
QUALITATIVE GLOBAL ILLUMINATION OF MOCK-3D SCENES

A Dissertation

by

YOUYOU WANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Ergun Akleman
Co-Chair of Committee, Dezhen Song
Committee Members, Scott Schaefer

John Keyser
Head of Department, Nancy M. Amato

August 2014

Major Subject: Computer Engineering

Copyright 2014 Youyou Wang

ABSTRACT

In this work, we developed a framework to obtain qualitatively acceptable global

rendering effects without an explicit geometry. This framework is particularly useful

for 2D artists such as painters and illustrators. They will be able to obtain 3D

looking images with complete artistic control as if they are using a 2D digital image

manipulation system.

The core of this approach is a mock-3D scene representation that allows im-

possible or stylized shapes as “fuzzy” geometric structures. These fuzzy geometric

structures are view dependent shapes that are computed from texture maps which

provide normal, thickness and displacement information for all visible points of a

shape. The information that is provided by these texture maps, which we call shape

maps, do not have to be complete or consistent. Shape maps can be obtaining by (1)

converting 3D shapes into 2D images, (2) modeling using a sketch based interface,

(3) directly painting a gradient domain image or (4) photographing real objects.

The most interesting shape maps are those sketched or painted by an artist, since

they can reflect the artist’s intention, even if this does not follow the normal rules of

perspective.

The major advantage of this approach is the ability to obtain visually acceptable

global effects even when shape maps do not correspond to real 3D shapes. We show

that computing view dependent fuzzy geometry from shape maps is sufficient to

obtain qualitatively convincing global illumination effects even for impossible shapes.

The methods we have developed and implemented for global rendering effects include

ambient occlusion, local and global shadows, refraction and reflection. Although

these methods do not directly correspond to underlying physical phenomena, they

ii

can provide results that are qualitative proportional to 3D realistic rendering.

Our approach is a very 2D artist-friendly representation since the shaders are

also defined as images. These images can naturally describe shading parameters

and provide a simple 2D control of the shading and rendering processes to intuitively

obtain desired visual results. In particular, this representational power helps to easily

obtain a wide variety of NPR effects that is still consistent with global illumination.

iii

TABLE OF CONTENTS

Page

ABSTRACT . ii

TABLE OF CONTENTS . iv

LIST OF FIGURES . vi

1. INTRODUCTION AND MOTIVATION 1

2. RELATED WORK . 9

2.1 Normal Map Modeling . 9
2.2 Rendering . 10

3. MOCK-3D SHAPE REPRESENTATIONS 12

3.1 Bas-Reliefs as Mock-3D Representations 12
3.2 Normal Maps as Mock-3D Representations 14
3.3 Comparison of Bas-Reliefs and Normal Maps 17
3.4 Qualitative Similarity in Rendering 20

4. SHAPE MAPS AS MOCK-3D SHAPE MODELS 24

4.1 View Dependent 2-Sided Mock-3D Shapes 24
4.2 Shape Maps as Mock-3D Representations 25
4.3 Creation of Shape Maps . 27

4.3.1 Shape Map Image Painting 28
4.3.2 Illustrating Shape Map . 29
4.3.3 Turning 3D Shapes into Shape Map Images 31
4.3.4 Shape Maps from Photographs 32
4.3.5 Creation of Displacement Map 32

5. MOCK-3D SCENES . 34

5.1 Mock-3D Scene Types . 34
5.2 Simple-layered Mock-3D Scenes . 35
5.3 Billboard-based Mock-3D Scenes . 35
5.4 Shader for Mock-3D Scene . 36

5.4.1 Cartoon vs. Smooth Shading 40

6. RENDERING MOCK 3D SCENES . 43

6.1 Shading Parameters . 43
6.2 Ambient Occlusion . 44

iv

6.3 Shadow . 50
6.3.1 Height Estimation . 52
6.3.2 Soft Shadow with Shadow Strength 54
6.3.3 Thin-film and Thickness Map 55
6.3.4 Sharp Height Change from Displacement Map 59
6.3.5 Shadow Cast from Other Layers 59

6.4 Reflection and Glossy Reflection . 60
6.4.1 Refraction and Translucency 62

6.5 Fresnel Effect . 64
6.6 Reflection in Billboard . 66

7. IMPLEMENTATION AND RESULTS . 68

7.1 GPU Implementation . 68
7.1.1 Simple-layered Scenes . 68
7.1.2 Billboard-based Scenes . 69

7.2 Rendering Mock 3D Scenes . 70
7.2.1 Diffuse . 70
7.2.2 Ambient Occlusion . 71
7.2.3 Shadow Cast from Own Layer 72
7.2.4 Shadow Cast from Other Layer 72

7.3 Reflection and Refraction . 75
7.4 More Results . 76

8. CONCLUSION . 86

REFERENCES . 87

v

LIST OF FIGURES

FIGURE Page

1.1 Qualitative rendering with mock-3D shapes - This figure demonstrates
obtaining global shadows using two-sided Mock-3D shapes. Since they
can cast shadow from both sides, these shapes can provide volumetric
shadows as shown in (d) . 1

1.2 Refraction and reflection with a single mock-3D shape - The particular
mock-3D shape in (a) painted by an artist based on a photograph of
a real bottle. It is used to reflect and refract a background and an en-
vironment image. (b) shows reflection and refraction composited with
Fresnel term. (c) shows glossy reflection and translucent refraction
combined with a Fresnel and (d) directly shows Fresnel effects using
a black background and white environment map 2

1.3 Refraction and reflection with multiple mock-3D shapes - In (a) there
is only one horizontal reflective plane on the ground, (b) has another
vertical reflective plane on the left, (c) is a different scene when object
moved, (d) is the scene with a different background 3

1.4 Using control images as diffuse shading parameters - (1) An artist’s
original drawing; (2) a mock-3D shape created from the original draw-
ing using an illustration based software like Lumo; (3) a gray-scale
image that demonstrates shading parameter for a given point light;
(4) and (5) control images images provided by the artist; (6) The
rendered image created by interpolating these control images using
shading parameter in (3) . 6

1.5 Non-photo-realistic rendering with reflection, glossy reflection, refrac-
tion and translucence combined with Fresnel using a mock-3D shape
- The control images and the normal+thickness map, called shape
map, were freely hand-painted by an artist. The white regions in dark
and light images are transparent and, therefore, allow refraction and
reflection . 7

1.6 Artistic-painted mock-3D shape - This mock-3D shape and control
images are painted by an artist based on one of the Pablo Picasso’s
self portraits . 7

vi

1.7 Reflection and refraction with impossible objects - Shape maps and
foreground images are painted by an artist in a digital painting pro-
gram. We use global αG = 0.5 to make foreground layer slightly
transparent. Note that there exists no continuous height field that
can produce these gradient fields . 8

3.1 An exaggerated 2D presentation Bas-Relief creation from a real object 13

3.2 Normal maps generated using an sketch based modeling program . . 15

3.3 The effect of the cartoon shading - In this case, control images are
simply black and white. Note that in this case crosshatching effect
comes directly from hand-drawn vector field. We expect direct in-
volvement of painters into the process of creating normal maps can
result in innovative solutions . 16

3.4 Examples of impossible shapes . 17

3.5 The comparative power of representations 19

4.1 Ascending stairs viewed from above - Note that normal map does
not carry any information since we can only see the top of the stairs,
whose normals are simply (0, 0, 1). Quantization with n = 1 removes
all details in displacement map and in a circular path, the integral
does not become zero . 27

4.2 Shape maps generated by a painter using a paint program 28

4.3 Shape maps generated using an sketch based modeling program . . . 30

4.4 Shape maps generated from photographs 30

4.5 More shape maps generated from photographs 31

4.6 Displacement map created using diffusion curve - (a) and (b) show
how to create displacement from diffusion curve. (c) and (d) show the
results, with the yellow spot as lighting position 33

5.1 Teapot example - Model from Lumo, used by permission of Fleeting
Image Animation, Inc. 38

5.2 Reflections on the eyeball - This is obtained with αI term by using
slight transparency on eyeball region. Since the overall α is 1, the rest
of image is diffuse. The shape map, and initial version of light image
are obtained by a sketch based interface. Dark and light images are
later painted by an artist using the initial version of light image as a
guide . 39

vii

5.3 Subsurface scattering effect - This is obtained by using αI term by
using slight transparency around the silhouette regions of hands and
arms. Shape map, dark and light images are created with a sketch
based interface . 41

5.4 The effect of the parameter δ - In this case, DI0(u, v) is a black image
and DI1(u, v) is a white image and background is black. Note that it
is possible to allow δ larger than 1, but this choice makes the image
flatter and it is not really useful . 42

6.1 Min-max mean curvature - (a) Shows the 2D vector fields of the first
two components that can reach maximum mean curvature, while (b)
shows the case when it reaches minimum. (c) and (d) shows the
underlying shape that can generate the normal that has the vector
fields like (a) and (b) separately . 45

6.2 Average curvature as mean curvature - Red lines are the sample di-
rection we used to estimate curvature, and with in a window of 2M +
1× 2M + 1, we totally have 2

(2M+1)2
different lines 47

6.3 Curvature estimation - (a) shows the sample lines that we used to
estimate and P0 and P1 are the sample point we choose along the line
in order to estimate curvature, and (b) shows the underlying curvature
along the line . 48

6.4 Angle from arc-cosine - This figures shows the ϕ from plane defined
by p0, p1, so that ϕ can be computed as = π − θ0 − θ1, where θ0 and
θ1 can be computed as ñ0 · (−vij) and ñ0 · vij 49

6.5 Ambient occlusion example - This figure has showed an example of
ambient occlusion. And by choosing different size of sample windows,
we get different results . 50

6.6 Shadow cast - (a) shows a shape and its shadow, and how the lighting
position is projected onto the image plain. (b) shows what we expected
to see from the view angle, and the 2D line integral we actually work on 51

6.7 Line integral - This figure shows how we compute line integral for
height Hi, where hi is the height incremental between two successive
sample points, so the height Hi can be computed as an accumulation

of hi, which is Hi =
i∑

j=0

hj . 53

viii

6.8 Counts of the intersections - Lighting ray r1 has more counts than r0,
then pixel will be having more shadow(darker) when the light is at
the direction of r1 than at r0. Lighting ray r2 has no counts, so when
the light is at r2 direction, the pixel will not have any shadow. 55

6.9 Thin-film effect - (a) The shadow parts appear to be smooth, but
non-shadow parts have uniform color. (b) A much better looking non-
shadow parts like diffuse shading . 56

6.10 Thin-film as cosine on planar surface - Green line segmentation are
the length that the lighting ray is inside the object, diffuse shading of
each point P can simply be computed as the length of Thin-film over
the length of green line segment . 57

6.11 Thin-film as cosine on spherical surface - Green line segmentation are
the length that the lighting ray is inside the object 57

6.12 Intersection with the lighting ray . 58

6.13 Shadow cast in billboard mock-3D scene - This figure shows how the
shadow is casted from other layer. (a) is the shape map of the scene,
(b) (c) and (d) show how the shadow cast changes with the lighting
position . 60

6.14 Integral for shadow cast from other layers - (a) shows how the current
checking pixel and lighting position are projected onto all the layers
in the scene. (b) shows all the line integral that will be used to check
if there is a shadow cast . 61

6.15 Illustration of reflection . 62

6.16 Illustration of refraction . 63

6.17 Fresnel effect controlled by pseudo index of refraction - This figure
shows Fresnel effects using a black background and white environment
map. By changing a value, from (a) to (b) to (c) the object appears
to be more refractive than reflective 65

6.18 Billboard reflection . 66

7.1 Billboard-based mock-3D scene . 69

7.2 Symmetric simpler back-side . 73

7.3 Occlusion from other layer . 74

ix

7.4 Reflection of refraction - This figure shows an example of reflection of
refraction, (a) and (b) are with differen object, and please also note
each object in the same image also have different refraction index . . 75

7.5 Warhol’s campbell - This figure shows Re-interpretation of Warhol’s
Campbell Soup painting with art directed reflections. In his original
painting, Warhol painted mirror reflected black areas on top of the
can and a very subtle and almost invisible diffuse reflection on body
of the can. Using a black and white striped image as an environment
map and by painting slightly varying control images, an artist was
able to move both subtle diffuse reflection and mirror reflected black
in tandem, which can help to better appreciate the idea behind this
painting. Creation of control images and 2D vector field did not take
more than one hour . 77

7.6 Example of Mona-Lisa - This figure shows an example of painting re-
interpretations: close-ups of a diffusely relit re-interpretation of Mona
Lisa. Shape map, dark and light images are all painted by an artist
inspired by Picasso’s original painting. The artist added red lipstick,
an ear and a pearl earring to the original image as an homage to
Johannes Vermeer’s Girl with a Pearl Earring. This particular shape
map is a prime example of imperfect, incorrect, and inconsistent shape
maps. Despite that, we can obtain acceptable results 78

7.7 Shadow and subtle reflection on a Cross-Shade model - This figure
shows shadow and subtle reflection on a CrossShade model. Dark
and light images are obtained from the rendered images in the paper.
We only added yellow background to CrossShade model (i.e. normal
map) to differentiate outside regions. The CrossShade model is used
in permission . 79

7.8 Artistic filtering effects obtained by a variety of shape maps 80

7.9 Examples of shape map photographs of diffuse objects - This figure
shows examples of shape map photographs of diffuse objects. In these
cases, we do not have any foreground object, i.e. α = 0. The com-
posite images are simply the result of refraction and refraction of the
same image that is used both environment and background image.
The original of genus-6 object at the top is made from paper. The
high genus object in the middle is made from ABS plastic 81

x

7.10 An example of shape map photograph of a translucent object - This
figure shows an example of shape map photograph of a translucent
object. In this case, we do not have any foreground object, i.e. α = 0.
The composite images are simply the result of refraction and refraction
of the same image that is used both environment and background image 82

7.11 Reflection and refraction with Lumo and Cross-Shade models - In
these cases, we do not have any foreground object, i.e. α = 0. The
composite images are simply the result of refraction and refraction of
the same image that is used both environment and background image.
Lumo and CrossShade normal maps are used in permission 83

7.12 Rendering with Lumo models - In these cases, we showed the results
using Lumo’s Cat model. (a) is the original scene, and (b),(c) and (d)
are renderred with lighting at different positions 84

7.13 Rendering with many models - In these cases, we showed different
aspects of our system, we have refraction, reflection, and shadow cast
from same layer and other layers. (a) is the original scene, and (b),(c)
and (d) are renderred with lighting at different positions 85

xi

1. INTRODUCTION AND MOTIVATION

Our qualitative rendering approach using mock-3D scenes is inspired by the pop-

ularity of 2D image editing tools, such as photoshop and illustrator. Nowadays,

the 3D modeling market does not grow as rapidly as 2D painting/editing market[12].

Many people are reluctant to use 3D, since it needs more training and is less intuitive

than in 2D. And most importantly, if the fake 3D effects that 2D painting/editing

provides are good enough, people will still tend to understand these images as if

they are in 3D world. And in order to bridge the gap between 2D painting and 3D

rendering, an image that contains 3D information is usually used, such as normal

maps and bas-relief. We call these images mock-3D shapes, which are not really 3D

but appear 3D.

(a) A Mock 3D (b) Depth Image of (c) Shadow casted (d) Shadow casted

Scene “Image” Mock 3D scene by a front light by a side light

Figure 1.1: Qualitative rendering with mock-3D shapes - This figure demonstrates
obtaining global shadows using two-sided Mock-3D shapes. Since they can cast
shadow from both sides, these shapes can provide volumetric shadows as shown in
(d)

Figure 1.1 shows an example of qualitative rendering of a mock-3D scene that

1

consists of mock-3D shapes. As shown in this example, although the shapes are not

really 3D, we can obtain realistic looking global shadows. Figure 1.2 shows even

a single Mock-3D shape image that is included in a 2D digital painting program

can be sufficient to obtain a wide variety of refraction and reflection effects. With

multi-layers, we can have reflection of refraction effect, as shown in Figure 1.3.

(a) Mock 3D image (b) Refraction (c) Translucent (d) Fresnel effect

& Reflection & Glossy only

Figure 1.2: Refraction and reflection with a single mock-3D shape - The particular
mock-3D shape in (a) painted by an artist based on a photograph of a real bottle.
It is used to reflect and refract a background and an environment image. (b) shows
reflection and refraction composited with Fresnel term. (c) shows glossy reflection
and translucent refraction combined with a Fresnel and (d) directly shows Fresnel
effects using a black background and white environment map

There currently exists two representations for such mock 3D shapes: bas-reliefs

and normal maps. In this work, we introduce a fuzzy and view dependent shape rep-

resentation that is suitable for global illumination and provides the representational

powers of both bas-reliefs and normal maps. Our approach can be better explained

with a closer look to normal maps.

Normal maps became popular as soon as they are introduced in 1998 [3]. Al-

2

(a) Reflection (b) Two Reflective (c) Moved Object (d) Different

of Refraction Planes Background

Figure 1.3: Refraction and reflection with multiple mock-3D shapes - In (a) there is
only one horizontal reflective plane on the ground, (b) has another vertical reflective
plane on the left, (c) is a different scene when object moved, (d) is the scene with a
different background

though,they are mainly used as texture maps to include details to polygonal meshes,

they can directly be used as shape representations as shown by Johnston [15]. He

developed a sketch based system, called Lumo, to model normal maps as mock-3D

shapes by diffusing 2D normals in a line drawing. Despite the potential power of

normal maps as shape representations, only a few groups investigated the potential

use of normal maps as mock-3D shapes [19, 2, 31, 24]. All these methods focused

on “modeling” of these normal maps. To render these mock-3D shapes, only basic

3D rendering methods are employed. The global rendering effects such as shadow,

occlusion, reflection and refractions has never been included. Recently, Sykora et al.

[27] developed a user-assisted method to convert normal maps into Bas-Reliefs that

can provide correct shadows in a commercial renderer. This approach is useful if

the normal maps corresponds to shapes that can have an explicitly meaningful 3D

geometry.

Normal maps are just images, therefore, they do not necessarily correspond to any

meaningful geometry. This is, in fact, an advantage for 2D artists such as painters

or illustrators, who wants to experiment with unusual shapes. Normal maps are

3

perfect for such experiments since they can be created directly by artists and they

can represent impossible or even incoherent shapes. To unleash the true power of

this representation for 2D artists, there is a need for a new rendering framework, that

is designed to provide artists with full control over the consistent global rendering

effects.

In this work, we present such a gradient domain rendering framework: we obtain

qualitatively acceptable global rendering effects without an explicit geometry. Our

approach is based on construction of a fuzzy geometry that can provide believable

global effects such as shadows, reflections and refraction. Our fuzzy geometry are

computed from mock-3D scenes that consists of a set of planar quadrilaterals that are

textured with a normal map, a thickness map, and an optional displacement map.

Using the thickness maps, we obtain fuzzy but still more useful shapes than Bas-

Reliefs. Additional thickness information helps us to make fuzzy shapes two-sided.

They, therefore, can cast shadow from the invisible side. The resulting shadows looks

more realistic (i.e. volumetric) when shadow is casted by a side lights. An example

of such volumetric shadows in a mock-3D scene is shown in Figure 1.1(d). Another

usage of two-sided shapes to obtain qualitatively correct refractions. The Figure 1.2

demonstrate another usage of thickness maps to control deformations caused by

refraction. Using an optional displacement map, we further introduce discontinuities

where a sharp change can not be captured by normal maps.

Our rendering framework is extremely robust. Since we allow artists to directly

create normal, thickness and displacement maps, normal maps may not necessarily

be unit vectors and thickness or displacement information may be missing. Our

framework still provide an acceptable rendering in such cases. This approach is in

synch with fine art practice. To obtain qualitatively acceptable effects, 2D artists

do not require physically accurate “or exact” models for 3D objects and illumina-

4

tion processes. Instead, they want to freedom to describe final i.e. visual results. By

allowing qualitatively acceptable fuzzy shapes and processes, we provide artistic flex-

ibility to painters who may want to directly control final results without considering

any constraint.

An important feature of our framework is the compatibility with existing digital

image manipulation systems. Even the shader parameters, such as refraction or

ambient reflectance, are provided with a set of images. The final results are created

by compositing these images using illumination information obtained from the full

rendering process. This provides familiarity in addition to efficiency and ability for

2D artists to directly create and manipulate artworks and allow intuitive artistic

control over visual results.

The shading parameters we have computed for every pixel guarantee to provide

a whole gamut of numbers between 0 and 1. Using this shading parameter c as

interpolation parameter for every pixel, we interpolate two artist-provided control

images, DI0 and DI1, to obtain final image. There is really no requirement for

creating DI0 and DI1. For any given pixel (u, v) the color of DI0 is the color

the artist wants to see if there is no light reaches to that pixel, i.e. c(u, v) = 0.

Similarly, for any given pixel (u, v) the color of DI1 is the color the artist wants to

see if this point is completely illuminated by the light, i.e. c(u, v) = 1. In other

words, this process guarantees to obtain colors exactly like the artist wanted. An

example of using DI0 and DI1 to control final diffuse shading is shown in Figure 1.4.

Transparency and reflection parameters can also be provided by using just images.

The Figure 1.5 demonstrate a mixed usage of transparent and diffuse materials.

This approach can be used in a wide variety of 2D applications including digital

painting, artistic filtering, re-interpretation of paintings and illustrations. Artists can

create artificial, but still believable, versions of the original images as well as original

5

(1) Original drawing (2) Shape Map: SM(u, v) (3) DI0(u, v)

(4) DI1(u, v) (5) shading parameter (6) Rendering

Figure 1.4: Using control images as diffuse shading parameters - (1) An artist’s
original drawing; (2) a mock-3D shape created from the original drawing using an
illustration based software like Lumo; (3) a gray-scale image that demonstrates shad-
ing parameter for a given point light; (4) and (5) control images images provided
by the artist; (6) The rendered image created by interpolating these control images
using shading parameter in (3)

art work that can be dynamically manipulated with complete control over final results

or they can reinterpret existing artworks such as the one shown in Figure 1.6 or they

can create dynamically rendered images of impossible objects as shown in Figure 1.7.

6

DI0(u, v) DI1(u, v) Mock 3D Shape Rendering

Figure 1.5: Non-photo-realistic rendering with reflection, glossy reflection, refraction
and translucence combined with Fresnel using a mock-3D shape - The control images
and the normal+thickness map, called shape map, were freely hand-painted by an
artist. The white regions in dark and light images are transparent and, therefore,
allow refraction and reflection

DI0(u, v) DI1(u, v) Mock 3D Shape Renderings

Figure 1.6: Artistic-painted mock-3D shape - This mock-3D shape and control images
are painted by an artist based on one of the Pablo Picasso’s self portraits

7

Mock-3D Shape Diffuse Refraction

Figure 1.7: Reflection and refraction with impossible objects - Shape maps and
foreground images are painted by an artist in a digital painting program. We use
global αG = 0.5 to make foreground layer slightly transparent. Note that there exists
no continuous height field that can produce these gradient fields

8

2. RELATED WORK

In this chapter, we will talk about the related work in creating a normal map and

rendering and compositings that are directly used on normal map.

Even though the main contribution of this work resides in the rendering and

compositing, our mock-3D representation, shape map, resembles normal maps, and

most of the previous literatures do not distinguish modeling from rendering, so we

provide a survey on both modeling and pure rendering.

2.1 Normal Map Modeling

One popular way of modeling is to define the normals on the strokes from user

input, then diffuse the normal from these strokes into the empty area of the shape

iteratively. Usually the strokes are for the edges, since edges in 2D drawing typically

indicates a sharp change of normals. Johnston [15] proposed to use primitive shapes

to define edges, and applied an iterative Laplacian kernel to diffuse the normal vectors

from edges. But this method provides very limited controls to the user. Sun et

al. [25] introduced Gradient Mesh to semi-automatically and quickly interpolate

normals from edges, and Orzan et al. [20] calculate a diffusion from edges by solving

the Poisson equation. Sýkora et al. [26] proposed Lazy-Brush, which can propagate

scribbles to accelerate the definition of constant color regions. Finch et al. [6] build

thin-plate splines which provide smoothness everywhere except at user-specified tears

and creases. The underlying splines are used to interpolate normals. Wu et al. [32]

proposed shape palette, where user can draw a simple 2D primitive in the 2D view

and then specify its 3D orientation by drawing a corresponding primitive. This

method also performs diffusion using a thin-plate spline. Shao et al. [24] uses an

explicit mathematical formulation of the relationships between cross-section curves

9

and the geometry they aim to convey. The specified cross-section point is used as an

extra control point to control the normals. Vergne et al. [29] introduces surface flow

from smooth differential analysis, which can be used to measure smooth variations

of luminance. Therefore, the author also propose to drawing the shadows and other

shading effects. Sýkora et al. [27] developed a user-assisted method to convert normal

maps into Bass-Reliefs that can provide correct shadows in a commercial renderer,

but this approach will fail if the normal maps does not correspond to shapes that

can have an explicitly meaningful 3D geometry.

2.2 Rendering

The rendering technique we developed follows the branch of non-photorealistic

rendering(NPR), where rendering mainly works on normal maps. NPR shading mod-

els are often simply functions of the surface normal and light direction that result

in effects such as Gooch shading [8], cartographic hill shading[13], or other artist-

specified effects. A more complex model includes curvature-based shading [16] and

“exaggerated shading” [18]. However, all these techniques are only available in 3D

with a normal and corresponding position information. However, shaded appearance

may be designed through a painting interface, even though they may not be photore-

alist, such as tweakable light and shade[14]. In tweakable light and shade[14], Anjyo

et al. proposed to control light and shade inside a shape by dragging high-lighted

area, and an underlying normal map still needs to be estimated. The rendering tech-

nique we developed is most related to the work of [28]. In this work, Toler et al.

created non-photorealistic illustrations from a type of data lying between simple 2D

images and full 3D models, named RGBN image, which contains both color and a

surface normal information. However some limitation exists such as shadows, which

are only considered at discontinuities of normal. The proposed reflection/refraction

10

methods shares similarity with the work of Ritschel et al. [23], as we both conduct

refletion/refraction in a non-physical way. Ritschel et al. introduce a sketch-based

interface for artist to create reflection effects easily. Later on, they [22] improved the

interface that can also edit shadows, caustics, and indirect illumination. However,

their results highly depend on the scene, the camera motion, and the performed edit.

And all of these have to be tuned carefully by the user.

11

3. MOCK-3D SHAPE REPRESENTATIONS

In this work, our goal is to obtain qualitative global illumination effects with

mock 3D shapes, which are not really 3D but appear 3D. In this work, we introduce a

fuzzy and view dependent shape representation that is suitable for global illumination

and provides the representational powers of both bas-reliefs and normal maps. Our

approach can be better explained with a closer look to bas-reliefs and normal maps.

3.1 Bas-Reliefs as Mock-3D Representations

Bas-reliefs are sculptures that can be viewed from many angles with no perspec-

tive distortion as if they are just images. In other words, perspective transformation

is embedded in bas-relief sculptures [30]. Figure 3.1 demonstrates bas-relief creation

process from any given 3D shape. Let a shape be defined implicitly by a general

function G(x, y, z), then, the volumetric reforestation of this shape is

S0 = {(x, y, z) ∈ <3|G(x, y, z) ≤ 0}.

Bas-relief process turns these shapes into height fields that embed perspective projec-

tion into the shape as shown in Figure 3.1.(b). This new shape, which is significantly

simpler than the original one can be represented simply as

S1 = {(x, y) ∈ D and z ∈ <|z − F (x, y) ≤ 0}

where D ∈ <2 is just the domain where the height field function F is defined. A

bass-relief can be further scaled to obtain a compact sculpture that can be hanged

on a wall as shown in Figure 3.1.(c). As a result, bas-reliefs can be represented

12

implicitly as

S = {(x, y) ∈ D and z ∈ <|z − sF (x, y) ≤ 0}

where s is any positive real number smaller than 1.

Remark 1: As shown in the example, even when original function G is contin-

uous, the corresponding bass-relief height field function F may not be continuous.

Remark 2: Surface normals in bass-relief are qualitatively correct only. Assum-

ing that F is continuous, the normal to the surface can be computed from gradient

of z − sF (x, y) which is computed as

∇(z − sF (x, y)) = (−s∂F
∂x

,−s∂F
∂y

, 1)

where the unit normal directly depends on the value of s. This is not a problem

in bass-reliefs probably because scaling operation does not change the positions of

extreme points such as maximum, minimum or saddle.

(a) General Shape (b) Bas-Relief (c) Bas-Relief - Scaled

Figure 3.1: An exaggerated 2D presentation Bas-Relief creation from a real object

13

3.2 Normal Maps as Mock-3D Representations

Cohen et al. introduced normal maps to be a simpler alternative to bump maps

[3]. Let D ∈ <2 denote the domain normal map to be defined and let (x, y) ∈ D

denote two coordinates of the map. Let (n0(x, y), n1(x, y), n2(x, y)) denote the 3D

vector field n0 : D → [−1, 1],, n1 : D → [−1, 1], and n2 : M → [0, 1]. One significant

advantage of having only three variables for normal vectors is that we can readily

convert them into Low Dynamic Range (LDR) images and save them using any

common image format which can easily passed to GPU. Let an LDR image on M is

denoted by c(x, y) = (r(x, y), g(x, y), b(x, y)) where c : D → [0, 1]3. The conversion

from (n0, n1, n2) to (r, g, b) is given as (r = 0.5(n0 + 1), g = 0.5(n1 + 1), b = n2).

Although, normal maps are mainly used as texture maps to include details to

polygonal meshes, they can directly be used as a shape representation as shown

by Johnston [15]. He developed a sketch based system, called Lumo, to model

normal maps as mock-3D shapes by diffusing 2D normals in a line drawing .Recently,

Shado et al. [24] developed CrossShade, another sketch based interface to design

complicated shapes as normal maps. These works suggest that normal maps are

useful for illustrators to create mock-3D shapes. Figure 3.2 shows normal maps

generated by Lumo and Crossshade.

An advantage to thinking of normal maps as 3-color images is that painters can

paint mock-3D shapes using a 2D painting software. The biggest advantage of normal

map formulation is that the painters do not need to think that they are working on

a gradient domain to paint these images. They can imagine an object lit by 2-point

lighting illuminated from left with a directional (parallel) red light and from above

by a directional green light. Ignoring shadows, they can paint the image based on

how much red and green light they want to see in every pixel. For instance, a pixel

14

Lumo Model Crossshade Model

Figure 3.2: Normal maps generated using an sketch based modeling program

color red=0.75 and green=0.3 means, the artist wants 75% of the light from the left

and 30% of the light from the top can illuminate that particular pixel.

Another simplicity for painters, they do not need to provide n2 values explicitly.

Since in normal maps the vectors are encoded as unit vectors and n2 component is

always positive, (n0, n1) components of a normal vector is sufficient to compute n2

component as n2 =
√

1− n2
0 − n2

1. This property is not only useful for painting,

it is also useful for automatic normal map creation. For instance, in Lumo only

(n0, n1) components of the normal vectors are computed, n2 component is ignored

and computed to maintain unit length [15].

One issue that requires attention with painted 2D (n0, n1) vector fields is that

n2
0+n2

1 can be larger than one. In this case, the painted vector field does not formally

correspond to a normal vector field since
√

1− n2
0 − n2

1 can be a complex number.

Fortunately, even when the painted 2D vector field is not reliable, there exists several

strategies to obtain a normal map. One strategy is to uniformly scale 2D vector field

by a parameter s ∈ [0, 1]. For s values smaller than 1/
√

2, the unit 3D normal vector

always exist n(u, v) = (sn0, sn1,
√

1− s2n2
0 − s2n2

1). This scaling operation is related

15

to scaling bas-reliefs.

Providing direct control to painters are essential for the creation of unusual images

since the artists can deliberately introduce imperfections that lead to expressive and

artistic effects. We have created some painted normal maps to demonstrate this

idea. For instance, the imperfections introduced by the artist in the wine bottle

shape map shown in Figure 3.3 resulted in crosshatching from Fresnel computations

when background was completely black and the reflected environment was white.

The same imperfections also provided crosshatching in cartoon shading under diffuse

illumination as shown in Figure 3.3.

2D vector field Normal Cartoon

Figure 3.3: The effect of the cartoon shading - In this case, control images are
simply black and white. Note that in this case crosshatching effect comes directly
from hand-drawn vector field. We expect direct involvement of painters into the
process of creating normal maps can result in innovative solutions

Recent experimental results also support that painting and illustration can be

16

natural way to create normal maps. In particular, Cole et al. [4] demonstrated

that people can correctly estimate normal vectors from line drawings and Shado et

al. [24] further demonstrated that the normal maps generated by CrossShade can

be depicted as if they are 3D shapes. This suggests that normal maps could be

easily created and manipulated by artists and play an important role for designing

expressive and artistic images.

3.3 Comparison of Bas-Reliefs and Normal Maps

One problem with bas-reliefs for 2D artists is that their construction is still a

sculpting process. This may not be suitable for illustrators and painters who are

not interested in sculpting shapes. Normal maps can be more suitable for 2D artists

since they can be created by sketching, painting or even photographing.

(a) (b) (c)

Figure 3.4: Examples of impossible shapes

A useful way is to view a normal map as a 2D vector field N = (N0, N1) where

N0 = n0/n2 and N1 = n1/n2. One additional advantage of this conversion, both

N0 and N1 can be any real number, that can give flexibility to hand-painting. If

17

(N0, N1) is a conservative field, or, in other words, a gradient field, then there exists

a bas-relief function F such that

∂F (x, y)/∂x = N0(x, y)

∂F (x, y)/∂y = N1(x, y).

In this case, the function F can easily be computed with line integral. This formu-

lation demonstrates an important problem of normal maps: they cannot represent

discontinuities. The gradient can only exists if F (x, y) is a continuous function.

Therefore, normal maps can only represent continuous bas-reliefs. To solve this

problem, Sýkora et al. developed an interface to introduce discontinuities to obtain

bas-reliefs that can provide correct shadows [27]. Their addition makes normal maps

a more powerful representation, however since the final geometry is still a bas-relief,

which cannot represent impossible shapes.

The real power of normal maps comes from representation of impossible shapes.

We first need to formally define impossible shapes.

Let N be a 2D vector field that is obtained from a normal map. Then normal

map N is called an impossible shape if it is not a gradient field; i.e. curl(N) 6= 0 for

some (x, y) ∈ D. Here curl is defined as ∂N0(x, y)/∂y − ∂N1(x, y)/∂x.

This definition formally classify a normal map as an impossible shape when it does

not does not correspond any geometry. Such vector fields can be created by artists by

mistake, but more importantly they can actually be related to well-known impossible

shapes. For instance, ascending stairs shown in Figure 3.4(a) can be considered a

closed-loop of normal vectors that continuously go up. This can be represented by

a 2D vector field that includes cycles as shown black vectors in Figure 3.4(b) or (c).

18

The advantage of the normal maps is that they can still allow to compute shading

since they provide the essential shader information: the surface normal in any given

point. On the other hand, since these normal maps do not have geometry, they

cannot cast shadow.

It is still possible to find a geometric approximation to an impossible shape N

into by computing a height field F (x, y) that can minimize the error

E =

∫ ∫
(
∂F

∂x
−N0(x, y))2 +

∂F

∂y
−N1(x, y)2)dudv.

This is a well-known problem in computer graphics. To obtain such an height field

that minimize errors, we have to solve Poisson Equation [5]. One advantage of this

approach is that it is robust. However, the robustness is really the problem here.

The operation turns an impossible shape into a “possible shape” that is represented

by a continuous height field.

Figure 3.5: The comparative power of representations

19

Figure 3.5 provides a visual comparison of the representational power of bas-

reliefs and normal maps. Note that bas-reliefs and normal maps are related to each

other only when bas-reliefs are continuous functions and normal maps corresponds

to 2D gradient fields. One additional issue for both representations is that they are

one-sided, i.e. they do not have back sides. Therefore, neither of them can really

be used in cases where back sides cast shadow. In this paper, we introduce a new

representation that can provide the power of bas-reliefs and normal maps along with

two-sided shapes.

3.4 Qualitative Similarity in Rendering

We observe that bas-reliefs and normal maps work since they provide qualitatively

acceptable rendering results. Although “rendering” results are physical in bas-reliefs

and simulated in normal maps, conceptually they provide qualitatively similar type

of visual results.

To base our discussion on qualitative rendering we use the definition provided by

Forbus et al [7]. Let Qx : D → R and Qy : D → R denote functions x = Qx(v)

and y = Qy(v) where v ∈ D denote any given domain and x, y ∈ R denote real

numbers. They, then, say Qx and Qy are qualitatively proportional to each other

if there exists a monotonically increasing mapping y = f(x): For all p1, p2 ∈ D if

x2 = Qx(p2) > x1 = Qx(p1), f(x2) = y2 = Qy(p2) ≥ f(x1) = y1 = Qy(p1), then

we can call Qx and Qy qualitatively proportional to each other. One advantage of

this formulation, there is no need to explicitly derive the monotonically increasing

function f . To demonstrate Qx and Qy are qualitatively proportional, we can simply

demonstrate the following inequality is correct for all p1 and p2:

Qx(p2)−Qx(p1)

Qy(p2)−Qy(p1)
≥ 0

20

The symbol ∝+ is used to relate two qualitatively proportional entities to each other

as

Qy ∝+ Qx.

This formalization is especially useful to evaluate qualitative similarities in ren-

dering and post processing. For instance, we can show that a γ corrected image is

qualitatively similar to the original image. We can also demonstrate a given ton-

mapping algorithm guarantees creation of LDR images that are qualitatively similar

to the original HDR images. This formalization is also in sync with human visual

perception. As shown by many researchers such as Adelson [17] and artists such as

Albers [1], the color perception is relative. In other words, it makes sense to check

positive correlation between relative differences.

In the case of shaders, we can consider the domain D consists of surface posi-

tions, surface normals, light directions. The shader parameters we use in computer

graphics are like Qy or Qx that provide shader parameters for any given set of sur-

face positions, surface normals and light directions. Now, assume that there exists a

shader parameter Qx that correspond “so-called physical reality”, we can then call

shader Qy is qualitatively acceptable if and only if Qy ∝+ Qx.

A most commonly used shader parameter is cos θ. Here, we will demonstrate

that the scaling the first two components of surface normal creates a new cos θ that

is qualitatively similar to original in the bas reliefs and normal maps. The shading

parameter cos θ turns an operation over normal vectors into a real number for any

given light direction. If the effect of an operation (regardless of light position) on color

of two neighboring points is always qualitative proportional to original color of two

neighboring points, then we can say that the operation is qualitatively acceptable.

Without loss of generality, we will evaluate the comparison in 2D. Let n = (a, b)

21

and v = (x,
√

1− x2) denote denote light direction and normal vector respectively,

where x ∈ [−1, 1] and a2 + b2 = 1. In this case, Qx = n · v = ax + b
√

1− x2.

Scaling bas-relief changes the surface normal as v = (sx,
√

1− s2x2), so Qy = n · v =

asx+ b
√

1− s2x2. Note that the Taylor expansion of
√

1− x2 is,

√
1− x2 = 1− 1

2
x2 − 1

8
x4...

Since x smaller that 1, we can ignore higher order terms such as x4 for the sake of

simplicity, then using the fact that

Qy(x2)−Qy(x1)

Qx(x2)−Qx(x1)
=

as(x2 − x1)− 0.5bs2(x22 − x21)
a(x2 − x1)− 0.5b(x22 − x21)

= s
a− 0.5bs(x2 + x1)

a− 0.5b(x2 + x1)

= s
a− bsy
a− by

where y = 0.5(x2 + x1) and −1 ≤ y ≤ 1. Note that this ratio is positive if a > by

or if a < bsy. This suggests that if a > b, it is very likely that bas-relief will look

qualitatively similar to original shape. On the other hand, when the light is becoming

more and more perpendicular to the bas-relief, there may exist some regions on the

shape that can give away the bas-relief shape is actually flattened. If s is not very

small, the possible light directions that can result in such qualitatively un-similar

results in some regions are relatively small. Most likely, therefore, bas-reliefs are

acceptable Mock-3D representations of complicated 3D shapes.

This particular approach can only evaluate local shading parameters such cos θ

term. For the global shading parameters such as shadows, the domain D is in higher

dimension, which include additional variables such as neighboring point positions

22

and other shapes in the scene and thickness of the shape. Although the problem is

more complicated, it is still possible to make an evaluation. For instance, in flattened

bas-relief local shadows will not be visible unless light direction is almost tangential

to the bas-relief surface. Bas-reliefs cannot be included in a scene as a replacement

of a 3D shape, since they do not have back side. Therefore, we need a new Mock-3D

representation that can provide qualitatively acceptable global illumination effects.

In the next section, we introduce shape maps, an extended version of normal maps,

as an alternative Mock-3D representation.

23

4. SHAPE MAPS AS MOCK-3D SHAPE MODELS

In this chapter, we will first explain the concept of view dependent 2-sided mock-

3D shapes. Then, we will introduce shape maps as a new Mock-3D shapes. Last, we

will talk about different ways of creating shape maps.

4.1 View Dependent 2-Sided Mock-3D Shapes

In this work, we present view dependent and 2-sided mock-3D shapes as an

alternative to mock-3D shapes to represent all types of discontinuities and all types

of impossible geometries as two-sided shapes.

Let F0(x, y, θ) and F1(x, y, θ) denote two functions from D × [0, 2π] to < with

(x, y) ∈ D and θ ∈ [0, 2π]. Then, a view dependent and 2-sided mock 3-D shape is

defined using the following inequality as

S = F0(x, y, θ) ≥ z ≥ F1(x, y, θ)

where z ∈ <.

In this definition, two-sidedness of the shape directly comes from usage of two

functions F0 and F1. The second and more important difference with bas-reliefs is

that the shape is also a function of angle θ. In other words, this definition allows

to have a view dependent geometry since shape depends of the angle θ. View de-

pendency is a desired feature in artistic applications [21]. It also provides a fuzzy

definition for the shapes that can be particularly be useful for representing impos-

sible shapes. The only problem with this general structure is that it is hard for 2D

artists to create these two essentially 3D functions. In this work, we presents shape

maps, which are a relatively simple extension of normal maps. We demonstrate that

24

shape maps can be used to construct these two functions.

4.2 Shape Maps as Mock-3D Representations

Shape maps consists of three maps: normal maps, displacement maps and thick-

ness maps. We defined normal maps and discussed how to create normal maps

earlier in Section 3.2. Displacement and thickness maps are also defined over the

same domain of the normal maps, p = (x, y) ∈ D ⊂ [0, 1]2. Let Z(p) and T (p)

denote displacement and thickness maps respectively and Z : D → [−1, 1], and

T : M → [0, 1]. Note that both maps can be represented as images.

Using these maps, the functions F0 and F1 is computed as a summation of the

two line integrals of 2D gradient fields that are obtained from normal maps and

displacement maps as

F0(p1, θ) = s0G0(p1, θ) + s1G1(p1, θ)

F1(p1, θ) = F0(p1, θ)− s2T (p)

where

G0(p1, θ) =

∫ p1

p0

N0(p(t)) cos θdt+N1(p(t)) sin θdt

G1(p1, θ) =

∫ p1

p0

1

n
bnδZ(p(t))

δt
+ 0.5cdt

with p0 = (x0, y0) is the starting point of the integral, which is computed as the

intersection of the ray starting from p1 = (x1, y1) in the direction of (− cos θ,− sin θt)

with the boundary of the domain D and p(t) = p0 +(cos θ, sin θ)t and bxc is the floor

function that return largest integer smaller than x, n is an integer, quantization term

and s0, s1, s2 ∈ [0, 1] are scale parameters.

If the 2D vector field (N0, N1) is conservative, then G0(p1, θ) is independent of

25

θ. In other words, this integral provides all continuous function bas-reliefs when 2D

vector field is conservative. If 2D vector field is not conservative, then the integral is

dependent on θ, but it is still uniquely defined. The resulting function is continuous

in the direction of θ and may not necessarily be continuous in other directions.

Therefore, it turns a normal map defining impossible shape into a fuzzy geometry.

We use displacement map Z(x1, y1) to make F0 and F1 discontinuous functions in

the direction of θ. The 1
n
bn∂Z(p(t))

∂t
+ 0.5c term quantizes the derivative to the nearest

i/n where i is an integer. The resulting piecewise constant functions approximates

the original derivative functions with a precision provided by 1/n. For small values

of n, the new derivative functions may not necessarily be a gradient field anymore

and provide impossible discontinuities.

Let 1
n
bn∂Z(p(t))

∂t
+ 0.5c be a 2D vector field that is obtained from a displacement

map. Then, it is again an impossible shape if it is not a conservative field; i.e. there

exist a closed path p(t) ∈ D such that

∮
1

n
bn∂Z(p(t))

∂t
+ 0.5cdt 6= 0.

This is particularly useful to for creating shadows impossible shapes, for instance

using Z function shown in Figure 4.1, we can turn impossible ramps into impossible

stairs.

These three maps provides three different representational powers:

• 2D gradient field obtained from normal map provides both continuous functions

and impossible shapes.

• Thickness map provides back side of the shape.

• Displacement map provides discontinuities and local layering information.

26

(a) Normal Map (b) Displacement Map

Figure 4.1: Ascending stairs viewed from above - Note that normal map does not
carry any information since we can only see the top of the stairs, whose normals are
simply (0, 0, 1). Quantization with n = 1 removes all details in displacement map
and in a circular path, the integral does not become zero

The shapes maps can be considered “extended billboards”. They can easily be

used to create scenes that allow for global illumination effects. And we can also use

shape maps in a multi-layer way to introduce discontinuities. Details about this will

be introduced in Section 5.3.

4.3 Creation of Shape Maps

In this section, we discuss the creation of shape maps. Since shape maps consists

of only three maps: normal, displacement and thickness, they can be encoded as

images similar to normal maps. As it can be seen in shape map examples, the shape

map images are more colorful than normal maps since we use blue color for thickness

information. This configuration is useful since when the thickness information is not

available, z component of normal maps can provide an acceptable thickness map. As

discussed in Section 3.2, the main advantage of using images as maps is that artists

can create these maps directly using a painting software such as Gimp or Photoshop

for details).

27

Figure 4.2: Shape maps generated by a painter using a paint program

4.3.1 Shape Map Image Painting

As discussed earlier, to paint a shape map, artists can imagine an object that

is illuminated with parallel red light from their left side and with parallel green

light from top. By ignoring shadow, they paint the image based on how much

red and green light they want to see in every pixel. For instance, a pixel color

red=0.95 and green=0.75 means, the artist want 95% of the light from the left and

75% of the light from the top to illuminate that particular pixel. Note that unlike

normal maps, summation of their squares do not have to be smaller than 1 as in this

example. This is not a problem, since like bas-reliefs and normal vectors, we can

always scale values of n0 and n1 to sn0 and sn1. This operation, in effect, changes

n2 =
√

1− s2n2
0 − s2n2

1. In our implementation, we use the two vectors from shape

to rebuild normal vector as (sn0, sn1,
√

1− s2n2
0 − s2n2

1), where we call s ∈ (0, 1] a

Shape Map quality parameter. This value indicates how reliable current (n0, n1) is to

real normals. And we can easily see that s ≤ 1/
√

2 can guarantee 1−s2n2
0−s2n2

1 < 0.

So we would like to grant user the control to set s value, if the normal of the painted

shape map is very accurate, e.g. it comes from the normal of a real 3D object, user

can set the s value high, otherwise, user can choose a s value that can provide best

28

visual effects.

Red and green lights vectors (1, 0) and (0, 1) are linearly independent from each

other. Therefore, any 2D light can be given a linear combination of the two as

(xL, yL) = xL(1, 0) + yL(0, 1). Therefore, to compute illumination coming from an

arbitrary parallel light, all we need to do is to compute the contribution from two

linearly independent components.

Remark 1: Painting thickness values d are easier. As discussed earlier, d values

have to be non-zero for the object and zero for everywhere else. Moreover, d values

has to be small close to object boundaries(if considering perspective transformation)

and thin regions. This is sufficient to obtain visually correct looking refractions. For

the rest of the object, the d values can simply be any reasonable positive real number

smaller than 1. The Figure 4.2 shows shape maps painted by artists by imagining a

red light from the left side and a green light from the top.

The bottle image shows how thickness values should be painted. Since this bottle

is half-filled with a liquid, in the places where the bottle is not filled with the liquid,

the d value has to be very small to indicate a thin glass, although z component of

the unit vector is not small.

4.3.2 Illustrating Shape Map

Another option, particularly for illustrators, is to model 2D vector fields directly

with sketch based interface. To create the 2D vector fields, we have implemented a

simple modeling system based on boundary gradient interpolation, a concept sug-

gested by Johnston [15]. Since modeling is not the focus of this paper, we do not

include details here. Our rendering approach does not depend on our models. Nor-

mal maps created by Lumo [15] or CrossShade [24] can be used as shape maps as

shown in Figure 4.3(b). Although neither of them provides a separate thickness in-

29

Lumo Model Two models from Our Software

Figure 4.3: Shape maps generated using an sketch based modeling program

formation, normal maps’ blue channel can be used as thickness if there is no other

option. To provide thickness in an illustration environment, a sketch based modeling

software is created in our group. Several of our examples are created using that

software. Since modeling is not the focus of this thesis we do not give detail here.

Figure 4.4: Shape maps generated from photographs

30

4.3.3 Turning 3D Shapes into Shape Map Images

Although we prefer artists to create shape maps, it is also possible to convert real

objects into shape maps. The procedure to obtain a 2D vector field is a straight-

forward rendering process. The x and y components of the 3D-normal vector of

the visible point is simply converted to red and green colors of image. It is even

possible to use z component of the unit normal vector as the d value. This choice

will give small d values in object boundaries. However, the object may be thin even

if the z value is not small. We do not provide any example for this case since it is

straightforward 3D graphics application.

Figure 4.5: More shape maps generated from photographs

31

4.3.4 Shape Maps from Photographs

Another method to obtain shape maps is by photographing real objects using red

and green lights, which can be a simple alternative to environment matting [33]. The

Figure 4.4 and Figure 4.5, show such examples. In these example, we have made only

minimal changes in original image: (1) we removed and replaced backgrounds with

yellow color; and (2) we added a non-zero blue value for object regions. Note that

yellow background corresponds to zero thickness and therefore does not refract light.

Although constant thickness is not correct, the resulting refractions appears reason-

ably convincing. The artists, of course, can further manipulate these photographs to

obtain desired effects.

4.3.5 Creation of Displacement Map

As we discussed, displacement maps are optional. They are used only to introduce

discontinuities when necessary. The creation of displacement map is in general the

same in all cases, and user can simply use diffusion curve to create a displacement

map. Each discontinuity lines can be drawn as one diffusion curve[20], as shown in

Figure 4.6(a). The colors at two sides of the diffusion curve represent the higher

and lower height that would create a discontinuity, therefore, user can set a high

value at the higher side, and low value at the lower side, as shown in Figure 4.6

(b). Figure 4.6 (c) and (d) shows the effects of displacement map. The normal map

here has (0,0,1) normals everywhere and the thickness map here has a constant value

everywhere. So if the light is on the higher side, shadow will be created along the

direction of pixel position to light position, otherwise, no shadow will be cast.

32

(a) (b)

(c) (d)

Figure 4.6: Displacement map created using diffusion curve - (a) and (b) show how
to create displacement from diffusion curve. (c) and (d) show the results, with the
yellow spot as lighting position

33

5. MOCK-3D SCENES

In this chapter, we will introduce two different types of Mock-3D scenes, the

simple layered Mock-3D scene and Billboard Mock-3D scene. Then, we will talk

about the basic of how to build the shader of the scene.

5.1 Mock-3D Scene Types

Mock 3D scenes consist of shapes maps that are projected on planes, control

images which are associated with each shape map, one background image and one

environmental image. We consider only two types of scenes: (1) Simple layered and

(2) Billboard based.

1. Simple layered Mock-3D scenes: These scenes consist of shape maps that

are projected on planes perpendicular to (0, 0, 1). Simple layered scenes are sim-

ilar to layers in 2D painting software such as photoshop or gimp. These scenes

are particularly useful for 2D artists since they are very similar to existing 2D

scene descriptions that are familiar to most 2D artists. More importantly, these

scenes significantly extend the capabilities provided by 2D painting software.

Using these scenes 2D artists can obtain re-illumination with local shadows,

compositing with reflection and refraction.

2. Billboard based Mock-3D scenes: These are shape maps that are projected

on random planes. If one wants to obtain more complicated effects such as

global shadows or reflections on a water surface, there is a need for this type

of the scenes, which allow projections on the planes that can be rotated and

translated in space. Although the visual experience of the user are related to

simple layered scenes, we can still obtain local layering and planes that can

34

intersect with each other. As we will discuss later, this is important to obtain

global shadows and more interesting reflections.

5.2 Simple-layered Mock-3D Scenes

Simple layered Mock-3D scene consists of one background and one environment

image and a set of shape maps projected on planes that are perpendicular to (0, 0, 1).

The z positions of planes defines layer orders. Eye is also given by its z position.

This type of the simple layered scenes can be further simplified into a single layered

shape map. Anything behind the eye can be turned into one single environment

image. Anything behind the first shape map after eye can be turned into a single

background image. We then, view the problem as a single shape map that reflects

the environment image and refracts background image. Reflections and refractions

are combined with a user defined Fresnel function.

5.3 Billboard-based Mock-3D Scenes

The simple layered Mock-3D scenes cannot provide more general Mock-3D shapes

such as primarily horizontal ones. These horizontal shapes such as ground plane,

table top or water surface, are important to obtain realistic looking rendering results:

(1) Other objects can cast shadows on these horizontal shapes and (2) other objects

are reflected and refracted from these horizontal shapes.

Billboard-based Mock 3D scenes consist of shape maps projected on planar rect-

angles. We assume the whole scene is inside a unit cube. The users can move the

center of planar rectangle in 3D and change the normal vectors of it. However, paral-

lel projection of this rectangle never changes. This is not an issue since the rectangle

is fully inside the cube. However, once it reaches the boundary, we cannot further

rotate or move rectangle in 3D. For example, users cannot get (0, 1, 0) as a normal

vector unless make the height of the projected rectangle 0. In other words, the shape

35

of projected rectangle constraints possible positions and normals, however it is still

possible to obtain almost horizontal shapes. One advantage of this approach is users

can feel as if they are working completely on 2D, we can significantly extend global

illumination effects that can be obtained with shape maps.

5.4 Shader for Mock-3D Scene

We introduce a simple description of shader parameters to obtain predictable

visual results. Our approach is based on control images that are provided by artists.

The final image is simply computed as a weighted average of these control images

using a Bezier formulation as

I(u, v) =
N∑
i=0

M∑
j=0

DIi,j(u, v)Bi,j(cj(u, v)) (5.1)

where Bi,j(cj(u, v)) denotes tensor product Bezier basis functions, DIi,j(u, v) denotes

Bezier control images, 0 ≤ cj(u, v) ≤ 1 is shading parameter j where j = 0, ...,M

computed from shape map, details of this computation will be in chapter 6. The

only condition for shading parameters they have to be between 0 and 1. They can

represent diffuse reflection and shadow parameters for each light. In addition, they

can be silhouette and ambient occlusion parameters. In this formulation, it is also

possible to use quantized shading parameters to obtain controlled cartoon shading.s

One advantage of this approach is that the color of the lights are embedded

in the control images and directly controlled by the painter. Because of convex hull

property of Bezier curves, the equation guarantees that the result is also an image and

it stays in the convex hull of control images. The advantage of Bezier basis functions

over others such as B-spline basis functions is that Bezier formulation guarantees

that the function interpolates DI0,j(u, v) and DIN−1,j(u, v) control images. In other

36

words, if our shading computation can guarantee to obtain 0 and 1 for a set of shader

parameters, the painter-defined colors can always be obtained in the final image. As

a conclusion, the obvious advantage of this formulation is that it can help artists to

plan exactly what kind of results they expect to see.

In practice, it is hard to create such a large number of images consistently when

both M and N are large. In practice, we noticed that only one light is sufficient for

basic control of visual results. Therefore, without loss of generality, all our examples

in this work uses only two control images and one shading parameter that corresponds

to one light. The effects produced by additional lights can simply be included in the

production of two control images. In this case, the general Bezier curve equation

simplifies into

I(u, v) = DI0(u, v)(1− c(u, v)) +DI1(u, v)c(u, v) (5.2)

where DI0(u, v) and DI1(u, v) denote two images that are provided by the artist.

The first image defines the color when the given point (u, v) is not illuminated. The

second image DI1(u, v) defines the color when the point is fully illuminated. In all

our examples DI0 and DI1 are always painted by an artist. It is also noted that

that this formulation closely resemble to Gooch shading formulation [9]. Figure 1.4

demonstrate how an artist can turn a hand-painted image into a 3D looking image

with shadows.

The advantage of Bezier formulation can be demonstrated by comparing this

equation with classical rendering formulation that is given in a ray formula as

I(u, v) = DI0(u, v) + V I(u, v)c(u, v) (5.3)

37

Note that we did not change DI0(u, v), since mathematically speaking it corresponds

to the ambient term of classical shading equation. However, the term that corre-

sponds to diffuse term in classical equation is a vector and will be computed as

V I(u, v) = DI1(u, v)−DI0(u, v) to obtain the same result. Note that V I(u, v) may

not necessarily be an image, since for some (u, v) values DI1 − DI0 can be nega-

tive. In practice, this can happen very frequently for artist defined control images

(See control images in Figure 5.1). In other words, if we do not use a formulation

that does not guarantee convex hull property, such as ray equation, we significantly

restrict the creativity of the artist.

Control Image 0 DI0 Control Image 1DI1

Teapot Normal Map Rendering

Figure 5.1: Teapot example - Model from Lumo, used by permission of Fleeting
Image Animation, Inc.

38

Dark Image: DI0(u, v) Light Image: DI1(u, v)

Shape Map: SM(u, v) Rendering

Figure 5.2: Reflections on the eyeball - This is obtained with αI term by using slight
transparency on eyeball region. Since the overall α is 1, the rest of image is diffuse.
The shape map, and initial version of light image are obtained by a sketch based
interface. Dark and light images are later painted by an artist using the initial version
of light image as a guide

A shape map with two images DI0 and DI1, and an associated shader parameter

corresponds to one rendered image, namely I. This particular image can refract

and reflect images behind and in front of it. As discussed before, in simple layered

scenes we assume that there is only one image behind and in front of the rendered

shape map image for the sake of simplicity. Let BI(u, v) and EI(u, v) denote these

images, called “background image” and “environment image” respectively and let

αI(u, v) denote opacity of I. Note that shape map transparency defines the shape of

callD and has nothing to do with reflection and refraction. On the other hand both

39

DI0 and DI1 can have transparent regions. The term αI of I results in combined

transparencies of the two images DI0 and DI1 during rendering. This term is used

to make only certain parts of the image transparent or reflective (see Figure 5.2),

or obtain the effect of subsurface scattering (see Figure 5.3). We also have a user-

defined global parameter, αG, such as those in GIMP or Photoshop, that can make

the entire layer more transparent. Then αC(u, v) = αGαI(u, v) denotes combined

transparency of the layer I(u, v). Using combined transparency, αC , we compute the

composited image as follow:

CI(u, v) = αCI + (1− αC)(fEI(R) + (1− f)BI(T)).

where R(x, y) = (u, v) represents reflection mapping; T (x, y, η) = (u, v) represents

refraction mapping; and the term f(x, y, η) represents a Fresnel term. For perfect

mirrors, we simply use a Fresnel term f(x, y, η) = 1. For each of these functions,

it is possible to use physically correct formulas, but those formulas do not provide

the kind of artistic control we want to provide. Therefore, we introduced linearized

formulas that can provide artistically inspired versions of refraction, reflection and

Fresnel, which can be specifically used for compositing images. How we compute

these three terms will be explained later.

In conclusion, to create dynamic 2D artworks, artists have to create at most

two control images in addition to shape maps to control all effects from shadow to

reflection and refraction. In most figures we included artist created control images

to provide an idea about the process.

5.4.1 Cartoon vs. Smooth Shading

It is widely known that we can smoothly turn diffuse shading into cartoon shading

by re-mapping c values in Equation 5.2. For the sake of brevity, we provide the re-

40

Dark Image: DI0(u, v) Light Image: DI1(u, v) Shape Map: SM(u, v)

Rendering 1 Rendering 2 Rendering 3

Figure 5.3: Subsurface scattering effect - This is obtained by using αI term by using
slight transparency around the silhouette regions of hands and arms. Shape map,
dark and light images are created with a sketch based interface

mapping formula that we use to control the smoothness of the shading as:

c←− TR(
c− c0 − 0.5

δc
) (5.4)

In this equation, TR() is a truncation operation, which simply clamps the values

if they are smaller than zero or larger than one. The variables c0 and δc are real

numbers that are normally in between 0 and 1. These parameters are used to obtain

final result from the shading, shadow and ambient occlusion computations.

The term δc = 0 corresponds to cartoon shading and δc = 1 corresponds to normal

41

δc = 2 δc = 1 δc ≈ 0

Figure 5.4: The effect of the parameter δ - In this case, DI0(u, v) is a black image
and DI1(u, v) is a white image and background is black. Note that it is possible to
allow δ larger than 1, but this choice makes the image flatter and it is not really
useful

diffuse shading. The values of δc that are larger than 1 flatten the image. Figure 5.4

shows an example of the effect of δc. The c0 parameter controls shifts in the position

of 0.5 and is used to control the ratio of dark and bright regions.

42

6. RENDERING MOCK 3D SCENES

In this chapter, we first talk about how shading parameters are combined. Then,

we will explain the algorithm to compute ambient occlusion. Later, we will present

shadow computation algorithm, and how the thickness and displacement map are

used. And finally we will briefly talk about how the shadow is computed in multi-

layer case.

6.1 Shading Parameters

As we discussed in Section 5.4, the core of rendering is to compute the shading

parameters. Let cD(u, v), cA(u, v), cS(u, v) ∈ [0, 1] denote parameters that are com-

puted from diffuse shading, ambient occlusion and shadow computation. We com-

bine these three parameters to obtain an overall shading parameter c(u, v) ∈ [0, 1]

as in Equation 5.3, with an operator guarantees that c(u, v) is always between

max(cD(u, v), cA(u, v), cS(u, v)) and min(cD(u, v), cA(u, v), cS(u, v)). Examples of

such operators are multiplication c(u, v) = cDcAcS and mean c(u, v) = wDcD +

wAcA + wScS where wD + wA + wS = 1 and wD, wA, wS ≥ 0.

Diffuse illumination comes directly from the lights that are represented as point

lights. Using light positions, we obtain shading parameters such as diffuse reflection

and shadow. For simple layered surfaces, we only consider self-shadows, which we

also call local shadows. These are shadows that are casted by mock 3D shapes onto

themselves. In billboard based scenes, mock 3D shapes can also cast shadow to

others.

In the following sections, we will talk about the computation of ambient and

shadow parameters in details (As for diffuse, we simply use classical dot product, so

we will not talk in detail here). And since simple layer shape map is a special case

43

of billboard case, we will talk about the computation as if they are all in Billboard

case.

The general notations we will use are as follows: 3D Lighting position is de-

noted as ~L = (xL, yL, zL). And we use p(u, v) to denote a pixel in the shape maps

with image position (u, v), and ~p(u, v) = (x(u, v), y(u, v), d(u, v)) denote the 3D

position of this pixel in the unit cube of billboard case, as we discussed in Sec-

tion 5.3, the normal information associated with this pixel is denoted as ~n(u, v) =

(sn0(u, v), sn1(u, v),
√

1− s2 ∗ n2
0 − s2 ∗ n2

1). And for the sake of simplicity, we will

omit (u, v) in most of the case.

6.2 Ambient Occlusion

Ambient occlusion parameter can simply be considered as a function of mean

curvature [10]. In this work, we adopt a simple qualitative estimation of ambient

occlusion from normal map. For a pixel p(u, v) on the normal map, we compute our

ambient occlusion using an idea like image processing.

We define a filter of window size 2M + 1× 2M + 1, and each entry of this filter

is a 2D vector, which is,

a(i, j) =

 0 for i = j = 0

(i,j)
|i,j| for others

where i and j are the indices within the window coordinates, which are i, j =

{−M,−M + 1, ... − 1, 0, 1, ...M − 1,M}, and i 6= j = 0. Then our ambient oc-

clusion parameter is obtained through a convolution of this filter with the 2D vector

field of the (n0, n1) components from the normals of our shape map. So for the

44

ambient parameter cA(u, v) of pixel p(u, v),

cA(u, v) =
2

(2M + 1)2

M∑
i=−M

(n0(u+ i, v + i), n1(u+ i, v + i)) · a(i, j)

=
2

(2M + 1)2

M∑
j=−M

M∑
i=−M

n0(u+ i, v + j) ∗ i+ n1(u+ i, v + j) ∗ j
|(i, j)|

(a) Maximum mean curvature (b)Minimum mean curvature

(c) Underlying shape of (a) (d) Underlying shape of (b)

Figure 6.1: Min-max mean curvature - (a) Shows the 2D vector fields of the first
two components that can reach maximum mean curvature, while (b) shows the case
when it reaches minimum. (c) and (d) shows the underlying shape that can generate
the normal that has the vector fields like (a) and (b) separately

It can be seen from the the above equation that the filter is a vector field that all

45

the vectors are pointing out from the center. And if the 2D normal vectors of (n0, n1)

has exactly the same direction, then we can reach the maximum ambient strength, as

shown in Figure 6.1(a). If the 2D normal vector (n0, n1) has totally opposite direc-

tions, we got the minimum ambient strength as shown in Figure 6.1(b). Intuitively,

they correspond to the underlying shape like Figure 6.1(c) and (d). Therefore, this

is a reasonable computation for ambient occlusion. In the following, we are going to

show mathematically how our computation in Equation 6.1 is a qualitative estima-

tion to mean curvature.

The mean curvature can be estimated by the average of all the curvatures from

the lines that passes through point p(u, v). However, our 2D vector field of normal is

discrete, in order to estimate the curvature discretely, we can build a sample window

of 2M + 1× 2M + 1 pixel size around pixel p, and take samples of line direction as

vij, that starts from pixel pij and points to the symmetric pixel p{−i}{−j}, as shown

in Figure 6.2. In this case, we will have totally (2M+1)2

2
lines, and the mean curvature

Hp at pixel p can be computed as:

Hp =
2

(2M + 1)2

M∑
j=−M,j 6=i

M∑
i=0

κij

The curvature along the line that passes through p can be estimated similar as

in discrete differential geometry [11], we discretize the line vij as starting pixel P0,

center pixel P and ending pixel P1, as shown in Figure 6.3(a), so that the discrete

curvature can be estimated as

κij =
ϕij

eij

, where ϕ is the change of tangent angle between ϕ0 and ϕ1, and e is the length of

the curve segment, which are shown in Figure 6.3(b). The value of s can be easily

46

Figure 6.2: Average curvature as mean curvature - Red lines are the sample direction
we used to estimate curvature, and with in a window of 2M + 1×2M + 1, we totally
have 2

(2M+1)2
different lines

computed as the length between P0 and P1, and the value of ϕ can be simplified to

be a 2D filter convolution as in Equation 6.1.

Assuming we are on the plane defined by P0, P and P1, with normal Nϕ, as shown

in Figure 6.4, the value of ϕ can be computed as

ϕ = π − θ0 − θ1

, And

cos(θ0) = ñ0 · (−vij)

cos(θ1) = ñ1 · vij

47

(a) Lines used to estimate curvature (b) Discretised line

Figure 6.3: Curvature estimation - (a) shows the sample lines that we used to es-
timate and P0 and P1 are the sample point we choose along the line in order to
estimate curvature, and (b) shows the underlying curvature along the line

, where ñ0 and ñ1 are the projection of ~n0 and ~n1 onto plane L and vij is the 2D

direction of the line. Since normals always point towards (0, 0, 1) direction, θ0 and

θ1 are both within [0,Π], and cos(θ) is monotonically increasing when θ ∈ [0, π]. We

have cos(θ0) + cos(θ1) ∝ θ0 + θ1, where ∝ denotes positive proportional. Therefore,

ϕ = π − (θ0 + θ1) ∝ −(ñ0 · (−vij) + ñ1 · vij) = ñ0 · vij + ñ1 · (−vij)

And since, vij is perpendicular to Nϕ, ñ0 ·(−vij) = (n0−Nϕ·n0∗Nϕ)

|n0−Nϕ·n0∗Nϕ| ·(−vij) ∝ n0 ·(−vij),

similarly, ñ1 · vij ∝ n1 · vij. So that, Equation 6.2 can be re-written as

ϕ ∝ (n0 − n1) · vij

Since line vij starts from pij and points to p{−i},{−j}, vij is simply (i, j), substituting

48

Figure 6.4: Angle from arc-cosine - This figures shows the ϕ from plane defined by
p0, p1, so that ϕ can be computed as = π−θ0−θ1, where θ0 and θ1 can be computed
as ñ0 · (−vij) and ñ0 · vij

the component of ~n0 = (x(u+ i, v+ j), y(u+ i, v+ j)) and ~n1 = (x(u− i, v− j), y(u−

i, v − j)) we have

n0·vij+n1·(−vij) = x(u+i, v+j)∗i+y(u+i, v+j)∗j+x(u−i, v−j)∗(−i)+y(u−i, v−j)∗(−j)

Therefore,

Hp ∝
2

(2M + 1)2

M∑
j=0,j 6=i

M/2∑
i=1

κij

=
2

(2M + 1)2

M∑
j=0,j 6=i

M∑
i=1

αij

sij

=
2

(2M + 1)2

M∑
j=0,j 6=i

M∑
i=1

n0(u+ i, v + j) ∗ i+ n1(u+ i, v + j) ∗ j
|(i, j)|

+
2

(2M + 1)2

M∑
j=0,j 6=i

M∑
i=1

n0(u− i, v − j) ∗ (−i) + n1(u− i, v − j) ∗ (−j)
|(i, j)|

=
2

(2M + 1)2

M∑
j=0,j 6=i

M∑
i=−M

n0(u+ i, v + j) ∗ i+ n1(u+ i, v + j) ∗ j
|(i, j)|

= cA (6.1)

49

Therefore, we can say our computation of cA is qualitative proportional to the

mean curvature. A particular results of ambient occlusion with different value of M

is shown in Figure 6.5

M = 1 M = 3

Figure 6.5: Ambient occlusion example - This figure has showed an example of
ambient occlusion. And by choosing different size of sample windows, we get different
results

And it can also be seen that if we consider the whole 2D vector fields as in

continuous domain, the size of M actually corresponds to the number of samples

around P , and this does not need to be the size in terms of pixel.

6.3 Shadow

In physics, shadow is created as the light ray is blocked by an obstacle. Similarly,

in order to estimate the shadow strength of the current pixel p(u, v) in the image,

the basic idea is to check how much the ray between current pixel and the light L

has been blocked by the underlying object. We can quantize this by checking how

many times the ray has been blocked at a set of sample points along the ray. On each

50

sample point, what we need to do is to check if the height of the underlying object

is higher than the lighting ray at that point. Therefore, the shadow computation in

general has two steps. First, we need to estimate the height of the underlying object

at the sample points on the line along the direction from p(u, v) to lighting position

L. Second, we need to check if the ray at the sample points has been blocked(inside

the object) or not.

(a) 3D View of Shadow Cast (b) Line integral in 2D

Figure 6.6: Shadow cast - (a) shows a shape and its shadow, and how the lighting
position is projected onto the image plain. (b) shows what we expected to see from
the view angle, and the 2D line integral we actually work on

The core of shadow computation is to estimate the height of the underlying

object. In order to achieve this, we adopt a line integral approach. We will first

project the lighting position ~L onto the the plane same as the pixel p(u, v) that we

are checking, and do the line integral along the projected line with direction ~vL,

as shown in Figure 6.6. In simple layer case, we only need to project the lighting

position onto the (0,0,1) plane. However, in the billboard case, we have to project the

lighting position onto the plane same as p(u, v), and since each pixel might receive

51

shadow cast from other layers, we also need to project p(u, v) onto all other possible

layers in the scene. Details of these will be discussed in the following sections.

6.3.1 Height Estimation

In order to check if a pixel is casted shadow from a certain layer with a plane

normal N , we will first project this pixel position p(u, v) = (x(u, v), y(u, v), d(u, v))

and light position L = (xL, yL, zL) onto this plane, and we get projected position as

Pp and Lp separately. We then compute line integral along the line that starts from

Pp to Lp on the plain, we denote this direction as a vector V . With a user-defined

sample step size δs, we take a bunch of sample points along the line integral direction,

their position on the plane is denoted as P̃i, so P̃0 = Pp and P̃i+1 = P̃i + δs ∗ V . And

we also denote the position on the estimated shape that corresponds to P̃i as Pi, and

we can also see that P̃0 = P0. Therefore, the height for each sample points at i is

Hi = (Pi− P̃i) ·N . Therefore, if δs is small enough, we can estimate Pi+1 by a linear

approximation from Pi, as shown in Figure 6.7.

Assume the plane defined by position Pi and normal ni is

ni(P − Pi) = 0

, As a point on this plane, Pi+1 satisfies

ni · (Pi+1 − Pi) = 0 (6.2)

And along the integral direction, denote the height increment between Pi+1 and

Pi + δsv as a scalar h multiplied by layer normal N , we have

Nhi + (Pi + δsv) = Pi+1 (6.3)

52

Figure 6.7: Line integral - This figure shows how we compute line integral for height
Hi, where hi is the height incremental between two successive sample points, so the

height Hi can be computed as an accumulation of hi, which is Hi =
i∑

j=0

hj

substitute Equation 6.3 into Equation 6.2, we have

ni · (Nhi+1 + (Pi + δsv)− Pi) = 0

so that

hi =
−ni · δsvi
ni ·N

this hi is the small height increment from position Pi to Pi+1, therefore,

Pi+1 = Pi + hi ·N

So that the height Hi at sample point i can be computed as,

Hi = (Pi − P̃i) ·N

= (P0 +
i∑

j=0

hj ·N − P̃0 − iδsv) ·N

53

(6.4)

Since v is perpendicular to N , and P0 = P̃0. So, the total height Hi can be computed

as the summation from h0 to hi.

Hi =
i∑

j=0

hj

6.3.2 Soft Shadow with Shadow Strength

We define shadow strength as a real number Sha(u, v) ∈ (0, inf), which indicates

how much shadow a pixel is receiving with current lighting position. The higher

this value is, the darker the pixel should be. And our shading parameter wS has

the inverse relationship with Sha(u, v), which we will talk later. We compute the

strength of the shadow as the total length of the parts of light ray when it is inside

the the object, intuitively, this computation indicates that the more the ray is inside

the object, the darker the affected pixel will be. As shown in Figure 6.8, r1 has

longer lighting ray inside the object than r0, therefore, when the lighting position is

at r1, pixel will appear to be be receiving more shadow than the lighting position at

r1, and if the lighting position is at r2, the pixel will appear to have no shadow.

Sha can be computed within the iterative process of line integral as we discussed

in Section 6.3.1. Sha is 0 when we start the integral from P0, and for each sample

point Pi. By comparing the value of Hi and the corresponding height of the light

ray H̃i along the ray, we can simply decide if the lingering ray is inside the object

or not. If inside, Sha← Sha+ Shaacc/(N · vh), where N is the layer normal and vh

is the 3D direction of light ray from P to L, and Shaacc is a user defined value to

control how the shadow strength is accumulated along the line integral.

54

Figure 6.8: Counts of the intersections - Lighting ray r1 has more counts than r0,
then pixel will be having more shadow(darker) when the light is at the direction of
r1 than at r0. Lighting ray r2 has no counts, so when the light is at r2 direction, the
pixel will not have any shadow.

6.3.3 Thin-film and Thickness Map

Shadow strength has provided very good control for the parts that are in shadow,

however, by simply checking whether the current height Hi is larger than the ray

height or not, the non-shadow parts will appear to be uniform color. Since for these

pixels, the lighting ray will never be inside the object, therefore, there would not be

any accumulation for Sha. So, even though shadow parts are correct as shown in

Figure 6.9(a), the non-shadow parts look bad. However, we would like to get the

non-shadow part similar as diffuse results which is shown as Figure 6.9(b).

In order to solve this problem, we introduce a concept of thin-film, this thin-film

is simply an offset of the original surface, it can be viewed as we add a very small

offset of the original surface. Basically, this small offset makes it possible for parts

of the lighting ray to be inside the object. And we can show that the resulting

55

(a) Without Thin-film (b) With Thin-film

Figure 6.9: Thin-film effect - (a) The shadow parts appear to be smooth, but non-
shadow parts have uniform color. (b) A much better looking non-shadow parts like
diffuse shading

shader parameter wS from adding this thin-film is a qualitative estimation to the dot

product of the surface normal and the lighting direction(which is the classic diffuse

shading).

We will start from the planar surface, as shown in Figure 6.10, green line segments

are the length that the lighting ray is inside the object from our computation of Sha,

denote the thin-film value as tf . It is obvious that the cosine of angle between normal

of pixel and lighting ray is tf
Sha

. As a sphere surface shown in Figure 6.11, r0 has

the maximum value of tf
Sha

, as in this case, the line segment inside has exactly the

same value as tf . The maximum value of tf
Sha

equals to 1, which is the same as the

diffuse shading. r2 has the minimum value of tf
Sha

, since this is the case when the

length of line segment inside reaches maximum, while diffuse shading also reaches

minimum at this position. Even though diffuse shading has a minimum value of 0,

56

while tf
Sha

can not reach 0, it is obvious to see from Figure 6.11 that our tf
Sha

has

the same monotonicity as diffuse shading, therefore, we can say tf
Sha

is qualitatively

proportional to diffuse shading. As wS has the inverse relationship with Sha, we

define our wS = tf
Sha

, so that, wS is also qualitative proportional to diffuse shading.

Figure 6.10: Thin-film as cosine on planar surface - Green line segmentation are the
length that the lighting ray is inside the object, diffuse shading of each point P can
simply be computed as the length of Thin-film over the length of green line segment

Figure 6.11: Thin-film as cosine on spherical surface - Green line segmentation are
the length that the lighting ray is inside the object

57

And for each shape map, we also have a thickness map, indicating the thickness

of the object. The object will be considered as if it is in 3D, and we are trying to

find if the light ray goes through the object. In addition to the surface s, which

is computed from height, we consider the object between surface created by thin-

film, and the the surface created by thickness, as the surface s1 and s0, as shown in

Figure 6.12. The light height H̃i at the sample points Pi can be easily computed as

Figure 6.12: Intersection with the lighting ray

a ratio of projected height of current checking pixel p(u, v) and the projected height

of lighting position L, based on the length of the current line integral. By comparing

the light height H̃i and the two surfaces, we can decide if the lighting ray is inside

the shape at the current sample point by checking:

(Hi + tf − H̃i) ∗ (Hi − tf − T − H̃i) < 0

. If the above statement is true, we can increase the shadow strength value by

58

Sha← Sha+Shaacc ∗ (1−N · vh). In this particular example, we have the back side

the same shape as front side. However, in practice, user can deicide how the back

side should be related to front side.

6.3.4 Sharp Height Change from Displacement Map

The displacement map is used on top of shadow strength value, as we discussed

in Section 4.2, the derivative of displacement map is used as a threshold to de-

cide if there is a sharp change in the height. Therefore, the information carried

by displacement map can be interpreted by checking the difference between dis-

placement values of two consecutive sample points along the line integral path:

Hi ← Hi + δhb(Z(pi) − Z(pi+1)/δzc, where δh and δz are two user-defined values,

δh is the amount of the height change that is brought by discontinuity which corre-

sponds to s1 in Equation 4.2 in Section 4.2, and δh is the user-defined quantization

term from Equation 4.2 in Section 4.2.

6.3.5 Shadow Cast from Other Layers

When we are using the billboard Mock-3D scene, we have to consider shadows

casted from other layers, as shown in Figure 6.13. In order to check if Shape 2 is

creating shadow on a pixel p(u, v) in Shape 1, we have to project this pixel from

Shape 1 to Shape 2, as well as the lighting position on to Shape 2, and see if Shape

2 is creating Shadow on the projected position of p(u, v). In this case, every pixel

is possible to receive shadows from the shapes in every layers, therefore, for each

pixel, we will project it onto all other possible layers to see if it can receive shadow

from the shape in that layer, as shown in Figure 6.14. And within each layer, the

computation of shadow cast is the same as we discussed before. And for each visible

pixel from scene, we will still keep one single Sha value, and the check of whether

Sha should be increased will be for all the samples in all layers.

59

(a) Shape Map (b) Light on the right (c) Light in the center (d) Light tn the left

Figure 6.13: Shadow cast in billboard mock-3D scene - This figure shows how the
shadow is casted from other layer. (a) is the shape map of the scene, (b) (c) and (d)
show how the shadow cast changes with the lighting position

6.4 Reflection and Glossy Reflection

For reflection mapping, our goal is to provide a simple and intuitive-to-use method

for 2D artists. Our method is closely related to sphere mapping, which is one of the

most widely used reflection methods [15]. In sphere mapping a far away spherical

environment is stored as an image that depicts what a gazing ball (i.e. mirrored

sphere) would reflect if it were placed into the environment, using an orthographic

projection. Although spherical mapping is one of the simplest methods for obtaining

reflections, it can still be complicated for some 2D artists who want to work only

with rectangular images. Moreover, in our case, an additional problem comes from

the fact that n2
0 + n2

1 can be larger than 1. Therefore, we need a similar method

that can use rectangular environments. Fortunately, there exists a gazing ball shape

that can reflect the whole environment into a square image. This particular gazing

ball shape can be given by an implicit surface max(n2
0, n

2
1) + z2 = 1. This shape,

when placed in an environment, reflects the whole environment in a square using

orthographic projection along the z direction. We can, then, create reflection simply

60

(a) Projected (u, v) onto all other layers (b) Integration along lighting direction

Figure 6.14: Integral for shadow cast from other layers - (a) shows how the current
checking pixel and lighting position are projected onto all the layers in the scene.
(b) shows all the line integral that will be used to check if there is a shadow cast

by using the following operation:

(u, v) = R((u, v)− (n0, n1)) (6.5)

This reflection is shown in Figure 6.15.

The only caveat in this approach is that every point on the boundary of a square

image reflects the same point in the environment sphere. Therefore, every point on

the boundary of the square image has to be the same. In practice, any seamlessly

tile-able wallpaper image can be used as an environment map. In our experience,

any image works as an environment map, probably due to humans’ high tolerance

for discontinuities in mirror images.

For realistic reflections, we move the center of the environment image in tan-

dem with the light position. This creates visually acceptable specular reflections.

Therefore, we do not think an additional specular highlight is necessary. Glossy re-

flection is simply obtained using smoothed versions of environment maps provided

61

Figure 6.15: Illustration of reflection

by mipmap. Glossy reflections combined with other compositing operations such as

multiplication can be used to obtain other effects such as environment illumination.

6.4.1 Refraction and Translucency

For refraction we developed an artificial refraction mapping that provides simple

and intuitive artistic control, for

(u, v) = T ((u, v)− a ∗ t ∗ (n0, n1)) (6.6)

where a ∈ [−1, 1] is a user-defined global parameter that corresponds to index of

refraction as the value of a is computed log2 of η = η2/η1. Although shape maps are

not supposed to have well-defined unit normal vectors, it is still possible to evaluate

physical sense of this equation qualitatively. For instance, when a = 0, there is no

displacement of the background image, which is exactly what we expect when η = 1.

In the regions where t = 0 regardless of a, there is again no displacement, which is

62

also what we expect to see in transparent regions that are extremely thin.

The values of a that are larger than 0 correspond to η > 1, which is represen-

tative of travel from air to water or glass. In this case, the incoming eye-ray is

(0, 0,−1) since we assume orthographic projection. The refracted ray will be bent

towards the vector (−n0,−n1,−1). Therefore, we can assume that this vector can

be given as a weighted average of the two vectors (0, 0,−1) and (−n0,−n1,−1).

Using a as a weight, we obtain a vector (−an0,−an1,−1). If the object simply con-

sists of two plates with thickness t, this vector will hit the back side of the object

at (u − tan0, v − tan1,−t). Once it hits the back side, we assume it is refracted

back to (0, 0,−1) and continues until it hits the background image. Therefore, we

can simply approximate the refraction as a 2D displacement (−tan0,−tan1). This

process is shown in Figure 6.16. The biggest advantage of this equation is that refrac-

Figure 6.16: Illustration of refraction

tion changes linearly with global parameter a. This provides predictable control for

artists. Following the same logic, the equation provides a vector between (0, 0,−1)

63

and (n0, n1,−1) for negative a values. Although the length is not exactly correct,

the direction of displacements is correct (this also provides a predictable control).

Translucency is simply obtained using smoothed versions of the background images.

Moreover, we smooth the background images based on the value of |(tan0, tan1)| to

improve visual quality and realism.

This refraction computation can also provide easy to understand and control

deformations. It is also possible to obtain simpler operations such as translation,

scaling and rotation with refraction. For instance, a 2D vector field (n0, n1) = (v,−u)

rotates a background image 450 and uniformly scales the image by
√

2. From the

same shape map, using a value one can obtain a full range of scaled rotations. Shapes

maps that rotates are also good examples of impossible objects since they do not

correspond any 3D shape.

6.5 Fresnel Effect

For artists the Fresnel effect is important since it changes how reflection and

refraction is composited based on the incident angle and the index of refraction.

From an art direction point of view, the number of parameters for defining Fresnel

is undesirable. Therefore, the first issue is to reduce the number of parameters.

Let t = θ(n0, n1) denote a function that converts (n0, n1) into a single variable

between [0, 1] that correspond to incident angle. Based on our earlier discussion,

such a function can be obtained in several ways. Since there already exists a user-

defined global parameter a that provides the index of refraction, we can rewrite the

variables of the Fresnel equation as f(x, y, η) = f(t, a). By observing that the most

important issue in Fresnel is to control the regions of strong reflection with the index

64

of refraction, we further simplified the equation into the following form:

f(t, a) = af(t,−1) + af(t, 1) (6.7)

Based on this equation, artists need only define two Fresnel curves that are given

for a = −1 and a = 1. We then can simply interpolate these curves using a. We

also observed that curves f(t,−1) and f(t, 1) can simply be piecewise linear curves.

Figure 6.17 shows a hand-drawn effect obtained with an exaggerated Fresnel function.

In a dynamic version, the user can move the positions of white regions with a slider

that controls a value.

(a) (b) (c)

Figure 6.17: Fresnel effect controlled by pseudo index of refraction - This figure shows
Fresnel effects using a black background and white environment map. By changing a
value, from (a) to (b) to (c) the object appears to be more refractive than reflective

65

6.6 Reflection in Billboard

In Billboard case, we still have reflection from environmental image and refraction

from background image. These are computed using the same linearized formula as in

simple layer case. The only difference is the a from Equation 6.5 will be different for

each different shape, and the depth of each pixel will also be taken into consideration.

Therefore, Equation 6.5 becomes:

(u, v) = T ((u, v)− (1− d(u, v)) ∗ (n0, n1))

where d(u, v) is the depth of current pixel at (u, v), as we introduced in Section 5.3,

Billboard scene is inside a unit cube, and environmental image is placed at d = 1.

Similarly, the refraction from Background image in Billboard scene can be written

as:

(u, v) = R((u, v)− a(u, v) ∗ d(u, v) ∗ t ∗ (n0, n1))

where a ∈ [−1, 1] corresponds to index of refraction and will be different for each

different shape.

Figure 6.18: Billboard reflection

66

In addition to environmental image and background image, Billboard case will

also consider the reflection/refraction from other shape maps, however, our compu-

tation is based on classical 3D rendering technique, which is shown in Figure 6.18,

we will not talk this in detail. The reflected ray will be checked with all other layers

to see if there is any intersection, if there is an intersection, the pixel color from the

interaction point will be taken to replace the color from the original checking point.

And the new image with replaced color will be the output of compositing process.

And in order to have reflection of reflection/refraction, we used similar iterative ap-

proach as in Path Tracing [7]. The first input color for compositing process is the

output from shading process. And the output of the compositing process will be

saved as the new input for the next compositing iteration, and the whole process will

be repeated several times to get the final results.

67

7. IMPLEMENTATION AND RESULTS

In this chapter, we will first talk about the advantage and disadvantage of GPU

implementation. Then we will talk about some details in rendering that are not

covered in Chapter 6. Finally, we will show more results from our program.

7.1 GPU Implementation

We used GPU to implement all the rendering and compositing system, and CPU

is only used to arrange shapes in Mock-3D scene. The advantage of GPU is the strong

parallel computing power, and since our shape map representations are all kept in

image format, they can be easily passed to GPU and processed as textures. Each

single pixel can be processed separately, which is especially powerful for compositing

part. However, one limitation with GPU implementation is, for each rendering pass,

GPU can only register 32 different textures, therefore, we tried to convert multi-

layer shape maps in Billboard case as one shape map with layer label information for

each pixel, rather than several separate shape maps. Another more serious limitation

with GPU implementation is, when each pixel is processed separately, this particular

process does not have access to the processed results from other pixels, so in the

line integral computation, all the pixels along the line can not use the results from

previous pixel. This leads to a waste of computation.

7.1.1 Simple-layered Scenes

Simple-layered mock-3D scene will have totally six different images, one normal

map image, one thickness image, one DI0 image, one DI1 image, one background

image, one environmental image, and optional a displacement image. All of these

image will be treated as textures in GPU.

68

7.1.2 Billboard-based Scenes

From implementation side, we can still consider the billboard mock-3D scene as

one multi-layer shape map. This multi-layer shape map still appears as one single

image, which is obtained by the orthogonal projection of all the shape maps in the

mock 3D scene, according to their layer normals and depth. In other words, the

multi-layer shape map contains all visible pixels from the shape maps of the mock-

3D scene according to current viewing angle. Figure 7.1 shows how the multi-layer

shape maps is obtained from mock 3D scene.

(a) Shape Maps and Layers in 3D (b) Multi-layer Shape Map

Figure 7.1: Billboard-based mock-3D scene

In addition to the normal, thickness and displacement information from single

layer shape map, a multi-layer shape map will have a label for each visible pixel

Lab(u, v) indicating which layer this visible pixel belongs to. And for each layer

69

A, we have a layer size (WA, HA), center position in 3D DA, normal vector nA =

(n0A, n1A, n2A) , where A is the layer label and n0A ∈ [−1, 1], n1A ∈ [−1, 1], n2A ∈

[0, 1]. From this information we can compute a depth value for every pixel inside one

layer. Besides x(u, v) and y(u, v), we will have a fuzzy depth information d(u, v) for

each pixel, which can be computed from nA and DA, as follow:

d(u, v) = ((WA − u) · n0A + (HA − v) · n1A)/n2A

where A = Lab(u, v). Please note, this depth is computed from layer orientations,

which means it has nothing to do with the actual shape of the underlying 3D model.

As inside a unit cube the range of d ∈ [0, 1], and we placed shape maps in such a

way that, d = 1 means closet and d = 0 means farthest.

From controlling side, the user has to set all the control images for each shape

rectangles as in the simple layered case. Besides, the user will be able to change the

size, position and normal of the shape rectangle. And as we mentioned above, the

shape rectangle will never go outside of the unit cube. Therefore, if the user try to

changes nA to a new value that makes one of the corner of shape rectangle having a

depth larger than 1 or smaller than 0, then the change nA will be reverted.

7.2 Rendering Mock 3D Scenes

7.2.1 Diffuse

We can simply compute the dot product of the first two components (n0, n1) of

normal and the lighting direction. which is

cD =
n0 ∗ (xL − x) + n1 ∗ (yL − y) + n2 ∗ (zL − d)

|(xL − x, yL − y, zL − d)|

70

In single layer shape map case, this can be further simplified as,

cD =
zL ∗ (n0 ∗ (xL − x) + n1 ∗ (yL − y))

|(xL − x, yL − y)|

A simple change to this function can make a parallel light looking, such as

cD =
n0 ∗ xL + n1 ∗ yL + n2 ∗ (−d)

|(xL, yL, zL)|

7.2.2 Ambient Occlusion

As we discussed, the size of the the sample window does not need to be at pixel

size, and since we are using texture to store our information, the sample could be

at inter-pixel level. User can give a δu and δv value indicating the sample step

along x and y direction, and the convolution is applied on the neighborhood point

(u+ iδu, v + jδv) of (u, v), Therefore, our ambient occlusion is implemented as

ca(u, v) = 0.5
N∑

i=−N

N∑
j=−N

wi,jAi,j(u, v)∑N
i=−N

∑N
j=−N wi,j

+ 0.5 (7.1)

where N is a user-defined number of samples, and

Ai,j(u, v) = δ(n0(u+ iδu, v + jδv), n1(u+ iδu, v + jδv)) • (iδu, jδv)

,

71

7.2.3 Shadow Cast from Own Layer

After projecting the lighting position onto the same plane as pixel, we do the line

integral, actually it is pretty simple as an iterative accumulation:

Hi = Hi +
ni · δsvi
ni ·Nj

In the single layer case, the above function can be further simplified as

Hi = Hi +
sn0 ∗ xL + sn1 ∗ yL√

(1− s2n2
0 − s2n2

1)

The lighting ray height at current sample point can be computed as:

Hr ← Hp +
(HL −Hp) ∗ |Pi − Pp|

|Pp − Lp|

And as we mentioned in Section 6.3.3, we can set back side differently, usually we

would recommend symmetric but a little simpler back side to have a better visual

effects, such as in Figure 7.2 Then we can check if (Hi + Sdisp − H̃i) ∗ (−0.1 ∗Hi −

Sdisp − T − H̃i) is smaller than 0, and if this is true, the shadow strength will be

added with Shaacc/(N ·vh), the choice of Shaacc will be discussed in the next section.

7.2.4 Shadow Cast from Other Layer

In billboard case, only the information of the visible points is recorded in shape

map, and we will use the label information of each point to identify the layer of

that pixel. So that, along the integral direction from Pp to Lp, each sample point Pi

may have differen labels as the starting position Pp, and may have different labels

from current layer. We identify these as four different cases. In each case, integral

behavior and accumulated shadow strength will act differently.

72

Figure 7.2: Symmetric simpler back-side

Case 1: Label of the starting position p, the current checking layer and the

sample position Pi are all the same. This case indicates that the shadow computa-

tion(accumulated height from line integral) is using the sample pixels from the same

layer as checking layer, and the shadow is also cast onto the pixel from the same

layer. So, the line integral will still follow the Equation 6.3.1, and if it is casting

shadow, the shadow strength will be added with a user defined value for the case

when shadow is cast from the shape in same layer. This is the only case in the simple

layer case.

Case 2: Label of the current checking layer is the same as the label from sample

position Pi, but they are different from the label of starting position p. This case

indicates we are on a different layer to check if there is any shadow cast, and the

shadow computation is still on the sample pixels from the same layer as the checking

layer. So, the line integral is the same as in case 1, and if it is casting shadow, the

shadow strength can be added with a user defined value different from case 1.

Case 3: Label of the starting position p is the same as the label from checking

layer, but they are different from the label of sample position Pi. This case indicates

73

that the the shadow computation is not reliable, but the starting position is on the

same layer as the current checking checking layer, we should keep the consistence.

This case happens when partial of the line integral is blocked by the pixels from

other layer, as shown in Figure 7.3. In this case, the accumulated height Hi should

be kept the same as previous iteration. And the shadow strength should be as the

same as in case 1.

Figure 7.3: Occlusion from other layer

Case 4: Label of the starting position p, the current checking layer and the

sample position Pi are all totally different from each other. This case indicates the

integral is not reliable, and this result should not have any effects on other layer.

Therefore, the shadow strength can simply be set to zero in this case. For every pixel

p(u, v), we will have a label b(u, v), and its associated depth D(u, v), so the pseudo

3D position of this pixel can be represented as (x(u, v), y(u, v), D(u, v)), for totally

N layer, the pseudo code is as follow:

74

7.3 Reflection and Refraction

The reflection and refraction of background and environmental image is straight

forward, in GPU, we simple need to added a displacement of position in texture. But

the reflection of reflection/refraction is hard to implement since GPU does not have

the information from other pixels when it is processing current pixel. Therefore, we

have to compute all the pixel together after each reflection/refraction, and save the

image as a frame buffer, which can be used for the input of compositing process again.

We separate the rendering and compositing process into two GPU codes. We save the

(a) (b)

Figure 7.4: Reflection of refraction - This figure shows an example of reflection of
refraction, (a) and (b) are with differen object, and please also note each object in
the same image also have different refraction index

output of rendering process as the shading results(the output of the shading process

is the combination of DI0 and DI1 using c(u, v)). We then apply the compositing

process, and save the result in frame buffer as a new shading result image. Then we

75

will reapply the same compositing process for a few times, in our implementing it is

4 times. And pretty good results can be obtained, such as in Figure 7.4. However,

inter-layer refraction is not possible with our current implementation of Billboard,

since the shape in front will block the shape in the back. Partial of the shape

information is missing, so that refraction can not be built.

7.4 More Results

In this section, we will show more results from our system. Figure 7.5 and

Figure 7.6 shows artistic reinterpretation, all the shape maps are drawn by artist.

Figure 7.7 shows the use of shape map from other modeling software, such as Cross-

shade[24]. Figure 7.8 is a pure non-photo realistic results from our system. Figure 7.9,

Figure 7.10 and Figure 7.11 shows the reflection/refraction effects. Figure 7.12 and

Figure 7.13 shows the reflection effect from Billboard shape map;

76

DI0(u, v) DI1(u, v)

Shape Map Rendering 1

Figure 7.5: Warhol’s campbell - This figure shows Re-interpretation of Warhol’s
Campbell Soup painting with art directed reflections. In his original painting, Warhol
painted mirror reflected black areas on top of the can and a very subtle and almost
invisible diffuse reflection on body of the can. Using a black and white striped image
as an environment map and by painting slightly varying control images, an artist
was able to move both subtle diffuse reflection and mirror reflected black in tandem,
which can help to better appreciate the idea behind this painting. Creation of control
images and 2D vector field did not take more than one hour

77

Dark Image: DI0(u, v) Light Image: DI1(u, v)

Shape Map : SM(u, v) Rendering 1

Figure 7.6: Example of Mona-Lisa - This figure shows an example of painting re-
interpretations: close-ups of a diffusely relit re-interpretation of Mona Lisa. Shape
map, dark and light images are all painted by an artist inspired by Picasso’s original
painting. The artist added red lipstick, an ear and a pearl earring to the original
image as an homage to Johannes Vermeer’s Girl with a Pearl Earring. This particular
shape map is a prime example of imperfect, incorrect, and inconsistent shape maps.
Despite that, we can obtain acceptable results

78

Dark Image: DI0(u, v) Light Image: DI1(u, v)

Cross-Shade model Rendering

Figure 7.7: Shadow and subtle reflection on a Cross-Shade model - This figure shows
shadow and subtle reflection on a CrossShade model. Dark and light images are
obtained from the rendered images in the paper. We only added yellow background to
CrossShade model (i.e. normal map) to differentiate outside regions. The CrossShade
model is used in permission

79

Figure 7.8: Artistic filtering effects obtained by a variety of shape maps

80

Shape Map Photos Composite

Figure 7.9: Examples of shape map photographs of diffuse objects - This figure
shows examples of shape map photographs of diffuse objects. In these cases, we do
not have any foreground object, i.e. α = 0. The composite images are simply the
result of refraction and refraction of the same image that is used both environment
and background image. The original of genus-6 object at the top is made from paper.
The high genus object in the middle is made from ABS plastic

81

Shape Map Photo Composite

Figure 7.10: An example of shape map photograph of a translucent object - This
figure shows an example of shape map photograph of a translucent object. In this
case, we do not have any foreground object, i.e. α = 0. The composite images are
simply the result of refraction and refraction of the same image that is used both
environment and background image

82

Shape Maps Composite

Figure 7.11: Reflection and refraction with Lumo and Cross-Shade models - In these
cases, we do not have any foreground object, i.e. α = 0. The composite images are
simply the result of refraction and refraction of the same image that is used both
environment and background image. Lumo and CrossShade normal maps are used
in permission

83

(a) Shape Maps (b) Rendering

(c) Rendering (d) Rendering

Figure 7.12: Rendering with Lumo models - In these cases, we showed the results
using Lumo’s Cat model. (a) is the original scene, and (b),(c) and (d) are renderred
with lighting at different positions

84

(a) Shape Maps (b) Rendering

(c) Rendering (d) Rendering

Figure 7.13: Rendering with many models - In these cases, we showed different
aspects of our system, we have refraction, reflection, and shadow cast from same
layer and other layers. (a) is the original scene, and (b),(c) and (d) are renderred
with lighting at different positions

85

8. CONCLUSION

In this work, we developed a system that uses shape maps to generate many

different kinds of visual effects. Shape maps are particularly useful for 2D artists

whose primary focus is painting and illustration. These artists have a good under-

standing of how reflection and refraction works, but they may not want to follow the

conventional 3D rendering process for obtaining 2D works. They also want to have

creative control over the results. Shape maps allows them to create paintings that

can be rendered and composited exactly as they want.

86

REFERENCES

[1] Josef Albers. Interaction of color: unabridged text and selected plates. Yale

University Press, 302 Temple Street, New Haven, CT, USA, 1975.

[2] H. Bezerra, B. Feijo, and L. Velho. An image-based shading pipeline for 2d

animation. In Proceedings of the XVIII Brazilian Symposium on Computer

Graphics and Image Processing, SIBGRAPI 2005, pages 307–314, 2005.

[3] Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-preserving

simplification. In Proceedings of the 25th Annual Conference on Computer

Graphics and Interactive Techniques, pages 115–122, 1998.

[4] Forrester Cole, Kevin Sanik, Doug DeCarlo, Adam Finkelstein, Thomas

Funkhouser, Szymon Rusinkiewicz, and Manish Singh. How well do line draw-

ings depict shape? ACM Transactions on Graphics (TOG), 28(28), 2009.

[5] Raanan Fattal, Dani Lischinski, and Michael Werman. Gradient domain high

dynamic range compression. ACM Transactions on Graphics (TOG), 21(3):249–

256, 2002.

[6] M. Finch, J. Snyder, and H. Hoppe. Freeform vector graphics with controlled

thin-plate splines. ACM Transactions on Graphics (TOG), 30:166:1–166:10,

2011.

[7] Kenneth D Forbus. Qualitative process theory. Artificial Intelligence, 24(1):85–

168, 1984.

[8] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A non-

photorealistic lighting model for automatic technical illustration. ACM Trans-

actions on Graphics (TOG), pages 447–452, 1998.

87

[9] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A non-

photorealistic lighting model for automatic technical illustration. In Proceedings

of the 25th Annual Conference on Computer Graphics and Interactive Tech-

niques, pages 447–452. ACM, 1998.

[10] Wesley Griffin, Yu Wang, David Berrios, and Marc Olano. Gpu curvature esti-

mation on deformable meshes. In Symposium on Interactive 3D Graphics and

Games, pages 159–166. ACM, 2011.

[11] Eitan Grinspun, P Schröder, and Mathieu Desbrun. Discrete differential geom-

etry: an applied introduction. ACM SIGGRAPH Course, 7, 2006.

[12] John Hart. (2013) private conversation: According to a market research firm 3D

Graphics is only 8% of the whole graphics market. 2D graphics such as vector,

image and video is 90% of the graphics market.

[13] Berthold KP Horn. Hill shading and the reflectance map. Proceedings of the

IEEE, 69(1):14–47, 1981.

[14] Ken ichi Anjyo, Shuhei Wemler, and William Baxter. Tweakable light and

shade for cartoon animation. In Symposium on Non-photorealistic Animation

and Rendering, NPAR ’06, pages 133–139, 2006.

[15] Scott F. Johnston. Lumo: illumination for cel animation. In Symposium on

Non-photorealistic Animation and Rendering, NPAR ’02, pages 45–52, 2002.

[16] Gordon Kindlmann, Ross Whitaker, Tolga Tasdizen, and Torsten Moller.

Curvature-based transfer functions for direct volume rendering: Methods and

applications. In Proceedings of IEEE Conference on Visualization, pages 513–

520. IEEE, 2003.

88

[17] Isamu Motoyoshi, Shin’ya Nishida, Lavanya Sharan, and Edward H Adelson.

Image statistics and the perception of surface qualities. Nature, 447(7141):206–

209, 2007.

[18] Diego Nehab, Szymon Rusinkiewicz, James Davis, and Ravi Ramamoorthi. Ef-

ficiently combining positions and normals for precise 3d geometry. ACM Trans-

actions on Graphics (TOG), 24(3):536–543, 2005.

[19] Makoto Okabe, Gang Zeng, Yasuyuki Matsushita, Takeo Igarashi, Long Quan,

and Heung-Yeung Shum. Single-view relighting with normal map painting. Pro-

ceedings of Pacific Graphics, pages 27–34, 2006.

[20] Alexandrina Orzan, Adrien Bousseau, Holger Winnemoller, Pascal Barla, Joelle

Thollot, and David Salesin. Diffusion curves: A vector representation for

smooth-shaded images. ACM Transactions on Graphics (TOG), 27(3):92:1–

92:8, 2008.

[21] Paul Rademacher. View-dependent geometry. In Proceedings of the 26th Annual

Conference on Computer Graphics and Interactive Techniques, pages 439–446.

ACM Press/Addison-Wesley Publishing Co., 1999.

[22] T. Ritschel, T. Thormlen, C. Dachsbacher, J. Kautz, and H. Seidel. Inter-

active on-surface signal deformation. ACM Transactions on Graphics (TOG),

29(4):36:1–36:8, 2010.

[23] Tobias Ritschel, Makoto Okabe, Thorsten Thormlen, Hans peter Seidel, and

Mpi Informatik. Interactive reflection editing. ACM Transactions on Graphics

(TOG), 28(5):129:1–129:7, 2009.

[24] Cloud Shao, Adrien Bousseau, Alla Sheffer, and Karan Singh. Crossshade: shad-

ing concept sketches using cross-section curves. ACM Transactions on Graphics

89

(TOG), 31(4):45:1–45:11, 2012.

[25] J. Sun, L. Liang, F. Wen, and H. Shum. Image vectorization using optimized gra-

dient meshes. ACM Transactions on Graphics (TOG), 26(11):11:1–11:7, 2007.

[26] Daniel Sýkora, John Dingliana, and Steven Collins. Lazy- brush: Flexible paint-

ing tool for hand-drawn cartoons. Computer Graphics Forum, 28(2):599–608,

2009.

[27] Daniel Sýkora, Ladislav Kavan, Martin Čad́ık, Ondřej Jamrǐska, Alec Jacobson,

Brian Whited, Maryann Simmons, and Olga Sorkine-Hornung. Ink-and-ray:

Bas-relief meshes for adding global illumination effects to hand-drawn charac-

ters. ACM Transactions on Graphics (TOG), 33(2):16:1–16:15, 2014.

[28] Corey Toler-Franklin, Adam Finkelstein, and Szymon Rusinkiewicz. Illustration

of complex real-world objects using images with normals. In Symposium on

Non-photorealistic Animation and Rendering, NPAR ’07, pages 111–119, 2007.

[29] Romain Vergne, Pascal Barla, Roland W. Fleming, and Xavier Granier. Surface

flows for image-based shading design. ACM Transactions on Graphics (TOG),

31(94):94:1–94:9, 2012.

[30] Tim Weyrich, Jia Deng, Connelly Barnes, Szymon Rusinkiewicz, and Adam

Finkelstein. Digital bas-relief from 3d scenes. In ACM SIGGRAPH 2007 papers,

volume 26 of SIGGRAPH ’07, pages 32:1–32:7, 2007.

[31] Holger Winnemöller, Alexandrina Orzan, Laurence Boissieux, and Joëlle Thol-

lot. Texture design and draping in 2d images. In Computer Graphics Forum,

volume 28, pages 1091–1099. Wiley Online Library, 2009.

[32] T. Wu, C. Tang, M. Brown, and H. Shum. Shapepalettes: Interactive normal

transfer via sketching. ACM Transactions on Graphics (TOG), 26(3):44:1–44:5,

90

2007.

[33] Douglas E Zongker, Dawn M Werner, Brian Curless, and David H Salesin. Envi-

ronment matting and compositing. In Proceedings of the 26th Annual Conference

on Computer Graphics and Interactive Techniques, pages 205–214, 1999.

91

