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ABSTRACT 

 

 The widespread industrial uses of cerium oxide nanoparticles (CeO2 NPs) and 

their unregulated disposal have raised increasing concerns about the consequences of 

these nanoparticles on the environmental health and safety. Previous studies on the 

interactions between CeO2 NPs and plants reported inconsistent conclusions of CeO2 

NPs toxicity on various species. While many previous research have demonstrated the 

impacts of CeO2 NPs on the physiological, biochemical and genetic processes, detailed 

understanding on the effects of CeO2 NPs on plant photosynthesis in still elusive. There 

has also no study which investigated the impact of CeO2 NPs on plant water use 

efficiency (WUE), a key parameter for crop yield. Therefore, this research aimed to 

provide new insights into the impact of CeO2 NPs with different surface properties 

(uncoated and polyvinylpyrrolidone (PVP)-coated) on plant photosynthesis and WUE at 

various soil moisture contents. The concentration of CeO2 NPs ranged from 0-500 mg/kg 

dry soil and the soil moisture content ranged from 55-100% θfc. WUE was estimated by 

measuring δ13C of soybean tissues and photosynthesis was thoroughly studied by 

characterizing photosynthetic response curve with respect to varying photon intensities 

and CO2 concentrations.  

CeO2 NPs exhibited hermetic effect on soybean that positive impact was observed 

on the soybean at 100 mg/kg while significant inhibition was shown at the highest 

concentration of (500 mg/kg) at water sufficient condition (100% θfc). The results also 

indicated that both types of CeO2 NPs at the concentration of 100 mg/kg soil stimulated 
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the growth and consistently enhanced the photosynthesis and WUE of the soybean 

during the 3-week treatment. Our results also indicated that the enhancive effect of CeO2 

NPs on plant photosynthesis and WUE was dependent upon the soil moisture content. 

While both types of CeO2 NPs exhibited consistently positive impact on the 

photosynthetic performance of the soybeans at the moisture content of 70%, 85% and 

100% θfc, CeO2 NPs did not enhance the photosynthesis efficiency of the soybeans at 

55% θfc, which suggested that the positive effect of CeO2 NPs was limited by the soil 

moisture deficiency. Further examination of the results suggested that Vcmax (maximum 

carboxylation rate) was affected by CeO2 NPs, indicating that CeO2 NPs affected the 

Rubisco activity which governs carbon assimilation in the dark reactions of 

photosynthesis. In conclusion, CeO2 NPs demonstrated significant impacts on the 

photosynthesis and WUE of soybeans and such impacts were affected by the surface 

properties of CeO2 NPs, the concentrations and the environmental conditions. 



 

 

 

iv 

ACKNOWLEDGEMENTS 

 

I would like to thank my committee chair, Dr. Ma, and my committee members, Dr. 

Wu and Dr. Ying for their guidance and advice throughout the course of this research. 

Thanks also go to my friends and colleagues and the department faculty and staff 

for making my time at Texas A&M University a great experience. I also want to extend 

my gratitude to the Stable Isotope Geoscience Facility, which provided the isotopic 

analysis instrument. 

Finally, thanks to my mother and father for their encouragement and support. 



 

 

 

v 

TABLE OF CONTENTS 

 

              Page 

ABSTRACT ..............................................................................................................  ii 

ACKNOWLEDGEMENTS ......................................................................................  iv 

TABLE OF CONTENTS ..........................................................................................  v 

LIST OF FIGURES ...................................................................................................  vii 

LIST OF TABLES ....................................................................................................  ix 

CHAPTER I  INTRODUCTION ..........................................................................  1 

CHAPTER II  LITERATURE REVIEW ...............................................................  3 

 Nanotechnology ..................................................................................................  3 

 Cerium Oxide Nanoparticles ...............................................................................  5 

 Ecosystem Transport and Fate ............................................................................  8 

 Cerium Oxide Impact on Plants ..........................................................................  9 

 Plant Stresses .......................................................................................................  13 

 Photosynthesis .....................................................................................................  15 

 WUE and Carbon Isotope ...................................................................................  17 

 Climate Change and Food Supply Crisis ............................................................  19 

 

CHAPTER III IMPACT OF CERIUM OXIDE NANOPARTICLES WITH 

DIFFERENT SURFACE PROPERTIES ON SOYBEAN PHOTOSYNTHESIS  

AND WATER USE EFFICIENCY ..........................................................................  21 

 Introduction  ........................................................................................................      21 

 Materials and Methods ........................................................................................  24 

 Results and Discussions ......................................................................................  29 

 

CHAPTER IV IMPACT OF CERIUM OXIDE NANOPARTICLES ON  

SOYBEAN UNDER DIFFERENT MOISTURE CONTENTS ...............................  49 

 Introduction  ........................................................................................................      49 



 

 

 

vi 

Page 

 Materials and Methods ........................................................................................  52 

 Results and Discussions ......................................................................................  55 

 

CHAPTER V  CONCLUSIONS AND RECOMMENDATIONS .........................  74 

REFERENCES ..........................................................................................................  78 

 



 

 

 

vii 

LIST OF FIGURES 

 

                                                                                                                                       Page 

Figure 3-1 TEM images of uncoated CeO2 NPs and PVP-coated CeO2 NPs ...........  25 

 

Figure 3-2 (a) Total fresh weight, (b) fresh weight of roots,  

    (c) fresh weight of shoots ........................................................................  30 

 

Figure 3-3 (a) Total dry weight, (b) dry weight of roots,  

    (c) dry weight of shoots. ..........................................................................  31 

 

Figure 3-4 (a) Stomatal conductance over the three-week growth at 10mg/kg soil  

    (b) stomatal conductance over the three-week growth at 100mg/kg soil  

(c) stomatal conductance over the three-week growth at  

500mg/kg soil ..........................................................................................  34 

 

Figure 3-5 Carbon isotope discrimination of soybeans at different treatments ........  36 

 

Figure 3-6 (a) Total chlorophyll content, (b) chlorophyll a content  

    (c) chlorophyll b content. ........................................................................  38 

 

Figure 3-7 Photosynthesis rate over the three-week growth period at (a) 10mg/kg  

    soil; (b) 100mg/kg soil; and (c) 500mg/kg soil. ......................................  40 

 

Figure 3-8 (a) Maximum photosynthesis rate (PNmax), (b) dark respiration rate (Rd),  

    (c) quantum yield (ϕ) for the soybeans treated with CeO2 NPs. .............  43 

 

Figure 3-9 (a) Cerium content in shoots, (b) cerium content in roots .......................  47 

 

Figure 4-1 Total fresh weight of soybean exposed to 100 mg/kg CeO2 NPs. ...........  57 

 

Figure 4-2 Total dry weight of soybean exposed to 100 mg/kg CeO2 NPs ..............  58 

 

Figure 4-3 Ratio of fresh weight over dry weight. ....................................................  58 

 

Figure 4-4 Stomatal conductance over the three-week growth at different  

    moisture content ......................................................................................  60 

 

Figure 4-5 Carbon isotope composition δ13C of soybeans at different moisture  

    content .....................................................................................................       62 

 



 

 

 

viii 

Page 

Figure 4-6 (a) Total chlorophyll content, (b) chlorophyll a content  

    (c) chlorophyll b content at different moisture content ...........................       64 

 

Figure 4-7 Photosynthesis rate at different moisture content. ...................................  66 

 

Figure 4-8 (a) Cerium content in roots (b) cerium content in shoots  

    at different moisture content ...................................................................  72 

 

Figure 5-1 Linear regression of correlation between Vcmax and δ13C ........................  76 

 

 



 

 

 

ix 

LIST OF TABLES 

 

                                                                                                                                  Page 

Table 3-1 Vcmax (maximum carboxylation rate), Jmax (maximum photosynthesis  

  electron transport rate),  Rday (day respiration) and gm  

  (mesophyll conductance) ...........................................................................  46 

 

Table 4-1 Maximum photosynthesis rate (PNmax), dark respiration rate (Rd),  

  quantum yield (ϕ) of the soybeans treated with CeO2 NPs .......................  68 

 

Table 4-2 Maximum carboxylation rate (Vcmax), maximum electron transport rate  

  (Jmax), day respiration rate (Rday), mesophyll conductance (gm) of the  

  soybeans treated with CeO2 NPs at different moisture content of θfc. ......  70 

 

Table 5-1 Summary of the impact of CeO2 NPs at different concentration ..............  74 

 

Table 5-2 Summary of the impact of CeO2 NPs at different moisture content .........  75 

 

 

 



 

 

 

1 

CHAPTER I 

 INTRODUCTION 

 

Water use efficiency (WUE) is defined as the ratio of the net photosynthesis to 

water transpiration and it is one of the key ecosystem factors affecting plant water 

uptake, carbon cycle and crop yield. As a result, δ13C has been commonly used as a 

substitute index of plant WUE (Lajtha, K., 2007). C3 Plants such as soybeans tend to 

discriminate against the heavier isotope 13C in favor of the major, lighter isotope 12C due 

to several enzymatic and physical processes. A particular advantage of the δ13C 

measurement is the long integration time than other instantaneous measurements. The 

method is well established, allowing rapid screening on the cerium oxide nanoparticles 

(CeO2 NPs) effects on plant WUE at different environmental conditions. 

Plant photosynthesis is the most important physiological process in plants and is 

subject to the influence of various environmental factors including environmental 

chemicals. The measurement of the net photosynthesis rate as well as the responses of 

plant photosynthesis to various light intensity and carbon dioxide concentration can 

provide significant information on the health of plants. Based on the performance of 

photosynthesis, various parameters such as the maximum rate of Rubisco carboxylase 

activity (Vcmax) and the maximum rate of photosynthetic electron transport (Jmax) can be 

derived which reveal the plant carbon assimilation efficiency. (Sharkey et al 2007). 

Examination of all parameters associated with photosynthesis can be used to determine 
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whether the plants are stressed and which part of the photosynthesis process is affected 

by certain environmental factors (Farquhar et al., 1980). 

Even though there have been some reports on the impact of CeO2 NPs on plant 

photosynthesis, the underlying mechanisms of the impact of CeO2 NPs on 

photosynthesis and WUE are still poorly understood. With the rapid expansion of 

applications of CeO2 NPs, a closer look at the impact of CeO2 NPs on the photosynthesis 

and plant WUE would provide further insights on the impact of CeO2 NPs in the 

environment.  

 This thesis would concentrate on four major questions: (1) How would CeO2 NPs 

affect the WUE of plants? (2) What are the impacts of CeO2 NPs on the photosynthesis 

of plants? (3) Would nanoparticles with various surface properties make any difference 

of the impacts of plants? (4) What role does the moisture content of soil play in the 

interactions between nanoparticles and plants?  

Soybean (Glycine max (L.) Merr.) is a popular food crop around the world and is 

used as a model plant of the C3 plants. This research was aiming to investigate 

mechanisms of how CeO2 NPs would affect the photosynthesis process by assessing 

both photosynthesis-response parameters and WUE. The overarching goal of the project 

is to understand how CeO2 NPs, with different physicochemical properties, may affect 

plant WUE and photosynthesis process differently. The overall hypothesis is that CeO2 

NPs will exert significant impact on some physiological and biochemical processes 

associated with plant water uptake and transport and the impact will vary according to 

the unique properties of nanoparticles and the environmental conditions. 
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CHAPTER II 

LITERATURE REVIEW 

 

Nanotechnology 

The concept of nanotechnology was first brought up by Dr. Richard Feynman, a 

physicist at the California Institute of Technology, in 1959. After twenty-years of 

development, Dr. Norio Taniguchi further defined nanotechnology as techniques 

manipulating particles at molecular level of which sizes are smaller than 100 nm in at 

least two dimensions (Kang, 2010). Manufactured nanoparticles exhibit unique 

physiochemical properties compared with their bulk counterparts because of their 

extremely small size and consequently very large specific surface area. Due to their 

appealing characteristics resulted from the size and surface property change, 

nanoparticles related industry has grown into a trillion dollar industry, employing 2 

million employees and having $3 trillion global market (Xia et al., 2008). 

Nanotechnology has been incorporated into various industries such as electronics, 

catalytic converters, cosmetics, pharmaceuticals, optical processes, imaging system (Koo 

et al., 2005), photodynamic therapy (Allison et al., 2008), and implantable biosensors 

(Vaddiraju et al., 2010).  

Among the various types of nanoparticles, a few types of nanoparticles are 

commonly used such as carbon nanomaterials, polymeric and metallic nanomaterials. 

Carbon based nanomaterials including nanotubes, nanofibers and nanoparticles are 
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widely used in adsorption, membrane manufacturing, ion exchange, reverse osmosis, 

and environmental sensing (Magrez et al., 2006). Specifically, synthesized multi-walled 

carbon nanotubes are considered as a potential component in wastewater filtration and 

pollutant remediation. Comparatively, engineered single-walled carbon nanotubes are 

more commonly used in microelectronic industry due to its unique semiconducting and 

semi-metallic properties (Cao & Rogers, 2009).  

Polymer nanomaterials have undergone great development in the past decade. 

Synthesized polymer nanomaterials filled with organic or inorganic functionalized 

groups have the combined properties of nanomaterial and conventional polymer 

composites (Balazs et al., 2006). Given their gas impermeability, stability, and flame 

retardance, polymer nanomaterials are commonly used as aerospace materials, in 

renewable cells and automotive manufacturing. (Kang, 2010, Hussain et al., 2006). 

Properties of polymer nanomaterials can be specifically designed by artificial 

functionalization with the rapidly improving software engineering techniques as polymer 

nanomaterial usually constitutes only five percent filler substance of the total filling 

volume (Vaia & Wagner, 2004).  

In addition to the carbon based and polymer nanomaterials, metallic nanoparticles 

also play a key role in nanotechnology industry. Metallic nanoparticles are broadly 

utilized in mechanical, chemical, fuel additive, pharmaceutical and consumer products 

due to their physiochemical flexibility (Cassee et al., 2011). With the rapid advancement 

on coating techniques and computer simulation, nanoparticles with unique surface 

properties can be synthesized, which are widely used in biomedical technology, targeted 
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drug delivery and diagnostic imaging techniques (Mody et al., 2009). A recent research 

reported the potential methodology of drug delivery with coated CeO2 NPs to break 

through the blood-brain barrier, which has hindered effective drug delivery for decades. 

Conventional drugs or tumor cures are blocked by the blood-brain barrier which is a part 

of the immune system keeping brain from any exoteric damage but also shutting out the 

drugs. Coated CeO2 NPs can penetrate through the barrier which may drastically 

advance the brain tumor research. (Collin et al., 2014). Besides, metallic nanoparticles 

can also facilitate the development of imaging techniques such as computed tomography 

(CT), positron emission tomography (PET), magnetic resonance imaging (MRI), 

ultrasound (US), and surface-enhance Raman imaging (SERS) (Sharma et al., 2006). 

Moreover, energy cell industry is in great demand of metallic nanoparticles. For 

instance, mesoporous nanocrystalline titanium dioxide is widely applied on dye-

sensitized solar cells due to its relatively low cost and diffusion efficiency. By changing 

the porosity, titanium dioxide exhibits the potential to increase photoelectric conversion 

efficiency (Benkstein et al., 2003). Additionally, silver nanoparticles are commonly used 

in consumer products such as washing machine, vacuum flask and membrane filter 

coating because of their outstanding thermal conductance and antibacterial 

characteristics (Wijnhoven et al., 2009). 

 

Cerium Oxide Nanoparticles 

Among all those metallic nanoparticles, cerium oxide nanoparticle is one of the 

most important and commonly encountered nanoparticles. Cerium is one of the most 
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abundant rare earth elements on earth, representing roughly 0.0046% of the earth’s crust 

by weight (Collin et al., 2014). Cerium naturally exists in ecological systems, ranging 

from 2 to 150 mg/kg dry soil, in the form of cerite, cerianite, and zircon (Collin et al., 

2014).  Cerium oxide and some other rare earth elements have been utilized in 

agricultural and gardening fertilizers to promote crop productivity since 1986.  

To further enhance the reactivity, cerium oxide is increasingly manufactured at 

nanometer scale and these nanoparticles are widely used in catalytic converters, fuel 

additives, cosmetic products and chemical catalysts industry (Cassee et al., 2011). 

Automobile manufacturing and petroleum refining industry serve as the largest cerium 

consumers as it is commonly used in the automotive catalytic converters and fluid 

catalytic cracking process. Estimated by the U.S. Geological Survey (USGS), roughly 

10,000 tons of CeO2 NPs have been consumed per year since 2011, of which over eighty 

percent is produced in China (Collin et al., 2014). CeO2 NPs market is further expanded 

because of their outstanding ultraviolet absorption capacity which can be applied on 

sunscreen coating. Cerium nanoparticles released into the environment have not been 

accurately estimated, but the release from different industrial pathways is expected to 

lead to considerable accumulation in soil, water and even atmosphere. Considering the 

great amount of annual production and release, potential accumulation, transport and 

enrichment in the ecosystem are becoming threats to environmental sustainability and 

human health. Therefore, researchers are particularly interested in its environmental 

effect and fate due to the accumulating evidences of some negative impact of engineered 

nanoparticles (ENPs) once they are released into the environment. 
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Mechanism of the catalytic property of CeO2NPs mainly results from the oxidation 

states shift between Ce(III) and Ce(IV). CeO2 NPs will enhance the mobility of lattice 

oxygen on the particle surface, which may result in higher reactivity and unique hazards 

to ecological receptors, due to their relatively larger surface area compared with the bulk 

composites. On the other hand, CeO2 NPs can also exhibit anti-oxidative property as a 

result of their size (Asati et al., 2010). Asati et al (2010) reported that CeO2 NPs show 

antioxidant property at pH 7.4 which can be potentially applied on pharmaceutical 

industry mediating radiation damage. Some studies also revealed that CeO2 NPs can 

minimize oxidation stress and cure inflamed spinal cord neurons (Chen et al., 2006).  

Toxicity of CeO2 NPs is mainly defined by the surface content of Ce3+. Generally, 

CeO2 NPs containing higher ratio of Ce3+/Ce4+ is more likely to exhibit greater toxicity 

to plants. Further experiment reveals that excessive Ce3+ is able to quickly consume the 

superoxide radicals producing hydrogen peroxide, which is harmful to plants (Pulido-

Reyes et al., 2015). Besides, toxicity of CeO2 NPs is also correlated with particle size 

and surface area that plant growth is more likely to be inhibited when it is treated by 

nanoparticles with decreasing size to surface area ratio. In contrast, the degree of 

agglomeration exhibits less significant impact on apparent toxicity (Van Hoecke et al., 

2009). It was also reported that dispersed CeO2 NPs are more toxic than agglomerated 

CeO2 NPs that they inhibited growth of several selected marine and freshwater 

microalgae.  
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Ecosystem Transport and Fate 

Due to the considerably great amount of cerium oxide nanoparticle usage, it is 

likely that CeO2 NPs will continue to build up in the environment. Nanoparticles 

entering natural environment tend to aggregate forming larger particles depending on the 

surface charge, particle size and surrounding environment. On the other hand, size 

increment will change the transport, behavior, reactivity, uptake pathways by organisms, 

and toxicity of nanoparticles (Collin et al., 2014) Because of the complication of realistic 

agglomeration, transport and fate of released CeO2 NPs, and property characterization 

are usually estimated by software modeling and simulation. (Hussain et al., 2006)) 

With the increase utilization and manufacturing of CeO2 NPs, concerns about the 

fate of CeO2 NPs releasing into soil and aquatic systems are growing. Although the 

transport pathways are not well understood, increasing evidences reveal that released 

nanoparticles will be enriched in plant tissues. Potentially harmful metallic nanoparticles 

will be further enriched in the food chain through their accumulation in edible tissues of 

plants, which leads to unpredictable consequences. (Miralles et al., 2012). 

The impact of nanoparticles on plants varies with the plant species. Once the 

nanoparticles are transported into plant tissues, they will interact with plant cells, 

resulting in a series of modifications on plants. Mounting evidences suggest that CeO2 

NPs tend to be enriched in the roots of soil cultivated plants but will hardly translocate to 

above ground tissues. A recent study reported that cerium ions preferentially accumulate 

in the cell wall of the roots rather than shoots of rice seedlings (Liu, et al., 2012). 

Similarly, significant cerium accumulation was detected in the roots but not in the shoots 
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of the wheat, suggesting that there are limited transport pathways for cerium uptake. 

(Rico, et al., 2014) Besides, Zhao et al. (2013) reported that engineered nanoparticles 

caused increasing accumulation of cerium in corn roots, which further confirm the 

cerium uptake preference by plant roots. However, CeO2 NPs can be detected in shoots 

and fruits in hydroponics plants. Wang et al (2012) reported that Ce was detected in the 

edible tissues of hydroponically grown tomatoes exposed to 10 mg/L of CeO2 NPs. 

Similarly, Miralles et al (2012) reported that CeO2 NPs were detected in plant roots as 

well as the edible tissues, which indicated the probability of CeO2 NPs getting into 

ecosystem and food chain. 

 

Cerium Oxide Nanoparticles Impact on Plants 

Previous studies have reported contradictory results on the impact of CeO2 NPs on 

plants. Some reported the oxidative toxicity while the others demonstrated the antioxidant 

capability of free radical scavenging to protect organisms from oxidative damage (Pulido-

Reyes, et. al., 2015). Increasing evidences suggest that CeO2 NPs are able to alter the 

nutritional value, productivity and metabolism of some species under various 

concentrations. Priester et al. (2012) reported that soybeans cultivated in soil treated with 

CeO2NPs and zinc oxide (ZnO) nanoparticles at different concentration were affected by 

both CeO2 NPs and ZnO NPs. Moreover, seeds germination rate and roots elongation of 

tomato, corn cucumber were inhibited when they are exposed to 4000 mg/L CeO2 NPs 

suspension while no significant impact was found on radish, wheat, cucumber and cabbage 
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treated with 1000 mg/L CeO2 NPs (Ma et al., 2010). No consensus has been established 

whether it can enhance or inhibit the metabolism and photosynthesis pathways of plants.  

Interestingly, although CeO2 NPs presents potential toxicity, it has been reported 

that CeO2 NPs improved the yield of some crop species. Numerous previous studies 

have demonstrated that CeO2 NPs could modify plant physiological and biochemical 

processes and affect plant growth and yield. For example, Yuan et al. (2001) reported 

that CeO2 NPs-enriched fertilizer stimulated root growth in rice seedlings. CeO2 NPs of 

up to 500 mg/kg soil concentration can enhance plant growth, shoot biomass and grain 

yield. (Rico, et. al., 2014) Typically, CeO2 NPs at low concentrations are more likely to 

exhibit positive impact on soybeans. Shyam and Aery (2012) reported that cerium at low 

concentrations had positive impact on chlorophyll content, biomass productivity, and 

nitrate reeducates activity of cowpea plants (Vigna unguiculata). Likewise, CeO2 NPs 

enhanced both the shoot and root length of corn at 0.1 mM concentration while they 

significantly damaged the shoot and root at higher concentrations (Diatloff et al., 2008). 

Similar results had been observed that 0.1mM CeO2 NPs significantly increased the 

biomass of rice seedlings but both fresh weight and dry weight of rice dramatically 

declined when they were exposed to higher concentrations of cerium. (Liu, et al., 2012) 

Positive impact of CeO2 NPs had also been found by Wang et al., (2012). The research 

involved with tomato exposed to CeO2 NPs of varying concentrations (0.1 to 10 mg/L). 

Results showed slight positive impact on productivity and plant growth parameters. 

Overall, CeO2 NPs at relatively lower range of concentration promotes plant growth and 

crop productivity.  
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Comparatively, some evidences suggest that plants exposed to CeO2 NPs will suffer 

growth inhibition, enzyme malfunction, DNA damage and oxidative damage resulting 

from increasing reactive oxygen species. (Lopez-Moreno et al., 2010). According to 

Diatloff et al. (2008), CeO2 NPs with the size less than 5 μm reduced biomass of corn 

shoots by up to 30%. Priester (2012) found that CeO2 NPs undermined soybean growth 

and yield, and ceased the nitrogen fixation function at the concentration of 10 g/kg soil. 

Another study showed that exposure to TiO2 NPs hydroponically quickly reduced the 

hydraulic conductivity of the primary root of corn seedlings and inhibited the corn leaf 

growth (Asli & Neumann, 2009). Except for the crops, experiments involved with some 

other species such as green algae indicated the negative impact of CeO2 NPs on 

photosynthesis.  Rohder et al (2014) cultivated green algae Chlamydomonas renhardttl 

with CeO2 NPs enriched solution. The results showed that CeO2 NPs at high 

concentration (100 μM) inhibited photosynthesis process of the C. renhardttl, with 

agglomerated CeO2 NPs exhibited higher toxicity than dispersed CeO2 . Moreover, CeO2 

NPs at high concentrations only inhibited seed germination and plant growth, but also 

led to DNA damage to some species. (Lopez-Moreno et al., 2010).  

Additionally, nutritional values and mineral element contents of soybeans were 

changed by CeO2 NPs.  (Peralta-Videa, et al., 2014) L. Zhao et al., (2013) found that 

CeO2 NPs at 400mg/kg could increase the starch content and globulin but reduce glutelin 

of cucumber while had no significant effects on macronutrients. Contents of mineral 

nutrition elements including Mg, Ca, K, Na, Fe, Mn, Zn and Mo were also altered within 

the rice seedlings treated by different concentration of cerium. (Liu, et al., 2012)  
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Inconsistency of the results might result from variances in exposure methods, 

culture media, properties of CeO2 NPs, concentrations and species (Gui et al. 2015). A 

combination of environmental factors contributes to the uptake and accumulation of 

elements in plant tissues. In general, plant root uptake of minerals from the soil mainly 

depends on the availability of element species. Mineral accumulation preference in 

tissues, transport pathways and competition among element species also affect the 

uptake of nutrients. (Peralta-Videa, et al., 2014) Besides, nutrient adsorption by roots is 

influenced by plant species, soil type, pH and temperature. For instance, soybeans prefer 

to uptake more cationic element species in acidic soil (Wang et al., 2000). Organic 

matter in soil interacting with nanoparticles has significant impact on their properties, 

which may also change their mobility and bioavailability (Zhao et al., 2013, Zhang et al., 

2012). Thus, nutrient uptake altered by CeO2 NPs provides further insights on their 

impact on plants and the surrounding environment.  

Some recent studies indicate that the plant water use efficiency (WUE) can be 

influenced by manufactured nanoparticles. For instance, titanium oxide nanoparticles 

dramatically reduced hydraulic conductivity of roots in corn seedlings (Asli and 

Neumann, 2009). Conversely, multi-walled carbon nanotubes were shown to be able to 

promote water transpiration and uptake as a result of declining friction in water transport 

pathways brought by their functionalized alignment. (Tripathi et al., 2011). A Separate 

study also showed that multi-walled carbon nanotubes improved water uptake by 

enhancing aquaporins activity, which is a key water channel protein regulating 

permeability of cell membrane, in Tabaco root cell walls (Khodakovskaya et al., 2012). 
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Plant Stresses 

Plants are subject to the impact of a series of environmental factors including 

moisture content, soil type, temperature, light intensity, salinity, pH, and surrounding 

organic matter. Treated with nanoparticles, plants may go through germination 

inhibition, productivity reduction, and oxidative stress. Specifically, oxidative stress 

induced by nanoparticles generally leads to accumulating cellular reactive oxygen 

species (ROS) such as superoxide radical (O2
-), hydrogen peroxide (H2O2), hydroxyl 

radicals (OH-), and singlet oxygen (O2
*), and reactive nitrogen species (NO-), nitric 

oxide and peroxynitrite (ONOO-) (Blokhina et al., 2003). Reactive oxygen and nitrogen 

species exhibit strong tendency to accept electrons because of their unbalanced electron, 

which may be harmful to cellular structures (Dat et al., 2000). Damage of reactive 

oxygen species origins from the unpaired electrons while damage of reactive nitrogen 

species mainly generated from the antimicrobial responses (Iovine et al., 2008). 

Although reactive oxygen species are naturally produced in quite a few biological 

processes in plant tissues, they will cause damage when they reach excessive amount.  

Interestingly, plants have developed a series of protection mechanisms when faced 

with oxidative stress. Inherent antioxidant systems of plants maintain oxidative balance 

through removing free oxygen radicals with enzymatic and non-enzymatic scavengers.  

Typically, enzymatic antioxidant includes superoxide dismutase (SOD) which is 

able to catalyze the conversion of superoxide radicals to H2O2, and catalase (CAT), 

ascorbate peroxidase (APX), guaiacol peroxidase (GPX) which can further scavenge the 

H2O2 (Beyer et al., 1987). Three types of SOD isoforms, including MnSOD, FeSOD, and 
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Cu/ZnSOD, have been shown to remove reactive oxygen species. Cu/ZnSOD functions 

more efficiently compared with the other two isoforms but its activity will be inhibited 

by increasing H2O2 concentration (Tepperman & Dunsmuir, 1990). Comparatively, 

MnSOD and FeSOD are able to protect DNA and redox-sensitive proteins from 

damaging by eliminating stress (Hopkin et al., 1992). In addition, GPX and APX are 

able to accelerate the conversion of H2O2 into oxygen and water (Gechev et al., 2006). 

At high level of H2O2, CAT serves as a more efficient scavenger which is 10,000-fold 

faster than natural degradation. However, it will mainly function at high level of H2O2 

due to its low affinity with H2O2. 

In addition to the enzymatic antioxidants, some small molecules can assist plants 

with nanoparticle induced stress mediation (Soren et al., 2015). These small molecules 

include ascorbic acid (vitamin C), reduced glutathione (GSH), peroxiredoxins (Prx), 

thioredoxins (Trx), glutaredoxins  (Grx) and so forth (Dat et al., 2000). Specifically, for 

instance, ascorbic acid can serve as an electron donor neutralizing the electron depleted 

species. Comparatively, GSH can serve as the substrate of superoxide radical removal.  

Although plants have sophisticated strategies to mediate oxidative stress, most of 

them are subject to excessive stress caused by manufactured nanoparticles. Based on 

previous studies, TiO2 NPs could lead significantly higher reactive oxygen species in 

cucumber tissues over 150 days of exposure (Servin et al., 2013). Arising oxidative 

stress induced by NiO-NPs, ZnO-NPs, Ag-NPs, Fe2O3-NPs has also been reported in 

different plant species. CeO2 NPs could induce higher level of hydrogen peroxide after 

corns (Zea mays) were treated 10 days. In the meanwhile, increasing concentration of 
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catalase and guaiacol peroxidase were also detected (Zhao et al., 2013).  Likewise, it was 

also found that CeO2 NPs could stimulate catalase production in Cilantro. Treated with 

CeO2 NPs at concentration from 1000 to 2000 mg/L, Arabidopsis thaliana L. tissues 

displayed dramatically higher level of anthocyanin, which is a small molecular 

antioxidant against oxygen radical damage (Wang R, et al., 2013). Similarly, Rico et al 

(2013) reported that rice seedlings could increase their free thiols and ascorbate 

production when they were exposed to CeO2 NPs. 

 

Photosynthesis  

Photosynthesis in plants incorporates a complex of biological reactions converting 

solar energy into chemical energy at cellular level (Sharkey et al., 2007). As a primary 

driving force of global carbon cycle, photosynthesis accelerates the exchange of carbon 

between the atmosphere and terrestrial biosphere (Walker et al., 2014). In photosynthetic 

process, Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) serves as the 

major enzyme assimilating atmospheric CO2, which catalyzes the CO2 into ribulose-1,5-

bisphosphate (RuBP) (Lin et al., 2014; Galmes et al., 2014). Accumulating studies have 

provided physiological insights of Rubisco activity such as the driving forces of Rubisco 

evolutionary adaption and the correlations among the Rubisco related kinetic parameters 

(Galmes et al., 2014).  

Photosynthesis rate of plants responding to varying light intensity and CO2 

concentration provide significant information of leaf physiology including Rubisco 

activity. The light intensity response curve illustrates carbon assimilation function with 
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respect to rising photon flux density along with physiological insights of maximum net 

photosynthesis rate and maximum quantum yield (Labo et al., 2013). Generally, CO2 

assimilation rate linearly increased with arising light intensity at light-deficient 

conditions, where the photosynthesis processes were limited by electron transport 

(Lambers et al., 2008). The slope at the light deficient conditions represented quantum 

yield indicating the efficiency of light adsorption and conversion into fixed carbon 

(Lambers et al., 2008). As the photon density arose, photosynthesis would be limited by 

carboxylation rate.  

Complementary with the light intensity curve, the CO2 concentration response 

curve demonstrates the plant responses with a series of photosynthetic parameters 

including Rubisco carboxylase activity (Vcmax), the maximum rate of photosynthetic 

electron transport (Jmax), triose phosphate use (TPU), day respiration (Rd), and mesophyll 

conductance (gm) (Sharkey et al., 2007).  

Plants are able to adapt to varying surrounding conditions by changing their 

electron transfer and Rubisco activity. Carbon assimilation is a complex solar energy 

conversion reaction consisting of three major processes: Rubisco limited process, RuBP 

regeneration limited process, triose phosphate use (TPU) limited process (Sharkey at el., 

2007). In general, the rate of photosynthesis can be predicted by the properties of 

ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) assuming a saturating 

supply of substrate, RuBP. This state is called Rubisco-limited photosynthesis and 

normally occurs when the concentration of CO2 [CO2] is low. The limitation by Rubisco 

is associated with the low [CO2] rather than Vmax of the enzyme (Sharkey at el., 2007). 
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The second process is limited by RuBP, which takes place when concentration of CO2 

arises, as increasing level of CO2 accelerates the RuBP carboxylation process. 

Comparatively, TPU limited process will not correlate with carbon dioxide concentration 

because TPU produced by chloroplast will not keep increasing when it reaches the 

maximum value. TPU limitation can be used to estimate the theoretical maximum 

carbon assimilation rate of plants. 

 

WUE and Carbon Isotope 

Defined by the ratio of carbon assimilation to water transpiration, WUE is 

necessary to be increased by improving net carbon assimilation at relatively fixed 

stomatal conductance (Parry et al., 2005). Except for agronomic methods such as 

breeding crops with specific genotypes to achieve higher WUE (Gregory, 2004; Condon 

et al., 2004), WUE can also be promoted at the physiological level (Boyer, 1996; Parry 

et al., 2005). The methodology at the physiological level can be achieved by increasing 

concentration of catalytically active Rubisco sites to improve the carboxylation rate or 

bypassing photorespiration, or stimulating CO2 diffusion in the mesophyll or improving 

mesophyll diffusion conductance to CO2 (Galmes et al., 2005; Parry et al., 2005; Flexas 

et al., 2013). 

Isotope ratios of elements could become locally enriched or depleted through a 

variety of kinetic and thermodynamic factors. In general, plants tend to discriminate 

against the heavier isotope 13C in favor of the major, lighter isotope 12C due to a series of 

enzymatic and physical processes. Thus, most plants incorporate less 13C than the 
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atmospheric CO2 on which they rely for photosynthesis. Such discrimination varies 

among plants with different photosynthetic process. Measurement of the carbon isotope 

ratios can be used to differentiate between samples which otherwise share identical 

chemical compositions. 

Specifically, the discrimination of 13C generates from a few processes including the 

rubisco fractionation, stomatal conductance, mesophyll conductance, respiration and 

photorespiration. The C3 pathway begins with the diffusion of CO2 from the atmosphere 

into the air-filled spaces within the leaf. This diffusion occurs through the still air 

occupying stomatal pores. Such diffusion has an apparent fractionation of 4.4‰ due to 

the slower motion of the heavier 13C-containing CO2 molecules (Lajtha, & Michener, 

2007). Within the leaf, the carboxylating enzyme ribulose bisphophate 

carboxylase/oxygenase (rubisco) discriminates further against the 13C. These two 

dominant fractionation factors contribute 4.4‰ to 29‰ to the intercellular δ13C. Thus, 

the general δ13C value varies from -12.4‰ to -37‰, with the median of -27‰ (Lajtha & 

Michener, 2007).  

Carbon assimilation mechanisms and isotopic composition of C4 plants 

considerably differ from those of C3 plants. C4 plant photosynthesis pathways are mainly 

controlled by a different type of enzyme name phosphoenolpyruvate carboxylase, which 

contributes roughly -6‰ to the carbon isotope fractionation. Total carbon isotope 

discrimination of C4 plants usually lies at -14‰. Noticeably, CAM plants depending on 

the same kind of carboxylating enzymes as C4 species can hardly be effectively 



 

 

 

19 

distinguished by carbon isotope characterization due to their overlapping isotope 

composition range (Lajtha & Michener, 2007). 

 

Climate Change and Food Supply Crisis 

Thanks to the technologies of genotype screening, pesticides, fertilizers and 

irrigation, crop yield has increased by 100% than it used to be in 1960’s (Tilman et al., 

2002). However, food supply is still challenged by declining arable fields, unpredictable 

global climate change, water crisis and increasing population. To fulfill the climbing 

food demand led by growing population, it is necessary to increase crop productivity by 

30% by 2050 (Tilman et al., 2002). Unfortunately, to achieve the 30% increment in crop 

yield, water use for irrigation has to be increased by 100%, which is unlikely given the 

limited fresh water resources. Furthermore, global climate change and degrading water 

quality would exacerbate the fresh water shortage and may further increase aridity in 

some regions (Dai, 2011; Sheffield et al., 2012). Due to the emission of greenhouse gas 

since the 20th century, global mean temperature has increased continuously (Flexas et 

al., 2013). According to the recent report released by Inter-Governmental Panel on 

Climate Change (IPCC), the global temperature is 0.74±0.18°C higher than it used to be 

in 1900 (Flexas et al., 2013). Consequently, the global warming leads to increasing 

surface water evaporation, decreasing the moisture content in soil. Besides, higher water 

vapor content in the atmosphere will bring increasing frequency and intensity of extreme 

precipitation, which has already been observed in previous studies. Faced with the 
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declining availability of irrigation water and decreasing moisture content in soil, WUE is 

becoming a major concern to achieve more productive crop yield.  

 Among all those plant species, soybean serves as a major food crop that is 

currently the fifth largest crop in the global agricultural production according to the 

latest report of the Food and Agriculture Organization of the United Nations. Moreover, 

it is the second largest crop in the U.S. and produces roughly forty percent of the total 

annual production in the world, which build a $30 billion agricultural industry (Priester, 

et al., 2012). As CeO2 NPs are widely used in fuel additives, crops are readily exposed to 

the deposit manufactured nanoparticles. Besides, different from other species, soybean 

depends on the symbiotic relationship with Rhizobia within nodules of their root 

systems. Nanoparticles may indirectly affect soybeans by interfering with the soil 

microbial community, which brings more complication to the investigation of legume 

species. Priester et al (2012) reported that CeO2 NPs accumulation in roots significantly 

decreased the colonies of nitrogen fixation microbial community. Therefore, it is 

essential to get better insight of the integrated impact of CeO2 NPs on soybean growth. 

Overall, there is great disparity on the impact of CeO2 NPs on soybeans. Most of 

the previous studies focused on nutritional value, mineral elements, biomass and some 

other plant growth related parameters. Therefore, for better understanding of the CeO2 

NPs, it is essential to investigate the nanoparticle impact from new perspectives 

including WUE and photosynthesis mechanism. 
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CHAPTER III 

IMPACT OF CERIUM OXIDE NANOPARTICLES  

WITH DIFFERENT SURFACE PROPERTIES  

ON SOYBEAN PHOTOSYNTHESIS AND WATER USE EFFICIENCY 

 

Introduction 

Cerium oxide nanoparticles (CeO2 NPs) have been incorporated into various 

industrial products such as fuel additives, automobile catalytic converters, electronic and 

optical devices, coatings, and paints (Collin et al., 2014). With the extent of industrial 

uses, the release and accumulation of CeO2 NPs in the environment is inevitable. Priester 

et al. (2013) estimated that at most 1,255 tons of CeO2 NPs would be used in diesel fuel 

additives annually, of which at least 6% could be released into the environment, by 

2020. 

The prospect of significant accumulation of CeO2 NPs in the environment has 

raised increasing concerns about its potential implications on the environmental health 

and safety. It is well recognized that the toxicity of CeO2 NPs depends on many factors 

including the particle size and shape, surface charge and reactivity, aggregation and so 

forth (Baalousha et al., 2012; Merrifield et al., 2013). Among them, surface charge plays 

a key role in colloidal stability and toxicity (Baalousha et al., 2012). For CeO2 NPs, the 

reactivity and environmental impact of the NPs is also heavily affected by the relative 

ratios of Ce(III) and Ce(IV) on the NP surface.  In general, larger CeO2 NPs contain 
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higher percentage of Ce (IV) oxidation state while smaller ones possess a larger fraction 

of Ce (III) (Merrifield et al., 2013). 

Previous studies had revealed inconsistent evidences of CeO2 NPs’ impact on 

plants. For instance, wheat (Triticum aestivum L.) treated with CeO2 NPs up to 500 

mg/kg through the life cycle displayed faster plant growth, higher shoot biomass, and 

higher grain yield (Rico et al., 2014). Likewise, Gui et al. (2015) demonstrated that 

lettuce (Lactuca sativa L.) cultivated in soil with 100 mg/kg CeO2 NPs grew faster than 

the controls. Conversely, some adverse effects have also been observed in the studies 

involved with CeO2 NPs at relatively higher concentrations. Ma et al. (2010) reported 

that CeO2 NPs inhibited seed germination of corn, tomato, and cucumber at the 

concentration of 4000 mg/L in suspension. Similarly, CeO2 NPs at 4000 mg/L exhibited 

the potential to reduce root length of tomato (Lopez-Moreno et al., 2010). In addition, 

soybeans exposed to CeO2 NPs up to 2000 mg/L could result in DNA damage and 

oxidative damage from increasing reactive oxygen species. (Lopez-Moreno et al., 2010). 

The impact of CeO2 NPs on plants in other perspectives including photosynthesis 

and water use efficiency (WUE) required further investigation for better understanding 

of the interactions between CeO2 NPs and plants. Du et al. (2015) reported that the total 

chlorophyll content of wheat declined significantly after the plants were exposed to 400 

mg/kg CeO2 NPs. Comparatively, Zhao et al. (2013) reported that CeO2 NPs at 800 

mg/kg reduced the cucumber yield by 31.6% yet they had no measureable impact on 

either photosynthesis performance or chlorophyll content. Likewise, CeO2 NPs up to 800 

mg/kg exhibited inconsequential impact on the net photosynthesis, transpiration rate, 
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stomata conductance and chlorophyll content in corn (Zhao et al., 2015). Conversely, 

Marchiol et al. (2016) found that CeO2 NPs at 500 mg/kg enhanced the photosynthetic 

parameters of barley including the net photosynthesis rate and the transpiration rate. 

However, at 1000 mg/kg, CeO2 NPs inhibited the photosynthesis of barley by reducing 

photosynthesis rate, stomatal conductance and transpiration rate (Marchiol et al., 2016). 

WUE is another important index evaluating the crop yield driven by carbon 

assimilation and water transpiration of plants under stress. Seghatoleslami et al., (2015) 

reported that silver nanoparticles failed to exhibit appreciable effect on WUE of Carum 

copticum. Unfortunately, impact of nanoparticles on plants WUE was still poorly 

understood. Therefore, the study incorporated physiological measurements of biomass, 

stomatal conductance and carbon isotope composition to correlate δ13C with WUE. 

Carbon isotope discrimination by plants had been shown to be an accurate substitute for 

direct WUE measurement for C3 plants. The method was well established, allowing 

rapid screening on the CeO2 NPs effects on plant WUE at different environmental 

conditions (Lajtha, & Michener., 2007). The fast output of the isotope analysis could 

provide an opportunity for high throughput screening on the CeO2 NPs effects on plant 

WUE at different environmental conditions. To the author’s knowledge, this study is the 

first attempt to incorporate natural carbon isotope abundance analysis in the assessment 

of CeO2 NPs effects on plants.  

Soybean (Glycine max) was cultivated in this study due to its considerable 

significance of global agriculture, which contributes roughly 40% of annual crop yield in 

the world (Priester et al., 2012). Furthermore, soybean involves a variety of industries 
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worth $30 billion due to its enrichment of oil and protein. As soybean is usually 

cultivated with fuel-powered instruments, it is highly vulnerable to be polluted by CeO2 

NPs released from combustion engine exhaust.  

Overall, this study aimed to provide comprehensive evaluation on the impact of 

CeO2 NPs on soybeans. Specifically, the objectives of this study were (1): to determine 

the impact of CeO2 NPs on soybean WUE represented by carbon isotope composition 

δ13C; (2) to understand the impact of CeO2 NPs on plant physiological processes 

associated with plant photosynthesis and (3) to determine the impact of the surface 

properties of CeO2 NPs on its interactions with plants. The combined information on the 

physiological, carbon isotopic, and photosynthetic perspectives presented valuable 

insights of the interactions between CeO2 NPs and soybeans. 

 

Materials and Methods 

Cerium oxide nanoparticles: Uncoated CeO2 NPs (10% by weight) was 

purchased from Sigma Aldrich (St. Louis, MO). Polyvinylpyrrolidone (PVP) coated 

CeO2 NPs dispersion (20% by weight) was purchased from US Research Nanomaterials, 

Inc (Houston, TX). Transmission electron microscopic images of both nanoparticles 

obtained with a Tecnai G2 F20 transmission electron microscope (TEM) (FEI, Hillsboro, 

Oregon) are shown in TEM images below (Fig 3-1). Uncoated CeO2 NPs displayed 

quadrilateral or polygonal shapes while coated CeO2 NPs were mostly spherical or 

polygonal. Size of uncoated CeO2 NPs ranged from 10 to 30 nm with an average of 19 

nm. Comparatively, size of coated CeO2 NPs varied from 6 to 24 nm with an average of 
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10 nm. In addition, measured by X-ray photoelectron spectroscopy, Ce3+ ratio of the two 

types of CeO2 NPs were 8% and 12% respectively. 

 

 
Fig 3-1. TEM images of uncoated CeO2 NPs and PVP-coated CeO2 NPs  

 

 

Soil moisture capacity quantification: Potting soil (Micro-Gro) purchased from a 

commercial vendor was used in this study. 50 g potting soil was weighed into each pot 

and recorded as total weight (mt). The soil was dried in an oven at 70 °C for 48 hours 

and then weighed as dehydrated soil (md). Water was then added to the dry soil to the 

saturation point where no more water could be adsorbed by the soil. Water capacity was 

derived from (ms – md) where ms was the weight of moisture saturated soil. 

Plant growth and cultivation: The soybean seeds were purchased from Johnny 

Seeds (Fairfield, MN) and the potting soil as described above was used for plant growth. 

To ensure the homogenous mixing of soil and CeO2 NPs, the mixture was placed on a 
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shaker table for at least 24 hours, with the facilitation of frequent manual mixing. The 

targeted concentrations for CeO2 NPs treated soil ranged from 0 mg – 500 mg/kg dry 

soil (0, 10, 100 and 500 mg/kg dry soil).  

Each pot was filled with 50 g potting soil and then dried at 70 °C for 48 hrs. 52.3 g 

water (moisture saturation point derived from water capacity quantification measurement 

described above) was added to each pot containing the dried soil. Soybean seeds were 

germinated in water-sufficient soil 5 days prior to the transplant. Among the germinated 

soybean seedlings, 63 well grown seedlings with roughly the same height were 

transferred to the soil containing concentrations of CeO2 NPs (uncoated and pvp-coated 

CeO2 NPs). Including the control group without CeO2 NPs, there were altogether seven 

treatments, with each having nine replicates. The soybeans were irrigated with sufficient 

deionized water every day for three weeks with controlled lighting (16/8 light/dark 

cycle) at room temperature.  

Plant harvest and biomass weighing: The soybeans were pulled out from the soil 

gently and washed by deionized water thoroughly. Roots and shoots were separated and 

weighed to obtain their fresh weight. 6 plants from each treatment were then dried in an 

oven at 70 °C for 48 hours and weighed to obtain dry biomass of roots and shoots. 

Photosynthesis: Stomatal conductance and photosynthesis rate of the soybeans 

were measured by Licor-6400XT at day 12, day 16 and day 20 after seedling transplant. 

In addition, net photosynthesis rate responding to varying light intensity and CO2 

concentration was determined with a portable IR gas analyzer (LI-6400; LI-COR, 

Lincoln, NE) equipped with a red/blue light source (6400–02B, LI-COR) at day 20 and 
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21. When the leaves were measured in the chamber, temperature was constant 25 ºC and 

CO2 concentration was constant 400 mg L–1.  

For the light curve measurement, nine light levels (0, 50, 200, 400, 600, 800, 1000, 

1200, and 1500 mmol m–2 s–1) were applied with the red/blue light source connected to 

the Infra-Red (IR) gas analyzer. Top leaves of each soybean were selected for the 

measurement, which were allowed to adapt to each light level for at least 2 min until the 

physiological parameters stopped fluctuating. Amax (maximum photosynthesis capacity), 

Rd (respiration), and ϕ (quantum yield) were calculated by fitting data to the nonlinear 

regression model described by Hanson et al. (1987), with photosynthetic photon flux 

(PPF) levels as the independent variable.  

For the CO2 curve measurement, nine concentration levels (100, 200, 300, 400, 

600, 800, 1000, 1200 and 1600 mg/L) were applied with the CO2 chamber connected to 

the Infra-Red (IR) gas analyzer. Top leaves of each soybean were selected for the 

measurement, which were allowed to adapt to each light level for more than 5 min until 

the physiological parameters little varied. Five parameters can be derived from non-

linear curve fitting with the well-established model proposed by Sharkey et al. (2007), 

including Vcmax (maximum carboxylation rate), J (photosynthesis electron transport rate), 

TPU (triose phosphate use), Rday (day respiration) and gm (mesophyll conductance).  

Carbon isotope composition measurement: Two most fresh leaves of each 

soybean were dried at 70 °C to remove moisture and grounded into fine powders. 

Carbon isotope content was than quantified by gas chromatography isotope ratio mass 

spectrometer (GC-IRMS) (Finnigan DELTAplusXP, Waltham, MA) at the stable isotope 
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geoscience facility at Texas A&M, which can serve as a reliable estimate of the overall 

WUE.  

Chlorophyll content quantification: After the soybean was harvested, 20 ~ 30 mg 

fresh leaf tissue were weighed from each replicate. The fresh tissue was added into a 

centrifuge tube with 4 mL dimethyl formamide (DMF) and kept dark overnight. 

Chlorophyll extraction was then completed using the method described by Moran. 1 mL 

residual solution was extracted from each centrifuge tube. UV-Vis tests were performed 

by a UV-Vis spectrophotometer (model Lamba 35; PerkinElmer, Waltham, MA). 

Calibration was tested at zero absorbance using a blank of pure DMF and the absorbance 

of this blank was subtracted from the absorbance readings of each sample before 

calculation. The amount of absorbance was read at 664 and 647 nm. Absorbance 

readings were used to calculate leaf chlorophyll concentrations. 

Chlorophyll fluorescence measurement: Leaf chlorophyll fluorescence (Fv/Fm) 

was measured using a continuous excitation chlorophyll fluorescence analyzer (OS1p, 

Opti-Sciences, Hudson, NH). The leaves were acclimated in darkness using lightweight 

leaf clips for at least 30 min before measurements (Maxwell and Johnson, 2000). 

Variable fluorescence (Fv) was derived from baseline (F0) and maximum (Fm) 

fluorescence detected by the chlorophyll fluorescence analyzer. At the end, the ratio of 

variable fluorescence to maximum fluorescence (Fv/Fm) ratio was recorded.  

Cerium content characterization: After the harvest, the soybean tissues were 

fully dehydrated by drying at an oven at 70 °C for 7 days before the dry weight 

determination. 0.5 g of the dry tissues were ground and added into 4 mL of 70% (v/v) 
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nitric acid overnight. Afterwards, the residual was digested in a DigiPREP MS hot block 

digester (SCP science, Clark Graham, Canada) at 95 °C until the dry tissue was fully 

dissolved. After the digest cooled down to room temperature, the suspension was mixed 

with 2 mL of 30% (v/v) H2O2 and heated in the hot block at 95 °C for additional 2 hours. 

Detailed digestion procedures have been reported in a previous study (Dan et al., 2015). 

Cerium content was quantified by a Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS, Perkin Elmer mod. DRCII, Waltham, MA). 

 

Results and Discussion 

Biomass: Coated CeO2 NPs consistently increased the fresh weight of soybeans at 

all concentrations (Fig 3-2 a). Conversely, uncoated CeO2 NPs did not affect the fresh 

weight until it went up to 500mg/kg soil. A closer look at the fresh weight revealed some 

differential impacts of CeO2NPs on roots and shoots (Fig 3-2 b and c). At the highest 

concentration (500mg/kg soil), both types of CeO2 NPs tended to increase the fresh 

weight of shoots while they showed no significant impact on roots.  

Besides, the dry weight of plant tissue was also examined (Fig 3-3). While coated 

CeO2 NPs significantly increased the total dry weight consistently, uncoated CeO2 NPs 

only exhibited measureable impact on the dry weight at 100mg/kg. When the dry 

weights of roots and shoots were examined, it indicated that the dry biomass increase 

caused by uncoated CeO2 NPs at 100mg/kg soil was mainly attributed to the increase of 

shoot biomass.  



 

 

 

30 

Several studies reported that CeO2 NPs could stimulate crop yield. For instance, 

Rico et al. (2014) addressed that grain yield of wheat increased by 36.6% exposed to 500 

mg/kg CeO2 NPs. Likewise, Gui et al. (2015) demonstrated that CeO2 NPs at 100 mg/kg 

significantly enhanced the biomass of lettuce compared with the control. Similarly, CeO2 

NPs increased the fresh and dry weight of soybeans in our study, while the PVP-coated 

CeO2 NPs exhibited greater impact on the biomass of soybean. 

 

 

 
Fig 3-2. (a) Total fresh weight, (b) fresh weight of roots, (c) fresh weight of shoots. 

Values represent mean±SD (n=6). Different letters indicate significant statistical 

differences (at p≤0.05) according to the Tukey’s test 
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Fig 3-2. Continued 

 

 

 

 
Fig 3-3. (a) Total dry weight, (b) dry weight of roots, (c) dry weight of shoots. Values 

represent mean±SD (n=6). Different letters indicate significant statistical differences (at 

p≤0.05) according to the Tukey’s test 
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Fig 3-3. Continued 

 

 

Stomatal conductance: Stomata play a key role in photosynthesis by controlling 

the CO2 diffusion and water transpiration (Keenan et al., 2010). Water transpiration of 

soybean leaves varies over time due to the fluctuating microenvironment. It also changes 

over the lifespan of soybeans as the mature leaves are shaded by younger ones on the top 

canopy (Locke and Ort, 2014). More importantly, plants can adapt to varying 

environmental conditions including soil moisture and nutrient availability by changing 

their stomatal conductance and hydraulic conductance of leaves (Ocheltree et al., 2014). 

Thus, stomatal conductance can provide information on water transpiration and will 

further indicate stress induced by CeO2 NPs.  

Fig 3-4 illustrates the stomatal conductance of the soybean exposed to CeO2 NPs at 

day 12, 16 and 20. At lower concentrations (10 and100mg/kg soil) soybeans treated with 

CeO2 NPs exhibited higher stomatal conductance compared with the control, which 

suggested that the soybeans were not stressed by the CeO2 NPs. Comparatively, CeO2 

NPs appeared to impose negative impact on stomatal conductance at the highest 
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concentration (500 mg/kg). Interestingly, soybeans treated with CeO2 NPs at 500 mg/kg 

soil slightly increased their stomatal conductance at day 16 and then significantly 

reduced the stomach conductance at day 20. While both types of CeO2 NPs demonstrated 

similar effects on stomata conductance, significant differences were noticed between 

treated plants at lower concentrations. In both cases, the coated CeO2 NPs seemed to 

have a stronger effect on stomata conductance than uncoated CeO2 NPs.  

Enhanced stomatal conductance indicated positive impact on gas exchange caused 

by CeO2 NPs at lower exposure concentrations. A recent study published by Marchiol et 

al. (2016) demonstrated similar results that 1000 mg/kg TiO2 NPs significantly enhanced 

stomatal conductance of barley by 89% compared with the control. However, gas 

exchange parameters of cucumber including stomatal conductance were not affected by 

CeO2 NPs up to 800 mg/kg (Zhao et al., 2013). Likewise, more recent study indicated 

that no measurable effect was observed in stomatal conductance of corn treated with 

CeO2 NPs at 400 and 800 mg/kg (Zhao et al., 2015). 
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Fig 3-4. (a) Stomatal conductance over the three-week growth at 10mg/kg soil. (b) 

stomatal conductance over the three-week growth at 100mg/kg soil. (c) stomatal 

conductance over the three-week growth at 500mg/kg soil. Values represent mean±SD 

(n=4). Different letters indicates significant statistical differences (at p≤0.05) according 

to the Tukey’s test 
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Water use efficiency: Defined by the ratio of carbon assimilation to water 

transpiration, WUE can be estimated by carbon isotope composition due to the 13C 

discrimination during a series of photosynthesis processes including carbon dioxide 

diffusion and Rubisco activity. Specifically, as photosynthesis processes preferentially 

uptake lighter carbon isotope 12C rather than heavier 13C, more carbon isotope 

fractionation resulting in 12C accumulation against 13C that amounts to lower δ13C in 

plant tissues. Given that variance of water transpiration and evaporation among all the 

treatments could be assumed to be ignorable at strictly controlled conditions, δ13C is 

linearly correlated with WUE of the soybeans (Lajtha, & Michener, 2007). 

Fig 3-5 displays the carbon isotope composition of soybean leaves treated with 

CeO2 NPs at different concentrations. At 10 mg/kg, coated CeO2 NPs significantly 

reduced δ13C of soybean leaves, while uncoated CeO2 NPs showed no significant impact 

although δ13C slightly decreased. It have been noticed that CeO2 NPs exhibited positive 

effect on soybean WUE at 100 mg/kg but inhibitive effect on WUE at the highest 

concentration.  

Variance of 13C might generate from CO2 diffusion from the atmosphere into the 

air-filled spaces within the leaf with an apparent fractionation of 4.4‰ due to the slower 

motion of the heavier 13C-containing CO2 molecules (Lajtha, & Michener, 2007). Within 

the leaf, the carboxylation enzyme ribulose bisphosphate carboxylase/oxygenase 

(Rubisco) also discriminates against the 13C. Rubisco activity serves as the dominant 

factor contributing to the intercellular δ13C fractionation with a median of 27‰ (Lajtha, 

& Michener, 2007, Cao et al., 2011). Given that the δ13C of soybean exposed to100 
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mg/kg uncoated and coated CeO2 NPs reduced by 2.74% and 2.25% respectively 

compared with the control, CeO2 NPs might interfere with CO2 diffusion pathways or 

Rubisco activity of the soybean tested. It required further research to determine which 

process was affected by CeO2 NPs leading to variance in WUE. 

 

 
Fig 3-5. Carbon isotope discrimination of soybeans at different treatments. Values 

represent mean±SD (n=4). Different letters indicate significant statistical differences (at 

p≤0.05) according to the Tukey’s test 

 

 

Chlorophyll: Chlorophyll content of soybean was tested (Fig 3-6) as leaf pigments 

are considered as indicative of plant stress (Zhao et al., 2014). No significant differences 

were found in total chlorophyll content among the treatments except for the soybeans 

treated with coated CeO2 NPs at 10mg/kg soil, which showed higher content of total 

chlorophyll than other treatments. However, significant variances could be seen when 

chlorophyll a and b were quantified separately. The results exhibited that at higher 

concentrations (100 and 500mg/kg soil) CeO2 NPs treated soybeans consistently 
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possessed more chlorophyll a but less chlorophyll b. Noticeably, results at the lowest 

concentration were slightly different. Uncoated CeO2 NPs showed no significant impact 

on either chlorophyll a or b while coated ones increased chlorophyll a, and consequently 

the total chlorophyll content.  

Changes in chlorophyll content induced by nanoparticles have been studied by 

several recent studies. CeO2 NPs up to 800 mg/kg had no measurable impact on either 

chlorophyll a or b in corn and cucumber (Zhao et al., 2013; Zhao et al., 2014). 

Comparatively, Du et al. (2015) found that 400 mg/kg CeO2 NPs significantly reduced 

chlorophyll content in wheat. Likewise, a more recent study found that chlorophyll 

content significantly declined in corn plants treated with 800 mg/kg ZnO NPs (Zhao et 

al., 2015). Decreasing chlorophyll might result from Zn released from ZnO NPs that 

interfered with the chlorophyll production by replacing the magnesium (Kupper et al., 

1996). Nevertheless, mechanism of CeO2 NPs impact on plant chlorophyll is yet to be 

elucidated. Inhibited chlorophyll a production generally indicates stress correlated with 

decreasing nitrogen concentration (Zhao et al., 2014). Subsequently, plants usually 

produce more chlorophyll b when they are stressed due to the wider absorption spectrum 

of chlorophyll b. However, the fact that CeO2 NPs at concentration of 100 and 500 

mg/kg did not affect chlorophyll content, with increasing chlorophyll a and decreasing 

chlorophyll b, suggested that no damage was exerted on the chloroplast of the soybeans. 
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Fig 3-6. (a) Total chlorophyll content, (b) chlorophyll a content (c) chlorophyll b 

content. Values represent mean±SD (n=4). Different letters indicates significantly 

statistical differences (at p≤0.05) according to the Tukey’s test 

 

 

Photosynthesis rate: photosynthesis rate is measured at fixed light intensity and 

carbon dioxide concentration, which indicates the performance of the photosynthetic 
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system in plants. Fig 3-7 shows that CeO2 NPs at lower concentration (10 and 100mg/kg 

soil) enhanced photosynthesis rate in the three-week growth period. Conversely, 

photosynthesis rate of soybean exposed CeO2 NPs at the highest concentration barely 

varied over time. When the treatments at different concentration were compared, 

soybean treated with CeO2 NPs at 100 mg/kg showed the highest photosynthesis rate at 

day 20 compared with the treatments at other concentrations. Conversely, photosynthesis 

rate of soybean exposed to 500 mg/kg CeO2 NPs became lower than the control at day 

20, suggesting that an optimal concentration for positive impact might be exceeded. 

Similarly, Marchiol et al. (2016) reported 500 mg/kg CeO2 NPs enhanced photosynthesis 

rate in Barley by 26% while 1000 mg/kg CeO2 NPs treatment did not stimulate 

photosynthesis. Wang et al. (2016) observed that 200 and 300 mg/L ZnO NPs inhibited 

expression levels of chlorophyll synthesis genes along with the leaf photosynthesis in 

Arabidopsis. Previous research demonstrated that corn plants could adopt protection 

mechanism by producing antioxidant enzyme and heat shock proteins to alleviate stress 

induced by CeO2 NPs (Zhao et al., 2013). Accordingly, soybean might overcome the 

stress caused by CeO2 NPs at relatively low exposure level but could not tolerate 

extremely high concentration as the photosynthesis-related genes might be damaged. 

Lopez-Moreno et al. (2010) showed that CeO2 NPs up to 3000 mg/L significantly 

affected the genetic integrity of soybean. 
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Fig 3-7. Photosynthesis rate over the three-week growth period at (a) 10mg/kg soil; (b) 

100mg/kg soil; and (c) 500mg/kg soil. Values represent mean±SD (n=4). Different 

letters indicate significant statistical differences (at p≤0.05) according to the Tukey’s test 
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Photosynthetic light response curve: Under the constant carbon dioxide 

concentration, carbon assimilation rate rises asymptotically with respect to the increasing 

photon density. The light photosynthetic response curve reveals several phases of 

photosynthetic light responses and provides insights on net photosynthesis rate (PNmax), 

respiration rate (Rd) and quantum yield (ϕ) (Lombardini et al., 2009, Greer & Weedon, 

2012).   

The net photosynthesis light-response curve (PN/I curve) illustrates the change of 

the net photosynthesis rate of the soybean leaves as a function of increasing photon flux 

density (I) from dark condition to 2,000 μmol (photon) m-2 s-1 (Labo et al., 2013). Fig 3-

8 displays the parameters including PNmax, Rd, and ϕ derived from the curve fitting. The 

results suggested that the soybeans exhibited significantly higher PNmax when they were 

treated with CeO2 NPs at the concentration of 100 mg/kg soil. While PNmax of the control 

was 11μmol m-2 s-1, it increased to 16.8 μmol m-2 s-1 in the soybeans treated by uncoated 

CeO2 NPs. Similarly, coated CeO2 NPs also enhanced the photosynthesis rate of the 

soybeans by 37.3% compared with the control group. No difference was observed 

among soybeans treated with CeO2 NPs at the concentration of 500mg/kg soil and the 

control group.  The results could be interpreted as that uncoated CeO2 NPs at 100 mg/kg 

and coated CeO2 NPs at 10, 100mg/kg soil were able to promote the photosynthesis 

capacity of the soybeans at light saturation conditions.  

Rd is another key parameter characterizing the gas exchange affected by light 

intensity change of the soybeans. The fitted values indicated the CO2 loss due to dark 

respiration processes. In most species, Rd fell in the range of 0.6 to 1.4μmol m-2 s-1 



 

 

 

42 

(Lombardini et al., 2009). It exhibited that Rd of the soybeans treated with both types of 

CeO2 NPs at the concentration of 100mg/kg soil were slightly higher than the control 

group, but no significant difference had been observed in the rest of treatments.  

ϕ derived from the initial slope of the light response curves represents the energy 

converting efficiency from the energy absorbed from light into the chemical energy in 

fixed organic carbon, which typically amounted to 0.06 under favorable conditions and 

normal atmospheric CO2 concentration (Lambers et al., 2008).  In general, ϕ varies with 

the fluctuation in light absorptance due to the variance of chlorophyll content per unit 

leaf area. However, at constant chlorophyll content, ϕ is relatively constant unless the 

plants are stressed or inhibited by unfavorable conditions (Lombardini et al., 2009). 

Based on the following results, uncoated CeO2 NPs treated soybeans exhibited lower ϕ 

value compared with the control group. The values varied among the other treatments 

but no significant difference was observed. 
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Fig 3-8. (a) Maximum photosynthesis rate (PNmax), (b) dark respiration rate (Rd), (c) 

quantum yield (ϕ) for the soybeans treated with CeO2 NPs. Values represent mean±SD 

(n=3). Different letters indicate significant statistical differences (at p≤0.05) according to 

the Tukey’s test 
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Photosynthetic CO2 response curves: Complementary with the light curve, 

photosynthetic response to carbon dioxide concentration provides insights of 

biochemical parameters describing the gas exchange behavior of plants including 

maximum carboxylation rate (Vcmax) allowed by ribulose 1,5-bisphosphate 

carboxylase/oxygenase (Rubisco), maximum rate of photosynthetic electron transport 

(Jmax) relevant to Nicotinamide adenine dinucleotide phosphate (NADPH) regeneration, 

triose phosphate use (TPU), day respiration (Rd) and mesophyll conductance (gm) 

(Sharkey et al., 2007, Miao et al., 2009). Table 3-1 presented the detailed results.  

Vcmax was defined as the theoretical carboxylation rate of Rubisco at ribulose 

bisphosphate (RuBP) saturated conditions. As an indicative of Rubisco activity, Vcmax 

was estimated from the CO2 response curves with the method described by Sharkey et al. 

(2007). In this case, significant enhancement was observed in Vcmax of the soybeans 

treated with CeO2 NPs at the concentration of 100 mg/kg compared with the control 

group. However, the soybeans treated with coated CeO2 NPs at 500 mg/kg exhibited 

lower Vcmax than the control group, suggesting that the Rubisco activity capacity was 

inhibited at this concentration. 

Photosynthetic electron transport occurs in the membrane through the electron and 

proton transport chains, which could be influenced by water content and hydraulic 

conductance in the leaves because the electron transport chains were supported by water 

(Fan et al., 2012). Estimated Jmax can provide information on the ability of plants to 

regenerate RuBP (Yang et al., 2015). At 100 mg/kg, uncoated CeO2 NPs promoted the 

Jmax of the soybeans tested while coated CeO2 NPs showed intermediate effect. 
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Conversely, lower Jmax was observed in the soybeans exposed to 500 mg/kg CeO2 NPs 

compared with the control. According to pervious research, decreased photosynthetic 

electron transport rate could further inhibit photosynthetic phosphorylation, the synthesis 

of NADPH, and the regeneration of RuBP (Sharkey et al., 2007).  

When photosynthesis rate was TPU-limited, it can be simplified as: 

A = 3TPU – Rd 

In addition to the consumption rate of triose phosphate, TPU also represents the 

carbon generated from other processes such as photorespiratory conversion of glycine or 

serine in the Calvin cycle (Sharkey et al., 2007). It represents the ability to convert triose 

phosphate into sugars such as starch and sucrose (Yang et al., 2015). Table 3-1suggests 

that no significant variance was observed among the treatments and controls.  

Day respiration (Rday) is the rate of dark respiration during photosynthesis, which 

differs from dark respiration at night. Rday representing the dark respiration at light-

sufficient conditions is generally lower than the dark respiration Rd in darkness (Yin et 

al., 2011). Coupled with the dark respiration results derived from the light response 

curves, the soybeans treated with CeO2 NPs did not show significant effect on Rday 

compared with the control group.  

Mesophyll conductance (gm, μmol m-2 s-1 Pa-1) controls the CO2 transport from the 

substomatal cavity to the chloroplast, determining the partial pressure of CO2 in the 

chloroplast (Lambers et al., 2008). Difference had been observed in the soybeans treated 

with CeO2 NPs at the concentration of 500mg/kg. The results suggested that both types 
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of CeO2 NPs lowered gm at the highest concentration, suggesting that the CO2 diffusion 

pathways were partially blocked when the soybeans were stressed by CeO2 NPs. 

 

Table 3-1. Vcmax (maximum carboxylation rate), Jmax (maximum photosynthesis electron 

transport rate), Rday (day respiration) and gm (mesophyll conductance). Values represent 

mean (n=3). Different letters indicates significantly statistical differences (at p≤0.05) 

according to the Tukey’s test 
  Vcmax Jmax TPU Rday gm 

  μmol m-2 s-1 μmol m-2 s-1 μmol m-2 s-1 μmol m-2 s-1 μmolm-2s-1Pa-1 

10mg/kg Control 48 89 6.71 0.67 8.64 

Uncoated 49.1 86 6.27 0.7 8.37 

Coated 49.35 90.5 6.58 0.68 8.59 

100mg/kg Control 48b 89b 6.83 0.67 8.64 

Uncoated 63.4a 110.5a 6.65 0.72 9.53 

Coated 61.7a 102.5ab 7.07 0.69 9.89 

500mg/kg Control 48A 89A 6.5 0.67 8.64A 

Uncoated 41AB 70.5B 6.82 0.59 6.93B 

Coated 37.5B 68B 6.67 0.63 6.81B 

 

 

Cerium uptake and accumulation: Fig 3-9 reveals that soybeans treated with 

uncoated CeO2 NPs contained consistently higher cerium compared with both the 

control plants and plants treated with coated CeO2 NPs. The significant difference in 

accumulation of both types of CeO2 NPs might attribute to their opposite surface charge. 

While the positively charged uncoated CeO2 NPs tended to adsorbed on the negatively 

charged root surface of soybeans, electrostatic repulsion inhibited the attachment of 

coated CeO2 NPs to root membranes. Noticeable accumulation of coated CeO2 NPs was 

only found at concentration of 500 mg/kg for coated CeO2 NPs. Measurable cerium 

accumulation has also been detected in cucumber, barley and tomato plants exposed to 



 

 

 

47 

CeO2 NPs in previous studies (Zhao et al., 2013; Marchiol et al., 2016; Wang et al., 

2012). Moreover, the concentration of CeO2 NPs was significantly higher in the roots 

than the shoots, which indicates limited upward transport rate in the first three weeks of 

the soybean lifespan. This agrees with a recent report that Ce content was significantly 

higher in roots of corn plants but no significant accumulation in above ground tissues 

was detected (Zhao et al., 2015). Likewise, CeO2 NPs was not transported to 

aboveground tissues of soybean and wheat (Priester et al., 2012; Schwabe et al., 2013). 

 

 
Fig 3-9. (a) Cerium content in shoots, (b) cerium content in roots. Values represent 

mean±SD (n=4). Different letters indicates significantly statistical differences (at 

p≤0.05) according to the Tukey’s test 
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To the author’s knowledge, it is the first research concerning WUE of plants 

affected by nanoparticles. Both the uncoated and the coated CeO2 NPs at 100 mg/kg 

enhanced WUE of soybean while they reduced WUE at 500 mg/kg. Moreover, net 

photosynthesis rate was promoted by 100 mg/kg CeO2 NPs but was inhibited by 500 

mg/kg CeO2 NPs. The positive impact of CeO2 NPs at relatively lower concentration 

suggests a hermetic response of soybean, which was observed on some other studies 

(Marchiol et al., 2016; Wang et al., 2016). Comparatively, soybean could not tolerate 

CeO2 NPs at 500 mg/kg indicating the optimal concentration of CeO2 NPs on 

photosynthesis might be exceeded. Specifically, 100 mg/kg CeO2 NPs could stimulate 

PNmax, Vcmax and Jmax to promote photosynthesis of soybean. Conversely, negative impact 

of 500 mg/kg CeO2 NPs on photosynthesis mainly results from the inhibited Vcmax and 

Jmax. 

Besides, the two types of CeO2 NPs showed significant variance on plant uptake 

but basically no difference on their effects on photosynthesis. Toxicity of CeO2 NPs 

depends on a variety of factors including particle size, surface area, morphology and 

oxidation states. Accordingly, coated CeO2 NPs with average diameter of 10 nm is 

supposed to be more toxic to the uncoated CeO2 NPs with average diameter of 19 nm, 

which exhibited impact at the same level regardless of variance in accumulated 

concentration. Besides, coated CeO2 NPs with relatively higher ratio of Ce3+ can exhibit 

greater impact on plants that offset the effect of lower concentration in soybean tissues 

(Pulido-Reyes et al., 2015). However, further research is necessary for better 

understanding of the interaction between chloroplast and the CeO2 NPs. 
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CHAPTER IV 

IMPACT OF CERIUM OXIDE NANOPARTICLES ON SOYBEANS UNDER 

DIFFERENT MOISTURE CONTENTS 

 

Introduction 

Cerium oxide nanoparticles (CeO2 NPs) are commonly used in oxygen gas sensors, 

solar cells and fuel additives. The widespread applications of CeO2 NPs have raised 

concerns about their disposal into the environment and their potential impacts on the 

ecosystem. Mounting evidences have suggested that CeO2 NPs could affect the crop 

yield and growth (Rico et al., 2014; Wang et al., 2012) and were able to alter the 

nutritional composition of plants (Rico et al., 2013; Peralta-Videa et al., 2014). Gui et al. 

(2015) reported that lettuce treated with 100 mg/kg CeO2 NPs grew much faster than the 

controls. However, the researchers noticed that the growth of lettuce exposed to 1000 

mg/kg CeO2 NPs was inhibited. Wang et al. (2012) reported that CeO2 NPs showed 

either inconsequential or slightly positive impact on tomato (Solanum lycopersicum L.). 

Separately, it was reported that wheat (Triticum aestivum L.) growth and yield was 

enhanced by CeO2 NPs at concentrations from 125 to 500 mg/kg soil (Rico et al., 2014). 

While these studies are encouraging that low levels of CeO2 NPs might be helpful for 

plant growth, detailed mechanisms were not provided by these studies. Knowledge was 

especially lacking on the mechanistic understanding of CeO2 NPs on essential 

physiological and biochemical processes in plants. In addition, all these experiments 
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were conducted in well controlled environments, without any limitations on available 

water to plants.  

 However, the increasing frequency and intensity of extreme weather events (e.g. 

extended droughts) due to global climate change have had a detrimental effect on crop 

yield (Routschek et al., 2014). There have been reports that the ongoing global climate 

change has caused extended low moisture content in some agricultural soils (Lock et al., 

2014). While water deficient tolerance varies among plant species, severe drought could 

reduce hydraulic conductance of plant leaves (Locke et al., 2014). In a changing 

environment, plants are able to adapt to varying moisture availability by adjusting their 

stomatal conductance and other hydraulic properties (Zhou et al., 2014). In some 

species, they could partially close their stomata while hydraulic conductance exhibited 

no significant change until the threshold leaf water potential was reached (Wells et al., 

2014). Photosynthesis rate may also decline along with the decreasing hydraulic 

conductance (Zhou et al., 2014). Alibas and Koksal (2015) stated that decreasing soil 

moisture content significantly decreased germination ratio and germination duration of 

soybeans, while the length, thickness, geometric mean diameter, and grain mass were 

also affected. These physiological changes affect plant water use efficiency (WUE), a 

key indicator of plant yield.  Interestingly, some previous research has shown that the 

WUE of some plants, including Hibiscus rosa-sinensis and rice (Oryza sativa L.), 

increased under moisture deficit conditions (Flexas et al., 2013).  The primary goal of 

this study was to investigate the impact of CeO2 NPs on soybeans at different moisture 

contents. Specifically, the objectives are twofold: (1) to investigate the effects of CeO2 
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NPs on the photosynthesis of soybeans; (2) to determine the effect of CeO2 NPs on plant 

WUE estimated by the δ13C in plant tissues.  

Soybean (Glycine max) was chosen in this study due to its significance in global 

agriculture. Considering the increasing regional water scarcity due to the global climate 

change, investigation on the impact of CeO2 NPs on plants at various moisture contents 

could provide insights to the interactions between plants and CeO2 NPs in a more 

realistic environment. Soybean was treated with CeO2 NPs at the 100 mg/kg soil at 

different field capacity (θfc, kg/kg), which was the soil moisture divided by the saturated 

water content in soil (Paredez et al, 2015; Wei et al., 2015). 100 mg/kg was chosen 

because our previous study demonstrated that CeO2 NPs at this concentration 

significantly enhanced plant growth, including plant photosynthesis and WUE. The 

range of soil moisture levels was controlled between 55-100% of the field capacity based 

on the literature (Liu & Zhou 2015). For example, Paredez et al. (2015) showed that 

soybeans were cultivated in soil at the moisture thresholds of 60% and 75% of θfc to 

study the impact of moisture conditions on crop yield. Likewise, Wei et al. (2015) had 

also used 60% and 75% of θfc as the thresholds of the transpiration and yield modeling 

of soybeans in the field study. Lower water content was usually not adopted to avoid 

drought stress of the soybeans, which suggested that 60% of θfc should be the lower limit 

of water sufficient conditions for soybeans. We used slightly lower moisture content 

(55%) to investigate how CeO2 NPs could affect plants undergoing drought stress. 
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Materials and Methods 

Cerium oxide nanoparticles: Uncoated cerium oxide nanoparticle dispersion 

(Concentration wt. 10%) and PVP coated Cerium Oxide nanoparticle dispersion 

(Concentration wt. 20%) were used in the experiment, which were purchased from 

Sigma Aldrich and US Research Nanomaterials, Inc., respectively. Both nanoparticles 

were extensively characterized and the detailed information were reported in Chapter 3.  

Soil moisture capacity quantification: 50 g potting soil was weighed into each pot 

and was dried at 70°C for 48 hours. The dry soil was weighed first and then was 

gradually hydrated to the saturation point, where no more water could be adsorbed. The 

field capacity was obtained by subtract weight of moisture saturated soil with the weight 

of dry soil. 

Plant cultivation: The soybean seeds were purchased from Johnny Seeds 

(Fairfield, MN) and potting soil purchased from commercial vendors was used for plant 

growth. To ensure homogenous mixing, the mixed soil will be shaken on a shaker table 

for at least 24 hours, with the facilitation of frequent manual mixing. The targeted 

concentrations for CeO2 NPs treated soil would be 100mg/kg soil.  

Each pot was filled with 50g potting soil and then dried at 70°C for 48 hrs. 28.77, 

36.62, 44.46 and 52.31g water was added to every 18 pots to achieve four θfc of 55%, 

70%, 85%, and 100% respectively. Among the germinated soybean seedlings, 72 well 

grown seedlings with roughly the same length were picked out and were transferred to 

the soil with different treatments (uncoated and pvp-coated CeO2 NPs) within which 

included 4 levels of moisture content (55%, 70%, 85% and 100% θfc). Considering the 
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control group without CeO2 NPs at different moisture content, there would be 12 

treatments of which each included 6 replicas. The soybeans were cultivated at moisture-

controlled conditions for three weeks with controlled lighting (16/8 light/dark cycle) at 

room temperature.  

Photosynthetic response curve: Stomatal conductance and net photosynthesis rate 

of the soybeans were measured with a Licor-6400XT (Lincoln, NE) at the end of each 

week during the three-week growth period. Besides, photosynthetic response curves with 

respect to varying irradiance or carbon dioxide concentration were measured with Licor-

6400XT (Lincoln, NE) before the soybeans were harvested. Licor-6400 is a portable IR 

gas analyzer equipped with a standard LI-6400, 2-3 cm leaf chamber and a red/blue light 

source.  

Temperature in the chamber was kept constant at 25 ºC. Chamber CO2 

concentration was kept constant at 400 mg L–1 and irradiance generated from the 

red/blue light source was connected to the Infra-Red (IR) gas analyzer. Specifically, the 

photosynthetic photon flux (PPF) were programmed to be the nine levels including 0, 50, 

200, 400, 600, 800, 1000, 1200, and 1500 mmol m–2 s–1. The top leaves were measured 

at each light level for at least 2 min to achieve the steady state. Amax (maximum 

photosynthesis capacity), Rd (dark respiration), and ϕ (quantum yield) were calculated by 

fitting data to the nonlinear regression model described by Hanson et al. (1987), with 

PPF levels as the independent variable. From the photosynthesis response curve to 

varying carbon dioxide concentrations, five parameters can be derived from the non-

linear curve fitting with the well-established model proposed by Sharkey et al. (2007), 



 

 

 

54 

including Vcmax (maximum carboxylation rate), J (photosynthesis electron transport rate), 

TPU (triose phosphate use), Rday (day respiration) and gm (mesophyll conductance).  

Temperature in the chamber was kept constant at 25 ºC. Chamber CO2 

concentration was kept constant at 400 mg L–1 and irradiance generated from the 

red/blue light source connected to the Infra-Red (IR) gas analyzer. Specifically, the PPF 

were programmed to be the nine levels including 0, 50, 200, 400, 600, 800, 1000, 1200, 

and 1500 mmol m–2 s–1. The top leaves were measured at each light level for at least 2 

min to achieve the steady state. Amax (maximum photosynthesis capacity), Rd (dark 

respiration), and ϕ (quantum yield) were calculated by fitting data to the nonlinear 

regression model described by Hanson et al. (1987), with PPF levels as the independent 

variable. Besides, five parameters can be derived from non-linear curve fitting with the 

well established model proposed by Sharkey et al. (2007), including Vcmax (maximum 

carboxylation rate), J (photosynthesis electron transport rate), TPU (triose phosphate 

use), Rday (day respiration) and gm (mesophyll conductance).  

Carbon isotope composition measurement: Two top leaves of each soybean were 

sent to the Stable Isotope Geoscience Facility for carbon isotope composition analysis by 

gas chromatographs isotope ratio mass spectrometer (GC-IRMS, Finnigan 

DELTAplusXP) on an instantaneous basis, which can serve as a predictable estimate of 

the overall WUE over time.  

Chlorophyll content quantification: At the end of the experiment, roughly 20 g 

fresh tissues of leaves were weighed from each soybean tested. The leaves were added 

into centrifuge tubes filled with 4 mL dimethyl formamide (DMF) and then kept in dark 
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at 4 °C for 12 hrs. Chlorophylls extraction was completed following the method of 

Moran.  

UV/vis test was performed on 1 mL residual extracted from each sample. Zero 

absorbance was calibrated by pure DMF before each measurement. The amount of 

absorbance was read at 664 and 647 nm using a UV-Vis spectrophotometer (model 

Lamba 35; PerkinElmer, Waltham, MA) and absorbance readings were used to calculate 

leaf chlorophyll concentrations. 

Cerium content characterization: After all the measurements were done, the rest 

of the shoots and roots were fully dried at 70 °C for 7 days. Half gram of dry tissues of 

each replicats was carefully ground and mixed with 4 mL of 70% (v/v) nitric acid. The 

mixture was kept at room temperature overnight for pre-digestion, then was further 

digested in the DigiPREP MS hot block (SCP science, Clark Graham, Canada) at 95 °C 

for 3 hours until all dry tissues was dissolved. After the digested residual cooled down to 

room temperature, 2 mL of 30% (v/v) H2O2 was added into each residual. The solution 

was heated in the hot block at 95 °C for 2 more hours following the method of Dan et al. 

(2015). Then the cerium content was quantified by an inductively coupled plasma mass 

spectrometry (ICP-MS, Perkin Elmer mod. DRCII, Waltham, MA). 

 

Results and Discussion 

Biomass: At the lowest moisture content (55% of θfc), CeO2 NPs did not affect the 

soybean biomass as indicated by the insignificant changes in total fresh weight (Fig 4-1). 

However, fresh weight of the CeO2 NPs treated soybeans increased in all other moisture 
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conditions. When the fresh weight of the roots and shoots were compared separately, 

both the fresh weight of roots and shoots displayed similar patterns of change as the total 

fresh weight. A comparison of the total fresh weight of soybeans with the same 

treatment at different moisture content revealed that their fresh weight at 70% and 85% 

moisture content were higher than those at 55% and 100% moisture content. The 

soybeans at the lowest moisture content probably experienced some drought stress, 

which resulted in less yield compared with those with sufficient water supply. 

Noticeably, the highest moisture content, which amounts to full saturation, led to slightly 

declining fresh weight.  

When the dry weight of biomass was examined (Fig 4-2), a slightly different trend 

from the fresh weight was observed. The dry weight of soybeans at 55% θfc increased 

when plants were treated with both types of CeO2 NPs while no measurable change was 

observed in fresh weight. It is clear that soybean exposed to both types of CeO2 NPs at 

100 mg/kg showed consistently higher biomass compared with the control. A closer look 

at the dry weight of root and shoot separately revealed similar trend as the total fresh 

weight. 

Overall, 100 mg/kg CeO2 NPs exhibited potential to enhance the growth of 

soybeans although the impact might be less significant at lowest moisture content. 

However, water deficit appeared to be mediated by CeO2 NPs since the nanoparticles 

promoted the dry biomass of soybeans cultivated at 55% moisture content.  

The ratio of fresh weight to dry weight (FW/DW) provides another indication of the 

growth status of plants. As an index of cell water content, FW/DW positively correlates 
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with the level of sugar concentration in plant tissues (Park & Kim, 1993). In other 

words, theoretical cell density can be derived from the estimated water content in cells 

based on the FW/DW values. Based on the ratio of fresh weight to dry weight results 

(Fig 4-3), CeO2 NPs treated plants at the lowest moisture content exhibited significantly 

lower FW/DW compared with the control group. The soybeans treated with coated CeO2 

NPs at 70% moisture content also showed lower FW/DW while no significant difference 

was detected between uncoated CeO2 NPs treated ones and the controls. Consistent with 

previous experiments, soybeans with sufficient water supply (typically more than 85% 

moisture content) did not exhibit any significant variance in FW/DW values. 

 

 
Fig 4-1. Total fresh weight of soybean exposed to 100 mg/kg CeO2 NPs. Values 

represent mean±SD (n=6). Different letters indicates significantly statistical differences 

(at p≤0.05) according to the Tukey’s test  
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Fig 4-2. Total dry weight of soybean exposed to 100 mg/kg CeO2 NPs. Values represent 

mean±SD (n=6). Different letters indicate significant statistical differences (at p≤0.05) 

according to the Tukey’s test 

 

 
Fig 4-3. Ratio of fresh weight over dry weight. Values represent mean±SD (n=6). 

Different letters indicate significant statistical differences (at p≤0.05) according to the 

Tukey’s test 
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Stomatal conductance: Fig 4-4 describes that at 55% moisture content, stomatal 

conductance of soybeans with all three treatments declined over time, which suggested 

that the plants were stressed by moisture deficit, as 60% of θfc was deemed to be the 

lower limit of water content for soybean cultivation in soil without suffering drought 

stress (Paredez et al., 2015; Wei et al., 2015).  The stomatal conductance at 70% 

moisture content showed little variation and no significant difference was observed 

among the three treatments. Comparatively, stomatal conductance of the soybeans at 

85% moisture content exhibited consistently increasing trends for all three treatments. 

Similarly, when the soil was moisture saturated, stomatal conductance of the soybeans 

treated with both types of CeO2 NPs gradually arose while the control group maintained 

nearly constant. The result agrees with a recent study that 1000 mg/kg TiO2 NPs 

enhanced the stomatal conductance of barley by 89% at water sufficient condition 

(Marchiol et al., 2016). Previous studies provided controversial results on stomatal 

conductance of plants exposed to nanoparticles. Zhao et al. (2013) reported that CeO2 

NPs up to 800 mg/kg exhibited no significant effect on the stomatal conductance of 

cucumber. Conversely, a more recent report of Wang et al. (2016) addressed that 300 

mg/L ZnO NPs reduced stomatal conductance by 70% in Arabidopsis. Moreover, 

nanoparticles could be adsorbed by root surface of plants and then further interfere with 

water transpiration (Zhao et al., 2013; Zhang et al., 2012; Schwabe et al., 2013).  In our 

study, 100 mg/kg CeO2 NPs had positive impact on stomatal conductance, which is 

largely limited by moisture content. Decreasing water availability offset the positive 
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effect of CeO2 NPs and eventually inhibited the stomatal conductance of soybean when 

it was lower than 70% θfc. 

 

 
Fig 4-4. Stomatal conductance over the three-week growth at different moisture content. 

 Values represent mean±SD (n=4).  

 

 

Water use efficiency: Given that δ13C of atmospheric CO2 is -8‰, carbon isotopic 

values of plants generally vary from -25 to -35‰ (H. Craig, et, al., 1953). Carbon 

isotopic fractionation in plants stems from the discrimination against the heavier isotope 

13C due to enzymatic and physical processes. Accordingly, since WUE is defined as the 

photosynthesis rate to water transpiration, 13C can serve as a time-integrated indicator of 

WUE based on the understanding of 13C fractionation in photosynthesis (Lajtha, & 

Michener, 2007). 
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Fig 4-5 shows the carbon isotope composition of soybeans treated with CeO2 NPs 

at different moisture contents. Both types of CeO2 NPs at 100 mg/kg led to lower δ13C, 

which represented higher WUE at water abundant conditions. Although slightly lower 

δ13C can be observed in plants treated with CeO2 NPs at water-limited condition (55% 

θfc), no significant difference was found when compared with the control. It suggests that 

limited water availability may offset the positive impact of CeO2 NPs on WUE of plants. 

Comparatively, δ13C of the soybean exposed to CeO2 NPs at higher moisture content 

(70%, 85% and 100% θfc) was significantly lower than the control. It should be noted 

that δ13C at 85% and 100% θfc was consistently lower than it was at 70% θfc implying 

that moisture sufficiency had positive effect on WUE. 

Physiologically, enhanced WUE indicates increased net carbon assimilation relative 

to stomatal conductance (Flexas et al., 2013, Klein et al., 2013). According to previous 

results, increased WUE may be attributed to the reduced stomatal conductance at 55% 

θfc. Conversely, since the stomatal conductance gradually increased at higher moisture 

content, increased WUE is supposed to result from promoted photosynthesis rate. 

Promoted photosynthesis could attribute to stimulated carboxylation rate by improving 

enzymatic kinetic characteristics or activating catalytically active Rubisco sites (Flexas 

et al., 2013; Galmes et al., 2005). Additionally, improved mesophyll conductance and 

reduced photorespiration could also enhance photosynthesis and WUE (Flexas et al., 

2013; Parry et al., 2005). Therefore, further investigation in photosynthesis was 

necessary for better understanding of increased WUE of soybean. 
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Fig 4-5. Carbon isotope composition δ13C of soybeans at different moisture content. 

Values represent mean±SD (n=4). Different letters indicates significantly statistical 

differences (at p≤0.05) according to the Tukey’s test 

 

 

Chlorophyll content: Since chlorophyll is correlated with plant stress response, 

chlorophyll content in soybean exposed to CeO2 NPs at different moisture content was 

quantified (Fig 4-6). Fig 4-6 (c) suggests that no measurable difference was detected in 

total chlorophyll content among the treatments at different moisture content, meaning 

that CeO2 NPs did not affect the total chlorophyll concentration in soybean. However, at 

water abundant condition, chlorophyll a was increased by 20.2% in soybean exposed to 

coated CeO2 NPs (Fig 4-6 a). In the meanwhile, uncoated CeO2 NPs showed no 

significant effect on the plants. As the major photosynthetic pigment in plants, 
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chlorophyll a concentration indicates photosynthetic stress in plants (Du et al., 2015). 

Comparatively, soybean treated with CeO2 NPs exhibited relatively lower concentration 

of chlorophyll b compared with the control, but significant differences were only 

observed at 55% and 100% θfc. Specifically, chlorophyll b was reduced by uncoated 

CeO2 NPs at 55% and 100% θfc while it was decreased by coated CeO2 NPs only at 55% 

θfc.  

In addition, the results suggested that chlorophyll could also be affected by 

moisture content. Total chlorophyll content at water sufficient condition (85% and 100% 

θfc) was consistently higher than it was at moisture limited condition (55% and 70% θfc). 

Similar trends could be observed in the results of chlorophyll a concentration at different 

moisture levels. Conversely, chlorophyll b concentration of soybean cultivated at higher 

moisture content was relatively lower than it was at moisture limited condition (55% 

θfc). It agrees with Sarker et al. (1999) that chlorophyll a/b ratio in wheat was 

significantly affected by soil moisture. Likewise, a few previous studies also reported 

that moisture stress could result in decreasing chlorophyll formation. 
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Fig 4-6. (a) Total chlorophyll content, (b) chlorophyll a content (c) chlorophyll b content at 

different moisture content. Values represent mean±SD (n=4). Different letters indicates 

significant statistical differences (at p≤0.05) according to the Tukey’s test 
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Photosynthesis rate: Photosynthesis rate of the soybeans at 55% θfc maintained a 

relatively low level ranging from 6.2 to 7.5 μmol m-2s-1, which was lower than observed 

for any other plants at higher moisture content. At 70% and 85% θfc the soybeans treated 

with CeO2 NPs exhibited significantly higher photosynthesis rate compared with their 

respective controls at day 20, while the control group remained nearly constant over 

time. At water abundant condition, soybeans treated with CeO2 NPs had outperformed 

the control group on photosynthesis rate since day 16. Consistent with our results, 

Marchiol et al (2016) reported that net photosynthesis rate of barley exposed to 500 

mg/kg CeO2 NPs was promoted by 26%. Likewise, corn plants exposed to 800 mg/kg 

CeO2 NPs exhibited higher net photosynthesis rate than the controls at day 30 (Zhao et 

al., 2015).  

 Fig 4-7 displays that photosynthesis rate increased with respect to rising moisture 

content, which suggested the significance of water availability in the carbon assimilation 

processes of plants. While photosynthesis rate fell in the range 6.5-7.5 at 55% θfc, it 

gradually increased by 10-15 at 100% θfc. It agrees with previous studies that water 

stress could result in inhibited net photosynthesis rate due to decreased carbon 

assimilation per unit leaf area (Wang et al., 2009). 
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Fig 4-7. Photosynthesis rate at different moisture content. Values represent mean±SD 

(n=4). Different letters indicates significant statistical differences (at p≤0.05) according 

to the Tukey’s test 

 

 

Photosynthetic light response curves: Photosynthetic rate responding to varying 

irradiances could provide information on net photosynthesis rate (PNmax), respiration rate 

(Rd) and quantum yield (ϕ) (Lombardini et al., 2009, Salvucci et al., 1986).  Specifically, 

PNmax represented the net CO2 assimilation rate at infinitely high irradiance, which 

indicated the photosynthesis capacity associated with chlorophyll content, Calvin-cycle 

enzymes density, and volume of stroma (Lambers et al., 2008). Rd quantified the CO2 

generated from dark respiration during photosynthesis while ϕ demonstrates the energy 

converting efficiency from the energy absorbed from light into the chemical energy in 

fixed organic carbon (Lambers et al., 2008).  

Derived from the light response curves, the three parameters of the treatments under 

different moisture content are presented in Table 4-1. It was observed that soybeans 
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treated with CeO2 NPs under the moisture content of 70%, 85% and 100% θfc exhibited 

higher maximum photosynthesis rate compared with the control. However, at water 

limited conditions (55% θfc), PNmax was lower than it was at higher moisture content. It 

has been reported that water stress had significantly negative impact on plant 

photosynthesis rate (Escalona et al, 2012). Additional, PNmax at 85% θfc (11.5 to 15.8 

mol/m2s1) was consistently higher than it was at 100% θfc  (11.2 to 13.8 mol/m2s1), 

which agreed with Sanhueza et al. (2014) that N. solandri at slightly lower moisture 

content outperformed in PNmax compared with those at water saturated conditions.  

No significant difference had been observed in Rd of the soybeans among all those 

treatments. However, the soybeans under the moisture content of 55% θfc exhibited 

relatively lower Rd compared with the treatments under higher moisture content. It 

should be noted that Rd at 85% θfc was close to or even slightly higher than its was at 

100% θfc. Similar result was reported that respiration in N. solandri increased under 

unsaturated moisture conditions. 

ϕ exhibited significant variances only at 85% θfc,, within which ϕ  of soybean 

exposed to CeO2 NPs was higher compared with the control . Moreover, soybeans 

showed relatively lower ϕ under 55% θfc compared with those cultivated under higher 

moisture contents, suggesting that the photosynthetic processes of the soybean leaves in 

water deficient conditions might be partially inhibited. 
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Table 4-1. Maximum photosynthesis rate (PNmax), dark respiration rate (Rd), quantum 

yield (ϕ) of the soybeans treated with CeO2 NPs. Values represent mean (n=3). Different 

letters indicates significantly statistical differences (at p≤0.05) according to the Tukey’s 

test 
   Control Uncoated  Coated 

55% θfc PNmax μmol/m2s1 6.9 7.2 7.1 

Rd μmol/m2s1 0.63 0.62 0.67 

ϕ  0.07 0.067 0.072 

70% θfc PNmax μmol/m2s1 9.1b 11.6a 12.4a 

Rd μmol/m2s1 0.89 0.93 1.01 

ϕ  0.085 0.093 0.089 

85% θfc PNmax μmol/m2s1 11.5 b 15.8 a 14.3 a 

Rd μmol/m2s1 0.97 1.11 1.17 

ϕ  0.095b 1.121a 1.113a 

100% θfc PNmax μmol/m2s1 11.2b 13.8a 13.1a 

Rd μmol/m2s1 0.96 1.13 1.09 

ϕ  0.087 0.105 0.102 

 

 

Photosynthetic CO2 response curves: Photosynthetic performance responding to 

varying carbon dioxide concentrations revealed the maximum carboxylation rate (Vcmax) 

allowed by ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), maximum rate 

of photosynthetic electron transport (Jmax) relevant with NADPH regeneration, triose 

phosphate use (TPU), day respiration (Rday) and mesophyll conductance (gm) (Sharkey et 

al., 2007). Table 4-2 presents the four parameters derived from the CO2 response curves. 

Vcmax were significantly enhanced by CeO2 NPs with different surface properties at 

water sufficient conditions (85% and 100% θfc) while it exhibited no variances among 

the soybeans at lower moisture contents. Inconsistency occurred at 70% θfc that only 

uncoated CeO2 NPs increased the Vcmax of the treated soybeans while coated CeO2 NPs 

had no significant impact on it. At moisture deficient conditions (55% θfc) Vcma of the 
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soybeans were relatively lower than the rest of the subjects, which indicated the 

carboxylation rate was limited by water availability.  Zhou et al. (2014) also reported 

that Vcmax in Quercus and Eucalyptus species was reduced with decreasing moisture 

content. 

For Jmax, it showed that CeO2 NPs were able to stimulate photosynthetic electron 

transport rate of soybeans at 85% and 100% θfc while they failed to increase the Jmax in 

plants grown in water deficient conditions. In addition, inconsistency between Vcmax and 

Jmax was observed in the soybeans at 70% θfc. Coated CeO2 NPs promoted Jmax of the 

soybeans while they exhibited no significant impact on Vcmax. The water deficient 

treatments exhibited no difference in Jmax among the soybeans treated with CeO2 NPs 

and the control group, which indicated that moisture content should be the dominant 

factor in water deficient cultivation. 

As shown in Table 4-2, CeO2 NPs did not exhibit significant impact on Rday. 

Although Rday barely varied at the same moisture level, declining trend was observed 

with respect to decreasing moisture content. Coupled with the inhibited Vcmax, it 

indicated higher photorespiration occurred in soybean at water-limited condition (Yang 

et al., 2015). The photorespiration could be a conservative strategy the soybeans adopted 

to protect the tissues from photoinhibition, promote intercellular CO2 to maintain 

Rubisco activity level (Yang et al., 2015), or scavenge excessive oxidants by catalases. 

CeO2 NPs exhibited positive impact in gm for the soybeans at relatively higher 

moisture content (85% and 100% θfc), suggesting that CeO2 NPs could stimulate the CO2 

diffusion and further promote the cellular CO2 level. Comparatively, gm was less 
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sensitive at lower moisture content. At water deficient condition, soybeans were stressed 

by limited water availability, which was not alleviated by the CeO2 NPs. Additionally, it 

should be noted that gm was consistently lower at water limited condition than at water 

abundant condition, which agreed with Zhou et al. (2014) that gm declined due to 

drought was observed in Quercus species. Previous studies addressed that inhibited gm 

was the main reason leading to reduced photosynthesis under drought stress (Galmes et 

al., 2014; Zhou et al., 2014). 

 

Table 4-2. Maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), 

day respiration rate (Rday), mesophyll conductance (gm) of the soybeans treated with 

CeO2 NPs at different moisture content of θfc. Values represent the average of three 

replicates (n=3). Different letters indicate significant statistical differences (at p≤0.05) 

according to the Tukey’s test 

θfc Treatments Vcmax Jmax TPU Rday gm 

  μmolm-2s-

1 

μmolm-2s-

1 

μmolm-2s-

1 

μmolm-2s-

1 

μmolm-2s-1Pa-

1 

55% Control 38.9 74.1 6.71 0.48 6.53 

Uncoated 37.6 75.1 6.95 0.43 6.46 

Coated 38 72.8 6.88 0.47 6.38 

       

70% Control 45b 83.6 b 6.62 0.59 7.89 

Uncoated 49.3a 85.8 b 6.8 0.62 8.02 

Coated 47.6ab 86.6 a 6.54 0.59 7.94 

       

85% Control 51.2B 90.5B 7.05 0.56 8.97 B 

Uncoated 71.7A 112.6A 6.87 0.61 9.83 A 

Coated 70.5A 109.3A 6.95 0.6 9.91 A 

       

100% Control 46.7β 86.9β 6.79 0.6 8.78β 

Uncoated 67.1α 108.5α 6.84 0.59 9.73α 

Coated 62.4α 104α 7.08 0.63 9.91α 

 



 

 

 

71 

Cerium accumulation: Due to the opposite surface charge of the two CeO2 NPs, 

their accumulation in the soybeans differed significantly in both shoots and roots. Fig 4-

8 illustrates the cerium content accumulated in soybean tissues. It showed that at the 

concentration of 100 mg/kg soil, considerable accumulation of uncoated CeO2 NPs in 

roots and shoots was detected. Comparatively, although slightly higher concentrations of 

cerium were detected in soybeans treated with coated CeO2 NPs than control plants, the 

difference was insignificant. Interestingly, a positive correlation between the moisture 

content and cerium accumulation in the soybeans has been noticed. In addition, much 

higher cerium concentration was detected in the roots of soybean compared with the 

shoots. Previous studies also reported that CeO2 NPs are mostly adsorbed by the root 

surface of cucumber, pumpkin and wheat (Zhao et al., 2013; Zhang et al., 2012; 

Schwabe et al., 2015). 
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Fig 4-8. (a) Cerium content in roots (b) cerium content in shoots at different moisture 

content. Values represent mean±SD (n=4). Different letters indicates significant 

statistical differences (at p≤0.05) according to the Tukey’s test 
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Consistent with the previous chapter, the results further confirmed the positive 

impact of 100 mg/kg CeO2 NPs on soybean photosynthesis and WUE at water sufficient 

conditions. However, the positive effect was gradually limited by decreasing moisture 

content. At 55%  θfc, soybean exposed to CeO2 NPs did not exhibit any promoted 

photosynthetic parameters, while Vcmax, Jmax and gm were all stimulated when moisture 

content was larger than 85% θfc. Furthermore, photosynthetic parameters were 

consistently lower than those at water sufficient conditions, suggesting that drought 

stress exhibited negative effect on plant photosynthesis. Noticeably, Vcmax and Jmax were 

slightly lower at 85% θfc compared with 100% θfc suggesting that the optimal moisture 

content might be exceeded at water saturated condition. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

In this research, soybeans were treated with two types of CeO2 NPs at different 

concentrations and cultivated under varying moisture contents. At the concentration of 

100 mg/kg, CeO2 NPs exhibited consistently positive impact on photosynthesis and 

WUE.  

 

Table 5-1. Summary of the impact of CeO2 NPs at different concentration (↑ indicates 

positive impact, ↓ means negative impact, - suggests no significant impact) 

  P PNmax Rd ϕ Vcmax Jmax TPU Rday gm 

10mg/kg Uncoated ↑ - - - - - - - - 

Coated ↑ ↑ - - - - - - - 

100mg/kg Uncoated ↑ ↑ - - ↑ ↑ - - - 

Coated ↑ ↑ - - ↑ - - - - 

500mg/kg Uncoated ↓ - - ↓ - ↓ - - ↓ 

Coated ↓ - - - ↓ ↓ - - ↓ 

 

 

Above all, the soybeans treated with the two types of CeO2 NPs at 100 mg/kg 

exhibited increased biomass and WUE, and outperformed the control group on the 

photosynthetic tests responding to varying light intensity and CO2 concentration. Table 

5-1 summarizes the photosynthetic parameters affected by CeO2 NPs. Accordingly, 100 

mg/kg CeO2 NPs enhanced the P, PNmax and Vcmax while uncoated CeO2 NPs additionally 

stimulated Jmax. Conversely, 500 mg/kg CeO2 NPs inhibited P, Jmax and gm while ϕ and 

Vcmax were decreased by uncoated and coated CeO2 NPs respectively. Comparatively, 10 
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mg/kg CeO2 NPs exhibited less significant impact on soybean that only P and PNmax 

were affected. Coupled with the increased total chlorophyll content of soybean treated 

with coated CeO2 NPs, stimulated PNmax might result from higher chlorophyll 

concentration while the photosynthesis process was not significantly affected. 

Furthermore, although the two types of CeO2 NPs did not differ from their effect on 

photosynthesis, they exhibited significant variance on accumulated concentration as a 

result of the electrostatic repulsion between coated CeO2 NPs and root surface.  

 

Table 5-2. Summary of the impact of CeO2 NPs at different moisture content (↑ indicates 

positive impact, ↓ means negative impact, - suggests no significant impact) 

  P PNmax Rd ϕ Vcmax Jmax TPU Rday gm 

55%θfc Uncoated - - - - - - - - - 

Coated - - - - - - - - - 

70%θfc Uncoated ↑ ↑ -  ↑  - - - 

Coated ↑ ↑ -   ↑ - - - 

85%θfc Uncoated ↑ ↑ - ↑ ↑ ↑ - - ↑ 

Coated ↑ ↑ - ↑ ↑ ↑ - - ↑ 

100%θfc Uncoated ↑ ↑ -  ↑ ↑ - - ↑ 

Coated ↑ ↑ -  ↑ ↑ - - ↑ 

 

 

According to table 5-2, the experiment further confirmed the positive impact of 

CeO2 NPs at 100 mg/kg at moisture sufficient conditions. Noticeably, soybean at 85% 

θfc outperformed in ϕ compared with the water saturated conditions. In addition, slight 

enhancement in PNmax, Vcmax and Jmax at at 85% θfc were also observed, which suggests 

that the optimal moisture content for soybean photosynthesis might have been exceeded 

at water-saturated soil. Consistent with previous studies, plants would not benefit from 
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increasing moisture content after it reached specific threshold and in some cases 

excessive water content might even cause detrimental effects on them (G. Striker, 2012). 

Although parameters at 70% θfc were lower than those at higher moisture content, 

positive impact of CeO2 NPs on P and PNmax was observed. Besides, Vcmax and Jmax were 

stimulated by uncoated and coated CeO2 NPs respectively. However, when the moisture 

content further declined to 55% θfc, all the physiological and photosynthetic parameters 

further decreased and none of them was promoted by CeO2 NPs. This indicated that 

water availability had considerable effect on plant photosynthesis and could offset the 

impact caused by CeO2 NPs. 

Fig 5-1 illustrates that Vcmax was linearly correlated with δ13C based on the CO2

response curve and carbon isotope composition data collected from the previous 

experiment. Negatively linear correlation between Vcmax and δ13C was expected since 

Rubisco in the soybeans would preferentially uptake lighter 12C against 13C in the carbon 

assimilation processes. Subsequently, the linear regression provided a decreasing trend 

of δ13C with respect to Vcmax with R2=0.82, which suggested that roughly 82% of the 

variance could be explained by the linear equation. It further verifies the validity of the 

Vcmax derived from the CO2 response curves and the carbon isotope discrimination in 

Rubisco activity. 
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Fig 5-1. Linear regression of correlation between Vcmax and δ13C Values represent mean 

(n=3)  

 

The research left some questions that needed further study due to the limitation and 

restrains in the experiment. First of all, although positive impacts could be observed in 

the previous experiment, how did the CeO2 NPs interact with the plant cells or 

chloroplast? Furthermore, while 100 mg/kg CeO2 NPs exhibited consistently positive 

impact, is it the optimal concentration for soybean photosynthesis? Besides, although 

CeO2 NPs promoted some of the photosynthetic parameters at relatively low moisture 

content (70%70% θfc), it requires further studies to verify whether the CeO2 NPs were 

able to alleviate the drought stress. Lastly, while soybean at 85% outperformed the 

treatments at water saturated conditions, what is the optimal moisture content for 

photosynthesis and WUE of soybean?
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