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ABSTRACT

We study quotients of Banach spaces in three nonlinear categories: Lipschitz,

uniform and coarse. Following a brief review of what has been known for uniform

and Lipschitz quotients of classical Banach spaces, we introduce the definition of

coarse quotient and show that several results for uniform quotients also hold in

the coarse setting. In particular, we prove that any Banach space that is a coarse

quotient of Lp ≡ Lp[0, 1], 1 < p < ∞, is isomorphic to a linear quotient of Lp. It is

also proven, by applying a geometric notion of Rolewicz called property (β), that `q

is not a coarse quotient of `p for 1 < p < q < ∞, and c0 is not a coarse quotient of

any Banach space with property (β). On the other hand, we give a sharp distortion

lower bound for embedding the countably branching tree into a Banach space with

property (β). It is then shown how this work unifies and extends a series of results

in the nonlinear quotient theory of Banach space.
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1. INTRODUCTION: NONLINEAR GEOMETRY OF BANACH SPACES

In nonlinear geometric Banach space theory, Banach spaces are considered as

metric spaces, while the morphisms between them are nonlinear maps rather than

bounded linear operators. There are three different types of nonlinear maps that are

widely studied, all of which can be defined using the modulus of continuity. Given a

map f : X → Y between two metric spaces X and Y , the modulus of continuity of

f is defined by

ωf (t) := sup{dY (f(x), f(y)) : dX(x, y) ≤ t}.

We say that f is

(i) Lipschitz if ωf (t) ≤ Lt for some L > 0. The infimum of all such constants L is

called the Lipschitz constant of f and denoted by Lip(f).

(ii) uniformly continuous if limt→0 ωf (t) = 0.

(iii) coarsely continuous if ωf (t) <∞ for all t > 0.

Equivalence relations between metric spaces corresponding to these three notions of

nonlinear maps can now be defined.

(i’) X is Lipschitz homeomorphic to Y if there exists a one-to-one Lipschitz map

from X onto Y whose inverse is also Lipschitz.

(ii’) X is uniformly homeomorphic to Y if there exists a one-to-one uniformly con-

tinuous map from X onto Y whose inverse is also uniformly continuous.

(iii’) X is coarsely homeomorphic to Y if there exist two coarsely continuous maps
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f : X → Y and g : Y → X such that

sup{dX(g ◦ f(x), x) : x ∈ X} <∞,

sup{dY (f ◦ g(y), y) : y ∈ Y } <∞.

Uniform homeomorphisms give information only about the small scale structure of

metric spaces, while coarse homeomorphisms focus on the large-distance properties

of metric spaces. A Lipschitz homeomorphism is the best equivalence between metric

spaces because it preserves simultaneously the small and the large scale structure.

As an example, let | · | be the usual Euclidean metric on R. We define two different

new metrics:

d(x, y) := min{|x− y|, 1} and ρ(x, y) := |x− y|+ 1, x, y ∈ R, x 6= y.

The metric d (resp. ρ) contains no information of distances larger (resp. less) than 1

with respect to the original metric |·| of R. Indeed, (R, d) is uniformly homeomorphic

but not coarsely homeomorphic to (R, | · |), while (R, ρ) is coarsely homeomorphic

but not uniformly homeomorphic to (R, | · |).

The theme of nonlinear geometric Banach space theory is the study of nonlinear

classification of Banach spaces. The main concern is that whether the linear structure

of a Banach space can be determined by its nonlinear structure, namely, given a

Banach space X, if Y is another Banach space that is Lipschitz (resp. uniformly,

coarsely) homeomorphic to X, then when can we conclude that Y is isomorphic to

X? In the Lipschitz and uniform categories, this problem is systematically addressed

in the authoritative book of Benyamini and Lindenstrauss [8]. The coarse theory is

analogous but not identical to the uniform theory; the only known example was
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given by Kalton [25], who showed that there are two coarsely homeomorphic Banach

spaces that are not uniformly homeomorphic. Another major problem in this area is

the stability of Banach space properties under nonlinear homeomorphisms, that is,

if a Banach space X has a certain property (P ) and X is Lipschitz (resp. uniformly,

coarsely) homeomorphic to a Banach space Y , then does Y also possess property

(P )? We refer to the survey papers [15, 24] for a summary of recent progress on

these topics.

Nonlinear embedding is also a subject of importance. We say a metric space

X Lipschitz (resp. uniformly, coarsely) embeds into a metric space Y provided X

is Lipschitz (resp. uniformly, coarsely) homeomorphic to a subset of Y . Given

two Banach spaces it is a natural question to ask whether it is possible to embed

one into the other. For most classical Banach spaces the answer is known (see

[15] for a collection of tables). On the other hand, in connection with geometric

group theory and theoretical computer science, there is great interest in the problem

of embedding discrete metric spaces, especially graphs, into Banach spaces. From

the perspective of Banach space theory, one would like to characterize a particular

Banach space property (P ) in terms of non-embeddability of certain type of graphs.

This problem, originating from the Ribe program [3, 38] that aims to find equivalent

reformulations of Banach space concepts in the metric structure, has been studied

for various local properties of Banach spaces. For example, superreflexivity can be

characterized by the Lipschitz non-embeddability of binary trees [5, 9] or diamond

graphs [23], and Banach space with nontrivial Rademacher type can be characterized

by the Lipschitz non-embeddability of Hamming cubes [10], etc. The only known

asymptotic property that has a metric characterization is Rolewicz’s property (β)

[39]. Under the assumption of reflexivity, the existence of an equivalent norm of

property (β) can be characterized by the Lipschitz non-embeddability of countably
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branching trees [6, 13].

The notion dual to embedding is quotient, which is the heart of our work. In linear

theory, A surjective bounded linear operator between Banach spaces is also called a

linear quotient map, since by the Open Mapping Theorem such an operator must

be open and hence a quotient map in the topological sense. The nonlinear analogue

of linear quotient map was first studied by Bates, Johnson, Lindenstrauss, Preiss,

and Schechtman [4]. In Section 2 we give a brief review of what has been known

for uniform and Lipschitz quotients of classical Banach spaces such as Lp and `p.

Rather than prove the theorems in detail, we explain the ideas of the proofs. Several

important techniques, including linearization of Lipschitz maps as well as a delicate

“fork argument” introduced by Lima and Randrianarivony [33], are discussed.

Section 3 is devoted to nonlinear quotients in the coarse category. We introduce

the notion of coarse quotient, which is reasonable in the sense that the theory of

coarse quotient is similar to that of uniform quotient. In particular, we apply a

standard ultraproduct technique to give an isomorphic characterization of coarse

quotients of Lp for 1 < p < ∞. For `p spaces, we develop a coarse version of the

fork argument to prove that `q is not a coarse quotient of `p for 1 < p < q < ∞.

This technique is also applied to show that c0 is not a coarse quotient of any Banach

space with property (β).

In the first part of the last section we digress from the nonlinear quotient theory

by considering quantitative embeddings of countably branching trees into Banach

spaces with property (β). It was shown implicitly in [6], as mentioned above, that

countably branching trees do not Lipschitz embed into Banach spaces with property

(β) with uniformly bounded distortion. We go further in this direction and obtain

an explicit and optimal lower bound on the (β)-distortion of countably branching

trees. More precisely, we show that it requires distortion at least of order (log h)1/p for
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embedding the countably branching tree of height h into a Banach space admitting an

equivalent norm satisfying property (β) with modulus of power type p ∈ (1,∞). Such

a sharp estimate allows us to unify and extend a series of results about the stability

under nonlinear quotients of the asymptotic structure of infinite-dimensional Banach

spaces. This is presented in the latter part of the section.

Now we introduce the notations used throughout this dissertation. Given a metric

space X, we denote by BX(x, r) the closed ball centered at x ∈ X with radius r > 0.

For a Banach space Y , BY and SY stand for the closed unit ball and unit sphere of

Y , respectively. For a set S, the cardinality of S is denoted by card(S). The density

character of a topological space T , denoted by dens(T ), is the smallest cardinal m

such that T has a dense subset of cardinality m. Other omitted definitions and

notational conventions from Banach space theory can be found in [19].
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2. UNIFORM AND LIPSCHITZ QUOTIENTS OF BANACH SPACES: A

REVISIT

Co-Lipschitz maps were considered first by Gromov [16] in the context of geo-

metric group theory. Later, the terms “Lipschitz quotient” and “uniform quotient”

were introduced and studied in the framework of Banach spaces by Bates, Johnson,

Lindenstrauss, Preiss and Schechtman [4].

Definition 2.1 ([4]). A map f : X → Y between two metric spaces X and Y is

called co-uniformly continuous if for every ε > 0, there exists δ = δ(ε) > 0 such that

for all x ∈ X,

f(BX(x, ε)) ⊇ BY (f(x), δ).

If δ can be chosen as ε/C for some constant C > 0 independent of ε, then f is said

to be co-Lipschitz, and the infimum of all such constants C, denoted by coLip(f), is

called the co-Lipschitz constant of f .

We say f is a uniform (resp. Lipschitz ) quotient map if it is both uniformly

continuous and co-uniformly continuous (resp. Lipschitz and co-Lipschitz). If in

addition f is surjective, then Y is called a uniform (resp. Lipschitz ) quotient of X.

Remark 2.2. Co-Lipschitz maps are automatically surjective. For a co-uniformly

continuous map f : X → Y , one can easily see that f(X) is a clopen subset of Y .

Consequently, f is surjective if the space Y is connected.

It is a well-known fact in linear theory that linear quotient maps are dual to

isomorphic embeddings, namely, if T is an isomorphic embedding from a Banach

space X into a Banach space Y , then T ∗ : Y ∗ → X∗ is a linear quotient map; if

S : X → Y is a linear quotient map, then S∗ is an isomorphic embedding from
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Y ∗ into X∗. However, in the nonlinear setting neither of the arguments holds. For

instance, `1 can be Lipschitz embedded into c0 (see [1]), but `∞ = `∗1 is not even a

continuous image of `1 = c∗0. On the other hand, Johnson, Lindenstrauss, Preiss,

and Schechtman [20] proved that if X is a separable Banach space that contains a

subspace isomorphic to `1, then any separable Banach space is a Lipschitz quotient of

X. In particular, `1 is a Lipschitz quotient of C[0, 1], but `∞ = `∗1 does not uniformly

embed into the dual of C[0, 1]. Nevertheless, it was shown in [4] that a local version

of the dual argument holds under the assumption of superreflexivity.

Theorem 2.3 ([4]). Let X and Y be two Banach spaces. Assume that X is super-

reflexive and Y is a Lipschitz quotient of X. Then Y ∗ is crudely finitely representable

in X∗.

Recall that a Banach space X is said to be crudely finitely representable in a

Banach space Y if there exists 1 < λ <∞ so that for any finite-dimensional subspace

E ⊆ X, there exists a finite-dimensional subspace F ⊆ Y such that dBM(E,F ) < λ,

where dBM is the Banach-Mazur distance defined by

dBM(E,F ) := inf{‖T‖‖T−1‖ : T : E → F is a surjective isomorphism}.

We say X is finitely representable in Y if X is crudely finitely representable in Y

with constant λ for every λ > 1. A standard ultraproduct technique implies that

Theorem 2.3 is also true if “Lipschitz quotient” is replaced by “uniform quotient”.

One of the classical ways to linearize Lipschitz maps between Banach spaces is

taking derivatives. Unfortunately the Gâteaux derivative, which is crucial in the

study of Lipschitz embeddings, is insufficient for Lipschitz quotient maps. Indeed,

for 1 ≤ p < ∞, there exists a Lipschitz quotient map from `p onto itself whose

Gâteaux derivative at zero is identically zero [4]. Thus rather than differentiation,
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the proof of Theorem 2.3 uses continuous affine functions to approximate Lipschitz

maps. A technical notion called uniform approximation by affine property (UAAP)

was introduced for this purpose.

Definition 2.4 ([4]). A pair of Banach spaces (X, Y ) is said to have UAAP if for

every ε > 0, there exists a constant c = c(ε) > 0 satisfying the following property: if

B is a ball of radius r > 0 in X and f : B → Y is a Lipschitz map, then there exist a

ball B1 ⊆ B of radius r1 > cr and a continuous affine function g : X → Y such that

sup
x∈B1

‖f(x)− g(x)‖ ≤ εr1Lip(f).

Roughly speaking, UAAP guarantees that Lipschitz maps can be approximated

locally by affine functions in a uniform way. It was then proven in the same paper

that a pair of nonzero Banach spaces (X, Y ) has UAAP if and only if one of them is

superreflexive and the other is finite dimensional. This is the key ingredient in the

proof of Theorem 2.3, and it also explains why the result is only relevant to finite-

dimensional subspaces of the duals. Note that the assumption of superreflexivity is

necessary since again X = C[0, 1] and Y = `1 gives a counterexample. Consequences

of the theorem include an isomorphic characterization of uniform quotients of Lp

(1 < p <∞) and Hilbert spaces: a uniform quotient of Lp is isomorphic to a linear

quotient of Lp, and a uniform quotient of a Hilbert space is isomorphic to a Hilbert

space.

Lipschitz quotients of `p spaces are more elusive than those of Lp. In [21], Johnson,

Lindenstrauss, Preiss and Schechtman studied Lipschitz quotients of `p for p > 2;

their approach is essentailly a differentiation argument. For Lipschitz quotient maps,

although Gâteaux derivatives do not provide useful information, Fréchet derivatives

work as well as affine functions. However, the existence of Fréchet derivatives is
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usually too much to ask for. It turns out that a weaker notion than Fréchet derivative,

which is called ε-Fréchet derivative, is a suitable alternative in this context. Recall

that a map f from a Banach space X to a Banach space Y is said to be ε-Fréchet

differentiable at x ∈ X for some ε > 0 if there exists a bounded linear operator

T : X → Y and δ = δ(ε) > 0 such that for all 0 < ‖u‖ < δ,

‖f(x+ u)− f(x)− T (u)‖
‖u‖

< ε.

The operator T is called an ε-Fréchet derivative of f at x. Such an operator may not

be unique, but it is not hard to check that if a Lipschitz quotient map has a point

of ε-Fréchet differentiability for small enough ε, then any such ε-Fréchet derivative

is a linear quotient map from X onto Y . Now the question is plain: when does a

Lipschitz map f : X → Y have points of ε-Fréchet differentiability? It is known that

there are points at which f is Gâteaux differentiable provided X is separable and Y

has the Radon-Nikodým property (RNP) (see, e.g., Theorem 6.42 in [8]). Additional

asymptotic structures are needed for the spaces to prove a similar existence theorem

for ε-Fréchet derivatives.

Definition 2.5. Let (X, ‖ · ‖) be a Banach space and t > 0. We define the modulus

of asymptotically uniform smoothness of X by

ρX(t) := sup
x∈SX

inf
dim(X/Y )<∞

sup
y∈SY

‖x+ ty‖ − 1

and the modulus of asymptotically uniform convexity of X by

δX(t) := inf
x∈SX

sup
dim(X/Y )<∞

inf
y∈SY

‖x+ ty‖ − 1.
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The norm ‖ · ‖ is said to be asymptotically uniformly smooth (AUS) if ρX(t)/t → 0

as t→ 0. It is said to be asymptotically uniformly convex (AUC) if δX(t) > 0 for all

t > 0.

Milman [37] first consider these moduli using different notations. Here we follow

the notations in [21]. These notions are asymptotic analogues of uniform convexity

(UC) and uniform smoothness (US), and it is immediate that UC implies AUC and

US implies AUS. In particular, one can compute that for 1 ≤ p <∞ and 0 < t ≤ 1,

δ`p(t) = ρ`p(t) = (1 + tp)
1
p − 1,

δc0(t) = ρc0(t) = 0.

Hence `1 is AUC and c0 is AUS. The following existence theorem for ε-Fréchet deriva-

tives was proven in [21].

Theorem 2.6 ([21]). Let f : X → Y be a Lipschitz map from a separable Banach

space X to a Banach space Y with RNP. Suppose the norm of Y is AUC and for all

c > 0,

lim
t→0

ρX(t)

δY (ct)
= 0.

Then for every ε > 0, there exists a point at which f is ε-Fréchet differentiable.

It follows from the theorem that if 1 ≤ p < q < ∞, then every Lipschit map

from `q or c0 to `p admits for every ε > 0 a point of ε-Fréchet differentiability. This

together with the discussion above and the isomorphic structure of `p and c0 show

that for 1 ≤ p < q <∞, `p is not a Lipschitz quotient of `q or c0.

The classification of uniform quotients of `p is even more complicated since the

classical differentiation technique does not work in the uniform setting. In [33],

Lima and Randrianarivony had a breakthrough on this problem. They proved that
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for 1 < p < q < ∞, `q is not a uniform quotient of `p. This result, in combination

with the Johnson-Odell dichotomy theorem [22], imply that every uniform quotient

of `p, 1 < p < 2, is isomorphic to a linear quotient of `p. The following refinement of

their result appears in [12].

Theorem 2.7 ([12]). Let X be a linear quotient of a subspace of an `p-sum of finite-

dimensional spaces, where p ∈ (1,∞). Assume that a Banach space Y is a uniform

quotient of a subset of X, where the uniform quotient map is Lipschitz for large

distances. Then Y does not contain a subspace isomorphic to `q for any q > p.

The proof of the theorem relies on a geometric property introduced by Rolewicz

[39] that is called property (β). We recall here the equivalent definition of property

(β) given by Kutzarova [28].

Definition 2.8 ([28]). A Banach space X has property (β) if for any ε > 0 there

exists δ = δ(ε) > 0 so that for every elment x ∈ BX and every sequence {xn}∞n=1 ⊆

BX with sep({xn}) := inf
n6=m
‖xn − xm‖ ≥ ε, there exists an index i such that

‖x− xi‖
2

≤ 1− δ.

The (β)-modulus of X, denoted by β̄X(ε), is the supremum of all δ > 0 so that the

above property is satisfied. β̄X is said to have power type p ∈ (1,∞) if there exists

γ = γ(X) > 0 such that β̄X(ε) ≥ γεp, and in this case we simply say that X has

property (βp).

Clearly property (β) is another asymptotic generalization of uniform convexity,

which is weaker than but isomorphically different from UC. For example, the space

(
∑∞

n=1 `
n
∞)`2 is not superreflexive but has property (β). Indeed, for p ∈ (1,∞), any
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`p-sum of finite-dimensional Banach spaces, in particular `p, has property (βp), and

the (β)-modulus was computed explicitly in [2].

The main ingredient of the proof is a delicate and technical argument called the

“fork argument”. Note that the definition of property (β) is concerned with the

geometry of the unit ball of a Banach space, in which the points are in a “fork”

configuration: the line segment [0, x] is the handle of the “fork” and the separating

points xn are the tips. The proof actually describes the behavior of a nonlinear lifting

of points that are approximately in such a fork configuration. This behavior depends

heavily on the asymptotic geometry of the spaces and can rule out the existence of

uniform quotient maps. As explained in [33], the idea is to build in the target space

a collection of points approximately in a fork configuration whose set of pre-images

contains a fork of comparable size, and then use the quantification of property (β)

to get a contradiction. This argument can also be applied to show that c0 is not a

uniform quotient of any Banach space with property (β).

The fork argument also plays an important role in the study of the stability of

asymptotic structures under nonlinear quotient maps. In [14], Dilworth, Kutzarova

and Randrianarivony proved that for separable Banach spaces, the (β)-renorming

property is stable under uniform quotient maps. The proof requires, in addition

to the fork argument, the construction of a variant of the Laakso graph (see, e.g.

[29, 30]) that is called the parasol graph in [7]. Recently the same result was proven

without the separability assumption in their joint paper with Lancien [13].
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3. COARSE QUOTIENTS OF BANACH SPACES∗

In this section we discuss nonlinear quotient maps in the coarse category following

the presentation of [40].

3.1 Definition of coarse quotient

We start by giving the definition of coarse quotient map. For K ≥ 0 and a subset

A of a metric space X the notation AK means the K-neighborhood of A, i.e.

AK := {x ∈ X : dX(x, a) ≤ K for some a ∈ A}.

Definition 3.1. Let K ≥ 0 be a constant. A map f : X → Y between two metric

spaces X and Y is called co-coarsely continuous with constant K if for every ε > 0

there exists δ = δ(ε) > 0 so that for every x ∈ X,

BY (f(x), ε) ⊆ f(BX(x, δ))K . (3.1)

f is said to be a coarse quotient map (with constant K) if f is both co-coarsely

continuous (with constant K) and coarsely continuous; in this case we say Y is a

coarse quotient of X.

The definition is justified by the following proposition.

Proposition 3.2. If a map f : X → Y between two metric spaces X and Y is a

coarse homeomorphism, then Y is a coarse quotient of X.

∗Part of this section is reprinted with permission of Springer from Coarse quotient mappings
between metric spaces by Sheng Zhang, Israel J. Math. 207 (2015), 961–979, Copyright c© 2015
Hebrew University of Jerusalem.
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Proof. By the definition of coarse homeomorphism, there exist M1,M2 ≥ 0 and a

coarsely continuous map g : Y → X such that

sup{dX(g ◦ f(x), x) : x ∈ X} ≤M1,

sup{dY (f ◦ g(y), y) : y ∈ Y } ≤M2.

To see that f is a coarse quotient map, we claim that in Definition 3.1 the constant

K can be chosen as M2, and for every ε > 0, δ = δ(ε) can be chosen as ωg(ε) +M1.

Indeed, for every x ∈ X and every y ∈ BY (f(x), ε), one has

dX(g ◦ f(x), g(y)) ≤ ωg(dY (f(x), y)) ≤ ωg(ε).

Note that dX(g ◦ f(x), x) ≤M1, so by the triangle inequality we get

dX(g(y), x) ≤ ωg(ε) +M1 = δ.

Hence the point z := g(y) satisfies z ∈ BX(x, δ) and

dY (y, f(z)) = dY (y, f ◦ g(y)) ≤M2 = K,

so the claim follows.

A Lipschitz quotient map is also a coarse quotient map (with constant 0), but

the converse is not true. For instance, the inclusion map i : Z → R is a coarse

homeomorphism and hence a coarse quotient map, but it is not even a uniform

quotient map since i(BZ(0, ε)) = {0} for any 0 < ε < 1.

Proposition 3.3. Let X, Y and Z be metric spaces. If f : X → Y is a coarse

14



quotient map with constant K1 and g : Y → Z is a coarse quotient map with constant

K2, then g ◦ f : X → Z is a coarse quotient map with constant ωg(K1) +K2.

Proof. The coarse continuity of g ◦ f follows from the inequality that for all t > 0,

ωg◦f (t) ≤ ωg ◦ ωf (t).

Also for ε > 0 and x ∈ X, since g is a co-coarsely continuous with constant K2, there

exists δ > 0 depending on ε such that

BZ(g ◦ f(x), ε) ⊆ g(BY (f(x), δ))K2 .

Since f is co-coarsely continuous with constant K1, there exists δ̃ > 0 depending on

δ and hence on ε such that

BY (f(x), δ) ⊆ f(BX(x, δ̃))K1 .

Therefore,

BZ(g ◦ f(x), ε) ⊆ g
(
f(BX(x, δ̃))K1

)K2

⊆
(
g ◦ f(BX(x, δ̃))

)ωg(K1)+K2

.

This shows that g ◦f is co-coarsely continuous with constant ωg(K1)+K2 and hence

the proof is complete.

In general, coarse quotient maps are not necessarily surjective: (3.1) only implies

that f(X) is K-dense in Y , i.e. Y = f(X)K . However in the Banach space setting,

Johnson showed that one can always redefine a coarse quotient map to have constant

K = 0. The proof of this surprising result relies on transfinite induction and the

observation below.
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Proposition 3.4. If a Banach space Y is a coarse quotient of a Banach space X,

then card(X) ≥ card(Y ).

Proof. In view of [18], it suffices to show that dens(X) ≥ dens(Y ). Let f : X → Y be

a coarse quotient map with constant K and S be a (infinite) dense subset of X. Then

for y ∈ Y , since f(X) is K-dense in Y , there exists x ∈ X such that ‖y−f(x)‖ ≤ K.

The density of S in X implies that x is within distance 1 from some point s ∈ S,

and hence ‖f(x)− f(s)‖ ≤ ωf (1). Thus by the triangle inequality we have

‖y − f(s)‖ ≤ ωf (1) +K := D,

which means the set f(S) is D-dense in Y . Now by rescaling the set S̃ :=
⋃∞
n=1

f(S)
n

is dense in Y , and the cardinality of S̃ is at most the cardinality of S. The result

then follows.

Let δ > 0. We say that a subset N is a δ-net of a metric space X if it is δ-dense

in X and δ-separated, i.e. d(u, v) ≥ δ for all u, v ∈ N . To see that such a δ-net

always exists, one can direct by inclusion all the δ-separated subsets of X and apply

Zorn’s lemma to find a maximal element, which is clearly a δ-net.

Lemma 3.5 (Johnson). Let X and Y be Banach spaces. Assume that Y is a coarse

quotient of X. Then there exists a coarse quotient map with constant 0 from X onto

Y .

Proof. We use standard set theory language in this proof. Let f : X → Y be a

coarse quotient map and N be a 1-net of X. Since N is coarsely equivalent to X,

f |N : N → Y is still a coarse quotient map, say, with constant K ≥ 0. Thus for
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every ε > 0 there exists δ = δ(ε) > 0 so that for every x ∈ N ,

BY (f(x), ε) ⊆ f(BX(x, δ) ∩N)K . (3.2)

Consider the set

Γ = {(x, ε, y) : x ∈ N, ε ∈ Q, y ∈ BY (f(x), ε)},

by Propsition 3.4 one has

κ := card(Γ) ≤ max{card(N), card(Y )} ≤ card(X). (3.3)

Fix a well-ordering � of Γ of order-type κ (i.e. each element has strictly fewer than

κ predecessors); we will define by transfinite induction on (xα, εα, yα) := α ∈ Γ new

maps gα ⊆ X × Y such that f |N ⊆ gα ⊆ gβ for all α � β in Γ. Then g :=
⋃
α∈Γ gα is

the desired map, whose domain domg := Ñ contains N as a subset.

Suppose gβ has been defined for all β ≺ α. By (3.2) there exist δα = δ(εα) > 0

and uα ∈ BX(xα, δα)∩N so that ‖yα− f(uα)‖ ≤ K. Note that δα ≥ ‖xα− uα‖ ≥ 1,

so one has BX(uα, 1/2) ⊆ BX(xα, 2δα). In view of (3.3), we can pick

vα ∈ BX(uα, 1/2)\
⋃
β≺α

domgβ

and define gα by

gα =
⋃
β≺α

gβ ∪ {(vα, yα)}.

Clearly g is surjective, and it follows from the choice of vα and the triangle inequality
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that

‖f(vα)− g(vα)‖ ≤ ωf (1/2) +K,

so g is coarsely continuous. Moreover, g satisfies the local surjectivity condition at

points of N , i.e. for every ε > 0 there exists δ = δ(ε) > 0 so that for every x ∈ N ,

BY (g(x), ε) ⊆ g(BX(x, δ) ∩ Ñ).

Finally we need to extend g to all of X. Consider the selection map p : X → Ñ

defined as p(x) = x for x ∈ Ñ and p(x) = ux for x ∈ X\Ñ , where ux is any point in

N within distance 1 from x. Then one can easily check that the composition g ◦ p is

a coarse quotient map with constant 0 from X onto Y .

The next lemma is concerned with subsets of quotients and will be used repeatedly

in the later sections. Roughly speaking, it says that a subset of a coarse quotient is

actually a coarse quotient of a subset. Note that this argument is straightforward

for uniform quotient, but in the coarse category it requires some effort.

Lemma 3.6. Let X and Y be metric spaces and f : X → Y be a coarse quotient

map with constant K. Then for any subset S of Y , there exist a subset Z of X and

a coarse quotient map g : Z → S with constant 4K.

Proof. Consider the subset Z := f−1(SK) of X. We first show that the restriction

of f to Z, denoted by f̃ , is a coarse quotient map with constant 2K from Z to SK .

Let x ∈ Z and ε > 0. Since f : X → Y is co-coarsely continuous with constant K,

there exists δ = δ(ε) > 0 so that

BY (f(x), ε) ⊆ f(BX(x, δ))K .
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If K = 0, then it follows that

BS(f(x), ε) ⊆ f(BZ(x, δ))

and the proof is complete, so we may assume K > 0. For every y ∈ BSK (f(x), ε),

there exists u ∈ BX(x, δ) such that dY (y, f(u)) ≤ K. On the other hand, y ∈ SK

implies that dY (y, s) ≤ K for some s ∈ S, so s ∈ BY (f(u), 2K) by the triangle

inequality. Now again apply the definition of co-coarse continuity of f to the point

u, there exists a constant K̃ > 0 depending only on K such that

s ∈ BY (f(u), 2K) ⊆ f
(
BX(u, K̃)

)K
.

Thus there exists v ∈ BX(u, K̃) such that dY (s, f(v)) ≤ K. It follows again by the

triangle inequality that

v ∈ BX(x, K̃ + δ) ∩ Z and dY (y, f(v)) ≤ 2K.

Now we have shown for all x ∈ Z and ε > 0 that

BSK (f̃(x), ε) ⊆ f̃
(
BZ(x, K̃ + δ)

)2K

.

This implies that the map f̃ : Z → SK is co-coarsely continuous with constant 2K.

Moreover, as a restriction map it inherits the property of coarse continuity, so it is a

coarse quotient map with constant 2K.

Finally we define p : SK → S by p(a) = a if a ∈ S and p(a) = sa otherwise, where

sa is any point in S within distance K from a. Then p is a coarse homeomorphism

and hence a coarse quotient map (with constant 0). Therefore, by Proposition 3.3,
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the composition g := p ◦ f̃ : Z → S is a coarse quotient map with constant 4K.

3.2 Coarse quotients of Lp

In this section we prove a coarse version of Theorem 2.3 and give an isomorphic

characterization of coarse quotients of Lp for 1 < p < ∞. Our approach is based

on a standard ultraproduct technique. To this end, we need to figure out the large-

distances behavior of coarse quotient maps. Given a map f : X → Y between two

metric spaces X and Y , define for t ≥ 0 the Lipschitz constant of f when distances

are at least d by

Lipt(f) := sup

{
dY (f(x), f(y))

dX(x, y)
: dX(x, y) ≥ t

}
.

Then for any t ≥ 0 and s > 0, one has

ωf (t) ≤ max{ωf (s),Lips(f) · t}.

Recall that a metric space X is called metrically convex if for every x0, x1 ∈ X and

0 < λ < 1, there is a point xλ ∈ X such that

d(x0, xλ) = λd(x0, x1) and d(x1, xλ) = (1− λ)d(x0, x1).

The following well-known lemma is due to Corson and Klee [11]. It says that a

coarsely continuous map defined on a metrically convex space must be Lipschitz for

large distances, i.e. Lipt(f) < ∞ for all t > 0. We present the proof here for later

convenience.

Lemma 3.7 ([11]). Let X and Y be two metric spaces and f : X → Y be a coarsely
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continuous map. Assume that X is metrically convex. Then for all t > 0,

Lipt(f) ≤ 2ωf (t)

t
.

Consequently, for every ε > 0, there exists L = L(ε) > 0 such that for all x ∈ X and

r ≥ ε,

f(BX(x, r)) ⊆ BY (f(x), Lr).

Proof. For x, y ∈ X with dX(x, y) ≥ t, let n ∈ N satisfy (n − 1)t ≤ dX(x, y) < nt.

Since X is metrically convex, there exist {ui}ni=0 in X with u0 = x and un = y such

that dX(ui, ui−1) < t for all i. Thus dY (f(ui), f(ui−1)) ≤ ωf (t) for all i. Note that

n ≥ 2, so by the triangle inequality we have

dY (f(x), f(y)) ≤
n∑
i=1

dY (f(ui), f(ui−1)) < n · ωf (t) ≤
2ωf (t)

t
· dX(x, y),

and hence the result follows.

To see that the inclusion holds, consider r ≥ ε and y ∈ BX(x, r). If dX(x, y) < ε,

then

dY (f(x), f(y)) ≤ ωf (ε) ≤
ωf (ε)

ε
· r.

If ε ≤ dX(x, y) ≤ r, then

dY (f(x), f(y)) ≤ Lipε(f) · dX(x, y) ≤ 2ωf (ε)

ε
· r.

Therefore L = L(ε) can be chosen as 2ωf (ε)/ε.

Similarly, if the target space is metrically convex, then up to a constant, co-

coarsely continuous maps behave like co-Lipschitz maps.
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Lemma 3.8. Let X and Y be two metric spaces and f : X → Y be a co-coarsely

continuous map with constant K. Assume that Y is metrically convex. Then for

every ε > 2K, there exists C = C(ε) > 0 such that for all x ∈ X and r ≥ ε,

BY (f(x), r) ⊆ f
(
BX

(
x,
r

C

))K
.

Proof. For ε > 2K and r ≥ ε, let n ∈ N satisfy (n − 1)ε ≤ r < nε and assume

that y ∈ BY (f(x), r). Since Y is metrically convex, there exist {yi}2n
i=0 in Y with

y0 = f(x) and y2n = y such that dY (yi, yi−1) < ε/2 for all i. Put x0 = x. It follows

from the co-coarse continuity of f that there exists δ = δ(ε) > 0 such that

y1 ∈ BY (f(x0), ε) ⊆ f(BX(x0, δ))
K ,

so dY (y1, f(x1)) ≤ K for some x1 ∈ BX(x0, δ), and hence it follows from the triangle

inequality that y2 ∈ BY (f(x1), ε). We proceed inductively to get {xi}2n
i=1 such that

dX(xi, xi−1) ≤ δ and dY (yi, f(xi)) ≤ K for all i. This implies

y ∈ f(BX(x, 2nδ))K ⊂ f
(
BX

(
x,
r

C

))K
,

where C = C(ε) = ε/4δ(ε).

Remark 3.9. If K > 0, then Lemma 3.8 still holds for ε = 2K, i.e. there exists

C̃ = C(2K) > 0 so that for all x ∈ X and r ≥ 2K,

BY (f(x), r) ⊆ f

(
BX

(
x,
r

C̃

))K
.
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Hence for all x ∈ X and r > 0,

BY (f(x), r) ⊆ f

(
BX

(
x,
r

C̃

))2K

.

Thus if the target space Y is metrically convex, then one can always assume, up to

a larger constant 2K, that the co-coarsely continuous map f is co-Lipschitz.

When dealing with Banach spaces, Lemma 3.7 and Lemma 3.8 allow us to pass

from coarse quotients to Lipschitz quotients by taking ultrapowers. We refer to

Appendix for definitions and results of ultraproduct of Banach spaces.

Proposition 3.10. Let X and Y be Banach spaces and U be a free ultrafilter on the

natural numbers N. If Y is a coarse quotient of X, then YU is a Lipschitz quotient

of XU .

Proof. Let f be a coarse quotient map from X to Y with constant K. In view of

Lemma 3.5 we may assume that K = 0. By Lemma 3.7 and Lemma 3.8, there are

constants L > 0 and C > 0 such that for all x ∈ X and r ≥ 1,

f(BX(x, r)) ⊆ BY (f(x), Lr),

BY (f(x), r) ⊆ f
(
BX

(
x,
r

C

))
.

For each n ∈ N, define fn : X → Y by fn(x) = f(nx)/n. Then for all x ∈ X and

r ≥ 1/n,

fn(BX(x, r)) ⊆ BY (fn(x), Lr),

BY (fn(x), r) ⊆ fn

(
BX

(
x,
r

C

))
.

Define T : XU → YU by T ((xn)U) = (fn(xn))U for x̃ = (xn)U ∈ XU . Then it follows
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easily that for each x̃ ∈ XU and r > 0,

T (BXU (x̃, r)) ⊆ BYU (T x̃, Lr),

BYU (T x̃, r) ⊆ T
(
BXU

(
x̃,
r

C

))
.

Therefore T is a Lipschitz quotient map from XU onto YU .

The next theorem is the coarse version of Theorem 2.3.

Theorem 3.11. Let X and Y be two Banach spaces. Assume that X is superreflexive

and Y is a coarse quotient of X. Then Y ∗ is crudely finitely representable in X∗.

Proof. Let U be a free ultrafilter on N. By Proposition 3.10, YU is a Lipschitz

quotient of XU . Note that XU is superreflexive, so it follows from Theorem 2.3 that

(Y ∗)U = (YU)∗ is crudely finitely representable in (XU)∗ = (X∗)U . Since Y ∗ can be

viewed as a subspace of (Y ∗)U and (X∗)U is finitely representable in X∗, the result

follows.

Corollary 3.12. A Banach space that is a coarse quotient of a superreflexive Banach

space is also superreflexive.

Corollary 3.13. A Banach space that is a coarse quotient of a Hilbert space is

isomorphic to a Hilbert space.

Proof. Let Y be a Banach space that is a coarse quotient of a Hilbert space. By

Theorem 3.11, Y ∗ is crudely finitely representable in a Hilbert space and hence

isomorphic to a Hilbert space. Thus Y is also isomorphic to a Hilbert space.

Corollary 3.14. If a Banach space Y is a coarse quotient of Lp, 1 < p < ∞, then

Y is isomorphic to a linear quotient of Lp.
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Proof. Note that Y is superreflexive and separable, so Y ∗ is separable. Also by

Theorem 3.11, Y ∗ is crudely finitely representable in Lq, where q is the conjugate

exponent of p, i.e. 1/p + 1/q = 1. It follows that Y ∗ is isomorphic to a subspace of

Lq (see [32]), i.e. Y is isomorphic to a linear quotient of Lp.

3.3 Coarse quotients of `p

The goal of this section is to give an isomorphic characterization of coarse quo-

tients of `p for 1 < p < 2. The proof is based on a coarse version of Lima and

Randrianarivony’s “fork argument” [33]. First we need a limiting argument. Let f

be a coarse quotient map with constant K from a metric space X to a metric space

Y . If Y is metrically convex, then by Lemma 3.8, for every d > 2K, there exists

C = C(d) > 0 such that for all x ∈ X and r ≥ d,

BY (f(x), r) ⊆ f
(
BX

(
x,
r

C

))K
. (3.4)

Denote by Cd the supremum of all C that satisfies (3.4). Clearly, Cd is nondecreasing

with respect to d. Moreover, we have:

Lemma 3.15. Let X and Y be two metric spaces and f : X → Y be a coarse quotient

map with constant K. Assume that Y is metrically convex and f is Lipschitz for large

distances. Then lim
d→∞

Cd <∞.

Proof. It suffices to show that {Cd}d>2K is bounded. For d > 2K, let C = C(d) > 0

satisfy (3.4) for all x ∈ X and r ≥ d. Note that

f
(
BX

(
x,
r

C

))K
⊆ BY

(
f(x), ωf

( r
C

))K
= BY

(
f(x), ωf

( r
C

)
+K

)
,
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one has

r ≤ ωf

( r
C

)
+K ≤ max

{
ωf (1),Lip1(f) · r

C

}
+K.

Let η := max{ωf (1),Lip1(f)} and r > C. Then

r ≤ ηr

C
+K,

It follows that

C ≤ ηr

r −K
< 2η,

and hence Cd ≤ 2η.

Theorem 3.16. Let 1 < p < q <∞. Assume that X is Banach space that has prop-

erty (βp). Then there is no coarse quotient map that is Lipschitz for large distances

from any subset of X to `q. In particular, `q is not a coarse quotient of `p.

Proof. Suppose that there exist a subset S of X and a coarse quotient map f : S → `q

with constant K so that f is Lipschitz for large distances. In view of Lemma 3.15,

let C be the limit of Cd for the map f . Fix a small 0 < ε < 1 and choose large d0 so

that

d0

3
> 2K and C − ε < Cd0/3 ≤ Cd0 ≤ C < C + ε.

Since Cd0 < C + ε, by the definition of Cd0 as a supremum, there exist zε ∈ S and

R ≥ d0 such that

B`q(f(zε), R) * f

(
BS

(
zε,

R

C + ε

))K
,

so there exists yε ∈ `q satisfying 0 < ‖yε − f(zε)‖ := γ ≤ R and

B`q(yε, K) ∩ f
(
BS

(
zε,

R

C + ε

))
= ∅. (3.5)

26



Let m and M be two points on the line segment with endpoints yε and f(zε) such

that

‖yε −M‖ = ‖M −m‖ = ‖m− f(zε)‖ =
γ

3
.

Since C − ε < Cd0/3 and R/3 ≥ d0/3, by the definition of Cd0/3 as a supremum we

have

B`q

(
f(zε),

R

3

)
⊆ f

(
BS

(
zε,

R

3(C − ε)

))K
.

Note that ‖m− f(zε)‖ = γ/3 ≤ R/3, so there exists x ∈ S satisfying

‖x− zε‖ ≤
R

3(C − ε)
and ‖m− f(x)‖ ≤ K.

Let (en)∞n=1 be the unit vector basis for `q, and denote by (M −m)N the truncation

of M −m to the first N coordinates, where N ∈ N is large enough so that

‖(M −m)− (M −m)N‖q <
εR

3
.

For n > N , set

yn :=
ε

1
qR

3
en + (1− ε)

1
q (M −m)N +m. (3.6)

Then

‖yn −m‖q =

∥∥∥∥∥ε
1
qR

3
en + (1− ε)

1
q (M −m)N

∥∥∥∥∥
q

= ε

(
R

3

)q
+ (1− ε)‖(M −m)N‖q

≤ ε

(
R

3

)q
+ (1− ε)

(γ
3

)q
≤
(
R

3

)q
,
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so ‖yn −m‖ ≤ R/3. Choose d0 large enough so that d0ε ≥ K; we then have

‖yn − f(x)‖ ≤ ‖yn −m‖+ ‖m− f(x)‖ ≤ R

3
+K ≤

(
1

3
+ ε

)
R.

Since
(

1
3

+ ε
)
R ≥ d0/3, again by the definition of Cd0/3 we have

B`q

(
f(x),

(
1

3
+ ε

)
R

)
⊆ f

(
BS

(
x,

(
1
3

+ ε
)
R

C − ε

))K

, (3.7)

so there exists zn ∈ S satisfying

‖zn − x‖ ≤
(

1
3

+ ε
)
R

C − ε
and ‖yn − f(zn)‖ ≤ K.

Now we estimate ‖yn − yε‖:

‖yn − yε‖q

=

∥∥∥∥∥ε
1
qR

3
en + (1− ε)

1
q (M −m)N − (yε −m)

∥∥∥∥∥
q

=

∥∥∥∥∥ε
1
qR

3
en + (1− ε)

1
q (M −m)N − 2(M −m)

∥∥∥∥∥
q

=

∥∥∥∥∥ε
1
qR

3
en + 2((M −m)N − (M −m)) + (1− ε)

1
q (M −m)N − 2(M −m)N

∥∥∥∥∥
q

=

∥∥∥∥∥ε
1
qR

3
en + 2((M −m)N − (M −m))

∥∥∥∥∥
q

+
(

2− (1− ε)
1
q

)q
‖(M −m)N‖q

≤

(
ε

1
qR

3
+

2εR

3

)q

+ (2− (1− ε))q
(
R

3

)q
≤ 3qε

(
R

3

)q
+ (1 + ε)q

(
R

3

)q
< (1 + 2 · 3qε)

(
R

3

)q
,
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so

‖yn − yε‖ ≤ (1 + 2 · 3qε)
1
q · R

3
≤
(

1 +
2 · 3qε
q

)
R

3
,

and hence

‖yε − f(zn)‖ ≤ ‖yε − yn‖+ ‖yn − f(zn)‖

≤
(

1 +
2 · 3qε
q

)
R

3
+K

≤
(

1 +
2 · 3qε
q

)
R

3
+ εR =

(
1

3
+ ε+

2 · 3q−1ε

q

)
R := ρεR.

Since ρεR > R/3 ≥ d0/3, again by the definition of Cd0/3 we have

B`q(f(zn), ρεR) ⊆ f

(
BS

(
zn,

ρεR

C − ε

))K
, (3.8)

so there exists xn ∈ S satisfying

‖xn − zn‖ ≤
ρεR

C − ε
and ‖yε − f(xn)‖ ≤ K.

In view of (3.5), we have

‖xn − zε‖ >
R

C + ε
.

Also note that ρε ↓ 1
3

as ε ↓ 0, so if ε is chosen small enough so that

1

C + ε
− ρε
C − ε

> 0,

then by the triangle inequality one has

‖zε − zn‖ ≥ ‖zε − xn‖ − ‖xn − zn‖ ≥
R

C + ε
− ρεR

C − ε
> 0.
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On the other hand, we could choose large d0 so that

(2ε)
1
q · d0

6
> ωf (1) + 2K.

Then for k, n > N with k 6= n,

ωf (1) + 2K < (2ε)
1
q · R

3
= ‖yn − yk‖

≤ ‖yn − f(zn)‖+ ‖f(zn)− f(zk)‖+ ‖yk − f(zk)‖

≤ 2K + ωf (‖zn − zk‖).

Thus ωf (‖zn − zk‖) > ωf (1) and it follows that ‖zn − zk‖ > 1 since ωf (·) is nonde-

creasing. Hence the Lipschitz for large distances property gives

(2ε)
1
q · R

3
= ‖yn − yk‖ ≤ Lip1(f)‖zn − zk‖+ 2K ≤ Lip1(f)‖zn − zk‖+ (2ε)

1
q · R

6
,

which implies

‖zn − zk‖ ≥ (2ε)
1
q · R

6Lip1(f)
.

In summary, for all n, k > N with n 6= k we have

‖zn − zk‖ ≥ (2ε)
1
q · R

6Lip1(f)
, ‖zε − zn‖ ≥

R

C + ε
− ρεR

C − ε
,

‖zε − x‖ ≤
R

3(C − ε)
, ‖zn − x‖ ≤

(
1
3

+ ε
)
R

C − ε
.

Assume that ε is small enough; by the definition of β̄X we get

β̄X

(
(2ε)

1
q

6Lip1(f)
· C − ε1

3
+ ε

)
≤ 1− 1

2
· C − ε1

3
+ ε

(
1

C + ε
− ρε
C − ε

)
. (3.9)
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Note that β̄X(·) is nondecreasing and has power type p, so if we started with small

ε so that

C − ε
1 + 3ε

>
C

2
,

then

left side of (3.9) ≥ β̄X

(
C

22− 1
q Lip1(f)

· ε
1
q

)
≥ Aε

p
q

for some A > 0, whereas

right side of (3.9) ≤ 1−
(

1

2
− ε

C

)
· 3

1 + 3ε
+

1

2
+

3q−1ε(
1
3

+ ε
)
q

≤ 3

2

(
1− 1

1 + 3ε

)
+

3ε

C
+

3qε

q

≤
(

9

2
+

3

C
+

3q

q

)
ε,

so (
9

2
+

3

C
+

3q

q

)
ε1− p

q ≥ A.

Since 1 < p < q <∞, we get a contradiction by letting ε→ 0.

A consequence of Theorem 3.16 is the following isomorphic characterization of

coarse quotients of `p for 1 < p < 2.

Corollary 3.17. If a Banach space Y is a coarse quotient of `p, 1 < p < 2, then Y

is isomorphic to a linear quotient of `p.

Proof. The proof of Corollary 3.14 shows that Y is isomorphic to a linear quotient of

Lp. On the other hand, by Theorem 3.16, `2 is not isomorphic to a linear quotient of

Y . Therefore the results follows from the Johnson-Odell dichotomy theorem [22].

It follows from Corollary 3.12 that c0 cannot be a coarse quotient of a superreflex-

ive Banach space, but we know that there are Banach spaces with property (β) that
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are not superreflexive, e.g. (
∑∞

n=1 `
n
∞)`2 . Nevertheless, one can also prove using the

same technique for Theorem 3.16 that c0 cannot be a coarse quotient of a Banach

space with property (β).

Theorem 3.18. Let X be a Banach space with property (β). Then there is no

coarse quotient map from any subset of X to c0 that is Lipschitz for large distances.

In particular, c0 is not a coarse quotient of any Banach space with property (β).

Proof. Suppose that there exist a subset S of X and a coarse quotient map f : S → c0

with constant K so that f is Lipschitz for large distances. Let C be the limit of Cd in

Lemma 3.15 for the map f . Now we proceed the proof of Theorem 3.16 until (3.6),

the choice of yn. Instead, for n > N , set

yn :=
R

3
en + (M −m)N +m.

Then

‖yn −m‖ =

∥∥∥∥R3 en + (M −m)N

∥∥∥∥ = max

{
R

3
, ‖(M −m)N‖

}
=
R

3
,

so as in Theorem 3.16 we can choose zn by (3.7). Moreover,

‖yn − yε‖ =

∥∥∥∥R3 en + (M −m)N − (yε −m)

∥∥∥∥
=

∥∥∥∥R3 en + (M −m)N − 2(M −m)

∥∥∥∥
=

∥∥∥∥R3 en + 2((M −m)N − (M −m))− (M −m)N

∥∥∥∥
= max

{∥∥∥∥R3 en + 2((M −m)N − (M −m))

∥∥∥∥ , ‖(M −m)N‖
}

≤ max

{
R

3
+

2εR

3
,
R

3

}
=

(1 + 2ε)R

3
.
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Thus by the triangle inequality,

‖yε − f(zn)‖ ≤ ‖yε − yn‖+ ‖yn − f(zn)‖ ≤ (1 + 2ε)R

3
+K ≤ (1 + 5ε)R

3
:= ρ̃εR.

Note that ρ̃εR > R/3 ≥ d0/3, so similarly xn can be chosen by (3.8). On the other

hand, we could choose large d0 so that d0/6 > ωf (1) + 2K. Then for k, n > N with

k 6= n,

ωf (1) + 2K <
R

3
= ‖yn − yk‖ ≤ 2K + ωf (‖zn − zk‖),

which again implies that ‖zn − zk‖ > 1, and it follows from the Lipschitz for large

distances property of f that

R

3
= ‖yn − yk‖ ≤ Lip1(f)‖zn − zk‖+ 2K ≤ Lip1(f)‖zn − zk‖+

R

6
,

and hence

‖zn − zk‖ ≥
R

6Lip1(f)
.

In summary, for all n, k > N with n 6= k we have

‖zn − zk‖ ≥
R

6Lip1(f)
, ‖zε − zn‖ ≥

R

C + ε
− ρ̃εR

C − ε
,

‖zε − x‖ ≤
R

3(C − ε)
, ‖zn − x‖ ≤

(
1
3

+ ε
)
R

C − ε
.

If ε is chosen small enough so that ε ≤ C/2, then

∥∥∥∥∥(zn − x)− (zk − x)

(1
3

+ ε)R

C − ε

∥∥∥∥∥ ≥ 1

6Lip1(f)
· C − ε1

3
+ ε
≥ C

16Lip1(f)
> 0.

Now by the definition of property (β), there exists 0 < δ < 1 independent of ε and
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an index i > N such that

‖zε − zi‖ ≤
(1

3
+ ε)R

C − ε
· (2− 2δ).

It follows that

R

C + ε
− ρ̃εR

C − ε
≤
(

1
3

+ ε
)
R

C − ε
· (2− 2δ).

We get 2 ≤ 2− 2δ by letting ε→ 0, a contradiction.
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4. (β)-DISTORTION OF COUNTABLY BRANCHING TREES∗

Let X and Y be two metric spaces. The distortion of a Lipschitz embedding

f : X → Y is defined as

dist(f) := Lip(f) · Lip(f−1) = sup
x 6=y∈X

dY (f(x), f(y))

dX(x, y)
. sup
x 6=y∈X

dX(x, y)

dY (f(x), f(y))
,

and the Y -distortion of X is the smallest distortion needed to embed X into Y , i.e.

cY (X) := inf{dist(f) : f : X → Y is a Lipschitz embedding}.

If there is no Lipschitz embedding from X into Y then we set cY (X) =∞.

The main concern in this section is the quantitative embedding theory of the

countably branching trees into Banach spaces with property (β). More precisely, let

p ∈ (1,∞), and define

C(βp) := {Y : Y has an equivalent norm with property (βp)},

C(β) := {Y : Y has an equivalent norm with property (β)}.

It was shown in [13] that X admits an equivalent norm with property (β) if and only

if X admits an equivalent norm with property (βp) for some p ∈ (1,∞). In other

words,
⋃
p∈(1,∞) C(βp) = C(β). We denote the (βp)-distortion of a metric space X by

c(βp)(X) := inf{cY (X) : Y ∈ C(βp)},
∗Part of this section is reprinted with permission of Oxford University Press from (β)-distortion

of some infinite graphs by Florent P. Baudier and Sheng Zhang, J. London Math. Soc. 93 (2016),
481–501, Copyright c© 2016 London Mathematical Society.
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which is a parameter that measures the best possible embedding of X into a Banach

space admitting an equivalent norm with property (βp). The case when X = T ωh ,

the countably branching tree of height h, will be investigated in the first part of this

section. It is proven that if Y ∈ C(βp), then cY (T ωh ) = Ω(log(h)1/p), i.e. cY (T ωh ) &

log(h)1/p, where as usual the symbol & is meant to hide a constant independent of

h. The proof combines an asymptotic version of the prong bending lemma from [27]

(see also [34] for a similar argument) and a self-improvement argument of Johnson

and Schechtman [23]. The optimality of the lower bound is also discussed. This

quantitative approach provides a way to unify and extend a series of results in Section

3. We will see that in the latter part of this section.

4.1 A sharp distortion lower bound

Recall that a weighted connected simple graph is a connected graph G = (V,E)

with no multiple edges or self-loop, equipped with a positive weight function w : E →

(0,∞), where V and E are respectively the vertex set and edge set of the graph G.

A graph is unweighted if every edge has unit weight. G will always be equipped with

its canonical metric ρG on its set of vertices, where

ρG(x, y) := inf

{∑
e∈P

w(e) : P is a path connecting x to y

}
,

and the diameter of G is defined by

diam(G) := sup{ρG(x, y) : x, y ∈ G}.

A weighted tree is an acyclic weighted connected simple graph. In a tree two vertices

are connected by a unique path and a leaf is a vertex of degree 1. For technical
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reasons we shall work with rooted trees. When we root a tree at an arbitrary vertex,

the ancestor-descendant relationship between pairs of vertices is then well defined.

The height of a vertex x of a rooted tree T , denoted by h(x), is the number of

edges separating x from the root. The height of a rooted tree T is then defined by

h(T ) := supx∈T h(x). The last common ancestor of two vertices x and y is denoted by

lca(x, y). With this notation the canonical graph distance on an unweighted rooted

tree is given explicitly by

ρT (x, y) = h(x) + h(y)− 2h(lca(x, y)) = ρT (x, lca(x, y)) + ρT (lca(x, y), y).

For a positive integer h, T ωh denotes the (unweighted) countably branching tree of

height h. The vertex set of T ωh can be identified with the elements in
⋃h
i=0 Nh, where

by convention N0 = ∅ is the root. The notation n̄ = (n1, . . . , nr), for some r ≤ h,

designates a generic vertex of T ωh . Then the natural ordering on T ωh with respect to

the ancestor-descendant relationship is defined by n̄ � m̄ (namely, n̄ is an ancestor

of m̄) if m̄ = (m1, . . . ,mk) extends n̄ = (n1, . . . , nr), i.e. r ≤ k and ni = mi for all

1 ≤ i ≤ r.

Kω,1 denotes the (unweighted) star graph with countably many branches, i.e.

the bipartite graph that has a partition into exactly two classes, one consisting of

a singleton called the center, the other consisting of countably many vertices called

the leaves. In the sequel b will denote the center. An arbitrary leaf, denoted by r,

is chosen, and a labeling (ti)
∞
i=1 of the (countably many) remaining leaves is fixed.

With this labeling in mind Kω,1 can be seen as an “umbel” with countably many

“pedicels”, where r stands for root, b for the branching point on the “stem”, and

(ti)
∞
i=1 is a labeling of the tips of the “pedicels”. As usual Kω,1 is equipped with the

shortest path metric. The next lemma says that if the umbel is Lipschitz embedded
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into a Banach space with property (β), then at least one pedicel has to bend towards

the root, and the distance from its tip to the root is shorter than expected. It can

be seen as an asymptotic analogue of Lemma 2 in [27].

Lemma 4.1. Let Y be a Banach space with property (β). Then for every Lipschitz

embedding f : Kω,1 → Y there exists i0 ∈ N such that

‖f(r)− f(ti0)‖ ≤ 2Lip(f)

(
1− β̄Y

(
2

dist(f)

))
. (4.1)

Proof. One may assume after appropriate translation and rescaling that f(b) = 0

and Lip(f) = 1. Let x = f(r) and yi = f(ti). Clearly ‖x‖ ≤ 1, ‖yi‖ ≤ 1 for all

i ∈ N, and for n 6= m we have

‖yn − ym‖ ≥
2

dist(f)
> 0.

Since the norm of Y satisfies property (β), there exists i0 ∈ N such that

∥∥∥∥x− yi02

∥∥∥∥ ≤ 1− β̄Y
(

2

dist(f)

)
,

and hence the result follows.

Remark 4.2. Note that the conclusion of Lemma 4.1 can be strengthened. Since (4.1)

holds for all but finitely many indices i, there exists an infinite subset M ⊆ N such

that

max

{
sup
i∈M
‖f(r)− f(ti)‖, sup

i 6=j∈M
‖f(ti)− f(tj)‖

}
≤ 2Lip(f)

(
1− β̄Y

(
2

dist(f)

))
.

The next proposition is a self-improvement argument of Johnson and Schechtman

[23]. It shows that if the countably branching tree of a certain height embeds into a
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Banach space with property (β), then the countably branching tree of roughly half

the height embeds as well, but with a slightly better distortion.

Proposition 4.3. Let Y be a Banach space with property (β). Let k ∈ N, and

assume that T ω
2k

Lipschitz embeds into Y with distortion D. Then T ω
2k−1 Lipschitz

embeds into Y with distortion at most D
(
1− β̄Y

(
2
D

))
.

Proof. Let f : T ω
2k
→ Y be a Lipschitz embedding with distortion D. In order to

define an embedding of T ω
2k−1 into Y , one selects vertices located at even heights

following a simple procedure. The set of all vertices of height at most 2 in the tree

T ω
2k

can be seen as being formed by countably many umbels. For every n1 ∈ N,

consider the umbel whose root is the vertex ∅ and whose branching point is the

vertex (n1) ∈ T ω
2k

. By Lemma 4.1, there is a vertex located at level 2 which is “close”

to the root of the umbel, i.e. there exists t(n1) ∈ N such that

‖f(∅)− f((n1, t(n1)))‖ ≤ 2Lip(f)

(
1− β̄Y

(
2

D

))
.

For every vertex (n1, t(n1)) as above, and for every n2 ∈ N, consider the umbel whose

root is the vertex (n1, t(n1)), and whose branching point is the vertex (n1, t(n1), n2).

Again select using Lemma 4.1, a level-4 vertex that is the tip of the bending pedicel,

i.e. there exists t(n1,n2) ∈ N such that

‖f((n1, t(n1)))− f((n1, t(n1), n2, t(n1,n2)))‖ ≤ 2Lip(f)

(
1− β̄Y

(
2

D

))
.

Repeat this procedure until vertices located in the set of leaves of the tree are selected.

To summarize we have chosen a collection of integers (tn̄)n̄∈Tω
2k−1

such that for every
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n̄ = (n1, . . . , nr) ∈ T ω2k−1 one has

‖f((n1, t(n1), . . . , nr−1, t(n1,...,nr−1)))− f((n1, t(n1), . . . , nr,t(n1,...,nr)))‖

≤ 2Lip(f)

(
1− β̄Y

(
2

D

))
.

Finally define

g : T ω2k−1 → Y, n̄ = (n1, . . . , nr) 7→
f((n1, t(n1), . . . , nr, t(n1,...,nr)))

2

and g(∅) = 1
2
f(∅). Since for a graph it is sufficient to consider adjacent vertices to

estimate the Lipschitz constant, one can easily check that

dist(g) ≤ D

(
1− β̄Y

(
2

D

))
.

Theorem 4.4. Let Y be a Banach space admitting an equivalent norm with property

(β). Then

sup
h≥1

cY (T ωh ) =∞.

In particular, if Y is a Banach space with property (βp) with p ∈ (1,∞) and constant

γ = γ(Y ) > 0, then

cY (T ωh ) ≥ 2γ
1
p log(h

2
)
1
p .

Proof. Let Dh := cY (T ωh ) in the sequel, and assume that suph≥1Dh = D ∈ (0,∞).

According to Proposition 4.3, if Y has property (β), then for every k ≥ 1,

D2k−1 ≤ D2k

(
1− β̄Y

(
2

D

))
.

40



Taking the limit in k gives a contradiction.

Suppose that Y has (βp) with p ∈ (1,∞) and constant γ = γ(Y ) > 0. Let k ∈ N

satisfy 2k ≤ h < 2k+1. Again it follows from Proposition 4.3 that for all j ≤ k,

D2j−1 ≤ D2j

(
1− 2pγ

Dp
2j

)
,

and hence

Dh ≥ D2k ≥ 2pγ
k∑
j=1

D1−p
2j

+D1 ≥ 2pγkD1−p
h .

The conclusion follows easily.

Bourgain [9] gave a Lipschitz embedding of the complete hyperbolic binary tree

of height h into `2 with distortion O(
√

log(h)). The next theorem is a slight modifi-

cation of Bourgain’s construction that gives a distortion upper bound of embedding

any unweighted tree into `p space.

Theorem 4.5. Let p ∈ (1,∞) and T = (V,E) be an unweighted tree with diam(T ) >

1. Then

c`p(E)(T ) = O
(

log(diam(T ))
1
p

)
.

Proof. Denote by {ue}e∈E the unit vector basis for `p(E). Let q be the conjugate

exponent of p, i.e. 1/p + 1/q = 1. Root the tree T at an arbitrary vertex r. For

x ∈ T , let Px = {ex1 , ex2 , ..., exh(x)} ⊆ E be the unique path connecting r and x. Now

we show that the embedding of T into `p(E) is given by

f(x) =

h(x)∑
k=1

(1 + h(x)− k)
1
quexk .
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Let x, y ∈ T . Then

‖f(x)− f(y)‖p =

∥∥∥∥∥∥
h(x)∑
k=1

(1 + h(x)− k)
1
q uexk −

h(y)∑
k=1

(1 + h(y)− k)
1
q ueyk

∥∥∥∥∥∥
p

=

h(lca(x,y))∑
k=1

∣∣∣(1 + h(x)− k)
1
q − (1 + h(y)− k)

1
q

∣∣∣p (C)

+

h(x)∑
k=h(lca(x,y))+1

(1 + h(x)− k)p−1 (A)

+

h(y)∑
k=h(lca(x,y))+1

(1 + h(y)− k)p−1 (B)

The quantities A and B are easy to estimate and we record it in the following claim.

Claim 4.1. The following inequalities hold:

(
h(x)− h(lca(x, y))

2

)p
≤ A ≤ (h(x)− h(lca(x, y)))p ,(

h(y)− h(lca(x, y))

2

)p
≤ B ≤ (h(y)− h(lca(x, y)))p .

Proof of Claim 4.1: First we note that

A ≤
h(x)∑

k=h(lca(x,y))+1

(h(x)− h(lca(x, y)))p−1 = (h(x)− h(lca(x, y)))p.

To get the lower bound on A, let j be the largest integer in [h(lca(x, y)) + 1, h(x)]

such that

1 + h(x)− j ≥ 1

2
(h(x)− h(lca(x, y))) .
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Then one has

A ≥
j∑

k=h(lca(x,y))+1

(1 + h(x)− k)p−1

≥
j∑

k=h(lca(x,y))+1

(
h(x)− h(lca(x, y))

2

)p−1

= (j − h(lca(x, y)))

(
h(x)− h(lca(x, y))

2

)p−1

≥
(
h(x)− h(lca(x, y))

2

)p
,

where the last inequality follows from

h(x)− j < 1

2
(h(x)− h(lca(x, y))) .

By exchanging the role of x and y we get the same estimates for B.

Now we estimate ‖f(x)− f(y)‖ from below:

‖f(x)− f(y)‖ ≥ (A+B)
1
p

≥
((

h(x)− h(lca(x, y))

2

)p
+

(
h(y)− h(lca(x, y))

2

)p) 1
p

≥ 1

2

(
h(x)− h(lca(x, y))

2
+
h(y)− h(lca(x, y))

2

)
=

1

4
ρT (x, y).

To estimate ‖f(x)− f(y)‖ from above, we need an upper bound on C.

Claim 4.2. For all x, y ∈ T ,

C ≤ 2p log(diam(T ))ρT (x, y)p.
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Proof of Claim 4.2: First consider the case when lca(x, y) = x and h(y) > h(x). It

follows from the inequality as− bs ≤ as−1(a− b), which holds for every s ∈ [0, 1] and

a ≥ b > 0, that

C =

h(x)∑
k=1

(
(1 + h(y)− k)

1
q − (1 + h(x)− k)

1
q

)p
≤

h(x)∑
k=1

(
h(y)− h(x)

(1 + h(y)− k)
1
p

)p

=

h(x)∑
k=1

ρT (x, y)p

1 + h(y)− k

≤ ρT (x, y)p
h(y)∑
k=2

1

k
≤ log(h(y))ρT (x, y)p ≤ log(diam(T ))ρT (x, y)p.

Now for the general case one has

C ≤
h(lca(x,y))∑

k=1

2p
∣∣∣(1 + h(x)− k)

1
q − (1 + h(lca(x, y))− k)

1
q

∣∣∣p
+

h(lca(x,y))∑
k=1

2p
∣∣∣(1 + h(y)− k)

1
q − (1 + h(lca(x, y))− k)

1
q

∣∣∣p
≤ 2p log(diam(T ))(ρT (x, lca(x, y))p + ρT (y, lca(x, y))p)

≤ 2p log(diam(T ))ρT (x, y)p.

This completes the proof of Claim 4.2.

Now combining the upper bound estimate of A,B and C we get

‖f(x)− f(y)‖ = (A+B + C)
1
p

≤ (1 + 2p log(diam(T )))
1
pρT (x, y) ≤ 4 log(diam(T ))

1
pρT (x, y).
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Therefore, the distortion of f satisfies

dist(f) ≤ 16 log(diam(T ))
1
p ,

and the proof is complete.

Note that the upper bound in Theorem 4.5 is not optimal since it involves the

diameter of the tree T . In the case when T is an infinite path, then it embeds

isometrically into the real line R, but diam(T ) =∞ has no control on the distortion

from above. Nevertheless, this upper bound is already sufficient to show that the

lower bound obtained in Theorem 4.4 is sharp. In fact, since the edge set of T ωh is

countable and the diameter of T ωh is 2h, it follows from Theorem 4.5 that

c`p(T ωh ) = O
(

log(h)
1
p

)
.

In view of the fact that `p has property (βp), the lower bound in Theorem 4.4 is

indeed optimal up to constant factors.

Considering weighted trees is significantly more complicated (even for finite trees).

Matoušek [34] introduced a combinatorial parameter called “caterpillar dimension”

associated to a weighted tree, which is only related to the combinatorial structure

of the tree but not the edge weights. He proved for finite weighted trees a similar

upper bound as that in Theorem 4.5, with only the diameter of T replaced by the

caterpillar dimension of T . It was also mentioned there that a similar result holds

for infinite weighted trees. Later, Matoušek’s upper bound was improved by Lee,

Naor and Peres [31] using a coloring parameter that takes into account the edge

weights. We also refer to [7] for a proof following the graph coloring approach in [31]

for infinite weighted trees.
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4.2 Applications in nonlinear quotient theory

We turn to applications of Theorem 4.4 and Theorem 4.5 in the nonlinear quotient

theory of Banach spaces. In this part mainly nonlinear quotient maps defined on

some subset of a metric space are considered. A metric space Y is said to be a

Lipschitz (resp. uniform, coarse) subquotient of a metric space X if Y is a Lipschitz

(resp. uniform, coarse) quotient of a subset of X. We will, in particular, emphasize

a quantitative analysis of Lipschitz subquotients that is similar to the quantitative

theory of Lipschitz embeddings.

Definition 4.6. Let X, Y be two metric spaces. Y is a said to be a Lipschitz subquo-

tient of X with co-distortion α ∈ [1,∞) (or simply Y is an α-Lipschitz subquotient

of X) if there is a subset Z ⊆ X and a Lipschitz quotient map f : Z → Y such that

the co-distortion of f , defined as

codist(f) := Lip(f) · coLip(f),

satisfies codist(f) ≤ α. We define the X-quotient co-distortion of Y as

qcX(Y ) := inf{α : Y is an α-Lipschitz subquotient of X}.

We set qcX(Y ) =∞ if Y is not a Lipschitz quotient of any subset of X.

Remark 4.7. Lipschitz subquotients have already been implicitly touched upon (e.g.

[14, 33, 36]). A “dual” notion was considered by Mendel and Naor [35], where given

α ∈ [1,∞) they say that X has an α-Lipschitz quotient in Y if there is a subset

S ⊆ Y and a Lipschitz quotient map f : X → S such that codist(f) ≤ α.

Observe that if f is a Lipschitz embedding from X into Y , then f−1 is a Lip-
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schitz quotient map from f(X) onto X, with codist(f−1) = dist(f). Therefore we

have qcY (X) ≤ cY (X). A crucial observation for the ensuing discussion is that the

inequality is actually an equality for trees.

Proposition 4.8. Let Y be a metric space and T be a weighted tree. Then qcY (T ) =

cY (T ).

Proof. Let Z be a subset of Y and f : Z → T be a Lipschitz quotient map. Equip

T with its canonical graph metric ρT and root T at an arbitrary vertex r so that the

height of the tree is well defined. By induction on the height of the tree it is possible

to select a collection of points (zv)v∈T ⊆ Z such that f(zv) = v, and for every pair

of adjacent vertices (v, w) one has

dY (zv, zw) ≤ coLip(f) · ρT (v, w).

Since for a weighted graph it is sufficient to consider pairs of adjacent vertices to

estimate the Lipschitz constant of a map, the injective map g : v 7→ zv is Lipschitz

with Lip(g) ≤ coLip(f). We conclude by simply observing that Lip(g−1) ≤ Lip(f),

and hence dist(g) ≤ codist(f).

The common feature of the proof of Theorem 2.7 and Theorem 3.16, as well as

that of 3.18, is the implementation of the fork argument. We aim to circumvent

this technical argument by the quantitative results obtained in the first part of this

section and give a purely metric proof. It will be clear shortly that the alternative

proof actually splits the proof mechanism of the fork argument into two distinct

quantitative problems that can be treated by rather elementary techniques, and to a

certain extent fits these theorems into the same framework. We start with uniform

quotients. The following proposition serves as a “bridge”, which guarantees the
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stability of quotient co-distortion of graphs under uniform quotient maps.

Proposition 4.9. Let X and Y be Banach spaces such that Y is a uniform subquo-

tient of X, where the uniform quotient map is Lipschitz for large distances. Let G

be an unweighted connected simple graph. Then qcX(G) = O(qcY (G)).

Proof. Let Z be a subset of X and let f : Z → Y be a uniform quotient map that

is Lipschitz for large distances. Assume that S is a subset of Y and g : S → G is a

Lipschitz quotient map. By a scaling of the set S we may without loss of generality

assume that Lip(g) = 1. Let f̃ denote the restriction of f to Z := f−1(S). Then

for every t ∈ (0,∞), Lipt(f̃) ≤ Lipt(f) < ∞. We show next that h := g ◦ f̃ is a

Lipschitz quotient map from Z onto G.

Claim 4.3. There exists δ ∈ (0,∞) such that Lip(h) ≤ Lipδ(f).

Proof of Claim 4.3. Since f is uniformly continuous, there exists δ ∈ (0,∞) so that

‖f(x)− f(y)‖ < 1 whenever ‖x− y‖ < δ. For every x, y ∈ Z such that ‖x− y‖ < δ,

one has h(x) = h(y) since

ρG(h(x), h(y)) ≤ ‖f̃(x)− f̃(y)‖ < 1.

If ‖x− y‖ ≥ δ, then

ρG(h(x), h(y)) ≤ ‖f̃(x)− f̃(y)‖ ≤ Lipδ(f)‖x− y‖.

This implies that Lip(h) ≤ Lipδ(f).

Claim 4.4. There exists c ∈ (0,∞) such that coLip(h) ≤ (c+ 1)coLip(g).

Proof of Claim 4.4. Let coLip(g) := D ∈ [1,∞). Since Y is a Banach space, it is

metrically convex and hence f as well as its restriction to Z are co-Lipschitz for large
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distances. Thus there exists c ∈ (0,∞) such that for all x ∈ Z and all r ≥ 1,

BS

(
f̃(x),

r

c

)
⊆ f̃(BZ(x, r)).

For every x ∈ Z one has

BG(h(x), 1) ⊆ g(BS(f̃(x), D))

⊆ g

(
BS

(
f̃(x),

(c+ 1)D

c

))
⊆ h(BZ(x, (c+ 1)D)).

Since the graph G is connected, it follows that coLip(h) ≤ (c+ 1)coLip(g).

Therefore, h is a Lipschitz quotient map from Z onto G with co-distrotion

codist(h) ≤ (c+ 1)Lipδ(f)codist(g),

where the constant (c+ 1)Lipδ(f) depends only on f .

In view of Proposition 4.9 and Proposition 4.8, the alternative proof of (a stronger

form) of Theorem 2.7 simply boils down to exhibiting a discrepancy between the Y -

distortion and the X-distortion of the countably branching trees. This discrepancy

is exhibited by comparing the lower bound from Theorem 4.4 with the upper bound

from Theorem 4.5.

Theorem 4.10. Let X be a Banach space admitting an equivalent norm with property

(βp) for some p ∈ (1,∞). Assume that a Banach space Y is a uniform subquotient

of X, where the uniform quotient map is Lipschitz for large distances. Then `q is

not a uniform subquotient of Y for any q > p such that the uniform quotient map is

Lipschitz for large distances.
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Proof. Suppose that `q is a uniform subquotient of Y for some q > p such that

the uniform quotient map is Lipschitz for large distances. Then it follows from

Proposition 4.8 and Proposition 4.9 that for h ∈ N,

cX(T ωh ) = qcX(T ωh ) . qcY (T ωh ) . qc`q(T
ω
h ) = c`q(T

ω
h ).

Since X ∈ C(βp), by Theorem 4.4 we have cX(T ωh ) & log(h)1/p, while Theorem 4.5

says that c`q(T
ω
h ) . log(h)1/q. This is a contradiction for h big enough.

Theorem 4.11. c0 is not a uniform subquotient of a Banach space admitting an

equivalent norm with property (β) such that the uniform quotient map is Lipschitz

for large distances.

Proof. Assume that c0 is a uniform subquotient of a Banach space X admitting an

equivalent norm with property (β) such that the uniform quotient map is Lipschitz

for large distances. Then it follows from Proposition 4.8 and Proposition 4.9 that

for h ∈ N,

cX(T ωh ) = qcX(T ωh ) . qcc0(T
ω
h ) = cc0(T

ω
h ).

It is easy to show using the summing basis of c0 that cc0(T
ω
h ) ≤ 2 (actually cc0(T

ω
h ) = 1

follows from Theorem 6.3 in [26]), but by Theorem 4.4, cX(T ωh ) → ∞ as h → ∞.

We again get a contradiction.

The case of coarse quotient is a bit more delicate. To prove a coarse analogue of

Proposition 4.9, we need the following technical lemma, which is the large-distances

version of Lemma 3.6.

Lemma 4.12. Let X and Y be metric spaces and f : X → Y be a coarse quotient

map with constant K. Assume that Y is metrically convex and S is a subset of Y .

Then there exist a subset Z ⊆ X and a map g : Z → S satisfying the following:
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(i) If K = 0, then for every ε > 0 there exists c1 = c1(ε) > 0 such that for all

x ∈ Z and r ≥ ε,

BS(g(x), r) ⊆ g(BZ(x, c1r)). (4.2)

(ii) If K > 0, then there exists c2 = c2(K) > 0 such that for all x ∈ Z and r > 0,

BS(g(x), r) ⊆ g(BZ(x, c2r))
4K . (4.3)

Proof. We follow the proof of Lemma 3.6. Since Y is metrically convex, by Lemma

3.8, for every ε > 2K, there exists c = c(ε) > 0 so that for all x ∈ X and r ≥ ε,

BY (f(x), r) ⊆ f(BX(x, cr))K .

Define p : SK → S by p(a) = a if a ∈ S and p(a) = sa otherwise, where sa is any

point in S within distance K from a. We now show that in both cases (i) and (ii)

one can take Z := f−1(SK) and g = p ◦ f̃ , where f̃ : Z → SK is the restriction of f

to Z.

Indeed, in case (i) when K = 0, the map p becomes the identity map on S and

hence g : Z → S is the restriction of f to Z = f−1(S). Thus (4.2) follows with

c1 = c1(ε) = c.

In case (ii) when K > 0, by Remark 3.9 there exists c̃ = c(2K) > 0 so that for

all x ∈ X and r ≥ 2K,

BY (f(x), r) ⊆ f(BX(x, c̃r))K .

Now for x ∈ Z and r ≥ 2K, suppose that y ∈ BSK (f̃(x), r). Then there exists
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u ∈ BX(x, c̃r) such that dY (y, f(u)) ≤ K, and y ∈ SK implies that dY (y, s) ≤ K for

some s ∈ S, so

s ∈ BY (f(u), 2K) ⊆ f(BX(u, 2Kc̃))K .

Thus there exists v ∈ BX(u, 2Kc̃) such that dY (s, f(v)) ≤ K. It follows by the

triangle inequality that

v ∈ BZ(x, 2Kc̃+ c̃r) ⊆ BZ(x, 2c̃r) and dY (y, f̃(v)) ≤ 2K.

Now we have shown that the map f̃ : Z → SK satisfies for all x ∈ Z and r ≥ 2K,

BSK (f̃(x), r) ⊆ f̃(BZ(x, 2c̃r))2K .

Therefore, for every x ∈ Z and r ≥ 4K,

BS(g(x), r) ⊆ p(BSK (f̃(x), r +K)) ⊆ p(BSK (f̃(x), 2r))

⊆ p
(
f̃(BZ(x, 4c̃r))2K

)
⊆ g(BZ(x, 4c̃r))4K .

This implies that (4.3) holds for c2 = c2(K) = 4c̃.

The next proposition is the analogue of Proposition 4.9 that is needed in the

coarse case.

Proposition 4.13. Let X and Y be Banach spaces such that Y is a coarse subquo-

tient of X, where the coarse quotient map is Lipschitz for large distances. Then there

exists k ∈ N (independent of n) so that qcX(T ω2n) = O(qcY (T ω
2n+k)) for all n ∈ N.

Proof. Let Z be a subset of X and let f : Z → Y be a coarse quotient map with

constant K that is Lipschitz for large distances. We claim that k can be chosen as
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the smallest positive integer so that 2k > ωf (1)+4K+1. Assume that Sn is a subset

of Y and gn : Sn → T ω
2n+k is a Lipschitz quotient map. By a scaling of the set Sn

we may without loss of generality assume that Lip(gn) = 1. There exist a subset

T (n) ⊆ T ω
2n+k in which the distance between points is at least 2k, and a rescaled

isometry in : T (n)→ T ω2n so that for every u, v ∈ T (n),

ρTω
2n

(in(u), in(v)) = 2−kρTω
2n+k

(u, v).

Let S̃n := g−1
n (T (n)). By Lemma 4.12, there exists c > 0 depending only on K, so

that for every n ∈ N, there exist sets Zn ⊆ Z and coarse quotient maps fn : Zn → S̃n

satisfying for all x ∈ Zn and r ≥ 4K + 1,

BS̃n
(fn(x), r) ⊆ fn(BZn(x, cr))4K .

Consider the map hn := in ◦ g̃n ◦ fn : Zn → T ω2n , where g̃n is the restriction of gn to

S̃n.

Claim 4.5. For every n ∈ N, Lip(hn) ≤ 2−k(2K + Lip1(f)).

Proof of Claim 4.5. For every x, y ∈ Zn such that ‖x−y‖ < 1, one has hn(x) = hn(y)

since it follows from the proof of Lemma 4.12 that

ρTω
2n

(hn(x), hn(y)) ≤ 2−k‖fn(x)− fn(y)‖ ≤ 2−k(2K + ‖f(x)− f(y)‖) < 1.

If ‖x− y‖ ≥ 1, then

ρTω
2n

(hn(x), hn(y)) ≤ 2−k(2K + ‖f(x)− f(y)‖) ≤ 2−k(2K + Lip1(f))‖x− y‖.

Thus Lip(hn) ≤ 2−k(2K + Lip1(f)).
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Claim 4.6. For every n ∈ N, coLip(hn) ≤ 2kc · coLip(gn).

Proof of Claim 4.6. Let coLip(gn) := Dn ∈ [1,∞). For every x ∈ Zn one has

BTω
2n

(hn(x), 1) = in
(
BT (n)(g̃n ◦ fn(x), 2k)

)
⊆ in ◦ g̃n

(
BS̃n

(fn(x), 2kDn)
)

⊆ in ◦ g̃n
(
fn
(
BZn(x, 2kDnc)

)4K
)
⊆ in

((
g̃n ◦ fn

(
BZn(x, 2kDnc)

))4K
)

= hn(BZn(x, 2kDnc)).

This implies that coLip(hn) ≤ 2kDnc.

Therefore, hn is a Lipschitz quotient map from Zn onto T ω2n with co-distortion

codist(hn) ≤ c(2K + Lip1(f))codist(gn),

where the constant c(2K + Lip1(f)) depends only on f and K.

Now a combination of Proposition 4.13, Proposition 4.8, Theorem 4.5 and The-

orem 4.4 implies the following (stronger form) of Theorem 3.16.

Theorem 4.14. Let X be a Banach space admitting an equivalent norm with property

(βp) for some p ∈ (1,∞). Assume that a Banach space Y is a coarse subquotient of

X, where the coarse quotient map is Lipschitz for large distances. Then `q is not a

coarse subquotient of Y for any q > p such that the coarse quotient map is Lipschitz

for large distances.

Proof. Suppose that `q is a coarse subquotient of Y for some q > p such that the

coarse quotient map is Lipschitz for large distances, then it follows from Proposition

4.8 and Proposition 4.13 that there exist k1, k2 ∈ N independent of n ∈ N such that

cX(T ω2n) = qcX(T ω2n) . qcY (T ω2n+k1 ) . qc`q(T
ω
2n+k1+k2 ) = c`q(T

ω
2n+k1+k2 ).
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Since X ∈ C(βp), by Theorem 4.4 we have cX(T ω2n) & n1/p, while Theorem 4.5 implies

that c`q(T
ω
2n+k1+k2

) . (n+ k1 + k2)1/q. This is a contradiction for n big enough.

Similarly, one can give an alternative proof for Theorem 3.18, which we omit here.
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5. SUMMARY

This dissertation treats the nonlinear quotient theory of Banach spaces with an

emphasis on the large scale geometry of the spaces. Definitions and results known

for uniform and Lipschitz quotients of Banach spaces are developed in the coarse

setting. We summarize our work as follows:

The notion of coarse quotient is introduced and coarse quotients of some classical

Banach spaces are studied. More precisely, we give an isomorphic characterization

of coarse quotients of the function spaces Lp for 1 < p < ∞; namely, every coarse

quotient of Lp is isomorphic to a linear quotient of Lp. It is also proven that every

coarse quotient of the sequence space `p is isomorphic to a linear quotient of `p if

1 < p ≤ 2. Whether this is true when p > 2 is left open.

In connection with metric embedding, for 1 < p < q <∞ we show by comparing

the `p-distortion and `q-distortion of the countably branching tree T ωh that there is

no uniform or coarse quotient map from `p to `q. It is not known whether `p can be

a uniform or coarse quotient of `q for the same range of p and q.
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APPENDIX A

ULTRAPRODUCT OF BANACH SPACES

This Appendix is a brief introduction to ultraproducts in Banach space theory.

We will only list definitions and results. Detailed proof as well as thorough discussion

of this topic can be found in [17].

Definition A.1. A filter F on an infinite set I is a subset of P(I) (the set of all

subsets of I) satisfying the following conditions:

(1) ∅ /∈ F ;

(2) F is closed under finite intersections;

(3) If A ∈ F , then B ∈ F for every B ⊇ A.

An ultrafilter U on I is a maximal filter with respect to inclusion. An ultrafilter is

called free if the intersection of all the sets in it is empty.

Definition A.2. Let U be an ultrafilter on I and X be a topological space. We

say that (xi)i∈I ⊆ X converges to x ∈ X through U and write limU xi = x if

{i ∈ I : xi ∈ U} ∈ U for every open neighborhood U of x.

Lemma A.3. Let U be an ultrafilter on I and K be a compact topological space.

Then any (xi)i∈I ⊆ K converges to some x ∈ K through U . In particular, any

bounded real-valued set (xi)i∈I converges to some x ∈ R through U .

Let (Xi)i∈I be a family of Banach spaces and U be a free ultrafilter on I. Consider

the `∞-sum of (Xi)i∈I , i.e. the Banach space

(∑
i∈I

Xi

)
`∞

:= {(xi)i∈I : xi ∈ Xi and sup
i∈I
‖xi‖ <∞}
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with the norm ‖(xi)i∈I‖∞ = supi∈I ‖xi‖. In view of Lemma A.3, for each (xi)i∈I ∈

(
∑

i∈I Xi)`∞ , limU ‖xi‖ exists and defines a seminorm. It is not hard to see that the

subspace of (
∑

i∈I Xi)`∞ on which the seminorm is equal to 0, denoted by NU , is

closed.

Definition A.4. The ultraproduct of (Xi)i∈I with respect to the free ultrafilter

U , denoted by (
∏

i∈I Xi)U , is the quotient space (
∑

i∈I Xi)`∞/NU with the norm

‖(xi)U‖ := limU ‖xi‖, where (xi)U is the element in (
∏

i∈I Xi)U corresponding to

(xi)i∈I ∈ (
∑

i∈I Xi)`∞ . If allXi’s are the same Banach spaceX, then the ultraproduct

is called an ultrapower of X and denoted by XU .

Proposition A.5. Let X be a Banach space and U be a free ultrafilter on N. If

X is finite dimensional then XU is isometrically isomorphic to X; if X is infinite

dimensional then XU is finitely representable in X.

Proposition A.6. Let X be a Banach space and U be a free ultrafilter on N. Then

(X∗)U = (XU)∗ if and only if X is superreflexive.
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