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ABSTRACT 
 

Conversion of Methanol to Light Olefins on SAPO-34: Kinetic Modeling and Reactor 

Design. (December 2003) 

Saeed M. Al Wahabi, B.S., King Saud University; 

M.S., King Saud University 

Co-Chairs of Advisory Committee: Dr. Gibert F. Froment 
  Dr. Rayford G. Anthony 

 

In this work, the reaction scheme of the MTO process was written in terms of 

elementary steps and generated by means of a computer algorithm characterizing the 

various species by vectors and Boolean relation matrices. The number of rate parameters 

is very large. To reduce this number the rate parameters related to the steps on the acid 

sites of the catalyst were modeled in terms of transition state theory and statistical 

thermodynamics. Use was made of the single event concept to account for the effect of 

structure of reactant and activated complex on the frequency factor of the rate coefficient 

of an elementary step. The Evans-Polanyi relation was also utilized to account for the 

effect of the structure on the change in enthalpy. The structure was determined by means 

of quantum chemical software. 

The number of rate parameters of the complete reaction scheme to be determined 

from experimental data is thus reduced from 726 to 30.  Their values were obtained from 

the experimental data of Abraha by means of a genetic algorithm involving the 

Levenberg-Marquardt algorithm and combined with sequential quadratic programming. 
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The retained model yields an excellent fit of the experimental data. All the parameters 

satisfy the statistical tests as well as the rules of carbenium ion chemistry. The kinetic 

model also reproduces the experimental data of Marchi and Froment, also obtained on 

SAPO-34. Another set of their data was used to introduce the deactivation of the catalyst 

into the kinetic equations.  

This detailed kinetic model was used to investigate the influence of the operating 

conditions on the product distribution in a multi-bed adiabatic reactor with plug flow. It 

was further inserted into riser and fluidized bed reactor models to study the conceptual 

design of an MTO reactor, accounting for the strong exothermicity of the process. Multi-

bed adiabatic and fluidized bed technologies show good potential for the industrial 

process for the conversion of methanol into olefins. 
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CHAPTER I1 

INTRODUCTION 

 

The discovery of huge amounts of natural gas in remote locations has led to the 

construction, in these locations, of mega methanol plants, using available technologies. 

Methanol, which is a liquid under normal atmospheric conditions, can be shipped more 

economically than natural gas to more developed areas and the consumer markets. A 

promising outlet for methanol in the present economic context is the production of 

olefins. Sooner or later, depending upon the ratio of oil and natural gas prices, the 

methanol-to-olefins (MTO) route will enter into competition with the conventional 

steam cracking route based upon simple hydrocarbon mixtures and petroleum fractions. 

This dissertation has to be seen in this perspective. It expresses in a fundamental way a 

number of important technical aspects of the commercialization of MTO. 

The objectives can be formulated as follows: 

1) Develop a kinetic model for the formation of olefins from methanol on SAPO-34. 

a) Write the model in terms of elementary steps without any lumping neither of 

components nor of steps. 

b) Estimate the kinetic parameters using the experimental data of Abraha 1 and 

verify the model prediction using the experimental data of Marchi and Froment 2.  

2) Develop a deactivation model. 

                                                 
This dissertation follows the style and format of Industrial and Engineering Chemistry Research. 
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a) Relate the rate of coke production to the rate of production of C6+ olefins trapped 

inside the cavity of SAPO-34. 

b) Estimate the deactivation parameters using the data of Marchi and Froment. 

c) Use the model to explain the observed catalyst deactivation phenomena. 

3) Combine the kinetic and the deactivation model and utilize them to: 

a) Investigate the influence of the operating conditions on the product distribution 

in a multi-bed adiabatic reactor with plug flow. 

b) Study the conceptual design of riser and fluidized bed reactors for MTO. 
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CHAPTER II 

OLEFINS PRODUCTION 

 

Light olefins such as ethylene, propylene and butylenes are important intermediates 

for the petrochemical industry. Global consumption of ethylene, mainly for the 

production of polyethylene, is expected to increase to 114 million metric tons by 2005 

from 80.5 million tons in 1998 (Figure  II-1). 3, 4 On the other hand demand for propylene 

has increased from 30 million tons in 1992 to 52.5 million tons in 2000 and expected to 

reach 70 million tons by 2005. 
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Figure  II-1. Forecast of ethylene and propylene global demand. 3, 4 
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In 2000, polypropylene accounts for 60% of total propylene demand with an 

increase of 18% from 1996. 

Olefins can be produced using several processes and feedstocks. All processes have 

in common that they produce a range of products and byproducts. The percentage of the 

different output products depend on the process and the feedstock used. Currently, there 

are three main sources of olefins for petrochemicals, Steam Cracking of hydrocarbons 

(naphtha, ethane, gas oil and LPG), Fluid Catalytic Cracking in oil refineries and 

Paraffins Dehydrogenation. In addition to these commercial processes, there are some 

non-commercial technologies under various phases of development such as oxidative 

coupling of methane, oxidative dehydrogenation of paraffins and Methanol to olefins 

(MTO) process. 

II.1 Steam Cracking 

Steam cracking (also known as pyrolysis) of hydrocarbon feedstocks is the main 

source of olefins production. Virtually all ethylene and around 70% of world propylene 

are produced by steam cracking. 4 Hydrocarbon feedstocks most often include ethane, 

naphtha, and gas oil, although propane and other hydrocarbons may be used. The same 

process is used regardless of the feedstock employed, although capital and energy 

requirements will differ depending on both the feedstock and the desired product slate. 

While there are a number of configurations available to accomplish pyrolysis, essentially 

all begin with the introduction of hydrocarbon feed and steam into a tubular pyrolysis 

furnace. In the pyrolysis furnace the feed and steam are heated to a cracking temperature 
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of about (800-900°C). Temperature requirements for cracking ethane will be higher than 

for heavier feedstocks. 

 

 

 Table  II-1. wt% of Products from Cracking Various Feedstocks. 5 

Product Ethane Propane Naphtha Gas Oil 

Ethylene 76 42 31 23 
Propylene 3 16 16 14 
C4 2 5 9 9 
Hydrogen 9 2 2 1 
Methane 6 28 17 11 

 

 

 

 

The distribution of the products highly depend on the feed stock used. While lower 

molecular weight feedstock (e.g., ethane) will give a high percentage of ethylene (see 

Table  II-1); yields of propylene will increase with higher molecular weight feedstock 

(e.g., naphtha). 

Although steam-crackers represent the most important source, propylene supply is 

very limited due to the low propylene yield. During the last decade, new technologies 

have been developed for the purpose of enhancing the propylene output of steam 

crackers. These technologies include Olefins Conversion Technology (OCT) by ABB 

Lummus 6, Superflex Technology by Kellogg Brown & Root 7, and Propylur Technology 

by Lurgi. 8 OCT is based on the metathesis reaction which converts one mole of ethylene 

and one mole of butylenes to form two moles of propylene. When integrated with steam 
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cracking unit, OCT is claimed to boost the propylene to ethylene ratio from 0.65 (with 

SC alone) up to 1.0. 

On the other hand, Superflex and Propylur technologies can handle wider range of 

hydrocarbon feeds, generally in the range of C4-C8 and can be designed to produce P/E 

ratios of about 0.8. 

II.2 Fluid Catalytic Cracking 

Currently, 31.2 million tons per year or 28% of the world propylene production is 

being produced in the Fluid Catalytic Cracking (FCC) units. 4 In FCC, heavy (vacuum) 

gas oils from refineries are cracked into lighter fractions. The most important product is 

gasoline with light olefins regarded as byproducts. 

Recently, a new catalytic cracking technology was developed, the so-called Deep 

Catalytic Cracking process (DCC). This process was developed on the basis of a normal 

riser-cracking process by a Chinese research institute. 9 

DCC produces light olefins from heavy feedstocks with high yields. Two distinct 

modes of DCC operations are reported, maximum propylene and maximum iso-olefins 10. 

The key to these processes relies on a highly selective catalysts and appropriate reaction 

conditions. Table  II-2 shows a comparison between the DCC and the conventional FCC 

units. A substantial increase in the light olefins yields is observed with the new DCC 

technology. 
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 Table  II-2. DCC & FCC Technologies: Yield Comparison. 9 

 DCC 
(Maximum Propylene) 

 
FCC 

Overall Yields, wt%  
C2- 11.9 3.5 
C3-C4 42.2 17.6 
C5+ naphtha 26.6 54.8 
Light cycle oil 6.6 10.2 
Decanted oil 6.1 9.3 
Coke 6.0 4.3 
Loss 0.6 0.3 
Total 100.0 100.0 
  
Olefins Yields, wt%  
Ethylene 6.1 0.8 
Propylene 21.0 4.9 
Isobutylene 5.1 1.9 
Total butylenes 14.3 8.1 

 

 

 

II.3 Paraffins Dehydrogenation 

Propane dehydrogenation technology has gained importance in recent years due to 

the increase in consumption of propylene for the production of polypropylene. There are 

four technologies that can be licensed for propane dehydrogenation. These are 

CATOFIN from ABB Lummus, Oleflex from UOP, Fluidized Bed Dehydrogenation 

(FBD) from Snamprogetti, and Steam Active Reforming (STAR) from Phillips 

Petroleum. 

A similar technology can be applied to ethane dehydrogenation, but an 

economically attractive commercial reactor has not been built. 11 

The main drawback of the dehydrogenation technology is that it is equilibrium 

limited and hence requires high temperatures. The low conversion necessitates a large 
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separation step to recover products and recycle large volume of unreacted paraffin. To 

overcome these problems, researchers are focusing in two directions: i) using membrane 

systems to obtain high conversion at low temperature by separating the hydrogen and 

shifting the process equilibrium; ii) oxidative dehydrogenation to overcome the 

equilibrium limitation and to operate at low temperatures. 12 

However, despite some progress made in the membrane area 13 and in the oxidative 

dehydrogenation area 14, no commercial plants are believed to be currently operational, 

although pilot or demonstration plants have been built and operated. 

II.4 Oxidative Coupling of Methane 

A break-through in the area of methane chemistry occurred in 1982 with the 

publication of a paper by Keller and Bhasin 15 of Union Carbide (UC), which 

demonstrated that two molecules of methane could be coupled oxidatively to produce 

ethane and ethylene: 

 

 2CH +0.5O C H +H O4 2 2 6 2→   

 2CH +O C H +2H O4 2 2 4 2→   

 
The initial work showed that the reaction was best carried out in a cyclic mode in 

which the catalyst was first oxidized and the oxidized material was then exposed to the 

methane, producing ethane and ethylene. Later, results obtained by Hinsen et al. 16 have 

shown that a co-feed mode could be used in which both methane and oxygen were fed 

simultaneously to the catalyst. One year later, Lunsford and co-workers published an 
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important paper describing the use of Li doped MgO catalysts for the reaction under co-

feed conditions, demonstrating that this catalyst has high activity for converting methane 

to C2+ compounds in the presence of O2. 17 On the other hand, the introduction of 

chlorine into the reactants stream has shown to have a very positive effect on the yield of 

ethylene. 18 

 During the last decade, a large amount of research in the MOC field has been 

carried out by the oil and gas companies and other large organizations. Such companies 

include UC, Arco, BP, Amoco, Mobil, British Gas, Standard Oil Co. and Philips 

Petroleum. 10 A specific example of catalyst reported by the above include a BP-type 

catalyst NaCl/MnOx/SiO2 prepared by the co-gel method 19, which is reported to give a 

C2+ yield of 30% compared to 11.7% for the same catalyst prepared by the traditional 

route of impregnation. 

Despite the huge amount of research done on the oxidative coupling of methane, the 

process still suffers from some drawbacks that need to be solved before it can be 

commercialized. These drawbacks include limited selectivity to C2 and high 

exothermicity of the reaction which requires special reactor design. Additionally, this is 

complicated by the fact that metals normally used for construction of reactors catalyze 

the total combustion of methane. 20 

II.5 The Methanol to Olefins Process 

Methanol is a major chemical building block used to manufacture formaldehyde, 

MTBE, acetic acid and a wide range of other chemical products. The slowdown in 

MTBE demand, mainly due to the decision taken by California and later by other states 



 

 

10

in the US to eliminate its use in the gasoline, is causing some of the producers in the 

world to explore alternate utilization of their existing methanol plants. One such 

utilization is the conversion of methanol to olefins (MTO). 

The production of light olefins from methanol was first realized around 1977, 

during the development of Mobil’s methanol to gasoline (MTG) process. In the MTG 

process, where ZSM-5 is used as a catalyst, methanol is first dehydrated to dimethylether 

(DME). The equilibrium mixture of methanol, DME and water is then converted to light 

olefins. A final reaction step leads to a mixture of higher olefins, n/iso-parrafins, 

aromatics and naphthenes 21: 

 2 2

2

-H O -H O
3 3 3 52+H O

6+

= =
n/iso-paraffins

2CH OH CH OCH C -C aromatics
C olefins

⎯⎯⎯→ →  

 
Because they are intermediate in the MTG process, an interruption of the reaction 

leads to a production of light olefins instead of gasoline. An appropriate process for this 

purpose was developed later by Mobil. 22 Since then several attempts were made to 

selectively produce light olefins from methanol on zeolite catalysts, not only on 

medium-pore zeolites but also on small-pore zeolites and to a lesser extent, on large-pore 

zeolites. 

Among all the investigated zeolites, ZSM-5 and SAPO-34 have received a lot of 

attention due to their excellent catalytic performance for the MTO reaction.  

Unfortunately the use of ZSM-5 zeolite results in a wide range of products, in particular 

aromatics and paraffins. 23 In order to improve the selectivity to light alkenes several 

approaches have been proposed including operating the reactor at high space velocity 



 

 

11

and low methanol conversion and introducing some modifications on the catalyst. 24  The 

first solution introduces the need to recycle and results in a rapid catalyst deactivation. 25 

On the other hand considerable effort has been made to modify the ZSM-5 catalyst for 

the purpose of increasing its selectivity to light olefins. An extensive review of the 

literature concerning this has been given by Chang. 26 In all cases the production of 

aromatics could not be avoided at high methanol conversion. 

The use of small pore zeolites and in particular SAPO-34 permits the selective 

formation of light olefins even at 100% methanol conversion. 27 This performance has 

been attributed to the cage structure of SAPO-34, as compared to the channel structure in 

ZSM-5, and to the intermediate acidity. 

Currently, two MTO process technologies are available namely Mobil’s MTO 

process and UOP/Hydro MTO process. 

Mobil’s MTO process was demonstrated in a 100 BPD fluid bed facility in 

Germany. 28 The process was originally designed for gasoline production and later 

extended to demonstrate the MTO process. The plant was operated at a pressure between 

2.2 and 3.5 bar and a temperature of about 500°C. 22 The catalyst used was a modified 

ZSM-5 zeolite type catalyst.  At steady state conditions the olefin yield was more than 

60%. 

On the other hand, UOP and Norsk Hydro have jointly developed and demonstrated 

an improved methanol to olefins process which has been ready for license since 1996. 29 

The process, schematically shown in Figure  II-2, offers a high selectivity to light olefins. 

80% of the carbon in the methanol feed is converted into ethylene and propylene and 
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10% to butylenes giving a total light olefins yield of about 90%. By adjusting the 

operating conditions, ethylene to propylene product weight ratio can be changed from 

1.5 to 0.75. 30 The catalyst employed is a modified silicoaluminophosphate (SAPO-34) 

originally discovered by Union Carbide in the 1980s. 

 

 

 

 

Figure  II-2. UOP/Hydro MTO process. 22  

 
 
 
 
 

Although thermodynamically favored, C5+ hydrocarbons are produced at 

substantially lower level with SAPO-34 than with the ZSM-5 catalyst. This can be 
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explained by the pore size, which is smaller than the kinetic diameters of these 

compounds, and by the intermediate acidity of the SAPO-34 catalyst. 2 

In the overall flow diagram, evaporated methanol is fed directly to the fluidized bed 

reactor, which is operated to obtain near 100% conversion of methanol. Both neat and 

crude methanol, which has about 17 wt% of water, can be used as feed stock. The option 

to use crude methanol opens up for an interesting integration with the methanol unit 

when located at the same site, thus significant savings can be achieved by not requiring 

the methanol purification-distillation section. The spent catalyst is circulated to the 

fluidized bed regenerator, where coke is burned off, and then returned to the reactor to 

achieve a steady state. 

The overall material balance for the production of 500,000 MTA of ethylene is 

shown in Table  II-3. This amount of ethylene production requires 2,330,000 MTA of 

methanol feed. 

 

 Table  II-3. MTO Overall Material Balance. 29 

 Feed, 
(MTA) 

Products 
(MTA) 

Yield on C 
(%) 

Methanol 2,330,000   
Ethylene  500,000 49.0 
Propylene  327,000 32.0 
Butylenes  100,000 10.0 
C5+  22,000 2.0 
H2, C1+ paraffins  35,000 3.5 
COx  5,000 0.5 
Coke  31,000 3.0 
Water  1,310,000  

Total 2,330,000 2,330,000 100.00 
 



 

 

14

The economics of UOP/Hydro methanol to olefins process were demonstrated by 

comparing a conventional 500,000 MTA naphtha cracker with a natural gas integrated 

complex to produce olefins. 31 For a U.S. gulf coast plant, a return on investment (ROI) 

of about 30% is achievable for a natural gas based methanol to olefins plant. This 

compares to about 26% for steam cracker. For a methanol to olefins unit alone, using a 

methanol cost of $100/ton, the relevant ROI jumps to more than 36.5%. 
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CHAPTER III 

METHANOL-TO-OLEFINS. A LITERATURE REVIEW 

 

III.1 Introduction 

In this chapter a brief review of the ZSM-5 and SAPO-34 zeolites in addition to the 

reaction mechanism and the kinetic studies reported in the literature concerning the 

conversion of methanol to light olefins are given. The chapter also summarizes and 

compares different available technologies for the production of light olefins, mainly 

ethylene and propylene.  

III.2 ZSM-5 and SAPO-34 Zeolites 

III.2.1 Structure 

The structure of ZSM-5 contains two perpendicularly intersecting channel systems: 

the sinusoidal channels running parallel to plane [100] are near circular with 

approximate free dimensions of 5.1 x 5.5 A , while the straight channels of elliptical 

shape running parallel to [010] have a free cross section of 5.4 x 5.6 A  32. A simplified 

picture of the ZSM-5 channel system is shown in Figure  III-1 (a). 
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Elliptical Cavity 

(6.7 x 10 A ) 

Eight-ring opening

(4.4 x 3.3 A ) 

(b) 

Six-ring opening 

(2.2 A ) 

(a) 

Straight Channel
Elliptical shape 

(5.4 x 5.6 A )

Sinusoidal Channel 
Near Circular shape 

(5.1 x 5.5 A ) 

 

Figure  III-1. Schematic of pore structure of (a) ZSM-5 32 (b) SAPO-34 33. 
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On the other hand, SAPO-34 has the chabazite like structure which is shown in 

Figure  III-1 (b). The structure is constructed of doubled six-membered rings forming one 

cavity per unit cell 33. The dimensions of these roughly elliptical cavities are 

approximately 6.7 by 10 angstroms. The cavities are interconnected to six others by a 4.4 

x 3.1 A  elliptical eight-ring opening. 

III.2.2 Acidity 

The contribution of the Lewis acidity in the conversion of hydrocarbons is 

considered to be negligible in comparison to the Bronsted acidity 34. Anderson et al. 35 

showed that the active sites involved in the conversion of methanol on zeolites are not 

Lewis acids but Bronsted acids. 
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Figure  III-2. FTIR spectra of SAPO-34 and ZSM-5 zeolites at 200°C. 36 
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In order to compare the acidity, Wu and Anthony 36 tested two samples of HZSM-5 

(Si/Al =15) and SAPO-34 (Si/Al = 0.15) using FTIR. The FTIR spectra obtained are 

shown in Figure  III-2. SPAO-34 has more types of –OH groups than ZSM-5. The –OH 

groups of the SAPO-34 associated with the bands at 3765, 3740, and 3675 cm−1 have 

weak acidity and no activity for acid-catalyzed reactions. The other two kinds of –OH 

associated with 3620 and 3596 cm−1 were believed to have stronger acidity. 

The presence of the 3610 cm-1 Al-OH groups is believed to be responsible for the 

high activity of these catalysts for the conversion of methanol into light olefins. 2 

Whereas the acidity of the ZSM-5 zeolite decreases as the atomic ratio of Si/Al 

increases, SAPO-34 shows higher concentration of acid sites with increasing Si/Al ratio. 

This may be explained on the assumption that a SAPO crystal is obtained by silicon 

substitution into a hypothetical aluminophosphate framework. The predominant 

mechanism appears to be silicon substitution by phosphorus, which leads to a SAPO 

crystals having a framework with a net negative charge that are potential Bronsted acid 

sites. 37 

III.3 Conversion of Methanol into Olefins on ZSM-5 and SAPO-34 

To increase the selectivity toward light olefins, several modifications of the Mobil 

ZSM-5 catalyst were suggested, especially with respect to ion exchange and 

impregnation methods. Rodewald 38 observed an increase in ethylene selectivity on ZSM-

5 catalysts that were exchanged with cations having an ionic radius exceeding 1 

angstrom (Cs, Ba). At low conversion, the selectivity toward ethylene on CsZSM-5 was 
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10% higher than on HZSM-5. At high conversion this difference amount to 40%. This 

contradict, however, the study done by Dehertog and Froment 23 in which no 

improvement in the selectivity was observed when using Cs-exchanged ZSM-5 catalyst. 

Kaeding and Butter 39 modified ZSM-5 with phosphorus compounds. The selectivity 

toward C2-C4 paraffins decreased from 39 to 5 wt%, and toward aromatics from 40 to 20 

wt%. The selectivity toward olefins, on the other hand, increased from 1.6 to 39 wt%. 

the conversion of methanol to hydrocarbons on the P-modified ZSM-5 was only 11.4%, 

whereas no details on the conversion level of methanol on HZSM-5 were given. For 

moderate reaction conditions, Dehertog and Froment 23 also reported a significant 

increase in the maximum yield of light olefins on P-HZSM-5 as compared with HZSM-

5. At temperatures above 480°C this effect was no longer observable. 

Recently Al-Jarallah et al. 40 studied the conversion of methanol to light olefins 

using high silica zeolite of the pentasil type MFI structure (ZSM-5). The reaction was 

carried out in a fixed bed reaction set-up at 400°C, WHSV =4 h-1, pressure of 1 bar and a 

methanol to nitrogen weight ratio of 2.78. The zeolite was modified by impregnation 

with metal nitrates of Ag, Ca, Cd, Cu, Ga, In, La, and Sr to study their effects on the 

activity and selectivity of the catalysts. Incorporation of La and Ag led to an 

improvement in light alkenes selectivity of the silicate by 18% and 14% respectively 

(see Figure  III-3). This was attributed to enhanced shape selectivity of the silicate 

resulting from reduction in the apparent pore size of the zeolite channels. The activity of 

the catalyst was slightly decreased due to the formation of higher olefins. 
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Figure  III-3. Product distribution for various modifications of silicate (ZSM-5) at 400°C, WHSV 4 h-1 
and 2.78 (wt/wt) methanol-to-nitrogen ratio. 40 

 
 

 
On the other hand, Silicoaluminophosphates (SAPOs), originally developed by 

UCC early 1980s, and especially SAPO-34 has shown excellent catalytic performance 

for the selective conversion of methanol to light olefins. At 100% methanol conversion, 

Kaiser 27 reported a combined molar selectivity to light olefins of about 96%. Very low 

yields of methane and other saturated hydrocarbons were also found. SAPO-34 was also 

tested by Marchi and Froment 2. At 480°C and 0.96 h-1 WHSV (MeOH) products yields 

in (g product/100 g MeOH fed) were as follows: ethylene 18.1 (equivalent to a yield of 

41.4 in C-wt %) , propylene 16.14 (or 36.9 in C-wt %) , butenes 5.5 (or 12.6 in C-wt %), 
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methane 0.87 and C2+ paraffins 2.33. Methanol conversion was approximately 100%. 

Aromatics or branched isomers were not detected in the effluent.  The high selectivity 

for C2-C4 alkenes and the absence of branched isomers and aromatics were explained by 

the pore size being smaller than the kinetic diameters of the latter compounds, the 

intermediate acidity and the low ratio between the concentrations of acid sites on the 

external surface in relation to that on the internal surface. 

 

  
 
 
 

 
Figure  III-4. Catalyst performance of SAPO-34 and Ni-SAPO-34s in methanol conversion. Reaction 
conditions: 20% MeOH- 80% N2, GHSV 2000h-1, temperature 450°C. 41 

 
 

 
In an attempt to modify SAPO-34 selectivity and life time, Inui et al. 41 reported that 

nickel-containing SAPO-34 (Ni-SAPO-34) with Si/Ni ratio of 40 prepared by the rapid 

crystallization method, exhibits a high selectivity to ethylene of 90% at 100% methanol 
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conversion (see Figure  III-4). The catalyst, however, was not easy to reproduce 42 

because the selectivity is very sensitive to those properties which depend on the 

preparation procedure. Later, Inui and Kang 43 reported a reliable procedure for the 

synthesis of Ni-SAPO-34, and investigated the factors involved in its preparation. 

III.4 Catalyst Deactivation 

Compared to ZSM-5, SAPO-34 suffers from rapid deactivation during methanol 

conversion. The big cavities are responsible for this rapid deactivation. 21 Deactivation 

starts when aromatics and heavy branched compounds are formed inside the large cages. 

These molecules cannot diffuse through the porous structure of the SAPO-34 because 

their kinetic diameter is larger than the pore-opening size. Thus, they remain inside the 

big cages where they can form carbonaceous deposits blocking the pore openings and 

preventing the access of molecules to the active sites. 

The operating conditions play a very important role in the deactivation rate. Marchi 

and Froment 2 have shown that it is possible to suppress the steps that involve coke 

formation on SAPO-34 by increasing the temperature and the water content in the feed. 

Water was believed to weaken the strong acid sites responsible for hydrogen transfer 

reactions. On the other hand the increase of temperature favors the rate of olefins 

formation with respect to aromatic and oligomer productions. 

III.5 Reaction Mechanism 

The reaction mechanism of the methanol conversion to hydrocarbons has been 

discussed in details by Chang 24. Three major steps can be distinguished: the formation of 
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the dimethylether, the initial C-C bond formation, and the subsequent conversion of the 

primary products to higher hydrocarbons, which proceeds via classical carbenium ion 

mechanisms, well known from hydrocarbon chemistry in acid media. 

III.5.1 Formation of Dimethylether 

The reaction pathways for the formation of DME on ZSM-5 are shown in Figure 

 III-5. 44 It is generally accepted that the formation of DME from methanol precedes the 

formation of hydrocarbons. Since it is the acidity that enters into the carbenium ion 

mechanism, it is entirely logical to accept this mechanism for SAPO-34 also. The steps 

dealt with in Figure  III-5 relate to light components which are not subject to the 

configuration constraints of SAPO-34. 

Experiments by Chang 24 showed that an essentially identical reaction path is 

obtained when using DME instead of MeOH. The formation of DME takes place 

according to the following steps: 

1. Reversible adsorption of methanol molecules on the Bronsted acid sites of the 

SAPO-34. 

2. Dehydration of the protonated methanol to form the surface methoxy. 

3. Reaction of gas phase methanol with the surface methoxy group to form a surface 

associated dimethyloxonium ion (DMO+). 

4. Formation of DME by the deprotonation of the DMO+. 
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ZSM-5 

 

Figure  III-5. Reaction mechanism for the formation of DME by dehydration of methanol over ZSM-5 
catalyst. 44  



 

 

25

III.5.2 Formation of Primary Hydrocarbon Products 

A great deal of attention has been given in the literature to understanding the 

mechanism for the formation of primary hydrocarbon products. The suggested 

mechanisms have been extensively reviewed and discussed 21,  24,  46. 

Recently, Park and Froment 44,  45 developed a kinetic model for the MTO process on 

ZSM-5 catalyst. Among all the mechanisms considered, only the surface-bonded 

oxonium methylide mechanism suggested by Hutchings et al. 46 was shown to be valid. 

According to this mechanism, shown schematically in Figure  III-6, proton transfer from 

the surface methoxy to a nearby basic zeolite site (e. g. an adjacent Al-O site) yields a 

surface-bonded oxonium methylide (CH2), which reacts with protonated dimethylether 

(DMO+) to produce a surface-bonded ethyl and/or propyl carbenium ion ( 2 3,R R+ + ). 

Deprotonation of the + +
2 3R and R  forms gas-phase ethylene and propylene respectively.  

At low methanol conversion, methane is also a major primary product. Methane 

forms by hydride donation from methanol to the surface methoxy. 

In this research, the surface-bonded oxonium methylide mechanism will be 

considered for the kinetic model development. 
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Figure  III-6. Reaction scheme for the MTO process. 44  
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III.5.3 Formation of Higher Olefins 

In MTO, as in any hydrocarbon transformation on heterogeneous acidic catalysts, 

the conversion of the primary products to higher hydrocarbons proceeds via the 

carbenium ion mechanisms. Methylation, oligomerization and cracking via β-scission of 

surface carbenium ions are typical elementary steps for increasing or decreasing the 

number of carbon atoms in the olefinic products. 

 

 

Table  III-1. Types of Elementary Steps for the Formation of Higher Olefins. 

Elementary Step Type Example 
Rearrangement        

 Hydride Shift +  
  

 +  
  

 Methyl Shift 
+  

   +

 
  

 PCP Branching +    +

 
  

β-scission +

 
  →  +

 +  

Deprotonation 
+  

  
  + H+ 

Protonation 
 

+ H+  
+  

  

Methylation  + +
1R  →  +

 

  

Oligomerization 
+

 +  →  +
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Within the same number of carbon atom, the structure of the carbenium ions is 

modified by various types of rearrangements, including methyl shift and protonated 

cyclopropane (PCP) branching. As a result, almost all olefin isomers can be formed by 

the elimination steps of deprotonation of those carbenium ions. Table  III-1 summarizes 

the elementary steps describing the formation of higher olefins with carbenium ions as 

intermediates. 

At higher space times based upon methanol (or higher methanol conversion), the 

olefins are converted into paraffins and aromatics. The formation of these products is 

generally explained in terms of hydride transfer followed by cyclization of olefinic 

carbenium ions. The present study focuses on the reaction network corresponding to 

conditions where the amount of paraffins and aromatics is negligible. This is almost 

always true for SAPO-34, and true for ZSM-5 at moderate methanol conversion. 

III.6 Kinetic Studies 

The complexity of the reaction network of the methanol conversion into 

hydrocarbons, has led many researchers to lump reactants and products into a small 

number of groups. Based on the autocatalytic nature of the methanol reaction over ZSM-

5, Chen and Reagan 47 used the following simple model: 

 

 A 1k⎯⎯→  B 

 A + B 2k⎯⎯→  B 

 B 3k⎯⎯→  D 
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Where A, B and D represent the oxygenates, the olefins and the aromatics/paraffins, 

respectively. Chang 48 modified the scheme of Chen and Reagan by adding a bimolecular 

step accounting for the carbene insertion into the primary olefins: 

 

  A 1k⎯⎯→  C 

 A + B 2k⎯⎯→  B 

 C + B 3k⎯⎯→  B 

 B 4k⎯⎯→  D 

 

Where C represents the carbenes (:CH2) and A, B, and D are defined as the same as 

before. 

Schoenfelder et al. 49 developed a lumped-species reaction scheme, involving seven 

lumps. These lumps are: oxygenates (A), ethene (B), propene (C), butene (D), paraffins 

(E), methane, carbon monoxide, hydrogen (F), and water (W). 

Bos et al. 50 developed a kinetic model for the MTO process based on SAPO-34. The 

final reaction scheme, Figure  III-7, consisted of 12 reactions involving 6 product lumps 

plus coke. Reactions 8 and 12 are considered to be second order. All other reactions are 

of first order. The rate of reactions for different reactions shown in Figure  III-7 are as 

follows: 

 

 1, 2...,7i i MeOHr k x P i= =  (III-1) 
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38 8 MeOHCr k x Px P==  (III-2) 

 
3

9,10 11i i Cr k x P i and== =  (III-3) 

 412 12 C MeOHr k x Px P=  (III-4) 
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Figure  III-7. Reaction scheme Bos et al. 50 

 

 

The problem with these lumped models is that they do not reflect the underlying 

chemistry and the estimated rate and equilibrium coefficient always are dependent on the 

feed composition and reaction conditions. 

Recently Park and Froment 44, 45 modeled the kinetics of the MTO process on a ZSM-

5 catalyst on the basis of a detailed mechanistic reaction scheme. A total of eight kinetic 
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models were tested. The finally retained model corresponds to a mechanism that 

proceeds over oxonium methylide formed from a methoxy ion interacting with a basic 

site of the catalyst. The ylide subsequently reacts with dimethyloxonium ions to generate 

in parallel the primary products ethylene and propylene. Through steps of carbenium ion 

chemistry, the latter lead to higher olefins and, to a lesser extent, to paraffins and 

aromatics. 

In the present work, it is this detailed reaction mechanism that will be followed in 

the kinetic modeling of MTO on SAPO-34. 
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CHAPTER IV 

KINETIC MODELING OF MTO ON SAPO-34 

 

IV.1 Introduction 

The development of a realistic kinetic model for a process requires detailed 

information on the mechanism of the reactions. For some processes, however, such as 

MTO the reaction network consists of hundreds of elementary steps. The complex nature 

of the MTO reaction network has led many researchers to model the methanol 

conversion reaction by lumping various products into a few species. Unfortunately, 

lumped kinetic models can not predict the product composition, and their rate and 

equilibrium coefficients are dependent on feed composition and reaction conditions. 44    

In this work, the rate coefficients of the elementary steps involved in the MTO 

network have been modeled by the single event kinetics approach introduced by 

Froment and co-workers 51 and the Evans-Polanyi relation. This procedure provides a 

tremendous reduction in the number of parameters to be estimated.  

IV.2 Olefins Formation in Terms of Elementary Steps 

IV.2.1 Construction of Reaction Network 

As discussed in Figure  III-6, the MTO process can be divided into three sections; (i) 

the formation of dimethylether, (ii) the formation of the primary hydrocarbons, and (iii) 

conversion of the primary products to higher olefins. 
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Table  IV-1 shows the elementary steps describing the formation of the primary 

products. These steps are constructed based on the mechanism that proceeds via the 

reaction between surface-bonded oxonium methyl ylide and the protonated DME. 

 

 

Table  IV-1. Elementary Steps Describing the Formation of Primary 
Products of the MTO Process. 

Elementary Steps Rate or Equilibrium 
Constants 

DME Formation 
MeOH H++   2MeOH+  ( )PrK MeOH  

2MeOH+   
1 2R H O+ +  ' ( )1k RF

+ , ' ( )1k RC
+  

1R MeOH+ +   DMO+  ' ( )k DMOF
+ , ' ( )k DMOC

+  
DMO+   DME H++  ( )PrK DME  

Methane Formation 

1R MeOH+ +  →  
4CH HCHO H++ +  ' ( )4k CHF  

Primary Olefins Formation 

1R bs+ +   OM H++  ' ( ; )1k R bsSr
+ , ' ( ; )k OM HSr

+  
OM DMO++  →  

2R MeOH bs+ + +  ' ( ; : )2k OM DMO RSr
+ +  

2R+   
2O H++  ' ( )2k RDe

+ , ' ( )Pr 2k O  
OM DMO++  →  

3 2R H O bs+ + +  ' ( ; : )3k OM DMO RSr
+ +  

 

 

The reaction network for the formation of higher olefins, however, is much more 

complicated and contains a large number of elementary steps. To generate the network 

for such a complex processes, Froment and co-workers 51- 56 developed a computer 

algorithm in which the various species are characterized by vectors and Boolean relation 

matrices. Recently Park and Froment 44, 45 utilized this algorithm for the generation of the 
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MTO reaction Network on ZSM-5. The generated network is adapted for the 

development of the kinetic model for the MTO reaction on SAPO-34. The olefins and 

carbenium ions involved in the reaction network are shown in Tables A-1 and A-2, 

respectively. The number of elementary steps generated by the computer algorithm and 

species involved in the reaction network are summarized in Table  IV-2.  

 

 

Table  IV-2. Number of Elementary Steps and 
Species Involved in the Reaction Network. 

Number of Species 
Olefins  142
Carbenium Ions:  83 
Total  225
Number of Elementary Steps 
Protonation:  142
Deprotonation  142
Hydride Shift  88 
Methyl Shift  42 
PCP Branching  151
Methylation  88 
Oligomerization  52 
β-scission  21 
Total  726

 

 

 

The same number of products and elementary steps are used for SAPO-34 as for 

ZSM-5. It is true that heavy components that are detected with ZSM-5 do not appear 

among the products obtained with SAPO-34. Yet, they are actually formed and trapped 
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inside the SAPO-34 cavities. Further explanation in this regard will be given in 

 CHAPTER VI. 

IV.2.2 Formulation of the Rate Expressions 

The kinetic expressions for the formation of the primary products and for the higher 

olefins are formulated based on the reaction mechanism presented in Figure  III-6. 

In these derivations the following points are considered: 

• The olefin isomers were shown to be in equilibrium, so that their partial pressures 

can be obtained from the composition of the equilibrium mixture. 

• The concentration of various adsorbed species can be calculated using the classical 

Hougen-Watson formalism if an elementary step including the adsorbed species is in 

pseudo equilibrium in the reaction network. If not the pseudo steady state 

approximation can be used instead. 

• The elementary steps of protonation deprotonation, and the various rearrangements 

are considered to reach equilibrium, thus their rates are not directly involved in the 

net rate of production of higher olefins. However, it is important to take them into 

account because the surface concentration of the carbenium ions involved in the 

kinetic model is determined by these reactions also. 

A summary of the rate expressions for the formation of the primary products and for 

the higher olefins is presented in Table  IV-3. 



 

 

36

Table  IV-3. Expressions for the Net Rate of Formation of Primary Products and Higher Olefins. 45  
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Table IV-3. (Continued). 
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Table IV-3. (Continued).  
 
Reaction Rate- and Equilibrium Constants 
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Table IV-3. (Continued). 

 
Thermodynamic Relations 
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The number of rate and equilibrium coefficients needed for calculating the reaction 

rate expressions for different products amounts to 253. This means that 504 parameters 

need to be estimated accounting for the temperature dependency of these rate and 

equilibrium coefficients. The majority of these parameters come from the detailed 

reaction network generated by the computer algorithm for the higher olefins production. 

IV.2.3 Modeling of Rate- and Equilibrium-Coefficients 

IV.2.3.1 Single Event Concept 

Because of its large number, estimation of parameters involved in the model is 

extremely difficult to perform. Therefore, a reduction in the number of parameters is 

important. For this reason, Froment and co-workers introduced the concept of the 

“single-event” 51. The concept factors out the structure effect from the change of standard 
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entropy associated with the transformation of a reactant into a product through an 

activated complex. From the transition state theory, the rate coefficient can be written as: 

 

 
‡ ‡

exp expBk T S Hk
h R R T
⋅ ⎛ ∆ ⎞ ⎛ ∆ ⎞′ = −⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠

 (IV-1) 

 

According to statistical thermodynamics the standard entropy of a species is 

determined by several contributions due to the different motions of the species such as 

translation, vibration, and rotation. The latter is composed of two terms: the intrinsic 

value, Ŝ  and a term due to symmetry, σ, which depends on the geometry of the 

molecule. 

 

 ( )ˆ lnrot rotS S R σ= − ⋅  (IV-2) 

 

Accounting for the effect of chirality, the rotational contribution rotS  is given by: 

 ˆ ln
2

rot rot n
S S R σ⎛ ⎞= − ⋅ ⎜ ⎟

⎝ ⎠
 (IV-3) 

 

where n is the number of chiral centers in a species. The expression in the 

parenthesis is called a global symmetry number ( glσ ). It quantifies all symmetry 

contributions of a species.  

The difference in standard entropy between reactant and activated complex due to 

symmetry changes is given by: 
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 ‡
‡ln
r
gl

sym
gl

S R σ
σ
⎛ ⎞

∆ = ⋅ ⎜ ⎟⎜ ⎟
⎝ ⎠

 (IV-4) 

 

This contribution can be substituted for the entropy of activation in (III-1) leading 

to: 

 

 
‡ ‡

‡

ˆ
exp exp

r
gl B

gl

k T S Hk
h R R T

σ
σ

⎛ ⎞⎛ ⎞ ⋅ ∆ ⎛ ∆ ⎞′ = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⋅⎝ ⎠⎝ ⎠ ⎝ ⎠
 (IV-5) 

 

The rate coefficient of the elementary step, k ′ , can now be written as a multiple of 

the single event rate coefficient, k ; where 

 ek n k′ = ⋅  (IV-6) 

 

The number of single events, en , is the ratio of the global symmetry numbers of the 

reactant and the activated complex. 

 ‡

r
gl

e
gl

n σ
σ

=  (IV-7) 

 

A “single event” frequency factor that does not depend upon the structure of the 

reactant and activated complex and is unique for a given type of elementary step can be 

defined as: 

 expBk T SA
h R

⎛ ∆ ⎞
= ⎜ ⎟

⎝ ⎠
 (IV-8) 
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Because the effect of a difference in structure between the reactant and the activated 

complex has been factored out by introducing the number of single events, the single 

event rate coefficient now truly characterizes the reaction itself at the fundamental level. 

The calculation of the global symmetry numbers of the reacting and produced carbenium 

ion and of the activated complex requires their configuration. These can be determined 

by means of quantum chemical packages such as MOPAC, GAMESS and GAUSSIAN. 

IV.2.3.2 The Evans-Polanyi Relationship 

Whereas the single event concept accounts for the effect of the structure on the 

frequency factor of an elementary step the relation of Evans and Polanyi 57 accounts for 

the effect of structure and chain length upon the enthalpy contribution to the rate 

coefficient. For elementary steps of a given type (Methylation, Oligomerization, etc.), 

the activation energy of each elementary step is given by: 

 

 
( )

( ) ( ) (exothermic)

( ) 1 ( ) (endothermic)

a a r

a a r

E i E H i

E i E H i

α

α

= − ∆

= + − ∆
 (IV-9) 

 

This relation permits the calculation of the activation energy, aE , for any 

elementary step or single event pertaining to a certain type, provided the α-coefficient 

and the aE   of a reference step of that type are available. Use of modern quantum 

chemical packages, such as GAUSSIAN, is essential for the calculation of rH∆ . 
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The single event rate coefficients for each elementary step can be written based 

upon the Evans-Polanyi relation as: 

 exp aEk A
R T

⎛ ⎞= ⋅ ⎜ ⎟⋅⎝ ⎠
 (IV-10) 

where A  is the single event preexponential factor. The intrinsic activation barrier 

aE  and the transfer coefficient α take on unique values for a given type of elementary 

step or single event so that there are only 2 independent rate parameters for this step. The 

single event concept and the Evans-Polanyi relation drastically reduce the number of rate 

coefficients. 

IV.2.3.3 Thermodynamic Constraints on the Parameters 

Despite the remarkable reduction of the number of parameters in the rate 

expressions due to the introduction of the single event concept and the Evans-Polanyi 

relation, a large number of equilibrium constants still remain to be estimated. The 

number of these constants can also be reduced based upon the thermodynamic 

relationship for the olefin isomerization network. 

The equilibrium constant for the isomerization between any two olefins can be 

expressed as the product of the equilibrium constants for the reactions in their respective 

isomerization pathways via the common carbenium ions. Using this relation, together 

with the expression for the rate coefficient based upon the single event and the Evans-

Polanyi relation, the protonation equilibrium constant for an olefin can be written as: 
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Pr Pr
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f g f ggl ij ir
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′ ′

⎛ ⎞ ⎛ ∆ − ∆ ⎞
⎜ ⎟= ⋅ ⋅ ⋅ ⎜ ⎟⎜ ⎟ ⋅⎝ ⎠⎝ ⎠

 (IV-11) 

 
where irO and irR+

′  represent the olefin and the corresponding carbenium ion in the 

reference protonation step. Olefins 44O and 56O  are chosen as references for the olefins 

with carbon numbers 4 and 5 respectively. Similarly, carbenium ions 42R+  and 54R+  are 

chosen as references for the carbenium ions with carbon numbers 4 and 5 respectively. 

The subscripts represent the carbon number and the isomer index as shown in Tables A-

1 and A-2. 

Equation (IV-11) shows that for olefins with the same carbon number, any 

protonation equilibrium constant can be calculated from the equilibrium constant of a 

reference protonation and the thermodynamic properties of the gas phase carbenium 

ions. Thus, there is only a one independent equilibrium constant per carbon number. 

The use of the thermodynamic constraints as well as the single event kinetic 

approach with energy contribution described by the Evans-Polanyi relation reduce the 

parameters that need to be estimated to 30 parameters. Twenty four of these parameters 

belong to the formation of the primary olefins, and 8 to the higher olefins formation. The 

8 parameters are related to 4 heats of protonations of reference olefins, Pr ( )irH O∆ , 1 

entropy term in the protonation equilibrium constant, PrS∆ , the single event frequency 

factor, A , the intrinsic activation barrier, aE , and the transfer coefficient, α . Because of 

the similarity between methylation and oligomerization, only one single event frequency 

factor for both types of elementary steps, is considered.  
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In order to reduce the correlation between preexponential factors and activation 

energies causing inaccuracies in the estimation, the rate coefficients were parameterized 

as follows: 

Starting from the Arrhenius form of the rate coefficient, 

 

 exp i
i

Ek A
R T

⎛ ⎞= ⋅ −⎜ ⎟⋅⎝ ⎠
 (IV-12) 

 
by introducing the mean temperature, mT , the rate coefficients can be written as: 

 

 1 1exp ln i i
i i

m m

E Ek A
R T R T T

⎡ ⎤⎛ ⎞ ⎛ ⎞= − − ⋅ −⎜ ⎟ ⎜ ⎟⎢ ⎥⋅⎝ ⎠ ⎝ ⎠⎣ ⎦
 (IV-13) 

 

The definition of the 30 kinetic parameters involved in the model is shown in Table 

 IV-4.
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Table  IV-4. Definition of the Parameters to Be Estimated. 

P# Definition P# Definition 

1 Pr Pr( ) ( )
m

S MeOH H MeOH
R R T

∆ ∆
−

⋅  
16 

( ; )srE OM H
R

+

 

2 Pr ( )H MeOH
R

∆

 
17 2

2
( ; ; )ln ( ; ; ) sr

sr
m

E OM DMO RA OM DMO R
R T

+ +
+ + −

⋅  

3 1 1( ) ( )Hyd Hyd

m

S R H R
R R T

+ +∆ ∆
−

⋅  
18 2( ; ; )srE OM DMO R

R

+ +

 

4 1( )HydH R
R

+∆

 
19 3

3
( ; ; )ln ( ; ; ) sr

sr
m

E OM DMO RA OM DMO R
R T

+ +
+ + −

⋅  

5 1
1

( )ln ( ) c
c

m

E RA R
R T

+
+ −

⋅  
20 3( ; ; )srE OM DMO R

R

+ +

 

6 1( )cE R
R

+

 
21 Pr 2

Pr 2
( )ln ( )

m

E OA O
R T

−
⋅  

7 
( )ln ( ) F

F
m

E DMEA DME
R T

−
⋅  

22 Pr 2( )E O
R  

8 
( )FE DME

R  
23 PrS

R
∆

 

9 Pr Pr( ) ( )
m

S DME H DME
R R T

∆ ∆
−

⋅  
24 Pr 2( )H O

R
∆

 

10 Pr ( )H DME
R

∆

 
25 Pr 3( )H O

R
∆

 

11 4
4

( )ln ( ) F
F

m

E CHA CH
R T

−
⋅  

26 Pr 4( )rH O
R

∆

 

12 4( )FE CH
R  

27 Pr 5( )rH O
R

∆

 

13 1
1

( ; )ln ( ; ) sr
sr

m

E R bsA R bs
R T

+
+ −

⋅  
28 ( )ln t

HC A+ ⋅  

14 1( ; )srE R bs
R

+

 
29 α  

15 
( ; )ln ( ; ) sr

sr
m

E OM HA OM H
R T

+
+ −

⋅
30 

E
R α⋅  
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IV.2.3.4 Calculation of the Heat of Formation of Carbenium Ions 

The heat of reaction of the elementary steps, required for the application of the 

Evans-Polanyi relation is obtained from the heats of formation of olefins and surface-

bonded carbenium ions. The thermodynamic properties of the olefin isomers are 

calculated using Benson’s group contribution method. Those of the surface associated 

carbenium ions were obtained in two steps. In the first, the properties of free carbenium 

ions were estimated by means of quantum chemical packages. The second step adds to 

these values the contributions arising from the link to the protons of the zeolite-surface. 

The latter leads to a “heat of stabilization” that Park and Froment 45 found to be a 

function of the number of C-atoms of the carbenium ions. They related them to their heat 

of protonation. These are parameters to be determined from the experimental data. 

IV.2.4 Model Parameter Estimation 

IV.2.4.1 Experimental Data on SAPO-34 

Kinetic data used for the parameter estimation were obtained from the experimental 

data of Abraha 1. The experiments were conducted in a fixed bed reactor at three 

temperatures: 400°C, 425°C, and 450°C. Experiments at three different space times (g-

cat hr/moles methanol fed) were performed. Varying the space time was achieved by 

changing the feed molar flow rate. The total pressure inside the reactor was 1.04 bar for 

all the experiments carried out in this study. In order to decrease the deactivation rate of 

SAPO-34, all the experiments were conducted with 80 mol% water in the feed. 
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Catalyst powder was pelletized by pressing it into wafers, and then crushing and 

screening it to 1.1 µm, to avoid internal diffusion resistance. The catalyst bed was 

diluted 4 times (wt.) with α-alumina in three thin layers. 

The data were collected after 15 minutes time on stream and it was assumed that at 

this time the catalyst did not contain any coke and was not deactivated. 

The experimental data used in this work are shown in  Table  IV-5. Both ethylene 

and propylene are produced in almost equal quantities, but the temperature affects the 

ratio to some extent. 

 

 

 Table  IV-5. A Set of Experimental Data Used for the Parameter Estimation. 1  

T (K) 673.16 673.16 673.16 698.16 698.16 698.16 723.16 723.16 723.16
PMeOH

a (bar) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
W/Fo 
(gcat · h/mol MeOH) 

0.86 1.69 2.98 0.81 1.69 2.99 0.81 1.68 2.97 

XMeOH
b 42.8 67.4 76.6 46.5 73.4 81.6 46.9 79.2 87.7 

Yieldc          
CH4 0.14 0.16 0.32 0.32 0.35 0.42 0.5 0.71 1.57 
C2H4 5.33 10.78 12.51 6.37 11.46 15.14 7.73 13.56 16.50 
C2H6 0.04 0.07 0.08 0.05 0.07 0.10 0.05 0.08 0.13 
C3H6 5.19 11.91 15.22 6.62 12.52 16.73 6.68 11.94 14.21 
C3H8 0.61 0.00 0.40 0.00 0.03 0.44 0.22 0.72 0.59 
C4H8 1.92 1.61 4.87 1.60 3.10 4.04 1.41 2.61 2.89 
C4H10 0.37 0.03 0.75 0.34 0.56 0.69 0.28 0.50 0.66 
C5H10 0.0 0.63 0.63 0.05 1.12 0.41 0.00 0.45 0.37 
CH3OCH3 2.94 0.57 0.74 0.45 0.23 0.86 1.34 0.95 0.811 

(a)    Feed diluted with water. 
(b)    Conversion of methanol. 
(d)    Yield (g produced / 100 g methanol fed). 
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IV.2.4.2 Reactor Model 

The theoretical responses, iy , are calculated based upon the following continuity 

equations ( an ideal plug flow reactor is assumed): 

 

 ( )
ˆ 100 , 1,2,...i i

i
MeOHMeOH

dy M i m
Md W F

⋅
= ⋅ℜ =  (IV-14) 

where, 

 

ˆiy  = Yield of component i in g-formed per 100 g of methanol 

fed to the reactor. 

MeOHF  = Initial flow rate of methanol at the inlet of the reactor in 

moles/hr. 

W  = Amount of catalyst in g. 

MeOHW F  = Space time in g-cat hr/moles of methanol fed. 

,i MeOHM M = Molecular weight of species i and of methanol respectively 

 

This system of coupled differential equations can be solved numerically with the 

initial condition of zero yield at zero space time. Because of the stiffness of this system, 

Gear’s method was utilized in the integration. 
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IV.2.4.3 Physiochemical Constraints 

the kinetic parameters should satisfy well established physiochemical relations 58.  

For the parameters involved in the protonation steps, Boudart’s criteria 59 defines a 

rigorous set of constraints for the enthalpy, PrH∆ , and entropy, PrS∆ : 

 

 

( )

Pr

Pr

3
Pr Pr

0
0

41.8 51.04 1.4 10
g

H
S S

S H−

−∆ >

< −∆ <

< −∆ < + × −∆

 (IV-15) 

 

  where gS  is the standard entropy of the molecule in the gas phase. Other 

constraints also include, the heat of reactions for each elementary step of methylation 

and oligomerization, MeH∆  and OlH∆ , should be negative. Similarly, the activation 

energies of each elementary step of methylation and oligomerization should be positive. 

To ensure that the estimated parameters have meaningful values, the above criteria 

were inserted as constraints in the optimization routine. 

IV.2.4.4 Objective Function and Estimation Procedure 

Estimation of the kinetic parameters was performed by minimizing the difference 

between the experimental and calculated yields of MTO products: 

 

 ( )( )
1 1 1

ˆ ˆ
m m n

jl ij ij il il
j l i

S w y y y y
= = =

= − −∑∑ ∑  (IV-16) 
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where m = number of responses, n = number of experiments, and jlw  = elements of 

the inverse of the covariance matrix of the experimental errors on the responses y. 

The kinetic parameters in this work have been estimated by means of the hybrid 

genetic algorithm developed by Park and Froment. 60 The Genetic Algorithm (GA) was 

found to access the global minimum even though the ranges of the parameters are 

extremely wide and in spite of local minima in the parameter space. More information 

about the Genetic algorithm can be found in the work of Park and Froment 45. 

In this algorithm, three different routines are linked for the objective of increasing 

the efficiency and the accuracy of the estimation process. In the beginning, the Genetic 

algorithm is used to generate the initial guesses for the local optimizer, the Levenberg-

Marquardt program. Because the Levenberg-Marquardt algorithm is an unconstrained 

optimization technique, a constrained optimization technique based upon sequential 

quadratic programming (SQP), called FFSQP has been used. The function of the latter is 

to ensure that all the estimated parameters satisfy the constraints discussed before. 

Figure  IV-1 shows the minimization process performed by the hybrid Genetic 

Algorithm. The best sets of parameters generated by the GA were used as starting point 

for the local optimizer. The global minimum was reached after performing 138 iterations 

in Levenberg-Marquardt and FFSQP starting from the 1179th GA initial guess. 

 



 

 

52

27
LM

51
LM

33
LM

138

GM

79
LM

76
LM

23
LM

108
LM

115
LM

11
LM

128
LM

95
LM

8
LM92

LM

48
LM

6
LM

5
LM

59
LM

10

100

1000

10000

22 25 27 34 40 53 71 89 95 99 280 299 496 1157 1179 1790 1822 1840

GA iteration

O
bj

ec
tiv

e 
Fu

nc
tio

n

 
Figure  IV-1. Kinetic parameter estimation for the SAPO-34 catalyst by the hybrid Genetic Algorithm. 

The best set of parameters at each GA iteration is used as a starting point for the Levenberg-Marquardt 
optimizer. The numbers at the end of the minimization indicate the number of iterations performed by the 
Levenberg-Marquardt optimizer. 
 
Legend:  objective function after each GA iteration  
  minimization by the Levenberg-Marquardt optimizer  
   LM: local minimum GM: global minimum 
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IV.2.4.5 Parameter Values and Comparison of Experimental and Calculated Yields 

Parameters estimated by the hybrid GA are shown in Table  IV-6, along with the 

95% confidence interval on the parameters. The first column represents the parameters 

obtained after parameterization of the rate and equilibrium constants as listed in Table 

 IV-4. Kinetic parameters were derived from these parameters using the total 

concentration of the acidic and basic sites. Because of the similarity between 

methylation and oligomerization only one single event frequency factor was considered 

for both types of elementary steps. All the parameters satisfy the statistical tests and the 

physicochemical constraints discussed earlier. A very small value of the transfer 

coefficient, α, is obtained. This, according to the Hammond postulate, 61 could be an 

indication that the transition state lies close to the reactant. A slightly bigger value of α 

was obtained for ZSM-5 (Si/Al = 200) as shown in Table  IV-7 45. The heats of 

protonation of the reference olefins flatten out from propylene onwards for SAPO-34. 

Slight decrease on PrH∆ , however, was observed for ZSM-5. The single event frequency 

factor of methylation and oligomerization on ZSM-5 is around 25 times bigger than that 

on SAPO-34.   

The kinetic model based on the estimated parameters yields an excellent fit of the 

experimental data. Parity plots for the yields of different products are shown in Figure 

 IV-2. The fit of experimental yield at 450°C as a function of space time is shown in 

Figure  IV-3. The kinetic model was also able to reproduce the experimental data of 

Marchi and Froment 2, also obtained on SAPO-34, as shown in Figure  IV-4.  
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Table  IV-6. Kinetic Parameters for SAPO-34 Catalyst. 

95% confidence interval 
P # 

 
P-estimate lower upper 

Derived kinetic 
parameters 

 
values 

 
units 

1 1.818E-01 1.555E-01 2.081E-01 Pr ( )oS MeOH∆  -1.22E+02 J.mol-1.K-1 
2 -1.055E+04 -1.092E+04 -1.017E+04 Pr ( )oH MeOH∆  -8.77E+01 KJ.mol-1 
3 -2.726E+00 -3.009E+00 -2.443E+00 1( )o

HydS R+∆  -3.32E+01 J.mol-1.K-1 
4 -9.009E+02 -9.104E+02 -8.914E+02 1( )o

HydH R+∆  -7.49E+00 KJ.mol-1 
5 6.339E+00 5.715E+00 6.963E+00 ' 1( )CA R+  1.05E+02 s-1.bar-1 
6 1.224E+02 1.128E+02 1.318E+02 1( )CE R+  1.02E+00 KJ.mol-1 
7 5.121E+00 4.850E+00 5.392E+00 ' ( )FA DME  3.09E+01 s-1.bar-1 
8 1.200E+02 1.143E+02 1.257E+02 ( )FE DME  9.98E-01 KJ.mol-1 
9 1.155E+01 9.394E+00 1.372E+01 Pr ( )oS DME∆  -4.18E+01 J.mol-1.K-1 

10 -1.183E+04 -1.197E+04 -1.168E+04 Pr ( )oH DME∆  -9.83E+01 KJ.mol-1 
11 2.016E+00 1.766E+00 2.267E+00 ' 4( )FA CH  1.00E+13 s-1.bar-1 
12 2.123E+04 2.096E+04 2.150E+04 4( )FE CH  1.77E+02 KJ.mol-1 
13 5.694E+00 5.521E+00 5.867E+00 '

1( ; )srA R bs+  1.67E+16 s-1 
14 2.136E+04 2.105E+04 2.167E+04 1( ; )srE R bs+  1.78E+02 KJ.mol-1 
15 1.374E+01 1.239E+01 1.510E+01 ' ( ; )srA OM H+  1.97E+17 s-1 
16 1.738E+04 1.717E+04 1.758E+04 ( ; )srE OM H+  1.45E+02 KJ.mol-1 
17 5.192E+00 5.069E+00 5.315E+00 '

2( ; : )srA OM DMO R++ 2.03E+05 s-1 
18 3.798E+03 3.777E+03 3.819E+03 2( ; : )srE OM DMO R++ 3.16E+01 KJ.mol-1 
19 4.613E+00 4.434E+00 4.793E+00 '

3( ; : )srA OM DMO R++ 2.29E+03 s-1 
20 1.013E+03 9.575E+02 1.069E+03 3( ; : )srE OM DMO R++ 8.43E+00 KJ.mol-1 
21 -3.560E+00 -3.759E+00 -3.361E+00 ' 2Pr ( )A O  7.64E+03 s-1.bar-1 
22 1.024E+04 1.014E+04 1.033E+04 2Pr ( )E O  8.51E+01 KJ.mol-1 
23 -1.292E+01 -1.371E+01 -1.213E+01 

~

PrS∆ -1.08E+02 J.mol-1.K-1 
24 -6.741E+03 -6.777E+03 -6.705E+03 Pr 2( )oH O∆  -5.61E+01 KJ.mol-1 
25 -1.200E+04 -1.205E+04 -1.196E+04 Pr 3( )oH O∆  -9.98E+01 KJ.mol-1 
26 -1.200E+04 -1.215E+04 -1.186E+04 Pr 4( )o

rH O∆  -9.98E+01 KJ.mol-1 
27 -1.200E+04 -1.205E+04 -1.196E+04 Pr 5( )o

rH O∆  -9.98E+01 KJ.mol-1 
28 1.520E+01 1.459E+01 1.581E+01 

~
'A 6.27E+05 s-1.bar-1 

29 1.647E-02 1.041E-02 2.254E-02 α  1.65E-02 dimensionless

30 7.067E+05 6.996E+05 7.137E+05 E  9.68E+01 KJ.mol-1 
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Table  IV-7. Kinetic Parameters for ZSM-5 Catalyst Estimated by Park. 45 
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Figure  IV-2. Experimental and calculated yields for various MTO products on SAPO-34. T=400-450°C, 
P=1.04 bar, t=0.8~3 g-cat hr/mol, feed (MeOH + H2O).
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Figure  IV-3. Calculated yields on SAPO-34 of various MTO products compared with experimental data 
of Table IV-5 as a function of space time. Lines: simulation and symbols: experimental. 
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Figure  IV-4. Model verification by comparison with experimental data of Marchi and Froment 2obtained 
under entirely different space time. Lines: model and symbols: experimental. 
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IV.2.4.6 Single Event Rate Coefficients for the Various Elementary Steps 

The single event frequency factor for a given type of elementary step is independent 

of the structure. Because of the energetics, that does not necessarily mean that the single 

event rate coefficient is independent of the structure too. 

Figure  IV-5 shows the effect of chain length on the single event rate coefficients 

(these can be calculated from the parameter values of Table  IV-6) for methylation of 

linear olefins and their oligomerization by means of ethyl-R+ at 440 °C. The carbenium 

ions that are produced are all linear and secondary. The single event rate coefficient 

significantly increases with chain length. Since, by virtue of the single event concept, 

there is only one frequency factor in this model, this effect solely results from the 

enthalpy contribution to the single event rate coefficient, k . 

Figure  IV-6 illustrates the effect of branching, expressed in terms of C Cn α− (number 

of carbon atom in α position with respect to the carbon carrying the positive charge) in 

the produced R+ and of the nature of R+ on the k  for methylation. A comparison of 

curve (a) and curve (b), corresponding to R+ which are respectively all tertiary and all 

secondary, reveals that the effect of the nature of R+ is far more pronounced than that of 

branching.  

Figure  IV-7 deals with oligomerization by means of the ethyl carbenium ions. All 

the produced carbenium ions are secondary. Curve (a) shows how k   increases with 
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chain length and/or C Cn α− . From curve (b), corresponding to C6 olefins, branched or 

straight, it follows that the effect of branching is very weak. 

Figure  IV-8 shows the evolution of the single event rate coefficient, of the β-

scission of various octyl carbenium ions, with temperature. The k  values are seen to 

increase rapidly from 460 °C onwards. A similar behavior is observed for the evolution 

with temperature of k   for an oligomerization, curve (d), which is the reverse of the β-

scission in curve (b). 
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Figure  IV-5. Single event rate coefficients for the methylation and oligomerization of linear olefins as a 
function of the C-number of the product. 
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Figure  IV-6. Single event methylation rate coefficients. Effect of reacting olefin structure. Curve (a): all 
C7-olefins. Produced R+: 2,3-diMe-2-hexyl; 2,5-diMe-3-hexyl; 2,3,4-triMe-3-pentyl. Curve (b): all C7-
Olefins. Produced R+: 2-Me-3-heptyl; 4-Me-3-heptyl; 3,3-diMe-4-hexyl; 2,2,4-triMe-3-pentyl. 
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Figure  IV-7. Single event oligomerization rate coefficients. Carbenium ion: ethyl. Effect of olefin 
structure. Curve (a): 1, propylene; 2, 1-butene; 3, 2-Me-2-butene; 4, 2-Me-3-pentene. Curve (b): 1, 2-Me-
4-pentene; 2, 2-hexene; 3, 2-Me-3-pentene. 
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Figure  IV-8. Single event rate coefficients for elementary cracking steps. Curve (a): 2,2-diMe-4-hexyl R+ 
into 1-butene and 2-Me-2-propyl R+. Curve (b): 2,2,4-triMe-4-pentyl R+ into isobutylene and 2-Me-2-
propyl R+. Curve (c): 3,4-diMe-5-hexyl R+ into 2-butene and 2-butyl R+. Curve (d): Single event rate 
coefficient for the oligomerization step which is the reverse of the cracking step of curve (b). 
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CHAPTER V 

CATALYST DEACTIVATION 

 

V.1 Introduction 

As discussed in Chapter III, SAPO-34 suffers from relatively rapid deactivation 

during methanol conversion. The rapid deactivation was attributed to both coverage of 

the acid sites and blockage of pore structure. 21 Figure  V-1 shows a typical deactivation 

behavior of a SAPO-34 catalyst, as measured by Marchi and Froment 2. 
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Figure  V-1. Methanol conversion into hydrocarbons on SAPO-34. 2 T=480°C; feed 30/70 wt% methanol-
water. M=ΣF’MeOH /W. 
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M is defined as the total weight of methanol fed to the reactor per weight of catalyst. 

The figure shows that the yield of C2-C4 olefins does not decline immediately and DME 

yield rises only from a certain M-value onwards. This can be explained as follows: 

because the MTO reactions are very fast, a thin section of the catalyst bed is only 

utilized. As the catalyst deactivates, the section broadens. Only when it spreads through 

the entire bed deactivation is observed. 

Another important observation about Figure  V-1 is that at longer process time, the 

conversion into olefins drops to zero while the DME yield, after increasing to 

30%, becomes constant. That illustrates that the conversion of methanol into DME does 

not deactivate to the same level as the other reactions. The direct implication of these 

observations is that a different deactivation functions for the methanol conversion and 

the yields of olefins has to be defined. That for the olefins is exponential and drops to 

zero. That for the methanol conversion to DME is a hyperbolic function that does not 

drop to zero. 

In this chapter, the deactivation of SAPO-34 is modeled based upon the elementary 

steps and the single event concept. The model was then utilized to introduce the 

deactivation of the catalyst into the kinetic equations for the purpose of simulation of 

reactor behavior.  

V.2   Modeling of Catalyst Deactivation 

In the present work the deactivation is ascribed to higher oligomerization products 

(C6, C7, C8) which because of the cavity structure of SAPO-34, can not leave the catalyst 
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as shown in Figure  V-2. They permanently cover the acid active sites and/or block pores, 

thus causing deactivation of the catalyst and a decline of the methanol conversion and of 

the yields of the various products. 

The C6+ products can not be observed at the exit of the reactor, but their rate of 

formation and concentration inside the cages can be calculated as follow: 

• Because the single event frequency factor for methylation and oligomerization is 

independent of the structure and the chain length, the frequency factor calculated for 

the steps involved in the formation of C4 and C5, can be used to calculate the rate of 

formation of the C6+ components. 

 

 

C6

C8

C7

C1

C5

C2

C4
C3MeOH

Trapped
Molecules

Coke Detected
Products

SAPO-34 Pore Cavity

C6C6

C8C8

C7C7

C1C1

C5C5

C2C2

C4C4
C3C3MeOH

Trapped
Molecules

Coke Detected
Products

SAPO-34 Pore Cavity
 

Figure  V-2. Schematic representation of the trapping of C6+ components inside the SAPO-34 cavities. 
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• The activation energies of C6+ formation and cracking can be calculated from the 

Evans-Polanyi relationship given the heat of reaction of the elementary step. The 

latter is obtained from the heats of formation of the reactant and the activated 

complex and these are calculated by an ab initio quantum chemical approach. 

• The heats of protonation of reference olefins, Pr ( )irH O∆ , for carbon numbers up to 

C5 are estimated from experiments, as discussed before. However, heats of 

protonation for C6+ olefins are not known for SAPO-34. To calculate them, it is 

assumed that the heats of protonation for the reference olefins of different carbon 

number will have the same trend for SAPO-34 as for ZSM-5. This assumption is 

verified by comparing the values of Pr ( )irH O∆  obtained for SAPO-34 up to C5 

olefins with those of ZSM-5 estimated by Park 45, as shown in Figure  V-3. The heats 

of protonation of the C6+ reference olefins are, then, calculated by extrapolation. 

The rate of formation of C6+ components can now be formulated at each point along 

the plug flow reactor. The concentration of the C6+ components evolves with time 

according to: 

 

 6C
c c

dC r
dt

+ = Φ ⋅  (V-1) 

 
with initial condition,  

 60 0C
MeOH

Wat t C for all
F+= =  
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where 
8

6
c i ir M= ℜ∑  

 

 iM ≡Molecular weight of component i.  

 iℜ ≡Net rate of formation of component i in (moles/(gcat . hr)). 

 

 

-160.00

-140.00

-120.00

-100.00

-80.00

-60.00

-40.00

-20.00

0.00

0 1 2 3 4 5 6 7 8 9
Carbon Number

H
ea

t o
f P

ro
to

na
tio

n,
 K

J/
m

ol

ZSM-5

SAPO-34

 

Figure  V-3. Extrapolation of heats of protonations of C6+ olefins for SAPO-34 based upon corresponding 
values for ZSM-5. Solid line: estimated from experiments, and broken line: extrapolated. 
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cΦ is the deactivation function for C6+ olefins formation. It is expressed in terms of 

the concentration of the C6+ olefins using the well proven empirical correlation proposed 

by Froment and Bischoff 58 as: 

 

 6exp( )c CCα +Φ = −  (V-2) 

 

 

Equation (V-1) has to be integrated simultaneously with the set of continuity 

equations describing the behavior of methanol and the various reaction products in the 

reactor: 

 

 ( )
ˆ 100 , 1,2,...i i

i i
MeOHMeOH

dy M i m
Md W F

⋅
= ⋅Φ ⋅ℜ =  (V-3) 

 

where iΦ  are the deactivation functions for the main reactions expressed as follows: 

 

 6exp( )i CCα +Φ = −   for olefins formation (V-4) 

 
( )6

1
1

i
CCβ +

Φ =
+

 for methanol conversion (V-5) 

 

Equations (V-1) - (V-5) contain two unknown parameters, α and β that need to be 

estimated. The experimental data of Marchi and Froment 2 have been utilized for this 

purpose. The parameters are estimated by minimizing the difference between the 
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experimental and the calculated methanol conversions and C2-C4 yields. Calculated 

values are obtained by solving the system of partial differential equations above. 

Equations (V-3) were integrated along the length of the reactor using Gear’s 

method. Once the yields for the various products are calculated at time=0, equation (V-

1) is integrated for a first time interval using the Runge-Kutta method. Because Gear’s 

method uses a variable step size, interpolation between known C6+ concentration values 

are needed to calculate the values at any space time. At this point product yields are 

calculated based on the new C6+ concentration profiles. This mathematical loop is 

continued until the end of the run. 

V.3 Results and Discussion 

An accurate fit of the experimental data of Marchi and Froment required 

deactivation constants to depend upon the partial pressure of methanol in the feed, i.e. on 

the water dilution. For a methanol partial pressure in the feed of 1,04 bar ( no water) α 

amounted to 60 and β to 7.5. For a methanol partial pressure of 0.5 the corresponding 

values were 80 and 46, reflecting slower deactivation in the presence of water. The rate 

coefficients are those calculated from the parameters given in Table  IV-6. 

Figure  V-4 shows the comparison of methanol conversion and C2-C4 olefins yield 

determined by the model with the experimental data of Marchi and Froment performed 

at 480°C, 1.04 bar total pressure and partial pressures of methanol of 1.04 and 0.5 bar. 

The data is plotted versus the total amount of methanol fed per g catalyst which is 

proportional to the run length or process time. 



 

 

70

The matching between the model and the experimental data is very good, except for 

the C2-C4 olefins yield for long run lengths in which a slight over-prediction is observed. 

No experimental data is given for the DME yield. 

By studying the Figure, the following observations can be summarized: 

• MeOH conversion does not drop instantaneously but instead it remains constant for 

some time before deactivation breaksthrough. This does not mean that the catalyst is 

not deactivating during that period, however. 

• The breakthrough point depends upon the amount of catalyst and the water content 

of the feed. The larger the water content in the feed, the longer the conversion stays 

unaffected before deactivation breaksthrough. 

• The total conversion of methanol drops to 70% for pure methanol feed. That could 

correspond to equilibrium with DME, which is not reached for short process times 

because the DME is continuously converted into olefins, without strong effect 

deactivation yet. 
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Figure  V-4. Fitting of the experimental data of Marchi and Froment for isothermal fixed bed reactor at 
480°C, 1.04 bar total pressure, 32.0 (W/Fo

MeOH) and at two methanol partial pressures. Points: 
experimental data, and lines: simulated. 
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Figure  V-5 and Figure  V-6 show the evolution of the methanol conversion in the 

reactor at different M or process times for 100 and 50 mol% methanol feed compositions 

respectively. The figures further explain the behavior of the MeOH conversion inside the 

reactor in the presence of deactivation. The deactivation is not observed at the exit of the 

reactor until the breakthrough point is reached. 

Ethylene and propylene yield profiles are shown in Figure  V-7 to Figure  V-10. 

Initial deactivation of the catalyst was seen to increase the formation of ethylene. This 

has been attributed to the enhancement of the shape-selectivity effects of the catalyst by 

the deposition of the C6+ components in the cavities of the catalyst. 62 

On the other hand, Figure  V-11 and Figure  V-12 show that the concentration of the 

C6+ olefins, which are trapped inside the SAPO-34 cavities, reaches a maximum near the 

inlet of the reactor. This behavior can be explained by rapid production with 

simultaneous decomposition by beta scission. The cracking of the C6+ olefins (into 

smaller olefins) is fast for small process time, but as time increases the cracking slows 

down due to deactivation. 

The figures also show that it is possible to decrease the formation of C6+ component 

and thus slow down the deactivation of the catalyst by increasing the partial pressure of 

water in the feed. This effect of water was indeed observed for SAPO-34 2 and shown to 

be characteristic of water only. When the partial pressure of methanol in the feed was 

reduced by using nitrogen instead of water, no reduction of deactivation was observed.
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Figure  V-6. Methanol conversion profiles at different process times for isothermal fixed bed reactor at 
480°C, 1.04 bar total pressure and 0.5 bar methanol partial pressure. 
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Figure  V-7. Ethylene yield profiles at different process times for isothermal fixed bed reactor at 480°C, 
1.04 bar total pressure and with pure methanol feed. 
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Figure  V-8. Ethylene yield profiles at different process times for isothermal fixed bed reactor at 480°C, 
1.04 bar total pressure and 0.5 bar methanol partial pressure. 
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Figure  V-9. Propylene yield profiles at different process times for isothermal fixed bed reactor at 480°C, 
1.04 bar total pressure and with pure methanol feed. 
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Figure  V-10. Propylene yield profiles at different process times for isothermal fixed bed reactor at 480°C, 
1.04 bar total pressure and 0.5 bar methanol partial pressure.
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Figure  V-11. Concentration profiles of C6+ olefins at different process times for isothermal fixed bed 
reactor at 480°C, 1.04 bar total pressure and with pure methanol feed. 
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Figure  V-12. Concentration profiles of C6+ olefins at different process times for isothermal fixed bed 
reactor at 480°C, 1.04 bar total pressure and 0.5 bar methanol partial pressure. 
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CHAPTER VI 

CONCEPTUAL REACTOR DESIGN FOR MTO 

 

VI.1 Introduction 

On the basis of the kinetic model developed in the previous chapter, several types of 

reactors have been evaluated for the conversion of methanol to olefins. These range from 

fixed bed reactors, with isothermal or adiabatic operation, to fluidized bed reactors. 

Because of the high exothermicity of the MTO process (the adiabatic temperature 

rise for a pure methanol feed is of the order of 250°C), temperature limitation represents 

an important factor governing the selection of the reactor type.  

The present chapter discusses the differences in the yields and selectivities to 

products obtained in various types of reactors. The reactors investigated are: multi-bed 

adiabatic, riser, and fluidized bed. 

VI.2 Isothermal Reactor 

The mathematical model for an isothermal reactor has been developed from the 

basic mass and heat balance equations of the pseudo-homogeneous model. It was 

checked that there are no gradients inside the catalyst particle and in the film 

surrounding it. It was also checked that pressure drop inside the reactor is negligible. 

The continuity equation can be written, 
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 ( )
ˆ 100 , 1,2,...i i

i i
MeOHMeOH

dy M i m
Md W F

⋅
= ⋅Φ ⋅ℜ =  (VI-1) 

where iΦ  is the deactivation functions for the main reactions expressed as follows: 

 

 6exp( )i CCα +Φ = −   for olefins formation (VI-2) 

 
( )6

1
1

i
CCβ +

Φ =
+

 for methanol conversion (VI-3) 

 

The concentration of the C6+ components evolves with time according to: 

 

 6C
c c

dC r
dt

+ = Φ ⋅  (VI-4) 

 
with initial condition,  

 60 0C
MeOH

Wat t C for all
F+= =  

 

where 
8

6
c i ir M= ℜ∑  

Simulation of MTO in an isothermal reactor at 440°C is shown in Figure  VI-1. 

Methanol conversion at the exit of the reactor is around 90%. The ethylene and 

propylene yields amount to 12 and 13 wt% respectively. The evolution of the rate of 

disappearance of MeOH and the net rate of production of the products along the reactor 

is shown in Figure  VI-2. 
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Figure  VI-1. Evolution of methanol conversion and wt% yield of different products along the length of an 
isothermal reactor. Temperature: 440°C. Pressure: 1.04 bar. 100% methanol feed. 
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Figure  VI-2. Rate of reaction profiles on SAPO-34 along the length of an isothermal reactor. 
Temperature: 440°C. Pressure: 1.04 bar. 100% methanol feed. Oi: Olefin with carbon number i. 
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Initially, the production rates increase very rapidly until they reach a maximum near 

the inlet of the reactor. The position of the maximum varies from one product to another 

based on the sequence in which they are produced. 

The problem with isothermal operations is that it would require a multi-tubular 

reactor, the cost of which would be prohibitive for the commercialization of this process. 

Adiabatic operation, then, is required. 

VI.3  Multi-bed Adiabatic Reactor 

VI.3.1 SAPO-34-based Process 

Because of its construction simplicity, an adiabatic reactor is the first and most 

elementary type of reactor to be considered. In this case the reactor is simply a vessel of 

relatively large diameter. A single-bed adiabatic reactor, however, is not suitable for 

highly exothermic process such as MTO. Simulation of such a simple adiabatic reactor 

leads to a temperature rise of more than 250°C and an unacceptable high methane yield. 

It would also cause a rapid deactivation of the catalyst by coke formation and even its 

deterioration. For this reason, a multi-bed adiabatic reactor with intermediate heat 

exchangers was chosen for this study. 

Figure  VI-3 shows a schematic diagram of a multi-bed adiabatic reactor used for the 

process of SO3 synthesis. A similar design could be used for the MTO process. 

The material balance is the same as in the isothermal reactor design. 

For an adiabatic reactor, the heat generated by the conversion of methanol is utilized 

in raising the temperature of the reaction mixture. 
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Figure  VI-3. Multi-bed adiabatic reactor for SO3 synthesis. From Froment and Bischoff 58. 
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The energy equation can be written as: 

 

 ( )

#

# .
1

1

comp

i pi reacts

j j j B

FC
dT r H
dz

ρ⎡ ⎤= −∆ Φ⎢ ⎥Ω ⎣ ⎦

∑
∑  (VI-5) 

 

But, BW zρ= Ω   where Ω is the cross sectional area of the reactor, so that the 

energy equation becomes: 

 

 
( )

( )
# .

1
#

1

reacts

j j j

Mcomp
MeOH

i pi

r H
dT F

d W F
FC

⎡ ⎤−∆ Φ⎢ ⎥⎣ ⎦=
⎡ ⎤
⎢ ⎥
⎣ ⎦

∑

∑
 (VI-6) 

 

 

The heats of reaction appearing in the energy equation are calculated based on the 

following overall reactions: 

• DME (dimethylether): 
 

2CH3OH  ↔  CH3OCH3 + H2O 
 

• Olefins: 
 

nCH3OH  →  CnH2n + nH2O  ( 2 ≤ n ≥ 8 ) 
 

The model equations were solved using Gear’s routine with variable step size for 

accuracy adjustment. 
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Generally, the design of a multi-bed adiabatic reactor represents an optimization 

problem. The objective of the optimization, in the case of MTO, is to maximize the 

ethylene and/or propylene yield. The decision variables are the number of beds, the size 

of each bed and the feed temperature to each bed. Moreover, because of catalyst 

deactivation, process time is also a decision variable. 

In this work, several arrangements of beds and intermediate-coolers, in which the 

total number of beds was less than five, have been tried. Figure  VI-4 and Figure  VI-5 

show the simulation results, at zero process time obtained with the optimum 

configuration for maximum ethylene and propylene yield, of the MTO process in a four-

bed adiabatic reactor with intermediate cooling. The feed temperature to each bed is 648 

K. Temperature rise per bed decreases in the order, ∆T1>∆T2>∆T3>∆T4. This is because 

of very rapid methanol conversion into DME in the first two beds and also because the 

amount of MeOH is gradually converted. As a consequence the rates of methylation and 

oligomerization decrease and also the associated heat production. 

The overall methanol conversion is 93%. The conversion is limited to avoid 

production of higher olefins and too rapid deactivation, in addition to limiting paraffins 

and aromatics formation. The yields of propylene, ethylene, and C4 olefins, at the exit of 

the reactor, amount to 15, 13, and 8 (kg/100 kg MeOH fed) respectively. More than 50 

wt% of the methanol fed to the reactor is converted into water. This is the negative 

aspect of the MTO process.  
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Figure  VI-4. Temperature and methanol conversion profiles in a four-bed adiabatic reactor. Catalyst: 
SAPO-34. Process time: 0 min. Tf = 648 K for all beds. P = 1.04 bar and PMeOH=0.5 bar (diluted with 
steam). 
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Figure  VI-5. Yield profiles in a four-bed adiabatic reactor. Catalyst: SAPO-34. Process time: 0 min. Tf = 
648 K for all beds. P = 1.04 bar and PMeOH=0.5 bar (diluted with steam). 
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DME formation is very rapid. It reaches a maximum in the first two beds because it 

is converted into ethylene and propylene, but also methane. Methane is a pure loss and 

the conditions have to be chosen to keep its yield low. A maximum in the ethylene and 

propylene has to be avoided by limiting MeOHW F and ∆T per bed. 

Clearly, initially, most of the reaction takes place in the first two beds. As M 

increases, the catalyst deactivates and as a result the reaction spreads more evenly over 

the 4 beds as shown in Figure  VI-6 and Figure  VI-7. 

At higher M, to maintain a relatively high conversion and therefore high ethylene 

and propylene yield, the inlet temperatures to the beds were raised to compensate for the 

loss in activity of the catalyst as shown in Figure  VI-8 and Figure  VI-9. 

Figure  VI-10 shows the evolution of the ethylene and propylene yield inside the 

reactor at different process times. Initially, the ethylene and propylene are produced with 

a weight ratio of ≈ 1.2 (P/E). After 20 minutes, the propylene yield has not changed 

while the ethylene yield has increased by 8% relative to the yield at zero process time 

(see Figure  VI-11). Until this point no change in feed temperature is made. At 40 

minutes process time, changes in the feed temperatures were applied to compensate for 

the loss of catalyst activity. The ethylene yield has not changed while the propylene 

yield dropped 30% relative to the value after 20 minutes.   
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Figure  VI-6. Effect of catalyst deactivation on temperature and methanol conversion profiles in a four-bed 
adiabatic reactor. Catalyst: SAPO-34. Process time: 20 min. Tf = 648 K for all beds. P = 1.04 bar and 
PMeOH=0.5 bar. 
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Figure  VI-7. Effect of catalyst deactivation on yield profiles in a four-bed adiabatic reactor. Catalyst: 
SAPO-34. Process time: 20 min. Tf = 648 K for all beds. P = 1.04 bar and PMeOH=0.5 bar.
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Figure  VI-8. Effect of catalyst deactivation on temperature and methanol conversion profiles in a four-bed 
adiabatic reactor. Catalyst: SAPO-34. Process time: 40 min. Tf = 673, 653, 643, and 633 K for beds 1, 2, 3, 
and 4 respectively. P = 1.04 bar and PMeOH=0.5 bar. 
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Figure  VI-9. Effect of catalyst deactivation on yield profiles in a four-bed adiabatic reactor.  Catalyst: 
SAPO-34. Process time: 40 min. Tf = 673, 653, 643, and 633 K for beds 1, 2, 3, and 4 respectively. P = 
1.04 bar and PMeOH=0.5 bar. 
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Figure  VI-10. Effect of catalyst deactivation on the ethylene and propylene yield profiles in a four-bed 
adiabatic reactor. Catalyst: SAPO-34. P = 1.04 bar and PMeOH=0.5 bar. 
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Figure  VI-11. Ethylene and propylene yield at different process times in a four-bed adiabatic reactor. 
Catalyst: SAPO-34. P = 1.04 bar and PMeOH=0.5 bar.
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The question now is what is the best time to switch between reaction mode and 

regeneration mode? Clearly, that again requires optimization. For some time the drop in 

the activity of the catalyst can be compensated by optimizing the feed temperatures to 

each bed. However, as the catalyst deactivates beyond an acceptable value and increases 

in feed temperatures can not compensate for the loss of activity, a decision has to be 

made to regenerate the catalyst. This periodic operation is a drawback. To maintain the 

production a second reactor has to be used in parallel, which means increased 

investment. Operation whereby the regeneration is continuous is an interested 

alternative. Operating the reactor with a fluidized bed offers this possibility. 

VI.3.2 ZSM-5-based Process 

 For the purpose of comparison with SAPO-34, the simulation of the MTO process 

on a multi-fixed bed adiabatic reactor with ZSM-5 (Si/Al = 200), was performed. The 

simulation was based on the model developed by Park and Froment. 44, 45 

The objective was to optimize the yield of propylene under given boundary 

conditions. The temperature increase per bed was limited to 100 K in order to prevent a 

high yield of methane. Methane yield was kept below 1 wt% as its production is a pure 

waste.  

The total conversion of methanol is limited to 90% to avoid the production of 

paraffins and aromatics. Also the temperature is not supposed to exceed 500°C, as higher 

temperatures would destroy the catalyst. 

Because ZSM-5 deactivates much slower than SAPO-34, all the ZSM-5 based 

reactor simulations presented below do not consider any catalyst deactivation. 



 

 

99

Figure  VI-12 and Figure  VI-13 show the simulation results for a four-bed adiabatic 

reactor with a pure methanol feed. The feed temperature is 673 K for all beds. The 

temperature rise per bed was almost constant at 100 K.  The amount of catalyst per bed 

is increasing in the following order: W1<W2<W3<W4. The reason for this is to 

compensate for the decrease of conversion as the methanol partial pressure decreases. 

The propylene yield amounts to 7.7%, the ethylene yield to 3%, while the methane-yield 

is only 0.3%. The DME-yield at the exit is about 10%. 

Figure  VI-14 and Figure  VI-15, on the other hand, show the simulation of a four-

bed adiabatic reactor with a 50-50 mol% methanol-water feed. More than two times the 

amount of catalyst used for the pure methanol case is required to maintain the same 

conversion, which of course means more investment. However, the ethylene and 

propylene yields are increased by 26% and 9% respectively. This advantage in addition 

to decreasing the rate of catalyst deactivation should be weighed against the drawback of 

the additional investment. 

The comparison of the performance of SAPO-34 and ZSM-5 in a four-bed adiabatic 

reactor with a 50-50 mol% methanol-water feed is shown in Figure  VI-16. The exit 

methanol conversion is the same, ≈ 88%, for both cases. Slightly higher MeOHW F is 

needed for ZSM-5 to achieve the same conversion as of SAPO-34. The ethylene, 

propylene, and C4 olefins yields for SAPO-34 are 3.4, 1.7, and 1.3 times the 

corresponding yields for ZSM-5. On the other hand, the C5+ yield for ZSM-5 is 6 times 

that for SAPO-34. Both catalysts give almost the same yield of methane. The low yield 

of C5+ in SAPO-34 is attributed to its small pore size.     
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Figure  VI-12. Temperature and methanol conversion profiles in a four-bed adiabatic reactor. Catalyst: 
ZSM-5. Tf = 673 K for all beds. P = 1.04 bar and PMeOH=1.04 bar. 
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Figure  VI-13. Yield profiles in a four-bed adiabatic reactor. Catalyst: ZSM-5. Tf = 673 K for all beds. P = 
1.04 bar and PMeOH=1.04 bar. 
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Figure  VI-14. Temperature and methanol conversion profiles in a four-bed adiabatic reactor. Catalyst: 
ZSM-5. Tf = 673 K for all beds. P = 1.04 bar and PMeOH=0.5 bar. 
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Figure  VI-15. Yield profiles in a four-bed adiabatic reactor. Catalyst: ZSM-5. Tf = 673 K for all beds. P = 
1.04 bar and PMeOH=0.5 bar. 
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Figure  VI-16. Comparison between the performance of SAPO-34- and ZSM-5-based MTO process in a 
four-bed adiabatic reactor. . P = 1.04 bar and PMeOH=0.5 bar. SAPO-34:Tf = 648 K for all beds. ZSM-5:Tf = 
673 K for all beds. 
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VI.4 Riser Reactor 

VI.4.1 Fluidization 

Fluidization is the operation by which an ensemble of solid particles and a fluid is 

behaving like a fluid. The real breakthrough of fluidized bed technology was associated 

with the catalytic cracking of gasoil into gasoline, first practiced in 1942 by Exxon. 

Since then, fluidized bed reactors have found use in many processes such as the 

oxidation of naphthalene into phthalic anhydride, the ammoxidation of propylene into 

acrylonitrile, the oxychlorination of ethylene into ethylene dichloride (the first step of 

vinyl chloride manufacture), and the Union Carbide process for polymerization of 

ethylene. 

Fluidized bed reactors have many advantages over the fixed bed reactors. The most 

important are as follows: 

• Ensembles of fluidized solids behave like liquids, thus can be easily transported from 

one vessel to another. 

• The high turbulence created in the fluid-solid mixture leads to much higher heat 

transfer coefficients than those which can be obtained in fixed beds. Therefore, a 

fluidized bed reactor is much more suitable for exothermic processes requiring close 

temperature control. 

• The circulation of solids between two fluidized beds makes it possible to remove or 

add huge quantities of heat produced or needed in large reactors. 



 

 

106

• Fluidized bed operation requires particle sizes which are much smaller than in fixed 

beds. This reduces the resistance to diffusion through the particles. 

• The pressure drop in a fluidized bed is much smaller than in a fixed bed. 

On the other hand, fluidized bed technology has a number of disadvantages: mainly 

axial mixing of the gas, which is detrimental to conversion, nonuniform residence times 

of solids in the reactor, high attrition rate of catalyst, erosion of pipes and vessels 

because of abrasion by particles, and complexity of operation. 

In fluidization, there are a number of regimes where the fluid bed behaves 

differently as velocity, gas properties and solid properties are varied. Consider a gas 

passing upward through a packed bed of fine particles resting on top of a distributor, 

Figure  VI-17. At very low gas flow rates, the gas simply moves through the void spaces 

between stationary particles without changing the structure of the bed. This represents a 

fixed or packed bed reactor. As the superficial gas velocity ( 0u ) increases further, the 

pressure loss will increase slowly and eventually a point will be reached where the 

upward drag exerted on the particles by the fluid just equals the weight of the particles. 65 

This point is known as the minimum fluidization and the corresponding gas velocity is 

the minimum fluidization velocity ( mfu ). 

The magnitude of the minimum fluidization velocity depends on the solid particle 

properties, such as density and size distribution, as well as the gas properties, 

particularly the density and viscosity. 

A further increase in 0u  will result in bubble formation. For fine particles, such as 

those used in the FCC process, bubbles do not appear as soon as minimum fluidization is 
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reached. There is a range of velocities in which uniform expansion is observed with no 

observed bubbling. However, at a gas velocity of about3 mfu , bubbles begin to form and 

bed height begins to increase. This is known as the minimum bubbling point and the 

corresponding gas velocity as the minimum bubbling velocity mbu . At higher flow rates, 

agitation becomes more violent and the movement of solids becomes more vigorous. In 

addition, the bed does not expand much beyond its volume at minimum fluidization. 

Such a bed was called by Kunii and Levenspiel bubbling fluidized bed. 63  
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Figure  VI-17. Gas / solid contacting regimes, from low to very high gas velocity. 64 
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Under certain circumstances, the increase in bubble size as the gas velocity is 

increased can lead to slug flow. This type of flow is characterized by adjacent bubbles 

from the gas distributor coalescing to form larger bubbles or slugs that grow to the same 

order as the vessel diameter, resulting in poor contacting of the gas and solids. In 

general, slugging can be avoided by reducing the height to diameter ratio. 58 

As the gas velocity is increased beyond the terminal or free-fall velocity, the 

turbulent regime is encountered. This is an interesting regime because the effect of the 

bubble short-circuiting is much less pronounced than in the bubbling regime, so that 

high conversion can be more readily obtained. It is encountered in acrylonitrile synthesis 

reactors, operating at a superficial gas velocity of 0.5 m/s, and in phthalic anhydride 

synthesis reactors at 0.3 to 0.6 m/s. 58  

With further increase in gas velocity, i.e. in the fast fluidization and dilute phase 

transport or riser regimes, solids are carried out of the bed with the gas as shown in 

Figure  VI-17. In the riser regime there is no wall or down flow of the particles and the 

solid volume fraction is very small. The Kellogg-Fischer-Tropsch reactors at Sasol 

operate in the fast regime and modern catalytic cracking units in the riser flow regime. 

VI.4.2 Mathematical Modeling of MTO in a Riser Reactor 

In a riser reactor, due to the high gas flow rates all solids are entrained out of the 

bed and must be continuously replaced. Unlike the bubbling fluidized bed, particles in 

the riser reactor are equally distributed, with no wall or down flow zone. Therefore, both 

gas and solid can be assumed to move in plug flow. 63  
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In this work, the riser reactor was modeled using a one-dimensional 

pseudohomogeneous model with plug flow and slip between the gas and solid phases. 58 

The continuity equations for the gas phase components are, 

 

 ( )100 1i i
s i i

M M

dy w
dz w F

ρ ε⎛ ⎞
= − Φ ℜ⎜ ⎟

⎝ ⎠
 (VI-7) 

 

The void fraction, ε, is given by, 
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The terminal or free velocity is calculated from, 
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where DC is the drag coefficient, a friction factor for flow around a submerged 

object. The drag coefficient depends upon the Reynolds number as follows: 
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 69.43exp 5150
ln Re 7.99

DC ⎛ ⎞= − +⎜ ⎟+⎝ ⎠
 31 Re 10< <  

 0.43DC =  3Re 10>  

 
 
 

The continuity equation for the C6+ olefins contained inside the catalyst is, 
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 (VI-10) 

 
 

The energy equation for an adiabatic riser is written, 
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VI.4.3 Simulation Results 

Reactor geometry and catalyst properties data, required for the simulation, were 

taken to be similar to that employed in the catalytic cracking of gasoil. Simulation data 

are as follow: 

Reactor geometry: 0.85td = m; Z = 40 m 

Catalyst: 58 10pd −= × m; sρ = 1500 3kg cat m cat ; psC =1.003 kJ/kg K 

C6+ content of catalyst entering the riser: 0 (g/g cat) 

Flow rates: sm =196 T/hr; gm =28 T/hr 
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Reactor inlet temperature: 480°C. 

The results of the simulation are shown in Figure  VI-18 and Figure  VI-19. Methanol 

conversion at the exit of the riser was very low (less than 25%) despite the use of a very 

high riser and high temperature of the feed. The reason behind that is the low volume 

fraction of catalyst in the reactor. This volume fraction of solid was found to be (Figure 

 VI-19) on the order of 0.2% of the total volume of the riser. This is a very low value in 

comparison to that usually encountered in the industrial riser reactor (1-8%). 58 

Increasing the feed temperature could increase the conversion, but the value chosen 

is already close to the limit. 

In another simulation, the solid volume fraction was increased by increasing the 

solid flow rate in the riser. The operating data are the same as in the previous simulation, 

except that the solid flow rate was increased to 4000 T/hr and the feed temperature was 

set at 465°C. 

Simulation results are shown in Figure  VI-20 - Figure  VI-22. The methanol 

conversion at the exit of the riser was 85%. Ethylene and propylene yields were 12.5 and 

11.5 wt% respectively. The high temperature chosen for the feed is responsible for the 

high ethylene yield with respect to that of propylene. The adiabatic temperature rise was 

less than 6°. This is primarily due to the high flow rate of solid which consumes most of 

the generated heat. The solid void fraction was on the order of 4%. 
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Figure  VI-18. Evolution of temperature and methanol conversion along the height of the riser. Feed 
temperature: 480°C. Methanol mole fraction in the feed: 1.0. Total pressure: 1.04 bar. Flow rates: solid = 
196 T/hr, gas = 28 T/hr. 
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Figure  VI-19. C6+ olefins content and void fraction profiles along the height of the riser. Feed 
temperature: 480°C. Methanol mole fraction in the feed: 1.0. Total pressure: 1.04 bar. Flow rates: solid = 
196 T/hr, gas = 28 T/hr. 
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Figure  VI-20. Evolution of temperature and methanol conversion along the height of the riser. Feed 
temperature: 465°C. Methanol mole fraction in the feed: 1.0. Total pressure: 1.04 bar. Flow rates: solid = 
4000 T/hr, gas = 28 T/hr. 
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Figure  VI-21. Evolution of wt% yields of different products along the height of the riser. Feed 
temperature: 465°C. Methanol mole fraction in the feed: 1.0. Total pressure: 1.04 bar. Flow rates: solid = 
4000 T/hr, gas = 28 T/hr. 
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Figure  VI-22. C6+ olefins content and void fraction profiles along the height of the riser. Feed 
temperature: 465°C. Methanol mole fraction in the feed: 1.0. Total pressure: 1.04 bar. Flow rates: solid = 
4000 T/hr, gas = 28 T/hr. 
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Figure  VI-23. The effect of recycling the catalyst without regeneration on the light olefins yield and on 
the C6+ olefins content. Feed temperature: 465°C. Methanol mole fraction in the feed: 1.0. Total pressure: 
1.04 bar. Flow rates: solid = 4000 T/hr, gas = 28 T/hr. 
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Figure  VI-23 shows the effect of re-using the catalyst after each cycle, without 

burning the deposited C6+, on the sum of the yields of ethylene and propylene. The 

catalyst C6+ content at the exit of each cycle is used in the feed of the next cycle. No 

effect was observed on the light olefins yield, even after 3 recycles. The yield profiles 

coincide. 

Because of the use of high mass flow rate of solid, the amount of C6+ deposited on 

the catalyst is very small and the catalyst deactivation per pass is negligible. As a result, 

catalyst regeneration would only be required after a large number of passes. This makes 

the selection of a riser reactor, with its very large catalyst feed rate, for the MTO process 

unreasonable. A fluidized bed, with lower flow rates of gas and solid, is an alternate. 

That will be investigated next. 

VI.5 Fluidized Bed Reactor 

VI.5.1 Mathematical Modeling of MTO in a Fluidized Bed Reactor 

In this work, the conversion of methanol to olefins in a bubbling fluidized bed has 

been modeled using the two-phase model developed by May 66 in 1959. The model was 

discussed in detail by Van Deemter 67 and briefly by Froment and Bischoff 58. According 

to the model, shown schematically in Figure  VI-24, a fraction of the total flow rate 

through the bed in excess of the minimum fluidization velocity is considered to be in the 

bubble phase, the rest in the emulsion phase. Between both phases there is a certain 

interchange of gas. At the outlet, both streams, with their respective conversions, are 

hypothetically mixed to give the exit stream. 
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The following assumptions are incorporated in the development of the mathematical 

model: 

• The emulsion phase and the bubble phase are in plug flow. 

• The bubble phase is free of catalyst particles, and all reactions occur in the emulsion 

phase. 

• The catalyst in the emulsion phase is completely mixed. 

• The ideal gas law applies to the gas in both phases. 

• Axial diffusion in the emulsion phase is negligible. 

• Both solid and gas enter the reactor at the same temperature. 

• An internal heat exchanger is required. 

• Because of its high mass flow rate, temperature of the heat transfer medium stays 

constant. 
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Figure  VI-24. Two phase model for fluidized bed reactor. 
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The steady state continuity equation for component i in the bubble phase is, 

 

 ib ib ie
Ii

b b

dC C Ck
dz u f

−
= −  (VI-12) 

 

In the emulsion phase, 

 

 ie ib ie i
Ii s i s

e e e e

dC C Ck f
dz u f u f

ρ− ℜ
= + Φ  (VI-13) 

 

where, 

 

 6exp( )i CCα +Φ = −   for olefins formation (VI-14) 

 
( )6

1
1

i
CCβ +

Φ =
+

 for methanol conversion (VI-15) 

 

The initial conditions are 

 

 
0

0

( )
0

( )

ib i

ie i

C C
z

C C

=
=

=
 

 

The concentration iC  measured in the gas flow at the exit is given by, 
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 ( )
,

1
i b b ib e e ie

s g
C f u C f u C

u
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 (VI-16) 

 

Since the catalyst is assumed to be completely mixed, its C6+ olefins content is 

uniform over the whole bed. It is calculated from, 

 

 6 6 0
0

( )
Z

s C s C c s c sm C m C r f dzρ+ += + Φ Ω∫  (VI-17) 

 
where sm  is the feed rate of the catalyst (kg/hr). 

Similarly the uniform temperature over the whole bed can be calculated from, 

 

 
0

( ) ( )

i s

Z i i s s i t a
F

i p s p

r H f UA T T
T T dZ

FC m C
ρ⎛ ⎞−∆ Φ − −

= + Ω⎜ ⎟⎜ ⎟+⎝ ⎠

∑∫ ∑
 (VI-18) 

 

The hydrodynamic and transport property correlations used in this study are given in 

Table  VI-1. 

The continuity equations V-12 to V-16 are integrated by the Gear routine. The 

uniform temperature and uniform concentration of C6+ olefins are calculated in an 

iterative way, starting from assumed values of T  and 6CC + .   
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Table  VI-1. Hydrodynamic and Transport Property Correlations. (continued). 

Parameter Theoretical or Empirical Expressions Ref. 
Minimum 
Fluidization Velocity  

1.82 0.94
13

0.06 0.88

( )1.118 10 p s g
mf

g

du ρ ρ
ρ µ

− −
= ×  (VI-19) 

 68 

Bubble diameter [ ] ( )1 3 1.21
,0.00853 1 27.2( ) 1 6.84b s g mfd u u z= + − +  

  (VI-20) 

 69 

Bubble rising 
velocity 

              ,b s g mf bru u u u= − +       (VI-21) 

where 

 1.6br bu d g=  

 69 

Emulsion gas 
velocity   mf

e
mf

uu
ε

=        (VI-22) 
 62 

Bubble fraction       ,s g mf
b

b

u uf
u
−

=       (VI-23)  62 

Solid fraction 
  ,

, ,

s p
s

s p s g

uf
u u

=
+

      (VI-24) 
 62 

Emulsion gas 
fraction 

  
 1e b sf f f= − −  (VI-25) 
    

 62 

Bubble-emulsion 
phase transfer 
coefficient 

 
( )I b be jb

k f k=
        (VI-26) 

 

 ( ) ( ) ( )
1 1 1

be bc cejb jb jb
k k k

= +
 

 
( )

1 2 1 4

5 44.5 5.85mf bcj
bc jb

b b

D guk
d d

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠  

 
( )

1 2

3
6.78 mf cej b

ce jb
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D uk
d

ε⎛ ⎞
= ⎜ ⎟
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Table VI-1. (Continued). 

Parameter Theoretical or Empirical Expressions Ref.
Diffusivity of 

component j in the 

bubble gas mixture  

( )

1

1 jb
bcj

n ib
i
i j ji

y
D

y
D=

≠

−
=
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑

        (VI-27) 

 70 

Diffusivity of 

component j in the 

emulsion gas 

mixture 
 

( )

1

1 je
cej

n ie
i
i j ji

y
D

y
D=

≠

−
=
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑

        (VI-28) 

 70 

Binary diffusivity 

 
( ) ( )

1.75

21 3 1 31 2

0.00143
ij

v vij i j

TD
PM

=
⎡ ⎤∑ + ∑⎣ ⎦       (VI-29) 

 70 

Gas components 

thermal conductivity  
33.75 10 i i

i
i

R
M

µλ Ψ
= ×

            (VI-30) 

where 

[ ]
[ ]

0.215 0.28288 1.061 0.26665
1

0.6366 1.061
Z

Z
α β

α
β αβ

⎧ ⎫+ − +⎪ ⎪Ψ = + ⎨ ⎬+ +⎪ ⎪⎩ ⎭  

 ( ) 3 2vC Rα = −  

 
20.7862 0.7109 1.3168β ω ω= − +  

 
22.0 10.5 rZ T= +  

 70 

Gas mixture thermal 

conductivity 
 

1

1

n
i i

g n
i

j ij
j

y

y

λλ
ϕ=

=

=∑
∑

        (VI-31) 

 

( ) ( )
( )

21 2 1 4

1 2

1

8 1

i j j i

ij

i j

M M

M M

µ µ
ϕ

⎡ ⎤+⎣ ⎦=
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 70 

Gas components 

viscosity  

( )1 2

2 3
40.785 c

i
c v

F MT
V

µ =
Ω        (VI-32) 

 70 
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Table VI-1. (Continued). 

Parameter Theoretical or Empirical Expressions Ref.
Gas mixture 

viscosity 
 

1

1

n
i i

g n
i

j ij
j

y

y

µµ
ϕ=

=

=∑
∑

          (VI-33) 

 70 

Gas mixture 

density  1

1 n
i

g
ii

M
MV w

ρ
=

= ∑
          (VI-34) 

 58 

Heat transfer 

coefficient on 

the bed side 

 
0.43 0.8 0.660.23

0.033 s g g p ps s

p pg g pg g

f d G C
d C C
λ λ ρα

ρ µ ρ

−
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
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            (VI-35) 

 71 

Heat transfer 

coefficient, 

heat transfer 

medium side 

0.8 1 3

0.027u tu tu u pu u

u u u

d d G Cα µ
λ µ λ

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠          (VI-36) 
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VI.5.2 Simulation Results 

The simulation of the MTO process on SAPO-34 in a bubbling fluidized bed reactor 

was based on the two-phase model discussed before. Table  VI-2 shows the reactor and 

the heat exchanger design data utilized in the simulation. Operating conditions were 

chosen based on a production rate of 55,000 tons/year of ethylene and propylene. 

The output of the simulation was found to be very dependant on the bubble size. 

When Werther’s correlation, Eq. VI-20, was used to calculate the bubble in the 15.0 m 

high fluidized bed reactor, the calculated bubble size was on the order of meters. Mass 

transfer from such an enormous bubble is so poor that it limits the ability of reaction to 

take place. This bubble size is not realistic and never takes place in an industrial vessel. 72 

Bubbles, certainly, grow as they rise inside the bed, eventually, however, they will reach 

a maximum size where they become unstable and start breaking up into smaller bubbles. 

Unfortunately, Werther’s correlation can only predict the bubble size in a small size 

laboratory bed. 

In this work, the bubble size was estimated using Figure 6-7 in Kunii and 

Levenspiel 63. The figure presents the bubble growth profiles in a bed of fine particles. 

The bubble was shown to grow within a few centimeters in size above the inlet and stay 

at that size as a result of equilibrium between coalescence and splitting. A constant 

bubble size of 4 cm was chosen for the current fluidized bed. 
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 Table  VI-2. Data Used in the Fluidized Bed Reactor Simulation. 

Reactor Geometry 

Reactor diameter, td  8.5 m 
Reactor height, Z 15.00 m 
 

Catalyst properties 

Catalyst average diameter, pd  58 10−× m 
Catalyst density, sρ  1500 
Catalyst heat capacity, psC  1.003 kJ/kg K 
 

Operating conditions 

Solid mass flow rate, sm  280 tons/hr 
Gas mass flow rate, gm  28 tons/hr 

Methanol feed mole fraction, My  1.0 
Feed temperature, fT  430°C 
Pressure, P  1.04 bar 
Bed void fraction at minimum fluidization, mfε  0.55 
 

Heat exchanger Geometry 

Height of cooling tubes, H 7.00 m 
Diameter of cooling tubes, tud  0.035 m 
Pitch (square tube arrangement) 0.25 m 
Number of cooling tubes, tN  910 
 

Heat transfer medium properties 

Dowtherm A (liquid) 

Viscosity, uµ  43.8 10−×  kg/m s 
Heat capacity, puC  2.093 kJ/kg K 
Thermal conductivity, uλ  -41.09×10 kW/m K
Density, uρ  3902.5kg/m  
Cooling fluid mass flow rate, uG  3 22.7×10 kg/m s  
Cooling fluid temperature, uT  205°C 



 

 

127

Figure  VI-25 shows the profiles of the bubble and emulsion gas velocities and 

volume fractions along the reactor. The profiles are almost flat except in a small region 

near the entrance of the bed where the gas is being heated by the catalyst. 

The profiles of evolution of the conversion of methanol and the wt% yields of 

different products is shown in Figure  VI-26 for a feed temperature of 430°C. Methanol 

conversion was limited to 90%. Propylene and ethylene yields amount to 13 and 12 wt% 

respectively. Methane yield, on the other hand, is less than 0.8 wt%.  

Due to the exothermicity of the process, the uniform reaction temperature was found 

to be 451°C. On the other hand, the uniform C6+ concentration in the bed amounts to 

0.15%. This has to be removed by controlled combustion in the regenerator. The bed 

temperature, 451°C, is relatively low. The size of the reactor could be decreased if the 

bed temperature were higher. However, higher temperature favors methane yield as well.  
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Figure  VI-25. Evolution of the bubble and emulsion gas velocities and the volume fraction taken by the 
bubble phase and by the emulsion gas along the height of the fluidized bed reactor. Feed temperature: 
430°C. Methanol mole fraction in the feed: 1.0. Total pressure: 1.04 bar.
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Figure  VI-26. Evolution of methanol conversion and wt% yields of different products along the height of 
the fluidized bed reactor. Feed temperature: 430°C. Methanol mole fraction in the feed: 1.0. Total 
pressure: 1.04 bar. 
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CHAPTER VII 

TECHNOLOGY EVALUATION 

 

So far, two reactor configurations show good potential for the industrial process for 

the conversion of methanol to olefins, namely, fluidized bed and multi-bed adiabatic 

reactor configurations. The riser reactor option has been excluded for the reasons already 

discussed. 

The comparison between the fluidized bed and the multi-bed adiabatic reactors was 

performed based on a production rate of 55,000 tons/year of ethylene and propylene. 

Figure  VI-9 was used to evaluate the performance of the MTO on SAPO-34 in a 

multi-bed adiabatic reactor after 40 minutes process time. In the simulation, the 

combined yield of ethylene and propylene was around 25% at a space time of 14.0 (g cat 

. hr/mol). The required flow rate of methanol to the reactor, then, becomes: 

( )55000 25 100 220,000=  tons/year or 28 tons/hr with the 8,000 hrs/year basis. 

The amount of catalyst needed is: ( )
( ) ( )28000

14
32

kg hr
kgcat hr kmol

kg kmol
× ⋅ =12.25 tons 

At least two reactors are needed for cycling between reaction and regeneration, thus 

the total amount of catalyst needed is around 25 tons. 

On the other hand, Figure  VI-26 was used to evaluate the performance of the MTO 

process in the bubbling fluidized bed reactor. As in the case of the multi-bed reactor, the 
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combined yield of ethylene and propylene was 25%. Similarly, the required feed of 

methanol is: 28 tons/hr. 

Volume of the reactor: ( )2 34 56.7td Z mπ ⋅ =   

Average bed density: 360s sf kg mρ ⋅ =  

Therefore, the amount of catalyst at any time in the reactor is approximately, 

 ( ) ( )3 360 56.7 3.4kg m m tons× ≈  

A similar amount will be present at any time in the regenerator. Thus the total 

amount of catalyst needed is around 7 tons. This is a consequence of the heat transfer 

between the fluidized bed and the internal heat exchanger. The beds of the multi-bed 

adiabatic reactor have to be fed at low temperature to allow for the ∆T and keep the exit 

temperatures of the beds below a certain limit. 

Therefore, to produce the same amount of ethylene and propylene in the multi-bed 

adiabatic reactor, the amount of catalyst needed will be roughly four times that in the 

fluidized bed reactor. This is of course at 40 minutes process time for the multi-bed 

reactor. If a longer process time is chosen, more catalyst will be required. 

So if the amount of catalyst is the only factor in deciding which configuration to 

choose, the fluidized bed reactor is the more favorable option. However, more factors 

will have to be considered, mainly, construction and operational cost. 
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CHAPTER VIII 

CONCLUSION AND RECOMMENDATIONS 

 

The objectives of this research as stated earlier were as follows: 

1) Develop a kinetic model for the formation of olefins from methanol on SAPO-34. 

a) Write the model in terms of elementary steps without any lumping neither of 

components nor of steps. 

b) Estimate the kinetic parameters using the experimental data of Abraha 1 and 

verify the model prediction using the experimental data of Marchi and Froment. 2 

2) Develop a deactivation model. 

a) Relate the rate of coke production to the rate of production of C6+ olefins trapped 

inside the cavity of SAPO-34. 

b) Estimate the deactivation parameters using the data of Marchi and Froment. 

c) Use the model to explain the observed catalyst deactivation phenomena. 

3) Combine the kinetic and the deactivation model and utilize them to: 

a) Investigate the influence of the operating conditions on the product distribution 

in a multi-bed adiabatic reactor with plug flow. 

b) Study the conceptual design of riser and fluidized bed reactors for MTO. 

The kinetics of the formation of olefins from methanol on SAPO-34 was found to be 

well described by the model developed based upon oxonium methylide mechanism in 

the primary products formation followed by methylation, oligomerization, and cracking 
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based upon carbenium ion mechanism. The model not only agrees well with the 

experimental data, but also it was able to reproduce data obtained in a different lab and 

setup. 

In the generated network, the number of elementary steps and the number of rate 

parameters was far too high to be determined accurately by conventional methods. The 

single-event concept and the Evans-Polanyi relation were essential in reducing the 

number of parameters to a tractable size.  

The single-event concept, also, permitted prediction of the production rate of C6+ 

species, trapped inside the cavities of SAPO-34, and which can not be detected 

experimentally. The knowledge of the C6+ yield is essential for modeling the 

deactivation of the catalyst. The conversion of methanol to dimethylether and the 

subsequent conversion of the latter into olefins were found to be affected in a different 

way by deactivation. While olefins production decreases to zero, methanol conversion 

was found to drop and stabilize at a non-zero value. This was attributed to the easy 

nature of methanol conversion into DME, requires only weak acid sites, with respect to 

olefins production which requires strong acid sites. With deactivation, the strong acid 

sites are either covered or are not accessible because of blockage of pore structure. Weak 

acid sites, however, can be still found in the external surface of the catalyst. 

The effect of water on the deactivation of SAPO-34 was also reflected in the 

developed deactivation model. Two different values of the deactivation parameters were 

found to be necessary to account for the effect of water. 
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In the conceptual design of the MTO reactor, multi-bed adiabatic, riser and fluidized 

bed technologies were evaluated. All but the riser configuration show good potential for 

the industrial process for the conversion of methanol to olefins.    

The results of this research point to the following recommendations for future work: 

• Investigate the effect of the acidity of SAPO-34 on increasing the rate of β-scission 

which is essential for decreasing the deactivation of the catalyst by C6+ components. 

Increasing the β-scission rate, however, should not affect the ethylene and propylene 

yields. 

• Structure of the catalyst, as well, plays an important role in decreasing the 

deactivation of the catalyst. The catalyst structure can be chosen so as to reduce the 

C6+ production and therefore reduce the catalyst deactivation.     

• In this work, the MTO process was simulated in a bubbling fluidized bed and in a 

riser reactor. Turbulent fluidized bed regime, which is an intermediate regime 

between the bubbling fluidized bed and the riser, might be recommended for 

commercial operation because of its high efficiency related to the absence of 

bubbles. Accurate modeling of turbulent fluidized bed would require computational 

fluid dynamics, beyond the scope of this thesis. 
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NOMENCLATURE 
 

A′  Preexponential factor of an elementary step   

A  Single-event Preexponential factor  

tA  Total heat exchange surface 2m  

t
bsC  Total concentration of basic sites kmol kg cat .  

t
HC +  Total concentration of acidic sites kmol kg cat .  

6CC +  Weight content of C6+ olefins inside the 
catalyst 

kg kg cat .  

DC  Drag coefficient for spheres  

ibC  Concentration of component i in the bubble 
phase 

3
bkmol m  

ieC  Concentration of component i in the emulsion 
phase 

3kmol meg  

iC  Concentration of component i at the exit of the 
of the bubble and emulsion phase 

3kmol m f  

pgC  Specific heat of gas kJ kg K  

psC  Specific heat of solid kJ kg K  

ijD  Molecular diffusivity of i in a binary mixture 
of i and j 

3
ffm m s  

bcjD , cejD  Diffusivity of component j in the bubble and 
emulsion gas mixtures respectively 

3
ffm m s  

bd  Bubble diameter m  

pd  Average particle diameter m  

td  Reactor diameter m  

aE  Intrinsic activation barrier in the Evans-
Polanyi relation 

kJ kmol  
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bf  Fraction of total fluidized bed volume 
occupied by bubble gas  

3 3
rbm m  

ef  Fraction of total fluidized bed volume 
occupied by emulsion gas  

3 3
rm meg  

sf  Fraction of total fluidized bed volume 
occupied by solid  

3 3
rm ms  

G  Superficial gas flow velocity 2
rkg m s  

g  Acceleration of gravity 2m s  

h  Plank constant: 1.841x10-37 J hr  

H  Cooling tubes length m  

iK  Equilibrium constant for an elementary step i  

Bk  Boltzmann constant: 1.381x10-23 J K  

ik′  Rate coefficient for an elementary step i  

( , )ik j k′  Rate coefficient for an elementary step of type 
i at jth category and kth reaction 

 

k  Single-event rate coefficient  

Ik  Bubble-emulsion phase interchange 
coefficient 

3 3
rfm m s  

( )bc bk  Mass transfer coefficient from bubble to 
interchange zone, referred to unit bubble 
volume 

3 3
fm m sb  

( )be bk  Overall mass transfer coefficient from bubble 
to emulsion, referred to unit bubble volume 

3 3
fm m sb  

( )ce bk  Mass transfer coefficient from interchange 
zone to emulsion, referred to unit bubble 
volume 

3 3
fm m sb  

jM  Molecular weight of species j kg kmol  

m  Mass flow rate kg s  

tN  Number of cooling tubes  
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en  Number of single events  

ijO  An olefin with carbon number i and isomer 
index j 

 

iP  Partial pressure of gas-phase species i bar  

( )q i  Heat of stabilization of species i kJ kmol  

ijR+  An olefin with carbon number i and isomer 
index j 

 

S  Standard entropy kJ kmol K  

iℜ  Net reaction rate for gas phase species i kmol kg cat .hr  

R  Gas constant: 8.314 kJ kmol K  

( , )ir j k  Reaction rate for an elementary step of type i 
at jth category and kth reaction 

kmol kg cat .hr  

aT  Cooling fluid temperature K  

bu  Bubble rise velocity, absolute rm s  

bru  Bubble rise velocity, with respect to emulsion 
phase 

3 2
rfm m s  

eu  Emulsion gas velocity rm s  

mfu  Minimum fluidization velocity rm s  

,s gu  Superficial gas velocity 3 2
rfm m s  

,s pu  Superficial solid velocity 3 2
p rm m s  

tu  Terminal velocity of particle rm s  

W  Total catalyst mass kg cat .  

ˆiy  Yield of species i kg 100 kg MeOH fed  
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Greek Letters 

α  Transfer coefficient in the Evans-Polanyi 
relation 

 

iυ  Fractional coverage of surface species i  

‡H∆  Standard enthalpy of activation kJ kmol  

( )fH i∆  Standard enthalpy of formation for species i kJ kmol  

( , )iH j k∆  Heat of reaction for an elementary step of type 
i at jth category and kth reaction 

kJ kmol  

( )prH i∆  Heat of protonation for gas phase species i kJ kmol  

iG∆  Standard Gibb’s free energy change of 
reaction type i 

kJ kmol  

‡S∆  Standard entropy of activation kJ kmol K  

σ  Symmetry number  

i
glσ  

Global symmetry number of species i  

τ  Space time of methanol kg hr kmol  
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Table A-1. List of Olefins Involved in the MTO Reaction Network Generated by Park. 44  
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Table A-2. List of Carbenium Ions Involved in the MTO Reaction Network Generated by Park. 44  
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 Table A-3. Rates and Equilibrium Constants for the Elementary Steps of the Primary Products Formation in the MTO Process 
on SAPO-34 at Different Temperatures. 

Values Unit Elementary Steps Rate or 
Equilibrium 
Constants 380°C 440°C 480°C  

 
DME Formation 

MeOH H++   
2MeOH+  ( )PrK MeOH  4.6670E+00 1.1994E+00 5.4676E-01 dimensionless 

2MeOH+   
1 2R H O+ +  ' ( )1k RF

+  
' ( )1k RC

+  
1.1834E+03 
 
8.7018E+01 

1.3502E+03 
 
8.8401E+01 

1.4571E+03 
 
8.9210E+01 

1 1s bar− −⋅  
1 1s bar− −⋅  

1R MeOH+ +   DMO+  ' ( )k DMOF
+  

' ( )k DMOC
+  

2.5740E+01 
 
5.8085E-04 

2.6141E+01 
 
1.0698E-03 

2.6376E+01 
 
1.5228E-03 

1 1s bar− −⋅  
1 1s bar− −⋅  

DMO+   DME H++  ( )PrK DME  4.7924E+05 1.0446E+05 4.3294E+04 dimensionless

Methane Formation 

1R MeOH+ +  →  
4CH HCHO H++ +  ' ( )4k CHF  7.6073E-02 1.1725E+00 5.7000E+00 1 1s bar− −⋅  

Primary Olefins Formation 

1R bs+ +   OM H++  ' ( ; )1k R bsSr
+  

' ( ; )k OM HSr
+  

1.0392E+02 

5.4556E+05 

1.6289E+03 

5.1185E+06 

7.9967E+03 

1.8676E+07 

1s−  
1s−  

OM DMO++  →  
2R MeOH bs+ + +  ' ( ; : )2k OM DMO RSr

+ +  6.0431E+02 9.8567E+02 1.3079E+03 1s−  

2R+   
2O H++  ' ( )2k RDe

+  
' ( )Pr 2k O  

2.4036E-02 

1.1865E-03 

2.1419E-01 

4.4373E-03 

7.5860E-01 

9.5127E-03 

1 1s bar− −⋅  
1 1s bar− −⋅  

OM DMO++  →  
3 2R H O bs+ + +  ' ( ; : )3k OM DMO RSr

+ +  4.8509E+02 5.5275E+02 5.9610E+02 1s−  
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Table A-4. Single Event Rate Constants of the Elementary Steps for the Formation of Higher 
Olefins in the MTO Process on SAPO-34 at Different Temperatures. 

Rate Constants in s-1 Elementary Steps 

380°C 440°C 480°C 
 
Methylation 

1R+ +  →  +
 1.1336E-02 5.0813E-02 1.2099E-01 

1R+ +  →  +
 1.2200E-02 5.4273E-02 1.2865E-01 

1R+ +  →  +  1.1989E-02 5.3404E-02 1.2668E-01 

1R+ +  →  +  1.2011E-02 5.3493E-02 1.2688E-01 

1R+ +  →  +  1.5113E-02 6.6024E-02 1.5487E-01 

1R+ +  →  +
1.6557E-02 7.1789E-02 1.6766E-01 

Oligomerization 
+

 +  →  +
 1.1336E-02 5.0816E-02 1.2101E-01 

+
 +  →  +

 1.4200E-02 6.2352E-02 1.4667E-01 

+
 +  →  +

 1.4335E-02 6.2894E-02 1.4787E-01 

+
 +  →  +

 1.8197E-02 7.8265E-02 1.8190E-01 

+
 +  →  + 2.0199E-02 8.6116E-02 1.9914E-01 

β-scission 
+ →   + + 8.6224E-15 7.2915E-14 2.5139E-13 

+
 

→  + +
 9.2136E-21 3.1502E-19 2.4483E-18 

+
 

→  + +
 6.1587E-22 2.7259E-20 2.4593E-19 

+
 

→   + +
 1.7159E-22 1.1352E-20 1.2913E-19 

+
 

→  + +
 1.3268E-24 1.1382E-22 1.5030E-21 

+
 

→   + +
 7.8318E-24 6.6233E-22 8.6873E-21 
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