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ABSTRACT

In this dissertation, we evaluate the performance of nonlinear models, and the 

effects of bound waves in nearshore wave models are studied mathematically and 

numerically. The first part of this study concerns the evaluation of different nearshore 

models and their capability in the estimation of wave spectra and higher order wave 

statistics. Four different nearshore wave models (three fully dispersive models and a 

consistent shoaling model) are compared to field and experimental data sets. Com-

parison of these nearshore models reveals that the nearshore models’ performance in 

predicting higher frequency energy evolution is not as skillful as at lower frequen-

cies. Therefore, a new wave transformation model is derived. The model includes 

nonlinear wave interaction effects up to third order in wave steepness and is based 

on the fully dispersive second order model. Transforming the problem into the fre-

quency domain and using multiple scale analysis in space and perturbation theory, 

the model is expanded up to third order in wave steepness. The result is a set of 

evolution equations which explicitly contains quadratic near-resonant interactions, 

non-resonant bound waves, and cubic resonant interactions. The results of the nu-

merical modeling for the aforementioned nearshore model show that the model is 

verified reasonably well in terms of the harmonics tests and the spectral analysis for 

experimental and field data sets. However, the calculation of higher order statistical 

parameters is quite sensitive to how the free parameters in the model are chosen.

In addition, the dissipation characteristics of the breaking waves has been in-

vestigated using the high-resolution laboratory datasets. The free parameter in a

probabilistic breaking model and the threshold parameter in the instantaneous dissi-

pation model is parameterized at each gauge location separately, and the dependency

of the calculated damping coefficient in the formulation to frequency components is
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extensively discussed. Moreover, the relationship between the third moments of free

surface elevation and the parameterized threshold parameter in the instantaneous

dissipation model is represented.
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1. INTRODUCTION

As waves transform from offshore to nearshore regions, their behavior changes

due to the increasing influence of the bathymetry. One mechanism of this is a

change in the nature of energy exchange among different frequencies comprising the

wave field. Offshore waves do not differ significantly from sinusoidal waves in shape.

By contrast, nearshore waves are more skewed (peak crest and wide troughs) and

asymmetric (forward-leaning). More accurate predictions of wave shape may lead

to better estimation of instantaneous sediment transport and sandbar migration,

which directly affects surf zone morphology, as these process are dependent on local

accelerations deriven by shape.

Battjes (1994) categorized water wave models into two major groups: phase av-

eraged and phase resolving models. The former is suitable for modeling of waves

in global or regional (O(100km)) domains and for waves with slow varying local

properties. These models assume that the free surface elevations are statistically dis-

tributed with wave energy (or, in the case of wave-current interaction, wave action)

being the dependent variable. Examples of these models include those based on the

action balance equation such as WAVEWATCH (Tolman 1991) and SWAN (Booij

et al. 1990). One advantage of these models is that they easily accomodate energy

based dissipation and generation functions which are inherently statistical. However,

as in shallow water, the random phase assumption inherent in phase-averaged models

breaks down, as the individual phase correlate in order to lead to the higher skewed

and asymmetric waveforms seen. In contrast, phase resolving models are applied

at the scale of coastal domains and are appropriate for waves with rapid varying

local properties on the scale of a wave length or less. These models, as the name
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implies, resolve the free surface elevation and thus can represent the phase correla-

tions inherent in shallow water waves (provided the associated nonlinear mechanism

are included). This category of models includes deterministic models such as: mild

slope equation models (e.g. Kaihatu and Kirby 1995); Stokes-type wave models

with weak nonlinearity and mildly sloped bottom and Boussinesq models with weak

nonlinearity and weak dispersion properties (e.g. Freilich and Guza 1984).

Phase resolving models can be formulated either in time domain or frequency

domain. In time domain models, the dependent variables are functions of time and

space, and all relevant motions are represented in the model. For frequency domain

models, the free surface η(x, y, t) is represented as:

η =
∞∑
n=1

An
2
eiΨn + c.c (1.1)

Ψn =

∫
kndx− ωnt (1.2)

ωn
2 = gkn tanh knh (1.3)

where An is a (real or complex) amplitude for the nth frequency, ωn is the angular

frequency and kn is the wave number as defined by (1.3), the dispersion relation. In

the frequency domain, the transient signal of the free surface elevation is decomposed

into its fundamental frequency components. In nonlinear wave models expressed in

frequency domain, the dependent variables are the amplitudes of each of the discrete

frequencies defined for the computation. As a result of this transformation, the non-

linear terms in the model are defined explicitly as interactions between amplitudes of

various frequencies in the random wave field. these are advantages and disadvantages

to both approaches. Time-domain models can easily accomodate aperiodic, periodic,

monochromatic, or random waves as initial conditions. The model’s performance is
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not affected by the type of initial condition. However, fine spacial resolution is often

required, and the numerics of these models can be complex. In contrast, frequency

domain models are numerically straightforward. However, their model run times are

strongly dependent on the number of wave frequencies included in the calculation. It

can be argued, however, that frequency domain models are useful transition models

between phase averaged offshore models and time domain nearshore/surf models, so

their study is warranted.

Nonlinearity in frequency domain models is represented via wave-wave interac-

tions. Wave-wave interaction arises from the surface boundary condition, which are

nonlinear and applied to a surface of unknown position. They consist of different

combinations of free surface elevation, η and velocity potential φ. These boundary

conditions are approximated (more details to come) and these approximate terms

contains products such as η2, ηφ, φ2 in second order and η3, η2φ, ηφ2, φ3 in third or-

der. The solution contains terms proportional to 1, e±iΨ, e±2iΨ and e±3iΨ, where Ψ is

the phase function (discussed extensively later). Based on the relationships between

the various φ for the different waves in the wave field, two types of waves result from

the interaction. The first, free waves, are individual waves that obey the dispersion

relation (1.3). Each free wave has its own phase speed dictated by the linear dis-

persion relation. The nonlinear wave-wave interaction between free waves leads to

exchange of energy among spectral components, which further allow changes in wave

shape and spectral shape. The second type of waves discussed here are bound waves.

Bound waves of a particular frequency do not obey the dispersion relation relevant

to its frequency but has the same phase speed as its primary wave. While they do

not exchange energy, bound waves do affect overall wave dynamics. In deep water,

wave-wave interaction takes place among groups of four waves (quartet wave-wave

interaction) with exact resonance condition.
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ωl + ωm = ωp + ωn (1.4)

~kl + ~km = ~kp + ~kn (1.5)

This interaction takes place at third order and causes a weak transfer of energy

between frequencies. However, at second order, in deep water, only bound waves are

present. The amplitudes of these waves will always remain smaller by a fixed amount

than their corresponding primary waves. In shallow water, however, the scenario

is quite different. Here, the near-resonant condition (triad wave-wave interaction)

causes significant energy transfers between frequencies.

ωl + ωm = ωn (1.6)

kl + km ≈ kn (1.7)

The triad wave-wave interaction, at second order, can only be exactly satisfied

at the shallow water limit. Despite the fact that it is only near-resonant, it causes

significant energy transfers among wave frequencies (Benney 1963).

Early studies of nearshore waves originate from the modeling of Boussinesq equa-

tions (Boussinesq 1872). In these equations, both weak nonlinearity and weak dis-

persive effects of waves are taken into account for constant depth; dispersive and

nonlinearity parameters are thus kept at first order. Later, Korteweg and de Vries

(1895) developed a single equation for free surface elevation by combining two Boussi-

nesq equations for a one dimensional propagation of waves in a constant depth. Mei

and Le Mehaute (1966) and Peregrine (1967) developed Boussinesq type equations

to investigate the effects of mildly varying depth. By transforming the varying-

bottom Bousinesq equations in frequency domain, Freilich and Guza (1984) derived
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two nearshore nonlinear models (a “consistent” model and a “dispersive” model) for

the shoaling region where the water depth is approximately in the range of 3 to 10m.

They also used the result of Benney (1962), who used multiple scale expansion to

formulate a series of equations which account for significant energy exchange even

in only near-resonant conditions. In an attempt to improve the dispersive charac-

teristics of Boussinesq models, Witting (1984) presented a one dimensional extended

Boussinesq model in time domain that used the polynomial approximation for dis-

pertion relation. Although this model has fewer limitations for water depth, it is

complicated to generate it in two horizontal dimension. Later, Madsen et al. (1991)

developed a two dimensional model in time domain for constant depth by extending

the velocity terms of Boussinesq equation using Taylor expansion about the bottom

and added convective terms to improve the depth limitations of Boussinesq type

equations. Similarly, Nwogu (1993) derived a new set of equations in time domain

using the variable vertical velocity instead of a constant averaged velocity. Madsen

and Sorensen (1992) extended the Boussinesq equations for mildly varying bottom

slopes by developing linear dispesion characteristics of waves. Furthermore, Wei et

al. (1995); and Wei and Kirby (1995) developed their higher order numerical method

to simulate the Boussinesq equations of Nwogu (1993). In the frequency domain, Liu

et al. (1985) applied the parabolic approximation method of Radder (1979) to mod-

ify both Boussinesq equations and KP (Kadomtsev and Petviashvili 1970) equation;

the latter is a weak two-dimensional extension of the KdV equation. Chen and Liu

(1995) established the frequency domain model for extended Boussinesq equations

of Nwogu (1993) and developed their fourth order equation using parabolic approx-

imation. Chen and Liu (1995) and Kaihatu and Kirby (1998) also extended the

Boussinesq equations and found the optimized parameters for shoaling and disper-

sive terms. Madsen et al. (2003) introduced their extended Boussinesq model that
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expanded the velocity potential with an arbitrary depth-dependence term. They ar-

gued that the model was less restrictive to the depth compared to the other extended

Boussinesq models and is applicable for a wide range of wave numbers. Later, Bred-

mose et al. (2004) enhanced the efficiency of the time domain Boussinesq models by

applying Fast Fourier Transforms for calculation of nonlinear interaction terms.

An alternative to the Boussinesq equation approach involves nonlinear extensions

to linear, fully dispersive wave models. Bryant (1973) developed a model for long

waves based on the boundary value problem and fully dispersive features of waves

and compared the model with KdV (Korteweg and de Vries 1895) and Benjamin et

al. (1972) equations. To establish the mathematical formulation of the model, he

assumed that waves are periodic in space and nearly periodic in time and hence wave

interactions are near resonant for lower frequencies. He demonstrated that fully dis-

persive wave models support the nonlinear triad wave-wave interaction. Moreover,

Bryant (1974) demonstrated that the permanent form solution to his dispersive wave

equation recovers the third order Stokes waves amplitudes (Kaihatu 2003). However,

the assumption of spatial periodicity is not useful for waves propagating over varying

water depth. Mei and Unluata (1972); Keller (1988); and Boczar-Karakiewicz et al.

(1986) established a system of equations for interaction of two small amplitude waves

for a varying bottom based on boundary value problem. As waves propagate from

deep to shallow water region, the triad wave-wave interaction terms become more

predominant compare to those of quartet interaction (Agnon et al. 1993). Starting

from the boundary value problem, Agnon et al. (1993) derived a one dimensional

fully dispersive model that includes triad wave-wave interactions. Kaihatu and Kirby

(1995) presented a two dimensional fully dispersive model using the parabolic ap-

proximation method (Radder 1979). Following Berkhoff (1972), they assumed mild

slope bathymetry variation to develop their model. The nonlinear part of their model
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consists of the triad wave-wave interactions between frequency components. Wave

breaking dissipation rate term was also calculated using the approach of Mase and

Kirby (1992) and included in the aforementioned model. Developing this model

into two dimensions, and assuming a periodic lateral domain, Agnon and Sheremet

(1997) presented a stochastic model which used bispecta (e.g. Elgar and Guza 1985)

to represent the nonlinear interaction between spectra at frequencies involved in

triad interaction, and used bicoherence (e.g. Elgar and Guza 1985) to investigate

the phase correlation involved. In addition, Kaihatu (2001); Eldeberky and Madsen

(1999); and Eldeberky (2012) improved the fully dispersive parabolic model by ex-

tending the relationship between free surface elevation and velocity potential (used

in developing the frequency domain model) up to second order. According to this

improvement the higher order statistics of waves can be estimated more accurately

leading to better evaluation of the model’s ability to estimate wave shape. More

recent studies for generating waves evolution equations in two dimension using the

boundary value problem was carried out by Janssen et al. (2006). Following Chu

and Mei (1970); Liu and Dingemans (1989); Suh et al. (1990), they expanded the

free surface elevation and velocity potential and studied the effects of sub and su-

per harmonic bound waves. According to their model, both triad and quartet wave

wave interaction terms were taken into account in the model; however during wave

transition process from deep to shallow water explicit shifting from one to another

term is required (Tolman et al. 2013).

Briefly, the aim of this present work is to derive a transformation model for

nearshore waves which extends the model of Kaihatu and Kirby (1995) to improve

the performance of the model in higher frequencies. In Chapter 3, we introduce four

nearshore wave models with different characteristics in nonlinearity and dispersion.

This investigation allows us to understand the behavior of each model and their lim-
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itations for different ranges of frequency components in the spectrum, which we then

use to ascertain the necessary improvements required. In Chapter 4, the mathemat-

ical formulation of the proposed frequency domain model is derived. The derivation

is based on the boundary value problem for velocity potential, Φ, the boundary con-

dition equations are extended up to the third order of nonlinearity (O(ε3)) where

ε = ka, in which a is the amplitude. Assuming a mildly varying bottom and the

periodicity of the waves. The effects of triad wave-wave interaction in second and

third order, and bound waves in third order is discussed. The final form of the

mathematical model is then verified numerically with suitable laboratory and field

data. In Chapter 5, the dissipation characteristics of the nearshore models in surf

zone are investigated and the free parameters of Thornton and Guza (1983) and the

threshold parameter of Zelt (1991) for modeling breaking waves are characterized.

We also discuss the relationship between the characteristics of wave breaking and

the resultant effects on the free surface elevation spectrum. Finally, in Chapter 6,

the conclusions and the future work for extending this study is presented.
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2. NEARSHORE WAVE MODELS AND COMPARISONS TO DATA

When waves propagate to shallow water areas, they become increasingly affected

by the presence of the sea bed. In this area, the relative water depth, kh, approaches

shallow water limit (kh << 1) where k is the wave number and h is the water

depth. In this regime, near-resonant conditions allow significant amount of energy

to be transferred between different harmonics (Bryant 1973). In this study, first,

different assumptions for modeling of nearshore waves for propagation of waves are

discussed. Then, four different nearshore models are compared in terms of their

ability to estimate spectra and the higher order statistical wave shape parameters.

2.1 Consistent model of Freilich and Guza (1984)

This model is the frequency domain extended version of Boussinesq-type equa-

tions for a mildy sloping sea bottom. Additionally, due to its weak dispersive char-

acteristics, the model is only strictly valid for waves in shallow water. Freilich and

Guza (1984) showed that their model agrees well with field data in shallow water.

Based on the Boussinesq model, the consistent model is formulated as

Anx +
hx
4h
An −

in3k3h2

6
An + αnAn +

3ink

8h

( n−1∑
l=1

AlAn−1 + 2
N−n∑
l=1

A∗lAn+l

)
= 0 (2.1)

where An is the complex amplitude of free surface elevation for nth frequency, A∗ is

the conjugate form of A; and k and h are wave number and water depth respectively.

Subscripts n, l, n−l and n+l denote deffierent frequency modes that the relationship

between them is governed by triad resonant condition. The second term in the

equation is the linear shoaling term and the third term is the dispersive term which
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accounts for weak dispersion effects. The last terms also represent the nonlinear triad

interaction of waves for transferring energy between frequencies in the spectrum.

Dissipation in the model can be represented by αnAn where αn is the damping

coefficient.

2.2 Mase and Kirby (1992)

In this model the frequency domain KdV equation is modified so that the Green’s

Law used in the model of Freilich and Guza (1984) is replaced with the fully dispersive

shoaling term. The dispersive characteristics of the model are also improved using

the exact dispersion relationship instead of shallow water dispersion relation.

Anx+
cgx
2cg

An−ink1(

√
knh

tanh knh
−1)An+

3ink1

8h

( n−1∑
l=1

AlAn−1+2
N−n∑
l=1

A∗lAn+l

)
+αnAn = 0

(2.2)

where cg is the group velocity and αn is the damping coefficient (will be extensively

explained in next section). k1 ( k1 = ω1√
gh

) and kn denote the non-dispersive wave

number and fully dispersive wave number respectively. The second and third term

in the equation denote the shoaling and dispersive terms respectively. The nonlinear

interaction of waves is identical to the model of Freilich and Guza (1984). The model

is also developed by including a dissipation term which is based on the probabilistic

approach of Thornton and Guza (1983). The last term in the equation indicates

the dissipation term discussed in detail in the next section. Figure 2.1 shows the

comparison of the model of Mase and Kirby (1992) with case 2 of their experimental

data set.
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Figure 2.1: Verification of the hybrid model of Mase and Kirby (1992) with Case 2

of their experimental data set. (The blue line is the measured data and the magenta

dash-dot is the model results. Depths are calculated from wavemaker)
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2.3 Kaihatu and Kirby (1995)

In contrast to the two aforementioned Boussinesq-type models, this model uses

the depth dependence from fully dispersive linear theory so as such is not limited to

shallow water. The model not only includes the exact linear dispersion relation and

shoaling terms, but also considers the phase mismatches between different frequen-

cies. The model was derived as a parabolic two dimensional model. In this study,

we analyze the one-dimensional version of the model which is formulated as

Anx +
cgx
2cg

An + αnAn = − i

8kccg

( n−1∑
l=1

RAlAn−1e
i
∫

(kl+kn−l−kn)dx

+2
N−n∑
l=1

SA∗lAn+le
i
∫

(kn+l−kl−kn)dx

)
(2.3)

where c is the wave celerity and R and S are nonlinear coefficients.

R =
g

ωlωn−l
[ω2
nklkn−l+(kl+kn−l)(ωn−lkl+ωlkn−l)ωn]− ω

2
n

g
(ω2

l +ωlωn−l+ω
2
n−l) (2.4)

S =
g

ωlωn+l

[ω2
nklkn+l+(kn+l−kl)(ωn+lkl+ωlkn+l)ωn]− ω

2
n

g
(ω2

l +ωlωn+l+ω
2
n+l) (2.5)

The phase mismatches (the complex exponential terms in the nonlinear summa-

tions) dictate the degree to which the individual components are “locked”; a high

degree of locking (small phase mismatch) indicates significant nonlinear energy ex-

change.

2.4 Eldeberky and Madsen (1999)

Based on the approach of Agnon et al. (1993) and Kaihatu and Kirby (1995),

this model was formulated for transformation of waves from deep to shallow water.
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Eldeberky and Madsen (1999) incorporated additional second order terms using the

successive approximation method. The resulting model is:

Anx+
cgx
2cg

An+αnAn+i

( n−1∑
l=1

R′AlAn−1e
i
∫

(kn−kl−kn−l)dx−2
N−n∑
l=1

S ′A∗lAn+le
i
∫

(kn+kl−kn+l)dx

)
= 0

(2.6)

where

R′ =
ωn

8g ωl ωn−l cg

[
g2ω−1

n (ωn−lk
2
l + ωlk

2
n−l) +

(
2− 2 cg (kn − kl − kn−l)

ωn

)
g2klkn−l +

(
1− 2 cg (kn − kl − kn−l)

ωn

)
(ω2

l ω
2
n−l − ω2

nωl ωn−l)

]
(2.7)

S ′ =
ωn

8g ωl ωn+l cg

[
g2ω−1

n (ωn+lk
2
l + ωlk

2
n+l)−

(
2− 2cg(kn + kl − kn+l)

ωn

)
g2kl.kn+l +

(
1− 2cg(kn + kl − kn+l)

ωn

)
(ω2

l ω
2
n+l − ω2

nωlωn+l)

]
(2.8)

Figure 2.2 shows the comparison of the model of Eldeberky and Madsen (1999)

with the Mase and Kirby (1992) experimental data set.

13



0 1 2 3 4
10

−8

10
−6

10
−4

10
−2

gauge:1, 47 cm

f (Hz)

s(
f)

 (
m

2 /H
z)

0 1 2 3 4
10

−8

10
−6

10
−4

10
−2

gauge:3,30 cm

f (Hz)

s(
f)

 (
m

2 /H
z)

0 1 2 3 4
10

−8

10
−6

10
−4

10
−2

gauge:5,20 cm

f (Hz)

s(
f)

 (
m

2 /H
z)

0 1 2 3 4
10

−6

10
−5

10
−4

10
−3

gauge:8,12.5 cm

f (Hz)

s(
f)

 (
m

2 /H
z)

0 1 2 3 4
10

−6

10
−5

10
−4

10
−3

gauge:10,7.5 cm

f (Hz)

s(
f)

 (
m

2 /H
z)

0 1 2 3 4
10

−6

10
−5

10
−4

10
−3

gauge:11,5 cm

f (Hz)

s(
f)

 (
m

2 /H
z)

Figure 2.2: Verification of the model of Eldeberky and Madsen (1999) with Mase

and Kirby (1992) data set. (The blue line is the measured data and the magenta

dash-dot is the model results. Depths are calculated from wavemaker)
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2.5 Comparison of the models with field data set

In this study, the Duck94 8-meter array field data set carried out in Fall 1994

during the two months of September and October is used to validate the behavior

of nearshore models against data. Pressure gauges were used to record pressure at

a sampling rate of 2 Hz which was then converted to free surface elevation. Each

3-hour free surface elevation time series is divided into 21 realizations of 512 seconds.

These are several issues associated with the conversion between pressure and free

surface elevation. The conversion becomes problematic at high frequencies, often

overestimating the energy in this range. Additionally, the presence of bubbles in

breaking waves may also affect the conversion. Figure 2.3 presents the schematic

plan view and section view with the location of interested gauges of Duck94 area.

One problem with using measurments from pressure gauges is that high frequency

motions are often unsampled because the wave motions are strongly attenuated. This

can be a problem for nonlinear models, since their accuracy depends on the total

variance retained in the simulation (Kaihatu and Kirby 1996). Additionally, the high

frequency “cutoff” meant to address the attenuation will move to higher frequencies

in shallower water; If a model had used deeper water conditions for initialization,

these high frequencies would not be included in the simulation. One means to address

this problem is by the addition of a high-frequency “tail” to the spectrum. Following

Smith and Vincent (2003), Zakharov (1999) and Toba (1973); Kaihatu et al. (2007)

defined the form of the high-frequency tail as

s(f) =
2π

cg
.s(k) (2.9)

s(k) = αzk
−4/3 kh < 1 (2.10)

15



s(k) = αtk
−5/2 kh > 1 (2.11)

where s(f) and s(k) denote frequency spectra and wave number spectra respectively.

αz and αt are obtained coefficients obtained from curve fitting. The wave number

spectra is calculated using (2.10) and (2.11) and is transformed to frequency spectra

via (2.9). The behavior of nearshore models to estimate the wave spectra against

field data for two cases of “with” and “without” improvement of the higher frequency

tail is compared. For this aim, the higher frequency tail of the input spectra was

incorporated according to Kaihatu et al. (2007) and a series of simulations was

carried out before and after enhancement of the input spectra. Figure 2.4 shows

how the ability of the model to estimate the evolution of the spectra is improved

by adding a tail to offshore spectra. Thus the first motivation for this study is to

improve the functionality of the model at higher frequencies.

Although the performance of the models is improved after adding a high frequency

tail to offshore spectra, there are still deviations between the model results and the

measured field data, particularly in higher frequencies. Additionally, the high fre-

quency tail offers no phase information, so random phases must be assumed. Hence,

the second motivation of this study is to improve the behavior of the nearshore mod-

els in estimation of either spectral shape or higher order shape parameters at higher

frequencies. For this aim, we focus on the model of Kaihatu and Kirby (1995), here-

inafter KK95, as a reference and compare it with different types of nearshore models.

The results of comparison between the reference model and the consistent model of

Freilich and Guza (1984), hereinafter FG84, shows that despite the fact that the

reference model has a better agreement with the measured data in terms of spectral

analysis, it is not as good in estimation of wave shape parameters, particularly for

skewness. Figure 2.5 to 2.8 show the comparison of each model to the estimates of
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the statistical parameters of waves and Figure 2.9 shows the comparison of spectra

form of these two models. The Duck94 data set for the two months of September

and October 1994 is used for comparison with model results. These results compel

us to review the physical aspects of each model. It is hypothesized that the reference

model is not performing this transition from a partially unlocked state to a locked

state correctly, and the incorporation of a third order bound wave component in the

model (not presently incorporated) would improve this transition. It is anticipated

that, with this improvement, the waves will accurately transition from unlocked,

non-interacting waves to nearly resonant, locked waves as they transverse from deep

to shallow water. We expect that the model can be improved by adding the third

order bound waves since they generate coupling conditions among higher frequency

components which are relevant for deep water. Therefore, the proposed model is a

third order fully dispersive model with improvements in higher frequency part of the

spectra and in estimation of higher order statistical parameters.
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No.10No.2No.1 No.6

Figure 2.3: Schematic view of Duck 94 experiment, U.S. Army Field Research Facility

at Duck, North Carolina, USA (Birkemeier and Thornton, 1994), Left: Plan view;

Right: Section view

2.6 Summary

Our analysis so far consists of evaluation of different nearshore models and their

skill in estimation of spectra and higher order wave velocity statistics. For this

reason, four different nearshore wave models (the fully dispersive models of Kaihatu

and Kirby 1995, Eldeberky and Madsen 1999, and Mase and Kirby 1992 ; and the

consistent shoaling model of Freilich and Guza 1984) are compared to field and

experimental data sets. The dissipation formulation of Thornton and Guza (1983)

is applied to all four models to have equal conditions for comparisons. The free

parameters in the breaking dissipation term for all models are calculated according to

Apotsos et al. (2008) (dissipation mechanism due to the wave breaking is extensively

explained in chapter 4).
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In this chapter, four aforementioned nearshore wave models were reproduced and

examined against the Mase and Kirby (1992) laboratory dataset. Comparisons show

that the model of Eldeberky and Madsen (1999) does not add any improvements

to the model of Kaihatu and Kirby (1995). The hybrid model of Mase and Kirby

(1992) performs well, however this model is not mathematically consistent. Moreover,

despite the fact that the higher frequncy part of the spectra in this model agrees well

compare to other models, the performance of the model in lower frequencies is not

as good as the model of Freilich and Guza (1984) and Kaihatu and Kirby (1995).

In addition, the nearshore wave models were also compared to Duck 94 field data.

The modeling outputs were compared in terms of spectra at different gauge locations

for different initial wave conditions in two different cases of with and without adding

offshore spectra tail. The results of the analysis show that the offshore spectra tail

improves the results of modeling in terms of spectral analysis especially for higher

frequencies. It proves that part of the difference between model results and real

field data is due to loss of higher frequency information in pressure gauges used for

measuring the free surface elevation. Moreover, it identifies that nearshore models

cannot estimate the higher order stochastic parameters (skewness and asymmetry)

even after adding offshore spectra tail.

Generally, it is shown that in all of these models, the skill in estimation of the

higher order statistics such as free surface elevation skewness and asymmetry is not as

good as root mean square wave height and variance (Figure 2.5 to 2.8). In addition, it

is shown that the problematic behavior of these models is generally evident at higher

frequencies. From these preliminary comparison, it is concluded that we need a

“consistent” model which is more accurate prediction of energy in higher frequencies

prediction and higher order statistical parameters.

Comparisons between two models of Kaihatu and Kirby (1995) and Freilich and
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Guza (1984) for statistical parameters of waves shows that although the model of Kai-

hatu and Kirby (1995) has a better agreement for Hrms compare to the other model,

it still needs more improvements for higher order statistical parameters: skewness

and asymmetry.

In the next chapter, we investigate ways of ameliorating the behavior of the fully

dispersive model of Kaihatu and Kirby (1995) and reformulations of this fully dis-

persive nonlinear wave model to account for the bound-wave portion of the high

frequency waves. Thus, this study consists of developing a model that connects the

deep water physics with those of shallow water. This model is expected to be math-

ematically consistent, which means that the transformation of energy from deep to

shallow water and transitions between these asymptotes in intermediate water depth

matches properly. This model should not only satisfies Stokes waves characteristics

and quartet wave interactions for deep water but also takes into account the near

resonant energy transformation of triad wave-wave interactions for nearshore regions.

We would anticipate that the model would be better able to estimate spectral den-

sity at high frequencies with the inclusion of these third order terms. More accurate

results of the spectra and wave shape lead to better estimation of longshore sediment

transports, offshore and onshore sandbar motion and surf zone morphology. Addi-

tionally, breaking wave dissipation is also enhanced in the high frequency range; we

will determine necessary alterations to our present dissipation scheme to improve

high frequency wave prediction.

20



0 0.2 0.4 0.6 0.8
10

−4

10
−3

10
−2

10
−1

gauge:1

f

s(
f)

0 0.2 0.4 0.6 0.8
10

−4

10
−3

10
−2

10
−1

gauge:2

f

s(
f)

0 0.2 0.4 0.6 0.8
10

−4

10
−3

10
−2

10
−1

gauge:6

f

s(
f)

0 0.2 0.4 0.6 0.8
10

−4

10
−3

10
−2

10
−1

gauge:10

f

s(
f)

0 0.1 0.2 0.3 0.4 0.5
10

−4

10
−3

10
−2

10
−1

gauge:1

f

s(
f)

0 0.2 0.4 0.6 0.8
10

−5

10
−4

10
−3

10
−2

10
−1

gauge:2

f

s(
f)

0 0.2 0.4 0.6 0.8
10

−5

10
−4

10
−3

10
−2

10
−1

gauge:6

f

s(
f)

0 0.2 0.4 0.6 0.8
10

−4

10
−3

10
−2

10
−1

gauge:10

f

s(
f)

Figure 2.4: Comparison of spectra for model of Kaihatu and Kirby (1995) and Duck

94 field data set with (top four) and without using tail (bottom four) for offshore

spectra (line: measured field data and dash-line: model result.)
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Figure 2.5: Comparison of Kaihatu and Kirby (1995) and Freilich and Guza (1984)

with measured data for Hrms. (from top to bottom, gauge no.2, 6 and 10 sorted

from offshore to nearshore. Left: model of Freilich and Guza (1984) ; Right: model

of Kaihatu and Kirby (1995). The green and the blue lines are the 45 degree line

and the best fit line respectively.)
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Figure 2.6: Comparison of Kaihatu and Kirby (1995) and Freilich and Guza (1984)

with measured data for variance. (from top to bottom, gauge no.2, 6 and 10 sorted

from offshore to nearshore. Left: model of Freilich and Guza (1984) ; Right: model

of Kaihatu and Kirby (1995). The green and the blue lines are the 45 degree line

and the best fit line respectively.)
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Figure 2.7: Comparison of Kaihatu and Kirby (1995) and Freilich and Guza (1984)

with measured data for skewness. (from top to bottom, gauge no.2, 6 and 10 sorted

from offshore to nearshore. Left: model of Freilich and Guza (1984) ; Right: model

of Kaihatu and Kirby (1995). The green and the blue lines are the 45 degree line

and the best fit line respectively.)
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Figure 2.8: Comparison of Kaihatu and Kirby (1995) and Freilich and Guza (1984)

with measured data for asymmetry. (from top to bottom, gauge no.2, 6 and 10 sorted

from offshore to nearshore. Left: model of Freilich and Guza (1984) ; Right: model

of Kaihatu and Kirby (1995). The green and the blue lines are the 45 degree line

and the best fit line respectively.)
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Figure 2.9: Comparison of model of Kaihatu and Kirby (1995) and Freilich and

Guza (1984) with Duck94 field data set. (gauge no.2, 6 and 10 sorted from offshore

to nearshore)
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3. FULLY DISPERSIVE NONLINEAR WAVE MODEL

While the Boussinesq-based nearshore model in this study (i.e. the consistent

model of Freilich and Guza 1984) shows good agreement with data, it has restrictions

for application in deep water where the dispersiveness of the waves is a dominant

feature. The fully dispersive nonlinear wave models (e.g. Kaihatu and Kirby 1995)

have the ability to extend to intermediate and deep water. Kaihatu (2001) showed

that these models can under certain conditions, replicate the features of Stokes-type

waves in deep water. The nonlinear interaction coefficients in these models dictate

the amount of energy exchanged among the frequencies (Kaihatu 1995).

The aim of this chapter is to reformulate the fully dispersive nonlinear wave model

of Kaihatu and Kirby (1995) to improve the behavior of the model at high frequencies.

Begining with the boundary value problem and the mild slope approximation, the

new version of this model is derived mathematically and numerically. We hypothesize

that the developed model will provide better estimation for higher frequencies energy

evolution.

3.1 Model assumptions

It is assumed that the fluid is incompressible, inviscid and the flow is irrotational.

The coordinate system is Cartesian, (x, z) with its origin placed at still water level.

The x−axis and z−axis are positive shoreward and upward respectively. The model

is derived in one horizontal dimension. The initial condition for the model consists

of time series of free surface elevation, η(t), where t denotes time. The free surface

elevation is measured from z = 0.
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3.2 Mathematical derivation of the model in freqency domain

As it is shown so far, most of the previous nearshore models have some limitations

for higher frequency bands and they are not able to estimate higher order statistical

parameters of waves accurately. To improve the performance of nearshore models,

we derive a new model that takes into account the effects of third order bound

waves. Assuming the fluid is inviscid and irrotational, the boundary value problem

for velocity potential in non-dimensional form is formulated as

∇2
hφ+ φzz = 0 − h < z < εη (3.1)

φz = −∇hh.∇hφ z = −h (3.2)

η + φt +
ε

2
[(∇hφ)2 + φ2

z] = 0 z = εη (3.3)

ηt − φz + ε∇hη.∇hφ = 0 z = εη (3.4)

where ∇ = (∂/∂x, ∂/∂y) and subscripts denote partial derivatives. The velocity

potential is denoted as φ, free surface elevation is η, h is the water depth and ε

(ka, where a is the characteristic amplitude) is the wave steepness or nonlinearity

parameter. We expand the last two equations above, which are the dynamic and

kinematic free surface boundary conditions (equations (3.3) and (3.4) respectively),

using Taylor series about z = 0

η + φt + εηφzt +
ε2

2
η2φzzt +

ε

2
[(∇hφ)2 + φ2

z] +
ε2

2
η[(∇hφ)2 + φ2

z]z +HOT (3.5)

ηt − φz + ε∇hη.∇hφ− εηφzz −
ε2

2
η2φzzz +

ε2

2
η[∇hη.∇hφ] +HOT (3.6)
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where HOT abbreviates the Higher Order Terms that are neglected. After combining

the two free surface boundary conditions, perturbation analysis, substituting η = −φt

and Laplace governing equation and dimensionalizing, the wave equation for each

order is written as,

Second order:

φz = −1

g
[φtt +

1

2
(∇hφ)2

t +
1

2
(φz)

2
t −

1

2g
(φt)

2
zt +∇h.(φt∇hφ)] z = 0 (3.7)

Third order:

φz = −1

g
φtt +

1

2
[(φ2

t (∇2
hφ)t]t −

1

2

{
φt
[
(∇hφ)2 + φ2

z

]
z

}
t

+
1

2
φ2
t (∇2

hφ)z −
1

2
φt(∇hφt∇hφ)z

(3.8)

Following the method of Smith and Sprinks (1975), the linear mild slope equation

is constructed by separation of the depth dependency term and summation of the

solutions

φ =
∞∑
n=1

fn(kn, h, z)Φ̃n(x, y, kn, ωn, t) (3.9)

and

fn =
cosh kn(h+ z)

cosh knh
(3.10)

where fn is the depth dependency term, kn is the total wave number and ωn is

the angular frequency. Moreover, Kaihatu and Kirby (1995) applied Green’s second

identity to fn and Φ̃n as follows

∫ 0

−h
{fnΦ̃n − Φ̃nfnzz} dz = [fnΦ̃nz − Φ̃nfnz]

0
−h (3.11)

Plugging fn(0) = 1 and substituting the boundary condition equation (equation
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3.7 for second order and equation 3.8 for third order) into (3.11), the primary form

of the equation is written as

Second order:

1

g
Φ̃ntt +F1Φ̃n−∇.[F2∇Φ̃n] = −1

g

[
1

2
(∇hΦ̃n)2

t +
1

2
(Φ̃nz)

2
t−

1

2g
(Φ̃nt)

2
zt+∇h.(Φ̃nt∇hΦ̃n)

]
(3.12)

Third order:

1

g
Φ̃ntt + F1Φ̃n −∇.[F2∇Φ̃n] = −1

g

[
1

2
[(Φ̃2

t (∇2
hΦ̃)t]t −

1

2

{
Φ̃t

[
(∇hΦ̃)2 + Φ̃2

z

]
z

}
t

+
1

2
Φ̃2
t (∇2

hΦ̃)z −
1

2
Φ̃t(∇hΦ̃t∇hΦ̃)z

]
(3.13)

where

F1 =
1

cosh2 knh

[
cosh 2knh

4kn
− 1

4kn
− h

2

]
(3.14)

F2 =
1

cosh2 knh

[
cosh 2knh

4kn
− 1

4kn
+
h

2

]
(3.15)

The nonlinear terms at right-hand side of (3.12), the second order equation,

are treated as triad wave-wave interaction to exchange energy among frequencies.

Herein, two arbitrary frequency modes, l and m are chosen
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1

g
Φ̃ntt + F1Φ̃n −∇.[F2∇Φ̃n] =

1

2

[∑
l

∑
m

{
kl tanh klh+ km tanh kmh

g
(Φ̃ltΦ̃mt)t

− (kl tanh klh)(km tanh kmh)(Φ̃lΦ̃m)t

}
−
∑
l

∑
m

{
[∇nΦ̃l.∇nΦ̃m]t +∇n.[Φ̃lt∇nΦ̃m]

+∇n.[Φ̃mt∇nΦ̃l]

}]
(3.16)

In order to split up the spatial dependent quantities (quantities that are depen-

dent on x), multiple scale analysis is used. One of the advantages of multiple scale

analysis is that the quantity is physically separated at each order. It is assumed that

the spatial variable is defined for different scales

x = x+ ε x+ ε2 x (3.17)

x = x+X1 +X2 (3.18)

Therefore, for each order, there are some other terms in the equations obtained

by slow varying assumption of x that has not been shown here. According to Freilich

and Guza (1984), the amplitude and phase function is assumed to vary slowly in x.

Hence the solutions for each order is defined in the following form

Φ̃1n =
−ig
2ωn

an(X1)eiΨn (3.19)

Φ̃2n =
−ig
2ωn

an(X2)eiΨn (3.20)
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where Ψn = ψn(x)−ωnt. This is referred to as a “phase function” and includes both

spatial and temporal terms. The real-valued amplitude is an.

The nonlinearity in the model occurs due to the existence of velocity potential

products in the boundary condition equations and consequently, yields the products

of amplitudes. Assuming two arbitrary harmonics, l and m

alame
i(Ψl+Ψm) (3.21)

ala
∗
me

i(Ψl−Ψm) (3.22)

a∗l ame
i(−Ψl+Ψm) (3.23)

a∗l a
∗
me

i(−Ψl−Ψm) (3.24)

the triad wave-wave interaction terms results in the phase function relationships

Ψn = Ψl + Ψm (3.25)

Ψn = Ψl −Ψm (3.26)

Ψn = −Ψl + Ψm (3.27)

Ψn = −Ψl −Ψm (3.28)

Assuming the following resonant conditions are satisfied among the frequency

components

ωn = ωl + ωm (3.29)

ωn = ωl − ωm (3.30)
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ωn = −ωl + ωm (3.31)

ωn = −ωl − ωm (3.32)

Provided we determine “m” (given l and n), the time periodicity will be canceled

out by taking Fourier series in time

Φ̃n =
φ̃n
2
e−iωnt +

φ̃∗n
2
eiωnt (3.33)

After eliminating the time dependency, the second order triads, (equation (3.16)),

is written as

1

g
ω2φ̃n − F1φ̃n +∇.[F2∇φ̃n] =

−i
4g

[ n−1∑
l

{
2ωn∇nφ̃l.∇nφ̃n−l + ωlφ̃l∇2

nφ̃n−l + ωn−lφ̃n−l∇2φ̃l

+
[kl tanh klh+ kn−l tanh kn−lh

g
(ω2

l ωn−l + ωlω
2
n−l)

+ ωn.(kl tanh klh)(kn−l tanh kn−l)
]
φ̃lφ̃n−l

}]
n

− i

2g

[ N−l∑
l

{
2ωn∇nφ̃

∗
l .∇nφ̃n+l + ωn+l∇2

nφ̃
∗
l − ωlφ̃∗l∇2φ̃n+l

+
[kl tanh klh+ kn+l tanh kn+lh

g
(ω2

l ωn+l − ωlω2
n+l)

+ ωn.(kl tanh klh)(kn+l tanh kn+l)
]
φ̃∗l φ̃n+l

}]
n

(3.34)

The velocity potential for second and third orders is further defined as
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φ̃1n =
−ig
ωn

a(X1)eiψ (3.35)

φ̃2n =
−ig
ωn

a(X2)eiψ (3.36)

where ψ = ψn(x) =
∫
kn dx. Following the method of Freilich and Guza (1984), the

first and second spatial derivatives of ψ in second order is written as,

dψn
dx

= k + ε k1 (3.37)

d2ψn
dx2

= ε
dk

dX1

(3.38)

and in third order,

dψn
dx

= k + ε k1 + ε2 k2 (3.39)

d2ψn
dx2

= ε
dk

dX1

+ ε2
dk

dX2

+ ε2
dk1

dX1

(3.40)

where k is the linear or reference wave number and it is defined using the linear

dispersion relation

ω2
n = gk tanh kh (3.41)

In (3.33), (3.35), k1 is the modified wave number due to bottom slope and k2 is

the nonlinear wave number due to effects of bound waves.

3.2.1 Second order equation

By substituting (3.35), (3.37) and (3.38) into (3.34) and combining linear and

nonlinear terms
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2F2akk1 + 2iF2k
da

dx
+ iF2

dk

dx
a+ iF2xak =

n−1∑
i=1

Ralan−le
i(ψl+ψn−l−ψn)

+
N−n∑
i=1

2Salan+le
i(ψn+l−ψl−ψn) (3.42)

where

R =
ωn

ωl.ωn−1

[2ωnklkn−l + ωlk
2
n−l + ωn−lk

2
l − (

kl tanh klh+ kn−l tanh kn−lh

g
).

(ω2
l ωn−l + ωlω

2
n−l)− ωn(kl tanh klh) · (kn−l tanh kn−lh)]

(3.43)

S =
ωn

ωl.ωn+1

[2ωnklkn+l + ωlk
2
n+l − ωn+lk

2
l + (

kl tanh klh+ kn+l tanh kn+lh

g
).

(ω2
l ωn+l − ωlω2

n+l) + ωn(kl tanh klh) · (kn+l tanh kn+lh)]

(3.44)

dk
dx

is calculated analytically by differentiating the linear dispersion relation

dk

dx
=
dh

dx
(
−k2

sinh−2 kh

tanh kh+ kh
) (3.45)

where dh
dx

is the variation of bathymetry and it is calculated for each step using the

first order finite difference schemes.

Since an in the above equation is real valued, the equation is divided into real and

imaginary part and finally, the resulting system of equations are solved numerically.

The homogeneous part of this second order solution is cancelled out since it has

been already considered previously in the first order solution. The real part of the
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equation (3.42) is used to calculate k1 and the imaginary part is solved for a

k1 =
1.

2F2ak

[ n−1∑
i=1

Ralan−l cos(ψl + ψn−l − ψn)

+
N−n∑
i=1

2Salan+l cos(ψn+l − ψl − ψn)

]
(3.46)

and

da

dx
+ (

1

2k

dk

dx
+
F2x

2F2

)a =
−i

2F2k

[ n−1∑
i=1

Ralan−l sin(ψl + ψn−l − ψn)

+
N−n∑
i=1

2Salan+l sin(ψn+l − ψl − ψn)

]
(3.47)
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3.2.2 Third order equation

Third order part of the equation includes linear terms, quadratic wave-wave in-

teraction terms that are generated by slowly varying assumption of x, and cubic

terms that include the bound wave component.

Substituting (3.36), (3.39) and (3.40) into (3.8), the final form of equation is:

2F2a1kk1 + 2iF2k
da1

dx
+

iF2
dk

dx
a1 + iF2xa1k

=
1

2

n−1∑
l=1

−2g2i
ωn

ωlωn−l

[
2ωn[klal

dan−l
dx

+ an−lkn−1
dal
dx

+ alan−l(klk
1
n−l + kn−lk

1
l )i]

+ ωl[2al
dan−l
dx

kn−l + alan−l(
dkn−l
dx

+ 2kn−lk
1
n−l)i]

+ ωn−l[2an−l
dal
dx

kl + alan−l(
dkl
dx

+ 2klk
1
l )i]e

i(ψl+ψn−l−ψn)

]
+

N−n∑
l=1

−2g2i
ωn

ωlωn+l

[
2ωn[klal

dan+l

dx

+ an+lkn+1
dal
dx

+ alan+l(klk
1
n+l + kn+lk

1
l )i]

− ωl[2al
dan+l

dx
kn+l + alan−l(

dkn+l

dx
+ 2kn+lk

1
n+l)i]

+ ωn+l[2an+l
dal
dx

kl + alan+l(
dkl
dx

+ 2klk
1
l )i]e

i(ψn+l−ψl−ψn)

]
+ i
∑
n

1

4
a3
nk

2
[3/8ω2

n + 3/8(kn tanh knh)]e2iψn (3.48)

The left hand side of the equation or the linear terms in the third order are analogous

to those of the second order except the order of amplitude which is in third order.

37



3.2.3 Dissipation mechanism due to the wave breaking

One problem with incorporation of a energy dissipation mechanism based on wave

statistics (e.g. Thornton and Guza 1983) is that some ad hoc means of specifying

the frequency dependence of the mechanism is required. This is because these mod-

els usually assume that the wave field is narrow-banded, in which a single average

frequency is considered sufficiently descriptive. Mase and Kirby (1992) provided

arguments for using a frequency-squared dependence, while Eldeberky and Battjes

(1996) assume that the dissipation is constant over frequency. Both provide evidence

for the frequency-squared distribution, but Kirby and Kaihatu (1996) note that the

inability to easily model wave motions up to the nyquist frequency might affect how

well this particular distribution would work.

Following Kirby et al. (1992a), Mase and Kirby (1992) and Kaihatu and Kirby

(1995), a dissipation term, αnan, is added to the linear part of the evolution equa-

tion (equation (3.47)) to have a better estimation of waves in the surf zone. The

dissipation term αn is

αn = αn0 + (
fn
fpeak

)2αn1 (3.49)

αn0 = Fβ(x) (3.50)

αn1 = (β(x)− αn0)
f 2
peak

∑N
n=1 |An|2∑N

n=1 f
2
n|An|2

(3.51)

β(x) =
3
√
π

4
√
gh

B3fpeakH
5
rms

γ4h5
(3.52)

Hrms = 2

√√√√ N∑
n=1

|An|2 (3.53)

where β is the energy dissipation rate as dictated by Thornton and Guza (1983)
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and B, γ and F are free parameters; F denotes the frequency dependency of the

dissipation term. According to Kaihatu and Kirby (1996), F = 1.0 determines that

there is no dependence on frequency for dissipation, while F = 0 leads to an f 2
n

dependency for dissipation.

In next section, we will compare different nearshore models to measured data by

choosing similar free parameters for models. The frequency dependency parameter

for all laboratory and field tests was chosen to be F = 0 to have the full dependency

of dissipation to frequency.

3.2.4 Comparison of the mathematical model with Kaihatu and Kirby (1995)

In the present calculations, we take a different style of derivation compare to

Kaihatu and Kirby (1995). The free surface amplitudes are treated as real quantities

whereas in Kaihatu and Kirby (1995), the complex free surface amplitudes are used.

Assuming the amplitudes are real, all nonlinear effects on dispersion are presented

in the phase part of the solution (refer to (3.35) and (3.36)); thus kn includes linear

and nonlinear wave numbers. This is not a case for complex amplitudes since by

assuming complex number for amplitude, the solution in terms of velocity potential

is defined as

φ̃n =
−ig
ωn

Ane
i
∫
kn dx (3.54)

where kn contains just the linear wave number (k) and An = ane
iθ, where θ represents

all nonlinear phase effects and an is the real amplitude.

3.2.5 Comparison of the mathematical model with Janssen et al. (2006)

Janssen et al. (2006) generated a model for waves by including the effect of third

order bound waves. Similar to the model of Kaihatu and Kirby (1995), the free

surface amplitudes are defined as a complex number and the wave number is that
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calculated by the linear dispersion relation. In contrast, in the real amplitude model

developed here, we used the multiple scale assumption to define different scales of

wave number. Janssen et al. (2006) also included the quadratic nonlinear coupling

terms in their model. As it is mentioned earlier in chapter 1, in this model, the

wave wave interaction terms switch from quartet terms to triad terms during the

transformation of the waves from deep to shallow water.

3.3 Numerical analysis and verification of the model

Using the Fast Fourier Transform (FFT), the time series of free surface elevation is

transfered into the frequency domain. The FFT algorithm decomposes the timeseries

into its complex frequency components, An and Bn.

Fn =
An
2
− iBn

2
(3.55)

where Fn is the complex amplitude of the free surface elevation.

η(t) =

N/2∑
i=1

(An cos
2πn

T
t+Bn sin

2πn

T
t) (3.56)

In order to adjust the definition of FFT algorithm for free surface elevation with

that of the wave theory derived earlier

An
2

= F ∗n (3.57)

where F ∗ is the conjugate form of the (3.55). The outputs of the FFT are then used

as an input to the wave model. A fourth order Runge Kutta is used for modeling

purposes. The model outputs are generated in the form of the complex components

for all of the realizations in each gauge location.

As we discussed earlier, in this model the real amplitudes are used instead of the
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complex amplitudes calculated by (3.57). In order to initialize the model with real

amplitudes, the complex amplitudes are replaced with their real and imaginary parts

an =

√
R(An)2 + I(An

2) (3.58)

ψn = arctan(I(An)/R(An)) (3.59)

where R and I denote the real and imaginary part of the complex free surface am-

litude respectively, an is the real amplitude of free surface elevation and ψn is the

phase function.

3.3.1 Harmonic test of Chapalain et al. (1992)

One early experiment on nonlinear wave-wave interaction was carried out by

Boczar-Karakiewicz et al. (1972) demonstrating the energy exchange between the

first and second harmonics. Chapalain et al. (1992) investigated the energy ex-

change between first four harmonics for weakly nonlinear and dispersive long waves

for a constant depth. This experimental model is simple but useful to illustrate the

possible interactions between a limited number of frequencies. The wave character-

istics for each test is shown in Table 3.1. The first four harmonics are chosen for

comparison to data. The free surface amplitudes for each harmonics is calculated

from the model at particular gauge locations and is compared with that of the Cha-

palain et al. (1992). Figures 3.1 through 3.4 illustrates the comparison of three

models: model of Kaihatu and Kirby (1995), consistent model of Freilich and Guza

(1984) and the real amplitude model with tests A,C, D and H of this experiment. It

is apparent that the model of Freilich and Guza (1984) underpredicts the free sur-

face amplitudes for all test cases and harmonics. The model of Kaihatu and Kirby
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(1995) shows better agreement with the data compare to the other two models. This

descrepancy between the model of Freilich and Guza (1984) and the experimental

data probably is due to the violation of weakly dispersive limit that governs this

model. The pursuit model shows a high degree of oscillation at the third and fourth

harmonics, which might suggest that splitting of the wave number into components

with different scales of variability might not be appropriate for this case and more

investigation is required.

Table 3.1: Parameters of Chapalain et al. (1992) experiments

Trial Water depth (m) Wave period (s) Ursel number

A 0.4 2.5 14.9

C 0.4 3.5 30.2

D 0.3 2.5 22.8

H 0.4 3.0 17.6
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Figure 3.1: Comparison of Chapalain et al. (1992) experiment with real amplitude

model, Kaihatu and Kirby (1995) mild slope model and the consistent model of

Freilich and Guza (1984), h = 0.4m and T = 2.5S
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Figure 3.2: Comparison of Chapalain et al. (1992) experiment with real amplitude

model, Kaihatu and Kirby (1995) mild slope model and the consistent model of

Freilich and Guza (1984), h = 0.4m and T = 3.5S
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Figure 3.3: Comparison of Chapalain et al. (1992) experiment with real amplitude

model, Kaihatu and Kirby (1995) mild slope model and the consistent model of

Freilich and Guza (1984), h = 0.3m and T = 2.5S
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Figure 3.4: Comparison of Chapalain et al. (1992) experiment with real amplitude

model, Kaihatu and Kirby (1995) mild slope model and the consistent model of

Freilich and Guza (1984), h = 0.4m and T = 3S
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3.3.2 Comparison of the model with laboratory datasets for random waves

For comparison to experiment, the time series at all gauges is required. By run-

ning the model, the complex Fourier components is obtained for each gauge location

and each realization. The power spectra is calculated using the real and imaginary

parts of the Fourier components. Bartlett averaging is used to take the avarage of

the calculated power for all realizations. Band averaging is used further to reduce

the noise in the power spectrum and smooth the spectral estimate.

To test the model performance, we use two laboratory experimental data sets.

The results from Mase and Kirby (1992), who conducted a set of experiments in

two cases for investigation of shoaling and breaking characteristics of random waves.

Case 2 of this experiment is a most suitable one for testing dispersive models because

the relative depth is high enough (kh = 1.9) and is outside the shallow water range

(Kaihatu and Kirby 1995). This is a rigorous test for dispersive wave models. Fig-

ure 3.5 shows the experimental setup of Mase and Kirby (1992). In this experiment,

the free surface elevation has been measured in the sampling rate of 20 Hz. The

dataset is devided into 7 realizations and each realization has 2048 data points. The

peak frequency of the free surface spectra is 1 Hz and the total number of frequency

components taken for this analysis is 400. Figures 3.6 and 3.7 compares the labo-

ratory measurement with the real amplitude model and the model of Kaihatu and

Kirby (1995).

The comparison of models shows that the real amplitude model agrees very well

with the data. The difference between this model and the model of Kaihatu and

Kirby (1995) shows that the real amplitude model has a significant improvements

in resolving higher frequencies particularly at nearshore gauges compare to other

model.
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 Wave paddle 
12 gauges 

1:20 
47 cm 

10 m 

Figure 3.5: Mase and Kirby (1992) experimental setup

The second dataset is that of Bowen and Kirby (1994) which is used to analyze the

behavior of the dissipation in the model. Figure 3.8 shows the experimental setup

of Bowen and Kirby (1994).This dataset, hereafter denoted BK94, provides three

different wave conditions. The free surface elevation was measured at 47 gauges with

the sampling rate of 25 Hz for the duration of 17 min. The dataset is divided into

12 realizations with 2048 data points in each. Case B of BK 94 is used for this

comparison. In this case, the Hrms and the peak frequency, fp are 0.08 m and 0.225

Hz respectively. Figure 3.9 compares real amplitude models; the model of Kaihatu

and Kirby (1995) and the model of Freilich and Guza (1984) with the experimental

dataset.

The results of the comparisons show that the real amplitude model works rea-

sonably well. Although the model of Freilich and Guza (1984) compares better for

the lower frequency (nearshore part of the spectra), the real amplitude model has a

better agreement at higher frequencies in more nearshore gauge locations compare

to other two models.
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Figure 3.6: Comparison of Mase and Kirby (1992) experiments with real amplitude

model and the mild slope model of Kaihatu and Kirby (1995)
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Figure 3.7: Comparison of Mase and Kirby (1992) experiments with real amplitude

model and the mild slope model of Kaihatu and Kirby (1995)
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Figure 3.8: Bowen and Kirby (1994) experimental setup
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Figure 3.9: Comparison of Bowen and Kirby (1994) experiments with real amplitude

model, Kaihatu and Kirby (1995) mild slope model and the consistent model of

Freilich and Guza (1984)

3.3.3 Comparison of the model with field data sets in terms of spectra

In addition to compare the models with experimental dataset, the model is verified

using field data from the Duck 94 experiment which was conducted at the U.S. Army
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Field Research Facility at Duck, North Carolina, USA in the fall of 1994 (Birkemeier

and Thornton 1994). The field experiments capture a wide range of conditions than

seen in the laboratory. In this test, we examine in detail the accuracy of the model

for four different cases of wave height and peak frequency: high and low wave height

and high and low wave period. Table 3.2 represents the characteristics of each case

in terms of wave height and wave period.

Table 3.2: Characteristics of field experiments cases
Test case Wave height Wave period
09030100 High Low
09011000 Low High
09011600 Low Low
09051600 High High

Figures 3.10 through 3.17 presents the comparison of nearshore wave models with

Duck 94 field data for 256 and 400 retained frequency components. For test case

09030100 (figure 3.10 and figure 3.14), it is apparent that the real amplitude model

has a better performance for all gauges particularly at high frequencies compare to

the other models. It is expected result since this case includes a wider range of

higher frequencies and the improved properties of real amplitude model are more

evident at higher frequencies. It is also clearly seen that the real amplitude model

for case 09051600 (figures 3.13 and 3.17) predicts the behavior of the waves better

that other models, particularly for nearshore gauges. In case 09011000 (figure 3.11

and figure 3.15) the real amplitude model compares as well to data as the other

nearshore models and they follow the same behavior. Figures 3.12 and 3.16 show

the comparison of nearshore models for test case 09011600. In this case, the model
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of Kaihatu and Kirby (1995) has the better agreement compare to the other models

while the real amplitude model does not show significant improvements. Generally

speaking, the real amplitude model is able to improve the estimation of the waves

for higher frequency part of the spectra.
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Figure 3.10: Comparison of Duck94-0903100 field dataset with real amplitude model,

Kaihatu and Kirby (1995) mild slope model and the consistent model of Freilich and

Guza (1984)-256 frequency components
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Figure 3.11: Comparison of Duck94-09011000 field dataset with real amplitude

model, Kaihatu and Kirby (1995) mild slope model and the consistent model of

Freilich and Guza (1984)-256 frequency components
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Figure 3.12: Comparison of Duck94-09011600 field dataset with real amplitude

model, Kaihatu and Kirby (1995) mild slope model and the consistent model of

Freilich and Guza (1984)-256 frequency components
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Figure 3.13: Comparison of Duck94-09051600 field dataset with real amplitude

model, Kaihatu and Kirby (1995) mild slope model and the consistent model of

Freilich and Guza (1984)-256 frequency components
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Figure 3.14: Comparison of Duck94-09030100 field dataset with real amplitude

model, Kaihatu and Kirby (1995) mild slope model and the consistent model of

Freilich and Guza (1984)-400 frequency components
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Figure 3.15: Comparison of Duck94-09011000 field dataset with real amplitude

model, Kaihatu and Kirby (1995) mild slope model and the consistent model of

Freilich and Guza (1984)-400 frequency components
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Figure 3.16: Comparison of Duck94-09011600 field dataset with real amplitude

model, Kaihatu and Kirby (1995) mild slope model and the consistent model of

Freilich and Guza (1984)-400 frequency components
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Figure 3.17: Comparison of Duck94-09051600 field dataset with real amplitude

model, Kaihatu and Kirby (1995) mild slope model and the consistent model of

Freilich and Guza (1984)- 400 frequency components

3.3.4 Comprehensive comparison of the model with field data

In this section, a wide range of initial wave condition from Duck 94 field dataset

is used to check the validity of the model. For each data point, the real amplitude

model is compared with other models for each individual part of the spectra. For

each simulation the spectra is divided into its three bands: 0−0.5fp, 0.5fp−1.5fp and

1.5fp to the last frequency where fp is the peak frequency component. Figures 3.18

to 3.20 show the comparison of the real amplitude model with model of Kaihatu

and Kirby (1995) and the consistent model of Freilich and Guza (1984) for different

segments of spectra and three gauges from offshore to nearshore. At first glance,

61



it is seen that the real amplitude model shows a good general agreement with field

data. In Figure 3.20, it is also shown that for the higher frequency band of the

spectra (band 3), the real amplitude model overpredicts the amount of spectral

energy compare to the other two models. That means that this model not only has

improved the prediction of spectral energy at higher frequencies but also has the

ability to have even better estimation for the higher frequency specra by changing

the free parameters of breaking term and make the higher frequency tail more closer

to that of the data. Tables 3.3 to 3.5 present the quantified statistical skills of each

model for bands 1 to 3 respectively.
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Figure 3.18: Comparison of real amplitude model with the model of Kaihatu and

Kirby (1995), 256 frequency components, band:1. Left to right: real amplitude

model; model of Kaihatu and Kirby (1995) and model of Freilich and Guza (1984);

Top to bottom: gauges 2, 6 and 10 from offshore to nearshore.
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Figure 3.19: Comparison of real amplitude model with the model of Kaihatu and

Kirby (1995), 256 frequency components, band:2. Left to right: real amplitude

model; model of Kaihatu and Kirby (1995) and model of Freilich and Guza (1984);

Top to bottom: gauges 2, 6 and 10 from offshore to nearshore.
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Figure 3.20: Comparison of real amplitude model with the model of Kaihatu and

Kirby (1995), 256 frequency components, band:3. Left to right: real amplitude

model; model of Kaihatu and Kirby (1995) and model of Freilich and Guza (1984);

Top to bottom: gauges 2, 6 and 10 from offshore to nearshore.
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Table 3.3: Summary of statistical skills for each model at band 1. The first row
shows the standard deviation and the second row shows the correlation coefficient
for each gauge.

Gauge number real amplitude model KK95 FG84
Gauge 2 2.3545e-04 2.0360e-04 1.1368e-04

0.98 0.98 0.99
Gauge 6 0.0011 8.0212e-04 6.9653e-04

0.88 0.93 0.94
Gauge 10 0.0307 0.0476 0.0475

0.15 0.11 0.13

Table 3.4: Summary of statistical skills for each model at band 2. The first row
shows the standard deviation and the second row shows the correlation coefficient
for each gauge.

Gauge number real amplitude model KK95 FG84
Gauge 2 0.0281 0.0120 0.0230

0.98 0.99 0.99
Gauge 6 0.0232 0.0145 0.0135

0.90 0.96 0.96
Gauge 10 0.0112 0.0094 0.0100

0.84 0.88 0.88

3.3.5 Evolution of the model with an arbitrary TMA spectrum

Following Kaihatu (2009), we examine the behavior of the model during propa-

gation of an arbitrary TMA spectrum (Bouws et al. 1985) over a constant depth.

The peak frequency of TMA spectrum is 0.07 and the time series of TMA spectrum

is generated using random phases and an inverse Fast Fourier Transform algorithm,

using the TMA spectrum shape as input. The time series of free surface elevation

is then divided into 32 realizations with 2048 data point in each. The water depth

is 2 m, the wavelength is 71 m and the length of the domain of interest is 5100m.

This distance is relatively long (70 wavelengths) to test the evolution of waves and
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Table 3.5: Summary of statistical skills for each model at band 3. The first row
shows the standard deviation and the second row shows the correlation coefficient
for each gauge.

Gauge number real amplitude model KK95 FG84
Gauge 2 0.0149 0.0247 0.0267

0.99 0.98 0.98
Gauge 6 0.0372 0.0403 0.0392

0.90 0.92 0.92
Gauge 10 0.0094 0.0047 0.0058

0.86 0.95 0.94

the behavior of nonlinear terms caused by interaction of waves. Figure 3.21 show

the results of evolution of spectra for 7 gauges. As it is seen, during the transition

of waves, the level of spectral energy changes gradually. The spectra attains a wider

shape, as energy at the spectral peak is lost to low and high frequency bands. After

some distance, the spectrum ceases to evolve any further. This has also been seen in

the model of Kaihatu and Kirby (1995) by Kaihatu (2009).
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Figure 3.21: Evolution of TMA spectrum. (The blue line: the original TMA spec-

trum; the red dash-line: the TMA spectrum after evolution)
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3.3.6 Comparison of the model with experimental datasets in terms of higher

order statistical parameters

During shoaling, the wave shape changes and becomes more skewed and asym-

metric. Figure 3.22 shows the concepts of wave shape parameters in graphical form.

This change in waveform is described by two higher order statistical parameters,

skewness and asymmetry (Elgar etal. 1992b). Skewness is defined as a deviation

from sinusoidal wave shape about the horizontal plane. This generally implies a

wave with wide trough and narrow crest shape. The shape of the waves becomes

more asymmetric respect tovertical plane when waves propagate to surf zone; this

is termed asymmetry. Surf zone waves attain a saw-tooth or forward-leaning shape.

We calculate the higher order statistical parameters of waves such as skewness and

asymmetry from the timeseries as follows

Skewness =
〈η3〉
〈(η2)3/2〉

(3.63)

Asymmetry =
〈H(η3)〉
〈(η2)3/2〉

(3.64)

where η is free surface elevation and H is the Hilbert transform and the symbol 〈〉

denote the average.

The time series of free surface elevation is calculated using the inverse FFT from

the amplitudes from the wave model. The timeseries is obtained for each realiza-

tion separately and the parameters are calculated using (3.63) and (3.64). Then,

the average is taken for all realizations to find a certain value for these quantities.

This process is repeated for all gauge locations. Figure 3.23 depicts the comparison

of Hrms, variance, skewness and asymmetry with the experimental dataset of Mase
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and Kirby (1992). Despite the model compares well in terms of Hrms and variance,

it cannot shows good agreements with observed data for skewness and asymmetry.

Kaihatu (1995), Kirby and Kaihatu (1996); and Bowen (1994) declared that trun-

cating the frequency components instead of using the full spectra can cause this

descrepancy.

We examined the model with different values of ε (used as a free parameter in the

phase function in equation (3.37) to (3.40)) and realized that the calculated skewness

and asymmetry are sensitive to this value. However, the change in the spectrum is

not significant by changing this quantity if it is chosen appropriately. This value is

the nonlinearity parameter and should be much less than 1. Figure 3.24 illustrates

the effects of ε on predicted skewness and asymmetry. It is evident that although

the predicted Hrms and variance do not have significant changes, the predicted wave

shape parameters show better agreement with observed data by using different value

for ε.

70



Figure 3.22: Changes in Waveform during the transformation to nearshore (Ole

Secher Madsen, 2010)
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Figure 3.23: Third order comparison with Mase and Kirby (1992) dataset. The value

of the ε is 0.01. (The blue line: the observed data; the dash-dot magenta: the model

results)
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Figure 3.24: Third order comparison with Mase and Kirby (1992) dataset after

changing the ε. The value of ε is 0.001. (The blue line: the observed data; the

dash-dot magenta: the model results)

3.4 Summary

In this chapter, we have described the mathematical derivation of the fully disper-

sive nonlinear wave model in terms of the real amplitudes rather than the complex

amplitudes (e.g. Kaihatu and Kirby 1995). To ameliorate the behavior at higher

frequencies, the effects of third order bound waves are studied in fully dispersive

nearshore wave model. The equation not only includes the second and third order

triad wave-wave interaction terms but also the third order bound waves for the first

harmonics. This model is based on the boundary value problem and is extended

up to third order via multiple scale analysis. Since the spatial phase function varies

slowly in x, the multiple scale analysis is a useful method to split up this quantity

into certain parts based on the required order.
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The evolution of the amplitude from the first harmonics to the fourth harmonics

for the real amplitude model is compared with the dispersive model of Kaihatu and

Kirby (1995) and the consistent model of Freilich and Guza (1984). For this aim,

the experimental dataset of Chapalain et al. (1992) was used. The comparisons

show that the model of Freilich and Guza (1984) tends to underpredict the higher

harmonics amplitude at all test cases. While the model of Kaihatu and Kirby (1995)

demonstrates the better agreement among the other two models. The real amplitude

model agrees well for the first two harmonics. However, this model shows some

oscillating features for the third and fourth harmonics.

The validity of the model was investigated using appropriate experimental and

fields datasets. Testing the model using laboratory data sets with a wide range of

relative water depths (kh), from a higher value for Mase and Kirby (1992) dataset

to the smaller value of kh in the experimental data set of Bowen and Kirby (1994)

strengthen the validity of the model for different wave conditions. Comparing with

Duck 94 field data set, it is more evident that the real amplitude model is able to

predict the spectral tail better than the other two models (Kaihatu and Kirby 1995;

and Freilich and Guza 1984) for certain wave conditions (e.g. high wave height and

low wave period; high wave height and high wave period). Since the value of the

relative water depth, kh, for Bowen and Kirby (1994) dataset is greater than that

of the Duck94 field data sets, the good agreement of the real amplitude model with

the Bowen and Kirby (1994) (Figure 3.9) reveals that the model is able to estimate

even the much higher frequencies. Briefly, compared to the previous models, the real

amplitude model is able to improve the prediction of high frequencies in the spectra.

Using a wider range of initial wave condition to examine the validity of the model

indicates that the real amplitude model generally agrees well with field data and

tends to overpredict the spectral energy at higher frequencies (band 3 or the third
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segment of spectra) However the other two models underpredict the energy. It may

be possible to fix energy overprediction by recalibrating mechanism.

To make sure that the real amplitude model shows a reasonable response while

propagating at a long distance with constant depth, the evolution of spectra in the

model was examined using a typical TMA spectrum as an initial wave condition.

It is clearly seen that the spectral shape gradually becomes wider during a long

distance transition which shows the energy transfers properly from lower to higher

frequencies.

The final test to verify the model was the ability of the model to predict the

higher order statistical parameters such as skewness and asymmetry. Although this

model compares well for Hrms and variance, it is poorly compared with data for

skewness and asymmetry. Kaihatu (1995); Kirby and Kaihatu (1996) showed that the

predicted skewness and asymmetry would be sensitive with the number of frequency

components used to calculate these parameters.
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4. CHARACTERIZING THE DISSIPATION IN BREAKING WAVES

The characterization of breaking waves in models has seen much advance in recent

years. This characterization, in turn, can be applied to data in order to obtain

information on instantaneous breaking characteristics. Using several high-resolution

laboratory data sets of wave breaking in shallow water, the threshold parameter

of the breaking formulation of Zelt (1991) is parameterized at each gauge location

using the corresponding bulk dissipation calculated from each dataset. Although

this parameter is defined as a constant value for solitary waves over the constant

depth in the original formulation, adjustment of this value allows its application to a

wider range of wave conditions. The calibrated parameter is then used to calculate

the instantaneous dissipation from time series of free surface elevation. We show

that the relationship between this parameter and normalized water depth is best

expressed as a hyperbolic tangent curve. A similar trend between third moments

of the free surface and the calibrated parameter exists. These parameters are also

applied to find a relationship between the slope of the free surface elevation spectra

and the slope of the associated dissipation coefficient. We determine that previous

work on the trends of the frequency dependence of dissipation, while changed with

this calibrated parameter, is not invalidated.

4.1 Introduction

As waves propagate from offshore to nearshore regions, due to the shoaling pro-

cess, the wave height and the rate of energy increases; and the group velocity of

waves decreases gradually. This phenomena leads the waves to become unstable and

break. Consequently, the wave height decays and the dissipation caused by breaking

becomes dominant. The complexity of the resulting flow conditions are a challenge
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for models intended to simulate processes in the surf zone.

Generally, wave breaking models are classified into three types of models: The

first type of models are based on the probabilistic approach of wave height distri-

bution (Battjes and Janssen 1978; Thornton and Guza 1983; Baldock et al. (1998);

and Janssen and Battjes 2007). These types of models differ from each other in

definition of the probability distribution function for wave height at breaking point.

The second type of breaking models consists of a phase resolving wave transforma-

tion models such as the models we discussed earlier in chapters 3 and 4; and an

extra term added to these models to enhance the ability of the model to simulate

the waves at breaking zone. Heitner and Housner (1970); Zelt (1991); Karambas and

Koutitas (1992); and Kennedy et al. (2000a) applied the concept of eddy viscosity

to characterize dissipation and added the corresponding term into their Boussinesq

model. Svendsen (1984) and Schaffer et al. (1993) developed a breaking model

which is associated with the modeling of a “roller” generated due to the breaking.

Veeramony and Svendsen (2000) also developed a model for transformation of vor-

ticity generated beneath the roller area during the breaking process. The third type

of wave breaking models employs Direct Numerical Simulation (DNS) models, that

simulates the transformation of waves from the first gauge to the last gauge using

one integrated model. DNS solves the Navier-Stokes equations using computation-

ally intensive techniques of Computational Fluid Dynamics (CFD). Using the DNS

methods, the behavior of the fluids under different turbulence with different spatial

and temporal scales. The COBRAS model of Lin and Liu (1998) is an example

for these types of models that simulates the wave propagation in non-breaking and

breaking zones in one integrated model. This study has focused on the first and

second type of breaking models which are extensively explained later.

One of the first studies of breaking random waves was performed by Battjes
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and Janssen (1978). They developed a probabilistic model for estimating the bulk

energy dissipation. In this model and earlier models, the part of wave height proba-

bility distribution function beyond the presumed breaking point is discarded. They

offered truncated Rayleigh distribution function to estimate breaking wave height.

The transformation model of Thornton and Guza (1983) for irregular waves in surf

zone, not only describes shoaling mechanism of waves but also includes dissipation

mechanism in both form of wave breaking and bottom friction. In this model, the en-

ergy dissipation due to breaking is calculated using an empirical formulation which

is based on a statistical distribution of wave height. Theoretically, it is assumed

that the distribution of wave height follows the full Rayleigh probability distribution

function and Hrms represents the wave height averaged for all range of frequencies

over the spectrum. Baldock et al. (1998) reformulated the model of Battjes and

Janssen (1978) for steep beaches by discarding the depth restrictions on wave height

for breaking criteria. Later, Janssen and Battjes (2007) proposed a new formulation

for wave height distribution and modified the formulation of Baldock et al. (1998).

This new formulation would be also beneficial for steep sloped beaches where the

surf zone is unsaturated.

Zelt (1991) added an extra term for eddy viscosity into a Lagrangian Boussinesq

model. In this model, solitary-type waves were assumed a common way to model

the runup (Synolakis 1986). In addition, Kennedy et al. (2000) proposed an eddy

viscosity model that calculates the dissipation in the same manner as zelt (1991) with

the exception that a linear relationship for free parameter, η∗t , is defined instead of

assigning a constant value as was done in Zelt (1991).

Kirby and Kaihatu (1996) expressed a new formulation to calculate the time de-

pendent eddy viscosity for estimation of instantaneous energy dissipation. Moreover,

they assumed that dissipation coefficient, αn, is proportional to the square of fre-
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quency, f 2 justifying the choice by using the frequency dependence needed for the

dissipation to result in the sawtooth-type waves seen in the surf zone. Later, Kai-

hatu et al. (2007) parameterized the power of dissipation coefficient for the frequency

dependent dissipation model. Goertz et al. (2012) investigated the energy dissipa-

tion on top of the fringing reefs using the combination of two probabilistic breaking

models: Thornton and Guza (1983) and Janssen and Battjes (2007). Moreover, they

applied the obtained energy dissipation to compare it with the instantaneous dissi-

pation calculated from zelt (1991) and find the best Zelt parameter that leads the

instantaneous dissipation to be close to that of the Thornton and Guza (1983).

Breaking models, either in frequency domain or time domain, include free param-

eters that depend on different environmental conditions. To enhance the ability of

the wave transformation models for better resolving of the breaking process, partic-

ulary in inner surf zone, free parameters need to be chosen carefully. For instance,

in the time domain approach of Zelt (1991), dissipation term is expressed in terms

of instantaneous dissipation. Instantaneous dissipation involves the Zelt parameter

(0.3 in (4.9)) which is not defined properly for irregular waves. In frequency domain

models such as Kaihatu et al. (2007), the free parameters of γ & β in the Thornton

and Guza (1983) formulation and the power of frequency dependent term need to be

modified as well.

Briefly, the aim of this chapter is to revisit the free parameters in the formu-

lation of Thornton and Guza (1983) and frequency dependency term of breaking

discussed in Kaihatu et al. (2007). At first, the breaking models are explained in

detail and we describe our tuning method for free parameters such as γ in the for-

mulation of Thornton and Guza (1983) and the threshold parameter in Zelt (1991).

The breaking free parameter of Zelt (1991) is parameterized for each gauge loca-

tion separately using the corresponding bulk dissipation calculated from dataset and
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tuned Zelt parameter then is used to calculate the instantaneous dissipation and

the corresponding dissipation coefficient. As a result, the corresponding power of

the frequency in frequency dependent dissipation formulation is estimated. Further-

more, the relationship between the power of frequency and the damping coefficient

calculated using the tuned Zelt (1991) threshold parameter is investigated. The re-

lationship between third-moment quantities such as skewness and asymmetry with

the calibrated Zelt parameter is also explained.

4.2 Classification of wave breaking models

4.2.1 Thornton and Guza (1983)

Using a statistical approach, Thornton and Guza (1983) assumed that the sta-

tistical distribution of wave heights in the surf zone can be described by a truncated

Rayleigh distribution. They also found that the truncation of the distribution is

used to eliminate wave heights in the distribution due to breaking, and is depen-

dent on the free parameters fitted to data. Thornton and Guza (1983) formulated

a transformation model based on the energy flux due to the breaking and friction

mechanism

−∂Ecg
∂x

= εb + εf (4.1)

E =
1

8
ρgH2

rms (4.2)

cg =
c

2

(
1 +

2kh

sinh2kh

)
(4.3)

where cg is the group velocity, c is the phase speed and E is the energy density. εb

and εf are the dissipation due to the breaking and friction respectively. Substituting

(4.2) and (4.3) into (4.1) and using the definition of Rayleigh distribution function
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for wave height, the bulk dissipation is written

εb =
3
√
π

16
ρgB3f

H5
rms

γ2h3

[
1− 1

(1 + (Hrms/γh)2)5/2

]
(4.4)

where εb is the bulk dissipation, ρ is the density of the fluid, Hrms is the root mean

square wave height, f is the peak frequency; and γ and B are free parameters.

4.2.2 Zelt (1991)

Zelt (1991) formulated the wave breaking model by adding an artificial viscosity

term in the momentum equation of Zelt and Raichlen (1990) lagrangian Boussinesq

wave model. The eddy viscosity is expressed based on the mixing length and is

written

νb = −B∗l2∇u (4.5)

where the factor B∗ is the breaking criteria, and l is the mixing length

l = δ(h+ η) (4.6)

Eliminating η using the continuity equation, substituting (4.6) into (4.5) and re-

placing ∇u with − 1
h
ηt, the eddy viscosity is modified

νb = −B∗δ2hηt (4.7)

where

B∗ =


1 ηt > 2η∗t

ηt/η
∗
t − 1 η∗t < ηt < 2η∗t

0 ηt < η∗t

(4.8)
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η∗t is the critical criteria of free surface elevation change in time and is given by

η∗t = 0.3
√
gh (4.9)

Zelt (1991) assumed that waves are solitary. Hence, in general, the coefficent 0.3

in the equation above is not necessarily appropriate where the irregular swell waves

exist. In the present work, rather than using the constant value, this coefficient

(hereinafter Zelt parameter) is parameterized for different gauge locations.

4.2.3 Frequency dependency formulation of wave breaking

While the statistical approach of Thornton and Guza (1983) is useful, it is of

limited utility for frequency domain models as no information on the frequency dis-

tribution of the dissipation is provided. Mase and Kirby (1992) hypothesized that

the dissipation term should follow an f 2
n dependence, where fn is the frequency for

each component. They developed a frequency domain model for random wave trans-

formation with an extra term that takes into account the energy dacay in surf zone.

Using Zelt (1991) formulation for eddy viscosity (4.5), Kirby and Kaihatu (1996)

described the instantaneous energy dissipation in terms of the eddy viscosity

εb = −ρ(
η

h
)(νbηt)t (4.10)

Using (4.10) and the definition of the energy flux, they formulated the damping

coefficient in terms of the free surface and the eddy viscosity spectra

αn =
1

ρgcg

1√
2∆f

√
Sεb(n)

Sη(n)
(4.11)

where αn is the damping coefficient; and Sη(n) and Sεb(n) are the free surface and

82



the instantaneous dissipation spectra respectively and are defined as

Sη(n) =
|An|2

2∆f
(4.12)

Sεb(n) =
|εbn|2

2∆f
(4.13)

Since the instantaneous dissipation shows up as pikes in the time series, its trans-

formation into the spectral domain appears as a “white” spectrum (spectrum con-

stant with frequency). The damping coefficient, therefore, will correspond to the

inverse of free surface spectra via (4.11). By analysing high-resolution laboratory

data sets, Kaihatu et al. (2007) proved this argument that the tendency of the

damping coefficient toward the power of 2 in the very nearshore is robust.

As it is shown in Mase and Kirby (1992) and Kaihatu and Kirby (1995), the

damping term, αnAn, is represented in the evolution equation as

Anx +
cgx
2cg

An = −αnAn (4.14)

where

αn = αn0 + (
fn
fpeak

)2αn1 (4.15)

αn0 = Fβ(x) (4.16)

αn1 = (β(x)− αn0)
f 2
peak

∑N
n=1 |An|2∑N

n=1 f
2
n|An|2

(4.17)

β(x) =
3
√
π

4
√
gh

B3fpeakH
5
rms

γ4h5
(4.18)

Hrms = 2

√√√√ N∑
n=1

|An|2 (4.19)

where αn is the damping coefficient, β is the energy dissipation rate as dictated by
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Thornton and Guza (1983) and B, γ and F are free parameters. F denotes the

frequency dependency of the dissipation term. According to Kaihatu and Kirby

(1996), F = 1.0 determines that there is no dependency to frequency for dissipation,

while F = 0 leads to an f 2
n dependency for dissipation. They also investigated

the effects of dissipation weighting factor on higher order wave statistics parameters.

Moreover, Apotsos et al. (2008) enhanced the functionality of the dissipation models

by parameterizing the free parameters of γ and B in the formulation.

Kaihatu et al. (2007) introduced their approach for calculation of dissipation. In

this method, the dissipation is related to the damping coefficient and the damping

coefficient is calculated using the instantaneous energy dissipation of Zelt (1991).

The dissipation is defined by

D = −ρg
N∑
n=1

Cgn|An|2αn (4.20)

where D is dissipation and αn is the damping coefficient calculated using (4.11).

4.3 Parameterization

4.3.1 Parameterization of γ and Zelt parameter

A high resolution experimental dataset, (Bowen and Kirby 1994) is used for pa-

rameterizing the threshold parameter of Zelt (1991). This dataset, hereinafter BK94,

includes three different wave conditions. The free surface elevation was measured at

47 gauges with the sampling rate of 25 Hz for the duration of 17 min. The dataset is

divided into 12 realizations with 2048 data points in each. Table 4.1 shows the wave

condition for each case of Bowen and Kirby (1994). The experimental setup of this

experiment (1994) has been also shown in chapter 3.

Calculating the bulk dissipation at each gauge location using (4.1) by ignoring
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the dissipation due to friction and equating it with the calculated value of dissipa-

tion from Thornton and Guza (1983) formulation, γ is calibrated for each gauge by

minimizing the calculated square error (the difference between calculated dissipation

from bulk dissipation and Thornton and Guza (1984) formulation). At each step,

the dissipation with a particular γ; and its associated error is calculated and the

best γ with minimum error is chosen. Figure 4.1 shows the calibrated γ against the

normalized water depth.

Table 4.1: Wave conditions for Bowen and Kirby (1994) experiments

Case name Hrms (m) Peak frequency (Hz)

A 0.07 0.5

B 0.08 0.255

C 0.09 0.255
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Figure 4.1: Parameterization of γ for BK94 dataset. Black circle: Case A, Green

asterisk: Case B; Red square: Case C

For calibrating the Zelt parameter, the bulk dissipation at each individual gauge

is calculated directly from the data set using (4.1). The Zelt parameter is chosen in

the range of 0.05 to 2.5 with the step size of 0.01. The model is run for each value

in this range and the damping coefficient and the dissipation for a particular value

of Zelt parameter is calculated using (4.11) and (4.20) respectively. The calculated

dissipation is compared with the bulk dissipation calculated from the data set and

the best value for Zelt parameter assiciated with minimum square error is chosen.

The calibration process is repeated for all gauge locations. Figure 4.2 and 4.3 show

the calibrated Zelt parameter against water depth and the calibrated instantaneous

dissipation respectively.

As it is seen in figure 4.2, the calibrated parameter is clearly correlated with

water depth. For this aim, the water depth is normalized by (Hrms/h)/(kph)2 where

the Hrms is the root mean square wave height, h is the water depth and kp is the

wave number at peak frequency. The relationship between Zelt parameter and the
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normalized water depth is properly explained by the hyperbolic tangent curve

ZP = a+ b ∗ tanh(cx) (4.21)

where x is the normalized water depth, (Hrms/h)/(kph)2; and a, b and c are the

curve-fitting parameters. It is apparent from Figure 4.2 that the calibrated Zelt

threshold parameter tends to a constant value as waves propagate to neashore.
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f(x) = a + b*tanh(c*x)
Coefficients (with 95% confidence bounds):
a = 0.3438  (−0.02342, 0.7111)
b = 1.022  (0.6499, 1.394)
c = 0.2469  (0.1009, 0.3929)

BK94−Case A
BK94−Case B
BK94−Case C

Figure 4.2: Calibrated Zelt parameter at each gauge for three cases of Bowen and

Kirby (1994)
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Figure 4.3: instantaneous dissipation after calibrating the threshold Zelt parameter

4.4 Analysis and comparisons

4.4.1 The frequency dependency of breaking waves

In this section, we investigate the relationship between the shape of the free

surface elevation power spectrum and that of the damping coefficient, αn. Using the

parameterization of Smith and Vincent (1992), Zakharov (1999) and Toba (1973)

for the slope of spectra tail, Kaihatu et al. (2007) showed that in the surf zone the

slope of spectra follows the power of f−2. They also strengthen this idea that the

frequency dependency term in the formulation of α(n), follows the “power of 2” trend

in the surf zone that corresponds to the negative slope of spectra tail. Following Zelt

(1991), they assumed the value of 0.3 for the Zelt threshold coefficient.
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Herein, we revisit this relationship between power of spectra and the damping

coefficient using the calibrated Zelt threshold parameter at each gauge instead of the

constant value of 0.3. The calibrated values for instantaneous dissipation value the

dissipation spectra, Sεb and its corresponding damping coefficient, αn are calculated

using (4.13) and (4.11) respectively. Figure 4.4 shows the relationship between the

negative slope of log(S(f)) and the slope of log(α(f)) for all datasets. Comparing

this results with the findings of Kaihatu et al. (2007), it is appeared that using

the new values for Zelt threshold parameter causes the calculated dissipation to be

evident at fewer locations. Moreover, the instantaneous dissipation has extremely

changed compare to Kaihatu et al. (2007). However, the associated values for the

slope of αn are similar. Also, the tendency toward the value of 2 still occurs gradually.
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Figure 4.4: Comparing the slope of the spectra and α(n)

90



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−0.5

0

0.5

1

1.5

Water depth (m)

Bowen and Kirby (1994)− Case A

0 0.05 0.1 0.15 0.2 0.25
0.5

1

1.5

2

Water depth (m)

Bowen and Kirby (1994)− Case B

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−2

−1

0

1

2

Water depth (m)

Bowen and Kirby (1994)− Case C

 

 
Zelt parameter
asymmetry
skewness

Figure 4.5: Relationship between wave shape parameters and Zelt parameter

4.4.2 Skewness and asymmetry

We calculate the higher order statistical parameters of waves such as skewness

and asymmetry (discussed earlier in chapter 3) from the time series by recalling

equations 4.63 and 4.64 from the previous chapter. Figure 4.5 shows the variation of

skewness, asymmetry and the Zelt parameter against the water depth. It is apparent

that by decreasing the water depth, where the most breaking events occurs, the value

of Zelt parameter tend to be closer to the asymmetry value. This is sensible, as both
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quantity (to some degree) the front face slope of wave in the surf zone.

4.5 Summary

In this chapter, γ, the free parameter in Thornton and Guza (1983) and Zelt

threshold parameter of Zelt (1991) were parameterized at each gauge location based

on the bulk dissipation calculated from the measured data. Moreover, we applied

the calibrated values of Zelt parameter to calculate the instantaneous dissipation

and its corresponding damping coefficient. The relationship between the free surface

elevation spectra and the calculated damping coefficient with parameterized Zelt

threshold parameter was discussed in detail.

As indicated in figure 4.4, although the threshold Zelt parameter and conse-

quently the dissipation intensity has changed compare to Kaihatu et al. (2007) who

used the constant value of 0.3 for this parameter, it does not invalidate the ten-

dency of power of frequency dependency term toward 2. Therefore, this tendency

is the nearshore asymptote for random waves and this is not affected by the rate of

dissipation intensity.

It is evident that the hyperbolic tangent is the best fitted curve to explain the

behavior of threshold Zelt parameter vs. normalized water depth. In addition, the

tendency toward the constant value for this parameter is clearly seen from figure 4.2.

As it is shown in figure 4.5, asymmetry seems to track better with Zelt parameter

than skewness which seems sensible since the Zelt parameter is concerned with the

front face slope. Additionally, skewness decreases in the very inner surf zone, whereas

asymmetry seems pretty monotonic for the most part. The asymmetry and skewness

get quite variable as the Zelt parameter increases. It seems that the Zelt parameter

is simply a lower limit on breaking, which makes the variability sensible in the inner

surf zone when breaking is widespread.
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5. CONCLUSION AND FUTURE WORKS

The aim of the present work was developing a fully dispersive wave model that

improves the prediction of high frequency tail of the wave spectra. To do this,

we have derived a deterministic model based on the reformulation of the dispersive

model of Kaihatu and Kirby (1995). This frequency domain model includes the triad

wave-wave interaction terms in the second order in addition to the triads and the

bound waves in third order. To take into account the dissipation mechanism due to

the breaking waves, the dissipation term based on the formulation of Thornton and

Guza (1983) was added to the model.

The developed model (also called real amplitude model) has been verified numer-

ically using the comparisons with either experimental or field data. The comparisons

of free surface elevation amplitude for the first four harmonics with the experimental

data of Chapalain et al. (1992) demonstrate that the real amplitude model has rela-

tively good agreement with observed data. However more investigations are required

for harmonics 3 and 4.

The comparisons of the model-predicted spectra with laboratory experiments

shows that the model accurately predicts the high frequency tail of spectra compare

to the model of Kaihatu and Kirby (1995) and the consistent model of Freilich and

Guza (1984). The variety of test cases for different wave conditions confirms that

the model is verified to predict wave conditions with a wide range of ursell numbers.

Furthermore, the model was compared with the Duck 94 field data. The compre-

hensive comarison of model-predicted spectra with observed data at three spectral

band separately, illustrates that the model generally compares well with observed

data. While the other two models underpredicts the amount of spectral energy at
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band three, the real amplitude model overpredicts the energy and this is encouraging

since the overprediction can potentially fixed by changing the dissipation parameters.

Despite the good agreements in prediction of statistical wave parameters such

as Hrms and variance, the model does not compare well with data in terms of

higher order wave shape parameters such as skewness and asymmetry. However, our

investigation shows that these two quantities are quite sensitive to the free parameter

in the model.

Characteristics of breaking free parameters is the last part of this dissertation.

The free parameters of Thornton and Guza (1983) and the threshold parameter of

Zelt (1991) was parameterized appropriately. Using the parameterized Zelt param-

eter, the relation of the spectra tail slope and the slope of damping coefficient was

investigated. Comparing the results with Kaihatu et al (2007) shows that the power

of two for the frequency dependency term in dissipation formulation is not affected

much with new Zelt parameters.

To extend the first part of this work, three suggestions are followed. First of all,

the model should be extended into two dimensions. Hence the variation of waves

in y-direction can be taken into account. Using either parabolic approximation or

the angular spectum method, the model can be numerically solved in two-dimension.

Second, assuming an unknown depth dependency term and extending the boundary

value problem up to second order, a new nearshore model is derived mathematically.

As another suggestion, the difference between third and second order bound waves

and their effects on the modeling results can be determined separately.

As a suggestion for extension of the second part of the work, the dissipation term

can be formulated for each frequency component. The wave-wave interactions is

taken into account and the integrated evolution equeation is developed for transfor-

mation of waves from offshore to the very nearshore waves including the surf zone
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with breaking waves. The second idea would be examining the tuned Zelt parame-

ter with a time domain model and see the improvements imposed by inserting new

parameter into model.
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