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ABSTRACT

Dynamic reservoir characterization of large three dimensional earth models has

become an increasingly important topic in recent years. Conventional finite differ-

ence reservoir simulation may not always be the optimal choice in such applications.

Alternative methods such as the streamline method and the Fast Marching Method

(FMM) could be advantageous in many cases. A comprehensive study to extend

these methods to more complex grids is both theoretically interesting and practi-

cally beneficial. The ability to use complex grids greatly increases the applicability

of these methods, for example, to model complex geologic structures, horizontal and

multilateral wellbores, and complex hydraulic/natural fractures.

We present a comprehensive study of various velocity interpolation methods in

polygons. These methods extend the widely used velocity interpolation algorithms,

such as the Pollock’s algorithm, to more complex geometries such as perpendicular

bisection (PEBI) grids, unstructured triangular grids and grids with local refinement.

We analyze important issues such as local conservation, velocity continuity, and

orders of interpolation. Based on our analysis, we recommend a lower order locally

conservative method for the most robust and numerically efficient calculation of

streamline trajectories on unstructured grids. The proposed method is then applied

to generate streamline visualizations for various grids.

Previous studies have demonstrated the use of the FMM and the diffusive time

of flight for drainage volume visualization and pressure depletion estimation for un-

conventional reservoirs. In the current study, we first extend the FMM to corner

point grids and anisotropic permeabilities. We then propose a new formulation of

the diffusivity equation using the diffusive time of flight τ as a spatial coordinate.
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This new τ -coordinate formulation reduces the problem from 3D to 1D in space. The

basic formulation is extended by incorporating additional physical processes which

are potentially important in shale gas reservoirs. The new formulation is validated by

comparing with both analytical solution and traditional finite difference simulation.

Our expectation is that the new formulation will become an efficient and versatile

tool for pressure depletion and associated reservoir characterization applications.
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NOMENCLATURE

BHP Bottom-hole Pressure

CV Continuous Velocity

CVFE Control Volume Finite Element

CVI Corner Velocity Interpolation

EPM Extended Pollock Method

FD Finite Difference

FMM Fast Marching Method
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LC Local Conservation

LGR Local Grid Refinement

MFE Mixed Finite Element
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1. INTRODUCTION

Three-dimensional earth models play an increasingly central role in the petroleum

industry. They are routinely used to plan new wells, calculate hydrocarbon reserves

and forecast production. Usually due to sparse well coverage, earth models are often

poorly constrained away from the well locations. This is where dynamic reservoir

characterization could play an important role. Dynamic reservoir characterization is

essentially solving an optimization problem, i.e. finding the “best” model(s) under

certain constraints, which produces (by forward simulation) the closest calculated

results compared to the observed dynamic data, e.g. production rate, gas oil ratio,

and wellbore pressure. If the dynamic reservoir characterization is performed suc-

cessfully, it is able to constrain the models, reduce uncertainties, and provide better

predictions. The forward modeling technique to be used with the dynamic reser-

voir characterization should be selected according to specific problems. It is very

important to strike a balance between accuracy and efficiency. The model has to

be “accurate” enough in order to capture the principal physics. Efficiency is a big

concern because the optimization usually involves not just one forward simulation

but many. The traditional finite difference (FD) reservoir simulation may not be the

best fit for all dynamic reservoir characterization applications. There are alternative

methods that are able to capture most of the physics in a more intuitive and efficient

manner. In this dissertation, we will discuss two of these alternative methods: the

streamline method and the Fast Marching Method (FMM). The main focus of this

dissertation is to systematically investigate various possible approaches of extending

these methods to more complicated grid geometries, evaluate advantages and disad-

vantages of different approaches, and make recommendations for practitioners who
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might want to implement these methods for industrial usage.

In the area of dynamic reservoir characterization, the application of streamline

method has already been very successful and quite mature (Datta-Gupta and King ,

2007). In recent years, due to the emerging next generation reservoir simulators as

well as the new data exchange standard for reservoir characterization and modeling

(King et al., 2012), unstructured grids become more and more popular. In order

to utilize their flexibility, especially for representing highly complex geologic struc-

tures and fluid flow near multilateral and fractured wellbore trajectories, the current

streamline method has to be extended. In this work, we will address the fundamental

problem of developing robust velocity interpolation models which are applicable in

unstructured grids.

Although the theory of the FMM and its applications in many other areas have

been quite mature (Sethian, 1999a), the FMM only becomes a hot topic in reservoir

engineering recently in the context of the shale gas revolution (Datta-Gupta et al.,

2011). There are still many fundamental challenges to overcome in order to turn

it into a useful and robust tool for dynamic reservoir characterization. Previous

work by Xie et al. (2012a,b) has demonstrated the use of the FMM for drainage

volume visualization and production forecasts in tight gas and shale gas reservoirs.

These applications are based on regular square grid and isotropic permeabilities. In

this work, we will extend these applications to more complex grids and anisotropic

permeabilities. We will primarily concentrate on the corner point grid (CPG) due

to its wide adoption in reservoir modeling.

The FMM is conceptually very closely related to the streamline method. One

major advancement we have achieved in this dissertation is a completely novel way

of formulating the pressure equation using the diffusive time of flight, τ , as a spatial

coordinate calculated by the FMM. This is in close analogy with using the time of
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flight along streamlines as a spatial variable for solving fluid transport. This new τ -

coordinate formulation is able to reduce the pressure equation from three dimensional

to only one dimensional in space. Compared with the previously proposed geomet-

ric approximation (Xie et al., 2012a,b), the new formulation has several advantages.

First, it is theoretically more general without the pseudo-steady state (PSS) assump-

tion. Second, it is much easier to deal with complex well control. Third, it is much

easier to be extended by incorporating additional physics, which might be important

for shale gas reservoir production. Although we have obtained some promising re-

sults, this research is still in an early stage, and there are more work to be done in

the future.

In the following subsection, we will briefly present some fundamental concepts

and methods. The purpose is to give a background for the understanding of key

issues and problems that will be fully addressed in later sections. After that, we will

conclude this section by discussing the objectives of this research and introducing

the outline of the following sections.

1.1 Fundamental Concepts and Methods

1.1.1 Streamline Tracing

Streamlines are instantaneous lines that are everywhere tangential to a velocity

field (Datta-Gupta and King , 2007). Streamline tracing is the procedure to obtain the

streamlines, and it is the very first step in order to apply the streamline method. The

success of applying the streamline method will depend on the accuracy, efficiency,

and robustness of the streamline tracing techniques used. The streamline tracing

techniques we are going to discuss in this dissertation are based on inter-cell fluxes

calculated by numerically solving the flow equations in a given mesh/grid. The

major question we are trying to answer is that given these inter-cell fluxes how to
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construct a suitable velocity field throughout the domain. Once the velocity field is

constructed, the streamlines can be obtained by numerical integration. Here we will

present the classic Pollock’s algorithm (Pollock , 1988) as an example to show this

process.

Pollock (1988)’s work was based on rectangular grids and the finite-difference

numerical model. He used simple linear interpolation of the principal velocity com-

ponents within a cell. Thus the principal velocity components can be expressed in

the form

vx = Ax(x− x1) + vx1 (1.1)

vy = Ay(y − y1) + vy1 (1.2)

vz = Az(z − z1) + vz1 (1.3)

where Ax, Ay, and Az are constants that correspond to the components of the velocity

gradient within the cell

Ax = (vx2 − vx1)/∆x (1.4)

Ay = (vy2 − vy1)/∆y (1.5)

Az = (vz2 − vz1)/∆z (1.6)

The cell boundary velocities are linked with the inter-cell fluxes calculated in the

finite-difference model. Once the velocity field is obtained, the streamlines can be

described by the following differential equations

dt =
dx

vx(x, y, z)
=

dy

vy(x, y, z)
=

dz

vz(x, y, z)
(1.7)
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For the velocity field given by Equations 1.1-1.3, Equation 1.7 can be analytically

integrated from time t1 to time t2 = t1 + ∆t as

x(t2) = x(t1) +
1

Ax
[vx(t1) exp(Ax∆t)− vx1] (1.8)

y(t2) = y(t1) +
1

Ay
[vy(t1) exp(Ay∆t)− vy1] (1.9)

z(t2) = z(t1) +
1

Az
[vz(t1) exp(Az∆t)− vz1] (1.10)

According to these equations, given an initial position at time t1, the coordinates

at any future time t2 can be computed analytically. To obtain where a streamline

exits the cell, we can back solve for t2 from each of the Equations 1.8-1.10 and

the minimum value obtained will be the time of flight within the cell. Then the

corresponding exit coordinates can be obtained. After that, the tracing can continue

to the next cell until reaching a source or sink. The Pollock’s algorithm produces

a continuous velocity vector field within each individual grid cell that identically

satisfies the differential conservation of mass equation everywhere within the cell

(Pollock , 1988). This “locally conservative” property is very important and we will

further discuss it in detail in section 2.

1.1.2 Asymptotic Solution of Diffusivity Equation

Asymptotic method is often used to capture some important characteristics of a

complex problem and thus provides insight into the problem that may be obscured by

its complicatedness. The asymptotic solution of diffusivity equation (Virieux et al.,

1994; Vasco et al., 2000) enables us to capture the pressure “front” propagation in

analogy to a wave front propagation. Here we start from the diffusivity equation

for slightly compressible fluid which describes the transient pressure response in a
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heterogeneous reservoir

∇ ·
(
k(x)

µ
∇P (x, t)

)
= φ(x)ct

∂P (x, t)

∂t
(1.11)

Applying Fourier transform to this equation will lead to the following equation in

the frequency domain

∇2P̃ (x, ω) +
∇k(x)

k(x)
· ∇P̃ (x, ω) +

φ(x)µct
k(x)

(iω)P̃ (x, ω) = 0 (1.12)

Here we choose an attempted solution of the form (Virieux et al., 1994)

P̃ (x, ω) = e−
√
−iωτ(x)

∞∑
j=0

Aj(x)

(
√
−iω)k

(1.13)

Substituting this attempted solution into Equation 1.12 produces an expression with

an infinite number of terms. By collecting terms of a given order in
√
−iω, we could

obtain a series of equations:

(
√
−iω)2 : ∇τ(x) · ∇τ(x) =

φ(x)µct
k(x)

(1.14)

√
−iω : A0∇2τ + 2∇A0 · ∇τ = 0 (1.15)

(
√
−iω)1−k : ∇2Ak−1 − Ak∇2τ + 2∇Ak · ∇τ = 0 k ≥ 1 (1.16)

Equation 1.14, which is associated with the highest order (
√
−iω)2 terms, is called

the Eikonal equation.

The physical meaning of the Eikonal equation can be obtained if we only consider

the zeroth-order term in Equation 1.13 as the solution, i.e., in the high frequency

limit,

P̃hf (x, ω) = A0(x)e−
√
−iωτ(x) (1.17)
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If we convert this solution back into the time domain by inverse Fourier transforma-

tion, it can be shown that τ(x) is related to the time when the pressure disturbance

is a maximum at point x (for an impulse point source at the origin). In three di-

mensional domain for example, we have 6t = τ 2(x). For this reason, τ(x) is called

the pseudo-phase (Virieux et al., 1994) or the diffusive time of flight (Datta-Gupta

et al., 2011). The Eikonal equation is a statement that the diffusive time of flight

is a function of φµct/k, or the inverse of the medium diffusivity. If we think of

the medium diffusivity as the “velocity” of the propagating pressure front, then the

Eikonal equation is analogous to Equation 1.7 for streamline calculation. However,

there is a critical difference between the two: the diffusive time of flight can be calcu-

lated by the FMM efficiently without explicit tracing of trajectories, while streamline

time of flight calculation requires streamline trajectory tracing.

It is noted that the derivation of the Eikonal equation does not require the medium

to be homogeneous or smoothly varying. Therefore, the diffusive time of flight can

also be defined by Equation 1.14 for heterogeneous and even non-smoothly varying

medium. However, the physical meaning of τ(x) is only clear when the zeroth-order

asymptotic solution is a valid approximation. This usually is only true if the back-

ground medium is homogeneous, nearly homogeneous or slightly heterogeneous with

smoothly varying properties. It is observed that the Eikonal equation only depends

on the inverse of diffusivity φ(x)µct/k(x), which appears in the third term of Equa-

tion 1.12. The second term of this equation contains the permeability gradient∇k(x)

and this term will become very important if the permeability changes drastically over

short distances, e.g. in a channelized reservoir. Therefore, in highly heterogeneous

and high-contrast medium, there are important and more complex physical charac-

teristics of the pressure solution which cannot be captured by the Eikonal equation.

For example, reflection and multiple arrival phenomena will become very important
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near the sharp boundaries between high and low diffusivity medium (Gupta, 2012).

These physics could only be captured by including higher order terms, which under-

mines the power of the asymptotic solution for problem reduction and simplification

in the first place. In this dissertation, we assume slightly heterogeneous and smoothly

varying medium for the derivation of the approximate pressure solution using the dif-

fusive time of flight as a spatial variable. The improvement of this method for highly

heterogeneous and high-contrast medium is still an active research area.

1.1.3 Depth of Investigation and Drainage Volume

Depth of investigation is an important concept in traditional pressure transient

analysis. Lee (1982) proposed the definition to be the propagation distance of the

maximum pressure draw-down for an impulse source. In 2D radial flow, the depth

of investigation in field units is calculated by

r =

√
kt

948φµct
(1.18)

This equation is originally derived from the line-source analytical pressure transient

solution in homogeneous reservoirs. More generally, for different flow patterns, the

distance and time of the pressure front propagation can be written as

r =
√
βαt (1.19)

where α is the hydraulic diffusivity defined as α = k/(φµct), and β is a geometric

factor related to the flow patterns. For linear, radial, and spherical flow, β is 2, 4,

and 6 respectively (Kim et al., 2009).

Drainage volume is a widely used concept in reservoir engineering to characterize

the general connectivity of certain reservoir volume with a particular well or comple-
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tion. It is a very practical term and often defined according to specific applications.

For example, streamlines and time of flight might be useful to define the drainage

volume in a water flooding application, while pressure depletion and depth of in-

vestigation might be more appropriate for a primary depletion application. In this

dissertation, we will define the drainage volume using the diffusive time of flight cal-

culated by solving the Eikonal equation. This can be achieved efficiently using the

FMM. The drainage volume defined as such is basically an extension of the depth

of investigation concept to heterogeneous reservoirs. This will be fully addressed in

Section 3.

1.1.4 Shale Gas Reservoirs

Shale formations are traditionally well-known as possible source rock. In recently

years, technologies such as horizontal well drilling and multistage hydraulic frac-

turing have made it possible to economically produce gas from some of these shale

formations in very large scale, changing the entire landscape of the energy industry

in the US. Because of the importance of shale gas, research around it becomes very

popular recently. On one hand, traditional theories and models for gas flow in porous

medium which were developed for conventional reservoirs have been applied to shale

gas reservoirs with mixed results. On the other hand, people begin to look into the

fundamental physical processes that are important in and might be unique to shale

gas reservoirs. Although the process of gas release and production from shale gas

sediments have not been very well understood, there are several physical processes

which are commonly believed to play important roles in shale gas reservoirs, includ-

ing reservoir compaction, gas adsorption, gas slippage, and gas diffusion. Therefore,

it is important to be able to incorporate the additional physical processes in shale

gas reservoirs into our new τ -coordinate formulation. This will be addressed in detail
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in Section 4. Here we only briefly introduce these physical processes to provide some

background information as they are not the main subject of this research.

Reservoir Compaction

Due to production from wells, the effective stress increases with the decrease in

pore pressure. Increase in the effective stress compacts the reservoir rock and usually

reduces reservoir porosity and/or the conductivity of natural fractures. This leads

to a decrease in reservoir permeability. However, it is also possible that the increase

in the effective stress results in shear failure of the reservoir rock and introduce sec-

ondary fractures (Kim and Moridis , 2012). In this case, these secondary fractures

will increase the permeability significantly. Shale reservoirs are generally believed

to be rather sensitive to these geomechanical effects. Either coupled or decoupled

model can be used to incorporate the geomechanical effects into the flow simulation.

The coupled model solves the geomechanical processes and the fluid flow simulta-

neously and thus are considered to be more accurate with a higher computational

cost. The decoupled model uses pressure dependent reservoir constitutive properties,

e.g. permeability and porosity, for the flow simulation part, while the relationships

between these reservoir constitutive properties and the pore pressure are obtained

by geomechanical analysis, modeling, or even empirical experiences.

Gas Adsorption

In shale gas reservoirs, the gas adsorption effect can be quite significant due to

the high surface to volume ratio of the pore system in shales. The gas adsorption is

usually modelled by the Langmuir isotherm (Langmuir , 1916):

Vads(P ) =
VLP

PL + P
(1.20)
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where Vads is the amount of adsorbed gas at pressure P per unit volume (or mass)

of shale. Parameters VL and PL are called the Langmuir volume and the Langmuir

pressure respectively. The unit of Vads is the same as the unit of the Langmuir

volume VL. In field units, VL can be expressed in Mscf/ft3, or thousand standard

cubic feet of gas per cubic feet of shale. In equilibrium condition, when pressure

drops, usually the amount of adsorbed gas as described by Equation 1.20 also drops,

which indicates that some adsorbed gas is released from the pore surface to become

free gas in the pore.

Gas Slippage Effect

In extremely low permeability reservoirs such as shale gas reservoirs, the gas

molecules may slip along the pore surfaces and cause additional flux on top of the

viscous flow expressed by Darcy’s law (Klinkenberg , 1941; Bravo, 2007; Javadpour ,

2009; Shabro et al., 2011; Swami and Settari , 2012; Fathi and Akkutlu, 2013). This

effect is usually modelled by an apparent permeability kapp which can be much larger

than the Darcy permeability for nano-scale pore sizes.

Gas Diffusion from Kerogen

In addition to the adsorbed gas on the pore wall surface, some researchers have

also studied the contribution of the diffused gas inside the kerogen in organic rich

shale (Javadpour et al., 2007; Javadpour , 2009; Akkutlu and Fathi , 2012; Shabro

et al., 2012). The diffusion of gas from the kerogen provides additional source to the

gas production and may help maintain long term production. The gas diffusion is

considered to be a relatively slow process compared to the advective flow in pores

and fractures. Usually this process is formulated as dual/multi porosity models with

specific transfer functions related to the intrinsic shale properties. Due to lack of

experimental data, many critical model parameters in these studies are taken from
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either coal bed methane data, or theoretical numbers, or speculations.

1.2 Objectives and Outline

Although the ultimate goal of this research is to do dynamic reservoir character-

ization, this dissertation mainly focuses on the forward modeling part of the entire

problem. Hopefully future research will be able to build on the methods developed

here and incorporate it organically into the entire dynamic reservoir characterization

framework. The rest of this dissertation will be organized into three major sections

followed by a summary. The objectives of each of the three major sections are as

follows.

Section 2 will focus on the fundamental problem of developing robust velocity

interpolation models which are applicable in unstructured grids. The objectives of

this section include:

• Analyze the pros and cons of previously proposed velocity interpolation schemes,

in particular the Extended Pollock Method (EPM) and the Corner Velocity In-

terpolation (CVI) method;

• Propose various alternative methods based on different choices of lower and

higher order boundary flux interpolations, local conservation or non-conservation,

velocity continuity or discontinuity;

• Evaluate the proposed schemes in terms of their accuracy, efficiency, and ro-

bustness;

• Make recommendations for future implementation;

• Apply the recommended scheme to both Perpendicular Bisection (PEBI) grids

and grids with local refinements.
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Section 3 primarily deals with the extension of the FMM to Corer Point Grids

(CPG) and anisotropic permeabilities. Only a limited discussion is presented on

unstructured grids as it is still an ongoing work and will be addressed in future

research. The objectives of this section include:

• Develop the formulation of the Eikonal equation for CPG in anisotropic medium

and the local discretized solution;

• Investigate the causality issue of the solution;

• Demonstrate the FMM for drainage volume calculation and visualization in

synthetic shale gas reservoirs.

Section 4 will be dedicated to the new τ -coordinate formulation of the diffusivity

equation. The objectives include:

• Rewrite the diffusivity equation using the diffusive time of flight τ as a spatial

coordinate;

• Demonstrate that the new formulation reduces back to the original diffusivity

equation for homogeneous medium;

• Incorporate the additional physical processes mentioned in Section 1.1.4 into

the new formulation;

• Validate the new formulation by comparing its solution with either analytical

solution or solution from a traditional finite difference simulation in various

scenarios;

• Investigate the effects of gas adsorption and diffusion in shale gas reservoirs.
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2. ROBUST STREAMLINE TRACING USING INTER-CELL FLUXES IN

LOCALLY REFINED AND UNSTRUCTURED GRIDS∗

2.1 Synopsis

Unstructured grids are an important topic in reservoir simulation and 3D geologic

modeling due to their flexibility especially for representing highly complex geologic

structures and fluid flow near multilateral and fractured wellbore trajectories. In

recent years, this research topic has received even more attention in the context of

the emerging next generation reservoir simulators as well as the new data exchange

standard for reservoir characterization, earth and reservoir models (King et al., 2012).

We present a comprehensive study of various velocity interpolation methods in

polygons. These methods are often used as post-processing procedures for numer-

ical schemes that do not directly calculate the velocity field but only provide cell

boundary flux conditions, such as the finite volume schemes. These methods extend

the widely used velocity interpolation algorithms, such as the Pollock’s algorithm,

to more complex geometries such as perpendicular bisection (PEBI) grids, unstruc-

tured triangular grids and grids with local refinement. Once the velocity field is

interpolated, streamline trajectories and time of flight along the streamlines can be

calculated for reservoir simulation, model calibration and water-flood management,

for instance.

The velocity interpolation methods assume known lower order or higher order

cell boundary fluxes, which satisfy global mass conservation and normal flux conti-

nuity. However, they differ in the interpolation of velocities within the interior of

∗This material is reproduced with permission of John Wiley & Sons, Inc. from “Robust Stream-
line Tracing Using Inter-cell Fluxes in Locally Refined and Unstructured Grids” by Zhang, Y.,
King, M. J., and Datta-Gupta, A., 2012, Water Resour. Res., 48(6), W06521
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the cells. The interpolating velocity may be locally conservative or non-conservative,

continuous or discontinuous, lower order or higher order. Results show that the

interpolated velocity field has to be locally conservative in order to guarantee the

correct volumetric transformation for the calculated streamlines and the time of

flight. Velocity continuity is not as important as local conservation for the purpose

of streamline applications. Compared to higher order interpolation for the streamline

trajectories, lower order interpolation has the advantage of an analytic solution and

an efficient implementation. Based on our analysis, we recommended a lower order

locally conservative method for the most robust and numerically efficient calculation

of streamline trajectories on unstructured grids (Zhang et al., 2012).

2.2 Introduction

Streamline based methods are widely used for various subsurface flow modeling

problems, especially for advection-dominated displacements. To apply these methods

it is necessary to construct streamlines and calculate the time of flight (TOF) along

each streamline in an accurate and robust manner. This is usually achieved in three

steps. First, a simulator or a numerical method is used to obtain the cell boundary

face fluxes. Second, a suitable velocity field is interpolated throughout the entire

computational domain. Third, streamlines are integrated using the velocity field,

and the time of flight calculated along those trajectories. Of these three steps, the

third step is the most straight-forward and utilizes either analytic solutions or Runge-

Kutta techniques for the trajectory calculation. The first step is outside the scope

of the current study. However, we will discuss enough of the flux calculation to lay a

solid foundation for the discussion of the velocity interpolation models, which is the

main subject of this section.

Unstructured grids are an important topic in reservoir simulation and 3D geologic
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modeling due to their flexibility especially for representing highly complex geologic

structures and fluid flow near multilateral and fractured wellbore trajectories. In re-

cent years, this research topic has received even more attention in the context of the

emerging next generation reservoir simulators as well as the new data exchange stan-

dard for reservoir characterization, earth and reservoir models (King et al., 2012). It

is both theoretically important and practically necessary to develop velocity inter-

polation models which are applicable in unstructured grids. Some of the frequently

encountered unstructured grids in field applications are shown in Figure 2.1 and will

be discussed in detail later.

This section is organized as follows. We begin with a literature review of the nu-

merical calculation of flux and of velocity models. The next sub-section is dedicated

to a brief description of the problem to be solved, emphasizing the cell boundary con-

ditions which then constrain the velocity interpolation discussions. Section 2.5 begins

with an investigation of various velocity interpolation spaces in the unit square, and

then discusses possible extensions of those velocity spaces to polygons. In Section

2.6, several alternative methods based on sub-cell refinement are proposed. The

rest of this section evaluates the characteristics of the different velocity interpola-

tion schemes and then demonstrates their application to several 2D and 3D reservoir

modeling situations, including 2.5D PEBI grids, faulted grids, and grids with local

refinement.

2.3 Literature Review

We start with a review of the numerical methods which have been proposed to

solve the flow equations for various kinds of unstructured grids. These calculations

determine the flux on the boundaries of our unstructured polygonal elements. The

numerical methods themselves also offer insight into simpler velocity interpolation
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Figure 2.1: Velocity interpolation problem description in (a) PEBI cells, (b) LGR
cells, (c) non-matching (faulted) cells, (d) point-distributed control volumes, (e)
control volumes under CVFE scheme. Shaded areas in (d) and (e) have constant
rock properties.
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methods previously developed on triangular and quadrilateral grids. We have con-

sidered three different numerical approaches:

1. Finite Volume (FV),

2. Galerkin Finite Element (FE),

3. Mixed Finite Element (MFE).

The FV schemes can be further categorized into the cell-centered, the point-distributed,

and the control volume finite element (CVFE) schemes. The common features of

these schemes are:

1. the discretized system of equations is setup by applying mass conservation over

the cells (called “mass conserving cells” in this section) of the grid or the dual

grid, and

2. the face fluxes of these mass conserving cells are approximated in various ways

from the pressures at the center of these mass conserving cells. We consider

globally mass conservative schemes for which the flux is continuous across the

face.

The distinction between the cell-centered and the point-distributed FV schemes is

not essential, and they can be treated in a uniform manner as shown by Aavatsmark

et al. (1998). Both the cell-centered and the point-distributed FV schemes define

the rock properties as piecewise constant over the mass conserving cells, which may

be polygons. In contrast, the CVFE schemes define the rock properties as piecewise

constant over the triangular or quadrilateral cells, where pressure is interpolated by

piecewise linear or bilinear functions (Prakash, 1987; Forsyth, 1990). For the CVFE

schemes, the rock properties within a mass conserving cell (control volume) need
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not be homogeneous. The flux approximation for the cell-centered and the point-

distributed FV schemes can be either two-point or multi-point. Usually the two-point

flux approximation (TPFA) is used for structured corner point grids or perpendicular

bisection (PEBI) grids (K-orthogonal PEBI grids in general). For rigorous treatment

of full tensor permeability and/or highly distorted grids, the multi-point flux approx-

imation (MPFA) is necessary (Aavatsmark et al., 1998; Edwards and Rogers , 1998;

Lee et al., 2002). For each interface between two mass conserving cells, TPFA cal-

culates one flux on the interface while MPFA calculates two half face fluxes. For

the CVFE schemes, the flux approximation is obtained from the piecewise linear or

bilinear pressure interpolation in each triangular or quadrilateral cell.

The Galerkin FE schemes solve for pressure on the grid using a linear or bi-

linear interpolation over the triangular or quadrilateral cells. The rock properties

are assumed to be piecewise constant over the same cells. The MFE schemes solve

simultaneously for both pressure and velocity.

Of these numerical schemes, only the MFE schemes contain explicit velocity inter-

polation which may be used for streamline tracing. We will not discuss this particular

application since it has already been extensively studied by other authors, e.g. Dar-

low et al. (1984) and Matringe et al. (2007). However, the velocity interpolation

methods developed in the MFE schemes provide a foundation for the current paper.

We will focus on the the other numerical schemes, for which the velocity field is not

directly available but needs to be interpolated afterwards.

Pollock (1988) proposed a velocity interpolation method for rectangular cells con-

strained by the cell face fluxes. This was later extended to corner point cells by other

authors (Cordes and Kinzelbach, 1992; Prévost et al., 2001; Jimenez et al., 2005) on

the basis of the lowest order Raviat-Thomas (RT0) space and an isoparametric map-

ping. We will call this the Extended Pollock Method (EPM). Hægland et al. (2007)
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developed a Corner Velocity Interpolation (CVI) method for corner point cells con-

strained also by the cell face fluxes. The CVI method addressed the issue of recon-

structing uniform flow, removing a grid orientation effect for corner point grids from

the previous methods. Matringe et al. (2006) introduced the Brezzi-Douglas-Marini

space of order one (BDM1) for streamline tracing in order to improve accuracy. This

velocity interpolation is of a higher order than the RT0 space and has been shown

to work with MPFA FV schemes which calculate half face fluxes for triangles or

quadrilaterals (Matringe et al., 2008).

All the above velocity interpolation methods have been developed for triangular

or quadrilateral cells in 2D and tetrahedral or hexahedral cells in 3D. When the mass

conserving cells are of these geometries just mentioned, they can be applied directly

to interpolate the velocity field within each cell. However, the following two cases

make things more complicated:

1. the face fluxes originally obtained for triangular or quadrilateral cells are not

continuous across the cell faces;

2. the mass conserving cells, with which the face fluxes are associated, are not

triangles or quadrilaterals but n-polygons (n > 4).

In the first case, post-processing is necessary in order to recover global mass conser-

vation and flux continuity. For example, using the Galerkin FE numerical scheme

the velocity obtained by directly taking the gradient of the pressure field will not

satisfy flux continuity. This velocity field, if unprocessed, will give poor stream-

line tracing results due to spurious sources and sinks introduced on the cell faces.

Cordes and Kinzelbach (1992) discussed this problem and proposed a post-processing

procedure. The idea is to first introduce more degrees of freedom by dividing cells

into sub-cells and then using mass conservation, flux continuity, and irrotational-
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ity in a local “patch” to constrain the newly introduced degrees of freedom. For

triangular based grids, the velocity interpolation they used was piecewise constant

over sub-triangles. Such a velocity model does not have enough degrees of free-

dom to represent compressible flow, which is required in general. For quadrilateral

based grids, sub-quadrilateral face fluxes are reconstructed first and then the veloc-

ity can be interpolated by the EPM. Later Prévost et al. (2001) pointed out that

the sub-triangular construction cannot be applied to triangular based grids under

the point-distributed FV schemes since the rock properties may no longer be con-

stant within a triangular cell. They proposed to use sub-quadrilaterals rather than

sub-triangles for triangular based grids, which leads to a construction similar to the

CVFE scheme. They also demonstrated that for divergence free velocity fields their

sub-quadrilateral construction will reproduce exactly the same exit point as the sub-

triangular construction. However, they did not discuss the case of compressible flow.

Sun et al. (2005) proposed a general velocity post-processing approach based on the

Gauss-Seidel method to recover local mass conservation and flux continuity simul-

taneously. The method can work directly on the original grid of the Galerkin FE

scheme instead of the dual grid, but it requires solving a global optimization problem

by iteration. It also requires a priori knowledge of the source terms, which may be

difficult to obtain accurately for compressible, multi-phase flow.

The second case (i.e. mass conserving and flux continuous n-polygons) is the

focus of this section. It occurs when using cell-centered FV scheme for PEBI grids or

grids with faults and/or local grid refinement (LGR). It also occurs when using point-

distributed FV scheme or CVFE schemes for unstructured triangular or quadrilateral

grids. There are basically two strategies to solve this problem:

1. finding direct extensions of the existing velocity interpolation spaces to n-
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polygons;

2. dividing the n-polygons into sub-triangles or sub-quadrilaterals.

Recently Rasmussen (2010) attempted the first strategy by extending CVI to polyg-

onal cells. The previous work of Cordes and Kinzelbach (1992) and Prévost et al.

(2001) have already shed some light on the second strategy. The current paper will

systematically investigate both strategies and propose the most robust and efficient

methods to be used under different circumstances based on both theoretical analysis

and numerical experiments.

2.4 Problem Description

Let us consider a polygonal shaped mass conserving cell which arises in the dis-

cretization of some FV scheme. The Galerkin FE scheme can be treated in the same

way as CVFE scheme just by introducing control volumes. The numerical solution of

the flow equations will provide fluxes on the cell interfaces. This flux information is

global because the cell interface fluxes satisfy conservation for each mass conserving

cell and continuity across neighboring cells. The velocity interpolation methods, on

the other hand, only work locally within each mass conserving cell, consistent with

these fluxes. This means that the global cell face flux information serves as known

boundary conditions for the velocity interpolation of a particular mass conserving

cell.

As just mentioned, the boundary conditions provide knowledge of the face fluxes.

When we utilize lower order boundary conditions, we mean that flux along the bound-

ary face is uniform, i.e. the normal component of the velocity is characterized by a

single average value. When we utilize higher order boundary conditions, the normal

component of the velocity varies linearly, i.e. it is characterized by two variables: the

average and the slope of variation. (Note that in 3D there is a distinction between
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the same boundary conditions in the physical cell and in the isoparametric reference

cell, but in 2D they are equivalent (Hægland et al., 2007).) In particular, a lower

order boundary condition can be viewed as a constrained higher order boundary con-

dition with zero slope of the linear variation. Thus a general discussion can be made

assuming higher order boundary conditions; the results for lower order boundary

conditions arise as a special case.

The boundary conditions can be equivalently expressed by corner velocities in-

stead of fluxes for the non-degenerate cases. As shown in Figure 2.2, if the angle

between two adjacent faces is different from π, the face fluxes can be used to uniquely

define the corner velocities. When the angle between two adjacent faces is close to π

(degenerate case), the corner velocity will not be well defined. The degenerate case

may occur for grids with local grid refinement and faults, as well as CVFE grids.

The unrobustness caused by the degeneracy of the physical cell will be addressed in

section 2.5.2 and 2.5.3.

It is worth mentioning that Matringe and Gerritsen (2004) have proposed a local

refinement tracing method where the boundary conditions on the subgrid are deter-

mined using the fluxes of the neighboring coarse blocks with a “slope limiter”. This

will generate a higher order boundary condition for the coarse blocks without using

a higher order numerical scheme for the fluxes. If a similar method was developed

for unstructured grids, it would be immediately applicable to our analysis since we

start with the known boundary conditions.

The various situations that are frequently encountered in practice are depicted in

Figure 2.1 and explained as follows. As mentioned earlier, TPFA calculates one av-

erage flux for each interface between two cells. This is most often seen in simulations

using PEBI grids, grids with LGR’s, and grids with faults as shown in Figure 2.1

(a), (b), and (c). The point-distributed FV schemes for unstructured grids usually
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Figure 2.2: The degrees of freedom for a polygonal cell. The degrees of freedom may
be associated with the average flux and the slope of linear variation of flux for each
face (blue). Or equivalently they may be associated with the components of corner
velocities (red).
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require MPFA, which is able to calculate two half face fluxes. As shown in Figure

2.1(d), the interface between two mass conserving cells is part of a non-convex poly-

gon and consists of two straight lines. Thus for the polygonal cell, only one average

flux is known for each edge of the polygon. The situation of the CVFE schemes are

similar to that of the point-distributed FV schemes as shown in Figure 2.1(e). The

only difference is that the CVFE scheme is based on heterogeneous rock properties

within the polygonal cell. Note that all the situations depicted in Figure 2.1 involve

only lower order boundary conditions. Thus for practical purposes and simplicity,

the test cases and examples in this section assume lower order boundary conditions.

However, the theory and the methods developed in this section are not restricted to

lower order boundary conditions.

Now that we have discussed the boundary conditions, the problem we are trying

to solve becomes easier to state. The local velocity field within a cell is not deter-

mined uniquely by the boundary conditions. It also depends on the local velocity

interpolation method used, which will make assumptions of the functional form of

the local velocity field as well as certain properties that it should satisfy. As a basic

requirement, the velocity interpolation method should provide sufficient degrees of

freedom in order to be able to honor the boundary flux conditions; on the other hand,

it should not introduce too many additional degrees of freedom without physically

meaningful constraints on the velocity field to obtain a robust solution.

The following discussion will focus on 2D situations. The extension to 3D is

straightforward in some cases but may require additional study for some classes of

3D unstructured grids.
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Figure 2.3: The degrees of freedom for the unit square.

2.5 Velocity Interpolation Spaces

In this section, we will discuss the first strategy mentioned in the literature review,

namely finding direct extensions of the existing velocity interpolation spaces to n-

polygons. We will begin with a discussion in the unit square.

2.5.1 Velocity Interpolation Spaces in the Unit Square

As shown by Figure 2.3, in the unit square the eight degrees of freedom can

be equivalently associated with the eight half face fluxes or the eight corner velocity

components. In order to treat the RT0, CVI, and BDM1 spaces in a uniform manner,

we will use the eight corner velocity components as degrees of freedom in the following

discussions.
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RT0 Space

The lowest order shape function associated with vC1 and vC2 in Figure 2.3 is

 α

0

 (2.1)

It is uniform on the face. The normal component of the velocity vanishes on all

other faces (Figure 2.4(a)). The divergence of this shape function is simply 1. Such

a velocity field is locally conservative, but is also sufficiently general to represent

compressible fluid flow. The other three shape functions may be obtained by rotation

and reflection symmetry. For example, by rotation symmetry, the shape function

associated with vC2 and vD2 in Figure 2.3 is

 0

β

. Then the other two shape

functions can be obtained by reflection symmetry, specifically substituting α with

1 − α and β with 1 − β to obtain

 1− α

0

 and

 0

1− β

. The velocity field

that can be represented in this basis can be written as the linear combination of the

four shape functions:

URT0 =fBC

 α

0

+ fCD

 0

β

+

fDA

 1− α

0

+ fAB

 0

1− β

 (2.2)
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(d) (e) (f)

?

Figure 2.4: (a) A shape function of the RT0 space in the unit square; (b) a higher
order shape function of the CVI space in the unit square; (c) a higher order shape
function of the BDM1 space in the unit square; (d) a lower order shape function of
the CVI space in the unit pentagon; (e) a higher order shape function of the CVI
space in the unit pentagon; (f) the higher order shape function of the BDM1 space
in the unit pentagon is not known.

For the RT0 space, we have fBC = vB1 = vC2 and similar relations on the other three

boundary faces. The above velocity field can be simplified as

URT0 =

 a1 + b1α

a2 + c2β

 (2.3)

CVI Space

The CVI space consists of the RT0 space with additional higher order shape

functions. For instance, the higher order shape function, orthogonal to the RT0
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basis but associated with vC1 and vC2 in Figure 2.3, is

 α(β − 1
2
)

0

 (2.4)

Figure 2.4(b) shows this shape function. The total flux through the face vanishes

but the local velocity does not. The divergence of this shape function is calculated

to be β − 1
2
, which is not constant in the cell. This means that this interpolation

space is not locally conservative. The upper half of the cell acts as a source while the

lower half of the cell is a sink. The other three higher order shape functions can be

obtained easily by reflection and rotation symmetry. The velocity field interpolated

is the linear combination of all the shape functions:

UCV I =



vC1αβ + vB1α(1− β)−

vD1(1− α)β − vA1(1− α)(1− β)

vC2αβ − vB2α(1− β)+

vD2(1− α)β − vA2(1− α)(1− β)


(2.5)

This can be rearranged into the following with only linear and bilinear terms:

UCV I =

 a1 + b1α + c1β + d1αβ

a2 + b2α + c2β + d2αβ

 (2.6)
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BDM1 Space

Similar to the CVI basis, the higher order shape function associated with vC1 and

vC2 in Figure 2.3 is:  α(β − 1
2
)

1
2
β(1− β)

 (2.7)

Figure 2.4(c) shows this shape function. The divergence of this shape function is

identically zero; this interpolation space is locally conservative. Compared with CVI

space, the addition of the quadratic term 1
2
β(1 − β), which vanishes at the four

corners, makes the interior velocity field locally conservative. The other three higher

order shape functions can be obtained easily by reflection and rotation symmetry.

The velocity field interpolated is the linear combination of all the shape functions:

UBDM1 =



vC1αβ + vB1α(1− β)−

vD1(1− α)β − vA1(1− α)(1− β)+

1
2
(vC2 + vB2 − vD2 − vA2)α(1− α)

vC2αβ − vB2α(1− β)+

vD2(1− α)β − vA2(1− α)(1− β)+

1
2
(vC1 − vB1 + vD1 − vA1)β(1− β)



(2.8)

This can be rearranged into the following with linear, bilinear, and quadratic terms:

UBDM1 =

 a1 + b1α + c1β + d1αβ + 1
2
d2α(1− α)

a2 + b2α + c2β + d2αβ + 1
2
d1β(1− β)

 (2.9)

= UCV I +

 1
2
d2α(1− α)

1
2
d1β(1− β)

 (2.10)

30



The BDM1 space can be viewed as the CVI space plus an extra term which has zero

contribution at the corners but cancels out the variation of divergence in the interior.

2.5.2 Isoparametric Mapping

An isoparametric mapping is used to define a corner point simulation grid as a

mapping from a unit square (or cube in 3D) to a general cell defined by the location

of its corners in 2D or 3D. The following discussion is quite general. It can be applied

to n-polygons and is not restricted to the unit square. Suppose that the corners of

the reference cell are x̂i(i = 1, 2, · · · , n), and the isoparametric mapping maps the

reference cell corner x̂i to the corner xi of the physical cell. A point x̂ in the reference

cell can be written as

x̂ =
n∑
i=1

φ̂i(x̂)x̂i (2.11)

where φ̂i are generalized barycentric coordinates (Wachspress , 1975; Floater et al.,

2006). Then the point image of x̂ in the physical cell can be written as

x =
n∑
i=1

φ̂i(x̂)xi (2.12)

The above equation can be seen as the coordinate transformation from x̂ to x (see Fig-

ure 2.5 as an example for pentagons). The velocity transformation usually adopted

is called the Piola transformation, which has the property of preserving boundary

flux (Brezzi and Fortin, 1991). According to the Piola transformation, the velocity

û at point x̂ in the reference cell can be transformed to the velocity u at point x in

the physical cell by

u =
1

det(J)
Jû (2.13)
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Figure 2.5: Isoparametric mapping for a pentagon.

where the Jacobian matrix J is defined as

J =
∂x

∂x̂
=
∂(x, y)

∂(α, β)
(2.14)

and is calculated from Equation 2.12.

The equations of motion for streamline trajectories in the physical cell are

φ
dx

dt
= u (2.15)

Converting into the reference cell we have

φ
dx

dt
= φJ

dx̂

dt
= u =

1

det(J)
Jû (2.16)

or,

φ det(J)
dx̂

dt
= û (2.17)

We can introduce the time variable in the reference cell T , related to the physical

time of flight using

t = φ

∫
det(J)dT (2.18)
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In the reference cell, the trajectory is now easy to calculate

dx̂

dT
= û (2.19)

The Jacobian is a known function in the reference space. Once the trajectory in

reference space is calculated as a function of T , then Equation 2.18 can be integrated

to determine the actual time of flight across the polygonal cell. Using Equations

2.12, 2.18, and 2.19 is more robust than using Equations 2.13 and 2.15 for streamline

tracing. The reason is that if the physical cell is degenerate or non-convex, the

Jacobian may become zero or negative, and consequently Equation 2.13 may not be

well defined. However, Equations 2.12, 2.18, and 2.19 will still remain applicable.

The interpolation of velocity in the reference space, together with the technique

shown here, makes the RT0 and BDM1 velocity interpolation methods robust for

both non-convex and degenerate quadrilaterals.

2.5.3 Velocity Interpolation in Polygons

In this section we will seek direct extensions of the previously discussed con-

tinuous velocity spaces, i.e. the CVI space and the BDM1 space, to n-polygons

(n > 4). Such extensions should produce continuous velocity field interpolations

in n-polygons just as they do for triangles and quadrilaterals. This is desirable for

cells with homogeneous rock properties, which is almost always the case for trian-

gles and quadrilaterals but only true for polygons under the cell-centered or the

point-distributed FV schemes.
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CVI in Polygons

Rasmussen (2010) recently proposed an extension of the CVI method to convex

polygons. The interpolation can be written as

u =
n∑
i=1

φiui (2.20)

where the weights φi are given by generalized barycentric coordinates in the convex

n-polygon, e.g. the Wachspress coordinates (Wachspress , 1975). The interpolation

is directly carried out in the physical cell without the application of an isoparametric

mapping. The limitation of this extension is that it cannot be applied to degenerate

or non-convex polygons. First, in degenerate or non-convex polygons the generalized

barycentric coordinates φi are not well defined. Second, in degenerate cells, some

corner velocities may not be well defined, as shown in section 2.4. We must point out

that Rasmussen’s CVI method does not reduce to Hægland’s CVI method (Hægland

et al., 2007) for the case of n = 4.

The original CVI method proposed by Hægland et al. (2007) for quadrilaterals

can be expressed as

u =
4∑
i=1

φ̂iui (2.21)

A direct extension of this equation to n-polygons should be

u =
n∑
i=1

φ̂iui (2.22)

Note that the weighting functions φ̂i are the generalized barycentric coordinates

in the reference cell rather than the physical cell. Please compare Equation 2.20

with Equation 2.22 to see why Rasmussen’s extension does not reduce to Hægland’s
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CVI method. Because the reference cell is always a convex polygon, the weighting

functions φ̂i are always well defined even if the physical cells are degenerate or non-

convex. This is why Hægland’s CVI method does not require the cell to be convex.

However, this method still fails when the polygon has degenerate adjacent faces

because of the inability to calculate the corner velocity from the face flux just as with

Rasmussen’s method. In addition, to apply Equation 2.22, it is necessary to map

points from the physical cell back to the reference cell, i.e. solve for x̂ from Equation

2.12. This requires numerical iterations which is computationally expensive.

We propose a new robust CVI method which is applicable for both degenerate

and non-convex polygons. This new method interpolates the velocity field in the

reference cell rather than in the physical cell:

û =
n∑
i=1

φ̂iûi (2.23)

Using the isoparametric mapping technique developed in section 2.5.2, we will trace

streamline trajectories in the reference cell and then map them to the physical cell.

Because the velocity interpolation and integration are both carried out in the refer-

ence cell, this method will be robust regardless of the geometry of the physical cell.

Moreover, unlike Hægland’s CVI method, this method does not require the expensive

back-mapping from the physical cell to the reference cell.

We have presented three different CVI methods for polygons. Rassmussen’s

method has the simplest form without any notion of isoparametric mapping, but

it cannot be applied to degenerate and non-convex polygons. Hægland’s method

interpolates velocity in the physical cell but calculates the weights in the reference

cell. It is not robust for degenerate polygons and requires expensive back-mapping

from the physical cell to the reference cell. We propose a new robust method ap-
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plicable for both degenerate and non-convex polygons which avoids the expensive

back-mapping. Both the Rasmussen and the Hægland methods will preserve a uni-

form velocity, which is the intent of their constructions. The isoparametric extension

of the CVI method, Equation 2.23, need not have this property. Uniform veloci-

ties will be preserved if the Jacobian of the isoparametric mapping belongs to the

space spanned by the nodal basis functions, {φ̂i}. Otherwise the direction of uniform

velocities is preserved, but not the magnitude.

There are two major drawbacks of all three CVI methods. First, they are not

locally conservative, the consequences of which will be discussed in Section 2.7.1.

Second, in general, the numerical computation of the trajectory cannot be obtained

analytically and requires a more expensive numerical integration.

BDM1 in Polygons

As we have already shown in the unit square (section 2.5.1), the BDM1 space can

be seen as the CVI space with an additional velocity term which has zero contribution

at the corners but cancels out the variation of divergence in the interior. Figure 2.4

(a) and (b) show the shape functions of the CVI space and BDM1 space in the unit

square. The mass conserving term provides a circulation in the BDM1 space which is

not present in the CVI space. As an example, Figure 2.4 (d) and (e) show the lower

order and the higher order shape functions of the CVI space in the unit pentagon.

They are similar to (b) in that the velocity direction is maintained but the magnitude

of the velocity reduces away from the corners. For n-polygons, the basis functions are

rational functions of n−1 polynomials. The divergence of such a velocity field is not

constant. By analogy, the shape function of the BDM1 space in the unit pentagon

should have an extra term which has zero contribution at all five corners but cancels

out the variation of divergence in the interior of the pentagon. For pentagon and
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n-polygons (n > 4) in general, such a velocity field has not been constructed and is

unlikely to have a simple analytical expression. In other words, a direct extension of

BDM1 to arbitrary polygons is not known.

2.6 Sub-cell Refinement Methods

The CVI schemes provide a method for smooth interpolation of properties within

polygons. However, if we wish to work with conservative velocity fields, then no

solution is known for n-polygons once n > 4. In such a case, we may refine the

polygon into either triangles or quadrilaterals, and then use conservative schemes on

the sub-cells. The problem then becomes one of flux reconstruction on the sub-cells,

knowing the flux on the boundary of the polygon. This is the approach that we will

study in this section.

In Section 2.4 we discussed the various situations where polygonal cells arise.

For the situations shown in Figure 1 (d) and (e), the n-polygon has already been

naturally refined into quadrilaterals by the faces of the triangular grid cells, although

a triangular refinement may also be constructed. For the situations shown in Figure

1 (a) (b) and (c), there is no natural refinement and the n-polygonal cell can be either

refined into n quadrilaterals or n triangles (see Figure 6 as an example). We will focus

our discussion on a 2D PEBI cell to illustrate both quadrilateral refinement (QR) and

triangular refinement (TR) (Figure 2.6). Instead of seeking a direct interpolation of

velocity from the known boundary conditions to every point inside the polygon, the

strategy is to divide and conquer by interpolating in each sub-cell separately. The

boundary conditions for each sub-cell then have to be constructed from the boundary

conditions on the polygon.

Let us consider quadrilateral refinement first. As in our discussion of shape

functions, let us suppose each quadrilateral is associated with 8 degrees of freedom
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(a) (b)

Figure 2.6: Sub-cell refinement with (a) quadrilaterals and (b) triangles. Arrows
show the positive flux directions.

in general. Thus there are 8n degrees of freedom in the representation. The normal

projection of the velocities on the boundary of the polygon are known. This means

that for the 2 faces of each quadrilateral which are on the boundary of the polygon,

4 degrees of freedom are specified. Flux continuity across the newly introduced n

internal faces will constrain another 2n degrees of freedom. Therefore, there are 2n

degrees of freedom remaining. If we choose to constrain the velocity model to the

lowest order, then the variation of the normal velocity on each internal face vanishes,

providing n additional constraints and reducing the problem to n degrees of freedom.

For triangular refinement, each triangle has 6 degrees of freedom, with 6n degrees

of freedom in total. There are 4 degrees specified on the polygon boundary for

each triangle. Total flux continuity across the newly introduced internal faces will

constrain another n degrees of freedom, reducing the problem to n degrees of freedom.

According to this analysis, only the case of quadrilateral refinement with higher

order (BDM1) internal face fluxes provides 2n degrees of freedom. Otherwise, only

n degrees of freedom are available. For the schemes with n degrees of freedom, we

will show that there is a competition between continuity of the solution and whether

the velocity field is locally conservative. The higher order quadrilateral refinement,
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with 2n degrees of freedom, is able to satisfy both requirements. This is explained

in more detail in the remainder of this section.

2.6.1 Local Conservation (LC)

First we will discuss in general the constraints which are imposed by the re-

quirement of local conservation on the remaining degrees of freedom. There is no

restriction of our construction to incompressible flow. The total source of the polyg-

onal cell is given by

S =
n∑
i=1

Qe
i (2.24)

where the Qe
i are the known polygon boundary face fluxes. The positive directions are

outwardly directed, as shown in Figure 2.6. Assuming a constant velocity divergence,

i.e. local conservation, then the source term for sub-cell i should be

si = S
(ct)iφiAi∑n
l=1(ct)lφlAl

(2.25)

where (ct)i, φi, and Ai are the total compressibility, the porosity and the area of

sub-cell i. Therefore, the conservation residual for each sub-cell is

Ri = Qi+1 −Qi +Qe1
i+1 +Qe2

i − si+1

(i = 1, 2, · · · , n, cyclic)
(2.26)

for quadrilateral refinement, and

Ri = Qi+1 −Qi +Qe
i − si (i = 1, 2, · · · , n, cyclic) (2.27)

for triangular refinement. The Qe1
i and Qe2

i are the half face fluxes for the ith

polygonal boundary face (we have Qe1
i + Qe2

i = Qe
i ); the Qi are the fluxes of the
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internal faces whose positive directions are counterclockwise as shown in Figure 2.6.

Because
∑

iRi = 0, identically, local conservation provides only n − 1 independent

constraints:

Ri = 0 (i = 1, 2, . . . , n− 1) (2.28)

2.6.2 The Closure Constraint

Local conservation only provides n−1 constraints (Equation 2.28). An additional

closure constraint is needed in order to complete the solution of the Qi. There are

three existing options to formulate the closure constraint, which will be summarized

as follows.

Option 1

This option assumes irrotationality of the velocity field:

∇× u = 0 (2.29)

The above equation can be formulated in a weak sense

∮
u · t̂ dl = 0 (2.30)

The closed loop for the integration is usually chosen to run through the cell and face

centers. This option is simple to implement because it does not refer to any rock

properties.

Option 2

This option assumes the existence of a local potential function, the pressure P ,

which means

∇×∇P = 0 (2.31)
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In combination with Darcy’s Law, this equation can be formulated in a weak sense

as ∮
u ·K−1 · t̂ dl = 0 (2.32)

with the same closed loop as before. This was first used by Cordes and Kinzelbach

(1992) and later by Prévost et al. (2001) and often referred to as the “irrotationality”

condition in the literature. It reduces to the first option for constant scalar rock

permeability. If the heterogeneity or the anisotropy of the permeability is significant,

Equation 2.32 should be applied in preference to Equation 2.30.

Option 3

This option, proposed by Datta-Gupta and King (2007), is equivalent to a finite

difference form of Equation 2.32. It utilizes a local pressure solution, which provides

easy extension to 3D and to compressible flow. A similar construction has recently

been applied by Kachuma (2010) to trace streamlines in non-matching grids across

faults. If the principal axes of the permeability tensor are aligned with the sub-grid

axes, then a two point flux approximation is adequate. Otherwise a multi-point flux

approximation should be considered. Let Pi be the pressure at the center of each

sub-cell, and let Ti be the two-point transmissibility between sub-cell i and i + 1.

Then the inner face flux from sub-cell i to i+ 1 is related to the pressure difference

according to

Qi = Ti(Pi − Pi+1) (2.33)

Divide by Ti and sum over i, and the total pressure drop must vanish, which gives

n∑
i=1

Qi

Ti
= 0 (2.34)

Equation 2.34 is used as the final constraint to supplement Equation 2.28.
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2.6.3 Higher-order Quadrilateral Refinement, BDM1(QR)

As we have already mentioned, higher order quadrilateral refinement, BDM1(QR),

with 2n degrees of freedom, is able to satisfy local conservation and produce smooth

velocity fields at the same time. We will first impose the n − 1 local conservation

constraints discussed in Section 2.6.1 and one closure constraint discussed in Section

2.6.2. The remaining n degrees of freedom can be further reduced to only 2 if we

impose a single velocity at the center point, shared by all the sub-quadrilaterals.

We calculate this center velocity using one of the CVI schemes discussed in Section

2.5.3, usually Equation 2.23. Like the CVI methods, this scheme provides a smooth

interpolation of properties within polygons. Unlike the CVI methods, it produces

locally conservative velocity fields, which are advantageous in many applications, as

we will show.

This scheme is the best technical solution as it satisfies all of our stated require-

ments. However, it has two disadvantages. First, it requires numerical calculation

of the streamline trajectories. This is in contrast to lower order schemes where the

trajectories may be integrated analytically. Second, it imposes a continuous solution

when this may not be appropriate. If either the sub-grid boundary conditions or the

sub-grid properties are heterogeneous, then the lower order scheme may provide a

more physically reasonable solution. For both these reasons, we continue our analysis

by examining lower order velocity interpolation schemes.

2.6.4 Lower-order Quadrilateral Refinement, RT0(QR)

As discussed earlier, the lower order schemes, based on the RT0 basis, imposes

a uniform normal velocity across each internal face and thus reduces the problem

from 2n to n degrees of freedom. If we choose to satisfy the n− 1 local conservation

constraints first, the remaining degree of freedom is not sufficient to provide a smooth
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velocity field. Otherwise, if we choose to satisfy continuity of the solution first by

imposing a single velocity at the center point shared by all the sub-quadrilaterals, the

n degrees of freedom will be reduced to only 2, which are not sufficient to satisfy the

n− 1 local conservation constraints. The competition between the two requirements

leads to either a local conservation method or a continuous velocity method as follows.

Local Conservation (LC)

If the polygonal cell properties are only piecewise constant on the sub-quadrilaterals,

or if the flux boundary conditions are also heterogeneous, then the requirement of

smooth velocities becomes unnecessary. In this case, a lower order scheme is adequate

to satisfy local conservation, without constraining the solution to be too smooth. We

may also choose to work with a lower order scheme in order to simplify the imple-

mentation and increase numerical efficiency. Specifically, if the polygonal boundary

flux conditions are themselves of lower order, then utilizing a high order velocity for

interpolation shows no advantage in the tests we have performed. Also, use of the

RT0 interpolation in each sub-quadrilateral provides an analytic solution for both

streamline trajectory and the time of flight calculation.

We first apply the n− 1 local conservation constraints. The remaining degree of

freedom may be constrained by any of the closure constraints discussed previously

in Section 2.6.2. In addition to these three options, we propose an additional option

(option 4). The last degree of freedom (e.g. Q1) can be resolved by minimizing the

velocity variance at the center node, i.e., maximizing velocity continuity.

min
Q1

{
n∑
i=1

‖vci(Q1)− v̄c‖2

}
(2.35)

where vci is the velocity at the center point in the ith sub-cell and v̄c is the average

of these velocities. As with option 1, this is expected to work best on problems with
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no sub-cell heterogeneity. For higher order quadrilateral refinement, this residual

vanishes, although not for the lower order scheme.

Continuous Velocity (CV)

We impose a single velocity at the center point shared by all the sub-quadrilaterals.

This reduces the n degrees of freedom to only 2. The velocity at the center point

can then be specified by applying one of the CVI methods (option 1), as was done

for higher order quadrilateral refinement. Alternatively, one can construct the center

velocity by minimizing the conservation error (option 2), which is expressed as

min
uc

{
n∑
i=1

R2
i

}
(2.36)

2.6.5 Triangular Refinement, BDM1(TR)

Triangular refinement is based on the BDM1 basis, but is more tightly constrained

by the boundary velocities than quadrilateral refinement, providing only n degrees of

freedom. Hence, the analysis of triangular refinement is similar to that of lower order

quadrilateral refinement. Therefore, either keep local conservation or the continuous

velocity constraint can be applied with triangular refinement, but the satisfaction of

both requirements is not possible with triangular refinement.

2.6.6 Summary

At this point we have described a large number of possible interpolation schemes,

as summarized in Table 2.1. The four major categories are continuous velocity in-

terpolation (CVI), higher order quadrilateral refinement (BDM1(QR)), lower order

quadrilateral refinement (RT0(QR)), and triangular refinement (BDM1(TR)). Addi-

tional categories distinguish between local conservation (LC) and continuous velocity
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Table 2.1: Descriptions of the velocity interpolation schemes

Schemes CVI
BDM1

(QR)
RT0

(QR,LC)
RT0

(QR,CV)
BDM1

(TR,LC)
BDM1

(TR,CV)

Cell Refinement None Quad. Quad. Quad. Tri. Tri.

Basis CVI BDM1 RT0 RT0 BDM1 BDM1

Continuous Velocity Yes Yes No Yes No Yes

Local Conservation No Yes Yes No Yes No

# of Options 3 3 4 2 4 2

(CV), and as discussed, each scheme may require specific closure options. We will

now test the performance of these schemes against an increasingly complex series of

test cases, in the next section.

2.7 Results and Discussions

2.7.1 Single Polygonal Cell

The single polygonal cell used for the test is a regular convex octagon, with

incompressible flow coming in from three adjacent boundary faces and going out of

the remaining five boundary faces. We will impose uniform (lower order) flux on each

face. The flux is 5 for each inflow boundary face, and 3 for each outflow boundary

face. The launching points of the streamlines are at the three inflow boundary faces

and distributed uniformly.

The three different CVI schemes (see Section 2.5.3) are in this case identical

because of the regularity of the test cell. They will generally give slightly different

results for irregular convex polygons, but their major difference is in the robustness

for degenerate and non-convex polygons, which has already been discussed.

Different options of the closure constraint should produce almost identical re-

sults if the cell permeability is a scalar constant. However, if the cell permeability is

anisotropic (kx 6= ky), the anisotropy will contribute to the formulation of options 2
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Figure 2.7: The streamline trajectories of the RT0(QR,LC) with (a) option 3 with
ky = 10kx, (b) option 3 with ky = kx, (c) option 4.

and 3, but not to options 1 and 4. As an example, Figure 2.7 shows the streamline

trajectories using the RT0(QR,LC) scheme with (a) option 3 with ky = 10kx, (b) op-

tion 3 with ky = kx, and (c) option 4. Even with strong anisotropy, we see negligible

differences between the different closure constraints for these conservative methods.

Because of the existence of an underlying stream-function, which is identical on the

boundary of the polygon for all of these three cases, the exit point of each trajec-

tory is uniquely specified by its entry point. However, if the cell permeability is not

constant, i.e. the sub-cells have strong contrasts in permeability, then the face fluxes

will not be uniformly distributed and either option 2 or 3 should be used for velocity

reconstruction as then neither velocity irrotationality nor a requirement of velocity

continuity would have a physical motivation.

In Figure 2.8 we examine the slightly more complicated case of interpolation

on an irregular convex polygon. For the RT0(QR,CV) method, the two options of

interpolating the center point velocity produce only slightly different results. The

regular octagon example reveals no difference at all due to its symmetry. Here a non-

regular pentagon is used instead to show that these is only a minor difference between
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Figure 2.8: The streamline trajectories using the RT0(QR,CV) scheme in a non-
regular pentagon with (a) option 1 and (b) option 2. The arrows and numbers
associated indicate the lower order boundary fluxes.

the closure options. However, unlike the conservative schemes, the exit points of the

trajectories will now vary for different options of the RT0(QR,CV) method, and will

also differ from the RT0(QR,LC) exit points. As this deviation will accumulate, we

expect less accurate streamline trajectories as we trace across more cells.

In Figure 2.9 we now contrast a wider range of methods. For the locally conser-

vative methods we close the equations using minimum velocity variance (option 4).

For the continuous velocity schemes we utilize CVI to determine the center point

velocity (option 1). Figure 2.9 shows the streamline trajectories for the methods

discussed in this section. The CVI method requires no cell refinement; the con-

tinuous velocity and the locally conservative schemes may use either lower order

quadrilateral refinement or triangular refinement. The CVI, the BDM1(QR), the

RT0(QR,CV), and the BDM1(TR,CV) methods produce smooth streamlines. The

RT0(QR,LC) and the BDM1(TR,LC) produces streamlines with kinks or refractions

at the inner faces due to discontinuous tangential velocities. For the BDM1(QR), the

RT0(QR,LC), and the BDM1(TR,LC) methods, which are locally conservative, the
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Figure 2.9: Single cell streamline tracing results for (a) CVI, (b) RT0(QR,CV), (c)
BDM1(TR,CV), (d) BDM1(QR), (e) RT0(QR,LC), (f) BDM1(TR,LC).

streamlines are distributed uniformly on the outflow boundary faces, and their exit

points are uniquely determined by the entry points. For the CVI, the RT0(QR,CV),

and the BDM1(TR,CV) methods, which do not satisfy local conservation, stream-

lines are distributed erratically and their exit points are not uniquely determined by

the entry points.

The consequences of not satisfying local conservation can be illustrated by the

example shown in Figure 2.10. The directions of flux on the boundary faces of the

quadrilateral are indicated by the thick arrows and the flow rates across the boundary

faces are the same Q as shown in Figure 2.10(a). Therefore, there is no net flow

coming in or going out of the cell. However, the velocity field calculated by the CVI
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method shows negative divergence in the upper region and positive divergence in the

lower region separated by the dotted line. Although the integral of the divergence in

the entire cell is still zero, locally there are volume sources introduced in the lower

region and volume sinks introduced in the upper region. Let us consider a streamtube

shown in Figure 2.10(b) in the lower region of the cell starting between points A and

B. Because the flux on each boundary face is constant, the streamtube carries a flow

rate of Q/10 when it enters the cell. But because artificial sources are introduced in

the lower region, the streamtube will carry more and more fluid as it passes through

the cell, and delivers more than Q/10 at the exit boundary between points A′ and

B′. For incompressible fluid, such a result violates mass balance. Under the same

situation, the locally conservative RT0 velocity interpolation scheme will generate a

divergence free velocity field. As shown in Figure 2.10(c), the streamtube starting

between the same points A and B will always carry a flow rate of Q/10 and the

distance between the exit points is exactly one tenth of the boundary length. When

tracing streamlines in multiple cells, the error created in a single cell as shown in

Figure 2.10(b) may accumulate or cancel in the succession of cells that are penetrated

by the streamlines, depending on the specific geometries of those cells. In contrast,

in a locally conservative scheme, the flow carried by a streamtube will always be

preserved regardless of cell geometries. Looking from the other side of the same

problem, if we assume each streamline carries the same amount of flow, then for a

non-conservative scheme, the fluxes obtained by counting the number of streamlines

passing through each outflow face will be inconsistent with the value specified as the

boundary condition.

Another important observation from Figure 2.9 is that quadrilateral refinement

and triangular refinement produce quite different results under the same method.

Quadrilateral refinement provides systematically more regular results. We believe
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Figure 2.10: (a) The divergence of the velocity field obtained by the CVI method in a
quadrilateral is negative in the upper region and positive in the lower region divided
by the dotted line. (b) Using the CVI method, a streamtube between streamlines
AA′ and BB′ is shown. The flow rate between AB is Q/10, while the flow rate
between A′B′ is larger than Q/10. (c) With the locally conservative RT0 velocity
interpolation, the streamtube starting between AB is shown. The flow rate between
the points A′ and B′ is Q/10, which is same as the flow rate entering AB.

that these results are due to the more continuous boundary conditions with quadri-

lateral refinement, as each adjacent boundary quadrilateral face shares a common

boundary flux. In contrast, triangular refinement has no such continuity in bound-

ary conditions, with each triangle having an independent boundary condition with

polygonal boundary face. This difference is also reflected in the count of degrees of

freedom, as discussed in the beginning of Section 2.6. The triangular refinement con-

structions have only n degrees of freedom in the interior of the cell, even with higher

order boundary conditions on the inner faces. This is why triangular refinement does

not have sufficient degrees of freedom to satisfy both local conservation and velocity

continuity. BDM1(QR) is the only method that satisfies both local conservation and

velocity continuity. The result of BDM1(QR) surpasses the other methods in the

combined regularity and smoothness of the streamline trajectories.
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2.7.2 Quarter 5-Spot Pattern Flood

The 2D quarter 5-spot pattern flood is one of the most frequently used test cases

for streamline tracing. We use a PEBI grid of 24 polygonal cells in the unit square

with homogeneous rock properties. The injector and the producer are placed at the

lower left corner and the upper right corner of the unit square respectively. For

this particular case, the face fluxes of all cells can be calculated using the analytic

stream-function for the quarter 5-spot (Datta-Gupta and King , 2007). Lower order

flux boundary conditions are assumed on each cell for all the velocity interpolation

methods to be applied.

Figure 2.11 shows the streamline trajectories initiated uniformly from the injector

cell with methods corresponding to those used in Figure 2.9. The dashed streamlines

are the references obtained from the analytic streamfunction. The results of time

of flight are summarized in Table 2.2(a). According to Table 2.2(a), the CVI and

BDM1(TR,CV) methods have better performance. However, the continuous velocity

schemes tend to avoid the extremes in velocity, and do not adequately sample the

lower velocity portions of the flood pattern, especially in the two stagnation corners.

In contrast, the conservation schemes are constrained in such a way as to better

sample these regions. To avoid such bias, another set of test results are calculated

with the streamlines initiated uniformly from the line connecting the upper left and

lower right corners in the domain. This new set of initiation points provides a better

match between the calculated and the reference trajectories for all the methods

but not to the same degree. The time of flight error analysis is shown in Table

2.2(b). In this case, the RT0(QR,LC), BDM1(TR,LC), and CVI methods have better

performance.

From these two numerical experiments, we find it difficult to provide a quanti-
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Table 2.2: The time of flight results in the homogeneous quarter 5-spot case. Velocity
interpolation schemes are compared based on particular streamlines launched from
the same points.

(a) Streamlines originated at the injector

Schemes Ref. CVI
BDM1

(QR)
RT0

(QR,LC)
RT0

(QR,CV)
BDM1

(TR,LC)
BDM1

(TR,CV)

Min TOF
(a.u.)

0.6031 0.6015 0.6031 0.6054 0.6174 0.6099 0.6019

Max TOF
(a.u.)

1.5288 1.4780 1.7239 1.6828 1.2988 1.6698 1.5428

Avg TOF
(a.u.)

0.8480 0.8289 0.9004 0.8992 0.8031 0.9028 0.8408

Avg. TOF
Err.%

- 2.26 6.18 6.03 5.30 6.45 0.85

(b) Streamlines originated on a line from upper left to lower right in the do-
main

Schemes Ref. CVI
BDM1

(QR)
RT0

(QR,LC)
RT0

(QR,CV)
BDM1

(TR,LC)
BDM1

(TR,CV)

Min TOF
(a.u.)

0.6184 0.6114 0.6105 0.6131 0.6169 0.6171 0.6133

Max TOF
(a.u.)

2.1662 2.1985 2.2797 2.2282 2.3396 2.2015 2.2045

Avg TOF
(a.u.)

1.1327 1.1433 1.1502 1.1397 1.1827 1.1438 1.1588

Avg. TOF
Err.%

- 0.93 1.54 0.61 4.42 0.98 2.30
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(a) (b) (c)

(d) (e) (f)

Figure 2.11: Streamline tracing results of the homogeneous quarter 5-spot case. Solid
red lines show the streamlines obtained by corresponding methods; dotted black
lines show the reference streamlines for comparison. (a) CVI, (b) RT0(QR,CV), (c)
BDM1(TR,CV), (d) BDM1(QR), (e) RT0(QR,LC), (f) BDM1(TR,LC).
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tative comparison for the different schemes by sampling specific streamlines. The

results are quite variable depending on the specific points in the domain where the

streamlines are initiated. In the comparison of Table 2.2 (a) and (b), we see that the

magnitudes of the errors and the ranking between schemes varies depending upon

the selection of launching points. Qualitatively, we realize that continuous velocity

schemes systematically under-sample the stagnation region compared to the locally

conservative schemes, but quantitatively it is difficult to draw conclusions in this

fashion. Instead, in order to avoid the bias generated by sampling specific stream-

lines, we will seek a quantitative error analysis based upon a convergence study of

the various schemes.

A less biased “global” error analysis may be obtained by recognizing the rela-

tionship between volume, flux and time of flight. This transformation is important

in correctly developing the equations for streamline simulation, as without them,

mass (or volume) is not conserved. As discussed in Datta-Gupta and King (2007),

there is a transformation in volume elements between physical space and streamline

coordinates

φdxdydz = dτdψdχ = dτdQ (2.37)

where τ is the time of flight, and ψ and χ are the bi-streamfunctions. This relation-

ship holds for incompressible flow, and may be readily generalized to compressible

flow. However, we will use an incompressible test case in the convergence analysis.

The volume integral gives

PV =

∫∫∫
φdxdydz =

∫∫
τ(ψ, χ)dψdχ =

∫
τdQ

≈
N∑
i=1

τi∆Qi (2.38)
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Figure 2.12: Global volumetric error of the homogeneous quarter 5-spot case. The
locally conservative schemes demonstrate convergence while the non-conservative
schemes do not.

Thus we may evaluate the global volumetric error using

E =

∣∣∣∑N
i=1 τi∆Qi − PV

∣∣∣
PV

(2.39)

Figure 2.12 shows the global volumetric error plotted against the number of stream-

lines for various methods for the flow patterns shown in Figure 2.11. It is clear to see

that the three locally conservative methods converge while the other three methods

do not, with an error of approximately 10%. This lack of convergence is a major

pitfall of the CVI method and the continuous velocity methods. The global error in-

dicates that the conservative velocity fields are all first order convergent. This is the

same order of convergence demonstrated on regular Cartesian grids (Datta-Gupta

and King , 2007). The order of the convergence is dominated by the low velocity

stagnation regions. A local error analysis indicated that the convergence is second

order away from such regions, and we would expect the same convergence here on

polygons.
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The CVI method and the continuous velocity methods produce visually appeal-

ing streamline trajectories in Figure 2.11. However, it should be recognized that this

is a homogeneous case, for which the underlying analytic solution is smooth. We

believe that a high degree of heterogeneity, which is often the case in practical appli-

cations, favors the methods which honor local conservation. To illustrate this point,

we use the same PEBI grid as in Figure 2.11 but assign a heterogeneous permeabil-

ity field of 1 md in two cells near the center and 1000 md otherwise (Figure 2.13).

Again, we place an injector at the lower left cell and a producer at the upper right

cell. Flow equations are solved using the cell-centered finite volume scheme with

a two point flux approximation assuming single phase incompressible fluid. Lower

order cell boundary fluxes are identical for each calculation, while the streamlines

are traced using various velocity interpolation methods. The launching points are

uniformly distributed along the two boundary faces of the injector. The calculated

streamline trajectories are shown in Figure 2.13. In this case, we encounter nonphysi-

cal termination of some streamlines for the CVI method. In addition, the streamline

trajectories obtained by CVI and the continuous velocity methods show spurious

high concentrations along some streaks as if they were channels, which is purely ar-

tificial. In contrast, there is a region near the producer where almost no streamlines

are found. This is verified by using as many as 2048 streamlines in the domain. In

the discussion of the homogeneous case (Figure 2.11) we pointed out that the con-

tinuous velocity schemes tend to under-sample the low velocity stagnation region.

In the heterogeneous case, this effect is more apparent since the stagnation regions

are on the interior of the domain, as would be the case with all real full field or

multi-well applications. Similar failure cases were also shown by Sun et al. (2005) for

some other non-conservative situations. In contrast, the BDM1(QR) and the locally

conservative methods are constrained in such a way as to better sample the stag-
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Figure 2.13: Streamline tracing results of the heterogeneous quarter 5-spot case. The
permeability of the two cells shaded in grey is 1 md. All other cells have 1000 md per-
meability. Solid red lines show the streamlines obtained by corresponding methods:
(a) CVI, (b) RT0(QR,CV), (c) BDM1(TR,CV), (d) BDM1(QR), (e) RT0(QR,LC),
(f) BDM1(TR,LC).

nation regions and produce much more reasonable streamline trajectories. Due to

local conservation, these methods share the same exit point at the cell boundaries.

Their primary difference is in the smoothness of streamline trajectories inside each

cell: BDM1(QR) is the smoothest while BDM1(TR,LC) is the most tortuous.

Up to now there are no obvious failures displayed for the BDM1(QR) and the

locally conservative methods. Although BDM1(TR,LC) may produce very tortuous

streamlines within a cell, it is still acceptable from a field-level point of view because

usually the details of the streamline trajectories inside a cell are not of much concern
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for field applications. For these methods, we argue that the major error appears to

come from the grid discretization rather than from the velocity interpolation meth-

ods. As we have already discussed in section 2.4, the cell boundary flux conditions

are obtained by solving the flow equations according to some numerical scheme. A

better numerical scheme and/or a better/finer grid will produce a more accurate rep-

resentation of the boundary fluxes. For the conservative methods, this is the primary

factor concerning the accuracy of the interpolated velocity field.

2.7.3 Robustness, Simplicity and Efficiency

Robustness, simplicity, and efficiency should not be overlooked for evaluating var-

ious velocity interpolation methods especially for large scale practical applications.

Of all the methods presented in this paper, the non-conservative methods show the

most issues with robustness, especially as heterogeneity increases. CVI is the most

complicated method to implement and the most expensive in term of numerical cal-

culation. The other methods, based on sub-cell refinement, ultimately reduce to

simpler tracing problems in quadrilaterals or triangles using either the lower order

RT0 space or the higher order BDM1 space. The RT0 space can be analytically

integrated leading to simple implementation and numerical efficiency. The BDM1

space requires the numerical solution of an ordinary differential equation usually by

Runge-Kutta integration. It is also necessary to devise a robust and efficient calcu-

lation of when a streamline exits from each sub-cell. In contrast, for the RT0 space,

these calculations may be solved analytically. Only if the polygonal cell boundary

flux conditions are of higher order and if the sub-cell problem has no heterogeneity,

should the BDM1 space be considered. Even then, using RT0 with half cell boundary

face fluxes, is expected to give a comparable solution, with the efficiency of an ana-

lytic solution. In summary, the RT0(QR,LC) method is our recommended approach.
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Since it is based on the RT0 basis it has the efficiency of an analytic treatment.

Because it is conservative, we have none of the issues of robustness experienced by

the non-conservative schemes. We will examine a number of applications of the

RT0(QR,LC) scheme in the next section.

2.8 Applications

2.8.1 2D LGR Grids

The 2D cell as shown in Figure 2.1 (b) can be simply considered as a degenerate

polygonal cell. Therefore, the methods discussed in this section can be easily applied.

As an example, we show a simple quarter 5-spot case with nested LGRs (Figure 2.14).

The injector and the producer are located at the lower left corner and the upper right

corner respectively. The streamline trajectories shown in the figure are calculated

using the LCM with quadrilateral refinement.

2.8.2 3D LGR Grids

It is not trivial to apply the unstructured streamline tracing methods developed

in 2D scenarios to 3D LGR grids. Here we follow the approach of Jimenez et al.

(2010) using a boundary layer approximation, which reduces the 3D problem to a

sequence of 2D calculations. As an example, consider a coarse cell with four LGR

cells adjacent to one of its faces. The boundary layer for that face is depicted in

Figure 2.15, where the thickness of the boundary layer is ε. The boundary layer

is within the coarse cell and provides a region in which the uniform flux on the

coarse cell face is redistributed to match the individual fluxes coming from each of

the refined cell local grid faces. The flux from the coarse cell on the −x side of the

boundary layer is allocated proportionally to the area of each fine cell, while the

fluxes on the +x side of the boundary layer are known from the fine fluxes obtained

for the LGR cells. The only problem still unsolved is how to trace streamlines across
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Figure 2.14: Streamline tracing example using the RT0(QR,LC) method on a grid
with local refinement.

this boundary layer. This problem will be simplified if we allow the boundary layer

thickness to approach zero, in which case the boundary fluxes in directions other than

−x and +x will vanish. The local problem will appear to be that of two dimensional

incompressible flow, with heterogeneous source and sink terms, irrespective of the

actual fluid properties.

As illustrated in Figure 2.16(a), suppose the total flux through the boundary

layer on the coarse cell side is 1, while on the other side, three out of four local fine

cell faces have zero flux and the last one has flux 1. If the boundary layer thickness

ε→ 0, the situation becomes equivalent to a closed boundary 2D problem as shown

in Figure 2.16(b). The differences of fluxes on the −x side and the +x side can be

treated equivalently as sources or sinks in the 2D problem for each of the four cells

as shown by the red numbers. The next step is to solve this 2D local flow problem.
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Figure 2.15: A global cell with four LGR cells adjacent to one of its face. The
boundary layer is outlined in red.
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Figure 2.16: (a) Flow rates are shown for the boundary layer. On the −x side the
total flux is 1. On the +x side, the fluxes across three LGR faces are zero, and only
one LGR face has a flux of 1. All other boundary faces have zero flux. (b) As ε→ 0,
the boundary layer reduces to a 2D closed boundary problem. The red number is
the equivalent source (positive) or sink (negative) term for each fine 2D cell. The
black arrows show the calculated inner face fluxes using the RT0(QR,LC) method.
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The situation of this particular application favors the requirement of local con-

servation rather than velocity continuity. The reasons are that the boundary flux

distribution should be honored rigorously and, the heterogeneity of the refined cell

rock properties makes the velocity continuity requirement unnecessary. For tracing

within the boundary layer, we require that the integral of the flux associated with

the streamlines honor the boundary flux and the exit point of a streamline. Because

the detailed path of the streamline is not required, the locally conservative methods

with either option 1 or 4 may be applied for simplicity, as these two options do not

require information about rock properties. The values and directions of the inner face

fluxes are calculated and shown in Figure 2.16(b) with black numbers and arrows.

Once the inner face fluxes are determined, streamlines can be traced in the boundary

layer by ordinary Pollock interpolation in the unit cube, as shown in Figure 2.17. As

the thickness of the boundary layer decreases and finally approaches zero, the traced

streamlines ultimately become only slips on the 2D boundary face, which conserve

flux on both the coarse cell and the local cell faces. The incremental time of flight

in the boundary layer will vanish. The example shows tracing from the coarse side

to the fine side of the boundary layer. The reversed trajectories are identical. Once

the boundary layer is crossed, tracing can be continued within either a coarse or a

fine cell.

2.8.3 Multilateral Well With Nested LGR

The method developed for 3D grids with LGR is applied to a synthetic exam-

ple which contains a multilateral well. Two-level nested LGR is used near the well

in order to reduce the grid size and increase the model resolution of the wellbore

trajectories. Figure 2.18(a) and (b) shows the region of LGR and the two branches

of the multilateral well. Figure 2.18(c) shows the streamlines for only one of the
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(a) (b) (c)

Figure 2.17: Streamline tracing for 3D LGR boundary layer. The thickness of the
boundary layer decreases from (a) to (c). In (c) ε → 0, and thus the streamlines
simply slip on the boundary face.

two branches of the multilateral well. Different colors represent streamlines origi-

nated from different well completions. Thanks to the higher resolution achieved by

the nested LGR, the streamlines we obtained can potentially be used to optimize

water flooding efficiency especially in the case of smart completions which enables

open/shut-in for each completions individually.

2.8.4 2.5D PEBI Grids

The 2.5D polygonal example shown in Figure 2.19 has one injector and one pro-

ducer in a three layered reservoir. The grid is refined near the wells. In this example

the flow in the k direction is simply treated separately from the i and j directions

and the traced streamlines are shown in Figure 2.19. The rock properties within each

PEBI cell is a scalar constant and thus the RT0(QR,LC) method with minimum ve-

locity variance is applied for this application. This pattern flood demonstrates that

there is no difficulty in extending the 2D few cell results to larger reservoir models.
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(a)

(b)

(c)

Figure 2.18: (a) Synthetic reservoir model with one producer having two lateral
branches. The green region is the first level of LGR and the blue region is the second
level of LGR. (b) Close view near the multilateral well showing the two levels of LGR
and the wellbore trajectories. (c) Streamlines for only one of the two branches of
the multilateral well. Different colors represent streamlines originated from different
well completions.
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Figure 2.19: Streamline tracing example using the RT0(QR,LC) method in a 3 layer
2.5D PEBI grid.

2.9 Conclusions

We have presented a comprehensive study of the velocity interpolation methods in

n-polygons. These methods are often used as post-processing after the cell boundary

fluxes are calculated for numerical schemes that do not directly calculate the velocity

field, such as the FV schemes.

We have discussed the relationship between the CVI and the BDM1 velocity in-

terpolation spaces. Both provide 2n degrees of freedom in general n-polygons, but

the BDM1 scheme includes additional higher order terms to honor mass conserva-

tion. We have described three versions of the CVI method in n-polygons. Their

major difference concerns robustness when dealing with non-convex and degenerate

polygons. Based on the technique of isoparametric mapping, the version we propose

is the only one that is robust for both non-convex and degenerate polygons. Al-
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though it is rather straight-forward to extend the CVI space to n-polygons, a direct

extension of the locally conservative BDM1 space to n-polygons seems difficult, and

has not been demonstrated.

Sub-cell refinement, using either quadrilaterals or triangles, provides an effective

way to simplify the problem. Local conservation or velocity continuity or both may

be used as constraints on the degrees of freedom introduced inside the n-polygonal

cell. Only the higher order BDM1(QR) method satisfies both requirements. The

BDM1(QR) method can be viewed as an indirect extension of the BDM1 space to

n-polygons.

Numerical experiments have provided strong evidence of the necessity of local

conservation for a velocity interpolation method to produce robust physical results.

An error analysis of comparing particular streamlines with the “true” streamlines

are shown to be ambiguous in nature. Instead, a global volumetric error analysis

shows that only the locally conservative schemes are convergent. Moreover, the

heterogeneous quarter 5-spot case demonstrates failure modes for both the CVI and

the continuous velocity methods.

The primary difference between the locally conservative methods is the smooth-

ness of streamline trajectories inside each cell, and in their numerical efficiency.

BDM1(QR) is the smoothest while BDM1(TR,LC) with triangular refinement is the

most tortuous. RT0(QR,LC) utilizes the RT0 basis and has an analytic solution for

the streamline trajectories while both BDM1(QR) and BDM1(TR,LC) utilize the

more expensive BDM1 basis. Therefore, robustness, simplicity and numerical effi-

ciency seem to be decisive factors in term of looking for the best method to be applied

in large scale field applications. In summary, we would only consider the BDM1(QR)

method for constant sub-cell permeability and high order cell boundary flux condi-

tions, but even then, a piecewise implementation of RT0(QR,LC) may be more than
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adequate; otherwise we recommend the RT0(QR,LC) method, which is robust, easy

to implement, and highly efficient. The option for closing the locally conservative

methods may be selected based on how much sub-cell constitutive information is

available and how much effort is deemed to be worthwhile in incorporating sub-cell

heterogeneity information.
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3. FAST-MARCHING METHODS FOR COMPLEX GRIDS AND

ANISOTROPIC PERMEABILITIES: APPLICATION IN

UNCONVENTIONAL RESERVOIRS∗

3.1 Synopsis

Unconventional reservoirs are characterized by sufficiently low permeabilities so

that the pressure depletion from a producing well may not propagate far from the

well during the life of a development. This is in contrast to conventional plays where

the pressure transients may probe the entire reservoir in weeks to months. The con-

cept of depth of investigation and its application to unconventional reservoirs provide

the understanding necessary to describe and optimize the interaction between com-

plex multi-stage fractured wells, reservoir heterogeneity, drainage volumes, pressure

depletion, well rates, and the estimated ultimate recovery.

Previous studies have performed unconventional reservoir analysis using more

conventional reservoir simulation techniques. High resolution local PEBI grids and

global corner point grids have been used to represent complex fracture geometry

and conductivity and estimate subsequent well performance. However, these tech-

niques do not provide the more geometric understanding provided by the depth of

investigation and drainage volumes. The application of the depth of investigation

to heterogeneous reservoirs can be obtained from an asymptotic expansion of the

diffusivity equation leading to the Eikonal equation which describes the propagation

of the pressure front. This equation is solved using a Fast Marching Method to cal-

∗Part of this section is reproduced with permission from “Extension of Fast-Marching Methods
to Corner Point and Unstructured Simulation Grids for Optimization of Unconventional Reser-
voir Developments” by M.J. King, Y. Zhang, A. Datta-Gupta, paper SPE 163637 presented at
SPE Reservoir Simulation Symposium held in The Woodlands, Texas, USA, February 18-20, 2013.
Copyright 2013 by Society of Petroleum Engineers.
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culate a diffusive time of flight at every location within the domain. The diffusive

time of flight is directly related to pressure front propagation. Unlike in a reservoir

simulator, this frontal propagation is determined in a single non-iterative calculation,

which is extremely fast.

In the current study, we extend the Fast Marching Method for solution of the

Eikonal equation to complex simulation grids including corner point and unstruc-

tured grids. This allows the rapid approximation of reservoir simulation results

without the need for flow simulation, and also provides the time-evolution of the

well drainage volume for visualization. Understanding the drainage volume alone is

useful for well spacing and multi-stage fracture spacing optimization. Additional po-

tential applications include well trajectory and hydraulic fracture location optimiza-

tion, reservoir model screening and ranking, matrix/fracture parameter estimation,

uncertainty analysis and production data integration.

3.2 Introduction

Unconventional resources such as shale gas have taken a significant share in the

energy supply in the US and the world energy market (Holdich, 2010). The advent

and growth of the development of these resources have been driven largely by the

advances in technologies such as horizontal well drilling and multistage hydraulic

fracturing. However, engineers today still face great challenges in understanding the

fundamental mechanisms involved in the production of unconventional reservoirs,

from the pore scale to the field scale. Further technology advancement in this area

will enable the industry to optimize the unconventional reservoir development by

bringing down costs, minimizing risks, and increasing production.

Several recent studies have performed unconventional reservoir analysis using

more conventional reservoir simulation techniques (Cipolla et al., 2009, 2011a,b, 2012;
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Fan et al., 2010; Freeman et al., 2010). The advantage of using the traditional nu-

merical simulation is that it can rigorously account for complex fracture geometry,

reservoir heterogeneity, rock compaction, pressure dependence of reservoir fluid prop-

erties, gas absorption effects, and many other physical processes. The disadvantage

is that such numerical simulation can be very time consuming, particularly when

the high levels of grid refinement are used to accurately model complex fracture ge-

ometry, flow in the vicinity of the hydraulic fractures, and interaction with natural

fracture networks. Because of uncertainties usually encountered in the development

of unconventional reservoirs, building and calibrating such detailed numerical models

can be difficult and time consuming.

Another approach more frequently applied in practice is the use of various ana-

lytical techniques, including the decline curve analysis (Fetkovich, 1980; Valko and

Lee, 2010) and the pressure/rate transient analysis (Ilk et al., 2010; Song and Ehlig-

Economides , 2011; Clarkson et al., 2012). The decline curve analysis is often used

for production forecasts and reserves estimation. The predictive power relies heavily

on the quantity and quality of completion and production data in a particular field

as well as the experience gathered during the field development. There is no physical

model associated with the decline curve analysis. The pressure/rate transient anal-

ysis incorporates simplified completion and reservoir models, such as homogeneous

reservoir with fully-penetrated, equally-spaced, symmetric rectangular and planer

hydraulic fractures. A small number of model parameters, e.g. fracture permeability

and fracture half length, can easily be calibrated from the observed flow regimes and

then well production can be predicted based on the calibrated model. These tech-

niques are very useful especially when there is very limited subsurface information.

However, the analytical models become inadequate when we have a better under-

standing of the reservoir heterogeneity and the complex hydraulic fracture geometry
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through integration of geological, geophysical, and engineering data.

We propose a novel approach based on the fast marching methods (FMM) for un-

conventional reservoir analysis (Datta-Gupta et al., 2011; Xie et al., 2012a,b; Sethian,

1996). Our proposed approach stands midway between the two approaches discussed

above, i.e. conventional numerical simulation and simplified analytical models. As

the development of a particular field progresses, more and more data is brought in

and the reservoir analysis also needs to evolve from purely analytical in the early

stages to full-field numerical simulation in a mature stage. The FMM approach may

serves as a bridge for this transition and a screening tool to select models for the more

expensive traditional reservoir simulation. There are two characteristics of the FMM

approach that make it well suited for such a purpose. First, the FMM approach is

extremely fast. A million-cell model can be simulated in minutes. Second, it is a

numerical model capable of handling the same degree of geometrical complexity and

reservoir heterogeneity as in traditional reservoir simulation. Previous studies by

Datta-Gupta et al. (2011) and Xie et al. (2012a,b) have demonstrated the speed of

the FMM approach and how it can provide the understanding necessary to describe

and optimize the interaction between complex multi-stage fractured wells, reservoir

heterogeneity, drainage volumes, pressure depletion, well rates, and the estimated ul-

timate recovery. However, these applications are restricted to regular square grid and

isotropic permeabilities. The scope of this section is to extend the FMM approach

to complex grids and anisotropic permeabilities.

This section is structured as follows. First, we will introduce the background

including the Eikonal equation and the basic theory of the fast marching methods.

In the methodology section, we will derive the formulation and discretization of the

Eikonal equation in corner point grids with anisotropic permeabilities. Next, we will

discuss the causality issue. In this discussion smoothly varying medium and non-
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smoothly varying medium are dealt with separately. Finally, we will show the results

and the applications of the fast marching methods in unconventional reservoirs.

3.3 Background

Unconventional reservoirs are characterized by sufficiently low permeabilities such

that the pressure depletion from a producing well may not propagate far from the

well during the life of the development. This is in contrast to conventional plays,

where the pressure transients may probe the entire reservoir in weeks to months.

As a result, the concept of depth of investigation, and its application to heteroge-

neous reservoirs (Datta-Gupta et al., 2011), is now not just important for traditional

well test analysis. Instead, it becomes an important parameter to characterize the

production of unconventional wells, since the boundary effects may never be seen

during the lifetime of a well and all production may be obtained during the transient

flow regime. The traditional depth of investigation for homogeneous reservoir has

already been discussed in Section 1.1.3. In the presence of reservoir heterogeneity,

Vasco et al. (2000) and Kulkarni et al. (2000) derived the Eikonal equation for the

pressure front propagation and introduced the concept of the diffusive time of flight

using the asymptotic ray theory from geometric optics and seismology. Similar con-

cept was developed earlier in the context of diffusive electromagnetic imaging by

Virieux et al. (1994). By applying asymptotic expansion to the diffusivity equation,

it can be shown that in the high frequency limit the pressure front propagation in

an isotropic medium can be described by the Eikonal equation (see Section 1.1.2 for

details)
√
α‖∇τ(~x)‖ = 1 (3.1)
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In this equation, the unknown τ(x) is called the diffusive time of flight. Along a ray

path, τ can be calculated from the following integral

τ(r) =

∫ r

0

1√
α
dr′ (3.2)

The ray path should satisfy Fermat’s principle, which means that it is the one which

minimizes the line integral of τ (Sun and Fomel , 1998). For the purpose of char-

acterizing the pressure front propagation, τ is conceptually a measure of distance

rather than time and is analogous to r in Equation 1.19. In fact, the contours of

τ are related to the propagation time t of the pressure front through the following

equation (Vasco et al., 2000; Kim et al., 2009):

τ =
√
βt (3.3)

The reservoir heterogeneity is embedded in the variable τ . It must be pointed out

that by extending Equation 1.19 to Equation 3.3 we bring reservoir heterogeneity

into the picture, but we lost the exact meaning of the factor β. In a heterogeneous

case, there is no global flow pattern any more, and thus, β should be understood in

an averaged sense and is related to the geometry of the pressure front which can be of

arbitrary shape and changing with time. This will be addressed by future research.

Fast marching method can be used to efficiently solve Equation 3.1 to compute

the pressure front propagation. It is a single-pass method which utilizes the fact that

the value of τ(~x) for the first-order PDE depends only on the value of τ along the

characteristic(s) passing through the point ~x (Sethian, 1996). Thus, the solution of

τ can be constructed in an orderly one-pass fashion from smaller values of τ to larger

values. The basic framework of fast marching method comprises the following steps
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Illustration of FMM in 5-stencil Cartesian grid (Xie et al., 2012a).

(Sethian, 1999b):

1. Label all grid nodes as unknown;

2. Assign τ values (usually zero) to the nodes corresponding to the initial position

of the propagating front and label them as accepted ;

3. For each node that is accepted, locate its immediate neighboring nodes that are

unknown and label them as considered ;

4. For each node labelled considered, update its τ value based on its accepted

neighbors using the minimum of local solutions of Equation 3.1 discussed later;

5. Once all nodes labelled considered have been locally updated, we pick the node

which has the minimum τ value among them and label it as accepted ;

6. Go to step 3 until all nodes are accepted.
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In a 5-stencil Cartesian grid, these steps can be illustrated in Figure 3.1. We put

one point as the initial position of the propagating front and label it as accepted

(solid) as shown in (a). Then its immediate neighbors A, B, C, and D are marked

as considered (circle) as shown in (b). After the τ values of A, B, C and D have

been updated, we pick the smallest one (suppose it is A) and mark it as accepted as

shown in (c). Then its neighbors E, G and F are added into the considered as shown

in (d). These steps will repeat for the next accepted point (suppose it is D) as shown

in (e) and (f). Local update of τ value using Equation 3.1 for the 5-stencil Cartesian

grid can be written with the standard finite difference notation as (Sethian, 1996):

max
(
D−xij τ,−D+x

ij τ, 0
)2

+ max
(
D−yij τ,−D+y

ij τ, 0
)2

=
1

α
(3.4)

Here the standard finite difference operator D for ±x directions can be written as

D−xij = (τi,j− τi−1,j)/∆x and D+x
ij = (τi+1,j− τi,j)/∆x. Similar equations hold for ±y

directions. In Equation 3.4, τ values at unknown points are regarded as infinity and

the “max” function is used to guarantee the “upwind” criteria. Equation 3.4 leads to

a quadratic equation and its maximum positive root gives the τ value at point (i, j).

Alternatively, we can calculate τ values from each of the four quadrants (bottom-left,

bottom-right, top-left, and top-right) by ordinary finite difference formulation and

then take the minimum τ value obtained.

3.4 Methodology

Equation 3.1 describes an isotropic case, in which the speed of the front propaga-

tion only depends on the location with isotropic permeability distribution. For more

general front propagation problems, the front propagation speed will also depend

on the direction in which the front is travelling. For anisotropic permeability, the

Eikonal equation can be written using the permeability tensor ¯̄k as (Datta-Gupta
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and King , 2007):

~∇τ(~x) · ¯̄k · ~∇τ(~x) = φµct (3.5)

In this section, we will discuss the solution of Equation 3.5 in corner point grids.

Corner point grids are widely used in reservoir simulation due to its flexibility in

conforming to the geologic structures and horizons (Ponting , 1989). The equations

which describe the corner point cell geometry and associated tangent and normal

vectors are given in the Appendix A for reference. In analogy to the derivation of flow

equations in corner point cells, we perform the isoparametric mapping as discussed in

Appendix A. If we assume that the principle directions of the permeability tensor are

aligned with the cell edges (tangent vectors), following the derivation in Appendix

A, Equation 3.5 can be written in the following form

3∑
i=1

ki
t2i

(
∂τ

∂x̂i

)2

= φµct (3.6)

Here ki and ti are the permeabilities and length of tangent vectors in I, J , and

K directions. The gradient of τ in Equation 3.6 is now taken in the unit cube under

the reference coordinate variables x̂i.

For discretization of Equation 3.6, we will assume that the distortion of the corner

point grid is locally mild, so that we can simply use the tangent vector at the center

of the cell as an approximation. Here we choose the 5-stencil scheme (or 7-stencil

scheme for 3D) for discretization. Extensions to more complicated 9-stencil scheme

(or 27-stencil scheme for 3D) can also be used (see later discussion of unstructured

grid). Because the rock properties are usually associated with cells in reservoir

models, the pressure front propagation speed will change between two cell centers

where the τ values are to be calculated. In analogy to transmissibility calculations
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Figure 3.2: 2D example of corner point grid isoparametric mapping and discretization
for Equation 3.5.

for solving flow equations, we combine properties from the two half cells to get an

average speed for pressure front in each principle direction I, J or K. Figure 3.2

shows an example of 2D isoparametric mapping and the lower left quarter for cell

(i, j) in the 5-stencil scheme. The discretization of Equation 3.6 can be written for

this case as

(τi,j − τi−1,j)
2

s2
I

+
(τi,j − τi,j−1)2

s2
J

= 1 (3.7)

where sI and sJ are the average “slowness” (inverse to pressure front propagation

speed) in the reference grid

SI =
lI+(i− 1, j)√
αI(i− 1, j)

+
lI−(i, j)√
αI(i, j)

(3.8)

SJ =
lJ+(i, j − 1)√
αJ(i, j − 1)

+
lJ−(i, j)√
αJ(i, j)

(3.9)

Here αI and αJ are diffusivity in I and J directions respectively. lI+, lI−, lJ+, and

lJ− are distances from cell centers to face centers as illustrated in Figure 3.2. The

same local solution has to be performed for the same cell (i, j) based on the other

77



(a) (b)

(c)

Figure 3.3: Synthetic example showing fast marching method in corner point grid.
(a) Permeability field in a synthetic reservoir model with a single vertical well. (b)
Calculated diffusive time of flight (cells with infinity values are not shown). (c) Cells
with the diffusive time of flight smaller than a specified cut-off value showing the
shape of the drainage volume at a particular time.

three pairs of neighbors and then the smallest τ value obtained from these solutions

should be used as the updated value for cell (i, j). Extension of Equations 3.7, 3.8

and 3.9 to 3D are straightforward and eight local solutions need to be performed for

each cell.

For illustration purposes, Figure 3.3 shows application in a 3D corner point grid.

Figure 3.3(a) shows a heterogeneous permeability field with a vertical well. Figure

3.3(b) shows the calculated diffusive time of flight. Figure 3.3(c) shows the cells with

diffusive time of flight smaller than a specified cutoff value. The diffusive time of

78



flight can be related to physical time using Equation 3.3. Then, the results in Figure

3.3(c) will approximate the drainage volume at that time.

3.5 Causality Issue

3.5.1 Smoothly Varying Medium

To motivate our work, we discuss here why the isotropic fast marching method

will not produce acceptable results for general anisotropic cases. Figure 3.4 shows one

simple 2D example to illustrate this point for a monotonically outward propagating

front from a point source using the isotropic fast marching method in a 5-stencil

square grid. Figure 3.4(a) shows the solution for an isotropic case. Figure 3.4(b)

shows the solution for an anisotropic case with the major axis of anisotropy 45 degrees

counterclockwise to the x axis. The solution for the anisotropic case is clearly not

acceptable. The correct solution for the front propagation is shown in Figure 3.4(c)

and will be discussed later. The reason for the incorrect solution is the violation

of the so-called “causality condition”(Sethian and Vladimirsky , 2001) as illustrated

by Figure 3.5. The τ value at C is to be updated from its immediate neighbors A

and B only if the angle ACB contains the characteristic direction ~ξ. In Figure 3.5,

solid dots represent points that have been accepted and circles represent points that

have not been accepted. For isotropic case as shown in Figure 3.5(a), because the

gradient direction ∇τ is always aligned with the characteristic direction ~ξ and lies

within the angle ACB, both the τ values at A and B have already been accepted

before the τ value at C is calculated. The causality condition (τA < τC and τB < τC)

is always satisfied ensuring a good approximation of the characteristic direction and

an accurate estimation of the τ value at C. For anisotropic cases in general, the

gradient direction is not the same as the characteristic direction as illustrated by

Figure 3.5(b). Figure 3.5(c) shows a possible “bad case” where the characteristic
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direction and the gradient direction do not lie in the same cell. In this case, the τ

value at point B has not yet been accepted before the calculation of the τ value at

point C. In another word, we have τB > τC , which does not satisfy the causality

condition. Therefore, the characteristic direction can only be estimated as from A

to C, which is far from the true characteristic direction. Following this estimated

characteristic direction, the updated τ value at point C will be inaccurate. Moreover,

this error will accumulate as the front propagates. Figure 3.5(d) shows a possible

“good case” where the characteristic direction and the the gradient direction are in

the same cell. This case is similar to Figure 3.5(a) in that both the τ values at A

and B have already been accepted before the τ value at C is calculated. From these

examples the causality condition can be generalized as follows: at a certain node

the line extending backwards along the characteristic direction must be enclosed by

two neighboring nodes which have already been accepted (Sethian and Vladimirsky ,

2000). Because the characteristic direction and the gradient direction are not known

beforehand, we need to deal with the possible “bad case” for general anisotropic

situations.

There are two approaches to deal with this issue. One approach, known as the

expanded neighborhood method, was proposed by Sethian and Vladimirsky (2000).

The basic idea of the expanded neighborhood method is to enlarge the neighborhood

which supports the calculation of τ value for a particular point. For example, in

Figure 3.5(c) if we enlarge the neighborhood by including point B′, then the local

triangle AB′C which contains the characteristic direction will have two accepted

points enclosing the characteristic direction available for the calculation of τ value

at C and produce acceptable results. The size of the neighborhood required to

always produce acceptable results is bounded and its relation to the anisotropy ratio

is given by Sethian and Vladimirsky (2001). The other approach, which is called
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(a) (b)

(c)

Figure 3.4: Results for a monotonically outward propagating front from a point
source. (a) Isotropic permeability case using isotropic fast marching method. (b)
Anisotropic permeability case using isotropic fast marching method. (c) Anisotropic
permeability case using recursive fast marching method. The major axis of anisotropy
is 45 degrees counterclockwise to the x axis for case (b) and (c).
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(a) (b)

(c) (d)

Figure 3.5: Illustration of the causality issues for isotropic and anisotropic cases.
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the recursive fast marching method, was proposed by Konukoglu et al. (2007). This

method contains a recursive correction step inside the main loop of the ordinary

fast marching algorithm. The recursive construction allows one to build the entire

“dependency graph” for any nodes and makes sure that the causality relationship is

satisfied for the final accepted values. Figure 3.4(c) shows the solution of the same

case as Figure 3.4(b) but using the recursive fast marching method leading to more

accurate estimation of the front propagation.

Our formulation of the anisotropic fast marching in corner point grid discussed

in the previous section will guarantee causality relationship so that the “bad case”

shown in Figure 3.5(c) will not occur. For this, we must satisfy the underlying

assumption in our formulation that the principle directions of anisotropy are aligned

with local cell edges (Alton and Mitchell , 2008). As illustrated in Figure 3.6, suppose

the speed of front propagation is given by the anisotropy ellipse which has major axis

F1 and minor axis F2, both aligned with the grid. Suppose the characteristic direction

at point C is known. We can show that the gradient direction will lie in the same cell

as the characteristic direction. First, as shown in Figure 3.6(a), we take an arbitrary

point S close and upwind to point C along the characteristic direction. We know that

the shortest travel time to point C should come from point S. The local level line

τ = τ(S) at point S is denoted as L in Figure 3.6(b). We draw an ellipse of anisotropy

centered at point C and passing through point S. It is shown in Figure 3.6(b) that

the line L has to be tangent to the ellipse. This can be proved by contradiction. If

the level line τ = τ(S) at point S is not tangent to the ellipse (for example, line

L′), suppose that it intersects the ellipse at another point P . Then the point S ′,

which is the midpoint between S and P , will be inside the ellipse. Thus the travel

time from S ′ to C will be smaller than from S to C. This is in contradiction with

the assumption that SC is along the characteristic direction ~ξ. Therefore, the line
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(a) (b)

(c)

Figure 3.6: Illustration of the guarantee of causality relationship if the principle
direction of anisotropy is aligned with the grid.
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L must be tangent to the ellipse. The gradient direction ∇τ will be perpendicular

to the line L and thus will lie within the same cell as the characteristic direction

~ξ. As point S moves infinitely close to point C, the gradient direction shown in

Figure 3.6(c) becomes the gradient direction at point C. Therefore, we will have the

“good” case as shown in Figure 3.4(d). Thus, as long as the principle directions of

anisotropy are aligned with local cell edges, the causality condition will be satisfied

by our proposed formulation.

3.5.2 Non-smoothly Varying Medium

The discussion in Section 3.5.1 rely on the assumption that the medium has

smoothly-varying properties. However, for our discretized problem, it is possible to

have dramatic change in permeability when going from one cell to its neighboring

cells. This gives rise to additional concern for the “causality issue” because the travel

time updated based on a cell’s immediate neighbors in a 5-stencil scheme in 2D (or

7-stencil scheme in 3D) may not be the smallest possible if the diagonal neighboring

cells are also taken into consideration. In this section, we will investigate this issue

by doing some numerical experiments.

A 2D regular grid is used to simplify our discussion. First we enumerate all

possible patterns of high permeability (100 md) sand grid block and low permeability

(0.0001 md) non-sand grid block in a 2 by 2 local calculation scenario. We take

the upper right corner grid block as the one to be updated in this local calculation.

Assuming all other parameters are constant, we can simply calculate the direct travel

time from the centers of its two immediate neighbors (bottom and left) and the

center of its diagonal neighbor (bottom left) to the center of this grid block. The

calculation is done in arbitrary units since we only concern with the relative value

of the travel time. The results are shown in Figure 3.7. Out of the twelve different
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(g) (k) (l)

Figure 3.7: All twelve different high/low permeability patterns for 2 by 2 local so-
lution. The upper right grid block is under consideration. The direct travel time
from its neighbors are calculated and shown in the figures. In (a), (b), (g), and (h)
the diagonal arrival time is smaller than at least one of immediate neighbors’ travel
time.
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(a) (b)

(c) (d)

Figure 3.8: (a) log(k) of a heterogeneous permeability field which is relatively smooth;
(b) log(k) of a heterogeneous permeability field with high contrast and channelized
feature; (c) indicator numbers showing possible local “causality issue” for (a); (d)
indicator numbers showing possible local “causality issue” for (b).
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possible sand/non-sand patterns, only four situations will have the diagonal travel

time smaller than at least one of the two immediate neighbors’ travel time. These

situations are (a), (b), (g), and (h). In situations (a) and (g), the front will arrive

through the diagonal before both the immediate neighbors. If we allow flow between

diagonal blocks, the 5-stencil FMM will produce relatively large error, especially for

situation (g). If direct diagonal flow is not allowed, then the 5-stencil FMM is actually

desirable in order to be consistent with finite difference simulation. In situations (b)

and (h), the diagonal travel time is only smaller than one of the immediate neighbors’

travel time. In general, the 5-stencil FMM might overestimate the travel time due

to the local violation of causality.

Next we try to identify possible local violation of “causality issue” by doing the

above local calculation for each grid block of a heterogeneous permeability field. For

each grid block, we calculate the travel time from the grid block to its immediate

neighbors (left, right, top, bottom) and its diagonal neighbors (top-left, top-right,

bottom-left, bottom-right). For each diagonal neighbor, we compare its travel time

with the two adjacent immediate neighbors’ travel time. If the diagonal neighbor’s

travel time is smaller than both of the immediate neighbors’ travel time, we will

increase the grid block’s indicator number by 1. If the diagonal neighbor’s travel time

is smaller than only one of the immediate neighbors’ travel time, we will increase the

grid block’s indicator number by 0.5. A plot of the indicator numbers for all the grid

blocks will show which grid blocks may have potential causality issue. We tested

two heterogeneous permeability fields as shown in Figure 3.8. The first one varies

relatively smoothly. The second one has local high contrast and channelized features

(Figure 3.8(a) and (b)). For the first permeability field, no potential causality issue

is discovered through this method (Figure 3.8(c)). But for the second permeability

field, there are some grid blocks that have been identified with potential causality
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(a) (b)

Figure 3.9: Diffusive time of flight calculated for the permeability field shown in
Figure 3.8(b) using FMM based on (a) 5-stencil scheme and (b) 9-stencil scheme.
The well is place in the center of the permeability field. The color bar is the same
for both sub-figures and is capped by the same maximum value.

issue (Figure 3.8(d)). These grid blocks are located at the interface between the high

permeability streaks and the low permeability regions. This shows that high contrast

in permeability may potentially cause “causality issue”.

Based on the permeability field shown in Figure 3.8(b) we have done some nu-

merical experiment to show the effect of the “causality issue” on the diffusive time

of flight calculation using the FMM. Figure 3.9 compares the results obtained using

the 5-stencil scheme versus the 9-stencil scheme. Because the 9-stencil scheme takes

the diagonal grid block into the local calculation, it is much less affected by the

“causality issue”. The diffusive time of flight calculated by the 5-stencil scheme is

slightly larger than the values calculated by the 9-stencil scheme. Another way to

reduce the “causality issue” is to refine and smooth the permeability field as shown

in Figure 3.10. Figure 3.10(a) shows the same permeability field as Figure 3.8(b)

but with much finer grid. We can see that the indicator numbers will be nonzero

for a much smaller portion of the total grid blocks as shown in Figure 3.10(c). By
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(a) (b)

(c) (d)

Figure 3.10: (a) Refined permeability field (800 × 800) based on the permeability
field shown in Figure 3.8(b). Each original grid block is refined into 8 × 8 smaller
grid blocks which retain the same permeability as the original coarse grid block.
(b) Smoothed permeability field from (a) using a running 5-stencil average. (c)
Indicator numbers showing possible causality issue for (a). (d) Indicator numbers
showing possible causality issue for (b).
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(a) (b)

Figure 3.11: Diffusive time of flight calculated using the 5-stencil FMM scheme for
(a) permeability field in Figure 3.10(a) and (b) permeability in Figure 3.10(b).

further smoothing the permeability field (Figure 3.10(b)) the indicator numbers of

the permeability field can be completely removed (Figure 3.10(d)). The diffusive

time of flight calculated by the 5-stencil FMM scheme is shown in Figure 3.11 for

the permeability field in Figure 3.10. It is observed that refining and smoothing the

permeability field produce similar results compared to using the 9-stencil scheme for

the coarse grid.

Another way of dealing with the causality issue is to use the cell vertexes as

the solution nodes instead of the cell centers. For a particular cell vertex, each

local solution of the Eikonal Equation is always inside a particular cell volume with

uniform cell properties. This guarantees “causality” because the nearest neighboring

nodes always give the smallest travel time within that particular cell volume. Also

because the averaging of properties between cells is avoided, the minimum possible

travel time can always been found for the cell corners even if there is locally high

permeability contrast between adjacent cells. Once the solution for all vertexes is

obtained, the cell center solution can be locally solved within each cell based on
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Figure 3.12: Diffusive time of flight calculated using the cell vertex based scheme for
the permeability field in Figure 3.8(b).

the solution at its vertexes. Figure 3.12 shows the diffusive time of flight calculated

using the cell vertex based approach for the permeability field shown in Figure 3.8(b).

Comparing Figure 3.9 and 3.11 with Figure 3.12, it can be seen that the cell vertex

based approach is also effective to avoid the “causality issue”.

In general we observe the grid blocks where possible violation of the “causality

issue” might happen are only located at the boundary of high and low permeability

contrast. The fraction of these grid blocks are usually small and can be greatly

reduced by grid refinement. The “causality issue” can also be avoided by using the

cell vertex based approach. In highly heterogeneous and high-contrast permeability

fields, the effect of the “causality issue” is not a significant concern compared with

missing the higher order terms in the asymptotic solution as discussed in Section

1.1.2.

3.6 FMM in Unstructured Grids

The basic framework of FMM for unstructured grids is exactly the same as struc-

tured grids (Sethian and Vladimirsky , 2000). The only difference is how we get the
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(a) (b)

Figure 3.13: Fast marching examples using unstructured triangular mesh (a) 2D
example with isotropic permeability; (b) 3D example with anisotropic permeability
(aspect ratio is 3:2:1).

local updates. Appendix B describes two general local solvers which treat 5-stencil

Cartesian grid, 9-stencil Cartesian grid, and unstructured grids in a uniform manner

(Qian et al., 2007). Figure 3.13 shows two illustrative examples using triangular

mesh in 2D and 3D. Figure 3.13(a) shows the calculated diffusive time of flight in a

homogeneous isotropic field with a horizontal well completed by five transverse hy-

draulic fractures. Figure 3.13(b) shows the point source solution for an anisotropic

case in 3D.

3.7 Results and Applications

One of the most immediate and effective use of the method is for reservoir

drainage volume calculations and visualization. Figure 3.14(a) shows a reservoir

model with matrix permeability ranges from 1 nanodarcy to 0.001 millidarcy. The

kz/kx ratio is 0.1 and kx = ky for this case. The reservoir is 4000ft× 2000ft× 120ft
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(a) (b)

(c)

(d) (e)

Figure 3.14: A synthetic example of a heterogeneous reservoir with five transverse
hydraulic fractures. (a) permeability field; (b) the geometry of five transverse frac-
tures; (c) calculated diffusive time of flight; (d) drainage volume in 1 month; (e)
drainage volume in 30 years.
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and contains 400×200×30 corner point cells. There are 5 transverse hydraulic frac-

tures intersecting a horizontal well as shown in Figure 3.14(b). These fractures have

different half length, height and location in the reservoir. Moreover, using corner

point grid enables us to simulate even non-planer fractures such as in this example.

The permeability of the hydraulic fractures is set to be 10 millidarcy, while poros-

ity, viscosity, and compressibility are taken to be constant values of 0.1, 0.1cp, and

3×10−5psi−1 respectively. Figure 3.14(c) shows the result of the calculated diffusive

time of flight using the fast marching approach. By transforming the diffusive time

of flight to physical time, we are able to visualize the drainage volume for any given

time. For example, Figure 3.14(d) and (e) show the drainage volume at 1 month and

30 years respectively. The fast marching calculation for this 2.5 million cell example

takes about 15 minutes using a laptop computer. In contrast, finite difference sim-

ulation for such multi- million cell model is likely to take much longer computation

time.

3.8 Conclusions

In this section, we have derived the formulation of the FMM in corner point grids,

which is one of the most widely used grids for reservoir models. We have discussed

the causality issue associated with permeability anisotropy for smoothly varying

medium. If the principle directions of the permeability are aligned with the cell

edges, which is usually the assumption for reservoir simulation models, the proposed

FMM formulation for corner point grids will satisfy the causality relationship. For

non-smoothly varying medium, we have done some numerical experiments to study

the effect of possible local violation of causality at the boundary of high permeability

contrast. We have also shown that the FMM approach can be applied to unstructured

grid, which is gaining increased acceptance.
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The concept of depth of investigation is important to characterize the produc-

tion in unconventional reservoirs, because the boundary effects will rarely be seen

during the lifetime of a well and all the production is obtained during the transient

flow regime. This is why the FMM approach can be effectively applied to unconven-

tional reservoirs. As we have demonstrated, it is straightforward to use the FMM

for drainage volume calculations and visualization for unconventional reservoirs and

wells with multi-stage hydraulic fractures. Furthermore, we will show in the next

section methods to associate the reservoir pressure with the evolving drainage volume

and provide an easy way for well performance characterization and forecasting.
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4. PRESSURE SOLUTION BASED ON DIFFUSIVE TIME OF FLIGHT

4.1 Synopsis

Streamline method underpins the petroleum industry’s use of streamline simu-

lation and streamline-based reservoir calibration, management and optimization for

convection dominated flow such as water-flood. In the streamline method, the use

of the convective time of flight as a spatial variable along streamlines effectively

reduces the calculation to only one dimension. Furthermore, the convective time

of flight greatly simplifies the calculation of reservoir parameter sensitivity and fa-

cilitates data integration and reservoir management optimization applications. For

pressure depletion and associated reservoir processes, our expectation is that the

adoption of the diffusive time of flight will allow similar advancements in methods

and applications. In this section, we will explore the use of the diffusive time of flight

as a spatial coordinate for development of an effective one dimensional equation from

the pressure diffusivity equation.

Our analysis in previous sections has demonstrated that reservoir heterogeneity

information can be integrated into the drainage volume and the diffusive time of

flight calculation as illustrated in Figure 4.1. Recent published work has emphasized

the calculation of each of these quantities, and a specific pseudo-steady state (PSS)

geometric approximation to the pressure and rate (Xie et al., 2012a,b). Compared

with the PSS geometric approximation, the new method is much more general the-

oretically in the sense that additional physics can be easily incorporated elegantly

into the formulation as necessary. Another advantage is that both pressure and rate

boundary conditions can be used without significant change of the formulation and

calculation procedures. Finally, the new formulation does not assume PSS condition
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Figure 4.1: Illustration of the diffusive time of flight in a homogeneous reservoir
(upper) and in a heterogeneous reservoir (lower).

and produces more accurate results for pressure distributions.

This novel method has many potential applications. It can be used to predict

reservoir pressures and rates, especially to optimize multi-stage fracture design in

tight and unconventional reservoirs, to optimize well spacing and timing in conven-

tional reservoirs, and to rank and/or calibrate reservoir models against field perfor-

mance data.

4.2 Background

Xie et al. (2012a) proposed a pseudo-steady state geometric approximation for

pressure calculation based on the drainage volume and diffusive time of flight. To

derive this approximation, we first express the diffusivity equation in a mixed form

by introducing the Darcy flux Q:

A(r)φct
∂P

∂t
=
∂Q

∂r
(4.1)
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and

Q =
kA(r)

µ

∂P

∂r
(4.2)

Here, A = 2πrh is the surface area for cylindrical flow, and similarly, A = 4πr2 is

the surface area for spherical flow, and A is a constant for linear flow. The sign

convention used here is that Q is positive for producers (inwardly directed flux) and

∆P is the pressure draw-down. Following the chain rule, we have

∂Q

∂r
=
∂Q

∂Vp

∂Vp
∂r

=
∂Q

∂Vp
φA(r) (4.3)

Expressed in terms of the pore volume, Equation 4.1 can be rewritten as

ct
∂P

∂t
=
∂Q

∂Vp
(4.4)

The geometric approximation assumes that the Darcy flux is negligible beyond the

drainage volume and that within the drainage volume the pressure is approximated

by a pseudo-steady state solution (Nordbotten et al., 2004; Agarwal , 2010; Xie et al.,

2012a). Based on these assumptions, we have

∂P

∂t
∼= ∂P̄

∂t
=

Qw

ctVp(t)
(4.5)

where Qw is the well flow rate. Therefore, we can get the well pressure draw-down

transient diagnostic plot by

dPw
d ln t

= t
dPw
dt

=
Qwt

ctVp(t)
(4.6)

Equation 4.5 can be integrated to get approximate pressure distribution and bottom-

hole pressure (BHP). Equation 4.6 is especially useful for flow regime diagnostics.
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The above derivation is under the constant flow rate boundary condition. The con-

stant wellbore pressure boundary condition requires a different formulation as shown

by Xie et al. (2012b).

In order to use Equation 4.5 and 4.6, we need to get the drainage pore volume

as a function of time. However, from the FMM calculation what we obtain is the

drainage pore volume as a function of the diffusive time of flight τ . Therefore, it

is necessary to convert the diffusive time of flight τ to real time t. As discussed in

section 3.3, this conversion can be done straightforwardly for homogeneous case as

shown by Equation 3.3. However, for heterogeneous case, there is no clear global

flow pattern and the τ to t conversion does not have a simple solution.

We argue that it is more natural and beneficial to treat τ as a spatial variable

rather than a time variable. This leads us to seek a new formulation of the diffusivity

equation using τ as a spatial variable. The new formulation is expected to reduce

exactly back to the original diffusivity equation for 1D, 2D, and 3D homogeneous

cases. This makes sure that we have a sound starting point to extend to hetero-

geneous reservoirs. We will demonstrate that the τ -coordinate formulation is able

to provide a reasonable approximation for heterogeneous reservoirs with much less

computational cost than solving the 3D diffusivity equation directly. In addition, we

will attempt to incorporate additional physical processes into the formulation, which

is potentially important in shale gas reservoir applications.

4.3 Methodology

4.3.1 Basic Formulation

In this section, we will show the basic formulation for slightly compressible fluid

and isotropic medium. Extension to anisotropy and compressible fluid cases are

discussed in detail in Appendix C. We make the following assumptions:
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1. Darcy flow

2. No gravity effects

3. Isotropic properties

4. Fluid has small, constant compressibility

5. No geomechanical effects

Under these assumptions, the diffusivity equation is

∇ ·
(
k

µ
∇P

)
= φct

∂P

∂t
(4.7)

Our goal is to rewrite Equation 4.7 from a 3D equation to a 1D equation in space

using the diffusive time of flight τ as the new spatial coordinate variable. To simplify

the notation, we introduce the diffusivity α = k/φµct. Then Equation 4.7 can be

written as

∇ · (φctα∇P ) = φct
∂P

∂t
(4.8)

The diffusive time of flight τ is calculated in isotropic medium according to the

Eikonal equation

‖∇τ‖ =
1√
α

(4.9)

To reduce the diffusivity equation to only one dimensional in space, we will assume

that the pressure only depends on τ in space. This is equivalent to assume that

the pressure gradient direction aligns with the τ gradient direction, or the contour

surfaces of pressure P are also the contour surfaces of τ . Based on this assumption,

we can write

∇P ≈ ∂P

∂τ
∇τ =

∂P

∂τ

1√
α
n̂τ (4.10)
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Here we have incorporated the Eikonal equation (Equation 4.9) into the formulation

and n̂τ is the unit normal vector to the contour of τ . Substituting Equation 4.10

into Equation 4.8, we have

∇ ·
(
φct
√
α
∂P

∂τ
n̂τ

)
= φct

∂P

∂t
(4.11)

The divergence operator in 3D Cartesian space is written as

∇ · ~F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

(4.12)

We would like to do a coordinate transformation from (x, y, z) to (τ, ψ, χ), where τ

is the diffusive time of flight and the other two coordinates ψ and χ are defined on

the contour surfaces of τ and are orthogonal to each other and to τ . The divergence

operator in the (τ, ψ, χ) coordinate system can be written as

∇ · ~F =
1

hτhψhχ

(
∂(hψhχFτ )

∂τ
+
∂(hτhχFψ)

∂ψ
+
∂(hτhψFχ)

∂χ

)
(4.13)

Here hτ , hψ, and hχ are the length of the covariant vectors. For example, hτ is the

length of the covariant vector ~tτ ,

~tτ =
∂~x

∂τ
=

(
∂x

∂τ
,
∂y

∂τ
,
∂z

∂τ

)
(4.14)

The definitions of the other two covariant vectors are similar. If we write the diver-

gence operator in Equation 4.11 according to Equation 4.13, we will have

1

hτhψhχ

∂

∂τ

(
φcthψhχ

√
α
∂P

∂τ

)
= φct

∂P

∂t
(4.15)
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The differential terms in ψ and χ do not appear because the vector function to be

taken the the divergence has only τ direction component. It can be obtained from

Equations 4.9 and 4.14 that hτ =
√
α. The product hτhψhχ is simply the Jacobian

J of the coordinate transformation. Therefore, Equation 4.15 reduces to

∂

∂τ

(
Jφ

∂P

∂τ

)
= Jφ

∂P

∂t
(4.16)

The Jacobian J and the porosity φ are functions of (τ, ψ, χ) in general. In order to

further reduce Equation 4.16 to only depend on τ , we integrate both sides over the

other two coordinates ψ and χ which are orthogonal to τ . Because the pressure P is

assumed to be only a function of τ and t, it can be taken out of that integral. Thus

Equation 4.16 reduces to

∂

∂τ

(
w(τ)

∂P

∂τ

)
= w(τ)

∂P

∂t
(4.17)

where

w(τ) =

∫∫
φJ(τ, ψ, χ)dψdχ (4.18)

The function w(τ) can be related to the drainage pore volume by

w(τ) =

∫∫
φJ(τ, ψ, χ)dψdχ =

dVp(τ)

dτ
(4.19)

because the drainage pore volume can be written as

Vp(τ) =

∫ τ

τ0

(∫∫
φJ(τ, ψ, χ)dψdχ

)
dτ (4.20)

103



4.3.2 Special Cases

In this subsection, we will illustrate that the new formulation will reduce back to

the ordinary diffusivity equations in 1D, 2D, and 3D homogeneous medium. For 1D

linear flow, we have

τ =
x√
α

(4.21)

where x is the linear distance. The drainage pore volume can be written as

Vp(τ) = φAx = φA
√
ατ (4.22)

where A is the intersectional area. Therefore,

w(τ) =
dVp
dτ

= φA
√
α (4.23)

Substitute this equation into Equation 4.17. We get

∂2P

∂τ 2
=
∂P

∂t
(4.24)

Substitute Equation 4.21 and write the equation in terms of x coordinate. Then we

arrive at the ordinary diffusivity equation in 1D homogeneous medium

∂2P

∂x2
=
φµct
k

∂P

∂t
(4.25)

For 2D radial flow, we have

τ =
r√
α

(4.26)
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where r is the radial distance. The drainage pore volume can be written as

Vp(τ) = πφr2h = πφατ 2h (4.27)

Therefore,

w(τ) =
dVp
dτ

= 2πφαhτ (4.28)

Substitute this equation into Equation 4.17. We get

1

τ

∂

∂τ

(
τ
∂P

∂τ

)
=
∂P

∂t
(4.29)

Substitute Equation 4.26 and write the equation in terms of r coordinate. Then we

arrive at the ordinary diffusivity equation in 2D homogeneous medium

1

r

∂

∂r

(
r
∂P

∂r

)
=
φµct
k

∂P

∂t
(4.30)

For 3D spherical flow, we have

τ =
r√
α

(4.31)

where r is the radial distance. The drainage pore volume can be written as

Vp(τ) =
4

3
πφr3 =

4

3
πφα3/2τ 3 (4.32)

Therefore,

w(τ) =
dVp
dτ

= 4πφα3/2τ 2 (4.33)
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Substitute this equation into Equation 4.17. We get

1

τ 2

∂

∂τ

(
τ 2∂P

∂τ

)
=
∂P

∂t
(4.34)

Substitute Equation 4.31 and write the equation in terms of r coordinate. Then we

arrive at the ordinary diffusivity equation in 3D homogeneous medium

1

r2

∂

∂r

(
r2∂P

∂r

)
=
φµct
k

∂P

∂t
(4.35)

4.3.3 Boundary Conditions

One advantage of the τ -coordinate formulation over the PSS geometric approxi-

mation is that it is more straightforward to implement the solution based on various

boundary conditions and incorporate additional physics. The pressure boundary

condition can be simply written as

P |τ=τw = Pwf (4.36)

for the wellbore and

P |τ=τe = Pe (4.37)

for the outer boundary. Here the solution domain is [τw, τe]. The lower bound τw

corresponds with the wellbore radius and the upper bound τe corresponds with the

boundary of the reservoir. τw can be calculated from the wellbore radius by

τw = rw

√
φwµct
kw

(4.38)
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where φw and kw are porosity and permeability at the wellbore. This relationship

can be generalized for heterogeneous multi-layered reservoir as

τw = rw

√
µct
∑

i φwihi∑
i kwihi

(4.39)

where the thickness weighted summations of porosities and permeabilities for each

completion layer are used.

Following the derivation from Equation 4.7 to 4.16, it can be seen that the flux

term has the following corresponding relationship

k

µ
∇P = ctJφ

∂P

∂τ
(4.40)

Because from Equation 4.16 to Equation 4.17 we apply the surface integration over

the area perpendicular to the reservoir flow, the flow rate relationship can then be

written as

q = A
k

µ
∇P = ctw(τ)

∂P

∂τ
(4.41)

Therefore, the flow rate boundary conditions can be written for Equation 4.17 as

(
w(τ)

∂P

∂τ

)
τ=τw

=
qw
ct

(4.42)

for the wellbore and (
w(τ)

∂P

∂τ

)
τ=τe

=
qe
ct

(4.43)

for the outer boundary. Here qw is the down-hole flow rate at the wellbore. For no-

flow boundary condition, qe is zero. Different boundary conditions can be imposed

at different times and this will be illustrated later in the result section. The rate

boundary conditions for compressible fluid is shown in Appendix C.2.
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4.3.4 Drainage Volume Derivative Calculation

To solve Equation 4.17, the drainage volume derivative w(τ) needs to be evalu-

ated. This is critical because the w(τ) function contains the reservoir heterogeneity

information. The drainage pore volume Vp(τ) can be calculated using the FMM as

described in Section 3. Because the reservoir is discretized into grid blocks, during

the process of the FMM calculation, the drainage pore volume can be gradually ac-

cumulated as new grid blocks are being accepted. However, this raw correspondence

between τ and Vp can not be directly used for derivative calculation because the data

is not locally smooth. An ideal solution to this problem would be to generate 3D τ

contour surfaces using the calculated τ values at each cell center. Then calculate the

volume enclosed by each τ contour for the corresponding value of τ . However, this

requires some 3D contouring algorithm which may be very complex and computa-

tionally expensive. We choose to use a customized Gaussian kernel smoother for the

raw Vp versus τ data collected during the FMM calculation. The advantage is that

it is computationally cheap and easy to implement. The disadvantage is that the

bandwidth of the Gaussian kernel needs to be customized to give the best results. A

super-smoother has also been tried but has not been adopted because it may over-

smooth the data and give wrong results especially at the lower end of τ values. Once

the Vp versus τ data has been smoothed, we can calculate the derivative based on a

weighted average between the upstream and the downstream derivatives as proposed

by Bourdet et al. (1989).

4.4 Extension for Additional Physics in Shale Gas Reservoirs

In Section 1.1.4 we have briefly introduced some additional physics that are po-

tentially important in shale gas reservoir production. In order to make the new

formulation applicable for more realistic shale gas reservoirs, in this section we at-
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tempt to incorporate those additional physics into the formulation.

The reservoir compaction effect and the gas slippage effect can be treated us-

ing a decoupled model, in which the effects are represented by pressure dependant

permeabilities and porosities. A more rigorous coupled model could be a future re-

search topic. Under the decoupled model, we assume in general that permeabilities

and porosities can be written as the values at the initial conditions multiplied by

certain multipliers which are known functions of pressure, e.g. k(P ) = kiMk(P ) and

φ(P ) = φiMφ(P ). Because the reservoir properties changes with time, we could not

rely on the relationship of τ with the pressure front propagation for pressure calcu-

lation. As a result, it is difficult to apply the PSS geometric approximation to these

situations. However, the new τ -coordinate formulation is not restricted by this. We

simply use the permeabilities and porosities at the initial reservoir condition in the

FMM calculation to obtain the diffusive time of flight τ , and we do not rely on any

specific physical meaning of τ other than it is a spatial coordinate which has incor-

porated the heterogeneity information. Based on the decoupled model, following the

same derivation as shown in Appendix C.2, the final τ -coordinate formulation for

shale gas reservoirs can be written as

∂

∂τ

(
w(τ)

Mk(P )P

µ̃(P )Z(P )

∂P

∂τ

)
= w(τ)Mφ(P )c̃t(P )

P

Z(P )

∂P

∂t
(4.44)

where Mk(P ) and Mφ(P ) are permeability and porosity multipliers respectively.

The gas adsorption and diffusion can be incorporated by adding additional accu-

mulation and source terms in the diffusivity equation (Shabro et al., 2012):

−∇ · (ρ~u) =
∂

∂t
(ρφ+ ρSTVads)− ρSTJ (4.45)
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In this equation, Vads is the adsorbed gas (in standard cubic feet per unit volume

of shale) introduced in Section 1.1.4. J is the diffusion gas flow rate (in standard

cubic feet per day per unit volume of shale). ρST is the gas density at the standard

condition. We assume that a transfer function can be applied for the gas diffusion

between kerogen and pore system, thus we have

J = σDk(Ck − Ce(P )) (4.46)

Here σ (unit: ft−2) is a factor to account for the kerogen-pore interface area per unit

bulk volume. Dk (unit: ft2/day) is the diffusion coefficient in kerogen. Ck (unit:

scf/ft3) is the gas concentration in kerogen. Ce(P ) is the kerogen gas concentration

in equilibrium with the free gas in the pore at pressure P . Mass balance of gas in

kerogen gives:

∂Ck
∂t

= −J (4.47)

The coupled Equations 4.45 and 4.47 should be solved together. Following the same

procedure in Appendix C.2, Equation 4.45 can be re-written using the τ coordinate

as

∂

∂τ

(
w(τ)

P

µ̃(P )Z(P )

∂P

∂τ

)
=

{
w(τ)

c̃t(P )P

Z(P )
+ v(τ)Y

dVads
dP

}
∂P

∂t
+ v(τ)Y J (4.48)

In this equation, Y is the constant group (PSTT )/(TST cti). A new function v(τ) is

introduced as

v(τ) =
dVb(τ)

dτ
(4.49)

where Vb(τ) is the reservoir bulk volume calculated as a function of τ . This can be

calculate at the same time as the drainage pore volume Vp(τ).
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This formulation is essentially a dual porosity model in τ -coordinate. Here the

pore system can be seen as the “fracture” and the kerogen the “matrix”. It is also

possible to use the same formulation for dual porosity naturally fractured reservoirs.

4.5 Results and Discussions

4.5.1 Oil Case

To start with, we use homogeneous oil reservoir in 1D, 2D, and 3D to generate

benchmark for both the τ -coordinate formulation and the PSS geometric approxi-

mation. As shown in Section 4.3.2, the τ -coordinate formulation reduces back to

the ordinary form of the diffusivity equation for homogeneous reservoirs in 1D, 2D,

and 3D. Therefore, for homogeneous reservoirs, the τ -coordinate formulation gives

exactly the same results as solving the diffusivity equation directly. The calculation

for the geometric approximation in homogeneous reservoirs can be done analytically

as shown in Appendix D. In the following examples, we use the reservoir properties

listed in Table 4.1 and the geometry data listed in Table 4.2. We use constant flow

rate inner boundary condition and infinite acting outer boundary condition. Figures

4.2 to 4.4 show the pressure at the inner boundary as a function of time. Figures

4.5 to 4.7 show the pressure profile at the end of the simulation time. By comparing

the results given by the PSS geometric approximation with the direct solution of the

diffusivity equation, we observe relatively large error for 1D linear flow compared

with the 2D and 3D cases. These errors are thought to be associated with the PSS

assumption used in the formulation. The correct pressure profile in the 1D case (solid

line in Figure 4.5) shows significant non-zero flux (slope of the curve) at the pressure

front location. In 2D and 3D cases, the flux at the pressure front location is much

smaller. This explains why the PSS geometric approximation produces larger error

in the 1D case due to the zero flux assumption at the pressure front location. Gupta
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Table 4.1: Reservoir parameters for testing of oil case.

Reservoir permeability, k 0.001 md
Reservoir thickness, h 100 ft
Reservoir porosity, φ 0.1
Total compressibility, ct 3× 10−6 psi−1

Bottom-hole flow rate, q 0.1 bbl/day
Fluid viscosity, µ 1 cp
Initial reservoir pressure, Pinit 5000 psi
Wellbore radius, rw 0.3 ft

Table 4.2: Geometry data for 1D, 2D, and 3D cases. r0 is the inner boundary. A is
the cross-sectional area in 1D linear flow. h is the thickness in 2D radial flow.

1D 2D 3D
r0 = 0.3 ft r0 = 0.3 ft r0 = 3 ft
A = 2000 ft2 h = 100 ft

(2012) has provided an in-depth analysis from a theoretical point of view. Based on

these examples, the original PSS geometric approximation may not provide reliable

solutions for general applications involving linear flow. Direct improvement on the

PSS geometric approximation is possible and is still under investigation. However,

using the τ -coordinate formulation will totally eliminate the error associated with

the PSS assumption. In the following discussion, we will only focus on the new

τ -coordinate formulation and demonstrate its performance.

To demonstrate the capability of handling different boundary conditions, we cal-

culate the well flow rate by setting the BHP at 4000 psi. The results are shown in

Figure 4.8 compared with the analytic solution.

Next we show an example of heterogeneous oil reservoir and demonstrate that the

τ -coordinate formulation is capable of incorporating the heterogeneity information.

The logarithm of the reservoir permeability is shown in Figure 4.9 (a). All other
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Figure 4.2: The BHP calculated by the PSS geometric approximation compared with
the τ -coordinate formulation in 1D linear flow.
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Figure 4.3: The BHP calculated by the PSS geometric approximation compared with
the τ -coordinate formulation in 2D radial flow.
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Figure 4.4: The BHP calculated by the PSS geometric approximation compared with
the τ -coordinate formulation in 3D spherical flow.
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Figure 4.5: The pressure profile at the end of simulation calculated by the PSS
geometric approximation compared with the τ -coordinate formulation in 1D linear
flow.
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Figure 4.6: The pressure profile at the end of simulation calculated by the PSS
geometric approximation compared with the τ -coordinate formulation in 2D radial
flow.

parameters are the same as the homogeneous case and shown in Table 4.1. The

diffusive time of flight map calculated by the FMM is shown in Figure 4.9 (b). Figure

4.10 illustrates the drainage pore volume as a function of τ and its first derivative

(the w(τ) function). That is the essential information used in the τ -coordinate

formulation. Figure 4.11 shows the BHP as a function of time for 10000 days. As

we can see, the result obtained by the τ -coordinate formulation agrees well with the

Eclipse simulation.

4.5.2 Gas Case

Reservoir parameters used for testing the gas case are shown in Table 4.3. The gas

has a specific gravity of 0.7 and its formation volume factor and viscosity are shown

in Figure 4.12 as functions of pressure. Figure 4.13 shows the calculated BHP versus
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Figure 4.7: The pressure profile at the end of simulation calculated by the PSS
geometric approximation compared with the τ -coordinate formulation in 3D spherical
flow.
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Figure 4.8: The calculated well bottom-hole flow rate under constant well BHP (4000
psi) using the τ -coordinate formulation and the Eclipse simulator for the homoge-
neous oil example.
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Figure 4.9: (a) Logarithm of the permeability field used for testing. The grid is
564× 564 with each grid block 5ft×5ft. (b) Calculated diffusive time of flight τ for
this permeability field for oil case.
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Figure 4.10: Drainage pore volume calculated as a function of the diffusive time of
flight and its derivative for the heterogeneous oil reservoir example. All values are
in field units shown in Table C.1
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Figure 4.11: BHP calculated using the τ -coordinate formulation and the Eclipse
simulator for the heterogeneous oil reservoir example.
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Table 4.3: Reservoir parameters used for testing of gas case.

Reservoir permeability, k 0.0001 md
Reservoir thickness, h 100 ft
Reservoir porosity, φ 0.1
Formation compressibility, cf 3× 10−6 psi−1

Gas specific gravity, γ 0.7
Gas flow rate, q 1 Mscf/day
Initial reservoir pressure, Pinit 5000 psi
Wellbore radius, rw 0.3 ft

time under constant rate constraint. As we can see, the τ -coordinate formulation

agrees well with the Eclipse simulation result.

We tested the gas case using the same heterogeneous permeability shown in Figure

4.9 (a). Other parameters were taken from Table 4.3 as well. The calculated BHP by

the τ -coordinate formulation is only slightly different from the Eclipse simulation as

shown in Figure 4.14. Figure 4.15 shows the well flow rate under constant BHP (4500

psi) constraint. Again we observe a reasonable agreement between the τ -coordinate

formulation and the Eclipse simulation.

One major advantage of the τ -coordinate formulation over the previous PSS

geometric approximation is that it is relatively easy to handle complex well controls.

As an example, Figure 4.16 shows the same heterogeneous gas case with changing

flow rate and BHP controls.

4.5.3 Additional Physics

We use the homogeneous oil case for testing of the reservoir compaction effect.

The reservoir parameters are shown in Table 4.1 for the base case. The permeability

multiplier is shown in Figure 4.17 as a function of pore pressure. For simplicity,

porosity is assumed to be constant. The calculated BHP with and without the

compaction effect are shown in Figure 4.18. In this particular example, permeability
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Figure 4.12: Gas formation volume factor Bg and gas viscosity µ as functions of
pressure.
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Figure 4.13: BHP calculated using the τ -coordinate formulation and the Eclipse
simulator for the homogeneous gas reservoir example.
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Figure 4.14: BHP calculated using the τ -coordinate formulation and the Eclipse
simulator for the heterogeneous gas reservoir example.
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Figure 4.15: The well flow rate calculated under constant BHP (4500 psi) constraint
using the τ -coordinate formulation and the Eclipse simulator for the heterogeneous
gas reservoir example.
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Figure 4.16: Comparison of BHP and well flow rate calculated using the τ -coordinate
formulation (solid line) and the Eclipse simulation (circles) for the heterogeneous gas
reservoir example under complex well flow rate and BHP controls.
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Figure 4.17: Permeability multiplier versus pore pressure due to reservoir compaction
effect for the test case.

will decrease during pressure depletion. As a result, for constant production rate,

the pressure drop becomes larger if the compaction effect is taken into account.

We use the homogeneous gas case for testing of the gas adsorption effect. The

reservoir parameters are shown in Table 4.3 for the base case. We use the Langmuir

isotherm model described in Section 1.1.4 for gas adsorption with the Langmuir

volume VL = 2000 scf/ft3 and the Langmuir pressure PL = 4000 psi. The calculated

BHP with and without the gas adsorption effect are shown in Figure 4.19. The same

calculation was done using Eclipse with gas adsorption option. It can be seen that

our method produces consistent results compared with Eclipse. As we can see in

Figure 4.19, the gas adsorption effect helps maintain the reservoir pressure, and thus

the pressure will drop more slowly if gas adsorption is taken into consideration.
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Figure 4.18: BHP calculated with and without the reservoir compaction effect using
the τ -coordinate formulation.
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Figure 4.19: Gas adsorption effect calculated using the τ -coordinate formulation
(solid lines) and the Eclipse simulation (circles) for the heterogeneous gas reservoir
example.
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4.6 Conclusions

In this section we have presented a novel formulation of the diffusivity equation

using the diffusive time of flight τ as a spatial coordinate. The diffusive time of

flight can be efficiently calculated using the FMM presented in the previous section.

It is assumed that the diffusive time of flight contains the reservoir heterogeneity

information and thus is able to reduce the three dimensional diffusivity equation

to simply one dimensional in space. The major benefit is to significantly increase

the numerical efficiency for pressure drainage calculation without losing too much of

accuracy.

This τ -coordinate formulation also shows several advantages over the previously

proposed PSS geometric approximation for pressure drainage calculation. It is able

to eliminate the error produced by the PSS assumption. In addition, both pressure

and flow rate well controls can be easily implemented using the same formulation.

Last but not least, this formulation is quite general and can be extended to incorpo-

rate additional physical processes. We have demonstrated that the new formulation

reduces back to the traditional diffusivity equation for homogeneous reservoirs. We

have tested the performance of the new formulation for both oil and gas reservoirs

under various well controls and reservoir properties. In general, the results obtained

by the new τ -coordinate formulation agree will with either the analytical solution

or the traditional finite difference reservoir simulation. We have demonstrated the

ability of the method to take into account the reservoir compaction effect and the

gas adsorption effect.
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5. SUMMARY

In this dissertation, we have presented some important extensions to two highly

efficient reservoir modeling methods, the streamline method and the Fast Marching

Method. Both methods are alternatives to the conventional finite difference reser-

voir simulation. Mainly due to their numerical efficiency, they are often found to be

advantageous over the conventional simulation technique for the purpose of dynamic

reservoir characterization, which often requires fast forward modeling. The exten-

sions we have achieved enable those methods to be applied to more complex grid

geometries.

We have successfully extended the traditional streamline tracing algorithm, such

as the Pollock’s algorithm, to PEBI grids, unstructured triangular grids and grids

with local refinement. Our recommended method uses a lower order interpolation

scheme and satisfies local conservation. Its advantages include robustness and nu-

merical efficiency. The recommendation is based on a comprehensive study of the

velocity interpolation methods in polygons. The velocity interpolation methods in-

vestigated can assume lower order or higher order cell boundary fluxes, can be locally

conservative or non-conservative, can produce continuous or discontinuous velocity

field. All these alternatives are systematically evaluated according to criteria such as

numerical error, efficiency, robustness etc. We have discovered that the interpolated

velocity field has to be locally conservative in order to guarantee the correct volu-

metric transformation for the calculated streamlines and the time of flight. Results

show that velocity continuity is a desirable property but may not be as important

as local conservation for the purpose of streamline applications. The recommended

method has been successfully applied to 2.5D PEBI grid, 2D and 3D LGR grids, and
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faulted grids. For 3D LGR grids and faulted grids, the boundary layer approximation

approached is applied to reduce the problem from 3D to 2D.

The formulation of the FMM in corner point grids has been developed based

on the isoparametric mapping. The numerical discretization is demonstrated in de-

tail using solution nodes based on cell centers and the local five-point stencil. For

smoothly varying medium with anisotropy, we have demonstrated the causality con-

dition if the principal direction of the permeability are aligned with the cell edges.

For non-smoothly varying medium, we have done numerical experiments to study

the effect of possible local violation of causality at the boundary of high permeabil-

ity contrast. Results show that such effect can be mitigated by using nine-stencil

scheme or doing grid refinement. An alternative discretization scheme using solution

nodes based on cell vertexes can also be used to guarantee causality condition for lo-

cally high permeability contrast. However, the differences created by using different

schemes are not very significant for practical applications. We have demonstrated

using the FMM for drainage volume visualization for unconventional reservoirs and

wells with multi-stage hydraulic fractures.

We have presented a novel formulation of the diffusivity equation using the diffu-

sive time of flight as a spatial variable. This new formulation enables the calculation

of pressure drainage based on the results of the FMM. Because the diffusive time

of flight obtained by the FMM contains the reservoir heterogeneity information,

the new formulation essentially reduces the 3D problem to only 1D in space. This

greatly improves the numerical efficiency without losing too much of accuracy. The

new formulation has been benchmarked by using various test cases including both

oil and gas, homogeneous and heterogeneous reservoirs. The results have been com-

pared with analytical solutions or commercial finite difference reservoir simulators.

In order to deal with shale gas reservoirs, we have incorporated additional physical
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processes in the formulation that could take into account reservoir compaction effect,

gas adsorption effect etc.
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APPENDIX A

DERIVATION OF EQUATION 3.6

As shown in Figure A.1, and following Ponting (1989), the geometry of a corner

point cell is defined by the tri-linear isoparametric mapping from the unit cube

(α, β, γ) to physical space (x, y, z)

The tri-linear mapping from the unit cube point x = (α, β, γ) to physical point

x = (x, y, z) as follows:

x = x000(1− α)(1− β)(1− γ) + x100α(1− β)(1− γ) + (A.1)

x010(1− α)β(1− γ) + x110αβ(1− γ) + x001(1− α)(1− β)γ +

x101α(1− β)γ + x111αβγ

where the points xijk are eight cell corners. From this mapping we define three

tangent vectors

~ti =
∂x

∂x̂i
i = 1, 2, 3 (A.2)

where x̂i = (α, β, γ), and three normal vectors

~ni = ~tj ×~tk i, j, k = 1, 2, 3 cyclic (A.3)

We have the following relationships

~ti · ~nj = δijJ (A.4)
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x(α, β, γ)

Figure A.1: Tri-linear isoparametric mapping from the unit cube to physical space

where δij is the Kronecker delta and J is the Jacobian, and

∇ =
3∑
i=1

∇x̂i
∂

∂x̂i
=

3∑
i=1

1

J
~ni

∂

∂x̂i
(A.5)

We will now derive Equation 3.6 based on the isoparametric mapping for corner point

cells. Let us assume the principle directions of the permeability tensor are along the

tangent vectors. Then the unit vectors associated with the principle directions of

the permeability tensor are ~ti/ti (i = 1, 2, 3). In the reference space (unit cube),

the permeability can be written as a diagonal tensor diag(ki). The transformation

matrix T is obtained by putting together the unit vectors associated the principle

directions as column vectors, i.e. T = [~t1/t1,~t2/t2,~t3/t3]. Thus the permeability

tensor in the physical space is written as ¯̄k = Tdiag(ki)T
′, which reduces to

¯̄k =
3∑
i=1

ki
t2i
~ti~ti (A.6)

where ki is the principle permeability in I, J , or K direction. Substituting Equations
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A.5 and A.6 into the left hand side of Equation 3.6, we have

~∇τ(~x) · ¯̄k · ~∇τ(~x) =
3∑
i=1

3∑
j=1

3∑
k=1

1

J
~ni
∂τ

∂x̂i
· kj
t2j
~tj~tj ·

1

J
~nk

∂τ

∂x̂k
(A.7)

Applying Equation A.4, we get

~∇τ(~x) · ¯̄k · ~∇τ(~x) =
3∑
i=1

3∑
j=1

3∑
k=1

∂τ

∂x̂i
· kj
t2j

∂τ

∂x̂k
δijδjk (A.8)

This reduces to

~∇τ(~x) · ¯̄k · ~∇τ(~x) =
3∑
i=1

ki
t2i

(
∂τ

∂x̂i

)2

(A.9)

This leads us to Equation 3.6.
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APPENDIX B

FMM IN UNSTRUCTURED GRIDS

We will now discuss the local solution mentioned in step (4) of the basic frame-

work of fast marching method in section 3.3. There are two distinct yet equivalent

constructions of the local solver. One is based on the Fermat’s principle; the other is

based on Eulerian discretization. For simplicity, we will only discuss 2D case. The

extension to 3D is straightforward. As shown in Figure B.1, we will first construct

local triangles which are formed by the node considered (in red) and two of its adja-

cent neighbors. Then one of the local solvers is used to calculate the τ value based on

each of the local triangle. Finally, the τ value to be updated at the node considered

is the minimum value obtained from all the triangles. It can be seen from Figure

B.1, both 5-stencil and 9-stencil Cartesian grids, as well as unstructured grids, can

be treated in a uniform manner.

(a) (b) (c)

Figure B.1: Local triangles for the node in red in (a) 5-stencil square grid; (b)
9-stencil square grid; (c) Unstructured grid.
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Figure B.2: Local solver based on (a) Fermat’s principle and (b) Eulerian discretiza-
tion

B.1 A Local Solver Based On Fermat’s Principle

Here we follow the derivation of Sun and Fomel (1998); Sethian (1999b) in 2D.

Leliévre et al. (2011) has given a 3D extension. Consider a local triangle ABC in

Figure B.2(a). We would like to calculate the τ value at node C. If neither node A

nor B have been accepted, we simply discard this local triangle for node C and look

for the next one, because the true solution should not come from this local triangle.

If only one node A or B has been accepted, then the τ value at node C can be

simply calculated as a 1D problem either travelling from A to C or from B to C

directly. Now we consider the case when both node A and B have been accepted

and the τ values at nodes A and B are τA and τB respectively. For the lowest order

approximation, we use plane wave assumption. Let ξ (0 ≤ ξ ≤ 1) be the normalized

distance from A to S along the segment AB. The travel time τ at point S(ξ) is

approximated by the linear interpolation:

τS = (1− ξ)τA + ξτB (B.1)
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According to Fermat’s principle, the actual travel time to C corresponds to the

minimum of the travel time with respect to path perturbations:

τc = min
ξ∈(0,1]

{
τS +

√
‖AB‖2(ξ − ξ0)2 + d2

0

a

}
(B.2)

where S0(ξ0) and d0 are the normal projection point and the distance of C to AB.

For isotropic case, diffusivity α is only a function of location and is taken at C. If the

minimizer of the above equation ξ∗ corresponds to the point S∗ , then the direction

along S∗C is the approximation of the characteristic direction. The minimization

constraint 0 ≤ ξ ≤ 1 makes sure the causality relationship is satisfied, i.e. the

characteristic direction estimated lies inside the triangle and thus

τC ≥ max {τA, τB} (B.3)

This causality relationship makes sure that the acceptance of solution values will

always in ascending order. Equation B.2 can be solved by setting the derivative to

zero

τB − τA +
‖AB‖2(ξ − ξ0)√

α‖AB‖2(ξ − ξ0)2 + αd2
0

= 0 (B.4)

This is a quadratic equation for ξ and the solution is

ξ = ξ0 ±
d0(τA − τB)

‖AB‖
√
‖AB‖2
α
− (τA − τB)2

(B.5)

We need to select the appropriate branch of solution in [0, 1] and then we can obtain

the solution

τC = d0

√
1

α
− (τA − τB)2

‖AB‖2
+
‖BC‖
‖AB‖τA cos θB +

‖AC‖
‖AB‖τB cos θA (B.6)
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B.2 A Local Solver Based On An Eulerian Discretization

Here we follow the derivation of Sethian and Vladimirsky (2000) and Qian et al.

(2007). As shown in Figure B.2(b), let a be the length of BC and b be the length of

AC. Let ~σAC be the unit vector pointing from A to C and ~σBC be the unit vector

pointing from B to C. Thus,

~σAC =
1

b
(xC − xA, yC − yA) (B.7)

~σBC =
1

a
(xC − xB, yC − yB) (B.8)

Assuming a linear approximation of τ locally, we have the following finite difference

equations

1

b
(τC − τA) = ∇τ · ~σAC (B.9)

1

a
(τC − τB) = ∇τ · ~σBC (B.10)

If we define matrix P with rows to be ~σAC and ~σBC , then the above equations can

be written in matrix form as  τC−τA
b

τC−τB
a

 = P∇τ (B.11)

Thus

∇τ = P−1

 τC−τA
b

τC−τB
a

 (B.12)
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Substitute the above equation into the Eikonal equation, we will get

(
τC − τA

b
,
τC − τB

a

)
P−1α(P)T

 τC−τA
b

τC−τB
a

 = 1 (B.13)

This quadratic equation is solved for τC and the solution should be verified against

the causality condition: the solved value of τC can only be accepted, if the update is

coming from within that triangle, i.e., only if the computed characteristic direction

lies inside the triangle. The reader is referred to Qian et al. (2007) for the details

of this verification process. If there is no real solution from Equation B.13 or the

real solutions fail to pass the causality condition, then we simply take the minimum

value of the two 1D solutions from A and B directly to C as the value of τC :

τC = min

(
τA +

b2

α
, τB +

a2

α

)
(B.14)

As shown in Figure B.1, both 5-stencil and 9-stencil Cartesian grids as well as tri-

angular unstructured grids can all be treated in a uniform manner. For example, if

5-stencil Cartesian grid is used, such as shown in Figure B.1(a), the matrix P sim-

ply becomes identity matrix and Equation B.13 reduces back to the ordinary finite

difference discretization in x and y directions. Using 9-stencil Cartesian grid or un-

structured grid will provide better spatial resolution to more accurately estimate the

characteristic direction and thus generally produce better results than the 5-stencil

Cartesian grid.

Compared with the local solver based on Fermat’s principle, Equation B.13 can

be more straightforwardly extended to 3D case in a tetrahedron. It is also more

convenient to be extended to anisotropic case (α becomes a tensor) or to use higher

order approximations (Sethian and Vladimirsky , 2000). However, the local solver
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based on Fermat’s principle is more transparent to the physical meaning behind the

solution and shows the causality condition in a way much easier to be understood.
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APPENDIX C

REWRITING THE DIFFUSIVITY EQUATION USING THE τ -COORDINATE

C.1 Extension to Anisotropy

In this section we will derive Equation 4.17 from a different perspective to include

anisotropy into the formulation. Let us imagine that we have a series of τ coutour

surfaces partitioning the domain into a series of non-overlapping layers. Consider a

very thin layer of volume enclosed by the contour surfaces S(τ) and S(τ + ∆τ). The

volume element of this thin layer dν can be written as the area element dσ multiplied

by the thickness of the layer

dν =
∆τ

‖∇τ‖dσ (C.1)

The diffusion equation can be written as

−∇ · ~u = φct
∂P

∂t
(C.2)

We take the volumetric integral over the thin layer

−
∮
V

∇ · ~udν =

∮
V

φct
∂P

∂t
dν (C.3)

The left hand side can be written as the surface integral by applying Green’s theorem

−
∮
V

∇ · ~udν = −
∮
S

~u · n̂dσ = −
∮
S

~u · ∇τ dσ

‖∇τ‖ (C.4)
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The surface integral can then be written in terms of the two τ contour surfaces

enclosing the thin layer

−
∮
S

~u · ∇τ dσ

‖∇τ‖ = −
(∫

S(τ+∆τ)

∇τ · ~u dσ

‖∇τ‖ −
∫
S(τ)

∇τ · ~u dσ

‖∇τ‖

)
(C.5)

The right hand side of Equation C.3 can also be written as a surface integral by

applying Equation C.1

∮
V

φct
∂P

∂t
dν = ∆τ

∫
S(τ)

φct
∂P

∂t

dσ

‖∇τ‖ (C.6)

For anisotropic permeability the velocity is given by Darcy’s Law as

~u = −
¯̄k

µ
· ∇P (C.7)

Under the assumption that the pressure gradient direction aligns with the τ gradient

direction, i.e., the contour surfaces of τ are also the contour surfaces of P , we can

apply Equation 4.10 and get

~u ≈ −
¯̄k

µ
· ∇τ ∂P

∂τ
(C.8)

Substituting Equation C.8 into Equation C.5 and applying the anisotropic Eikonal

equation ∇τ · ¯̄k · ∇τ = φµct, we are able to eliminate the permeability tensor com-

pletely. Thus the original diffusion equation (Equation C.3) has been transformed

into ∫
S(τ+∆τ)

φ
∂P

∂τ

dσ

‖∇τ‖ −
∫
S(τ)

φ
∂P

∂t

dσ

‖∇τ‖ = ∆τ

∫
S(τ)

φ
∂P

∂τ

dσ

‖∇τ‖ (C.9)
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Table C.1: Field units used in Equation C.13.

Quantity Unit Quantity Unit

Pressure psi Length ft
Time day Permeability md
Viscosity cp Compressibility psi−1

Oil flow rate bbl/day Drainage pore volume ft3

Gas flow rate scf/day Temperature ◦R

Divide both sides by ∆τ and let ∆τ → 0

∂

∂τ

(∫
S(τ)

φ
∂P

∂τ

dσ

‖∇τ‖

)
=

∫
S(τ)

φ
∂P

∂t

dσ

‖∇τ‖ (C.10)

Under the assumption that pressure is only a function of τ and t, we can take terms

containing only P outside the integral. Then we arrive at exactly the same form as

Equation 4.17,

∂

∂τ

(
w(τ)

∂P

∂τ

)
= w(τ)

∂P

∂t

with

w(τ) =

∫
S(τ)

φ
dσ

‖∇τ‖ =
dVp(τ)

dτ
(C.11)

The relationship between w(τ) and the drainage pore volume Vp(τ) can be established

by writing Vp(τ) according to Equation C.1

Vp(τ) =

∫ τ

τ0

(∫
S(τ)

φ
dσ

‖∇τ‖

)
dτ (C.12)

In field units shown in Table C.1, Equation 4.17 is

∂

∂τ

(
w(τ)

∂P

∂τ

)
= 158.2w(τ)

∂P

∂t
(C.13)
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C.2 Extension to Compressible Fluid (Gas)

For compressible fluid (gas), the fluid viscosity µ and compressibility cg will de-

pend on pressure. When we calculate the diffusive time of flight τ using FMM, we

will use the values at the initial reservoir pressure µi and cgi respectively. The total

compressibility at the initial reservoir pressure is then cti = cgi + cf , where cf is

the rock compressibility and considered to be contant. For real gas, the diffusivity

equation can be written as

−∇ · (ρ~u) =
∂(φρ)

∂t
(C.14)

The equation of state for real gas is

PV = Z
m

M
RT (C.15)

Thus the gas density can be expressed as

ρ =
PM

ZRT
(C.16)

The gas compressibility is

cg = − 1

V

∂V

∂P
=

1

ρ

∂ρ

∂P
(C.17)

The rock compressibility is

cf =
1

φ

∂φ

∂P
(C.18)

The total compressibility is defined as

ct = cg + cf (C.19)

151



By applying Equations C.15 to C.19 we can have the right hand side of Equation

C.14 as

∂(φρ)

∂t
=

M

RT
φct

P

Z

∂P

∂t
(C.20)

The left hand side of Equation C.14 is only different from Equation C.3 by an extra

density. Following exactly the same derivation as in Appendix C.1 and applying

Equation C.16 for gas density, we can derive the following equation

∂

∂τ

(
w(τ)

P

µ̃(P )Z(P )

∂P

∂τ

)
= w(τ)c̃t(P )

P

Z(P )

∂P

∂t
(C.21)

where function w(τ) has been defined previously, µ̃(P ) and c̃t(P ) are dimensionless

viscosity and total compressibility defined as

µ̃(P ) =
µ(P )

µi
(C.22)

and

c̃t(P ) =
ct(P )

cti
(C.23)

If we define the real gas pseudo-pressure as

m(P ) =

∫ P

P0

PdP

µ̃(P )Z(P )
(C.24)

Then Equation can be written as

∂

∂τ

(
w(τ)

∂m

∂τ

)
= w(τ)c̃t(m)µ̃(m)

∂m

∂t
(C.25)
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µ̃(P ) and c̃t(P ) are functions of P and thus are also functions of m. By using a

pseudo-time defined as

ts(t) =

∫ t

t0

dt

c̃tµ̃
(C.26)

the equation can be further reduced to the same form as the slightly compressible

case

∂

∂τ

(
w(τ)

∂m

∂τ

)
= w(τ)

∂m

∂ts
(C.27)

The pressure boundary conditions for gas case is the same as the oil gas shown

in Equation 4.36 and 4.37. The rate boundary conditions can be written for the

wellbore as (
w(τ)

∂m

∂τ

)
τ=τw

= 2× PSTT

TSTµicti
qw (C.28)

Here qw is the gas flowing rate at the standard condition. Similar equation can be

written for the outer boundary.
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APPENDIX D

PSS GEOMETRIC APPROXIMATION IN HOMOGENEOUS RESERVOIRS

Based on the equation of depth of investigation equation (Equation 1.19) for

linear, radial, and spherical flow, the drainage volume functions can be written ana-

lytically as

Vp(t) = φA(
√

2αt) (D.1)

for 1D linear flow,

Vp(t) = φhπ(
√

4αt)2 (D.2)

for 2D radial flow, and

Vp(t) = φ
4

3
π(
√

6αt)3 (D.3)

for 3D spherical flow. Here A is the cross-sectional area for 1D linear flow, and

h is the domain thickness for 2D radial flow. Substituting these drainage volume

functions into Equation 4.5 and integrating over time. Due to the PSS assumption,

at any particular location r, the pressure drop only occurs after the pressure front

arrives at this location. Therefore, the pressure drop at location r can be calculated

by integrating Equation 4.5 from time t = r2/(βα). Here β is 2, 4, and 6 for 1D, 2D,

and 3D cases. Thus pressure profile at any given time can be calculated according

to such integration. At the inner boundary r0, we can get the analytical solution of

the pressure as functions of time. For 1D linear flow, we have

Pwf (t) = Pi −
µqr0

Ak

(√
2αt

r2
0

+ 1− 1

)
(D.4)
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For 2D radial flow, we have

Pwf (t) = Pi −
µq

4πkh
ln

(
4αt

r2
0

+ 1

)
(D.5)

For 3D spherical flow, we have

Pwf (t) = Pi −
µq

4πkr0

[
1−

(
6αt

r2
0

+ 1

)− 1
2

]
(D.6)
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