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ABSTRACT 

 

The emergency actions following an accidental or intentional release of a hazardous 

material (HazMat) are strongly influenced by what is known of the HazMat event and its 

evolution (e.g. mass flowrate of the release, location of the release, and the duration of the 

release). Thus, the availability of such information in a timely and accurate manner is of great 

importance for emergency crews both on-site and in the areas in the proximity of the site. This 

information aids in predicting the fate of the release and mitigating the possible threats imposed 

by it on human health.  

Characterizing the source of an atmospheric contaminant is typically regarded as an 

inverse problem, where one has to infer the source characteristics of the released HazMat from 

concentration or deposition measurements. The inverse solution is obtained by combining 

atmospheric dispersion models and concentration measurements in an optimal way, where 

dispersion models are used to produce concentration predictions in space and time using as 

input initial guesses of the source information. Furthermore, estimating the source parameters 

needed for atmospheric transport and dispersion modeling requires the application of 

deterministic and stochastic inversion techniques, such as the Bayesian frames employing 

Monte Carlo methods.  

Locating the source and determining its release rate based on downwind concentration 

measurements, however, is only viable for some cases like industrial accidents, where 

measurement data from monitoring stations are typically obtained on-site. For other release 

cases, such as transport accidents or malevolent attacks, there is a lack of input data (i.e. 

immediate concentration measurements). Hence, there is a necessity to develop new 



  

iii 
 

approaches for real cases where this information is probably not available to the required extent 

or at all. This work presents the development, application and assessment of computational 

algorithms used in reconstructing the source characteristics following an accidental release of 

an airborne hazard. A promising methodology is the utilization of the resulting health 

symptoms from exposure as indirect input for emergency response systems. In this work, a 

total of six scenarios were constructed and analyzed in terms of their ability to reconstruct the 

source rate in addition to the source location. The results revealed that the source term 

information can be identified with good agreement with the true source parameters when using 

the new scheme. However, the complexity of the information used as input was reflected on 

the minimum requirement of input data needed to reconstruct the source term. The results also 

revealed the necessity to explore other sophisticated sampling and inversion techniques. 
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NOMENCLATURE 

 

HazMat Hazardous Material 

PBTK Physiologically-based Toxicocokinetic  

ER Emergency Response 

CBRN Chemical, biological, radiological, and nuclear 

SCIPUFF Second-Order Closure Integrated Puff 

MCMC Markov Chain Monte Carlo 

SMC Sequential Monte Carlo 

GA Genetic Algorithm 

C Concentration of the toxic in the air 

T Exposure duration 

Le,p/TL/L Toxic Load 

n Toxic load exponent 

ti Initial time 

tf Final time 

Y Probit 

a,b Constant specific to the chemicals and consequence type  

ADME Adsorption, distribution, metabolism, and elimination 

X   Downwind distance (m) 

Y Crosswind distance (m) 

Zc Profile center height (m) 

b   half-width parameter (m) 

bx Half-length parameter (m) 

sr2 Square root of two 

C(t) Instantaneous concentration at a specific time  

AEGL Acute Exposure Guideline Levels  
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α Power law defined for each of AEGL bands 

C4hr USEPA concentration corresponding to the 4 hour duration for a 
particular AEGL 

H2S   Hydrogen Sulphide 

C(X,Y,Z, t) Downstream mass concentration  

Rsq Residual Squared; normalized men square error 

J Cost function of the correlation coefficient method 

Q/Qs Source Rate 

U Wind Velocity 

fminbnd Matlab’s built-in function, used to obtain the source rate 

corrcoef Matlab’s built-in function used in obtaining the source coordinates 

R2 Pearson correlation coefficient (Matlab’s correcoef), ranges from 0 to 
1. 
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  1. INTRODUCTION  

 

1.1 Background 

The release of hazardous materials (HazMat), whether intentional or accidental, poses 

great threats to the public, especially in densely populated areas. The Sarin gas terrorist attacks 

in Matsumoto city in 1994 and Tokyo in 1995 (Morita et al., 1995; Okumura et al., 1996), and 

the famous Bhopal incident in India in 1984 (Bowonder & Miyake, 1988) are examples of such 

release incidents and their severe consequences (see Figure 1). In the event of a malicious 

intentional or accidental release of a HazMat, emergency response systems rely on highly 

uncertain information (i.e. unknown HazMat and release rate), thus resulting in equally 

uncertain response actions. In order for first responders to take the appropriate action and 

ensure public safety, areas where human lives are endangered need to be identified. This 

requires the availability of fast and reliable information on the source characteristics, such as 

the amount being released, source location and nature of the contaminant. These information 

enable the accurate prediction of the subsequent atmospheric transport and dispersion, which 

in turn aid in mitigating the contaminant threat and allow an early identification and treatment 

of the exposed individuals.  
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Figure 1. Rows of people who died as a result of exposure to the poisonous Methyl isocyanate (MIC) gas in Bhopal (India) in 
1984 

 

Risk assessments are conducted to evaluate the severity of such incidents and the potential 

hazards to the exposed population. Moreover, data certainty and availability are two major 

issues that have great impact on the accuracy of the prediction of the risks imposed by hazards 

on human health (Christopoulos & Roumeliotis, 2005) and consequently on the effectiveness 

of the emergency response action. Uncertainties in data arise from various sources, such as the 

meteorological information, source term characteristics, and model errors (Rao, 2005). The 

source term characteristics (i.e. emission rate over time), however, tend to be the most 

dominant (Korsakissok et al., 2013). Therefore, the accurate estimation of the unknown source 

characteristics, which is to be used in atmospheric dispersion models to forecast the fate of the 

release, is crucial for emergency response systems dealing with hazardous airborne releases.  
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Characterizing the source of an atmospheric contaminant is approached by solving the 

inverse problem, where one has to infer the source characteristics of the released HazMat from 

concentration or deposition measurements (Lushi & Stockie, 2010). The inverse solution is 

obtained by combining atmospheric dispersion models and concentration measurements in an 

optimal way (Haupt & Young, 2008). Dispersion models are used to produce concentration 

predictions in space and time using as input initial guesses of the source information. The 

difference between the field-monitored data and the model predictions is then compared in a 

cost function, and accordingly a better guess of the source term is generated and passed to the 

dispersion model. Further, estimating the source parameters needed for atmospheric transport 

and dispersion modeling requires the application of deterministic and stochastic inversion 

techniques, such as the Bayesian frames employing Monte Carlo methods (Rao, 2007). 

1.2 Motivation and Scope of Work 

Current studies investigating the possible tools and methods of obtaining the solution of 

the inverse problem of the estimation of the source characteristics focus on the use of 

downwind concentration measurements. Source reconstruction using concentration 

measurements is a viable option for some cases like industrial accidents, where measurement 

data from monitoring stations are typically obtained on-site (Nasstrom et al., 2007). However, 

for release cases such as transport accidents or malevolent attacks, there is a lack of input data 

(i.e. immediate concentration measurements) (Vallero & Isukapalli, 2013; National Research 

Council, 2003). From this stems the need to develop new approaches for real cases where these 

information are probably not available at the required extent or at all. 

 Clinical field health observations provided by the emergency response personnel, such as 

coughing, asthma, and deaths, are among the first information available after such unforeseen 
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events. The use of clinical data in exposure reconstruction with the aid of biomedical models 

(e.g. physiologically-based toxicokinetic models) has shown great success in a number of 

recent applications aiming at resolving the issue of data unavailability following the release of 

a contaminant. Examples for the application of physiologically-based toxicokinetic (PBTK) 

models include the works of  Georgopoulos et al. (2009) who estimated potential exposure to 

a contaminant via the use of human biomarker data, and Chen et al. (2012) who utilized Monte 

Carlo techniques to estimate exposure based on levels of a metabolite in clinical blood and 

urine samples. In the aforementioned applications, the focus was on the use of biomarkers such 

as blood measurements, and not on the observed health symptoms. Observed health effects 

provide an evidence of past exposure, and hence there is a potential for their use in exposure 

reconstruction. The adversity of these effects on human health is linked to both the exposure 

and duration, and is dependent on the nature and dosage of the HazMats. The use of a known 

pattern of disease and weather conditions in identifying the likely point of release of a 

biological agent was investigated by Meselson et al. (1994) to infer the likely cause of the 1979 

Sverdlovsk Anthrax outbreak. However, to date, the use of health effects in source 

reconstruction has not been fully explored. In this work, we explore the use of health symptoms 

as input to a new emergency response system that can reconstruct the source characteristics 

(i.e. emission rate and location). 

1.3 Research Problem and Objectives 

The overall goal of this thesis is to develop and test an integrated framework which allows 

source reconstruction using observed health symptoms, and demonstrate the utility of this 

approach for emergency response applications. In particular, the proposed work aims to solve 

the problem of lack of information regarding the magnitude and location of a release that are 
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needed for accurate dispersion predictions of airborne hazards in case of accidental or 

malevolent releases. Figure 2 illustrates the evolution of the HazMat event versus the flow of 

a proposed integrated emergency response (ER) and preparedness system. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flow of the HazMat event and the proposed integrated system 

 

In this work, we focus on the medical component (i.e. health outcomes resulting from an 

accidental toxic gas release) of the integrated emergency response and preparedness system. 

HazMats released into the atmosphere result in varying health effects among the exposed 

population as they have specific impacts on human functions and organs. The resulting health 

effects are implicitly linked to the dosage/exposure, and hence there is a possibility of 
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exploiting health observations as indirect input data for new Emergency Response System 

(ERS) that can reconstruct the source (i.e. location and rate).  

Dose-response models are employed in order to translate health observations/symptoms 

to useful exposure and atmospheric concentration information via the application of inversion 

techniques and algorithms.  The inverse problem of locating an unknown source and 

determining its release rate is approached by coupling atmospheric dispersion modelling with 

dose response models. The first provides the relationship between the source term and the 

downwind concentration of an airborne contaminant, while the latter establishes the link 

between exposure and the corresponding health outcomes. 

The specific objectives of this thesis are to: 

• Develop and implement computational tools that can be used to locate and quantify the 

unknown release of a hazardous substance, making it suitable for use in emergency 

preparedness and response in cases of acute chemical, biological or radiological 

incidents. 

• Assess the capability of the scheme to reconstruct the source over a number of scenarios 

that prove the validity of the hypothesis while at the same time stress its limits. 

1.4 Thesis Organization 

This thesis focuses on the development and implementation of computational tools that 

incorporate dose-response models for use in source reconstruction and emergency response 

applications. Different cases are presented to demonstrate the capability of this approach in 

characterizing the source of a HazMat release. 

Section 1 presents a brief introduction and overall review of the concepts pertaining to 

source reconstruction and emergency response in cases of atmospheric hazardous releases, the 
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motivation behind the current work, as well as a statement of the problem being addressed and 

the objectives to be achieved upon the completion of this research work.   

Section 2 then presents the relevant background information found in the literature on the 

approaches used to address the source reconstruction problem, from the use of concentration 

measurements and dispersion models, to the different inversion algorithms being used, and the 

introduction and use of the biomedical models in deriving potential doses and exposures. It 

also provides an overview of the different dose-response models that function as a linkage 

between the observed health outcomes and the exposure suffered by the exposed individuals.  

Section 3 describes the methods used in constructing the illustrative scenario that involves 

the release of a HazMat from an industrial facility, the subsequent dispersion and downwind 

concentration calculations, and the estimation of the resulting health symptoms. This scenario 

constitutes the basis on which the inverse problem is then formulated; source reconstruction 

starting from health observations. 

Section 4 presents a preliminary analysis of the proposed framework in which the 

capability of the scheme to reconstruct the source is assessed over a number of scenarios that 

prove the validity of the hypothesis while at the same time stress its limits. 

Finally, conclusions and recommendations for future work are presented in Section 5. 

 

 

 

 



  

8 
 

2. LITERATURE REVIEW  

 

2.1 Previous Studies 

Over the last years, there has been a surge of interest in finding means to characterize the 

source term associated with the release of chemical, biological, radiological and nuclear 

(CBRN) agents for use in disaster planning and national security. Examples include attempts 

to calculate the amount of leaked radioactive substances following the Chernobyl (Gudiksen 

et al., 1989) and Fukushima (Stohl et al., 2012) accidents. The reconstruction of the source 

term characteristics is commonly approached using inversion algorithms. This type of 

approach utilizes atmospheric dispersion models, meteorological data, and depending on the 

complexity of the models other data including description of the topography of the site and 

other factors that affect dispersion might be required (Haupt & Young, 2008). An atmospheric 

dispersion model uses the known source release information (i.e. release location, altitude, 

amount of agent released, and meteorological data) to predict the subsequent dispersion and 

transport of the contaminant in space and time. Commonly used atmospheric dispersion models 

in exposure assessment include ALOHA, DEGADIS, and SLAB (Mazzola & Addis, 1995).  

There is a considerable prior work on the use of the forward atmospheric dispersion 

models in source reconstruction. Rudd et al. (2012), for example, applied the Gaussian Plume 

model in their inversion algorithm to obtain estimates of the source term parameters (i.e. source 

strength and location) as well as the uncertainty in those estimates from a set of limited 

concentration measurements obtained from a network of chemical sensors. Furthermore, Allen 

et al. (2007) incorporated the Second-Order Closure Integrated Puff (SCIPUFF) dispersion 

model into a Genetic Algorithm-coupled system to estimate the source characteristics. Another 
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example is the use of a Gaussian Plume solution for the advection-diffusion equation in 

estimating contaminant emissions from multiple point sources which was explored by Lushi 

and Stockie (2010). Figure 3 illustrates a typical setup of the inverse problem using 

concentration measurements. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Setup of the inverse problem using concentration measurements (Kathirgamanathan et al., 2003) 

 

Due to the recent advances in computational techniques and tools, the estimation of the 

source term can be obtained through a number of methods. Source estimation methods applied 

to atmospheric toxic gas releases can be classified as forward and backward (inverse) 

modelling methods according to Rao (2007), who provides a review of these methods and 

examples of their applications. In the forward modelling methods, the atmospheric transport 

from sources to receptors is analyzed using forward-running transport and dispersion models 

or computational fluid dynamics models which are run many times until an array of potential 
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sources is achieved. The resulting model predictions from each run are compared to 

measurements of observed concentrations from multiple sensors, and accordingly the source 

conditions are then adjusted until convergence is achieved and an acceptable level of 

agreement is obtained. Examples of the commonly used forward modelling methods include 

Bayesian updating and inference schemes using stochastic Monte Carlo or Markov Chain 

Monte Carlo sampling techniques. The probabilistic approach using a Bayesian inferential 

scheme for source reconstruction has been developed and implemented in a number of studies, 

including Wang et al. (2015) and Yee et al. (2014). Wang et al. (2015) evaluated the 

performance (i.e. accuracy, time consumption, quantification of uncertainty) of three different 

probabilistic methods (i.e. MCMC, sequential Monte Carlo (SMC), and ensemble Kalman) in 

terms of their source term estimation of a toxic gas release using synthetic concentration data. 

Inverse modelling methods, on the other hand, use only one model run in the reverse direction 

from the receptors to estimate the upwind sources. Inverse modeling methods include adjoint 

and tangent linear models, Kalman filters, and variational data assimilation, among others. A 

commonly used technique in inverse modeling is the variational method (e.g. Haupt et al., 

2008). This technique is based on minimizing the discrepancy between the model predictions 

and the measured observations via adjustments of the initial conditions of the forward model. 

In other words, a cost function is defined as the sum of the squared differences between the 

modelled and observed quantities.  The optimal solution that best explains the measured 

observations over a given time period is then obtained by searching for the parameters (e.g. 

source rate and location) that would result in the minimum of the cost function. Furthermore, 

different approaches to estimate the source term based on the use of forward and backward 

techniques can be found in the literature. The use of least-squares inversion in obtaining 
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estimates of the source parameters is implemented in the works of de Foy et al. (2015), Singh 

and Rani (2014), in addition to Lushi and Stockie (2010). Wawrzynczak et al. (2014) 

demonstrated the successful application of the Genetic Algorithm (GA) method in estimating 

the parameters of an abrupt contamination source under a Bayesian frame. The method 

combines Bayesian inference with GA to find the most probable location of the source and its 

strength using knowledge of the downwind concentration measurements and the wind field. 

Other approaches include the use of the artificial neural networks (e.g. Sharma et al., 2011), 

and the renormalisation inversion (Singh et al., 2015; Issartel et al., 2012; Sharan et al., 2009). 

In recent years, there have been notable efforts to incorporate dose-response models in 

health risk assessment.  These models, such as the PBTK models, are known for their scientific 

soundness and reliability, and hence aid in reducing the inherited uncertainties in risk 

assessment. The significance of using different toxicity models in estimating causality for 

military medical planning was investigated by Weinrich et al. (2008). The models explored in 

the study included: Haber’s law, the integrated toxic load (TL) model, the mean concentration 

TL model, in addition to a two-compartment toxicokinetic model. A number of recent studies 

aiming at exposure reconstruction (e.g. Christensen et al., 2015; Côté et al., 2014; 

Georgopoulos et al., 2009) examined the use of PBTK models in estimating  potential 

exposures to chemical agents through the interpretation of human biomarker data (see Figure 

4). 
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Figure 4. A simplified schematic of a computational framework for source reconstruction using biomarkers and PBTK 

modeling (Georgopoulos et al., 2009) 

 

 In the work of Chen et al. (2010, 2012), the use of clinical data (i.e. blood sampling, and 

urinary data) in reconstructing past exposures was explored using MCMC techniques. In 

addition to clinical data, observed health effects (e.g. coughing, dizziness, and death) provide 

an evidence of past exposure, and hence there is a potential for their use in exposure 

reconstruction. The adversity of these effects on human health is linked to both the exposure 

and duration, and is dependent on the nature and dosage of the HazMats. The use of a known 

pattern of disease and weather conditions in identifying the likely point of release of a 

biological agent was investigated by Meselson et al. (1994) to infer the likely cause of the 1979 

Sverdlovsk Anthrax outbreak.  
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2.2 Dose-Response Models  

2.2.1 Introduction 

Accidental or deliberate releases of HazMats into the atmosphere can result in adverse 

health effects among the exposed individuals. Toxic effects of chemical agents are typically 

quantified by the dosage from exposure that would produce specific toxic effects (e.g. death). 

Estimates of acute health effects following exposure to a HazMat can be obtained through the 

application of a number of dose-response models and relationships that exist in the literature. 

A brief overview of some of the commonly used relationships is presented next. It should be 

noted, however, that the current work is aimed at exploring the use of the dose-response models 

in emergency response applications, hence the details underlying the use of these models are 

outside the scope of this work.  

2.2.2 Toxic Load 

Toxicological effects resulting from exposure to hazardous chemicals depend on dosage, 

which itself is dependent on both the concentration of the toxic chemical and the exposure 

duration (Reisfeld et al., 2006). This is in line with Haber’s law (Witschi, 1999), which states 

that for a specified percentage of a population, dosage is the key determinant of the resulting 

toxicological effects. Mathematically, Haber’s law can be expressed as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶 =  𝐿𝐿𝑒𝑒,𝑝𝑝              (2.1) 

where  

C is the concentration of the toxic chemical in the air 

T is the exposure duration 

Le,p is the toxic load; a constant value that determines the toxicological effect in a specified 

percentage of the population 
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As implied by Haber’s law, a linear relation exists between the product of toxic 

concentration and exposure time, and the level of the harm experienced by the exposed 

individuals. Consequently, for a given dosage, toxicological effects resulting from conditions 

involving prolonged, low-concentration exposures will be identical to those involving short-

duration, high-concentration exposures. In later studies covering wider ranges of exposure 

times and different toxic chemicals, the validity of Haber’s Law was shown to be limited to 

relatively short exposure times (Witschi, 1999; Stage, 2004). Moreover, Haber’s law suffered 

the inability to address biological effects associated with exposure to a number of acutely toxic 

gases and aerosols. To account for these limitations, ten Berge et al. (1986) used the method 

of Probit analysis to re-evaluate raw data obtained from previously published acute inhalation 

toxicity studies for some volatile industrial chemicals. In their work, ten Berge et al. (1986) 

varied the concentration and duration of exposure for various toxic vapors, and concluded that 

the concentration and exposure duration were not equally significant in determining the toxic 

effect. The study employed the toxic load model in describing the relationship between 

concentration, exposure duration, and the resulting biological effect. The results of ten Berge 

et al. (1986) agree with those of Busvine (1938), who also found that the toxic response 

depends on a parameter L, which is commonly known as the toxic load. The toxic load model 

can be expressed as: 

𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶 =  𝐿𝐿𝑒𝑒,𝑝𝑝                    (2.2) 

where n here is the toxic load exponent, whose value varies with the type of toxic under 

consideration as well as the exposure conditions.  

Mioduszewski et al. (2002) tested the adequacy of the toxic load models of Haber and ten 

Berge et al. (1986) in predicting the toxicity of Sarin vapor exposure in rats for different 
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exposure conditions. The results of the study implied the necessity to expand beyond the 

dependence on Haber’s rule. Additionally, the toxic load can be computed directly for 

continuous releases in which concentration is constant. For instantaneous (i.e. time-varying) 

concentrations, a number of extensions of the toxic load model are found in the literature.  

Table 1 presents examples of four proposed extensions of the TL model, namely the integrated 

concentration (also known as the instantaneous exposure model), the mean concentration, the 

concentration intensity, and the peak concentration models.  A review of various extensions of 

the toxic load model for the case of time-varying concentrations and their application can be 

found in Gunatilaka et al. (2014). 
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Table 1. Summary of four proposed extensions of the TL model for the case of time-varying concentrations  

TL model Expression Reference 

Integrated 

Concentration 

(instantaneous 

exposure)  

𝐿𝐿𝐿𝐿,𝑝𝑝 (𝐶𝐶) = ∫ 𝐶𝐶(𝑡𝑡)𝑛𝑛𝑑𝑑𝑡𝑡 𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡            (2.3) ten Berge and 

van Heemst 

(1983) 

Average Concentration  
𝐿𝐿𝐿𝐿,𝑝𝑝 (𝐶𝐶) = [∫

𝐶𝐶(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡

]𝑛𝑛 𝐶𝐶 (𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡)          (2.4) 
Hilderman 

(1999) 

Concentration Intensity  𝐿𝐿𝐿𝐿,𝑝𝑝 (𝐶𝐶) = (∫𝑐𝑐(𝑥𝑥,𝑡𝑡)𝑑𝑑𝑡𝑡)2−𝑛𝑛

(∫ 𝑐𝑐2(𝑥𝑥,𝑡𝑡)𝑑𝑑𝑡𝑡)1−𝑛𝑛
                          (2.5) Sykes et al. 

(2004), Czech 

et al. (2011) 

Peak  Concentration 𝐿𝐿𝐿𝐿,𝑝𝑝 = ∫ 𝑐𝑐(𝑥𝑥,𝑡𝑡)𝑑𝑑𝑡𝑡
𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1−𝑛𝑛 (𝑥𝑥)

                                     (2.6) Stage (2004) 

 

 

 

 

2.2.3 Probits 

One of the key aspects of risk analysis is the estimation of exposure to hazardous agents 

suffered by a given population, and the subsequent formation of a relation between the 

resulting effects and the estimated exposure (Griffith, 1991). The Probit analysis provides a 

useful framework for expressing the varying susceptibility of populations exposed to stressing 

agents. A Probit function relates the concentration and duration of a hazardous exposure to the 

degree of injury observed in an exposed population. The application of the Probit analysis 

covers a wide range of stressing agents and populations including blast overpressure and its 
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effects on structures, in addition to exposure to toxic, radioactive, or flammable materials and 

the resulting human health effects (Griffith, 1991). For the particular case of toxic health 

effects, the Probit analysis is used in the assessment of toxic response to irritant gases. The 

Probit method was first introduced by Bliss (1934a, 1934b) as a tool to linearize cumulative 

normal distribution dose-response curves. The estimation of the fraction of a population 

responding to a release is achieved by first calculating the toxic load, L, which is then 

substituted in the Probit equation to determine the value of the variable Y, which in turn is 

converted to percentage using the transformation tables/charts as the ones provided by Finney 

(1971). Moreover, it is understood that one Probit unit corresponds to one standard deviation 

of the normal distribution, and that the median (50th percentile) is arbitrarily assigned a Probit 

value of 5. Typical Probit functions are of the following form (HSE, 2006): 

𝑌𝑌 =  𝑎𝑎 +  𝑏𝑏 (𝑙𝑙𝑙𝑙 𝐿𝐿)                    (2.7) 

where:  

Y = Probit, (value range 2.67 – 8.09 representing 1 – 99.9% response) a measure of the 

percentage of the vulnerable resource that might sustain damage. Injury probability can then 

be determined by evaluation of Y on a Probit transformation chart such as that provided by 

Finney (1971).  

a, b are constants specific to the chemicals and consequence type 

L= the product of intensity or concentration of received hazardous agent to an exponent “n” 

and the duration of exposure in seconds or minutes  

A number of Probit functions that provide estimates of injury levels resulting from 

exposure to harmful substances have been generated and published for a variety of chemicals. 
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Due to the fact that multiple Probit functions may exist for the same hazard in different sources 

in the literature, dose-effect estimates may not always be consistent for each of the Probit 

functions being applied. Hence, the selection of the most adequate Probit function is critical as 

it impacts the rest of the Probit analysis. Another issue with the use of Probits is the paucity of 

data on human toxic response and the fact that most of these expressions are derived from tests 

on animals, which dictates cautious application of Probits to human exposures (Griffith, 1991). 

Furthermore, we are a long way from having a sound basis for the application of Probits to 

human exposures even for the case of steady exposures. This is further complicated when 

considering the unresolved issues of dispersion factors such as intermittency and concentration 

fluctuations. 

2.2.4 Physiologically-Based Toxicokinetic (PBTK) Models 

The application of PBTK models in dose-response studies has received wide recognition 

in the field of human health risk assessment, due to their scientific soundness and reliability 

(Edler & Kitsos, 2005). PBTK models allow the conversion of exposure concentration to the 

target tissue dose, which provides better scientific basis than the external or exposure dose of 

the parent chemical when it comes to performing risk assessments and relating observed toxic 

effects (Andersen et al., 1991; Clewell et al., 2002). The first application of the PBTK models 

in risk assessment started in the 1980’s with Methylene Chloride (Andersen et al., 1987). Since 

then, the PBTK models have been used in various applications in risk assessment such as the 

reconstruction of doses that are associated with different routes and media of exposures (Roy 

et al., 1996; H. V Rao & Ginsberg, 1997; Lyons et al., 2008) . Figure 5 represents sample 

application of PBTK models in risk assessment. 
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Figure 5. Sample application of PBTK models in risk assessment (Dewoskin, 2007) 

 

In principle, pharmacokineticts stand for the quantitative description of absorption, 

distribution, metabolism, and elimination (ADME) of xenobiotics in living organisms (Edler 

& Kitsos, 2005). PBTK models relate external exposure and internal target tissue doses by 

tracing the flow of an administered chemical or its metabolites through the blood to different 

organs of the body that are known as the compartments. The level of complexity of PBTK 

models varies with the amount of details employed. The one-compartment PBTK model is the 

least detailed model, which consists of a simple relationship between intake, retention, and 

elimination from the body that is treated as a homogenous whole. On the other hand, Multi-

compartment models provide detailed description of distinct body components and tissues, 

such as blood, liver, fatty tissues, etc.  
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Furthermore, the embodied biological and mechanistic information in the PBTK models 

enable them to be used for extrapolation of the kinetic behavior of chemicals across different 

exposure routes, from high dose to low dose, and from test animal species to humans (Reisfeld 

et al., 2006). Therefore, the main advantages of the PBTK models are their ability to perform 

such extrapolations, as well as the detailed description they provide of the concentration-time 

profiles in individual tissues or organs. Despite their attractive uses, the advantages of the 

PBTK models come at the expense of requiring a relatively large investment in resources to 

develop a validated PBTK model with well-found parameter values. 

In this work, the instantaneous toxic load model is employed in the dose-response 

modeling discussed in section 3. This extension of the toxic load model is selected due to its 

simple application, in addition to being well-suited for cases involving releases with time-

varying concentrations.  
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3. METHODOLOGY 

 

3.1 Introduction  

In this section, an integrated modeling system is developed and applied to a synthetic 

scenario involving the release of a hazardous material in order to test the proposed 

methodology; reconstruction of the source term using health outcomes as input data. The 

synthetic scenario is constructed and employed in absence of real data. First, forward modeling 

based on known source characteristics is carried out to estimate the health effects that are 

associated with a particular release scenario. The results from the forward model are then used 

to formulate the inverse problem in which the estimated health outcomes are assumed to be 

the known information, while the characteristics of the source that are responsible for the 

observed outcomes need to be back-calculated. The forward modeling system combines 

forward dispersion simulations with dose-response simulations. In the dispersion modeling 

stage, an atmospheric dispersion model is used to generate estimates of the downwind 

concentrations of the chemical agent for a known emission rate and location of a point source. 

Dose-response models are then used to convert the chemical agent’s time histories into health 

effect predictions across different locations downwind from the release location. A sample of 

the results generated via the forward model is used as input into the inverse algorithm, in which 

health outcomes are back-transformed to the potential environmental exposure. The solution 

of the inverse problem is obtained based on a forward modelling scheme that employs Monte 

Carlo sampling. The inverse solution derives a posterior estimate of the source parameters 

based on optimization methods that use guesses of the emission rate and location coordinates 

as a prior. The inverse algorithm is based on minimizing the deviation between the model 
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predictions and the actual observations obtained from the synthetic release scenario, which will 

eventually lead to finding an optimal solution of the release characteristics. Figure 6 

summarizes the approach followed in reconstructing the source term characteristics. The 

details of each of the steps are discussed in the following subsections. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Schematic representation of the proposed methodology for source term reconstruction 
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3.2 Development of the Forward Model 

3.2.1 Atmospheric Dispersion Modeling Using  the SLAB Model 

Atmospheric releases of hazardous agents can typically be modeled using atmospheric 

dispersion models, which predict the spread and movement of the cloud of such contaminants.  

Depending on the complexity of the dispersion model, certain data (e.g. weather conditions, 

and description of the nature of the site) are needed to facilitate the simulations. In this work, 

the atmospheric dispersion of the hazardous agent was modelled using the U.S. Environmental 

Protection Agency’s (USEPA) SLAB model (Ermak, 1990) for the case of a vertical jet source 

release. This model has been used in several studies involving denser-than-air atmospheric 

releases and simulations, and is widely employed in a number of applications involving 

accidental releases (e.g. Bhosale et al., 2015; Ni et al., 2014; and Hanna et al., 2012). The 

results produced by the SLAB model are based on the solution of the one-dimensional (in 

downwind distance) equations of momentum, conservation of mass and energy, and the 

equation of state. The SLAB model supports the simulation of the atmospheric transport and 

dispersion of four different area source releases: ground-level evaporating pool, horizontal and 

vertical jets at any height, and instantaneous volume sources. In addition, this model can be 

applied to continuous and instantaneous releases, and accounts for user-defined finite duration 

release times as well as the effects of averaging times. Moreover, SLAB does not calculate the 

source emission rate, and hence the source conditions need to be provided as input by the user. 

The input data required for the model include the source type, source rate, properties of 

the source, spill and field properties, meteorological parameters, as well as a numerical substep 

parameter. SLAB generates an output file containing distributions with downwind distance of 

the maximum pollutant concentration, the time when the maximum concentration occurs, the 
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time duration of the cloud, and the parameters that describe cloud geometry (width and depth). 

The most important output from SLAB is the time-averaged volume concentration, which is 

of interest to us in this work. The time-averaged volume concentration of a chemical agent is 

given as a function of the travel time from the source (t), in addition to the three spatial 

dimensions: downwind distance from the source (x), crosswind distance from the cloud 

centerline (y), and height above the ground level (z). For a vertical jet source, the time-averaged 

volume concentration is given by the following equation, which computes the atmospheric 

concentration C at a particular point (x, y, z) downwind from the release location (Ermak, 

1990): 

 

𝐶𝐶 (𝐶𝐶,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) =  𝑐𝑐𝑐𝑐(𝐶𝐶) ∗ (𝐿𝐿𝑒𝑒𝑡𝑡(𝐶𝐶𝑎𝑎) − 𝐿𝐿𝑒𝑒𝑡𝑡(𝐶𝐶𝑏𝑏)) ∗  (𝐿𝐿𝑒𝑒𝑡𝑡(𝑦𝑦𝑎𝑎) − 𝐿𝐿𝑒𝑒𝑡𝑡(𝑦𝑦𝑏𝑏)) ∗  (𝐿𝐿𝐶𝐶𝑝𝑝(−𝑧𝑧𝑎𝑎2) + 𝐿𝐿𝐶𝐶𝑝𝑝(−𝑧𝑧𝑏𝑏2))  (3.1) 

 

where: 

𝑦𝑦𝑎𝑎 =  (𝑦𝑦 + 𝑏𝑏(𝐶𝐶))/(𝑠𝑠𝑒𝑒2 ∗ 𝑏𝑏𝐿𝐿𝑡𝑡𝑎𝑎𝑐𝑐(𝐶𝐶))                                    (3.2) 

 

𝑦𝑦𝑏𝑏 =  (𝑦𝑦 − 𝑏𝑏(𝐶𝐶))/(𝑠𝑠𝑒𝑒2 ∗ 𝑏𝑏𝐿𝐿𝑡𝑡𝑎𝑎𝑐𝑐(𝐶𝐶))                     (3.3) 

 

𝑧𝑧𝑎𝑎 =  (𝑧𝑧 − 𝑧𝑧𝑐𝑐(𝐶𝐶))/(𝑠𝑠𝑒𝑒2 ∗ 𝑠𝑠𝑡𝑡𝑠𝑠(𝐶𝐶))                                     (3.4) 

 

𝑧𝑧𝑏𝑏 =  (𝑧𝑧 + 𝑧𝑧𝑐𝑐(𝐶𝐶))/(𝑠𝑠𝑒𝑒2 ∗ 𝑠𝑠𝑡𝑡𝑠𝑠(𝐶𝐶))                      (3.5) 

 

𝐶𝐶𝑎𝑎 = (𝐶𝐶 − 𝐶𝐶𝑐𝑐(𝑡𝑡) + 𝑏𝑏𝐶𝐶(𝑡𝑡))/(𝑠𝑠𝑒𝑒2 ∗ 𝑏𝑏𝐿𝐿𝑡𝑡𝑎𝑎𝐶𝐶(𝑡𝑡))                    (3.6) 

 

𝐶𝐶𝑏𝑏 =  (𝐶𝐶 − 𝐶𝐶𝑐𝑐(𝑡𝑡) − 𝑏𝑏𝐶𝐶(𝑡𝑡))/(𝑠𝑠𝑒𝑒2 ∗ 𝑏𝑏𝐿𝐿𝑡𝑡𝑎𝑎𝐶𝐶(𝑡𝑡))                    (3.7) 
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𝑠𝑠𝑒𝑒2 = √2                                    (3.8) 

and where erf is the error function and exp is the exponential function. 

For the purpose of this work, the volume fractions (in units of ppm as reported in the 

USEPA tables) are converted into units of mg/m3 as required for the toxic load calculations, 

which are discussed next. Further, the mathematical formulations provided by the SLAB model 

are programmed in MATLAB’s m-files in order to facilitate the dispersion simulations. 

3.2.2 Dose-Response Modeling: Evaluation of the Onset of the USEPA’s AEGL-1,2, and 3 

Conditions Using EAGLE Software 

Adverse health effects can be the result of an inhalation exposure to toxic airborne 

contaminants. The USEPA has established three distinct Acute Exposure Guideline Levels 

(AEGLs) for a number of chemical agents in order to facilitate the prediction of the onset of 

such adverse health effects in a general population exposed to a specific concentration of a 

toxic agent for a fixed exposure duration (U.S. Environmental Protection Agency AEGL 

Program, 2012). However, in an actual release, inhalation exposures may vary with durations, 

which makes it a challenge to estimate the onset of the health effects using the fixed values 

provided by USEPA’s AEGLs. To resolve this issue, the U.S. Naval Research Laboratory has 

recently developed and published a science-based software/algorithm that is fast and easy-to-

use (Boris & Patnaik,  2014). The software, which is known as EAGLE, can be used in 

conjunction with a dispersion model to enable the prediction of the onset of AEGL 1 (notable 

discomfort), AEGL 2 (irreversible or serious adverse impact that could impair the ability to 

escape) and AEGL 3 (life threatening or death) conditions for time-varying plumes involving 

chemical agents with tabulated AEGLs. 
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Initiating the computations of this software does not require the availability of prior 

knowledge of the exposure history, hence it allows in situ evaluation as the plume is evolving. 

This, however, requires storing one, two, or three additional variables; the evolving toxic loads 

at each point where a result is desired.  Further, the algorithm is designed to enable the use of 

realistic concentration time history of a contaminant as they are encountered. Therefore, hazard 

areas can be updated quickly and incorporated into dispersion models or in emergency 

incidents. 

The software algorithm implements the Induction Parameter Model, which was developed 

in 1980 for fast combustion (Boris & Oran, 2000).  As the software’s application of the 

Induction Parameter Model is aimed at potentially toxic plumes, the nonlinear ten Berge 

generalization of Haber’s law (ten Berge et al., 1986; Stage, 2004) is used to obtain the 

induction parameter. The onset of the health conditions is determined using the toxic load (TL), 

which is integrated from zero using the concentration time history of the released contaminant. 

The time-dependent toxic load is defined by the following integral: 

𝐶𝐶𝐿𝐿𝑘𝑘(𝑡𝑡) = ∫ �𝑑𝑑𝑇𝑇𝑇𝑇𝑝𝑝
𝑑𝑑𝑡𝑡′

� 𝑑𝑑𝑡𝑡′𝑡𝑡
0 = ∫ 𝐶𝐶𝐿𝐿𝑒𝑒𝑎𝑎𝑡𝑡𝐿𝐿(𝑡𝑡′)𝑑𝑑𝑡𝑡′𝑡𝑡

0                 (3.9) 

 

When the above integrated toxic load, induction parameter in this application, reaches 

unity, the corresponding AEGL conditions have occurred, where the subscript k=1, 2, 3, is a 

particular AEGL condition. Moreover, the algorithm defines a power law that accounts for the 

rate of accumulation of toxic load spanning the time intervals for each of the three AEGLs. 

Thus, the toxic load is computed by interpolating the instantaneous concentrations. For 

instance, a toxic load rate of a given chemical agent for a time duration falling between the 60-

min band and the 4-hour band can be computed as follows: 
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𝐶𝐶𝐿𝐿𝑒𝑒𝑎𝑎𝑡𝑡𝐿𝐿(𝑡𝑡) = 𝑑𝑑𝑇𝑇𝑇𝑇
𝑑𝑑𝑡𝑡

= 1
14400𝑠𝑠

�𝐶𝐶(𝑡𝑡)
𝐶𝐶4ℎ𝑟𝑟

�
𝛼𝛼

                (3.10) 

where: 

α is a power law defined for each of the individual AEGL bands 

C(t) is the instantaneous concentration at the point in question 

C4hr is the USEPA concentration corresponding to the 4 hour duration for a particular 

AEGL 

 

In this work, the algorithm provided by EAGLE is implemented in MATLAB to evaluate 

the toxic loads and the corresponding health effects resulting from exposure to Hydrogen 

Sulphide (H2S) gas. H2S is selected due to its toxic nature and the health effects associated 

with that, in addition to being a well-known industrial hazard  (Agency for Toxic Substances 

and Disease Registry, 2006; Guidotti, 1996).   

3.3 Formulation of the Inverse Problem and the Inversion Method 

We now consider the inverse problem of determining the source term characteristics from 

observed health symptoms. Given the observed health symptoms at different downwind 

locations, the aim now is to find distributions of the source term parameters (i.e. unknown 

source term in the dispersion model and its location) that will produce health effect predictions 

consistent with those being observed on site. 

The problem is formulated using a Cartesian coordinate system (X, Y, Z) in which the X-

axis is aligned parallel to the direction of the wind, the Y-axis is oriented horizontally in the 

cross-wind direction, and the Z-axis in the vertical direction. The release of the HazMat (i.e. 

H2S gas) is assumed to take place at time t=0 from a single point source located at (Xs, Ys, 0), 
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with a steady emission rate Qs (kg/s). The released material is blown by a wind with mean 

velocity u=(X, 0, 0).  The resulting downstream mass concentration C(X, Y, Z, t) of the cloud 

of the released material is determined using the forward dispersion model. An illustration of 

the setup of the inverse problem is shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Illustration of the inverse problem 
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For an unknown source release rate Qs and/or unknown release location (i.e. Xs and Ys), 

health observations are recorded at multiple receptors (X, Y, 2). The coordinates X and Y are 

chosen so that the receptors’ locations are located downwind of the release point and at a 

breathing elevation of 2 m as defined by SLAB for the case of a vertical jet release. Also, wind 

is taken to be constant over the time interval of length Delta t. In practice, the wind velocity 

varies with time and these variations have a significant impact on the plume dispersion and 

consequently the toxic load values. As mentioned before, the occurrence of the health effects 

is linked to the values of the toxic load, where a value of 1 and above implies that the specified 

health effects are observed at the receptor location.  

An optimal estimate of the source rate is obtained through the implementation of an 

optimization routine that is based on minimizing a cost function. The cost function is 

minimized according to the difference (normalized residual) between the model predictions 

and the observations as follows: 

𝑅𝑅𝑠𝑠𝑅𝑅 = ∑(𝑂𝑂𝑂𝑂𝑠𝑠𝑒𝑒𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡𝑡𝑡𝑂𝑂𝑛𝑛−𝑀𝑀𝑂𝑂𝑑𝑑𝑒𝑒𝑀𝑀 𝑃𝑃𝑂𝑂𝑒𝑒𝑑𝑑𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝑂𝑂𝑛𝑛)2

∑(𝑂𝑂𝑂𝑂𝑠𝑠𝑒𝑒𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡𝑡𝑡𝑂𝑂𝑛𝑛−𝑚𝑚𝑒𝑒𝑂𝑂𝑛𝑛(𝑂𝑂𝑂𝑂𝑠𝑠𝑒𝑒𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡𝑡𝑡𝑂𝑂𝑛𝑛))2
                      (3.11)

   

Finding the minimum of the cost function then reduces to making a first guess for Qs and 

then adjusting the solution iteratively until the estimate converges. The best estimate of the 

release rate is the value of Qs at convergence. 

To obtain a best estimate of the release location, we employ the correlation coefficient 

method. The correlation coefficient method defines a cost function J:  

𝐽𝐽 =  〈(𝑐𝑐𝑐𝑐−〈𝑐𝑐𝑐𝑐〉)�𝑐𝑐0−〈𝑐𝑐0〉�〉
�〈(𝑐𝑐𝑐𝑐−〈𝑐𝑐𝑐𝑐〉)2〉 �〈(𝑐𝑐0−〈𝑐𝑐0〉)2〉

 → 𝑚𝑚𝑡𝑡𝑙𝑙                (3.12) 
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where ‹› denotes arithmetic averaging over all measurements, while the minimum is sought 

over all possible source locations. The above cost function is minimized with respect to the 

source coordinates only, while an arbitrary source rate Qs is used in the procedure of this 

minimization. It should be noted that since the source rate is excluded from the cost function, 

the solution obtained is independent of the choice of the source rate. In this algorithm, the 

source coordinates are assumed to coincide with one of the grid nodes. The location of the 

corresponding grid node for which the minimum of the correlation coefficient is achieved is 

considered to be the identified source location.  

3.4 Computational Implementation  

We begin by defining a 5000 m x 1000 m domain area over which the dispersion 

calculations, toxic load simulations, and the subsequent inverse calculations are performed. 

The domain area is then divided into a 200 x 40 grid, with each cell being a square of 25 m x 

25 m. The gridpoints begin at 0 m and extend to a downwind distance of 5000 m, and 1000 m 

in the positive crosswind direction. Further, the release is assumed to take place from a source 

at ground level (i.e. it is located at 0 m height in the vertical direction). In all of the scenarios 

considered in this work, the actual location of the source is taken to be at (500, 300, 0) in the 

Cartesian coordinates, while the release rate of the HazMat is set equal to 100 kg/s for a release 

duration of 3,440 seconds (approximately 1 hour). The release is assumed to take place in an 

industrial natural gas facility, from a pipeline transporting natural gas that contains 4% H2S. 

3.4.1 The Forward Model 

The forward computations are initiated by the atmospheric dispersion model, SLAB, 

which predicts mass concentrations of H2S as a function of time at each gridpoint, and at a 

breathing zone at 2 m elevation above the ground. The inputs to the dispersion model include 
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the domain area, source rate and location, as well as the time-steps over which the model 

calculates the downwind concentrations. Noise is then introduced to the synthetic 

concentration data in order to verify the robustness of the inversion algorithm under less ideal, 

but perhaps more realistic conditions. In the literature of atmospheric dispersion modeling 

(COST ESSEM ES1006, 2015), it is shown that most semi-empirical atmospheric dispersion 

models (e.g. SLAB) perform better than 40%-50% when compared with measured data. 

Therefore, we have introduced a random noise spanning -20% to +20% at all SLAB 

calculations; applied to the modeling stage and the reference case of the synthetic release 

scenario in this work. This noise accounts also for the atmospheric conditions variability. 

Additionally, all the source parameters are assumed to be constant over time (e.g. Qs and Us). 

Also, the geometry of the site at which the release takes place is characterized as a flat terrain 

in an open environment since the SLAB model assumes a flat terrain that does not involve any 

obstacles (e.g. buildings and trees). 

It should be noted that with the existing version of SLAB, different model runs must be 

conducted for every single change in the input parameters. This is both computationally 

extensive and impractical, especially in real time situations, where running a large number of 

simulations quickly is desired in order to provide rapid information that are needed for 

planning and emergency response purposes. Hence, the SLAB calculations have been modified 

to avoid multiple model runs for the different guesses of the source rate. Here, we have defined 

four different source rates, pre-calculated their parameters from the original SLAB model, and 

used them as bands for interpolating the parameters of the new guesses of the source rate. As 

expected, the results of the interpolation are associated with some error when compared to the 

actual model predictions.  
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We then proceed with the toxic load calculations for the same 61 output times from SLAB 

and locations in the area affected by the H2S cloud. The TL calculations of EAGLE require 

providing tabulated USEPA values of AEGLs for the chemical of concern, H2S in this case. 

Next, a power law of 4.4 is obtained by fitting the AEGL data provided by the USEPA for 

H2S. The calculations also require defining a lower and upper time limits over which the 

USEPA table is extrapolated and extended. Here, we have defined the lower and upper limits 

to be 30 seconds and 24 hours, respectively. The outputs from the EAGLE’s TL calculations 

are TL values corresponding to the three different AEGLs at various downwind locations and 

time intervals following the HazMat release. 

3.4.2 The Inverse Problem  

In the inverse calculations, we are primarily interested in finding the source term 

characteristics through the use of various combinations of input data and release conditions. 

To do this, six different cases are tested in this work to reconstruct the source release rate from 

a known location, and to identify the location of the release when the source rate is assumed 

to be known.  

3.4.2.1 Identification of an Unknown Release Rate 

The objective of the first scenario is to determine the release rate of a HazMat emitted 

from a known source location. Three different classes of data are used as input to the inversion 

algorithm each time. In the first case, the release rate is back-calculated based on the 

conventional use of concentration data. The second case utilizes exact receptor measurements 

of TL reported at specific time-intervals and meeting the criterion that a value of a TL greater 

than zero is detected (i.e. a release triggers the toxic load computations). The use of the health 

effects as input is tested in the last case in which health observations are collected at specific 
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times following the release, with the criterion that at each receptor AEGLk conditions are 

present. The input data to the modeling system in this case is the inequality TL>=1. 

For each of the scenarios considered, random samples of observations (concentration, TL 

values, or health effects) from the forward model are collected at different candidate locations 

(xi, yi). MC simulations are performed to generate samples of varying size of observations. 

The sampled results are then passed into the inverse routine in which they are compared in a 

cost function against model predictions using different guesses of Qs. The inverse routine 

computes iteratively Qs along with the residual error associated with each set of observations.  

3.4.2.2 Identification of an Unknown Source Location 

In the second case, the objective is to identify the unknown location of the source from a 

series of different observations. Similar to the first case, the location is identified using three 

different types of input data (i.e. TL values, health observations, and concentration 

measurements). As discussed earlier, the solution for the source location is obtained through 

the implementation of the correlation coefficient method, where the minimum of the 

correlation function corresponds to the identified location.  

Atmospheric dispersion and dose-response simulations were run using MATLAB m-files 

scripts, and samples were collected after convergence was achieved. Moreover, the inversion 

computations were carried out using MATLAB’s fminbnd and corrcoef functions. The code 

that generates the results consists of the following main routines (see the Appendix for details): 

• Read_Predict: Calls all the values of the SLAB parameters for the pre-defined source 

rates in order to facilitate the interpolation calculations.   

• LinIterm: Performs the interpolation calculations for the newly guessed values of the 

source rate using the parameters in Read_Predict. 
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• SLAB: Calculates the downwind concentration using the 1D dispersion equation 

described in 3.2.1. 

• Solve: Main program that generates random permutation samples for use as input to 

the inverse algorithm, and then estimates the release rate based on the use of 

MATLAB’s fminbnd function. 

• Solve_Loc: Using this routine, we obtain an estimate of the location coordinates using 

the correlation coefficient method and MATLAB’s corrcoef function.   
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4. RESULTS AND DISCUSSION 

 

In order to demonstrate the capability of the proposed scheme in predicting the source 

parameters, calculations were performed following the release of a toxic H2S gas for conditions 

where the three different AEGLs take place. The sensitivity of the source term estimation is 

evaluated against several parameters, namely the type of input information (i.e. concentration, 

TL values, and health observations), the number of receptors utilized in the inversion and the 

number of iterations used in generating the results. Multiple tests and model runs were 

conducted for the different AEGLs and time-steps, however, we present here only selected 

examples (i.e. the case where AEGL-1 conditions are met and for a specific time-step) to 

illustrate the results of the source-reconstruction methodology in the following subsections.  

4.1 Forward Modeling Results 

4.1.1 Concentration Profile at Different Time-steps 

Figure 8 shows the profile of the H2S concentration at some arbitrary receptors downwind 

from the release location, and at different timesteps following the toxic release. 
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Figure 8. Concentration profile at different time intervals (from left to right: 201s, 401s, 601s, 801s, 1001s, 1201s, 1401s, 

1601s, 1801s), downwind from the release location 

 

Concentration profiles have higher peaks (corresponding to high concentrations) at the 

early stages of the release and cover a smaller downwind distance away from the point of the 

release. The peak is then seen to decrease with time as the plume disperses and the profile 

widens to cover larger distances downwind from the release. The time intervals are recorded 

following the start of the release (i.e. t= 0 seconds), with a time-interval of 201 seconds for 

instance being the length of time that passed since that. Also, noise is introduced to the 

synthetic concentration data as discussed in the methodology section. 
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4.1.2 Toxic Load Profile at Different Downwind Locations 

Figure 9 shows the TL profile for the three AEGLs at some arbitrary receptors downwind 

from the release location. AEGL-1 being the less severe conditions and AEGL-3 conditions 

being the most severe ones. 

 

 

Figure 9. TL at some arbitrary locations downwind from the release location 

 

As shown, both AEGL-1 and AEGL-2 conditions are met (i.e. TL values equal to or 

greater than 1) and hence indicating the occurrence of the corresponding health observations, 

whereas AEGL-3 conditions are not achieved for the given exposure conditions and duration. 
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4.1.3 Regions with Health Effects Observations at a Fixed Timestep 

Figure 10 depicts the regions with health effects observations resulting from exposure to 

a toxic H2S cloud at a time t=600 seconds. As seen, the affected areas extend up to 

approximately 2800 m horizontally and 600 m vertically in the domain area, with AEGL-1 

conditions being the dominant.  

 

 

Figure 10. Regions with health symptoms observations at t=600 seconds 
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4.2 Results of the Inverse Calculations  

4.2.1 Unknown Source Rate (Qs) 

The source rate was estimated using different sets of receptors ranging from 2 to 100 

sample points, and model runs were performed for two different iterations (i.e. 10 and 100) in 

order to investigate the impact of increasing the magnitude on the convergence of the results. 

Moreover, the frequencies of the estimates and their corresponding residuals are compared for 

the case of using 9 receptors and 100 receptors, for 100 iterations in both cases.  

4.2.1.1 Qs using Concentration Data  

The estimated source rate for a varying size of receptors using two different iterations is 

shown in Figure 11 for the case of using concentration as input data to the source reconstruction 

algorithm.  As shown, both the size of the receptors used and the number of iterations influence 

the convergence of the results. For example, using 9 receptors and 100 iterations, the results 

are shown to range from approximately 80-200 kg/s, with a moving average of 140 kg/s. 

Whereas, using a sample of 100 receptors for the same number of iterations, the results are 

shown to exhibit lesser variability and are confined to a range of approximately 88-113 kg/s, 

with a moving average of 103 kg/s. Further, the number of iterations used seems to have 

insignificant impact on the results for receptors sizes of 58 and above. 
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Figure 11. Estimated Qs versus the size of the receptors for 10 and 100 iterations based on the use of concentration as input 

 

 

 

Next, the frequencies of the estimated results and their residual errors were estimated for 

a fixed number of iterations and two different sizes of receptors. Figure 12 and Figure 14 show 

the frequencies of the source rates estimates when utilizing concentration data and 100 iteration 

for 9 and 100 receptor points, respectively. The frequency distribution of the corresponding 

residual errors are shown in Figure 13 and Figure 15. 

Number of the 
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Figure 12. Estimated Qs versus the frequency for 9 receptors when using concentration as the input 

 

 

  

  

Figure 13. Residual error versus the frequency for 9 receptors when using concentration as the input 
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Figure 14. Estimated Qs versus the frequency for 100 receptors when using concentration as the input 

 

 

 

 

Figure 15. Residual error versus the frequency for 100 receptors when using concentration as the input 
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As shown in Figure 12, the estimated results of the source rate when using 9 receptors, 

fall between 72 kg/s and 328 kg/s, with the majority of the estimates being concentrated in the 

113.3-116.6 region. Increasing the number of receptor points is shown to result in better 

convergence of the source rate estimates (see Figure 14), with the results falling in the 72-127 

kg/s range, and majority of the estimates being close to the true solution. 

4.2.1.2 Qs using TL Values    

Figure 16 shows the estimated source rate for the case of using TL values as input data to 

the source reconstruction algorithm. Interestingly, the results using this type of information 

have better convergence when compared to the use of concentration data.  

 

    

 

Figure 16. Estimated Qs versus the size of the receptors for 10 and 100 iterations based on the use of TL as input 

 

Number of the receptors 
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The frequencies of the estimated source rate and the corresponding residual errors for 100 

iterations and two sizes of receptor points are shown in Figures 17-20. 

  

Figure 17. Estimated Qs versus the frequency for 9 receptors when using TL as the input 

 

  

 

Figure 18. Residual error versus the frequency for 9 receptors when using TL as the input 
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Figure 19. Estimated Qs versus the frequency for 100 receptors when using TL as the input 

 

 

 

Figure 20. Residual error versus the frequency for 100 receptors when using TL as the input 
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As shown in Figure 17 and Figure 19, the estimated results of the source rate when using 

9 receptors, lie between 86.28 kg/s and 118.71 kg/s, with the majority of the estimates being 

concentrated in the 101.7-103.4 region. Increasing the number of receptor points does not 

result in significance improvement in terms of convergence, with the results falling in the 95-

108 kg/s range, and majority of the estimates being in the 101.34-102 kg/s region. 

4.2.1.3 Qs using Health Effects 

Lastly, the source rate was estimated from health effects as the input data. The results of 

the source estimation are shown in Figure 21. Unlike the use of concentration and TL data, the 

complexity associated with use of health effects information influences the convergence of the 

source estimates. As seen, for the two different number of iterations, the results fail to reach 

reasonable convergence when using small number of sample points and are shown to exhibit 

greater variations. The results then improve when using a sample size of 44 points and above 

for both of the iterations used. Also, using smaller number of iterations, the results converge 

faster using smaller number of points in contrast to the use of the larger number of iterations 

for which a larger size of receptors is required to reach the same convergence. This is only 

observed up till 44 points and is a result of the added error. Since model runs represent different 

scenarios and since health effects are treated as an integrative; it takes values of 0, 1, 2, and 3 

and treats 2.1, 2.2, and 2.3 the same. Here, using 100 iterations is like adding another 100 

iterations/scenarios and hence adding to the existing error.  
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Figure 21. Estimated Qs versus the size of the receptors for 10 and 100 iterations based on the use of health effects as input 

 

 

The frequencies of the source rate estimates and the corresponding residual errors for 100 

iterations and two sizes of receptor points are shown in Figures 22-25.  

 

 

 

Number of the receptors 
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Figure 22. Estimated Qs versus the frequency for 9 receptors when using health effects as the input 

 

 

 

Figure 23. Residual error versus the frequency for 9 receptors when using health effects as the input 
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Figure 24. Estimated Qs versus the frequency for 100 receptors when using health effects as the input 

 
 

 

 

 

 

 

Figure 25. Residual error versus the frequency for 100 receptors when using health effects as the input 
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As shown in Figure 22, the estimated results of the source rate when using 9 receptors, lie 

between 83.4 kg/s and 500 kg/s, with the majority of the estimates falling in the 116.67-118.34 

region. Increasing the number of receptor points to 100, better convergence is observed when 

compared to the use of the 9 points, with the results falling in the 100-130 kg/s range, and the 

majority of the estimates being in the 500 kg/s region (see Figure 24). 

4.2.2 Unknown Source Location 

Similar to the source rate reconstruction, the location of the release was estimated using 

the three different classes of input data, and each time the size of the receptors was varied 

between 2 to 100 points, for 100 iterations. The performance of the modeling system was 

assessed based on the use of the different types of input data and the size of receptors required 

to achieve the desired results. 
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4.2.2.1 Source Location Using Concentration Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Contours of the estimated location regions for 9, 23, 44, 65, 86, and 100 receptors using concentration 
observations 



  

52 
 

For each set of receptors used, Figure 26 shows the regions where estimates of the release 

location are produced with varying levels of confidence, where a value of R2 of 1 (see the color 

bar on the right) indicates that the exact location is reconstructed. The color bar represents the 

estimated values of R2 (Pearson correlation coefficient) that are associated with each guessed 

location coordinates, with values closer to 1 indicating that the solution is closest to the actual 

release location which is marked by the X symbol.   

Although the number of receptors was varied between 2 to 100 points, a minimum of 9 

points was required in order to reconstruct the location of the hazardous release when using 

concentration as input data. The results are shown for six different sizes of receptors in the 

above mentioned range. As expected, reasonable estimates of the release location are obtained 

when using concentration measurement/data in pinpointing the location of the toxic H2S 

release. 
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4.2.2.2 Source Location using TL Values 

 

 

Figure 27. Contours of the estimated location regions for 9, 23, 44, 65, 86, and 100 receptors using TL values 
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As shown in Figure 27, identifying the location of the release from TL values was achieved 

in a similar manner to the case of the use of concentration as input data. As seen, the use of the 

concentration resulted in better estimates for the same number of receptors when compared to 

the use of TL values.  

Similar to the first case, a minimum of 9 receptors was needed to achieve an estimate of 

the coordinates of the release location. The same six receptors sizes used in the case of 

concentration being the input data were also used to demonstrate the approach when using the 

TL values. In this second case, the results are also shown to be reasonably close to the 

actual/true location of the release location depending on the confidence level being considered. 

As mentioned before, values of R2 closer to 1 indicate the true solution is either approached 

with high accuracy or reconstructed as it is.  
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4.2.2.3 Source Location using Health Effects 

 

 

Figure 28. Contours of the estimated location regions for 37, 51, 65, 79, 86, and 100 receptors using health effects 
observations 
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Figure 28 shows the results for the source location estimation from observed health effects. 

Again, the size of the receptors was varied between 2 and 100 sample points. As shown, the 

level of the complexity associated with the use of health effects as input data was reflected on 

the minimum number of receptors required to reconstruct the source location when compared 

to the use of concentration and TL values.  

4.3 Discussion  

4.3.1 Effect of the Size of the Input Data Used on the Convergence of the Results 

The sensitivity of the results to the size of the input data was gauged by varying the number 

of receptor points used in each of the individual scenarios. With respect to the performance of 

the proposed scheme in reconstructing the source rate, all of the three types of information 

used allowed the prediction of “averaged” source term rate to within 40-500 kg/s, and a wide 

variation in the quality of the algorithm’s predictions was seen, particularly with the use of the 

health effects observations as input data. 

It was shown that for the case of the use of the concentration data (see Figure 11), 

increasing the size of data points used in reconstructing the release rate, regardless of the 

number of iterations used, leads to better convergence of the results and better agreement with 

the actual release rate. The necessity to have large size of input data for the source 

reconstruction algorithm is due to the inherent variability and uncertainty of predicting the 

actual release rate. Here, this is reflected mostly with the introduced noise to the synthetic data 

as discussed in the methodology section. Without the noise, this is a simple well-defined 

problem and for which the solution algorithm converges in few iterations and with a small 

number of receptors. However, in reality, uncertainty is high and only scarce number of data 

are typically available for use in the source estimation, thus the considered scenarios are only 
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for exploratory purposes aiming at assessing the limitations associated with the proposed 

scheme. 

In contrast to the use of the concentration data, the averaged source rate estimates that are 

obtained from the toxic load values are shown to exhibit less variability and good agreement 

with the actual release rate when utilizing 9 receptor points and above (see Figure 16). The 

results then become independent of the size of the receptors used from 51 points and above. 

The improvement associated with the use of the TL values when compared to the conventional 

use of the concentration data can be attributed to the fact that the TL is estimated using an 

integral of time and hence it contains previous history up till the specified time-frame at which 

the data are collected. 

Finally, the moving average when utilizing health effects as input data seems to improve 

with increasing the number of the points where the observations are made (see Figure 21). 

Also, greater variations of the results are observed with the use of receptors points within 2 to 

44. The variability of the results improves in the range 44 to 100 receptors. 

In terms of the retrieval of the release location, the number of the data points used seems 

to influence the goodness of the estimates. The source location is well-retrieved (R2 =0.8 within 

a downwind distance of 480-800 m and crosswind distance of 100-410 m) when utilizing the 

concentration data as input to the source estimation algorithm with a small number of input 

data as 9 points (see Figure 26). The estimates then improve when the size of the data points 

used is increased to 23 points (R2 =0.8 within a downwind distance of 390-780 m and 

crosswind distance of 100-410 m) and become independent of the size of the data points used 

when increasing the size beyond that.  
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Similar to the use of the concentration data as input, the use of the toxic load values is also 

shown to result in good estimates of the source location (R2 =0.8 within a downwind distance 

of 600-750 m and crosswind distance of 200-330 m) when using 9 points (see Figure 27). 

Increasing the number of the sampled points in reconstructing the source location, leads to a 

slight decrease in the quality of the estimates, which then become independent of the size of 

data points. 

The use of health effects observations is accompanied by a great degree of complexity, 

and hence achieving source location estimates is not possible with smaller number of points as 

in the previous two cases of concentration and toxic load being the input to the source 

estimation algorithm. In the constructed release scenario, a minimum of 37 receptors with 

reported health observations is required to achieve a reasonable estimate (R2 =0.8 within a 

downwind distance of 320-640 m and crosswind distance of 260-330 m) of the location 

coordinates (see Figure 28). 

4.3.2 Effect of the Number of Iterations on the Convergence of the Source Rate Results 

With respect to the influence of the number of iterations used in generating the source rate 

estimates on the performance of the scheme and the quality of the results, the results were 

assessed for all of the three classes of input data for two different number of model iterations.  

As seen in Figure 11, increasing the number of iterations used in generating the results of 

the source rate estimates from concentration data is shown to yield better convergence and 

lesser variations from the moving average. This is because the use of such a large number of 

iterations accounts for different possible combinations of a certain receptors size rather than 

only a single set of a given number of data points; making it more representative. In reality, 

however, only a limited number of data points are available, hence the 10 iterations scenario 
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is closer to real-life situations where only the data themselves are used and not the 

combinations. The use of the random combinations here is for exploratory purposes to assess 

the performance against the uncertainty associated with the use of points with the same size 

but collected at different locations. Similar to the use of concentration data, TL information 

are shown to result in lesser variations from the moving average of the sample and better 

convergence for receptor sizes falling between 9 to 100 points (see Figure 14). Unlike the first 

two cases, using health effects as input data, better convergence and lesser deviation of the 

results from the moving average is observed when using smaller number of iterations in 

contrast to the use of larger number of iterations, especially for receptors size in the range of 

2-44 data points (see Figure 21).  

4.3.3 Impact of the Type of Data Used  

With respect to the retrieval of the source term parameters, all the three classes of input 

data enabled the prediction of the source term characteristics with varying degrees of 

confidence and requirements of the receptor size. As can be seen from the results, the use of 

the concentration data and toxic load information required the least number of data points to 

reconstruct the source parameters. As the level of complexity of the provided information 

increases (i.e. the use of the health observations), more data points are required to achieve 

reasonable results. The required receptors size for the case of health effects observations was 

significantly larger than the other two cases, due to the complexity involved with the use of 

such type of information. The criterion sought for by an observer or an emergency responder 

is not exact values, instead it is a check of whether or not the health observations are present 

in a specific location.  
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 5. CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

In this work, we have investigated the feasibility of a new source-reconstruction 

methodology based on the coupling of atmospheric dispersion and dose-response modeling. 

The proposed methodology utilizes health symptoms resulting from exposure to a HazMat 

release as indirect input to an integrated modeling system that back-calculates the responsible 

source characteristics. As indicated by the results of the case studies presented in this work, 

the proposed scheme for source reconstruction from health effects observations has managed 

to achieve good estimates of the source rate and location. The scheme, however, suffers from 

the inability to reconstruct the source parameters from a small set of observations or input data, 

which in real-time situations may not be possible as only limited number of observations are 

available to back-calculate the release parameters.  

5.2 Recommendations 

• To validate the scheme, it is recommended to explore the use of other dose-response 

models like the PBTK models, which unlike the toxic load model and the AEGL, 

account for the physical activities of the victims (such as seeking shelter), as well as 

the physiological and biological parameters of the exposed individuals and the different 

routes of exposure. 

• Use of other dispersion models which allow the inclusion of variable meteorological 

information, and site topography (computational fluid dynamics models e.g. QUIC) 

and more complex information associated with the release of HazMats. 
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• Use of real data of the release (e.g. H2S release from a natural gas facility) and health 

observations to validate the results since the synthetic scenarios are typically free from 

error and hence are not representative of the actual case scenarios. 

• In this work, a simple forward modeling scheme employing MC sampling was utilized 

in obtaining the preliminary results as the focus is on the hypothesis rather than the 

mathematical background of the inverse problem. To account for the uncertainty of the 

results and obtain more realistic information with reduced randomness, it is 

recommended to utilize MCMC techniques to allow for comparison of the different 

model runs/iterations, and Bayesian inference to determine the probability of the 

solutions. 

• Other inversion techniques, whether forward or backward modeling, are recommended 

to be applied and explored such as the artificial neural networks.  

• It is also recommended to validate the scheme against other well-known toxic 

chemicals such as Chlorine.  

• The release considered in this work was assumed to take place from a stationary source. 

It is recommended to study the effect of having a release from a moving source such as 

the ones occurring from transport accidents and terrorist attacks. 

• Other scenarios and case studies need to be explored to validate the hypothesis and its 

limits, such as the reconstruction of the time at which the release first takes place and 

the inclusion of more input information to the modeling systems such as two different 

times at which the observations are recorded or estimated based on the provided 

information by the victims. 
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APPENDIX: MATLAB CODE 

 

1. Solve 

function 
[Qmean,RESmean]=SolveV4(NRecS,NStep,NRecE,NIterS,NItStep,NIterE,CorTL) 
%% SET GLOBAL Parameters 
x=0:25:5000; 
y=0:25:1000; 
t=600; 
z=2; 
Src.x=500; 
Src.y=300; 
  
%CorTL='HE'; 
AEGLk=1; 
Agent=AgentSetup('H2S'); 
%Iter=100; 
%NRecS=10; 
%NRecE=10; 
%NStep=1; 
Receptors=NRecS:NStep:NRecE; 
Iterations=NIterS:NItStep:NIterE; 
  
  
%% COLLECT Predict 
Q=[50 125 250 500]; 
for ip=1:4 
    P(ip)= Read_PredictV4(strcat('SLAB/predict_0',int2str(ip-1))); 
end 
  
  
%% CREATE REF case 
Qx=100; 
Pref= Read_PredictV4('SLAB/predict_x100'); 
%Pref=PrepPV4(Q,100,P); 
REF=zeros(length(x),length(y)); 
for ix=1:length(x) 
    for iy=1:length(y) 
        REF(ix,iy)=ImpactV4(CorTL,Pref,AEGLk,Agent,Src,x(ix),y(iy),z,t); 
    end  
end 
   
%parpool(2); 
fileNameBase=strcat('output/Q_',CorTL); 
fileNameProg=strcat(fileNameBase,'_', 
int2str(NRecS),'_',int2str(NRecE),'_',int2str(NIterS),'_',int2str(NIterE))
; 
parfor_progress(fileNameProg,NIterE*((NRecE-NRecS)/NStep+1)); 
  
%% CREATE random Sample 
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poolobj = gcp('nocreate'); % If no pool, do not create new one. 
if isempty(poolobj) 
    poolsize = 0; 
else 
    poolsize = poolobj.NumWorkers; 
end 
  
for iR=1:numel(Receptors) 
    iRec=Receptors(iR); 
    iREF=find(REF>0); 
    nsample=NIterE; 
    if numel(iREF)<iRec 
        error( 'Not possible to proceed further, available Receptors: 
%4i\n', numel(iREF)); 
    end 
    binomComb=nchoosek(numel(iREF),iRec); 
    if binomComb<nsample;nsample=binomComb;end 
    randREF=zeros(nsample,iRec); 
    for h=1:nsample 
        randREF(h,:)=randperm(numel(iREF),iRec);%Random sample of 
receptors following TLn filter   
    end 
    [nzXX,nzY]=ind2sub(size(REF),iREF(randREF));%Linear indixing 
convertred back into subscripts 
    REFrand=REF(iREF(randREF)); 
    xrand=x(nzXX); 
    yrand=y(nzY); 
  
%% RUN ALL ITERATIONS 
Qguess=zeros(1,NIterE); 
res=zeros(1,NIterE); 
    parfor it=1 : NIterE 
 
[Qguess(it),res(it)]=fminbnd(@(Qs)Stockie_InverseV4(Qs,xrand(it,:),yrand(i
t,:),z,REFrand(it,:),t,P,Q,CorTL,AEGLk,Agent,Src),50,500); 
         parfor_progress(fileNameProg); 
    end 
    % Save the partial files 
    for it=1:numel(Iterations) 
        NIter=Iterations(it); 
        SQguess=Qguess(1: NIter); 
        SRes=res(1: NIter); 
        Qmean(iR,it)=mean(SQguess); 
        Qstdev(iR,it)=std(SQguess); 
        RESmean(iR,it)=mean(SRes); 
        
fileNameMat=strcat(fileNameBase,'_i',int2str(NIter),'_r',int2str(iRec)); 
        save(strcat(fileNameMat, '.mat'),'AEGLk', 't','SQguess', 'SRes'); 
    end 
     
end 
  
parfor_progress(fileNameProg,0); 
drawnow; 
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end 
 

Consolidate the results after the running the main codes 

%what to execute 
examples='Q'; 
switch examples 
    case 'Solve' 
        %% Examples of Running Code 
        [Qmean,RESmean]=SolveV4(2,7,100,2,14,100,'C'); % find Q using 
concentration 
        % [Qmean,RESmean]=SolveV4(2,2,20,10,10,5,30,'TL'); % find Q using 
Toxic Load 
        % [Qmean,RESmean]=SolveV4(2,2,20,10,10,5,30,'HE'); % find Q using 
Toxic Load 
        % [Res,FSrc]=SolveV4_loc(2,2,20,10,'C'); % find Location using 
concentration 
        % [Res,FSrc]=SolveV4_loc(2,2,20,10,'TL'); % find Location using 
Toxic Load 
        % [Res,FSrc]=SolveV4_loc(2,2,20,10,'HE'); % find Location using 
Toxic Load 
     
    case 'Location' 
        %% TEST of Location Identification 
        %   Runs should be already done 
  
        x=0:25:2000; 
        y=0:25:1000; 
        Src.x=500; 
        Src.y=300; 
        [fgh]=figure; 
        hold on; 
  
        %GET DATA 
        NRecS=2; 
        NStep=7; 
        NRecE=100; 
        NIter=10; 
        CorTL='C'; % change to C or TL or HE 
        fileNameBase=strcat('output/Loc_',CorTL,'_i',int2str(NIter)); 
  
        Receptors=NRecS:NStep:NRecE; 
        for iR=1:numel(Receptors) 
            iRec=Receptors(iR); 
            fileNameMat=strcat(fileNameBase,'_r',int2str(iRec)); 
            load(strcat(fileNameMat, '.mat')); 
            figure(fgh); 
            contourf(x,y,Res'); 
            caxis([0 1]); 
            colormap hot; 
            colorbar; 
            plot(Src.x,Src.y,'-x','MarkerSize',15); 
            drawnow; 
            Movie(iR)=getframe(gcf); 
            minResR(iR)=minRes; 
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        end 
        hold off; 
        plot(Receptors,minResR); 
        % myVideo = VideoWriter('myfile.avi'); 
        % myVideo.FrameRate = 1;  % Default 30 
        % myVideo.Quality = 50;    % Default 75 
        % open(myVideo); 
        % writeVideo(myVideo, Movie); 
        % close(myVideo); 
  
    case 'Q' 
         
        %% TEST of Source Rate 
        %   Runs should be already done 
  
        x=0:25:5000; 
        y=0:25:1000; 
        Src.x=500; 
        Src.y=300; 
        [fghQ]=figure; 
  
        %GET DATA 
        NRecS=2; 
        NStep=7; 
        NRecE=100; 
        NIterS=100; 
        NItStep=100; 
        NIterE=100; 
        CorTL='C'; % change to C or TL 
        fileNameBase=strcat('output/Q_',CorTL); 
  
        Receptors=NRecS:NStep:NRecE; 
        Iterations=NIterS:NItStep:NIterE; 
         
        for iR=1:numel(Receptors) 
            iRec=Receptors(iR); 
            for it=1:numel(Iterations) 
                iTer=Iterations(it); 
                
fileNameMat=strcat(fileNameBase,'_i',int2str(iTer),'_r',int2str(iRec)); 
                load(strcat(fileNameMat, '.mat')); 
                %RES(iR,it,:)=SRes; 
                meanRES(iR,it)=mean(SRes); 
                %QGUESS(iR,it,:)=SQguess; 
                meanQGUESS(iR,it)=mean(SQguess); 
                stdevQGUESS(iR,it)=std(SQguess); 
%                 figure(fghQ); 
%                 hist(Qguess); 
%                 drawnow; 
%                 MovieQ(iR)=getframe(gcf); 
            end 
        end 
%% 
end 
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%% Plot Q Mean 
figure; 
it=100; 
Iterations(it) 
X=[Receptors,fliplr(Receptors)];                %#create continuous x 
value array for plotting 
y1=meanQGUESS(:,it)-stdevQGUESS(:,it); 
y2=meanQGUESS(:,it)+stdevQGUESS(:,it); 
Y=[y2',fliplr(y1)'];              %#create y values for out and then back 
h=fill(X,Y,'b');                  %#plot filled area 
set(h,'Facecolor',[1 0.84 0.99]); 
set(h,'FaceAlpha',0.5); 
set(h,'LineStyle','none'); 
hold on 
h=plot(Receptors,meanQGUESS(:,it)); 
set(h,'Color',[1 0.84 0.99]); 
set(h,'LineWidth',2); 
  
it=100; 
Iterations(it) 
X=[Receptors,fliplr(Receptors)];                %#create continuous x 
value array for plotting 
y1=meanQGUESS(:,it)-stdevQGUESS(:,it); 
y2=meanQGUESS(:,it)+stdevQGUESS(:,it); 
Y=[y2',fliplr(y1)'];              %#create y values for out and then back 
h2=fill(X,Y,'b');                  %#plot filled area 
set(h2,'Facecolor',[0.5 0.34 0.99]); 
set(h2,'FaceAlpha',0.5); 
set(h2,'LineStyle','none'); 
h2=plot(Receptors,meanQGUESS(:,it)); 
set(h2,'Color',[0.5 0.34 0.99]); 
set(h2,'LineWidth',2) 
 

Solve_Loc 

function [Res,FSrc]=SolveV4_loc(NRecS,NStep,NRecE,NIter,CorTL) 
%Find location of source using correllation 
  
% NRecS=10; 
% NStep=10; 
% NRecE=10; 
% NIter=2; 
%CorTL='HE'; 
  
%% SET GLOBAL Parameters 
x=0:25:5000; 
y=0:25:1000; 
t=600; 
z=2; 
Src.x=600; 
Src.y=300; 
  
  
AEGLk=1; 
Agent=AgentSetup('H2S'); 
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%Iter=100; 
%NRecS=10; 
%NRecE=10; 
%NStep=1; 
Iterations=NRecS:NStep:NRecE; 
  
  
%% COLLECT Predict 
Q=[50 125 250 500]; 
for ip=1:4 
    P(ip)= Read_PredictV4(strcat('SLAB/predict_0',int2str(ip-1))); 
end 
  
  
%% CREATE REF and BASE case 
Qx=100; 
Pref= Read_PredictV4('SLAB/predict_x100'); 
%Pref=PrepPV4(Q,100,P); 
REF=zeros(length(x),length(y)); 
Pbase=PrepPV4(Q,300,P); 
BSrc.ixB=round(length(x)/2); 
BSrc.iyB=round(length(y)/2); 
BSrc.x=x(BSrc.ixB); 
BSrc.y=y(BSrc.iyB); 
for ix=1:length(x) 
    for iy=1:length(y) 
        REF(ix,iy)=ImpactV4(CorTL,Pref,AEGLk,Agent,Src,x(ix),y(iy),z,t); 
        
BASE(ix,iy)=ImpactV4(CorTL,Pbase,AEGLk,Agent,BSrc,x(ix),y(iy),z,t);   
    end  
end 
  
%parpool(2); 
fileNameBase=strcat('output/Loc_',CorTL,'_i',int2str(NIter)); 
fileNameProg=strcat(fileNameBase,'_', int2str(NRecS),'_',int2str(NRecE)); 
parfor_progress(fileNameProg,numel(Iterations)*length(x)); 
  
%% CREATE random Sample 
  
%parpool(2); 
  
for iR=1:numel(Iterations) 
iRec=Iterations(iR); 
    
    iREF=find(REF>0); 
    nsample=NIter; 
    if numel(iREF)<iRec 
        error( 'Not possible to proceed further, available Receptors: 
%4i\n', numel(iREF)); 
    end 
    binomComb=nchoosek(numel(iREF),iRec); 
    if binomComb<nsample;nsample=binomComb;end 
    randREF=zeros(nsample,iRec); 
    for h=1:nsample 
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        randREF(h,:)=randperm(numel(iREF),iRec);%Random sample of 
receptors following TLn filter   
    end 
    [nzXX,nzY]=ind2sub(size(REF),iREF(randREF));%Linear indixing 
convertred back into subscripts 
    REFrand=REF(iREF(randREF)); 
    xrand=x(nzXX); 
    yrand=y(nzY); 
  
%% RUN ITERATIONS 
    N = size(xrand,1); 
    Res=zeros(numel(x),numel(y)); 
    FSrc.x=mean(x); 
    FSrc.y=mean(y); 
    minRes=100; 
    for ix=1:length(x) 
         for iy=1:length(y) 
            ixB=ix-BSrc.ixB; 
            iyB=iy-BSrc.iyB; 
            nBASE=shiftmatrix(BASE,ixB, iyB); 
            BASErand=nBASE(iREF(randREF));       
            CorRes=zeros(1,N); 
            for it=1 : N %Different realizations      
                tcorcof  = corrcoef(REFrand(it,:),BASErand(it,:)); 
                CorRes(it)=tcorcof(1,2); 
            end 
            Res(ix,iy)=mean(CorRes); 
            if abs((1-Res(ix,iy))/Res(ix,iy))<minRes 
                FSrc.x=x(ix); 
                FSrc.y=y(iy); 
                minRes=abs((1-Res(ix,iy))/Res(ix,iy)); 
            end 
         end 
         parfor_progress(fileNameProg); 
    end 
    minRes=1/(1+minRes); 
    fileNameMat=strcat(fileNameBase,'_r',int2str(iRec)); 
    save(strcat(fileNameMat, '.mat'),'AEGLk', 't', 'Iterations', 
'Res','FSrc','minRes'); 
end 
  
parfor_progress(fileNameProg,0); 
drawnow; 
end 
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Consolidate the results after running the main code 

%what to execute 
examples='Location'; %Use 'Q' or 'Location' 
switch examples 
    case 'Solve' 
        %% Examples of Running Code 
        [Qmean,RESmean]=SolveV4(2,7,100,10,50,200,'C'); % find Q using 
concentration 
        %[Qmean,RESmean]=SolveV4(2,2,20,10,50,200,'TL'); % find Q using 
Toxic Load 
        % [Qmean,RESmean]=SolveV4(2,2,20,10,5,30,'HE'); % find Q using 
Toxic Load 
        % [Res,FSrc]=SolveV4_loc(2,2,20,10,'C'); % find Location using 
concentration 
        % [Res,FSrc]=SolveV4_loc(2,2,20,10,'TL'); % find Location using 
Toxic Load 
        % [Res,FSrc]=SolveV4_loc(2,2,20,10,'HE'); % find Location using 
Toxic Load 
     
    case 'Location' 
        %% TEST of Location Identification 
        %   Runs should be already done 
  
        x=0:25:5000; 
        y=0:25:1000; 
        Src.x=500; 
        Src.y=300; 
        [fgh]=figure; 
        hold on; 
  
        %GET DATA 
        NRecS=2; 
        NStep=7; 
        NRecE=100; 
        NIter=100; 
        CorTL='HE'; % change to C or TL or HE 
        fileNameBase=strcat('output/Loc_',CorTL,'_i',int2str(NIter)); 
  
        Receptors=NRecS:NStep:NRecE; 
        for iR=1:numel(Receptors) 
            iRec=Receptors(iR); 
            fileNameMat=strcat(fileNameBase,'_r',int2str(iRec)) 
            load(strcat(fileNameMat, '.mat')); 
            figure(fgh); 
            contourf(x,y,Res'); 
            caxis([0 1]); 
            colormap hot; 
            colorbar; 
            plot(Src.x,Src.y,'-x','MarkerSize',15); %try to plot a circle 
of 25 radius 
            drawnow; 
            pause; 
            Movie(iR)=getframe(gcf); 
            minResR(iR)=minRes; 
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        end 
        hold off; 
        plot(Receptors,minResR); 
        % myVideo = VideoWriter('myfile.avi'); 
        % myVideo.FrameRate = 1;  % Default 30 
        % myVideo.Quality = 50;    % Default 75 
        % open(myVideo); 
        % writeVideo(myVideo, Movie); 
        % close(myVideo); 
  
    case 'Q' 
         
        %% TEST of Source Rate 
        %   Runs should be already done 
  
        x=0:25:2000; 
        y=0:25:1000; 
        Src.x=500; 
        Src.y=300; 
        [fghQ]=figure; 
  
        %GET DATA 
        NRecS=2; 
        NStep=7; 
        NRecE=100; 
        NIterS=10; 
        NItStep=50; 
        NIterE=100; 
        CorTL='C'; % change to C or TL 
        fileNameBase=strcat('output/Q_',CorTL);%Used to be: 
('output/A1_t1/Q_',CorTL); 
  
        Receptors=NRecS:NStep:NRecE; 
        Iterations=NIterS:NItStep:NIterE; 
         
        for iR=1:numel(Receptors) 
            iRec=Receptors(iR); 
            for it=1:numel(Iterations) 
                iTer=Iterations(it); 
                
fileNameMat=strcat(fileNameBase,'_i',int2str(iTer),'_r',int2str(iRec)); 
                load(strcat(fileNameMat, '.mat')); 
                %RES(iR,it,:)=SRes; 
                meanRES(iR,it)=mean(SRes); 
                %QGUESS(iR,it,:)=SQguess; 
                meanQGUESS(iR,it)=mean(SQguess); 
%                 figure(fghQ); 
%                 hist(Qguess); 
%                 drawnow; 
%                 MovieQ(iR)=getframe(gcf); 
            end 
        end 
%% 
end 
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