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ABSTRACT

In this dissertation we study three problems in applied algebraic geometry. The

first problem is to construct an algorithmically efficient approximation to the real part

of the zero set of an exponential sum. We construct such a polyhedral approximation

using techniques from tropical geometry. We prove precise distance bounds between

our polyhedral approximation and the real part of the zero set. Our bounds depend

on the number of terms of the exponential sum and the minimal distance between

the exponents. Despite the computational hardness of the membership problem for

the real part of the zero set, we prove that our polyhedral approximation can be

computed by linear programing on the real BSS machine.

The second problem is to study the ratio of sums of squares polynomials inside the

set of nonnegative polynomials. Our focus is on the effect of fixed monomial structure

to the ratio of these two sets. We study this problem quantitatively by combining

convex geometry and algebra. Some of our methods work for arbitrary Newton

polytopes; however our main theorem is stated for multihomogenous polynomials.

Our main theorem provides quantitative versions of some known algebraic facts, and

also refines earlier quantitative results.

The third problem is to study the condition number of polynomial systems ‘on

average’. Condition number is a vital invariant of polynomial systems which con-

trols their computational complexity. We analyze the condition number of random

polynomial systems for a broad family of distributions. Our work shows that earlier

results derived for the polynomial systems with real Gaussian independent random

coefficients can be extended to the broader family of sub-Gaussian random variables

allowing dependencies. Our results are near optimal for overdetermined systems but
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there is room for improvement in the case of square systems of random polynomials.

The main idea binding our three problems is to observe structure and randomness

phenomenon in the space of polynomials. We used combinatorial algebraic geometry

to observe the ‘structure’ and convex geometric analysis to understand the ‘random-

ness’. We believe results presented in this dissertation are just the first steps of the

interaction between these two fields.
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1. INTRODUCTION

This introductory section will walk the reader through mathematical objects and

problems that are present in this dissertation. Every subsection introduces tools from

a branch of mathematics and concludes with a related research problem. Section 2

of the dissertation corresponds to the problem introduced at the end of the Combi-

natorial Algebraic Geometry subsection. Section 3 of the dissertation corresponds

to the problem introduced at the end of Modern Convex Geometry and Semidefi-

nite Programing subsection, finally the problem introduced at the end of Efficient

Polynomial System Solving subsection corresponds to the Section 4.

A quick look at this section will reveal the diversity of the topics included in this

dissertation. The common theme binding these topics is the desire to understand

structure and randomness phenomenon in the space of multivariate polynomials.

Combinatorial algebraic geometry offers a beautiful frame to study the structure

of sparse polynomials via combinatorial tools. Some of these tools will be introduced

in the first subsection below. On the other hand, a generic real polynomial with n

variables and degree d is by definition a high dimensional object, and one expects

the high dimension to have regularity effects. Modern convex geometry offers strong

tools to analyze these effects of regularity. Due to space limitations we will not be

able introduce even some of the main ideas of modern convexity. However, we hope

the second and the third subsections will provide a taste of the field.

The interaction between modern convex geometry and it’s probabilistic tools with

algebraic geometry is very important and fruitful. As first steps of this interaction,

and to train our intuition, we studied problems arising from applied algebraic geom-

etry. We hope the reader of this dissertation will find these problems interesting in
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their own right. We were happy that these problems were also challenging enough

to force development of new theoretical tools.

1.1 Combinatorial Algebraic Geometry

We start with an example that we borrow from [100]. We consider the following

system of polynomials

p1(x, y, z) = a11x+ a12y
2 + a13z

3 + a14x
5y6z7 + a15x

6y7z5 + a16x
7y5z6 + a17x

8y9z9

+a18x
10y9z9 + a19x

9y8z9 + a110x
9y10z9 + a111x

9y9z10

p2(x, y, z) = a21x+ a22y
2 + a23z

3 + a24x
5y6z7 + a25x

6y7z5 + a26x
7y5z6

+a27x
8y9z9 + a28x

10y9z9 + a29x
9y8z9 + a210x

9y10z9 + a211x
9y9z10

p3(x, y, z) = a31x+ a32y
2 + a33z

3 + a34x
5y6z7 + a35x

6y7z5 + a36x
7y5z6 + a37x

8y9z9

+a38x
10y9z9 + a39x

9y8z9 + a310x
9y10z9 + a311x

9y9z10

One might guess that for a generic set of coefficients aij, the polynomial system

p1, p2, p3 will have a finite number of common roots. The classical theorem of Bezout

states that this finite number is bounded by multiplication of the degrees of poly-

nomials i.e 28 × 28 × 28 = 21952. As one can see from the statement of Bezout’s

theorem, this theorem does not take into account the structure of monomials; all the

degree 28 polynomials are treated equivalently. This shortcoming is overcome by one

of the fundamental objects of combinatorial algebraic geometry: toric varieties. The

theory of toric varieties studies geometric objects encoded by combinatorial data. In

our example 1.1 above, the correct combinatorial concept is the Newton polytope:

for a polynomial p = ∑
α cαx

α where α ∈ Zn, the Newton polytope of p is defined as

Newt(p) = conv({α : cα 6= 0})

2



where conv(∗) stands for the convex hull of ∗ . For the above example, we have

Newt(p1) = conv({(1, 0, 0), (0, 2, 0), (0, 0, 3), (5, 6, 7), (6, 7, 5)

, (7, 5, 6), (8, 9, 9), (10, 9, 9), (9, 8, 9), (9, 10, 9), (9, 9, 10)})

Using the compactification provided by theory of toric varieties, instead of clas-

sical projective space, helps to prove that the number of common roots are bounded

by mixed volume of Newton polytopes [72]. In our example 1.1 above, this approach

(Bernstein’s theorem) gives the bound 321, and this number is exactly the number

of common roots for a generic set of coefficients aij.

We will not work explicitly with toric varieties in this thesis but quite often it

will be the underlying structure. For more information on this beautiful subject we

refer the reader to [49] and [31].

1.1.1 A-discriminants

In this section we look a little more closely at the idea of generic set of coefficients.

We start by considering the following example from high school algebra:

F := {q(x) = ax2 + bx+ c}

Here F is the family of univariate quadratic equations. The reader surely knows that

the discriminant corresponding to this family is ∆[2, 1, 0] := b2 − 4ac and whenever

∆[2, 10](a, b, c) = 0 at a certain triple (a, b, c), the two roots of q(x) = ax2 + bx + c

coincide. It is also known that whenever ∆[2, 1, 0](a, b, c) > 0 there are two real

roots of ax2 + bx + c and whenever ∆[2, 10](a, b, c) < 0 there are no real roots of

ax2 + bx+ c.
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Now we consider another family H := {q(x) = ax29 + bx18 + cx7}. We observe

that the monomial set {29, 18, 7} can be obtained by the set {2, 1, 0} by scaling with

11 and shifting with 7. Thus, one expects the same algebraic rule ∆ to govern this

family of polynomials i.e ∆[29, 18, 7] = ∆[2, 1, 0]. We define the A-discriminants

below, which is the expected, intuitive algebraic rule.

Definition 1.1.1. Given A := {a1, a2, . . . , am} ⊂ Zn of cardinality m we define the

family of polynomials FA to be FA := {∑i cix
ai : ci ∈ C} then the A discriminant

variety ∇A is defined to be the following

∇A := {[c1 : c2 : . . . : cm] ∈ P(C)m−1 : p(x) =
∑
i

cixai possesses a singularity in (C∗)n}

where V is the Zariski closure of V . When ∇A has codimension 1, ∆A is the

defining polynomial of ∇A.

Within the perspective of the A-discriminant definition, a generic set of coeffi-

cients for the support A is a set of coefficients that does not lie in the A-discriminant

variety.

The canonical reference for the theory of A-discriminants is [51]. The very first

theorem ( i.e Biduality Theorem, Thm 1.1) of [51] proves that A-discriminants are

projective duals to the toric varieties parametrized by {[ta1 : ta2 : . . . : tam ] : t ∈

(C∗)n}. We will not pursue this geometric direction further here; instead we continue

with a concrete example that we borrow from [41]. Before going into the example, we

note that via a standard method called the Cayley trick one can extend the definition

of the A-discriminants to the polynomial systems [41]. Our example is an important

family of polynomials called the Haas family [61].
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Example 1.1.2. We consider the following family of polynomials Ha,b,d

f1 = x2d + ayd − y

f2 = y2d + bxd − x

then we have A = {(2d, 0), (0, d), (0, 1), (0, 2d), (d, 0), (1, 0)} and ∆A(1, a,−1, 1, b,−1)

happens to be a polynomial of degree 47 with 58 monomials and coefficients of the

order 1043.

As one can see from the previous example, A-discriminants can easily become in-

volved and computationally expensive. This clearly shows the need for more efficient

ways of addressing the A-discriminant variety. Combinatorial algebraic geometry

offers different tools for this issue. However in the most general form, finding an

efficient (approximate) algorithm for A-discriminant variety membership can still

be considered as an open problem. We close this section with a strong and simple

theorem from [69].

Theorem 1.1.3. (Horn-Kapranov Uniformization) A := {a1, a2, . . . , am} ⊂ Zn, if

∇A is of codimension then it is exactly the Zariski closure of

{[u1t
a1 : u2t

a2 : . . . : umtam ] : u ∈ P(C)m−1,Au = 0, t ∈ (C∗)n}

where A is the following matrix

A =

a1 a2 a3 . . . am

1 1 1 . . . 1



5



Figure 1.1: Amoeba of x1 + x2 = 1

1.1.2 Amoebas of Hypersurfaces

Assume we are interested in the magnitude of the points inside a variety X which

lives in (C∗)n and for this purpose we define the following map

Log : X → Rn

Log(z) = (log(|z1|), log(|z2|), . . . , log(|zn|))

The image of X under this map is called amoeba of X. One may wonder the reason

for this interesting name; we hope figures 1.1 and 1.2 provide a hint. Definition of

the amoeba first appeared in [51]. Since then, it began to show up in different areas

of pure and applied mathematics.

Amoebas carry a surprising amount of information from the original variety X.

For instance, for a hypersurface X defined by p = ∑
α cαx

α and it’s amoeba A, it

was proven by Forsberg, Passare and Tsikh that there exists a one to one map from

6



Figure 1.2: Amoeba of −1 + 5x1 − 15x2 + 10x1x2 + 3x2
1 + 5x2

2

connected components of the complement of A to the lattice points of Newt(p) [91].

They proved in particular there are always connected components corresponding to

vertices of Newt(p), and other components of the complement correspond to inner

lattice points.

Another surprising example is about the volume of two dimensional amoebae.

Even though a two dimensional amoeba A of a hypersurface X is unbounded, the

volume of A is bounded and the extremal examples are special plane curves. More

precisely, when X is a hypersurface defined by p(x, y) = ∑
α cαx

α where α ∈ Z2, and

A is the amoeba of X; we have the following inequality [92]:

Area(A) ≤ π2Area(Newt(p))

where Area is the usual area on R2. Moreover, it was proven by Rullgard and

Mikhalhin that the polynomials that achieve equality are precisely the extremal

examples on Hilbert’s 16th problem, namely the Harnack curves [84]. To the author’s
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knowledge there is no multivariate analog of the area type result above.

After defining the amoeba and observing it’s interesting properties, one natural

question is to ask what happens if we modify the Log map by changing the basis

from e to t? Especially, if we have a one parameter family of varieties Vt, what are

the limit shapes of amoebae Logt(Vt) as t → ∞? This question will be answered in

the next section by tropical geometry.

1.1.3 Tropical Geometry

There are several ways to introduce tropical geometry. We prefer to start with

introducing the tropical varieties on non-Archimedean fields. This is mainly due

to the conceptual importance of Kapranov’s Theorem. We begin by defining the

valuation.

Definition 1.1.4. (Valuation) Let K be a field and we denote the set of non-zero

elements of the field by K∗. A valuation on K is a function val : K −→ R ∪ ∞

satisfying the following three properties:

1. val(a) = 0 if and only if a = 0

2. val(ab) = val(a) + val(b)

3. val(a+ b) ≥ min{val(a), val(b)} for all a, b ∈ K∗

The following is a standard lemma.

Lemma 1.1.5. If val(a) 6= val(b) then val(a+ b) = min{val(a), val(b)}.

Every valuation introduces a norm by ‖x‖ = c−val(x) for any c > 0. The extra

property of this norm is that it satisfies the ultrametric inequality:

‖x+ y‖ ≤ max{‖x‖ , ‖y‖}

8



Figure 1.3: Tropical curve of x1 + x2 = 1

Normed fields that satisfy the ultra metric inequality are called non-Archimedean

fields.

Definition 1.1.6. If v : K −→ R ∪∞ is a valuation, then there are several objects

that can be defined from it:

1. the valuation ring of v, denoted Rv is the set of elements a ∈ K such that

v(a) ≥ 0, Rv is a ring in K.

2. the prime ideal of v (or the maximal ideal of v), denoted mv is the set of

elements a ∈ K such that v(a) > 0, mv is a maximal ideal of Rv.

3. the residue field of v, denoted kv is Rv/mv.

For elements a ∈ Rv the image of a under the canonical projection to the residue

field kv is denoted by a.

Now let K be a non-Archimedean field, f ∈ K[x1, x2, . . . , xn] and V (f) := {x ∈

K : f(x) = 0}. Then the analogue of amoeba in this non-Archimedean setup is the

following:

9



Figure 1.4: A quadratic tropical curve

Af = {(val(z1), val(z2), . . . , val(zn)) : z ∈ V (f)}

Let f = ∑
i cαx

α, we set trop(f)(w) = min{val(cα)+w.α} then we define the tropical

variety as follows

Trop(f) = {w ∈ Rn : the minimum in trop(f) is attained at least twice }

Kapranov’s Theorem will relate Af and the Trop(f). To state Kapranov’s The-

orem fully, we need to introduce one more object. To motivate the concept, we ask

a basic question: how can we order monomials that appear in K[x1, x2, . . . , xn] ?

For the case n = 1, we all know that this can be done basically by the degree of

the monomial i.e xi ≺ xj if i ≤ j. Moreover, we also know that with this order-

ing ≺, xi ≺ xj implies xi|xj. This observation is the foundation of the euclidean

division algorithm for univariate polynomials. Appropriately developing these ideas

10



in multivariate setting leads to the theory of Gröbner basis. We don’t cover the

Gröbner basis theory here, but let us point out that there are infinitely many pos-

sible orders for the multivariate case. Let w ∈ Rn and define the following order;

xα ≺w xβ if 〈α,w〉 ≤ 〈β, w〉. Thus all w ∈ Rn provides an order for the monomials in

K[x1, x2, . . . , xn]. Let f ∈ K[x1, x2, . . . , xn], for a generic w ∈ Rn one hopes to have

unique minimal monomial with respect to the order introduced by w. This intuition

leads to the following definition.

Definition 1.1.7. (Initial Term) For a fixed w ∈ Rn and f = ∑
u cux

u, let W =

trop(f)(w) then the initial term with respect w is

inw(f) =
∑

u:val(cu)+w.u=W
cux

u

where a is as defined in 1.1.6.

We are now ready to state Kapranov’s Theorem ( see Thm 3.1.3, [79]).

Theorem 1.1.8. (M. M. Kapranov) We use the notation developed in this section.

Let K be a field with valuation and let f ∈ K[x1, x2, . . . , xn], then the following three

sets coincide

1. Trop(f) ⊂ Rn

2. w ∈ Rn such that inw(f) is not a monomial

3. Af ⊂ Rn

There is a systematic algebraic way of defining the Trop(f) from the polynomial

f . This algebraic approach was developed by Brazilian computer scientist Imre

Simon. Contemporary French mathematicians named the object Imre developed
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as tropical geometry, because everything produced in Brazil is exotic and tropical!

Tropical Semiring is (R ∪∞,⊕,⊗) with the operations ⊕,� defined as follows

a⊕ b := min{a, b}

a� b := a+ b

Then the tropicalization of a polynomial f = ∑
α cαx

α is the following

trop(f)(w) = ⊕αval(cα)� xα

The tropical variety corresponding to f, can be also defined as follows

Trop(f) = {w ∈ Rn : trop(f) is not linear at w}

For the non-Archimedean fields, Kapranov’s Theorem proves that the amoeba and

the tropical variety coincide. Now, we would like turn our attention back to the

Archimedean fields and the amoeba defined by the Log map. In the Archimedean

fields we don’t expect the coincidence of the two objects as in the case of Kapranov’s

Theorem. However, we expect the tropical variety to approximate the amoeba in

some sense. First, we note that topologically tropical variety might be different than

the amoeba; tropical variety is not always a deformation retract of the amoeba.

Therefore one needs to search for a different notion of closeness. We ask a very basic

question then; is the tropical variety always included inside the amoeba? Example

1.1.3 below will show that the answer to this basic question is negative.

Before continuing with the example, we would like to make several remarks. We

note that, everything carried out with the min convention so far can be defined

with the max convention as well. Same definitions with the max instead of the
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min, produce identical results. In the Archimedean setting, we would like to modify

definitions of the objects as follows: max instead of min and log instead of val. That

is, from this point on trop(f)(w) = max{log(|cα|) +w.α} and we define the tropical

variety as follows

Trop(f) = {w ∈ Rn : the max in trop(f) is attained at least twice }

The example below shows that the Archimedean tropical variety is not always

included inside the amoeba.

Example 1.1.9. Define g(x) = 1 + x1 + x2 + . . .+ xn then we have Trop(g) ( Ag.

Proof. We first observe that (−1
n
, −1
n
, . . . , −1

n
) is a root of g. Hence

q = (log(
∣∣∣ 1
n

∣∣∣), . . . , log(
∣∣∣ 1
n

∣∣∣)) is a member of the amoeba. The second observation is

that the Archimedean Newton polytope of g is

conv{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1, 0))}

and the tropical variety is the set of outer normals of the Archimedean Newton

polytope. Therefore, Trop(g)∩R−n is the boundary of the negative orthant. Hence

the distance of q to the tropical variety is at least log(n). �

Example was borrowed from [8]. The following theorem from [8], proves that the

amoebae and the tropical varieties are metrically close.

Theorem 1.1.10. ( Avendaño, Kogan, Nisse, Rojas) Let f ∈ C[x1, x2, . . . , xn] be a

polynomial with t ≥ n + 1 terms, and assume Newt(f) is of dimension n. Then, we

have the following distance bounds

13



1.

sup
r∈Amoeba(f)

inf
w∈Trop(f)

|r − w| ≤ log(t− 1)

2.

sup
w∈Trop(f)

inf
r∈Amoeba(f)

|w − r| ≤ (2t− 3) log(t− 1)

A corollary of Theorem 1.1.10, will provide an answer to the limit shapes of the

amoebae question which was posed in the previous section. In order to present the

corollary, we need to define the Hausdorff distance.

Definition 1.1.11. (Hausdorff Distance) For two subsets A and B of Rn

∆(A,B) = max{sup
a∈A

inf
b∈B
|a− b| , sup

b∈B
inf
a∈A
|a− b|}

Corollary 1.1.12. Let f = ∑
u cux

u be a polynomial, and define fs = ∑
u c

log(s)
u xu be

the family of polynomials polynomials parametrized by s. Then as s→∞ we have

∆(Logs(V (fs)), T rop(f))→ 0.

Proof. We first observe that |cuxu| ≥ |cvxv| ⇔ |cuxu|log(s) ≥ |cvxv|log(s). Thus

Trop(fs) = log(s)Trop(f). Therefore by the theorem 1.1.10 we have

∆(log(s)Logs(V (fs)), log(s)Trop(f)) = ∆(Log(V (fs)), T rop(fs)) ≤ (2t−3) log(t−1)

∆(Logs(V (fs)), T rop(f)) ≤ (2t− 3) log(t− 1)
log(s)

�
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Before passing to the next section, I would like to say a few words about the nu-

merous applications of tropical geometry. Very first application of tropical geometry

is to prove classical theorems of algebraic geometry via combinatorics. For instance,

intersection theoretic properties of the initial variety carries through tropicalization

very nicely , and this fact allows us to prove the theorems of Bezout and Bernstein

just by sliding piecewise linear tropical curves [79] ! Approaching classical theorems

of algebraic geometry with the tropical point of view has ben very fruitful; it ex-

panded some classical theorems and it most cases provided new insights. This line of

thought has far reaching conequences that we will not mention here. One other no-

torious application of the tropical geometry is due to Grigoriy Milhalkin. Milhalkin

proved that the Gromov-Witten invariants of the plane can be studied using tropical

geometry [83]. Finally, we would like mention that tropical geometry has interesting

and deep links with the Berkovich Spaces [93]. This is by no means an exhaustive

list, but we hope it gives a general idea about the applications of tropical geometry.

1.1.4 Real Part of the Roots of an Exponential Sum

In this section we would like to introduce our research problem on the metric

relations between the amoebae and the tropical varieties for exponential sums. Ex-

ponential sums are a general family of functions that includes polynomials. We define

an n-variate exponential sum, real part of it’s zero set and the tropical variety as

follows.

Definition 1.1.13. We use the abbreviations [N ] := {1, . . . , N}, w := (w1, . . . , wn),

z :=(z1, . . . , zn), w ·z :=w1z1 + · · ·+wnzn, and C∗ :=C\{0}. We also let <(z) denote

the vector whose ith coordinate is the real part of zi, and <(S) := {<(z) | z ∈ S}

for any subset S ⊆ Cn. Henceforth, we let A := {a1, . . . , at} ⊂ Rn have cardinality

t ≥ 2, bj ∈ C for all j ∈ [t], and set g(z) := ∑t
j=1 e

aj ·z+bj . We call g an n-variate
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exponential t-sum and call A the spectrum of g. We also call the aj the frequencies

of g and define their minimal spacing to be δ(g) :=minp 6=q |ap− aq| where | · | denotes

the standard L2-norm on Cn. Finally, let Z(g) denote the zero set of g in Cn, and

define the (Archimedean) tropical variety of g to be

Trop(g) :=<
({
z∈Cn : maxj

∣∣∣eaj ·z+bj ∣∣∣ is attained for at least two distinct j
})

. �

We hope at this point it is observable that the real part of the zero set for an

exponential sum corresponds to the amoeba in the polynomial setting. This is mainly

because the Log map is already ‘built in’ to the exponential sum and the real part

corresponds to the magnitude.

We are interested in proving precise distance bounds between the real part of the

zero set for an exponential sum and the tropical variety. The new subtlety is that the

exponents in the spectrum can be arbitrarily close to each other. This brings new

difficulties for approximating the real part of the zero set. For this reason, the δ(g)

quantity is defined. Chapter 2 of this dissertation proves a theorem providing the

desired distance bounds and also discuss it’s algorithmic and theoretical applications.

1.2 Modern Convex Geometry and Semidefinite Programing

Optimization of multivariate polynomials is a fundamental problem that appears

in numerous branches of basic science and engineering. Algorithmically, the opti-

mization problem is equivalent to the certification of nonnegativity. Therefore find-

ing algebraic certificates of nonnegativity is a central problem in both theory and

applications.

One useful algebraic certificate of nonnegativity is the sums of squares represen-

tation. More precisely, if a polynomial p(x) = ∑
i qi(x)2 then p is called sums of

squares of qi. Clearly if a polynomial p is sums of squares of real polynomials then

it is nonnegative on Rn. The reverse of this assertion was studied by Hilbert [66].
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Hilbert proved that every nonnegative polynomial with n variables and degree d is

sums of squares of polynomials if and only if n = 1 or d = 2 or n = 3, d = 4.

An important aspect of the sums of squares representation is it’s amenability to

semidefinite programing. That is, whether a polynomial is sums of squares or not

can be checked via semidefinite programing. We will introduce basics of semidef-

inite programing in the third subsection below and briefly discuss it’s algorithmic

efficiency.

Practical efficiency of the semidefinite programing motivates usage of the sums

of squares representation as a relaxation to the optimization problem.

One clear question in this context is how much we loose by the sums of squares

relaxation? Or what portion of non-negative polynomials are sums of squares? To

make this question precise we need to introduce a bit of terminology.

Let R[x̄] := R[x1, . . . , xn] denote the ring of real n-variate polynomials and let

Pn,2k denote the vector space of forms (i.e homogenous polynomials) of degree 2k in

R[x̄]. A form p ∈ Pn,2k is called non-negative if p(x̄) ≥ 0 for every x̄ ∈ Rn. The set

of non-negative forms in Pn,2k is closed under nonnegative linear combinations and

thus forms a cone. We denote the cone of nonnegative forms of degree 2k by Posn,2k.

Similarly, polynomials in Pn,2k that can be represented as sums of squares of real

polynomials form a cone that we denote by Sqn,2k.

Hilbert’s Theorem proves that Posn,2k = Sqn,2k if and only if n = 1 or d = 2

or n = 3, d = 4. Hilbert’s work in not constructive and for the cases of inequality

it does not examine how close is Sqn,2k to Posn,2k. Gregoriy Blekherman developed

a quantitative approach to the problem of comparing these two cones [17, 18]. In

particular he proved the following theorem.

Theorem 1.2.1. (G. Blekherman) Let Cn,2k := {p ∈ Pn,2k |
∫
S p dσ = 1}. For any
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X ⊆ Pn,2k we set µ(X) =
(
vol(X∩Cn,2k)

vol(B)

) 1
Dn,2k where Dn,2k is the dimension of Pn,2k

and B is the Dn,2k dimensional Euclidean ball. Then the following estimates hold;

1.
1

2
√

4k + 2
n−

1
2 ≤ µ(Posn,2k) ≤ 4( 2k2

2k2 + n
) 1

2

2.
(k!)2

42k(2k)!
√

24
n
k
2

(n2 + 2k)k ≤ µ(Sqn,2k) ≤
42k(2k)!

√
24

k! n−
k
2

In this dissertation we refine Blekherman’s approach by considering the effect

of monomial structure. Main novelty in our work is the modern convex geometry

point of view. Following three subsections will introduce the necessary background

from classical/modern convexity and semidefinite programing. The final subsection

on quantitative aspects of Hilbert’s 17th will introduce our research problem.

1.2.1 Santalo, Reverse Santalo and Uryshon Inequalities

Let K be a convex body (i.e convex and compact set with non-empty interior)

in n dimensional real vector space V equipped with inner product 〈 , 〉. We define

polar of a convex body K as follows.

K◦ := {x ∈ V : 〈x, y〉 ≤ 1 for every y ∈ K}

Let Bn
2 be the Euclidean unit ball with respect to 〈 , 〉. Now we present a classical

inequality of Santalo.

|K| |K◦| ≤ |Bn
2 | |Bn

2 | (1.1)

where |.| denotes the n-dimensional volume.
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It is also known that for any convex body, there exist a point z such that

|K| |(K − z)◦| ≤ |Bn
2 | |Bn

2 |. This point z is called the Santalo point. In the op-

posite direction, Mahler conjecture states that for every symmetric convex body the

following statement holds.

|K| |K◦| ≥ 4n
n! (1.2)

Mahler’s conjecture is verified in some special cases but in the general form it

remains open. However, a remarkable inequality of Bourgain and Milman solves the

conjecture asymptotically [24]. We present Bourgain and Milman’s reverse Santalo

inequality below.

Theorem 1.2.2. There exists a constant c > 0 such that for every convex body K

in Rn that contains 0 in the interior the following holds

( |K|
|Bn

2 |
) 1
n ( |K

◦|
|Bn

2 |
) 1
n ≥ c (1.3)

After the proof of Bourgain and Milman, several different proofs with improved

universal constants are obtained. We refer the reader to the article [56] by Gi-

annopoulos, Paouris and Vritsiou which nicely surveys related results and gives yet

another proof of Reverse Santalo inequality. We would like to note that Santalo in-

equality also known as Blaschke-Santalo inequality is known since 1917 [16]. However

the reverse form and it’s numeruous proofs is discovered only after the development

of modern convex geometry point of view.

Modern convex geometry or convex geometric analysis is an interplay of the ideas

from the theory of Banach spaces and the ideas from classical convex geometry. The

theory of Banach spaces is mainly concerned with the infinite dimensional normed
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spaces. Classical convex geometry is mainly concerned with convex objects in a finite

dimensional Euclidean space. Around 60’s, it was realized that there is a theory

in ‘between’, which deals with finite but large dimensional Banach spaces and the

effects of dimension as it grows. Since then, this approach uncovered deep relations

between the analysis point of view of the Banach space theory and the geometric

point of view of convex geometry. In this dissertation we’ll be using different tools

of convex geometric analysis without formally introducing basics of the field. For a

nice survey by two masters of the subject, we refer the reader to [54].

Below, we present a classical inequality of Urysohn. As in the case of the Santalo

inequality, reverse forms of Urysohn’s inequality are studied by convex geometric

analysis researchers [55].

Theorem 1.2.3. (Urysohn Inequality) Let K be a convex body in Rn and let the

support function of K be hK(u) = maxx∈K〈x, u〉. Then we define width of K in the

direction u ∈ Sn−1 as wK(u) = hK(u) +hK(−u). The mean width of K is defined as

follows

w(K) =
∫

Sn−1

wK(u) σ(u) = 2
∫

Sn−1

hK(u)

.

Then we have the following inequality

( |K|
|Bn

2 |
) 1
n ≤ w(K)

1.2.2 John’s Theorem, Brascamp Lieb Inequality and Isotropic Measures

Every convex body K includes an ellipsoid of maximal volume. This was proved

by Fritz John with a complete characterization of the cases where this maximal
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ellipsoid is the Euclidean ball. For the proof of John’s theorem and the basics

of modern convex geometry, we refer the reader to a masterpiece of mathematical

exposition by Keith Ball [10].

Theorem 1.2.4. (John’s Theorem) Every convex body K contains an ellipsoid of

maximal volume. This ellipsoid is Bn
2 if and only if the following conditions are

satisfied: Bn
2 ⊂ K, there are unit vectors (ui)mi=1 on the boundary of K and positive

real numbers ci satisfying ∑
i

ciui = 0

and for all x ∈ Rn

∑
i

ci〈x, ui〉2 = ‖x‖2
2

The first condition in John’s theorem guarantees that the vectors ui are not all

in one side of the Euclidean ball. In other words, weighted average of the vectors is

0. As one can see from the lemma below, the second condition of John’s Theorem

can be viewed in different ways. The lemma below is standard and it’s proof can be

found in any textbook on frame theory.

Lemma 1.2.5. We denote the map which sends x to 〈x, u〉u by u ⊗ u. Then the

following are equivalent

1.

I =
∑
i

ciui ⊗ ui

2. For every x ∈ Rn

x =
∑
i

ci〈x, ui〉ui
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3. For every x ∈ Rn

∑
i

ci〈x, ui〉2 = ‖x‖2
2

Now we present an important functional inequality due to Brascamp and Lieb.

Theorem 1.2.6. (Brascamp-Lieb Inequality) Let n,m ≥ 1 and p1, . . . , pm > 0

be such that ∑i
1
pi

= n. Let f1, f2, . . . , fm : R → R+ be integrable functions,

v1, v2, . . . , vm ∈ Rn then

∫
Rm

∏
i

fi(〈vi, x〉) dx ≤ D
∏
i

‖fi‖pi

where D is universal and the equality is attained if fi are all centered Gaussian

functions.

The theorem of Brascamp and Lieb is a very strong and important inequality.

However, precise equality conditions of the inequality are quite complicated. Keith

Ball had the observation that the conditions of John’s theorem is amenable to the

Brascamp-Lieb inequality. This observation led him to produce a geometric version

of the Brascamp-Lieb inequality [11]. We state the theorem of Keith Ball below.

Theorem 1.2.7. Let n,m ≥ 1 and let u1, u2, . . . , um ∈ Sn−1, c1, c2, . . . , cm > 0 be

such that I = ∑
i ciui ⊗ ui. Let fi : R → R+ be integrable functions. Then the

following holds true

∫
Rn

m∏
i

fi(〈x, ui〉)ci dx ≤
m∏
i

∫
R

fi

ci

Remark 1.2.1. In theorem 1.2.7 if we let fi = e−αt
2 then by Lemma 1.2.5 we have

that
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∏
i

fi(〈x, ui〉)ci =
∏
i

e−α(ci〈x,ui〉2) = e−α‖x‖
2
2 =

m∏
i

∫
R

fi

ci

Therefore for Theorem 1.2.7, D = 1 and the equality conditions are much simpler

than the original Brascamp-Lieb inequality.

We feel compelled to mention that in [11] Ball also proves sharp reverse isoperi-

metric inequalities. His proof is based on ‘isomorphic’ point of view modern convexity

and the theorem 1.2.7 proves very useful. For more details and precise statements,

the reader is invited to read the very nice article of Ball.

Now, we would like to make a slight change in our point of view. We would

like to see the vectors ui and positive real numbers ci in Lemma 1.2.5 as a discrete

measure on the sphere. First we calculate the ‘measure’ of the sphere. The following

observation is useful; if we take traces in both sides of the first item in Lemma 1.2.5

we have

n = Trace(I) = Trace(
∑
i

ciui ⊗ ui) =
∑
i

ci

Thus, we need to divide ci by n to define a discrete probability measure on the sphere.

The resulting measure will be supported only at points ui and the measure of ui will

be ci
n
.

At this point, a clear question is what would be a continuous analog of the

conditions of Lemma 1.2.5?

We believe that the following definition gives a satisfactory answer.

Definition 1.2.8. (Isotropic Measure on the Sphere) A measure Z on Sn−1 is
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isotropic if for every x ∈ Rn we have

‖x‖2
2 =

∫
Sn−1
〈x, y〉2 dZ(y)

Building on the ideas of Ball and Barthe, the three authors Lutwak, Yhang and

Zhang proved the following theorem [78].

Theorem 1.2.9. (Lutwak, Yhang, Zhang) If Z is an isotropic measure on Sn−1

whose centroid is at the origin and Z∞ = Conv(Supp(Z)), then we have

Vol(Z◦∞) ≤ n
n
2 (n+ 1)n+1

2

n!

Here the main intuition is that, with the correct inequalities (i.e continous versions

of theorem 1.2.7) support of the isotropic measure behaves like the touching points of

Jonh’s ellipsoid. We are going to use Theorem 1.2.9 to prove volume bounds on the

cone of nonnegative polynomials. Our main idea is to create an isotropic measure

linked to the nonnegative polynomials.

1.2.3 Semidefinite Programing

In this section, we introduce basics of semidefinite programing and relate the

technique to the polynomial optimization. As a refresher, let us recall the linear

programing problem in standard form.

minimize cTx

subject to Ax = b

x ≥ 0

In this formulation of linear programing, the feasible set of x ∈ Rn is the intersection

of the positive orthant with the affine subspaces given by Ax = b. Thus, by definition
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the feasible set is a polyhedron. If the feasible set is bounded that means it is a

polytope. Hence, linear programing problem is essentially optimization of a linear

function over a polyhedron.

The idea of semidefinite programing is to change the variable x ∈ Rn to a matrix,

and therefore optimize a linear function over a (preferably convex) set of matrices.

To make this idea precise, we need to define linear inequalities on matrices and the

corresponding polyhedra-like objects.

Definition 1.2.10. (Linear Matrix Inequality) Let Sn+ be the set of n × n positive

semidefinite matrices and � be the order induced by Sn+. That is A � B if A−B ∈ Sn+.

Then a linear matrix inequality (LMI) has the form

A0 +
∑
i

Aixi � 0

where Ai ∈ Sn are n× n real symmetric matrices.

Definition 1.2.11. (Spectrahedron) A set V is a spectrahedron if it has the following

form

V := {x = (x1, x2, . . . , xm) ∈ Rm : A0 +
m∑
i=1

Aixi � 0}

Spectrahedra will be the feasible set for semidefinite programs (SDP) as polyhedra

is the feasible set to the linear programs (LP). Below we borrow an example from

[89].

Example 1.2.12. Consider the spectrahedron in R2 given by

V := {(x, y) : A(x, y) � 0}
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where A(x, y) is given by


x+ 1 0 y

0 2 −x− 1

y −x− 1 2



Then calculating determinant of A(x, y) shows that the boundary of V is given by

elliptic curve

3 + x− x3 − 3x2 − 2y2 = 0

and the complete description of the spectrahedron is given by the following inequlaties

1. x+ 5 ≥ 0

2. −x2 + 2x− y2 + 7 ≥ 0

3. 3 + x− x3 − 3x2 − 2y2 ≥ 0

�

A semidefinite program in it’s standard form is the following.

minimize 〈C,X〉

subject to 〈Ai, X〉 = bi for i = 1, 2, . . . ,m

X � 0

Note that in the SDP formulation, we used inner product on matrices defined by

〈A,B〉 = Trace(ATB).

The feasible set for a semidefinite program is intersection of the cone of positive

semidefinite matrices with the hyperplanes defined by 〈Ai, X〉 = bi. Thus, by defini-

tion it is convex and actually it is defined by constraints of a spectrahedron. Hence,
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semidefinite programing is optimization of a linear functional over a spectrahedron.

This brings a host of questions that we will not cover here; which sets can be rep-

resented as spectrahedrons? Are spectrahedrons closed under projection? If not,

which sets are projected spectrahedra? Given a spectrahedra how do we efficiently

compute the defining LMI’s?

A new area of mathematics that strives to answer these questions is called convex

algebraic geometry. Up to authors knowledge, there is only one book written in this

area, and luckily it is a good book! We refer the reader to [19] for delving deep into

convex algebraic geometry.

We would like to briefly mention algorithmic efficiency of semidefinite program-

ing. On the theoretical side, ruling out doubly exponentially small solutions, ellip-

soid method guarantees semidefinite programing to work in polynomial time. How-

ever, despite it’s theoretical strength in practice ellipsoid method is often too slow.

This fact led to development of SDP algorithms based on the interior point meth-

ods. Currently, there are several different SDP algorithms and implemented software

packages. We refer the reader to [89] Section 2.3.1 for a survey of current software

packages. In conclusion, theoretical complexity of semidefinite programing is not

completely clear. However, in practice it is widely accepted as an efficient method.

Let p be a n-variate degree 2d polynomial such that p = ∑
i q

2
i where qi are real

polynomials of degree d with n variables. We consider each qi represented as a vector

in the basis of n-variate monomials with degree at most d. Note that this basis has(
n+d
d

)
elements. We set the vector Xd to be vector of all these monomials. Then in

this basis, q2
i is represented with a rank 1 matrix Ai = qi ⊗ qi with

q2
i = XT

d AiXd
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Therefore, in this basis p is represented with a positive semidefinite matrix A =∑
iAi as p = X t

dAXd. We believe in the reader that she is able to observe this line of

reasoning is reversible. Therefore the representation of a sums of squares polynomial

with a positive semidefinite matrix is an if and only if criterion. Hence, certifying

whether a polynomial is sums of squares can be done via semidefinite programing.

1.2.4 Quantitative Aspects of Hilbert’s 17th Problem

We start with recalling a theorem of Rezncik [97, Thm. 1].

Theorem 1.2.13. (Reznick) If p = ∑r
i=1 g

2
i for some g1, . . . , gr ∈ R[x̄] then Newt(gi) ⊆

1
2Newt(p) for all i.

Reznick’s theorem clearly enables us to ask questions related to sums of squares

decomposition in the more refined setting of Newton polytopes. Our aim is to com-

pare the cone of nonnegative polynomials and the cone of sums of squares for poly-

nomials with a given Newton polytope. As a first step, we considered the case of

multihomogenous polynomials.

Definition 1.2.14. Assume henceforth that n = n1 + · · ·+nm and k = k1 + · · ·+km,

with ki, ni ∈N for all i, and set N := (n1, . . . , nm) and K := (k1, . . . , km). We will

partition the vector x̄ = (x1, . . . , xn) into m sub-vectors x̄1, . . . , x̄m so that x̄i consists

of exactly ni variables for all i, and say that p ∈ R[x̄] is homogenous of type (N,K)

if and only if p ishomogenous of degree ki with respect to x̄i for all i. Finally, let

QN,K := Qn1,k1 × · · · ×Qnm,km. �

Example 1.2.15. p(x̄) := x3
1x

2
4 +x1x

2
2x

2
5 +x3

3x4x5 is homogenous of type (N,K) with

N = (3, 2) and K = (2, 3). (So x̄1 = (x1, x2, x3) and x̄2 = (x4, x5).) In particular,

Newt(p) ⊆ QN,K = Q3,2 ×Q2,3. �
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We aim to develop a quantitative comparison of the multihomogenous nonneg-

ative polynomials and sums of squares. In particular, we would like to develop a

localized version of the theorem 1.2.1. Third chapter of this dissertation presents our

quantitative theorem on the multihomogenous nonnegative polynomials and sums of

squares.

1.3 Efficient Polynomial System Solving

In theory, every linear algebra student knows how to solve the system of lin-

ear equations Ax = b. It is just the Gaussian elimination! In practice however,

controlling the round of errors; exploiting structures such Toeplitz matrices; taking

advantage of sparsity; and using the randomized methods; occupy a vast literature

in numerical linear algebra. Now we consider the following example; which is a

non-linear counterpart of the equation Ax = b.

Example 1.3.1.

f1 = 10500t− t2u492 − 3500u463v5w5

f2 = 10500t− t2 − 3500u691v5w5

f3 = 14000t− 2t2 + t2u492 − 2500tv

f4 = 14000t+ 2t2 − t2u492 − 3500tw

In theory, students of undergraduate algebraic curves class know that the system

of equations f = (f1, f2, f3, f4) has at most 501 × 701 × 494 × 494 = 85705687236

common complex roots. Bernstein’s Theorem mentioned in the first subsection of

this section, improves this bound to 7663 on (C∗)n. If we ask a bound for the number

of common roots in positive real orthant, Gale duality shows that it is only six [15].

In practice, efficiently finding these finitely many roots occupy a good portion of
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literature in computational algebraic geometry.

1.3.1 Smale’s 17th Problem

Around the turn of millennium, Vladimir Arnold wrote to several mathematicians

asking a list of problems for 21st century. Arnold’s aim was to create a list for the

21st century mathematicians which can serve as Hilbert’s list of problems for the

mathematicians of 20th century. In his response to this call, Steve Smale included

the following problem as the 17th [116].

Smale’s 17th Problem. Can a zero of n complex polynomial equations in n un-

knowns be found approximately, on the average, in polynomial time with a uniform

algorithm?

To make this problem precise, we need to define three words: approximate, av-

erage and uniform. Uniform is a technical term that is precisely defined in compu-

tational complexity literature. The reader can safely assume it means an algorithm

that has precisely described steps which works for all polynomials with any number

of variables n and any degree d. We will explain the ‘average’ word in the last sub-

section on random polynomial systems. We give Smale’s definition of ‘approximate

root’ below.

Definition 1.3.2. (Approximate Root) Let f = (f1, f2, . . . , fn) be a polynomial sys-

tem, we consider the system as a map f : Cn → Cn. Multivariate Newton iteration

of f at x is defined as follows

N(f, x) = x−Df(x)−1f(x)

where Df(x) is Jacobian matrix of f at x. An approximate zero associated to ζ,

f(ζ) = 0 is a point x0 such that
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1. The sequence defined inductively by xi+1 = N(f, xi) is well defined

2. ‖xi+1 − xi‖ ≤ 2−2i+1 ‖x1 − x0‖

3. limi xi = ζ

In fact, Smale defined two types of approximate roots and this is the second one. We

preferred to give the second definition because it is made efficient with consequent

theoretical developments.

Shub and Smale developed tools to check if a given point z is an approximate

root for a polynomial system f [109, 110, 111]. This tools are called Smale’s α

theory. Currently, there is a software package due to Sottile and Hauenstein which

implements tools of α theory [65].

Steve Smale in collaboration with Mike Shub, wrote series of articles on the 17th

problem [109, 110, 111]. These articles are titled Complexity of Bezout’s Theorem

I, II, III, IV and V . In these series of papers, several novel ideas are introduced

including the mentioned development of α theory and a clarification of the metric

structure of deformation paths between polynomial systems. We would like briefly

explain the idea of deformation paths between polynomial systems.

Assume there is a polynomial system g = (g1, g2, . . . , gn) for which it is easy to find

common roots. For instance, gi can be a polynomials with only two terms. Wlog say

deg(gi) = di. Now, suppose we want to solve a polynomial system f = (f1, f2, . . . , fn)

where deg(fi) = di. We define ht = (1 − t)g + tf . At a given t, ht is a polynomial

system with deg((ht)i) = di, h0 = g and h1 = f . Now let z0 be a root of g. If z0 does

not possess multiplicity greater than 1, we know that Dg(z0) is full rank, and we have

the implicit function theorem. Therefore, around z0 there is a continuous function

between coefficients of ht and a root of ht, say zt. Iterating this idea, one can prove

existence of a continuous path from (h0, z0) to (h1, z1). The only necessary condition
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is along the path, for every t, ht should have all roots isolated (i.e multiplicity one).

Using language of the discriminants, we can also say that the only condition along

the path id ht should not be a member of the discriminant variety.

For generic set of coefficients, by Bezout’s theorem g = h0 has d1d2 . . . dn many

roots. Therefore, there will be d1d2 . . . dn many paths to follow between roots of h0

to h1. This is the reason for the title of the series of papers by Shub and Smale.

After this conceptual step, the clear question is how can we track all these root

paths numerically? Shub and Smale proved that one can track these paths by the

multivariate Newton iteration! This statement will be made precise in the next sec-

tion. However, the following question should be clear; what is the complexity of the

algorithm that tracks d1d2 . . . dn many paths using the multivariate Newton itera-

tion? Answer to this question is given by a fundamental invariant of the polynomials

on the path; the condition number of ht. We invite the reader to the next section

for an introduction to notion of conditioning in numerical analysis.

1.3.2 Condition Number

Computational complexity of a numerical problem depends on the sensitivity of

the answer to the small changes in the input. This is formalized in the notion of

condition number. Every numerical problem has a corresponding condition number,

and this invariant is vital for any realistic complexity analysis of algorithms.

Consider the case of linear equation solving; Ax = b. For now, assume that

we have a parametrized system with respect to t; A(t)x(t) = b(t). Differentiating

implicitly we have

Ȧx+ A(ẋ) = ḃ
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ẋ = A−1ḃ− A−1Ȧx

If we take norms of both sides and follow routine manipulations we have

‖ẋ‖
‖x‖
≤
∥∥∥A−1

∥∥∥
2
‖A‖F


∥∥∥Ȧ∥∥∥

F

‖A‖F
+

∥∥∥ḃ∥∥∥
‖b‖


where we use ‖‖2 for the operator norm and ‖‖F for the Frobenius norm. Therefore

for the case of linear equation solving, the quantity κ(A) = ‖A−1‖2 ‖A‖F provides an

upper bound to the relative change in the output in terms of the relative change in the

input. Thus, condition number of a matrix A is defined to be κ(A) = ‖A−1‖2 ‖A‖F .

For conceptual understanding, one would like to see the condition number quan-

tity geometrically. Following theorem of Eckart and Young provides the desired

geometric insight [44].

Theorem 1.3.3. (Eckart-Young) Let A be an n× n complex matrix, then

κ(A) = ‖A‖F
d(A,Σ)

where Σ = {M ∈ Cn2 : det(M) = 0} and d is the usual Euclidean distance.

Condition number of a problem being proportional to reciprocal of the distance

to the set of ill posed problems is a general phenomenon in numerical analysis. For a

nice exposition of this phenomenon, we refer the reader to [39]. In the case of linear

equation solving the set of ill posed problems are the set of matrices that we can not

take the inverse, which is precisely the set Σ.

For polynomial system solving, the set of ill posed problems are the polynomial

systems that possesses a singularity i.e members of the discriminant variety. There-

fore we expect a condition number notion which is proportional to reciprocal of

33



distance to the discriminant variety. Shub and Smale defined such a condition num-

ber for polynomial system solving on the field of complex numbers [109]. However,

in this thesis we are mainly interested in finding real roots of polynomial systems.

Luckily a correct variant of condition number for real root finding is defined by

Cucker, Krick, Malajovich and Wshebore in their series of papers [32, 33, 34].

Before closing this section we would like to present a theorem from Complexity

of Bezout’s Theorem V I by Mike Shub. Let HD be the space of polynomial systems

h = (h1, h2, . . . , hn) where deg(hi) = di. Let Σ be the discriminant variety in HD

and assume ht is a path in HD \ Σ. We perform Newton iteration on the path ht as

follows:

za+t0 = za − (Dha+t0(za))−1ha+t0(za)

We denote the condition number (in Shub-Smale sense) of system ht at ζt as

µ(ht, ζt). The following theorem of Shub proves that the number of Newton iterations

to track a path from h0 to h1 is bounded by the ‘condition number length’ of the

path.

Theorem 1.3.4. (M. Shub) Let ht ⊆ HD \ Σ where t ∈ [a, b] be a C1 path. If the

steps to, t1, . . . are correctly chosen, then approximate root of hb is achieved at some

point, namely there exists a k such that ∑k
i=1 ti = b− a. Moreover, one can bound

k ≤ Cd
3
2Lκ

where d = maxi di, C is a universal constant, and

Lκ =
b∫
a

µ(ht, zt)
∥∥∥(ḣt, żt)∥∥∥ dt
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Moreover the amount of arithmetic operations needed in each step is polynomial in

terms of dim(HD), and hence the total complexity of following ht is polynomial in

dim(HD) and linear in Lκ.

1.3.3 Small Ball Probabilities

Our work on random polynomials and parts of our work in Chapter 2 relies on

probabilistic estimates which are called the ‘small ball probabilities’. In this section,

we would like to briefly introduce the idea of small ball probabilities and present

some basic small ball type estimates.

Perhaps the earliest appearance of small ball probabilities is in the work Little-

wood and Offord, and later strengthened by Erdös [45]. Let ξ1, ξ2, . . . , ξn be inde-

pendent identically distributed random variables, a = (a1, a2, . . . , an) ∈ Rn, ε > 0,

the basic problem about small ball probabilities (Littlewood-Offord problem) is to

estimate the following quantity:

pε(a) = sup
u∈R

P


∣∣∣∣∣∑
i

aiξi − u
∣∣∣∣∣ < ε


Erdös proved that if ξi are random signs which takes ∓1 with probability 1

2 and

a ∈ Rn is a determistic vector such that |ai| > 1 then,

p1(a) ∼ n−
1
2 .

It is known that for ξi centered Gaussian random variables with variance 1,

pε(a) ∼ ε

‖a‖2
.

Work of Erdós was motivated by combinatorial problems and was not aimed to

build up a probabilistic theory. Until recently, it was not so clear that small ball

35



probabilities, i.e estimates on the function pε(a), is a very fundamental aspect of the

random variables ξi. Small ball probabilities are now becoming common in different

aspects of probability theory mainly with the contributions random matrix theory

and asymptotic convex geometry researchers. I would like to list two different types

of small ball probabilities as examples of the general framework. First example is

due to Rudelson and Vershynin [101]. We need to introduce a piece of terminology.

Definition 1.3.5. (Essential LCD) Let α ∈ (0, 1) and κ ≥ 0. The essential least

common denominator LCDα,κ(a) of a vector a ∈ Rn is defined as the infimum of

t > 0 such that all except κ coordinates of the vector ta are of distance at most α

from nonzero integers.

Theorem 1.3.6. (Rudelson-Vershynin) Let ξi be centered identically distributed ran-

dom variables with variances at least one and third moment bounded by B. Let

a = (a1, a2, . . . , an) ∈ Rn such that there exists K1, K2 > 0 with

K1 < |ai| < K2

for all i. Let α ∈ (0, 1) and κ ∈ (0, n). Then for every ε ≥ 0 one has

pε(a) ≤ C

κ

(
ε+ 1

LCDα,κ(a)

)
+ Ce−cα

2κ

where C, c > 0 depend polynomially only on B,K1, K2.

Our second example concerns k dimensional subspaces of Rn. Let Gn,k be the

Grassmanian of k-dimensional subspaces of Rn, equipped with its unique rotation-

invariant Haar probability measure µn,k. Then the following ‘small ball probability’

type estimate holds.
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Lemma 1.3.7. [52, Lemma 3.2] Let 1≤k≤ n− 1, x∈Rn, and ε≤ 1√
e
. Then

µn,k

F ∈Gn,k

∣∣∣∣∣∣ |PF (x)|≤ε
√
k

n
|x|


 ≤ (√eε)k ,

where PF is the surjective orthogonal projection mapping Rn onto F . �

Even though we provided a reference for this lemma, it is actually folklore in

convex geometric analysis literature and it is hard to find a reference with a complete

proof.

1.3.4 Condition Number of Random Polynomial Systems

It has been known since the 80’s that deciding whether a polynomial system has

real root or not is NP-Hard (see, e.g., [27]). Therefore one does not expect to develop

an efficient exact polynomial time algorithm for finding the real roots of a polyno-

mial system. However, based on the numerical ideas introduced in Smale’s 17th

problem section it is possible to develop algorithms for real root finding. Note that

this algorithms are always analyzed in terms of the corresponding condition num-

ber. Therefore, one expects the intrinsic complexity of the problem to be transferred

into the corresponding condition number. The word ‘average’ in Smale’s 17th prob-

lem gives a way out: one analyzes algorithms and thus the corresponding condition

number ‘on average’.

Explaining the word ‘on average’, Smale wrote the following [116]: “ A probability

measure must be put on the space of all such f , for each d = (d1, d2, . . . , dn) and the

time of the algorithm is averaged over the space of f ”.

Smale did not specify the probability measure on the input space. In Smale 17th

problem literature, the probability measure is always taken to be consisting of inde-

pendent Gaussians coordinates with specially chosen variances so that the measure
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remains invariant under the action of orthogonal group. These strong assumptions

makes it questionable that if the resulting complexity analysis is a property of the

analyzed algorithm or more of a property of strongly symmetric probability measure.

In chapter 4 we provide estimates for (real) condition number of random poly-

nomial systems for a broader family of distributions. We do not assume orthogonal

invariance of the the distribution which allows refined analysis for sparse polyno-

mials. Main novelty of our approach is usage of small ball probabilities instead of

analytic formula for random fields.
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2. TROPICAL VARIETIES FOR EXPONENTIAL SUMS

2.1 Introduction

Since the late 20th century (see, e.g., [123, 70, 72]) it has been known that many

of the quantitative results relating algebraic sets and polyhedral geometry can be

extended to more general analytic functions, including exponential sums. Here, we

show that the recent estimates on the distance between amoebae and Archimedean

tropical varieties from [8] admit such an extension. Metric estimates for amoebae

of polynomials are useful for coarse approximation of solution sets of polynomial

systems, as a step toward finer approximation via, say, homotopy methods (see,

e.g., [5, 64]). Polynomial systems are ubiquitous in numerous applications, and via

a logarithmic change of variables, are clearly equivalent to systems of exponential

sums with integer frequencies. Exponential sums with real frequencies are important

in Signal Processing, Model Theory, and 3-manifold invariants (see Remark 2.1.1

below).1

Definition 2.1.1. We use the abbreviations [N ] := {1, . . . , N}, w := (w1, . . . , wn),

z :=(z1, . . . , zn), w ·z :=w1z1 + · · ·+wnzn, and C∗ :=C\{0}. We also let <(z) denote

the vector whose ith coordinate is the real part of zi, and <(S) := {<(z) | z ∈ S}

for any subset S ⊆ Cn. Henceforth, we let A := {a1, . . . , at} ⊂ Rn have cardinality

t ≥ 2, bj ∈ C for all j ∈ [t], and set g(z) := ∑t
j=1 e

aj ·z+bj . We call g an n-variate

exponential t-sum and call A the spectrum of g. We also call the aj the frequencies

of g and define their minimal spacing to be δ(g) :=minp 6=q |ap− aq| where | · | denotes

the standard L2-norm on Cn. Finally, let Z(g) denote the zero set of g in Cn, and
1Lest there be any confusion, let us immediately clarify that we do not consider terms of the

form ep(x) with p a polynomial of degree ≥ 2. The latter type of exponential sums are of great
importance in analytic number theory and the study of zeta functions.
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define the (Archimedean) tropical variety of g to be

Trop(g) :=<
({
z∈Cn : maxj

∣∣∣eaj ·z+bj ∣∣∣ is attained for at least two distinct j
})

. �

Note that while we restrict to real frequencies for our exponential sums, we allow

complex coefficients. Trop(g) also admits an equivalent (and quite tractable) defini-

tion as the dual of a polyhedral subdivision of A depending on the real parts of the

bj (see Thm. 2.1.10 and Prop. 2.2.4 below).

Example 2.1.2. When n=1 and g(z) =e
√

2z1 + elog(3)+π
√
−1, we see that Z(g) is a

countable, discrete, and unbounded subset of the vertical line
{
z1∈C | <(z1)= log 3√

2

}
.

So <(Z(g))=
{

log 3√
2

}
. �

Example 2.1.3. When g(z) :=ea1z1+b1 +ea2z1+b2 for some distinct a1, a2∈R (and any

b1, b2 ∈C) it is easily checked that Trop(g) =<(Z(g)) =
{
<(b1−b2)
a2−a1

}
. More generally,

for any n-variate exponential 2-sum g, Trop(g) and <(Z(g)) are the same affine

hyperplane. However, the univariate exponential 3-sum g(z1) := (ez1 + 1)2 gives us

Trop(g) = {± log 2}, which is neither contained in, nor has the same number of

points, as <(Z(g))={0}. �

When A⊂ Zn, <(Z(g)) is the image of the complex zero set of the polynomial∑t
j=1 e

bjxaj under the coordinate-wise log-absolute value map, i.e., an amoeba [51].

Piecewise linear approximations for amoebae date back to work of Viro [122] and,

in the univariate case, Ostrowski [88]. More recently, Alessandrini has associated

piecewise linear approximations to log-limit sets of semi-algebraic sets and definable

sets in an o-minimal stucture [3]. However, other than Definition 2.1.1 here, we are

unaware of any earlier formulation of such approximations for real parts of complex

zero sets of n-variate exponential sums.

Our first main results are simple and explicit bounds for how well Trop(g) ap-

proximates <(Z(g)), in arbitrary dimension.
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Definition 2.1.4. Given any subsets R, S⊆Rn, their Hausdorff distance is

∆(R, S) :=max
{

sup
r∈R

inf
s∈S
|r − s|, sup

s∈S
inf
r∈R
|r − s|

}
. �

Theorem 2.1.5. For any n-variate exponential t-sum g(z) := ∑t
j=1 e

aj ·z+bj with

aj ∈ Rn and bj ∈ C for all j, let d be the dimension of the smallest affine sub-

space containing a1, . . . , at, and set δ(g) :=minp 6=q |ap − aq|. Then t≥d+ 1 and

(0) If t=d+ 1 then Trop(g)⊆<(Z(g)) (and thus sup
w ∈ Trop(g)

inf
r ∈ <(Z(g))

|r − w|=0).
(1) For t≥2 we have:

(a) sup
r ∈ <(Z(g))

inf
w ∈ Trop(g)

|r − w| ≤ log(t− 1)/δ(g)

(b) ∆(<(Z(g)),Trop(g)) ≤
√
edt2(2t−3) log 3

δ(g) .

(2) Defining the n-variate exponential t-sum gt,n(x) :=(eδz1 +1)t−n+eδz2 + · · ·+

eδzn, we have

∆(<(Z(gt,n)),Trop(gt,n)) ≥ log(t− n)/δ

for t≥n+ 1 and δ>0.

We prove Theorem 2.1.5 in Section 2.4. Fundamental results on the geometric and

topological structure of <(Z(g)) have been derived in recent decades by Favorov

and Silipo [46, 113]. However, we are unaware of any earlier explicit bounds for the

distance between <(Z(g)) and Trop(g) when A 6⊂Zn.

The special case A ⊂ Zn of Theorem 2.1.5 was known earlier, with a bound

independent of n: Our Trop(g) agrees with the older definition of (Archimedean)

tropical variety for the polynomial f(x) := ∑t
j=1 e

bjxaj , and the simpler bound

∆(Amoeba(f),Trop(f)) ≤ (2t − 3) log(t − 1) holds [8]. Earlier metric results for

the special case A⊂Z date back to work of Ostrowski on Graeffe iteration [88]. Viro

and Mikhalkin touched upon the special case A⊂Z2 in [122] and [83, Lemma 8.5,

pg. 360].

We derive our distance bounds by using a projection trick arising from the study
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of random convex sets (see [52] and Section 2.3 below) to reduce to the d= 1 case.

The d = 1 case then follows from specially tailored extensions of existing results

for the polynomial case (see Section 2.2 below). This approach results in succinct

proofs for our bounds. However, it is not yet clear if the dependence on d is actually

necessary or just an artifact of our techniques.

A consequence of our approach is a refinement of an earlier estimate of Wilder (see

[124], [123], and Section 2.2.2 below) on the number of roots of univariate exponential

sums in infinite horizontal strips of C: Theorem 2.2.10 (see Section 2.2.2) allows us to

estimate the number of roots in certain axis-parallel rectangles in C. A very special

case of Theorem 2.2.10 is the fact that all the roots of g are confined to an explicit

union of infinite vertical strips explicitly determined by Trop(g). In what follows, the

open ε-neighborhood of a subsetX⊆R is simply {x′∈R : |x−x′|<ε for some x∈X}.

Corollary 2.1.6. Suppose g is any univariate t-sum with real spectrum and W is

the open log 3
δ(g) -neighborhood of Trop(g). Then all the complex roots of g lie in W ×R.

In particular, sup
r ∈ <(Z(g))

inf
w ∈ Trop(g)

|r − w| ≤ log 3
δ(g) in the univariate case. �

Unlike the distribution of roots of g in horizontal strips, where there is a kind of

equidistribution (see, e.g., [123, 4] and Section 2.2 below), Corollary 2.1.6 tells us

that the roots of g cluster only within certain deterministically predictable vertical

strips.

Our next main results concern the complexity of deciding whether a given point

lies in the real part of the complex zero set of a given exponential sum, and whether

checking membership in a neighborhood of a tropical variety instead is more efficient.

2.1.1 On the Computational Complexity of <(Z(g)) and Trop(g)

We have tried to balance generality and computational tractability in the family

of functions at the heart of our paper. In particular, the use of arbitrary real inputs
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causes certain geometric and algorithmic subtleties. We will see below that these

difficulties are ameliorated by replacing exact queries with approximate queries.

Remark 2.1.1. “Polynomials” with real exponents — sometimes called posinomi-

als — occur naturally in many applications. For example, the problem of finding

the directions of a set of unknown signals, using a radar antenna built from a set

of specially spaced sensors, can easily be converted to an instance of root-finding in

the univariate case [47, 68]. Approximating roots in the higher-dimensional case

is the fundamental computational problem of Geometric Programming [42, 29, 25].

Pathologies with the phases of complex roots can be avoided through a simple expo-

nential change of variables, so this is one reason that exponential sums are more

natural than posinomials. Among other applications, exponential sums occur in the

calculation of 3-manifold invariants (see, e.g., [82, Appendix A] and [63]), and have

been studied from the point of view of Model Theory and Diophantine Geometry (see,

e.g., [125, 127, 128]). �

To precisely compare the computational complexity of <(Z(g)) and Trop(g) we

will first need to fix a suitable model of computation: We will deal mainly with the

BSS model over R [21]. This model naturally augments the classical Turing machine

[90, 6, 114] by allowing field operations and comparisons over R in unit time. We are

in fact forced to move beyond the Turing model since our exponential sums involve

arbitrary real numbers, and the Turing model only allows finite bit strings as inputs.

We refer the reader to [21] for further background.

We are also forced to move from exact equality and membership questions to

questions allowing a margin of uncertainty. One reason is that exact arithmetic

involving exponential sums still present difficulties, even for computational models

allowing field operations and comparisons over R.
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Proposition 2.1.7. The problem of determining, for an input (z1, z2)∈R2, whether

z1 = ez2, is undecidable2 in the BSS model over R, i.e., there is no algorithm termi-

nating in finite time for all inputs.

(We were unable to find a precise statement of Proposition 2.1.7 in the literature, so

we provide a proof at the end of this section.) Note that when the input is restricted,

deciding whether z1 = ez2 can be tractable (and even trivially so). For instance, a

famous result of Lindemann [76] tells us that ez2 is transcendental if z2∈C is nonzero

and algebraic.

Proposition 2.1.7 may be surprising in light of there being efficient iterations

for approximating the exponential function [22, 2]. Determining which questions

are tractable for expressions involving exponentials has in fact been an important

impetus behind parts of Computational Algebra, Model Theory, and Diophantine

Geometry in recent decades (see, e.g., [99, 125, 127, 62, 105]). As for the complexity

of <(Z(g)), deciding membership turns out to be provably hard, already for the

simplest bivariate exponential 3-sums.

Theorem 2.1.8. Determining, for arbitrary input r1, r2 ∈ R whether (r1, r2) ∈

<(Z (1− ez1 − ez2)) is undecidable in the BSS model over R.

(We prove Theorem 2.1.8 at the end of this section.) The intractability asserted in

Theorem 2.1.8 can be thought of as an amplification of the NP-hardness of deciding

amoeba membership when A ⊂ Z [8, Thm. 1.9]. (See also [94] for an important

precursor.) However, just as in Proposition 2.1.7, there are special cases of the

membership problem from Theorem 2.1.8 that are perfectly tractable. For instance,

when er1 , er2∈Q, deciding whether (r1, r2)∈<(Z (1− ez1 − ez2)) is in fact doable —
2[95] provides an excellent survey on undecidability, in the classical Turing model, geared toward

non-experts in complexity theory.
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even on a classical Turing machine — in polynomial-time (see, e.g., [117, 118] and

[8, Thm. 1.9]).

More to the point, Theorem 2.1.8 above is yet another motivation for approxi-

mating <(Z(g)), and our final main result shows that membership queries (and even

distance queries) involving Trop(g) are quite tractable in the BSS model over R.

We refer the reader to [60, 126, 37] further background on polyhedral geometry and

subdivisions.

Definition 2.1.9. For any n-variate exponential t-sum g, let Σ(Trop(g)) denote the

polyhedral complex whose cells are exactly the (possibly improper) faces of the closures

of the connected components of Rn\Trop(g). �

Theorem 2.1.10. Suppose n is fixed. Then there is a polynomial-time algorithm

that, for any input w∈Rn and n-variate exponential t-sum g, outputs the closure —

described as an explicit intersection of O(t2) half-spaces — of the unique cell σw of

Σ(Trop(g)) containing w.

We prove Theorem 2.1.10 in Section 2.5. An analogue of Theorem 2.1.10, for the

classical Turing model (assuming A ⊂ Zn and w ∈ Qn) appears in [5, Thm. 1.5].

Extending to A⊂Rn and real coefficients, and using the BSS model over R, in fact

conceptually simplifies the underlying algorithm and helps us avoid certain Diophan-

tine subtleties.

By applying the standard formula for point-hyperplane distance, and the well-

known efficient algorithms for approximating square-roots (see, e.g., [22]), Theorem

2.1.10 implies that we can also efficiently check membership in any ε-neighborhood

about Trop(g). This means, thanks to Theorem 2.1.5, that membership in a neigh-

borhood of Trop(g) is a tractable and potentially useful relaxation of the problem of

deciding membership in <(Z(g)).
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For completeness, we now prove Proposition 2.1.7 and Theorem 2.1.8.

Proof of Proposition 2.1.7: The key is to consider the shape of the space of inputs

I that lead to a “Yes” answer in a putative BSS machine deciding membership in

the curve in R2 defined by y=ex. In particular, [21, Thm. 1, Pg. 52] tells us that any

set of inputs leading to a “Yes” answer in a BSS machine over R must be a countable

union of semi-algebraic sets. So if I is indeed decidable relative to this model then I

must contain a bounded connected neighborhood W of a real algebraic curve (since

I has infinite length). Since I is the graph of ex, W extends by analytic continuation

to the graph of an entire algebraic function. But this impossible: One simple way

to see this is that an entire algebraic function must have polynomial growth order.

However, the function ex clearly has non-polynomial growth order. �

Proof of Theorem 2.1.8: Similar to our last argument, one can easily show that

I := <(Z(1 − ez1 − ez2)) being decidable by a BSS machine over R implies that a

neighborhoodW of the boundary of I must be real algebraic. (We may in fact assume

that W is the part of the boundary that lies in the curve defined by y=log(1− ex).)

So, via analytic continuation to U := C \ {(2k + 1)
√
−1π | k ∈ Z}, it suffices to

show that log(1− ex) is not an algebraic function that is analytic on U . But this is

easy since an algebraic function can only have finitely many branch points, whereas

log(1 − ex) has infinitely many. (Moreover, each branch point of log(1 − ex) has

infinite monodromy whereas algebraic functions can only have branch points with

finite monodromy.) �

2.2 Tropically Extending Classical Polynomials Root Bounds to Exponential Sums

2.2.1 Basics on Roots of Univariate Exponential Sums

Let #S denote the cardinality of a set S. It is worth noting that although

#Trop(g) and our bounds for ∆(<(Z(g)),Trop(g)) are independent of the maximal

46



distance between frequencies D := maxp,q |ap − aq|, the cardinality #<(Z(g)) can

certainly depend on D, and even be infinite for n=1.

Example 2.2.1. For any integer D≥2, g(z1) :=eDz1 + ez1 + 1 satisfies #Trop(g)=1

but #<(Z(g)) = dD/2e. The latter cardinality is easily computed by observing that

the non-real roots of the trinomial f(x1) :=xD1 + x1 + 1 occur in conjugate pairs, and

at most 2 roots of f can have the same norm. (The latter fact is a very special case

of [119, Prop. 4.3].) �

Example 2.2.2. Considering the decimal expansion of
√

2, and the local continuity

of the roots of eDz1 + ez1 + 1 as a function of D ∈ R, it is not hard to show that

X :=<
(
Z
(
e
√

2z1 + ez1 + 1
))

is in fact countably infinite, and Corollary 2.2.6 below

tells us that X is also contained in the open interval
(
− log 2√

2−1 ,
log 2√
2−1

)
. �

To derive our main results we will need the following variant of the Newton

polytope, specially suited for studying real parts of roots of exponential sums.

Definition 2.2.3. Let Conv(S) denote the convex hull of a subset S⊆Rn, i.e., the

smallest convex set containing S. Given any n-variate exponential t-sum g(z) =∑t
j=1 e

aj ·z+bj with real frequencies aj, we then define its Archimedean Newton poly-

tope to be ArchNewt(g) := Conv
(
{(aj,−<(bj))}j∈[t]

)
. We also call any face of a

polytope P ⊂ Rn+1 having an outer-normal vector with negative last coordinate a

lower face. �

Proposition 2.2.4. For any n-variate exponential t-sum g with real spectrum we

have

Trop(g)={w | (w,−1) is an outer normal of a

positive-dimensional face of ArchNewt(g)}
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Furthermore, when n = 1, Trop(g) is also the set of slopes of the lower edges of

ArchNewt(g). �

We refer the reader to [8] for further background on the polynomial cases of ArchNewt

and Trop.

A key trick we will use is relating the points of Trop(g) to (vertical) half-planes

of C where certain terms of the univariate exponential sum g dominate certain sub-

summands of g.

Proposition 2.2.5. Suppose g(z1) :=∑t
j=1 e

ajz1+bj satisfies a1< · · · <at and bj ∈C

for all j. Suppose further that w∈Trop(g), ` is the unique index such that (a`,<(b`))

is the right-hand vertex of the lower edge of ArchNewt(g) of slope w, and let δ` :=

minp−q |ap − aq|.

Then for any N ∈N and z1∈
[
w + log(N+1)

δ`
,∞

)
×R we have

∣∣∣∣∣`−1∑
j=1

eajz1+bj

∣∣∣∣∣< 1
N

∣∣∣ea`z1+b`
∣∣∣.

Proof: First note that 2≤ `≤ t by construction. Let βj := <(bj), r := <(z1), and

note that

∣∣∣∣∣∣
`−1∑
j=1

eajz1+bj

∣∣∣∣∣∣ ≤
`−1∑
j=1

∣∣∣eajz1+bj
∣∣∣ =

`−1∑
j=1

eajr+βj =
`−1∑
j=1

eaj(r−w)+ajw+βj

Now, since aj+1−aj≥δ` for all j∈{1, . . . , `−1}, we obtain aj≤a`− (`− j)δ`. So for

r>w we have

∣∣∣∣∣∣
`−1∑
j=1

eajz1+bj

∣∣∣∣∣∣ ≤
`−1∑
j=1

e(a`−(`−j)δ`)(r−w)+ajw+βj ≤
`−1∑
j=1

e(a`−(`−j)δ`)(r−w)+a`w+β` ,

where the last inequality follows from Definition 2.1.1. So then

∣∣∣∣∣∣
`−1∑
j=1

eajz1+bj

∣∣∣∣∣∣ ≤ e(a`−(`−1)δ`)(r−w)+a`w+β`
`−1∑
j=1

e(j−1)δ`(r−w)

= e(a`−(`−1)δ`)(r−w)+a`w+β`

(
e(`−1)δ`(r−w) − 1
eδ`(r−w) − 1

)

< e(a`−(`−1)δ`)(r−w)+a`w+β`

(
e(`−1)δ`(r−w)

eδ`(r−w) − 1

)
= ea`r+β`

eδ`(r−w) − 1
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So to prove our desired inequality, it clearly suffices to enforce eδ`(r−w) − 1≥N . The

last inequality clearly holds for all r≥w + log(N+1)
δ`

, so we are done. �

It is then easy to prove that the largest (resp. smallest) point of <(Z(g)) can’t

be too much larger (resp. smaller) than the largest (resp. smallest) point of Trop(g).

Put another way, we can give an explicit vertical strip containing all the complex

roots of g.

Corollary 2.2.6. Suppose g is a univariate exponential t-sum with real spectrum

and minimal spacing δ(g), and wmin (resp. wmax) is max Trop(g) (resp. min Trop(g)).

Then <(Z(g)) is contained in the open interval
(
wmin − log 2

δ(g) , wmax + log 2
δ(g)

)
.

The log 2 in Corollary 2.2.6 can not be replaced by any smaller constant: For g(z1)=

e(t−1)z1−e(t−2)z1−· · ·−ez1−1 we have δ(g)=1, Trop(g)={0}, and it is easily checked

that <(Z(g)) contains points approaching log 2 as t −→ ∞. While the polynomial

analogue of Corollary 2.2.6 goes back to work of Cauchy, Birkhoff, and Fujiwara pre-

dating 1916 (see [96, pp. 243–249, particularly bound 8.1.11 on pg. 247] and [48] for

further background) we were unable to find an explicit bound for exponential sums

like Corollary 2.2.6 in the literature. So we supply a proof below.

Proof of Corollary 2.2.6: Replacing z1 by its negative, it clearly suffices to prove

<(Z(g))⊂
(
−∞, wmax + log 2

δ

)
. Writing g(z1) =∑t

j=1 e
ajz1+bj with a1 < · · · < at, let

ζ denote any root of g, r := <(ζ), and βj := <(bj) for all j. Since we must have∑t−1
j=1 e

ajζ+bj =−eatζ+bt , taking absolute values implies that
∣∣∣∑t−1

j=1 e
ajζ+bj

∣∣∣= ∣∣∣eatζ+bt ∣∣∣.
However, this equality is contradicted by Proposition 2.2.5 for <(z1)≥wmax + log 2

δ
.

So we are done. �

Another simple consequence of our term domination trick (Proposition 2.2.5

above) is that we can give explicit vertical strips in C free of roots of g.
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Corollary 2.2.7. Suppose g(z1) :=∑t
j=1 e

ajz1+bj satisfies a1< · · · <at, bj∈C for all

j, and that w1 and w2 are consecutive points of Trop(g) satisfying w2≥w1 + 2 log 3
δ(g) .

Let ` be the unique index such that (a`,<(b`)) is the vertex of ArchNewt(g) incident

to lower edges of slopes w1 and w2. Then the vertical strip
[
w1 + log 3

δ(g) , w2 − log 3
δ(g)

]
×R

contains no roots of g.

Proof: By Proposition 2.2.5, we have
∣∣∣∑`−1

j=1 e
ajz1+bj

∣∣∣< 1
2

∣∣∣ea`z1+b`
∣∣∣

for all z1 ∈
[
w1 + log 3

δ(g) ,∞
)

and (employing the change of variables z1 7→ −z1)∣∣∣∑t
j=`+1 e

ajz1+bj
∣∣∣< 1

2

∣∣∣ea`z1+b`
∣∣∣ for all z1∈

(
−∞, w2 − log 3

δ(g)

]
. So we obtain

∣∣∣∑j 6=` e
ajz1+bj

∣∣∣<∣∣∣ea`z1+b`
∣∣∣ in the stated vertical strip, and this inequality clearly contradicts the exis-

tence of a root of g in
[
w1 + log 3

δ(g) , w2 − log 3
δ(g)

]
× R. �

Remark 2.2.1. Corollary 2.1.6 from the introduction follows immediately from

Corollaries 2.2.6 and 2.2.7. �

Let us now recall a result of Wilder [124] (later significantly refined by Voorhoeve

[123]) that tightly estimates the number of roots of exponential sums in infinite

horizontal strips of C. Let =(α) denote the imaginary part of α∈C and let 〈x〉 :=

minu∈Z |x− u| be the distance of x to the nearest integer.

Wilder-Voorhoeve Theorem. [123, Thm. 5.3] For any univariate exponential t-

sum g with real frequencies a1< · · · <at and u≤v let Hu,v denote the number of roots

of g, counting multiplicity, in the infinite horizontal strip {z1∈C | =(z1)∈ [u, v]}.

Then ∣∣∣∣Hu,v −
v − u

2π (at − a1)
∣∣∣∣ ≤ t− 1−

t∑
j=2

〈
(v − u)(aj − aj−1)

2π

〉
. �

We will ultimately refine the Wilder-Voorhoeve Theorem into a localized deviation

bound (Theorem 2.2.10 below) counting the roots of g in special axis parallel rectan-

gles in C. For this, we will need to look more closely at the variation of the argument

of g on certain vertical and horizontal segments.
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2.2.2 Winding Numbers and Density of Roots in Rectangles and Vertical Strips

To count roots of exponential sums in rectangles, it will be useful to observe a

basic fact on winding numbers for non-closed curves.

Proposition 2.2.8. Suppose I ⊂ C is any compact line segment and g and h are

functions analytic on a neighborhood of I with |h(z)| < |g(z)| for all z ∈ I. Then∣∣∣= (∫I g′+h′g+h dz −
∫
I
g′

g
dz
)∣∣∣ < π.

Proof: The quantity V1 := =
(∫
I
g′

g
dz
)
(resp. V2 := =

(∫
I
g′+h′
g+h dz

)
) is nothing more

than the variation of the argument of g (resp. g + h) along the segment I. Since

I is compact, |g| and |g + h| are bounded away from 0 on I by construction. So

we can lift the paths g(I) and (g + h)(I) (in C∗) to the universal covering space

induced by the extended logarithm function. Clearly then, V1 (resp. V2) is simply a

difference of values of =(Log(g)) (resp. =(Log(g + h))), evaluated at the endpoints

I, where different branches of Log may be used at each endpoint. In particular, at

any fixed endpoint z, our assumptions on |g| and |h| clearly imply that g(z) + h(z)

and g(z) both lie in the open half-plane normal (as a vector in R2) to g(z). So

|=(Log(g(z)+h(z)))−=(Log(g(z)))|< π
2 at the two endpoints of I, and thus |V1−V2|<

π
2 + π

2 =π. �

Re-examining Corollary 2.1.6 from the last section, one quickly sees that the

vertical strips in C containing the roots of a univariate exponential sum g correspond

exactly to clusters of “closely spaced” consecutive points of Trop(g). These clusters

of points in Trop(g) in turn correspond to certain sub-summands of g. In particular,

sets of consective “large” (resp. “small”) points of Trop(g) correspond to sums of

“high” (resp. “low”) order terms of g. Our next step will then be to relate the roots

of a high (or low) order summand of g to an explicit portion of the roots of g.
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Lemma 2.2.9. Let g(z1) := ∑t
j=1 e

ajz1+bj with a1 < · · · < at and bj ∈ C for all j,

u≤v, and let wmin (resp. wmax) be min Trop(g) (resp. max Trop(g)). Also let w1 and

w2 be consecutive points of Trop(g) satisfying wmin < w1 < w2 < wmax and let ` be

the unique index such that (a`,<(b`)) is the vertex of ArchNewt(g) incident to lower

edges of slopes w1 and w2 (so 2≤`≤ t− 1). Finally, assume w2−w1≥ 2 log 3
δ(g) . and let

R1
u,v and R2

u,v respectively denote the number of roots of g, counting multiplicity, in

the rectangles
(
wmin − log 2

δ(g) , w1 + log 3
δ(g)

)
× [u, v] and

(
w2 − log 3

δ(g) , wmax + log 2
δ(g)

)
× [u, v].

Then ∣∣∣∣R1
u,v −

v − u
2π (a` − a1)

∣∣∣∣≤ε1 + 1 and
∣∣∣∣R2

u,v −
v − u

2π (at − a`)
∣∣∣∣≤ε2 + 1,

where ε1, ε2≥0 and ε1 + ε2≤ t− 1−∑t
j=2

〈
(v−u)(aj−aj−1)

2π

〉
.

When Trop(g) has two adjacent points sufficiently far apart (as detailed above),

Lemma 2.2.9 thus refines the Wilder-Voorhoeve Theorem. Lemma 2.2.9 also con-

siderably generalizes an earlier root count for the polynomial case presented in [8,

Lemma 2.8]: Rephrased in terms of the notation above, the older root count from [8,

Lemma 2.8] becomes the equalities R1
0,2π=a` − a1 and R2

0,2π=at − a` for the special

case A⊂Z.

Proof of Lemma 2.2.9: By symmetry (with respect to replacing z1 by −z1) it

clearly suffices to prove the estimate for R2
u,v. Since g is analytic, the Argument

Principle (see, e.g., [1]) tells us that

R2
u,v = 1

2π
√
−1

∫
I−∪I+∪J−∪J+

g′

g
dz

where I− (resp. I+, J−, J+) is the oriented line segment from(
w2 − log 3

δ(g) , v
)
(resp.

(
wmax + log 2

δ(g) , u
)
,
(
w2 − log 3

δ(g) , u
)
,
(
wmax + log 2

δ(g) , v
)
)

to (
w2 − log 3

δ(g) , u
)
(resp.

(
wmax + log 2

δ(g) , v
)
,
(
wmax + log 2

δ(g) , u
)
,
(
w2 − log 3

δ(g) , v
)
),

assuming no root of g lies on I− ∪ I+ ∪ J− ∪ J+. By Corollaries 2.2.6 and 2.2.7, there
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can be no roots of g on I− ∪ I+. So let assume temporarily that there are no roots

of g on J− ∪ J+.

Since w2 − log 3
δ(g) ≥w1 + log 3

δ(g) by assumption, Proposition 2.2.5 tells us that
1
2

∣∣∣∣c`ea`(w2− log 3
δ(g) +

√
−1v)+b`

∣∣∣∣>
∣∣∣∣∣`−1∑
j=1

eaj(w2− log 3
δ(g) +

√
−1v)+bj

∣∣∣∣∣
and, by symmetry and another application of Proposition 2.2.5,

1
2

∣∣∣∣c`ea`(w2− log 3
δ(g) +

√
−1v)+b`

∣∣∣∣>
∣∣∣∣∣ t∑
j=`+1

eaj(w2− log 3
δ(g) +

√
−1v)+bj

∣∣∣∣∣.
So we can apply Proposition 2.2.8 and deduce that

∣∣∣= (∫I− g′

g
dz −

∫
I−

(ea`z+b` )′
ea`z+b`

dz
)∣∣∣<

π. So then, since the last integral has imaginary part easily evaluating to a`(u −

v)
√
−1, we clearly obtain

∣∣∣∣∣
(

1
2π
√
−1

∫
I−

g′

g
dz

)
− a`(u− v)

∣∣∣∣∣< 1
2. An almost identical

argument (applying Propositions 2.2.5 and 2.2.8 again, but with the term eatz+bt

dominating instead) then also yields
∣∣∣∣∣
(

1
2π
√
−1

∫
I+

g′

g
dz

)
− at(v − u)

∣∣∣∣∣< 1
2.

So now we need only prove sufficiently sharp estimates on 1
2π
√
−1
∫
J±

g′

g
dz:

∣∣∣∣∣
∫
J−∪J+

=
(
g′

g

)
dz

∣∣∣∣∣ =

∣∣∣∣∣∣
∫ wmax+ log 2

δ(g)

w2− log 3
δ(g)

=

g′
(
z + u

√
−1
)

g
(
z + u

√
−1
) − g′

(
z + v

√
−1
)

g
(
z + v

√
−1
)
 dz

∣∣∣∣∣∣
≤

∫ wmax+ log 2
δ(g)

w2− log 3
δ(g)

∣∣∣∣∣∣=
g′

(
z + u

√
−1
)

g
(
z + u

√
−1
) − g′

(
z + v

√
−1
)

g
(
z + v

√
−1
)
∣∣∣∣∣∣ dz

=: K

(
w2 −

log 3
δ(g) , wmax + log 2

δ(g) ;u, v; g
)
.

A quantity closely related to K(x1, x2;u, v; g) was, quite fortunately, already studied

in Voorhoeve’s 1977 Ph.D. thesis: In our notation, the proof of [123, Thm. 5.3] imme-

diately yields lim
x→∞

K(−x, x;u, v; g)= t−1−∑t
j=2

〈
(v−u)(aj−aj−1)

2π

〉
. In particular, by the

additivity of integration, the nonnegativity of the underlying integrands, and taking

ε1 :=K
(
wmin − log 2

δ(g) , w1 + log 3
δ(g) ;u, v; g

)
and ε2 :=K

(
w2 − log 3

δ(g) , wmax + log 2
δ(g) ;u, v; g

)
, we
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obtain
∣∣∣∣∣
∫
J−∪J+

=
(
g′

g

)
dz

∣∣∣∣∣ ≤ ε2, with ε1, ε2≥0 and

ε1 + ε2≤ t− 1−
t∑

j=2

〈
(v − u)(aj − aj−1)

2π

〉
.

Adding terms and errors, we then clearly obtain
∣∣∣∣R2

u,v −
v − u

2π (at − a`)
∣∣∣∣<ε2 + 1,

in the special case where no roots of g lie on J− ∪ J+. To address the case where

a root of g lies on J− ∪ J+, note that the analyticity of g implies that the roots

of g are a discrete subset of C. So we can find arbitrarily small η > 0 with the

boundary of the slightly stretched rectangle
(
w2 − log 3

δ(g) , wmax + log 2
δ(g)

)
× [u− η, v + η]

not intersecting any roots of g. So then, by the special case of our lemma already

proved,
∣∣∣∣R2

u−η,v+η −
v − u+ 2η

2π (at − a`)
∣∣∣∣<ε′2 + 1, with ε′1, ε

′
2 ≥ 0 and ε′1 + ε′2 ≤ t −

1 − ∑t
j=2

〈
(v−u+2η)(aj−aj−1)

2π

〉
. Clearly, R2

u−η,v+η = R2
u,v for η sufficiently small, and

the limit of the preceding estimate for R2
u−η,v+η tends to the estimate stated in our

lemma. So we are done. �

We at last arrive at our strongest refinement of the Wilder-Voorhoeve Theorem.

Theorem 2.2.10. Suppose g(z1) =∑t
j=1 e

ajz1+bj , a1 < · · · < at, and C is any con-

nected component of the open log 3
δ(g) -neighborhood of Trop(g). Also let wmin(C) (resp.

wmax(C)) be min(Trop(g) ∩ C) (resp. max(Trop(g) ∩ C)) and let i (resp. j) be the

unique index such that (ai,<(bi)) is the left-most (resp. right-most) vertex of the

lower edge of ArchNewt(g) of slope wmin(C) (resp. wmax(C)). Finally, let RC,u,v de-

note the number of roots of g, counting multiplicity, in the rectangle C× [u, v]. Then∣∣∣∣RC,u,v −
v − u

2π (aj − ai)
∣∣∣∣ ≤ εC + 1,

where εC≥0 and the sum of εC over all such connected components C is no greater

than t− 1−∑t
j=2

〈
(v−u)(aj−aj−1)

2π

〉
.

Note that Lemma 2.2.9 is essentially the special case of Theorem 2.2.10 where C is the
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leftmost or rightmost connected component specified above. Note also that a special

case of Theorem 2.2.10 implies that the fraction of roots of g lying in C × R (i.e.,

the ratio lim
y→∞

RC,u,v
Hu,v

, using the notation from our statement of the Wilder-Voorhoeve

Theorem) is exactly aj−ai
at−a1

. This density of roots localized to a vertical strip can also

be interpreted as the average value of the function 1, evaluated at all root of g in

C × R. Soprunova has studied the average value of general analytic functions h,

evaluated at the roots (in a sufficiently large vertical strip) of an exponential sum

[115]. Theorem 2.2.10 thus refines the notion of the “average value of 1 over the

roots of g in C” in a different direction.

Proof of Theorem 2.2.10: The argument is almost identical to the proof of Lemma

2.2.9, save for the horizontal endpoints of the rectangle and the dominating terms in

the application of Proposition 2.2.5 being slightly different. �

A consequence of our development so far, particularly Corollary 2.1.6, is that ev-

ery point of <(Z(g)) is close to some point of Trop(g). We now show that every point

of Trop(g) is close to some point of <(Z(g)). The key trick is to break Trop(g) into

clusters of closely spaced points, and use the fact that every connected component

C (from Theorem 2.2.10) contains at least one real part of a complex root of g.

Theorem 2.2.11. Suppose g is any univariate exponential t-sum with real spectrum

and t ≥ 2. Let s be the maximum cardinality of Trop(g) ∩ C for any connected

component C of the open log 3
δ(g) -neighborhood of Trop(g). (So 1≤s≤ t−1 in particular.)

Then for any v∈Trop(g) there is a root z∈C of g with |<(z)− v|≤ (2s−1) log 3
δ(g) .

Proof: For convenience, for the next two paragraphs we will allow negative indices

i for σi∈Trop(g) (but we will continue to assume σi is increasing in i).

Let us define R to be the largest j with v, σ1, . . . , σj being consecutive points of

Trop(g) in increasing order, σ1 − v≤ 2 log 3
δ(g) , and σi+1 − σi ≤ 2 log 3

δ(g) for all i∈ [j − 1].
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(We set R= 0 should no such j exist.) Similarly, let us define L to be the largest

j with v, σ−1, . . . , σ−j ∈ Trop(g) being consecutive points of Trop(g) in decreasing

order, v−σ−1≤ 2 log 3
δ(g) , and σ−i−σ−i−1 ≤ 2 log 3

δ(g) for all i∈ [j− 1]. (We set L=0 should

no such j exist.) Note that L+R + 1≤s.

By Theorem 2.2.10 there must then be at least one point of <(Z(g)) in the

interval
[
v − (2L+ 1) log 3

δ(g) , v + (2R + 1) log 3
δ(g)

]
. So there must be a point of <(Z(g))

within distance (2 max{L,R} + 1) log 3
δ(g) of v. Since 2L + 2, 2R + 2≤2s, we are done.

�

At this point, we are almost ready to prove our main theorems. The remaining

fact we need is a generalization of Corollary 2.1.6 to arbitrary dimension.

2.2.3 A Quick Distance Bound in Arbitrary Dimension

Having proved an upper bound for the largest point of <(Z(g)), one may wonder

if there is a lower bound for the largest point of <(Z(g)). Montel proved (in different

notation) the univariate polynomial analogue of the assertion that the largest points

of <(Z(g)) and Trop(g) differ by no more than log(t − 1) [85]. One can in fact

guarantee that every point of <(Z(g)) is close to some point of Trop(g), and in

arbitrary dimension.

Lemma 2.2.12. For any n-variate exponential t-sum g with real spectrum and t≥2

we have sup
r ∈ <(Z(g))

inf
w ∈ Trop(g)

|r − w| ≤ log(t− 1)/δ(g).

Proof: Let z∈Z(g) and assume without loss of generality that∣∣∣ea1·z+b1
∣∣∣≥ ∣∣∣ea2·z+b2

∣∣∣≥ · · · ≥ ∣∣∣eat·z+bt ∣∣∣.
Since g(z)=0 implies that

∣∣∣ea1·z+b1
∣∣∣= ∣∣∣ea2·z+b2 + · · ·+ eat·z+bt

∣∣∣, the Triangle Inequality
immediately implies that

∣∣∣ea1·z+b1
∣∣∣≤(t− 1)

∣∣∣ea2·z+b2
∣∣∣. Taking logarithms, and letting
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ρ :=<(z) and βi :=<(bi) for all i, we then obtain

a1 · ρ+ β1 ≥ · · · ≥ at · ρ+ βt and (2.1)

a1 · ρ+ β1 ≤ log(t− 1) + a2 · ρ+ β2 (2.2)

For each i∈{2, . . . , t} let us then define ηi to be the shortest vector such that

a1 · (ρ+ ηi) + β1 = ai · (ρ+ ηi) + βi.

Note that ηi =λi(ai − a1) for some nonnegative λi since we are trying to affect the

dot-product ηi ·(a1−ai). In particular, λi= (a1−ai)·ρ+β1−βi
|a1−ai|2 so that |ηi|= (a1−ai)·ρ+β1−βi

|a1−ai| .

(Indeed, Inequality (2.1) implies that (a1 − ai) · ρ+ β1 − βi≥0.)

Inequality (2.2) implies that (a1 − a2) · ρ + β1 − β2≤ log(t− 1). We thus obtain

|η2| ≤ log(t−1)
|a1−a2| ≤

log(t−1)
δ(g) . So let i0 ∈{2, . . . , t} be any i minimizing |ηi|. We of course

have |ηi0|≤ log(t− 1)/δ(g), and by the definition of ηi0 we have

a1 · (ρ+ ηi0) + β1 =ai0 · (ρ+ ηi0) + βi0 .

Moreover, the fact that ηi0 is the shortest among the ηi implies that

a1 · (ρ+ ηi0) + β1≥ai · (ρ+ ηi0) + βi

for all i. Otherwise, we would have a1 · (ρ + ηi0) + β1 < ai · (ρ + ηi0) + βi and

a1 · ρ + β1≥ai · ρ + βi (the latter following from Inequality (2.1)). Taking a convex

linear combination of the last two inequalities, it is then clear that there must be a

µ∈ [0, 1) such that

a1 · (ρ+ µηi0) + β1 =ai · (ρ+ µηi0) + βi.

Thus, by the definition of ηi, we would obtain |ηi|≤µ|ηi0|< |ηi0 | — a contradiction.

We thus have the following: (i) a1 · (ρ + ηi0) − (−β1) = ai0 · (ρ + ηi0) − (−βi0),

(ii) a1 · (ρ+ηi0)− (−β1)≥ai · (ρ+ηi0)− (−βi) for all i, and (iii) |ηi0|≤ log(t−1)/δ(g).
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Together, these inequalities imply that ρ+ηi0∈Trop(g). In other words, we’ve found

a point in Trop(g) sufficiently near ρ to prove our desired upper bound. �

2.3 Small Ball Probability

Let Gn,k be the Grassmanian of k-dimensional subspaces of Rn, equipped with its

unique rotation-invariant Haar probability measure µn,k. The following “small ball

probability” estimate holds.

Lemma 2.3.1. [52, Lemma 3.2] Let 1≤k≤ n− 1, x∈Rn, and ε≤ 1√
e
. Then

µn,k

F ∈Gn,k

∣∣∣∣∣∣ |PF (x)|≤ε
√
k

n
|x|


 ≤ (√eε)k ,

where PF is the surjective orthogonal projection mapping Rn onto F . �

An important precursor, in the context of bounding distortion under more general

Euclidean embeddings, appears in [80].

A simple consequence of the preceding metric result is the following fact on the ex-

istence of projections mapping a high-dimensional point set onto a lower-dimensional

subspace in a way that preserves the minimal spacing as much as possible.

Proposition 2.3.2. Let γ>0 and x1, . . . , xN ∈Rn be such that |xi−xj|≥γ for all dis-

tinct i, j. Then, following the notation of Lemma 2.3.1, there exist F ∈Gn,k such that

|PF (xi)− PF (xj)| ≥
√
k

en

γ

N2/k for all distinct i, j.

Proof: Let z{i,j} := xi−xj. Then our assumption becomes z{i,j}≥γ for all distinct i, j

and there are no more thanN(N−1)/2 such pairs {i, j}. By Lemma 2.3.1 we have, for

any fixed {i, j}, that |PF (z{i,j})|≥ε
√

k
n
|z{i,j}| with probability at least 1−(

√
eε)k. So

if ε < 1√
e

(
2

N(N−1)

)1/k
, the union bound for probabilities implies that, for all distinct

i, j, we have |PF (z{i,j})| ≥ ε
√

k
n
|z{i,j}| ≥ εγ

√
k
n
(and thus |PF (xi) − PF (xj)| ≥ εγ

√
k
n
)
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with probability at least 1 − N(N−1)
2 (

√
eε)k. Since this lower bound is positive by

construction, we can conclude by choosing ε := 1√
eN2/k . �

2.4 Proof of Theorem 2.1.5

The assertion that t≥d+1 is easy since any d-dimensional polytope always has at

least d+ 1 vertices. So we now focus on the rest of the theorem. We prove Assertion

1(b) last.

In what follows, for any real n × n matrix M and z ∈ Rn, we assume that z

is a column vector when we write Mz. Also, for any subset S ⊆ Rn, the notation

MS :={Mz | z∈S} is understood. The following simple functoriality properties of

Trop(g) and <(Z(g)) will prove useful.

Proposition 2.4.1. Suppose g1 and g2 are n-variate exponential t-sums, α ∈ C∗,

a ∈ Rn, β := (β1, . . . , βn) ∈ Cn, and g2 satisfies the identity g2(z) = αea·zg1(z1 +

β1, . . . , zn + βn). Then <(Z(g2)) = <(Z(g1)) − <(β) and Trop(g2) = Trop(g1) −

<(β). Also, if M ∈ Rn×n and we instead have the identity g2(z) = g1(Mz), then

M<(Z(g2))=<(Z(g1)) and MTrop(g2)=Trop(g1). �

2.4.1 Proof of Assertion (0)

First note that, thanks to Proposition 2.4.1, an invertible linear change of vari-

ables allows us to reduce to the special case A = {O, e1, . . . , en}, where O and

{e1, . . . , en} are respectively the origin and standard basis vectors of Rn. But this

special case is well known: One can either prove it directly, or avail to earlier work

of Rullgård on the spines of amoebae (see, e.g., the remark following Theorem 8 on

Page 33, and Theorem 12 on Page 36, of [104]). In fact, observing that our change

of variables can in fact be turned into an isotopy (by the connectivity of GL+
n (R)),

we can further assert that Trop(g) is a deformation retract of <(Z(g)) in this case.

�
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2.4.2 Proof of Assertion 1(a)

This is simply Lemma 2.2.12, which was proved in Section 2.2. �

2.4.3 Proof of Assertion (2)

The special case δ=1 follows immediately from Assertion (2) of Theorem 1.5 of [8]

(after setting xi=ezi in the notation there). Proposition 2.4.1 tells us that scaling the

spectrum of g by a factor of δ scales <(Z(g)) and Trop(g)

each by a factor of 1/δ. So we are done. �

2.4.4 Proof of Assertion 1(b)

First note that the Hausdorff distance in question is invariant under rotation in

Rn. So we may in fact assume that g involves just the variables z1, . . . , zd and thus

assume d=n.

By the k= 1 case of Proposition 2.3.2 we deduce that there exists a unit vector

θ∈Rn such that

min
i 6=j
|ai · θ − aj · θ| ≥

δ(g)√
ent2

(2.3)

Now let v∈Trop(g) and write v=vθθ + v⊥θ for some v⊥θ perpendicular to θ. Also let

uθ ∈C and u∈Cn satisfy u=uθθ + v⊥θ . For z1∈C define the univariate exponential

t-sum g̃(z1) = ∑t
j=1 e

(aj ·(z1θ+v⊥θ ))+bi . By Inequality (2.3) we see that δ(g̃)≥ δ(g)√
ent2

. We

also see that g̃(uθ) = g(u) and g̃(vθ) = g(v). By Theorem 2.2.11 there exists a value

for uθ such that 0 = f̃(uθ) = f(u) and |<(uθ)− vθ| ≤ (2t−3) log 3
δ(g̃) ≤

√
ent2(2t−3) log 3

δ(g) .

So |<(u) − v|= |(<(uθ) − vθ)θ| ≤
√
ent2(2t−3) log 3

δ(g) =
√
edt2(2t−3) log 3

δ(g) since we’ve already

reduced to the case d=n. �
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2.5 Proving Theorem 2.1.10

We will need some supporting results on linear programming before starting our

proof.

Definition 2.5.1. Given any matrixM ∈RN×n with ith rowmi, and c :=(c1, . . . , cN)∈

RN , the notation Mx≤ c means that m1 · x≤ c1, . . . ,mN · x≤ cN all hold. These

inequalities are called constraints, and the set of all x ∈ RN satisfying Mx ≤ c is

called the feasible region of Mx ≤ c. We also call a constraint active if and only

if it holds with equality. Finally, we call a constraint redundant if and only if the

corresponding row of M and corresponding entry of c can be deleted without affecting

the feasible region of Mx≤c. �

Lemma 2.5.2. Suppose n is fixed. Then, given any c ∈ RN and M ∈ RN×n, we

can, in time polynomial in N , find a submatrix M ′ of M , and a subvector c′ of c,

such that the feasible regions of Mx≤c and M ′x≤c′ are equal, and M ′x≤c′ has no

redundant constraints. Furthermore, in time polynomial in N , we can also enumerate

all maximal sets of active constraints defining vertices of the feasible region ofMx≤c.

�

Note that we are using the BSS model over R in the preceding lemma. In particular,

we are only counting field operations and comparisons over R (and these are the

only operations needed). We refer the reader to the excellent texts [107, 59, 58] for

further background and a more leisurely exposition on linear programming.

Proof of Theorem 2.1.10: Let w∈Rn be our input query point. Using O(t log t)

comparisons, we can isolate all indices such that maxj |eaj ·z+bj | is attained, so let j0

be any such index. Taking logarithms, we then obtain, say, J equations of the form

aj·w+<(bj)=aj0 ·w+<(bj0) andK inequalities of the form aj·w+<(bj)>aj0 ·w+<(bj0)

or aj · w + <(bj)<aj0 · w + <(bj0).
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Thanks to Lemma 2.5.2, we can determine the exact cell of Trop(f) containing

w if J≥2. Otherwise, we obtain the unique cell of Rn\Trop(f) with relative interior

containing w. Note also that an (n− 1)-dimensional face of either kind of cell must

be the dual of an edge of ArchNewt(g). Since every edge has exactly 2 vertices, there

are at most t(t− 1)/2 such (n− 1)-dimensional faces, and thus σw is the intersection

of at most t(t− 1)/2 half-spaces. So we are done. �
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3. MULTIHOMOGENOUS NONNEGATIVE POLYNOMIALS AND SUMS OF

SQUARES

3.1 Introduction

Let R[x̄] := R[x1, . . . , xn] denote the ring of real n-variate polynomials and let

Pn,2k denote the vector space of forms (i.e homogenous polynomials) of degree 2k in

R[x̄]. A form p ∈ Pn,2k is called non-negative if p(x̄) ≥ 0 for every x̄ ∈ Rn. The set

of non-negative forms in Pn,2k is closed under nonnegative linear combinations and

thus forms a cone. We denote cone of nonnegative forms of degree 2k by Posn,2k. A

fundamental problem in polynomial optimization and real algebraic geometry is to

efficiently certify non-negativity for real forms, i.e., membership in Posn,2k.

If a real form can be written as a sum of squares of other real polynomials

then it is evidently non-negative. Polynomials in Pn,2k that can be represented as

sums of squares of real polynomials form a cone that we denote by Sqn,2k. Clearly,

Sqn,2k ⊆ Posn,2k. We are then lead to the following natural question.

Question 3.1.1. For which pairs of (n, k) do we have Sqn,2k = Posn,2k?

In his seminal 1888 paper [66] Hilbert showed that the answer to Question 3.1.1 is

affirmative exactly for (n, k) ∈ ({2}×2N)∪(N×{2})∪{3, 4}. Hilbert’s beatiful proof

was not constructive: The first well known example of a non-negative form which is

not sums of squares is due to Motzkin from around 1967: x6
3 + x2

1x
2
2(x2

1 + x2
2 − 3x2

3).

Hilbert stated a variation of Question 3.1.1 in his famous list of problems for 20th

century mathematicians:

Hilbert’s 17th Problem. Do we have, for every n and k, that every p ∈ Posn,2k is

a sum of squares of rational functions?
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Artin and Schrier solved Hilbert’s 17th Problem affirmatively around 1927 [7]. How-

ever there is no known efficient and general algorithm for finding the asserted collec-

tion of rational functions for a given input p. Despite the computational hardness

of finding a representation as a sum of squares of rational functions, obtaining a

representation as a sum of squares of polynomials (when possible) can be done effi-

ciently via semidefinite programming (see, e.g., [74]). This connection to semidefinite

programming (which has been used quite successfully in electrical engineering and

optimization) strongly motivates a classification of which (n, k) have membership in

Sqn,2k occuring with high probability, relative to some natural probability measure

µ on Posn,2k.

3.1.1 From All or Nothing to Something in Between

Hilbert’s 17th problem is essentially an algebraic problem. However methods from

analysis have recently enabled some advances. The first example of this perspective

is Gregoriy Blekherman’s work: A consequence of his paper [18] is a probability

measure µ on Posn,2k supported in an hyperplane, for which µ(Sqn,2k)→ 0 as n→∞,

for any fixed k≥2.

It is important to observe that for many problems of interest in algebraic geome-

try, forms with a special structure (e.g., sparse polynomials) behave differently from

generic forms of degree 2k. Precious little is known about Hilbert’s 17th Problem

in the setting of sparse polynomials [40, 97, 20]. So let us first recall the notion of

Newton polytope and then a theorem of Reznick: For any p(x̄) = ∑
α∈Zn cαx

α with

α = (α1, . . . , αn) and x̄α = xα1
1 · · ·xαnn , the Newton polytope of p is the convex hull

Newt(p) := Conv({α | cα 6= 0}).

Theorem 3.1.1. [97, Thm. 1] If p = ∑r
i=1 g

2
i for some g1, . . . , gr ∈ R[x̄] then

Newt(gi) ⊆ 1
2Newt(p) for all i.
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This theorem enables us to refine the comparison of cones of sums of squares and

non-negative polynomials to be more sensitive to monomial term structure.

Definition 3.1.2. For any polytope Q⊂Rn with vertices in Zn, let NQ := #(Q∩Zn),

c = (cα | α ∈ Q ∩ Zn), pc(x̄) = ∑
α∈Q∩Zn cαx̄

α and then define

PosQ := {c ∈ RNQ | pc(x̄) ≥ 0 for every x ∈ Rn}

SqQ := {c ∈ RNQ | pc(x̄) = ∑
i qi(x̄)2 where Newt(qi) ⊆ 1

2Q} �

In our notation here, Blekherman’s paper [18] focused on volumetric estimates for

the cones PosQn,2k and SqQn,2k , where Qn,2k is the scaled (n− 1)-simplex

{x̄ ∈ Rn | ∑n
i=1 xi = 2k , x1, . . . , xn ≥ 0}.

In this context the following problem arises naturally:

Weighted Polytopal SOS Problem. Given a polytope Q and a probability measure

µ on PosQ, estimate µ
(
SqQ

)
. �

Note that Hilbert’s classic work [66] implies that, for any n and k and any con-

tinuous nonnegative probability measure on the cone Posn,2k, we have µ
(
SqQ3,4

)
=

µ
(
SqQ2,2k

)
= µ

(
SqQn,2

)
= 1. A related variant of the Weighted Polytopal SOS

Problem was recently answered, as a consequence of the main theorem from [20]:

There is now a complete combinatorial classification of those polytopes Q for which

SqQ = PosQ.

3.1.2 Our Results

We focus on the multihomogenous case of the Weighted Polytopal SOS Problem.

We have leaned toward general methods rather than ad hoc methods, in order to

allow future study of arbitrary polytopes. We begin here with Cartesian products of

scaled standard simplices.
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Definition 3.1.3. Assume henceforth that n = n1 + · · ·+nm and k = k1 + · · ·+ km,

with ki, ni ∈N for all i, and set N := (n1, . . . , nm) and K := (k1, . . . , km). We will

partition the vector x̄ = (x1, . . . , xn) into m sub-vectors x̄1, . . . , x̄m so that x̄i consists

of exactly ni variables for all i, and say that p ∈ R[x̄] is homogenous of type (N,K)

if and only if p ishomogenous of degree ki with respect to x̄i for all i. Finally, let

QN,K := Qn1,k1 × · · · ×Qnm,km. �

Example 3.1.4. p(x̄) := x3
1x

2
4 + x1x

2
2x

2
5 + x3

3x4x5 is homogenous of type (N,K) with

N = (3, 2) and K = (2, 3). (So x̄1 = (x1, x2, x3) and x̄2 = (x4, x5).) In particular,

Newt(p) ⊆ QN,K = Q3,2 ×Q2,3. �

Multihomogenous forms appeared before in the work of Choi, Lam and Reznick.

In particular they proved the following theorem in [30]:

Theorem 3.1.5. (Choi, Lam, Reznick) Let N = (n1, n2, . . . , nm) and

K = (2k1, 2k2, . . . , 2km) where ni ≥ 2 and ki ≥ 1 then PosQN,K = SqQN,K if and only

if m = 2 and (N,K) is either (2, n2; 2k1, 2) or (n1, 2; 2, 2k2).

Our result can be viewed as a localized version of Blekherman’s Theorem and also

as a quantitative version of the theorem of Choi, Lam and Reznick [30]. In order to

state our result we need to introduce the following function on subsets of PN,K .

Definition 3.1.6. Let Sn−1 denote the standard unit (n−1)-sphere in Rn and define

S := Sn1−1 × · · · × Snm−1, PN,K := {p ∈ R[x̄] homogeneous of type (N,K)}, and

CN,K := {p ∈ PN,K |
∫
S p dσ = 1}. For any X⊆PN,K we set µ(X) =

(
vol(X∩CN,K)

vol(B)

) 1
DN,K

where DN,K is the dimension of PN,K and B is the DN,K dimensional ball. �

Our main theorem is the following.
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Theorem 3.1.7. Let N = (n1, n2, . . . , nm) and K = (2k1, 2k2, . . . , 2km). We define

LQN,K := {p ∈ PosQN,K : p = ∑
i l

2k1
i1 l2k2

i2 · · · l2kmim where lij is a linear form in variables x̄j}

, then the following bounds hold

1
4m√maxi ni

m∏
i=1

(2ki + 1)− 1
2 ≤ µ(PosQN,K ) ≤ co

c1

m∏
i=1

(2ki + ni
2 )−

ki
2 ≤ µ(SqQN,K ) ≤ c2

m∏
i=1

( cki
ni + ki

)
ki
2

c3

m∏
i=1

(2ki + ni
2 )−

ki
2 ≤ µ(LQN,K ) ≤ √max

i
ni

m∏
i=1

4(2ki + 1) 1
2

m∏
i=1

( ni2ki
)−

ki
2

where ci are absolute constants with co ≤ 5 and c = 210e.

To compare our bounds with Blekherman’s bounds [18] let us consider the fol-

lowing special cases of Theorem 3.1.7:

Corollary 3.1.8. 1. For N = (2, n−2) and K = (2k−2, 2) we have the following

bounds:

c1(2k − 1)
−k+1

2 (n+ 2)−1
2 ≤

µ
(
SqQN,K

)
µ
(
PosQN,K

) ≤ 1

2. Assume n = k.n1, we partition into k groups by setting N = (n1, n1, . . . , n1)

and K = (2, 2, . . . , 2), then we have the following bounds:

c1(2 + n

2k )−k2 ≤
µ
(
SqQN,K

)
µ
(
PosQN,K

) ≤ c2( n
ck

)
−k+1

2

where c, c1 and c2 are absolute constants with c = 210e
48 .

Note that both cases considered above are contained in Qn,2k. In particular, Blekher-
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man’s Theorems 4.1 and 6.1 from [18] give the following estimates:

n
k+1

2

(n2 + 2k)k
c1k!(k − 1)!

42k(2k)! ≤
µ
(
SqQn,2k

)
µ
(
PosQn,2k

) ≤ c242k(2k)!
√
k

k! n
−k+1

2

where c1 and c2 are absolute constants.

The first case in Corollary 3.1.8, is a modest example to show the reflection of

monomial structure in our bounds. Bounds in the second case is dependent on n
k

instead of n which shows the effect of underlying multihomogeneity. In particular in

the cases that k and n are comparable bounds behave significantly different then the

bounds of Blekherman.

In general, Theorem 3.1.7 proves that if we assume multihomogeneity on the set

of variables x̄1, x̄2, . . . , x̄m, bounds derived in Blekherman’s work for the ratio of sums

of squares to non-negative polynomials, holds locally for every set of variable x̄j.

The remainder of this paper is structured as follows: In Section 2 we define

two different inner products, and investigate basic relations between geometries in-

troduced by these two inner products. Section 2 also includes definiton of zonal

harmonics and their basic properties. The hurried reader can see the definitions at

the very beginning and then go to Lemmata 3.2.8, 3.2.11, 3.2.13 and 3.2.14. In Sec-

tion 3 we prove volumetric bounds for PosQN,K . A key step is discovering existence of

an isotropic measure linked to the zonal harmonics. In Section 4 we give bounds for

SqQN,2K via classical convex geometry. Section 5 is devoted to polynomials that are

powers of linear forms. The bounds there are derived by a simple duality observation.

3.2 Harmonic Polynomials and Euclidean Balls

In this section we develop necessary background for the proof of Theorem 3.1.7.

We are going to make use of two different inner products on PN,K , mainly due to
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two useful notions of duality.

Definition 3.2.1. For f, g ∈ PN,K the “usual” inner product is defined as 〈f, g〉 :=∫
S
fg dσ. For f(x) = ∑

α cαx
α ∈ PN,K with α = (α1, . . . , αn) we define the linear

differential operator D[f ] := ∑
α cα

(
∂α1

∂x
α1
1
· · · ∂αn

∂xαnn

)
, and set 〈f, g〉D := D[f ](g). This

way of defining 〈f, g〉D, introduces an inner product which we call the “differential”

inner product. �

If g(x) = ∑
α bαx

α ∈ Pn,d and f(x) = ∑
α cαx

α ∈ Pn,d then it is easily checked that

〈f, g〉D = d!
∑

α1+···+αn=d

cαbα(
d

α1,...,αn

)

where
(

d
α1,...,αn

)
is the multinomial coefficient d!

α1!···αn! .

Below we list some useful properties of the differential inner product. This inner

product is actually the Bombieri-Weyl inner product (see, e.g., [112]) in our setting.

Lemma 3.2.2. For any vectors v̄, x̄ ∈ S we define

Kv(x) = (v1x1 + · · ·+ vn1xn1)2k1(vn1+1xn1+1 + · · ·+ vnxn1+n2)2k2

· · · (vn−nm+1xn−nm+1 + · · ·+ vnxn)2km

Then

1. 〈p,Kv(x)〉D = p(v)

2. 〈pq, h〉D = deg(q)!
deg(h)!〈q,D[p](h)〉D

3. Let si := ∑i
j=1 nj and s0 := 0 let for any i ∆i = ∂2

∂x2
si−1+1

+ · · · + ∂2

∂x2
si

and

ri = (x2
si−1+1 + · · ·+ x2

si
) 1

2 then (p+ 2)(p+ 1)〈r2
i p, q〉D = 〈p,∆i(q)〉D
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We would like to compare the geometry induced by the two different inner prod-

ucts. For instance how are the Euclidean balls with respect to two different products

related to each other? To find out, we will need to introduce a generalization of

harmonic polynomials that applies to our multihomogenous setting, and define cor-

responding linear operators acting on underlying vector spaces.

We call f Π-harmonic if ∆1(f) = ∆2(f) = · · · = ∆m(f) = 0. One may suspect

that Π-harmonicity is too strong a condition to be as natural as ordinary harmonicity.

However, one observes that Π-harmonicity is a special case of Helgason’s general

theory of Harmonic polynomials (see Chapter 3, [67]) .

Let HN,K be the space of Π-harmonic polynomials in PN,K . We observe that

HN,K is a vector space by the linearity of the ∆i operators. Also, for any vector

K = (k1, . . . , km) ∈ (N ∪ {0})m we define

KK = {Q ∈ (N ∪ {0})m | Q = (q1, . . . , qm), 2ki ≥ qi and qi is even.}.

Lemma 3.2.3. For U,Q ∈ KK such that Q 6= U we have that HN,U and HN,Q are

orthogonal with respect to the usual inner product.

Proof. Let f ∈ HN,Q and g ∈ HN,U with Q 6= U . Without loss of generality, assume

Q = (q1, . . . , qm) , U = (u1, . . . , um) and q1 6= u1. Then we have

(q1 − u1)
∫

Sn1−1

fg dσ1 =
∫

Sn1−1

(q1fg − u1fg) dσ1

∫
Sn1−1

(q1fg−u1fg)dσ1 =
∫

Sn1−1

(fDn(g)−gDn(f))dσ1 =
∫

Bn1−1

(f∆1g−g∆1f)dσ1 = 0.
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So
∫

Sn1−1
fgdσ1 = 0 and thus

∫
S

fg dσ =
∫

Snm−1

· · ·
∫

Sn1−1

fg dσ1 · · · dσm = 0

�

To see the connection between our two inner products we use a variant of a map

introduced by Reznick [98]: Let T : PN,K → PN,K be defined via

T (f)(x) = A−1
∫

Sn1−1×...×Snm−1

f(v)K(v, x) dσ(v)

whereA =
∫

Sn1−1×Sn2−1···×Snm−1
x2k1
n1 x

2k2
n1+n2 · · ·x2km

n andK(v, x) as defined in Lemma

3.2.2.

The following lemma shows that the operator T captures the relationship between

our two inner products.

Lemma 3.2.4. For all f, g ∈ PN,K we have 〈T (f), g〉D = A−12k1! · · · 2km!〈f, g〉.

Proof. The case of arbitrary m is only notationally more difficult than the m= 2,

thanks to induction. So we assume without loss of generality than m=2.

〈T (f), g〉D =
〈
A−1

∫
Sn1−1×Sn2−1

f(v)vK dσ, g
〉
D

= A−1
∫

Sn1−1×Sn2−1

〈f(v)vK , g〉D dσ

Since 〈vK , g〉D = 2k1!2k2!g(v) we have

A−1
∫

Sn1−1×Sn2−1

〈f(v)vK , g〉D dσ = A−1
∫

Sn1−1×Sn2−1

2k1!2k2!f(v)g(v) dσ

= 2k1!2k2!
A

〈f, g〉
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The lemma above immediately tells us T is one-to-one since for f, h ∈ PN,K ,

assuming T (f) = T (h) implies 〈f, g〉 = 〈h, g〉 for all g ∈ PN,K . To prove our next

lemma we need to recall a theorem of Funk and Hecke.

Theorem 3.2.5. [50] Given any measurable function K on [−1, 1] such that the

integral

1∫
−1

|K(t)| (1− t2)n−2
2 dt

is well-defined, for every function H that is harmonic on Sn we have

∫
Sn

K(σ · ζ)H(ζ) dζ =
Vol

(
Sn−1

) 1∫
−1

K(t)Pk,n(t)(1− t2)n−2
2

H(σ)

where Pk,n(t) is the classical Gegenbauer (ultraspherical) polynomial.

Gegenbauer polynomials are naturally introduced by zonal harmonics and they

do exist more generally in spaces of sparse polynomials as well. Zonal harmonics and

ultraspherical polynomials in our setting are introduced in Lemmata 3.2.12, 3.2.13,

3.2.14.

Lemma 3.2.6. For f ∈ HN,K we have

T (f)(x) = EN,Kf(x)

where EN,K depends only on N and K.

Proof. Defining Ki(v, x) = (vsi−1+1xsi−1+1 + · · ·+ vsi−1+nixsi−1+ni)2ki , we have

T (f)(x) = A−1
∫

Snm−1

· · ·
∫

Sn1−1

f(v)
m∏
i=1

Ki(v, x) dσi(v)
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We observe that each Ki satisfies the assumptions of the Funk-Hecke formula. So

we have

T (f)(x) = A−1
∫

Snm−1

. . .
∫

Sn2−1

A1f1(v, x)
m∏
i=2

Ki(v, x) dσi(v)

here f1(v, x) means first n1 variables are fixed to x1, . . . , xn1 and the rest left as

variables in the integral and A1 =
(

vol(Sn1−1)
dim(Hn1,2k1 )

1∫
−1
t2k1Pn1,2k1(t)(1− t2)

n1−2
2 dt

)
where

Pn1,2k1 is the corresponding ultraspherical polynomial. Iterating the argument we

have

T (f)(x) = A−1∏
i

Aif(x)

= A−1∏
i

 vol(Sni−1)
dim(Hni,2ki)

1∫
−1

t2kiPni,2ki(t)(1− t2)
ni−2

2 dt

 f(x)

�

Thanks to Lemma 3.2.6 we know that Π-harmonic polynomials are eigenvectors

for T . We also know a relation between our two inner products thanks to Lemma

3.2.4, and the orthogonality of spaces of Π-harmonic polynomials with respect to

usual inner product thanks to Lemma 3.2.3. We thus immediately obtain the follow-

ing corollary.

Corollary 3.2.7. For U,Q ∈ KK such that Q 6= U we have that HN,U and HN,Q are

orthogonal with respect to the differential inner product.

Remark 3.2.1. For notational convenience we set r = r1 · · · rm where ri is as defined

in Lemma 3.2.2 and let rα = rα1
1 · · · rαmm for any α ∈ Zm.
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For g ∈ SO(n1)×· · ·×SO(nm) and f ∈ PN,K we define g◦f by setting g◦f(x) =

f(g−1(x)). This gives a well defined group action on vector spaces of polynomials.

We observe that the operator T commutes with SO(n1)× · · · × SO(nm) action.

This implies that T (rK) = arK for some constant a since the only polynomials

that are fixed under the action are constant multiples of rK. To compute a we check

1 = T (rK)(en1 + · · ·+en) = arK(e1 + · · ·+en) = a. Hence r is fixed under T . Lemma

3.2.4 implies that the hyperplane orthogonal to r is fixed also. �

Now we prove a decomposition lemma for PN,K in a Hilbert space sense.

Lemma 3.2.8. PN,K = ⊕
α∈KK r

K−αHN,α

Proof. First observe that rK−αHN,α⊥rK−βHN,β for any α 6= β by Lemma 3.2.3. Also

via iterated usage of third property in Lemma 3.2.2 we observe rK−αHN,α⊥DrK−βHN,β.

So direct sum makes sense for both of the inner products. Let E = ⊕
α∈KK r

K−αHN,α

and assume E 6= PN,K . This implies there exists p ∈ PN,K such that p⊥DE. By

assumption p /∈ HN,K therefore there exist i such that ∆i(p) 6= 0. Wlog say ∆1(p) =

p1 6= 0. Then if p1 is Π-harmonic we have 〈p, r2
1p1〉D = 〈∆1(p), p1〉D = 〈p1, p1〉D 6= 0.

This yields a contradiction since r2
1p1 ∈ E. If p1 is not Π-harmonic there exist a j

such that ∆j(p1) 6= 0. Wlog say ∆1(p1) = p2. Repeating the same argument, we

arrive to a contradiction surely since all polynomials of degree 0 are Π-harmonic! �

Corollary 3.2.9. PN,K(S) = ⊕
α∈Km HN,α(S) where PN,K(S) is restriction of PN,K

to S = Sn1−1 × Sn2−1 × Sn3−1 × . . .× Snm−1.

From Lemma 3.2.8 we know how PN,K is decomposed into Π-harmonic polyno-

mials. We also know T (f) = EN,Kf for any f ∈ HN,K . For f ∈ rK−αHn,α, since

T is averaging over S where rK−α is constant, repeating Funk-Hecke argument in

Lemma 3.2.6 we observe T (f) = CN,αf for some constant depending on N and α
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only. We would like to compute these constants and write the operator T explicitly.

Thankfully the integrals that gives the constants are well known and computed. (See

for example Lemma 7.4 of [17]). We write the result without proof.

Lemma 3.2.10. Let fα be the projection of f onto the subspace HN,α then we have

T (f) =
∑
α∈KK

m∏
i=1

ki!Γ(ni+2ki
2 )

(ki − αi
2 )!Γ(ni+2ki+αi

2 )
rK−αfα.

Now let f = ∑
α∈KK r

K−αfα that is ‖f‖2 = 〈f, f〉 = ∑
α∈KK ‖fα‖

2. We set

aα = ∏m
i=1

ki!Γ(ni+2ki
2 )

(ki−
αi
2 )!Γ(ni+2ki+αi

2 )
. Then define AN,K = maxα∈KK aα , BN,K = minα∈KK aα

and CN,K = A−1∏m
i=1 2ki!.

AN,KCN,K ‖f‖2 ≥ 〈T (f), T (f)〉D = CN,K〈f, T (f)〉 ≥ BN,KCN,K ‖f‖2

We denote the ball with respect to the usual inner product by B and the ball

with respect to the differential inner product by BD. The observation above implies

1√
AN,KCN,K

T (B) ⊆ BD ⊆
1√

BN,KCN,K
T (B)

Lemma 3.2.11. Let T be the operator on PN,K as defined before Lemma 3.2.4, let

AN,K, BN,K, CN,K be defined as above , and let dim be the dimension of PN,K, then

we have the following

AN,K = 1

BN,K =
(
m∏
i=1

(
ni
2 + 2ki
ki

))−1
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m∏
i=1

(
1

2ki + ni
2

) ki
2

≤ |det(T )|
1
dim ≤

m∏
i=1

(
1

1 + ni
2ki

) ki
2

m∏
i=1

(
1

2ki + ni
2

) ki
2

≤
√
CN,K( |BD|

|B|
) 1
dim ≤ e

k
2

m∏
i=1

(
1 + 1

ni
2ki + 1

) ki
2

Proof.

aα =
m∏
i=1

ki!(ni2 + ki)!
(ki − αi

2 )!(ni2 + ki + αi
2 )!

It is quite clear that aα is maximized for α = (0, 0, . . . , 0) and minimized for

α = K. Thus AN,K = 1 and BN,K = ∏m
i=1(

(ni
2 +2ki
ki

)
)−1. Also T is a diagonal operator

in the basis of harmonic polynomials and it’s entries are aα. Thus

|T (B)|
|B|

= |det(T )| =

∣∣∣∣∣∣
∏

α∈KK
aα

dim(Hn,α)

∣∣∣∣∣∣
We observe |KK | = (k1 + 1)(k2 + 1) · · · (km + 1) ,

aα =
m∏
i=1

(ni
2 +2ki
ki−

αi
2

)
(ni

2 +2ki
ki

)
this yields the formula

|det(T )|
1
dim = BN,K

∏
α∈KK

(
m∏
i=1

(
ni
2 + 2ki
ki − αi

2

)) dim(HN,α)
dim(PN,K )

If we partition KK into k1 +1 subsets by defining Kj := {α ∈ KK : α1 = 2k1−2j}

then we have

|det(T )|
1
dim = BN,K

ki∏
j=0

∏
α∈Kj

aα = BN,K

ki∏
j=0

(
ni
2 + 2ki
j

) 1
ki+1

A

For some A determined by ni and ki for i ≥ 2. We repeat the same trick for A

and do some housekeeping to arrive at the following formula
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|det(T )|
1
dim = BN,K

m∏
i=1

 ki∏
j=0

(
ni
2 + 2ki
j

) 1
ki+1

=
m∏
i=1

 ki∏
j=0

(ni
2 +2ki
j

)
(ni

2 +2ki
ki

)


1
ki+1

|det(T )|
1
dim =

m∏
i=1

 ki∏
j=0

k1!(n1
2 + k1)!

j!(n1
2 + 2k1 − j)!

 1
ki+1

=
m∏
i=1

ki∏
j=1

(
j

n1
2 + 2k1 − j + 1

) j
ki+1

Applying the trivial bounds ( 1
ni
2 +2ki

)j ≤ k1!(n1
2 +k1)!

j!(n1
2 +2k1−j)!

and j
n1
2 +2k1−j+1 ≤

ki
ni
2 +ki+1

we have

m∏
i=1

(
1

ni
2 + 2ki

) ki
2

≤ |det(T )|
1
dim ≤

m∏
i=1

(
ki

ni
2 + ki + 1

) ki
2

Let us note that

B
−1/2
N,K ≤

m∏
i=1

(
e.
ni
2 + 2ki
ki

) ki
2

B
−1/2
N,K |det(T )|

1
dim ≤ e

k
2

m∏
i=1

(
1 + 1

ni
2ki + 1

) ki
2

�

We define a class of Π-harmonic polynomials which turns out to be very useful.

Assume y1, . . . , yM is an orthonormal basis ofHN,K . Then let v ∈ Sn1−1×· · ·×Snm−1,

qv = ∑M
i=1 yi(v)yi. We observe qv ∈ HN,K moreover 〈f, qv〉 = f(v) for all f ∈ HN,K .

This special polynomial qv is called the zonal harmonic corresponding to the vector

v on HN,K . The following lemma states basic properties of zonal harmonics:
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Lemma 3.2.12.

1. qv(w) = qw(v) for all v, w ∈ S.

2. qw(v) = qT (w)(T (v)) for all v, w ∈ S and T ∈ O(n1) × O(n2) × O(n3) × · · · ×

O(nm).

3. qv(v) = ‖qv‖2 = dimHN,K.

4. |qv(w)| ≤ dimHN,K.

Proof. (1) Let e1, . . . , el be an orthonormal basis for HN,K . Then

qv = ∑l
i=1 〈ei, qv〉ei = ∑m

i=1 ei(v)ei. So qv(w) = ∑
ei(v)ei(w) = qw(v).

(2) For p ∈ HN,K we have

p(T (w)) = 〈p ◦ T, qw〉 =
∫
S

p(T (x))qw(x) dσ(x) =
∫
S

p(x)qw(T−1(x)) dσ(x)

Since the zonal harmonic is unique we deduce that qw ◦ T−1 = qT (w).

(3) By the notation of (1) and using (2) afterward

qv(v) = 〈qv, qv〉Π = 〈
∑

ei(v)ei,
∑

ei(v)ei〉Π =
∑
|ei(v)|2

qv(v) =
∫
S

qv(v) dσ(v) =
∫
S

m∑
i=1
|ei(v)|2dσ(v) = m = dimHN,K

(4) |〈qv, qw〉| = |qv(w)| ≤ ‖qv‖‖qw‖ = dimHN,K . Thus |qv(w)| ≤ dimHN,K = qv(v).

�

Now we define, for any vector v ∈ S, the polynomial pv = ∑
α∈KK r

K−αqv,α where

qv,α is the zonal harmonic corresponding to v in HN,α. Let ‖f‖∞ = maxv∈S|f(v)|.
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We observe pv inherits properties from zonal harmonics:

Lemma 3.2.13. 1. f(v) = 〈f, pv〉 for every f ∈ PN,K.

2. ‖pv‖2 = 〈pv, pv〉 = ∑〈qv,α, qv,α〉 = ∑ dimHN,α = dimPN,K

3. |f(v)| = |〈f, pv〉| ≤ ‖f‖‖pv‖ and thus ‖f‖∞‖f‖ ≤ ‖pv‖ =
√

dimPN,K.

4. |pv(w)| ≤ pv(v) for all w ∈ S and ‖pv‖∞‖pv‖ =
√

dimPN,K.

The third property turns out to be a characterization of the polynomials pv:

Lemma 3.2.14. Let f ∈ PN,K be such that ‖f‖∞‖f‖ ≥
‖g‖∞
‖g‖ for all g ∈ PN,K. Then f

is a constant multiple of pv for some v.

Proof. Assume ‖f‖∞ = f(v) = C and let T = {g ∈ PN,K : g(v) = C}. We observe

for g ∈ T , ‖g‖∞ ≥ C.

Using the assumption on f we deduce ‖g‖ ≥ ‖f‖ for all g ∈ T . Thus f is the

shortest form on the hyperplane. We also observe g(v) = 〈g, pv〉 from Lemma 3.2.13.

This proves f to be a constant multiple of pv. �

Let us consider the hyperplane LC := {q ∈ PN,K : q(v) = C} = {q ∈ PN,K :

〈q, pv〉 = C}. We define SO(v) := {g ∈ SO(n1) × · · · × SO(nm) : g(v) = v}. Now

observe that LC is fixed under SO(v) action. This implies pv is fixed under SO(v)

action and thus, for every c ∈ R and Mc =: {x ∈ Rn : 〈x, v〉 = c}, pv is constant on

Mc. This implies pv(w) = qN,K(〈v, w〉) for some univariate polynomial qN,K . This

qN,K is the Gegenbauer or ultraspherical polynomial in our setting. Gegenbauer

polynomial in our setting or the classical Gegenbauer polynomial will be both referred

as ultraspherical polynomial throughout this paper.
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3.3 The Cone of Nonnegative Polynomials

In this section we construct an isotropic measure introduced by the zonal har-

monics, then use a theorem of Lutwak, Yhang and Zhang (Theorem 3.3.1 below)

on the volume of convex hull of an isotropic measure supported on the sphere. Our

upper bound for Vol
(
PosN,K

)
then follows from Theorem 3.3.1 via duality.

Let us start by defining isotropicity: A measure Z on St−1 is isotropic if for every

x ∈ Rt we have

‖x‖2
2 =

∫
St−1
〈x, y〉2 dZ(y)

We need to introduce one more definition to state the theorem Lutwak, Yhang

and Zhang. For a convex body K ∈ Rn the polar of K denoted by K◦ is defined as

follows:

K◦ := {x ∈ Rn : 〈x, y〉 ≤ 1 for all y ∈ K}

The main theorem of [78] is the following:

Theorem 3.3.1. (Lutwak, Yhang, Zhang) [78] If Z is an isotropic measure on St−1

whose centroid is at the origin and Z∞ = Conv(Supp(Z)), then we have

Vol(Z◦∞) ≤ t
t
2 (t+ 1) t+1

2

t!

The lemma below states our upper bound for Vol
(
PosN,K

)
. As we derive our

bounds we will find that PosN,K is always in John’s position in a sense we now

describe.

Remark 3.3.1. We will observe that PosN,K is a dual body to the convex hull of

an isotropic measure on the sphere. Condition of being an isotropic measure with
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centroid at the origin is actually a “continuous” version of the decomposition of

identity in John’s Theorem. This point of view is elaborated in [53], and essentially

tells us that a section of the cone of nonnegative polynomials PosN,K is in John’s

position. This fact will remain valid for cone of nonnegative polynomials supported

with arbitrary Newton polytopes.

Theorem 3.3.1 above uses a “continuous” version of John’s theorem combined

with the observation of Ball [11] that conditions of John’s theorem are compatible

with the Brascamp-Lieb inequality to derive their sharp estimates.

Barvinok and Blekherman [13] used the classical version of John’s Theorem to

approximate the volume of the convex hull of orbits of compact groups. The classical

John’s Theorem provides very good approximation for ellipsoid-like bodies but may

not be sharp for convex bodies that do not resemble ellipsoids. For instance, as far as

we are able to compute Barvinok and Blekherman’s Theorem yields an upper bound

of order
√
M for the ratio

(
Vol(PosN,K)

Vol(B)

) 1
M

. �

Lemma 3.3.2. Vol
(
PosN,K

)
|B|


1
M

≤ C

where M is the dimension of PosN,K, B is the M-dimensional ball with respect to

usual inner product, and C is an absolute constant bounded from above by 5.

Proof. We identify (N,K)-homogenous polynomials with the corresponding vector

space PN,K of dimension R(n1+2k1−1
2k1 )(n2+2k2−1

2k2 ) where N = (n1, n2) and K = (2k1, 2k2).

We define a map Φ : Sn1−1 × Sn2−1 → PN,K by

Φ(v) = pv − r√(
n1+2k1−1

2k1

)(
n2+2k2−1

2k2

)
− 1
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where pv is the polynomial corresponding to the vector v as in Lemma 3.2.13.

It is not hard to prove that Φ is Lipschitz and injective. Now let U be the

subspace of PN,K defined by U = {p ∈ PN,K : 〈p, r〉 = 0}. We observe that for all

v ∈ Sn1−1 × Sn2−1, Φ(v) ∈ U and ‖Φ(v)‖2 = 1.

Now let σ1 × σ2 be the product of uniform measures on Sn1−1 and Sn2−1. We define

the measure Z on the unit sphere of U , as the push-forward measure of σ1×σ2 under

the map Φ. It follows directly that Z is well-defined, with Supp(Z) = Image(Φ), and

satisfies the following property (see, e.g., [81] Theorem 1.19 Chapter 1 )

∫
g dZ =

∫
g(Φ) σ1 × σ2

Now for every q ∈ U we have the following equality

‖q‖2
2 =

∫
Sn1−1×Sn2−1

q(v)2σ1 × σ2(v) =
∫

Sn1−1×Sn2−1

M〈q,Φ(v)〉2σ1 × σ2(v)

=
∫

SM−1

M〈q, v〉2dZ(v)

where M =
(
n1+2k1−1

2k1

)(
n2+2k2−1

2k2

)
− 1. This simply implies MdZ is an isotropic mea-

sure on SM−1!

To compute the centroid of Z let q =
∫

Sn1−1×Sn2−1
pv σ1 × σ2(v). We observe q

is invariant under the action of SO(n1) × SO(n2) as defined in Remark 3.2.1. This

observation immediately yields q = r. Thus the centroid of Z is the origin. Now

using Theorem 3.3.1 we deduce

Vol(Conv(Im(Φ))◦) ≤ M
M
2 (M + 1)M+1

2

M !
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We define A = Conv({pv − r : v ∈ Sn1−1 × Sn2−1}) where pv is the polynomial

corresponding to the vector v as defined in Lemma 3.2.13. We consider A in RM ,

and note that A =
√
MConv(Image(Φ)). Using the above estimate we have

|A◦| ≤ M
M
2 (M + 1)M+1

2

M !M M
2

(3.1)

Now observe that for all q ∈ PN,K that satisfies
∫

Sn1×Sn2−1
q = 〈q, r〉 = 1 we have

q(v) ≥ 0 for all v ∈ Sn1 × Sn2−1 ⇔ (q − r)(v) ≥ −1⇔ 〈r − q, pv − r〉 ≤ 1

Thus PosN,K − r = A◦. Hence by 3.1

(

∣∣∣PosN,K
∣∣∣

|B|
) 1
M ≤ (M

M
2 (M + 1)M+1

2

M !M M
2 |B|

) 1
M

where B denotes the M dimensional ball.

(

∣∣∣PosN,K
∣∣∣

|B|
) 1
M ≤ |B|

−1
M M

1
2

M
e

(

∣∣∣PosN,K
∣∣∣

|B|
) 1
M ≤ e

√
M |B|

1
M

≤ 5

�

Remark 3.3.2. Blekherman derived an upper bound for
(

Vol(PosN,K)
Vol(B)

) 1
M

in [18] for

the usual homogenous polynomial setting with degree fixed. Blekherman’s bounds

seems sharper than ours for fixed degree homogenous polynomials, i.e., the special

case where the underlying Newton polytope is a scaled standard simplex. However,
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Blekherman’s methods do not apply to polynomials supported on more general Newton

polytopes. �

The following lemma states our lower bounds for Vol
(
PosN,K

)
. The construction

carried out in the previous proof seems to indicate a lower bound via discretization

and Vaaler’s Inequality [120]. For now we give the following lower bound by using

the Gauge function.

Lemma 3.3.3.

(

∣∣∣PosN,K
∣∣∣

|B|
) 1
M ≥ 1√

16 max{n1, n2}(2k1 + 1)(2k2 + 1)

Proof. To derive a lower bound for
(

Vol(PosN,K)
Vol(B)

) 1
M

we examine PosN,K − r. For any

q ∈ PN,K such that 〈q, r〉 = 0 we observe

q ∈ PosN,K − r ⇔ q(v) ≥ −1 for all v ∈ Sn1−1 × Sn2−1

That is for f ∈ U and GPosN,K−r(f) the Gauge Function of PosN,K − r we have

GPosN,K−r(f) = |min
x∈S

f(x)|

We set ‖f‖∞ = maxx∈Sn1−1×Sn2−1 |f(x)| and let SM−1 = {f ∈ U : ‖f‖2 = 1} then


∣∣∣PosN,K

∣∣∣− r
|B|


1
M

=

 ∫
SM−1

| min
x∈Sn1−1×Sn2−1

f(x)|−M df


1/M

and


∣∣∣PosN,K

∣∣∣− r
|B|


1
M

≥

 ∫
SM−1

‖f‖−d∞ df)1/d ≥
∫

SM−1

‖f‖−1
∞ df ≥ (

∫
SM−1

‖f‖∞ df


−1
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where the second line of inequalities is derived by consecutive applications of Jensen’s

inequality. Therefore to prove a lower bound for the volume of Vol
(
PosN,K

)
, it

suffices to prove an upper bound for
∫

SM−1
‖f‖∞ df . To this end we invoke Theorem

3.1 from [13] for the compact group G = SO(n1) × SO(n2) and the vector space

V = (Rn1)⊗2k1 × (Rn2)⊗2k2 . Barvinok’s theorem shows that for any m > 0 we have

 ∫
Sn1−1×Sn2−1

f(x)2m


1

2m

≤ ‖f‖∞ ≤ d
1

2m
m

 ∫
Sn1−1×Sn2−1

f(x)2m


1

2m

where dm ≤
(
n1+2k1m−1

2k1m

)(
n2+2k2m−1

2k2m

)
. This yields

∫
SM−1

‖f‖∞ df ≤ d
1

2m
m

∫
SM−1

 ∫
Sn1−1×Sn2−1

f(v)2m dv


1

2m

df

Using Hölder’s inequality and Fubini’s theorem we have

∫
SM−1

‖f‖∞ df ≤ d
1

2m
m

 ∫
Sn1−1×Sn2−1

∫
SM−1

f(v)2m df dv


1

2m

The average inside the integral is independent of vector v, thus for a fixed v

∫
SM−1

‖f‖∞ df ≤ d
1

2m
m

 ∫
SM−1

〈f, pv〉2m


1
2m

.

Note that we know ‖pv‖2 =
√
M + 1. So we obtain

∫
SM−1

‖f‖∞ df ≤ dm
1

2m
√
M + 1

(
Γ(m+ 1

2)Γ(1
2M)

√
πΓ(1

2M +m)

) 1
2m

(
Γ(m+ 1

2)
π

) 1
2m

≤
√
m and

(
Γ(1

2M)
Γ(1

2M +m)

) 1
2m

≤
√

2
M

85



∫
SM−1

‖f‖∞ df ≤
(
n1 + 2k1m− 1

2k1m

) 1
2m
(
n2 + 2k2m− 1

2k2m

) 1
2m√

M + 1
√
m

√
2
M

We set h = max{n1, n2}, m = h(2k1 +1)(2k2 +1), for the case t = (2k1 +1)(2k2 +

1) > h we have

(
n1 + 2k1m− 1

2k1m

) 1
2m
(
n2 + 2k2m− 1

2k2m

) 1
2m

≤ (2k1m+1)
n1
2m (2k2m+1)

n2
2m ≤ t

1
t (th) 2

t ≤ 4

For the case t = (2k1 + 1)(2k2 + 1) ≤ h we write
(
ni+2kim−1

2kim

) 1
2m ≤ (ni + 1)

2ki
2m then

the rest of the proof follows similarly. Hence we have proved

∫
SM−1

‖f‖∞ df ≤ 4
√
h(2k1 + 1)(2k2 + 1)

�

Remark 3.3.3. If we would like the bounds in Lemma 3.3.2 and Lemma 3.3.3 to be

in terms of the body A that was introduced in the proof of Lemma 3.3.2 we have

c0 ≤
(
|A|
|B|

) 1
M

≤ 4
√

max{n1, n2}(2k1 + 1)(2k2 + 1)

where c0 is a constant. �

3.4 The Cone of Sums of Squares

In this section we prove our bounds for Vol
(
SqN,K

)
. We start with the upper

bound.
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Lemma 3.4.1.

Vol
(
SqN,K

)
Vol(B)


1
M

≤ 9
2(210e)

k1+k2
2 ( k1

n1 + k1
)
k1
2 ( k2

n2 + k2
)
k2
2

where c is a constant with c ≤ 5.

Proof. We define C = {p ∈ UN,K : p + r ∈ SqN,K}. Let hC(f) = maxg∈C〈f, g〉. We

use Urysohn’s Lemma [106] in order to bound volume of C. The mean width of C

can be written as

WC = 2
∫

SM−1

hC(f) dσ

where SM−1 = {f ∈ UN,K : ‖f‖ = 1}. By Urysohn’s Lemma we have

Vol
(
SqN,K

)
Vol(B)


1
M

=
(

Vol(C)
Vol(B)

) 1
M

≤ WC

2

Observe that the extreme points of C are of the form g2 − r where g ∈ PN,K/2

and ‖g‖ = 1. Also observe for f ∈ SM−1, we have 〈f, r〉 =
∫
S
f dσ = 0 that is

〈f, g2 − r〉 = 〈f, g2〉. Hence we could write hC(f) ≤ maxg∈PN,K/2,‖g‖=1〈f, g2〉.

WC

2 =
∫

SM−1

hC(f) dσ =
∫

SM−1

max
g∈PN,K/2,‖g‖=1

〈f, g2〉 dσ ≤
∫

SM−1

max
g∈PN,K/2,‖g‖=1

|〈f, g2〉| dσ

For a fixed f , 〈f, g2〉 is a quadratic form. So Theorem 3.1 of [13] or Barvinok’s

earlier inequality [14] for q =
(
n1+k1−1

k1

)(
n2+k2−1

k2

)
yields
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WC

2 ≤
∫

SM−1

(
∫

SD−1

〈f, g2〉2q)
1
2q dσ(g)dσ(f) ≤

(
3q − 1

2q

) 1
2q

(
∫

SD−1

∫
SM−1

〈f, g2〉2qdσ(f)dσ(g))
1
2q

where SD−1 = {g ∈ PN,K/2 : ‖g‖ = 1}. Thanks to Reverse Hölder inequalities of

J. Duoandikoetxea [43] we know ‖g2‖ ≤ 24(k1+k2).

We follow the proof of Lemma 3.3.3 verbatim to arrive at the following estimate

WC

2 ≤
(

3q − 1
2q

) 1
2q

24(k1+k2)

√√√√√
(
n1+k1−1

k1

)(
n2+k2−1

k2

)
(
n1+2k1−1

2k1

)(
n2+2k2−1

2k2

)
After this point we apply classical bounds for binomial coefficients, hence

Vol
(
SqN,K

)
Vol(B)


1
M

≤ 9
2(28)

k1+k2
2 ( 4ek1

n1 + k1
)
k1
2 ( 4ek2

n2 + k2
)
k2
2

�

To prove our lower bound we need the following lemma which was essentially

proved by Blekherman as Lemma 5.3 at [18]

Lemma 3.4.2. (Blekherman)

Sqd∗N,K ⊆ SqN,K

where Sqd∗N,K is the dual cone with respect to the differential metric.

Lemma 3.4.3. Vol
(
SqN,K

)
Vol(B)


1
M

≥ c
m∏
i=1

(
1

2ki + ni
2

) ki
2
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Proof.

〈T (r), r〉D = 〈r, r〉D = CN,K〈r, r〉 = CN,K

SqN,K = {p ∈ SqN,K : 〈p, r〉 = 1} := {p ∈ SqN,K : 〈p, r〉D = CN,K}

A = SqN,K − r := {p ∈ PN,K : p+ r ∈ SqN,K and 〈p, r〉D = 0}

A◦d = {q ∈ PN,K : 〈q, r〉D = 0, 〈q, p〉D ≤ 1 ∀p ∈ A}

C−1
N,Kr − A◦d = {q ∈ PN,K : 〈q, r〉D = 1, 〈q, p〉D ≥ −1 ∀p ∈ A}

C−1
N,Kr − A◦d = {q ∈ PN,K : 〈q, r〉D = 0, 〈q, p〉D ≤ 0 ∀p ∈ SqN,K}

Observe that for any f ∈ PN,K

〈f, g〉D ≥ 0 ∀g ∈ SqN,K ⇔ 〈f, g〉D ≥ 0 ∀g ∈ SqN,K

thus C−1
N,Kr − A◦d = B ⊆ Sqd∗N,K ⊆ SqN,K . Hence B ⊆ SqN,K = C−1

N,KSqN,K . By

the Reverse Santalo inequality [24] we have

c ≤
(

Vol(A)
Vol(BD)

) 1
M
(

Vol(A◦d)
Vol(BD)

) 1
M

≤

Vol
(
SqN,K

)
Vol(BD)


1
M
Vol

(
C−1
N,KSqN,K

)
Vol(BD)


1
M
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√
c · CN,K ≤

Vol
(
SqN,K

)
Vol(BD)


1
M

Using the bounds in Lemma 3.2.11 completes the proof.

�

3.5 The Cone of Powers of Linear Forms

This section develops quantitative bounds on the cone of even powers of linear

forms. More precisely let LN,K := {p ∈ LQN,K : 〈p, r〉 = 1}, we prove upper and

lower bounds on the volume of LN,K .

Now let us consider the image of pv (as in Lemma 3.2.13) under the map T :

1. 〈T (pv), r〉D = CN,K

2. For every f ∈ PN,K we have

〈f, T (pv)〉D = CN,K〈f, pv〉 = CN,Kf(v)

Since for all f ∈ PN,K , 〈f, CN,KKv〉D = CN,Kf(v) we have T (pv) = CN,KKv.

Now let Á = {pv : v ∈ S} and A = Conv(Á). If we define the map Φ as in the

non-negative polynomials section we observe A =
√

dim(PN,K) Conv(Image(Φ)). By

Krein-Milman theorem and linearity of T we have

LN,K = Conv(CN,KKv : v ∈ S) = Conv(T (Á)) = T (Conv(Á)) = T (A)

This implies that Vol
(
LN,K

)
= |det(T )|Vol(A). Therefore, from Remark 3.3.3

and the bounds derived in Lemma 3.2.11, we deduce the following estimate on the

volume of LN,K .
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Lemma 3.5.1.

co
m∏
i=1

( 1
ki

2 + ni
2ki

) ki
2

≤


∣∣∣LN,K ∣∣∣
|B|


1
M

≤ 4
√

max{n1, n2}(2k1 + 1)(2k2 + 1)
m∏
i=1

(
1

1 + ni
2ki

) ki
2

where c0 is a positive constant and c0 ≤ 5.
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4. CONDITION NUMBER OF RANDOM POLYNOMIAL SYSTEMS

4.1 Introduction

When designing algorithms for polynomial system solving, it quickly becomes

clear that complexity is governed by more than simply the number of variables and

degrees of the equations. Numerical solutions are meaningless without further infor-

mation on the spacing of the roots, not to mention their sensitivity to perturbation.

A mathematically elegant means of capturing this sensitivity is the notion of condi-

tion number (see, e.g., [21, 26], and the next section).

A subtlety behind complexity bounds incorporating the condition number is that

it is probably as hard to compute the condition number — even if one allows a large

multiplicative error — as it is to compute the numerical solution one seeks in the first

place (see, e.g., [39] for a precise statement in the linear case). However, a growing

body of results have shown that the condition number admits probabilistic bounds,

thus enabling its use in average-case and/or high probability analysis of numerical

algorithms. In fact, these probabilistic bounds have revealed that numerical solving

can be done in polynomial-time on average, in spite of numerical solving having

exponential deterministic complexity.

The numerical approximation of complex roots provides an instructive example

of how one can profit from randomized input.

First, there are classical reductions showing that deciding the existence of complex

roots for systems of polynomials in ⋃
m,n∈N(Z[x1, . . . , xn])m is NP-hard. However,

classical algebraic geometry (Bertini’s Theorem and Bézout’s Theorem [108]) tells us

that the number of complex roots of a random polynomial system p :=(p1, . . . , pm)∈

C[x1, . . . , xn] (with each pi having fixed positive degree di) is 0, ∏n
i=1 di, or infinite,
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according as m>n, m=n, or m<n. Any continuous positive probability measure

on the coefficients will do in the preceding statement.

Secondly, examples like p := (x1 − x2
2, x2 − x2

3, . . . , xn−1 − x2
n, (2xn − 1)(3xn −

1)), which has affine roots
(
2−2n−1

, . . . , 2−20
)
and

(
3−2n−1

, . . . , 3−20
)
, reveal that

the number of digits necessary to distinguish the coordinates of roots of p may be

exponential in n (among other parameters). However, it is now known (via earlier

work on the condition number, or an application of discriminants [51] and Weyl’s

Tube Formula [57]) that on average, the number of digits needed to separate roots

of p is polynomial in n. The key assumption on the underlying probability measure

is that the probability of being near a certain discriminant variety be small. (See,

e.g., [28] for more explicit results along these lines.) In particular, this discriminant

distance criterion is equivalent to a suitable condition number being large. (We fully

define condition numbers in the next section.)

In short, for the problem of numerically approximating a single complex root of a

polynomial system, randomization enables polynomial-time average-case complexity

when exponential deterministic complexity appears inevitable. The recent positive

solution to Smale’s 17th Problem provides a rigorous and explicit framework for this

intuition.

It appears that similar speed-ups are possible for the harder problem of numeri-

cally approximating real roots for real polynomial systems. However, a new subtlety

is that the number of real roots of n polynomials in n variables (of fixed degree) is

no longer constant with probability 1, even if the probability measure for the coeffi-

cients is continuous and positive. In fact, small perturbations of the coefficients can

sometimes change the number of real roots from positive to zero. Nevertheless, it

is possible to define a condition number that enables useful average-case and high

probability complexity estimates: This is accomplished in the seminal series of papers
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[32, 33, 34], where the probability measure underlying the coefficients is a centered

Gaussian distribution with specially chosen variances (and zero covariance).

Our main results (Theorems 4.3.9–4.4.14 below) show that useful condition num-

ber estimates can still be derived for a much broader class of probability measures,

allowing dependence and non-Gaussian distributions. Unlike the existing literature,

our methods do not use any imposed structure (by special variances) such as uni-

tary invariance. This aspect allows localized analysis for sparse polynomials, where

unitary action does not preserve sparsity.

We denote the condition number of a polynomial system p = (p1, p2, . . . , pm) with

κ(p). Since the condition number notion is a bit technical, we defer the precise defi-

nition of κ(p) until the next section. Our estimates cover overdetermined and square

random polynomial systems for both generic and sparse cases. Up to our knowledge,

our estimates are the first ones in literature for the overdetermined random systems.

For square systems, the seminal work of Cucker, Malajovich, Krick and Wschebore

[32, 33, 34] considers polynomial systems with Gaussian i.i.d random variables with

specially chosen variances. We recall their result below.

Theorem 4.1.1. Let p = (p1, . . . , pn−1) be a system of homogenous polynomials

where pi = ∑
|α|=di

√(
di
α

)
cαx

α and cα are i.i.d Gaussian random variables with mean

zero and variance 1. Also let D = ∏
i di where di = deg(pi) and assume d = maxi di

then the following inequalities hold:

1. Let N = ∑n−1
i=1

(
n+di−1

di

)
, Kn = 8d2

√
D
√
Nn

5
2 + 1 and a > Kn then

P{κ(p) ≤ a} ≤ Kn
(1+log(a))

1
2

a
.

2. E(log κ(p)) ≤ log(Kn) + log(Kn) 1
2 + log(Kn)− 1

2 .

Our results at the third section, provides estimates for a broader family of distri-

butions allowing dependency among the coefficients. For the precise statement of our
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assumptions on the randomness, we refer the reader to the beginning of the section 3.

Let us mention that known examples of distributions satisfying our assumptions in-

clude the uniform distributions on the Euclidean ball, the Euclidean sphere, and the

Bp balls for p > 2. Random vectors which has independent subgaussian coordinates

with bounded densities are also among the examples that satisfy our assumptions.

To illustrate our results for generic polynomials systems, we recite a corollary of

Theorem 4.3.9 for the square systems. In what follows, C is a universal constant and

c0, K are parameters of our assumptions on the randomness.

Theorem 4.1.2. Let p be a random polynomial system as in Theorem 4.3.9 with

m = n− 1. Then we have the following:

1. If d = deg(pi), 1 ≤ i ≤ m, set

M := M(n, d, c0, K) := C
√
c0
√
NK (Cc0Kd log (ed))n−2 .

then

(a)

P{κ(p) ≥ tM} ≤



3
t

if 1 ≤ t ≤ e(n−1) log (ed)

3
t

(
log t

(n−1) log (ed)

)n−2
2 if e(n−1) log (ed) ≤ t ≤ eN

3
t

(
log t

(n−1) log (ed)

)n−2
2
(

log t
N

) 1
2 if eN ≤ t

(b) For all q ≤ 1− 1
2 log (ed)

(E(κ(p)q))
1
q ≤Me

1
q .
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Moreover

E log κ(p) ≤ logM + 1

2. If maxi deg(pi) = d set

M := M(n, d, c0, K) := C
√
c0
√
NK

(
Cc0Kd

2 log (ed)
)n−2

.

then

(a)

P{κ(p) ≥ tM} ≤



3
t

if 1 ≤ t ≤ e(n−1) log (ed)

3
t

(
log t

(n−1) log (ed)

)n−2
2 if e(n−1) log (ed) ≤ t ≤ eN

3
t

(
log t
N

) 1
2
(

log t
(n−1) log (ed)

)n−2
2 if eN ≤ t

(b) Then for all q ≤ 1− 1
2 log (ed)

(E(κ(p)q))
1
q ≤Me

1
q .

Moreover

E log κ(p) ≤ logM + 1

As once can see from the corollary above our results are quite similar to the results

of Cucker, Malajovich, Krick and Wschebore for Gaussian i.i.d polynomial systems.

The only important difference is a factor of 2 in the expectation. We discuss this

further at remarks 4.3.2 and 4.3.3.

Up to our knowledge, the only non-Gaussian result for condition number of poly-

nomial systems is due to Nguyen [87]. The quantity that is analyzed in Nguyen’s

96



work is not the condition number and the degree of polynomials are assumed to be

bounded by a small of number of the variables. Nevertheless, we borrow some of the

ideas present in Nguyen’s work, as we will mention in section 3.

In section 4, we consider random polynomial systems with a given monomial

structure. Let p = (p1, p2, . . . , pm) be a system of polynomials with a fixed set of

monomials Si for all pi. At the beginning of section 4, we provide examples of Si

such that for a polynomial system p supported with S = (S1, S2, . . . , Sm), κ(p)

is always infinite independent of the coefficients. To rule out such examples, and

to control the effect of the monomial structure on the conditioning, we develop a

quantity depending on the set S that we denote by H(S). In particular, we prove

that if κ(p) < ∞ then H(S) < ∞. And also if H(S) < ∞ then κ(p) < ∞ with

probability 1. To illustrate our results at section 4, we recite a corollary of Theorem

4.4.9.

Theorem 4.1.3. There exists C, c, c̃ > 0 such that for every n ≥ 3, d ≥ 2 and

p := (p1, · · · , pn−1) be a random polynomial system in n-variables with degrees dj,

which satisfies the randomness assumptions with constants K, c0 respectively and has

(proper eligible) support S := (S, · · · , S), the following holds

In the case dj = d, 1 ≤ j ≤ m we set

M :=
√
IcKH(S)(nc0) 1

2
(
cc0K

√
mH(S)d log(ed)

)n−2

In the case max1≤j≤m dj = d we set

M :=
√
IcKH(S)(nc0) 1

2
(
cc0K

√
mH(S)d2 log(ed)

)n−2

We consider two cases:
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1. In the case I ≥ (n− 1) log (ed), we have that

P{κ(p) ≥ tM} ≤



3
t

if 1 ≤ t ≤ e(n−1) log (ed)

3
t

(
log t

(n−1) log (ed)

)n−2
2 if e(n−1) log (ed) ≤ t ≤ eI

3
t

(
log t
I

) 1
2
(

log t
(n−1) log (ed)

)n−2
2 if eI ≤ t.

2. In the case I ≤ (n− 1) log (ed), we have that

P{κ(p) ≥ tM} ≤


3
t

if 1 ≤ t ≤ eI

3
t

(
log t
I

) (n−1)
2 if eI ≤ t.

Moreover,

E log (κ(p)) ≤ logM + 1.

We observe that estimates for the sparse polynomial systems are better in terms

of I being possibly much less than N . However, H(S) can get quite big for certain

sparse systems. Currently, trade off between the loss from the H(S) and the gain

from I is not completely clear. However, we are still able to prove some optimistic

results as in the proposition 4.4.15. For more details on this trade-off, please see the

remark 4.4.1.

As one can easily observe, our estimates for the same degree case and the mixed

degree case are always different. This is mainly due to one of the tools that we

developed, which might be of independent interest: Theorem 4.2.3. Theorem 4.2.3

is an extension of Kellog’s classical theorem on polynomials, to the systems of poly-

nomials. This theorem bounds the Lipschitz constant of a homogenous polynomial

system, in terms of the supremum of the system on the sphere. For the precise
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statement and the proof of Theorem 4.2.3, we invite the reader to the next section.

4.2 Technical Background

We start by defining an inner product structure on spaces of polynomial systems.

For n-variate degree d homogenous polynomials f and g, say f = ∑
|α|=d bαx

α and

g = ∑
|α|=d cαx

α the Weyl-Bombieri inner product is defined as follows

〈f, g〉W =
∑
|α|=d

bαcα(
d
α

)
It is known that for U ∈ O(n)

〈f ◦ U, g ◦ U〉W = 〈f, g〉W

Now let D = (d1, . . . , dm) and set HD to be the space of homogenous n-variate

polynomial systems with degrees d1, . . . , dm respectively. Then for f = (f1, . . . , fm) ∈

HD and g = (g1, . . . , gm) ∈ HD the Weyl-Bombieri inner product is defined as follows:

〈f, g〉W =
m∑
i=1
〈fi, gi〉W

Systems of n-variate homogeneous polynomials can be divided into three categories:

overdetermined (m > n − 1), underdetermined (m < n − 1), and square (m =

n−1). We provide estimates for the condition number of overdetermined and square

systems.

How to define the condition number for a given numerical problem is already

a non-trivial question. In their seminal work [109, 110, 111, 112] Shub and Smale

defined the condition number of the complex root finding problem for square systems.

We are interested in real root finding, and this problem requires a different notion

of conditioning. A correct variant of the condition number for real root finding was
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defined in [32] as follows:

Let p = (p1, . . . , pm) be a system of n-variate polynomials with degrees d1, . . . , dm

respectively, let ∆(d1/2
i ) be the diagonal matrix with entries d1/2

i . Also letDp(x)|TxSn−1

be the Jacobian matrix of polynomial system p evaluated at point x restricted to the

tangent space of x. Then we define κ(p, x) the condition number of the polynomial

system p at point x, and κ(p) the condition of polynomial system p as follows:

µ(p, x) = ‖p‖W
∥∥∥∆(d1/2

i )(Dp(x)|TxSn−1)−1
∥∥∥

2

κ(p, x) = ‖p‖W
(‖p‖2

W µ(p, x)−2 + ‖p(x)‖2
2)1/2

κ(p) = max
x∈Sn−1

κ(p, x)

In ([33], Proposition 3.1) the authors also prove an Eckart-Young type theorem

that provides geometric justification for their definition of condition number. In order

to state Eckart-Young type theorem of Cucker, Krick, Malajovich, and Wschebor we

need to introduce some terminology.

For x ∈ Sn−1 we define the set of polynomial systems with singularity at x as

ΣR(x) = {f ∈ HD | f has a multiple root at x}

Then we set ΣR to be the ‘real’ disciminant variety

ΣR = {f ∈ HD | f has a multiple root in Sn} =
⋃
x∈Sn

ΣR(x).

The main theorem of [33] reads as follows:
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Theorem 4.2.1. [33] For all p ∈ HD we have κ(p) = ‖p‖W
dist(p,ΣR) . �

For convenience we define

L = L(p) = min
x∈Sn−1

{(
∥∥∥∆(d1/2

i )(Dp(x)|TxSn−1)−1
∥∥∥−2

2
+ ‖p(x)‖2

2) 1
2}

It directly follows that κ(p) = ‖p‖W
L

. Now we make an important observation, say

M = ∆(d1/2
i ) and Dx(p) = Dp(x)|TxSn−1 then

∥∥∥MDx(p)−1
∥∥∥−1

2
= σmin(M−1Dx(p)) = min{

∥∥∥M−1Dx(p)(y)
∥∥∥

2
: y⊥x, y ∈ Sn−1}

L = min
x∈Sn−1

{(
∥∥∥M(Dx(p))−1

∥∥∥−2

2
+ ‖p(x)‖2

2) 1
2}

L = min{(
∥∥∥M−1Dx(p)(y)

∥∥∥2

2
+ ‖p(x)‖2

2) 1
2 : y⊥x, y ∈ Sn−1}

Since the W-norm of a random polynomial system has strong concentration prop-

erties for a broad variety of distributions we are mainly interested in behavior of the

L quantity. To confuse matters more we set

L(x, y) =
√
‖M−1D(1)p(x)(y)‖2

2 + ‖p(x)‖2
2

It directly follows that L = minx⊥y L(x, y) and κ(p) = ‖p‖W
L

.

Now we have a correct variant of condition number for square systems, we need

to define a correct one for overdetermined systems as well. Newton’s method for

overdetermined systems was studied at [36]. Inspired by [36] for m > n−1 we define
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µ(p, x) = ‖p‖W σmin(∆(d
−1
2
i )Dp(x)|TxSn−1)−1

κ(p, x) = ‖p‖W
(‖p‖2

W µ(p, x)−2 + ‖p(x)‖2
2)1/2

κ(p) = max
x∈Sn−1

κ(p, x)

where σmin(A) is the smallest non-zero singular value of matrix A. Similarly for

m > n− 1 we define

L = min
x
{
√
σmin(M−1Dx(p))2 + ‖p(x)‖2

2 : x ∈ Sn−1}

Now, we review Kellog’s classical Theorem.

Theorem 4.2.2. Let p be a polynomial with n variables and degree d. Let∥∥∥D(1)p
∥∥∥
∞

= maxx,u∈Sn−1

∣∣∣D(1)p(x)(u)
∣∣∣ and ‖p‖∞ = supx∈Sn−1 |p(x)|.

1. If p is homogenous we have
∥∥∥D(1)p

∥∥∥
∞
≤ d ‖p‖∞.

2. For any polynomial of degree d we have
∥∥∥D(1)p

∥∥∥
∞
≤ d2 ‖p‖∞. �

Let p = (p1, . . . , pm) ∈ (C[x1, . . . , xn])m be a polynomial system with pi ho-

mogeneous of degree di for all i, and let d := maxi di. We also define ‖p‖∞ :=

supx∈Sn−1

√∑m
i=1 pi(x)2, and let Dp(x) denote the Jacobian matrix of the system p

at the point x. We also let Dp(x)(u) denote the image of the vector u under the

linear operator Dp(x), and set

∥∥∥D(1)p
∥∥∥
∞

:= sup
x,u∈Sn−1

‖Dp(x)(u)‖2 = sup
x,u∈Sn−1

√√√√ m∑
i=1
〈∇pi(x), u〉2.
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Theorem 4.2.3. Let p = (p1, . . . , pm) be a system of homogenous polynomials pi

with n variables and degrees di.

1. For the case where deg(pi) = d for all i ∈ {1, 2, . . . ,m} we have
∥∥∥D(1)p

∥∥∥
∞
≤

d ‖p‖∞.

2. If d=maxi{di} then
∥∥∥D(1)p

∥∥∥
∞
≤ d2 ‖p‖∞.

Proof. Assume for (x0, u0) we have
∥∥∥D(1)p

∥∥∥
∞

= ‖Dp(x0)(u0)‖2 , then let α =

(α1, . . . , αm) where αi = 〈∇pi(x0),u0〉
‖D(1)p‖∞

. Note that ‖α‖2 = 1. Now we define a poly-

nomial q(x) with n variables and degree d as follows

q(x) = α1p1(x) + α2p2(x) + · · ·+ αmpm(x)

∇q(x) = (α1
∂p1

∂x1
+ α2

∂p2

∂x1
+ · · ·+ αm

∂pm
∂x1

, . . . , α1
∂p1

∂xn
+ α2

∂p2

∂xn
+ · · ·+ αm

∂pm
∂xn

)

〈∇q, u〉 = u1(α1
∂p1

∂x1
+α2

∂p2

∂x1
+· · ·+αm

∂pm
∂x1

)+· · ·+un(α1
∂p1

∂xn
+α2

∂p2

∂xn
+· · ·+αm

∂pm
∂xn

)

〈∇q(x), u〉 =
m∑
i=1

αi〈∇pi(x), u〉

In particular for x0 and u0

〈∇q(x0), u0〉 =
m∑
i=1

αi〈∇pi(x0), u0〉 =
m∑
i=1

〈∇pi(x0), u0〉2

‖D(1)p‖∞
=
∥∥∥D(1)p

∥∥∥
∞

Using the second part of Kellog’s Theorem we have
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∥∥∥D(1)p
∥∥∥
∞
≤ sup

x,u∈Sn−1
|〈∇q(x), u〉| ≤ d2 ‖q‖∞

Now we observe by the Cauchy-Schwarz Inequality

‖q‖∞ = sup
x∈Sn−1

∣∣∣∣∣
m∑
i=1

αipi(x)
∣∣∣∣∣ ≤ sup

x∈Sn−1

∣∣∣∣∣(
m∑
i=1

pi(x)2)1/2
∣∣∣∣∣ .

So we conclude that
∥∥∥D(1)p

∥∥∥
∞
≤ d2 ‖q‖∞ ≤ d2 supx∈Sn−1(∑m

i=1 pi(x)2)1/2 = d2 ‖p‖∞.

We also note in the case deg(gi) = d for all i, q(x) is a homogenous polynomial of

degree d. So for this special case using the first part of Kellog’s Theorem we deduce∥∥∥D(1)p
∥∥∥
∞
≤ d ‖p‖∞. �

Using our extension of Kellog’s Theorem to the polynomial systems we develop useful

estimates for ‖p‖∞ and
∥∥∥D(i)p

∥∥∥
∞
.

Lemma 4.2.4. Let p = (p1, . . . , pm) be system of homogenous polynomials pi with n

variables. Let N be a δ-net on Sn−1. Let maxN (p) = supy∈N ‖p(y)‖2 and ‖p‖∞ =

supx∈Sn−1 ‖p(x)‖2. Similarly let us define,

max
N k+1

(D(k)p) = sup
x,u1,...,uk∈N

∥∥∥D(k)p(x)(u1, . . . , uk)
∥∥∥

2

∥∥∥D(k)p
∥∥∥
∞

= sup
x,u1,...,uk∈Sn−1

∥∥∥D(k)p(x)(u1, . . . , uk)
∥∥∥

2

1. For the case deg(pi) = d for all i ∈ {1, 2, . . . ,m} we have

‖p‖∞ ≤
maxN (p)

1− dδ
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∥∥∥D(k)p
∥∥∥
∞
≤ maxN k+1(D(k)p)

1− δd
√
k + 1

2. For systems of different degree homogenous polynomials with maxi{deg(pi)} ≤

d we have

‖p‖∞ ≤
maxN (p)
1− d2δ

∥∥∥D(k)p
∥∥∥
∞
≤ maxN k+1(D(k)p)

1− δd2
√
k + 1

Proof. For p a system of homogenous polynomials, Lipschitz constant of p on Sn−1

is bounded by
∥∥∥D(1)p

∥∥∥
∞
. A direct way to observe this fact is the following; let

x, y ∈ Sn−1 and consider the integral

p(x)− p(y) =
1∫

0

(Dp(y + t(x− y)).(x− y)) dt

Since ‖y + t.(x− y)‖2 ≤ 1 for all t ∈ [0, 1] by homogeneity of the system f we

have

‖Dp(y + t(x− y)).(x− y)‖2 ≤
∥∥∥D(1)p

∥∥∥
∞
‖x− y‖2

Using the integral formula above we conclude

‖p(x)− p(y)‖2 ≤
∥∥∥D(1)p

∥∥∥
∞
‖x− y‖2

Now, for an unmixed polynomial system p, let the Lipschitz constant of p be L.

By Theorem 4.2.3 we have
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L ≤
∥∥∥D(1)p

∥∥∥
∞
≤ d ‖p‖∞

Now let x0 ∈ Sn−1 be such that ‖p(x0)‖2 = ‖p‖∞ and let y ∈ N which satisfies

|x0 − y| ≤ δ.

‖p‖∞ = ‖p(x0)‖2 ≤ ‖p(y)‖2 + ‖x0 − y‖2 L ≤ max
N

(p) + δd ‖p‖∞

‖p‖∞ (1− dδ) ≤ max
N

(p)

For D(k)p(x)(u1, . . . , uk) let us consider the net N × · · · × N = N k+1 on Sn−1 ×

· · ·×Sn−1. Now let x = (x1, . . . , xk+1) ∈ Sn−1×· · ·×Sn−1 and let y = (y1, . . . , yk+1) ∈

N k+1 such that ‖xi − yi‖2 ≤ ε for all i. We observe that, ‖x− y‖2 ≤
√
k + 1ε. Since

x was an arbitrary point, this argument proves N k+1 is a
√
k + 1ε net. Also we

observe that, D(k)p(x)(u1, . . . , uk) is a homogenous polynomial system with (k+ 1)n

variables and degree d. The desired bound follows from the inequality obtained

above.

For the mixed case, the preceding proof carries over verbatim, simply employing

the second case of Theorem 4.2.3. �

4.3 Condition Number of Random Polynomial Systems

4.3.1 Introducing the Randomness

Let p = (p1, . . . , pm) be a random polynomial system where pj = ∑
|α|=dj c

(i)
α

√(
dj
α

)
xα.

Let Cj = (c(j)
α )|α|=dj ∈ RNj (Nj :=

(
n+dj−1

dj

)
) and Xj = (

√(
dj
α

)
xα)|α|=dj then pj(x) =<

Cj,Xj >. We consider random polynomial systems with independent subgaussian
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centered random vectors Cj that satisfy a small ball probability condition. This as-

sumption allows the coefficients C(j)
α to have dependencies and also covers a broad

variety of distributions. More precisely our assumptions on random vectors Cj∈RNj

are the following:

For every θ ∈ SNj−1 , 1 ≤ j ≤ m,

(1) (Centered vectors) E〈Cj, θ〉 = 0.

(2) (Independent Rows) Cj, 1 ≤ j ≤ m are independent random vectors.

There exists K > 0 such that for every θ ∈ SNj−1, 1 ≤ j ≤ m,

(3) (Subgaussian Assumption) P (|〈Cj, θ〉| ≥ t) ≤ 2e−
t2
K2 , for all t > 0.

There exists c0 > 0 such that for every vector a ∈ RNi , 1 ≤ j ≤ m, we have

(4) (Small Ball Assumption) P (|〈a, Cj〉| ≤ ε ‖a‖2) ≤ c0ε, for all ε > 0

From this point on, we will always assume that the assumptions (1) and (2) are sat-

isfied. Moreover, we keep the letters K, c0 to express the constants on the subaussian

and Small Ball assumption respectively.

Let us give some examples of random vectors that satisfy our assumptions with

some universal constants c0, K > 0. The standard Gaussian measure in RNi satisfy

the above since the 1-dimensional marginals are again Gaussians. It is a direct

computation to check that the uniform measure in the Euclidean ball and in the

Euclidean sphere in RNi satisfy the above assumptions. A much less trivial example

is the case where Ci := (c(i)
α )|α|=di , where cα are independent subgaussian random

variables with bounded densities. Our assumptions are satisfied in this case due to

Theorem 4.3.1 and the main result of [102] or [77]. Other non-trivial examples of

random vectors that satisfy our assumptions are the uniform measure on BNi
p , p > 2,

where BNi
p := {x ∈ RNi : ∑Ni

j=1 x
p
j ≤ 1}. In this case the subgaussian assumption

follows from ([12], Section 6) and the Small Ball Assumption is a direct consequence
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of the well-known fact that BNi
p satisfies the Hyperplane Conjecture.

Let ξ be a random variable. We denote by M(ξ) a median of ξ, i.e. a number that

satisfies

P (ξ ≤M(ξ)) ≥ 1
2 and P (ξ ≥M(ξ)) ≥ 1

2 .

Let ξ := |〈Cj, θ〉| and assume that the subgaussian assumption and the Small Ball

assumption holds for Cj. Then for t := 2K we have

P(ξ ≥ 2K) ≤ 1
2

hence, M(ξ) ≤ 2K. On the other hand, if we set ε = 1
2c0 , our small estimate gives

the following

P(ξ ≤ 1
2c0

) ≤ 1
2

that is; M(ξ) ≥ 1
2c0 . This implies that

Kc0 ≥
1
4 .

In what follows we will use that above inequality several times.

4.3.2 The Subgaussian Assumption and “Operator Norm" Bounds

We start by proving an operator norm type estimate for the polynomial system

p. Our operator norm type estimate at Lemma 4.3.2 follows from our subgaussian

assumption, our extension of Kellog’s Theorem and a standard net-type argument.

For the proof we are also going to need the following Hoeffding-type Inequality.

Theorem 4.3.1. [121, Proposition 5.10] Let X1, . . . , Xn be subgaussian (with con-

stant K) random variables with mean zero. Then for every a = (a1, . . . , an) ∈ Rn
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and every t ≥ 0,

P
(∣∣∣∣∣∑

i

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− ct2

K2 ‖a‖2
2

)

where c > 0 is an absolute constant. �

Lemma 4.3.2. Let p = (p1, . . . , pm) be a polynomial system where

pj = ∑
|α|=dj c

(j)
α

√(
dj
α

)
xα, Ci are centered sub-gaussian random vectors with constant

K. Then for N a δ-net over Sn−1 and t ≥ 2 we have the following inequalities

1. If deg(pj) = d for all j ∈ {1, 2, . . . ,m}

P
(
‖p‖∞ ≤

2tK
√
m

1− dδ

)
≥ 1− 2 |N | e−c1t2m

For specific values δ = 1
3d , t = s log(ed) with s ≥ 1 we have

P
(
‖p‖∞ ≤ 3sK

√
m log(ed)

)
≥ 1− e−c2s2m log(ed)

where c2 ≥ 1 is an absolute constant.

2. If deg(pj) = di and max(dj) = d

P
(
‖p‖∞ ≤

2tK
√
m

1− d2δ

)
≥ 1− 2 |N | e−c1tm

For specific values δ = 1
3d2 , t = s log(ed) with s ≥ 1 we have

P
(
‖p‖∞ ≤ 3sK

√
m log(ed)

)
≥ 1− e−c2s2m log(ed)

where c2 ≥ 1 is an absolute constant.
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Proof. We prove the case (2) since the proof of two cases are identical. We observe

that the identity (x2
1 + · · · + xdn)d = ∑

|α|=d

(
d
α

)
x2α implies ‖Xj‖2 = 1 for all j ≤ m.

We use our subgaussian assumption on random vectors Ci and the observation that

pj(x) = 〈Cj,Xj〉, then for every x ∈ Sn−1 we have

P (|pj(x)| ≥ t) ≤ 2e− t
2
K

Now we need to tensorize the above inequality. By Theorem 4.3.1 for all a ∈ Sm−1

we have

P (|〈a,p(x)〉| ≥ t) ≤ 2 exp(− ct
2

K2 )

LetM be a δ-net on Sm−1 then we have

P
(

max
a∈M
|〈a,p(x)〉| ≥ t

)
≤ 2 |M| exp(− ct

2

K2 )

where we used a union bound onM. Since ‖p(x)‖2 = maxθ∈Sm−1 |〈θ, p(x)〉| using

Lemma 4.2.4 for linear functional 〈 . ,p(x)〉 we have

P
(
‖p(x)‖2 ≥

t
√
mK

1− δ

)
≤ 2 |M| exp(−ct2m)

It is known that there exist a δ-netM on Sm−1 such that |M| ≤
(

3
δ

)m
(see, e.g,

[121, Lemma 5.2]). So for t ≥ 1 and δ = 1
2 we have

P
(
‖p(x)‖2 ≥ 2t

√
mK

)
≤ 2 exp(−c1t

2m)

We arrived to a pointwise estimate on ‖p(x)‖2, we again do a union bound on a

δ-net N this time on Sn−1 then we have
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P
(

max
x∈N
‖p(x)‖2 ≥ 2t

√
mK

)
≤ 2 |N | exp(−c1t

2m)

Using Lemma 4.2.4 again completes the proof.

�

Theorem 4.2.3 and Lemma 4.3.2 imply the following:

Corollary 4.3.3. Let p be a polynomial system as in Lemma 4.3.2. We have the

following inequalities for s ≥ 1

1. If deg(pj) = d for all j ∈ {1, 2, . . . ,m}

P
(∥∥∥D(1)p

∥∥∥
∞
≤ 3sK

√
md log(ed)

)
≥ 1− 2e−c2s2m log(ed)

P
(∥∥∥D(2)p

∥∥∥
∞
≤ 3sK

√
md2 log(ed)

)
≥ 1− 2e−c2s2m log(ed)

2. If deg(pj) = dj and max(dj) = d

P
(∥∥∥D(1)p

∥∥∥
∞
≤ 3sK

√
md2 log(ed)

)
≥ 1− 2e−c2s2m log(ed)

P
(∥∥∥D(2)p

∥∥∥
∞
≤ 3sK

√
md4 log(ed)

)
≥ 1− 2e−c2s2m log(ed)

4.3.3 The Small Ball Assumption and Bounds for the “L" Quantity

We will need the following standard Lemma (see Lemma 2.2 of [101] or [86]).
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Lemma 4.3.4. Let ξ1, · · · , ξm be independent random variables such that for every

ε > 0 ,

P (|ξi| ≤ ε) ≤ c0ε.

Then, for every ε > 0

P
(√

ξ2
1 + · · ·+ ξ2

m ≤ ε
√
m
)
≤ (c̃c0ε)m ,

where c̃ > 0 is an absolute constant.

Lemma 4.3.5. Let p be a system of n-variate random homogenous polynomials

satisfying the Small Ball assumption (with constant c0). Then for every ε > 0 and

x ∈ Sn−1,

P{‖p(x)‖2 ≤ ε
√
m} ≤ (c̃c0ε)m,

where c̃ > 0 is an absolute constant.

Proof. By the Small Ball assumption on random vectors Ci, and the two observations

that pi(x) = 〈Ci,Xi〉, ‖Xi‖2 = 1 for all x ∈ Sn−1 we have

P{|pi(x)| ≤ ε} ≤ c0ε.

By Lemma 4.3.4 we get the result. �

The next Lemma is a variant of a Lemma of H.H. Nguyen ([87], Claim 2.4).

Lemma 4.3.6. Let n ≥ 3, p = (p1, . . . , pm) be a system of n-variate homogenous

polynomials, and ‖p‖∞ ≤ γ. Assume for some x, y ∈ Sn−1, x⊥y and L(x, y) ≤ α

,then for every w such that w = x+ βry + βz with z ∈ Sn−1 , z ⊥ x, z ⊥ y, |r| ≤ 1,

the following inequalities hold
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1. If deg(pi) = d for all i ∈ {1, 2, . . . ,m} and β ≤ 1
d
, then

‖p(w)‖2
2 ≤ 5(α2 + 19β2d2γ2)

2. If deg(pi) = di, maxi di = d and β ≤ 1
d2 , then

‖p(w)‖2
2 ≤ 5(α2 + 19β2d4γ2)

Proof. We prove the case (1) only since the proof of the case (2) is quite similar.

We start with some auxiliary observations on ‖p‖∞. First observation is that by

Kellog’s inequality ‖p‖∞ ≤ γ implies
∥∥∥D(1)p

∥∥∥
∞
≤ dγ and similarly

∥∥∥D(k)p
∥∥∥
∞
≤ dkγ

for every k ≥ 1. Also for any w and ui ∈ Sn−1 for i = 1, 2, . . . , k by homogeneity of

polynomials in the system p, ‖p‖∞ ≤ γ implies

sup
u1,...,uk

∥∥∥D(k)p(w)(u1, . . . , uk)
∥∥∥

2
≤ ‖w‖d−k2 dkγ

These observations above yield the following inequality for w = x + βry + βz with

z ∈ Sn−1, |r| ≤ 1, β ≤ d−1, k = 3 and u1, u2, u3 ∈ Sn−1

∥∥∥D(3)p(w)(u1, u2, u3)
∥∥∥

2
≤ ‖w‖d−3

2 d3γ ≤ (1 + 2
d

)d−3d3γ ≤ ed3γ

pj(w) = pj(x) + 〈∇pj(x), βry + βz〉+ 1/2(βry + βz)TD(2)pj(x)(βry + βz) +O(β3)

We set v = βry+βz
‖βry+βz‖2

, then we have

|pj(w)| ≤ |pj(x)|+ β|〈∇pj(x), y〉|+ β|〈∇pj(x), z〉|

+ 1/2 ‖βry + βz‖2
2 |D

(2)pj(x)(v, v)|+ |O(β3)|.
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Note that ‖βry + βz‖2 ≤ 2β, and |O(β3)| ≤ 1/6(2β)3Aj(x) where the integral form

of the remainder

Aj(x) =
1∫

t=0

D(3)pj(x+ t ‖v‖2 v)(v, v, v)

Using Cauchy-Schwarz Inequality (for the coefficients 1, βd
1
2
j , 1, 1, 1) implies the fol-

lowing

pj(w)2 ≤ (4 + β2dj)(pj(x)2 + d−1
j 〈pj(x), y〉2 + β2〈∇pj(x), z〉2

+ 1
4(2β)4(D(2)

j pj(x)(v, v))2 + 1
36(2β)6Aj(x)2).

Summing up through all j ≤ m, using the assumption ‖p‖∞ ≤ γ and auxiliary

observations at the beginning, we have

‖p(w)‖2
2 ≤ (4+β2d)(‖p(x)‖2

2+
∥∥∥M−1D(1)p(x)(y)

∥∥∥2

2
+β2d2γ2+4β4d4γ2+64

36β
6∑

j

Aj(x)2)

Clearly ∑j≤mAj(x)2 ≤ maxw∈Vx,y
∥∥∥D(3)p(w)(u1, u2, u3)

∥∥∥2

2
≤ e2d6γ2, hence we have

‖p(w)‖2
2 ≤ (4 + β2d)(α2 + β2d2γ2 + 4β4d4γ2 + 64e2

36 β6d6γ2)

Since β ≤ d−1 and 64e2
36 ≤ 14

‖p(w)‖2
2 ≤ (4 + β2d)(α2 + 19β2d4γ2) ≤ 5(α2 + 19β2d4γ2).

The proof is complete. �

Theorem 4.3.7. Let n ≥ 3 and p = (p1, . . . , pm) be a system of random homogenous

n-variate polynomials pi such that pj = ∑
|α|=dj c

(j)
α

√(
di
α

)
xα where Cj = (c(j)

α )|α|=dj are
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random vectors satisfying the Small Ball assumption (with constant c0). let α, γ > 0.

Then we have the following inequalities for the L(p) quantity:

1. If deg(pj) = d for all 1 ≤ jm and α ≤ min{1, d√
n
}γ then

P (L ≤ α) ≤ Cα

√
n

m

(
c0Cdγ√

m

)n−2 (
c0Cα√
m

)m−n+1

+ P (‖p‖∞ ≥ γ) ,

where C > 0 is an absolute constant.

2. If maxj deg(pj) = d and α ≤ min{1, d√
n
}γ then

P (L ≤ α) ≤ Cα

√
n

m

(
c0Cd

2γ√
m

)n−2 (
c0Cα√
m

)m−n+1

+ P (‖p‖∞ ≥ γ) ,

where C > 0 is an absolute constant.

Proof. We consider the case where d = max1≤j≤m dj. Let α > 0, γ > 0 and β ≤ 1
d2 .

Let B : = {‖p‖∞ ≤ γ} and let L := {L ≤ α} := {∃x ⊥ y : L(x, y) ≤ α}. Let

Γ := 5(α2 + 19β2d4γ2). Lemma 4.3.6 implies that, if the event B ∩ L holds, then

there exists a set

Vx,y := {w ∈ Rn : w = x+ βry + βz, z ∈ Sn−1, |r| ≤ 1, x ⊥ z, y ⊥ z} \Bn
2

such that for every w in this set, ‖p(w)‖2
2 ≤ Γ. Let V := |Vx,y|. Note that for

w ∈ Vx,y, 1 ≤ ‖w‖2 ≤ 1 + 2β2. Since Vx,y ⊆ (1 + 2β2)Bn
2 \ Bn

2 , we have showed that

the event B ∩ L is included in the event

{
∣∣∣{x ∈ (1 + 2β2)Bn

2 \Bn
2 : ‖p(x)‖2 ≤ Γ}

∣∣∣ ≥ V }.

Using Markov’s inequality, Fubini Theorem and Lemma 4.3.5, we can estimate the
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probability of this event. Indeed,

P
(∣∣∣{x ∈ (1 + 2β2)Bn

2 \Bn
2 : ‖p(x)‖2 ≤ Γ}

∣∣∣ ≥ V
)
≤

≤ 1
V
E
∣∣∣{x ∈ (1+2β2)Bn

2 \Bn
2 : ‖p(x)‖2

2 ≤ Γ}
∣∣∣ ≤ 1

V

∫
(1+2β2)Bn2 \Bn2

P
(
‖p(x)‖2

2 ≤ Γ
)
dx

≤ |(1 + 2β2)Bn
2 \Bn

2 |
V

max
x∈(1+2β2)Bn2 \Bn2

P
(
‖p(x)‖2

2 ≤ Γ
)
.

Recall that |Bn
2 | = π

n
2

Γ(n/2+1) . So, |Bn2 |
|Bn−1

2 | ≤
C′√
n
, where C ′ > 0 is an absolute constant.

We also assume that β2 ≤ 1
n
which yields (1 + 2β2)n ≤ e2, and we compute that

|(1 + 2β2)Bn
2 \Bn

2 |
V

≤ |B
n
2 | ((1 + 2β2)n − 1)
ββn−1|Bn−1

2 |
≤ C
√
nβ2−n,

where C > 0 is an absolute constant. For x 6= 0 we write x̃ := x
‖x‖2 . For z /∈ B

n
2 , we

have that

‖p(z)‖2
2 =

m∑
j=1
|pj(z)|2 =

m∑
j=1
|pj(z̃)|2‖z‖2dj

2 ≥
m∑
j=1
|pj(z̃)|2 = ‖p(z̃)‖2

2,

which implies that for every w ∈ (1 + 2β2)Bn
2 \Bn

2 ,

P
(
‖p(w)‖2

2 ≤ Γ
)
≤ P

(
‖p(w̃)‖2

2 ≤ Γ
)
≤

cc0

√
Γ
m

m ,
where we have used Lemma 4.3.5. So we conclude that

P(L ≤ α) ≤ P (‖p‖∞ ≥ γ) + P (B ∩ L) ≤ P (‖p‖∞ ≥ γ) + C
√
nβ2−n

cc0

√
Γ
m

m .
Recall that Γ = 5(α2 + 19β2d4γ2). We choose β := α

γd2 and we observe that under

our assumption α ≤ γ this is an eligible choice for β. For this choice of β we have
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that Γ = 100α2. So we get that

P(L ≤ α) ≤ P (‖p‖∞ ≥ γ) + C
√
n

(
α

γd2

)2−n (10cc0α√
m

)m
.

In the case where d := di, 1 ≤ j ≤ m, we have that Γ := 5(α2 + 19β2d2γ2). In this

case our choice of β = α
γd

(note that this is eligible in this case) and we conclude that

P(L ≤ α) ≤ P (‖p‖∞ ≥ γ) + C
√
n

(
α

γd

)2−n (10cc0α√
m

)m
.

By adjusting the constants we complete the proof. �

4.3.4 The Condition Number Theorem and Consequences

We will need bounds for the Weil-Bombieri norm of the polynomial system. Note

that ‖pj‖W := ‖C(j)
α ‖2, 1 ≤ j ≤ m. The following Lemma which provides large

deviation estimates for the Euclidean norm is standard and follows e.g. from Theorem

4.3.1.

Lemma 4.3.8. Let p be a random n-variate polynomial system satisfying our sub-

gaussian assumption (with constant K). Let Nj :=
(
n+dj−1

dj

)
, 1 ≤ j ≤ m and let

N := ∑m
j=1Nj. Then

P
(
‖pj‖w ≥ tcK

√
Nj

)
≤ e−t

2Ni , t ≥ 1, 1 ≤ j ≤ m, (4.1)

where c > 0 is an absolute constant.

P
(
‖p‖w ≥ tcK

√
N
)
≤ e−t

2N , t ≥ 1. (4.2)

where c > 0 is an absolute constant.
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We are now ready to prove our main theorem on condition number of random poly-

nomial systems.

Theorem 4.3.9. There exist universal constants C, c > 0 such that if p = (p1, · · · , pm)

is a system of homogenous random polynomials, where pj = ∑
|α|=dj c

(i)
α

(
dj
α

) 1
2xα,

N = ∑m
j=1

(
n+dj−1

dj

)
and Cj = (c(j)

α )|α|=dj are random vectors satisfying the subgaus-

sian and Small Ball assumptions (with constants K, c0 > 0 respectively) then the

following hold true:

1. If d = deg(pj) for all 1 ≤ j ≤ m set M := M(n, d,m, c0, K),

M := cCc0

(
n

c0

) 1
2(m−n+2) √

NK (3Cc0Kd log (ed))
n−2

m−n+2 m−
1
2 max{1,

√
n

d
}.

Then we denote P (κ(p) ≥ tM) with P(t), we have

P (t) ≤



3
tm−n+2 if 0 ≤ t ≤ e

m log (ed)
m−n+2

3
tm−n+2

(
(log t)(m−n+2)

m log (ed)

)n−2
2 if e

m log (ed)
m−n+2 ≤ t ≤ e

N
m−n+2

3
tm−n+2

(
(log t)(m−n+2)

N

)m
2
(

N
m log (ed)

)n−2
2 if e

N
m−n+2 ≤ t

2. If maxi≤m deg(pi) = d set M := M(n, d,m, c0, K),

M := cc0C
(
n

c0

) 1
2(m−n+2) √

NK
(
3Cc0Kd

2 log (ed)
) n−2
m−n+2 m−

1
2 max{1,

√
n

d2 }.

We consider two cases:
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(a) In the case N ≥ m log (ed), we have that

P(t) ≤



3
tm−n+2 if 1 ≤ t ≤ e

m log (ed)
m−n+2

3
tm−n+2

(
(log t)(m−n+2)

m log (ed)

)n−2
2 if e

m log (ed)
m−n+2 ≤ t ≤ e

N
m−n+2

3
tm−n+2

(
(log t)(m−n+2)

N

)m
2
(

N
m log (ed)

)n−2
2 if e

N
m−n+2 ≤ t

(b) In the case N ≤ m log (ed), we have that

P(t) ≤


3

tm−n+2 if 1 ≤ t ≤ e
N

m−n+2

3
tm−n+2

(
(log t)(m−n+2)

N

)m
2 if e

N
m−n+2 ≤ t

Proof. We consider first the case where maxi≤N = d.

P (κ(p) ≥ tM) ≤ P
(
‖p‖W ≥ ucK

√
N
)

+ P
(
L(p) ≤ c

√
NuK

tM

)
.

To estimate the above probabilities, we apply Theorem 4.3.7 for α := c
√
NuK
tM

and

γ := 3sK
√
m log (ed), Lemma 4.3.2 and Lemma 4.3.8. First we note our restrictions.

We have that s ≥ 1, u ≥ 1 and (since α ≤ min{1, d2
√
n
}γ),

(∗)(
c0m

n

) 1
2(m−n+2) 1

max{1,
√
n
d2 }

m
1
2
m−n+1
m−n+2u

c0Ct(c0CKd2 log (ed))
n−2

m−n+2
≤ 3Ks

√
m log (ed) min{1, d

2
√
n
}.

Note that, (∗) is always true if u ≤ s and t ≥ 1. Under the above restrictions we
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have that if P := P{κ(p) ≥ tM},

P ≤ C

√
n

m

c
√
NuK

tM

(
3c0KCd

2s
√
m log (ed)√
m

)n−2 (
c0Cc

√
NuK

tM
√
m

)m−n+1

+ e−c2s
2m log (ed) + e−u

2N

or,

P ≤ um−n+2sn−2

tm−n+2 + e−c2s
2m log (ed) + e−u

2N .

We consider first the case where N ≥ m log (ed). If 1 ≤ t ≤ e
c1m log (ed)
m−n+2 , we take

u = s = 1 (note that (∗) is satisfied and that c2 ≥ 1) and then we get that

P ≤ 1
tm−n+2 + e−c2m log (ed) + e−N ≤ 3

tm−n+2 , t ≥ 1, u ≥ s ≥ 1.

In the case where e
m log (ed)
m−n+2 ≤ t ≤ e

N
m−n+2 we choose u = 1 and s :=

√
(log t)(m−n+2)

m log (ed) ≥ 1.

(Note that u ≤ s). The above choices give

P ≤ 1
tm−n+2

(
(log t)(m− n+ 2)

m log (ed)

)n−2
2

+ 1
tc2(m−n+2) + e−N

≤ 3
tm−n+2

(
(log t)(m− n+ 2)

m log (ed)

)n−2
2

.

In the case where e
N

m−n+2 ≤ t, we choose s :=
√

(log t)(m−n+2)
m log (ed) and u :=

√
(log t)(m−n+2)

N
.

(Note that u ≤ s also in this case). In this case we get that

P ≤ 1
tm−n+2

(
(log t)(m− n+ 2)

N

)m
2
(

N

m log (ed)

)n−2
2

+ 1
tc2(m−n+2) + 1

tm−n+2 ≤

3
tm−n+2

(
(log t)(m− n+ 2)

N

)m
2
(

N

m log (ed)

)n−2
2

.
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We consider now the case where N ≤ m log (ed). In the case 1 ≤ t ≤ e
N

m−n+2 , we

choose s = 1 and u = 1 and we get as before

P ≤ 1
tm−n+2 + e−c2m log (ed) + e−N ≤ 3

tm−n+2 .

In the case t ≥ e
N

m−n+2 , we choose s := u :=
√

(log t)(m−n+2)
m log (ed) . Note that again (∗) is

satisfied and with these choices we get

P ≤ 1
tm−n+2

(
(log t)(m− n+ 2)

N

)m
2

+ 1
t
c2(m−n+2)m log (ed)

N

+ 1
tm−n+2 ≤

3
tm−n+2

(
(log t)(m− n+ 2)

N

)m
2

.

In the case where dj = d for all 1 ≤ j ≤ m, the proof is similar. One has just to

observe that in this case it is always true that N ≥ m log (ed). �

Remark 4.3.1. Note that the above tail estimates for the probability of the condition

number of the random polynomial system imply that

M(κ(p)) ≤ 6M,

where M as defined in the Theorem 4.3.9.

Theorem 4.3.10. Let p be a random polynomial system as in Theorem 4.3.9 and

let M be as defined in Theorem 4.3.9. Set

δ1 := q
√
πn

m− n+ 2

(
n− 2

2em log (ed)

)n
2−1 1(

1− q
m−n+2

)n
2
,

δ2 :=
(
m

N

)m−n+2
2 1(

1− q
m−n+2

)m
2

√
πmq

m− n+ 2− q e
−m2

1
(log (ed))n2−1 .
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Then we have the following estimates

1. If d := dj, 1 ≤ j ≤ m, for all 0 < q < m− n+ 2 we have

(E(κ(p)q))
1
q ≤M

(
1 + q

m− n− q + 2 + δ1 + δ2

) 1
q

.

In particular, if q ≤ (m− n+ 2)
(
1− 1

2 log (ed)

)
, then

(E(κ(p)q))
1
q ≤M

(
3m log (ed)

n

) 1
q

,

and if q ≤ m−n+2
2 then

(E(κ(p)q))
1
q ≤M4

1
q .

Moreover

E log κ(p) ≤ logM + 1.

2. If maxi deg(pi) = d we consider two cases:

(a) In the case N ≥ m log (ed), we have for all 0 < q < m− n+ 2

(E(κ(p)q))
1
q ≤M

(
1 + q

m− n− q + 2 + δ1 + δ2

) 1
q

.

In particular, if q ≤ (m− n+ 2)
(
1− 1

2 log (ed)

)
, then

(E(κ(p)q))
1
q ≤M

(
3m log (ed)

n

) 1
q

,

and if q ≤ m−n+2
2 then

(E(κ(p)q))
1
q ≤M4

1
q .
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Moreover

E log κ(p) ≤ logM + 1

(b) In the case N ≤ m log (ed)

(E(κ(p)q))
1
q ≤M

(
1 + q

m− n− q + 2 + δ2

) 1
q

In particular, if q ≤ (m− n+ 2)
(
1− m

eN

)
, then

(E(κ(p)q))
1
q ≤M

(
3m log (ed)

n

) 1
q

,

and if q ≤ m−n+2
2 then

(E(κ(p)q))
1
q ≤M4

1
q .

Proof. We first consider the case where d := di, for all 1 ≤ i ≤ m. Set

∆1 :=
(
m− n+ 2
m log ed

)n
2−1

, ∆2 :=
(
m− n+ 2

N

)m
2
(

N

m log ed

)n
2−1

,

r := m− n− q + 3, a1 := m log ed
m− n+ 2 , a2 := N

m− n+ 2 .

Note that we have assumed that r ≥ 1. Using the formula

Eκq(p) := q
∫ ∞

0
tq−1P ({κ(p) ≥ t}) dt

and Theorem 4.3.9, we have that

Eκq(p) ≤M q
(

1 + q
∫ ∞

1
tq−1P ({κ(p) ≥ tM}) dt

)
or
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Eκq(p)
M q

≤ 1 + q
∫ ea1

1

1
tr
dt+ q∆1

∫ ea2

ea1

(log t)n2−1

tr
dt+ q∆2

∫ ∞
ea2

(log t)m2
tr

dt.

We will give upper estimates for the three integrals appeared in the above inequality.

First note that

q
∫ ea1

1

1
tr
dt = q

r − 1
(
1− e(r−1)a1

)
≤ q

r − 1 .

Also we have that

q∆1

∫ ea2

ea1

(log t)n2−1

tr
dt = q∆1

∫ a2

a1
t
n
2−1e(r−1)tdt = q∆1

(r − 1)n2

∫ a2(r−1)

a1(r−1)
t
n
2−1e−tdt ≤

q∆1

(r − 1)n2
Γ
(
n

2

)
≤ q

√
πn

m− n+ 2

(
n− 2

2em log (ed)

)n
2−1 1(

1− q
m−n+2

)n
2
.

Finally we check that

q∆2

∫ ∞
ea2

(log t)m2
tr

dt = q∆2

∫ ∞
a2

t
m
2 e(r−1)tdt = q∆2

(r − 1)m2 +1

∫ ∞
a2(r−1)

t
m
2 e−tdt ≤

q∆2

(r − 1)m2 +1 Γ
(
m

2 + 1
)
≤

√
πmq

(m− n− q + 2)m2 +1

(
m(m− n+ 2)

eN

)m
2
(

N

m log ed

)n
2−1

=

(
m

N

)m−n+2
2 1(

1− q
m−n+2

)m
2

√
πmq

m− n+ 2− q e
−m2

1
(log (ed))n2−1 .

Note that if q ≤ (m− n+ 2)
(
1− 1

2 log (ed)

)
, then δ1, δ2 ≤ 1.

The proof for the case maxi di = d and N ≥ m log(ed) is identical. For the case

maxi di = d and N ≤ m log(ed), working as before we get that

Eκq(p)
M q

≤ 1 + q
∫ ea2

1

1
tr
dt+ q∆2

∫ ∞
ea2

(log t)m2
tr

dt ≤ 1 + q

r − 1 + δ2.
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In the case where N ≤ m log (ed) we have that

δ2 ≤
√
πmq

m− n+ 2

(
m

eN

)m
2 1(

1− q
m−n+2

)m
2 +1 .

In this case we can show that if q ≤ (m− n+ 2)
(
1− m

N

)
then δ2 ≤ 1. �

For the important case m = n − 1 our main theorems reads as follows: (Note

that if m = n− 1 then N ≥ m log (ed)). Moreover, one may check that in that case

one do not need to add the max{1,
√
n
d2 } term on “M", since (∗) is satisfied without

it.

Corollary 4.3.11. Let p be a random polynomial system as in Theorem 4.3.9 with

m = n− 1. Then we have the following:

1. If d = deg(pi), 1 ≤ i ≤ m, set

M := M(n, d, c0, K) :=
√

2cC√c0
√
NK (3Cc0Kd log (ed))n−2 .

then

(a)

P{κ(p) ≥ tM} ≤



3
t

if 1 ≤ t ≤ e(n−1) log (ed)

3
t

(
log t

(n−1) log (ed)

)n−2
2 if e(n−1) log (ed) ≤ t ≤ eN

3
t

(
log t

(n−1) log (ed)

)n−2
2
(

log t
N

) 1
2 if eN ≤ t

(b) For all q ≤ 1− 1
2 log (ed)

(E(κ(p)q))
1
q ≤Me

1
q .
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Moreover

E log κ(p) ≤ logM + 1

2. If maxi deg(pi) = d set

M := M(n, d, c0, K) :=
√

2cC√c0
√
NK

(
3Cc0Kd

2 log (ed)
)n−2

.

then

(a)

P{κ(p) ≥ tM} ≤



3
t

if 1 ≤ t ≤ e(n−1) log (ed)

3
t

(
log t

(n−1) log (ed)

)n−2
2 if e(n−1) log (ed) ≤ t ≤ eN

3
t

(
log t
N

) 1
2
(

log t
(n−1) log (ed)

)n−2
2 if eN ≤ t

(b) Then for all q ≤ 1− 1
2 log (ed)

(E(κ(p)q))
1
q ≤Me

1
q .

Moreover

E log κ(p) ≤ logM + 1

Remark 4.3.2. The above results has been obtained under the assumptions on the

randomness mentioned at the beginning of this section. Even if these assumptions

allows us to consider much more general randomness than Gaussian the results are

quite similar to the results obtained by Cucker, Malajovich, Krick and Wschebor in

the Gaussian case as once can notice by comparing Corollary 4.3.11 with Theorem

4.1.1. In particular if d := dj, 1 ≤ j ≤ n − 1, in the Gaussian case Cucker and all

126



proved that

E log(κ(p)) ≤ 1
2 logN + n+ 1

2 log d+ 5
2 log n+ smaller terms

while Corollary 4.3.11 gives

E log(κ(p)) ≤ 1
2 logN + (n− 2) (log d+ log log (ed) + log (C(c0, K))) + log C̃,

where C(c0,K) is a constant depending only on c0, K and C̃ ≥ 1 is an absolute

constant.

One may notice that the most important difference in the two estimates is a factor

“2" missing in the second term in our result.

Unfortunately, we do not know if the estimate of Cucker, Malajovich, Krick and

Wschebor is of the right order. The next proposition provide some (most probably)

very loose lower bounds for the condition number of a random polynomial system.

In order to prove it we will need a slightly different assumption than our Small Ball.

There exists c̃0 > 0 such that for every 1 ≤ j ≤ m, we have that

(5) P
(
‖C(j)‖2 ≤ ε

√
Nj

)
≤ (c̃0ε)Nj , ε > 0.

Let us comment on the above assumption. If the vectors Cj have independent co-

ordinates then our Small Ball assumption and Lemma 4.3.4 implies that (5) holds

true. Moreover, if C(j) are uniformly distributed on a convex body K and satisfy

our subgaussian assumption, a result of J. Bourgain [23] (see also [35] or [73] for

alternative proofs) implies again that (5) holds true (with a constant c̃0 depending

only on the subgaussian constant K and not the convex body K). In particular, all

examples presented at the beginning of this section satisfy (5). For the proof we will

need the following extension of Lemma 4.3.4 ([102], Theorem 1.5 and Corollary 8.6).
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In order to state Lemma 4.3.12 we need to introduce a bit of terminology.

For a matrix A := (ai,j)1≤i,j≤m we write ‖A‖HS is the Hilbert-Schmidt norm of A

and ‖A‖op for the operator norm , i.e.

‖A‖HS :=
 m∑
i,j=1

a2
i,j

 1
2

, ‖A‖op := max
θ∈Sn−1

‖Aθ‖2.

Lemma 4.3.12. Let ξi, 1 ≤ i ≤ m be independent random variables that satisfy the

following small ball assumption:

P (ξi ≤ ε) ≤ c0ε, ε > 0, 1 ≤ i ≤ m.

Let ξ := (ξ1, · · · , xm). Then for every A, m×m matrix we have that

P (‖Aξ‖2 ≤ ε‖A‖HS) ≤ (cc0ε)
c
‖A‖2

HS
‖A‖2op , ε > 0

where c > 0 is an absolute constant. In the case where ‖A‖HS =
√
m‖A‖op we have

that

P (‖Aξ‖2 ≤ ε‖A‖HS) ≤ (cc0ε)m , ε > 0

We are now ready to prove lower bounds for the condition number of random poly-

nomial systems:

Proposition 4.3.13. Let p = (p1, · · · , pm) be a homogeneous n-variate polynomial

system with deg(pi) = di. Then we have that

κ(p) ≥ ‖p‖w√
m+ 1‖p‖∞

.

Moreover if p := (p1, · · · , pm) is a random polynomial systems satisfying our sub-
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gaussian assumption and our assumption (5) (with constants K, c̃0 respectively) we

have that

P
(
κ(p) ≤ ε

√
N

Kmd log (ed)

)
≤ (cc̃0ε)

c′min{N
minj≤mNj
maxj≤mNj

,md log (ed)}
and

P
(
κ(p) ≤ ε

√
N

Km log (ed)

)
≤ (cc̃0ε)c

′m log (ed), if d = dj, 1 ≤ j ≤ m,

where c, c′ > 0 are absolute constants. In particular we have that

expE log (κ(p)) ≥ c

√
N

m log (ed) when d = dj, 1 ≤ j ≤ m.

Proof. First note that Theorem 4.2.2 implies that for every x, y ∈ Sn−1,

‖d−1
j D(1)pj(x)y‖2

2 ≤ ‖pj‖2
∞.

So, we have that

‖M−1D(1)p(x)(y)‖2
2 ≤

m∑
j=1
‖pj‖2

∞ ≤ m‖p‖2
∞.

Recall that L2(x, y) := ‖M−1D(1)p(x)(y)‖2
2 + ‖p(x)‖2

2. So, we get that

L2 := min
x⊥y

L2(x, y) ≤ (m+ 1)‖p‖2
∞,

which implies that

κ(p) ≥ ‖p‖w
L
≥ ‖p‖w√

m+ 1‖p‖∞
.

In case where dj = d, 1 ≤ j ≤ m the proof is identical.
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We will show that under our assumption (5) the following holds true: for every ε > 0

P
(
‖p‖w ≤ ε

√
N
)
≤ (cc̃0ε)

cN
min1≤j≤mNj
max1≤j≤mNj .

Indeed, recall that ‖pj‖w = ‖Cj‖`Nj2
. Then for any fix ε > 0,

P
(
‖pj‖w ≤ ε

√
Nj

)
≤ (c̃0ε)Nj ≤ (c̃0ε)Nj0 .

where Nj0 := min1≤j≤mNj. Let ξj := ‖pj‖w√
Nj

, 1 ≤ j ≤ m. Set ξ := (ξ1, · · · , ξm)

A := diag(
√
N1, · · · ,

√
Nm). Note that ‖p‖w = ‖Aξ‖2, ‖A‖HS =

√∑m
j=1Nj =

√
N

and ‖A‖op := max1≤j≤m
√
Nj. Then Lemma 4.3.12 implies

P
(
‖p‖w ≤ ε

√
N
)
≤ (cc̃0ε)

cN
min1≤j≤mNj
max1≤j≤mNj .

Recall that Lemma 4.3.2 implies that for every t ≥ 1,

P
(
‖p‖∞ ≥ ctK

√
m log (ed)

)
≤ e−t

2m log (ed).

So, using our lower bound estimate for the condition number we get that

P
(
‖p‖w
‖p‖∞

≥ c′ε
√
N

tK
√
m log (ed)

)
≤ P

(
κ(p) ≥ cε

√
N

tKmd log (ed)

)

P
(
{‖p‖w ≥ c′ε

√
N} ∩ {‖p‖∞ ≤ ctK

√
m log (ed)}

)
≤ P

(
κ(p) ≥ cε

√
N

tKmd log (ed)

)

P
(
‖p‖w ≥ c′ε

√
N
)
+P

(
‖p‖∞ ≤ c

√
m log (ed)

)
−1 ≥ 1−(cc̃0ε)

−cN
minj≤mNj
maxj≤mNj−e−t2m log (ed).

We may choose t :=
√

log 1
ε
and by adjusting the constant we get the result. The

case where dj = d, 1 ≤ j ≤ m is similar. The bounds for the expectation follows by
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integration. �

Remark 4.3.3. The above lemma and Theorem 4.3.10 imply that the following

asymptotic formulas holds true (n, d ≥ 3, m = n− 1, dj = d, 1 ≤ j ≤ n− 1):

c1(n log d+ d log n) ≤ E log (κ(p)) ≤ c2(n log d+ d log n)

for random polynomial systems p satisfying the assumptions at the beginning of the

section. This settles the asymptotic order of log (κ(p)).

Remark 4.3.4. Of course we would like to know the asymptotic behavior of κ(p)

instead of log (κ(p)). One must notice that the dominant term in our estimates is
√
N , which is the normalization that comes from the Weil-Bombieri norm of the

polynomial system. So we would like to know the asymptotic behavior of κ(p)√
N
. When

m = n − 1, the upper bounds that we get, are exponential with respect to n, while

the lower bounds are not. But when m = 2n − 4 we have the following estimates

(consider the case d = dj, 1 ≤ j ≤ m)

C1

nd log (ed) ≤
E(κ(p))√

N
≤ C2d log ed√

n
,

where C1, C2 are constants depending on K, c0. This suggest that our estimates tends

to be more accurate when m is much larger than n.

Remark 4.3.5. There are similarities on the probability tail estimates of our main

result and the estimates in the linear case [103]. In particular our estimates in the

quadratic case d = 2 when m is propositional to n are quite similar to the optimal

result as appeared in [103], which indicates that in the proportional case (m ' n) our

result is close to be optimal.
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Remark 4.3.6. As we mentioned in the introduction H.H. Nguyen proved similar

results in [87] for subgaussian random polynomial systems. He worked without the

Small Ball assumption that we used that allowed him to state results also in the

case of independent Bernoulli’s. However he assumed that all the entries in of the

random vectors are independent random variables contrary to our setting. It appears

that our methods avoids several restrictions that appears in [87] such as the degree

of the polynomials must be less than a small power of the number of variables. Since

his results are stated for a quantity that resembles the condition number (but it is

not) it is not possible to compare the estimates.

Remark 4.3.7. Up to our knowledge our results for the condition number of random

polynomial systems when m ≥ n are the first one to appear, even when the underlying

randomness is Gaussian.

Remark 4.3.8. As we mention at the beginning of the section, if Cj are uniformly

distributed on the unit sphere (of dimension Nj) then our subgaussin and Small Ball

assumptions are satisfied. Moreover, in that case, one has that ‖p‖w =
√
N with

probability 1. So, in that case the estimates on our main results can be slightly

improved since one does not need to invoke Lemma 4.3.8. We leave the details to the

reader.

4.4 Random Polynomial Systems With Given Support

In this section we will extend the results of the previous section to the case of random

polynomial systems with given support. Let us first fix the notation and provide some

basic examples.
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4.4.1 Notation and the Basic Quantities

Fix n to be the number of variables, m be the number of equations and dj, 1 ≤ j ≤ m

be the degrees of the polynomials. We will always assume that n ≥ 3 and m ≥ n−1.

We define

Sn,d := {(α1, · · · , αn) ∈ Nn :
n∑
i=1

αi = d},

Sn,d1,··· ,dm := {(S1, · · · , Sm) : Sj ∈ Sn,dj , 1 ≤ j ≤ m}.

We say that S = (S1, · · · , Sm) ⊆ Sn,d1,··· ,dm is eligible (and we write S ⊆ Sen,d1,··· ,dm)

if Sj 6= ∅ for all 1 ≤ j ≤ m, and for every 1 ≤ i ≤ n, there exists α ∈ ⋃j≤m Sj such
that αi 6= 0.

Given S ⊆ Sen,d and coefficients aα, α ∈ S, a polynomial with support S is written

as follows:

p(x) :=
∑
α∈S

aαx
α.

Given S := (S1, · · · , Sm) ⊆ Sen,d1,··· ,dm and let a(j)
α , α ∈ Sj, 1 ≤ j ≤ m be coefficients.

We write

(SPS) p := (p1, · · · , pm), pj(x) :=
∑
α∈Sj

a(j)
α xα, 1 ≤ j ≤ m,

for a polynomial system with support S. Let c(j)
α , αi ∈ Sj be a random vector in

RIj , where Ij is the cardinality of Sj, that satisfies our Sub-Gaussian and Small Ball

assumptions (with constants K and c0) and the vectors C(j) := c(j)
α are independent

1 ≤ j ≤ m. Then we write

(RSPS) p := (p1, · · · , pm), pj(x) :=
∑
α∈Sj

c(j)
α

√√√√(d
α

)
xα, 1 ≤ j ≤ m

133



for a random polynomial system with support S. In the case where S := Sn,d1,·,dm

then the RSPS is just the random polynomial system that we have investigated in

the previous section.

Of course the same definition of the condition number applies to this case. Our

goal is to give bounds for the condition number for the RSPS polynomial system.

In this case the role of the support S is very important. It is easy to construct an

example of SPS that has condition number infinity for any choice of coefficients.

Let us give an example where n = 3,m = 2 and d1 = d2 = 6. Consider the system

p := (p1, p2), where

pj(x) := aj,1x
6
1 + aj,2x

2
1x

4
2 + aj,3x

2
1x

4
3, j = 1, 2.

Then every point in the subshpere {(y1, y2, y3) ∈ S2 : y1 = 0} is a root of the system

of multiplicity 2. But this implies that the condition number of the system is infinity.

Under the Small Ball assumption, our random polynomial system will give that c(i)
α

are not zero (for all α ∈ Si, and any 1 ≤ i ≤ m) with probability 1 which imply that

the condition number of the system is infinity with probability 1. We will introduce

the quantity H(S), which captures the geometry of the support and we will provide

bounds for the condition number of RSPS with respect to H(S).

In order to introduce the quantity H(S) we will need some additional notation.

Let x ∈ Sn−1, S ⊆ Sen,d and let XS : Sn−1 → RN , where N :=
(
n+d+1

d

)
, defined as

XS(x) =

√√√√(d

α

)
xα


α∈S

.
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Moreover, we define the function AS : Sn−1 → R+, as

AS(x) := ‖XS(x)‖`N2 :=
(∑
α∈S

(
d

α

)
x2α

) 1
2

.

Note that for every x ∈ Sn−1, ASn,d(x) =
(∑

α∈Sn,d

(
d
α

)
x2α

) 1
2 = 1. Note that, if

S1, S2 ⊆ Sn,d such that S1 ∩ S2 = ∅ then for every x ∈ Sn−1 we have that

A2
S1∪S2(x) = A2

S1(x) + A2
S2(x).

The above relation, together with the fact that ASn,d(x) = 1, implies that for every

S ⊆ Sn,d,

max
x∈Sn−1

AS(x) ≤ 1 and XS(x) ∈ BN
2 .

Let x ∈ Sn−1, S := (S1, · · · , Sm) ⊆ Sn,d1,··· ,dm and let XS : Sn−1 → RN , where

N := ∑m
i=1

(
n+di+1

di

)
, defined as

XS(x) =


√√√√(d
α

)
xα


α∈S1

, · · · ,


√√√√(d

α

)
xα


α∈Sm

 .

We also define the function AS : Sn−1 → R+, as

AS(x) := ‖XS(x)‖`N2 :=
(

m∑
i=1

A2
Si

(x)
) 1

2

.

As before we have that if S1,S2 ⊆ Sn,d1,··· ,dm and S1 ∩ S2 = ∅, then

A2
S1∪S2(x) = A2

S1(x) + A2
S2(x).

135



Also,

max
x∈Sn−1

AS(x) ≤
√
m = ASn,d1,··· ,dm (y), y ∈ Sn−1.

We can introduce now the quantity H(S). For any eligible support S ⊆ Sen,d1,··· ,dm ,

we define

H(S) := sup
x∈Sn−1

1
AS(x) .

We will also need the following quantity. For any S ⊆ Sn,d1,··· ,dm we define

∆S :=


cminx∈Sn−1

AS(x)
maxj≤m ASj (x)

√
m

if minx∈Sn−1
AS(x)

maxj≤m ASj (x)
√
m
< 1

1 if minx∈Sn−1
AS(x)

maxj≤m ASj (x)
√
m

= 1
,

where 0 < c < 1 is an absolute constant that appears in Corollary 4.3.12.

Note that in the special case where Sj = S, 1 ≤ j ≤ m, we have that ∆S = 1. In

general we have that
c√
m
≤ ∆S ≤ 1.

Note that

H(Sn,d1,··· ,dm) = 1√
m

and ∆Sn,d1,··· ,dm
= 1.

4.4.2 Bounding the Quantity H(S)

Before we prove our main result, we will investigate further the quantity H(S).

We start with the following

Lemma 4.4.1. Let S ⊆ Sen,d1,··· ,dm and let p be a SPS polynomial system with

support S. Assume that there exists y ∈ Sn−1 such that AS(y) = 0. Then y has to be

a common root the polynomial system p with multiplicity greater than 1.

Proof. If AS(y) = 0 for some y ∈ Sn−1 then for all α ∈ ⋃j≤m Sj we have y2α = 0. For
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α ∈ Zn we define supp(α) := {i ∈ {1, 2, . . . , n} : αi 6= 0}. yα = 0 implies that there

exist i ∈ supp(α) such that yi = 0. Let Sy := {i ∈ {1, 2, . . . , n} : yi = 0}. Then we

get that AS(y) = 0 implies Sy ∩ supp(α) 6= ∅ for all α ∈ ⋃j≤m Sj. Since y ∈ Sn−1,

Sy ( {1, 2, . . . , n}. First we consider the case |Sy| = n − 1, wlog say 1 /∈ Sy. Then

we dehomogenize the system p as follows: for all pj set p̃j = pj(1, x2, x3, . . . , xn) and

p̃ = (p̃1, p̃2, . . . , p̃n−1). We denote the support set of the system p̃ by S̃. Then for

every α ∈ S̃ we have Sy ∩ supp(α) 6= ∅. Thus, (0, 0, . . . , 0) is a root of multiplicity

greater than 1 for p̃. Hence (1, 0, . . . , 0) is a root of multiplicity greater than 1 for p.

Second we consider the case |Sy| ≤ n−2, wlog say 1, 2 /∈ Sy. Then we dehomogenize p

with respect to x1 as in the first case and define y0 = (y2, y3, . . . , yn). We observe that

for any j and for any monomial xα that appears in ∂
∂x2
p̃j we have supp(α) ∩ Sy 6= ∅.

That is, for all j we have ∂
∂x2
p̃j(y0) = 0. Therefore the Jacobian matrix of the system

p̃ is not full rank at y0 i.e y0 is a root of multiplicity greater than 1 for p̃. Hence the

same conclusion for p at y. �

Let ei, 1 ≤ i ≤ n be the standard orthonormal basis of Rn. We say that a support

S ⊆ Sen,d1,··· ,dm is proper if for every 1 ≤ i ≤ n, there exists j ≤ m such that djei ∈ Sj.

We write Pn,d1,··· ,dm for the set of proper supports.

Proposition 4.4.2. Let S /∈ Pn,d1,··· ,dm be a non-proper eligible support. Then

H(S) =∞.

Proof. Note that

H(S) =∞ ⇐⇒ min
x∈Sn−1

AS(x) = 0.

Since S is not proper there exists 1 ≤ i ≤ n such that djei /∈ Sj for all 1 ≤ j ≤ m.

Without loss of generality we may assume that i = n. Since S is eligible we have
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that

∪mj=1{α ∈ Sj : αn 6= 0} 6= ∅.

But the non-proper assumption implies that

∪mj=1{α ∈ Sj : αn 6= 0} = ∪mj=1{α ∈ Sj : αn 6= 0 and ∃ 1 ≤ i < n : αi 6= 0}.

Let x0 = (0, · · · , 0, 1) ∈ Sn−1. We clearly have AS(x0) = 0. �

Let p ≥ 1 and x ∈ Rn. Recall the definition of p-norm of x:

‖x‖p := ‖x‖`np :=
(

n∑
i=1

xpi

) 1
p

.

Proposition 4.4.3. Let S ∈ Pn,d1,··· ,dm be a proper eligible support. Let d :=

max1≤j≤m dj, then for every x ∈ Sn−1,

AS(x) ≥ ‖x‖d2d and

H(S) ≤ n
d
2
√
n
.

Moreover, when m = n − 1 and di = d we have that there exists proper eligible T

such that for every x ∈ Sn−1,

AT(x) = ‖x‖d2d and H(T) = n
d
2
√
n
.

Proof. For every x ∈ Sn−1, since dj ≤ d, for all i ∈ {1, 2, . . . , n} we have x2dj
i ≥ x2d

i .

As a direct consequence of S being proper, we get the following inequality
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A2
S(x) ≥

∑
∪mj=1{α∈Sj}

x2α ≥
n∑
i=1

x2d
i = ‖x‖2d

2d.

Note that Hölder inequality implies that for p ≥ 2 and every x ∈ Rn,

‖x‖p ≥ n
1
p
− 1

2‖x‖2,

with equality when x = ( 1√
n
, · · · , 1√

n
) ∈ Sn−1. So we have that

HS = sup
x∈Sn−1

1
AS(x) ≤ max

x∈Sn−1

1
‖x‖d2d

≤
(
n

1
2−

1
d

)d
= n

d
2
√
n
.

In the case where m = n − 1 and dj = d, 1 ≤ j ≤ m, consider T := (T1, · · · , Tn−1)

with Tj := {dej}, when 1 ≤ j ≤ n−2 and Tn−1 := {den−1, den}. It is straightforward

to check that AT(x) = ‖x‖d2d. Therefore, H(T) = n
d
2√
n
. �

The above two proposition provides a characterization of the supports that H(S) is

finite.

Corollary 4.4.4. Let S ⊆ Sen,d1,··· ,dm be an eligible support. Then

H(S) <∞ ⇐⇒ S is proper.

4.4.3 The Main Result

We now turn our attention to the proof of a condition number theorem for random

polynomial systems with fixed support. Assume that we have a polynomial system

with support S := (S1, · · · , Sm) and random vectors C(j) ∈ RIj , 1 ≤ j ≤ m indepen-

dent with the Subgaussian property (with constant K). Fix x ∈ Sn−1. We have that

pj(x) := 〈C(j),XSj(x)〉. We set X̃Sj(x) = XSj (x)

‖XSj (x)‖2

. Note that
∥∥∥XSj(x)

∥∥∥
2

= ASj(x).
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Then we have the following,

P (|pj(x)| ≥ t) ≤ P
(
|〈C(j),XSj(x)〉| ≥ t

)
≤

P
(
|〈C(j), X̃Sj(x)〉| ≥ t

ASj(x)

)
≤ 2e

− t2
A2
Sj

(x)K2
.

Since ASj(x) ≤ 1, we have the following

P (|pj(x)| ≥ t) ≤ 2e−
t2
K2

Tensorazing the above inequality, as in Lemma 3.2, for every x ∈ Sn−1 we have

P
(
‖p(x)‖2 ≥ t

√
m
)
≤ 2e−

t2m
K2 .

Working as in section 3 we prove the following

Lemma 4.4.5. Let p be a RSPS with the Subgaussian assumption (with constant

K). Then we have that for every s ≥ 1 and d := maxi≤m di,

P
(
‖p‖∞ ≥ 3sK

√
m log (ed)

)
≤ e−c2s

2m log (ed),

where c2 ≥ 1 is an absolute constant.

Corollary 4.4.6. Let p := (p1, · · · , pm) be a a RSPS with support S, satisfying the

Small Ball assumption (with constant c0). Then, for every x ∈ Sn−1, we have that

P
(
‖p(x)‖2 ≤

ε

H(S)

)
≤ (cc0ε)m∆2

S ,

where c > 0 is an absolute constant.
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Proof. Fix x ∈ Sn−1 and recall that pj(x) := 〈C(j),XSj(x)〉. Let ξj := |pj(x)| and

ξ̃ := ξj
Aj(x) . Note that for the random variables x̃j, our small ball assumption implies

that

P
(
ξ̃ ≤ ε

)
= P

(
|〈C(j), X̃Sj(x)〉| ≤ ε

)
≤ c0ε.

Set ξ := (ξ1, · · · , ξm) and ξ̃ := (ξ̃1, · · · , x̃m) and A := diag(AS1(x), · · · , ASm(x)).

Note that

ξ := Aξ̃, ‖A‖HS := AS(x), ‖A‖op := max
j≤m

ASj(x).

Assume first that minx∈Sn−1
A2

S(x)
mmaxj≤m A2

Sj
(x) < 1. Since ‖p(x)‖2 := ‖ξ‖2, Lemma

4.3.12 implies that

P (‖p(x)‖2 ≤ εAS(x)) ≤ (cc0ε)
c

A2
S(x)

maxj≤mA2
Sj

(x)
.

Since for every x ∈ Sn−1, 1
H(S) ≤ AS(x) and c A2

S(x)
maxj≤m A2

Sj
(x) ≥ ∆2

Sm, we conclude that

P
(
‖p(x)‖2 ≤

ε

H(S)

)
≤ (cc0ε)m∆2

S .

We treat the case minx∈Sn−1
A2

S(x)
mmaxj≤m A2

Sj
(x) = 1 similarly. �

We are now ready to prove the following

Theorem 4.4.7. Let p := (p1, · · · , pm) be a a RSPS with support S satisfying the

Small Ball assumption (with constant c0). Let α, γ > 0. Then we have the following

1. In the case where d = max1≤j≤m dj, if α ≤ min{1, d2
√
n
}γ, we have that

P(L ≤ α) ≤ P (‖p‖∞ ≥ γ) + C
√
n

(
α

γd2

)2−n

(cc0αH(S))m∆2
S ,

where C, c > 0 are absolute constants.
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2. In the case where d := dj, 1 ≤ j ≤ m, if α ≤ min{1, d√
n
}γ,

P(L ≤ α) ≤ P (‖p‖∞ ≥ γ) + C
√
n

(
α

γd

)2−n

(cc0αH(S))m∆2
S ,

where C, c > 0 are absolute constants.

Proof. The proof is identical to the proof of 4.3.7 with the only difference to be the

use of Lemma 4.4.6 instead of Lemma 4.3.5. �

The proof of the following Lemma is identical to the proof of Lemma 4.3.8.

Lemma 4.4.8. Let p := (p1, · · · , pm) be a a RSPS with support S := (S1, · · · , Sm),

that satisfies our Subgaussian assumption (with constant K0). Let Ij be the cardinal-

ity of Sj and let I := ∑m
j=1 Ij. Then, for every t ≥ 1,

P
(
‖p‖W ≥ c̃tK

√
I
)
≤ e−t

2I ,

where c̃ > 0 is an absolute constant.

We are now ready to state the main Theorem of the section. The proof is similar to

the proof of Theorem 4.3.9 and will be omitted.

Theorem 4.4.9. There exist constants C, c, c̃ > 0 such that the following holds: Let

p := (p1, · · · , pm) be a RSPS with support S := (S1, · · · , Sm), that satisfies our

subgaussian assumption (with constant K0) and our Small Ball assumption (with

constant c0). Let Ij be the cardinality of Sj and let I := ∑m
j=1 Ij. We also assume

that m∆2
S ≥ n− 1 and set m∆2

S − n+ 2 = A. In the case d := max1≤j≤m dj we set

M :=
√
I( n
c0

) 1
2A (d2 log(ed))n−2

A (cc0K
√
mH(S))

m∆2
S

A m−
1
2 max{1,

√
n

d2 }
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In the case d := dj, 1 ≤ j ≤ m, we set

M :=
√
I( n
c0

) 1
2A (d log(ed))

n−2
A (cc0K

√
mH(S))

m∆2
S

A m−
1
2 max{1,

√
n

d
}

We denote P{κ(p) ≥ tM} with P(t) and we consider two cases;

1. In the case I ≥ m log (ed), we have that

P(t) ≤



3
tA

if 1 ≤ t ≤ e
m log (ed)

A

3
tA

(
log tA

m log (ed)

)n−2
2 if e

m log (ed)
A ≤ t ≤ e

I
A

3
tA

(
log tA
I

)m∆2
S

2
(

I
m log (ed)

)n−2
2 if e IA ≤ t.

2. In the case I ≤ m log (ed), we have that

P(t) ≤


3
tA

if 1 ≤ t ≤ e
I
A

3
tA

(
log tA
I

)m∆2
S

2 if e IA ≤ t.

Proof. We give the proof for the all di = d case. We first recite the L estimate

P(L ≤ α) ≤ P (‖p‖∞ ≥ γ) + C
√
n (γd)n−2 (α)m∆2

S−n+2 (cc0H(S))m∆2
S

P (κ(p) ≥ tM) ≤ P
(
‖p‖W ≥ ucK

√
I
)

+ P
(
L(p) ≤ c

√
IuK

tM

)
.
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P (κ(p) ≥ tM) ≤ e−t
2I + P (‖p‖∞ ≥ γ)

+ C
√
n (γd)n−2

(
c
√
IuK

tM

)m∆2
S−n+2

(cc0H(S))m∆2
S

We choose γ = 3sK
√
m log (ed) and set

 M
√
I max{1,

√
n
d
}

m∆2
S−n+2

= C
√
n(d
√
m log(ed))n−2 (cc0KH(S))m∆2

S

then we have

P (κ(p) ≥ tM) ≤ e−t
2I + e−c2s

2m log (ed) + sn−2um∆2
S−n+2

tm∆2
S−n+2

The rest of the proof follows as in section 3. �

As in the previous section we can prove the following

Theorem 4.4.10. Let p be a random polynomial system as in Theorem 4.4.9.

If q ≤ (m∆2
S − n+ 2)

(
1− 1

2 log (ed)

)
, then

(E(κ(p)q))
1
q ≤M

(
3m log (ed)

n

) 1
q

.

Moreover

E log κ(p) ≤ logM + 1.

4.4.4 Consequences of the Main Theorem

As a consequence of Lemma 4.4.1 we have the following
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Corollary 4.4.11. Let p be a SPS with support S ⊆ Sn,d1,··· ,dm. Then

If κ(p) <∞ then H(S) <∞.

Proof. By Lemma 4.4.1 if H(S) = ∞ there exists y ∈ Sn−1 such that y is a root of

multiplicity 2. But this implies that κ(p) =∞. �

Due to standard facts in the theory of A-discriminants such as the Horn-Kapranov

uniformization, it is known that for any support S with H(S) < ∞, the set of

polynomials with support S and a root of multiplicity is nonempty - indeed, in most

cases this set is a codimension one variety-. So the reverse of the above corollary is

not true. The canonical reference on A-discriminants is [51]. For an accessible review

of A-discriminants and the Horn-Kapranov uniformization we refer the reader to [41].

Surpassingly the reverse holds true with probability 1 in the case of a random poly-

nomial system. Theorem 4.4.9 implies the following

Corollary 4.4.12. Let p be a random polynomial system as in Theorem 4.4.9. Then

If H(S) <∞ then κ(p) <∞ with probability 1.

Recall that in the special case where the support of the polynomial system S :=

(S, · · · , S), we have that ∆S = 1. In this special case we have showed the follow-

ing Theorem, which can been viewed as the generalization of Theorem 4.3.9 in the

“sparse" case. The proof follows by Theorem 4.4.9 and Proposition 4.4.3.

Theorem 4.4.13. There exists C, c, c̃ > 0 such that for every n ≥ 3, d ≥ 2,m ≥ n−1

and p := (p1, · · · , pm) be a random polynomial system in n-variables with degrees

dj, which satisfies the subgaussian and Small Ball assumption with constants K, c0

respectively and has proper eligible support S := (S, · · · , S), the following holds:
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In the case dj = d, 1 ≤ j ≤ m we set

M :=
√
I( n
c0

)
1

2(m−n+2)
(
cc0K

√
mH(S)d log(ed)

) n−2
m−n+2 cc0KH(S) max{1,

√
n

d
}

In the case max1≤j≤m dj = d we set

M :=
√
I( n
c0

)
1

2(m−n+2)
(
cc0K

√
mH(S)d2 log(ed)

) n−2
m−n+2 cc0KH(S) max{1,

√
n

d2 }

We denote P{κ(p) ≥ tM} by P(t) and we consider two cases:

1. In the case I ≥ m log (ed), we have that

P(t) ≤



3
tm−n+2 if 1 ≤ t ≤ e

m log (ed)
m−n+2

3
tm−n+2

(
(log t)(m−n+2)

m log (ed)

)n−2
2 if e

m log (ed)
m−n+2 ≤ t ≤ e

I
m−n+2

3
tm−n+2

(
(log t)(m−n+2)

I

)m
2
(

I
m log (ed)

)n−2
2 if e

I
m−n+2 ≤ t.

2. In the case I ≤ m log (ed), we have that

P(t) ≤


3

tm−n+2 if 1 ≤ t ≤ e
I

m−n+2

3
tm−n+2

(
(log t)(m−n+2)

I

)m
2 if e

I
m−n+2 ≤ t.

Moreover,

E log (κ(p)) ≤ logM + 1.

Corollary 4.4.14. There exists C, c, c̃ > 0 such that for every n ≥ 3, d ≥ 2 and p :=

(p1, · · · , pn−1) be a random polynomial system in n-variables with degrees dj, which

satisfies the subgaussian and Small Ball assumption with constants K, c0 respectively

and has proper eligible support S := (S, · · · , S), the following holds
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In the case dj = d, 1 ≤ j ≤ m we set

M :=
√
IcKH(S)(nc0) 1

2
(
cc0K

√
mH(S)d log(ed)

)n−2

In the case max1≤j≤m dj = d we set

M :=
√
IcKH(S)(nc0) 1

2
(
cc0K

√
mH(S)d2 log(ed)

)n−2

We consider two cases:

1. In the case I ≥ (n− 1) log (ed), we have that

P(t){κ(p) ≥ tM} ≤



3
t

if 1 ≤ t ≤ e(n−1) log (ed)

3
t

(
log t

(n−1) log (ed)

)n−2
2 if e(n−1) log (ed) ≤ t ≤ eI

3
t

(
log t
I

) 1
2
(

log t
(n−1) log (ed)

)n−2
2 if eI ≤ t.

2. In the case I ≤ (n− 1) log (ed), we have that

P(t){κ(p) ≥ tM} ≤


3
t

if 1 ≤ t ≤ eI

3
t

(
log t
I

) (n−1)
2 if eI ≤ t.

Moreover,

E log (κ(p)) ≤ logM + 1.

Remark 4.4.1. One should compare the bounds that we get in the Theorem 4.4.9,

at least in the case where ∆S = 1, with the bounds in Theorem 4.3.9. Let M1 be the

147



constant in Theorem 4.3.9 and M2 be the constant in Theorem 4.4.9. We have that

M1

M2
=
√
N

I

(
1√

mH(S)

) m
m−n+2

.

It is unclear when the above ration is bigger (or not) to 1. Of course N is possibly

much larger than I (possibly by an exponential factor with respect to n or d) but as

we have seen
√
mH(S) can be as large as nd/2. So there is a trade-off: The support

can be very small but the geometry of the support ( H(S)) may effect the estimates

by a large factor. Nevertheless we have the following proposition.

Proposition 4.4.15. Let p1 := (p1, · · · , pm) be a random polynomial system with

eligible and proper support S = (S, · · · , S) ⊆ Sn,d,··· ,d and let p2 be a random poly-

nomial system with support Sn,d,··· ,d. Let M1 := M(κ(p1)) and M2 := M(κ(p2)). If

m ≥ 2n− 2, d log ed ≤ n and I has cardinality at most polynomial with respect to n

(I ≤ nα, for some α > 1), then for n large enough,

M1 < M2.

In other words if m is at least proportional to n and random polynomial system with

at most polynomial with respect to n terms has smaller condition number than a

generic random polynomial system (with the same homogeneity degree).

Proof. Note that m ≤ I ≤ nα. By Lemma 4.3.13 we have that

M2 ≥
c
√
N

Kc0m log (ed) ≥
c
√
n+ d√

nd log (ed)

(
n+ d

n

)n
2
(
n+ d

d

) d
2

.
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By Theorem 4.4.13 we have that

M1 ≤ Cc0K
√
mn

√
I√
n
n
d
2 .

So,
M1

M2
≤ C ′(c0K)2

√
dn
√
m log (ed)

√
I√

n+ d

(
n

n+ d

)n
2
(

nd

n+ d

) d
2

≤

C ′(c0K)2 log (ed)nα+ 1
2 e−

n
2 d

d
2 < 1

if we assume that n is large enough (larger than a fixed universal constant and larger

than log c0K). �

Remark 4.4.2. One can prove lower bounds for the condition number of random

polynomial system with a given support as in Proposition 4.3.13. We omit the details.
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5. SUMMARY

This dissertation consists of three independent sections. Results presented in the

section two show the existence of an algorithmically efficient polyhedral approxima-

tion for the real part of the zero set of an exponential sum. We derive our approx-

imation using archimedean tropical geometry. Our results capture the quantitative

aspects of a certain tropicalization. Our particular tropicalization is computationaly

efficient and can be used to aid iterative numerical methods.

In section three, we study nonnegative multihomogenous polynomials and sums

of squares. Our results show that for fixed degrees of multihomogeneity, ratio of sums

of squares polynomials inside the set of nonnegative polynomials approaches to 0 as

number of variables grow. Section three also includes some basic observations on the

zonal harmonics. These basic observations indicates a new connection between high

dimensional measures and multivariate polynomials.

In section four, we provide probabilistic condition number estimates for a broad

family of random polynomial systems. Our techniques are quite different from the

existing literature which allows us to work with more general distributions. Despite

the difference of our techniques, we proved similar results to the known ones for

polynomial systems with Gaussian independent random polynomials. It is not known

yet, if our results and the existing results in literature are optimal. Flexibility of

our techniques also allow us to work with sparse polynomials; we proved condition

number estimates for sparse polynomial systems that involves quantities depending

on the geometry of the support. Our results on random sparse polynomial systems

indicate the need for a fundamentally different notion of conditioning for sparse

polynomial systems.
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In this dissertation we always used a blend of algebraic geometry with convex

geometric analysis. We believe there are many connections -yet to be discovered-

between convex geometric analysis and real algebraic geometry. In particular, two

clear questions are the implications of concentration of measure phenomenon and

the analogs of the isoperimetric problem in the space real polynomials.

151



REFERENCES

[1] L. Ahlfors, Complex Analysis, McGraw-Hill Science/Engineering/Math; 3rd edi-

tion, 1979.

[2] T. Ahrendt, Fast computations of the exponential function, in proceedings of

STACS ’99 (16th Annual Conference on Theoretical Aspects of Computer Sci-

ence), pp. 302–312, Springer-Verlag Berlin, 1999.

[3] D. Alessandrini, Logarithmic limit sets of real semi-algebraic sets, Advances in

Geometry 13, no. 1 (2013), pp. 155–190.

[4] C. D’Andrea, A. Galligo and M. Sombra, Quantitative equidistribution for the

solution of a system of sparse polynomial equations, Advances in Mathematics,

to appear.

[5] E. Anthony, S. Grant, P. Gritzmann, J. M. Rojas, Polynomial-time Amoeba

Neighborhood Membership and Faster Localized Solving, Chapter 15 of: Topo-

logical and Statistical Methods for Complex Data – Tackling Large-Scale, High-

Dimensional, and Multivariate Data Sets, (Bennett, Janine; Vivodtzev, Fabien;

Pascucci, Valerio (Eds.)), Series on Mathematics and Visualization, Springer-

Verlag, 2014.

[6] S. Arora, B. Barak, Computational Complexity. A Modern Approach., Cambridge

University Press, Cambridge, 2009.

[7] E. Artin, Uber die zerlegung definiter funktionen in quadrate, Hamb Abh.

5(1927), no.1, pp. 100–115.

[8] M. Avendaño, R. Kogan, M. Nisse and J. M. Rojas, Metric estimates and member-

ship complexity for archimedean amoebae and tropical hypersurfaces, available

152



as arXiv preprint 1307.3681.

[9] G. Aubrun, S.S. Szarek, Alice and Bob Meets Banach, http://math.univ-

lyon1.fr/ aubrun/ABMB/ABMB.pdf

[10] K. Ball, An elementary introduction to modern convex geometry, Flavors of

geometry, Math. Sci. Res. Inst. Publ., 31, Cambridge Univ. Press, Cambridge,

1997, pp. 1–58.

[11] K. Ball, Volume ratios and a reverse isoperimetric inequality, J. London Math.

Soc. (2) 44 (1991), pp. 351–359.

[12] F. Barthe and A. Koldobsky, Extremal slabs in the cube and the Laplace trans-

form, Adv. Math. 174 (2003), pp. 89–114.

[13] A. Barvinok, G. Blekherman, Convex geometry of orbits, Combinatorial and

computational geometry, Math. Sci. Res. Inst. Publ., 52, Cambridge Univ. Press,

Cambridge, 2005, pp. 51–77.

[14] A. Barvinok, Estimating L∞ norms by L2k norms for functions on orbits, Foun-

dations of Computational Mathematics, 2(2002), pp. 393–412.

[15] D. Bates, F. Sottile, Khovanskii-Rolle continuation for real solutions, Found.

Comput. Math. 11 (2011), no. 5, pp. 563–587.

[16] W. Blaschke, Uber affine geometrie VII: neue extremeingenschaften von ellipse

und ellipsoid , Ber. Verh. S ächs. Akad. Wiss., Math. Phys. Kl. 69 (1917), pp.

412–420.

[17] G. Blekherman, Convexity properties of the cone of nonnegative polynomials,

Discrete Comput. Geom. 32 (2004), no. 3, pp. 345–371.

[18] G. Blekherman, There are significantly more nonnegative polynomials than sums

of squares, Israel J. Math. 153 (2006), pp. 355–380.

153



[19] G. Blekherman, P.A. Parrilo, R. Thomas, Semidefinite Optimization and Con-

vex Algebraic Geometry, MOS-SIAM Series on Optimization, 13. Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA

[20] G. Blekherman, G. Smith, M. Velasco, Sums of squares and varieties of minimal

degree, J. AMS, http://dx.doi.org/10.1090/jams/847

[21] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and Real Computation,

Springer-Verlag, 1998.

[22] J. Borwein, P. Burgisser, On the complexity of familiar functions and numbers,

SIAM Review, Vol. 30, No. 4, (Dec., 1988), pp. 589–601.

[23] J. Bourgain, On the isotropy-constant problem for ψ2 bodies. In Geometric

Aspects of Functional Analysis, volume 1807 of Lecture Notes in Mathematics,

Springer, 2001-2002, pp. 114–121.

[24] J. Bourgain, V. Milman, New volume ratio properties for convex symmetric

bodies in Rn, Invent. Math. 88 (1987), no. 2, pp. 319–340.

[25] S. Boyd, S.-J. Kim, L. Vandenberghe and A. Hassibi, A Tutorial on Geometric

Programming, Optimization and Engineering, 8(1):67-127, 2007, pp. 67–127.

[26] P. Burgisser and F. Cucker, Condition, Grundlehren der mathematischen Wis-

senschaften, no. 349, Springer-Verlag, 2013.

[27] J.F. Canny, Some algebraic and geometric computations in PSPACE, Proc. 20th

ACM Symp. Theory of Computing, Chicago (1988), ACM Press.

[28] D. Castro, J. San Martín, Luis M. Pardo, Systems of rational polynomial equa-

tions have polynomial size approximate zeros on the average, Journal of Com-

plexity 19 (2003), pp. 161–209.

154



[29] M. Chiang, Geometric Programming for Communication Systems, now Publish-

ers Inc., Massachusetts, 2005.

[30] M. Choi, T. Lam, B. Reznick, Real zeros of positive semidefinite form. I, Math.

Z. 171, 1980, pp. 1–26.

[31] D. Cox, J. Little, H. Schenck, Toric Varieties, Graduate Studies in Mathematics,

124. American Mathematical Society, Providence, RI, 2011.

[32] F. Cucker, T. Krick, G. Malajovich, and M. Wschebor, A numerical algorithm

for zero counting I. Complexity and accuracy., J. Complexity 24 (2008), no. 5-6,

pp. 582–605.

[33] F. Cucker, T. Krick, G. Malajovich, and M. Wschebor, A numerical algorithm

for zero counting II. Distance to ill-posedness and smoothed analysis., J. Fixed

Point Theory Appl. 6 (2009), no. 2, pp. 285–294.

[34] F. Cucker, T. Krick, G. Malajovich, and M. Wschebor, A numerical algorithm

for zero counting III: Randomization and condition., Adv. in Appl. Math. 48

(2012), no. 1, pp. 215–248.

[35] N. Dafnis and G. Paouris, Small ball probability estimates, Ψ2-behavior and the

hyperplane conjecture, Journal of Functional Analysis 258 (2010), pp. 1933–1964.

[36] J.-P. Dedieu, M. Shub, Newton’s method for overdetermined systems of equa-

tions, Math. Comp. 69 (2000), no. 231, pp. 1099–1115.

[37] J. De Loera, J. Rambau, F. Santos, Triangulations, Structures for algorithms

and applications, Algorithms and Computation in Mathematics, 25, Springer-

Verlag, Berlin, 2010.

[38] J.W. Demmel, On condition numbers and the distance to the nearest ill-posed

problem, Numer. Math. 51,251 289 (1987), pp. 251–289.

155



[39] J. Demmel, B. Diament, and G. Malajovich, On the complexity of computing

error bounds, Found. Comput. Math. (2001), pp. 101–125.

[40] T. de Wolff, S. Iliman, Amoebas, nonnegative polynomials and sums of squares

supported on circuits, available as arXiv preprint 1402.0462.

[41] A. Dickenstein, J. M. Rojas, K. Rusek, J. Shih, Extremal real algebric geometry

and A-discriminants, Moscow Mathematical Journal, 7 (2007), pp. 425–452.

[42] R. J. Duffin, E. L. Peterson, C. Zener, Geometric Programming, John Wiley

and Sons, 1967.

[43] J. Duoandikoetxea, Reverse Hölder inequalities for spherical harmonics, Proc.

Amer. Math. Soc. 101 (1987), no. 3, pp. 487–491.

[44] C. Eckart, G. Young, The approximation of a matrix by another of lower rank,

Psychometrika 1, no. 3, 1936, pp. 211–218.

[45] P. Erdös, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51

(1945), pp. 898–902.

[46] S. Favorov, Holomorphic almost periodic functions in tube domains and their

amoebas, Computational Methods and Function Theory, v. 1 (2001), No. 2, pp.

403–415.

[47] K. Forsythe, G. Hatke, A polynomial rooting algorithm for direction finding,

preprint, MIT Lincoln Laboratories, 1995.

[48] M. Fujiwara, Über die obere schranke des absoluten betrags der wurzeln einer

algebraischen gleichung, Tôhoku Mathematical Journal, 10, pp. 167–171.

[49] W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies, no.

131, Princeton University Press, Princeton, New Jersey, 1993.

156



[50] J. Gallier, Notes on Spherical Harmonics and Linear Representations of Lie

Groups, http://www.cis.upenn.edu/˜cis610/sharmonics.pdf

[51] I. M. Gel’fand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, Resultants

and Multidimensional Determinants, Birkhäuser, Boston, 1994.

[52] A. A. Giannopoulos, G. Paouris, P. Valettas, On the distribution of the ψ2-norm

of linear functionals on isotropic convex bodies, GAFA Seminar Volume (2050),

2012, pp. 227–253.

[53] A.A. Giannopoulos, V. Milman, Extremal problems and isotropic positions of

convex bodies, Israel Journal of Mathematics, December 2000, Volume 117, pp.

29–60.

[54] A. A. Giannopoulos, V. Milman , Euclidean Structure in Finite Dimensional

Normed Spaces, Handbook of the geometry of Banach spaces, Vol. I, North-

Holland, Amsterdam, 2001, pp. 707–779.

[55] A. A. Giannopoulos, V. D. Milman, M. Rudelson, Convex bodies with minimal

mean width, Geometric Aspects of Functional Analysis, Volume 1745, Lecture

Notes in Mathematics, 2007, pp. 211–218.

[56] A. A. Giannopoulos, G. Paouris, B. Vritsiou, The Isotropic Position And The

Reverse Santalo Inequality, Israel Journal Of Mathematics 203 (2014), pp. 1–22.

[57] A. Gray, Tubes, 2nd edition, Birkhäuser, 2004.

[58] P. Gritzmann, Grundlagen der Mathematischen Optimierung: Diskrete Struk-

turen, Komplexitätstheorie, Konvexitätstheorie, Lineare Optimierung, Simplex-

Algorithmus, Dualität, Springer Vieweg, 2013.

[59] M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial

Optimization, Springer-Verlag, New York, 1993.

157



[60] B. Grünbaum, Convex Polytopes, Wiley-Interscience, London, 1967; 2nd ed.

(edited by Ziegler, G.), Graduate Texts in Mathematics, vol. 221, Springer-Verlag,

2003.

[61] B. Haas, A simple Counter-example to Kushnirenko’s Conjecture, Beitrage zur

Algebra und Geometrie, Vol 43, No 1, 2002, pp. 211–218.

[62] P. Habegger, J. Pila, o-minimality and certain atypical intersections, available

as arXiv preprint 1409.0771.

[63] A. Hadari, The spectra of polynomial equations with varying exponents, avail-

able as arXiv preprint 1410.0064 .

[64] J. Hauenstein, V. Levandovskyy, Certifying solutions to square systems of

polynomial-exponential equations, available as arXiv preprint 1109.4547.

[65] J. Hauenstein, F.Sottile, Algorithm 921: alphaCertified: certifying solutions to

polynomial systems, ACM Transactions on Mathematical Software, 48, No. 4

(2012), 28: 20 pgs.

[66] D. Hilbert, Ueber die darstellung definiter formen als summe von formen-

quadraten, Math Annalen 32 (1888), pp. 342–350.

[67] S. Helgason, Groups and Geometric Analysis, Academic Press Inc., 1984.

[68] H. K. Hwang, Z. Aliyazicioglu, M. Grice, A. Yakovlev, Direction of arrival es-

timation using a Root-MUSIC algorithm, Proceedings of the International Mul-

tiConference of Engineers and Computer Scientists 2008, Vol. II, IMECS 2008,

March, 2008, pp. 19–21.

[69] M. M. Kapranov, A characterization of A-discriminantal hypersurfaces in terms

of the logarithmic Gauss map, Mathematische Annalen, 290 (1991), pp. 277–285.

158
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