  
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The framework geology of a barrier system is the result of a long, complex and 

ongoing geologic history, characterized by sea level fluctuations and episodes of 

deposition and erosion. The framework geology may be self-similar exhibiting LRD, or 

approximately so, but methods to ascertain the alongshore variability of the buried 

framework geology are difficult to implement and can be costly. Geophysical data 

provide an avenue forward. Acoustic methods provide valuable information offshore, 

but are problematic onshore because of inefficient coupling of seismic sources with 

unconsolidated beach sands. Similarly, ground-penetrating radar (GPR) exhibits poor 

depth penetration in highly conductive seawater-saturated sediments. Herein we examine 

electromagnetic induction (EMI) geophysical datasets that can probe, to tens of meters 

depth, the long-range-dependent structure of the framework geology underlying modern 

barrier systems (see Weymer et al., 2015b).  

This study at Padre Island National Seashore (PAIS), Texas, USA demonstrates 

how EMI data can be used to map subsurface electrical conductivity σ as it is related to 

variations in the subsurface framework geology. Two alongshore EMI surveys at 

different spatial scales (~ 100 and 10 km) were performed to test the hypothesis that, 

similar to changes in surface-exposed barrier island morphology, subsurface framework 

geology exhibits self-similarity and LRD. The survey design allows for detailed 

comparisons of the long-range-dependent structure within the framework geology over 

several orders of magnitude. We also explore the benefits of using the family of 

autoregressive integrated moving-average (ARIMA) processes in statistically modeling 

EMI data. It is argued that these models offer a compact way of capturing the entire 
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hydrogeological complexity of a barrier island with only three parameters that cannot be 

achieved by other signal processing techniques. This approach offers significant 

advantages over other statistical techniques used to quantify the underlying processes 

that give rise to the long-range-dependent structure of large-scale barrier island 

framework geology. 

 

Study area 

Padre Island is part of a large arcuate barrier island system located along the 

southern Texas coastline and is the longest undeveloped barrier island in the world. The 

National Seashore is ~ 129 km in length, and is an ideal setting for performing EMI 

surveys because there is minimal cultural noise to interfere with the EMI signal of the 

framework geology. Furthermore, the island is continuous for > 100 km and is not 

dissected by tidal inlets or navigation channels that can interfere with or dominate the 

underlying framework geology. Modern beach sands depth ranges between ~ 2 – 3 m 

alongshore and are underlain by a Pleistocene sand/mud ravinement surface of varying 

thickness that was subsequently buried during the Holocene transgression (Brown and 

Macon, 1977). Fisk (1959) interpreted a network of Pleistocene (or older) paleo-

channels within the central segment of the island from seismic surveys and ~ 3,000 

drive-sampler and/or rotary-drill borings. This evidence provides a frame of reference to 

test the capability of the EMI sensor to map changes in subsurface apparent conductivity 

(σa) with respect to variations in the framework geology.  
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A handheld multi-frequency GSSI Profiler EMP-400
™

 was used in the in-line (P-

mode) configuration with the transmitter (TX) and receiver (RX) coils aligned parallel to 

the survey direction. The profiler records apparent conductivity σa at up to three 

frequencies simultaneously within the 1 – 16 kHz bandwidth, selectable at 1 kHz 

increments (Geophysical Survey Systems, 2007). GPS coordinates were recorded for 

each measurement at ~ 1 m positional accuracy. For all surveys σa increases with depth, 

however, the trend in the signal is roughly the same at each frequency. Herein, we focus 

on measurements at 3 kHz representing the greatest depth of investigation (DOI) of ~ 6.4 

– 3.5 m over the range of conductivities (~ 50 – 600 mS/m) encountered in the study 

area (Weymer et al., accepted). Surveys were performed in the backbeach environment, 

~ 25 m inland from the swash zone to reduce the effect of temporally variable hydrology 

(e.g., tides), and to avoid topographic variations (e.g., coppice dunes) fronting the 

foredune ridge that can alter the EMI signal. The duration and approximate tidal states of 

each survey were documented to compare with the EMI signal. Tidal data were accessed 

from NOAA’s Tides and Currents database (https://tidesandcurrents.noaa.gov). Padre 

Island is microtidal and the mean and diurnal tidal ranges within the study area are 0.38 m, 

0.45 m, respectively (NOAA, 2015).  

 

Field methods and EMI spatial data series 

Profiles of EMI σa responses typically are irregular and each datum represents a 

spatial averaging of the bulk conductivity σ, which in turn is a function of a number of 

physical properties (e.g., porosity, lithology, water content, salinity, etc.). The “sensor 

https://tidesandcurrents.noaa.gov/
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footprint”, or surface area beneath which the spatial averaging is performed, is 

dependent on the separation between the TX – RX coils (1.21 m in this study), the 

operating frequency, and can be less than the step-size between subsequent 

measurements along the profile. In other words, the sensor footprint determines the 

volume of ground the instrument measures at each acquisition point, and as will be 

discussed later, the radius of the footprint has important implications for analyzing LRD. 

Two different station-spacings were used to examine the correlation structure of σa at 

various spatial scales. An island-scale alongshore survey of 100 km was performed using 

a 10 m station spacing (station spacing >> footprint radius) such that each σa 

measurement was recorded over an independent volume of ground. Additionally, a 

nearly continuous sequence of σa was collected at a 1 m spacing (station spacing< 

footprint radius) for 10 km within the paleo-channel region of the island. The survey 

design allows for detailed comparisons of the long-range-dependent structure within the 

framework geology over several orders of magnitude (10
0
 – 10

5
 m).  

The 100 km EMI survey (Figure 4-1) represents, to our knowledge, the longest 

continuous EMI survey ever completed, resulting in a sufficiently large sample size n = 

10,783 (97 km) for accurately modeling LRD of barrier island geology (see Beran, 1992; 

Taqqu et al., 1995). A total of 21 segments were collected during three field campaigns: 

October 9 – 12
th

, 2014, November 15 – 16
th

, 2014, and March 28
th

, 2015.  The EMI files 

were stitched together by importing GPS coordinates from each measurement into 

ArcGIS
™

 to create the composite spatial data series. The unprocessed (raw) data shows a 

high degree of variability along the island. To reduce the effect of drift, a linear trend 
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removal was applied to the data (Figure 4-1b), following which the mean was subtracted. 

High-amplitude responses within the EMI signal generally exhibit a higher degree of 

variability compared to smaller, low amplitude responses. Higher σa readings correspond 

to a smaller sensor footprint and most likely are capable of detecting small-scale near-

surface heterogeneities (see Guillemoteau and Tronicke, 2015). Low σa readings suggest 

the sensor is probing greater depths and averaging over a larger footprint. The 

differenced dataset (Figure 4-1c) shows that the increments of Δσa are Gaussian 

distributed, but exhibit epochs of high variation, or ‘burstiness’ in some of the areas of 

high σa readings. These anomalies correspond to surveys that were collected in 

November, 2014, a few days following a rain event. Although it is reasonable to expect 

that some of the variations in the signal measured under wet conditions are caused by the 

framework geology, the bursty intervals are likely affected enough by the wet conditions 

to mask the underlying geological signature (Weymer et al., accepted). Each segment 

collected in November, 2014 represents a small length (~ 5 km) compared to that of the 

entire data series.  
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Figure 4-1. 100 km alongshore EMI survey. (a): DEM of study area and previously 

identified paleo-channel region by Fisk (1959). Channels are highlighted in red and 

green, where the green region indicates the location of the 10 km survey. 25 ft (7.6 m) 

contour intervals are highlighted with depths increasing from yellow to red and the 

center of the channels are represented by the black-dotted lines. (b): Raw σa (gray) and 

drift-corrected (black) EMI responses. Tidal conditions during each EMI acquisition 

segment are shown below. Low (lt) and falling tides (ft) are indicated by blue and light 

blue shades, respectively. High (ht) and rising tides (rt) are highlighted in red and light 

red, respectively. (c): Differenced increments of Δσa shown in (b). Survey dates are 

highlighted below, corresponding to different hydrologic conditions.  

 

 

The 10 km survey (Figure 4-2) was performed in one day on March 29
th

, 2015, 

so that variable hydrologic conditions should not play a significant role. The composite 

data series consists of 8 stitched segments. This alongshore survey is located within the 
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inferred paleo-channel region of the study area, providing some geologic constraints for 

understanding the variability within the EMI signal (Figure 4-2a). Here, the sample size 

is n = 10,176, permitting analogous statistical comparisons between the two data series 

with approximately the same sample size at both low and high spatial resolution. Unlike 

the 100 km survey, the footprint of the sensor overlapped each subsequent measurement, 

enabling a more detailed characterization of the underlying σ structure because the 

separation between the TX – RX coils (1.21 m), a good lower-bound approximation of 

the footprint, is greater than the step-size (1 m).  
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Figure 4-2. 10 km alongshore EMI survey within the previously interpreted paleo-

channel region (highlighted in green) by Fisk (1959). (a): DEM and northern segment of 

paleo-channels superimposed in yellow with the center of the channels represented by 

the black-dotted lines. (b): Raw σa (gray) and drift-corrected (black) EMI responses. 

Tidal conditions are shown below using the same color scheme as in Figure 4-1. (c): 

Differenced increments of Δσa shown in (b).  

 

 

The overall trend in σa measurements is comparable to the 100 km survey, where 

high amplitude and low amplitude signals correspond to high and low variability, 

respectively (Figure 4-2b). The decrease in σa that persists between ~ 2.5 – 6 km 

coincide with two large inferred paleo-channels, whereas a sharp reduction in σa is 

observed at ~ 8.2 km in close proximity to a smaller channel. It is hypothesized that the 
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geometry of each channel is directly related to the variation in the EMI signal, such that 

long, gradual minima in σa are indicative of large, deep channels and short, abrupt 

minima in σa represent smaller, shallow channels. The differenced data in Figure 4-2c 

shows smaller-amplitude bursts of variability compared to the 100 km survey because 

there is less of a hydrologic and/or seasonal effect on the signal. The small amplitude 

bursts generally occur outside the paleo-channels. It is supposed that reduced variability 

in the signal is related to the framework geology. Most of the known paleo-channels are 

located within the 10 km transect and likely contain resistive infilled sands resulting in 

lower and relatively consistent σa readings (Weymer et al., accepted).  

 

Tests for long-range dependence 

The plots of both spatial data series appear nonstationary where parts of the 

signal have local linear trends and periodicities. However, a closer evaluation of the 

entire signal reveals that cycles at many different frequencies occur, superimposed in a 

random sequence with a constant mean overall (see Beran, 1994). This behavior is 

typical for stationary processes with LRD, and is often observed for a variety of 

geophysical phenomena (Beran, 1992). A common first order approach for determining 

whether a data series has LRD is through inspection of the autocorrelation function, 

which is important for determining an appropriate statistical model to fit the data (Figure 

4-3a, 4-3d). Large correlations at small lags can easily be detected by models with short-

memory (e.g., ARMA, Markov processes) (Beran, 1994). Conversely, when correlations 

slowly tend to zero like a power function, the data contain long-memory effects and 
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either fractional Gaussian noise (fGn), or fractional ARIMA (FARIMA) models are 

useful (Taqqu et al., 1995). Both EMI signals in this study exhibit large correlations for 

large lags, suggesting the data have LRD that is closely linked to long memory effects. 

The intensity of LRD is related to the scaling exponent, or Hurst parameter H of a self-

similar process, where 1/2 < H ≤ 1 indicates an increasing tendency towards such an 

effect  (Taqqu, 2003). Results from a rescaled range R/S analysis (Figure 4-3b, 4-3e) 

show very high H-values of 0.99 and 0.97 for the 100 km and 10 km surveys, 

respectively.  
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Figure 4-3. Autocorrelations of measured σa values for the 100 km (a) and 10 km EMI 

surveys (d). R/S analysis for the 100 km (b) and 10 km surveys (e). The calculated Hurst 

coefficients H are 0.99 and 0.97 for the 100 km and 10 km surveys, respectively. PSD 

plots for the 100 km (c) and 10 km surveys (f).  
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The manner in which different frequencies (or herein, spatial wavenumbers; we 

use these terms interchangeably) are superposed within an EMI signal has been 

suggested to contain information related to geologic features over a variety of length 

scales (Weymer et al., 2015b).  For example, the lowest-wavenumber contributions are 

associated with geologic features that occur over the longest length scales. The 

distribution of frequency components can be examined by plotting the power spectrum 

where the slope β provides a quantitative measure of heterogeneity in a fractal signal 

(Figure 4-3c, 4-3f). An increase in │β│indicates the series is influenced more by long-

range correlations and less by small-scale fluctuations (Everett and Weiss, 2002). The 

power spectral density (PSD) for the 100 km survey has more small-scale variability 

than the 10 km survey because, 1) changing hydrologic conditions can vary over longer 

spatial scales, and 2) the data were acquired over a longer time span (months vs. one 

day). Thus, the slope of β = -1.28 is steeper for the 10 km survey indicating long-

memory effects are more dominant within the paleo-channel region compared to the 

entire island. It is possible that the variability within the signal and the degree of long-

range persistence is also a function of the sensor footprint (step-size), which is critically 

examined below. 

 

FARIMA statistical modeling and interpretation 

Results from preliminary tests for estimating the self-similarity parameter H 

strongly suggest that both EMI spatial data series, and by inference the underlying 

framework geology, exhibit LRD. The two simplest statistical models accounting for 
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LRD are fGn, and FARIMA models. In the former case, fGn and its “parent” fractional 

Brownian motion fBm are used to evaluate stationary and nonstationary fractal signals, 

respectively (see Eke et al., 2000; Everett and Weiss, 2002). Both fGn and fBm are 

governed by two parameters, variance σ2
 and the low-frequency scaling parameter, H 

(Eke et al., 2000). A more comprehensive class of models that have similar low-

frequency properties as fGn and fBm is FARIMA. Because fGn and fBm models have 

only two parameters, it is not possible to model the high-frequency components that 

additional parameters in FARIMA models are designed to handle. FARIMA is a 

generalization of the ARIMA (p,d,q) process where the degree of differencing d is 

permitted to take on fractional values to better model LRD (see Hosking, 1981). Both 

classes of models are intrinsically dependent on H and are discussed in detail by Taqqu 

et al. (1995). Because the EMI data series presumably contain both short and long-

memory effects, we chose to use FARIMA as the analyzing technique. 

An ARIMA model of a data series is defined by three terms (p,d,q), where the 

goal is to determine the integer values (e.g., 0, 1, 2, etc.) of p and q, and either the 

integer or the fractional values of d that most accurately model the patterns contained 

within the original data series. Different combinations of (p,d,q) provide important 

information on how the various length-scales within the framework geology relate to 

each other. As mentioned above, d is the differencing term that models LRD and it is 

normally inspected before p and q to identify whether the process is stationary (i.e., 

constant mean and σ2
). If the series is nonstationary, it is differenced to remove either 

linear (d = 1) or quadratic (d = 2) trends, thereby making the mean of the series 
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stationary and invertible (Cimino et al., 1999). This allows determination of the p and q 

parameters, which indicate the order of the autoregressive (AR) and moving-average 

(MA) components, respectively. For the analysis, we used the ‘arfima’ and ‘forecast’ 

statistical packages in R to fit a series of ARIMA (p,d,q) models to the observed EMI 

signals (see Hyndman and Khandakar, 2007; Veenstra, 2012; Hyndman, 2015). 

The results of six realizations for the family of ARIMA (p,d,q) models and their 

residuals (RMSE) are shown for each survey (Figures 4-4, 4-5). Based on the residuals 

and visual inspection of each model iteration, two observations immediately become 

apparent: 1) the data are most accurately modeled as an ARIMA (0,d,0) process for both 

surveys, and 2) the mismatch between the data and models is considerably less for the 10 

km survey. The first observation suggests that our data are most appropriately modeled 

by a FARIMA process that is stationary (i.e., 0<d<1/2) and has long-memory, where the 

spectral density is concentrated at low frequencies (see Hosking, 1981). This implies that 

variations in the framework geology at the broadest scales dominate the EMI signal and 

that the small-scale fluctuations in σa caused, for example, by changing hydrological 

conditions are not statistically significant. Moreover, there is a stronger tendency 

towards LRD within the paleo-channel region in the 10 km survey, indicating a stronger 

geologic control compared to the rest of the island.  
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Figure 4-4. Family of ARIMA models for the 100 km EMI survey. Model results are 

shown for the processed (drift-corrected) σa data. The residuals (RMSE) listed for each 

model gives the standard deviation of the model prediction error. The first three plots 

allow for more flexible modeling of short-range properties where (a) is an AR process, 

(b) is an MA process, and (c) is an ARMA process. An example of the general ARIMA 

(p,d,q) process to model both short and long-range correlations is shown in panel (d).  

Two special cases of an ARIMA (0,d,0) process are shown in panels (e-f), and represent 

a stationary process with long memory. For each plot the original (real) data is shown in 

red and the fitted (model) data is highlighted in blue. 
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Regarding the second observation, the results suggest that a densely-spaced step-

size (i.e., 1 m) is preferred to accurately model both short and long-range contributions 

within the signal. This presents an obvious logistical challenge, because it increases the 

amount of data acquisition time in the field if the surveys are to be collected at a constant 

step-size. ARIMA models require that the data must be taken at equal time or spatial 

intervals (see Cimino et al., 1999). The EMI profiler used in this study can also acquire 

data at continuous time intervals on the order or seconds. A recent study by Delefortrie 

et al. (2014a) demonstrates that portable EMI profilers can be towed behind a vehicle, 

thus it is reasonable to expect that island-scale surveys can still be efficiently performed 

by collecting data in continuous acquisition mode. This concept will be explored in 

future studies.  
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Figure 4-5. Family of ARIMA models for the 10 km EMI survey. Model results are 

shown for both the processed (drift-corrected) σa data. The parameters used for each 

model follow the same progression as listed in Figure 4-4.  
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Conclusions 

This research demonstrates that the large-scale framework geology of a barrier 

island, as detected by EMI geophysical methods, has LRD that can be accurately and 

efficiently modeled by a FARIMA process. An important finding from this study is that 

FARIMA provides a robust and novel way for fitting a statistical model to the 

framework geology of a barrier island. It is argued that FARIMA models offer a 

compact way of capturing the entire hydrogeological complexity of a barrier island with 

only three parameters (p,d,q) that cannot be achieved by other signal processing 

techniques. Moreover, EMI profiling can rapidly characterize the entire island and is 

considerably more cost-effective compared to other geologic and/or geophysical 

techniques. With respect to large-scale framework geology investigations, we 

recommend a densely-spaced EMI survey is preferred. This provides a better 

representation of varying framework geology as well as ensuring a better model fit to the 

data.  
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CHAPTER V 

FRAMEWORK GEOLOGY CONTROLS ON LARGE-SCALE BARRIER 

ISLAND TRANSGRESSION 

 

Introduction 

Despite the inherent risks of living on barrier islands, the United States is 

experiencing continued population growth along its coast (Zhang and Leatherman, 2011). 

According to 2000 census data there are more than 1.4 million people living on barrier 

islands in the U.S., where population has increased by 14% from 1990 to 2000. With the 

continued threat of sea level rise, extreme storms and coastal flooding, there are considerable 

challenges for coastal scientists, engineers, policy makers, and the public for developing 

sustainable management strategies that support resilient coastal communities. Part of the 

problem in understanding the susceptibility of barrier response to sea level rise and storms is 

that few studies have investigated the large-scale evolution of entire islands. This urgency, 

both to humans and to terrestrial and aquatic ecosystems, makes it imperative that we 

understand the processes and interactions between geology and surface morphology in these 

dynamic and vulnerable coastal environments (see Talley et al., 2003).  

Previous studies demonstrate that the underlying geology, otherwise termed 

framework geology, of barrier islands plays a significant role in the evolution of coastal 

landscapes (Kraft et al., 1982; Belknap and Kraft, 1985; Evans et al., 1985; Riggs et al., 

1995; Short, 2010). For example, antecedent structures such as paleo-channels, offshore 

ridge and swale bathymetry, and relict transgressive features have been suggested to 
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influence barrier island geomorphology to varying degrees and over a wide range of scales 

(see McNinch, 2004; Hapke et al., 2010; Lentz and Hapke, 2011; Houser, 2012). At the 

coastal plain scale (~ 10
2
 km), framework geology influences the structure of the coastal 

plain, that may include glacial, fluvial, tidal, and/or inlet paleo-valleys and channels 

(Belknap and Kraft, 1985; Demarest and Leatherman, 1985; Colman et al., 1990), and 

paleo-deltaic systems offshore or beneath the modern coastal plain (Coleman and Gagliano, 

1964; Frazier, 1967; Otvos and Giardino, 2004; Twichell et al., 2013; Miselis et al., 2014).  

At the shelf scale (~ 10
1
 km), framework geology consists of feedbacks between 

geologic features and relict sediments within the littoral system (e.g., Riggs et al., 1995; 

Schwab et al., 2000; Rodriguez et al., 2001; Honeycutt and Krantz, 2003) and is an 

important control on dune formation (Houser et al., 2008) and shelf features, including 

sand ridges (e.g., Browder and McNinch, 2006; Schwab et al., 2013).  At the shoreface 

scale (< 1 km), framework geology involves meso to micro-scale sedimentological 

changes (e.g., Murray and Thieler, 2004; Schupp et al., 2006), variations in thickness of 

shoreface sediments (Miselis and McNinch, 2006), and spatial variations in sediment 

transport across the island (Houser and Mathew, 2011; Lentz and Hapke, 2011; Houser, 

2012). However, most of what is known regarding barrier island framework geology is 

based on studies at relatively small spatial-scales (e.g., McNinch, 2004; Hapke et al., 2010; 

Lentz and Hapke, 2011). 

There are detailed local studies that have investigated the importance of framework 

geology (e.g., McNinch, 2004; Hapke et al., 2010; Lentz and Hapke, 2011), but not entire 

islands with a few notable exceptions (e.g., Houser, 2012). Little is known about the large-
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scale (10
1
 – 10

2
 km) framework geology of barrier islands and the important length-scales of 

subsurface features that may control alongshore variations in surface morphology, which in 

turn affects island response to storms and sea-level rise (i.e., transgression). Riggs et al. 

(1995) state that: “It is essential to understand this geologic framework before attempting 

to model the large-scale behavior of these types of coastal systems.... we must 

understand the detailed geologic framework underlying the shoreface and the inner 

shelf, as well as the physical dynamics operating within and upon regional segments of 

the shoreface system.” Assessments of large-scale framework geology are critical for 

coastal management and risk evaluation for both natural and anthropogenically-modified 

barrier islands (Hapke et al., 2010; Lentz and Hapke, 2011; Lentz et al., 2013) in order to 

better understand the connections (or lack thereof) between geology and surface 

morphology.  

Island transgression in response to storms and sea-level rise has been suggested to be 

dependent (to varying degrees) by pre-existing geologic features which complicates models 

that assume uniform sand at depth and alongshore (e.g., Belknap and Kraft, 1985; Riggs et 

al., 1995; Lazarus et al., 2011; Lentz and Hapke, 2011). Models need to compare the degree 

to which the evolution is free (large sand body) or forced by the geology. In a free system, 

small-scale undulations in the dune line reinforce natural randomness within a free system 

that is not influenced by underlying geologic features (Houser,  pers. comm.). Any variation 

in the dune line will have an impact on the entire transgression of the island because this 

process is accomplished primarily by relative sea-level rise and extreme storms that are 

capable of breaching the dunes and depositing sediment to the backbarrier in the form of 
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blowouts, washover fans and terraces (Morton and Sallenger, 2003; Stone et al., 2004; 

Houser, 2012). Houser (2012) suggests that the threshold storm surge required for foredunes 

to be overtopped or breached decreases as sea-level rises, and subsequently the probability 

of island overwash and island transgression increases. 

Part of the difficulty in examining the relationships between framework geology 

and island morphology is we cannot directly observe the large-scale framework geology 

below the surface using traditional labor intensive, low-resolution techniques such as 

coring. Thus, coastal scientists have turned to geophysical techniques including seismic 

imaging (e.g., Emery, 1969; Swift, 1975; Penland et al., 1985; Panageotou and 

Leatherman, 1986; Simms et al., 2006), ground-penetrating radar (GPR) (e.g., 

Leatherman, 1987; Jol et al., 1996; Heteren et al., 1998; Neal and Roberts, 2000; 

Buynevich and Fitzgerald, 2003), and more recently, electromagnetic induction (EMI) 

(e.g., Seijmonsbergen et al., 2004; Vrbancich, 2009; Weymer et al., 2015b) to 

characterize the underlying geology along the coast. For example, Seijmonsbergen et al. 

(2004) used an EM34 system at 20 m station spacing and 20 m coil separation to acquire a 

14.5 km transect along a segment of the Dutch coast, Netherlands. Using this configuration, 

the depth of exploration (DOI) is ~15 m. Results from the study suggest that subsurface 

apparent conductivity σa (mS/m) measured by the EMI sensor can be used as a proxy to 

distinguish the spatial distribution of Holocene coastal deposits and previously identified 

pre-Holocene paleo-channels near a former outlet of the Rhine River. EMI sensors are 

becoming an attractive alternative to conventional methods used for barrier island 

geological research, because they are non-invasive, provide continuous subsurface 
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information, are capable of characterizing large areas in a short time, and are 

considerably more cost-effective than the abovementioned traditional geologic and/or 

geophysical techniques (Weymer et al., 2015b).  

This study makes a connection between the large-scale structure of barrier island 

framework geology and island geomorphology using multivariate analysis and ARIMA 

statistical modeling of subsurface EMI and LiDAR-derived DEM metrics along Padre 

Island National Seashore (PAIS), Texas, USA. This approach allows statistical 

comparisons between subsurface/surface features at a variety of spatial scales and is 

unique in its attempt to integrate high resolution subsurface/surface datasets for an 

improved understanding on the geologic controls that force barrier island transgression 

to varying degrees.  

 

Study area 

Padre Island National Seashore (PAIS) is a protected barrier island located ~ 40 

km SSE of Corpus Christi, Texas, USA (Figure 5-1). The barrier is one of the 

southernmost links in a chain of islands and peninsulas along the Texas coastline (Weise 

et al., 1980). The national seashore is 129 km in length and is the longest undeveloped 

barrier island in the world. This makes the study area an ideal location for investigating 

the relationships between large-scale framework geology and surface morphology 

because the island is not dissected by inlets or navigation channels (excluding Mansfield 

Channel), or modified by engineered structures (e.g., groynes, jetties, etc.) that interrupt 

natural morphodyamic processes across the coastal zone (see Talley et al., 2003).  
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Figure 5-1. Location map of the study area in Padre Island National Seashore (PAIS), 

Texas, USA. Field images from the northern (N), central (C), and southern (S) regions  

of the island showing alongshore differences in beach-dune morphology. Images taken 

in October, 2014.  
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Relatively little is known about the framework geology along the island. A 

notable exception is a series of coring and seismic surveys conducted by Fisk (1959) in 

the central region of Padre Island (~ 27º N). This area is where opposing longshore 

currents converge, adjacent to the Sand Bulge in the hypersaline wind-tidal flat region of 

Laguna Madre (see Brown and Macon, 1977). Geologic interpretations based on these 

data suggests that the thickness of modern beach sands is ~ 2 – 3 m, and are underlain by 

Holocene shoreface sands and muds to a depth of ~ 10 – 15 m (Fisk, 1959). The 

Holocene deposits are perched upon a Pleistocene ravinement surface of fluvial-deltaic 

sands and muds. A network of buried valleys and paleo-channels exhibiting a dendritic, 

tributary pattern have been interpreted by Fisk (1959) in the vicinity of the 27º N 

convergence zone. The depths of these valleys inferred from seismic surveys have been 

suggested to range from ~ 25 – 40 m (Brown and Macon, 1977). However, the exact 

location and cross-sectional area of each valley and paleo-channel alongshore is not 

well-constrained. It is possible that other channels exist outside the surveyed area by 

Fisk (1959), which presents a unique opportunity for using EMI to compare known and 

unidentified geologic features alongshore. 

 

Methods 

Field EMI survey 

A 100-km-long alongshore EMI survey was performed during a series of field 

campaigns between October, 2014 – March, 2015. This represents the longest EMI 

transect ever performed (to our knowledge), covering nearly the entire length of PAIS. A 
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multi-frequency GSSI Profiler EMP-400™ was used for each segment (~ 4 – 5 km) 

along the transect, which was located in the backbeach environment ~ 25 m inland from 

the mean tide level (MTL). This was done  to reduce the effect of changing groundwater 

conditions in response to nonlinear tidal forcing (Weymer et al., accepted). For all 

surveys, a vertical dipole orientation was used in the in-line (P-mode) direction parallel 

to the profile line. Measurements were made at a 10 m step-size because ARIMA models 

require that the data must be stationary and taken at equal time or spatial intervals (see 

Cimino et al., 1999). The instrument was carried at a height of ~ 0.7 m above the ground 

to avoid unwanted noise from debris on the beach that unfortunately is prevalent along 

the island. Although the sensor is capable of recording three frequencies simultaneously 

(see Geophysical Survey Systems, 2007), we chose to focus on data collected at the 3 

kHz bandwidth, which is optimal frequency for maximizing the depth of investigation 

(DOI), resulting in a DOI of ~ 6.4 – 3.5 m over the range of conductivities (~ 50 – 600 

mS/m) in the study area (Weymer et al., accepted). Because the depth of the modern 

beach sands is ~ 2 – 3 m (see Brown and Macon, 1977; page 56, Figure 15), variations in 

the depth to shoreface sands and muds (i.e., framework geology) is within the detection 

limits of the profiler. A total of 21 segments were stitched together by importing GPS 

coordinates from each measurement into ArcGIS™ to create the composite spatial data 

series. A linear trend removal, following which the mean was subtracted, was applied to 

reduce drift and precondition the data series for statistical modeling.  
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Geomorphometry 

Topographic information was extracted from aerial LiDAR data that was 

collected by the Army Corps of Engineers (USACE) in 2009 as part of the West Texas 

Aerial Survey project assessing post-hurricane conditions of beaches, barrier islands, and 

lakeshores along the Texas coastline. This dataset is the most recent publicly available 

LiDAR survey of PAIS that provides the greatest coverage of the island. Despite the 

time discrepancy between LiDAR and EMI surveys, Padre Island has not been impacted 

by a hurricane since 2008, when Hurricane Dolly struck nearby at South Padre Island on 

July 23
rd

, as a category 1 storm (NOAA, 2015). It is assumed that the surface 

morphology across the island did not change considerably between 2009 and 2015, 

because the island is more stable than other islands along the Texas coast (e.g., 

Galveston) that have been more recently and directly impacted by Hurricane Ike, 

September 13
th

, 2008 (NOAA, 2015). A 1-m resolution digital elevation model (DEM) 

was created using an ordinary kriging algorithm (Weymer et al., accepted). The 

processed DEM tiles were merged to produce the combined DEM of the entire island 

within the park boundaries of PAIS. The data was processed using SAGA GIS, which is 

freely available open-source software and subsequent terrain analysis was conducted 

using an automated approach developed at Texas A&M University (Wernette et al., 

2016).  

Several metrics including beach width, dune height, and island width were 

extracted from the DEM using a recently developed automated multi-scale approach (see 

Wernette et al., 2016). This technique extracts the shoreline and backbarrier shoreline 
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based on elevation thresholds to calculate beach and island width referenced to mean 

sea-level (MSL). Dune metrics including dune crest, dune heal, and dune toe are 

calculated based on the average relative relief (RR) to determine dune height alongshore. 

Relative relief is a measure of topographic position of the center pixel within a given 

computational window. A detailed description of the procedure for extracting each 

metric is discussed in Wernette et al. (2016). Each feature was extracted by averaging 

the RR values across window sizes of 21, 23, and 25 m, based on a priori knowledge of 

the observed geomorphic features in the study area. These large window sizes better 

capture general features, reducing the sensitivity to fine-scale variability inherent in 

LiDAR-derived DEM’s (Wernette et al., 2016). Each DEM series is paired with the σa 

data by GPS coordinates (latitude) recorded in the field by the EMI sensor. Cross-

sectional slices were taken every 10 m (y-coordinate) perpendicular to the shoreline, 

where each point along the profile is summed to calculate beach and island volume 

based on the elevation thresholds mentioned above. Dune volume is calculated by 

summing the pixel elevations starting at the dune toe (stoss), traversing the dune crest, 

and ending at the dune heal (lee). In total, six DEM morphometrics were extracted as 

spatial data series paired with the EMI data, each having an identical sample size (n = 

9,694), which is sufficiently large enough for accurately modeling the data (see Cimino 

et al., 1999).  
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Statistical methods  

Although the procedures for creating each dataset in this study are considerably 

different, the intended goal is the same; to produce multiple spatial data series containing 

an identical number of data points that can be analyzed using a combination of signal 

processing and statistical modeling techniques. The workflow for processing both 

subsurface (EMI) and surface (DEM metrics) is given in Figure 5-2. The resulting signal 

from each data series represents a spatial averaging of a geophysical parameter that 

contains information about the important processes-form relationships between geologic 

features and island geomorphology. Because we are interested in evaluating these 

connections (or lack thereof) at large spatial scales, a common approach is to first 

determine the autocorrelation function and Hurst coefficient (self-similarity parameter) 

H to verify whether the data series contains short and/or long-range memory (Beran, 

1994; Taqqu et al., 1995). The R/S statistic is the quotient of the range of values in a data 

series and the standard deviation. When plotted on a log/log plot, the resulting slope of 

the line gives the value of H, which is useful as a diagnostic tool for estimating the 

degree of LRD (see Beran, 1994). For a given number of observations Xi, X2, … Xn, a 

partial sum sequence is defined by Sm = X1 + … + Xm, for m = 0,1,… (with S0 = 0). The 

Hurst statistic is calculated by (see Samorodnitsky, 2007): 

𝑅

𝑆
(𝑋1, … , 𝑋𝑛) =

𝑚𝑎𝑥0≤𝑖≤𝑛(𝑆𝑖−
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𝑛
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where, Sn/n is the sample mean of the data. The R/S analysis in this study was performed 

in AutoSignal™. An H-value > 0.5 indicates a tendency towards LRD, whereas values 

close to 1.0 indicate an increase in such an effect. If the signal has LRD, a special class 

of ARIMA models known as fractional ARIMA, or FARIMA, is specifically designed to 

model the long and short-range correlations within a particular data series. An ARIMA 

series is formally defined as (Taqqu et al., 1995): 

𝑋𝑖 = ∆−𝑑휀𝑖 , 𝑖 ≥ 1    (5.2) 

where, εi are independent, identically distributed normal random variables with mean 0 

and variance 1, and where Δ is the differencing operator ∆휀𝑖 = 휀𝑖 − 휀𝑖−1. The way to 

interpret 𝑋𝑖 = ∆−𝑑휀𝑖 , 𝑖 ≥ 1with a fractional value of d is as a moving average (see 

Hosking, 1981). The parametric family of ARIMA (p,d,q) models is defined by the 

following (see Samorodnitsky and Taqqu, 1994): 

Φ(𝐵)𝑋𝑖 = 𝜃(𝐵)∆−𝑑휀𝑖   (5.3) 

where, Φ(B) and θ(B) involve the autoregressive (AR) and moving average (MA) 

coefficients, respectively.  
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Figure 5-2. Flow chart illustrating the methods for collecting, processing and analyzing 

the EMI and LiDAR data presented in this study. Rectangles denote the theme of each 

process, whereas each step in the process is shown in ellipses. Bold rectangles designate 

the end of each process.  
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ARIMA models are used across a wide range of disciplines and have broad applicability 

for understanding the statistical structure of a given time or spatial data series as it is 

related to some physical form or process (see Granger and Joyeux, 1980; Hosking, 1981; 

Beran, 1992; Taqqu et al., 1995; Cimino et al., 1999). An ARIMA process represents a 

time or spatial data series as realizations of stochastic processes that can be generated 

from a linear combination of random shocks (Cimino et al., 1999). The model of a data 

series is defined by three terms (p,d,q), where p and q indicate the order of the 

autoregressive (AR) and moving-average (MA) components, respectively. A more 

generalized form of ARIMA allows the degree of differencing d to take any real value 

including fractional values (e.g., 0 < d ≤ 0.5), whereas p and q can only be integer values 

(e.g., 0, 1, 2). The AR element, p, represents the lingering effects of preceding scores or 

values. The integrated element, d, represents trends in the data, and the MA element, q, 

represents the lingering effects of preceding random shocks (see De Jong and Penzer, 

1998; Cimino et al., 1999).  

Identification of an appropriate model is accomplished by finding small values of 

p,d,q (usually between 0 – 2) that most accurately fit patterns in the data. When a value 

is 0, the element is not needed. For example, if d = 0 the series has no long-memory, 

whereas if p = q = 0, the model has no short-memory. If p,d,q ≠ 0, the model contains a 

combination of both short and long-memory effects. Generally, the model results are 

used for either forecasting future or missing values within the data series. In the present 

study, we are interested in determining the orders of p,d,q not for forecasting, but rather 

for understanding the physical meaning of each parameter with respect to framework 
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geology. For the analysis, the ‘arfima’ and ‘forecast’ statistical packages in R were used 

to fit a family of ARIMA (p,d,q) models to the actual EMI data and island metrics (see 

Hyndman and Khandakar, 2007; Veenstra, 2012; Hyndman, 2015).  

Each representative spatial data series is collated with the LiDAR-derived DEM 

of the study area. Superimposed is the network of inferred paleo-channels by Fisk 

(1959), allowing comparison of relationships between the paleo-channels, subsurface σa, 

and surface morphology for the entire barrier island (gray shaded regions). A Savitzky-

Golay smoothing filter was applied (darker lines in the signals) to all data series using a 

moving window of n = 250. This procedure generates a sequence of internal smoothing 

passes to improve the signal-to-noise (S/N) ratio, thereby enabling comparisons of the 

lower-frequency signals over larger spatial scales with respect to framework geology.  

 

Results 

Spatial data series 

Each spatial data series (Figure 5-3) represents the superposition of many 

different wavelengths (or wavenumbers) that are assumed to be caused by physical 

processes operating across different scales (see Weymer et al., 2015b). High frequency 

signals characterize small-scale heterogeneities, whereas low-frequency components 

capture variations in each metric at the broadest scales. There is a high degree of 

variability within each signal that is directly related to the complex geological and 

geomorphological patterns along the island. Within and outside the paleo-channel 

region, general associations (or lack thereof) between EMI and DEM metrics can be 
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made. Based on the overall low-frequency trends in each signal, the island is divided 

into three zones (red vertical lines) corresponding to the northern (~ 64 – 97 km), central 

(~ 27 – 64 km), and southern (~ 0 – 27 km) regions. The central zone corresponds to the 

paleo-channel region.  

The morphology of the beach-dune system, as well as island width varies 

substantially from north to south. In the southern zone of the island, the beach is 

generally narrower, which may be influenced by a disruption in longshore currents by 

the Mansfield Channel (i.e., shadow zone). In the paleo-channel region, beach width 

decreases considerably and is more variable. Beach width increases towards the northern 

section of the island, overall. The volume of the beach tends to be lowest in the northern 

zone, varies considerably in the central part of the island, then stabilizes and gradually 

decreases towards the south. Alongshore dune heights are greater in the south, become 

more variable in the paleo-channel region, and decrease overall except for the area 

adjacent to Baffin Bay. Dune volume is lowest in the northern section, intermittently 

increases in the central zone and slightly decreases towards the south. The island is 

considerably narrower from the Mansfield Channel to roughly Baffin Bay and increases 

significantly in the northern zone. Island volume follows a similar trend. Overall, σa 

values are low north of the paleo-channel region compared to the southern zone where σa 

increases substantially. However, the lowest σa values are located within the inferred 

paleo-channels by (Fisk, 1959). 
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Figure 5-3. EMI survey and DEM metrics extracted from the aerial LiDAR data. The 

sampling interval (step-size) for each data series is 10 m. The island is divided into three 

zones (red lines) based on the overall trends of each signal. 
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Tests for LRD 

 

As noted, the Hurst coefficient H defines the autocorrelation, the fractal 

dimension D, and provides a measure of the degree of LRD for a given time or spatial 

data series (see Beran, 1994; Taqqu et al., 1995; Eke et al., 2000). Recall that LRD is 

defined by H-values > 0.5, where H near 1.0 indicates a high degree of smoothness or 

close correlation within the data series. H near zero indicates a high degree of roughness, 

or anticorrelation, and H = 0.5, is uncorrelated white noise (see Eke et al., 2000). The 

calculated H-values for the EMI signal and DEM metrics are given in Figure 5-4. 

Estimated H coefficients for each signal range between 0.80 – 0.95, indicating a strong 

tendency towards LRD (H > 0.5). The beach and dune data series have lower H-values 

of 0.82 and 0.83, respectively. Island width has the highest H-value (0.95), whereas the 

EMI series has the next highest (H = 0.86). The R/S plots of island width and volume 

show the strongest trend towards LRD compared to the other DEM metrics. The beach 

and dune metrics have similar H-values when compared to the EMI signal. Because each 

data series shows evidence of LRD, a more robust way of determining the persistence of 

short and/or long-range memory between each signal can be achieved by fitting a series 

of ARIMA models to each data set. 

 



 

138 

 

 

Figure 5-4. R/S analysis for determining the degree of LRD (Hurst coefficient H) for 

each island metric and the EMI signal. a) beach width, b) beach volume, c) dune height, 

d) dune volume, e) island width, f) island volume, and g) EMI σa. 
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ARIMA (p,d,q) model results and multivariate analysis 

A sequence of ARIMA (p,d,q) model iterations was conducted for every data 

series using an iterative process for each model parameter to find the best fit to the data. 

For the analysis, the models include different combinations of p,d,q that model either 

short: ARIMA (100; 001; 101), long: ARIMA (010; 0d0), or both short and long-

memory processes: ARIMA (111). Six realizations of each data series were performed 

resulting in a total of 42 models, which not only provide information on the best model 

fit, but also enables physical interpretations of p,d,q at the largest “global” spatial scales 

(100 km). Determining the best model fit is usually achieved by comparing the residuals, 

or root-mean-square error (RMSE) of each model, where the lowest RMSE values 

indicate lower residual variance. The RMSE values for each data series and model 

iteration is given in Table 5-1.  

 

Table 5-1. Comparison of residuals (RMSE) for each ARIMA model iteration used in 

this study.  

 ARIMA 

(1,0,0) 

ARIMA 

(0,0,1) 

ARIMA 

(1,0,1) 

ARIMA 

(1,1,1) 

ARIMA 

(0,1,0) 

ARIMA 

(0,d,0) 

Beach width  13.4 14.9 13.0 13.1 14.8 13.0 

Beach volume  44.8 50.5 43.1 43.1 49.1 42.7 

Dune height  0.7 0.8 0.7 0.7 0.8 0.7 

Dune volume  60.6 63.9 59.7 59.2 69.03 58.9 

Island width  138.4 253.2 121.3 121.1 140.8 120.9 

Island volume  271.3 611.4 244.3 244.1 273.9 243.3 

EMI σa 18.4 49.7 15.6 15.8 18.5 15.5 
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The RMSE values reveal several characteristics about each signal: 1) all data 

series are best fit by an ARIMA (0,d,0) or FARIMA process, 2) the ARIMA models 

most accurately fit the EMI data, and 3) in all cases, the poorest fit to each series is by 

the ARIMA (0,0,1) MA process. The results suggest that FARIMA best models the 

statistical structure of each data series, which means that a single differencing parameter 

d is the most significant parameter in this study that describes LRD across multiple 

spatial scales. It is important to note that different values of d were used in each 

FARIMA model (Table 5-2).  

 

Table 5-2. Summary table showing the computed “global” d parameters that most 

appropriately model each ARIMA (0,d,0) iteration. The difference between each metric 

with respect to EMI is listed as absolute magnitudes for comparison. Close matches are 

shaded in gray.  

 d parameter difference 

Beach width 0.38 0.03 

Beach volume 0.42 0.07 

Dune height 0.34 0.01 

Dune volume 0.32 0.03 

Island width 0.13 0.22 

Island volume ~ 0.00 0.35 

EMI σa 0.35 ----- 

 

 

These values were calculated using the ‘FitARMA’ statistical package in R and is 

necessary to determine the degree of differencing required to accurately model the long-

range contributions within the data (see Mandelbrot, 1967; McLeod and Zhang, 2008; 

McLeod et al., 2011). A graphical representation of the FARIMA models for each data 

series is shown in Figure 5-5 as an example allowing visual inspection of each model fit 
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to the actual data. Because each data series is scale dependent, it is not possible to 

compare RMSE results without normalizing the data. The range in values for each data 

series can differ by several orders of magnitude. Instead of normalizing the data, an 

alternative approach is to calculate the difference between d-values for each metric with 

respect to the EMI data series to examine the statistical relationships (or lack thereof) 

between island metrics and EMI. The absolute value of the differences between 

framework geology (EMI) and surface morphometrics is shown in Table 5-2. The results 

demonstrate that EMI is most closely related to dune height with a relative difference of 

0.0054. Beach width and dune volume are the next closest matches to the EMI signal, 

whereas island width and volume exhibit the poorest relationship. As mentioned above, 

these values represent the “global” values of d and provide an indication of the LRD-

structure at the largest spatial scales (~ 100 km). It is reasonable to assume that the 

degree of LRD may change over smaller “regional” (e.g., ~ every 30 km) and/or “local” 

(e.g., ~ every 10 km) scales. 
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Figure 5-5. Example of the best fit ARIMA (0,d,0) models for each signal: a) beach 

width, b) beach volume, c) dune height, d) dune volume, e) island width, f) island 

volume, and g) EMI σa. 
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A series of 21 FARIMA model iterations was performed by dividing the island 

into ~ 30 km segments, roughly corresponding to the southern (0 – 30 km), central (30 – 

60 km), and northern (60 – 100 km) zones (Table 5-3). This allows regional comparisons 

of each FARIMA model both inside the known paleo-channel region (~ 30 – 60 km) and 

outside the region where the framework geology is not well-constrained. The results 

vary considerably within each zone and for each spatial data series. Within the paleo-

channel region, the strongest tendency towards LRD is island volume (d = 0.42), 

whereas the lowest d-value is EMI σa (d = 0.11). The other metrics have comparable 

values d ~ 0.3, where beach width and dune height exhibit a higher tendency towards 

LRD. In the southern zone, EMI σa and beach volume have very similar d-values (~ 

0.44). Conversely, beach width has the smallest d-value (~ 0) and the other metrics range 

between ~ 0.03 – 0.2. In the northern zone, EMI and island volume have nearly identical 

d-values, whereas the lowest value corresponds to island width (~ 0). The difference in 

d-values between EMI and each metric is shown in Table 5-4 to allow comparisons 

between the framework geology controls on surface morphology at the regional scale. 

There is a statistically significant relationship between EMI and beach volume in the 

southern zone of the island. There does not appear to be any appreciable relationship 

between EMI and each metric within the paleo-channel region. However, there is a 

statistically significant relationship between EMI, beach volume, dune volume, and 

island volume in the northern zone. The FARIMA model results at the regional scale are 

somewhat contrary to the global scale models and warrant further analysis at the local 

scale (10 km).  
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Table 5-3. Summary table showing the computed “regional” d parameters that most 

appropriately model each ARIMA (0,d,0) iteration.  

Alongshore 

distance 

Beach 

width 

Beach 

volume 

Dune 

height 

Dune 

volume 

Island 

width 

Island 

volume 

EMI σa 

0-30 km ~ 0.00 0.44 0.13 0.20 0.03 0.18 0.44 

30-60 km 0.37 0.30 0.36 0.31 0.30 0.42 0.11 

60-100 km 0.26 0.41 0.35 0.46 ~ 0.00 0.50 0.49 

 

 

Table 5-4. Summary table showing the difference between each metric with respect to 

EMI listed as absolute magnitudes for comparison. Close matches are shaded in gray.  

Alongshore 

distance 

Beach 

width 

Beach 

volume 

Dune 

height 

Dune 

volume 

Island 

width 

Island 

volume 

0-30 km 0.44 0.006 0.30 0.24 0.41 0.25 

30-60 km 0.26 0.19 0.26 0.20 0.19 0.32 

60-100 km 0.23 0.09 0.14 0.04 0.49 0.004 

 

 

FARIMA models were conducted at the local scale by dividing the island into 10 

km segments, starting at the southern zone (0 – 10 km) and ending at the northern zone 

of the island (90 – 100 km). A total of 70 FARIMA model iterations were run and the 

results of each differencing parameter d represent trends towards LRD at an order of 

magnitude less than the global (100 km) scale (Table 5-5). As expected, there is a high 

degree of variability in d for each data series within each 10 km segment. The d-values 

for the EMI data series show a stronger tendency towards LRD (> 0.4) within the paleo-

channel region, however, also show high values towards the northern segment (90 – 100 

km). To facilitate easier comparisons between EMI and metrics within each 10 km 
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segment, the differences are shown in Table 5-6. The closest matches between the 

metrics and EMI are shaded in gray, enabling associations between framework geology 

and surface morphology at smaller, local scales. The smallest differences in d are within 

the 20 – 30 and 30 – 40 km segments, corresponding to dune height, dune volume, island 

volume, and beach volume, respectively. Within the paleo-channel region, the local d-

values are similar to the regional d-values ranging between ~ 0.14 – 4.7 overall, 

suggesting that framework geology controls on island morphology vary within different 

locations of the island and also over different spatial scales. By comparing how the d 

parameter varies over several spatial scales (i.e., global, regional, and local), it is 

possible to determine, statistically, the important connections between framework 

geology and island geomorphology, which is discussed below.  

 

Table 5-5. Summary table showing the computed “local” d parameters that most 

appropriately model each ARIMA (0,d,0) iteration.  

Alongshore 

distance 

(km) 

Beach 

width 

Beach 

volume 

Dune 

height 

Dune 

volume 

Island 

width 

Island 

volume 

EMI σa 

0-10 0.41 0.39 0.20 0.21 0.09 0.18 0.36 

10-20 0.30 0.42 0.20 0.26 0.37 ~ 0.00 0.36 

20-30 0.26 0.40 ~ 0.00 ~ 0.00 0.49 ~ 0.00 ~ 0.00 

30-40 0.47 ~ 0.00 0.41 0.25 0.29 0.28 ~ 0.00 

40-50 0.28 0.21 0.21 0.19 0.30 0.02 0.44 

50-60 0.03 0.31 0.23 0.32 ~ 0.00 0.33 0.48 

60-70 0.16 0.37 0.29 0.34 ~ 0.00 0.30 0.40 

70-80 0.47 0.34 0.43 0.26 ~ 0.00 0.42 0.49 

80-90 0.27 0.19 0.42 0.39 0.01 0.02 ~ 0.00 

90-100 0.13 0.13 ~ 0.00 0.06 0.44 0.47 0.41 

 

 



 

146 

 

Table 5-6. Summary table showing the difference between each metric with respect to 

EMI listed as absolute magnitudes for comparison. Close matches are shaded in gray.  

Alongshore 

distance 

Beach 

width 

Beach 

volume 

Dune 

height 

Dune 

volume 

Island 

width 

Island 

volume 

0-10 km 0.05 0.03 0.16 0.15 0.27 0.18 

10-20 km 0.06 0.06 0.16 0.10 0.02 0.36 

20-30 km 0.26 0.40 ~ 0.00 ~ 0.00 0.49 ~ 0.00 

30-40 km 0.47 ~ 0.00 0.41 0.25 0.29 0.28 

40-50 km 0.16 0.23 0.23 0.25 0.14 0.42 

50-60 km 0.45 0.17 0.26 0.16 0.48 0.15 

60-70 km 0.24 0.04 0.11 0.06 0.40 0.10 

70-80 km 0.03 0.16 0.06 0.23 0.49 0.07 

80-90 km 0.27 0.19 0.42 0.39 0.01 0.02 

90-100 km 0.28 0.28 0.41 0.35 0.03 0.06 

 

 

Discussion 

The results of the FARIMA models suggest there is a statistically significant 

connection between framework geology and dune height “globally” along the entire 

length of the island. At the regional scale, there is a statistically significant connection 

between EMI and beach volume in the southern zone and between beach volume, dune 

volume, and island volume within the northern zone. At the local scale, relationships 

between EMI and each metric vary considerably and are highly localized. All data series 

are most accurately modeled by a single parameter d, suggesting LRD persists (to 

varying degrees) in both island geology and geomorphology across multiple spatial 

scales. Although it has long been known that LRD and self-similar processes exist along 

coastlines that can be described by power laws and fractal dimensions (see Mandelbrot, 

1967; Tebbens et al., 2002; Lazarus et al., 2011), this behavior has not been previously 
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shown to exist in the subsurface geology of a barrier island. For the first time, this study 

demonstrates the utility of EMI for mapping barrier island framework geology as well as 

using FARIMA as a new analyzing technique for understanding the spatial connections 

between barrier island framework geology and geomorphology.  

Different values of the d parameter provide further insight into the type of 

process each data series exhibits. When d is < 0.5, the series is a stationary process, 

which has an infinite moving average MA (local) representation. Conversely, when d > - 

0.5, the series is invertible and has an infinite autoregressive AR (directional) 

representation (see Hosking, 1981). In the case where 0 < d < 0.5 (in this study), the 

ARIMA (0,d,0) process is stationary and contains LRD that increases as d approaches 

0.5. Here, the autocorrelations within the data series decay to zero as the lag increases 

and the spectral density is concentrated at low frequencies (Hosking, 1981). For each 

model in our study, the d-values range between {~ 0 – 0.49}, which not only provides an 

indication of the degree of LRD and self-similarity, but also enables physical 

interpretation of what each d-value means. Values closer to 0.5 represent a MA process 

(stronger LRD), whereas values approaching 0 represent an AR/white noise process 

(weaker LRD).  

The similar statistical behavior (quantified by a small difference in d-values) 

between framework geology and dune height provides evidence of a geologic control on 

dune morphology at the largest spatial scales (Table 5-2). At the regional scale (i.e., 

southern, central, and northern zones), the data suggest that framework geology is more 

closely related to beach volume, which in turn controls dune height. At the local scale, 
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(smaller 10 km sections of the island) there seems to be a weak statistical connection 

between EMI and all metrics within the paleo-channel region. However, the statistical 

relationships become stronger within the southern and northern zones of the island 

because these areas are less controlled by the framework geology and are governed more 

by contemporary morphodynamic processes. These results provide further evidence that 

although framework geology influences island geomorphology to varying degrees at 

different locations along the island, it becomes more important at the global scale. It is 

hypothesized that over the largest spatial scales, framework geology initially sets up 

alongshore variations in dune height, which is then modified by smaller-scale 

morphodynamic processes. The balance between framework geology and contemporary 

morphodynamics is dependent on the local strength of the framework geology and varies 

along the length of the island. This is one possible explanation for why the d-values are 

different across multiple spatial scales. These findings support previous framework 

geology studies from the Outer Banks, NC (e.g., Riggs et al., 1995; McNinch, 2004; 

Browder and McNinch, 2006), Fire Island, NY (e.g., Hapke et al., 2010; Lentz and 

Hapke, 2011), and Pensacola, FL (e.g, Houser, 2012). Nonetheless, these studies mainly 

focus on offshore controls on shoreface and/or beach-dune dynamics. Additionally, most 

of these studies investigated framework geology controls at local or regional scales 

because few islands are as long and/or continuous as Padre Island. The current study 

improves existing literature in that 1) it provides a large-scale survey of framework 

geology onshore, and 2) it demonstrates the utility of a “new” geophysical EMI 
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instrument and FARIMA statistical methods for modeling the spatial connections 

between framework geology and barrier island geomorphology.   

Alongshore variations in beach width and dune height are not uniform in PAIS 

and exhibit different characteristics within and outside the paleo-channel region (Figure 

5-3). These differences may be forced by the framework geology within the central zone 

of the island and may be further influenced by smaller-scale morphodynamic processes 

outside the paleo-channel region. EMI σa is considerably lower within (or in close 

proximity to) the inferred paleo-channels, which is likely a result of more resistive 

infilled sands (see Seijmonsbergen et al., 2004; Weymer et al., accepted). It is 

hypothesized that the geometry of each channel is directly related to the variation in the 

EMI signal, such that long, gradual minima in σa are indicative of large, deep channels 

and short, abrupt minima in σa represent smaller, shallow channels. Dune height and 

volume increase within this region, suggesting that the increased accommodation space 

within the channels acts as an internal sediment source enabling the dunes to become 

larger, which is reinforced by local storm surge that varies at nearshore scales (<< 10 

km). Once the dunes are initialized by the framework geology, stabilizing vegetation 

may act as another important control on dune evolution (e.g, Hesp, 1988) that may be 

represented by the higher-frequency signals embedded within the spatial data series. 

Beach and dune morphology in areas that are not significantly controlled by framework 

geology (e.g., southern and northern zones) exhibit a more random behavior that 

represent a free system that is primarily controlled by contemporary morphodynamics 

(e.g., wave action, storm surge, wind, etc.).  
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As mentioned previously, the overall configuration and geometry of the beach-

dune system controls island response to storm surge and rising sea level where low-lying 

dunes are more susceptible to overwash processes that redistribute sediment landwards 

in the form of washover fans and terraces (Morton and Sallenger, 2003; Stone et al., 

2004; Houser, 2012). Because variations in dune height act as an important control on 

storm impacts and ultimately large-scale island transgression, it is argued that the 

framework geology in PAIS acts as a first order control on large-scale island 

transgression and is more significant than contemporary morphodynamics. This 

challenges existing models that consider small-scale undulations in the dune line as 

natural randomness within the system. Rather, we propose that the dunes are forced by 

the framework geology, which is related to the thickness of the modern shoreface sands 

beneath the beach as detected by the EMI sensor and highlighted using the statistical 

analysis. 

 

Conclusions 

This study demonstrates the utility of EMI as a new tool for mapping barrier island 

framework geology and statistically modeling geophysical and geomorphological spatial 

data series by a FARIMA process to better understand the important geologic controls on 

large-scale barrier island transgression. Because each data series contains LRD, each series 

is most accurately modeled by a single parameter d, which allows direct statistical 

comparisons between the framework geology and surface geomorphology. At the global 

scale (100 km), there is a strong statistical connection between framework geology and dune 
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height (d = 0.0054), suggesting that the framework geology initially forces the development 

of the dunes, which in turn forces the island as it transgresses in response to storms and sea-

level rise. The difference in d-values between EMI and beach width is significantly small 

(0.0292), also suggesting a geologic control, but may be modified by morhodynamic 

processes including; wind, wave action, tides, currents, and sediment transport. At the 

regional scale (~ 30 km), there is a statistical connection between EMI and beach 

volume, which controls dune height. At the local scale (10 km), there is a considerable 

degree of variability between EMI and each metric that is highly localized and exhibits 

weak statistical connections within the paleo-channel region, suggesting that the 

southern and northern zones outside the paleo-channels are controlled more modern 

morphodynamics. These findings suggest that the framework geology controls on barrier 

island geomorphology are strongest at the global scale. FARIMA models offer a compact 

way of capturing the entire geological complexity of a barrier island that is contained in a 

single parameter d that cannot be achieved by other signal processing techniques. It is 

argued that these statistical models provide a compact an efficient way for understanding the 

geologic controls on large-scale island transgression that can be applied across field sites and 

potentially in different geomorphic environments.  
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CHAPTER VI 

CONCLUSIONS 

 

This dissertation quantifies the important length-scales of framework geology as 

an important control in alongshore variations in surface geomorphology, which in turn 

affects island response to storms and sea-level rise (i.e., transgression). A series of shore-

normal and alongshore EMI surveys were conducted in Padre Island National Seashore 

(PAIS), Texas, USA to test the quantitative performance characteristics of  a GSSI 

Profiler EMP-400™ for detecting changes in subsurface electrical conductivity σ as it is 

related to variations in geology. Extracted DEM metrics from aerial LiDAR paired with 

each EMI measurement enables comparisons between surface morphology and 

framework geology using multivariate analysis and ARIMA statistical modeling. This 

study represents the first attempt in using EMI methods for characterizing the large-scale 

framework geology controls (or lack thereof) on island morphology along the world’s 

longest undeveloped barrier island. Results demonstrate that EMI profiling is a viable 

alternative to conventional methods such as coring and GPR for exploring barrier island 

framework geology. While traditional geological and geophysical techniques work well 

within specific areas of the coast, there is a need to integrate these data sets to build a 

complete picture of the framework geology. In other words, it is argued herein that no 

other geophysical method besides EMI can provide continuous subsurface coverage 

across the barrier island system. EMI sensors provide high-resolution information 

regarding the complex feedbacks between framework geology and hydrology. However, 
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these sensors require several calibrations and accurate records of changing tidal states in 

order to separate the effects of changing hydrology and geology from the EMI σa signal. 

Moreover, EMI data should be acquired within a period of several days, during similar 

hydrologic conditions in order to reduce seasonal effects. When combined with data 

from other methods, EMI techniques have direct implications for improving our 

understanding of barrier island transgression in response to storms and rising sea-level, 

which is summarized below.  

Hypothesis 1: Electromagnetic induction (EMI) is a viable method for investigating 

subsurface barrier island framework geology 

 In order to test the utility of EMI profiling as a viable method for investigating 

barrier island framework geology (Hypothesis 1), a series of field experiments were 

performed at PAIS establishing the advantages and limitations of these sensors (Chapters 

II and III).The results of this study suggest that portable multi-frequency EMI profilers 

should be used with caution for geologic framework investigations in highly conductive 

barrier islands. Assessments of instrument calibration and signal drift suggest σa 

measurements are stable, but vary with height and location across the beach (Figure 3-3). 

Repeatability tests confirm σa values using different boom orientations collected during 

the same day are reproducible (Figure 3-4). Measurements over a 12-hour tidal cycle 

suggest there is a tide dependent step response in σa, complicating data processing and 

interpretation (Figures 3-6 and 3-7). Shore-normal surveys across the barrier/wind-tidal 

flats show that σa is roughly negatively correlated with topography, and that these 
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relationships can be used for characterizing different coastal habitats (Figure 3-8). For all 

surveys, σa increases with decreasing frequency. Alongshore surveys performed during 

different seasons and beach states reveal a high degree of variability in σa (Figure 3-10). 

Therefore, it is necessary to combine the recommended instrument calibrations used in 

the present study with detailed tidal records to separate the effects of hydrology and 

geology on the σa signal.  

Surveys collected during dry conditions characterize the underlying geologic 

framework, whereas these features are somewhat masked during wet conditions. 

Differences in EMI signals should be viewed in a relative sense rather than as absolute 

magnitudes. Small-scale heterogeneities are related to changing hydrology, whereas low-

frequency signals at the broadest scales reveal variations in geologic framework. This 

strategy enables the geophysicist to separate the effects of hydrology and geology from 

the σa signal. Thus, Hypothesis 1 is supported, which leads to the following conclusions: 

 

1. The effect of groundwater dynamics on EMI signals is shown to be more 

important at smaller spatial scales (<< 10 km), but is not statistically significant 

when looking at large-scale (> 10 km) framework geology (Chapter IV). 

2. Repeat alongshore surveys during different seasons show different σa values, but 

may also be masked by tidal effects and/or changing beach states. During wet 

conditions, subsurface σ is relatively uniform, limiting the DOI and the ability of 

the EMI sensor to detect subsurface variations in lithology. Conversely, during 
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dry conditions the profiler probes deeper and is better able to detect variations in 

the underlying geologic framework (Chapter III). 

3. Multiple EMI surveys are required along the same transect to account for the 

confounding effects of changing hydrologic conditions on EMI responses. For 

geologic framework investigations, EMI surveys should be performed in the 

backbeach environment during dry conditions when the water table is lower 

(Chapter III).  

4. Once the effects of changing hydrology are taken into account, EMI profiling is 

shown to be an efficient way of characterizing the large-scale geology of the entire 

barrier island and is considerably more cost-effective than other geologic and/or 

geophysical methods (Chapter IV). 

 

Hypothesis 2: Subsurface features are related to/mirrored in the surface morphology 

along the shoreline and foredune ridge 

Because EMI methods have been shown to be useful in large-scale geologic 

investigations, the next step is to investigate whether subsurface features are related 

to/mirrored in the surface morphology along the shoreline and foredune ridge 

(Hypothesis 2). In order to test this hypothesis, multivariate analysis and ARIMA 

modeling was used to statistically evaluate the short and long-range correlations (LRD) 

within the EMI signal and each DEM metric (Tables 5-2 and 5-3). A family of ARIMA 

models was used to determine which combination of parameters (p,d,q) most accurately 

model each spatial data series (Figure 5-5). These models are specifically designed to 
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analyze both short and long-range contributions within a data series that other techniques 

including ARMA, Markov process, fGn, and fBm cannot. The results from the ARIMA 

models, demonstrate that both the EMI and DEM metric data series are most accurately 

modeled by a single parameter, d, and are not dominated by short-range correlations. 

This implies that the framework geology and island geomorphology at the largest spatial 

scales are governed by long memory effects that suggest self-similarity (i.e, are fractal 

signals). Thus, this hypothesis is supported, which leads to the following conclusions: 

 

1. EMI signals at two different spatial scales (100 and 10 km) using two different step-

sizes (10 and 1 m) both exhibit a strong tendency towards LRD as evidenced in three 

independent statistical tests (autocorrelation function, R/S analysis, PSD) (Figures 4-

3 thru 4-5. In addition, the Hurst coefficients (H > 0.8) for each DEM metric also 

show LRD (Figure 5-4).  

2. Both EMI and DEM metrics are most appropriately modeled by an ARIMA (0,d,0) 

process (Table 5-1), suggesting that FARIMA is the best model to fit the data. This 

finding demonstrates that each spatial data series is most accurately modeled by a 

single parameter, d, which means that by comparing d-values of each data series, 

statistical comparisons can be made between framework geology (as detected by 

EMI) and surface morphology (DEM-extracted morphometrics) along the island 

(Table 5-2). 
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Hypothesis 3: Framework geology controls the current shoreline and dune morphology 

to varying degrees along the island  

Comparisons of how well each ARIMA model fit the EMI and DEM spatial data 

series was determined by inspection of the residuals (RMSE) and differencing (d-values) 

for each model iteration. The agreement (low RMSE values), or mismatch (high RMSE 

values) between models and the actual data makes it possible to evaluate the geologic 

controls (or lack thereof) on beach-dune and island morphology within PAIS. Because 

each data series is most accurately modeled by an ARIMA (0,d,0) process, this suggests 

that each series exhibits similar statistical behavior alongshore. The similarity in d-

values (~ 0.35) for beach width, dune height, and EMI demonstrate that these data series 

have similar statistical models. However, the difference in d-values between EMI and 

dune height is significantly small (0.0054), demonstrating framework geology is a more 

important control on dune height alongshore. Therefore, Hypothesis 3 is supported, 

which leads to the following conclusions: 

 

1. This study demonstrates the utility in statistically modeling multiple spatial data 

series by a FARIMA process to better understand geologic controls on large-scale 

barrier island transgression. There is a strong statistical connection between 

framework geology and dune height at the global scale, suggesting that the geology 

forces the development and evolution of the dunes, which in turn forces the island as 

it transgresses in response to storms and sea-level rise (Table 5-2).  
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2. The difference in d-values between EMI and beach width is significantly small 

(0.0292), also suggesting a geologic control, but may be modified by 

morhodynamic processes including; wind, wave action, tides, currents, and 

sediment transport (Table 5-2).  

3. FARIMA models offer a compact way of capturing the entire hydrogeological 

complexity of a barrier island that is contained in a single parameter d that cannot be 

achieved by other signal processing techniques. It is argued that these statistical 

models provide a robust and novel way for understanding the geologic controls on 

large-scale island transgression (Chapters IV and V). 

4. With respect to large-scale framework geology investigations, a densely-spaced 

EMI survey is preferred. This provides better representation of varying 

framework geology as well as ensuring a better model fit to the data (Figure 4-2 

and 4-5).  

 

Future steps 

Following the findings in this study, there are several avenues of future research 

that are needed to further assess the use of EMI, DEM-extracted morphometrics and 

time-series analysis to better understand the large-scale geologic framework controls on 

barrier island geomorphology:  

 

- More comprehensive studies are needed to better characterize changing 

hydrology effects on EMI signals at smaller spatial scales  
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- There is a need to validate EMI surveys with both well-logging (subsurface 

conductivity probes), and cores to determine the true depth of sand-to-clay layer 

- A full 1-D/2-D inversion and MCMC modeling would be the next step to create a 

2-3 layered-Earth model, which would provide actual depth information and 

potentially map the thickness of sand/clay along the island 

- Extract several spatial data series at different depths from the inversion models 

and perform LRD/FARIMA analysis on these signals as they are related to the 

EMI and DEM metrics 

- Use other statistical and modeling techniques, (e.g., cross-wavelet analysis) to 

analyze the coherence and phase-relationships between framework geology and 

surface morphology 

- Perform more field tests for testing the performance of the EMI profiler when 

being towed by a vehicle, which may considerably reduce the amount of time 

needed to perform large-scale surveys 

- Test the utility of integrating large-scale EMI profiling with DEM-extracted 

morphometrics and ARIMA statistical models across different coastal field sites 

and in different geomorphic environments  
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