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ABSTRACT

Recent work in the field of reconfigurable antennas has presented a variety of novel

approaches to functionalizing antenna structures. In particular, fluidic & microflu-

idic strategies show promise as next-generation reconfiguration mechanisms to build

advanced, highly-reconfigurable antenna designs capable of integration into cognitive

wireless systems. In this work, a networked control system is conceptualized and im-

plemented in a modular fashion to provide centralized control of an antenna array

composed of such reconfigurable elements. A fluidic-controlled tri-band polarization

& frequency reconfigurable antenna (TBPFRA) design—utilizing multiple fluid re-

configuration systems—is explored as a target design for control. An electronically

polarization-reconfigurable antenna (EPRA) design is implemented and multifunc-

tionalized with a thermoregulation system. The array control system is implemented

on a seven element testbed platform with the multifunctional EPRA design. The

assembled testbed system is then used to demonstrate a variety of cognitive antenna

techniques, including beam steering and direction-of-arrival estimation. Finally, a

novel method of raster-based infrared signaling is explored, and a proof-of-concept

is demonstrated with the multifunctional array testbed.
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NOMENCLATURE

ρ Bulk resistivity (Ω · cm)

tan δ Dielectric loss tangent

εr Relative dielectric permittivity

ADC Analog-to-digital converter

AESA Active electronically-scanned array

ASCII American Standard Code for Information Interchange

AWG American wire gauge

BSTO Barium strontium titanate

COSMIX Coaxial stub microfluidic impedance transformer

DAC Digital-to-analog converter

DHCP Dynamic Host Configuration Protocol

DoA Direction of Arrival

EFCD Electromagnetically functionalized colloidal dispersion

eGaIn Eutectic Gallium-Indium alloy

EPRA Electronically polarization-reconfigurable antenna

I/Q In-phase & Quadrature

IP Internet Protocol

IR Infrared

ISM Industrial, scientific, and medical

LSB Least-significant bit

LUT Lookup table

MAC Media access control

MCB Modular control board
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MCU Microcontroller

MEMS Micro-electromechanical systems

MSB Most-significant bit

MUSIC Multiple Signal Classification

NTC Negative temperature coefficient

op-amp Operational amplifier

PBSN Polarization & band-switching fluid network

PESA Passive electronically-scanned array

PID Proportional-Integral-Derivative

PIN Positive-Intrinsic-Negative

PLL Phase-locked loop

SoC System-on-a-chip

SPI Serial peripheral interface

SSH Secure shell

TBPFRA Tri-band polarization- & frequency-reconfigurable antenna

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TEC Thermoelectric Cooler/Thermoelectric Cooling

Thermal-IR Electromagnetic radiation with wavelength ranging from 8µm–
14µm

UART Universal asynchronous reciever/transmitter

UI User interface

VNA Vector network analyzer
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1. INTRODUCTION

Wireless data transmission has become ubiquitous in modern electronic devices.

So, too, has the number of wireless data transmission standards proliferated. Increas-

ingly, mobile devices are expected to communicate using multiple wireless standards,

and in multiple frequency bands. Furthermore, many commercial & military users re-

quire both land-mobile and satellite-mobile wireless communications for short-range

and long-range communication, respectively. This multitude of requirements plays

to the strengths of a variety of different canonical antenna designs, however achieving

high gain, wide operating bandwidth, and polarization diversity in a single passive

antenna design is quite difficult.

Reconfigurable antennas show promise to provide communications system de-

signers with the ability to implement truly multifunctional communications systems.

Frequency reconfigurability can allow a single antenna system to work in multiple

different frequency bands, and polarization reconfigurability allows an antenna sys-

tem to leverage polarization diversity to combat signal fading and multipath effects.

A variety of different techniques are available to reconfigure the operating behavior

of an antenna element. In particular, a variety of solid-state (and near-solid-state)

electronic mechanisms can be used to reconfigure the radiation pattern, operating

frequency, and polarization of an antenna structure. Recently, microfluidic systems

have shown promise as an alternative to electronic reconfiguration mechanisms for an-

tenna applications. Fluidic mechanisms have the potential to enable higher RF power

operation, with lower loss than comparable electronic mechanisms, and without re-

quiring conductive control wiring on the antenna structure—obviating the potential

such control structures have to perturb the operation of the antenna.
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In stationary and mobile applications, antenna arrays can be used to provide

higher gain and a more directional radiation pattern through beamforming, allowing

further improvement of the signal-to-noise ratio and link budget of a wireless link.

Furthermore, when equipped with controllable phase shifting elements and phase-

sensitive receivers, such an antenna array can be used to implement electronically-

steerable beamforming and direction-of-arrival estimation capabilities. Such a mobile

or stationary array could then be used to locate and track a remote transceiver. An

antenna & transceiver array system like this has many applications, ranging from

multiuser wireless communications systems to radar to electronic warfare.

This thesis will explore the preliminary development of a multi-band, frequency-

and polarization-reconfigurable planar antenna, using novel fluidic reconfiguation

techniques, which can be tiled in a hexagonal array for distributed beamforming

and direction-of-arrival estimation applications. In particular, the control system to

manipulate the reconfiguration mechanisms on an array of such antenna elements

is developed and tested. The control system utilizes wired & wireless TCP/IP net-

working to implement a dynamically reconfigurable array control system, allowing

individual antenna elements to be added and removed from the array on the fly.

To achieve high gain with an antenna array, many elements are required. For

planar antenna elements in a planar array, a high gain equates to a large planar

surface, which typically must be unimpeded by external structures to avoid com-

promising the RF performance of the array. This thesis will further explore the

multifunctionalization of such a planar antenna array through the implementation

of a thermoregulation system. By achieving individual control of each antenna ele-

ment’s temperature, a multifunctional array system capable of displaying a long-wave

infrared image is achieved. A particular envisioned application is explored: the use

of a such a multifunctional array to transmit data via long-wave infrared energy.
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2. BACKGROUND

2.1 Microstrip Patch Antennas

Microstrip patch antennas are a common modern antenna structure, useful in a

variety of applications where size, weight, and cost are key design constraints [1]. Mi-

crostrip antennas are easily conformable to the surface of a wide variety of structures,

are readily and easily manufactured using the same techniques used for planar circuit

fabrication, and are amenable to the addition of a variety of reconfiguration mecha-

nisms to enable manipulation of their operating frequency, impedance, polarization,

and/or radiation pattern. [2, 3] Microstrip patch antennas can also be constructed

in a wide variety of geometries. Common to all microstrip antennas are four key

elements [4]:

• a thin conductive sheet—usually metallic—called the patch

• a (typically larger) conductive sheet known as the ground plane

• a dielectric substrate separating the two conductive sheets, and

• a feed structure, which couples electromagnetic energy into the antenna

Despite their numerous advantages, microstrip patch antennas have several key

disadvantages. The principal disadvantage of a patch antenna is its high quality

factor, Q. The Q of a structure or circuit can be expressed as

Q = 2π
Energy stored

Energy lost per cycle
(2.1)

As will be examined in depth, patch antennas are roughly resonant structures, so

the Energy stored term in (2.1) is typically large relative to the Energy lost per cycle
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Fig. 2.1: Geometry & principal design variables of a rectangular microstrip patch
antenna

term. The high Q of most patch antennas results in several disadvantageous effects.

First, patch antennas are typically narrowband structures, with small impedance

bandwidths of at most a few percent. Microstrip antennas also typically exhibit

low radiation efficiencies as only a fraction of the energy supplied into them is lost

through the radiating mechanism. Although approaches exist to reduce the Q of

a microstrip antenna, most result in a degradation of the radiation pattern and/or

polarization of the antenna. Despite these disadvantages, microstrip antennas have

seen significant use in applications where weight, profile, and cost constraints are

tight. Below, two of the most common patch geometries—from which the antenna

geometries explored in this work are derived—are examined.

2.1.1 Rectangular Microstrip Patch Antennas

2.1.1.1 Overview

The rectangular microstrip patch antenna is the canonical form of the microstrip

patch, and the first geometry explored in literature [5]. Fig. 2.1 shows an overview of

the geometry of the rectangular patch and its key design variables. The antenna takes
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Fig. 2.2: Cross-section of rectangular microstrip patch antenna

the form of a thin rectangular patch, laid atop a substrate material of thickness h with

some relative permittivity εr. This substrate material is underlain by a conducting

metal ground plane. The rectangle of the patch is defined by a length L, and a

width W . These three variables–L, W , and h–determine the operating frequency,

impedance & operating bandwidths, and radiation pattern of the patch antenna.

A rectangular patch antenna is typically designed such that the peak of its radi-

ation pattern is normal to the plane of the patch itself (the +z direction in Fig. 2.1).

This is accomplished with a geometry in which the substrate thickness is small rela-

tive to the operating wavelength (h << λ0), and the resonant length is chosen such

that λ0/3 < L < λ0/2 [1].

2.1.1.2 Feed Mechanisms

A common method of feeding electromagnetic energy into the patch is the coaxial

probe feed, a cross-section of which is shown in Fig. 2.2. Note how the center

conductor of the coaxial probe is connected to the patch, and the outer conductor

is coupled to the ground plane. A hole of radius equal to that of the dielectric

space in the coaxial cable is cut into the ground plane to facilitate the passage of
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Fig. 2.3: Transmission line model of rectangular microstrip patch antenna

the electromagnetic fields into the dielectric beneath the patch. The distance y0 at

which the probe is inset into the patch from the radiating edge on the +y side of

the patch controls the input impedance of the patch seen at the probe feed, allowing

the feed to be impedance matched to the antenna. Other common feed geometries

include inset microstrip feed lines, aperture coupled microstrip feeds, and proximity

coupled microstrip feeds. Only the coaxial probe feed geometry was explored in this

work.

2.1.1.3 Analysis & Design

Two analytical models are commonly used to gain insight into the operation and

design of the rectangular patch: the transmission-line model and the cavity model.

The transmission-line model was one of the first analytical models developed for

the patch antenna [5], and while it does not yield the most accurate results for

operating parameters such as frequency and input impedance, it does provide some

insight into the operating behavior of the patch antenna. The cavity model of the
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patch antenna is slightly more complex, but provides more accurate predictions of

the operating frequency and input impedance. Further, the cavity model provides

more physical insight into the radiation mechanism of the patch, and a reasonably

accurate approximation of its radiation pattern.

Fig. 2.3 shows a schematic representation of the transmission line patch model.

In this model, the patch antenna is modeled as a section of wide, low-impedance

microstrip transmission line of characteristic impedance ZA, propagation constant

βA, and length l1 + l2. The characteristic impedance of a microstrip transmission line

is determined primarily by its width w and the thickness of the dielectric substrate

h on which it rests, along with the relative permittivity εr of the substrate. For

microstrip line, this characteristic impedance is given by: [6]

Z0 =


60
√
εeff

ln

(
8h

w
+
w

4h

)
for

w

h
≤ 1,

120π
√
εeff

[
w

h
+ 1.393 + 0.667 ln

(
w

h
+ 1.444

)]−1

for
w

h
> 1

(2.2)

The term εeff in (2.2) represents an effective relative permittivity which, if it replaced

the dielectric of the microstrip line and the air above it such that the microstrip were

embedded in a uniform dielectric, would result in a transmission line with electrical

properties identical to the actual geometry. This term is given by [6]

εeff =
εr + 1

2
+
εr − 1

2

[
1 + 12

h

w

]−1/2

for
w

h
> 1 (2.3)

In the transmission line model of the microstrip patch, the impedance given by (2.2)

is substituted for ZA. βA can be found from

βA =
2π

λ0

√
εeff (2.4)
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where λ0 is the free-space wavelength and εeff is given by (2.3). The electric fields

between the patch and ground plane take the form shown in Fig. 2.4, derived from

the cavity model of the patch. Because the patch geometry is finite, the electric field

between the patch and ground plane fringe outward at the edges. This fringing also

occurs at the boundaries of the patch in the orthogonal cut-plane (x-z plane) as well.

These fringing fields result in an effective electrical length & width extension of the

patch. The effective width can be approximated as [7]

weff =
120πh

Zm
√
εeff

(2.5)

Zm =
60π
√
εeff

[
w

2h
+ 0.441 +

1.451

π
+ ln

(
w

2h

)
+ 0.94

]−1

(2.6)

Similarly, the effective length extension ∆L, such that the effective length Leff =

L+ 2∆L can be found from [8]

∆L = 0.412
(εeff + 0.3)

(
w
h

+ 0.264
)

(εeff − 0.258)
(
w
h

+ 0.8
)h (2.7)

The operating frequency of the patch can be then be estimated according to [1]

fc =
1

2Leff
√
εeff
√
µ0ε0

=
1

2 (L+ 2∆L)
√
εeff
√
µ0ε0

(2.8)

The radiating slots at the edges of the patch—denoted as the fringing fields in

Fig. 2.4—can be represented in the transmission-line model as a complex admitttance

Y1,2 = G1,2 +jB1,2, where G1,2 represents the conductance of slots 1 & 2, respectively,

due to radiation loss. B1,2 represents the capacitance of the fields in the slot. Several

approximations of varying accuracy exist to evaluate these slot admittances. The

simplest—though not necessarily most accurate—is that based on a slot of infinite
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width, where [1]

G1,2 =
W

120λ0

[
1− 1

24
(k0h)2

]
h

λ0

<
1

10
(2.9)

B1,2 =
W

120λ0

[1− 0.636 ln(k0h)]
h

λ0

<
1

10
(2.10)

λ0 is the free space wavelength at the operating frequency and k0 = 2π
λ0

. The input

admittances YL1 and YL2 in Fig. 2.3 can be found from

YL1,L2 = YA
Y1,2 + jYA tan(βAl1,2)

YA + jY1,2 tan(βAl1,2)
where YA =

1

ZA
(2.11)

The input impedance of the patch antenna at its operating frequency can thus

be calculated according to the following process

1. Use the effective width from (2.5) in (2.2) to calculate ZA in Fig. 2.3

2. Calculate the propagation constant βA from (2.4)

3. Use (2.10) to calculate Y1,2 = G1,2 + jB1,2 in Fig. 2.3

4. Calculate effective line lengths l1,eff = l1 + ∆L, l2,eff = l2 + ∆L using (2.7)

5. Calculate the input admittances YL1 and YL2 of the two halves of the patch

according to (2.11)

6. Calculate the input impedance of the patch antenna as Zin = 1/ (YL1 + YL2)

The cavity model of the microstrip patch antenna is slightly more complex than

the transmission-line model, but it tends to give a more accurate estimate of the

operating frequency. Further, the cavity model directly incorporates insight into the

radiating mechanism of the patch, and thus provides a fairly accurate estimate of its

radiation pattern.
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Fig. 2.4: Electric field distribution of a rectangular microstrip patch antenna

The cavity model is based on the assumption that the region of the dielectric

substrate between the patch and ground plane can be treated as a resonant cavity.

To simplify the analysis, the cavity surfaces bounded by the metal patch and ground

plane are treated as perfectly electric conducting boundaries (with zero tangential

electric fields). Likewise, by considering the current flow around the edges of the

patch from the bottom surface to the top surface, an approximation can be made

to treat the vertical cavity boundaries around the perimeter of the patch as perfect

magnetic conductors (with zero tangential magnetic fields). [1]

Because the height h of the cavity is typically very small with respect to the op-

erating wavelength (h << λ), a reasonable approximation is to treat the electric field

below the patch as perfectly normal to the conductor surfaces. With this assump-

tion, only modes with magnetic fields transverse to z are considered. The fields are

found by solving the homogeneous wave equation for the magnetic vector potential

∇2Az + k2Az = 0 (2.12)
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whose general solution is [6]

Az =[A1 cos(kxx) +B1 sin(kxx)]·

[A2 cos(kyy) +B2 sin(kyy)]·

[A3 cos(kzz) +B3 sin(kzz)]

(2.13)

By relating Az to the electric fields in the cavity and subjecting those fields to the

boundary conditions of the cavity model (zero tangential electric fields at the top

and bottom boundaries, zero tangential magnetic fields on the vertical perimeter

boundaries) this solution becomes [6]

Az = Amnp cos(kxx
′) cos(kyy

′) cos(kzz
′) (2.14)

at a point (x′, y′, z′) inside the cavity, where Amnp is the amplitude coefficient of the

mnp mode and

kx =
mπ

W
, m = 0, 1, 2, . . . (2.15a)

ky =
nπ

L
, n = 0, 1, 2, . . . (2.15b)

kz =
pπ

h
, p = 0, 1, 2, . . . (2.15c)

are the wavenumbers in the x, y, and z directions respectively. m, n, and p are the

mode numbers for the respective axes, and can take any set of integer values except

m = n = p = 0.

The resonant frequency of the cavity modes can be found by substituting (2.15)

into the constraint

k2
x + k2

y + k2
z = k2

r = ω2
rµε (2.16)
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which gives the resonant frequency for the mnp mode as

fr,mnp =
1

2π
√
µε

√(
mπ

W

)2

+
(
nπ

L

)2

+
(
pπ

h

)2

(2.17)

Typically, the dimensions L and W are chosen such that the lowest order mode

is the TMz
010 mode, such that the resonant direction of the patch in Fig. 2.1 is along

the y-axis. When calculating the resonant frequency of the patch cavity using (2.17),

it is best to reincorporate the effects of the fringing fields around the periphery of

the patch that were approximated out during the derivation of the cavity model.

This can be accomplished by substituting an effective length Leff and width Weff into

(2.17) using the microstrip length & width extension formulas in (2.7) & (2.5). This

will give an improved estimation of the operating frequency of the patch.

The cavity model also gives us mathematical tools to predict the radiation pattern

of the rectangular patch with reasonable accuracy. By applying Huygens’ equivalence

principle to the fields of the cavity model, the fields of the cavity and the physical

structure of the patch can be replaced by an equivalent magnetic surface current Ms

where

Ms = −2n̂× Ea (2.18)

In this equivalence expression, Ea is the electric field vector at the vertical (PMC)

boundary surrounding the patch, and is multiplied by 2 to account for the equivalent

current image in the ground plane below the patch. Along the resonant length L

of the patch, the electric field is equal amplitude and opposite on the +y and −y

sides as shown in Fig. 2.4, so the equivalent magnetic currents along these edges are

zero and these slots are considered nonradiating. Along the nonresonant width W

of the patch, the electric field is uniform and nonzero, and by applying (2.18) to

12



the two walls with opposite normal vectors n̂ one finds that the equivalent magnetic

currents Ms,1 and Ms,2 are equal and in phase. Thus, the patch can be simplified to a

two-element array of magnetic currents which radiate with a maximum at broadside

(+z). The far-field electric field radiated by each current can be expressed as [1]

Er ≈ Eφ ≈ 0 (2.19a)

Eθ ≈ j
k0hWE0e

−jk0r

2πr

[
cos θ

sinZ

Z

]
(2.19b)

where

Z =
k0W

2
sin θ cosφ (2.19c)

for k0h << 1 By applying array theory, an array factor AF can be calculated for the

two slots separated by a distance Leff in the y direction as

AFy = 2 cos

(
k0Leff

2
sin θ sinφ

)
(2.20)

which can be applied to (2.19b) to find the total radiated electric field: [1]

Eθ ≈ j
k0hWE0e

−jk0r

πr

cos θ
sin

(
k0W

2
sin θ cosφ

)
k0W

2
sin θ cosφ

× cos

(
k0Leff

2
sin θ sinφ

)
(2.21)

2.1.2 Circular Microstrip Patch Antennas

A circular microstrip patch antenna has a fundamentally similar geometry to

that shown in Fig. 2.1, with the exception that the boundary of the patch on the top

surface of the dielectric substrate is defined—instead of by a rectangle of dimensions

L and W—by a circle of radius r centered about the z-axis (i.e. a metal circle in

the x− y plane centered at (x, y, z) = (0, 0, h)). The geometry of the circular patch
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is only readily amenable to the application of the cavity model described above, as

the transmission-line model does not adapt well to this geometry.

As with the rectangular patch, the dielectric between the patch and ground plane

is treated as a cavity—a cylindrical cavity—with circular PEC top and bottom sur-

faces and a PMC wall bounding the cylindrical wall. The analysis proceeds as in

section 2.1.1.3. The fields are assumed to be TMz, such that the electric field in the

cavity is normal to the top and bottom PEC walls. (2.12) is solved for the magnetic

vector potential Az(ρ, φ, z) in a cylindrical coordinate system. Az is related to the

fields in the cavity by [6]

Eρ = −j 1

ωµε

∂2

∂ρ∂z
Az Hρ =

1

µ

1

ρ

∂

∂φ
Az (2.22a)

Eφ = −j 1

ωµε

1

ρ

∂2

∂φ∂z
Az Hφ = − 1

µ

∂

∂ρ
Az (2.22b)

Ez = −j 1

ωµε

(
∂2

∂z2
+ k2

)
Az Hz = 0 (2.22c)

By applying the boundary conditions of the PEC walls (zero tangential electric field

Et = Eρ at the top and bottom surfaces z′ = h and z′ = 0) and PMC walls (zero

tangential magnetic field Ht = Hφ at the cylindrical outer wall ρ′ = r) to (2.22) and

applying (2.22) to the general solution of (2.12), the solution reduces to [6]

Az = BmnpJm(kρρ
′)[A2 cos(mφ′) +B2 sin(mφ′)] cos(kzz

′) (2.23)

where

k2
ρ + k2

z = ω2
rµε (2.24)

and (ρ′, φ′, z′) is a point within the cavity. Jm(x) is an mth order Bessel function of

the first kind, and
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kρ =
χ′mn
r

m = 0, 1, 2, . . . n = 0, 1, 2, . . . (2.25)

kz =
pπ

h
p = 0, 1, 2, . . . (2.26)

where χ′mn represents the mnth zero of the Bessel function. The lowest zero of Jm(x)

is χ′11 ≈ 1.8412, so the operating frequency of the lowest mode of the circular patch

can be calculated as

fr,110 =
1

2π
√
µε

(
χ′mn
r

)
=

1.8412

2πr
√
µε

(2.27)

A similar treatment to that in the previous section can be used to transform the

fields of the cavity model of the circular patch into a magnetic surface current Ms

tangential to the cylindrical wall of the cavity and running parallel to φ, which can

be used to calculate the far-field electric fields.

2.2 Reconfigurable Patch Antennas

As mentioned in section 2.1, microstrip patch antennas are readily amenable to

the addition of mechanisms which enable dynamic reconfiguration of their operating

frequency, polarization, and/or radiation pattern. Numerous different mechanisms

have been explored to enable this reconfiguration. The bulk of these approaches take

one of two approaches to reconfiguration:

1. Switching mechanisms, which effect change in the electrically active geometry

of the antenna structure

2. Loading mechanisms, which apply a variable reactive load to the fields in the

antenna structure
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The reconfiguration mechanisms explored in this work can be broadly classified into

two types: electronic mechanisms and fluidic mechanisms.

2.2.1 Electronic Reconfiguration Mechanisms

A wide variety of electronic mechanisms have been explored in literature to

achieve reconfigurability in patch antenna designs. Several of the most common elec-

tronic reconfiguration mechanisms are PIN diodes [9–13], varactor diodes [14–17], and

RF MEMS (micro-electromechanical systems) [18–21]. Of these three approaches,

PIN diodes fall into the class of switching mechanisms whereas varactor diodes are

most frequently used as a loading mechanism. RF MEMS can be used in either

strategy, although they are most commonly used as a switching mechanism.

Although PIN diode-based reconfiguration is the only approach explored in this

work, a brief overview of varactor & RF MEMS follows. Varactor diodes (also known

as varicaps) are electronic devices that operate as voltage-controlled capacitors. The

construction of a varactor is fundamentally the same as that of a conventional diode.

They consist of a semiconductor p-n junction wherein two types of semiconductor

with doping such that one region’s majority charge carrier is positive (p-type) and

the other region’s majority charge carrier is negative (n-type) are joined together. In

contrast to conventional diodes, however, varactors are almost universally operated

in reverse-bias conditions, where the cathode (n-type semiconductor) is at a positive

voltage potential relative to the anode (p-type semiconductor). In these conditions,

the applied electric field forces the charge carriers in the p- and n-regions to separate

from one another, generating a depletion region at the p-n boundary with relatively

few charge carriers (and thus relatively good insulating properties). By varying the

applied reverse voltage the width of the depletion region can be varied, effectively

forming a parallel-plate capacitor with a voltage-variable plate distance. In opera-
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tion, the capacitance of the varactor is inversely proportional to the applied DC bias

voltage. In reconfigurable antenna systems, this variable capacitance is typically

used as a variable reactive load on the antenna structure, or as a variable electrical

length element in such a structure.

RF MEMS are miniature or microscopic systems, typically fabricated using pla-

nar semiconductor manufacturing techniques and often using similar materials, which

utilize electrostatic forces (with electrostatic attraction being most common) to ac-

tuate micromachined structures to accomplish ohmic or capacitive switching, or to

vary the distance between two conductive microstructures to vary the capacitance

between them. Compared to true solid-state approaches such as PIN or varactor

diodes, RF MEMS require significantly higher voltages to actuate—up to several

hundred volts—although at extremely low current.

PIN diodes are constructed in a similar manner to conventional or varactor diodes,

but with one key difference. During the doping process in which the semiconductor

is formed into regions of p-type and n-type, a layer of intrinsic, or undoped, semicon-

ductor is left separating the p- and n-regions. This intrinsic region has relatively few

unbound charge carriers, so it presents a high resistance to the flow of current in an

unbiased state. The relatively wide intrinsic region makes the resulting diode a poor

rectifier at low frequencies, but at RF and microwave frequencies, it behaves as a

current-variable resistor. The RF resistance of a PIN diode is inversely proportional

to the DC bias current applied, and can vary from 10kΩ at zero bias current down

to as little as 0.1Ω with bias currents on the order of 1–10mA. Thus, PIN diodes

see the most frequent use—including in this work—as a voltage/current controlled

switch.
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2.2.2 Fluidic Reconfiguration Mechanisms

While electronic antenna reconfiguration techniques have seen quite a bit of re-

search, a relatively new class of fluidic antenna reconfiguration techniques have re-

ceived a good bit of attention in recent years. Fluidic systems can be used in a variety

of ways to reconfigure the operating behavior of an antenna, ranging from loading

mechanisms [22–25] that use fluidic systems to vary a reactive or dielectric load on a

reconfigurable antenna to geometry-manipulation mechanisms [26–31], which utilize

fluidic systems to manipulate the physical geometry of the antenna.

The fluid systems explored in literature for reconfiguring the operating behavior

of antenna systems can be broadly classified into two groups by the type of fluid

utilized. They are

1. Conductive fluidic systems, which use conductive fluids (frequently liquid met-

als)

2. Dielectric fluidic systems, which use non-conducting fluids as the reconfigura-

tion medium

In this work, both types of fluidic reconfiguration mechanism are explored. The

following presents an overview of these fluid mechanisms.

2.2.2.1 Liquid Metal

Liquid metals are a collection of materials which exhibit the properties of metals—

namely high electrical & thermal conductivity—and remain liquid at or below room

temperature (20–25◦C). Only one elemental metal falls into this category: Mercury.

Several metal alloys, however, have melting points at or below room temperature.

Principally, these are alloys containing either Gallium or Sodium. Table 2.1 shows a

summary of the compositions and melting points of these liquid metals.
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Table 2.1: Summary of liquid metal properties

Name
Chemical

Composition
(wt %)

Melting
Point

Mercury Mercury: 100% -38.8◦C

NaK
Sodium: 23%

Potassium: 77%
-12.6◦C

eGaIn
Gallium: 75%
Indium: 25%

15.5◦C

Galinstan
Gallium: 68%
Indium: 22%

Tin: 10%
11◦C

Of these liquid metals, eGaIn (eutectic Gallium-Indium alloy) and Galinstan

(Gallium-Indium-Tin alloy) are relatively inert. Mercury possesses the lowest melt-

ing point of the liquid metals, but it is highly toxic and exhibits a relatively high

vapor pressure, meaning it evaporates readily and poses an inhalation toxicity risk

to personnel. NaK (Sodium-Potassium alloy) also has a relatively low melting point,

but it is also highly reactive. NaK reacts violently with water to form sodium and

potassium hydroxides, hydrogen gas, and copious amounts of heat. It also reacts with

air to form potassium oxides and superoxides, including the potent oxidizer KO2,

which can form a shock-sensitive explosive mixture with many organic compounds.

Thus, both Mercury and NaK pose significant risks which greatly outweigh their

potential benefits in antenna reconfiguration applications. Of these liquid metals,

only eGaIn was explored in this work.

The basic principle of liquid metal reconfiguration mechanisms is to change the

conductor geometry of the antenna structure to achieve reconfiguration of the an-

tenna’s operating behavior. Frequently, this geometry change is accomplished via
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pressure-driven displacement of the liquid metal [27–30], although the liquid metal

can also be used as a highly flexible conductor in a flexible support, which can be

reshaped mechanically using some external influence [31]. In this work, a pressure-

driven liquid metal fluid network is explored.

2.2.2.2 Dielectric Fluids

Dielectric fluids are substances that are fundamentally non-conductive. A wide

variety of dielectric fluids have been explored in antenna reconfiguration applica-

tions, [22, 24–27, 32, 33] with techniques ranging from variable dielectric loading for

frequency reconfiguration to variable dielectric coupling for polarization reconfigura-

tion. Table 2.2 gives dielectric properties for several such common fluids.

Table 2.2: Dielectric properties of selected dielectric fluids

Material
Relative

Permittivity
εr

Loss Tangent
tan δ

at Frequency Reference

Silicone Oil 2.74 0.1 3 GHz [34]
Fluorinert FC-70 1.98 [35] 0.0013 [36] 213 GHz [36] [35]

Hydrocal 2400 2.2 0.0008 10 GHz [34]
Deionized Water 80 0.12 2.45 GHz [37]

Methanol 31.7 0.289 1 GHz [38]
Acetone 21 0.054 2.45 GHz [37]

All dielectric materials can be fully characterized by their complex absolute per-

mittivity

ε∗ = ε′ − jε′′ (2.28)

where ε′ is the real component and ε′′ is the imaginary component. For most dielectric

materials, ε∗ varies as a function of frequency. Often, the dielectric properties of a
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material are specified by their relative permittivity εr and loss tangent tan δ (as in

Table 2.2). These terms are related to the complex permittivity ε∗ by

εr =
|ε∗|
ε0

and tan δ =
ε′′

ε′
(2.29)

For antenna reconfiguration applications it is key that a dielectric fluid have

as low a tan δ as practicable. For both the variable loading and variable coupling

reconfiguration techniques, if the dielectric fluid has a high loss tangent the radiation

efficiency of the antenna will be adversely impacted as electromagnetic energy in the

antenna structure will be absorbed by the dielectric fluid and converted to waste

heat instead of being radiated into free space.

Beyond pure, single-component dielectric fluids, another interesting class of di-

electric fluids are electromagnetically-functionalized colloidal dispersions (EFCDs).

EFCDs are multi-component dielectric fluids comprised of a continuous-phase dielec-

tric fluid with a dispersed colloidal dielectric material, typically in nanoparticle form.

A prime example of an EFCD is a dispersion of colloidal barium strontium titanate

(BSTO) in a hydrotreated napthenic mineral oil such as Hydrocal 2400. [23] The key

feature of an EFCD that makes it an attractive for antenna reconfiguration applica-

tions is it provides a mechanism to smoothly vary εr for the bulk EFCD over a wide

range of values. By varying the volume fraction of colloidal BSTO (which exhibits a

very large relative permittivity: εr ≈ 200—1000) dispersed in the continuous-phase

liquid, the overall εr of the EFCD can be varied from that of the continuous-phase

liquid to a relatively high value (one reported range is εr = 2.1—8.3 [23]). Thus, an

EFCD composed of Fluorinert FC-70 fluorocarbon oil and colloidal BSTO nanopar-

ticles is considered in this work as the basis of a dielectric fluid reconfiguration

mechanism.
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2.2.2.3 Coaxial Stub Microfluidic Impedance Transformers

(COSMIX)

The coaxial stub microfluidic impedance transformer (COSMIX) was first pre-

sented in [23] as a readily adaptable impedance tuning mechanism to exploit a tun-

able EFCD to act as a potentially low-loss, widely variable reactive load for tunable

RF structures. The geometry of the COSMIX is shown in Fig. 2.5a. The COS-

MIX geometry, as the name implies, is derived from a terminated length of coaxial

transmission line. The center conductor of the line is separated from the bottom ter-

mination of the coaxial stub by a gap of width g. This geometry makes the COSMIX

behave electrically as a finite length transmission line terminated by a capacitor, as

shown in Fig. 2.5b. The theory of operation of the COSMIX centers around the flow

of dielectric fluid in hollow cylindrical region between the inner and outer conductors.

By controlling the relative permittivity of an EFCD pumped through the dielectric

space, the COSMIX can be made to behave akin to a variable-length transmission

line terminated by a variable capacitor. With the proper COSMIX length & width

and a sufficiently wide range of permittivity in the EFCD, the impedance as seen at

the coaxial input port can be varied to any reactive load.

In the fluidic reconfigurable antenna design developed in this work, COSMIX ele-

ments are explored as a reactive loading mechanism to achieve impedance bandwidth

& operating frequency tuning. To achieve system-level control of the COSMIX ele-

ments, a preliminary system to vary the permittivity of an EFCD pumped through

the COSMIX elements is proposed.

2.3 Phased Antenna Array Control

Phased antenna arrays are a popular and widely applicable method for con-

structing a high gain, electronically-steerable antenna system. The basic principle
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(a) Physical geometry & design variables (b) Transmission line model

Fig. 2.5: Geometry & behavior of the COSMIX, Reprinted with permission
from [23], c© 2010 IEEE

underlying the operation of a (linear) phased array is as follows: in operation, the

relative phase of the excitation of each antenna element in the array is controlled.

In the far-field region (commonly defined as the region 2D2/λ away from the array,

where D is the largest dimension of the array and λ is the wavelength of the oper-

ating frequency), the fields emitted by each antenna element constructively interfere

at the beam steering angle θ0, producing a maximum lobe in the array’s radiation

pattern at θ0. By changing the relative phase of each element’s excitation, the angle

at which this constructive interference occurs can be steered, effectively steering the

maximum lobe of the array’s radiation pattern.

When considering a real antenna element with a non-uniform radiation pattern,

the overall radiation pattern of the array can be expressed as [1]

Etotal(θ, φ) = Eelement(θ, φ)× AF(θ, φ) (2.30)

where Etotal(θ, φ) is the far-field pattern of the array, Eelement(θ, φ) is the far-field
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pattern of each element in the array, and AF(θ, φ) is the array factor. For a uniform

linear array with equal amplitude excitations, the array factor can be expressed as

AF =
∑

ej(n−1)ψ where ψ = kd cos θ + β (2.31)

where k = 2π/λ, d is the spacing between elements, θ is the scan angle, and β is the

progressive phase shift of the excitation between adjacent elements in the array.

(2.31) can be further reduced and normalized to [1]

AFn =
1

N

sin
(
N
2
ψ
)

sin
(

1
2
ψ
) (2.32)

whereN is the number of elements in the array. The concept of pattern multiplication

as delineated in (2.30) can be used to extend the preceding discussion of 1D linear

arrays to apply to a 2D planar antenna array, as well. For a rectangular planar

array oriented along the x-y-plane, the array factor can be expressed as the product

of two linear array factors in the x- and y-axes, respectively. Thus, for the planar

rectangular array we have

AFn(θ, φ) =
1

M

sin
(
M
2
ψx
)

sin
(

1
2
ψx
) × 1

N

sin
(
N
2
ψy
)

sin
(

1
2
ψy
) (2.33)

where

ψx = kdx sin θ cosφ+ βx and ψy = kdy sin θ sinφ+ βy (2.34)

and dx is the element spacing along the x-axis, dy is the spacing along the y-axis

In order to steer the beam to a desired (θ0, φ0), (2.34) can be solved for βx and

βy, the progressive phase shifts along the x- and y-axes to find the beam steering
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Fig. 2.6: Uniform linear phased antenna array with corporate feed network from
common RF source

equations:

βx = −kdx sin θ0 cosφ0 (2.35a)

βy = −kdy sin θ0 sinφ0 (2.35b)

(2.35) can also be used to find the phase shifts for a planar array with non-

rectangular element spacing, too. By referencing every element in the array to a

common origin point, each element’s (x, y) coordinates can be substituted into dx

and dy to find the phase shifts along the x- and y-axes. Each element’s individual
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Fig. 2.7: Uniform linear phased antenna array with multiple phase-locked transmit-
ters

excitation phase can then be computed as

φe = −kx′ sin θ0 cosφ0 − ky′ sin θ0 sinφ0 (2.36)

where (x′, y′) are the locations of the element centers relative to the origin of the

array. In practice—including in this work—it is customary to normalize the phase

shifts computed from (2.36) to either the most positive or most negative phase, and

then compute the phases of the other elements relative to this most advanced or

most retarded phase element. Furthermore, when the excitation signal being steered

is narrowband, the computed phase shifts can be further computed as modulo 2π,

as a narrowband signal roughly approximates a pure sinusoid, which is invariant in

a full 2π phase shift.

Fig. 2.6 illustrates an example of a corporate-fed uniform linear array. The cor-
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porate feed network consists of a single RF source, the output of which is fed through

an equiphase, equal-power splitting network. The outputs of this splitting network

then pass through a set of variable phase elements before being fed into the antenna

elements. This configuration—also known as a passive electronically-scanned array

(PESA)—is the feed configuration explored in this work.

An alternate approach to feeding a phased array is the active electronically-

scanned array (AESA) shown in Fig. 2.7. In this configuration, each array element

has its own RF source locked to a common reference local oscillator, typically with

a phase-locked loop (PLL) circuit. In AESA topologies, the phase shifting element

can be placed either between the RF source and antenna as shown in Fig. 2.7 or it

can be located between the RF source and the reference LO.

2.4 Direction of Arrival Estimation

Fundamentally, direction of arrival (DoA) estimation is the inverse problem of

phased array control. Real-time DoA estimation with an antenna array requires a

set of phase-sensitive receivers for every antenna element in the array, as shown in

Fig. 2.8. By measuring the relative phase of the signal received at each antenna from

an emitter in the far-field, the direction from which the signal arrived at the array

can be computed.

The näıve approach to the DoA problem is to attempt to directly invert cal-

culation process used to beamsteer the phased array. Recently, however, a variety

of estimation algorithms have been developed & explored to not only speed up the

DoA estimation process by reducing computational complexity but also to increase

the spatial resolution beyond that achievable by conventional means. Of the variety

of DoA estimation algorithms explored in literature, the Multiple Signal Classifica-

tion (MUSIC) algorithm is one of the most popular and is the method explored in
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Fig. 2.8: Direction of arrival estimation using multiple phase-locked receivers

this work.

2.4.1 MUSIC Algorithm

MUSIC belongs to the family of DoA estimation algorithms known as subspace

methods. MUSIC is often referred to as a type of superresolution DoA estimation

algorithm, as it allows a much finer resolution of closely spaced emitters than con-

ventional inverse-beamforming-type methods. The MUSIC algorithm proceeds as

follows:

Given an array of M elements with M complex received signal weights (vectors

of the form AejB) and a set of D signals impinging on the array from D different

directions, we can define an MxM array correlation matrix Rxx where each element

Rij is the product of the received signal weights xi of element i and xj of element j
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such that [39]

Rxx = E
[
x̄x̄H

]
(2.37a)

= E
[(
Ās̄+ n̄

) (
s̄HĀH + n̄H

)]
(2.37b)

= ĀE
[
s̄s̄H

]
ĀH + E

[
n̄n̄H

]
(2.37c)

= ĀRssĀ
H +Rnn (2.37d)

where Rss is the DxD source correlation matrix among the D signal sources

and Rnn = σ2I is the MxM noise correlation matrix with random variance σ.

By assuming that the noise in Rnn is uncorrelated with the signals in Rss, we can

assume that Rxx is Hermitian with M eigenvalues (λ1, λ2, . . . , λM) and M associated

eigenvectors Ē = [ē1ē2 . . . ēM ]. Sorting the eigenvalues in descending order enables

the eigenvector matrix Ē to be partitioned into a D-vector signal subspace and a

M −D-vector noise subspace, or Ē =
[
ĒN ĒS

]
.

Finally, the eigenvectors in ĒN are assumed to be orthogonal to the steering vec-

tors of the array elements aM(θ, φ) at the angle of arrival (θ0, φ0). Based on this

assumption, the Euclidean distance between the noise subspace eigenvectors and the

array steering vectors from the received signal phases can be assumed to be roughly

zero at the angle of arrival. This distance is calculated: d2 = ā(θ′, φ′)HĒN Ē
H
N ā(θ′, φ′)

Because this distance will be minimized when the search angles (θ′, φ′) coincide with

the angle of arrival (θ0, φ0), this expression is placed in the denominator of a pseu-

dospectrum function whose peaks then correspond to the directions of arrival for the

D signals:

PMUSIC =
1

ā(θ′, φ′)HĒN ĒH
N ā(θ′, φ′)

(2.38)
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Thus, by finding the maximum of this pseudospectrum function in the search space,

the DoA of an incident signal can be estimated. [40]

2.5 Thermoelectric Cooling

Thermoelectric cooling is a solid-state process in which electrical energy is used

to directly move heat energy from one location to another. Thermoelectic effects

occur when two dissimilar conductor or semiconductor materials are joined, and

arise primarily from the difference in the band gap energy of the two materials.

Thermoelectric effects fall into three categories of separately-discovered effects:

• Seebeck effect : The generation of an electrical potential and/or current from

an imposed heat flux on a thermoelectric junction

• Peltier effect : The generation of a heat flux across a thermoelectric junction

from an imposed electrical current

• Thomson effect : The generation of a heat flux across a single current-carrying

conductor as a result of a temperature difference across the conductor

The Peltier and Seebeck effects are essentially the opposite effect of one another, and

the Thomson effect is a continuous version of the Peltier effect that arises as a result

of the temperature dependence of the Seebeck coefficient of many materials. It is the

Peltier effect that is of particular interest in this work, as the Peltier effect allows

the use of an electric current to directly generate a heat flux.

The result of the Peltier and Seebeck effects can be expressed as a relationship

between the voltage, current, heat flux, and temperature difference across a thermo-
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Fig. 2.9: Construction of a peltier thermoelectric cooling device, Reprinted with
permission from [41], c© 2009 CUI, Inc.

electric junction, shown in (2.39).

V
Q̇

 =

 R SAB

ΠAB −κ


 Iel

∆T

 (2.39)

In this expression, the total voltage is the sum of the applied voltage Vel and

thermally-induced voltage Vth, V = Vel + Vth and likewise the total current I =

Iel + Ith. R is the electrical resistance of the junction, SAB = SA − SB is the dif-

ference in the Seebeck coefficient between materials A and B in the junction, and

ΠAB = ΠA−ΠB is the difference between the Peltier coefficients of the two materials.

Q̇ is the heat flux through the junction, κ is the thermal conductance of the junction,

and ∆T is the temperature difference across the junction. Note that this expression

is valid only in the linear regime of the junction, as R, SAB, and ΠAB all vary with
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respect to ∆T . The terms in (2.39) are defined as follows:

SAB = lim
∆T→0

− Q̇

∆T

∣∣∣∣∣
I=0

(2.40)

ΠAB =
Q̇

Iel

∣∣∣∣∣
∆T=0

(2.41)

κ = lim
∆T→0

− Q̇

∆T

∣∣∣∣∣
I=0

(2.42)

The thermally- and electrically-induced voltages and currents are further defined as:

Vth = SAB∆T |I=0 (2.43)

Vel = IelR|∆T=0 (2.44)

Ith =
Vth
R

=
SAB∆T

R
(2.45)

Iel =
Vel
R

(2.46)

The key insight from (2.39) is that Q̇ = ΠABIel − κ∆T , so at ∆T = 0 the

heat flux through a Peltier junction is directly proportional to the electric current

flowing through it (ignoring second order effects such as the ∆T dependence of ΠAB).

Further, the sign of Q̇ can be flipped by flipping the sign of Iel, so the direction of the

applied electric current determines the direction of heat flow through the junction.

Thus, a Peltier junction can be used as a reversible-direction, relatively-linear heat

pump. Also of note from this expression is that the total pumped heat is inversely

proportional to ∆T , due to Fourier’s law of heat conduction: Q̇ = −κ∆T . Thus, as

the temperature difference across the Peltier junction increases, the rate at which it

pumps heat from the cold side to the hot side will decrease.

Fig. 2.9 shows a schematic of the construction of a commercial Peltier thermo-

electric cooler similar to that used in this work. The module consists of a string
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Fig. 2.10: Theory of operation of a Peltier TEC device, Reprinted with permission
from [41], c© 2009 CUI, Inc.

of Bismuth Telluride semiconductor pellets, alternately doped as n-type or p-type.

The top and bottom faces of adjacent pellets are joined together by metal conductor

tabs, such that the circuit through the module is a series connection of metal→n-

type→metal→p-type. The pellets are arranged such that they are thermally in

parallel, and bonded between two ceramic plates that provide high electrical and low

thermal resistance.

Fig. 2.10 shows a graphical representation of the theory of operation of a Peltier

thermoelectric cooling device. When the polarity of the DC power source is reversed

in this figure, the flow of heat will reverse as well.

2.6 Proportional-Integral-Derivative Control

Proportional-Integral-Derivative—or PID—control is one of the oldest and most

common control algorithms in use today. PID process control theory emerged out of

mechanical governor design in the 1890s, and was first developed into a full theoretical

model by Nicolas Minorsky in 1922 [42]. The theory was based on the observation

33



Fig. 2.11: Canonical interacting PID controller

of the helmsman of naval vessels, who based their steering inputs not only on the

currently observed course error, but also on the historical (previous) course error and

the current rate at which the error was changing (increasing or decreasing). This

is the fundamental process by which all PID controllers operate, and is illustrated

graphically by Fig. 2.11.

The key advantage of PID control is that its implementation does not require

any mathematical model of the process to be controlled, which is a distinct ad-

vantage when used to control a complex or multi-part physical process. The key

disadvantages of PID control are that it does not guarantee optimal control of a

given system, requires a tuning procedure to derive the tuning parameters for the

P, I, & D terms, and is fundamentally a linear control scheme so it can and does

have difficulty controlling some non-linear processes. Despite these disadvantages,

the relative simplicity of implementing PID control and the long history of study

PID theory has undergone make it a robust and quite common choice for a control

algorithm. In fact, it is estimated that roughly 95% of control loops implemented in
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the field of process control today are of the PID-type. [43] For this reason, PID con-

trol was chosen in the work as the closed-loop control algorithm for the implemented

thermal control system.

The canonical PID controller functions as follows: First, the physical process (or

plant) to be controlled is measured with some transducer instrument (a level gauge,

temperature sensor, speed/position sensor, etc.), forming a process value measure-

ment input, u(t), to the controller. This value is subtracted from a setpoint value

r(t), which is the desired value of the measurement. This difference forms an error

signal e(t), which encapsulates the magnitude and direction of the measured process

value’s deviation from the setpoint. This error signal forms the input to the PID

controller proper.

The output of the PID controller in Fig. 2.11 is expressed as

u(t) = Kp

(
e(t) +

1

Ti

∫ t

0
e(τ)dτ + Td

d

dt
e(t)

)
(2.47)

In (2.47), Kp is the proportional gain, or controller gain, which affects the controller’s

response to error at time t. Ti is the integration time constant, which affects the

controller’s response to past error integrated from roughly time t−Ti to time t. Td is

the derivative time constant, which gives the controller the ability to make a linear

prediction of the error at time t+Td. These terms are the tuning parameters for the

controller, which allow the designer to tune the controller for a particular process to

achieve a desired response time, overshoot, and settling time.

In practice, almost no PID control implementation takes the form of (2.47) di-

rectly. Nearly all modern PID controllers, including in this work, are implemented

using a computerized system. This necessitates that the linear form of the PID con-

troller be translated into a discrete form which can operate on a sampled version
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of the error signal. The discrete form of the interacting PID control algorithm at

timestep n is shown in (2.48).

u(n) = Kpe(n) +Ki

n∑
k=0

e(k) +Kd (y(n)− y(n− 1)) (2.48)

This expression is of the discrete, non-interacting (or parallel) form, where

Ki =
KpT

Ti
Kd =

KpTd
T

This expression incorporates the following discrete approximations:

∫ t

0
e(τ)dτ ≈ T

n∑
k=0

e(k) (2.49)

d

dt
e(t) ≈ 1

T
(e(n)− e(n− 1))

≈ 1

T
(y(n)− y(n− 1))

(2.50)

In (2.48)–(2.50), the algorithm is run at a sampling interval T , such that the current

time can be expressed as t = nT for some integer n > 0. Note also that the

derivative of the error signal is approximated as the discrete difference of the process

value, y(n) − y(n − 1). This is done so that a large change in the process setpoint

r(n) between times (n− 1) and (n) does not result in an erroneously large derivative

term (commonly known as bumpless setpoint control). [44]

2.6.1 Integral Anti-Windup

Another key consideration in the implementation of a PID controller is that the

control algorithms discussed above rely on assumptions of some degree of linearity

in the process between the control output u(t) and the error signal input e(t). In

a practical implementation, however, all physical processes are nonlinear to some

36



degree. In particular, in any practical implementation the control signal u(t) will be

used to control some physical mechanism—a valve position, the flow of an electrical

current, etc. All such physical mechanisms have some minimum and maximum limits:

a valve cannot be opened or closed past its fully open or closed positions; the current

is limited by the maximum current handling capability of the semiconductor devices

and/or wiring used to control & transmit it.

When the output of a PID controller tries to drive its associated physical mech-

anism past its limits, the controller is said to have saturated. During saturation,

the plant/process is no longer under closed-loop control, as the physical output has

been decoupled from the controller’s u(t) output by the physical limiting mechanism.

Controller saturation occurs primarily in two instances: during a large external dis-

turbance to the physical process itself, and during a large change in the process

setpoint. In the first case, if the disturbance large and continuous enough to hold

the controller in saturation, then the process is said to have departed its controllable

range. If the saturation condition is temporary, however, it can lead to a phenomenon

known as integral windup. In the controller described by (2.48), a saturated output

will result in the integral term accumulating a large value (either positive or neg-

ative) as it sums the large e(n) during the saturation period. Once the process

value approaches the setpoint and |e(n)| begins to drop, the “wound-up” error sum

in the integral term will drive the process value far past the setpoint until e(n) is

opposite-signed long enough to reduce the sum back down to the true closed-loop

value.

Integral windup can thus lead to a variety of control problems, ranging from

severe overshoot to complete process instability and oscillation. There have been

explored a variety of approaches to combat the problem of integral windup, ranging

from back-calculation to conditional integration [45], and combinations thereof. [46]
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Fig. 2.12: Interacting PID controller with limited control output & conditional inte-
gration

In this work, conditional integration was chosen for its ease of implementation and

its effectiveness in the implemented control system.

Conditional integration is implemented as shown in Fig. 2.12. In essence, the

controller monitors both the calculated control output u(t) and the actual, limited

control ul(t) being applied to the process, calculating a conditional signal c(t). When

u(t) = ul(t), c(t) = 0 and the controller operates as normal. When the controller

tries to drive the control mechanism beyond its physical limits such that u(t) 6= ul(t)

the integrator is turned off (i.e. supplied with e(t) = 0). In this manner, the PID

controller operates as a normal linear system during closed-loop control operation,

but when a setpoint change or process disturbance drives the system into open-loop

operation the erroneously large error signal is not integrated resulting in better, more

predictable performance once the system re-enters closed-loop operation.
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2.6.2 PID Tuning

As described above, the PID controller has a set of tunable parameters, Kp, Ti,

and Td, which control the relative effect of the proportional, integral, and derivative

action respectively. Because the PID controller does not implement a mathematical

model of the process under control, some method is required to determine the optimal

or desired values for these tuning parameters when a PID controller is connected to

a given process. There has been considerable study into various methods for deriving

the tuning parameters for a given PID control loop. These methods can be broadly

classified into two types: [47]

• Closed loop methods, which involve operation of the process under automatic

control (i.e. with the PID controller active)

• Open loop methods, where the process is operated under manual control, typ-

ically with the PID controller’s output u(t) disconnected from the process

Most PID tuning methods involve some specification of the desired response of the

system after tuning. For the most popular methods in use today, this is typically the

quarter-amplitude-decay, or QAD response, which is characterized by a very quick

process response to disturbances or setpoint changes (sub-process time constant)

with some overshoot, where the process value exhibits a damped oscillation around

its new value. The term “QAD” comes from the fact that the oscillation amplitude

decays such that the second period’s amplitude is 1/4 of the first.

In general, closed loop methods generally require that the tuning parameters of

the controller are modified such that the process is brought close to instability, then

the oscillatory response of the process value is measured after a disturbance is applied

(either to the physical process or setpoint). In one of the most popular methods, the
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Ziegler-Nichols method,the process is induced into a steady-state oscillation condi-

tion by increasing the controller gain Kp and applying a step change to the setpoint.

When the process is oscillating at steady state, the critical controller gain Kcu and

period of the oscillation Pu are measured and used to compute the tuning parameters

according to [47]

Kp = 0.6Kcu (2.51)

Ti =
1

2
Pu (2.52)

Td =
1

8
Pu (2.53)

The popularity of the Ziegler-Nichols tuning method is likely attributable to

the relative simplicity of the calculations required, but the method has quite a few

drawbacks. The key issue with the Ziegler-Nichols method is that it requires that the

process be made to oscillate. If the process is unstable by nature, such a procedure

brings the process dangerously close to instability that can result in out-of-control

oscillation and physical damage to plant equipment. Furthermore, some processes

are inherently overdamped and cannot be induced to oscillate by controller action

alone, rendering the Ziegler-Nichols method useless.

Open-loop tuning methods, on the other hand, generally center around a mea-

surement of the process’ transient response to a step input at the control mechanism.

These methods are useful for overdamped processes, such as the thermal system in

this work, which cannot be easily induced into oscillation. The Cohen-Coon tuning

method is the tuning method selected for use in this work, as it is designed to produce

a QAD response which results in a quick process response to setpoint changes—the

primary process disturbance in the application studied. Cohen-Coon assumes a first-

order plus deadtime process model. The tuning process for the Cohen-Coon method
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is as follows:

1. Bring process online in manual control mode (PID controller disconnected)

2. Allow process value to settle to a constant steady-state value, record steady-

state PV

3. Apply a step change in the control output

4. Measure and record process value’s response until a new steady-state value is

achieved

5. Calculate process’ dead time, td, time constant τ , and gain gp

6. Calculate Kp, Ti, and Td from the Cohen-Coon tuning rules

The process gain is calculated as the total change in the process value during the

step test divided by the change in the control output, or

gp =
∆y

∆u

The process dead time td is the delay between a change in the control output (process

“input”) and process value (process “output”). It is calculated by extrapolating a

linear curve fit tangent to the maximum slope (maximum rate of change) of the

process value, then finding the time difference between the step change in the control

output and the intersection of this curve fit and the starting steady-state process

value. The time constant τ is the time difference between the end of the dead time

td and the time the process value has changed (1 − e−1)∆y, or 0.632∆y. Fig. 2.13

and 2.14 show the measured step response with the calculated process parameters

annotated.

41



Fig. 2.13: Measured thermal control loop step response with process deadtime td
annotated

Fig. 2.14: Measured thermal control loop step response with time constant τ and
gain gp = ∆y/∆u annotated

42



Once the necessary step response characteristics have been calculated, the tuning

parameters can be calculated according to [47]

Kp =
1

gp

(
3td + 16τ

12td

)
(2.54)

Ti = td

(
2(16τ + 3td)

13τ + 8td

)
(2.55)

Td = td

(
4τ

11τ + 2td

)
(2.56)

2.7 TCP/IP Suite & Client-Server Architecture

In the full multifunctional antenna reconfiguration control system, a computer

network is used to distribute reconfiguration commands and data. One of the most

common networking models in use today is the Internet Protocol suite, which is the

model and protocol set used by the global Internet to communicate data between

individual computers, or hosts. This network model was chosen because of its ubiq-

uity and the ease of software development it offers. The IP suite is often referred

to as the TCP/IP suite, including in this document, as the Transmission Control

Protocol (TCP) and Internet Protocol (IP) are the two most important and widely

used protocols in the suite.

The IP suite consists of two parts: the model that defines the abstraction layers

used in the suite, and the protocols used to implement the layers of abstraction.

2.7.1 TCP/IP Model

The TCP/IP model defines the abstraction layers used in the TCP/IP suite. The

TCP/IP model consists of four layers, in order of decreasing abstraction:

• Application layer

• Transport layer
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• Internet layer

• Link layer

Fig. 2.15 shows a graphical representation of a data flow through this model. The

arrows indicate data flow from one application process to another. The application

layer is the layer at which software applications on individual hosts send and receive

data. In this work, the application layer is where the custom module communication

protocol was implemented. The transport layer is where protocols such as TCP

provide end-to-end data transport services to applications. The Internet layer is

where the Internet Protocol provides host addressing and data transmission services

from one host to another on a computer network. The link layer is where the physical

link communication protocols and modulation schemes are used to transmit data over

a physical medium such as Fast Ethernet over unshielded twisted pair or Wi-Fi over

a 2.4GHz radio channel.

In this work, TCP is used for the transport layer protocol and IP for the Internet

layer protocol. Both the 802.11g Wi-Fi and 100BASE-TX Fast Ethernet standards

are used at the link layer.

2.7.2 Client-Server Model

In the context of computer networking, a client-server network architecture is

one in which a set of programs (clients) communicate with and request service from

a listening server. The client-server architecture is typically implemented with a

request-reply messaging system, in which the server continuously listens for requests

from clients and replies to those clients with the requested data. In practice, indi-

vidual programs can act purely as clients, purely as servers, or—as is the case in this

work—as both client and server.
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Fig. 2.15: TCP/IP layered data flow model

2.7.3 Transmission Control Protocol & Internet Sockets

The Transmission Control Protocol (TCP) is one of the most common transport

layer protocols in use today. TCP provides reliable, ordered, and error-checked

delivery of data between two applications. TCP connections between a client and

server application are identified by a source and destination port number. Each

port number is a 16 bit unsigned integer (0–65,535) reserved on the respective host

by its respective application, and the combination of (source address, source port,

destination address, destination port) serves to uniquely identify a stream socket

which implements TCP to provide data communication between the client (sending)

and server (receiving) applications.

TCP divides data passed from the application layer into segments, which are

data structures consisting of a TCP header and a data payload. Each TCP segment

header contains information about the source and destination ports for the data,

a sequence number used by the receiver to ensure proper data order an acknowl-

edgement number used in ACK (acknowledgement) segments to verify the proper
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reception of transmitted segments. The header also contains additional flag bits used

during connection establishment and teardown, and a 16 bit checksum used to verify

the integrity of the received segment.

TCP is a stateful protocol, meaning that both the client and server transition

through a number of distinct states as a TCP socket is opened, used, and then

closed. The SYN, or synchronize segment type is used to establish the TCP socket,

the ACK segment type to acknowledge receipt of a previous segment, and the FIN

segment type is used to tear down an established socket connection. In short, the

the connection process proceeds as follows:

1. The server application opens a TCP socket on a port in the listening state and

waits for an incoming SYN segment

2. The client reserves an ephemeral port for its source port, transmits a SYN to

the server’s port, and waits for an ACK

3. The server responds with a SYN-ACK, acknowledging the client’s SYN and

reciprocating the connection request, then waits for an ACK

4. The client ACK s the server’s SYN-ACK, and both client and server transition

into the connection established state

Once the connection is established, the the client and server then exchange data at

the application layer:

1. The client application sends application request data segments, and waits for

an ACK

2. The server ACK s the preceding application data
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3. The server application replies with application response data segments, and

waits for an ACK

4. The client ACK s the preceding application data

Once application data exchange is complete, either the client or server can initiate

the teardown process to close the socket. When the client terminates, the sequence

is:

1. The client sends a FIN segment and waits for an ACK and FIN from the

server

2. The server ACK s the client’s FIN, and sends its own FIN, then waits for an

ACK

3. The client sends an ACK, closing its end of the socket

4. The server receives the client’s ACK and the socket is fully closed

These processes are shown graphically in Fig. 2.16.
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Fig. 2.16: TCP connection establishment process (right) and connection teardown
process (left)
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3. TRI-BAND POLARIZATION-

& FREQUENCY-RECONFIGURABLE ANTENNA (TBPFRA)

3.1 Design Goals

The primary goal of the tri-band polarization- & frequency-reconfigurable an-

tenna (TBPFRA) element design is to leverage fluidic reconfiguration techniques to

achieve frequency and polarization agility in multiple bands over a wide frequency

range. Simultaneously, the secondary goal of the antenna design is to maintain pre-

cise control over the physical antenna temperature to enable not only compensation

for antenna element temperature rise due to losses during high RF power operation

but also allow an array of such antenna elements to be used to send information

by manipulating elements’ temperature to create patterns in the array’s thermal-

infrared radiation. The frequency range of interest for this antenna design is L-band

through mid-C-band (1–6 GHz). Thus, the design is targeted to have one operational

mode each in the L-band, S-band, and C-band.

Table 3.1: IEEE standard letter designations for radar frequency bands [48]

Band Designation Nominal Frequency Range
L-band 1–2 GHz
S-band 2–4 GHz
C-band 4–8 GHz
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Fig. 3.1: Concentric circular patches analogous to TBPFRA

3.2 Design

3.2.1 Concept

The design concept for the geometry of the TBPFRA is based on a set of circular

patch antennas, overlaid and sharing a common set of probe feeds. Fig. 3.1 shows

a representative set of three circular patches, polarized along the y-axis, sharing a

common probe feed. The patches are separated by two circular gaps. When both

gaps are unoccupied only the innermost high-band patch is directly coupled to the

probe feed, so the antenna operates at a frequency defined principally by the radius

of the high-band patch (although capacitive coupling to the mid-band patch results

in a lower operating frequency than would be achieved with a completely isolated

high-band patch). When the inner gap is filled with a conductive fluid, the mid-band

patch is directly coupled to the high-band patch and probe feed, so the antenna now
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Fig. 3.2: Switching bands by filling gaps

operates at a lower frequency defined by the mid-band patch radius. Finally, when

both the inner and outer gaps are filled with conductor, the antenna operates in its

low-band mode. This concept is illustrated in Fig. 3.2. The design shown in Fig. 3.1

& 3.2 is capable of frequency reconfiguration, but all three frequency bands share the

same polarization mode (linear polarization along the y-axis). In order to achieve

polarization reconfigurability, this design is modified by adding an orthogonal probe

feed on the x-axis, which will be excited independently of the y-axis feed. In order

to achieve impedance matching at both probe feed locations, the patches are rotated

90◦ about the z-axis and sectioned to create two independent, orthogonal arms. This

is the basis of the TBPFRA, shown in Fig. 3.3. This geometry allows both frequency

and polarization reconfigurability. The dual feeds allow both the x-axis aligned and

y-axis aligned polarization modes to be excited independently.

Fig. 3.4 shows the key design parameters for each of the two arms in the design.

The high-band circular patch is centered on the origin. Three circles of radius al, am,

and ah define the outer extent of the low-band, mid-band, and high-band geometries

respectively. These radii are used to set the operating frequency of the antenna

in each of the three bands during tuning. An outer gap discontinuity of width go
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Fig. 3.3: TBPFRA metallization top view

separates the low-band and mid-band sectors. An inner gap discontinuity of width

gi separates the mid-band sectors from the high-band patch. These gaps electrically

isolate the low- and mid-band sectors from each other and from the high-band patch.

yH defines the distance between the probe feed and the center of the high-band patch,

and is used during tuning to impedance match the patch at its operating frequency.

The distances yM and yL define the offsets between the center of the high-band patch

and the centers of the mid-band arc circle and low-band arc circle, respectively. These

parameters are used during tuning to impedance match the mid-band and low-band

modes. θM,i and θM,o define the angles subtended by the inner and outer edges,

respectively, of the two mid-band sectors. These two angles are referenced to the

center of the circles defined by radii ah + gi and am, respectively. Likewise, θL,i and

θL,o define the angles subtended by the inner and outer edges of the two low-band
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Fig. 3.4: TBPFRA design parameters
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sectors, respectively, on the circles defined by radii am + go and al. The angles

θM,o and θL,o set the arc lengths of the outer edges of the mid- and low-band patch

sectors, which determines the radiation resistance of the radiating slots and thus

the impedance bandwidth of the radiating mode. Wider angles also result in higher

coupling between the two orthogonal arms, so these parameters are adjusted during

tuning to achieve the widest impedance bandwidth possible while maintaining low

coupling to the orthogonal arm.

3.2.2 Reconfiguration Mechanisms

3.2.2.1 Polarization & Band Switching

To actuate the polarization & band switching reconfiguration mechanism, a su-

perstrate is laid over the antenna element containing a set of two fluid channels. The

channels are fed from the backplane through the dielectric substrate of the antenna

through a set of pumping ports. Fig. 3.5 shows the layout of the fluid channels on the

front side of the antenna element. The channels are filled with a continuous-phase

dielectric fluid such as Hydrocal 2400 severely hydrotreated napthenic oil, as well as a

set of plug inclusions of a liquid metal such as eutectic Gallium Indium alloy (eGaIn).

The eGaIn plugs are spaced in the continuous-phase fluid such that they align with

the gaps in the arms. The fluid in the channel makes direct contact with the copper

sectors of the antenna, This system comprises the polarization & band switching net-

work (PBSN). By applying differential pressure to the fluid channel using a peristaltic

pump, the eGaIn plugs can be displaced in the PBSN and reconfigure the polariza-

tion state and operating frequency band of the antenna. The control mechanisms for

each channel of the PBSN are illustrated in Fig. 3.6. Note that the reservoir & pump

segment on the antenna element backplane has significantly more volume than the

fluid channel in the superstrate. This allows two separate sets of eGaIn plugs to be
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Fig. 3.5: TBPFRA polarization & band switching network fluid channel layout

handled: one set to connect one arm individually, and one set to connect both arms

simultaneously. A set of conductive fluid sensor probes in the reservoir segment are

used to provide positional feedback from the eGaIn plugs to the controller operating

the peristaltic pump. With this PBSN configuration, and a phase switching network

(capable of feeding each port individually, or feeding both ports with a 90◦ phase

offset) connected to the probe feeds, the antenna element can be switched through 9

different operating modes, as shown in Fig. 3.7. While additional configurations of

the eGaIn plugs are possible, they are not considered in the analysis of this design as

they produce identical operating behavior to the modes already depicted in Fig. 3.7.
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Fig. 3.6: PBSN control & sensing schematic (each fluid channel, 2 total)

3.2.2.2 Impedance Bandwidth Tuning

To achieve tuning of the impedance bandwidth within each operating band, a set

of probe-fed COSMIX are connected to the TBPFRA. One COSMIX is attached to

each patch sector, at a point equidistant from the inner and outer edge along either

the x- or y-axis, allowing frequency tuning within each operating frequency band.

The configuration of the COSMIX elements on the TBFPRA is shown in Fig. 3.8 &

3.9. The COSMIX enable operating frequency reconfiguration by applying a variable

reactive load to the antenna element. By varying the relative dielectric constant, εr,

of the fluid in the COSMIX, the reactance presented to the antenna element is varied.

The dielectric constant of the EFCD in the COSMIX can be varied by varying the

ratio of EFCD flow from two reservoirs. By filling one reservoir with a low dielectric

constant fluid (i.e. Fluorinert FC-70) and the other with a fluid with high dielectric

constant (a Fluorinert/BSTO EFCD), the ratio of pump speeds can control the

effective dielectric constant of the mixed flows. This mixed flow can then be directed

to a specific COSMIX element by means of a controllable valve network. Such a
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Fig. 3.7: TBPFRA operating modes
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Fig. 3.8: TBPFRA model front with COSMIX

Fig. 3.9: TBPFRA model rear with COSMIX
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Fig. 3.10: COSMIX fluid control network for TBPFRA

network layout is shown in Fig. 3.10.

3.3 Simulation

The initial full-wave model of the TBPFRA was built in Ansys Electromagnetics’

HFSS 3D electromagnetic simulation suite. A companion model was developed in

CST’s Microwave Studio 3D simulation product. A set of simulations were run using

the Microwave Studio model to evaluate the band switching, polarization reconfigura-

tion, and tuning performance of the TBPFRA. As full-system fluidic reconfiguration

testing with the TBPFRA had been discontinued in favor an electronically recon-

figurable antenna design, these simulations were run primarily to serve as a rough

survey of the operating behavior of the TBPFRA geometry.

To decrease the time necessary to run the several dozen simulations required to

survey the TBPFRA in all its operating modes, CST’s Transmission Line Method
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(a) X-feed return loss (S11) and coupling to Y-feed (S21)

(b) Y-feed return loss (S22) and coupling to X-feed (S12)

Fig. 3.11: TBPFRA high-band simulation: tuning εr in inner & outer x-arm COS-
MIX elements
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(TLM) solver was used for the full-wave simulations. The TLM solver works by

discretizing the modeled geometry with a hexahedral mesh, and modeling each hex-

ahedral mesh element as a matrix of 12 transmission lines interconnecting the six

faces of the hexahedron. The fields in the discretized structure are then modeled as

fields propagating through a matrix of the transmission line elements, where the ma-

terial properties and geometry of each hexahedral cell determines the impedances of

its associated transmission lines. Although the TLM solver does not necessarily pro-

duce results with the same level of accuracy as, say, the finite-difference time-domain

(FDTD) or finite-integration-technique (FIT) full-wave methods, it gives reasonably

accurate results with a considerably shorter simulation time. For the simulations

presented here, the TLM method took roughly 15 wall-clock minutes to simulate a

single excitation on a dual 6-core Xeon E6520 workstation versus roughly 40 minutes

for an FIT model with a similarly fine discretization.

Fig. 3.11 shows the simulation survey results from the high-band mode, which was

tuned to operate at 5.8GHz. In this set of simulations, εr of all four X-arm COSMIXes

was varied from εr = 2–8. Fig. 3.11a shows the return loss of the X-polarized high-

band mode (S11) and coupling from the X-feed into the Y-feed (S21). As can be seen

from the S11 traces, the mid- and low-band sections of the X-arms do have a loading

effect on the high-band mode, and as the X-arm COSMIXes are tuned it results in a

change in the X-polarized modal frequency. Conversely, Fig. 3.11b shows the return

loss (S22) and coupling to the X-feed (S12) for the Y-polarized mode as excited by the

Y-feed. Despite the change in the load on the mid- and low-band X-arms from the

COSMIXes, the center frequency of the Y-polarized mode stays the same, with only

a change in the coupling to the X-feed as the loading from the COSMIXes changes.

Fig. 3.12 shows the simulation results for the X-polarized mid-band mode. The

mid-band geometry was roughly tuned to operate at 3.5GHz with COSMIX εr = 2.
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Fig. 3.12: TBPFRA mid-band simulation: tuning εr in inner x-arm COSMIX ele-
ments

Here, only the inner X-arm COSMIXes had their εr varied to explore the tuning

behavior of the mid-band mode. Once again, S11 is the return loss from the X-feed,

and S21 is the coupling from the X-feed to the Y-feed. Here, the inner COSMIXes are

directly coupled into the active antenna structure, and the tuning of the operating

mode is readily apparent. A εr range of 2–8 gives a tuning range of roughly 3.5GHz–

2.65GHz, or a tuning range of roughly 24% relative to the high end. Of note also is

the undesired mode at roughly 2.9GHz. This mode appears to be a non- or poorly-

radiating mode, which results in significantly higher coupling from the X-feed to the

Y-feed.

Fig. 3.13 shows the simulation results for the X-polarized low-band mode. The

low-band mode was roughly tuned to operate at 1.6GHz with εr = 2. As in Fig. 3.11,

here εr for the inner & outer X-arm COSMIXes was varied from εr = 2–8. Once
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Fig. 3.13: TBPFRA low-band simulation: tuning εr in inner & outer x-arm COSMIX
elements

again, because the COSMIXes are directly coupled to the low-band structure, sig-

nificant tuning of the operating mode is observed. Here, a tuning range of roughly

1.25GHz–0.65GHz is observed, a tuning range of 48% relative to the high end. Of

note here is that a higher-order mode starts to appear at higher εr values, manifest-

ing as a second dip in S11 and a corresponding sharp rise and subsequent dip in S21.

In particular, above εr = 7 this higher-order mode tunes into the range of the fun-

damental low-band mode. The corresponding peak in the X-feed to Y-feed coupling

at this higher-order mode suggests that, like the undesired mode in the mid-band

results, it is not an effective radiating mode and induces high coupling between the

feed ports.

The results of this simulation survey are meant to show the wide range of tunabil-

ity and reconfigurability offered by the TBPFRA. Clearly, there is significant room
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to improve this antenna design—in particular to reduce coupling between the or-

thogonal probe feeds, and to optimize the impedance tuning of the operating modes

across their individual frequency tuning ranges. As the goal of this work was to

demonstrate system-level integration and control of these advanced fluidic tuning

mechanisms in a multifunctional antenna array, the effort required to fully optimize

the design of the TBPFRA was instead devoted to the development of the overar-

ching system. These simulations are presented to demonstrate the potential of the

TBPFRA.

3.4 Fabrication & Testing

3.4.1 Electromagnetic Tests

A prototype of a single-arm TBFPRA was built to demonstrate the band switch-

ing and frequency tuning mechanisms. In this prototype, copper tape soldered over

the gaps was used to emulate the effect of the liquid metal, and Hittite Microwave

HMC928LP5E analog phase shifters [49] were used to emulate the effect of the COS-

MIX to achieve frequency tuning. Fig. 3.14a shows the fabricated prototype con-

figured for high-band operation. Fig. 3.14b shows the copper tape & solder bridges

over the inner gaps, used to emulate the liquid metal for prototype testing. In this

configuration, the antenna operates in the mid-band mode. The alternating black

& white blocks on the ruler in Fig. 3.14 are each 1cm long. Fig. 3.15 shows the

HMC928LP5E evaluation boards attached to SMA connector probes used to emu-

late the reactive loading of COSMIX on the antenna element. The phase shifters

accept a DC bias voltage of 0–12V and generate a phase delay of 450◦ which reduces

to roughly 0◦ at 12V bias. Thus, at 12V applied bias the open-circuit-terminated

phase shifter board appears electrically similar to a COSMIX with a low εr dielectric.

When the bias voltage is reduced, the electrical length of the phase shifter increases,
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(a) High-band configuration (b) Mid-band configuration

Fig. 3.14: Fabricated single-arm TBFPRA prototype

a behavior analogous to that of a COSMIX as its εr is increased.

Without phase shifters attached to the SMA probes on the outer sectors, the

prototype TBPFRA exhibits the input return loss characteristics shown in Fig. 3.16a.

The fabricated design was tuned to operate at 1 GHz, 3 GHz, and 6 GHz without

external loading. In Fig. 3.16a, the high-band mode shows a clear match at roughly

6.1 GHz, the mid-band mode shows a good match at roughly 2.95 GHz, and the

low-band mode is matched at 1.5 GHz.

Fig. 3.16b shows the measured return loss with the phase shifters attached and

biased to 0V. In comparison to Fig. 3.16a, loading of high-band mode by the phase

shifters on the mid-band arm segments can be seen. This behavior matches that

observed in the high-band simulation shown in Fig. 3.11 as the COSMIX εr was

increased.

With the antenna configured as in Fig. 3.14b, the bias voltage applied to the

phase shifter was varied. The results of this tuning test are shown in Fig. 3.17. Note

first that, since the antenna was designed without any reactive loading mechanism,
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Fig. 3.15: Analog phase shifters used to emulate COSMIX

the presence of the phase shifter’s loading effects dropped the mid-band operating

frequency to roughly 1.7GHz at 12V bias (minimum phase shift). Despite this shift

in operating frequency, which is to be expected, variable frequency tuning is observed

as the phase shifter’s bias voltage is varied.

3.4.2 Thermal Tests

To test the performance of the thermal reconfiguration system, a prototype heat

exchanger was designed to fit the backplane of the TBPFRA prototype. For the first

tests, the probe feeds were omitted for simplicity. The prototype heat exchanger is

shown in Fig. 3.18. This heat exchanger was adhered to the back of a fabricated

single-arm TBPFRA element using Sylgard 184 PDMS silicone encapsulant, and

connected to a thermal control loop filled with circulating Fluorinert FC-70. The

thermal system was commanded to slew to temperatures above and below ambient,

and the resulting element temperatures were profiled with a FLIR Systems T440
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(a) Measured TBPFRA without phase shifters attached

(b) Measured TBPFRA with phase shifters, high-band mode

Fig. 3.16: TBPFRA prototype operation without & with phase shifters

67



Fig. 3.17: Measured TBPFRA with phase shifters, tuning mid-band mode

Fig. 3.18: TBPFRA heat exchanger design
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(a) Heating to 35◦C (b) Cooling to 20◦C

Fig. 3.19: Thermal control system testing at 25◦C ambient temperature

thermal imaging camera. The results of this test are shown in Fig. 3.19.

3.4.3 Liquid Metal Tests

Several strategies were explored to implement the fluid network to route the

PBSN over the front of the antenna element. Several dielectric fluids and channel

materials were tested for their compatibility with eGaIn and the feasibility of ma-

nipulating isolated plugs of eGaIn as in Fig. 3.6. Hydrocal 2400, silicone (PDMS) oil

(500 centistoke and 1000 centistoke viscosities), and Fluorinert FC-70 fluorocarbon

oil were tested as continuous-phase motive fluids for an eGaIn plug in a pressure-

driven fluid channel consisting of 1.58mm ID PTFE (Teflon) tubing. Two distinct

phenomena were observed during these tests. The lower viscosity fluids (Fluorinert

FC-70: 12 centistokes) failed to push the eGaIn as a plug but instead flowed past

the eGaIn. The higher viscosity oils (Hydrocal & PDMS) successfully moved the

eGaIn as a plug, but left a residue as shown in Fig. 3.20. Fig. 3.20 shows optical

microscope images of the debris left after a 0.2mL eGaIn plug was pushed back and

forth through a 1.58mm ID PTFE tube roughly 15 times.

This debris has not been fully characterized, but its continued generation in
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Fig. 3.20: eGaIn plug in 1000 cst silicone oil showing debris sloughing

dozens of trials suggests that different material handling strategies need to be devel-

oped to utilize eGaIn in a pressure-driven network in this manner. It is known that

eGaIn forms a “skin” of gallium oxide–Ga2O3–on exposure to ambient oxygen, which

deforms plastically unlike the liquid eGaIn below. [50] It is also known that silicone

oil has a relatively high oxygen solubility. [51] Thus, it is hypothesized that during

plug flow conditions the gallium oxide skin around the eGaIn plug is stressed until it

separates and exposes unoxidized eGaIn to the continuous-phase silicone fluid, which

likely contains a significant amount of dissolved oxygen. On exposure to the silicone

fluid, the fresh eGaIn rapidly forms more gallium oxide, increasing the total volume

of the oxide skin. Once enough oxide has formed that flakes begin to protrude from

the surface of the eGaIn, forces due to interfacial flow at the eGaIn/silicone boundary

tear the oxide flakes away from the eGaIn, resulting in the debris seen in Fig. 3.20.

The observation of this behavior in the liquid metal fluid system led to the pursuit

of an alternate reconfiguration technique for use in the full array system
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(a) 4x Magnification (b) 10x Magnification

(c) 40x Magnification

Fig. 3.21: Optical microscopy of eGaIn debris in silicone oil
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4. ELECTRONICALLY POLARIZATION-RECONFIGURABLE

ANTENNA (EPRA)

4.1 Design Goals

The goal for the electronically polarization-reconfigurable antenna (EPRA) de-

sign is to achieve a compact, planar, switchable-polarization antenna element which

can be integrated into a hexagonal array and controlled by the multifunctional an-

tenna reconfiguration control system. Unlike the TBPFRA discussed in section 3,

the EPRA design is not intended to leverage a frequency reconfiguration mecha-

nism, but is instead designed to operate at a single frequency in the unlicensed

2.4GHz industrial, scientific, and medical (ISM) frequency band. Furthermore, as

the name implies, the EPRA is designed to leverage an electronic reconfiguration

mechanism—PIN diodes—to achieve polarization switching between two orthogonal

polarization states. An electronic reconfiguration approach was chosen due to the

maturity of PIN diode technology compared to the fluidic mechanisms explored in

section 3. A planar form factor was chosen to facilitate the EPRA’s integration with

the thermoregulation system as well as the planar hexagonal array topology.

4.2 Design

What follows is a discussion of the design & implementation of the EPRA element.

First, an overview of the concept inspiring the geometry is presented. Following

this, an overview of the PIN diode-based polarization reconfiguration mechanism is

presented.
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Fig. 4.1: EPRA design concept

73



4.2.1 Concept

Fig. 4.1 shows a graphical overview of the concept underlying the EPRA design.

The geometry of the EPRA element is inspired by a set of orthogonal rectangular

microstrip patches. As discussed in section 2.1.1.3, a rectangular microstrip patch

is fundamentally a linearly-polarized antenna structure. The radiated electric field

of a rectangular patch is linearly polarized parallel to the resonant length L of the

patch geometry. In part (A) of Fig. 4.1, two such rectangular patches are shown,

where the left patch is resonant and polarized along the x-axis and the right patch

is polarized along the y-axis. In part (B), the orthogonal patches have their non-

resonant width dimensions (W1 and W2) reduced. This width reduction adversely

affects the radiation efficiency of the antennas as it significantly reduces the width of

the patches’ radiating slots, but the operating frequency stays roughly the same. The

two orthogonal, narrow patches are overlaid such that they share a common probe

feed in part (C). In this state, both patches are in parallel and excited simultaneously

by the feed. Thus, in part (C) a gap is cut around the probe feed to separate the two

sets of “arms.” Finally, in part (E) a set of narrow, high-impedance DC bias lines

are used to connect the isolated arms to DC ground (with vias to the ground plane),

and a set of RF PIN diodes are attached across the gap. The diodes are connected

at the outer edges of each arm because an analysis of the currents on the rectangular

patch shows that the RF current is highest parallel to the resonant length L along

the outer, non-radidating edges of the patch.

4.2.2 Reconfiguration Mechanism

In this EPRA design, the set of RF PIN diodes (Skyworks SMP1345 in SC-79

surface-mount packages) bridging the gaps between the arms are used as a set of

current-controlled resistors to reconfigure the polarization of the antenna element.
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(a) Positive bias voltage: y-polarization (b) Negative bias voltage: x-polarization

Fig. 4.2: DC bias controls EPRA polarization state

When each PIN diode is forward-biased with If = 10mA, it presents a series RF

resistance of Rf ≈ 1.5Ω. In a reverse-biased state, the junction capacitance Cr ≈

0.16pF of the diode is presented across the gap, effectively isolating the outer patch

arms from the central feed. Fig. 4.2 shows this reconfiguration process graphically.

In Fig. 4.2a, a positive DC bias voltage is applied between the center conductor

and the ground plane. This forward-biases the four PIN diodes on the vertical arm

and activates the Y-polarized configuration. When a negative DC bias voltage is

applied, as in Fig. 4.2b, the diodes on the horizontal arm are forward-biased and the

X-polarized configuration is active.

The bias lines shown in Fig. 4.1 & 4.2 are designed to be very narrow width, so

that they act as very high impedance microstrip lines. Further, The length of the

line between the EPRA arms and the via through the substrate to the ground plane

is chosen such that the line is roughly λg/4 at the operating frequency of the EPRA.

Thus, the bias line appears, from the perspective of the EPRA element, to be a short-
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circuit terminated transmission line of length λg/4. From transmission-line theory,

we know that a short-circuited transmission line presents an input impedance [52]

Zin = jZ0 tan βl (4.1)

When the line is a quarter-wavelength long such that l = λg/4, we have βl = π/2

and thus Zin → ∞ in (4.1). Thus, the bias lines appear as an open circuit at the

antenna element, and they minimally perturb the fields in the EPRA’s patches while

still providing a return path for the DC bias current for the PIN diodes.

To inject the DC bias onto the coaxial transmission line feeding the EPRA el-

ement, a commercially-available DC bias tee (Pasternack Enterprises PE1615) is

used. Since the reconfiguration control system only uses a single-sided DC supply, a

ground-isolation scheme is employed to provide the reversible-polarity bias voltage

necessary to properly bias both polarization states of the EPRA. In this scheme, the

ground plane and outer conductor of every EPRA element in the array is isolated

from the other elements. This ground isolation is accomplished by the use of an

insulating support structure for the array elements and a set of outer-conductor DC

blocks (Pasternack Enterprises PE8211) on the RF ports of the bias tees. Fig. 4.3

shows the schematic of the implemented biasing network (for each EPRA element in

the array). A set of bias & overcurrent protection resistors sets the bias current for

the PIN diodes and provides overcurrent protection to the control board in case of

an accidental short between two EPRA elements’ ground planes. The resistor values

are identical, and are calculated according to

Rb =
1

2

Vsupply − Vf
If,total

(4.2)
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Fig. 4.3: EPRA DC biasing network

where Vsupply is the DC supply voltage, Vf is the forward voltage drop across the PIN

diodes, and If,total is the total forward bias current for the set of four diodes on each

arm. Overcurrent limiting is accomplished by selecting Vsupply >> Vf , so that if a

short occurs between two oppositely-biased isolated grounds, the fault current will

be

Ifault =
Vsupply

2Rb

≈ If,total (4.3)

Thus, the resistors will limit the current to roughly the same value (≈ 40mA) in

both normal biasing conditions and in worst-case fault-to-ground conditions.

Fig. 4.4 shows a schematic of the bias network in operation. An H-bridge on the

modular controller board supplies a reversible-polarity voltage of roughly 16VDC. In

the Y-polarization state, +16V is supplied to the center conductor of the EPRA’s

feed line and the outer conductor is grounded to 0V. In the X-polarization state, the
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(a) y-polarization state

(b) x-polarization state

Fig. 4.4: DC bias operation (red: positive, blue: negative)
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Fig. 4.5: EPRA element HFSS model

center conductor is grounded to 0V and the isolated outer conductor is biased to

+16V. The value of the bias resistors is chosen as Rb = 200Ω.

4.2.3 Modeling & Simulation

To verify the operation of the EPRA design, a model was assembled in Ansys

Electromagnetics’ HFSS 3D EM simulation software. The final model is shown in

Fig. 4.5. The PIN diodes are modeled as a combination of solder & plastic blocks to

represent the SC-79 packages and impedance boundaries to model the PIN junction.

The solder & plastic are used to capture the effect of package & mounting parasitics,

and the impedance boundaries are used to model the parasitic inductance of the

junction & bond-wires as well as the forward resistance Rf/junction capacitance Cj,r

depending on whether the diode is modeled in the forward- or reverse-biased state.
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(a) Return loss (b) Input impedance

Fig. 4.6: Simulated EPRA impedance behavior: x-polarized mode

The model was simulated and tuned to operate at roughly 2.45GHz, in the center

of the 2.4GHz ISM band. A set of simulations was run to analyze the EPRA element’s

impedance & radiation behavior. Fig. 4.6 shows the impedance behavior of the

simluated model. The dip in the magnitude of the reflection coefficient shown in

Fig. 4.6a indicates that the antenna is tuned to operate at 2.445GHz. This is similarly

indicated by the input impedance as plotted on the impedance Smith chart as shown

in Fig. 4.6b, where the input impedance at the operating frequency is Zin = 48.6 +

j0.04 Ω (where 50Ω is located at the exact center of the chart). The observed

simulated 2:1 VSWR impedance bandwidth is 50MHz, which is 2.0% of the 2.445GHz

center frequency. The simulated radiation patterns of the X-polarized mode are

shown in Fig. 4.7. The element shows reasonable polarization purity with a roughly

18dB cross-polarization ratio in both the φ = 0◦ and φ = 90◦ planes.
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(a) φ = 0◦ plane (b) φ = 90◦ plane

Fig. 4.7: Simulated EPRA radiation patterns: x-polarized mode

4.3 Fabrication & Testing

A set of seven EPRA elements were fabricated on hexagonal tiles of Rogers

RT/Duroid 5880 substrate using a T-Tech, Inc. QuickCircuit 5000 milling machine.

The EPRA elements were mounted in a planar hexagonal array configuration in

a sheet of 10mm thickness ROHACELL HF polymethylacrylimide structural foam.

ROHACELL HF is a low dielectric constant (εr = 1.05), low-loss (tan δ ≈ 2× 10−4)

rigid foam with excellent RF, insulating, and mechanical rigidity characteristics. The

ROHACELL foam facilitates the DC isolation of the EPRA ground planes as dis-

cussed in section 4.2.2. Fig. 4.8 shows a close view of the center EPRA element as

mounted in the array structure.

4.3.1 Electromagnetic Tests

The fabricated EPRA array was first tested to ensure that the individual EPRA

elements were performing as expected. A set of return loss measurements were made
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Fig. 4.8: Fabricated EPRA element mounted in hexagonal array

with an Agilent Technologies E8361C programmable network analyzer in both po-

larization states to confirm the elements’ operation. Fig. 4.9 & 4.10 show these

measurements. In Fig. 4.9, the effect of manufacturing variance can be seen on the

operating frequencies of the individual antenna elements. The X-polarized modes

in Fig. 4.9a show slightly more variation than the Y-polarized modes in Fig. 4.9b.

The region highlighted in dark grey shows the 2:1 VSWR bandwidth common to

both polarization states, and the light grey region in Fig. 4.9b shows the additional

impedance bandwidth of the Y-polarized mode due to the tighter grouping of that

mode’s operating frequencies. For the set of seven, the common impedance band-

width is roughly 40MHz, or 1.6% of the 2.46GHz center frequency.

Next, the radiation pattern of the center element in the array was measured in an

anechoic chamber to verify the radiation behavior of the simulated model. Fig. 4.11 &
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(a) X-polarized modes

(b) Y-polarized modes

Fig. 4.9: Return loss of fabricated EPRA elements
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(a) x-polarized modes (b) y-polarized modes

Fig. 4.10: Input impedance of fabricated EPRA elements (measured from 2GHz–
3GHz, normalized to 50Ω)

4.12 show the measured radiation patterns of the X-polarized & Y-polarized modes,

respectively. Comparing Fig. 4.11 to Fig. 4.7, it can be seen that the fabricated

antenna is performing quite close to the modeled behavior. The measured cross-

polarization ratio is slightly degraded from that of the simulation, although this is

could be attributable to scattering off the adjacent antenna elements (which were

terminated in matched loads during the pattern measurement) as well as the control

electronics & support structure.
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Fig. 4.11: Measured EPRA element radiation pattern: x-polarized mode

Fig. 4.12: Measured EPRA element radiation pattern: y-polarized mode
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5. MODULAR CONTROL BOARD & THERMOREGULATION

SYSTEM

5.1 Design Goals

To control both the fluid reconfiguration mechanisms and thermal state of the tri-

band polarization & frequency reconfigurable antenna (TBPFRA) design described

in section 3, a modular control board (MCB) was designed. The purpose of the

MCB is to accept commands sent over a wireless data link from the array control

server and respond to those commands by either manipulating the physical state of

the TBPFRA/EPRA element or returning measured or stored data about its current

state. The MCB has two sets of inputs: a set of conductive fluid sensor inputs that

enable positional sensing of the fluids in the polarization & band-switching channels,

and a set of thermistor inputs that provide temperature feedback from various points

in the thermal control subsystem. The MCB also has two sets of outputs: a set of

combined power/PWM control outputs to control a set of servo-actuated valves to

direct fluids in the reconfiguration mechanisms of the TBPFRA, and a set of bi-

directional pulse-width modulated DC outputs to control the heat flux through a

thermoelectric cooler (TEC) and the speed and direction of a set of pumps. The

TEC is used to control the temperature of the antenna element, and the pumps

supply the motive force to the reconfiguration fluid networks in the TBPFRA. A

microcontroller (MCU) on the MCB interfaces with the sensor inputs and control

output peripherals. A wireless radio module enables the MCU to interface with a

WiFi network to receive commands and send responses. A block diagram of the

reconfiguration mechanisms controlled by each MCB is shown in Fig. 5.1.
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Fig. 5.1: Block diagram of modular control board

5.2 Design

5.2.1 Sensor Inputs

As mentioned in section 5.1, the MCB is furnished with two sets of sensor inputs.

A set of four conductive fluid sensors is used to detect the position of the liquid

metal plugs in the polarization & band switching network (PBSN). Another set

of four thermistor temperature sensors is used to measure the temperature of key

components in the thermal system.

5.2.1.1 Conductive Fluid Sensors

The conductive fluid sensors detect the presence or absence of a fluid by measuring

the conductivity between two sensor electrodes immersed in the fluid tubing. The

physical layout of a fluid sensor is shown in Fig. 5.2. The sensor electrodes consist
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Fig. 5.2: Lateral (left) and axial (right) cross-sections of a conductive fluid sensor in
a fluid tube

of AWG 30 (0.254mm diameter) copper wire inserted through the wall of 1/16” ID,

1/8” OD vinyl tubing, separated by a distance d of 1 cm. To ensure fluid-tightness,

a drop of either PDMS silicone elastomer (Sylgard 184) or RTV silicone sealant is

applied to the outside of the vinyl tube where the copper wire penetrates the tube

wall.

The principle of operation of the fluid sensor is as follows. When a liquid metal

plug is not present, the fluid sensor circuit is as shown in Fig. 5.3. The majority of

the circuit (delineated by the dashed rectangle) is located on the MCB, with a pair

of wires connecting the sense electrodes in the fluid tubing to the reference voltage

source and signal conditioning network. The resistance Re,h is roughly proportional

to the bulk resistivity of the dielectric fluid ρd multiplied by the electrode separation

d, or Re,h ∝ ρd d. Since the dielectric fluids of interest have bulk resitivities on the

order of 1015 Ω ·cm [35] , we have Re,h ≈ 1015 Ω. As a plug of liquid metal is pumped

past and comes into contact with both electrodes, as shown in Fig. 5.4, the resistance

between the sensor electrodes changes to Re,l ∝ ρm d, where ρm is the bulk resistivity

of the liquid metal. Liquid metals of interest such as eGaIn or Hg have resistivities

on the order of 10−7 Ω · cm, which gives Re,l ≈ 10−7 Ω. Thus, the passage of a plug
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Fig. 5.3: Fluid sensor circuit with only dielectric fluid present

of liquid metal causes a change in resistance between the sensor electrodes of nearly

1022 Ω.

Vref in Fig. 5.3 & 5.4 is a regulated 5V supply rail, and Vsense is connected to a

digital input on the MCU as a liquid metal presence indicator. The digital input

has an input impedance Zin ≈ 5 MΩ, and the threshold voltage, Vth, between a

logical low (0) and logical high (1) is roughly 1.5V with a supply voltage of 5V [53].

The resistor network consisting of RP1, RP2, Rsense, and Re forms a voltage divider

between the equivalent resistances (RP1 +Re) and (Rsense‖(RP2 + Zin)), where

Vsense = Vref
Rsense‖(RP2 + Zin)

(Rsense‖(RP2 + Zin)) + (RP1 +Re)
. (5.1)

To ensure reliable detection of the liquid metal and ensure immunity to any induced

noise voltage, it is desirable to have Vsense � Vth when no liquid metal is present and

Vsense � Vth when liquid metal is present, so the values of Rsense, RP1, and RP2 are
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Fig. 5.4: Fluid sensor circuit with passing liquid metal plug

chosen such that

RP1 +Re,h � Rsense‖(RP2 + Zin)

RP1 +Re,l � Rsense‖(RP2 + Zin)

These conditions will ensure that Vsense RP1 and RP2 are current-limiting protection

resistors, and their values are chosen so that, should either sensor electrode be directly

shorted to either Vref or ground, the current passing through the electrode will be

limited to a reasonably small value. For this design, a short-circuit current maximum

of 5mA was chosen, giving RP1 = RP2 = 1 kΩ. Having chosen values for RP1 & RP2,

Rsense can now be chosen such that Vsense � Vth when Re = Re,h and Vsense � Vth

when Re = Re,l. For this design Rsense = 20 kΩ. By solving (5.1) for Vsense = 1.25V ,

the threshold resistance Re,th where the detected logical signal transitions from low

to high can be found to be 56.7 kΩ. Thus, when the resistance Re drops below
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Fig. 5.5: Thermistor temperature sensor circuit diagram

Re,th, the MCU input will transition from low to high. Finally a capacitor, Cfilter

is connected across Rsense to provide a shunt path to ground for any high-frequency

noise induced on the measurement wiring from the MCB to the sensor location.

5.2.1.2 Temperature Sensor Inputs

The temperature sensors are used to provide temperature feedback from four key

points in the thermal system:

• Ambient air temperature

• Fluid heat exchanger temperature

• Air heat exchanger temperature

• TBFPRA ground plane temperature

These temperature measurements are used to provide feedback for the temperature

control algorithm running on the MCU and to ensure that the thermal limits of

the TEC are not exceeded. In this design, negative temperature coefficient (NTC)

thermistors were chosen for the sensor elements due to their low cost, good accuracy

over the temperature range of interest, and the simplicity of the measurement elec-

tronics. The measurement circuit used for each thermistor is shown in Fig. 5.5. Vref
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Fig. 5.6: Resistance vs. temperature for Vishay 01M1002KF NTC thermistor

is supplied from a Microchip Technology MCP1541 4.096V precision semiconductor

reference source [54]. In this circuit configuration, the thermistor is the top resistor

in a resistive voltage divider circuit with a bottom resistor value Rb. The output

voltage of this circuit, Vsense is fed through a protective current limiting resistor Rp

into a high-impedance analog-to-digital converter (ADC) input on the MCU. The

ADC converts the sensed voltage into a 10-bit digital value (word) where

ADC Word = 1023× Vsense

Vref

(5.2)

This converted data word is then used as the index of a lookup table (LUT) which

converts it into a temperature value, which is then passed on to the rest of the

firmware code.

The resistive voltage divider circuit shown in Fig. 5.5 is used to help linearize

the relationship between Vsense and the measured temperature. Fig. 5.6 shows a

plot of the relationship between the resistance and temperature of the thermistor
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used in this work. The resistance behavior of an NTC thermistor with respect to

temperature can be described by the Steinhart-Hart equation [55]

1

T
= A+B lnR + C (lnR)3 (5.3)

where R is the resistance of the thermistor (in ohms) and T is the temperature

(in Kelvin). A, B, and C are constants derived from a set of measured resis-

tance/temperature points, and are typically provided by the thermistor manufac-

turer. The inverse of (5.3) can be expressed as

R = e(
3
√
x−y− 3

√
x+y) (5.4)

where

y =
A− 1

T

2C
x =

√(
B

3C

)3

+ y2

The sense voltage at the ADC input in the resistive divider circuit is expressed as

Vsense

Vref

=
Rtherm

Rtherm +Rb

=
1

1 + Rb

Rtherm

(5.5)

because the ADC input in series with Rp exhibits a large input impedance relative

to Rb, so it produces a negligible loading effect on the voltage divider. Substituting

(5.4) into (5.5), then substituting that result into (5.2), one can find an expression

relating the measured temperature T to the ADC word value of Vsense. Fig. 5.7 shows

a plot of this function with respect to temperature. The resistance Rb was chosen to

be equal to the thermistor’s resistance at 25◦C. As can be seen, the function provides
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Fig. 5.7: ADC word (hexadecimal) vs. temperature for implemented thermistor
circuit

a roughly linear relationship from 0◦C–40◦C. With the 10-bit ADC on the MCU, this

linearization & LUT approach is able to provide 0.1◦C per LSB precision over the

0◦C–40◦C range, and 0.2◦C precision from -22◦C–67◦C.

The LUT approach was chosen for conversion from ADC reading to temperature

as a time/memory tradeoff to ensure that the conversion of each ADC reading takes

a predictably short amount of time on the MCU. A direct implementation of (5.3)

in C code on the MCU would have necessitated a significant amount of process-

ing overhead—particularly if implemented in floating point arithmetic—on the 8-bit

processor. This was a particular concern as the firmware performs several dozen indi-

vidual temperature measurements per second, and those temperature measurements

are used as inputs to a delay-sensitive PID control loop. Because the MCU has an

ample amount of flash storage, the LUT approach was deemed the best approach for

temperature conversion.
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Fig. 5.8: 4x 3-way servo-actuated fluidic valve network

5.2.2 Reconfiguration Control Mechanisms

5.2.2.1 Valve Controls

As shown in Fig. 3.10 on page 59, a set of 8 3-way valves are used to direct the

flow of dielectric fluids through the 8 COSMIX elements on the TBPFRA element.

To control the position of these valves, a set of servo motors of the type used in

radio-controlled hobby models are used. Each servo motor connects to the MCB via

a 3-wire interface that carries 5VDC power & ground, and a pulse-width modulated

5V square wave control signal. The PWM signal runs on a 200Hz clock (5ms pe-

riod), with a positive pulse width that varies from 0.9ms–1.6ms. These pulse widths

correspond, respectively, to the far counterclockwise and far clockwise positions of

the servo output shaft. When the servos are un-powered they maintain their last

commanded position. Since the prototype COSMIX network will require several sec-

onds to pump dielectric fluid through each COSMIX, the valves will spend most of
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the reconfiguration time stationary. Thus, to simplify the control output design, a

single control signal output is multiplexed to all 8 servos, and the 5V power supply

to each servo is switched to follow the control signal. This approach requires 1 PWM

control signal, 3 address lines, and 1 enable line for a total of 5 control lines from

the MCU, as opposed to a parallel control scheme which would require 8 individual

PWM control lines. A mount for each group of 4 valves was designed in Dassault

Systems’ Solidworks 3D CAD software and fabricated with a Makerbot Industries

Replicator 2 3D plastic printer. Fig. 5.8 shows an example of one such servo-actuated

4-valve network.

5.2.2.2 Motor & TEC Controls

To control the pump motors & TEC, a set of five STMicroelectronics VNH5019A-

E H-Bridge ICs are used to pulse-width modulate the power supplied. By varying

the duty cycle of a 7.8kHz PWM signal generated by the MCU, the average current

through the motors (or TEC) can be controlled. By toggling the polarity of the

output voltage, the direction of the motors (or the direction of heat flow through

the TEC) can be reversed. Fig. 5.9 shows a schematic of an H-Bridge controlling

the current through a TEC. Note that the diode chain in the center of the figure

represents the chain of metal-semiconductor-metal junctions in the TEC, and is

capable of passing current bi-directionally. A PWM control signal is input at the

arrows. When the left side is held low and the right side pulsed high, current flows

through the upper right MOSFET, through the TEC from right to left, and through

the lower left MOSFET. Likewise, when the right side is held low and the left side

pulsed high, current flows through the upper left MOSFET, left to right through the

TEC, and through the lower right MOSFET.
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Fig. 5.9: H-bridge circuit controlling current through a TEC

5.2.2.3 Analog Phase Shifter Controls

As one of the proposed functions of the multifunctional array is electronic beam

steering, a method of controlling the phase of the RF excitation supplied to the an-

tenna elements is needed. For this implementation, a commercially available MMIC

analog phase shifter is used as the phase control element: the Hittite Microwave

HMC928LP5E. Fig. 5.10 shows one of the evaluation boards used in the array, with

the MMIC mounted in the center. These phase shifter modules are the same as those

used in section 3.4.1 to provide a variable reactive load in an open-circuit-terminated

configuration.

The HMC928 evaluation board provides SMA end-launch connectors for the RF

input & output, as well as the analog DC bias line. As mentioned in section 3.4.1,

the HMC928 exhibits an electrical length of roughly 450◦ across its operating fre-

quency range of 2–4GHz with 0V applied to the bias line. As the DC bias voltage is

increased, the apparent electrical length of the HMC928 decreases monotonically up

to a maximum bias voltage of 12V, at which point the MMIC’s electrical length is re-

duced to nearly 0◦. The relationship between the progressive phase shift and applied
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Fig. 5.10: Hittite Microwave HMC928LP5E 2–4GHz 0–450◦ analog phase shifter

bias voltage for the HMC928 can be modeled as a 3rd-order polynomial fit: [56]

Vbias = 2× 10−9θ3 + 3× 10−5θ2 + 1.18× 10−2θ + 2.16× 10−2 (5.6)

where θ is the desired phase shift in degrees. This function is programmed into the

MCB firmware and is used in the phased array beamsteering algorithm to calculate

the bias voltages for each antenna element’s phase shifter.

To supply a controllable bias voltage to each of the phase shifters in the array a

phase shifter control card—designed by colleague Jeffrey Jensen to control a set of

identical phase shifters for similar phased array applications—was used. Fig. 5.11

shows a block diagram overview of the control card. The card’s design centers around

an Analog Devices AD5668 8-output, 16-bit digital-to-analog converter (DAC) IC.

The DAC IC is controlled by the MCU over an SPI synchronous serial interface.

The DAC provides a set of 0–5VDC output voltages, which are amplified by a pair

of Texas Instruments OPA4705 quad CMOS op-amp ICs to generate a set of 0–12V

DC bias signals. These signals are then supplied to the HMC928 boards over a set

of SMA-connectorized coaxial cables.
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Fig. 5.11: Block diagram of phase shifter control DAC card

Fig. 5.12: Phase shifter control DAC card
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Fig. 5.13: Block diagram of antenna element thermoregulation system

During the design of the control card, the author collaborated with Mr. Jensen

to develop a common 8-pin power & data connector pinout. This ensured the in-

teroperability of the MCB with the phase shifter control card. Fig. 5.12 shows an

image of the assembled phase shifter control card. The multicolored ribbon cable

connected in the upper right-hand corner is the data & power interface to the MCB.

5.2.2.4 Thermoregulation System

In order to control the temperature of each antenna element, a closed-loop ther-

moregulation system was designed to interface to the MCB to provide the necessary

100



Fig. 5.14: Assembled Peltier TEC heat pump

bidirectional heat pumping. Fig. 5.13 shows a schematic overview of the designed

thermoregulation system. A Peltier TEC sandwiched between an air-cooled finned

aluminum heatsink and a copper liquid heat exchanger forms the heat pump module.

A brushless DC fountain pump provides motive force to a heat exchange fluid, which

cycles between the heat pump and a heat exchanger on the backplane of the antenna

element. A set of H-bridges allow the MCB to control the power supplied to both

the pump and TEC. Thermistor temperature sensors located on both sides of the

TEC heat pump and on the antenna element provide temperature feedback to the

discrete PID controller running on the MCU.

An assembled TEC heat pump is shown in Fig. 5.14. The assembled module con-

sists of a comercially available CPU cooler (Rosewill RCX-Z80-AL) and fan assembly,

a CUI, Inc CP85438 TEC module, and a copper CPU cooling waterblock. The heat

pump in Fig. 5.14 was assembled using a thermally-conductive epoxy (MG Chemi-

cals 8329TCM-6ML). After testing this assembly method, it was observed that the

thermal cycling experienced during heat pump operation resulted in a failure of the

epoxy bond. Thus, the full set of heat pumps were assembled by applying thermal
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silicone grease between the heat sinks and TEC and using plastic zip-ties to apply

compressive force to hold the heat pump assembly together.

5.2.3 Processing, Communication, & Firmware

5.2.3.1 Microcontroller & Wireless Radio

The key component of the MCB is the microcontroller (MCU), which runs a cus-

tom firmware that monitors the sensor inputs, runs a PID temperature control algo-

rithm, and listens for commands on an asynchronous serial interface. For this design,

a Teensy++ 2.0 USB Development Board supplied by PJRC.com [57] was chosen as

the MCU platform. The Teensy++ 2.0 is based on an Atmel AVR AT90USB1286 8-

bit MCU running on a 16 MHz clock. The Teensy++ 2.0 runs a custom bootloader

which allows compiled main firmware to be easily uploaded from an open-source

loader application via an onboard USB connection.

The wireless data link from the MCB to the array control server is provided

by a Digi International XBee WiFi S6 wireless radio module (XBee). The XBee

interfaces with the MCU via a three-wire asynchronous serial connection running at

9600 baud. The XBee module was chosen because, once it is properly configured, it

provides a transparent interface between the serial link and a TCP socket over WiFi.

The XBee module provides a complete 802.11b/g WiFi protocol implementation,

including WPA encryption, and a full TCP/IP networking stack. This removes the

need for the MCU firmware to implement any high-level networking protocols.

5.2.3.2 Firmware

The firmware consists of a boot-up routine, main loop, and hardware timer-

triggered interrupt routine. The boot-up routine, which is run immediately after

power-on, configures the on-board MCU peripherals (ADC, PWM outputs, hardware

timers, asynchronous serial port, and digital input pins) and the sends the necessary
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configuration commands to the XBee. The main loop reads characters from the

serial port, responds to recognized commands, and runs the PID temperature control

algorithm when triggered by the hardware timer. The hardware timer interrupt is

configured to run at 1kHz, and manages the precise triggering of the PID routine

and time interval measurements. Fig. 5.15 shows a block diagram representation of

the main firmware program flow.

On power-up, the MCU configures the XBee to connect to a the array control

WiFi network using a preprogrammed SSID & encryption passphrase. The firmware

then waits and checks to ensure that the XBee properly connects to the network.

Once the XBee reports that it has connected, the firmware sends a data packet con-

taining its serial number to a the control server’s IP address, which is preprogrammed

into the firmware.

After sending the announcement packet to the control server, the firmware ini-

tializes the command parsing routine and begins listening for commands from the

control server. A reference for the commands and syntax supported by the MCB

firmware is listed in Appendix C. In general, every command string consists of

a root command, optionally followed by a space and a variable number of space-

delimited arguments. A valid command string is terminated by a carriage return

character (Hexadecimal byte value: 17). When the parsing routine receives a 17

it extracts the root command from its receive buffer and begins comparing it to

the list of known commands. If the received command matches a known command,

the associated handler function for that command is called to execute the appropri-

ate action and generate a response. If the received command does not match any

known command, an ERROR response is returned. The command handler functions

are responsible for interpreting command arguments and directly interfacing with

lower-level drivers for the various reconfiguration mechanisms.
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The timer-triggered thermoregulation function implements the discrete PID con-

trol algorithm used to manage the temperature of the antenna element. The function

is triggered by a flag bit set in a hardware timer interrupt function, and runs every

250ms (4 Hz). When the thermoregulation function is called, it first takes ADC read-

ings from every temperature sensor input and converts them to temperature values.

It then checks the measured temperatures against a set of low & high limits. Since

an open or short circuit on a thermistor would result in an extremely low or high

measured temperature value, respectively, this limit check serves the dual purpose of

keeping the thermal system within safe operating limits and checking for thermistor

faults. If the limit check fails, the function immediately shuts down the TEC and

goes into a “SCRAM” mode, from which it must be reset manually. This ensures

that the thermal system cannot exceed the thermal limits of the TEC or antenna

element and damage itself. Otherwise, if the PID loop is in the “AUTO” mode the

function computes a new TEC control output from the PID loop and returns.

Another safety feature of the firmware design is built into its powerup sequence.

By default, the MCB firmware initializes all of its control outputs in a quiescent

state. In particular, the thermoregulation PID loop is kept off at boot-time, and

must be engaged by the array control server every time the MCB boots up. This

ensures that the MCB does not start up in an unknown or ill-defined state from

which its behavior might be unpredictable.

5.3 Fabrication & PID Algorithm Tuning

A set of printed circuit boards (PCBs) based on the MCB design described in

section 5.2 were ordered & fabricated at Advanced Circuits, Inc. [58] The PCBs

were assembled in house by the author. Fig. 5.16 shows the fabricated & assembled

board design. Along the top of the board are the five H-bridge motor & TEC driver
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Fig. 5.16: Fabricated modular controller board

circuits, with their associated energy storage capacitors & output connectors. On

the left side is the power switching & control multiplexing circuit for the servo valves.

In the figure, three such valves are connected to the output pin header. Below the

servo outputs is the XBee WiFi radio module. Along the bottom of the board are

the locking connectors for the temperature & fluid sensor inputs. In the bottom-

right corner is the 5V, 5A buck converter (and its associated filter capacitors &

inductor) that provides power to the board and servo motors. Also on the bottom-

right corner is the 8-pin SPI & power interface header to connect the MCB to the

phase shifter control card. Along the right edge is the main power input connector

& filter capacitor. Finally, in the center of the board is the MCU module.

The PID temperature control algorithm was tuned and tested by running a series

of step tests, wherein the temperature setpoint was changed from one value to an-

other. Tuning was accomplished by running the control algorithm in open-loop mode,
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instigating a step change in the controller’s output, and measuring the temperature

response of the thermal system. From the measured response, the controller gains for

the PID controller were calculated using the Cohen-Coon tuning method as described

in section 2.6. After calculating the appropriate P-, I-, & D-gain parameters for the

thermoregulation loop and loading them into the EEPROM of the MCB, the tuned

controller was tested by issuing a set of step changes in the temperature setpoint.

Fig. 5.17 shows the results of these step tests on the tuned PID controller. Note that

these tests were performed without fluid in the heat exchange loop. Fig. 5.17b in

particular shows the exact response expected from the Cohen-Coon tuning method.

The first overshoot is roughly 4◦C, and the following undershoot is roughly 1◦C,

exactly a quarter-amplitude decay response.
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(a) Setpoint step from 25◦C to 15◦C

(b) Setpoint step from 15◦C to 35◦C

Fig. 5.17: Tuned PID temperature controller test results
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6. ARRAY CONTROL NETWORK & SERVER

6.1 Design Goals

The purpose of the array control network is to provide dynamic, wireless control

of the reconfiguration mechanisms on individual array modules. Each module in

the array consists of a MCB, antenna (EPRA/TBPFRA) element, TEC heat pump,

fluid pumps, and valve network. One of the primary design objectives for the array

control network was to allow dynamic reconfiguration of the array—known as plug &

play. In particular, the array control system was designed so that individual modules

could be added or removed from the array in real time without requiring the entire

array to be reset or have its operation interrupted in any way. Such a plug & play

design allows the array control network to be used for dynamic array reconfiguration

experiments, and also provides fault-tolerance by ensuring continued operation of

the array as a system despite failures on the individual module level. Additionally,

the control network is designed such that multiple user-interface (UI) clients can

communicate with and control the array simultaneously.

6.2 Array Network Design

In order to achieve these goals, the array control network was designed in a star-

topology. An overview of the control network layout is shown in Fig. 6.1. A central

array control server forms the hub of the star, and interfaces with other nodes (UI

clients & antenna modules) via an infrastructure-mode WiFi wireless network. The

array control server is the central node of the control network, and provides the inter-

face between UI clients and the individual modules in the array. Thus, modules only

ever communicate directly with the control server during normal operation. Similarly,
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Fig. 6.1: Array control network structure

UI clients also only interface with the control server. The control server performs

array management, module tracking & identification, and monitoring tasks. The UI

client can then request data about the array from or push reconfiguration commands

to the control server, which dispatches the relevant module-level commands to the

modules in the array. The antenna module controllers (MCB & associated reconfig-

uration peripherals) then process these commands and actuate the antenna elements

to achieve the commanded reconfiguration or retrieve the requested measurement

data.

6.3 Control Server Implementation

The control server application was implemented in the Python programming lan-

guage. Python was chosen for several reasons. First, it is an interpreted language, so

prototype iterations are significantly faster as there is no compilation step required.

Second, Python is a high-level programming language which provides a large num-
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ber of libraries to facilitate activities like network & database access, further easing

development. An overview of the control server application architecture follows.

6.3.1 Application Structure & Data Flow

Fig. 6.2 shows a graphical overview of the architecture of the control server.

The application is written in a multithreaded style. This is because a considerable

amount of the server’s functionality concerns network communication. As network

read/write operations have inherently variable latency (particularly so with TCP

socket-based network communication), the multithreaded approach ensures that de-

lays in network communication operations with one particular client do not result in

unresponsiveness to other clients. (Note that the CPython interpreter implements a

Global Interpreter Lock which precludes the use of true native multithreading, but

this is not relevant for the network operations of the array control server.)

Fundamentally, the array control server application is composed of three main

components, each of which run in separate threads:

• the main server logic, which is responsible for starting the other components,

mediating communication between UI clients and the array, and implementing

the thermal signaling algorithm explored in section 7.1,

• the UI client server, which handles connection requests from UI clients and

interfaces them with the main server logic, and

• the module handlers, which interface with individual antenna modules, gather

module tracking information, and distribute module-level commands

On startup, the server connects to a local SQLite database that stores state &

identification information for the modules on the network, and opens two listening

111



Fig. 6.2: Block diagram of server application design
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server sockets: a UI client server on port 9500, and a module connection announce-

ment server on port 9100. In operation, the control server and UI client communicate

using a purely client-server architecture, where the UI client application acts as a

client and requests array control services from the control server. In the communica-

tion path from control server to modules in the array, however, the modules only act

as clients during their boot-up & initial network connection. During steady-state op-

eration each module acts individually as a server, and the control server application

connects to each module as a client, sends it a command, and retrieves its response.

6.3.2 UI Client Server

The UI client server listens for UI clients to connect on port 9500. When a UI

client application connects, the UI client server spawns a UI client handler in a new

thread and passes the connected socket to the client handler. The UI client handler

then communicates with the UI client application. First, a status summary is sent

to the client application which indicates the client is connected and gives a summary

of the state of the array as shown below.

Connected to Array Server v.0.1

Modules Connected: 1

SERIAL: ID: IP ADDRESS:

23A71F96CD 0 10.0.0.167

Next, the client handler waits for a command from the UI client application.

When the UI client sends a command, the command and client socket ID are placed

into an RX queue shared by all client handlers and the main server logic. This RX

queue passes the command to the main server logic, where it is parsed and processed.

The server logic then executes the appropriate action and pushes a response, tagged

with the client socket ID, into a TX queue. The client handlers watch this TX queue,

and when a message with a client handler’s respective client socket ID appears the
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message is pulled out by the client handler and transmitted to the UI client. Thus,

the control server can interface with multiple UI clients on a first-come first-served

basis.

Table 6.1: Command structure for UI client → control server communication

Command Scope ; Variable Command Format

array ; <MODULE COMMAND>

module ; ID List (comma separated) ; <MODULE COMMAND>

server ; <SERVER COMMAND>

irmsg ; <MESSAGE TEXT> Inter-Character Delay (s)

6.3.3 Module Connection Announcement Server

The module connection announcement server (“announce server”) listens on port

9100. The purpose of the announce server is to listen for module connection an-

nouncements. Whenever a module’s MCB is powered on, it boots up and tries

to connect to the array control network. Once the module’s on-board WiFi radio

indicates it has successfully connected to the network, the MCB connects to the

announce server on port 9100 and sends a string of the form <SERIAL NO.> READY

where <SERIAL NO.> is the media access control (MAC) address of the WiFi radio

module. Since MAC addresses are (theoretically) unique for all IEEE 802-compatible

networking devices, they are used as a unique serial number for each module on the

network.

As with the UI client server, a connection request from a module to the announce

server spawns an announce handler in a new thread. Thus, the server can handle a

large number of simultaneous connection announcements as when many modules are
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powered on simultaneously. When the announce handler receives an announcement

packet, it validates the packet format. If the packet is correctly formatted, the IP

address and serial number of the module are recorded, and the module’s entry in the

module state database is updated with the current time, serial, and IP address. Once

the database is updated, the announcement socket is closed. Thus, the announcement

server & announce socket is only used once, immediately after each module boots

up.

6.3.4 Module Command Handler

Whenever a UI client command or server function requires that a command be

dispatched to one or more connected modules, the command is routed through the

module command handler. The main server logic passes the command to be sent

and a list of module IDs to the module handler, which spawns a handler thread

for each module to be addressed. The individual handler threads then check the

module state database to verify that the module is connected and pull the module’s

IP address. The handler thread then opens a client socket to the module on port

9101 and sends the command to the module. Finally, the handler thread collects

the module’s response and returns it, a status code, and the module’s ID back to

the module command handler. The command handler collects the status codes &

responses from all the handler threads and returns them to the server logic. Finally,

the server logic returns the ID list, status codes, and responses from the modules to

the UI client application via the TX queue.

6.3.5 Network State Management

As previously described, the array control server keeps track of connected antenna

modules in a SQLite database. UI clients use unique module IDs to reference single

or groups of modules. These module IDs are (typically) sequential integers from
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0 to (in the case of the 7-element array) 6. These ID numbers are dynamically

configurable from the UI client, and provide an abstraction layer which dereferences

the UI client’s identification of antenna modules from the physical antenna module

hardware (and its associated unique 12 digit hardware serial number). Before a

module can be controlled from the UI client, it must first be assigned an ID number.

The control server provides a set of commands to accomplish this. The UI client can

command the server to automatically assign IDs to all modules in the array, in which

case the server assigns IDs sequentially starting at 0 to all connected modules in the

order the modules first connected to the control network. The UI client can also

directly assign a specific ID number to a specific module by specifying the module’s

hardware serial number.

Since the control server does not keep a TCP socket continuously open to each

module (and in fact cannot, due to firmware limitations of the XBee WiFi modules),

the only way for the server to determine if a module has disconnected from the array

is by polling all modules in its database. The module handler function provides

feedback to the database on the module’s connection status. Whenever a command—

polling or otherwise—is queued to be sent to a module the module handler thread

attempts to open a TCP socket to that module’s IP address. If the socket connection

request times out after 3 connection retries, the handler thread returns an error status

code and marks the module as disconnected in the database. Furthermore, since the

MCB firmware generates a response to all module commands—including corrupt

or improperly formatted ones—if the module handler fails to receive a command

response during the timeout period it will also mark the module as disconnected.

116



Fig. 6.3: Raspberry Pi array control server (left) and Carambola WiFi router mounted
on array testbed

6.4 Server & Network Hardware

During experimental operation, the array control server application was run on a

Raspberry Pi Foundation Raspberry Pi single-board computer. The Raspberry Pi is

a low-cost, low-power computer based on a Broadcom BCM2835 ARM system-on-a-

chip (SoC). The Raspberry Pi’s operating system is the Raspbian Linux distribution,

a fork of the popular Debian Linux distribution. Raspbian comes preinstalled with

many of the software packages necessary to run the array control server software,

including a Python 2.7 environment and an SSH server for remote administrative

access over the network. The network routing, DHCP service, and wireless network

connection for the antenna modules & UI client was provided by an 8devices Caram-

bola WiFi development board. The Carambola is a networking development board

based on a Ralink RT3050 SoC with built-in 802.11b/g/n WiFi radio and dual 802.3

100BASE-TX wired Ethernet interfaces. It runs another custom Linux operating

system: OpenWRT. OpenWRT is a lightweight Linux OS targeted at low-power

wireless access point/router hardware like the Carambola. The default distribution
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of OpenWRT on the Carambola comes preinstalled with a variety of programs which

allow it to provide the same networking services as a consumer-grade wireless router.

The Raspberry Pi interfaces with the Carambola via a short wired 100BASE-TX

Ethernet connection.

The server computer is configured with a static IP address which is also pro-

grammed into each antenna module’s firmware. The modules themselves request &

receive dynamic IP address assignments from the DHCP server on the Carambola

each time they connect to the network—this is why the server logs each module’s IP

address when it makes its power-on announcement. Using DHCP obviates the need

for each module to be pre-programmed with a unique static IP address. Fig. 6.3

shows the array control server computer and wireless router as mounted on the array

testbed.
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7. FULL MULTIFUNCTIONAL ARRAY SYSTEM

EXPERIMENTAL RESULTS

After all of the individual components and subsystems had been successfully

tested and their functionality verified, they were integrated into the multifunctional

array system. Fig. 7.1 shows the assembled 7-element hexagonal antenna array and

its associated control systems. The testbed consists of a multi-layered platform hous-

ing the reconfiguration control systems and a mount for the planar multifunctional

antenna array. The physical structure is constructed from 1/4-inch thick acrylic

(Plexiglas) sheets measuring 17 inches deep by 24 inches wide, with 1/2-inch ID

PVC pipe fittings forming the inter-layer connections and array mounting struc-

ture. The EPRA elements are mounted in a regular hexagonal grid with 85.1mm

center-to-center spacing. The element mounting structure is a 10mm thick sheet of

ROHACELL HF structural/RF foam measuring 16 inches square. The ROHACELL

sheet is fastened, in turn, to the PVC pipe mounting structure by two polypropylene

(PP) nuts which thread onto matching PP screws threaded into the PVC mounting

structure. The mounting holes for the screws are spaced 12 inches apart in the RO-

HACELL sheet, centered about the center antenna element’s probe feed. A second

set of mounting holes is located above and below the array, allowing it to be ro-

tated about the z-axis to facilitate orthogonal-plane radiation pattern measurements

with a common phase-center and without requiring the entire testbed structure to

be tipped on its side.

The bottom layer of the structure contains the majority of the array control

system: the seven modular controller boards, DC bias tees, array control server

board, and WiFi access point. The middle layer contains the servo valve networks
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Fig. 7.1: Assembled multifunctional reconfigurable antenna array
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Fig. 7.2: Thermoregulation test experimental setup

for fluid handling, 8-way RF power divider, analog phase shifters, and phase shifter

control DAC card. The top layer contains the themoregulation heat pumps for all

seven modules, the heat exchange fluid networks & pumps, and power distribution

for the heat sink fans. A set of holes at the center of each layer allow the RF feed

lines, control, power, and sense wiring to pass between the layers.

7.1 Thermoregulation & Thermal-IR Signaling Experiment

The first set of experiments performed with the multifunctional reconfigurable

array were thermoregulation tests to assess the control system’s ability to modulate

the temperature of the individual EPRA elements. Fig. 7.2 shows the experimental

setup for these tests. A FLIR Systems T440 infrared camera with a 320x240 pixel

microbolometer was positioned on a camera tripod roughly 1.2m directly in front

of the plane of the array, centered about the array’s z-axis. Each element’s heat

transfer fluid loop was primed with roughly 60mL of distilled water. There is some

variance (estimated to be roughly 10mL) in the primed volume of each element’s

fluid loop, as the length of 1/4 inch ID latex tubing between each EPRA’s heat

exchanger and associated TEC heat pump is different. Nevertheless, the intent of
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(a) Setpoint: 15◦C (b) Setpoint: 35◦C

Fig. 7.3: Array-wide thermoregulation

this experiment is to gain a rough sense of the thermal dynamics of this system,

so this variance is considered acceptable. All of the thermoregulation tests were

performed in a controlled laboratory environment at 25◦C ambient air temperature.

7.1.1 Thermoregulation

For the first test, the PID control loop on each EPRA element was engaged and

the entire array was commanded to slew to a common temperature. Fig. 7.3 shows

the results of the first thermoregulation tests. The thermal images were taken roughly

3 minutes after the setpoint change command was sent to allow each element’s tem-

perature to stabilize at the setpoint value. One of the fundamental characteristics of

the array’s thermoregulation system observed during these tests is the asymmetry in

each element’s heating & cooling rates. Explicitly, each element is capable of rais-

ing its temperature much quicker (corresponding to a higher thermal power when

pumping heat into the fluid loop) that it can lower it (a lower thermal power when

pumping heat out of the fluid loop). This observation can be expressed as

Q̇heating,max > Q̇cooling,max (7.1)
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This observation makes sense when considering the physics at play in the thermoreg-

ulation loop, particularly in the Peltier TEC. As discussed in section 2.5, the TEC

exploits the Peltier thermoelectric effect to move heat directly with a current flowing

through a set of semiconductor-metal junctions. Because the physical TEC module

exhibits a non-zero resistance in the metal & semiconductor elements, Joule heating

results in the conversion of supplied electrical energy into heat. This waste heat is

dissipated into both the hot & cold sides of the TEC. On the cold side, this means

that the heat pumping mechanism must move both heat from the cold system and

waste heat dissipated by Joule heating to the hot side. On the hot side, both the

pumped heat from the cold system and waste heat from the TEC must be dissipated

such that Q̇h ≈ Q̇c + Q̇Joule. Thus, the Q̇ dissipated on the hot side of the TEC is

always larger than Q̇ extracted from the cold system by the cold side of the TEC.

For the CUI CP85438 Peltier TECs used as the heat pumps in this system, when

cooling the elements to 15◦C with a 55◦C heat sink temperature, this translates to

Q̇h,out ≈ 4.5Q̇c,in. This behavior also means that when the thermoregulation system

is commanded to slew to a temperature away from that of the ambient environment,

the system is capable of properly regulating a in a wider range of temperatures above

ambient temperature than it is below ambient temperature, or

Tmax − Tamb > Tamb − Tmin (7.2)

7.1.2 Thermal-IR Signaling

The second set of experiments performed with the thermoregulation system ex-

plore the novel concept of thermal-IR signaling, wherein the temperatures of indi-

vidual elements in the array are modulated to encode digital information. It is well

established that the temperature of an object is related to the quantity and spec-
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Fig. 7.4: Logical numbering of EPRA elements in the hexagonal array

Fig. 7.5: Mapping ASCII-encoded bits to antenna elements
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tral density of electromagnetic radiation emitted due to the thermal motion of the

charged particles in the object—this is the principle upon which thermal-IR imaging

is based. Thus, by modulating the temperature distribution across the plane of the

array, the power and spectrum of the thermal radiation emitted by different areas of

the array can be modulated. With this system, the array can be used as a raster dis-

play device analogous to a visible-light display such as a computer monitor, except

with its emissions constrained to the long-wave infrared (thermal-IR) wavelength

range. Such a thermally-modulated array could be employed, for example, as a form

of covert communication.

Table 7.1: Temperature representation of bit values

Bit
Value

Element
Temperature

0 20◦C
1 30◦C

To explore this concept, a basic modulation scheme was developed to transmit a

string of printed text characters as 7-bit ASCII-encoded symbols, represented by the

temperature of the elements in the hexagonal array. The elements in the array were

logically numbered according to Fig. 7.4. The bits in each ASCII-encoded symbol

are logically mapped to antenna elements such that the least-significant bit (LSB)

is mapped to antenna element A0 and the most-significant bit (MSB) is mapped

to antenna element A6. The full mapping is shown in Fig. 7.5. Next, a set of

temperatures were assigned to represent the respective value of each bit. For the

purpose of this experiment, an element temperature above ambient was chosen to
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represent a binary 1, and a temperature below ambient to represent a binary 0. The

actual temperatures used are shown in Table 7.1.

The conversion of message characters to element temperature setpoints is han-

dled by the array control server. The UI client sends a command to the server

of the form irmsg;<Message Text> <Inter-Character Delay> where <Message

Text> is a string of printable ASCII characters forming the message to be trans-

mitted and <Inter-Character Delay> is an integer specifying the time delay—in

seconds—the server waits between sending temperature setpoint commands for con-

secutive message characters.

To assess the multifunctional array’s performance in thermal signaling, a series

of three-character messages were transmitted from the UI client. In the first sig-

naling test, the text ONR was transmitted. The resulting thermal signature of the

array during each character’s signaling time period is shown in Fig. 7.6. This figure

shows that the elements’ temperature differences are clearly visible in the thermal-IR

wavelength range. Fig. 7.6 also shows the corresponding translation of the element

temperatures back to binary integer values, the hexadecimal integer value corre-

sponding to the array’s thermal state, and the ASCII-encoded character the thermal

state represents.

Fig. 7.7 shows a second signaling experiment. Here, the message ATM is trans-

mitted, and the relative timing of the images is shown. For both experiments, an

inter-character delay of 180 seconds (3 minutes) was chosen. The total elapsed time

between the image marked “Start” and the image marked “End” was approximately

11 minutes. The relatively long symbol time was chosen due to the limitations of

the TEC heat pumps, specifically the limited rate—discussed above—at which they

can cool the antenna elements from a high temperature to a low temperature. Each

antenna element takes roughly 50 seconds to slew from 20◦C to 30◦C, but roughly
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Fig. 7.6: ASCII character signaling using element temperatures

175 seconds to slew from 30◦C to 20◦C.

The relatively low temperature slew rates exhibited by the thermoregulation sys-

tem can also be attributed to the high thermal capacity of the fluid heat exchange

loop. Distilled water has a specific heat of 4.18 J g−1 K−1 and density of roughly

1 g mL−1 at 25◦C. Thus, to change the temperature of the 60 mL of water in the

heat exchange loop by 10◦C requires the movement of roughly 2.5 kJ of heat energy.

In the ideal case where the TEC provides Q̇ = 40W and the heat exchange loop

is otherwise adiabatic with respect to the ambient environment, the thermal loop

would still take approximately 62 seconds to cool 10◦C. A simple approach to reduce

this time would be to replace the water with a liquid with lower specific heat. 3M’s

Fluorinert fluorocarbon oils would be an ideal substitute, as they are electrically in-

sulating, highly thermally conductive, and have much lower specific heat capacities.

(1.1 J g−1 K−1 for Fluorinert FC-3283) [59]
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Fig. 7.7: Thermal signaling character timing

7.2 Phased Array Beamforming Experiment

The next set of experiments performed with the multifunctional EPRA array

were a set of radiation pattern measurements to assess the array’s ability to form

and steer the main lobe of its radiation pattern (the beam). The array was excited

with a uniform-amplitude corporate feed formed by a Mini-Circuits ZB8PD-362-S+

8-way broadband Wilkinson power divider, with port 8 terminated in a 50Ω load.

First, the amplitude & phase balance of the feed network was profiled by measuring

the forward transmission coefficient, S21, from the common port on the power divider

to each antenna element’s SMA feed connector. These measurements are shown in

Fig. 7.8. The corporate feed network is balanced to within 0.3dB and 10◦ phase

across all seven RF paths.

128



(a) Amplitude balance (b) Phase balance

Fig. 7.8: Amplitude & phase balance of phased array corporate feed network

Next, the array was commanded to steer the main lobe of its radiation pattern

over a range of angles. Each beam angle is defined as an angle pair, (θ0, φ0) relative

to the array’s z-axis (normal to the plane of the array, as shown in Fig. 7.1). Thus, a

steering angle of (0◦, 0◦) corresponds to a broadside beam, and (90◦, 0◦) corresponds

to an end-fire beam in the X-direction. Excitation phase control is managed by

the MCB of antenna module 0. The firmware accepts the beam steering command,

computes the required phase shifts for each element in the array, and commands the

DAC board to apply the correct bias voltage to each element’s phase shifter.

The first set of steering angles were chosen to demonstrate beam steering in the

plane of the pattern measurement. The array is configured such that all elements

are in either the X-polarized or Y-polarized state, and the steering angles are swept

from -45◦ off broadside to +45◦ off broadside. Fig. 7.9 shows the in-plane steering

results for the X-polarized mode. Fig. 7.10 shows the in-plane steering results for

the Y-polarized mode. Excellent steering performance was observed from -30◦ to

30◦ in both polarization modes and in both primary measurement planes, with the

measured main lobe peak steered to within 1.5◦ of the commanded angle. Beyond
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(a) Beam steering on φ = 0◦ plane (b) Beam steering on φ = 90◦ plane

Fig. 7.9: Measured normalized array pattern: x-polarized mode, in-plane steering

(a) Beam steering on φ = 90◦ plane (b) Beam steering on φ = 0◦ plane

Fig. 7.10: Measured normalized array pattern: y-polarized mode, in-plane steering
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(a) Beam steering on φ = 90◦ plane (b) Beam steering on φ = 0◦ plane

Fig. 7.11: Measured normalized array pattern: x-polarized mode, out-of-plane steer-
ing

±30◦, the side lobe of the patterns grew to within 3 dB of the main lobe, and a

difference of roughly 5◦ was observed between the measured and commanded beam

angles. This behavior is to be expected, however, with an array of only 7 elements.

Further, the high side lobes observed at beam angles off broadside are to be expected

with an inter-element spacing of roughly 0.6λ.

Next, an equivalent set of pattern measurements were taken to evaluate the ar-

ray’s beamsteering performance when the beam is steered in a plane orthogonal to

the measurement plane. Fig. 7.11 and 7.12 show the results of these out-of-plane

steering tests. As expected, with larger steering angles off broadside the peak of

the pattern stays at the same angle and the profile of the pattern stays roughly the

same, with only the peak measured gain decreasing at larger positive & negative

scan angles.
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(a) Beam steering on φ = 0◦ plane (b) Beam steering on φ = 90◦ plane

Fig. 7.12: Measured normalized array pattern: y-polarized mode, out-of-plane steer-
ing

(a) Array in x-polarization state (b) Array in y-polarization state

Fig. 7.13: Conceptual overview of multiple emitter resolution using polarization re-
configuration
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7.3 Multiple Emitter Direction-of-Arrival Estimation Experiment

The final set of experiments performed with the multifunctional EPRA array

tested the polarization reconfigurability of the array in a direction-of-arrival estima-

tion application. In particular, the goal of these experiments is to test whether the

polarization reconfigurability of the EPRA array can resolve the individual arrival

angles for two orthogonal, coherent signal emitters. Since the MUSIC algorithm re-

quires a priori knowledge (or a guess) of the number of signal emitters to partition

its search space into a signal subspace and a noise subspace, the resolution of multi-

ple signal sources requires either knowledge of their number, or a method of filtering

such that only a single emitter is considered at one time. Thus, it was hypothesized

that the polarization reconfigurability of the array could provide this filtering to dis-

tinguish between orthogonal emitters. Furthermore, the mathematical basis of the

MUSIC algorithm’s subspace partitioning is based on the assumption that the only

signal present besides that of the emitters is uncorrelated noise. Thus, attempting

to resolve between two separate, coherent emitters by alternately partitioning one

or the other into the noise subspace violates this assumption and exposes a weak-

ness in the MUSIC algorithm. By implementing polarization switching to filter the

orthogonal emitters, it is hypothesized that the MUSIC algorithm will be able to

distinguish them. A pictorial representation of this concept is shown in Fig. 7.13,

where the thick gray arrows represent the stronger link path between the array and

co-polarized emitter.

The experimental configuration used in this series of tests is shown in Fig. 7.14.

Real-time direction-of-arrival estimation of a moving emitter with an antenna array

requires a set of synchronized, phase-sensitive receivers for each antenna element

in order to record the relative phase difference of the received signal at each an-
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(a) Facing toward the EPRA array

(b) Facing away from the EPRA array

(c) Overhead schematic view

Fig. 7.14: Polarization-reconfigurable direction-of-arrival estimation experimental
setup
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(a) Cutplanes through spectrum peak (b) Full 2D MUSIC spectrum

Fig. 7.15: MUSIC pseudospectra: x-polarized array

tenna element. Since a set of 7 such receivers were not available for use when these

experiments were performed, the experiment was performed as a quasi-static ap-

proximation. An Agilent Technologies N9923A FieldFox portable vector network

analyzer (VNA) was used as a substitute for the emitter source and phase-sensitive

receiver. The VNA was configured to measure the forward transmission coefficient,

S21. The source port (port 1) was connected to a 2-way Wilkinson power divider,

the outputs of which fed the two stationary, orthogonal emitter antennas through

phase-matched coaxial cables, shown in Fig. 7.14b. The receive port (port 2) of the

VNA was then connected sequentially to the feed of each antenna element in the

EPRA array, and a set of 16 measurement sweeps were averaged and recorded for

each antenna in the array. The phases of the complex forward transmission coeffi-

cient between the emitters and each element of the array were then used as the angle

argument for a set of equal-amplitude signal vectors which formed the input to the

MUSIC algorithm.

The results of the direction-of-arrival estimation experiments are shown in Figs.
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(a) Cutplanes through spectrum peak (b) Full 2D MUSIC spectrum

Fig. 7.16: MUSIC pseudospectra: y-polarized array

7.15 and 7.16. In both cases, the MUSIC algorithm was set to search only in the

+z hemisphere (i.e. only in front of the array) with a 1◦ search increment in θ

and φ. Further, the algorithm is set to only partition one signal into the signal

subspace. In Fig. 7.15, the array is X-polarized and the experimental conditions

match those displayed in Fig. 7.13a. The peak in the MUSIC spectrum occurs at

(θ0, φ0) = (29◦, 345◦). In Fig. 7.16, the experimental setup is the same, except the

EPRA elements in the array are all in their Y-polarized state, as in Fig. 7.13b. The

peak in the MUSIC spectrum for the Y-polarized case occurs at (θ0, φ0) = (22◦, 176◦).

In both cases, the calculated pseudospectra show an unambiguous peak at a single

direction in the search space. In the Y-polarized measurement, a relatively large

secondary peak appears at (θ0, φ0) = (22◦, 2◦). This is likely attributable to the

signal from the X-polarized antenna coupling into the array. The experimental data

was collected with both the array and emitter antennas over a conductive steel optical

table, which likely generated significant multipath propagation effects. Nevertheless,

the estimated direction-of-arrival for both emitter antennas agrees well with the
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Table 7.2: Comparison of MUSIC-estimated and physically measured direction of
arrival

MUSIC DoA

Estimation

Physical

Measurement

θ0 φ0 θ0 φ0

X-Polarized

Emitter
29◦ 345◦ 23◦ 0/360◦

Y-Polarized

Emitter
22◦ 176◦ 23◦ 180◦

physically measured experimental setup. Table 7.2 shows a summary of the actual

and estimated DoA for both emitters.
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8. SUMMARY

8.1 Conclusion

In conclusion, this work has demonstrated the successful conception, implemen-

tation, and evaluation of a modular, multifunctional reconfigurable antenna array.

A system-level design was successfully implemented incorporating a modular con-

trol system, novel multifunctional antenna element design, and networked control

system. The control architecture demonstrated is dynamically scalable and exten-

sible, and provides real-time, closed-loop control of the reconfiguration mechanisms

of the array. The array testbed demonstrates the type & number of reconfiguration

control mechanisms necessary to utilize a full array of fluidic-reconfigurable antenna

elements.

The modular, multifunctional array testbed was successfully tested in a variety

of wireless applications: polarization reconfiguration, beamforming & beamsteer-

ing, and direction-of-arrival estimation were all demonstrated. Furthermore, a novel

themal-IR raster signaling system was conceptualized and implemented with a proof-

of-concept demonstration. This technique shows promise to facilitate the multifunc-

tionalization of large planar antenna arrays.
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8.2 Future Work

This thesis presents a number of different opportunities to pursue future work.

First, the material systems and material handling strategies for functionalizing the

fluidic-reconfigurable tri-band polarization- & frequency reconfigurable antenna de-

sign present a range of future research opportunities. There is considerable room to

optimize the electromagnetic design of the TBPFRA element, as well.

The thermal-IR signaling system also presents a number of opportunities for

continued research & development. Alternative heat pumping mechanisms could

be explored to achieve a faster signaling rate. More advanced data encoding &

modulation schemes also present opportunities to improve upon the proof-of-concept

demonstration presented here.
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APPENDIX A

MCB FIRMWARE SOURCE CODE

The following is a reproduction of the C source code which forms the firmware

for the Teensy 2.0++ MCU on the MCB. The source files are grouped into sections

by the logical nature of the functions they contain. These sections are as follows:

• Main Code: The source files containing the main loop of the firmware, startup

procedures, real-time temperature control algorithm, and interrupt routines

• Command Processing: The source files containing the library which parses

incoming text commands, and the functions called by that library to handle

execution of those commands

• Peripheral Control Code: The source files containing the low- and mid-

level drivers for the on-chip and off-chip peripherals, including the ADC, PWM

generators, and off-chip DAC

• Communication Code: The source files containing low- and mid-level drivers

for the communication peripherals, including the XBee WiFi radio, UART,

USB serial endpoint, and SPI transceiver
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A.1 Main Code

A.1.1 Powerup Initialization, Closed-Loop Temperature Control,
& Main Loop Functions

AntennaController v2 1.h

/*

Global variables & data structures for Antenna Controller

*/

5

#ifndef ANTENNACONTROLLER_V2_1_H_

#define ANTENNACONTROLLER_V2_1_H_

#include <stdint.h>

10

// Device serial number string for XBee initialization

extern char deviceSerial[];

// Temperature sense source mode

15 enum temp_sense_src {TEC, MODULE};

extern enum temp_sense_src myTempSenseSource;

// Global flag bits for various control functions

struct flag_bits {

20 uint8_t tmr0_ovf :1;

uint8_t ext_tgt :1;

uint8_t in_scram :1;

uint8_t auto_mode :1;

uint8_t bit4 :1;

25 uint8_t bit5 :1;

uint8_t bit6 :1;

uint8_t debug :1;

};

extern volatile struct flag_bits globalFlags;

30

// PID gains & integrator max for PID initialization

/*

For CUI CP85438 TEC w/ Rosewill RCX-Z80-AL heatsink/fan

and XSPC XBOX360Slim waterblock only, experimentally determined

35 parameters are:

k_p = 2442

k_i = 68

k_d = 13255

40

With 250ms sample time

k_p = K_c

k_i = K_c * T_s/T_i

45 k_d = K_c * T_d/T_s

K_c is proportional gain

T_i is integration time

T_d is derivative time

50 T_s is sample interval time

*/

struct pid_params {

int_fast16_t k_p;

int_fast16_t k_i;

55 int_fast16_t k_d;

int_fast32_t Imax;

};
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extern struct pid_params myPIDparams;

60 // Struct of pulse widths for each valve’s 3 positions

struct valve_params {

uint8_t pos0;

uint8_t pos1;

uint8_t pos2;

65 };

extern struct valve_params myValveParams[8];

// Struct of speed and delay for each pump output

70 struct pump_params {

uint_fast16_t pw;

uint_fast16_t timer_ms;

};

75 extern struct pump_params myPumpParams[4];

// PID runtime data storage structure as defined in pid.h

extern struct pid_data myPIDdata;

80 // Measured temperature & target temperature variables

extern volatile int_fast16_t t_tec;

extern volatile int_fast16_t t_mod;

extern volatile int_fast16_t t_ref;

extern volatile int_fast16_t t_sink;

85 extern int_fast16_t t_tgt;

//Uncomment to switch communication from UART to USB serial port for debugging:

//#define USB_SERIAL

90

// Various control settings:

#define MAX_TEMP 670 // Maximum safe temperature (in 1/10C)

#define MIN_TEMP -50 // Minimum temperature (in 1/10C)

#define MAX_SET_TEMP 500 // Maximum allowed temperature setting (in 1/10C)

95 #define MIN_SET_TEMP -50 // Minimum allowed temperature setting (in 1/10C)

#define baudrate 9600 // UART baud rate

#define ADC_AVGS 5 // Number of ADC readings to take when measuring temps

#define manageTemp_cnt_ovf 250 // Temperature measurement/management interval in ms

#define SERVO_TIME 750 // Servo actuation time delay in ms

100

// EEPROM addresses for custom per-module parameters:

// struct myPIDparams > PID parameters in myPIDparams

#define EEP_ADDRESS_PID (void*)0x10

105

// struct myValveParams[8] > Servo valve position:pulse width map

#define EEP_ADDRESS_VALVE (void*)(EEP_ADDRESS_PID + sizeof(myPIDparams))

// struct myPumpParams[4] > Pump parameters

110 #define EEP_ADDRESS_PUMP (void*)(EEP_ADDRESS_VALVE + sizeof(myValveParams))

#endif /* ANTENNACONTROLLER_V2_1_H_ */

AntennaController v2 1.c

/*

Antenna Controller

Communication & control via XBee WiFi S6 running firmware v.102D

5 PID thermal control for Peltier TEC with selectable temperature feedback

8-way hobby servo valve control
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4-way pump control

*/

10

#include <stdint.h>

#include <stdio.h>

#include <math.h>

#include <avr/io.h>

15 #include <avr/pgmspace.h>

#include <util/delay.h>

#include <avr/interrupt.h>

#include <avr/eeprom.h>

#include <stdlib.h>

20

#include "AntennaController_v2_1.h"

#include "adc2temp.h"

#include "pwm.h"

#include "parse_cmd.h"

25 #include "adc.h"

#include "xbee.h"

#include "uart.h"

#include "serial.h"

#include "pid.h"

30 #include "spi.h"

#include "AD5668.h"

#define LED_CONFIG (DDRD |= (1<<6))

#define LED_ON (PORTD |= (1<<6))

35 #define LED_OFF (PORTD &= ~(1<<6))

#define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n))

// ADC Pin Names

#define tec_therm PF0

40 #define modu_therm PF1

#define ref_therm PF2

#define sink_therm PF3

#define ADC4 PF4

45 char deviceSerial[17]; // Character array for XBee serial number

volatile uint8_t manageTemp_cnt; //

enum temp_sense_src myTempSenseSource = TEC;

50

volatile struct flag_bits globalFlags;

int_fast16_t t_tgt_init = 250; // Initial temperature setpoint = 25.0C

55

struct pid_data myPIDdata;

struct pid_params myPIDparams;

struct valve_params myValveParams[8];

60 struct pump_params myPumpParams[4];

volatile int_fast16_t t_tec;

volatile int_fast16_t t_mod;

volatile int_fast16_t t_ref;

65 volatile int_fast16_t t_sink;

int_fast16_t t_tgt;

volatile int_fast16_t t_sys = 0;

volatile int_fast16_t t_set = 0;

70
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// Reads parameter structures out of EEPROM into SRAM variables

// Called on startup

/************************************************************************/

75 /* NOTE: EEPROM values on uninitialized MCUs must be programmed */

/* using SETPID WRITE and SETVALVEPARAM WRITE commands */

/************************************************************************/

void init_parameters() {

eeprom_read_block(&myPIDparams, EEP_ADDRESS_PID, sizeof(myPIDparams));

80 eeprom_read_block(&myValveParams, EEP_ADDRESS_VALVE, sizeof(myValveParams));

eeprom_read_block(&myPumpParams, EEP_ADDRESS_PUMP, sizeof(myPumpParams));

for (int i = 1; i < 5; i++) {

set_pump(i, MODE_OFF, myPumpParams[i-1].pw);

}

85 }

// TEC temperature control function

// Reads thermistor ADCs, updates global temperature variables

// calls PID algorithm, & updates TEC output H-bridge PWM

90 void manageTemp() {

LED_ON;

uint_fast16_t t_tec_read = 0;

uint_fast16_t t_mod_read = 0;

uint_fast16_t t_ref_read = 0;

95 uint_fast16_t t_sink_read = 0;

for (int i = 0; i < ADC_AVGS; i++) {

t_tec_read += read_adc(tec_therm);

t_mod_read += read_adc(modu_therm);

100 t_ref_read += read_adc(ref_therm);

t_sink_read += read_adc(sink_therm);

}

t_tec = adc2temp(t_tec_read/ADC_AVGS);

105 t_mod = adc2temp(t_mod_read/ADC_AVGS);

t_ref = adc2temp(t_ref_read/ADC_AVGS);

t_sink = adc2temp(t_sink_read/ADC_AVGS);

// Check if temperature limit exceeded & SCRAM if so

110 if ((t_tec > MAX_TEMP) || (t_sink > MAX_TEMP) || (t_mod > MAX_TEMP)) {

scram();

}

if ((t_tec < MIN_TEMP) || (t_sink < MIN_TEMP) || (t_mod < MIN_TEMP)) {

scram();

115 }

// Only run PID control if we’re in auto and not in SCRAM

if ((!(globalFlags.in_scram) && globalFlags.auto_mode)) {

//int_fast16_t t_sys, t_set;

120 // Choose system temperature based on selected source

switch (myTempSenseSource) {

case TEC:

t_sys = t_tec;

break;

125 case MODULE:

t_sys = t_mod;

break;

default:

t_sys = 0;

130 break;

}

// Choose setpoint temperature based on selected source

switch (globalFlags.ext_tgt) {

case 0:
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135 t_set = t_tgt;

break;

case 1:

t_set = t_ref;

break;

140 default:

t_set = 0;

break;

}

145 // Generate PID control output

int_fast16_t pid_output = pid_control(t_set, t_sys, &myPIDdata);

uint_fast16_t pw = (abs(pid_output)>>5); // Max pulse width is 1023

if (pid_output > 0) set_tec(TEC_HEAT, pw);

150 else if (pid_output == 0) set_tec(TEC_OFF, 0);

else if (pid_output < 0) set_tec(TEC_COOL, pw);

}

// If we’re SCRAMmed or not in auto, reset the PID integrator

155 else if ((globalFlags.in_scram || !(globalFlags.auto_mode))) {

pid_reset_integrator(&myPIDdata);

}

LED_OFF;

160 }

void setup(void) {

cli(); // Global Interrupt Disable

165 LED_CONFIG;

CPU_PRESCALE(0);

#ifdef USB_SERIAL

usb_init();

170 while (!usb_configured()) ; // Wait for USB serial port ready

#else

uart_init(baudrate);

#endif

175 _delay_ms(200);

LED_ON;

configure_pwm();

180 configure_adc();

configure_spi();

//_delay_us(100);

//configure_dac(); // Must be called after configure_spi()

185

init_parameters();

pid_init(myPIDparams.k_p, myPIDparams.k_i, myPIDparams.k_d, &myPIDdata);

190 #ifndef USB_SERIAL

configure_xbee();

#endif

setup_SerialCommand();

195

t_tgt = t_tgt_init;
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sei(); // Global Interrupt Enable

}

200

// Timer 0 Overflow Interrupt Routine

// Runs at 1kHz

ISR(TIMER0_OVF_vect) {

if (manageTemp_cnt < manageTemp_cnt_ovf - 1) {manageTemp_cnt++;}

205 else {

manageTemp_cnt = 0;

globalFlags.tmr0_ovf = 1;

}

}

210

ISR(INT0_vect) {

}

215 ISR(INT1_vect) {

}

ISR(INT6_vect) {

220

}

ISR(INT7_vect) {

225 }

int main(void) {

setup();

while (1) {

230 serialCommand_readSerial();

if (globalFlags.tmr0_ovf) {

manageTemp();

globalFlags.tmr0_ovf = 0; //Reset TIMER0 overflow flag

}

235 }

}

A.1.2 Discrete PID Control Algorithm

pid.h

/*

* pid.h

*

* Created: 11/24/2013 6:43:38 PM

5 * Author: Nick

*/

#ifndef PID_H_

10 #define PID_H_

#include <stdint.h>

#define DIFF_SCALE 4 // Differential scaling factor in average

15 #define LT_LENGTH 4 // lastTemp array length

#define PID_TERM_MAX INT_FAST32_MAX/4 // Maximum p-, i-, d-term value to prevent overflow on sum

typedef struct pid_data {

int_fast16_t lastTemp[LT_LENGTH]; // Storage for previous LT_LENGTH temperature values

20 int_fast32_t errorSum; // Integrator error sum
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int_fast16_t kP; // Proportional gain

int_fast16_t kI; // Integral gain

int_fast16_t kD; // Derivative gain

int_fast32_t maxError; // Maximum temperature error

25 int_fast32_t maxErrorSum; // Maximum integrator value

int_fast32_t maxDeriv; // Maximum derivative value

} pid_data_t;

void pid_init(int_fast16_t kp, int_fast16_t ki, int_fast16_t kd, struct pid_data *pid);

30

int_fast16_t pid_control(int_fast16_t setTemp, int_fast16_t sysTemp, struct pid_data *pid);

void pid_reset_integrator(struct pid_data *pid_st);

35

#endif /* PID_H_ */

pid.c

/*

Discrete Proportional-Integral-Derivative (PID)

controller implementation for thermal control system

Based on code from Atmel application note AVR221

5 See: http://www.atmel.com/images/doc2558.pdf?

*/

10 #include "AntennaController_v2_1.h"

#include <avr/pgmspace.h>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

15 #include "serial.h"

#include "pid.h"

20 // Initialize realtime PID data structure, calculate error limits

// Kp, Ki, Kd set gain for proportional, integral, & derivative terms respectively

// Imax sets maximum integral error to limit integral windup

void pid_init(int_fast16_t kp, int_fast16_t ki, int_fast16_t kd, struct pid_data *pid) {

pid->errorSum = 0;

25 for (int i = 0; i < sizeof(pid->lastTemp); i++) {

pid->lastTemp[i] = 0;

}

pid->kP = kp;

30 pid->kI = ki;

pid->kD = kd;

// Calculate limits to avoid integer overflow

pid->maxError = (int_fast32_t)(PID_TERM_MAX/((int_fast32_t)pid->kP + 1));

35 pid->maxErrorSum = (int_fast32_t)(PID_TERM_MAX/((int_fast32_t)pid->kI + 1));

pid->maxDeriv = (int_fast32_t)(PID_TERM_MAX/((int_fast32_t)pid->kD +1));

}

// Workhorse function

40 // Call once per time interval to calculate new control output

// based on measured temperature & setpoint

int_fast16_t pid_control(int_fast16_t setTemp, int_fast16_t sysTemp, struct pid_data *pid) {

int_fast16_t error;

int_fast32_t p;
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45 int_fast32_t i;

int_fast32_t d;

int_fast32_t oldErrorSum;

int_fast32_t newErrorSum;

int_fast32_t output;

50

// Calculate error signal

error = setTemp - sysTemp;

// Calculate proportional term

55 // Limit to INT_FAST16_MAX to prevent overflow

if(error > pid->maxError) {p = PID_TERM_MAX;}

else if (error < -(pid->maxError)) {p = -PID_TERM_MAX;}

else {p = (int_fast32_t)((int_fast32_t)(pid->kP) * (int_fast32_t)error);}

60 // Save original error sum

oldErrorSum = pid->errorSum;

// Discrete integration of error

newErrorSum = pid->errorSum + error;

65

// Calculate integral term & update error sum

// Limit based on calculated max error sum

if (newErrorSum > pid->maxErrorSum) {

i = PID_TERM_MAX;

70 pid->errorSum = pid->maxErrorSum;

}

else if (newErrorSum < -(pid->maxErrorSum)) {

i = -PID_TERM_MAX;

pid->errorSum = -(pid->maxErrorSum);

75 }

else {

i = (pid->kI) * newErrorSum;

pid->errorSum = newErrorSum;

}

80

// Calculate derivative average

int_fast32_t diff = pid->lastTemp[0] - sysTemp;

//int_fast32_t diff = DIFF_SCALE * (pid->lastTemp[0] - sysTemp);

//for (int i = LT_LENGTH-1; i > 0; i--) {

85 //diff += DIFF_SCALE * (pid->lastTemp[i] - pid->lastTemp[i-1]);

//}

// Calculate d term from averaged derivative

if (diff > pid->maxDeriv) {d = PID_TERM_MAX;}

90 else if (diff < -(pid->maxDeriv)) {d = -PID_TERM_MAX;}

else {d = (pid->kD) * diff;}

// Shift lastTemp array

for (int i = LT_LENGTH-1; i > 0; i--) {

95 pid->lastTemp[i] = pid->lastTemp[i-1];

}

// Update 0th lastTemp

pid->lastTemp[0] = sysTemp;

100 // Calculate output & rescale

output = p + i + d;

//output = (p + i) + d/(DIFF_SCALE * LT_LENGTH);

if (globalFlags.debug) {

105 char err_char[12];

char output_char[12];

char p_char[12];

char i_char[12];
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char d_char[12];

110

itoa(error,err_char,10);

sprintf_P(output_char, PSTR("%10li"), output);

sprintf_P(p_char, PSTR("%10li"), p);

sprintf_P(i_char, PSTR("%10li"), i);

115 sprintf_P(d_char, PSTR("%10li"), d);

send_str_P(PSTR("E:"));

send_str(err_char);

send_str_P(PSTR("\tP:"));

120 send_str(p_char);

send_str_P(PSTR("\tI:"));

send_str(i_char);

send_str_P(PSTR("\tD:"));

send_str(d_char);

125 send_str_P(PSTR("\tO:"));

send_str(output_char);

send_str_P(PSTR("\r\n"));

}

130 // Limit output to 16 bit integer to avoid overflow

// Disable integrator to prevent windup during output saturation

if (output > INT_FAST16_MAX) {

output = INT_FAST16_MAX;

pid->errorSum = oldErrorSum; // Restore original error sum (undo integration)

135

}

else if (output <= -INT_FAST16_MAX) {

output = -INT_FAST16_MAX;

pid->errorSum = oldErrorSum; // Restore original error sum (undo integration)

140 }

return (int_fast16_t)output;

}

145 // Integrator reset for when PID controller is turned off

void pid_reset_integrator(struct pid_data *pid_st) {

pid_st->errorSum = 0;

}

A.2 Command Processing

A.2.1 Command Parsing Library

parse cmd.h

#ifndef PARSE_CMD_H_

#define PARSE_CMD_H_

#include <stdint.h>

5

void setup_SerialCommand();

void serialCommand_readSerial();

10 char *serialCommand_next();

#endif /* PARSE_CMD_H_ */

parse cmd.c

/*

Serial command parsing library based on ArduinoSerialCommand by Steven Cogswell and
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modified by Stefan Rado.

5 See:

https://github.com/kroimon/Arduino-SerialCommand

https://github.com/scogswell/ArduinoSerialCommand

setup_SerialCommand() is where command handler functions in commands.c are registered

10 */

#include <stdbool.h>

#include <stdlib.h>

#include <string.h>

15 #include <ctype.h>

#include "AntennaController_v2_1.h"

#include "usb_serial.h"

#include "uart.h"

#include "commands.h"

20 #include "phased.h"

#define MAX_COMMAND_LENGTH 16

#define SERIALCOMMAND_BUFFER 64

25 /************************************************************************/

/* Serial Command Parsing Functions */

/************************************************************************/

// Command/Handler List

30 struct SerialCommandCallback {

uint8_t command[MAX_COMMAND_LENGTH+1];

void (*function)();

} *commandList;

35 //struct SerialCommandCallback *commandList;

uint8_t commandCount;

// Pointer to default (unmatched command) handler

40 void (*defaultHandler)(const char *);

char delim[2]; //Token delimiter character

char term; //Command string terminator character

45 char buffer[SERIALCOMMAND_BUFFER+1];

uint8_t bufPos;

char *last;

void addCommand(const char *cmd, void (*function)()) {

50 commandList = (struct SerialCommandCallback *)

realloc(commandList, (commandCount + 1) * sizeof(struct SerialCommandCallback));

strncpy(commandList[commandCount].command, cmd, MAX_COMMAND_LENGTH);

commandList[commandCount].function = function;

commandCount++;

55 }

void setDefaultHandler(void (*function)(const char *)) {

defaultHandler = function;

}

60

void clearBuffer() {

buffer[0] = ’\0’;

bufPos = 0;

}

65

/*
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The workhorse function

Reads characters in from the serial port, adds them to the buffer if printable

Matches to commands in commandList when terminator comes in

70 */

void serialCommand_readSerial() {

#ifdef USB_SERIAL

while (usb_serial_available() > 0) {

char inChar = usb_serial_getchar();

75 #else

while (uart_available() > 0) {

char inChar = uart_getchar();

#endif

if (inChar == term) {

80 char *command = strtok_r(buffer, delim, &last);

if (command != NULL) {

bool matched = false;

for (int i = 0; i < commandCount; i++) {

if (strncasecmp(command, commandList[i].command, MAX_COMMAND_LENGTH)==0) {

85 (*commandList[i].function)();

matched = true;

break;

}

}

90 if (!matched && (defaultHandler != NULL)) {

(*defaultHandler)(command);

}

}

clearBuffer();

95 }

else if (isprint(inChar)) {

if (bufPos < SERIALCOMMAND_BUFFER) {

buffer[bufPos++] = inChar;

100 buffer[bufPos] = ’\0’;

}

else {

}

}

105 }

}

//Return next token (argument) from buffer

char *serialCommand_next() {

110 return strtok_r(NULL, delim, &last);

}

// All commands are registered here with the command string & handler function name

// Handler functions go in commands.c/commands.h

115 void setup_SerialCommand() {

commandList = NULL;

commandCount = 0;

defaultHandler = NULL;

strcpy(delim, " "); // Command/Argument & Argument/Argument delimiter

120 term = ’\r’; // Command/Argument string terminator

*last = NULL;

addCommand("SETDAC", set_dac_output);

addCommand("SETBEAM", set_beam_angle);

125

addCommand("SETSENSE", set_sense);

addCommand("SETTEMP", set_temp);

addCommand("SETMODE", set_mode);

addCommand("SETTEC", set_tec_manual);

130 addCommand("SETPID", set_pid);
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addCommand("SETPUMP", set_pump_modes);

addCommand("SETPUMPPARAM", set_pump_params);

addCommand("SETVALVE", set_valves);

135 addCommand("SETSERVOPW", set_servo_pw);

addCommand("SETVALVEPARAM", set_valve_params);

addCommand("GETSENSE", get_sense);

addCommand("GETTEMP", get_temp);

140 addCommand("GETMODE", get_mode);

addCommand("GETPID", get_pid);

addCommand("GETTEC", get_tec_status);

addCommand("GETPUMP", get_pumps);

addCommand("GETVALVE", get_valve_params);

145

addCommand("SCRAM", set_scram);

addCommand("READY?", ready);

150 addCommand("dbg", debug);

setDefaultHandler(error);

}

A.2.2 Command Execution Handler Functions

commands.h

/*

* commands.h

*

* Created: 4/11/2014 12:40:22 AM

5 * Author: Nick

*/

#ifndef COMMANDS_H_

10 #define COMMANDS_H_

void set_sense();

void set_temp();

void set_mode();

15 void set_tec_manual();

void set_pid();

void set_pump_modes();

void set_pump_params();

20 void set_valves();

void set_valve_params();

void set_servo_pw();

void get_sense();

25 void get_temp();

void get_mode();

void get_pid();

void get_tec_status();

void get_pumps();

30 void get_valve_params();

void set_scram();

void ready();

void debug();

35

void error(const char *cmd);
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#endif /* COMMANDS_H_ */

commands.c

/* Handler functions for serial commands */

#include <avr/pgmspace.h>

#include <avr/eeprom.h>

5 #include <string.h>

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include "commands.h"

10 #include "AntennaController_v2_1.h"

#include "pwm.h"

#include "pid.h"

#include "serial.h"

#include "parse_cmd.h"

15 #include "AD5668.h"

#define OK send_str_P(PSTR("OK\r\n"))

#define ERROR send_str_P(PSTR("ERROR\r\n"))

20 /************************************************************************/

/* Set Commands */

/************************************************************************/

// Set sense temperature source for PID controller

25 void set_sense() {

char *arg = serialCommand_next();

if (arg != NULL) {

if (strcasecmp_P(arg, PSTR("TEC"))==0) {myTempSenseSource = TEC;}

else if (strcasecmp_P(arg, PSTR("MODULE"))==0) {myTempSenseSource = MODULE;}

30 else {

ERROR;

return;

}

OK;

35 return;

}

else {

ERROR;

return;

40 }

}

// Set target (desired) temperature

void set_temp() {

45 char *arg = serialCommand_next();

if (arg != NULL) {

int_fast16_t temp = (int_fast16_t)(10.0*strtod(arg, NULL));

if ((temp > MIN_SET_TEMP)&&(temp < MAX_SET_TEMP)) {

t_tgt = temp;

50 OK;

return;

}

else {

ERROR;

55 return;

}

}

else {

ERROR;
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60 return;

}

}

// Set temperature control mode (automatic/off)

65 void set_mode() {

char *arg = serialCommand_next();

if (arg != NULL) {

if (strcasecmp_P(arg, PSTR("AUTO"))==0) {

globalFlags.auto_mode = 1;

70 }

else if (strcasecmp_P(arg, PSTR("MAN"))==0) {

globalFlags.auto_mode = 0;

}

else if (strcasecmp_P(arg, PSTR("OFF"))==0) {

75 globalFlags.auto_mode = 0;

set_tec(TEC_OFF, 0);

}

else {

ERROR;

80 return;

}

OK;

return;

}

85 else {

ERROR;

return;

}

}

90

void set_tec_manual() {

char *arg1 = serialCommand_next();

char *arg2 = serialCommand_next();

if ((arg1 != NULL)&&(arg2 != NULL)) {

95 int_fast16_t pw = strtol(arg2, NULL, 10);

if ((pw > -1)&&(pw < 1024)) {

if (strcasecmp_P(arg1, PSTR("HEAT"))==0) {

set_tec(TEC_HEAT, pw);

}

100 else if (strcasecmp_P(arg1, PSTR("COOL"))==0) {

set_tec(TEC_COOL, pw);

}

else {

ERROR;

105 return;

}

OK;

return;

}

110 else {

ERROR;

return;

}

}

115 else {

ERROR;

return;

}

}

120

// Set temp control PID parameters

void set_pid() {

char *arg1 = serialCommand_next(); // KP/KI/KD/IMAX argument
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char *arg2 = serialCommand_next(); // Float/Int gain argument

125

if ((arg1 != NULL)&&(arg2 != NULL)) {

int_fast32_t tmp = strtol(arg2, NULL, 10);

if (tmp > INT_FAST16_MAX) {

ERROR;

130 return;

}

else {

if (strcasecmp_P(arg1, PSTR("KP"))==0) {

myPIDparams.k_p = (int_fast16_t)tmp;

135 }

else if (strcasecmp_P(arg1, PSTR("KI"))==0) {

myPIDparams.k_i = (int_fast16_t)tmp;

}

else if (strcasecmp_P(arg1, PSTR("KD"))==0) {

140 myPIDparams.k_d = (int_fast16_t)tmp;

}

else {

ERROR;

return;

145 }

}

pid_init(myPIDparams.k_p, myPIDparams.k_i, myPIDparams.k_d, &myPIDdata);

OK;

150 return;

}

else if (strcasecmp_P(arg1, PSTR("WRITE"))==0) {

eeprom_update_block(&myPIDparams, EEP_ADDRESS_PID, sizeof(myPIDparams));

OK;

155 return;

}

else {

ERROR;

return;

160 }

}

// Set pump modes

// SETPUMP 1,2,3 IN,OUT,OFF -- Sets pumps 1 2 & 3 to IN, OUT, & OFF respectively

165 void set_pump_modes() {

char *arg1 = serialCommand_next();

char *arg2 = serialCommand_next();

char *last1, *last2;

170 char *pmp = strtok_r(arg1, ",", &last1);

char *dir = strtok_r(arg2, ",", &last2);

if ((pmp==NULL)||(dir==NULL)) {

ERROR;

return;

175 }

else {

enum pump pnum = PUMP_NULL;

if (strcasecmp_P(pmp, PSTR("1"))==0) {pnum = PUMP1;}

else if (strcasecmp_P(pmp, PSTR("2"))==0) {pnum = PUMP2;}

180 else if (strcasecmp_P(pmp, PSTR("3"))==0) {pnum = PUMP3;}

else if (strcasecmp_P(pmp, PSTR("4"))==0) {pnum = PUMP4;}

else {

ERROR;

return;

185 }

if (strcasecmp_P(dir, PSTR("IN"))==0) {

set_pump(pnum, MODE_IN, myPumpParams[pnum-1].pw);

164



}

else if (strcasecmp_P(dir, PSTR("OUT"))==0) {

190 set_pump(pnum, MODE_OUT, myPumpParams[pnum-1].pw);

}

else if (strcasecmp_P(dir, PSTR("OFF"))==0) {

set_pump(pnum, MODE_OFF, myPumpParams[pnum-1].pw);

}

195 else {

ERROR;

return;

}

OK;

200 for (uint8_t i = 1; i < 4; i++) {

char *pmp = strtok_r(NULL, ",", &last1);

char *dir = strtok_r(NULL, ",", &last2);

enum pump pnum = PUMP_NULL;

if ((pmp == NULL)||dir==NULL) {return;}

205 else if (strcasecmp_P(pmp, PSTR("1"))==0) {pnum = PUMP1;}

else if (strcasecmp_P(pmp, PSTR("2"))==0) {pnum = PUMP2;}

else if (strcasecmp_P(pmp, PSTR("3"))==0) {pnum = PUMP3;}

else if (strcasecmp_P(pmp, PSTR("4"))==0) {pnum = PUMP4;}

else {

210 ERROR;

return;

}

if (strcasecmp_P(dir, PSTR("IN"))==0) {

set_pump(pnum, MODE_IN, myPumpParams[pnum-1].pw);

215 }

else if (strcasecmp_P(dir, PSTR("OUT"))==0) {

set_pump(pnum, MODE_OUT, myPumpParams[pnum-1].pw);

}

else if (strcasecmp_P(dir, PSTR("OFF"))==0) {

220 set_pump(pnum, MODE_OFF, myPumpParams[pnum-1].pw);

}

else {

ERROR;

return;

225 }

}

}

}

230 // Set pump parameters

void set_pump_params() {

char *arg1 = serialCommand_next(); // Pump number / WRITE

char *arg2 = serialCommand_next(); // Pump parameter

char *arg3 = serialCommand_next(); // Parameter value

235

int_fast16_t tmp = strtol(arg3, NULL, 10);

if ((arg1 != NULL)&&(arg2 != NULL)&&(arg3 != NULL)) {

enum pump pnum = PUMP_NULL;

240 if (strcasecmp_P(arg1, PSTR("1"))==0) {pnum = PUMP1;}

else if (strcasecmp_P(arg1, PSTR("2"))==0) {pnum = PUMP2;}

else if (strcasecmp_P(arg1, PSTR("3"))==0) {pnum = PUMP3;}

else if (strcasecmp_P(arg1, PSTR("4"))==0) {pnum = PUMP4;}

else {

245 ERROR;

return;

}

if (strcasecmp_P(arg2, PSTR("SPEED"))==0) {

250 if ((tmp < 0)||(tmp > 1023)) {

ERROR;
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return;

}

else {

255 myPumpParams[pnum-1].pw = tmp;

set_pump(pnum, get_pump(pnum).mode, tmp);

OK;

return;

}

260 }

else if (strcasecmp_P(arg2, PSTR("DELAY"))==0) {

myPumpParams[pnum-1].timer_ms = tmp;

OK;

return;

265 }

else {

ERROR;

return;

}

270 }

else if (arg1 != NULL) {

if (strcasecmp_P(arg1, PSTR("WRITE"))==0) {

eeprom_update_block(myPumpParams, EEP_ADDRESS_PUMP, sizeof(myPumpParams));

OK;

275 return;

}

else {

ERROR;

return;

280 }

}

else {

ERROR;

return;

285 }

}

// Set all valves to desired positions

// "SETVALVE x,y,z a,b,c" -> Sets valves x,y,z... to positions a,b,c...

290 void set_valves() {

char *arg1 = serialCommand_next();

char *arg2 = serialCommand_next();

char *last1, *last2;

295

char *vlv = strtok_r(arg1, ",", &last1);

char *pos = strtok_r(arg2, ",", &last2);

if ((vlv==NULL)||(pos==NULL)) {

ERROR;

300 return;

}

else {

int valve = strtol(vlv, NULL, 10)-1;

OK;

305 if (strcasecmp_P(pos, PSTR("0"))==0) {

set_servo(valve,myValveParams[0].pos0);

}

else if (strcasecmp_P(pos, PSTR("1"))==0) {

set_servo(valve,myValveParams[0].pos1);

310 }

else if (strcasecmp_P(pos, PSTR("2"))==0) {

set_servo(valve,myValveParams[0].pos2);

}

else {

315 ERROR;
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return;

}

for (uint8_t i = 1; i < 8; i++) {

char *vlv = strtok_r(NULL, ",", &last1);

320 char *pos = strtok_r(NULL, ",", &last2);

int valve = strtol(vlv, NULL, 10)-1;

if (strcasecmp_P(pos, PSTR("0"))==0) {

set_servo(valve,myValveParams[i].pos0);

}

325 else if (strcasecmp_P(pos, PSTR("1"))==0) {

set_servo(valve,myValveParams[i].pos1);

}

else if (strcasecmp_P(pos, PSTR("2"))==0) {

set_servo(valve,myValveParams[i].pos2);

330 }

else {

ERROR;

return;

}

335 }

}

}

// Set valves’ position<>pulse width mapping

340 // "SETVALVEPARAM n a,b,c" -> Sets valve n’s Off,A,B pulse widths

// "SETVALVEPARAM WRITE" -> Writes valve parameters to EEPROM

void set_valve_params() {

char *arg1 = serialCommand_next();

char *arg2 = serialCommand_next();

345 if (strcasecmp_P(arg1, PSTR("WRITE"))==0) {

eeprom_update_block(&myValveParams, EEP_ADDRESS_VALVE, sizeof(myValveParams));

OK;

return;

}

350 else {

char *last;

char *pw1_str = strtok_r(arg2, ",", &last);

char *pw2_str = strtok_r(NULL, ",", &last);

char *pw3_str = strtok_r(NULL, ",", &last);

355

if ((pw1_str!=NULL)&&(pw2_str!=NULL)&&(pw3_str!=NULL)) {

uint8_t pw[3];

uint8_t vnum;

pw[0] = strtol(pw1_str, NULL, 10);

360 pw[1] = strtol(pw2_str, NULL, 10);

pw[2] = strtol(pw3_str, NULL, 10);

for (int i = 0; i < 3; i++) {

if ((pw[i] < 0)||(pw[i] > 255)) {

ERROR;

365 return;

}

}

if (strcasecmp_P(arg1, PSTR("1"))==0) {vnum = 0;}

370 else if (strcasecmp_P(arg1, PSTR("2"))==0) {vnum = 1;}

else if (strcasecmp_P(arg1, PSTR("3"))==0) {vnum = 2;}

else if (strcasecmp_P(arg1, PSTR("4"))==0) {vnum = 3;}

else if (strcasecmp_P(arg1, PSTR("5"))==0) {vnum = 4;}

else if (strcasecmp_P(arg1, PSTR("6"))==0) {vnum = 5;}

375 else if (strcasecmp_P(arg1, PSTR("7"))==0) {vnum = 6;}

else if (strcasecmp_P(arg1, PSTR("8"))==0) {vnum = 7;}

else {

ERROR;

return;
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380 }

myValveParams[vnum].pos0 = pw[0];

myValveParams[vnum].pos1 = pw[1];

myValveParams[vnum].pos2 = pw[2];

OK;

385 return;

}

else {

ERROR;

return;

390 }

}

}

// Set servo valve pulse width directly

395 // "SETSERVO x y" -> Sets servo x to pw y

void set_servo_pw() {

char *arg1 = serialCommand_next();

char *arg2 = serialCommand_next();

400 enum servo myservo;

if (strcasecmp_P(arg1, PSTR("1"))==0) myservo = SERVO1;

else if (strcasecmp_P(arg1, PSTR("2"))==0) myservo = SERVO2;

else if (strcasecmp_P(arg1, PSTR("3"))==0) myservo = SERVO3;

405 else if (strcasecmp_P(arg1, PSTR("4"))==0) myservo = SERVO4;

else if (strcasecmp_P(arg1, PSTR("5"))==0) myservo = SERVO5;

else if (strcasecmp_P(arg1, PSTR("6"))==0) myservo = SERVO6;

else if (strcasecmp_P(arg1, PSTR("7"))==0) myservo = SERVO7;

else if (strcasecmp_P(arg1, PSTR("8"))==0) myservo = SERVO8;

410 else {

ERROR;

return;

}

415 if (arg2 != NULL) {

uint8_t mypwm = (uint8_t)strtol(arg2, NULL, 10);

if ((mypwm > -1)&&(mypwm < 1024)) {

set_servo(myservo,mypwm);

OK;

420 return;

}

else {

ERROR;

return;

425 }

}

else {

ERROR;

return;

430 }

}

/************************************************************************/

435 /* Get Commands */

/************************************************************************/

// Function to print temperature stored as 10*temp in 16-bit integer to serial port

void print_temp(int_fast16_t temp) {

440 char temp_str[8];

sprintf_P(temp_str,PSTR("%.1f"),(float)temp/10);

send_str(temp_str);

}
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445 // Get PID sense temperature source

void get_sense() {

switch (myTempSenseSource) {

case TEC:

send_str_P(PSTR("TEC\r\n"));

450 break;

case MODULE:

send_str_P(PSTR("MODULE\r\n"));

break;

default:

455 break;

}

}

// Get temperature from one thermistor/setpoint or all at once

460 void get_temp() {

char *arg = serialCommand_next();

char *output;

if (arg != NULL) {

if (strcasecmp_P(arg, PSTR("TEC"))==0) {

465 print_temp(t_tec);

send_str_P(PSTR("\r\n"));

return;

}

else if (strcasecmp_P(arg, PSTR("MOD"))==0) {

470 print_temp(t_mod);

send_str_P(PSTR("\r\n"));

return;

}

else if (strcasecmp_P(arg, PSTR("SINK"))==0) {

475 print_temp(t_sink);

send_str_P(PSTR("\r\n"));

return;

}

else if (strcasecmp_P(arg, PSTR("TGT"))==0) {

480 print_temp(t_tgt);

send_str_P(PSTR("\r\n"));

return;

}

else {

485 ERROR;

return;

}

}

else {

490 send_str_P(PSTR("TEC:"));

print_temp(t_tec);

send_str_P(PSTR(",MOD:"));

print_temp(t_mod);

send_str_P(PSTR(",SINK:"));

495 print_temp(t_sink);

send_str_P(PSTR(",TGT:"));

print_temp(t_tgt);

send_str_P(PSTR("\r\n"));

return;

500 }

}

// Get temperature control mode

void get_mode() {

505 struct tec_status myTECstatus = get_tec();

if (globalFlags.in_scram) {

send_str_P(PSTR("SCRAM\r\n"));
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return;

}

510 else if (globalFlags.auto_mode) {

send_str_P(PSTR("AUTO\r\n"));

return;

}

else if (!globalFlags.auto_mode) {

515 if (myTECstatus.mode == TEC_OFF) {

send_str_P(PSTR("OFF\r\n"));

}

else {

send_str_P(PSTR("MANUAL\r\n"));

520 }

return;

}

}

525 // Get temperature control PID parameters

void get_pid() {

char kpbuf[10], kibuf[10], kdbuf[10], maxerrbuf[10], maxerrsumbuf[10];

sprintf_P(kpbuf,PSTR("%i"),myPIDdata.kP);

sprintf_P(kibuf,PSTR("%i"),myPIDdata.kI);

530 sprintf_P(kdbuf,PSTR("%i"),myPIDdata.kD);

sprintf_P(maxerrbuf,PSTR("%li"),myPIDdata.maxError);

sprintf_P(maxerrsumbuf,PSTR("%li"),myPIDdata.maxErrorSum);

send_str_P(PSTR("KP:"));

535 send_str(kpbuf);

send_str_P(PSTR(",KI:"));

send_str(kibuf);

send_str_P(PSTR(",KD:"));

send_str(kdbuf);

540 send_str_P(PSTR(",ERRMAX:"));

send_str(maxerrbuf);

send_str_P(PSTR(",SUMMAX:"));

send_str(maxerrsumbuf);

send_str_P(PSTR("\r\n"));

545

}

void get_tec_status() {

struct tec_status myTECstatus = get_tec();

550 char pw_char[8];

char errorsum_char[15];

sprintf_P(pw_char, PSTR("%u"), myTECstatus.pw);

sprintf_P(errorsum_char, PSTR("%li"), myPIDdata.errorSum);

555 switch (myTECstatus.mode) {

case TEC_OFF:

send_str_P(PSTR("OFF"));

break;

case TEC_HEAT:

560 send_str_P(PSTR("HEAT"));

break;

case TEC_COOL:

send_str_P(PSTR("COOL"));

break;

565 default:

break;

}

send_str_P(PSTR(",PW:"));

send_str(pw_char);

570 send_str_P(PSTR(",INT:"));

send_str(errorsum_char);
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send_str_P(PSTR("\r\n"));

}

575 void get_pumps() { // Get pump parameters

struct pump_status myPumpStatus[4];

for (int i = 1; i < 5; i++) {

myPumpStatus[i-1] = get_pump(i);

}

580 send_str_P(PSTR("PUMP:\tMODE:\tASPD:\tSSPD:\tDELAY:\r\n"));

for (int i = 0; i < 4; i++) {

char istr[2];

sprintf_P(istr, PSTR("%i"),i+1);

send_str_P(PSTR("\t"));

585 send_str(istr);

send_str_P(PSTR("\t"));

if (myPumpStatus[i].mode==MODE_OFF) {send_str_P(PSTR("OFF"));}

else if (myPumpStatus[i].mode==MODE_OUT) {send_str_P(PSTR("OUT"));}

else if (myPumpStatus[i].mode==MODE_IN) {send_str_P(PSTR("IN"));}

590 send_str_P(PSTR("\t"));

char apw[8], spw[8], delay[8];

sprintf_P(apw, PSTR("%i"),myPumpStatus[i].pw);

send_str(apw);

send_str_P(PSTR("\t"));

595 sprintf_P(spw, PSTR("%i"),myPumpParams[i].pw);

send_str(spw);

send_str_P(PSTR("\t"));

sprintf_P(delay, PSTR("%i"),myPumpParams[i].timer_ms);

send_str(delay);

600 send_str_P(PSTR("\r\n"));

}

}

// Get pulse widths for valve positions

605 void get_valve_params() {

send_str_P(PSTR("Valve/Pos:\t0\t1\t2\r\n"));

for (uint8_t i = 0; i < 8; i++) {

char istr[2];

sprintf_P(istr,PSTR("%i"),i+1);

610 send_str_P(PSTR("\t"));

send_str(istr);

char pw0[8], pw1[8], pw2[8];

sprintf_P(pw0,PSTR("%i"),myValveParams[i].pos0);

615 send_str_P(PSTR("\t"));

send_str(pw0);

sprintf_P(pw1,PSTR("%i"),myValveParams[i].pos1);

send_str_P(PSTR("\t"));

send_str(pw1);

620 sprintf_P(pw2,PSTR("%i"),myValveParams[i].pos2);

send_str_P(PSTR("\t"));

send_str(pw2);

send_str_P(PSTR("\r\n"));

625 }

}

void set_scram() { // SCRAM power outputs

char *arg = serialCommand_next();

630 if (arg != NULL) {

if (strcasecmp_P(arg, PSTR("OFF"))==0) {

globalFlags.in_scram = 0;

OK;

return;

635 }
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else {

ERROR;

return;

}

640 }

else {

scram();

OK;

return;

645 }

}

void ready() { // Respond to "READY?" polling

send_str_P(PSTR("READY\r\n"));

650 return;

}

void debug() {

char *arg = serialCommand_next();

655 if (strcasecmp_P(arg,PSTR("ON"))==0) {

globalFlags.debug = 1;

}

else if (strcasecmp_P(arg,PSTR("OFF"))==0) {

globalFlags.debug = 0;

660 }

else {

ERROR;

return;

}

665 OK;

}

//Respond to unrecognized command

void error(const char *cmd) {

670 ERROR;

}

phased.h

/*

* phased.h

*

* Created: 5/28/2014 3:44:48 PM

5 * Author: Nick

*/

#ifndef PHASED_H_

10 #define PHASED_H_

void set_dac_output();

void set_beam_angle();

15

#endif /* PHASED_H_ */

phased.c

/*

* phased.c

*

* Created: 5/28/2014 3:44:39 PM

5 * Author: Nick
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*/

#include <avr/pgmspace.h>

#include <string.h>

#include <stdlib.h>

10 #include <stdio.h>

#include <math.h>

#include "AntennaController_v2_1.h"

#include "parse_cmd.h"

15 #include "serial.h"

#include "phased.h"

#include "AD5668.h"

#define FREQ 2.46e9 // Operating frequency (Hz)

20 #define LT_SPEED 2.9979e8 // Speed of light (m/s)

#define DX 0.0737 // Element separation in X (meters)

#define DY 0.0426 // Element separation in Y (meters)

#define PHA_STATIC 90 // Static phase delay ()

25 #define WORD_V 5300 // DAC word / voltage

#define OK send_str_P(PSTR("OK\r\n"))

#define ERROR send_str_P(PSTR("ERROR\r\n"))

30 void set_dac_output() {

enum dac_add myDac = DAC_A;

char *arg1 = serialCommand_next();

char *arg2 = serialCommand_next();

if ((arg1!=NULL)&&(arg2!=NULL)) {

35 if (strcasecmp_P(arg1, PSTR("1"))==0) {myDac = DAC_A;}

else if (strcasecmp_P(arg1, PSTR("2"))==0) {myDac = DAC_B;}

else if (strcasecmp_P(arg1, PSTR("3"))==0) {myDac = DAC_C;}

else if (strcasecmp_P(arg1, PSTR("4"))==0) {myDac = DAC_D;}

else if (strcasecmp_P(arg1, PSTR("5"))==0) {myDac = DAC_E;}

40 else if (strcasecmp_P(arg1, PSTR("6"))==0) {myDac = DAC_F;}

else if (strcasecmp_P(arg1, PSTR("7"))==0) {myDac = DAC_G;}

else if (strcasecmp_P(arg1, PSTR("8"))==0) {myDac = DAC_H;}

else if (strcasecmp_P(arg1, PSTR("ALL"))==0) {myDac = DAC_ALL;}

else {

45 ERROR;

return;

}

uint_fast16_t out = strtol(arg2, NULL, 10);

50 set_dac_word(myDac,out);

OK;

}

else {

ERROR;

55 return;

}

}

void set_beam_angle() {

60 char *arg1 = serialCommand_next();

char *arg2 = serialCommand_next();

if ((arg1!=NULL)&&(arg2!=NULL)) {

// Get azimuth & elevation scan angles in degrees (conv to rad)

65 double az = 1.25*strtod(arg1, NULL)*(M_PI/180.0);

double el = 1.25*strtod(arg2, NULL)*(M_PI/180.0);

// Calculate progressive phase shifts in x & y in degrees

double beta_x = (180.0/M_PI)*((2.0*M_PI*FREQ)/LT_SPEED)*DX*sinf(fabs(az));
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70 double beta_y = (180.0/M_PI)*((2.0*M_PI*FREQ)/LT_SPEED)*DY*sinf(fabs(el));

double phase[7] =

{PHA_STATIC,PHA_STATIC,PHA_STATIC,PHA_STATIC,PHA_STATIC,PHA_STATIC,PHA_STATIC};

75 if (az != 0) {

phase[0] += beta_x;

phase[1] += beta_x;

phase[4] += beta_x;

}

80 if (el != 0) {

phase[0] += 2.0*beta_y;

}

if (az < 0) {

85 phase[2] += 2.0*beta_x;

phase[3] += 2.0*beta_x;

}

else if (az > 0) {

phase[5] += 2.0*beta_x;

90 phase[6] += 2.0*beta_x;

}

if (el < 0) {

phase[3] += beta_y;

95 phase[5] += beta_y;

phase[2] += 3.0*beta_y;

phase[6] += 3.0*beta_y;

100 phase[1] += 4.0*beta_y;

}

else if (el > 0) {

phase[2] += beta_y;

phase[6] += beta_y;

105

phase[3] += 3.0*beta_y;

phase[5] += 3.0*beta_y;

phase[4] += 4.0*beta_y;

110 }

for (int i = 0; i < 7; i++) {

phase[i] = fmodf(phase[i],360.0); // Phase shifts modulo 360

}

115

int_fast16_t ph_word[7] = {0,0,0,0,0,0,0};

for (int i = 0; i < 7; i++) {

double out_volt =

120 2e-9*powf(phase[i],3.0) + 3e-5*powf(phase[i],2) + 1.18e-2*phase[i] + 2.16e-2;

if ((out_volt >= 0)&&(out_volt <= 1.8)) {

out_volt -= 0.12;

}

if (out_volt >= 2.5) {

125 out_volt += 0.05;

}

ph_word[i] = (int_fast16_t)floorf(WORD_V*out_volt);

}

130 enum dac_add myDacs[7] = {DAC_A, DAC_B, DAC_C, DAC_D, DAC_E, DAC_F, DAC_G};

for (int i = 0; i < 7; i++) {

set_dac_word(myDacs[i],ph_word[i]);
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}

135 OK;

}

else {

ERROR;

return;

140 }

}

A.3 Peripheral Control Code

A.3.1 Analog/Digital Conversion & Temperature Conversion

adc.h

/*

* adc.h

*

* Created: 11/21/2013 5:50:09 PM

5 * Author: Nick

*/

#ifndef ADC_H_

10 #define ADC_H_

#include <stdint.h>

#include <avr/io.h>

15 void configure_adc(void);

int_fast16_t read_adc(uint8_t pin);

20

#endif /* ADC_H_ */

adc.c

/*

ADC configuration & read functions

*/

5 #include <stdint.h>

#include <avr/io.h>

void configure_adc(void) {

// Configure ADC clock & reference

10

ADCSRA |= ((1 << ADPS2)|(1 << ADPS1)|(1 << ADPS0)); // Set ADC clock to 16MHz/128=125kHz

ADMUX &= ~((1<<REFS1)|(1<<REFS0)); // Set ADC reference to AREF (4.096V input)

ADMUX |= (1<<REFS0);

15

ADCSRA |= (1<<ADEN); // Enable ADC

// Set up Timer 0 to generate TIMER0_OVF_vect at 100 Hz

20 TCCR0A |= ((1<<WGM01)|(1<<WGM00));

TCCR0B |= (1<<WGM02); // Set Fast PWM Mode

TCCR0B &= ~(1<<CS02); // Set clock to 16MHz/64

TCCR0B |= (1<<CS01);
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25 TCCR0B |= (1<<CS00);

OCR0A = 249; // Set TOP to 249 -> TOV rate = 16MHz/(64*(249+1)) = 1000 Hz

TIMSK0 |= (1<<TOIE0); // Enable Timer 0 Overflow Interrupt

30 }

int_fast16_t read_adc(uint8_t pin) {

pin = (pin & 0x07); // Mask out only MUX2...MUX0 bits

ADMUX = ((ADMUX & 0xF8) | pin); // Select pin

35 ADCSRA |= (1<<ADSC); // Start ADC conversion

while (ADCSRA & (1<<ADSC)); // Wait for conversion to complete

return (ADC);

}

adc2temp.h

#ifndef ADC2TEMP_H_

#define ADC2TEMP_H_

5 //adc2temp Header File

#include <stdint.h>

int_fast16_t adc2temp(int_fast16_t temp);

10

#endif /* ADC2TEMP_H_ */

adc2temp.c

/*

LUT for Vishay 01M1002KF NTC Thermistor on 4.096V reference w/ 10k low-side resistor

Converts ADC value to signed 16 bit int representing 10*[temp in deg C]

0.1C resolution for 0.4-39C

5 0.2C resolution for -22.1-67.3C

1.0C resolution for -51.2-120.1C

*/

#include "adc2temp.h"

10 #include <avr/pgmspace.h>

#include <stdint.h>

static const int_fast16_t tempcnv[1024] PROGMEM = {

0xF555, 0xFD07, 0xFD37, 0xFD5A, 0xFD76, 0xFD8D, 0xFDA1, 0xFDB3,

15 0xFDC3, 0xFDD1, 0xFDDE, 0xFDEA, 0xFDF5, 0xFE00, 0xFE09, 0xFE13,

0xFE1B, 0xFE24, 0xFE2B, 0xFE33, 0xFE3A, 0xFE41, 0xFE48, 0xFE4E,

0xFE54, 0xFE5A, 0xFE60, 0xFE66, 0xFE6B, 0xFE70, 0xFE75, 0xFE7A,

0xFE7F, 0xFE84, 0xFE89, 0xFE8D, 0xFE91, 0xFE96, 0xFE9A, 0xFE9E,

0xFEA2, 0xFEA6, 0xFEAA, 0xFEAE, 0xFEB1, 0xFEB5, 0xFEB9, 0xFEBC,

20 0xFEBF, 0xFEC3, 0xFEC6, 0xFEC9, 0xFECD, 0xFED0, 0xFED3, 0xFED6,

0xFED9, 0xFEDC, 0xFEDF, 0xFEE2, 0xFEE5, 0xFEE8, 0xFEEA, 0xFEED,

0xFEF0, 0xFEF3, 0xFEF5, 0xFEF8, 0xFEFB, 0xFEFD, 0xFF00, 0xFF02,

0xFF05, 0xFF07, 0xFF0A, 0xFF0C, 0xFF0E, 0xFF11, 0xFF13, 0xFF15,

0xFF18, 0xFF1A, 0xFF1C, 0xFF1E, 0xFF20, 0xFF23, 0xFF25, 0xFF27,

25 0xFF29, 0xFF2B, 0xFF2D, 0xFF2F, 0xFF31, 0xFF33, 0xFF35, 0xFF37,

0xFF39, 0xFF3B, 0xFF3D, 0xFF3F, 0xFF41, 0xFF43, 0xFF45, 0xFF47,

0xFF49, 0xFF4A, 0xFF4C, 0xFF4E, 0xFF50, 0xFF52, 0xFF54, 0xFF55,

0xFF57, 0xFF59, 0xFF5B, 0xFF5C, 0xFF5E, 0xFF60, 0xFF61, 0xFF63,

0xFF65, 0xFF66, 0xFF68, 0xFF6A, 0xFF6B, 0xFF6D, 0xFF6F, 0xFF70,

30 0xFF72, 0xFF73, 0xFF75, 0xFF77, 0xFF78, 0xFF7A, 0xFF7B, 0xFF7D,
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0xFF7E, 0xFF80, 0xFF81, 0xFF83, 0xFF84, 0xFF86, 0xFF87, 0xFF89,

0xFF8A, 0xFF8C, 0xFF8D, 0xFF8F, 0xFF90, 0xFF91, 0xFF93, 0xFF94,

0xFF96, 0xFF97, 0xFF99, 0xFF9A, 0xFF9B, 0xFF9D, 0xFF9E, 0xFF9F,

0xFFA1, 0xFFA2, 0xFFA4, 0xFFA5, 0xFFA6, 0xFFA8, 0xFFA9, 0xFFAA,

35 0xFFAC, 0xFFAD, 0xFFAE, 0xFFAF, 0xFFB1, 0xFFB2, 0xFFB3, 0xFFB5,

0xFFB6, 0xFFB7, 0xFFB9, 0xFFBA, 0xFFBB, 0xFFBC, 0xFFBE, 0xFFBF,

0xFFC0, 0xFFC1, 0xFFC3, 0xFFC4, 0xFFC5, 0xFFC6, 0xFFC7, 0xFFC9,

0xFFCA, 0xFFCB, 0xFFCC, 0xFFCE, 0xFFCF, 0xFFD0, 0xFFD1, 0xFFD2,

0xFFD3, 0xFFD5, 0xFFD6, 0xFFD7, 0xFFD8, 0xFFD9, 0xFFDB, 0xFFDC,

40 0xFFDD, 0xFFDE, 0xFFDF, 0xFFE0, 0xFFE1, 0xFFE3, 0xFFE4, 0xFFE5,

0xFFE6, 0xFFE7, 0xFFE8, 0xFFE9, 0xFFEA, 0xFFEC, 0xFFED, 0xFFEE,

0xFFEF, 0xFFF0, 0xFFF1, 0xFFF2, 0xFFF3, 0xFFF4, 0xFFF6, 0xFFF7,

0xFFF8, 0xFFF9, 0xFFFA, 0xFFFB, 0xFFFC, 0xFFFD, 0xFFFE, 0xFFFF,

0x0000, 0x0001, 0x0002, 0x0004, 0x0005, 0x0006, 0x0007, 0x0008,

45 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x000E, 0x000F, 0x0010,

0x0011, 0x0012, 0x0013, 0x0014, 0x0015, 0x0016, 0x0017, 0x0018,

0x0019, 0x001A, 0x001B, 0x001C, 0x001D, 0x001E, 0x001F, 0x0020,

0x0021, 0x0022, 0x0023, 0x0024, 0x0025, 0x0026, 0x0027, 0x0028,

0x0029, 0x002A, 0x002B, 0x002C, 0x002D, 0x002E, 0x002F, 0x0030,

50 0x0031, 0x0032, 0x0033, 0x0034, 0x0035, 0x0036, 0x0037, 0x0038,

0x0039, 0x003A, 0x003B, 0x003C, 0x003D, 0x003E, 0x003F, 0x0040,

0x0041, 0x0042, 0x0043, 0x0043, 0x0044, 0x0045, 0x0046, 0x0047,

0x0048, 0x0049, 0x004A, 0x004B, 0x004C, 0x004D, 0x004E, 0x004F,

0x0050, 0x0051, 0x0052, 0x0053, 0x0054, 0x0054, 0x0055, 0x0056,

55 0x0057, 0x0058, 0x0059, 0x005A, 0x005B, 0x005C, 0x005D, 0x005E,

0x005F, 0x0060, 0x0060, 0x0061, 0x0062, 0x0063, 0x0064, 0x0065,

0x0066, 0x0067, 0x0068, 0x0069, 0x006A, 0x006B, 0x006B, 0x006C,

0x006D, 0x006E, 0x006F, 0x0070, 0x0071, 0x0072, 0x0073, 0x0074,

0x0075, 0x0075, 0x0076, 0x0077, 0x0078, 0x0079, 0x007A, 0x007B,

60 0x007C, 0x007D, 0x007E, 0x007E, 0x007F, 0x0080, 0x0081, 0x0082,

0x0083, 0x0084, 0x0085, 0x0086, 0x0086, 0x0087, 0x0088, 0x0089,

0x008A, 0x008B, 0x008C, 0x008D, 0x008E, 0x008E, 0x008F, 0x0090,

0x0091, 0x0092, 0x0093, 0x0094, 0x0095, 0x0096, 0x0096, 0x0097,

0x0098, 0x0099, 0x009A, 0x009B, 0x009C, 0x009D, 0x009E, 0x009E,

65 0x009F, 0x00A0, 0x00A1, 0x00A2, 0x00A3, 0x00A4, 0x00A5, 0x00A5,

0x00A6, 0x00A7, 0x00A8, 0x00A9, 0x00AA, 0x00AB, 0x00AC, 0x00AC,

0x00AD, 0x00AE, 0x00AF, 0x00B0, 0x00B1, 0x00B2, 0x00B3, 0x00B3,

0x00B4, 0x00B5, 0x00B6, 0x00B7, 0x00B8, 0x00B9, 0x00BA, 0x00BB,

0x00BB, 0x00BC, 0x00BD, 0x00BE, 0x00BF, 0x00C0, 0x00C1, 0x00C2,

70 0x00C2, 0x00C3, 0x00C4, 0x00C5, 0x00C6, 0x00C7, 0x00C8, 0x00C9,

0x00C9, 0x00CA, 0x00CB, 0x00CC, 0x00CD, 0x00CE, 0x00CF, 0x00D0,

0x00D0, 0x00D1, 0x00D2, 0x00D3, 0x00D4, 0x00D5, 0x00D6, 0x00D7,

0x00D7, 0x00D8, 0x00D9, 0x00DA, 0x00DB, 0x00DC, 0x00DD, 0x00DE,

0x00DF, 0x00DF, 0x00E0, 0x00E1, 0x00E2, 0x00E3, 0x00E4, 0x00E5,

75 0x00E6, 0x00E6, 0x00E7, 0x00E8, 0x00E9, 0x00EA, 0x00EB, 0x00EC,

0x00ED, 0x00EE, 0x00EE, 0x00EF, 0x00F0, 0x00F1, 0x00F2, 0x00F3,

0x00F4, 0x00F5, 0x00F6, 0x00F6, 0x00F7, 0x00F8, 0x00F9, 0x00FA,

0x00FB, 0x00FC, 0x00FD, 0x00FE, 0x00FE, 0x00FF, 0x0100, 0x0101,

0x0102, 0x0103, 0x0104, 0x0105, 0x0106, 0x0107, 0x0107, 0x0108,

80 0x0109, 0x010A, 0x010B, 0x010C, 0x010D, 0x010E, 0x010F, 0x0110,

0x0110, 0x0111, 0x0112, 0x0113, 0x0114, 0x0115, 0x0116, 0x0117,

0x0118, 0x0119, 0x011A, 0x011A, 0x011B, 0x011C, 0x011D, 0x011E,

0x011F, 0x0120, 0x0121, 0x0122, 0x0123, 0x0124, 0x0125, 0x0126,

0x0126, 0x0127, 0x0128, 0x0129, 0x012A, 0x012B, 0x012C, 0x012D,

85 0x012E, 0x012F, 0x0130, 0x0131, 0x0132, 0x0133, 0x0133, 0x0134,

0x0135, 0x0136, 0x0137, 0x0138, 0x0139, 0x013A, 0x013B, 0x013C,

0x013D, 0x013E, 0x013F, 0x0140, 0x0141, 0x0142, 0x0143, 0x0144,

0x0144, 0x0145, 0x0146, 0x0147, 0x0148, 0x0149, 0x014A, 0x014B,

0x014C, 0x014D, 0x014E, 0x014F, 0x0150, 0x0151, 0x0152, 0x0153,

90 0x0154, 0x0155, 0x0156, 0x0157, 0x0158, 0x0159, 0x015A, 0x015B,

0x015C, 0x015D, 0x015E, 0x015F, 0x0160, 0x0161, 0x0162, 0x0163,

0x0164, 0x0165, 0x0166, 0x0167, 0x0168, 0x0169, 0x016A, 0x016B,

0x016C, 0x016D, 0x016E, 0x016F, 0x0170, 0x0171, 0x0172, 0x0173,

0x0174, 0x0175, 0x0176, 0x0177, 0x0178, 0x0179, 0x017A, 0x017B,
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95 0x017C, 0x017D, 0x017E, 0x017F, 0x0180, 0x0181, 0x0182, 0x0183,

0x0184, 0x0185, 0x0186, 0x0188, 0x0189, 0x018A, 0x018B, 0x018C,

0x018D, 0x018E, 0x018F, 0x0190, 0x0191, 0x0192, 0x0193, 0x0194,

0x0195, 0x0197, 0x0198, 0x0199, 0x019A, 0x019B, 0x019C, 0x019D,

0x019E, 0x019F, 0x01A0, 0x01A1, 0x01A3, 0x01A4, 0x01A5, 0x01A6,

100 0x01A7, 0x01A8, 0x01A9, 0x01AA, 0x01AC, 0x01AD, 0x01AE, 0x01AF,

0x01B0, 0x01B1, 0x01B2, 0x01B3, 0x01B5, 0x01B6, 0x01B7, 0x01B8,

0x01B9, 0x01BA, 0x01BC, 0x01BD, 0x01BE, 0x01BF, 0x01C0, 0x01C1,

0x01C3, 0x01C4, 0x01C5, 0x01C6, 0x01C7, 0x01C9, 0x01CA, 0x01CB,

0x01CC, 0x01CD, 0x01CF, 0x01D0, 0x01D1, 0x01D2, 0x01D3, 0x01D5,

105 0x01D6, 0x01D7, 0x01D8, 0x01DA, 0x01DB, 0x01DC, 0x01DD, 0x01DF,

0x01E0, 0x01E1, 0x01E2, 0x01E4, 0x01E5, 0x01E6, 0x01E7, 0x01E9,

0x01EA, 0x01EB, 0x01ED, 0x01EE, 0x01EF, 0x01F1, 0x01F2, 0x01F3,

0x01F5, 0x01F6, 0x01F7, 0x01F8, 0x01FA, 0x01FB, 0x01FC, 0x01FE,

0x01FF, 0x0201, 0x0202, 0x0203, 0x0205, 0x0206, 0x0207, 0x0209,

110 0x020A, 0x020C, 0x020D, 0x020E, 0x0210, 0x0211, 0x0213, 0x0214,

0x0215, 0x0217, 0x0218, 0x021A, 0x021B, 0x021D, 0x021E, 0x0220,

0x0221, 0x0223, 0x0224, 0x0225, 0x0227, 0x0228, 0x022A, 0x022B,

0x022D, 0x022F, 0x0230, 0x0232, 0x0233, 0x0235, 0x0236, 0x0238,

0x0239, 0x023B, 0x023C, 0x023E, 0x0240, 0x0241, 0x0243, 0x0244,

115 0x0246, 0x0248, 0x0249, 0x024B, 0x024D, 0x024E, 0x0250, 0x0252,

0x0253, 0x0255, 0x0257, 0x0258, 0x025A, 0x025C, 0x025D, 0x025F,

0x0261, 0x0263, 0x0264, 0x0266, 0x0268, 0x026A, 0x026B, 0x026D,

0x026F, 0x0271, 0x0273, 0x0275, 0x0276, 0x0278, 0x027A, 0x027C,

0x027E, 0x0280, 0x0282, 0x0284, 0x0285, 0x0287, 0x0289, 0x028B,

120 0x028D, 0x028F, 0x0291, 0x0293, 0x0295, 0x0297, 0x0299, 0x029B,

0x029D, 0x029F, 0x02A1, 0x02A4, 0x02A6, 0x02A8, 0x02AA, 0x02AC,

0x02AE, 0x02B0, 0x02B3, 0x02B5, 0x02B7, 0x02B9, 0x02BB, 0x02BE,

0x02C0, 0x02C2, 0x02C5, 0x02C7, 0x02C9, 0x02CC, 0x02CE, 0x02D0,

0x02D3, 0x02D5, 0x02D8, 0x02DA, 0x02DC, 0x02DF, 0x02E1, 0x02E4,

125 0x02E7, 0x02E9, 0x02EC, 0x02EE, 0x02F1, 0x02F4, 0x02F6, 0x02F9,

0x02FC, 0x02FE, 0x0301, 0x0304, 0x0307, 0x0309, 0x030C, 0x030F,

0x0312, 0x0315, 0x0318, 0x031B, 0x031E, 0x0321, 0x0324, 0x0327,

0x032A, 0x032D, 0x0330, 0x0334, 0x0337, 0x033A, 0x033D, 0x0341,

0x0344, 0x0348, 0x034B, 0x034F, 0x0352, 0x0356, 0x0359, 0x035D,

130 0x0360, 0x0364, 0x0368, 0x036C, 0x0370, 0x0373, 0x0377, 0x037B,

0x037F, 0x0383, 0x0388, 0x038C, 0x0390, 0x0394, 0x0399, 0x039D,

0x03A2, 0x03A6, 0x03AB, 0x03AF, 0x03B4, 0x03B9, 0x03BE, 0x03C3,

0x03C8, 0x03CD, 0x03D2, 0x03D7, 0x03DD, 0x03E2, 0x03E8, 0x03ED,

0x03F3, 0x03F9, 0x03FF, 0x0405, 0x040B, 0x0411, 0x0418, 0x041E,

135 0x0425, 0x042C, 0x0433, 0x043A, 0x0441, 0x0448, 0x0450, 0x0458,

0x0460, 0x0468, 0x0470, 0x0479, 0x0482, 0x048B, 0x0494, 0x049D,

0x04A7, 0x04B1, 0x04BC, 0x04C6, 0x04D1, 0x04DD, 0x04E9, 0x04F5,

0x0501, 0x050F, 0x051C, 0x052B, 0x0539, 0x0549, 0x0559, 0x056A,

0x057C, 0x058E, 0x05A2, 0x05B7, 0x05CD, 0x05E5, 0x05FE, 0x0619,

140 0x0636, 0x0655, 0x0677, 0x069D, 0x06C6, 0x06F4, 0x0728, 0x0763,

0x07A8, 0x07FA, 0x085E, 0x08DE, 0x098C, 0x0A96, 0x0C9D, 0x7FFF};

int_fast16_t adc2temp(int_fast16_t temp)

{

145 if (temp < 1024 & temp >= 0)

{

return pgm_read_word(tempcnv + temp);

}

else

150 {

return 0xF555;

}

}

A.3.2 H-Bridge & Servo Control PWM Driver Libraries

pwm.h
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/*

* pwm.h

*

* Created: 11/21/2013 6:21:48 PM

5 * Author: Nick

*/

#ifndef PWM_H_

10 #define PWM_H_

/*

Temperature & Motion Control Peripherals

15 H-Bridges:

TEC:

Heat: PD4

Cool: PD5

20 PWM: PC4/OC3C

Pump1:

In: PA6

Out: PA7

25 PWM: PC5/OC3B

Pump2:

In: PA4

Out: PA5

30 PWM: PC6/OC3A

Pump3:

In: PA2

Out: PA3

35 PWM: PB6/OC1B

Pump4:

In: PA0

Out: PA1

40 PWM: PB5/OC1A

Servos:

PWM: PB4/OC2A

45

Enable: PC3

SEL0: PC0

SEL1: PC1

50 SEL2: PC2

*/

#include <stdint.h>

55

#define tec_dir_port PORTD

#define tec_cool_pin PD4

#define tec_heat_pin PD5

60 #define pump_dir_port PORTA

#define pump1_in_pin PA6

#define pump1_out_pin PA7

#define pump2_in_pin PA4

#define pump2_out_pin PA5
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65 #define pump3_in_pin PA2

#define pump3_out_pin PA3

#define pump4_in_pin PA0

#define pump4_out_pin PA1

70 #define servo_sel_port PORTC

#define servo_sel_mask 0x07

#define servo_en_pin PC3

#define servo_s0_pin PC0

#define servo_s1_pin PC1

75 #define servo_s2_pin PC2

#define tec_pw_reg OCR3C

#define pump1_pw_reg OCR3B

#define pump2_pw_reg OCR3A

80 #define pump3_pw_reg OCR1B

#define pump4_pw_reg OCR1A

#define servo_pw_reg OCR2A

enum tec_mode {TEC_OFF, TEC_COOL, TEC_HEAT};

85 enum pump_mode {MODE_NULL, MODE_OFF, MODE_IN, MODE_OUT};

enum pump {PUMP_NULL, PUMP1, PUMP2, PUMP3, PUMP4};

enum servo {SERVO1, SERVO2, SERVO3, SERVO4, SERVO5, SERVO6, SERVO7, SERVO8};

struct pump_status {

90 enum pump_mode mode;

int_fast16_t pw;

};

struct tec_status {

95 enum tec_mode mode;

uint_fast16_t pw;

};

void configure_pwm(void);

100

void set_tec(enum tec_mode mode, uint_fast16_t pw);

struct tec_status get_tec();

105 void set_servo(enum servo s, uint8_t pw);

void set_pump(enum pump p, enum pump_mode mode, uint_fast16_t pw);

struct pump_status get_pump(enum pump p);

110

void scram();

#endif /* PWM_H_ */

pwm.c

/*

Temperature & Motion Control Peripherals

H-Bridges:

5

TEC:

Heat: PD4

Cool: PD5

PWM: PC4/OC3C

10

Pump1:

In: PA6
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Out: PA7

PWM: PC5/OC3B

15

Pump2:

In: PA4

Out: PA5

PWM: PC6/OC3A

20

Pump3:

In: PA2

Out: PA3

PWM: PB6/OC1B

25

Pump4:

In: PA0

Out: PA1

PWM: PB5/OC1A

30

Servos:

PWM: PB4/OC2A

35 Enable: PC3

SEL0: PC0

SEL1: PC1

SEL2: PC2

40

*/

#include "AntennaController_v2_1.h"

#include "pwm.h"

45 #include <avr/io.h>

#include <util/delay.h>

void configure_pwm(void) {

// Configure Pump and TEC PWM Direction & PWM Outputs:

50

DDRA |= 0b11111111; //PA0:7 Outputs: Pump1-4 Direction Pins

DDRB |= 0b01110000; //PB4:6 Outputs: Servo & Pump 3&4 PWM Outputs

DDRC |= 0b01111111; //PC0:6 Outputs: Servo Select, Enable, TEC & Pump 1&2 PWM Outputs

DDRD |= 0b00110000; //PD4:5 Outputs: TEC Heat/Cool Pins

55

OCR1A = 0x0; //Set all PWM Outputs to 0

OCR1B = 0x0;

OCR2A = 0x0;

60

OCR3A = 0x0;

OCR3B = 0x0;

OCR3C = 0x0;

65 TCCR1A = 0b10101000; // Phase & Frequency Correct PWM, 16MHz Clock

TCCR1B = 0b00010001;

TCCR3A = 0b10101000;

TCCR3B = 0b00010001;

70 TCCR2A = 0b10000001; // Phase Correct PWM

TCCR2B = 0b00000110; // Clock = 16MHz/256 -> f_PWM=16MHz/(256*510) = 122.55Hz

ICR1 = 0x03FF; // TOP = 1023 -> f_PWM = 16e6/(2*1*1023) = 7.8201kHz

ICR3 = 0x03FF;

75

return;
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}

void set_tec(enum tec_mode mode, uint_fast16_t pw) {

80 // Limit pulse width to 10 bits

uint_fast16_t pw_lim = 0;

if (pw > 0x3FF) {pw_lim = 0x3FF;}

else {pw_lim = pw;}

85 switch (mode) {

case TEC_OFF: // TEC Off

tec_dir_port &= ~((1<<tec_heat_pin)|(1<<tec_cool_pin));

break;

case TEC_COOL: // TEC Cool

90 tec_dir_port |= (1<<tec_cool_pin);

tec_dir_port &= ~(1<<tec_heat_pin);

break;

case TEC_HEAT: // TEC Heat

tec_dir_port |= (1<<tec_heat_pin);

95 tec_dir_port &= ~(1<<tec_cool_pin);

break;

default:

return;

break;

100 }

tec_pw_reg = pw_lim; // Set TEC PWM register

return;

}

105 struct tec_status get_tec() {

struct tec_status myTECstatus;

if ( !(tec_dir_port&(1<<tec_heat_pin)) && !(tec_dir_port&(1<<tec_cool_pin)) ) {

myTECstatus.mode = TEC_OFF;

110 }

if ( !(tec_dir_port&(1<<tec_heat_pin)) && (tec_dir_port&(1<<tec_cool_pin)) ) {

myTECstatus.mode = TEC_COOL;

}

if ( (tec_dir_port*(1<<tec_heat_pin)) && !(tec_dir_port&(1<<tec_cool_pin)) ) {

115 myTECstatus.mode = TEC_HEAT;

}

myTECstatus.pw = tec_pw_reg;

120 return myTECstatus;

}

void set_servo(enum servo s, uint8_t pw) {

if ((s < SERVO1)||(s > SERVO8)) { // Validate servo selection

125 return;

}

servo_pw_reg = pw; // Set desired pulse width

130 servo_sel_port = ((servo_sel_port & ~servo_sel_mask) | (s & 0x07)); // Set servo select pins

servo_sel_port |= (1<<servo_en_pin); // Enable servo output

_delay_ms(SERVO_TIME); // Wait for servo move to complete

servo_sel_port &= ~(1<<servo_en_pin); // Disable servo output

135

servo_pw_reg = 0; // Reset pulse width to 0

}

void set_pump(enum pump p, enum pump_mode mode, uint_fast16_t pw) {

140 // Limit pulse width to 10 bits
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uint_fast16_t pw_lim = 0;

if (pw > 0x3FF) {pw_lim = 0x3FF;}

else {pw_lim = pw;}

145 switch (mode) { // Set Pump Mode

case MODE_OFF: // Pump Off

pump_dir_port &= ~( (1 << (9-2*p)) | (1 << (8-2*p)) );

break;

case MODE_IN: // Pump In

150 pump_dir_port |= (1 << (8-2*p));

pump_dir_port &= ~(1 << (9-2*p));

break;

case MODE_OUT: // Pump Out

pump_dir_port |= (1 << (9-2*p));

155 pump_dir_port &= ~(1 << (8-2*p));

break;

case MODE_NULL:

break;

default:

160 return;

break;

}

switch (p) { // Set Pump pulse width

case PUMP1:

165 pump1_pw_reg = pw_lim;

break;

case PUMP2:

pump2_pw_reg = pw_lim;

break;

170 case PUMP3:

pump3_pw_reg = pw_lim;

break;

case PUMP4:

pump4_pw_reg = pw_lim;

175 break;

case PUMP_NULL:

break;

default:

return;

180 break;

}

}

struct pump_status get_pump(enum pump p) {

185 struct pump_status myPumpStatus;

switch (p) {

case PUMP1:

myPumpStatus.pw = pump1_pw_reg;

break;

190 case PUMP2:

myPumpStatus.pw = pump2_pw_reg;

break;

case PUMP3:

myPumpStatus.pw = pump3_pw_reg;

195 break;

case PUMP4:

myPumpStatus.pw = pump4_pw_reg;

break;

default:

200 myPumpStatus.pw = 0;

break;

}

if ( !(pump_dir_port&(1<<(8-2*p))) && !(pump_dir_port*(1<<(9-2*p))) ) {
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205 myPumpStatus.mode = MODE_OFF;

}

if ( (pump_dir_port&(1<<(8-2*p))) && !(pump_dir_port&(1<<(9-2*p))) ) {

myPumpStatus.mode = MODE_IN;

}

210 if ( !(pump_dir_port&(1<<(8-2*p))) && (pump_dir_port&(1<<(9-2*p))) ) {

myPumpStatus.mode = MODE_OUT;

}

return myPumpStatus;

215 }

// Shut down all power outputs

void scram() {

globalFlags.in_scram = 1;

220 pump_dir_port = 0x0;

tec_dir_port &= ~(0b00110000);

servo_sel_port &= ~(0b00001111);

return;

}

A.3.3 Phase Shifter Control DAC Driver Library

AD5668.h

/*

* AD5668.h

*

* Created: 5/28/2014 11:01:38 AM

5 * Author: Nick

*/

#ifndef AD5668_H_

10 #define AD5668_H_

#include <stdint.h>

#define WR_IN 0b0000 // Write to input register n

15 #define UP_DAC 0b0001 // Update DAC register from input register n

#define WR_IN_UP_ALL 0b0010 // Write to input register n, update all DAC registers

#define WR_UP_DAC 0b0011 // Write & update DAC channel n

#define PU_PD 0b0100 // Toggle DAC powerup/powerdown

#define LD_CLR 0b0101 // Load clear code register

20 #define LD_LDAC 0b0110 // Load ~LDAC register

#define RST 0b0111 // Reset DAC

#define SET_REF 0b1000 // Configure INT/EXT reference voltage

enum dac_add {DAC_A=0x0, DAC_B=0x1, DAC_C=0x2, DAC_D=0x3,

25 DAC_E=0x4, DAC_F=0x5, DAC_G=0x6, DAC_H=0x7, DAC_ALL=0xF};

void configure_dac();

void set_dac_word(enum dac_add dac, uint_fast16_t word);

30

#endif /* AD5668_H_ */

AD5668.c

/*

* AD5668.c

*

* Created: 5/28/2014 11:01:27 AM
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5 * Author: Nick

*/

#include "AD5668.h"

#include "spi.h"

10

void configure_dac() {

uint8_t cmd[4] = {0,0,0,0};

//uint_fast32_t cmd = 0;

15 cmd[0] = (SET_REF << 0); // Setup reference

cmd[3] = (1<<0); // Internal reference on

//cmd = (SET_REF << 24) | (1<<0);

20 spi_transfer(cmd,4);

}

void set_dac_word(enum dac_add dac, uint_fast16_t word) {

uint8_t cmd[4] = {0,0,0,0};

25 //uint_fast32_t cmd = 0;

cmd[0] = (WR_UP_DAC << 0); // Write & update DAC channel

cmd[1] = (dac << 4); // DAC address

cmd[1] |= ((word & 0xF000) >> 12);

30 cmd[2] = ((word & 0x0FF0) >> 4);

cmd[3] = (((word & 0x000F) >> 0) << 4);

//cmd = (WR_UP_DAC << 24) | (dac << 20) | (word << 4);

35 spi_transfer(cmd,4);

}

A.4 Communication Code

A.4.1 XBee WiFi Radio Initialization Code

xbee.h

/*

* xbee.h

*

* Created: 11/21/2013 5:48:56 PM

5 * Author: Nick

*/

#ifndef XBEE_H_

10 #define XBEE_H_

void configure_xbee(void);

15

#endif /* XBEE_H_ */

xbee.c

/*

Configures an XBee Wi-Fi in AT mode to connect to a Wi-Fi network

and alert the server that the device is ready.

*/
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5

#include <avr/pgmspace.h>

#include <util/delay.h>

#include <string.h>

#include "AntennaController_v2_1.h"

10 #include "serial.h"

#include "uart.h"

#define LED_ON (PORTD |= (1<<6))

#define LED_OFF (PORTD &= ~(1<<6))

15

/************************************************************************/

/* Control Server & Network Parameters */

/************************************************************************/

20 #define ssid "aperskin-control" // WiFi network SSID

#define pass "aperphore" // Encryption Passphrase

#define dest "10.0.0.10" // Control Server IP address

25 #define dport "238C" // Control Server Listening Port: 9100 = 0x238C

#define sport "238D" // XBee Listening Port: 9101 = 0x238D

void check_ok(void);

30 void configure_xbee()

{

flush_serial();

send_str_P(PSTR("+++")); // Enter AT command mode

_delay_ms(1100); // Observe default 1000ms guard time around +++

35 check_ok();

send_str_P(PSTR("ATRE\r")); // Reset to factory defaults

_delay_ms(20);

check_ok();

40

send_str_P(PSTR("ATDL ")); // Set destination address

send_str_P(PSTR(dest));

send_str_P(PSTR("\r"));

_delay_ms(20);

45 check_ok();

send_str_P(PSTR("ATC0 ")); // Set source (listening) port

send_str_P(PSTR(sport));

send_str_P(PSTR("\r"));

50 _delay_ms(20);

check_ok();

send_str_P(PSTR("ATDE ")); // Set destination port

send_str_P(PSTR(dport));

55 send_str_P(PSTR("\r"));

_delay_ms(20);

check_ok();

send_str_P(PSTR("ATID ")); // Set WiFi SSID

60 send_str_P(PSTR(ssid));

send_str_P(PSTR("\r"));

_delay_ms(50);

check_ok();

65 send_str_P(PSTR("ATPK ")); // Set encryption passphrase

send_str_P(PSTR(pass));

send_str_P(PSTR("\r"));

_delay_ms(50);
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check_ok();

70

send_str_P(PSTR("ATEE 2\r")); // Enable WPA2 encryption

_delay_ms(20);

check_ok();

75 send_str_P(PSTR("ATIP 1\r")); // Set TCP mode

_delay_ms(20);

check_ok();

send_str_P(PSTR("ATAC\r")); // Apply configuration changes

80 _delay_ms(20);

check_ok();

/* END OF CONFIGURATION COMMANDS */

85 flush_serial();

char sh_buf[10], sl_buf[10];

send_str_P((PSTR("ATSH\r"))); // Get high 4 bytes of XBee serial

90 _delay_ms(20);

recv_str(sh_buf,10);

strncat(deviceSerial, sh_buf, 10);

95 send_str_P(PSTR("ATSL\r")); // Get low 4 bytes of XBee serial

_delay_ms(20);

recv_str(sl_buf,10);

strncat(deviceSerial, sl_buf, 10);

100

flush_serial();

/*

Poll XBee connection status until it returns 0x0

105 0x00: AP join successful, IP address assigned, listening socket established

*/

char con_reply[10] = "\0";

while (1)

{

110 LED_ON;

send_str_P(PSTR("ATAI\r"));

_delay_ms(200);

recv_str(con_reply,10);

LED_OFF;

115 _delay_ms(200);

if (strcasecmp_P(con_reply, PSTR("0"))==0)

{

break;

}

120 }

send_str_P(PSTR("ATCN\r")); // Exit command mode

_delay_ms(20);

check_ok();

125

_delay_ms(500);

flush_serial();

130 send_str(deviceSerial);

send_str_P(PSTR(" READY")); // Send READY string to server

return;
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}

135 // Check if XBee replied "OK" to a command, Blink "SOS" if not

void check_ok(void)

{

char buf[10];

recv_str(buf,10);

140 if (strcasecmp_P(buf,PSTR("OK"))!=0)

{

while (1) // Blink "SOS"

{

LED_OFF;

145 _delay_ms(300);

// Blink "S"

LED_ON;

_delay_ms(75);

150 LED_OFF;

_delay_ms(75);

LED_ON;

_delay_ms(75);

LED_OFF;

155 _delay_ms(75);

LED_ON;

_delay_ms(75);

LED_OFF;

_delay_ms(225);

160

// Blink "O"

LED_ON;

_delay_ms(225);

LED_OFF;

165 _delay_ms(75);

LED_ON;

_delay_ms(225);

LED_OFF;

_delay_ms(75);

170 LED_ON;

_delay_ms(225);

LED_OFF;

_delay_ms(225);

175 // Blink "S"

LED_ON;

_delay_ms(75);

LED_OFF;

_delay_ms(75);

180 LED_ON;

_delay_ms(75);

LED_OFF;

_delay_ms(75);

LED_ON;

185 _delay_ms(75);

LED_OFF;

_delay_ms(225);

}

}

190 else return;

}

A.4.2 Serial String Communication Library

serial.h
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#ifndef SERIAL_H_

#define SERIAL_H_

5 #include <stdint.h>

void flush_serial();

void send_str_P(const char *s);

10

void send_str(char *s);

uint8_t recv_str(char *buf, uint8_t size);

15 #endif /* SERIAL_H_ */

serial.c

/*

Functions for sending and receiving strings via UART serial port

*/

5 #include <avr/pgmspace.h>

#include "AntennaController_v2_1.h"

#include "serial.h"

#include "usb_serial.h"

10 #include "uart.h"

// Flush buffered command responses

void flush_serial() {

#ifdef USB_SERIAL

15 usb_serial_flush_input();

#else

while (uart_available()) {

uart_getchar();

}

20 #endif

}

// Send string in flash memory (program space) to serial port

void send_str_P(const char *s) {

25 char c;

while (1) {

c = pgm_read_byte(s++);

if (!c) break;

#ifdef USB_SERIAL

30 usb_serial_putchar(c);

#else

uart_putchar(c);

#endif

}

35 }

// Send a string in RAM to serial port

void send_str(char *s) {

char c;

40 for (int i = 0; i < 255; i++) {

c = s[i];

if (!c) break;

#ifdef USB_SERIAL

usb_serial_putchar(c);

45 #else
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uart_putchar(c);

#endif

}

50 }

// Receive a \r terminated string from serial port into a buffer

uint8_t recv_str(char *buf, uint8_t size) {

char inChar;

55 uint8_t count=0;

#ifdef USB_SERIAL

while ((usb_serial_available() > 0) && (count <= size)) {

inChar = usb_serial_getchar();

#else

60 while ((uart_available() > 0) && (count <= size)) {

inChar = uart_getchar();

#endif

if (inChar >= 0x20 && inChar <= 0x7E) { // Add to buffer if printable

*buf++ = inChar;

65 *buf = ’\0’;

count++;

}

if (inChar == ’\r’) { // Return buffer if carriage return received

*buf = ’\0’;

70 return count;

}

}

*buf = ’\0’;

return count;

75 }

A.4.3 SPI Master Controller Driver Library

spi.h

/*

* spi.h

*

* Created: 5/28/2014 12:41:29 AM

5 * Author: Nick

*/

#ifndef SPI_H_

10 #define SPI_H_

#define spi_port PORTB

#define spi_port_dir DDRB

15 #define SS PB0

#define SCLK PB1

#define MOSI PB2

#define MISO PB3

20 void configure_spi();

uint8_t spi_transfer(char* buf, uint8_t length);

#endif /* SPI_H_ */

spi.c

/*

* spi.c
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*

* Created: 5/28/2014 12:41:17 AM

5 * Author: Nick

*/

/*

SPI Master driver for AT90USB1286

10 Pin assignments:

SS: PB0

SCLK: PB1

MOSI: PB2

15 MISO: PB3

*/

#include <avr/io.h>

#include "spi.h"

20

void configure_spi() {

spi_port_dir |= ((1<<MOSI)|(1<<SCLK)|(1<<SS)); // MOSI, SCLK, SS outputs

spi_port_dir &= ~(1<<MISO); // MISO input

25 SPCR = (0<<SPIE)| // SPI Interrupt off

(1<<SPE)| // SPI Enabled

(0<DORD)| // MSB first

(1<<MSTR)| // SPI Master mode

(0<<CPOL)| // SCK low idle

30 (1<<CPHA)| // Setup on leading edge, Sample on trailing edge

(0b01<<SPR0); // fSCK = 16MHz/4 = 4 MHz

spi_port |= (1<<SS); // Set ~SS pin high to disable comm to start

}

35

// Shift character array out via SPI, store received data back in character array

uint8_t spi_transfer(char* buf, uint8_t length) {

spi_port &= ~(1<<SS); // Pull ~SS low to select slave

40 uint8_t status, inData;

for (uint8_t i = 0; i < length; i++) {

SPDR = buf[i]; // Transmit character from buffer

// Wait for interrpt flag to signal sucessful transmission

45 while (!(SPSR & (1<<SPIF))) ;

status = SPSR; // Read status register (clears SPIF when set)

inData = SPDR; // Grab incoming data byte

//if (!(SPCR & (1<<MSTR))) {return 1;} // SPI Master bit no longer set

50 //if (status & (1<<WCOL)) {return 2;} // SPI write collision occurred

buf[i] = inData; // Store received data byte back in buffer

}

55 spi_port |= (1<<SS); // Bring ~SS high to deselect slave

return 0;

}

A.4.4 UART & USB Serial Port Driver Libraries

uart.h

#ifndef UART_H_

#define UART_H_

#include <stdint.h>
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5

void uart_init(uint32_t baud);

void uart_putchar(uint8_t c);

uint8_t uart_getchar(void);

uint8_t uart_available(void);

10

#endif /* UART_H_ */

uart.c

/* UART Example for Teensy USB Development Board

* http://www.pjrc.com/teensy/

* Copyright (c) 2009 PJRC.COM, LLC

*

5 * Permission is hereby granted, free of charge, to any person obtaining a copy

* of this software and associated documentation files (the "Software"), to deal

* in the Software without restriction, including without limitation the rights

* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

* copies of the Software, and to permit persons to whom the Software is

10 * furnished to do so, subject to the following conditions:

*

* The above copyright notice and this permission notice shall be included in

* all copies or substantial portions of the Software.

*

15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

* THE SOFTWARE.

*/

// Version 1.0: Initial Release

25 // Version 1.1: Add support for Teensy 2.0, minor optimizations

#include <avr/io.h>

#include <avr/interrupt.h>

30

#include "uart.h"

// These buffers may be any size from 2 to 256 bytes.

#define RX_BUFFER_SIZE 64

35 #define TX_BUFFER_SIZE 40

static volatile uint8_t tx_buffer[TX_BUFFER_SIZE];

static volatile uint8_t tx_buffer_head;

static volatile uint8_t tx_buffer_tail;

40 static volatile uint8_t rx_buffer[RX_BUFFER_SIZE];

static volatile uint8_t rx_buffer_head;

static volatile uint8_t rx_buffer_tail;

// Initialize the UART

45 void uart_init(uint32_t baud)

{

cli();

UBRR1 = (F_CPU / 4 / baud - 1) / 2;

UCSR1A = (1<<U2X1);

50 UCSR1B = (1<<RXEN1) | (1<<TXEN1) | (1<<RXCIE1);

UCSR1C = (1<<UCSZ11) | (1<<UCSZ10);

tx_buffer_head = tx_buffer_tail = 0;

rx_buffer_head = rx_buffer_tail = 0;

sei();
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55 }

// Transmit a byte

void uart_putchar(uint8_t c)

{

60 uint8_t i;

i = tx_buffer_head + 1;

if (i >= TX_BUFFER_SIZE) i = 0;

while (tx_buffer_tail == i) ; // wait until space in buffer

65 cli(); //commented out in original UART source

tx_buffer[i] = c;

tx_buffer_head = i;

UCSR1B = (1<<RXEN1) | (1<<TXEN1) | (1<<RXCIE1) | (1<<UDRIE1);

sei(); //commented out in original UART source

70 }

// Receive a byte

uint8_t uart_getchar(void)

{

75 uint8_t c, i;

while (rx_buffer_head == rx_buffer_tail) ; // wait for character

i = rx_buffer_tail + 1;

if (i >= RX_BUFFER_SIZE) i = 0;

80 c = rx_buffer[i];

rx_buffer_tail = i;

return c;

}

85 // Return the number of bytes waiting in the receive buffer.

// Call this before uart_getchar() to check if it will need

// to wait for a byte to arrive.

uint8_t uart_available(void)

{

90 uint8_t head, tail;

head = rx_buffer_head;

tail = rx_buffer_tail;

if (head >= tail) return head - tail;

95 return RX_BUFFER_SIZE + head - tail;

}

// Transmit Interrupt

ISR(USART1_UDRE_vect)

100 {

uint8_t i;

if (tx_buffer_head == tx_buffer_tail) {

// buffer is empty, disable transmit interrupt

105 UCSR1B = (1<<RXEN1) | (1<<TXEN1) | (1<<RXCIE1);

} else {

i = tx_buffer_tail + 1;

if (i >= TX_BUFFER_SIZE) i = 0;

UDR1 = tx_buffer[i];

110 tx_buffer_tail = i;

}

}

// Receive Interrupt

115 ISR(USART1_RX_vect)

{

uint8_t c, i;

193



c = UDR1;

120 i = rx_buffer_head + 1;

if (i >= RX_BUFFER_SIZE) i = 0;

if (i != rx_buffer_tail) {

rx_buffer[i] = c;

rx_buffer_head = i;

125 }

}

usb serial.h

#ifndef usb_serial_h__

#define usb_serial_h__

#include <stdint.h>

5

// setup

void usb_init(void); // initialize everything

uint8_t usb_configured(void); // is the USB port configured

10 // receiving data

int16_t usb_serial_getchar(void); // receive a character (-1 if timeout/error)

uint8_t usb_serial_available(void); // number of bytes in receive buffer

void usb_serial_flush_input(void); // discard any buffered input

15 // transmitting data

int8_t usb_serial_putchar(uint8_t c); // transmit a character

int8_t usb_serial_putchar_nowait(uint8_t c); // transmit a character, do not wait

int8_t usb_serial_write(const uint8_t *buffer, uint16_t size); // transmit a buffer

void usb_serial_flush_output(void); // immediately transmit any buffered output

20

// serial parameters

uint32_t usb_serial_get_baud(void); // get the baud rate

uint8_t usb_serial_get_stopbits(void); // get the number of stop bits

uint8_t usb_serial_get_paritytype(void);// get the parity type

25 uint8_t usb_serial_get_numbits(void); // get the number of data bits

uint8_t usb_serial_get_control(void); // get the RTS and DTR signal state

int8_t usb_serial_set_control(uint8_t signals); // set DSR, DCD, RI, etc

// constants corresponding to the various serial parameters

30 #define USB_SERIAL_DTR 0x01

#define USB_SERIAL_RTS 0x02

#define USB_SERIAL_1_STOP 0

#define USB_SERIAL_1_5_STOP 1

#define USB_SERIAL_2_STOP 2

35 #define USB_SERIAL_PARITY_NONE 0

#define USB_SERIAL_PARITY_ODD 1

#define USB_SERIAL_PARITY_EVEN 2

#define USB_SERIAL_PARITY_MARK 3

#define USB_SERIAL_PARITY_SPACE 4

40 #define USB_SERIAL_DCD 0x01

#define USB_SERIAL_DSR 0x02

#define USB_SERIAL_BREAK 0x04

#define USB_SERIAL_RI 0x08

#define USB_SERIAL_FRAME_ERR 0x10

45 #define USB_SERIAL_PARITY_ERR 0x20

#define USB_SERIAL_OVERRUN_ERR 0x40

// This file does not include the HID debug functions, so these empty

// macros replace them with nothing, so users can compile code that

50 // has calls to these functions.

#define usb_debug_putchar(c)

#define usb_debug_flush_output()
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55

// Everything below this point is only intended for usb_serial.c

#ifdef USB_SERIAL_PRIVATE_INCLUDE

#include <avr/io.h>

#include <avr/pgmspace.h>

60 #include <avr/interrupt.h>

#define EP_TYPE_CONTROL 0x00

#define EP_TYPE_BULK_IN 0x81

#define EP_TYPE_BULK_OUT 0x80

65 #define EP_TYPE_INTERRUPT_IN 0xC1

#define EP_TYPE_INTERRUPT_OUT 0xC0

#define EP_TYPE_ISOCHRONOUS_IN 0x41

#define EP_TYPE_ISOCHRONOUS_OUT 0x40

#define EP_SINGLE_BUFFER 0x02

70 #define EP_DOUBLE_BUFFER 0x06

#define EP_SIZE(s) ((s) == 64 ? 0x30 : \

((s) == 32 ? 0x20 : \

((s) == 16 ? 0x10 : \

0x00)))

75

#define MAX_ENDPOINT 4

#define LSB(n) (n & 255)

#define MSB(n) ((n >> 8) & 255)

80

#if defined(__AVR_AT90USB162__)

#define HW_CONFIG()

#define PLL_CONFIG() (PLLCSR = ((1<<PLLE)|(1<<PLLP0)))

#define USB_CONFIG() (USBCON = (1<<USBE))

85 #define USB_FREEZE() (USBCON = ((1<<USBE)|(1<<FRZCLK)))

#elif defined(__AVR_ATmega32U4__)

#define HW_CONFIG() (UHWCON = 0x01)

#define PLL_CONFIG() (PLLCSR = 0x12)

#define USB_CONFIG() (USBCON = ((1<<USBE)|(1<<OTGPADE)))

90 #define USB_FREEZE() (USBCON = ((1<<USBE)|(1<<FRZCLK)))

#elif defined(__AVR_AT90USB646__)

#define HW_CONFIG() (UHWCON = 0x81)

#define PLL_CONFIG() (PLLCSR = 0x1A)

#define USB_CONFIG() (USBCON = ((1<<USBE)|(1<<OTGPADE)))

95 #define USB_FREEZE() (USBCON = ((1<<USBE)|(1<<FRZCLK)))

#elif defined(__AVR_AT90USB1286__)

#define HW_CONFIG() (UHWCON = 0x81)

#define PLL_CONFIG() (PLLCSR = 0x16)

#define USB_CONFIG() (USBCON = ((1<<USBE)|(1<<OTGPADE)))

100 #define USB_FREEZE() (USBCON = ((1<<USBE)|(1<<FRZCLK)))

#endif

// standard control endpoint request types

#define GET_STATUS 0

105 #define CLEAR_FEATURE 1

#define SET_FEATURE 3

#define SET_ADDRESS 5

#define GET_DESCRIPTOR 6

#define GET_CONFIGURATION 8

110 #define SET_CONFIGURATION 9

#define GET_INTERFACE 10

#define SET_INTERFACE 11

// HID (human interface device)

#define HID_GET_REPORT 1

115 #define HID_GET_PROTOCOL 3

#define HID_SET_REPORT 9

#define HID_SET_IDLE 10
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#define HID_SET_PROTOCOL 11

// CDC (communication class device)

120 #define CDC_SET_LINE_CODING 0x20

#define CDC_GET_LINE_CODING 0x21

#define CDC_SET_CONTROL_LINE_STATE 0x22

#endif

#endif

usb serial.c

/* USB Serial Example for Teensy USB Development Board

* http://www.pjrc.com/teensy/usb_serial.html

* Copyright (c) 2008,2010,2011 PJRC.COM, LLC

*

5 * Permission is hereby granted, free of charge, to any person obtaining a copy

* of this software and associated documentation files (the "Software"), to deal

* in the Software without restriction, including without limitation the rights

* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

* copies of the Software, and to permit persons to whom the Software is

10 * furnished to do so, subject to the following conditions:

*

* The above copyright notice and this permission notice shall be included in

* all copies or substantial portions of the Software.

*

15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

* THE SOFTWARE.

*/

// Version 1.0: Initial Release

25 // Version 1.1: support Teensy++

// Version 1.2: fixed usb_serial_available

// Version 1.3: added transmit bandwidth test

// Version 1.4: added usb_serial_write

// Version 1.5: add support for Teensy 2.0

30 // Version 1.6: fix zero length packet bug

// Version 1.7: fix usb_serial_set_control

#define USB_SERIAL_PRIVATE_INCLUDE

#include "usb_serial.h"

35

/**************************************************************************

*

* Configurable Options

40 *

**************************************************************************/

// You can change these to give your code its own name. On Windows,

// these are only used before an INF file (driver install) is loaded.

45 #define STR_MANUFACTURER L"Your Name"

#define STR_PRODUCT L"USB Serial"

// All USB serial devices are supposed to have a serial number

// (according to Microsoft). On windows, a new COM port is created

50 // for every unique serial/vendor/product number combination. If

// you program 2 identical boards with 2 different serial numbers

// and they are assigned COM7 and COM8, each will always get the

// same COM port number because Windows remembers serial numbers.

//
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55 // On Mac OS-X, a device file is created automatically which

// incorperates the serial number, eg, /dev/cu-usbmodem12341

//

// Linux by default ignores the serial number, and creates device

// files named /dev/ttyACM0, /dev/ttyACM1... in the order connected.

60 // Udev rules (in /etc/udev/rules.d) can define persistent device

// names linked to this serial number, as well as permissions, owner

// and group settings.

#define STR_SERIAL_NUMBER L"12345"

65 // Mac OS-X and Linux automatically load the correct drivers. On

// Windows, even though the driver is supplied by Microsoft, an

// INF file is needed to load the driver. These numbers need to

// match the INF file.

#define VENDOR_ID 0x16C0

70 #define PRODUCT_ID 0x047A

// When you write data, it goes into a USB endpoint buffer, which

// is transmitted to the PC when it becomes full, or after a timeout

// with no more writes. Even if you write in exactly packet-size

75 // increments, this timeout is used to send a "zero length packet"

// that tells the PC no more data is expected and it should pass

// any buffered data to the application that may be waiting. If

// you want data sent immediately, call usb_serial_flush_output().

#define TRANSMIT_FLUSH_TIMEOUT 5 /* in milliseconds */

80

// If the PC is connected but not "listening", this is the length

// of time before usb_serial_getchar() returns with an error. This

// is roughly equivilant to a real UART simply transmitting the

// bits on a wire where nobody is listening, except you get an error

85 // code which you can ignore for serial-like discard of data, or

// use to know your data wasn’t sent.

#define TRANSMIT_TIMEOUT 25 /* in milliseconds */

// USB devices are supposed to implment a halt feature, which is

90 // rarely (if ever) used. If you comment this line out, the halt

// code will be removed, saving 116 bytes of space (gcc 4.3.0).

// This is not strictly USB compliant, but works with all major

// operating systems.

#define SUPPORT_ENDPOINT_HALT

95

/**************************************************************************

*

100 * Endpoint Buffer Configuration

*

**************************************************************************/

// These buffer sizes are best for most applications, but perhaps if you

105 // want more buffering on some endpoint at the expense of others, this

// is where you can make such changes. The AT90USB162 has only 176 bytes

// of DPRAM (USB buffers) and only endpoints 3 & 4 can double buffer.

#define ENDPOINT0_SIZE 16

110 #define CDC_ACM_ENDPOINT 2

#define CDC_RX_ENDPOINT 3

#define CDC_TX_ENDPOINT 4

#if defined(__AVR_AT90USB162__)

#define CDC_ACM_SIZE 16

115 #define CDC_ACM_BUFFER EP_SINGLE_BUFFER

#define CDC_RX_SIZE 32

#define CDC_RX_BUFFER EP_DOUBLE_BUFFER

#define CDC_TX_SIZE 32

197



#define CDC_TX_BUFFER EP_DOUBLE_BUFFER

120 #else

#define CDC_ACM_SIZE 16

#define CDC_ACM_BUFFER EP_SINGLE_BUFFER

#define CDC_RX_SIZE 64

#define CDC_RX_BUFFER EP_DOUBLE_BUFFER

125 #define CDC_TX_SIZE 64

#define CDC_TX_BUFFER EP_DOUBLE_BUFFER

#endif

static const uint8_t PROGMEM endpoint_config_table[] = {

130 0,

1, EP_TYPE_INTERRUPT_IN, EP_SIZE(CDC_ACM_SIZE) | CDC_ACM_BUFFER,

1, EP_TYPE_BULK_OUT, EP_SIZE(CDC_RX_SIZE) | CDC_RX_BUFFER,

1, EP_TYPE_BULK_IN, EP_SIZE(CDC_TX_SIZE) | CDC_TX_BUFFER

};

135

/**************************************************************************

*

* Descriptor Data

140 *

**************************************************************************/

// Descriptors are the data that your computer reads when it auto-detects

// this USB device (called "enumeration" in USB lingo). The most commonly

145 // changed items are editable at the top of this file. Changing things

// in here should only be done by those who’ve read chapter 9 of the USB

// spec and relevant portions of any USB class specifications!

const uint8_t PROGMEM device_descriptor[] = {

150 18, // bLength

1, // bDescriptorType

0x00, 0x02, // bcdUSB

2, // bDeviceClass

0, // bDeviceSubClass

155 0, // bDeviceProtocol

ENDPOINT0_SIZE, // bMaxPacketSize0

LSB(VENDOR_ID), MSB(VENDOR_ID), // idVendor

LSB(PRODUCT_ID), MSB(PRODUCT_ID), // idProduct

0x00, 0x01, // bcdDevice

160 1, // iManufacturer

2, // iProduct

3, // iSerialNumber

1 // bNumConfigurations

};

165

#define CONFIG1_DESC_SIZE (9+9+5+5+4+5+7+9+7+7)

const uint8_t PROGMEM config1_descriptor[CONFIG1_DESC_SIZE] = {

// configuration descriptor, USB spec 9.6.3, page 264-266, Table 9-10

9, // bLength;

170 2, // bDescriptorType;

LSB(CONFIG1_DESC_SIZE), // wTotalLength

MSB(CONFIG1_DESC_SIZE),

2, // bNumInterfaces

1, // bConfigurationValue

175 0, // iConfiguration

0xC0, // bmAttributes

50, // bMaxPower

// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12

9, // bLength

180 4, // bDescriptorType

0, // bInterfaceNumber

0, // bAlternateSetting
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1, // bNumEndpoints

0x02, // bInterfaceClass

185 0x02, // bInterfaceSubClass

0x01, // bInterfaceProtocol

0, // iInterface

// CDC Header Functional Descriptor, CDC Spec 5.2.3.1, Table 26

5, // bFunctionLength

190 0x24, // bDescriptorType

0x00, // bDescriptorSubtype

0x10, 0x01, // bcdCDC

// Call Management Functional Descriptor, CDC Spec 5.2.3.2, Table 27

5, // bFunctionLength

195 0x24, // bDescriptorType

0x01, // bDescriptorSubtype

0x01, // bmCapabilities

1, // bDataInterface

// Abstract Control Management Functional Descriptor, CDC Spec 5.2.3.3, Table 28

200 4, // bFunctionLength

0x24, // bDescriptorType

0x02, // bDescriptorSubtype

0x06, // bmCapabilities

// Union Functional Descriptor, CDC Spec 5.2.3.8, Table 33

205 5, // bFunctionLength

0x24, // bDescriptorType

0x06, // bDescriptorSubtype

0, // bMasterInterface

1, // bSlaveInterface0

210 // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13

7, // bLength

5, // bDescriptorType

CDC_ACM_ENDPOINT | 0x80, // bEndpointAddress

0x03, // bmAttributes (0x03=intr)

215 CDC_ACM_SIZE, 0, // wMaxPacketSize

64, // bInterval

// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12

9, // bLength

4, // bDescriptorType

220 1, // bInterfaceNumber

0, // bAlternateSetting

2, // bNumEndpoints

0x0A, // bInterfaceClass

0x00, // bInterfaceSubClass

225 0x00, // bInterfaceProtocol

0, // iInterface

// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13

7, // bLength

5, // bDescriptorType

230 CDC_RX_ENDPOINT, // bEndpointAddress

0x02, // bmAttributes (0x02=bulk)

CDC_RX_SIZE, 0, // wMaxPacketSize

0, // bInterval

// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13

235 7, // bLength

5, // bDescriptorType

CDC_TX_ENDPOINT | 0x80, // bEndpointAddress

0x02, // bmAttributes (0x02=bulk)

CDC_TX_SIZE, 0, // wMaxPacketSize

240 0 // bInterval

};

// If you’re desperate for a little extra code memory, these strings

// can be completely removed if iManufacturer, iProduct, iSerialNumber

245 // in the device desciptor are changed to zeros.

struct usb_string_descriptor_struct {
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uint8_t bLength;

uint8_t bDescriptorType;

int16_t wString[];

250 };

const struct usb_string_descriptor_struct PROGMEM string0 = {

4,

3,

{0x0409}

255 };

const struct usb_string_descriptor_struct PROGMEM string1 = {

sizeof(STR_MANUFACTURER),

3,

STR_MANUFACTURER

260 };

const struct usb_string_descriptor_struct PROGMEM string2 = {

sizeof(STR_PRODUCT),

3,

STR_PRODUCT

265 };

const struct usb_string_descriptor_struct PROGMEM string3 = {

sizeof(STR_SERIAL_NUMBER),

3,

STR_SERIAL_NUMBER

270 };

// This table defines which descriptor data is sent for each specific

// request from the host (in wValue and wIndex).

const struct descriptor_list_struct {

275 uint16_t wValue;

uint16_t wIndex;

const uint8_t *addr;

uint8_t length;

} PROGMEM descriptor_list[] = {

280 {0x0100, 0x0000, device_descriptor, sizeof(device_descriptor)},

{0x0200, 0x0000, config1_descriptor, sizeof(config1_descriptor)},

{0x0300, 0x0000, (const uint8_t *)&string0, 4},

{0x0301, 0x0409, (const uint8_t *)&string1, sizeof(STR_MANUFACTURER)},

{0x0302, 0x0409, (const uint8_t *)&string2, sizeof(STR_PRODUCT)},

285 {0x0303, 0x0409, (const uint8_t *)&string3, sizeof(STR_SERIAL_NUMBER)}

};

#define NUM_DESC_LIST (sizeof(descriptor_list)/sizeof(struct descriptor_list_struct))

290 /**************************************************************************

*

* Variables - these are the only non-stack RAM usage

*

**************************************************************************/

295

// zero when we are not configured, non-zero when enumerated

static volatile uint8_t usb_configuration=0;

// the time remaining before we transmit any partially full

300 // packet, or send a zero length packet.

static volatile uint8_t transmit_flush_timer=0;

static uint8_t transmit_previous_timeout=0;

// serial port settings (baud rate, control signals, etc) set

305 // by the PC. These are ignored, but kept in RAM.

static uint8_t cdc_line_coding[7]={0x00, 0xE1, 0x00, 0x00, 0x00, 0x00, 0x08};

static uint8_t cdc_line_rtsdtr=0;

310 /**************************************************************************
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*

* Public Functions - these are the API intended for the user

*

**************************************************************************/

315

// initialize USB serial

void usb_init(void)

{

HW_CONFIG();

320 USB_FREEZE(); // enable USB

PLL_CONFIG(); // config PLL, 16 MHz xtal

while (!(PLLCSR & (1<<PLOCK))) ; // wait for PLL lock

USB_CONFIG(); // start USB clock

UDCON = 0; // enable attach resistor

325 usb_configuration = 0;

cdc_line_rtsdtr = 0;

UDIEN = (1<<EORSTE)|(1<<SOFE);

sei();

}

330

// return 0 if the USB is not configured, or the configuration

// number selected by the HOST

uint8_t usb_configured(void)

{

335 return usb_configuration;

}

// get the next character, or -1 if nothing received

int16_t usb_serial_getchar(void)

340 {

uint8_t c, intr_state;

// interrupts are disabled so these functions can be

// used from the main program or interrupt context,

345 // even both in the same program!

intr_state = SREG;

cli();

if (!usb_configuration) {

SREG = intr_state;

350 return -1;

}

UENUM = CDC_RX_ENDPOINT;

retry:

c = UEINTX;

355 if (!(c & (1<<RWAL))) {

// no data in buffer

if (c & (1<<RXOUTI)) {

UEINTX = 0x6B;

goto retry;

360 }

SREG = intr_state;

return -1;

}

// take one byte out of the buffer

365 c = UEDATX;

// if buffer completely used, release it

if (!(UEINTX & (1<<RWAL))) UEINTX = 0x6B;

SREG = intr_state;

return c;

370 }

// number of bytes available in the receive buffer

uint8_t usb_serial_available(void)

{
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375 uint8_t n=0, i, intr_state;

intr_state = SREG;

cli();

if (usb_configuration) {

380 UENUM = CDC_RX_ENDPOINT;

n = UEBCLX;

if (!n) {

i = UEINTX;

if (i & (1<<RXOUTI) && !(i & (1<<RWAL))) UEINTX = 0x6B;

385 }

}

SREG = intr_state;

return n;

}

390

// discard any buffered input

void usb_serial_flush_input(void)

{

uint8_t intr_state;

395

if (usb_configuration) {

intr_state = SREG;

cli();

UENUM = CDC_RX_ENDPOINT;

400 while ((UEINTX & (1<<RWAL))) {

UEINTX = 0x6B;

}

SREG = intr_state;

}

405 }

// transmit a character. 0 returned on success, -1 on error

int8_t usb_serial_putchar(uint8_t c)

{

410 uint8_t timeout, intr_state;

// if we’re not online (enumerated and configured), error

if (!usb_configuration) return -1;

// interrupts are disabled so these functions can be

415 // used from the main program or interrupt context,

// even both in the same program!

intr_state = SREG;

cli();

UENUM = CDC_TX_ENDPOINT;

420 // if we gave up due to timeout before, don’t wait again

if (transmit_previous_timeout) {

if (!(UEINTX & (1<<RWAL))) {

SREG = intr_state;

return -1;

425 }

transmit_previous_timeout = 0;

}

// wait for the FIFO to be ready to accept data

timeout = UDFNUML + TRANSMIT_TIMEOUT;

430 while (1) {

// are we ready to transmit?

if (UEINTX & (1<<RWAL)) break;

SREG = intr_state;

// have we waited too long? This happens if the user

435 // is not running an application that is listening

if (UDFNUML == timeout) {

transmit_previous_timeout = 1;

return -1;
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}

440 // has the USB gone offline?

if (!usb_configuration) return -1;

// get ready to try checking again

intr_state = SREG;

cli();

445 UENUM = CDC_TX_ENDPOINT;

}

// actually write the byte into the FIFO

UEDATX = c;

// if this completed a packet, transmit it now!

450 if (!(UEINTX & (1<<RWAL))) UEINTX = 0x3A;

transmit_flush_timer = TRANSMIT_FLUSH_TIMEOUT;

SREG = intr_state;

return 0;

}

455

// transmit a character, but do not wait if the buffer is full,

// 0 returned on success, -1 on buffer full or error

int8_t usb_serial_putchar_nowait(uint8_t c)

460 {

uint8_t intr_state;

if (!usb_configuration) return -1;

intr_state = SREG;

465 cli();

UENUM = CDC_TX_ENDPOINT;

if (!(UEINTX & (1<<RWAL))) {

// buffer is full

SREG = intr_state;

470 return -1;

}

// actually write the byte into the FIFO

UEDATX = c;

// if this completed a packet, transmit it now!

475 if (!(UEINTX & (1<<RWAL))) UEINTX = 0x3A;

transmit_flush_timer = TRANSMIT_FLUSH_TIMEOUT;

SREG = intr_state;

return 0;

}

480

// transmit a buffer.

// 0 returned on success, -1 on error

// This function is optimized for speed! Each call takes approx 6.1 us overhead

// plus 0.25 us per byte. 12 Mbit/sec USB has 8.67 us per-packet overhead and

485 // takes 0.67 us per byte. If called with 64 byte packet-size blocks, this function

// can transmit at full USB speed using 43% CPU time. The maximum theoretical speed

// is 19 packets per USB frame, or 1216 kbytes/sec. However, bulk endpoints have the

// lowest priority, so any other USB devices will likely reduce the speed. Speed

// can also be limited by how quickly the PC-based software reads data, as the host

490 // controller in the PC will not allocate bandwitdh without a pending read request.

// (thanks to Victor Suarez for testing and feedback and initial code)

int8_t usb_serial_write(const uint8_t *buffer, uint16_t size)

{

495 uint8_t timeout, intr_state, write_size;

// if we’re not online (enumerated and configured), error

if (!usb_configuration) return -1;

// interrupts are disabled so these functions can be

500 // used from the main program or interrupt context,

// even both in the same program!

intr_state = SREG;
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cli();

UENUM = CDC_TX_ENDPOINT;

505 // if we gave up due to timeout before, don’t wait again

if (transmit_previous_timeout) {

if (!(UEINTX & (1<<RWAL))) {

SREG = intr_state;

return -1;

510 }

transmit_previous_timeout = 0;

}

// each iteration of this loop transmits a packet

while (size) {

515 // wait for the FIFO to be ready to accept data

timeout = UDFNUML + TRANSMIT_TIMEOUT;

while (1) {

// are we ready to transmit?

if (UEINTX & (1<<RWAL)) break;

520 SREG = intr_state;

// have we waited too long? This happens if the user

// is not running an application that is listening

if (UDFNUML == timeout) {

transmit_previous_timeout = 1;

525 return -1;

}

// has the USB gone offline?

if (!usb_configuration) return -1;

// get ready to try checking again

530 intr_state = SREG;

cli();

UENUM = CDC_TX_ENDPOINT;

}

535 // compute how many bytes will fit into the next packet

write_size = CDC_TX_SIZE - UEBCLX;

if (write_size > size) write_size = size;

size -= write_size;

540 // write the packet

switch (write_size) {

#if (CDC_TX_SIZE == 64)

case 64: UEDATX = *buffer++;

case 63: UEDATX = *buffer++;

545 case 62: UEDATX = *buffer++;

case 61: UEDATX = *buffer++;

case 60: UEDATX = *buffer++;

case 59: UEDATX = *buffer++;

case 58: UEDATX = *buffer++;

550 case 57: UEDATX = *buffer++;

case 56: UEDATX = *buffer++;

case 55: UEDATX = *buffer++;

case 54: UEDATX = *buffer++;

case 53: UEDATX = *buffer++;

555 case 52: UEDATX = *buffer++;

case 51: UEDATX = *buffer++;

case 50: UEDATX = *buffer++;

case 49: UEDATX = *buffer++;

case 48: UEDATX = *buffer++;

560 case 47: UEDATX = *buffer++;

case 46: UEDATX = *buffer++;

case 45: UEDATX = *buffer++;

case 44: UEDATX = *buffer++;

case 43: UEDATX = *buffer++;

565 case 42: UEDATX = *buffer++;

case 41: UEDATX = *buffer++;
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case 40: UEDATX = *buffer++;

case 39: UEDATX = *buffer++;

case 38: UEDATX = *buffer++;

570 case 37: UEDATX = *buffer++;

case 36: UEDATX = *buffer++;

case 35: UEDATX = *buffer++;

case 34: UEDATX = *buffer++;

case 33: UEDATX = *buffer++;

575 #endif

#if (CDC_TX_SIZE >= 32)

case 32: UEDATX = *buffer++;

case 31: UEDATX = *buffer++;

case 30: UEDATX = *buffer++;

580 case 29: UEDATX = *buffer++;

case 28: UEDATX = *buffer++;

case 27: UEDATX = *buffer++;

case 26: UEDATX = *buffer++;

case 25: UEDATX = *buffer++;

585 case 24: UEDATX = *buffer++;

case 23: UEDATX = *buffer++;

case 22: UEDATX = *buffer++;

case 21: UEDATX = *buffer++;

case 20: UEDATX = *buffer++;

590 case 19: UEDATX = *buffer++;

case 18: UEDATX = *buffer++;

case 17: UEDATX = *buffer++;

#endif

#if (CDC_TX_SIZE >= 16)

595 case 16: UEDATX = *buffer++;

case 15: UEDATX = *buffer++;

case 14: UEDATX = *buffer++;

case 13: UEDATX = *buffer++;

case 12: UEDATX = *buffer++;

600 case 11: UEDATX = *buffer++;

case 10: UEDATX = *buffer++;

case 9: UEDATX = *buffer++;

#endif

case 8: UEDATX = *buffer++;

605 case 7: UEDATX = *buffer++;

case 6: UEDATX = *buffer++;

case 5: UEDATX = *buffer++;

case 4: UEDATX = *buffer++;

case 3: UEDATX = *buffer++;

610 case 2: UEDATX = *buffer++;

default:

case 1: UEDATX = *buffer++;

case 0: break;

}

615 // if this completed a packet, transmit it now!

if (!(UEINTX & (1<<RWAL))) UEINTX = 0x3A;

transmit_flush_timer = TRANSMIT_FLUSH_TIMEOUT;

SREG = intr_state;

}

620 return 0;

}

// immediately transmit any buffered output.

625 // This doesn’t actually transmit the data - that is impossible!

// USB devices only transmit when the host allows, so the best

// we can do is release the FIFO buffer for when the host wants it

void usb_serial_flush_output(void)

{
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630 uint8_t intr_state;

intr_state = SREG;

cli();

if (transmit_flush_timer) {

635 UENUM = CDC_TX_ENDPOINT;

UEINTX = 0x3A;

transmit_flush_timer = 0;

}

SREG = intr_state;

640 }

// functions to read the various async serial settings. These

// aren’t actually used by USB at all (communication is always

// at full USB speed), but they are set by the host so we can

645 // set them properly if we’re converting the USB to a real serial

// communication

uint32_t usb_serial_get_baud(void)

{

return *(uint32_t *)cdc_line_coding;

650 }

uint8_t usb_serial_get_stopbits(void)

{

return cdc_line_coding[4];

}

655 uint8_t usb_serial_get_paritytype(void)

{

return cdc_line_coding[5];

}

uint8_t usb_serial_get_numbits(void)

660 {

return cdc_line_coding[6];

}

uint8_t usb_serial_get_control(void)

{

665 return cdc_line_rtsdtr;

}

// write the control signals, DCD, DSR, RI, etc

// There is no CTS signal. If software on the host has transmitted

// data to you but you haven’t been calling the getchar function,

670 // it remains buffered (either here or on the host) and can not be

// lost because you weren’t listening at the right time, like it

// would in real serial communication.

int8_t usb_serial_set_control(uint8_t signals)

{

675 uint8_t intr_state;

intr_state = SREG;

cli();

if (!usb_configuration) {

680 // we’re not enumerated/configured

SREG = intr_state;

return -1;

}

685 UENUM = CDC_ACM_ENDPOINT;

if (!(UEINTX & (1<<RWAL))) {

// unable to write

// TODO; should this try to abort the previously

// buffered message??

690 SREG = intr_state;

return -1;

}

UEDATX = 0xA1;
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UEDATX = 0x20;

695 UEDATX = 0;

UEDATX = 0;

UEDATX = 0; // 0 seems to work nicely. what if this is 1??

UEDATX = 0;

UEDATX = 1;

700 UEDATX = 0;

UEDATX = signals;

UEINTX = 0x3A;

SREG = intr_state;

return 0;

705 }

/**************************************************************************

710 *

* Private Functions - not intended for general user consumption....

*

**************************************************************************/

715

// USB Device Interrupt - handle all device-level events

// the transmit buffer flushing is triggered by the start of frame

//

ISR(USB_GEN_vect)

720 {

uint8_t intbits, t;

intbits = UDINT;

UDINT = 0;

725 if (intbits & (1<<EORSTI)) {

UENUM = 0;

UECONX = 1;

UECFG0X = EP_TYPE_CONTROL;

UECFG1X = EP_SIZE(ENDPOINT0_SIZE) | EP_SINGLE_BUFFER;

730 UEIENX = (1<<RXSTPE);

usb_configuration = 0;

cdc_line_rtsdtr = 0;

}

if (intbits & (1<<SOFI)) {

735 if (usb_configuration) {

t = transmit_flush_timer;

if (t) {

transmit_flush_timer = --t;

if (!t) {

740 UENUM = CDC_TX_ENDPOINT;

UEINTX = 0x3A;

}

}

}

745 }

}

// Misc functions to wait for ready and send/receive packets

750 static inline void usb_wait_in_ready(void)

{

while (!(UEINTX & (1<<TXINI))) ;

}

static inline void usb_send_in(void)

755 {

UEINTX = ~(1<<TXINI);

}
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static inline void usb_wait_receive_out(void)

{

760 while (!(UEINTX & (1<<RXOUTI))) ;

}

static inline void usb_ack_out(void)

{

UEINTX = ~(1<<RXOUTI);

765 }

// USB Endpoint Interrupt - endpoint 0 is handled here. The

770 // other endpoints are manipulated by the user-callable

// functions, and the start-of-frame interrupt.

//

ISR(USB_COM_vect)

{

775 uint8_t intbits;

const uint8_t *list;

const uint8_t *cfg;

uint8_t i, n, len, en;

uint8_t *p;

780 uint8_t bmRequestType;

uint8_t bRequest;

uint16_t wValue;

uint16_t wIndex;

uint16_t wLength;

785 uint16_t desc_val;

const uint8_t *desc_addr;

uint8_t desc_length;

UENUM = 0;

790 intbits = UEINTX;

if (intbits & (1<<RXSTPI)) {

bmRequestType = UEDATX;

bRequest = UEDATX;

wValue = UEDATX;

795 wValue |= (UEDATX << 8);

wIndex = UEDATX;

wIndex |= (UEDATX << 8);

wLength = UEDATX;

wLength |= (UEDATX << 8);

800 UEINTX = ~((1<<RXSTPI) | (1<<RXOUTI) | (1<<TXINI));

if (bRequest == GET_DESCRIPTOR) {

list = (const uint8_t *)descriptor_list;

for (i=0; ; i++) {

if (i >= NUM_DESC_LIST) {

805 UECONX = (1<<STALLRQ)|(1<<EPEN); //stall

return;

}

desc_val = pgm_read_word(list);

if (desc_val != wValue) {

810 list += sizeof(struct descriptor_list_struct);

continue;

}

list += 2;

desc_val = pgm_read_word(list);

815 if (desc_val != wIndex) {

list += sizeof(struct descriptor_list_struct)-2;

continue;

}

list += 2;

820 desc_addr = (const uint8_t *)pgm_read_word(list);

list += 2;
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desc_length = pgm_read_byte(list);

break;

}

825 len = (wLength < 256) ? wLength : 255;

if (len > desc_length) len = desc_length;

do {

// wait for host ready for IN packet

do {

830 i = UEINTX;

} while (!(i & ((1<<TXINI)|(1<<RXOUTI))));

if (i & (1<<RXOUTI)) return; // abort

// send IN packet

n = len < ENDPOINT0_SIZE ? len : ENDPOINT0_SIZE;

835 for (i = n; i; i--) {

UEDATX = pgm_read_byte(desc_addr++);

}

len -= n;

usb_send_in();

840 } while (len || n == ENDPOINT0_SIZE);

return;

}

if (bRequest == SET_ADDRESS) {

usb_send_in();

845 usb_wait_in_ready();

UDADDR = wValue | (1<<ADDEN);

return;

}

if (bRequest == SET_CONFIGURATION && bmRequestType == 0) {

850 usb_configuration = wValue;

cdc_line_rtsdtr = 0;

transmit_flush_timer = 0;

usb_send_in();

cfg = endpoint_config_table;

855 for (i=1; i<5; i++) {

UENUM = i;

en = pgm_read_byte(cfg++);

UECONX = en;

if (en) {

860 UECFG0X = pgm_read_byte(cfg++);

UECFG1X = pgm_read_byte(cfg++);

}

}

UERST = 0x1E;

865 UERST = 0;

return;

}

if (bRequest == GET_CONFIGURATION && bmRequestType == 0x80) {

usb_wait_in_ready();

870 UEDATX = usb_configuration;

usb_send_in();

return;

}

if (bRequest == CDC_GET_LINE_CODING && bmRequestType == 0xA1) {

875 usb_wait_in_ready();

p = cdc_line_coding;

for (i=0; i<7; i++) {

UEDATX = *p++;

}

880 usb_send_in();

return;

}

if (bRequest == CDC_SET_LINE_CODING && bmRequestType == 0x21) {

usb_wait_receive_out();

885 p = cdc_line_coding;
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for (i=0; i<7; i++) {

*p++ = UEDATX;

}

usb_ack_out();

890 usb_send_in();

return;

}

if (bRequest == CDC_SET_CONTROL_LINE_STATE && bmRequestType == 0x21) {

cdc_line_rtsdtr = wValue;

895 usb_wait_in_ready();

usb_send_in();

return;

}

if (bRequest == GET_STATUS) {

900 usb_wait_in_ready();

i = 0;

#ifdef SUPPORT_ENDPOINT_HALT

if (bmRequestType == 0x82) {

UENUM = wIndex;

905 if (UECONX & (1<<STALLRQ)) i = 1;

UENUM = 0;

}

#endif

UEDATX = i;

910 UEDATX = 0;

usb_send_in();

return;

}

#ifdef SUPPORT_ENDPOINT_HALT

915 if ((bRequest == CLEAR_FEATURE || bRequest == SET_FEATURE)

&& bmRequestType == 0x02 && wValue == 0) {

i = wIndex & 0x7F;

if (i >= 1 && i <= MAX_ENDPOINT) {

usb_send_in();

920 UENUM = i;

if (bRequest == SET_FEATURE) {

UECONX = (1<<STALLRQ)|(1<<EPEN);

} else {

UECONX = (1<<STALLRQC)|(1<<RSTDT)|(1<<EPEN);

925 UERST = (1 << i);

UERST = 0;

}

return;

}

930 }

#endif

}

UECONX = (1<<STALLRQ) | (1<<EPEN); // stall

}
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APPENDIX B

ARRAY CONTROL SERVER SOURCE CODE

The following is a reproduction of the Python source code of the array control

server software. The source files are grouped into sections by the logical nature of

their function. These sections are as follows:

• Main Code: The main Python class containing the main loop of the program,

database connection & initialization functions, thermal messaging logic, and UI

command parsing logic

• User Interface Server: The Python class responsible for managing network

communication with user interface clients

• Antenna Module Servers: The Python classes for managing the modular

antenna controller network, including the module connection announcement

server class and the module command handler class
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B.1 Main Code

array server.py

#! /usr/bin/env python

import sys

import datetime

5 import socket

import time

import threading

from multiprocessing import Queue

import select

10 import apsw

import argparse

import string

import UIServer

15 import ModAnnounceServer

import ModuleHandler

__version__ = "0.1"

20

UI_PORT = 9500 # Port to listen for UI client connections

MOD_ANNOUNCE_PORT = 9100 # Port to listen for module startup announcements

MOD_CONNECT_PORT = 9101 # Port to connect to modules to send commands

25

delim = ";"

printable = string.printable[0:95]

asciiDict = dict()

30 for char in printable:

asciiDict[char] = ord(char)

argParser = argparse.ArgumentParser(

35 description=’Aperskin Array UI/Module Control Server’)

argParser.add_argument(

’-db’,’--database’,help=’Path to module database’,default=’./modules.db’)

argParser.add_argument(

’-initdb’,help=’Initialize module database’,action=’store_true’)

40 argParser.add_argument(

’-log’,’--logfile’,help=’Path to log file’,default=’./server.log’)

# Create tuple of set & lock to store connected module addresses

moduleSet = (set(),threading.Lock())

45 #Create tuple of dictionary & lock to map module addresses to numeric IDs

moduleDict = (dict(),threading.Lock())

uiTXQueue = Queue()

uiRXQueue = Queue()

50 #class commandParser(threading.Thread):

# def __init__(self):

#

# def parseCommand(command):

55 class Logger(object):

def __init__(self,filename):

self.terminal = sys.stdout

self.log = open(filename,"a")

60 def write(self,msg):
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self.terminal.write(msg)

if msg != "\n":

self.log.write(str(datetime.datetime.now()).split(".")[0] + " " + msg)

else:

65 self.log.write(msg)

self.log.flush()

# Create database schema error class to raise

70 # when database’s modules table is improperly formatted

class DatabaseSchemaError(Exception):

def __init__(self,value):

self.value = value

def __str__(self):

75 return repr(self.value)

if __name__ == ’__main__’:

arguments = argParser.parse_args() # Get command line arguments

80

sys.stdout = Logger(arguments.logfile)

dbConn = apsw.Connection(arguments.database) # Connect to module database

dbCursor = dbConn.cursor()

85

# Initialize modules table if argument passed

if arguments.initdb:

schema = ’’’

CREATE TABLE modules (

90 serial TEXT PRIMARY KEY,

id INTEGER UNIQUE,

ip TEXT,

connected INTEGER,

ts TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP

95 )

’’’

dbCursor.execute(schema)

# Check if modules table is present, create it if not

100 dbCursor.execute("SELECT name FROM sqlite_master WHERE type=’table’ AND name=’modules’")

if dbCursor.fetchall() == []:

print "WARNING: Database not initialized"

print "Initializing empty table for modules"

105 schema = ’’’

CREATE TABLE modules (

serial TEXT PRIMARY KEY,

id INTEGER UNIQUE,

ip TEXT,

110 connected INTEGER,

ts TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP

)

’’’

dbCursor.execute(schema)

115

# Check if modules table schema is correct

schema = list(dbCursor.execute("PRAGMA table_info(’modules’)"))

if schema != [ (0, u’serial’, u’TEXT’, 0, None, 1),

(1, u’id’, u’INTEGER’, 0, None, 0),

120 (2, u’ip’, u’TEXT’, 0, None, 0),

(3, u’connected’, u’INTEGER’, 0, None, 0),

(4, u’ts’, u’TIMESTAMP’, 1, u’CURRENT_TIMESTAMP’, 0)]:

raise DatabaseSchemaError("modules table incorrectly formatted")
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125

# Instantiate module announcement server

# Daemonizing the child thread lets us terminate it by ending the parent without joining

myModAnnounceServer = ModAnnounceServer.ModAnnounceServer(MOD_ANNOUNCE_PORT, dbConn)

myModAnnounceServer.setDaemon(True)

130 myModAnnounceServer.start()

# Instantiate UI connection server

myUIServer = UIServer.UIServer(dbConn, UI_PORT, uiTXQueue, uiRXQueue)

myUIServer.setDaemon(True)

135 myUIServer.start()

class ThermalMessager:

def __init__(self, dbConn, port, UIClient, charDict,

idList, message, charTime, highTemp, lowTemp):

140 self.dbConn = dbConn

self.port = port

self.UIClient = UIClient

self.charDict = charDict

self.idList = idList

145 self.message = message

self.charTime = charTime

self.highTemp = highTemp

self.lowTemp = lowTemp

150 self.tempCommand = "SETTEMP {0}\r"

self.curChar = 0

def send(self):

155 for char in message:

if char not in printable:

self.status = 1

return self.status

else:

160 self.next_call = time.time()

self.run = True

self.__nextChar__()

self.status = 0

return self.status

165

def __nextChar__(self):

if self.run:

char = self.message[self.curChar]

ascValue = self.charDict[char]

170 toHighTemp = []

toLowTemp = []

for i in range(len(idList)):

if bool(ascValue & (1 << i)):

toHighTemp.append(self.idList[i])

175 else:

toLowTemp.append(self.idList[i])

toHighResponses = ModuleHandler.sendCommand(

self.dbConn, self.port, toHighTemp,

180 self.tempCommand.format(str(self.highTemp)))

toLowResponses = ModuleHandler.sendCommand(

self.dbConn, self.port, toLowTemp,

self.tempCommand.format(str(self.lowTemp)))

185 modResponses = toHighResponses

for response in toLowResponses:

modResponses.append(response)
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print str(modResponses)

190 for response in modResponses:

if response[1] != 0 or response[2] == "ERROR":

uiTXQueue.put((self.UIClient,

"ERROR: Sending character \’" +str(char)+

"\’ to array:\r\n"))

195 uiTXQueue.put((self.UIClient,

"Module "+str(response[0]) +

"Status Code:" + str(response[1]) +

":" + str(response[2]).strip() + "\r\n"))

uiTXQueue.put((self.UIClient,

200 "Sent character \’" + str(char) + "\’ to array\r\n"))

self.curChar += 1

if (self.curChar >= len(self.message)):

self.run = False

205 else:

self.next_call += self.charTime

uiTXQueue.put((self.UIClient, "Waiting "+str(self.charTime)+" seconds\r\n"))

threading.Timer(self.next_call - time.time(), self.__nextChar__).start()

210 while True:

(UIClient,UIcommand) = uiRXQueue.get()

try:

commandScope,command = UIcommand.split(delim,1)

except ValueError:

215 uiTXQueue.put((UIClient,’ERROR: Invalid syntax\r\n’))

else:

if commandScope.lower() == "array":

print "Received array-wide command: " + str(command)

moduleIDs = list(

220 dbCursor.execute("SELECT id FROM modules WHERE connected=1 ORDER BY id"))

moduleResponses = ModuleHandler.sendCommand(

dbConn,MOD_CONNECT_PORT,moduleIDs,command)

225 for response in moduleResponses:

uiTXQueue.put((UIClient,str(response[0]) +

":" + str(response[1]) +

":" + str(response[2]).strip() + "\r\n"))

230 elif commandScope.lower() == "module":

try:

idList,command = command.split(delim,1)

# Convert comma-separated string to list of IDs

235 idList = list(idList.split(","))

except ValueError as e:

uiTXQueue.put((UIClient, "ERROR: Invalid Syntax\r\n"))

else:

print "Received command for modules " + str(idList) + " : " + command

240

moduleResponses = ModuleHandler.sendCommand(

dbConn,MOD_CONNECT_PORT,idList,command)

245 for response in moduleResponses:

uiTXQueue.put((UIClient,str(response[0]) +

":" + str(response[1]) +

":" + str(response[2]).strip() + "\r\n"))

250

elif commandScope.lower() == "irmsg":

print "Received thermal message command: " + command
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try:

idList,command = command.split(delim,1)

255 message,delay = command.split(" ",1)

idList = list(idList.split(","))

delay = float(delay)

except ValueError as e:

uiTXQueue.put((UIClient, "ERROR: Invalid Syntax\r\n"))

260 else:

myThermalMessager = ThermalMessager(dbConn,MOD_CONNECT_PORT,UIClient,

asciiDict,idList,message,delay,35.0,20.0)

status = myThermalMessager.send()

if status != 0:

265 uiTXQueue.put((UIClient, "ERROR: Invalid Message\r\n"))

elif commandScope.lower() == "server":

print "Received server command: " + command

270 try:

command,argument = command.split(delim,1)

except ValueError as e:

pass

275 # auto-ID: associate numeric IDs to connected modules based on connection order

if command.lower() == "autoid":

serialList = list(dbCursor.execute(

"SELECT serial FROM modules WHERE connected=1 ORDER BY ts ASC"))

for i in range(len(serialList)):

280 query = "UPDATE OR IGNORE modules SET id=:id WHERE serial=:serial"

dbCursor.execute(query,{"id": i, "serial": serialList[i][0]})

uiTXQueue.put((UIClient,"Module IDs assigned\r\n"))

elif command.lower() == "setid":

285 try:

serial,id = argument.split(" ",1)

except ValueError as e:

uiTXQueue.put((UIClient, "ERROR: Invalid Syntax\r\n"))

else:

290 if id == "None":

id = None

try:

id = int(id)

295 serialList = list(dbCursor.execute(

"SELECT serial FROM modules WHERE id=:id",{"id":id}))

if len(serialList) > 0:

uiTXQueue.put((UIClient,

"ID "+str(id)+" already assigned to serial "+

300 str(serialList)+"\r\n"))

else:

query = ’’’UPDATE OR IGNORE modules SET

id=:id WHERE serial LIKE :serial; ’’’

query += "SELECT serial FROM modules WHERE serial LIKE :serial"

305 serials = list(

dbCursor.execute(query,{"id": id, "serial": "%"+str(serial)}))

uiTXQueue.put((UIClient,

"ID "+str(id)+

" assigned to serial "+str(serials)+"\r\n"))

310 except ValueError as e:

uiTXQueue.put((UIClient, "ERROR: Invalid Syntax\r\n"))

except TypeError as e:

pass

315 elif command.lower() == "clearids":

dbCursor.execute("UPDATE OR IGNORE modules SET id=:id",{"id": None})
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uiTXQueue.put((UIClient,"Module IDs cleared\r\n"))

elif command.lower() == "unsetid":

320 try:

id = int(argument)

except ValueError as e:

uiTXQueue.put((UIClient, "ERROR: Invalid Syntax\r\n"))

else:

325 query = "UPDATE OR IGNORE modules SET id=:idNew WHERE id=:idOld"

dbCursor.execute(query,{"idNew": None, "idOld": id})

uiTXQueue.put((UIClient, "ID "+str(id)+" unset\r\n"))

330 elif command.lower() == "status":

greeting = "Connected to Array Server v." +

str(__version__) + "\r\n"

connectedModules = list(dbCursor.execute(

’’’SELECT serial,id,ip

335 FROM modules WHERE connected=1 ORDER BY id’’’ ))

greeting += "Modules Connected: " +

str(len(connectedModules)) +"\r\n"

greeting += "SERIAL:\t\tID:\tIP ADDRESS:\r\n"

for (serial,id,ip) in connectedModules:

340 greeting += str(serial) +

"\t" + str(id) +

"\t" + str(ip) + "\r\n"

uiTXQueue.put((UIClient,greeting))

345 elif command.lower() == "listall":

allModules = list(dbCursor.execute(

"SELECT serial,id,ip,connected,ts FROM modules"))

response = "Known modules: " + str(len(allModules)) + "\r\n"

response += "SERIAL:\t\tID:\tIP ADDRESS:\tCONNECTED:\tLAST UPDATED:\r\n"

350 for (serial,id,ip,connected,ts) in allModules:

response += str(serial) + "\t" + str(id) + "\t" + str(ip) + "\t"

if connected == 1:

response += "Yes"

else:

355 response += "No"

response += "\t\t" + str(ts) + "\r\n"

uiTXQueue.put((UIClient,response))

elif command.lower() == "test":

360 uiTXQueue.put((UIClient,"25\r\n"))

else:

uiTXQueue.put((UIClient,"ERROR: Invalid Syntax\r\n"))

B.2 User Interface Server

UIServer.py

#! /usr/bin/env python

import socket

import time

5 import threading

from multiprocessing import Queue

import select

__version__ = "0.1"

10

class UIServer(threading.Thread):

def __init__(self,dbConn,ui_port,TXQueue,RXQueue):
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threading.Thread.__init__(self)

self.serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

15 self.serversocket.bind((’’, ui_port))

self.serversocket.listen(5)

print "Listening for UI client connections on " + str(ui_port)

self.dbConn = dbConn

20

self.TXQueue = TXQueue

self.RXQueue = RXQueue

def run(self):

25 while True:

(clientsocket,clientaddress) = self.serversocket.accept()

newUIHandler = UIHandler(self.dbConn,(clientsocket,clientaddress),

self.TXQueue,self.RXQueue)

newUIHandler.start()

30

class UIHandler(threading.Thread):

def __init__(self,dbConn,(clientsocket,address),TXQueue,RXQueue):

threading.Thread.__init__(self)

35 self.clientsocket = clientsocket

self.clientaddress = address

self.buffersize = 4096

self.TXQueue = TXQueue

40 self.RXQueue = RXQueue

self.dbConn = dbConn

print "UI client connected at " + str(self.clientaddress)

45 def run(self):

running = True

self.greet(self.clientsocket)

while running:

(readable,writeable,exceptable) =

50 select.select([self.clientsocket,self.TXQueue._reader],[],[],10)

for source in readable:

if source is self.clientsocket:

inData = self.clientsocket.recv(self.buffersize)

if inData:

55 if inData.strip().lower() == "quit":

self.clientsocket.close()

print "UI client quit"

running = False

break

60 else:

print "UI client sent: " + repr(inData)

self.RXQueue.put((self.clientaddress,inData.strip()))

elif not inData:

print "UI client disconnected at: " + str(self.clientaddress)

65 running = False

break

elif source is self.TXQueue._reader:

(client,outData) = self.TXQueue.get()

if client == self.clientaddress:

70 #print "Sending to UI client: " + str(outData)

self.clientsocket.sendall(outData)

elif client != self.clientaddress:

self.TXQueue.put((client,outData))

time.sleep(0.001)

75

def greet(self,clientsocket):
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greeting = "Connected to Array Server v." + str(__version__) + "\r\n"

dbCursor = self.dbConn.cursor()

80 connectedModules = list(

dbCursor.execute("SELECT serial,id,ip FROM modules WHERE connected=1 ORDER BY id"))

greeting += "Modules Connected: " + str(len(connectedModules)) +"\r\n"

greeting += "SERIAL:\t\tID:\tIP ADDRESS:\r\n"

85 for (serial,id,ip) in connectedModules:

greeting += str(serial) + "\t" + str(id) + "\t" + str(ip) + "\r\n"

clientsocket.sendall(greeting)

B.3 Antenna Module Servers

ModAnnounceServer.py

#! /usr/bin/env python

import socket

import threading

5 import apsw

class ModAnnounceServer(threading.Thread):

def __init__(self, port, dbConnection):

10 threading.Thread.__init__(self)

self.serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

self.serversocket.bind((’’, port))

self.serversocket.listen(5)

print "Listening for module announcement connections on " + str(port)

15

self.dbConnection = dbConnection

def run(self):

running = True

20 while running:

(clientsocket, clientaddress) = self.serversocket.accept()

newAnnounceHandler =

AnnounceHandler((clientsocket,clientaddress),self.dbConnection)

newAnnounceHandler.start()

25

class AnnounceHandler(threading.Thread):

def __init__(self, (clientsocket,address), dbConnection):

30 threading.Thread.__init__(self)

self.clientsocket = clientsocket

self.clientaddress = address

self.buffersize = 4096

35 self.dbConnection = dbConnection

print ’Module connected at ’ + str(self.clientaddress)

def run(self):

40 running = True

while running:

inData = self.clientsocket.recv(self.buffersize)

try:

(serial,status) = inData.strip().split(’ ’,1)

45 except ValueError: #If split failed, syntax was wrong

print ’Module response invalid from ’ + str(self.clientaddress)

else:
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if status == "READY":

(address,port) = self.clientaddress

50

# Add or update module’s entry in module database

dbCursor = self.dbConnection.cursor()

query = ’’’INSERT OR IGNORE INTO modules (serial, ip, connected)

55 VALUES (:serial, :ip, :connected);

UPDATE modules SET

serial=:serial,

ip=:ip,

connected=:connected,

60 ts=CURRENT_TIMESTAMP

WHERE serial=:serial;

’’’

dbCursor.execute(query,{"serial": serial, "ip": address, "connected": 1})

65

print ’Module ’+ str(serial) + ’ ready at ’ + str(self.clientaddress)

#self.clientsocket.shutdown(socket.SHUT_RDWR)

self.clientsocket.close()

70 running = False

else:

print ’Module not ready at ’ + str(self.clientaddress)

#self.clientsocket.shutdown(socket.SHUT_RDWR)

self.clientsocket.close()

75 running = False

ModuleHandler.py

# Module handler to dispatch command string to a connected module and retrieve its response

# Prunes modules from connected module list on connect failure

import socket

5 import threading

import apsw

#

10 class ModuleHandler(threading.Thread):

def __init__(self,dbConnection,port,moduleID,command):

threading.Thread.__init__(self)

self.dbConnection = dbConnection

self.port = port

15 self.moduleID = moduleID

self.command = command

self.buffersize = 4096

self.modulesocket = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

20 self.modulesocket.settimeout(10)

self.retries = 3

def run(self):

dbCursor = self.dbConnection.cursor()

25 allModuleIDs = list(dbCursor.execute("SELECT id FROM modules"))

if (int(self.moduleID),) in allModuleIDs:

(self.moduleSerial,self.moduleIP) = list(dbCursor.execute(

30 "SELECT serial,ip FROM modules WHERE id=:id",{"id":self.moduleID}))[0]

for attempt in range(1,self.retries+1):

try:
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print "Connecting to module: " + str(self.moduleID) +

35 " at " + str(self.moduleIP) +

", attempt " + str(attempt)

# Connect to module

self.modulesocket.connect((self.moduleIP,self.port))

# Send command to module with terminating CR

40 self.modulesocket.send(self.command+’\r’)

except socket.error: # Catch connection or send error

print "Error sending command to module: " +

str(self.moduleID) + " at " + str(self.moduleIP)

45 self.status = 1

self.response = ’’

# If connect fails self.retries times, module is dead

if attempt == self.retries:

dbCursor.execute(

50 "UPDATE modules SET connected=0,ts=CURRENT_TIMESTAMP WHERE id=:id",

{"id":self.moduleID})

else:

try:

inData = ’’

55 inData = self.modulesocket.recv(self.buffersize) # Get module’s response

except socket.timeout:

print "Module timed out: " +

str(self.moduleID) + " at " +

str(self.moduleIP)

60 finally:

self.modulesocket.shutdown(socket.SHUT_RDWR)

if inData:

print "Got response from module: " +

65 str(self.moduleID) + " at " + str(self.moduleIP)

self.status = 0

self.response = inData

dbCursor.execute(

70 "UPDATE modules SET connected=1,ts=CURRENT_TIMESTAMP WHERE id=:id",

{"id:":self.moduleID})

else:

print "No response from module: " +

str(self.moduleID) + " at " + str(self.moduleIP)

75 self.status = 2

self.response = ’’

if self.status == 0:

break

80 else:

print "Module ID does not exist: " + repr(self.moduleID)

self.status = 3 # Module ID isn’t assigned... don’t attempt to send

self.response = ’’

85 self.modulesocket.close()

def sendCommand(dbConnection,port,moduleIDs,command):

moduleThreads = []

moduleResponses = []

90

for (moduleID,) in moduleIDs:

thread = ModuleHandler(dbConnection,port,moduleID,command)

thread.start()

moduleThreads.append(thread)

95

for thread in moduleThreads:
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thread.join()

moduleResponses.append((thread.moduleID,thread.status,thread.response))

100

return moduleResponses
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APPENDIX C

MODULE COMMAND REFERENCE

Table C.1 lists the text commands supported by the MCB firmware. The com-

mands are grouped in the first two columns by command class and the MCB system

with which the commands interact. The last four columns contain the command and

the required, space-separated arguments for that command. For text arguments, the

available argument selections for a given command are denoted by a comma sepa-

rated list enclosed in square brackets. For numerical arguments, the type and unit of

the argument are denoted in angle brackets, and the allowable range further denoted

within square brackets. Multi-part arguments (i.e. those for the SETBEAM and SETDAC

commands) are separated by spaces unless otherwise noted in the table (i.e. argu-

ment 2 of the SETVALVEPARAM command requires exactly 3 comma separated pulse

width values). Commands require all of their listed arguments with the following

exceptions:

• SETPID: When argument 1 is WRITE, argument 2 is unnecessary

• SETPUMPPARAM: When argument 1 is WRITE, arguments 2 & 3 are unnecessary

• SETVALVEPARAM: When argument 1 is WRITE, argument 2 is unnecessary

Finally, the SETPUMP and SETVALVE commands are unique in that arguments 1 & 2

can either be a single item, or a comma separated list of pump/valve numbers and

a comma separated list of directions/positions. This allows a single command to be

issued to control any subset of the pumps or valves, up to and including the entire

set, on a given module.
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APPENDIX D

MODULAR CONTROL BOARD DESIGN & PCB LAYOUT

The following is a reproduction of the schematic diagrams and PCB layout of the

modular control board as designed in KiCAD. Figs. D.1 – D.4 show the schematic

diagram, grouped into major subsystems. Fig. D.5 shows the bottom copper layer of

the PCB layout. Fig. D.6 shows the top copper layer. Fig. D.7 shows the silkscreen

layer with printed component designators and outlines. Finally, Fig. D.8 shows

the soldermask layer, with colored areas representing the soldermask keepout areas

around component pads.
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