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ABSTRACT

We study the global attractor for the solutions of the incompressible Navier-Stokes

equations (NSE) equipped with appropriate boundary conditions.

A challenge in the cases when zero is not in the global attractor is to find sharp

lower bound on the energy. A related challenging problem is to show that zero is

in the attractor if and only if the external force is zero. We show that if zero were

in the global attractor, then all its elements, as well as the external force, must be

smooth functions. By exploring a particular family of function classes, we show that

the set of nonzero external forces for which zero could be in the global attractor is

meagre (of the first Baire category in a Fréchet topology).

The weak global attractor of three dimensional Navier-Stokes equations is a com-

plex geometric object. An interesting challenging question is to measure its com-

plexity. Invoking the fact that topology on the weak global attractor can be metriz-

able, we use a physically reasonable metric function to obtain explicit estimate for 

the Kolmogorov ε-entropy of the weak global attractor in terms of the physical pa-

rameter associated with the fluid flow.

We also study the existence of the nonstationary solutions in the global attractor

of the space periodic two dimensional NSE which have constant energy and enstropy

per unit mass for all time. A subclass of such solutions whose geometric structures

have a supplementary stability property is defined and explored. We prove that the

wave vectors of the active mode of this subclass must satisfy a finite Galerkin system.

The nonexistence of solutions in this subclass is proved for the particular case when

the external force has a special property.
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1. INTRODUCTION

In this thesis, we study some properties of the global attractor of the incom-

pressible Navier-Stokes equations (NSE). These equations describe the dynamics of

incompressible, viscous fluid flows. The global attractor, which is a uniquely de-

termined compact invariant set in an appropriate phase space attracting all the

solutions, captures all the information about the long time behavior of the solutions,

and is therefore an appropriate object to be studied.

In Chapter 3, we study the consequence of assuming zero to be in the global

attractor of 2D NSE. It is a well-known that all solutions in the global attractor

of the incompressible 2D NSE can be extended to analytic functions, in time, in

a uniform strip S containing the real axis in the complexified time plane (see, e.g.

[2, 11, 13, 17, 20]). Moreover, these solutions are known to be uniformly bounded in

the norm ∣A ⋅ ∣, where A is the Stokes operator, ∣ ⋅ ∣ = ∣ ⋅ ∣L2(Ω), and Ω = [0, L]2 is the

spatial domain, with periodic boundary conditions. On the other hand, as remarked

in [4], if 0 ∈ A, then by inserting 0 into the NSE, one sees that g must be in the

domain D(A), consequently, the solution is in fact in D(A2). This in turn implies

that g is in D(A2), and so on by induction. Thus, g must be in D(Am) for any m ∈ N.

Asking that 0 be in the attractor is a highly restrictive assumption. We carry out

rather intensive estimates during the inductive process described above to establish

uniform bounds in ∣Am ⋅ ∣ on a strip S of a specific width δ for all m ∈ N. A special

function class, denoted by C(σ), is identified and studied. In particular, we show

that if 0 ∈ A, then all elements in A, as well as g, are in C∞(Ω).

In Chapter 4, we concentrate on a conjecture proposed by P. Constantin, namely,

0 is in the global attractor A if and only if the body force g is zero. By connecting
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the functional class C(σ) and the usual Gevrey class of spatial analytic functions,

we show that the set of nonzero forces for which 0 ∈ A is meagre (of the first Baire

category in a Fréchet topology). Moreover, we provide an explicit criterion for zero

to be in the global attractor.

In Chapter 5, we use the Kolmogorov ε-entropy to measure the complexity of the

weak global attractor Aw of the 3D NSE. To do that, we first introduce a particular

metric (which has no apparent physical meaning) that generates the weak topology

on Aw and use it to obtain an upper bound for the Kolmogorov ε-entropy of Aw.

This bound is expressed explicitly in terms of the physical parameters of the fluid

flow. We then apply the squeezing property to establish an explicit upper estimate

on the Kolmogorov ε-entropy of Aw, using a more physically relevant metric.

In Chapter 6, we study the geometric properties of the nonstationary solutions

in the global attractor of the space periodic 2D NSE with their energy and enstropy

per unit mass being constant for every t ∈ (−∞,∞). Such solutions, due to the

hypothetical existence of such solutions,were called “ghost solutions”. We introduce

and study geometric structures shared by all ghost solutions. This study led us to

consider a subclass of ghost solutions for which those geometric structures have a

supplementary stability property.

2



2. PRELIMINARIES

2.1 General mathematical settings

The equations to be considered are the following d-dimensional incompressible

Navier-Stokes equations (NSE) with periodic boundary conditions in Ω = [0, L]d

(where d = 2,3)

∂u
∂t − ν∆u + (u ⋅ ∇)u +∇p = f,

∇ ⋅ u = 0,

u(x,0) = u0(x),

∫Ω udx = 0, ∫Ω f dx = 0.

(2.1)

where u ∶ Rd → Rd, p ∶ Rd → R are the unknown Ω-periodic functions, the velocity

field and the presure, respectively, and ν > 0 is the viscosity of the fluid, L > 0 is the

period, are given constants, and f is the “body” force (see, e.g., [2, 20, 21] for more

details).

Denote by Hm(Ω) the usual Sobolev spaces which consists of all functions of

L2(Ω) with distributional derivatives up to order m ∈ N that belong to L2(Ω). The

phase space H (respectively, V ) is defined as the subspace of [L2(Ω)]d (respectively,

[H1(Ω)]d) consisting of all elments in the closure of the set of Rd-valued trigometric

polynomials v satisfying

∇ ⋅ v = 0, (2.2)

and

∫
Ω
v(x)dx = 0. (2.3)
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The scalar product in H and V are taken to be

(u, v) = ∫
Ω
u(x) ⋅ v(x)dx, and ((u, v)) = ∫

Ω

d

∑
i=1

∂u

∂xi
⋅
∂v

∂xi
dx,

respectively, with associated norm ∣u∣ = (u,u)1/2 and ∣∣u∣∣ = ((u,u))1/2.

Let Pσ ∶ [L2(Ω)]d →H be the orthogonal projection (called the Helmholtz-Leray

projection). Define the Stokes operator A = −Pσ∆ (=−∆, under periodic boundary

conditions) with domain D(A) = V ⋂[H2(Ω)]d. As an operator from H to H, the

Stokes operator A has a positive definite compact inverse. As a consequence, the real

Hilbert space H has an orthonormal basis {ωj}∞j=1 consisting of eigenfunctions of A,

namely, Aωj = λjωj with 0 < λ1 = (2π
L
)
d
≤ λ2 ≤ λ3 < ⋯. The powers As are defined by

Asv =
∞

∑
j=1

λsj(v,ωj)ωj, s ∈ R,

where (⋅, ⋅) is the L2− scalar product. The domain of As is denoted by D(As). System

(2.1) can be written as the differential evolutionary equation

du

dt
+ νAu +B(u,u) = g, u ∈H, (2.4)

where the bilinear operator B and the driving force g are defined as B(u, v) = Pσ((u ⋅

∇)v) and g = Pσf , respectively. Here, we assume that f is time independent and

hence (2.4) is an autonomous equation.

Since the boundary conditions are periodic, we may express an element u ∈H as

a Fourier series expansion

u(x) = ∑
k∈Zd∖{0}

û(k)eiκ0k⋅x,

4



where κ0 = 2π/L,

û(0) = 0, (2.5)

(û(k))∗ = û(−k), (2.6)

and, due to incompressibility,

k ⋅ û(k) = 0. (2.7)

Parseval’s identity reads as

∣u∣2 = Ld ∑
k∈Zd∖{0}

û(k) ⋅ û(−k) = Ld ∑
k∈Zd∖{0}

∣û(k)∣2,

(we assume it will be clear from the context when ∣ ⋅ ∣ refers to the length of a vector

in Cd) as well as

(u, v) = Ld ∑
k∈Zd∖{0}

û(k) ⋅ v̂(−k).

For v ∈H, we define Pnv to be the orthogonal projector of H onto the

span{ωj ∣Aωj = λjωj, j ≤ n}. (2.8)

2.2 The global attractor A of 2D NSE

Recall that the global attractor A of the 2D NSE (2.4) is the collection of all

elements u0 in H for which there exists a solution u(t) of the NSE (2.4), for all t ∈ R,

such that u(0) = u0 and supt∈R ∣u(t)∣ <∞ (see, e.g., [2, 20]).
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Equivalent definitions of A can also be given. As it is well-known, for any u0 ∈H,

f ∈ H, there exists a unique continuous function u from [0,∞) into H such that

u(0) = u0, u(t) ∈ D(A), t ∈ (0,∞), and u satisfies the NSE (2.4), for all t ∈ (0,∞).

Therefore, one can define the map S(t) ∶H →H by

S(t)u0 = u(t), (2.9)

where u(t) is the solution. Since S(t1)S(t2) = S(t1+t2), the family {S(t)}t≥0 is called

the “solution” semigroup. Furthermore, a compact set B of H is called absorbing if

for any bounded set B̃ ⊂ H there is a time t̃ = t̃(B̃) ≥ 0 such that S(t)B̃ ⊂ B for all

t ≥ t̃. The global attractor can be now defined alternatively by the formula

A =⋂
t≥0

S(t)B, (2.10)

where B is any absorbing compact subset of H.

2.3 Weak global attractor Aw of the 3D NSE

To define the global attractor for 3D NSE, we first have to introduce the concept

of Leray-Hopf weak solutions.

Definition 2.3.1 (see, e.g.,[10]). A (Leray-Hopf) weak solution on a time interval

J ⊂ R is defined as a function u = u(t) on J with values in H that satisfies the

following properties:

(i) u ∈ L∞loc(J ;H) ∩L2
loc(J ;V );

(ii) ∂tu ∈ L
4/3
loc (J ;V ′);

(iii) u ∈ C(J ;Hw), i.e., u is weakly continuous in H, which means that for every

v ∈H, the function t↦ (u(t), v) is a continuous function from J into R;

(iv) u satisfies (2.4) in the distribution sense on J with values in V ′;

6



(v) For almost all t′ in J , u satisfies the following energy inequality:

1

2
∣u(t)∣2 + ν ∫

t

t′
∣A

1
2u(s)∣2ds ≤

1

2
∣u(t′)∣2 + ∫

t

t′
(g, u(s))ds (2.11)

for all t in J with t > t′. The allowed times t′ are characterized as the points of

strong continuity from the right, in H, for u, and their set denoted by J ′(u), whose

complement has zero Lebesgue measure.

(vi) If J is closed and bounded on the left, with its left end point denoted by t0,

then the solution is continuous in H at t0 from the right, i.e., u(t) → u(t0) in H as

t→ t+0 .

In the following discussion, weak solution always means Leray-Hopf weak solution.

The weak global attractor for 3D NSE is defined as follows.

Definition 2.3.2. Let

W = {u ∈ C(R;Hw) ∶ u weak solution on R with sup
t∈R

∣u(t)∣ <∞} (2.12)

The global weak attractor is defined to be

Aw = {u0 ∈H ∶ ∃u ∈W, u(0) = u0} (2.13)

The weak global attractor Aw can be considered as the smallest compact set in

the weak topology of the phase space H which attracts all the weak solutions in the

weak topology of H.

Remark 2.3.3. Notice that, since well-posedness (in the Hadamard sense) has only

been established for the 2D NSE, but not yet for 3D case ([2, 21]), no well-defined

semigroup associated with the solutions of the dynamical system determined by 3D

7



NSE is known to exist. Therefore, we do not have the equivalent definition of Aw

using the concept of semigroup as we have done in 2D case in (2.10).

2.4      Complexification of the Navier-Stokes equations

Now consider the NSE (2.4) with complexified time and the corresponding solu-

tions in HC as in [2, 11]. Define

HC = {u + iv ∶ u, v ∈H},

and that HC is a Hilbert space with respect to the following inner product

(u + iv, u′ + iv′)HC = (u,u′)H + (v, v′)H + i[(v, u′)H − (u, v′)H],

where u,u′, v, v′ ∈H. The extension AC of A is given by

AC(u + iv) = Au + iAv,

for u, v ∈ D(A); thus D(AC) = D(A)C. Similarly, B(⋅, ⋅) can be extended to a bounded

bilinear operator from D(A
1/2
C ) ×D(AC) to HC by the formula

BC(u + iv, u
′ + iv′) = B(u,u′) −B(v, v′) + i[B(u, v′) +B(v, u′)],

for u, v ∈ D(A1/2), u′, v′ ∈ D(A).

The Navier-Stokes equation with complex time is defined as

du(ζ)

dζ
+ νACu(ζ) +BC(u(ζ), u(ζ)) = g, (2.14)

Remark 2.4.1. We emphasize that some of the estimates and calculations produced

8



in the following chapters are formal but can be justified rigorously by obtaining them

first for the Gelerkin approximation system and then for the full NSE by passing to

the limit, using the appropriate compactness and convergence theorem, such as Aubin

compactness theorem (see, e.g., [22]).

9



3. CONSEQUENCES OF ZERO BEING IN THE GLOBAL ATTRACTOR OF

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS∗

In this chapter, we consider the two dimensional Navier-Stokes equations (2.1)

with d = 2. Our main objective is to study the consequences of assuming zero to be

in the global attractor.

3.1 Specific preliminaries and known facts

The following inequalities will be needed for the discussion in this chapter.

κ0∣u∣ ≤ ∣A
1
2u∣, for u ∈ D(A

1
2 ), (3.1)

∣u∣L4(Ω) ≤ cL∣u∣
1
2 ∣A

1
2u∣

1
2 , for u ∈ D(A

1
2 ), (3.2)

∣u∣∞ ≤ cA∣u∣
1
2 ∣Au∣

1
2 , for u ∈ D(A). (3.3)

known respectively as the Poincaré, Ladyzhenskaya and Agmon inequalities. Both

cL and cA are absolute constants (see, e.g., [2, 21]).

Another inequality that will be used frequently is the following Young’s inequality,

ab ≤
ap

p
+
bq

q
, (3.4)

for any a, b ∈ R with a ≥ 0, b ≥ 0, and any p, q ∈ N+, 1 < p, q <∞ satisfying 1/p+1/q = 1.

Our estimates will depend on the Grashof number

G =
∣g∣

ν2κ2
0

. (3.5)

∗Part of this section is reproduced with permission from “Time analyticity with higher norm
estimates for the 2D Navier-Stokes equations” by C. Foias, M. S. Jolly, R. Lan, R. Rupam, Y.Yang
and B. Zhang, IMA Journal of Applied Mathematics (2014), hxu014 [6].
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We also recall that (see Proposition 2.1 in [4]) if G < c−2
L then A consists of unique

steady state. Throughout this chapter we will assume that G satisfies

G ≥
1

c2
L

. (3.6)

We recall the following algebraic properties of the bilinear operator B(u, v). One

has from [2,4], for every u, v,w ∈ D(A),

(B(u, v),w) = −(B(u,w), v), (3.7)

(B(u,u),Au) = 0, (3.8)

(B(Av, v), u) = (B(u, v),Av), (3.9)

(B(u, v),Av) + (B(v, u),Av) + (B(v, v),Au) = 0. (3.10)

From (3.9) and (3.10), it easily follows that if u ∈ D(A3/2) then B(u,u) ∈ D(A) and

that

AB(u,u) = B(u,Au) −B(Au,u). (3.11)

Multiply equation (2.4) by u and Au, respectively, integrate over Ω, and apply

the relations (3.7), (3.8) and the Poincare inequality (3.1) and Young’s inequality

(3.4), we have

1

2

d

dt
∣u∣2 + νκ2

0∣u∣
2 ≤

1

2

d

dt
∣u∣2 + ν∣A

1
2u∣2 = (g, u) ≤

∣g∣2

2νκ2
0

+
νκ2

0

2
∣u∣2, (3.12)

1

2

d

dt
∣A

1
2u∣2 + ν∣Au∣2 = (g,Au) ≤

∣g∣2

2ν
+
ν∣Au∣2

2
. (3.13)

Equations (3.12) and (3.13) are called the balance equations for the energy and

enstrophy, respectively. Applying Gronwall’s lemma to (3.12) and (3.13) we obtain,

11



for all t ≥ t0, that

∣u(t)∣2 ≤ e−νκ
2
0(t−t0)∣u(t0)∣

2 + (1 − e−νκ
2
0(t−t0))ν2G2, (3.14)

∣A
1
2u(t)∣2 ≤ e−νκ

2
0(t−t0)∣A

1
2u(t0)∣

2 + (1 − e−νκ
2
0(t−t0))ν2κ2

0G
2. (3.15)

From (3.15) we see that the closed ball B of radius 2νκ0G in D(A1/2) is, by Rellich

Lemma, a compact subset of H and hence it is an absorbing set in H. Therefore, we

can define the global attractor A of the 2D NSE as in (2.10).

In the next lemma we list several necessary estimates involving B(⋅, ⋅).

Lemma 3.1.1. The following hold in the appropriate space,

∣(B(u,u),A2u)∣ ≤ 2c2
L∣Au∣∣A

3
2u∣∣A

1
2u∣, u ∈ D(A2), (3.16)

∣(B(u,u),A3u)∣ ≤
√

2(
√

2c2
L + cA)∣u∣

1
2 ∣Au∣

1
2 ∣A

3
2u∣∣A2u∣, u ∈ D(A3). (3.17)

Relations (3.16) and (3.17) can be established using (3.2), (3.3), (3.7)-(3.10) and

(3.11).

3.2 Supplementary estimates

In the following, we focus on the complexified NSE (2.14).

We now obtain estimates for the nonlinear terms with complexified time, observ-

ing that neither relations (3.7)-(3.10) nor Lemma 3.1.1 hold in this case. We will use

the Ladyzhenskaya and Agmon inequalities as described before, noting the additional

factor 2.

∣u∣L4 ≤ 2cL∣u∣
1
2 ∣A

1
2u∣

1
2 , where u ∈ D(A

1
2 )C, (3.18)
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and

∣u∣∞ ≤ 2cA∣u∣
1
2 ∣Au∣

1
2 , where u ∈ D(A)C. (3.19)

In the present complex case, the analogue of Lemma 3.1.1 is

Lemma 3.2.1. For u ∈ D(Am)C, where m = 1, 2 or 3,

∣(B(u,u),Au)∣ ≤ 4c2
L∣u∣

1
2 ∣A

1
2u∣∣Au∣

3
2 , (3.20)

∣(B(u,u),A2u)∣ ≤ 2(2c2
L + cA)∣u∣

1
2 ∣Au∣

3
2 ∣A

3
2u∣, (3.21)

∣(B(u,u),A3u)∣ ≤ 2(2c2
L + cA)∣u∣

1
2 ∣Au∣

3
2 ∣A

5
2u∣. (3.22)

Proof. To obtain the first inequality, use L4 norms and (3.18) for the first two terms

and the L2 norm for the third term. For the second inequality, we use integration

by parts to get

∣B(u,u),A2u)∣ ≤ ∑
j=1,2

[∣(B(Dju,u),DjAu)∣ + ∣(B(u,Dju),DjAu)∣]. (3.23)

Using L4, L4, L2 and (3.18), we have

∑
j

∣(B(Dju,u),DjAu)∣ ≤ 4c2
L∣A

1
2u∣∣Au∣∣A

3
2u∣ (3.24)

and similaryly, use L∞,L2,L2 and (3.19) to obtain

∑
j

∣(B(u,Dju),DjAu)∣ ≤ 2cA∣u∣
1
2 ∣Au∣

3
2 ∣A

3
2u∣, (3.25)

for u ∈ D(A
3
2 ).

Now apply the interpolating inequality ∣A
1
2u∣ ≤ ∣Au∣

1
2 ∣u∣

1
2 in (3.24) to arrive at

13



(3.21).

For the last inequality, we use the same method as above. Integrating by parts,

using L4, L4, L2 and (3.18) for the first term on the right-hand side, and L∞, L2,

L2 and (3.19) for the second term on the right-hand side, and then interpolating, we

have

∣B(u,u),A3u)∣ ≤ ∑
j=1,2

[∣(B(Dju,u),DjA
2u)∣ + ∣(B(u,Dju),DjA

2u)∣]

≤ 4c2
L∣A

1
2u∣∣Au∣∣A

5
2u∣ + 2cA∣u∣

1
2 ∣Au∣

3
2 ∣A

5
2u∣

≤ 2(2c2
L + cA)∣u∣

1
2 ∣Au∣

3
2 ∣A

5
2u∣,

thus obtaining (3.22).

Concerning the existence of D(A
1
2 )C-valued analytic extensions of the solutions of

the NSE, one can consult Section 7 in Part I of [20] and Chapter 12 in [2]. However,

for our presentation, we need the following observations.

Remark 3.2.2. Many of the differential relations to follow are of the form

d

dρ
Φ(u(t0 + ρe

iθ)) = Ψ(u(t0 + ρe
iθ)),

where Φ(u) and Ψ(u) are explicit functions of u in a specified subspace of HC. Often

the definition of Ψ(u) involves many terms. Therefore in the sequel we will make

the following abuse of notation

d

dρ
Φ(u(t0 + ρe

iθ)) = Ψ(u).

14



Remark 3.2.3. Let m ∈ N. To solve equation (2.14) in a strip S(δm) and to insure

that u(ζ) is a D(Am/2)C-valued analytic function (equivalently, Am/2u(ζ) is HC-

valued analytic), the proof for the case m = 1 presented in [2] and [20] shows that it

suffices to establish the following fact:

For any t0 ∈ R, θ ∈ [−π4 ,
π
4 ] and solution u(ζ) of equation (2.14) in S(δm), the

solution of the equation

d

dρ
u(t0 + ρe

iθ) + ν(cos θ)Au +B(u,u) = g, g ∈ D(A
m−1
2 ) (3.26)

satisfies, for

0 ≤ ρ ≤
δm

sinπ/4
=
√

2δm,

the following conditions

u(t0 + ρe
iθ) ∈ D(A

m+1
2 )C,

and sup ∣A
m+1
2 u(t0 + ρeiθ)∣ is finite and independent of t0, ρ and θ.

This can be rigorously established with “the Galerkin approximation, for which

analyticity in time is a classical result because it is a finite-dimensional system with

a polynomial nonlinearity. The crucial part, then, is to obtain suitable a priori

estimates for the solution in a complex time region that is independent of the size

of the Galerkin approximation.”(see [9] Chapter II, Section 8, Page 63) and then

passing to the limit invoking Vitali’s Theorem.

3.3 One of the main results and its proof

Let HC be the complex Hilbert space H ⊗C = H + iH. Similarly, for any linear

subspace D of H we denote D ⊗C by DC. For δ > 0 we define, as mentioned in the

introduction, the strip

S(δ) ∶= {ζ ∈ C ∶ ∣I(ζ)∣ < δ}. (3.27)

15



Theorem 3.3.1. If 0 ∈ A, then there exists δ > 0 such that for any m ∈ N there exists

R̃m ∈ [0,∞) such that for any solution u(⋅) in A, the function A
m
2 u(ζ) is HC-valued

analytic in the strip S(δ), and ∣A
m
2 u(ζ)∣ ≤ R̃mνκm0 , where u(ζ) satisfies the NSE,

(2.14), with complexified time.

The specific form of the estimates for δ and R̃m are provided in Proposition 3.3.15

below.

Corollary 3.3.2. If 0 ∈ A, then A⋃{g} ⊂ C∞
per([0, L]

2).

Proof of Theorem 3.3.1

Using the procedure described in Remark 3.2.3, we will prove Theorem 3.3.1 by

induction on m. In order to start a uniform recurrent process we need m ≥ 3. In

the following Lemmas 3.3.3, 3.3.6 and 3.3.7 we obtain the necessary estimates for

m = 1,2,3. We stress that the case m = 1 was treated in Theorem 12.1 in [2], while the

cases m = 1,2 were already established in [4], Theorem 11.1, although with different

estimates.

The cases for m = 1

Lemma 3.3.3. If u(⋅) is a solution of the NSE in the attractor A, then

(i) u(⋅) can be extended to a D(A
1
2 )C -valued analytic function in the strip S(δ1),

where

δ1 ∶=
1

16 ⋅ 243c8
Lνκ

2
0G

4
(3.28)

and

∣A
1
2u(ζ)∣ ≤ R̃1νκ0, ∀ ζ ∈ S(δ1), (3.29)

where

R̃1 =
√

2G. (3.30)
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(ii) Moreover, defining

R2 = 2137G3c4
L, (3.31)

we have

∣Au(t)∣ ≤ R2νκ
2
0, ∀t ∈ R. (3.32)

Proof. First, according to Remark 3.2.3 to prove the statement (i) it is sufficient to

establish estimates (3.29) and (3.30) for δ1 chosen as in (3.28).

Taking the inner product of both sides in (3.26) with Au(t0 + ρeiθ), we obtain

1

2

d

dρ
∣A

1
2u(t0 + ρe

iθ)∣2 =R(eiθ(g,Au)) − ν cos θ∣Au∣2 −R(eiθ(B(u,u),Au))

≤ ∣g∣∣Au∣ −
ν
√

2
∣Au∣2 + ∣(B(u,u),Au))∣.

Using the Cauchy-Schwarz inequality and then the Young’s inequality (3.4) with

p = q = 2, for the term ∣g∣∣Au∣, we obtain

d

dρ
∣A

1
2u(t0 + ρe

iθ)∣2 +
ν
√

2
∣Au∣2 ≤

√
2
∣g∣2

ν
+ ∣2(B(u,u),Au)∣.

We use Lemma 3.2.1 for the bilinear term in the above relation to get the following

inequality

d

dρ
∣A

1
2u(t0 + ρe

iθ)∣2 +
ν
√

2
∣Au∣2 ≤

√
2
∣g∣2

ν
+ 8c2

L∣u∣
1
2 ∣A

1
2u∣∣Au∣

3
2 .

Using again Young’s inequality (3.4) with p = 4 and q = 4/3 for the last term, we

17



have

8c2
L∣u∣

1
2 ∣A

1
2u∣∣Au∣

3
2 ≤

3

4
(ν

3
4(

√
2

3
)

3
4

∣Au∣
3
2)

4
3

+
1

4
(

1

ν
3
4

(
3

√
2
)

3
4

8c2
L∣u∣

1
2 ∣A

1
2u∣)

4

,

and hence,

d

dρ
∣A

1
2u(t0 + ρe

iθ)∣2 +
ν

2
√

2
∣Au∣2 ≤

√
2
∣g∣2

ν
+

8327c8
L

ν3
√

2
∣u∣2∣A

1
2u∣4. (3.33)

From (3.1) and (3.33), we obtain

d

dρ
∣A

1
2u(t0 + ρe

iθ)∣2 ≤
√

2
∣g∣2

ν
+

8327c8
L

ν3κ2
0

√
2
∣A

1
2u∣6.

The above inequality has the form

dφ

dρ
≤ γ + βφ3, (3.34)

where

φ(ρ) ∶= ∣A
1
2u(t0 + ρe

iθ)∣2, γ =
√

2
∣g∣2

ν
, β =

243c8
L

ν3κ2
0

√
2
.

Integrating (3.34), we obtain

∫

φ(ρ)

φ(0)

dφ

(γ
1
3 + β

1
3φ)3

≤ ∫

φ(ρ)

φ(0)

dφ

(γ + βφ3)
≤ ρ,

and hence

1

2β
1
3 (γ

1
3 + β

1
3φ(0))2

−
1

2β
1
3 (γ

1
3 + β

1
3φ(ρ))2

≤ ρ. (3.35)
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Thus, if

ρ ≤
1

4β
1
3 (γ

1
3 + β

1
3φ(0))2

(3.36)

then φ(ρ) satisfies

γ
1
3 + β

1
3φ(ρ) ≤

√
2(γ

1
3 + β

1
3G2(νκ0)

2),

that is

∣A
1
2u(t0 + ρe

iθ)∣2 ≤ (
√

2 − 1)(
γ

β
)

1
3

+
√

2G2(νκ0)
2 (3.37)

≤
2

1
3 (∣g∣νκ0)

2/3

24c
8/3
L

+
√

2G2(νκ0)
2

≤ (
√

2 +
2

1
3

24
)G2(νκ0)

2 ≤ 2G2(νκ0)
2.

Note that in the third inequality above we used (3.6).

If δ1 is defined as in (3.28) and if ρ ≤
√

2δ1, then (3.36) holds. Consequently,

(3.37) also holds. That is

∣A
1
2u(t0 + ρe

iθ)∣ ≤ R̃1νκ0,

where R̃1 is defined in (3.30).

Since θ ∈ [−π4 ,
π
4 ] and t0 ∈ R are arbitrary, we infer

∣A
1
2u(ζ)∣ ≤ R̃1νκ0, for ζ ∈ S(δ1).

With this estimate, the proof of statement (i) is concluded.
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It remains to prove statement (ii). Integrating (3.33) and applying (3.6), we

obtain

ν

2
√

2
∫

√
2δ1

0
∣Au(t0 + ρe

iπ/4)∣2dρ ≤ ∣A
1
2u(t0)∣

2 + ∫

√
2δ1

0
(γ + β∣A

1
2u(t0 + ρe

iπ/4)∣6)dρ,

≤ 2G2ν2κ2
0 +

√
2γδ1 + 8

√
2G6ν6κ6

0βδ1

= [2 +
1

8 ⋅ 243c8
LG

4
+

1

2
]G2ν2κ2

0

≤ [2 +
1

8 ⋅ 243
+

1

2
]G2ν2κ2

0 ≤ 2
√

2G2ν2κ2
0,

i.e.,

∫

√
2δ1

0
∣Au(t0 + ρe

iπ/4)∣2dρ ≤ 8G2νκ2
0. (3.38)

Since Au(ζ) is an analytic function in D(t0, δ1) ∶= {s1 + is2 ∶ ∣s1 − t0∣2 + s2
2 ≤ δ2

1}, it

satisfies the mean value property

Au(t0) =
1

πδ2
1
∬

D(t0,δ1)
Au(s1 + is2)ds1ds2,

from which we deduce

∣Au(t0)∣ ≤
1

πδ2
1
∬

D(t0,δ1)
∣Au(s1 + is2)∣ds1ds2.

In order to exploit estimate (3.38), we replace the disk D(t0, δ1) by the polygon

abcdef as shown in Figure 3.1.
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Figure 3.1: Polygon abcdef

Now, by using Schwarz reflection principle (see, e.g., [12]), we obtain

∣Au(t0)∣ ≤
1

πδ2
1
∫
abcdef

∣Au(s1 + is2)∣ds1ds2

=
2

√
2πδ2

1

∫

t0+δ1

t0−2δ1
∫

√
2δ1

0
∣Au(t + ρeiπ/4)∣dρdt

≤
2

√
2πδ2

1

∫

t0+δ1

t0−2δ1
(∫

√
2δ1

0
∣Au(t + ρeiπ/4)∣2dρ)

1
2

(
√

2δ1)
1
2dt

≤
12 ⋅ 2

1
4

π
(
G2νκ2

0

δ1

)

1
2

,

that is

∣Au(t0)∣ ≤
6 ⋅ 28 ⋅ 3

√
3

2
1
4π

G3c4
Lνκ

2
0 ≤ R2νκ

2
0.

This completes the proof of the statement (ii) and Lemma 3.3.3.

Corollary 3.3.4. For all u0 ∈ A, we have

∣A
1
2u0∣ ≤ R1νκ0, R1 ∶= G, (3.39)
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and

∣Au0∣ ≤ R2νκ
2
0, (3.40)

where R2 is given in (3.31).

Proof. Let u0 ∈ A and denote by u(t), t ∈ R, the solution of the NSE satisfying

u(0) = u0. Then, according to Lemma 3.3.3, (3.32) holds; in particular, for t = 0. This

yields (3.40). The estimate (3.39) follows from (3.15) with t = 0 and t0 → −∞.

Corollary 3.3.5. If 0 ∈ A then g ∈ D(A
1
2 ), and

∣A
1
2 g∣ ≤

R̃1νκ0

δ1

, (3.41)

where δ1 and R̃1 are defined as in (3.28) and (3.30), respectively.

Proof. Let u(t), t ∈ R, be a solution of NSE such that u(0) = 0. According to

Theorem 11.1 in [4], if 0 ∈ A, then g ∈ D(A). We evaluate the NSE at t0 = 0 and

θ = 0 to obtain

du(ζ)

dζ
∣
t0=0

= g.

Since u(ζ) is a D(A
1
2 )C-valued analytic function, its derivative du(ζ)

dζ ∈ D(A
1
2 )C for all

ζ ∈ S(δ1). Thus, g ∈ D(A
1
2 ), and then from

A
1
2 g = A

1
2
du(ζ)

dζ
∣ζ=0 =

dA
1
2u(ζ)

dζ
∣ζ=0 =

1

2πi ∫∂D(0,δ)

A
1
2u(z)

z2
dz,

where δ ∈ (0, δ1), we obtain

∣A
1
2 g∣ ≤

R̃1νκ0

δ
. (3.42)

Letting δ → δ1 in (3.42), we deduce (3.41)

The case for m = 2
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Lemma 3.3.6. If 0 ∈ A and if u(t), t ∈ R, is any solution of the NSE in A, then

u(t) can be extended to a D(A)C-valued analytic function u(ζ), for ζ ∈ S(δ2), where

δ2 ∶= min

⎧⎪⎪
⎨
⎪⎪⎩

δ1,16−1 [(2c2
L + cA)

8
3 R̃

8
3
1 (
νκ2

0

8δ2
1

)
2
3 + (2c2

L + cA)
4R̃2

1R
2
2(νκ

2
0)

2]

− 1
2
⎫⎪⎪
⎬
⎪⎪⎭

, (3.43)

and δ1, R̃1 and R2 are defined in (3.28), (3.30) and (3.31), respectively. Furthermore,

∣Au(ζ)∣ ≤ R̃2νκ
2
0, for ζ ∈ S(δ2), (3.44)

where

R̃2 ∶= (
3(

√
2 ⋅ 162 ⋅ 246c16

L )2/3

4(2c2
L + cA)

4/3
G6 + 4R2

2)

1
2

. (3.45)

Proof. Applying again the short procedure in Remark 3.2.3, we take the inner prod-

uct of the NSE with the function A2u(t0 + ρeiθ) and obtain

1

2

d

dρ
∣Au(t0 + ρe

iθ)∣2 =R(eiθ(g,A2u)) − ν(cos θ)∣A
3
2u∣2 −R(eiθ(B(u,u),A2u)).

Using Corollary 3.3.5 and proceeding as in the proof of Lemma 3.3.3, we obtain

1

2

d

dρ
∣Au(t0 + ρe

iθ)∣2 ≤ ∣(A
1
2 g,A

3
2u)∣ −

ν
√

2
∣A

3
2u∣2 + ∣(B(u,u),A2u)∣.

Using Young’s inequality (3.4) with p = q = 2 for the term ∣(A
1
2 g,A

3
2u)∣, we obtain

d

dρ
∣Au(t0 + ρe

iθ)∣2 ≤
√

2
∣A

1
2 g∣2

ν
−
ν
√

2
∣A

3
2u∣2 + 2∣(B(u,u),A2u)∣.
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We use Lemma 3.2.1 to obtain

d

dρ
∣Au(t0 + ρe

iθ)∣2 ≤
√

2
∣A

1
2 g∣2

ν
−
ν
√

2
∣A

3
2u∣2 + 4(2c2

L + cA)∣u∣
1
2 ∣Au∣

3
2 ∣A

3
2u∣.

Using Young’s inequality again, we obtain

d

dρ
∣Au(t0 + ρe

iθ)∣2 +
1

2
√

2
ν∣A

3
2u∣2 ≤

√
2
∣A

1
2 g∣2

ν
+

8
√

2(2c2
L + cA)

2

ν
∣u∣∣Au∣3.

Using Poincaré’s inequality, the bound on ∣A
1
2u∣ obtained in Lemma 3.3.3 and again

Corollary 3.3.5 we obtain

d

dρ
∣Au(t0 + ρe

iθ)∣2 +
1

2
√

2
ν∣A

3
2u∣2 ≤

√
2
R̃2

1νκ
2
0

δ2
1

+ 8
√

2(2c2
L + cA)

2R̃1∣Au∣
3. (3.46)

As before, we ignore the term containing ∣A
3
2u∣2 to get the inequality

dφ2(ρ)

dρ
≤ γ2 + β2(φ2(ρ))

3
2 , (3.47)

where

φ2(ρ) = ∣Au(t0 + ρe
iθ)∣2, γ2 =

√
2
R̃2

1νκ
2
0

δ2
1

, β2 = 8
√

2(2c2
L + cA)

2R̃1.

From (3.47), we obtain the analogue of the relation (3.35), namely

2

β2((γ2/β2)
2/3 + φ2(0))

1
2

−
2

β2((γ2/β2)
2/3 + φ2(ρ))

1
2

≤ ρ.

We observe that if

ρ <
1

β2((γ2/β2)
2/3 + φ2(0))

1
2

,
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Figure 3.2: Sector in the band

then

((γ2/β2)
2/3 + φ2(ρ))

1
2 ≤ 2((γ2/β2)

2/3 + φ2(0))
1
2

and hence,

∣Au(t0 + ρe
iθ)∣2 ≤ 3(γ2/β2)

2/3 + 4∣Au(t0)∣
2.

By (3.32), we obtain

∣Au(t0 + ρe
iθ)∣2 ≤ (

3(
√

2 ⋅ 162 ⋅ 246c16
L )2/3

4(2c2
L + cA)

4/3
G6 + 4R2

2)ν
2κ4

0,

Thus, if we define δ2 by (3.43) and R̃2 by (3.45), then we obtain (3.44).

The case for m = 3

We now consider the case m = 3 after which we can proceed by induction for all

m > 3. Let δ3 = δ2/2, where δ2 is defined as in Lemma 3.3.6 and let r = (2
√

2−
√

5)δ3.

Then, given any ζ in S(δ3), there is a real t0 such that D(ζ, r) is in the sector of

D(t0,2
√

2δ3) where θ varies from −π/4 to π/4, as shown in Figure 3.2.
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Using (3.46) and the notation from (3.47) we obtain, for θ ∈ [−π/4, π/4],

ν

2
√

2
∫

2
√

2δ3

0
∣A

3
2 (t0 + ρe

iθ)∣2dρ ≤ ∣Au(t0)∣
2 + ∫

2
√

2δ3

0
(γ2 + β2∣Au∣

3)dρ (3.48)

≤ N2(νκ
2
0)

2,

where

N2 ∶= R
2
2 +

2δ2R̃2
1

δ2
1νκ

2
0

+ 16(2c2
L + cA)

2R̃1R̃
3
2δ2νκ

2
0. (3.49)

Using the mean value theorem for the analytic function A
3
2u(ζ) (as we did before

for Au(ζ)) in D(ζ, r) we obtain

∣A
3
2u(ζ)∣ ≤

1

πr2 ∬
{s1+is2∈D(ζ,r)}

∣A
3
2u(s1 + is2)∣ds1ds2

≤
1

πr2 ∫

π/4

−π/4
∫

2
√

2δ3

0
∣A

3
2u(t0 + ρe

iθ)∣ρdρdθ

≤
1

πr2 ∫

π/4

−π/4
dθ (∫

2
√

2δ3

0
∣A

3
2u(t0 + ρe

iθ)∣2dρ)

1
2

(∫

2
√

2δ3

0
ρ2dρ)

1
2

≤
1

πr2

π

2
(2

√
2N2νκ

4
0)

1
2
(2

√
2δ3)

3
2

√
3

=
4

√
3(2

√
2 −

√
5)2

N
1
2

2

ν
1
2κ2

0

δ
1
2
3

< 4N
1
2

2

ν
1
2κ2

0

δ
1
2
3

.

Now to obtain for A
3
2u(t), t ∈ R, an estimate analogous to (3.32), we use an

argument similar to that involving the polygon abcdef in the proof of Lemma 3.3.3;

we note that now the roles of δ1 and (3.38) are played by δ3 and (3.48), respectively.

In this manner, we obtain

∣A
3
2u(t)∣ ≤ R3νκ

3
0, (3.50)
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where

R3 ∶=
12

√
2

π
(
N3

δ3νκ2
0

)
1
2 , (3.51)

and

N3 ∶= R
2
2 +

2δ3R̃2
1

δ2
1νκ

2
0

+ 16(2c2
L + cA)

2R̃1R̃
3
2δ3νκ

2
0.

We sum up the results obtained above in the following

Lemma 3.3.7. If 0 ∈ A and if u(t), t ∈ R, is any solution of the NSE in A, then u(t)

can be extended to a D(A
3
2 )C-valued analytic function u(ζ), for ζ ∈ S(δ3), where

δ3 ∶=
δ2

2
, (3.52)

and δ2 is defined as in (3.43), for which the following estimates holds

∣A
3
2u(ζ)∣ ≤ R̃3νκ

3
0, for ζ ∈ S(δ3),

where

R̃3 ∶= 4
N

1
2

2

δ
1
2
3 ν

1
2κ0

, (3.53)

and N2 is defined in (3.49).

Moreover, u(t) satisfies the relation (3.50).

Remark 3.3.8. Lemmas 3.3.3, 3.3.6 and 3.3.7 establish the validity of Theorem

3.3.1 for the case m ∈ {1,2,3}.

Two lemmas

In this part we present an extension of the estimates given in Lemma 3.1.1 and

Lemma 3.2.1 to the powers Am(m ∈ N,m > 3) of A. For this purpose, we will adapt
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a method of P. Constantin (first used by W. Chen [1] to estimate ∣(B(u, v), eA
β
w)∣,

β ∈ (0,1)) to the case where Aβ is replaced by m ln(A
1/2

κ0
).

Lemma 3.3.9. Let u ∈ D(A
m
2 ), v ∈ D(A

m+1
2 ), w ∈ D(Am), and m ∈ N, m > 3, then

∣(B(u, v),Amw)∣ ≤ 2mcA (∣u∣
1
2 ∣Au∣

1
2 ∣A

1+m
2 v∣ + ∣A

m
2 u∣∣A

1
2v∣

1
2 ∣A

3
2v∣

1
2) ∣A

m
2 w∣.

Proof. Fix m ∈ N, m > 3. To simplify the exposition, we denote ũ ∶= A
m
2 u and

u ∈ D(A
m
2 ).

Then for any u ∈ D(A
m
2 ), v ∈ D(A

m+1
2 ), w ∈ D(Am), we have

∣(B(u, v),Amw)∣ ≤ L2κ1+2α
0 ∑

h,j,k∈Z2∖{0}
h+j+k=0

∣û(h)∣∣j∣∣v̂(j)∣∣ŵ(k)∣∣k∣2α

= L2κ1+m
0 ∑

h,j,k∈Z2∖{0}
h+j+k=0

∣û(h)∣∣j∣∣v̂(j)∣∣ ˆ̃w(k)∣∣k∣m

≤ L2κ1−m
0 ∑

h,j,k∈Z2∖{0}
h+j+k=0

∣ˆ̃u(h)∣∣j∣∣ˆ̃v(j)∣∣ ˆ̃w(k)∣(∣h∣ + ∣j∣)m∣h∣−m∣j∣−m

= L2κ1−m
0 ∑

h,j,k∈Z2∖{0}
h+j+k=0

∣ˆ̃u(h)∣∣j∣∣ˆ̃v(j)∣∣ ˆ̃w(k)∣em[ln(∣h∣+∣j∣)−ln ∣h∣−ln ∣j∣]

= L2κ1−m
0 ∑

h,j,k∈Z2∖{0}
h+j+k=0
∣h∣≤∣j∣

⋯+L2κ1−m
0 ∑

h,j,k∈Z2∖{0}
h+j+k=0
∣h∣>∣j∣

⋯

=∶ I1 + I2,

where the notation is self-explanatory.
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For I1, since ln(∣h∣ + ∣j∣) − ln ∣h∣ − ln ∣j∣ is decreasing with respect to ∣j∣, we have

I1 ≤ L
2κ1−m

0 ∑
h,j,k∈Z2∖{0}
h+j+k=0
∣h∣≤∣j∣

∣ˆ̃u(h)∣∣j∣∣ˆ̃v(j)∣∣ ˆ̃w(k)∣em[ln 2−ln ∣h∣]

= L2κ0 ∑
h,j,k∈Z2∖{0}
h+j+k=0
∣h∣≤∣j∣

∣û(h)∣∣j∣∣ˆ̃v(j)∣∣ ˆ̃w(k)∣em ln 2

≤ 2mL2κ0 ∑
h,j,k∈Z2∖{0}
h+j+k=0

∣û(h)∣∣j∣∣ˆ̃v(j)∣∣ ˆ̃w(k)∣.

By estimating I2 in a same way, we obtain

∣(B(u, v),Amw)∣ ≤ 2mL2κ0 ∑
h,j,k∈Z2∖{0}
h+j+k=0

[∣û(h)∣∣j∣∣ˆ̃v(j)∣ + ∣ˆ̃u(h)∣∣j∣∣v̂(j)∣]∣ ˆ̃w(k)∣.

We define the auxiliary functions U and Ũ by U ∶= ∑k∈Z2∖{0} ∣û(k)∣e
iκ0k⋅x and

Ũ ∶= ∑k∈Z2∖{0} ∣
ˆ̃u(k)∣eiκ0k⋅x and in a similar way, the functions V, Ṽ ,W, W̃ .Then we

have that

∣(B(u, v),Amw)∣ ≤ 2m∫
[0,L]2

[(U ⋅ (−∆)
1
2 Ṽ ) + (Ũ ⋅ (−∆)

1
2V )]W̃d2x

≤ 2m[∣U ∣L∞ ∣(−∆)
1
2 Ṽ ∣L2 + ∣Ũ ∣L2 ∣(−∆)

1
2V ∣L∞]∣W̃ ∣L2

Using Agmon’s inequality, we obtain

∣(B(u, v),Amw)∣ ≤2mcA[∣U ∣
1
2

L2 ∣(−∆)U ∣
1
2

L2 ∣(−∆)
1
2 Ṽ ∣L2

+ ∣Ũ ∣L2 ∣(−∆)
1
2V ∣

1
2

L2 ∣(−∆)
3
2V ∣

1
2

L2]∣W̃ ∣L2

=2mcA (∣u∣
1
2 ∣Au∣

1
2 ∣A

1+m
2 v∣ + ∣A

m
2 u∣∣A

1
2v∣

1
2 ∣A

3
2v∣

1
2) ∣A

m
2 w∣.
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Lemma 3.3.10. Let u ∈ D(A
m
2 )C, v ∈ D(A

m+1
2 )C, w ∈ D(Am)C and m > 3, then

∣(B(u, v),Amw)∣ ≤ 2m+
3
2 cA (∣u∣

1
2 ∣Au∣

1
2 ∣A

1+m
2 v∣ + ∣A

m
2 u∣∣A

1
2v∣

1
2 ∣A

3
2v∣

1
2) ∣A

m
2 w∣.

The proof of Lemma 3.3.10 is omitted since it is similar to the one above, and

the only difference is in the constant.

Induction for m ≥ 3

The standing assumption in this part is that 0 ∈ A.

Under this assumption we will obtain, for all m > 3 and for any solution u(t),

t ∈ R, in A, estimates of the form

∣A
m
2 u(t)∣ ≤ Rmνκ

m
0 , for t ∈ R, (3.54)

and for its analytic extension

∣A
m
2 u(ζ)∣ ≤ R̃mνκ

m
0 , for ζ ∈ S(δ), (3.55)

where δ = δ3 (see (3.52)).

Note that (3.54), (3.55) were already established for m = 1,2,3 in Section 5. For

the values of Rm, R̃m see (3.30), (3.31), (3.45), (3.51), (3.53). Therefore we will

assume that (3.54) and (3.55) are valid for some m ∈ N,m ≥ 3 and prove by induction

(starting with m = 3) that they are also valid for m + 1.

For this we need the following

30



Lemma 3.3.11. Assume 0 ∈ A, then

g ∈ D(A
m
2 ),

and

Gm+1 ∶=
∣A

m
2 g∣

ν2κm+2
0

≤
R̃m

νκ2
0δ
. (3.56)

Proof. Let u(t) be the solution of the NSE satisfying u(0) = 0 and let u(ζ) be its

D(A
m
2 )C-analytic extension in S(δ). Then we have g = du

dt ∣t=0 ∈ D(A
m
2 ), and since

u(ζ) satisfies (3.55) for t ∈ R, also that

∣A
m
2
du(ζ)

dζ
∣ζ=t∣ = ∣

1

2πi ∫∣ξ−t∣=δ

A
m
2 u(ξ)

(ξ − t)2
dξ∣ ≤

R̃mνκm0
δ

,

for t ∈ R, in particular t = 0. Therefore, Gm+1 ≤
R̃m
νκ20δ

.

Lemma 3.3.12. Let u(t), t ∈ R, be any solution of the NSE in A. If u(t) satisfies

(3.54), and its analytic extension satisfies (3.55) for some m ≥ 3, then (3.54) also

holds for m + 1, i.e.

∣A
m+1
2 u(t)∣ ≤ Rm+1νκ

m+1
0 , ∀ t ∈ R, (3.57)

provided Rm+1 is defined by

R2
m+1 ∶=

36

π2
(

1

δνκ2
0

+
4

ν2κ4
0δ

2
+ 2

√
2Γm) R̃2

m, (3.58)

where Γm is given in (3.61) and (3.63), below.

Remark 3.3.13. From the definition of δ (see (3.52), (3.43), (3.28)) and assumption

(3.6), one easily obtains that 1 ≥ δνκ2
0, which implies that

R2
m+1 > R̃

2
m. (3.59)
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Proof of Lemma 3.3.12. Let t0 ∈ R be arbitrary and ρ ∈ [0,
√

2δ).

Once again, we follow the procedure outlined in Remark 3.2.3. So, taking inner

product in both sides of (3.26) with Amu, we get

1

2

d

dρ
∣A

m
2 u(t0 + ρe

iθ)∣2 ≤ ∣(g,Amu)∣ − ν cos θ∣A
m+1
2 u∣2 + ∣(B(u,u),Amu)∣.

For m = 3, since

(B(u,u),A3u) = ∑
j=1,2

[(B(Dju,u),DjA
2u) + (B(u,Dju),DjA

2u)]

= ∑
j=1,2

[−(B(DjDju,u),A
2u) − 2(B(Dju,Dju),A

2u) − (B(u,DjDju),A
2u)],

we have

∣(B(u,u),A3u)∣ ≤4c2
L∣A

1
2u∣

1
2 ∣Au∣∣A

3
2u∣

1
2 ∣A2u∣ + 8c2

L∣A
1
2u∣

1
2 ∣A

3
2u∣

1
2 ∣Au∣∣A2u∣

+ 4c2
L∣u∣

1
2 ∣A

1
2u∣

1
2 ∣A

3
2u∣

1
2 ∣A2u∣

3
2

≤16c2
L∣u∣

1
2 ∣A

1
2u∣

1
2 ∣A

3
2u∣

1
2 ∣A2u∣

3
2

≤
16c2

L

κ
1/2
0

∣A
1
2u∣∣A

3
2u∣

1
2 ∣A2u∣

3
2 ,

and consequently

1

2

d

dρ
∣A

3
2u(t0 + ρe

iθ)∣2 +
3ν cos θ

4
∣A2u∣2 ≤

1

ν cos θ
∣Ag∣2 + ∣(B(u,u),A3u)∣ (3.60)

≤
∣Ag∣2

ν cos θ
+

1

4
((

3

ν cos θ
)3/4 16c2

L

κ
1
2
0

∣A
1
2u∣∣A

3
2u∣

1
2 ∣)4 +

3

4
((
ν cos θ

3
)3/4∣A2u∣

3
2 )4/3

≤
∣Ag∣2

ν cos θ
+

33 ⋅ 2
31
2 c8

L

ν3κ2
0

∣A
1
2u∣4∣A

3
2u∣2 +

ν cos θ

4
∣A2u∣2.
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It follows that

1

2

d

dρ
∣A

3
2u(t0 + ρe

iθ)∣2 +
1

2
ν cos θ∣A2u∣2 ≤

2

ν
√

2
∣Ag∣2 + Γ3νκ

2
0∣A

3
2u∣2,

where

Γ3 ∶= 33 ⋅ 2
31
2 c8

LR̃
2
1. (3.61)

For m > 3, by Young’s inequality and Lemma 3.3.10, we obtain

1

2

d

dρ
∣A

m
2 u(t0 + ρe

iθ)∣2 +
3

4
ν cos θ∣A

m+1
2 u∣2 (3.62)

≤
1

ν cos θ
∣A

m−1
2 g∣2 + 2m+

3
2 cA∣u∣

1
2 ∣Au∣

1
2 ∣A

1+m
2 u∣∣A

m
2 u∣

+ 2m+
3
2 cA∣A

1
2u∣

1
2 ∣A

3
2u∣

1
2 ∣A

m
2 u∣2,

and

1

2

d

dρ
∣A

m
2 u(t0 + ρe

iθ)∣2 +
1

2
ν cos θ∣A

m+1
2 u∣2

≤
1

ν cos θ
∣A

m−1
2 g∣2 +

1

ν cos θ
(2m+

3
2 cA∣u∣

1
2 ∣Au∣

1
2 ∣A

m
2 u∣)

2

+ 2m+
3
2 cA∣A

1
2u∣

1
2 ∣A

3
2u∣

1
2 ∣A

m
2 u∣2

≤
1

ν cos θ
∣A

m−1
2 g∣2 + (

{2m+
3
2 cA}2

ν cos θ
R̃1νR̃2νκ

2
0 + 2m+

3
2 cA

√

R̃1νκ0R̃3νκ3
0) ∣A

m
2 u∣2

≤
2

ν
√

2
∣A

m−1
2 g∣2 + Γmνκ

2
0∣A

m
2 u∣2,

where

Γm ∶= 2m+
3
2 cA[2

m+2cAR̃1R̃2 +

√

R̃1R̃3]. (3.63)
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Since cos θ ≥
√

2
2 , for θ ∈ [−π/4, π/4], we obtain

1

2

d

dρ
∣A

m
2 u(t0 + ρe

iθ)∣2 + ν

√
2

4
∣A

m+1
2 u(ζ)∣2 ≤

√
2

ν
∣A

m−1
2 g∣2 + νκ2

0Γm∣A
m
2 u∣2. (3.64)

It follows that

ν

√
2

2 ∫

√
2δ

0
∣A

m+1
2 u(t0 + ρe

iθ)∣2dρ ≤∣A
m
2 u(t0)∣

2 +
4δ

ν
∣A

m−1
2 g∣2

+ 2νκ2
0Γm∫

√
2δ

0
∣A

m
2 u(ζ)∣2∣ζ=t0+ρeiθdρ

≤R2
mν

2κ2α
0 + 4δG2

mν
3κ

2(m+1)
0 + 2νκ2

0Γm
√

2δR̃2
mν

2κ2α
0

and

∫

√
2δ

0
∣A

m+1
2 u(t0 + ρe

iθ)∣2dρ ≤
√

2R2
mνκ

2α
0 + 4

√
2δG2

mν
2κ

2(m+1)
0 + 4ΓmδR̃

2
mν

2κ
2(m+1)
0

=∶ Nm.

Since u(ζ) is D(A
m
2 )C-valued analytic in S(δ), we obtain (as we have done in the
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proof of Lemma 3.3.3) the following successive relations

∣A
m+1
2 u(t0)∣ = ∣

1

πδ2 ∬D(t0,δ)
A

m+1
2 u(ζ)dI(ζ)dR(ζ)∣

≤
1

πδ2 ∬D(t0,δ)
∣A

m+1
2 u(ζ)∣dI(ζ)dR(ζ)

≤
1

πδ2 ∬abcdef
∣A

m+1
2 u(ζ)∣dI(ζ)dR(ζ)

=
2

√
2πδ2 ∫

t0+δ

t0−2δ
dt∫

√
2δ

0
∣A

m+1
2 u(ζ)∣∣ζ=τeiπ/4+tdτ

≤
2

√
2πδ2 ∫

t0+δ

t0−2δ
dt(∫

√
2δ

0
∣A

m+1
2 u(ζ)∣2∣ζ=τeiπ/4+tdτ)

1
2

(
√

2δ)
1
2

≤
2

√
2πδ2

3δ(Nm

√
2δ)

1
2

=
6 ⋅ 2

1
4

√
2π

(
Nm

δ
)

1
2 ,

that is, using (3.56),

∣A
m+1
2 u(t0)∣

2 ≤
18

√
2

π2

Nm

δ

=
18

√
2

π2
(

√
2R2

mνκ
2α
0

δ
+ 4

√
2G2

mν
2κ

2(m+1)
0 + 4ΓmR̃

2
mν

2κ
2(m+1)
0 )

≤
36

π2
ν2κ

2(m+1)
0 (

R2
m

δνκ2
0

+ 4
R̃2
m−1

ν2κ4
0δ

2
+ 2

√
2ΓmR̃

2
m)

≤
36

π2
ν2κ

2(m+1)
0 (

1

δνκ2
0

+
4

ν2κ4
0δ

2
+ 2

√
2Γm) R̃2

m

= R2
m+1ν

2κ
2(m+1)
0 ,

where Rm+1 is defined in (3.58).

We conclude the proof by observing that t0 ∈ R is arbitrary.

We next extend the result in Lemma 3.3.12 to the strip S(δ).

Lemma 3.3.14. If 0 ∈ A and if the solution u(t), t ∈ R, of the NSE in A satisfies
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(3.54), (3.55) for m, then u(ζ) is a D(A
m+1
2 )C-valued analytic function, and (3.55)

also holds for m + 1. In particular, we have

∣A
m+1
2 uκ(ζ)∣ ≤ R̃m+1νκ

m+1
0 , ∀ ζ ∈ S(δ),

where

R̃2
m+1 ∶= β

Γm+1
36

√
2

π2
Γm(1 + εm)R̃2

m, (3.65)

β ∶= e2
√

2δνκ20 , (3.66)

εm =
1

2
√

2Γmδνκ2
0

+

√
2

Γmν2κ4
0δ

2
+

π2

72ν2κ4
0δ

4ΓmΓm+1

, (3.67)

and Γm is defined in (3.63).

Moreover, the following inequality holds

R̃2
m+1 > R

2
m+1.

Proof. Let t0 ∈ R be arbitrary and ρ ∈ [0,
√

2δ). By virtue of Remarks 3.2.3, we can

assume that u(ζ) is D(A
m+1
2 )C-valued analytic. Taking the inner product of (2.14)

with Am+1u, as in the proof of Lemma 3.3.12, we get

1

2

d

dρ
∣A

m+1
2 u(t0 + ρe

iθ)∣2 + ν

√
2

4
∣A

m+2
2 u(ζ)∣2 (3.68)

≤

√
2

ν
∣A

m
2 g∣2 + νκ2

0Γm+1∣A
m+1
2 u∣2,

where the Lemma 3.3.11 is used.
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It follows that

d

dρ
∣A

m+1
2 u(t0 + ρe

iθ)∣2 ≤
4

ν
√

2
∣A

m
2 g∣2 + 2νκ2

0Γm+1∣A
m+1
2 u∣2.

Since ρ ∈ [0,
√

2δ), we have, by (3.56),

∣A
m+1
2 u(ζ)∣2∣ζ=t0+ρeiθ ≤ e

2νκ20Γm+1ρ∣A
m+1
2 u(t0)∣

2 +

4
ν
√

2
∣A

m
2 g∣2

2νκ2
0Γm+1

(e2νκ20Γm+1ρ − 1)

≤ e2νκ20Γm+1ρ [∣A
m+1
2 u(t0)∣

2 +

√
2∣A

m
2 g∣2

ν2κ2
0Γm+1

]

≤ e2
√

2δνκ20Γm+1 [R2
m+1ν

2κ
2(m+1)
0 +

√
2

Γm+1

G2
m+1ν

2κ2α+2
0 ]

≤ βΓm+1 {
36

π2
[

1

δνκ2
0

+
4

ν2κ4
0δ

2
+ 2

√
2Γm] +

√
2

ν2κ4
0δ

2Γm+1

} R̃2
mν

2κ2α+2
0

= βΓm+1
72

√
2

π2
Γm(1 + εm)R̃2

mν
2κ2α+2

0

=∶ R̃2
m+1ν

2κ2α+2
0 ,

where

R̃2
m+1 ∶= β

Γm+1
72

√
2

π2
Γm(1 + εm)R̃2

m. (3.69)

While (3.69) shows that R̃m increases with m, the next result provides an explicit

upper bound.

Proposition 3.3.15. For m > 3,

R̃2
m+1 ≤ C(g)β1

4m+1

β
(m+1)2+ 9

2
(m+1)

2 ,
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where

C1 ∶=
∞

∏
m=3

(1 + εm), C3 ∶= 4[2
5
2 c2
AR̃1R̃2 + 2

1
2 cA

√

R̃1R̃3],

C2 ∶= 332−7c8
LR̃

2
1

∞

∏
γ=3

(1 + ηγ), ηγ =

√
R̃1R̃3

2γ+2cAR̃1R̃2

,

β1 ∶= β
C3 , β2 ∶= max{

72
√

2

π2
, c2
AR̃1R̃2},

C(g) ∶= C1C2R̃
2
3β

−19/2
2 ,

where β and εm are defined in (3.66) and (3.67), respectively.

Proof. Since ∑
∞
m=3 εm is convergent, we have C1 ∶= ∏

∞
m=3(1 + εm) < ∞. Due to the

definition of Γm in (3.63), we have

m

∏
γ=3

Γγ = 332
31
2 c8

LR̃
2
1

m

∏
γ=4

22γ+7/2(c2
AR̃1R̃2)

⎛

⎝
1 +

√
R̃1R̃3

2γ+2cAR̃1R̃2

⎞

⎠

=∶ 332
31
2 c8

LR̃
2
1

m

∏
γ=4

22γ+7/2(c2
AR̃1R̃2)[1 + ηγ]

= 332
31
2 c8

LR̃
2
12m

2+ 9
2
m− 45

2 (c2
AR̃1R̃2)

m−3
m

∏
γ=4

[1 + ηγ]

< 332−7c8
LR̃

2
12m

2+ 9
2
m(c2

AR̃1R̃2)
m−3

∞

∏
γ=4

[1 + ηγ]

=∶ 2m
2+ 9

2
m(c2

AR̃1R̃2)
m−3C2,
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and

m+1

∑
γ=4

Γγ =
m+1

∑
γ=4

[22γ+7/2c2
AR̃1R̃2 + 2γ+

3
2 cA

√

R̃1R̃3]

= 27/2c2
AR̃1R̃2

m+1

∑
γ=4

22γ + 2
3
2 cA

√

R̃1R̃3

m+1

∑
γ=4

2γ

= 27/2c2
AR̃1R̃2

4m+2 − 44

3
+ 2

3
2 cA(2

m+2 − 24)

√

R̃1R̃3

≤ (2
5
2 c2
AR̃1R̃2 + 2

1
2 cA

√

R̃1R̃3)4m+2

=∶ C34m+1.

It follows from the recursion relation (3.69) that

R̃2
m+1 ∶= β

Γm+1
72

√
2

π2
Γm(1 + εm)R̃2

m

= β∑
m+1
γ=4 Γγ(

72
√

2

π2
)m−2

m

∏
γ=3

Γγ
m

∏
γ=3

(1 + εγ)R̃
2
3

≤ βC34m+1

(
72

√
2

π2
)m−22m

2+ 9
2
m(c2

AR̃1R̃2)
m−3C2C1R̃

2
3

≤ βC34m+1

C2C1R̃
2
3 max{

72
√

2

π2
,2, c2

AR̃1R̃2}
m2+ 13

2
m−5

=∶ C(g)β1
4m+1

β
(m+1)2+ 9

2
(m+1)

2 .

Remark 3.3.16. Theorem 3.3.1 is now a direct consequence of Lemmas 3.3.3, 3.3.6,

3.3.7, 3.3.14 and Proposition 3.3.15.

3.4       The class C(σ)

The estimates for {∣A
m
2 u(t)∣, t ∈ R} can be slightly improved by shrinking the

width δm of the strip S(δm) in the induction argument for m > 3.

39



Theorem 3.4.1. Let 0 ∈ A and let

δm+1 ∶=
3

4
δm

for m ∈ N,m ≥ 3. Then for any solution in u(t) ∈ A, t ∈ R, one has

∣A
m+1
2 u(ζ)∣ ≤ R̃m+1νκ

m+1
0 , ∀ ζ ∈ S(δm+1), (3.70)

for all m ≥ 3, where the constants R̃m+1,m ≥ 3, are redefined in the following way

R̃2
m+1 ∶=

1024
√

2

π2
Γm(1 + ξm)R̃2

m, (3.71)

with

ξm =
1

4
√

2νκ2
0δm+1Γm

+
1

√
2ν2κ4

0δmδm+1Γm
.

Furthermore, we have the following estimate

R̃2
m+1 ≤ C̃(g)β

3
2
(m+1)2

3 , (3.72)

where

β3 ∶= max(
1024

√
2

π2
, c2
AR̃1R̃2), C̃(g) ∶= C2C4R̃

2
3β

−3/8
3 ,

and

C4 ∶=
∞

∏
γ=3

(1 + ξγ).

Proof. As done in the proof of Lemma 3.3.7, we can easily prove that under the new

definition (3.71), the relation (3.70) is true.
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Then, we obtain (as in the proof of Proposition 3.3.15)

R̃2
m+1 ∶=

1024
√

2

π2
Γm(1 + ξm)R̃2

m

< (
1024

√
2

π2
)m−2R̃2

3

m

∏
γ=3

Γγ
∞

∏
γ=3

(1 + ξγ)

≤ (
1024

√
2

π2
)m−32m

2+ 9
2
m(c2

AR̃1R̃2)
m−2C2C4R̃

2
3

≤ C̃(g)β
3
2
(m+1)2

3 .

The estimates in Theorem 3.4.1 identify the role of the subset of C∞
per([0, L]

2)∩H

defined below (see [6] for more details).

Definition 3.4.2.

C(σ) ∶= {u ∈ C∞
per([0, L]

2) ∩H ∶ ∃ c0 = c0(u) ∈ R such that
∣A

m
2 u∣2

ν2κ2m
0

≤ c0e
σm2

,m ∈ N}.

Remark 3.4.3. The main conclusion of Theorem 3.4.1 can be given in the following

succinct formulation

0 ∈ A⇒ A ⊂ C(
3

2
lnβ3),

where 3
2 lnβ3 = O(lnG).

Remark 3.4.4. An equivalent definition of the class C(σ) is

C(σ) = {u ∈ C∞([0, L]2) ∩H ∶ ∣u∣Cσ ∶= sup{∣A
m
2 u∣e−

σ
2
m2

,m ∈ N} <∞}. (3.73)

It is easy to check that u↦ ∣u∣Cσ is a norm on C(σ). Obviously, C(σ) equipped with

this norm is a Banach space.
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Moreover, Theorem 3.4.1 has the following corollary

Corollary 3.4.5. If 0 ∈ A, then g ∈ C(5
2 lnβ3), where 5

2 lnβ3 = O(lnG).

Proof. Since δm = 1
2m−3 δ3 >

1
2m δ3, by (3.56) and (3.72) we get

∣A
m
2 g∣ ≤ R̃mνκ

m
0

2m

δ3

≤ R̃mνκ
m
0

βm3
δ3

≤
R̃mνκm0

δ3β
− 1

2
3

β
1
2
m2

3 .

and then

∣A
m
2 g∣2

ν4κ2α+4
0

≤
C̃(g)

ν2κ4
0δ

2
3β

−1
3

β
5
2
m2

3 ,

where both sides are dimensionless.

Consequently, it follows that

g ∈ C(
5

2
lnβ3).
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4. ON AN EXPLICIT CRITERION FOR ZERO BEING IN THE GLOBAL

ATTRACTOR∗

One conjecture proposed by P. Constantin is that, zero is in the global attractor

A of the 2D NSE if and only if the force g is zero. In this chapter, we will focus on

discussing if it is possible that the immobile fluid is in the global attractor of the 2D

NSE if the body force is not potential.

.

4.1 Constantin-Chen Gevrey classes

We first define the general Constantin-Chen Gevrey (CCG) classes [1].

Given a function φ(χ) with the following properties:

φ′(χ) > 0,

φ′′(χ) < 0,

for all χ ∈ [1,∞), we define the general Constantin-Chen Gevrey (CCG) class E(φ)

as the collection of all u ∈ C∞([0, L]2) ∩H for which ∣eφ(κ
−1
0 A

1
2 )u∣ is finite, that is,

Definition 4.1.1. E(φ) = {u ∈H ∶ ∣eφ(κ
−1
0 A

1
2 )u∣ <∞},

where

(eφ(κ
−1
0 A

1
2 )u)̂(k) ∶= eφ(∣k∣)û(k), ∀k ∈ Z2 ∖ {0}.

A typical example of a CCG class is φ̃(χ) = β lnχ, for β > 0. Actually, E(φ̃) =

∗Part of this section is reproduced from “On whether zero is in the global attractor of the 2D
Navier-Stokes equations” by C. Foias, M. S. Jolly, Y. Yang and B. Zhang, Nonlinearity, Volume 27
(2014), no. 11, 2755 [8], IOP Publishing. Reproduced with permission. All rights reserved.
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H ∩D(Aβ/2). The proofs of the two estimates for the bilinear term ∣(B(u, v),Aγw)∣

given in previous chapter is based on this typical CCG class.

In this section we will investigate the relation between the class C(σ) and E(φb),

where

φb(χ) = b[ln(χ + e)]
2, b > 0. (4.1)

For convenience, we take the following notation

Definition 4.1.2. For b > 0, we define Eb ∶= E(φb), Ebu ∶= eφb(κ
−1
0 A1/2)u, ∣u∣b ∶= ∣Ebu∣.

Theorem 4.1.3. If v ∈H satisfies

∣eb(ln(κ
−1
0 A

1
2 +a))2v∣ <∞, a ≥ e, b > 0 (4.2)

then

v ∈ C(
1

2b
). (4.3)

Proof. Noting the following relation

∣A
α
2 v∣ =∣A

α
2 e−b(ln(κ

−1
0 A

1
2 +a))2eb(ln(κ

−1
0 A

1
2 +a))2v∣

≤∣A
α
2 e−b(ln(κ

−1
0 A

1
2 +a))2 ∣op∣e

b(ln(κ−10 A
1
2 +a))2v∣,

since

∣A
α
2 e−b(ln(κ

−1
0 A

1
2 +a))2u∣2 = ∑

k∈Z2∖{0}

∣k∣2αe−2b(ln(∣k∣+a))2 ∣û(k)∣2

≤ sup
k∈Z2∖{0}

∣k∣2αe−2b(ln(∣k∣+a))2
∑

k∈Z2∖{0}

∣û(k)∣2

= sup
k∈Z2∖{0}

∣k∣2αe−2b(ln(∣k∣+a))2 ∣u∣2,
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we obtain that

∣A
α
2 e−b(ln(κ

−1
0 A

1
2 +a))2 ∣2op ≤ sup

k∈Z2∖{0}

∣k∣2αe−2b(ln(∣k∣+a))2

≤ sup
k∈Z2∖{0}

(∣k∣ + a)2αe−2b(ln(∣k∣+a))2

≤ sup
1+a≤x

e2α lnxe−2b(lnx)2 = e
α2

2b .

and (4.3) follows from Definition 3.4.2.

Remark 4.1.4. Using Theorem 4 in [15], it is easy to verify that if Gs([0, L]2)

denotes the Gevrey class s (s > 0, defined in [15]; see also [18]), then the following

relation holds

⋃
s>0

Gs([0, L]2) ⊂ ⋂
σ>0

C(σ) .

The “reverse” inclusion relation between the classes Eb and C(σ) is given in

Theorem 4.1.6.

Proposition 4.1.5. If u ∈ C(σ) for some σ > 0, i.e.,

∃ c0 > 0, s.t. ∣A
α
2 u∣2 ≤ c0e

σα2

(νκα0 )
2, ∀α ∈ N, (4.4)

then for fixed ε ∈ [0,1], there exists b ∶= 1
24+2εσ such that

∣eb[ln(κ
−1
0 A1/2+e)]1+εu∣ <∞. (4.5)

In particular, we have

∣eb[ln(κ
−1
0 A1/2+e)]1+εu∣2 ≤

4

3
c(ε)∣u∣2 + c

1
3
0 (c1∣A

1
2u∣)

2
3ν

4
3κ

− 2
3

0 , (4.6)
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where

c(ε) ∶= e2b[ln(e2+e)]1+ε , c1 = ∑
m≥2

1

em
=

1

e2 − e
.

Proof. First, by the definition of eφ(A
1/2)u, we have

∣eb[ln(κ0A
1/2+e)]1+εu∣2 =

∞

∑
m=0

∑
em≤∣k∣<em+1

e2b[ln(∣k∣+e)]1+ε ∣û(k)∣2

= ∑
m=0,1

+∑
m≥2

=∶ I1 + I2.

For I1, it is easy to see that

I1 = ∑
m=0,1

∑
em≤∣k∣<em+1

e2b[ln(∣k∣+e)]1+ε ∣û(k)∣2

≤e2b[ln(e2+e)]1+ε
∑

k∈Z2∖{0}

∣û(k)∣2

=e2b[ln(e2+e)]1+ε ∣u∣2

=c(ε)∣u∣2 <∞,

while for I2, using the definition of the class C(σ) and Young’s inequality we can
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infer

I2 =∑
m≥2

∑
em≤∣k∣<em+1

e2b[ln(∣k∣+e)]1+ε ∣û(k)∣2

=∑
m≥2

∑
em≤∣k∣<em+1

(∣k∣ + e)2b[ln(∣k∣+e)]ε ∣û(k)∣2

≤∑
m≥2

∑
em≤∣k∣<em+1

(∣k∣ + e)2b(m+2)ε ∣û(k)∣2

≤∑
m≥2

∑
em≤∣k∣<em+1

∣k∣4b(m+2)ε ∣û(k)∣2

=∑
m≥2

∣Ab(m+2)ε(Pm+1 − Pm)u∣2κ
−4b(m+2)ε

0

≤∑
m≥2

∣A2b(m+2)εu∣∣(Pm+1 − Pm)u∣κ
−4b(m+2)ε

0

≤ν ∑
m≥2

c
1/2
0 e

σ
2

16b2(m+2)2ε ∣(Pm+1 − Pm)u∣

≤ν ∑
m≥2

c
1/2
0 e23+2εσb2m2ε

∣(Pm+1 − Pm)u∣
1
2 ∣(Pm+1 − Pm)u∣

1
2

≤ν (∑
m≥2

c2
0e

25+2εσb2m2ε

∣(Pm+1 − Pm)u∣2)

1/4

(∑
m≥2

∣(Pm+1 − Pm)u∣2/3)

3/4

=∶νI
1/4
21 I

3/4
22
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We now derive estimates for I21 and I22. For I21, we obtain

I21 =∑
m≥2

c2
0e

25+2εσb2m2ε

∣(Pm+1 − Pm)u∣2

≤∑
m≥0

c2
0e

25+2εσb2m2ε

∣(Pm+1 − Pm)u∣2

=∑
m≥0

c2
0e

25+2εσb2m2ε

∑
em≤∣k∣<em+1

∣û(k)∣2

≤c2
0 ∑
m≥0

∑
em≤∣k∣<em+1

e25+2εσb2[ln(∣k∣+e)]2ε ∣û(k)∣2

≤c2
0 ∑
m≥0

∑
em≤∣k∣<em+1

e25+2εσb2[ln(∣k∣+e)]1+ε ∣û(k)∣2,

since

2ε ≤ 1 + ε, i.e., ε ≤ 1.

Defining b as

24+2εσb = 1, i.e., b =
1

24+2εσ
,

we immediately get

I21 ≤c
2
0 ∑
m≥0

∑
em≤∣k∣<em+1

e2b[ln(∣k∣+e)]1+ε ∣û(k)∣2

=c2
0∣e

b[ln(κ0A
1/2+e)]1+εu∣2.
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For I22, we set v = A1/2u and apply Hölder’s inequality as follows:

I22 =∑
m≥2

∣(Pm+1 − Pm)u∣2/3

=∑
m≥2

∣A−1/2(Pm+1 − Pm)A1/2u∣2/3

=∑
m≥2

⎛

⎝
∑

em≤∣k∣<em+1

1

κ2
0∣k∣

2
∣v̂(k)∣2

⎞

⎠

1/3

≤
1

κ
2/3
0

∑
m≥2

1

e2m/3

⎛

⎝
∑

em≤∣k∣<em+1

∣v̂(k)∣2
⎞

⎠

1/3

≤
1

κ
2/3
0

(∑
m≥2

1

em
)

2/3
⎛

⎝
∑
m≥2

∑
em≤∣k∣<em+1

∣v̂(k)∣2
⎞

⎠

1/3

≤(c1
∣A1/2u∣

κ0

)

2/3

<∞.

Therefore, we have

∣eb[ln(κ
−1
0 A1/2+e)]1+εu∣2 ≤I1 + I2

≤I1 + I
1/4
21 I

3/4
22 ν

=I1 + (∣eb[ln(A
1/2+e)]1+εu∣2)1/4c

1/2
0 νI

3/4
22

≤I1 +
1

4
∣eb[ln(A

1/2+e)]1+εu∣2 +
3

4
c

2/3
0 ν4/3I22,

and then

∣eb[ln(κ
−1
0 A1/2+e)]1+εu∣2 ≤

4

3
I1 + c

2/3
0 I22

≤
4

3
c(ε)∣u∣2 + (c0c1)

2/3ν4/3κ
−2/3
0 ∣A1/2u∣2/3.
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By the proceeding proposition, taking ε = 1 we obtain the following.

Theorem 4.1.6. If u ∈ C(σ), then u ∈ Eb, where b ∶= 1
64σ .

Combining Corollary 3.4.5 and Theorem 4.1.6, we obtain the following result.

Corollary 4.1.7. If 0 ∈ A, then g ∈ Eb, where b = 1
160 lnβ3

.

4.2 The topological properties of the class C(σ)

In this section we use the space F ∶= C∞ ∩H with the Fréchet topology defined

by the following metric

d(u, v) ∶=
∞

∑
α=1

1

2α
∣A

α
2 (u − v)∣

1 + ∣A
α
2 (u − v)∣

. (4.7)

Let

Eb,n ∶= {u ∈ Eb, ∣u∣b ≤ n}. (4.8)

Lemma 4.2.1. Eb,n is nowhere dense in (F , d).

Proof. First, we prove ib ∶ Eb,n → (F , d) is compact. Clearly, for all α ∈ N, there exist

a constant cα such that

∣A
α
2 u∣ ≤ cα∣u∣b. (4.9)

For any sequence {un} ⊂ Eb,n, we have that {∣A
α
2 un∣} is bounded by (4.9). Therefore,

there exists a subsequence {unm} which is convergent in D(A
α−1
2 ). Since this is true

for any fixed α ∈ N, by the diagonal process, we obtain a subsequence, denoted by

the same notation {unm} for convenience, which is convergent for any α ∈ N. Hence

it is convergent in C∞ with the metric d(⋅, ⋅). Therefore, ib is compact. Then, it

follows that ib(Eb,n) is compact in (F , d).

Secondly, suppose ib(Eb,n) is not nowhere dense. Then there exists a ballB(x0, ε) ⊂

ib(Eb,n). Clearly, B(x0, ε) is compact.
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If x0 = 0, this contradicts the extension of the classical Riesz’s Lemma for normed

spaces to locally convex topological vector space, since C∞ is infinite-dimensional

space.

If x0 ≠ 0, consider a convex open neighborhood Nx0 ⊂ B(x0, ε). We have that

Nx0 and −Nx0 both are compact and convex. Let f ∶ Nx0 × (−Nx0) ∋ (x1, x2) ↦

x1+x2
2 ∈ C∞ ∩ H. Clearly, f is continuous. Therefore the range R(f) is compact.

Since 1
2(Nx0 + (−Nx0)) is an open neighborhood of 0 in R(f). For the same reason

as above, we get a contradiction.

Due to the above lemma, it follows that

Theorem 4.2.2. ∪∞m=1 ∪
∞
n=1 E b

m
,n is of first (Baire) category in (F , d).

From the above theorem and Corollary 4.1.7, we have that the conjecture that

g ≠ 0 implies 0 ∉ A is “almost” true in the following sense.

Theorem 4.2.3. If 0 ∈ A, then g ∈ Eb (b is defined in Corollary 4.1.7) where Eb has

the property that Eb = ∪∞n=1Eb,n is of first (Baire) category in (F , d).

4.3 An explicit criterion

In previous section, we found that generically 0 is not in the attractor A since if

0 ∈ A, then g must be in the set Eb which is of first category (See Theorem 4.2.3).

One immediately asks the following question: if g ∈ Eb, will 0 ∈ A? We partially

answer this question by presenting a concrete criterion that is both sufficient and

necessary for 0 ∈ A.

To present our result, we need some preparation. First, we can choose δ > 0 and

M > 0, such that for every u0 ∈ A, S(t)u0 is extendable to a holomorphic function

on S(δ) = {z ∈ C ∶ ∣Iz∣ < δ} with values in Eb, and ∣S(t)u0∣b ≤M for all t ∈ S(δ).
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Let u0 = 0 ∈ A; let u(t) = S(t)u0 be the solution of the NSE; we use the conformal

mapping (see [5])

φ ∶ S(δ)→∆ = {T ∈ C ∶ ∣T ∣ < 1}

defined by the following formula

T = φ(t) =
exp(πt/2δ) − 1

exp(πt/2δ) + 1
, t ∈ S(δ)

with inverse given by

t = φ−1(T ) =
2δ

π
[log(1 + T ) − log(1 − T )].

The function U(T ) = u(t) satisfies the ODE

dU

dT
= δ0ψ(T ){g − νAU −B(U,U)}, T ∈ ∆ (4.10)

with initial value

U(0) = u0

where

ψ(T ) =
1

2
(

1

1 + T
+

1

1 − T
) =

1

1 − T 2

and δ0 = 4δ/π.
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By the analyticity of the function U(T ), we may express it in a Taylor series

U(T ) = U0 +U1T +U2T
2 +⋯ . (4.11)

Note that U0 = u0. The convergence radius of the series (4.11) is at least 1 if u0 ∈ A,

and it may be less than 1 if u0 ∉ A.

Combining the series expansion form (4.11) for U(T ) and the ODE (4.10), we

get

d

dT
(
∞

∑
n=0

UnT
n) =

δ0

1 − T 2
[g − νA

∞

∑
n=0

UnT
n −

∞

∑
n=0

∑
h+k=n

B(Uh, Uk)]

from which we get the following criterion for 0 ∈ A (see [8]).

Theorem 4.3.1. 0 ∈ A if and only if the Taylor series

∞

∑
n=0

UnT
n, T ∈ ∆ (4.12)

converges in ∣ ⋅ ∣b for all T ∈ ∆ and the sum U(T ) = ∑
∞
n=0UnT

n, for ∣T ∣ < 1, satisfies an

estimate ∣U(T )∣b ≤M , for some M > 0, where Un are computed recursively according

to

U0 = 0, U1 = δ0g, U2 = −
νδ2

0

2
Ag
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and for n ≥ 2

Un+1 =
n − 1

n + 1
Un−1 −

νδ0

n + 1
AUn −

δ0

n + 1
∑

h+k=n
h,k≥1

B(Uk, Uh). (4.13)

Remark 4.3.2. Several remarks are in order.

1. Notice that all the Un’s defined in the Theorem 4.3.1 depend only on g.

2. The application of the criterion given in Theorem 4.3.1 does not seem to be

an easy task in general. We illustrate its use in the next section in the special case

of forcing a single eigenvector of A.

4.4 The case of Kolmogorov forcing

An an application for the criterion given in Theorem 4.3.1, we show that if the

force g ≠ 0 is an eigenvector of the Stokes operator A, with corresponding eigenvalue

λ > 0, then 0 cannot be in A.

If 0 ∈ A, where Ag = λg, then noting that

B(g, g) = 0 , (4.14)

the following lemma immediately follows from the the recursive relation (4.13) given

in Theorem 4.3.1.

Lemma 4.4.1. For the coefficients Un, we have

Un = pn(λ)g, n = 1,2,3,⋯,
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where pn(⋅) are polynomials satisfying the following relations:

p1(λ) =δ0, (4.15)

p2(λ) = −
ν

2
λδ2

0, (4.16)

pN+1(λ) =
N − 1

N + 1
pN−1(λ) −

νδ0λ

N + 1
pN(λ),N = 2,3,⋯. (4.17)

Proof. By Theorem 4.3.1, we can obtain (4.15) and (4.16) easily. Assume by induc-

tion that Un = pn(λ)g is valid for all n ≤ N , where N ≥ 2. Then by (4.13),

(N + 1)UN+1 = (N − 1)UN−1 − νδ0AUN − δ0 ∑
h+k=N

B(Uk, Uh)

= (N − 1)pN−1(λ)g − νδ0λpN(λ)g − δ0 ∑
h+k=N

ph(λ)pk(λ)B(g, g)

= (N − 1)pN−1(λ)g − νδ0λpN(λ)g.

Therefore,

UN+1 = pN+1(λ)g,

where,

pN+1(λ) =
N − 1

N + 1
pN−1(λ) −

νδ0λ

N + 1
pN(λ).

The proof is completed by the induction hypothesis.

From the above lemma and Theorem 4.3.1, we conclude that if 0 ∈ A, then the

solution u(t) is of a special form, namely, u(t) = φ(t)g, where φ(t) is a bounded

real-valued function on R. Clearly the function φ(t) must satisfy the following ODE:

dφ

dt
+ νλφ = 1,
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from which it follows that

φ(t) =
1

νλ
+ (φ(0) −

1

νλ
)e−νλt.

Boundedness of the solution u(t) for all negative time implies that φ(0) = 1
νλ , and

hence u(t) ≡ g
νλ . This contradicts u(0) = φ(0)g = 0. Therefore, in this case, using the

criterion and dynamics analysis, we obtain that 0 is not in A.
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5. ON ESTIMATING THE KOLMOGOROV ε-ENTROPY OF THE WEAK

GLOBAL ATTRACTOR OF INCOMPRESSIBLE THREE DIMENSIONAL

NAIVER-STOKES EQUATIONS

In this chapter, we restrict our considerations to the three dimensional incom-

pressible Navier-Stokes equation (2.1) (d = 3).

5.1     Specific preliminaries

We first list some inequalities needed in this chapter (see, e.g., [2, 21]),

k0∣w∣ ≤ ∣A1/2w∣, for w ∈ V, (5.1)

∣∣w∣∣∞ ≤ cA∣A
1/2w∣1/2∣Aw∣1/2, for w ∈ D(A), (5.2)

known, respectively, as Poincaré and Agmon inequalities, with cA being nondimen-

sional constant, and the inequality satisfied by the bilinear term,

∥B(u,u)∥V ′ ≤ cS ∣u∣
1/2∥u∥3/2, ∀u ∈ V, (5.3)

where cS is a nondimensional constant which depends only on constants coming from

the Sobolev embedding theorem and additional abstract numbers.

Similar to (3.5), in the 3D case, an important nondimensional parameter associ-

ated with the strength of the driving force g is the Grashof number [10]

G =
∣g∣

ν2κ
3/2
0

=
∣g∣

ν2λ
3/4
1

. (5.4)
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A related nondimensional parameter that will be used in our paper is

G∗ =
∣A−1/2g∣

ν2κ
1/2
0

. (5.5)

By Poincaré inequality (5.1), one has

G∗ =
∣A−1/2g∣

ν2κ
1/2
0

≤
κ−1

0 ∣g∣

ν2κ
1/2
0

= G,

where the equality occurs if and only if g is the first eigenvector of A.

5.2 Metrics on the weak global attractor

It is shown in [10] that

Aw ⊂ {u ∈H ∶ ∣u(t)∣ ≤ G∗νκ
−1/2
0 , ∀t ∈ R}, (5.6)

and Aw is a totally bounded set in Hw. Recall the definition of the set W given in

(2.12), clearly,

∣u(t)∣ ≤ R0, ∀t ∈ R, ∀u ∈W , (5.7)

where

R0 =
∣g∣L2

νλ1

=
νG

λ
1/4
1

. (5.8)

Therefore the weak topology of H for bounded sets is metrizable on Aw. Among

the metrics that generate the weak topology on Aw, we first choose the following

one,

dw(u, v) ∶=ν
−1κ

1/2
0 ∣e−e

κ−10 A1/2

(u − v)∣, (5.9)

for u, v ∈ Aw.
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Two other metric functions that will be used are

dn(u, v) = ν
−1κ

3/2
0 ∣A−1/2(u − v)∣, (5.10)

and

ds(u, v) = ν
−1κ

1/2
0 ∣u − v∣. (5.11)

Note that the metrics ds, dn and dw do not have physical dimensions.

5.3 Kolmogorov ε-entropy

For a metric space (X,d), let Bd(x0, ρ) denote the ball with radius ρ centered at

x0,

Bd(x0, ρ) ∶= {x ∈X ∶ d(x,x0) < ρ}.

Recall that a set F in the metric space (X,d) is totally bounded if, for any η > 0,

there exists finitely many open balls of radius η whose union covers F . It is well

known that all compact sets are totally bounded and that a metric space is compact

if and only if it is complete and totally bounded.

The following definitions were introduced by Kolmogorov in [14].

Definition 5.3.1. Suppose F is a totally bounded, non-empty set in a metric space

(X,d), and let ε > 0 be any real number.

(i) The system γ of sets U ⊂ X is said to be an ε-covering of the set F , if the

diameter of each U ∈ γ, supu0,u1∈U d(u0, u1), is no greater than 2ε and

F ⊂ ⋃
U∈γ

U.
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(ii) The Kolmogorov ε−entropy of the set F , denoted by Hε(F ), is defined as

Hε(F ) ∶= lnNε(F ),

and Nε(F ) = min{card(γ) ∶ γ is an ε-covering of F}, where card(γ) is the car-

dinal of the system γ.

(iii) The functional dimension of the set F is defined as

df(F ) ∶= lim
ε→0+

lnHε(A)

ln ln ε−1
(5.12)

5.4 An upper estimate of the Kolmogorov ε-entropy of Aw using the metric dw

We start with the following lemma. Recall the definition of PKH defind in (2.8).

Lemma 5.4.1. Given r > 0. If K is chosen to be the integer satisfying (5.13) below,

then N2r(Bds(0,G∗)) ≤ Nr(Bds(0,G∗)⋂PKH).

Proof. For any u1, u2 ∈ Bds(0,G∗), denote u = u1 − u2. By the definition of dw in

(5.9),

dw(u1, u2)
2 = ν−2κ0∣e

−eκ
−1
0 A1/2

u∣2

= ν−2κ0∣e
−eκ

−1
0 A1/2

PKu∣
2 + ν−2κ0∣e

−eκ
−1
0 A1/2

(I − PK)u∣2

≤ ν−2κ0∣e
−eκ

−1
0 A1/2

PKu∣
2 + 2e−2eKG2

∗,

where K ≥ 1 is an integer, and I denotes the identity operator.

Consequently, if K is chosen to be large enough such that

ln( ln

√
2G∗

r
) ≤K ≤ 1 + ln( ln

√
2G∗

r
). (5.13)

60



then

dw(u1, u2)
2 ≤ ν−2κ0∣e

−eκ
−1
0 A1/2

PKu∣
2 + r2. (5.14)

By (5.14), it follows that for any r−covering of Bds(0,G∗)⋂PKH, we can find

a 2r−covering of Bds(0,G∗) having the same number of sets. This completes the

proof.

A special finite covering of the set Bds(0,G∗)⋂PKH with respect to the metric

ds, defined in (5.11), and an upper bound of the cardinal number of this covering are

given in the following lemma.

Lemma 5.4.2. For any η > 0 and integer K ≥ 1, we have,

Bds(0,G∗)⋂PKH ⊂ ⋃
u0∈S

Bds(u0, η)

where S ⊂ Bds(0,G∗) and the cardinal of S satisfies the estimate

card (S) ≤ (
2G∗

η
+ 1)

dimPKH

.

Proof. Clearly,

Bds(0,G∗) ∩ PKH = {u ∈ PKH ∶ ∣u∣ ≤ G∗νκ
−1/2
0 }.

Notice that PKH is a Banach space of finite dimension. For fixed R > 0, let

u1,⋯, uNη (Nη is called metric entropy, which is an upper bound for covering number)

be a maximum set of points in Bds(0,R), the ball of radius R > 0 in PKH with

∣ui − uj ∣ > η, for i ≠ j, then the closed balls of radius η/2 centered at the u′js are

disjoint, and their union lies within the ball of radius R + η/2 centered at the origin.
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Consequently,

Nη ⋅ (η/2)
dimPKH ≤ (R + η/2)dimPKH ,

and thus,

Nη(Bds(0,R)) ≤ Nη ≤ (
R + η/2

η/2
)

dimPKH

= (1 +
2R

η
)

dimPKH

. (5.15)

The result follows by applying (5.15) with R = G∗.

Remark 5.4.3. An estimate for dim(PKH) ∶= card {k ∈ Z3 ∖ {0} ∶ ∣k∣ ≤ K}, the

dimension of the space PKH, is (see page 43-44 in [2]),

2(
4π

3
(K −

√
3

2
)3 − 1) ≤ dim(PKH) ≤ 2(

4π

3
(K +

√
3

2
)3 − 1) ,

Using (5.13), it follows that

dim(PKH) ≤ 2(
4π

3
(

√
3

2
+ 1 + ln ln

√
2G∗

r
)3 − 1).

Lemma 5.4.4. For any v ∈H, and real number ρ > 0, the following holds,

Bds(v, ρ) ⊂ Bdw(v, ρ).

Proof. The result follows from the following inequalities

∣e−e
κ−10 A1/2

v∣ ≤ ∣v∣ sup
∣k∣≥1

e−e
∣k∣

= e−e∣v∣ ≤ ∣v∣.
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Due to Lemma 5.4.2 and Lemma 5.4.4, the following is true,

Bds(0,G∗) ∩ PKH ⊂ ⋃
u0∈S

Bdw(u0, η).

Now, for any fixed ε > 0, based on the above lemmas, we are ready to the get a

estimate on the Kolmogorov ε−entropy of the weak attractor Aw endowed with the

metric dw.

Collecting the above discussions, we obtain

Theorem 5.4.5. An upper estimate of the Kolmogorov ε−entropy for the weak global

attractor Aw, endowed with the metric dw, is given by the following explicit formula,

Hε(Aw) ≤ 2(
4π

3
(

√
3

2
+ 1 + ln ln

4G∗

ε
)3 − 1) ln(

4
√

2G∗

ε
+ 1),

An immediate consequence of Theorem 5.4.5 is the following estimate regarding

the functional dimension of Aw.

Corollary 5.4.6. The functional dimension of Aw, endowed with the metric dw, is

bounded above by 1, i.e., df(Aw) ≤ 1.

Remark 5.4.7. The upper bound given in Corollary 5.4.6 is consistent with a general

result obtained in [19].

5.5 An upper estimate of the Kolmogorov ε-entropy of Aw using the metric dn

With the metric dw, we successfully estimated Hε(Aw) and df(Aw). However,

notice that there is no simple physical meaning of the metric dw, therefore, we will

also use a more physical metric to measure the Kolmogorov ε-entropy of Aw.

5.5.1 H1-bounded subsets of Aw

We define, for any given non-negative real number α, the set
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Aw,α = {u ∈ Aw; ∥u∥ ≤ (1 + α)νλ
1/4
1 G}.

In the following, we will always denote by t0 ∈ R an initial time for trajectories

and consider Aw defined as in (2.13).

The following proposition provides an estimate of the distance between any point

in the attractor Aw and the set Aw,α, with respect to the metric dw defined in (5.9).

Proposition 5.5.1. Let α ≥ 0 and u0 ∈ Aw. Then, there exists u1 ∈ Aw,α such that

dn(u0, u1) ≤ rα,

where

rα =
G

α2
(2 + α + cS(1 + α)

3/2G) (5.16)

and cS is the same nondimensional constant from (5.3).

Proof. Consider u ∈W such that u(t0) = u0. Define

t = t0 +
1

νλ1α2
.

Given ε > 0, let t′ ∈ R be a point of strong continuity of u such that t′ ∈ (t0 − ε, t0].

We first show that there exists t1 ∈ [t′, t] such that u(t1) ∈ Aw,α.

After applying the Cauchy-Schwarz, Poincaré and Young inequalities to the sec-

ond term on the right-hand side of the energy inequality (2.11), we obtain that

ν ∫
t

t′
∥u(s)∥2ds ≤ ∣u(t′)∣2 +

∣g∣2

νλ1

(t − t′).
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Then, from the uniform bound (5.7) and the definition of t, it follows that

ν ∫
t

t′
∥u(s)∥2ds ≤

∣g∣2

ν2λ2
1

+
∣g∣2

νλ1

(t − t′)

≤
∣g∣2

νλ1

α2(t − t′) +
∣g∣2

νλ1

(t − t′).

Therefore,

1

t − t′ ∫
t

t′
∥u(s)∥2ds ≤ (1 + α2)

∣g∣2

ν2λ1

= (1 + α2)ν2λ
1/2
1 G2, (5.17)

which implies that there exists t1 ∈ [t′, t] such that

∥u(t1)∥ ≤ (1 + α)νλ
1/4
1 G,

i.e., u(t1) ∈ Aw,α.

Since t0, t1 ∈ [t′, t], we have

∥u(t0) − u(t1)∥V ′ ≤ ∫

t

t′
∥

du

ds
(s)∥

V ′

ds. (5.18)

Moreover, from the functional equation (2.4), it follows that

∫

t

t′
∥

du

ds
(s)∥

V ′

ds ≤ ∫
t

t′
(∥g∥V ′ + ν∥u(s)∥ + ∥B(u(s), u(s))∥V ′)ds
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Now, the estimate (5.3) for the nonlinear term together with (5.7) and (5.8) yields

∫

t

t′
∥

du

ds
(s)∥

V ′

ds ≤ ∫
t

t′
(∥g∥V ′ + ν∥u(s)∥H1 + cS

ν1/2G1/2

λ
1/8
1

∥u(s)∥3/2)ds

≤ ∥g∥V ′(t − t′) + ν (∫

t

t′
∥u(s)∥2ds)

1/2

(t − t′)1/2+

+ cS
ν1/2G1/2

λ
1/8
1

(∫

t

t′
∥u(s)∥2ds)

3/4

(t − t′)1/4

= (t − t′) [∥g∥V ′ + ν (
1

t − t′ ∫
t

t′
∥u(s)∥2ds)

1/2

+

+cS
ν1/2G1/2

λ
1/8
1

(
1

t − t′ ∫
t

t′
∥u(s)∥2ds)

3/4⎤⎥
⎥
⎥
⎥
⎦

, (5.19)

where in the second inequality we applied Hölder’s inequality to each term in the

previous integral.

From the Poincaré inequality, it follows that

∥g∥V ′ ≤
∣g∣L2

λ
1/2
1

= ν2λ
1/4
1 G. (5.20)

Denote u1 = u(t1). Thus, using (5.17), (5.20) and the definitions of t and t′, we

obtain from (5.18) and (5.19) that

dn(u0, u1) ≤

≤
λ

3/4
1

ν
(t − t′)(ν2λ

1/4
1 G + (1 + α)ν2λ

1/4
1 G + cS(1 + α)

3/2ν2λ
1/4
1 G2)

= νλ1G(t − t′)(2 + α + cS(1 + α)
3/2G)

≤ νλ1G(
1

νλ1α2
+ ε) (2 + α + cS(1 + α)

3/2G). (5.21)
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But since ε > 0 is arbitrary, we may take ε→ 0+ above and conclude that

dn(u0, u1) ≤
G

α2
(2 + α + cS(1 + α)

3/2G).

Remark 5.5.2. Consider u0 ∈ V and let u be a local strong solution of (2.4) defined

on some interval [t0, t1) and satisfying u(t0) = u0. As noticed in [10, Remark 2], if

we denote

y(t) = ν2/3∣g∣2/3 + ∥u(t)∥2, (5.22)

and y0 = y(t0), then we may estimate the time t1 of existence of u as

t1 ≥ t0 + T (y0),

where

T (y0) =
3ν3

16c2
0y

2
0

(5.23)

and c0 is a certain universal constant. Moreover, we have

y(t) ≤ 2y0, ∀t ∈ [t0, t0 + T (y0)]. (5.24)

In particular, if u0 ∈ Aw,α, then

y0 ≤ ν
2/3∣g∣2/3 + (1 + α)2ν2λ

1/2
1 G2 = ν2λ

1/2
1 (G2/3 + (1 + α)2G2).

which implies, from (5.22), (5.23) and (5.24), that

∥u(t)∥ ≤
√

2νλ
1/4
1 (G1/3 + (1 + α)G), (5.25)
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for all t ∈ [t0, t0 +
3

16c20νλ1(G
2/3+(1+α)2G2)2

].

5.5.2 Covering lemmas

For each non-negative real number α, we denote

Rα = (1 + α)νλ
1/4
1 G, (5.26)

R′
α =

√
2νλ

1/4
1 (G1/3 + (1 + α)G) (5.27)

and

τα =
3

16c2
0νλ1(G2/3 + (1 + α)2G2)2

, (5.28)

where c0 is the same universal constant from (5.23).

Note that Aw,α ⊂ BV (0,Rα). Moreover, if u0 ∈ Aw,α and u is a local strong

solution satisfying u(t0) = u0, then from Remark 5.5.2 we have that

∥u(t)∥ ≤ R′
α, ∀t ∈ [t0, t0 + τα]. (5.29)

Consider the mapping

S(t) ∶ V → V

u0 ↦ u(t),

where u(t) is the value at time t of a solution of (2.4). From (5.29) and the well-

known result of uniqueness of strong solutions among the class of weak solutions, it

follows that S(t) is well-defined on Aw,α, for every t ∈ [t0, t0 + τα].

For our purpose, we need the following squeezing property of trajectories of the

3D Navier-Stokes equations. The proof can be found in [3, Theorem 2.1].
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Theorem 5.5.3 (Squeezing Property). Let u and v be two strong solutions of (2.4)

defined on some interval [t0, t0 + T ) and satisfying

∥u(t)∥ ≤ R, ∥v(t)∥ ≤ R, ∀t ∈ [t0, t0 + T ).

Then, there exist nondimensional constants c1, c2 depending only on R,T, g, ν and Ω,

such that, for any given m ∈ N, if for every t ∈ [t0, t0 + T ),

∣(I − Pm)(u(t) − v(t))∣ ≥ ∣Pm(u(t) − v(t))∣

then,

∣u(t) − v(t)∣ ≤ c1∣u(t0) − v(t0)∣ e
−c2νλm+1(t−t0) .

In the following lemma, we give an estimate of the number Nδ(S(t)Aw,α), for

t ∈ (t0, t0+ τα]. The proof follows the same steps as in [3, Proposition 2.1], and hence

is omitted.

Lemma 5.5.4. Let t ∈ (t0, t0 + τα] and consider the set S(t)Aw,α. Then, given δ > 0,

we have

Nδ(S(t)Aw,α) ≤
⎛

⎝

16R′
α

νλ
1/4
1 δ

⎞

⎠

mδ

, (5.30)

where

mδ ≤ c
′
2

⎡
⎢
⎢
⎢
⎢
⎣

ln
⎛

⎝

c′1Rα

νλ
1/4
1 δ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

3/2

, (5.31)

and c′1, c′2 are universal constants.

The following result shows that, by restricting t to a possibly smaller interval

than (t0, t0 + τα], we can guarantee that, for every u0 ∈ Aw,α, the distance between

69



S(t)u0 and u0 remains smaller than the number rα defined in (5.16).

Lemma 5.5.5. Let α be a non-negative real number and consider

Tα = min

⎧⎪⎪
⎨
⎪⎪⎩

τα,
rα

νλ1G + λ
3/4
1 R′

α + cSν
−1/2λ

5/8
1 G1/2(R′

α)
3/2

⎫⎪⎪
⎬
⎪⎪⎭

, (5.32)

where τα is defined in (5.28), rα is defined in (5.16) and c0 is the same universal

constant from (5.23). If t ∈ (t0, t0 + Tα], then

dn(S(t)u0, u0) ≤ rα, ∀u0 ∈ Aw,α.

Proof. Let u0 ∈ Aw,α and consider u ∈W such that u(t0) = u0. Then, we have

dn(S(t)u0, u0) =
λ

3/4
1

ν
∥u(t) − u(t0)∥V ′ ≤

≤
λ

3/4
1

ν ∫

t

t0
∥

du

ds
∥
V ′

ds ≤
λ

3/4
1

ν ∫

t

t0
(∥g∥V ′ + ν∥u∥ + ∥B(u,u)∥V ′)ds (5.33)

Now, since t ≤ t0 + Tα ≤ t0 + τα, we have from (5.29) that

∥u(s)∥ ≤ R′
α, ∀s ∈ [t0, t]. (5.34)

Thus, using (5.3) and (5.34) in (5.33), we obtain that

dn(S(t)u0, u0) ≤ Tα[νλ1G + λ
3/4
1 R′

α + cSν
−1/2λ

5/8
1 G1/2(R′

α)
3/2] ≤ rα,

where the last inequality follows from the definition of Tα.
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5.5.3 Covering of Aw

Given any covering of S(t)Aw,α, t ∈ (t0, t0 + Tα], with balls of radius δ > 0, a

covering for Aw can be obtained by increasing the radius of these same balls to

2rα + δ. Therefore, Nδ(S(t)Aw,α) is an upper bound of N2rα+δ(Aw).

Lemma 5.5.6. Let α ≥ 0 and t ∈ (t0, t0 + Tα], with Tα as given in (5.32). Then, for

every δ > 0, the following inequality holds

N2rα+δ(Aw) ≤ Nδ(S(t)Aw,α), (5.35)

where rα is defined in (5.16).

Proof. Let u0 ∈ Aw. By Proposition 5.5.1, there exists u1 ∈ Aw,α such that

dn(u0, u1) ≤ rα. (5.36)

Moreover, since t ∈ (t0, t0 + Tα], by Lemma 5.5.5, we have

dn(S(t)u1, u1) ≤ rα. (5.37)

Now, given δ > 0, consider a covering of S(t)Aw,α with balls Bw(yj, δ), j =

1, . . . ,N , centered at points yj ∈ Aw,α. Then, there exists yj such that

dn(S(t)u1, yj) ≤ δ. (5.38)

Therefore, from (5.36), (5.37) and (5.38), we obtain that

dn(u0, yj) ≤ dn(u0, u1) + dn(u1, S(t)u1) + dn(S(t)u1, yj) ≤ 2rα + δ.
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Thus, u0 ∈ Bdn(yj,2rα + δ). This proves (5.35).

Following from Lemmas 5.5.4 and 5.5.6, we can easily find an upper bound the

Kolmogorov ε-entropy of Aw, for any ε > 0.

Theorem 5.5.7. For every ε > 0, the following inequality holds

Hε(Aw) ≤ c [ln(
c

ε
+
c

ε3
)]

3/2

ln(
c

ε
+
c

ε3
) , (5.39)

where c is a nondimensional constant depending on G.

Proof. Let ε > 0. Note that, by the definition of rα in (5.16), we have

rα ∼
cSG2

α1/2
as α →∞.

Therefore, there exists in particular a constant M such that

rα ≤M
cSG2

α1/2
, ∀α ≥ 0. (5.40)

Choose α given by

α = (
4McSG2

ε
)

2

. (5.41)

With this choice of α, it follows from (5.40) that

rα ≤
ε

4
.

Now, choose δ = ε/2. Thus, we have

2rα + δ ≤ ε,
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and, using Lemmas 5.5.4 and 5.5.6, we obtain that

Nε(Aw) ≤ N2rα+δ(Aw) ≤
⎛

⎝

16R′
α

νλ
1/4
1 δ

⎞

⎠

mδ

,

with mδ satisfying (5.31). Therefore,

Hε(Aw) = ln(Nε(Aw)) ≤ c
′
2

⎡
⎢
⎢
⎢
⎢
⎣

ln
⎛

⎝

2c′1Rα

νλ
1/4
1 ε

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

3/2

ln
⎛

⎝

32R′
α

νλ
1/4
1 ε

⎞

⎠
,

where c′1 and c′2 are the same nondimensional constants from (5.31).

Now, plugging the choice of α given in (5.41) into the definitions of Rα and R′
α

given in (5.26) and (5.27), respectively, one immediately obtains (5.39).

Using the estimate of Hε(Aw) obtained in Theorem 5.5.7 into the definition of the

functional dimension df(Aw) given in (5.12), one easily obtains the estimate (5.42)

given below.

Theorem 5.5.8. Aw has finite functional dimension with respect to the metric dn.

Moreover,

df(Aw) ≤
5

2
. (5.42)
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6. ON SOLUTIONS OF TWO DIMENSIONAL NAVIER-STOKES

EQUATIONS WITH CONSTANT ENERGY AND ENSTROPY∗

In this chapter, we study the solutions in the global attractor of two dimen-

sional Navier-Stokes equations which projects onto one single point onto the energy-

enstrophy plane..

6.1     Specific preliminaries

After the rescaling by

ũ =
u

νκ0

, t̃ = νκ2
0t, x̃ = κ0x, Ω̃ = [0,2π]2, g̃ =

g

ν2κ3
0

,

the corresponding dimensionless functional form of (2.4) is

dũ

dt̃
+ Ãũ + B̃(ũ, ũ) = g̃,

where Ã and B̃ are defined through the rescaled Laplacian and gradient operators.

Henceforth, for simplicity, we assume in this chapter that ν = 1, L = 2π and κ0 = 1.

The functional form then becomes

du

dt
+Au +B(u,u) = g (6.1)

after dropping the tildes.

Also, recall the following form of Navier-Stokes equations in terms of the Fouier

∗Part of this section is reproduced with permission from “On solutions of the 2D Navier-Stokes
equations with constant energy and enstrophy” by J.Tian and B.Zhang, Indiana Univ. Math. J.
64 (2015), 1925-1958 [23].
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series coefficients,

d

dt
û(k, t) = ĝ(k) − ∣k∣2û(k, t) − B̂(u,u)(k), for k ∈ Z2 ∖ {0}, (6.2)

where B̂(u, v)(k) is given by

B̂(u, v)(k) = i ∑
j∈Z2∖{0}

[(û(k − j) ⋅ j)v̂(j) −
(û(k − j) ⋅ j)(v̂(j) ⋅ k)

k ⋅ k
k], (6.3)

for k ∈ Z2 ∖ {0}.

Throughout this chapter , we assume that

Ag = λg, where λ ∈ sp(A) and λ > 1. (6.4)

Since for eigenvector g of Stokes operator A, we have B(g, g) = 0. This yields that

there exists u∗ ∶= g/λ that satisfies Au +B(u,u) = g, the stationary NSE. For λ = 1,

see [16]. Then, the energy and enstropy balances are

1

2

d

dt
∣u∣2 = −∣∣u∣∣2 + (g, u), (6.5)

1

2

d

dt
∣∣u∣∣2 = −∣Au∣2 + (g,Au) = −∣Au∣2 + λ(g, u). (6.6)

Well known algebraic properties of B(see, e.g., [4]) include the orthogonality

relation

(B(u, v),w) = −(B(u,w), v),∀u ∈ H , v,w ∈ V , (6.7)
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in particular,

(B(u, v), v) = 0,∀u ∈ H , v ∈ V , (6.8)

as well as,

(B(u,u),Au) = 0,∀u ∈ D(A). (6.9)

Also the strong form of enstrophy invariance holds (see, e.g., [4]),

(B(Av, v), u) = (B(u, v),Av),∀u ∈ H , v ∈ D(A). (6.10)

We first recall the definition of ghost solutions first introduced in [7].

Definition 6.1.1. A ghost solution is a nonstationary solution u(⋅) ∈ A, such that

ė(t) ≡ Ė(t) ≡ 0,∀t ∈ R,

where e ∶= ∣u(t)∣2 and E ∶= ∣∣u(t)∣∣2 are referred to as the energy and enstrophy,

respectively.

Using (6.5) and (6.6), one immediately finds that a ghost solution satisfies

E = ∣A1/2u∣2 = (g, u) =
1

λ
∣Au∣2, (6.11)

hence,

P ∶= ∣Au∣2 = (Au, g) = λE. (6.12)
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We also recall the following elementary relations regarding the ghost solutions,

whose proof can be found in [7].

Proposition 6.1.2. If u(t) ∈ A satisfies (6.11), then the following hold,

(u̇, g) = (u̇,Au) = (u̇, u) = 0,

∣B(u,u)∣2 + ∣Au∣2 = ∣u̇∣2 + ∣g∣2,

(B(u,u), g) = ∣B(u,u)∣2 − ∣u̇∣2 = ∣g∣2 − ∣Au∣2,

∣B(u,u) − g/2∣2 = ∣u̇ ± g/2∣2,

d

dt
(∣B(u,u)∣2) =

d

dt
(∣u̇∣2),

(B(u,u), u̇) + ∣u̇∣2 = 0.

6.2 Necessary inequalities for solutions to be ghosts

Lemma 6.2.1. For any ghost solution u(t) ∈ A, one has

P = ∣Au(t)∣2 < ∣g∣2 =∶ G2,
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Proof. It follows from Proposition 6.1.2 that

∣B(u,u)∣2 − ∣u̇∣2 = G2 − P, (6.13)

and that

∣u̇∣2 + (B(u,u), u̇) = 0,

which implies

∣u̇∣2 ≤ ∣B(u,u)∣∣u̇∣ ≤
∣B(u,u)∣2

2
+

∣u̇∣2

2
,

hence,

∣u̇∣2 ≤ ∣B(u,u)∣2,

therefore, (6.13) gives P ≤ G2.

Moreover, the equality occurs only when the equality occurs for the Cauchy-

Schwarz inequality; so, if P = G2, then

B(u,u) = cu̇, with ∣c∣ = 1,

and by Proposition 6.1.2

0 = ∣u̇∣2 + (B(u,u), u̇)

= (1 + c)∣u̇∣2.
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If c = −1, then

u̇ +B(u,u) = 0,

so by Proposition 6.1.2, Au = g, and, consequently, u = A−1g = g/λ = u∗.

If u̇ = 0, then B(u,u) = 0, so, Au = g, which also gives u = g/λ.

Lemma 6.2.2. The following inequality holds for the energy e = ∣u∣2 and enstrophy

E = ∣A1/2u∣2,

E ≤ λe ≤ λE.

Proof. Indeed, by (6.11)

0 ≤ ∣Au − λu∣2

= ∣Au∣2 − 2λ∣A1/2u∣2 + λ2∣u∣2

= λ(λe −E),

hence, λe − E ≥ 0. For the upper bound λe ≤ λE, recall the Poincaré inequality,

namely, ∣u∣ ≤ ∣A1/2u∣.

In the discussion to follow, we will frequently use the sign of the differences of

such two quantities, as P and G2, E and λe. For convenience, we put them together

in the next theorem.

Theorem 6.2.3. The following are equivalent,

P < G2,

E < λe,
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E2 < eG2,

E2 < eP .

Moreover, if any one of the above inequlities is replaced by equality, then the other

three will also become equalities, and the equality occurs only if u = u∗.

Proof. From Lemma 6.2.1, we know that P ≤ G2, with equality if and only if u = u∗.

From Lemma 6.2.2, clearly, E ≤ λe.

If E = λe, then, from the proof of Lemma 6.2.2, we see that

Au = λu,

so that u is an eigenvector of the operator A, hence B(u,u) = 0. By taking inner

product of the NSE with u, using Proposition 6.1.2, we get

(Au, g) = (g, g), (6.14)

that is,

P = G2,

thus, u = u∗, as desired.

Conversely, if u = u∗, then, since g = λu∗ = λu, it holds that E = (u, g) = λ(u,u) =

λe.

It follows from the Cauchy-Schwarz inequality that E = ∣A1/2u∣2 = (u,Au) ≤

∣u∣∣Au∣ ≤ e1/2P 1/2, hence also E2 ≤ eG2, since P ≤ G2.

If E2 = eP , then by the condition for equality in the Cauchy-Schwarz inequality,

Au = µu, for some µ. Then, combining P = (Au, g) = µ(u, g) = µE with (6.11), we
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have µ = λ. For the same reason as given in case (ii), we have u = u∗.

If E2 = eG2, then, since E2 ≤ eP , we have G2 ≤ P , hence it must happen that

P = G2.

Conversely, if u = u∗, then both E2 = eG2 and E2 = eP will hold.

Henceforth, the following relations are always true for the ghost solutions defined

in our paper, namely,

P < G2,E < λe,E2 < eP,E2 < eG2. (6.15)

Notice that these inequalities are strict because the ghost solutions are nonstationary.

The parabola bound, namely, E2 ≤ eG2 in our notation, has been obtained in [4] for

all solutions in the global attractor of 2D NSE, regardless of the force.

Remark 6.2.4. In [23], we showed the uniqueness of the ghost solutions in the sense

that there exists a unitary transformation between any two possible ghost solutions.

6.3 Chained ghost solutions

let P012 = P012(t) denote the orthogonal projection of H onto the space H012 =

span{g, u,Au} = Rg +Ru +RAu.. For ω ∈H, let P012ω = ω1g + ω2u + ω3Au, then

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(ω, g)

(ω,u)

(ω,Au)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=M

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω1

ω2

ω3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6.16)
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where, using (6.11), (6.12), we have

M =M(e,E) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

G2 E P

E e E

P E P

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6.17)

with determinant

det(M) = (λe −E)E(G2 − P ) > 0.

If we take ω = B(u,u), the system (6.16) becomes

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

G2 − P

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=M

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω1

ω2

ω3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

so

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω1

ω2

ω3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=M−1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

G2 − P

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

that is,

P012B(u(t), u(t)) = (g, u(t),Au(t))M−1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

G2 − P

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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By (6.17), ω1, ω2, ω3 are time independent. Actually,

P012B(u,u) = g −Au,

and

∣P012B(u,u)∣2 = G2 − P.

Also, notice that, since

u̇(t) +B(u(t), u(t)) = g −Au(t) ∈H012,

we have

(1 − P012)B(u(t), u(t)) = −u̇(t),∀t ∈ R.

If we take ω = A2u, then (6.16) becomes

M

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ

β

α

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λP

P

∣A3/2u∣2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which, using (6.17), gives,

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

G2γ +Eβ + Pα = λP

Eγ + eβ +Eα = P

Pγ +Eβ + Pα = ∣A3/2u∣2

(6.18)
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Solving (6.18), one gets

γ =
λP − ∣A3/2u∣2

G2 − P
,

β =
λP − ∣A3/2u∣2

λe −E
,

α =
P

E
−
λP − ∣A3/2u∣2

G2 − P
−
e

E

λP − ∣A3/2u∣2

λe −E
.

That is,

P012A
2u = (g, u,Au)M−1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λP

P

∣A3/2u∣2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= γg + βu + αAu.

Notice that, by (6.11)

∣A3/2u − λA1/2u∣2 = ∣A3/2u∣2 − λP ≥ 0,

with equality if and only if

A3/2u = λA1/2u,

which, by (6.11) and Theorem 6.2.3(ii), holds if and only if

u = u∗ = g/λ.
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Thus

γ < 0, β < 0,and α > λ > 0;

and one of the above inequalities becomes an equality if and only if u = u∗.

Summarizing the above discussion, we obtain the following proposition.

Proposition 6.3.1. For a ghost solution u(⋅),

(i) If A2u(t) ∈H012, for some t ∈ R, then A2u(t) = γg + βu(t) + αAu(t) with

γ = γ(t) =
λP − ∣A3/2u(t)∣2

G2 − P
, (6.19)

β = β(t) =
λP − ∣A3/2u(t)∣2

λe −E
, (6.20)

α = α(t) =
P

E
−
λP − ∣A3/2u(t)∣2

G2 − P
−
e

E

λP − ∣A3/2u(t)∣2

λe −E
(6.21)

= λ − γ(t) −
e

E
β(t).

(ii) ∣A3/2u(t)∣2 = λP at some t ∈ R, if and only if u = u∗.

Remark 6.3.2. It is easy to check that α2 + 4β > 0 is always true. Indeed, using

(6.19), (6.20), (6.21),

α2 + 4β = (λ − γ −
e

E
β)2 + 4β (6.22)

= (
1

G2 − P
+

e/E

2e −E
)2ρ2

+ 4ρ(
1 − e/E

2e −E
−

1

G2 − P
) + 4,
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where

ρ ∶= λP − ∣A3/2v∣2 < 0.

A simple calculation shows that the discriminant of the quadratic form on the right

hand side of (6.22) is always negative, therefore, α2 + 4β is always positive.

In the following, we will discuss the projection of the function A2u onto the

space H012. We define Eµ as the eigensapce projector corresponding to the eigenvalue

µ ∈ sp(A).

Theorem 6.3.3. If the set C ∶= {t ∈ R ∶ A2u(t) ∈ H012} ⊂ R has an accumulation

point t∗ ∈ R, then α(t), β(t), γ(t) are constants in time.

Proof. For any t ∈ C, from Proposition 6.3.1, we have A2u(t) = γ(t)g + β(t)u(t) +

α(t)Au(t). Then for any µ ≠ λ, µ ∈ sp(A),

(µ2 − α(t)µ − β(t))Eµu(t) = 0.

By Remark 6.3.2 it follows that that there are two real roots

µ±(t) =
α(t) ±

√
α(t)2 + 4β(t)

2
.

Now, analyticity of solutions in global attractor ([20]) implies that µ±(t) are both

analytic in t. Since the set C is assumed to have an accumulation point, we conclude

that µ±(t) are time independent, so α(t) = µ+(t) + µ−(t), β(t) = −µ+(t)µ−(t) (and

hence also γ(t)), are all time independent.

Theorem 6.3.4. If the set C has an accumulation point t∗ ∈ R, then A2u(t) ∈ H012

for all t ∈ R.
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Proof. Denote R(t) = A2u(t)−γ(t)g−β(t)u(t)−α(t)Au(t), analyticity of solutions in

the global attractor ([20]) implies that R(t) is analytic in time. Since C is assumed

to have an accumulation point, we conclude that R(t) are time independent, so

R(t) ≡ 0, for all t ∈ R.

Definition 6.3.5. A chained ghost solution is a ghost solution satisfying the follow-

ing chained relation

A2u(t) = γg + βu(t) + αAu(t),∀t ∈ R, (6.23)

for some time independent coefficients γ, β, and α.

Remark 6.3.6. For any given chained ghost solution u(t), if it exists, it follows

easily that we also have the chained relation for Anu(t), ∀n ∈ N+, that is,

Anu(t) = γng + βnu(t) + αnAu(t),∀t ∈ R,

where γn, βn, and αn are all time independent.

From now on, we will focus on chained ghost solutions.

Theorem 6.3.7. The chained ghost solution u(t) has the following decomposition,

u(t) = Eµ+u(t) +Eµ−u(t) + ηg (6.24)

= u+(t) + u−(t) + ηg,∀t ∈ R

where η = E/G2.

Moreover,

∣u+∣
2 =

λ − µ−
µ+(µ+ − µ−)

E(1 − P /G2), (6.25)
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∣u−∣
2 =

λ − µ+
µ−(µ− − µ+)

E(1 − P /G2). (6.26)

Proof. If (1 − P012)A2u(t) vanishes, then

A2u = αAu + βu + γg,

where α, β, and γ are as given in Definition 6.3.5. Equivalently,

(A2 − αA − β)u = γg. (6.27)

Clearly, (6.27) implies

(λ2 − αλ − β)Eλu = γg. (6.28)

Here we discuss different possibilities.

(i) When λ2 − αλ − β = 0, whence γ = 0. Then (6.18) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eβ + Pα = λP

eβ +Eα = P

Eβ + Pα = ∣A3/2u∣2.

(6.29)

By (6.12), the first and second equations in (6.29) give

(λe −E)β = 0,

so that by Theorem 6.2.3(ii), we have β = 0; Then the second and the third equations
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in (6.29), together with (6.12), imply

λP = ∣A3/2u∣2,

which contradicts Proposition 6.3.1 (ii) . Therefore, λ2 − αλ − β will never vanish.

So, we need to consider the following case only that

(ii) λ2 − αλ − β is never zero.

From (6.28),

Eλu =
γ

λ2 − αλ − β
g;

and for all µ ∈ sp(A), with µ ≠ λ,

(µ2 − αµ − β)Eµu = 0. (6.30)

By Remark 6.3.2, ∆ ∶= α2 + 4β > 0, then, (6.30) gives

(µ − µ+)(µ − µ−)Eµu = 0,

where µ± ∶=
1
2(α ± p), with p = ∆1/2. Necessarily, λ ∉ {µ+, µ−}. Also, notice that if

µ ∉ {µ+, µ−}, then Eµu = 0, thus the decomposition of u in terms of the eigenvectors

of the operator A only contains three possible nonzero components. Without loss of

generality, we may assume that µ+ > µ−. Therefore, in this case, we have,

u = u+ + u− + ηg, (6.31)

where u+ = Eµ+u and u− = Eµ−u.
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To determine the value of η, we notice that

B(u,u) = (1 − λη)g − µ+u+ − µ−u−. (6.32)

Taking the inner product of (6.32) with g and using (6.11), (6.12), Proposition 6.1.2

, we have η = E/G2, that is,

u = u+ + u− +
E

G2
g. (6.33)

Now, using (6.33) and

(B(u,u), u) = 0

gives

∣A1/2u∣2 = λ
∣A1/2u∣4

G2
+ µ+∣u+∣

2 + µ−∣u−∣
2; (6.34)

and,

(B(u,u),Au) = 0,

gives

λ∣A1/2u∣2 = λ2 ∣A
1/2u∣4

G2
+ µ2

+∣u+∣
2 + µ2

−∣u−∣
2; (6.35)

From (6.34) and (6.35), we get,

µ+∣u+∣
2(λ − µ+) + µ−∣u−∣

2(λ − µ−) = 0, (6.36)
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which implies

µ− < λ < µ+. (6.37)

Using (6.34), (6.35) to solve for ∣u−∣2 and ∣u+∣2 yields (6.25), (6.26).

6.4 A finite Galerkin system

The decomposition (6.31) in Theorem 6.3.7 could be used to exploit the relations

between different wavevectors when NSE is written in the form of Fourier modes, as

shown in the next theorem.

Theorem 6.4.1. Any chained ghost solution u(t) satisfies the following Galerkin

system,

d

dt
û(k, t) = ĝ(k) − ∣k∣2û(k, t) − [Qk(û, û) −

Qk(û, û) ⋅ k

∣k∣2
k], (6.38)

where

Qk(û, û) = ∑
h∈Z2∖{0}

∣h∣2,∣k−h∣2∈{λ,µ+,µ−}

i(û(h, t) ⋅ k)û(k − h, t), for ∣k∣2 ∈ {λ,µ+, µ−}

and

û(k, t) = 0, if ∣k∣2 ∉ {λ,µ+, µ−},

ĝ(k) = 0, if ∣k∣2 ≠ λ.
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Proof. It follows immediately from the NSE (6.1),

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ληg +EλB(u,u) = g

d
dtu+ + µ+u+ +Eµ+B(u,u) = 0

d
dtu− + µ−u− +Eµ−B(u,u) = 0

(6.39)

Notice that (6.39) is a finite system of differential algebraic equation involving the

unknown components for u+ and u−, where µ− < λ < µ+. Clearly, EµB(u,u) = 0,

for all µ ∉ {λ,µ+, µ−}. When (6.39) is written in terms of the Fourier coefficients,

invoking (6.2) and (6.3), we get (6.38).

Remark 6.4.2. Denote Ê = Eµ+ + Eµ− + Eλ, then we could see from the proof of

Theorem 6.4.1 that

(1 − Ê)B(u,u) ≡ 0,

for u being a chained ghost solution.

Theorem 6.4.1 implies the following geometric characterization for chained ghosts.

Theorem 6.4.3. If u(t) is a solution of the Galerkin system in the interval (0, t̄)

for some t̄ > 0, satisfying (1 − Ê)B(u(t), u(t)) ≡ 0, for any t ∈ (0, t̄), then u(t) can

be extended to be a chained ghost solution.

Proof. Taking the inner product of (6.38) with û(t) in the Fourier space gives that

∣û(t)∣ is constant in t ∈ (0, t̄); taking the inner product of (6.38) with Aû(t) in the

Fourier space gives ∣A1/2û(t)∣ is also constant in t ∈ (0, t̄).

By the analyticity of u(t) and (1 − Ê)B(u(t), u(t)) ≡ 0, for any t ∈ (0, t̄), we

conclude that u(t) can be extended to be a chained ghost solution.
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6.5 The case when λ = 2

In the particular case when λ = 2, by (6.37), we must have µ− = 1, and µ+ = −β.

Hence, solving A2u = γg + βu + αAu, using (6.33), we have,

γg + βu + αAu = γg + β(
E

G2
g + u+ + u−)

+ α(
2E

G2
g − βu+ + u−)

= A2u =
4E

G2
g + β2u+ + u−.

from which one gets,

α + β = 1, (6.40)

and

4E

G2
= γ + β

E

G2
+ 2α

E

G2
. (6.41)

It follows from the definition of α, β, and γ, expressions (6.40) and (6.41), that,

2P − ∣A3/2u∣2 =
−1

(1 − e/E)(2e −E)−1 − (G2 − P )−1
. (6.42)

After replacing (6.42), we get,

β =
−1

1 − e
E − 2e−E

G2−P

. (6.43)

Expression (6.43) tells us where we should look in order to identify a possible

chained ghost when λ = 2.

93



Recall that for ghost solutions, we have the decomposition (6.24), namely,

u(t) = u+(t) + u−(t) + ηg,∀t ∈ R

where u+ ∈ Eµ+ , u− ∈ Eµ− and g ∈ Eλ, with µ− < λ < µ+. Using the equation (6.39),

we could easily identify the value of µ+, when λ = 2.

Proposition 6.5.1. Assume λ = 2, then µ+ = 5, for any chained ghost u(t), with the

decomposition (6.24).

Proof. Taking the dot product of the equation in (6.39) for the component u+ with

u+, one gets,

1

2

d

dt
∣u+(t)∣

2 + µ+∣u+∣
2 = −(Eµ+B(u(t), u(t)), u+(t))

= −(B(u,u), u+)

= −(B(u+ + u− + ηg, u+ + u− + ηg), u+)

= −η(B(u−, g), u+) − η(B(g, u−), u+),

where, in the last line above, we use that B(v, v) = 0, for any eigenvector v of the

operator A and the relation (6.7).

Consider the term (B(u,g), u+) and express it in terms of its Fourier coefficients,

(B(u−, g), u+) = ∑
h,j,k∈Z2∖{0}
h+j+k=0

(û−(h) ⋅ j)(ĝ(j) ⋅ û+(k)). (6.44)
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On the right-hand side of expression (6.44), for û−(h) not to be zero, we need

h ∈ S1 ∶= {

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

}, (6.45)

and for ĝ(j) not to be zero, we need

j ∈ S2 ∶= {

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

}, (6.46)

then, if ∣k∣2 ≠ 5, there is no combination of h from (6.45) and j from (6.46) satisfying

h + j + k = 0, therefore, each term on the right hand of (6.44) will be zero if ∣k∣2 ≠ 5.

Similar arguments work for the Fourier expansion of (B(g, u−), u+). Hence, if µ+ ≠ 5,

then (B(g, u−), u+) ≡ 0 and (B(u−, g), u+) ≡ 0, it follows then

1

2

d

dt
∣u+(t)∣

2 + µ+∣u+(t)∣
2 = 0.

Since u(t) is bounded for all t ∈ R we have ∣u+(t)∣2 ≡ 0, which, combined with (6.36),

also implies ∣u−(t)∣2 ≡ 0, so, u(t) = ηg, a steady state. Therefore, the only possible

value for µ+ is 5.

6.6 Nonexistence of chained ghost solutions when λ = 2

In this section, we will prove that actually, chained ghost solutions do not exist

when λ = 2. The proof relies heavily on the relations (6.38). To begin with, by the
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divergence free convergence condition (2.7) we may set,

û(k, t) ∶= iα(k, t)
k⊥

∣k∣

ĝ(k) ∶= iγ(k)
k⊥

∣k∣

B̂(u,u)(k) ∶= iβ(u,u)(k)
k⊥

∣k∣
= [Qk(û, û) −

Qk(û, û) ⋅ k

∣k∣2
k],

where α(k, t), γ(k) and β(u,u)(k, t) are scalar functions; and, if k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k1

k2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, then

k⊥ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−k2

k1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Notice that the reality condition (2.6) implies

α(−k, t) = α(k, t). (6.47)

We take the dot product on both sides of (6.38) with −ik
⊥

∣k∣ , using the above

notation, to rewrite (6.38) as

d

dt
α(k, t) = γ(k) − ∣k∣2α(k, t) + ∑

h,j∈Z2∖{0}
h+j=k

∣h∣2,∣j∣2∈{λ,µ+,µ−}

α(h, t)α(j, t)(h⊥ ⋅ j)(k ⋅ j)

∣h∣∣k∣∣j∣
, for ∣k∣2 ∈ {λ,µ+, µ−}.

(6.48)

Denote the third term on the right hand side of (6.48) as Rk. Since µ+ = 5, λ = 2, µ− =
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1, then,

α(k, t) = 0, if ∣k∣2 ∉ {1,2,5} (6.49)

γ(k) = 0, if ∣k∣2 ≠ 2 (6.50)

Also, denote

S3 ∶= {

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

}.

The following theorem was proved in [23].

Theorem 6.6.1. When λ = 2, there do not exist chained ghost solutions.

Proof. Note that by (6.48), (6.49), (6.50) we have Rk = 0, if ∣k∣2 ∉ {1,2,5}. Let k be

such that ∣k∣2 ∉ {1,2,5}. In the following, we can get some algebric conditions from

this fact.

We will examine all those combinations of the indices h, j, k for which the single

term Rk(h, j) ∶= α(h, t)α(j, t)(h⊥ ⋅ j)(k ⋅ j) is not zero. Then, h, j and k must be in

S1 ∪ S2 ∪ S3. Moreover, the possible k’s satisfying ∣k∣2 ∉ {1,2,5} and h + j = k are

those k’s for which ∣k∣2 ∈ {4,8,9,10,13,18,20}.

It is easy to see that if h and j are from the same index set, say Sl, l = 1,2,3, then

Rk = 0, so we do not have to consider the possibilities that ∣k∣2 = 18 and ∣k∣2 = 20,

since then both h and j must be from the set S3. Thus, we are left to consider the

cases when ∣k∣2 ∈ {4,8,9,10,13}.
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Case 1: ∣k∣2 = 4; then

k ∈ {

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

}.

If k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, then the possible combinations are:

(i). h =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, j =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, for which Rk(h, j) = −
4√
5
α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t);

(ii). h =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, j =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, for which Rk(h, j) =
4√
5
α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t);

(iii). h =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, j =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, for which Rk(h, j) = 0, since k ⋅ j = 0;

(iv). h =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, j =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, for which Rk(h, j) = 0;

(v). h =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, j =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

(vi). h =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, j =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

Observe that the contributions of the last two possibilities sum to be zero, since the

product α(h, t)α(j, t) does not change when the role of h and j are changed, and

h⊥ ⋅ j = −j⊥ ⋅ h. Therefore,
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Rk =
4

√
5
[(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) − (α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))] = 0,

or,

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) − (α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.51)

If k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, we use similar arguments to obtain that

Rk =
4

√
5
[(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) − (α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))] = 0,

or,

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) − (α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.52)

If k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, we have

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) − (α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.53)
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If k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, we have

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) − (α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.54)

Case 2: ∣k∣2 = 8; then

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) − (α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.55)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) − (α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.56)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) − (α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.57)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) − (α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.58)

Case 3: ∣k∣2 = 9; then

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) − (α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.59)
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(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) − (α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.60)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) − (α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.61)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) − (α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.62)

Case 4: ∣k∣2 = 10; then similarly,

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.63)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.64)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.65)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.66)
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(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.67)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.68)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.69)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.70)

Case 5: ∣k∣2 = 13; then similarly, we have

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.71)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.72)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.73)
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(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.74)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.75)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.76)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.77)

(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t))(α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t)) = 0. (6.78)

Now, we can analyze the system of equations (6.51)-(6.78). Notice that the system

holds for all t ∈ R. In the following, for notational simplicity, we drop the explicit

dependence of time t, and write α(k, t) as α(k), for any fixed t ∈ R. Based on the

system of equtions (6.51)-(6.78), we can make the following lemma.

Lemma 6.6.2. If there is a k0 ∈ S3 such that α(k0) ≠ 0, then α(k) = 0, for all

k ∈ S1 ∪ S2.

Proof of lemma 6.6.2. Indeed, one could check all possible choices of k0 to see that
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the claim is true. Here, we assume, say, α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

) ≠ 0, then also α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

) ≠ 0, by the

reality condition (6.47). (6.63) leads to α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

) = 0 = α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

). From (6.75), we have

α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

) = 0 = α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

). From (6.58), α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

) = 0 = α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

). From (6.62), we see

α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

) = 0 = α(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

). Thus α(k) = 0, for all k ∈ S1 ∪ S2.

Consequently, either α(S1∪S2) ≡ 0, or α(S3) ≡ 0, thus, either u+ ≡ 0, or u− ≡ 0 = g.

Since g ≠ 0, then u+ ≡ 0 , so ∣u+∣2 ≡ 0. From (6.25) , it leads to P = G2, so u = u∗ = g/λ,

which is a contradiction. Therefore, there does not exist chained ghost solutions when

λ = 2.
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7. CONCLUSION

In this dissertation, we first studied the consequences of assuming zero to be in

the global attractor of the two dimensional incompressible Navier-Stokes equations.

We showed that in this case, both the body force and the solutions must be of enough

smoothness. Moreover, they belong to a special function class which is closely related

to the usual Gevrey function classes. Based on such connection, we proved that for a

generic nonzero forcing term, zero is not in the global attractor. An explicit criterion

for zero to be in the global attrator is provided and is used to show that zero is

indeed not in the global attractor if the forcing term is Kolmogorov forcing.

We also studied the solutions in the global attractor whose projection onto the

energy-enstrophy plane is a single point. Geometric properties of such solutions (they

are called “ghost solutions”) are also explored. A subfamily of the ghost solutions

is defined to be those ghost solutions that satisfy additional chained relation. We

derived a finite Galerkin ODE system for which the solutions in such subfamily

must satisfy. In a particular case when the body force is the Kolmogorov forcing

corresponding to the second eigenvalue of the Stokes operator, we showed, based on

the derived finite Galerkin system, that no chained ghost solutions can exist.

For incompressible three dimensional Navier-Stokes equations, the complexity of

the weak global attractor is measured by using Kolmogorov-ε entropy. Two different

metrics generating the weak topology on the weak global attractor are provided

and used to give two different estimates on the upper bound for the Kolmogorov-ε

entropy. These two upper bounds are a little bit different, however both of these

two estimates give us the finiteness of the functional dimension of the weak global

attractor.
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