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ABSTRACT 

 

 Ethanol is a renewable source made mostly from corn starch, and nearly 97 percent 

of gasoline contains ethanol in the USA. Corn for producing ethanol increased its 

production from 3 billion bushels in 2007 to over 5 billion bushels, which is almost 32 

percent of total corn consumption in 2015. Over past decade, the biofuel expansion has 

impacted the price of agricultural goods and energy markets. This has incited a debate 

among researchers, so there are numerous studies about the price connection between 

biofuel and farming products. Despite some agreement on the relationship between 

ethanol production and the price of agricultural goods, most studies noted the wide range 

of estimates of the effect of biofuel on the energy market. The goal of our examination is 

to analyze the time-varying correlation and the dependence structure among corn, ethanol 

and gasoline markets. Our research method uses price data only. This paper does not create 

other variables deliberately because other research approaches with additional variables 

have estimated a wide range of results. We focus on the price data itself. Thus, we will 

apply Copula-GARCH model as a time series approach to design the time-varying 

correlation and the structure of dependency. The C-Vine Copula are made up of the three 

pairs which include Ethanol-Corn (E, C), Ethanol-Gasoline (E, G), and Corn-Gasoline 

given ethanol (C, G lE). The Clayton Coupla was picked to describe the dependence of 

Ethanol-Corn (E, C) with the parameter value of 0.1979 and Kendall's tau correlation of 

0.0892. Likewise, the Clayton Copula is the best for estimating the pair of Ethanol-

Gasoline (E, G) with the parameter value of 0.3522 and the Kendall rank correlation of 
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0.1492. The conditional copula of Corn-Gasoline given ethanol (C, G lE) chose the 

Rotated Clayton 180 degree. The estimate of the copula is 0.0517, and the Kendall rank 

correlation is 0.0252. According to our research findings, there are weak price correlations 

between corn and ethanol after implementation of the Energy Independence and Security 

Act of 2007. 
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1. INTRODUCTION 

 

Ethanol is a renewable energy made mostly from corn starch, and nearly 97 

percent of gasoline contains ethanol in the USA (U.S. DOE, 2016). The production of 

ethanol in the U.S. was approximately 6.5 billion gallons in 2007 and, it was increased to 

15 billion gallons in 2015 (RFA, 2016). Corn for producing ethanol has also been 

increased from 3 billion bushels of 2007 to over 5 billion bushels which are almost 32 

percent of total corn consumption in 2015 (USDA ERS, 2016). The main reason for 

ethanol production increase is the U.S. Renewable Fuel Standard (RFS) which requires 

fuel suppliers to mix renewable fuel within gas and diesel. They set blending renewable 

energy with 9 billion gallons in 2008, and it was expected 36 billion gallons until 2022. 

Initially, they expected that the production of cellulosic ethanol would be increased up to 

16 billion gallons in 2022 to avoid pressing the crop price upward. However, making 

cellulosic ethanol is more challenging than using starch-based crops because they have 

still technical problems to reduce production cost. Therefore, recent production of 

cellulosic ethanol was just around 140 million gallons in 2015 (EPA 2016). 

 Corn accounts for more than 95 percent of feed grain production in the U.S. Corn 

cultivation is concentrated in the Midwest, with the states of Illinois, Nebraska, and 

Minnesota the top producing states.  Since 1996, when U.S. farm policy changed to allow 

more flexibility in farmers’ planting decisions, planted corn acreage has ranged from 76 

million acres to 97 million. Over that same period of time, corn production has risen from 

9 billion bushels to 14 billion bushels in 2015 (USDA ERS, 2016). Corn production has 
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mounted over time due to improvements in technology such as fertilizers, seed variation, 

pesticides, and machinery and production practices. 

The gasoline is the essential item in the U.S. Especially, the price of gasoline has 

been changed dramatically during last 2years. This is because the production of the U.S 

shale oil is rapidly increasing as a primary source of energy. The advancement of the 

technology of hydraulic fracturing and horizontal drilling has led gasoline to the primary 

energy source in US (USGS, 2016). The light tight sand oil from shale gas is quickly 

evolving as a significant low-cost energy which is unique resource in US (PWC, 2013). 

Swift production growth in the light tight sand oil is having dramatic effects on gasoline 

pricing in the U.S. The US domestic gas price has already decoupled from global indices 

and imports are forecast to keep small gasoline price (EIA, 2016). 

Over past decade, the biofuel expansion has impacted the price of agricultural 

goods and energy markets. This has incited a debate among researchers, so there are 

numerous studies about the price connection between biofuel and farming products. Zhang 

et al. (2009) examined the price volatility related to corn, biofuel, soybean, and gasoline. 

They find that gas price had an influence on both ethanol price and oil, and increased 

ethanol price had a short-term effect on the price of an agricultural commodity. The 

National Research Council (2011) analyzed the contribution of biofuel on the growing of 

corn price from 2007 to 2009. The result of these estimates is from 17 percent to 70 percent. 

Sera et al. (2011) assessed the price connection of maize, ethanol, gas, and oil in US from 

1990 to 2008. They found that the ethanol market had a strong connection with maize and 

energy retails. Moreover, the ethanol value surges caused the growth of both maize value 
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and gas. Meyer at al. (2012) found that biofuel production changes by the RFS caused the 

demand increase and raised crop price from the -1 percent to 12 percent according to 

options data. Chen at al. (2012) explored the price link between the biofuel policies and 

food markets. They found that corn price increased from 24 percent to 52 percent by their 

scenarios. Knittel et al. (2015) commented that the ethanol production had a low 

correlation with gasoline price. 

Despite some agreement on the relationship between ethanol production and the 

price of agricultural goods, most studies have noted the wide range of estimates on the 

effect by biofuel and energy market. Therefore, some researchers studied why the result 

of estimation variety. National Research Council (2011) reported that the variations among 

researches make it difficult to analyze the result with accuracy.  Zhang et al. (2013) 

examined the nine kinds of research on biofuel and energy market expansion on an 

agricultural commodity. They found that several differences such as model structure, 

scenario design, the price of crude oil, land supply, the by-product from the use of corn 

ethanol and the elasticity of replacement between oil and biofuels. Even though the nine 

studies had real impacts on the values and production among variables, they stopped the 

quantitative analysis because they identified a lot of essential pieces of knowledge gaps 

and uncertainties. Persson (2014) conducted more variety of assessment with over one 

hundred reporting studies about price influences of biofuel on farming products in the 

USA, EU and the rest of world. The author also reported similar results that there was the 

bulk of variation on estimations because of model structure and many different 

assumptions. Recently, Condon et al. (2015) carried out the meta-analysis regarding the 
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biofuel impact on agricultural commodity price. The author tried to overcome the difficult 

comparison among the studies with strict scope focusing on corn and the US biofuel policy. 

Their results showed that approximately 3 to 4 percent climb in corn values were led by 

the expansion of 1 billion gallons of ethanol production from the corn in 2015, and the 

change of the corn price will be smaller in the future. 

Furthermore, Condon et al. (2015) also commented that there were not enough 

correlation researches between biofuel production and crop prices. Kairala et al. (2015) 

found that the studies about a price relationship within energy values and agricultural 

goods were a rare even though the issue has noteworthy attention amid researchers 

afterward carrying the Energy Independence and Security Act of 2007. They claimed that 

most correlation research between energy values and farming commodities used the 

univariate process and the linear correlation approaches. The author tried to overcome the 

limitation of the linear correlation method, then used copula approach as the non-linear 

method of estimation, and concluded that agricultural goods and the future price of energy 

had the high correlation and significant relationship. 

The goal of our examination is to analyze the time-varying correlation and the 

dependence structure among corn, ethanol and gasoline markets. This is because Condon 

et al. (2015) and Kairala et al. (2015) identified that there were few studies about the 

correlation concerning energy values and farming goods, and most research work with the 

univariate technique and linear correlation coefficient method. Thus, we will apply 

Copula-GARCH model as a time series approach to design the time-varying correlation 

and the structure of dependency.  
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Our research method used only price data. This paper did not create other 

variables deliberately because other research approaches with additional variables have 

estimated a wide range of results. As NRC (2011) and Zhang et al. (2013) pointed out the 

grounds for a broad range of estimated prices of agricultural products by the models and 

the challenge in comparing the result with some precision, the result of our study might 

reduce some of the confusion about price dependencies among corn, ethanol, and gasoline. 
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2. METHODOLOGY 

 

 

2.1 Copula 

In our study, we developed the non-linear method for explaining a time-varying 

correlation and structure dependency among corn, ethanol, and gasoline. As the price of 

corn, ethanol and gasoline have the properties of time-series data, we newly adopted the 

copulas with Generalized Autoregressive Conditional Heteroskedastic (GARCH) 

approach for better understanding the feature of our data. 

Checking dependency by the linear correlation, Pearson’s correlation coefficient, 

is a straightforward calculation that just give us the level of dependency between two 

variables. Blyth (1996) and Embreachts et al. (2003) noted that the Pearson correlation 

could be too limiting to estimate the dependences under multivariate distribution, and the 

linear correlation is not invariant over time. Furthermore, the Pearson correlation requires 

symmetric and elliptical distribution. Lee et al. (2008) commented that both multivariate 

Gaussian distribution and multivariate student-t distribution mainly used in the 

econometrics of multivariate cases, but multivariate normal distribution was not 

compatible with the features of price data such as skewness, high kurtosis, and volatility 

clustering. It is well known that most price data have non-linear, non-Gaussian, and 

asymmetric properties. Thus, measurement by the linear correlation may bring 

misunderstanding when it applied to non-linear and non-symmetric data. Copula functions 

can run over these limitations. Sklar (1959) proved copulas that are multi-dimensional 

joint distribution will be disintegrated toward its multi-dimensional marginal distributions 

and dependence structures so that copulas can link marginal distributions to multivariate 
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distribution functions which can be disintegrated to its univariate marginal distributions. 

The definition of copula and Sklar theorem, and the property of copulas are given as 

follows Lee et al. (2008) 

2.2 Definition of Copula 

The bivariate function C means [0,1]2 → [0,1]. This is the copula if it captures c(𝑣1,

𝑣2 )   0 for 𝑣1  o or 𝑣2  0  and c(𝑣1 ,1)   𝑢1 , c(1, 𝑣2 ,)   𝑢2  for all 𝑣1 , 𝑣2  in [0,1] (the

condition of boundary) and ∑ ∙2
𝑖=1 ∑ (−1)𝑖+𝑗𝐶(𝑣1,𝑖, 𝑣2,𝑗)  ≥ 02

𝑗=1   for all (𝑣1,𝑖, 𝑣2,𝑗)  in

[0,1]2 with 𝑣1,1 < 𝑣1,2 and 𝑣2,1 < 𝑣2,2 (the condition of monotonic).

2.3 The Theorem of Sklar 

 F12 is the function of joint distribution with margins F1 and F2. Next this is a copula 

C such as 𝑧1 and 𝑧2, 

F12(𝑧1, 𝑧2)   C(F1(𝑧1), F2(𝑧2))   C(𝑣1, 𝑣2)       (1) 

On the other hand, C is the copulas and F1 and F2 are the function of marginal distributions, 

the established F12 the joint distribution function by marginal F1 and F2. ■ 

The function of joint density  f12 (𝑧1, 𝑧2) defined as 

f12 (𝑧1, 𝑧2) =
𝜕2 𝐹12(𝑧1,𝑧2)

∂𝑧1 ∂𝑧2
  

𝜕2 𝐶(𝑣1,𝑣2)

∂𝑣1 ∂𝑣2
∙

𝜕 𝐹1(𝑧1)

∂𝑧1
∙

𝜕 𝐹2(𝑧2)

∂𝑧2

  c(f1 (𝑧1,), f2 (𝑧2)) ∙ f1 (𝑣1) ∙ f2 (𝑣2),      (2) 

here copula density is c(𝑣1, 𝑣2)   
𝜕2 𝑐(𝑣1,𝑣2)

∂𝑣1 ∂𝑣2
.  For independent copula C(𝑢1 ∙ 𝑢2) )   1. 

The significant attribution of copulas is the invariance underneath increasing and 

continual transformation like log transformation. 
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 From the (2) the log-likelihood function for {𝑥𝑡}𝑡=1
𝑛  is: 

ℒ𝑥(𝜃) =  ∑ 𝑙𝑛𝑓1,𝑡(𝑧1,𝑡, 𝑧2,𝑡; 𝜃)𝑛
𝑖=1   

  ∑ 𝑙𝑛𝑓1(𝑧1,𝑡 ; 𝜃1)𝑛
𝑖=1 +  𝑙𝑛𝑓2 (𝑧2,𝑡; 𝜃2) + ln 𝑐 (𝐹1(𝑧1,𝑡; 𝜃1), 𝐹2(𝑧2,𝑡; 𝜃2); 𝜃3)  

where 𝒳 is the observation numbers and θ   (𝜃1
′ , 𝜃2

′ , 𝜃3
′ ) are the parameter of the 

marginal densities 𝑓1(∙) and 𝑓2(∙). The log-likelihood is separated into two sections. The 

first two sections are linked with the marginal, and the last part is connected to the copula. 

When the maximum likelihood estimation is carried out in a multivariate case, the 

optimization method will face problems regarding the massive calculation and estimation 

correctness. Therefore, we apply two-step estimation process to measure the parameters 

from the copula-GARCH approach. Joe (2005) provided the evidence that this estimator 

should be asymptotically similar to the maximum likelihood approach under some general 

requirements.  

Patton (2006) commented that copulas could measure the correlation of 

multivariate and structure of the dependency on non-linear and non-normal distribution. 

Patton (2006) also claimed that copulas could treat the dependence of extreme cases. 

Patton (2006) and Jondeau et al. (2006) introduced Copula – GARCH model to explain 

time-varying dynamic parameters in the financial econometrics, so copula – GARCH can 

provide time-varying conditional correlation over time.  

2.4 Vine Copula  

The computation of copula with high dimension is a tough work because of many 

variables, and Gaussian copula cannot be manageable in high dimension. Furthermore, 

some copula does not support for various dependence structures between couples of 
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variables. Bedford et al. (2001, 2002) reported that Vine copulas could overcome these 

restrictions. Vine copulas confirmed to be the pliable instrument in high dimensional 

dependences with the graphical model.    

Aas et al. (2009) presented c-vine copula for handling some difficulties by 

computation of multivariate copulas with pair-relation method. The authors suggested that 

forming C-vine copula may be beneficial when we recognize the key variable that rules 

the interactions. The properties of copulas are given as follows Aas et al. (2009) 

Let X   (𝑧1, 𝑧2, 𝑧3 ) ~ ℱ  with marginal distributions ℱ1, ℱ2, ℱ3  and their density 

functions 𝑓1, 𝑓2, 𝑓3. The density function of C-vine copula is 

f(𝑧1, 𝑧2, 𝑧3)   f(𝑧1) ∙ f(𝑧2) ∙ f(𝑧3) ∙  𝑐1,2(𝐹1(𝑧1), 𝐹2(𝑧2)) ∙  𝑐1,3(𝐹1(𝑧1), 𝐹3(𝑧3)) 

                         ∙ 𝑐2,3l1(𝐹2l1(𝑧2l𝑧1), 𝐹3l1(𝑧3l𝑧1))                                                      (3) 

where 𝑐1,2, 𝑐1,3, and 𝑐2,3l1 indicate the densities of bivariate copula C1,2, C1,3, and C2,3l1. 

F2l1 and F3l1 are the conditional marginal distribution that can be obtained from (3). The 

example of the conditional marginal distribution is  

𝐹2l1(𝒳2l𝒳1) =
𝜕𝐶2,1(𝐹2(𝑥2), 𝐹1(𝑥1))

𝜕𝐹1(𝒳1)
 

2.5 ARMA-GARCH Model 

To use the copulas, it is required to get the marginal distribution. The Generalized 

Autoregressive Conditional Heteroscedasticity (GARCH) approach is broadly applied to 

the volatility model in the financial econometrics. The current volatility of price would 

drive a bigger volatility of future price. Thus, this kind of heteroscedasticity hints the 
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autocorrelation in the price variation. Bollerslev (1986) suggested that GARCH model for 

the heteroscedasticity. However, we adopted the ARMA-GARCH model in this paper 

because of our data features, skewness, and kurtosis. The residuals from the ARMA-

GARCH approach could be converted in the uniform distribution for fitting the copulas. 

We selected ARMA(1,0)-GARCH(1,1) or ARMA(1,0)-GARCH(1,1) by the skewed 

Student t distribution for the residual of the marginal distribution by the log-differenced 

weekly price data of corn, ethanol, and gasoline. The properties of ARMA-GARCH are 

given as follows Patton (2006) 

Xt   aXt-1+ μ + 𝜀𝑡 +  𝜃𝜀𝑡−1 ∀t                                        (4) 

𝜀𝑡    𝑧𝑡 ∙ √ℎ𝑡 ,  𝑧𝑡  ~ the skewed Student t-distribution  (5) 

ℎ𝑡 =  𝜔𝑡 +  𝛼𝜀𝑡−1
2 + βℎ𝑡−1                                         (6) 

 Equation (4) explains ARMA(1,1) where μ is the constant term, and 𝜀𝑡 is a weak 

white noise term. Equation (5) represent the error variable of the creation between  ℎ𝑡 as 

conditional variance and 𝑧𝑡  as the residual term by the skewed Student t-distribution. 

Equation (6) presents the GARCH (1,1) where 𝛼 describes the ARCH interpretation and 

β explains the GARCH interpretation. It means that 𝛼 has the characteristic of a short-

term persistence of shock and β  add the long-term persistence of shock(𝛼 + β ). The 

GARCH model asks the stationarity of conditional variance, ℎ𝑡 ,and the error term, 𝜀𝑡 . 

According to Nelson (1990), the second- moment condition can check this requirement 

which is 𝛼 + β < 1.  

 Therefore, it is reasonable to adopt Vine Copula – GARCH model for better 
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estimation.  ARMA-GARCH or GARCH processes can catch marginal distributions for 

using vine copula model, then the residual from GARCH process can be changed to the 

uniform distribution by the empirical distribution function. Finally, we can estimate the 

structure of dependencies by C-vine copula. 
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3. DATA DESCRIPTION 

 

 We choose the weekly price data of corn, ethanol, and gasoline from Jan, 4th, 2008 

to Feb 16th, 2016 to capture the structure of dependency and dynamics among three 

commodities. We choose the weekly price data of corn, ethanol, and gasoline from Jan, 

4th, 2008 to Feb 16th, 2016 to capture the structure of dependency and dynamics among 

three commodities. We used corn and ethanol data from USDA-AMS, and gasoline data 

from EIA. There were two weeks of missing values of 432 observations, so we substituted 

them using cubic spline interpolation. Figure 1 shows us the price movements of three 

commodities.  

 

 

 

 

 

 

 

 

Figure 1. Weekly Close Prices of Corn, Ethanol and Gasoline, Jan 4, 2008 – Feb 12, 2016 

 

 First of all, we check the stationarity because these closed price data have a kind 

of time series property. Table 1 gives us the summary statistics of the unit root test for 



` 

13 

 

 

checking the stationarity. According to augmented Dickey-Fuller (ADF) test, all closed 

price of corn, ethanol, and gasoline are non-stationary. Additionally, Phillips – Perron (PP) 

test also indicates that the consequences are not dissimilar as of the results of ADF test. 

However, Elliot, Rothenberg, and Stock (ERS) test show a little different result. The closed 

corn price is non-stationary, either. Ethanol and gasoline are stationary at five percent of 

critical level, but these prices are not stationary at one percent level. 

 

Table 1. Unit Root Test for Time Series Property of Weekly Close Prices and Weekly 

Returns 
 AUGMENTED  

DICKEY-FULLER TEST 

PHILLIPS-PERRON 

TEST 

ERS TEST 

VARIABLES Test 

statistics 

P-value Test 

statistics 

P-value Test 

statistics 

P-value 

A. WEEKLY CLOSE PRICES.  

CORN -0.666 0.51 -1.440 0.81 -1.298 0.20 

ETHANOL -0.996 0.32 -2.620 0.32 -2176 0.03 

GASOLINE -0.862 0.39 -1.368 0.84 -2.373 0.02 

B. WEEKLY RETURNS. 

CORN -13.033 < 2e-16 -16.370 0.01 -7.638 1.55e-13 

ETHANOL -14.563 < 2e-16 -15.208 0.01 -8.552 2.38e-16 

GASOLINE -6.943 1.47e-11 -8.112 0.01 -5.791 1.39e-08 
Note: ERS Test denotes Elliot, Rothenberg and Stock Unit root test.  

 

 Next, we would like to analyze the first log – differenced price data. The 

logarithmic price data is determined by: 

Returnt   [lg(pt) – lg(pt-1)] * 100 

Here, pt indicates the closed price of the period at t. Figure 2 displays us three 

returns data over time. Then, we explore the stationarity with returns data by ADF, PP, 

and ERS test. All test results suggest that three returns data are stationary at one percent 

of critical level. 
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Figure 2. Weekly Returns of Corn, Ethanol and Gasoline, Jan 4, 2008 – Feb 12, 2016 

 

Table 2 provides the descriptive statistics of log-differenced prices. As presented 

in this results, the means of three commodities are nearby to zero, and the standard 

deviations could be a little bit small. These convey that three returns prices are not constant 

and around the mean. The skewness means that corn and gasoline prices are negative, but 

ethanol price is positive. The kurtoses of three prices are positive. The meaning of positive 

skewness involves that the ethanol price has only the longer right tail of density in the 

price change. It designates that the ethanol price may be more vulnerable when price 

moves uphill than downhill. This also considerable probability of a negative return. The 

statistics of kurtosis imply that the distribution of three prices can be said to be leptokurtic. 

It means that three prices have higher peak probability distribution with heavy tail not than 
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the normal distribution. Jarque-Bera test confirms that properties of our data are not 

normal distribution. ARCH-LM test indicates that these data have a characteristic of 

ARCH effect, thus it is reasonable using GARCH approach to get marginal distribution 

from data.  

 

Table 2. Explanation of Data Statistics for Log-difference of Corn, Ethanol, and Gasoline 

 Price 

 CORN ETHANOL GASOLINE 

MEAN -0.02 -0.05 -0.05 

STD. DEV. 1.65 2.16 0.92 

MEDIAN 0.06 0.00 -0.07 

MAX 6.44 21.61 2.79 

MIN -5.65 -14.52 -4.39 

RANGE 12.09 36.13 7.18 

SKEWNESS -0.29 1.54 -0.80 

KURTOSIS 4.78 31.88 6.86 

JARQUE-BERA 
(P-VALUE) 

63.1389 

(1.943e-14) 

15022.6398 

(2.2e-16) 

312.5083 

(2.2e-16) 

ARCH-LM 

(P-VALUE) 

8.8661 

(0.003) 

15.69 

(7.46e-05) 

213.93 

(2.2e-16) 

NO. OF OBS. 432 
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4. EMPIRICAL RESULT ANALYSIS 

 

4.1 ARMA-GARCH for Marginal Process 

Table 3 presents the result of ARMA(1,0) - GARCH (1, 1) and ARMA (1, 1) – 

GARCH (1,1) by standardized residual for the price changes.  

 

Table 3. Parameter Estimation for Marginal Distribution Model 
 CORN STD. ERROR 

(P-VALUE) 

ETHANOL STD. ERROR 

(P-VALUE) 

GASOLINE STD. ERROR 

(P-VALUE) 

MU -3.81e-02 6.96e-02 

(0.58445) 

0.02204 0.05700 

(0.6990) 

0.000489 0.026859 

(0.98547) 

MA1 - - - - 0.010004 0.083317 

(0.90442) 

AR1 1.93e-01 4.94e-02 

(9.44e-05) 

0.48677 0.04517 

(<2e-16) 

0.661850 0.059465 

(<2e-16) 

ω 2.72e-06 1.37e-02 

(0.99984) 

0.25031 0.10106 

(0.0133) 

0.14432 

 

0.009314 

(0.12125) 

α 2.36e-02 1.37e-02 

(0.8689) 

0.29871 0.09713 

(0.0021) 

0.108678 0.040982 

(0.00801) 

β 9.74e-01 1.60e-02 

(<2e-16) 

0.65328 0.07374 

(<2e-16) 

0.860472 0.050239 

(<2e-16) 

SKEWNESS 0.90636 6.51e-02 

(<2e-16) 

1.02106 0.06308 

(<2e-16) 

1.232345 0.084393 

(<2e-16) 

KURTOSIS 6.26679 1.51e+00 

(0.00011) 

3.84277 0.79322 

(1.27e-06) 

6.095218 1.894524 

(0.00129) 

LOG 

LIKELIHOOD 

-773.042 - -716.183 - -355.959 - 

AIC 3.688140 - 3.419306 - 1.720846 - 

BIC 3.755118 - 3.486283 - 1.797392 - 

Note: ARMA(1,0)-GARCH (1,1) model for corn and Ethanol and ARMA (1,1)-GARCH (1,1) for Gasoline  

 

The skewness parameter of corn is less than 1. Thus, it implies that the residual 

of corn and ethanol are skewed to left, and it means that significant negative price change 

is more frequent than large positive price change of the same measurement. However, the 
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value of skewness is almost zero, so there is hardly price change.  The skewness coefficient 

of ethanol and gasoline are more than 1, so this value means that gasoline price has more 

positive price change during the same periods. The kurtosis of three residuals is greater 

than 3, expressing that the residuals are not following the normal distribution.  

 

 

Figure 3. Distributions of Residual from Marginal Process 
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Figure 4. Contours of Residual from Marginal Process 

 

Additionally, Figure 3 and Figure 4 show us the distribution of residuals. These 

two results can give us the proper distribution which can be modeled in εt ~SkT(ν, γ), 

where ν is skewness and γ are kurtoses. The selection of skewed Student T distribution is 
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moderately owing to the expression of three residuals. The values of α, ARCH 

interpretation, and β, GARCH interpretation, are at significant at 0.1 and 0.001 of critical 

level. From the results, α + β of three residuals are less than 1. We can interpret this as the 

volatilities of three prices have a long-run persistence. However, α of corn, ethanol, and 

gasoline are smaller than their β, so we also describe that short-run persistence of corn and 

gasoline has a slight impact on price volatility. However, the values of corn are almost 

zero, we can interpret it exactly.  

 

Table 4. Test of Goodness Fit for Marginal Distribution 
 JARQUE – 

BERA 

TEST 

SHAPIRO-

WINK 

TEST 

LJUNG-BOX 

TEST(Q10) 

LJUNG-BOX 

TEST(Q15) 

LJUNG-BOX 

TEST(Q20) 

 Test 

Statistics 

P-value    Test 

     Statistics 

P-value Test 

Statistics 

P-value Test 

Statistics 

P-value Test 

Statistics 

P-value 

CORN 70.1305 5.5e-16 0.9788 7.8e-16 9.0769 0.5248 10.2483 0.8038 21.4176 0.3729 

ETHANOL 556.591 0 0.9421 8.6e-12 15.8519 0.1039 24.5012 0.0571 30.1231 0.0678 

GASOLINE 61.3366 4.7e-14 0.9742 8.1e-07 7.0613 0.7196 18.1777 0.2534 19.4957 0.4898 

 

The proper specification of the marginal distribution of the residuals required for 

the copulas. Thus, we need to check the serial correlation by Ljung-Box test, and the 

density specification by Jarque-Bera (JB) test and Shapiro-Wilk (SW) test. In Table 4, the 

p-value of JB, SW, are significant at 0.01 of critical level, and Ljung-Box test are not 

significant at 0.05 of critical value. This means that these data are no correlation and 

independently distributed. Therefore, the marginal distribution is well specified before 

using the copulas. Thus, we can convert the standardized residuals by the marginal process 

to the uniform distribution [0, 1] by means of the empirical distribution function. 

From the residual of GARCH model, we can check the dynamic correlation over 
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E,C 

E,G 

Tree 1 

G, C l E 

Tree 2 

time. Figure 5 show us that the correlation of corn, ethanol, and gasoline has the time-

varying correlation. Thus our approach by copula would be one of the good approaches.  

 

 

Figure 5. Dynamic Pearson Correlation among Corn, Ethanol, and Gasoline by  

Exponentially Weighted Moving Average (EWMA) Model 

 

4.2 Consequences of C-vine Copula  

 

 

 

 

 

 

 

 

Figure 6. Three-dimensional C-vine Trees for the Pair-copulas 

 

Ethanol price(E) 

Corn price(C) 

Gasoline price(G) 

Ethanol price (E), 

Corn Price(C) 

Ethanol price(E), 

Gasoline price(G) 
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We employ the C-vine copula to examine the structure of dependency among corn, 

ethanol, and gasoline prices. The ethanol is the key variable in our study because the 

ethanol has demand factor on the corn, and it has supply factor on the gasoline.  

Figure 6 present three-dimensional C-vine tree graphs. Left tree consists of Ethanol 

price- Corn price (E, C) and Ethanol price-Gasoline price (E, G). The right tree shows us 

the conditional pair-copula which is Corn price-Gasoline price given Ethanol price (C, 

GlE).  The copula estimation works with the maximum likelihood method and the joint 

likelihood function. We select the Clayton copula for the first pair of ethanol and corn and 

the Clayton copula for the second pair of ethanol and gasoline. The Rotated Clayton copula 

will be chosen for the third conditional pair of corn and gasoline given ethanol. All three 

copulas are selected by Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) for the finest estimation. The parameters from copulas have to be 

converted to Kendall’s tau correlation because each copula has different parameter ranges. 

As Kendall’s tau correlation has the interval from -1 to 1 and the property of measuring 

the concordance, we can easily compare the structure of dependencies. 

 

Table 5. C-vine Copula by the Maximum Likelihood Method 
Tree# Pair-

Copula 

Selected 

Copula 

Parameter 

(p-value) 

Kendall 

Rank 

AIC BIC 

1 E,C Calyton 0.1979 

(0.000) 

0.0892 -9.031935 -4.9846 

 E,G Clayton 0.3522 

(0.000) 

0.1492 -28.08951 -24.0421 

2 (C,G) ׀E Rotated 

Clayton 

180º 

0.0517 

(0.000) 

0.0252 1.056342 5.1038 

 C,G Gaussian 0.0868 

(0.0000) 

0.0409 -1.047168 3.0002 
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Table 5 hand out the estimation result of C-vine copulas, the Ethanol price-Corn 

price (E, C), Ethanol price-Gasoline price (E, G), and the Corn price-Gasoline price give 

the Ethanol price (C, G lE). The first result indicates that the best copula function for the 

Ethanol price - Corn price is the Clayton copula by the smallest AIC and BIC. The 

parameter from the Clayton copula is 0.1979, and the Kendall rank correlation is 0.0892. 

It suggests that when the ethanol price upsurges, the corn price also increases, and with 

the ordered reversed. Nevertheless, it is a feeble and positive price dependence in this 

couple relation, so the price movement of the ethanol is a little related to the corn price 

with the order reversed.  

The second outcome, the Ethanol price-Gasoline price, has been calculated by the 

Clayton copula. The estimation parameter is 0.3522, and the Kendall rank correlation 

suggests 0.1492. These numbers suggest that when the ethanol price increases, the 

gasoline prices increase with the ordered reversed. This relation also has a feeble and 

positive price dependence like the Ethanol price-Corn price.  

The third result is the estimation of a conditional pair-copula of the Corn price-

Gasoline price given the ethanol price (C, G lE). The rotated Clayton 180-degree copula 

provide the best estimation. The parameter is 0.0517, and the Kendall rank correlation 

shows 0.0252. Even though the conditional pair-copula has a real dependence, the price 

co-movement is feeble.  
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Figure 7. Trees from the Estimation of C-vine Copula with Used Copula Family and 

Kendall’s Tau Correlation 

  

As reported by our simulation, the parameter from copulas and the Kendall rank 

correlation of the conditional pair-copula (C, G lE) are smaller than the unconditional 

estimation result of pair-copula (C, G), 0.0868 of the parameter and 0.0409 of correlation. 

This comparison involves that the ethanol price has an impact on the price connection 

between the corn price and the gasoline, but the influence of ethanol price is brittle.  

 Without considering the property of price data, we could misunderstand the exact 

price relations among variables. Table 6 show us that the value of Kendall’s tau are higher 

than our research result. 

 

Table 6. Kendall Rank Correlation from Weekly Closed Price  
 CORN ETHANOL GASOLINE 

CORN 1 0.5763476 0.5008576 

ETHANOL 0.5763476 1 0.5734629 

GASOLINE 0.5008576 0.5734629 1 
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5. CONCLUSION, IMPLICATION, AND SUGGESTION 

 

In this paper, we focused on examining the structure of dependence among corn, 

ethanol, and gasoline. Thus, we formed two-dimensional a C-Vine Copula-GARCH 

approach. To estimate for a structure of dependence, we shaped the marginal distribution 

using an ARMA-GARCH process with skewed student t distribution. The C-Vine Copula 

was applied to explain the relationship structure among marginal method. The observed 

results of ARMA-GARCH process confirmed that the price structure of corn and gasoline 

have a strong long-term persistence in the volatility, but the ethanol price has a stronger 

short-run persistence in volatility even though it also has the characteristics of a long-run 

persistence. This result can be interpreted that ethanol market has a weak price structure. 

The C-Vine Copula are made up of the three pairs that are Ethanol-Corn (E, C), 

Ethanol-Gasoline (E, G), and Corn-Gasoline given ethanol (C, G lE). The Clayton Coupla 

was picked to describe the dependence of Ethanol-Corn (E, C) with the parameter value 

of 0.1979 and Kendall's tau correlation of 0.0892. Likewise, The Clayton Copula is the 

best for the estimation the pair of Ethanol-Gasoline (E, G) with the parameter value of 

0.3522 and the Kendall rank correlation of 0.1492. The conditional copula of Corn-

Gasoline given ethanol (C, G lE) chose the Rotated Clayton 180 degree. The estimation 

of the copula is 0.0517, and the Kendall rank correlation is 0.0252. The unconditional 

copula estimation of Corn-Gasoline selected the Gaussian copula with the parameter value 

of 0.0868, and the Kendall rank is 0.0409. 

From the result of our study, it can be determined that the price relationship 
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between corn and ethanol is weak by the Kendall rank correlation of 0.0892. Even though 

ethanol has the major increasing portion of corn consumption, other consumptions such 

as the use of feedstock for livestock and the exportation of corn have been decreased.  

Furthermore, the ending stocks of corn maintain about one to two billion bushels every 

year. These demand and supply factors can explain the low price correlation within corn 

and ethanol.  

The price relationship both ethanol and gas is also weak due to the Kendall rank 

correlation of 0.1492. Although the ethanol mandate is still the reason for the consumption 

of the ethanol, the ethanol hardly becomes the substitute for the gasoline because the 

gasoline is well known as a relatively inelastic commodity, and the popularity of the shale 

gas make the gasoline price cheaper than the ethanol price. Another reason is that the daily 

consumption of gasoline has not been raised from 390 million gallons per day in 2007 to 

384 million gallons per day in 2015. As gasoline consumption is stable, this could explain 

the weak price correlation between ethanol and gasoline. 

The price relationship between corn and gasoline is almost nothing according to 

the estimations result of C-Vine copula that the conditional correlation is 0.0252, and the 

unconditional correlation is 0.0409. This result means that the price of gasoline and corn 

does not affect each other in the market.  

Opponents of ethanol mandates have several concerns, forcing up the food price 

and feed cost, more nitrogen dioxide, and a corrosive toll on the two cycles engine to 

repeal the Renewable Fuel Standard. My research could not explain some technical issues, 

but could tell the price problem related to ethanol mandates. According to my research 
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finding, there are weak price correlations between corn and ethanol after implementation 

of Energy Independence and Security Act of 2007. 1  Therefore, the United States 

Environmental Protection Agency does not need to reduce or abolish ethanol mandates by 

the criticism of increasing food price and feeding cost. 

In future research, we need to compare our findings directly with linear methods 

to show how these results may differ. Also, the study might be improved by breaking the 

time series into two parts, the ethanol expansion phase, and industry maturity phase, to 

see if the correlations changed as the industry matured. It might also be helpful to expand 

the time series to include a few years before implementation of RFS, and analyze 

specifically the differences of price correlations.23 

  

 

 

 

 

 

 

                                                                 
1  Dr. David Bessler comments that the most of our research summarizing the probability relationship 

between these three variables which are con price, ethanol price, and gasoline price.  To take further steps, 

it needs to do causal relationship research. 

 
2 Mark J. Welch explains that we can identify the rapid expansion of ethanol from 2007 to 2012, and the 

maturity of ethanol production system from 2012 to 2016. This consideration of periods will slightly affect 

the correlation between energy prices and grain prices. 

 
3 We check that there is a different property of data before and after the implementation of RFS. This could 

give us a hint that we need to adopt a different econometrics tool to analyze the price structure.  
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