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ABSTRACT

Governments and researchers are frequently forced to predict the impact of per-

spective mergers on markets. This dissertation provides structural methods to em-

pirically evaluate mergers.

We first build a static model in which players are boundedly rational to evaluate

the welfare consequence of mergers in that environment. Then we use that model

studying bidding in the Texas electricity market, a market in which bidding by some

firms departs significantly from what Bayesian Nash models predict, while bidding

from other firms closely resembles these predictions. Our results show that exoge-

nously increasing sophistication may significantly increase efficiency and additionally,

mergers may increase efficiency even without cost synergies.

The next chapter provides a structural method to empirically evaluate mergers in

a dynamic setting. We build an infinite five-step repeated game. Then, we propose

a three-step estimation method to estimate the game in which Markov perfect Nash

equilibrium is played. Our three-step estimation method is flexible and can be easily

modified to estimate various market structures.

These dissertation studies mergers in more realistic settings. We first show that

mergers that do not generate cost synergies may also increase efficiency when some of

the firms in the market are boundedly rational. Then we build a dynamic endogenous

merger game and provide a new method to estimate it. Our simulation result shows

that our estimation method is computational feasible and can be applied to real data.

ii



DEDICATION

This dissertation is dedicated to my family.

iii



ACKNOWLEDGEMENTS

My deepest gratitude is to my advisor, Dr. Steven L. Puller. I have been fortunate

to meet an advisor whose patience and support helped me overcome many difficulties

and finish this dissertation. My co-advisor Dr. Qi Li has been always been there to

help me. I am deeply grateful to him for insightful discussions and practical advice.

I learned a lot from Dr. Fernando A. Luco Echeverŕıa who is my coauthor of the
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1. INTRODUCTION

Static oligopoly models are often used by governments to simulate welfare con-

sequences of prospective mergers and challenge those mergers predicted to decrease

welfare. However, firm behaviors might deviate from assumptions in these models.

This dissertation provides methods to evaluate mergers in more realistic settings.

In the next chapter, we build and estimate a model in which firms are bound-

edly rational and simulate the effect of mergers in such settings. In most oligopoly

models, firms are modeled as playing some form of Nash equilibrium. This model

of supply-side behavior is used to estimate parameters with implications for policy.

However, evidence exists that real-world firms may be boundedly rational, engaging

in some level of strategic thinking, but the degree of strategic thinking may “fall

short” of playing the Nash equilibrium strategy (e.g. Hortaçsu and Puller [2008] and

Goldfarb and Xiao [2011]). Moreover, deviations from Nash equilibrium play can

be economically significant and have implications for efficiency. Hortaçsu and Puller

[2008] identify a set of firms that submit bids into Texas electricity auctions that

persistently and substantially deviate from Nash bidding. The consequence of these

deviations is that low-cost power plants are not called to produce, and this substan-

tially raises total production costs. We embed a Cognitive Hierarchy model into a

structural model of bidding behavior to capture the heterogeneity in the observed

deviations from Bayesian Nash equilibrium bidding. We use this model to study the

firms in the Texas electricity spot market. Our results show that efficiency increases

with strategic sophistication and mergers may also increase efficiency even with no

cost synergies and increasing market concentration.

In the third section, we study mergers in a dynamic setting where firms maximize
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their long-term profits. In standard merger simulation exercises, only changes in the

period right after the mergers are considered in a merger review. There are many

reasons to believe long-term welfare changes after a merger should be reviewed as

well as a merger could have considerable impact on the dynamic evolution of the

market. The literature has moved very slowly in developing such methods because of

the complication of modeling dynamic mergers and computational burden involved

in estimating the model. In recent years, researchers have proposed several new

methods to ease the computational burden of estimating dynamic oligopoly model.

In this chapter, we extend the classic Ericson and Pakes [1995] oligopoly dynamic

model and include merger as a dynamic strategy in the game. In particular, we

build an infinite five-step repeated game. Then, we propose a three-step estimation

method to estimate the game in which Markov perfect Nash equilibrium is played.

The first two steps follow Bajari et al. [2007] to ease the computational burden of

estimating dynamic oligopoly models. The third step applies the moment inequality

condition estimation method proposed in Tamer [2003], which solves the inference

of multiple equilibria in discrete choice games. Our three-step estimation method is

flexible and can be easily modified to estimate various market structures.

2



2. STRATEGIC ABILITY AND PRODUCTIVE EFFICIENCY IN

ELECTRICITY MARKETS

2.1 Introduction

Models of strategic equilibrium form the foundation of many studies in indus-

trial organization that investigate market efficiency in oligopoly settings. Firms are

modeled as playing some form of Nash Equilibrium, and that model of supply-side

behavior is used to estimate parameters with implications for policy. For exam-

ple, firms competing in differentiated product markets are modeled as engaging in

Bertrand-Nash competition in order to estimate marginal costs or to predict market

outcomes under alternative market structures. When studying auctions, researchers

use a Bayesian Nash model of bidding to “invert” bids to estimate valuations and

then conduct counterfactual experiments to predict market outcomes under alterna-

tive auction formats.

However, some research has suggested caution at applying such strategic equilib-

rium models in all settings, because while in a Nash equilibrium each firm is best

responding to its beliefs about each rival firm’s behavior and all of those beliefs

are mutually consistent, in real-world settings, the rationality assumption or mutual

consistency assumption may break down, and firms may not be playing at the fixed

point that equilibrium models characterize. Indeed, evidence exists that real-world

firms may be boundedly rational, engaging in some level of strategic thinking, but

the degree of strategic thinking may “fall short” of playing the Nash equilibrium

strategy (e.g. Hortaçsu and Puller [2008] and Goldfarb and Xiao [2011]).

Deviations from Nash equilibrium play can be economically significant and have

implications for efficiency. Indeed, Hortaçsu and Puller [2008] (hereafter HP) identify
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a set of firms that submit bids into electricity auctions that persistently deviate from

Nash bidding and do so substantially. The consequence of these deviations is that

low-cost powerplants are not called to produce, and this substantially raises total

production costs. Overall, 81% if productive inefficiencies are caused by low-cost

firms departing from Nash bidding, while the rest corresponds to the exploitation of

market power.

This suggests that models allowing for boundedly rational firm behavior can be

valuable for explaining the outcomes of certain real-world markets. To this extent,

theoretical research has developed models that help organize strategic behavior that

deviates from the Nash equilibrium.1 Examples of such models include level-k think-

ing and Cognitive Hierarchy in which players best-respond to (perhaps incorrect)

beliefs about their rival behavior. The Cognitive Hierarchy model (hereafter CH) al-

lows for heterogeneity in the levels of strategic thinking by firms in a market. In the

CH model, the least strategic players – Level-0 players – are entirely non-strategic in

their bidding. Level-1 players assume that all other players are level-0 players and

submit bids that correspond to the best response to all other players behaving as

such. Level-2 players assume that all other players are some combination of level-0 or

level-1 players and best respond to those beliefs. In general, level-k players assume

that all other players are distributed between level-0 and level–k-1 and submit bids

corresponding to the best response to those beliefs. The limiting case of this model

corresponds to the Nash equilibrium.2 In this setting, CH maintains the assumption

1A rich literature in experimental economics has studied the behavior of laboratory participants
in strategic games such a beauty contest games, documented deviation from Nash equilibrium
play, and developed hierarchy models that can explain such behavior. For examples, see Nagel
[1995], Stahl and Wilson [1995], Costa-Gomes et al. [2001], Crawford et al. [2008], and Arad and
Rubinstein [2012].

2As noted in Camerer et al. [2004], the limiting case of the Poisson-CH model corresponds to the
Nash equilibrium as long as the Nash equilibrium is reached by finitely-many iterations of weakly
dominated strategies; other Nash equilibria may not correspond to this case.
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that players best respond, but it allows for firms to have beliefs about their rival s-

trategies that are not consistent with the rivals’ actual behavior. This model has the

appealing feature that it allows for a hierarchy of levels of sophistication by different

players in a market.

Despite the availability of theoretical models of boundedly rational behavior, it

is difficult to use data from field settings to apply such models, as there is a critical

identification problem if the goal is to uniquely identify market fundamentals. To see

this, consider studies that apply the standard “IO inversion” approach – use a model

that maps marginal cost (or valuation) to prices (or bids), and then “invert” the

model so that data on prices (or bids) can be used to estimate the underlying marginal

cost (or valuation). This approach – used in many oligopoly and auction settings –

hinges on the assumption of a “unique” model of firm strategic behavior. Otherwise,

multiple combinations of behavior and costs or valuations are consistent with the

observed prices or bids. Bounded rationality models, such as cognitive hierarchy,

allow for multiple forms of strategic behavior, so that researchers, in general, cannot

separately identify the cognitive hierarchy structure from costs or valuations.3

However, this empirical challenge can be overcome if researchers have data on

both the prices (bids) and the marginal cost (valuation). In this paper, we exploit

such a data-rich environment in the context of electricity auctions. In these auctions,

firms owning powerplants bid hourly to supply power to the ‘spot market’ that

balances real-time supply and demand of electricity in Texas. Firms submit offers to

supply different quantities of power at different prices. The grid operator clears this

3One novel approach to address this problem has been proposed by Gillen [2010] who studies
joint identification of types and valuations in the level-k setting. Gillen shows point identification of
the joint distribution could be obtained exploiting variation in the number of bidders and assuming
constant valuations across auctions. However, in the absence of either of these, only set identification
is possible. An [2013] also studies identification in the level-k model but he relaxes some of these
assumptions present in Gillen’s work but imposes constraints on the structure of the data to identify
both the number of types in the data and the type of each firm.

5



market using a multi-unit, uniform-price auction – essentially aggregating supply bids

and finding the market-clearing price that equates aggregate supply and demand. A

unique feature of this setting is that we have data on each firm’s hourly marginal

cost of supply and each firm’s hourly supply bids.

In this setting, HP show evidence that firms deviate from Bayesian Nash equilib-

rium bidding, suggesting a fruitful environment to apply bounded rationality models.

HP test whether each firm submits bids that correspond to the best response to ri-

vals’ actual bids (as required if firms play a Nash equilibrium) and find that a few

firms – typically larger firms – submit bids close to best-response bidding. However,

many small firms tend to bid to supply power at prices so far above their marginal

costs that they “bid themselves out of the market” and are not called to produce

despite having low-cost generation available.4

The puzzling behavior of firms in the Texas market generates important questions:

1. What type of strategic behavior are the small firms engaging in? And the large

firms?

2. Could mergers that increase strategic sophistication (but do not create cost

synergies) increase efficiency?

3. How much would an (exogenous) increase in strategic sophistication by a firm

or group of firms affect the efficiency of the market?

In this chapter, we address each of these questions. Specifically, we embed a Cog-

nitive Hierarchy model into a structural model of bidding behavior to capture the

heterogeneity in the observed deviations from Bayesian Nash equilibrium bidding.

The Texas electricity market has firms of various sizes and organizational structures

4HP rule out a number of alternative explanations for such steep bids such as collusion, the
presence of transmission constraints, and unmeasured adjustment costs.
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that bid into the spot market, and we use firm observables to parameterize the deter-

minants of firm type. We estimate the model using a minimum-distance approach.

We then turn to study how strategic sophistication affects productive efficien-

cy. We do this by simulating a number of scenarios in which the level of strategic

sophistication of low-type firms is increased either exogenously or through mergers

with high-type firms. Importantly, the application of the CH model to multi-unit

auctions has very valuable methodological benefit in this setting. As shown in K-

lemperer and Meyer [1989], in general there are multiple equilibria in multi-unit,

uniform-price auctions that can range from competitive to Cournot-like behavior.

The multiplicity of equilibria presents a challenge for conducting counterfactual cal-

culations of market outcomes under changes in cost or market structure. One way

to address this problem has been to impose mathematical restrictions on permissible

form of bids, such as restricting bid functions to be linear (Baldick et al. [2004]).

The CH model provides a means to address the multiple equilibria problem without

imposing such restrictions. The mutually consistent beliefs assumption – a source of

the multiple equilibria problem – is not imposed in CH. Instead, given a firm’s belief

about its rivals’ type distribution, one can calculate the (unique) best-response bid.5

Therefore, the iterative nature of strategic thinking under CH allows to calculate

unique counterfactual market outcomes. We exploit this feature by computing mar-

ket efficiency under possible mergers between firms with different levels of strategic

sophistication, which would not be possible under a Nash equilibrium model. Thus,

not only does CH allow for more realistic models of real-world bidding behavior, but

it allows researchers to more precisely simulate outcomes under changes in market

structure or changes in costs.

5Camerer et al. [2004] note a related feature that the CH model can be viewed as a behavioral
refinement that can eliminate the multiplicity of equilibria in coordination games.
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Thus, we are able to simulate unique predictions of market outcomes under vari-

ous policy counterfactuals. For example, consider a merger between a large and small

bidder in this electricity market. Such a merger is unlikely to lead to substantial cost

synergies because the costs of generating electricity is almost entirely driven by the

model and vintage of the electric generator. Thus, one might expect the increase in

concentration induced by the merger to enhance market power and reduce economic

efficiency. However, in a merger between two boundedly rational firms, this merger

could increase efficiency. Indeed, suppose that the large firm is a high-level strategic

thinker and the small firm is a low-level strategic thinker. If the merger caused the

large firm to take over bidding operations, then the generation resources of the small

firm would subsequently be controlled by a higher level strategic thinker. This could

increase efficiency because the low-k firm would be less likely to bid prices so high

that its efficient productive capacity is priced out of the market. We can evaluate

this conjecture by simulating mergers between any firms in the Texas market. More

generally, we can calculate market prices and efficiency under any counterfactual

level of strategic sophistication by any firm.

Our results show that efficiency increases with strategic sophistication, though

at a decreasing rate. Indeed, exogenously increasing sophistication of low-type firms

results in reducing inefficiencies by up to 24% relative to the status quo. However,

the number of firms whose sophistication matters and increasing sophistication of

any single small firm has little impact on efficiency. On the other hand, we also find

that it is not necessary to increase sophistication to the maximum estimated level

to achieve significant efficiency gains. Indeed, increasing sophistication to that of

the median firm is enough to generate essentially same efficiency gains as increasing

sophistication to the maximum observed level. Finally, mergers may also increase

efficiency even with no cost synergies and increasing market concentration. Our

8



results show that when, for example, a small, low-type firm, merges with a large,

high-type firm, as long as the resulting firm is of the same type as the largest involved

in the merger, efficiency may increase by 68%.

This chapter contributes to an emerging body of literature that empirically mod-

els sophistication and learning in new markets. The most prominent paper that has

applied a cognitive hierarchy model to field data is Goldfarb and Xiao [2011] who

study the entry decisions into newly opened markets for local telephone competition.

They apply the cognitive hierarchy model to an entry game and find that manager

characteristics such as experience and education are determinants of strategic abil-

ity that predict firm performance. Related work by Doraszelski et al. [2014] use

models of learning to predict the evolution of pricing in a newly opened electricity

ancillary service market. This chapter also contributes to the literature on how elec-

tricity generating firms formulate bids (e.g. Fabra and Reguant [2014]) and research

that models oligopoly competition in the electricity sector (e.g. Wolfram [1998] and

Bushnell et al. [2008]).

2.2 Institutional Setting

Hortaçsu and Puller [2008] describe the Texas electricity market in detail, so here

we focus only on key aspects of it. The Texas electricity market was restructured in

August 2001. Since then, firms are no longer part of a natural monopoly and most

of the electricity is now traded through bilateral forward contracts between gener-

ators and electricity consumers. However, aggregate demand may fall beyond or

below contracted quantities at the last-minute. To meet the shortage or surplus, the

generation firms submit bids to adjust their production relative to contracted quan-

tities. They do this by participating in an hourly “balancing market” administered

by ERCOT (Electric Reliability Council of Texas). This market trades between 2
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and 5% of all power traded in Texas. The hourly market is cleared by a multi-unit,

uniform-price auction in which firms bid supply functions and winning sellers earn

the price at which aggregate supply bids equal demand. Firms do this by submit-

ting schedules of quantities of electricity to inject and withdraw at specific locations

on the transmission grid to ERCOT, the day before electricity transmission occurs.

These are called day-ahead schedules and may differ from the firms’ forward con-

tract. These supply and demand schedules may also differ from actual production

and consumption in real time because of a variety of reasons such as extreme hot or

cold weather. Depending upon whether there is shortage or surplus of power relative

to the day-ahead schedule, balancing demand can be positive or negative. Because

demand does not respond to prices in real time, balancing demand is a perfectly

inelastic.

In this setting, firms submit bids that increase or decrease the amount of power

to supply relative to their day-ahead schedule. In addition, bids may be changed

up until one hour prior to the operating hour. The market is then cleared every 15-

minute using a uniform-price, multi-unit auction. ERCOT determines the market

clearing price aggregating supply bids and intersecting the aggregate supply curve

with total demand. A generator called to increase production is paid the market

clearing price, while a generator called to decrease production purchases power from

ERCOT at the same price to meet existing contract obligations.

In the Texas electricity market, the generation technology is mainly fueled by nat-

ural gas and coal with small amounts of hydroelectric, nuclear, and wind generation.

TXU and Reliant are the two largest players and they are the two largest former

incumbent utilities, owning 24% and 18% of installed capacity, respectively. Oth-

er major investor-owned utilities include Central Power and Light (7% of installed

capacity) and West Texas Utilities (2%). There are also some municipal utilities,
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among which the largest are City of San Antonio Public Service (8% of installed

capacity) and City of Austin (6%). Finally, there is a large number of merchant

generation firms of various sizes, such as Calpine (5%).

2.3 Data

We study bidding behavior in the Texas electricity market starting after it was re-

structured in September 2001 until January 2003. As HP, we focus on non-congested

weekdays between 6:00 and 6:15pm because the most flexible type of generators that

can respond to balancing calls without large adjustment costs are likely to be on-

line at this period. Non-congested periods account for 74% of all periods between

September 2001 and January 2003. Finally, in our sample, we consider auctions for

which we have bid and marginal cost data for all firms included in the Cognitive

Hierarchy.

We argue that each firm’s marginal cost data is public information.6 The pro-

duction technologies used by power plants in Texas are very similar to each other

and data on the fuel cost of each generating units are publicly available. Moreover,

firms know whether major generating units are on- or off-line at any time. Also,

some firms purchase large plants’ generation data from Genscape, an energy infor-

mation company that measures real time output by remote sensors installed near the

transmission lines.

Overall, our data consists on information that allow us to calculate each firm’s

best-response bids in each auction, for all possible levels of strategic sophistication.

In particular, for each auction, we have data on total balancing demand, firm-level

marginal cost functions, and firm-level bids, as well as information on firm charac-

teristics.

6HP claimed that conversations with several market participants suggest that traders have good
information on their rivals’ marginal costs.
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2.3.1 Descriptive Evidence

We study bidding into the Texas electricity spot market in the first two years

after the market was created in 2001. The spot market – called the balancing market

in electricity parlance – is an hourly auction to supply power to the grid operator

in order to ensure that supply equals demand at every point in time. Electricity

generating firms will have scheduled a certain amount of production the day-ahead,

and the balancing market is a mechanism to adjust production up or down from

that day-ahead production plan. Each firm submits an hourly bid function for its

entire portfolio of plants to increase or decrease production relative to the day-

ahead schedule. Market demand is determined by unexpected changes in the amount

of power needed. For example, if the weather is unexpectedly hot on a summer

afternoon, then balancing demand is positive. The grid operator uses a uniform-

price, multi-unit auction; so the market is cleared each period by intersecting the

hourly aggregate supply bids with the total balancing demand.

We start this section explaining how bids would be chosen in which firms best

respond to their rivals actions. Figure 2.1 explains the basic intuition of best-response

bidding in this market. Suppose that a firm has marginal cost of supplying to the

balancing market given by MCi(q). In addition, assume that the firm has forward

contracts to supply QCi units of power. Because the firm is a net seller after it has

covered its contract position, the firm has incentives to bid prices above marginal

cost for quantities greater than QCi.
7 The size of the mark-up will depend on the

firm’s residual demand elasticity. The residual demand function RDi is equal to the

total market demand minus the supply bids by all other bidders. Suppose that it is

an expectedly hot day and the firm faces RD1 shown in figure 2.1. Then the firm has

7Likewise, the firm is a net buyer for quantities less than QCi, so it has incentives to bid prices
below MC for quantities less than the contract position.
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the incentive to bid a quantity corresponding to the point where Marginal Revenue

equals Marginal Cost (MR1 = MCi) and a price corresponding to the (inverse)

Residual Demand function at that quantity. This point is given by point A in the

figure. However, suppose instead that it is a cool day and the firm faces a different

residual demand function of RD2. In that case, the same logic implies that the best

response is point B. Because the firm can submit a large number of (price, quantity)

points, it can consider a continuum of different residual demand functions. Thus,

the firm can “trace out” the set of best-response bids, and submit a best-response

bid function given by the red line SBRi .8 Importantly, no estimation is required; the

components of figure 2.1 are available as data for each firm in each auction. We view

this data-rich environment as a major strength of our approach. Data on marginal

cost are critical to our identification strategy that allows us to identify strategic

behavior.

We now present descriptive evidence that some firms deviate from Bayesian Nash

equilibrium bidding, and we use this evidence to motivate our modeling assumptions.

Figure 2.2 displays representative bid functions for a large firm that submits bids

close to best-response bids. For two different auctions, the figure shows the firm’s

marginal cost of supplying more power to the grid. In the left figure, the firm had

a contract position of nearly 600 MW, so it bid above (below) marginal cost for

quantities above (below) that contract position. This firm submitted an actual bid

function that was very close to our calculation of the best-response bid function. The

right graph shows a similar outcome.

However, many of the small firms in this market do not submit bids close to the

best-response bid function. Figure 2.3 shows representative bids for one of these

8In general, it is possible that the set of best-response points is not monotonic function, however
we show in section 2.5.2 that in this setting the best-response points are monotonic.
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Figure 2.1: Best-response bidding in spot auction

small firms. This firm has a contract position of zero. As shown by the best-

response bid that we calculate, this firm has some market power despite being small,

so it is optimal to bid prices several dollars above marginal cost. However, this firm

submitted bids at extremely high prices for small quantities, making it unlikely that

the firm will be called to produce. The consequence of these bids is two-fold: (1) the

firm reduces profits, and (2) the market is not efficient because the firm’s relatively

low cost production is not utilized.

The patterns displayed above are persistent throughout the early years of the

market. We estimate that the firms in this market left between $3-$18 million per

year “on the table”, depending on firm size. This type of bidding behavior serves as

motivation for our model of boundedly rational bidding within a cognitive hierarchy

structure.
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Figure 2.2: Large firm: actual bids vs. best-response bids

Figure 2.3: Small firm: actual bids vs. best-response bids
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2.4 Theoretical Background on Cognitive Hierarchy

The theoretical literature has developed a rich set of models of boundedly ratio-

nal strategic behavior that could explain deviations from Bayesian Nash equilibrium

play. Generally speaking, bounded rationality models relax one of the two conditions

of Nash Equilibrium; that (1) players maximize expected payoffs given beliefs about

their rivals’ actions and (2) that player beliefs about rivals’ actions are consistent.

Hierarchy models (such as Cognitive Hierarchy and level-k) maintain the assumption

of best-response but relax the assumption of consistent beliefs.9 These models con-

ceptualize players as having a hierarchical structure of strategic, or level-k thinking.

Seminal work on level-k behavioral models has been conducted by Costa-Gomes et

al. [2001], Crawford and Iriberri [2007], and Camerer et al. [2004].

Cognitive Hierarchy (CH) developed by Camerer et al. [2004] conceptualizes

players as engaging in different levels of strategic thinking ordered in a hierarchy.

As explained above, the least sophisticated players – 0-step players – engage in no

strategic thinking, while higher types (say, k) assume that all other players are dis-

tributed between 0-step and k-1-step players according to a Poisson distribution.

10 Importantly, a player’s belief about rivals need not be correct; hence, the beliefs

are not mutually consistent. However, each player rationally best-responds given

its (perhaps incorrect) beliefs, meaning that CH maintains the rationality assump-

tion of Nash Equilibrium but relaxes the assumption of mutually consistent beliefs.

9Another model used in the bounded rationality literature – Quantal Response Equilibrium
(McKelvey and Palfrey [1995]) – does not appear to be suitable in our particular setting. QRE has
the property that players play more profitable strategies with higher probability. However, small
players in our setting systematically play low-profit strategies; for example, see figure 2.3. In other
words, it does not appear that bidders in the electricity auctions estimate expected payoffs in an
unbiased way, a key feature of the QRE model.

10The model does not require the distribution be Poisson. However, Camerer et al. [2004] note
that the Poisson has the property that as k rises, fewer players perform the next step of thinking,
which is consistent with increasing working memory being required for an additional step of iterative
calculation.
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This cognitive hierarchy structure is conceptually appealing because it captures be-

havior in which firms have limits to the level of strategic thinking and/or firms are

overconfident about their own abilities.

The level-k model is a specific form of the CH model where a level-k player

assumes that all other players are level-(k-1). In other words, rather than rivals

coming from a distribution of types (k-1) and below, in the level-k model, rival firms

are type (k-1). Comparing the two models, in one sense CH is a more flexible model.

However, one could also view CH as a model that could be too flexible and explain

“anything”. In this paper, however, we sidestep this theoretical debate and rather

write down an empirical model that is most general – cognitive hierarchy – and

estimate the model with our data.

2.4.1 Big Picture of Modeling and Estimation Strategy

The iterative nature of decision rules under CH facilitates a computationally

tractable empirical strategy. For any firm i in auction t, we have data on the marginal

cost of supplying power to the grid. We begin by defining the bidding behavior for

a non-strategic 0-step player. This definition will be critical, so we spend time

developing the rationale for that assumed behavior, but take that bidding behavior

as given for the moment.

Consider firm i that is type k. The assumptions of the CH model imply that

i believes its rivals are distributed between type-0 and type-(k-1), according to a

normalized Poisson distribution with parameter τ . Firm i decides its bidding strategy

according to these beliefs (that depend on its own type, contract position, and its

rivals τ ’s) and valuations (marginal costs), to maximize its expected profits.

One critical feature of estimating a CH model is how to define level-0 behavior (or

in the language of Camerer et al. “0-step players”). In the theoretical literature, a
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common assumption is that level-0 players (uniformly) randomize across all possible

strategies, although that assumption can be relaxed to match a particular setting

(i.e., Goldfarb and Xiao [2011] assume level-0 players to believe they are monopolists

in an entry game). In the context of the Texas electricity auctions, there is a natural

assumption about non-strategic thinkers: we observe some firms bidding “vertically”

at their contract positions for the range of plausible prices. (That is, the firms

submit bids similar to the second panel of figure 2.3. In other words, these firms

are indicating that at even very high prices, they do not want to sell power into

the balancing market. This clearly violates any standard model of (expected) profit-

maximization; the firms have low cost generation to offer into the market, but they

choose not to do so. Thus, “vertical bidding at the contract position” is a natural

candidate for level-0 bidding behavior.

One of the advantages of this approach is that we do not need to make strong

assumptions about the form of the bid functions. Instead, as we show below, the

assumption of level-0 bidders bidding vertically at their contract positions together

with the recursive solution method of the CH model allow us to completely character-

ize the bidding functions without further assumptions about how private information

enters the bidding decision.

Finally, we assume that not all firms engage in strategic thinking or even enter

the Cognitive Hierarchy. Indeed, we allow only a subset of firms to enter the hierar-

chy, while the rest form part of an unmodeled fringe. We do this because allowing

for more firms makes the problem computationally challenging as each firm needs

to compute its rivals bidding functions for all possible types, for all auctions. Fur-

thermore, we do not have marginal cost data for all firms for all auctions, which also

imposes a constraint on the number of firms that we can include in the Cognitive Hi-

erarchy. Accordingly, we model all “big” firms entering the Cognitive Hierarchy plus
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a number of small ones including the one depicted in figure 2.3. This, however, has

the unintended cost of limiting the extent to which our counterfactual simulations

can improve efficiency, as part of the inefficiencies that result from departure from

Bayesian Nash bidding is generated by firms that we do not include in the cognitive

hierarchy.

Once level-0 bidding is defined, we can use our data on each firm’s marginal cost

to calculate the predicted bidding behavior for a firm of any type k > 0. Specifically,

given the assumption about level-0 players and a fixed vector τ = {τ1, ..., τN} denot-

ing N firms’ levels of strategic sophistication, which depend on firm characteristics,

Xi, we use an iterative process provided by the CH model to calculate each player’s

optimal theoretical bids under various sophistication levels. Then, based on informa-

tion about players’ type distribution Poisson(τi), we calculate players’ theoretical

optimal bids.

We then compare these bids to the firm’s actual bidding behavior. The estima-

tion process finds the parameters of τ – how firm characteristics such as size affect

strategic sophistication – that minimize the distance between actual bids and the

bids predicted under CH. That is, in estimation, we use observed bids and realized

marginal costs to recover the type of each firm. For this reason, it is critical that

we observe marginal costs, as in the absence of realized costs, one would not be able

to identify types from bid data without additional assumptions regarding the cost

function.11 In other words, instead of using data on observed bids to recover valua-

tions, we use that we observe valuations and bids to recover the type that rationalizes

observed behavior.

11Specifically, without any assumption on the form of the cost function, it is always possible to
recover a cost function that rationalizes observed bids.
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2.4.2 Modeling in Detail

A formal model of bidding into the Texas electricity auctions needs to formulate

best-response bidding in a setting where firms have beliefs about rivals as charac-

terized by the Cognitive Hierarchy model. We have developed a formulation that

incorporates modeling features of share auction models (Wilson [1979] and Hortaçsu

and Puller [2008]) and the Poisson Cognitive Hierarchy model (Camerer et al. [2004]).

Demand for power in each spot auction is given by D̃t(pt) = Dt(pt) + εt which

is the sum of a deterministic and stochastic component. The auctions occur in a

private values setting where the private value is the firm’s variable cost of providing

power to the grid. Firm i has costs to supply power in period t given by Cit(q).

Prior to the auction, each firm has signed contracts to deliver certain quantities of

power each hour QCit at price PCit. As in HP, we take these contracts to be pre-

determined. Cit(q) is public information and QCit is private information. Each firm

is a k-step thinker. Firm i has private information on its own type ki, but it only

knows the distribution from which rival types are drawn. In each auction, firms

simultaneously submit supply schedules Skit(p,QCit) to produce different quantities

at different prices. Let the bid function by rival j of type l be denoted Sljt(·).

All sellers are paid the market-clearing price, which is determined by:

N∑
i=1

Sit(p
c
t , QCit) = Dt(p

c
t) + εt (2.1)

From the perspective of firm i with private information on ki, QCi, and submitting

bid Ŝit(p), the uncertainty can be characterized by defining the following function

H(·) which defines the probability that the market-clearing price pct is below any
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price level p:

Hit(p, Ŝit(p); ki, QCit) ≡ Pr(pct ≤ p|Ŝit(p), ki, QCit) (2.2)

There are three sources of uncertainty – (1) the shock to demand (εt), (2) each rival’s

type of k-step thinking, and (3) each rival’s contract position QCjt which affects the

rival’s bids. The event that the market-clearing price pct is less than any given price

p is the event that there is excess supply at that p. Plugging the market-clearing

condition (2.1) into (2.2):

Hit(p, Ŝit(p); ki, QCit) = Pr(
∑
j 6=i

Sljt(p,QCjt; ki) + Ŝit(p) ≥ Dt(p) + εt|Ŝit(p), ki, QCit)

=

∫
QC−it×l−i×εt

1(
∑
j 6=i

Sljt(p,QCjt; ki)+

Ŝit(p) ≥ Dt(p) + εt)dF (QC−it, l−i, εt|Ŝit(p), ki, QCit) (2.3)

F (QC−it, l−i, εt|Ŝit(p), ki, QCit) is the joint density of each source of uncertainty

from the perspective of firm i.

A firm’s realized profit in this setting (after the realization of uncertainty) is given

by:

p · Ŝit(p)− Cit
(
Ŝit(p)

)
− (p− PCit)QCit (2.4)

This profit represents spot market revenues minus costs plus the payoff from its

contract position.

We model the bidder’s expected utility maximization problem, where we allow

for bidders to potentially be risk averse. We denote the utility enjoyed by the bidder

earning π dollars of profit as U(π). Under the CH model, best-response k−step
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thinking bidders will solve:

Max
Ŝit(p)

∫ p

p

(
U
(
p · Ŝit(p)− Cit

(
Ŝit(p)

)
− (p− PCit)QCit

))
dHit

(
p, Ŝit(p); ki, QCit

)

One can show that the Euler-Lagrange necessary condition for the (pointwise)

optimality of the supply schedule is given by:

p− C ′it (S∗it(p)) = (S∗it(p)−QCit)
Hs (p, S∗it(p); ki, QCit)

Hp (p, S∗it(p); ki, QCit)
(2.5)

where Hs and Hp are given by derivatives of (2.3).

There is a simple intuition behind this condition. To see this, for the moment

ignore the term HS
Hp

(it will be positive). The left hand side is the difference between

bid prices and marginal cost. Suppose that the firm is a net seller into the market

because it is supplying more than its contract position (i.e. S(·) > QCit). Then

the firm will have an incentive to bid above marginal cost, i.e. p > C ′it, in order to

“exercise market power”. The amount of market power is determined by the term

HS
Hp

. The denominator of this term is simply the density of the market clearing price.

The numerator is the “market power term” – how much the firm can change the

(distribution of) the market price by changing its supply bid.

The goal is to find S∗it(p) for firm i if the firm is type k – the best-response bid

function for each firm i in auction t if the firm is type k. And in our empirical exercise,

we will compare the firm’s actual bid to each of these best-response functions to make

inferences about what type of k-step thinker the bidder is.

We use detailed data and several identifying assumptions to “measure” each com-

ponent of equation (2.5), which allows us to calculate the best-response function for

each type. In our data, we observe the marginal cost function C ′it, and we follow the
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strategy developed in HP to measure QCit.

Ideally, one would like to (non-parametrically) estimate HS
Hp

as is common in the

T-bill literature (e.g. Hortaçsu and McAdams [2010], Hortaçsu and Kastl [2012],

Kang and Puller [2008]). However, in this institutional setting it is not credible to

pool across auctions or to assume that some subsets of bidders in a given auction

are ex ante symmetric. Therefore, HP follow the approach of assuming that bid

strategies are additively separable in private information (QCit). In addition, HP

also show that expected profit-maximizing bids are ex-post optimal. The intuition is

that in the absence of uncertainty about rivals types, all other sources of uncertainty

affect the intercept but not the slope of residual demand. As a consequence, the

single observed realization of uncertainty is sufficient to calculate RD′(p) under all

possible realizations of uncertainty.

This approach will not work in the Cognitive Hierarchy model. In CH, there is an

additional source of uncertainty – firms have private information on their own type

and uncertainty about their rivals’ types (though the uncertainty is fully character-

ized for a firm of given type k). Intuitively, higher type rivals are likely to submit

bid functions that are “closer” to best response, which in our setting means “flat-

ter”. As a result, uncertainty affects the slope of residual demand, so the expected

profit-maximizing bid function does not reduce to the simple formula developed by

HP.

For this reason, we now make three identifying assumptions so that we can “mea-

sure” Hit

(
p, Ŝit(p); ki, QCit

)
and thus its derivatives Hs and Hp. The first assump-

tion considers how bidders type 0 bid and allows us to solve the problem recursively.

The second assumption considers the distribution of types in the Cognitive Hierar-

chy model. Finally, the third assumption considers the distribution of the remaining

sources of uncertainty.
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Assumption 2.1 Bidders type 0 submit perfectly inelastic bids that are determined

by their contract positions. This is,

S0
it(p,QCit) = S0

it(QCit) = QCit ∀p ∈ [p, p], ∀i ∈ l0,

where l0 represents the set of bidders type 0.

For a bidder type 1, all rivals are type-0 under the CH model. Thus, we can write

H(·) (equation 2.3) for a type-1 firm submitting bid Ŝ1
it(p):

Hit(p, Ŝ
1
it(p); ki = 1, QCit) =

∫
QC−it×l−i×εt

1(
∑
j 6=i

S0
jt(p,QCjt) + Ŝ1

it(p) ≥

Dt(p) + εt)dF (QC−it, l−i, εt|Ŝ1
it(p), ki = 1, QCit)

=

∫
QC−it×l−i×εt

1(
∑
j 6=i

QCjt − εt ≥

Dt(p)− Ŝ1
it(p))dF (QC−it, l−i, εt|Ŝ1

it(p), ki = 1, QCit)

=

∫
QC−it×l−i×εt

1(θit ≥ Dt(p)− Ŝ1
it(p))

dF (QC−it, l−i, εt|Ŝ1
it(p), ki = 1, QCit)

where the second equality follows from Assumption 2.1 and the third equality from

defining θit ≡
∑

j 6=iQCjt − εt.

This tells us that, as a bidder type 1 believes all its rivals are type 0, she expects

all her rivals to submit perfectly inelastic bids determined by her rivals contract

positions (which are private information). Furthermore, conditional on rivals’ types,

uncertainty in rivals’ QCjt and the aggregate demand shock act as shifters in residual

demand (but not pivots). Thus, all that matters with respect to uncertainty about

(QC−it × εt) is the distribution of a scalar random variable θit that is the sum of

rival contract positions
∑

j 6=iQCjt and the aggregate demand shock (−εt).
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Let Γ(·) denote the conditional distribution of θit (conditional on the realization

of all N − 1 draws from the joint distribution of rival types) and let ∆(l−i) denote

the marginal distribution of the vector of rival firm types. Then H(·) becomes:

Hit(p, Ŝit(p); ki = 1, QCit) =

∫
l−i

[
1− Γ

(
Dt(p)− Ŝ1

it(p)
)]
·∆(l−i)

Taking derivatives of H(·) to find HS and Hp and plugging into to solve for HS
Hp

:

Hs (p, S∗it(p); ki, QCit)

Hp (p, S∗it(p); ki, QCit)
=

∫
l−i
γ
(
Dt(p)− Ŝ1

it(p)
)
·∆(l−i)

−
∫
l−i
γ
(
Dt(p)− Ŝ1

it(p)
)
D′t(p)∆(l−i)

.

Proposition 2.1 1. If bidders type 0 submit perfectly inelastic bids that are de-

termined by their contract positions in CH model, their bids are additive separable,

S0
it(p,QCit) = QCit.

2. If bidders type 0 submit perfectly inelastic bids that are determined by their

contract positions in CH model, bids of bidders type 1 is also additive separable,

S1
it(p,QCit) = β1

it(QCit) + α1
it(p). Moreover, S1

it(p,QCit) = QCit + α1
it(p).

Proof. 1. It is straight forward to see that bids of bidders type 0 are additive sepa-

rable because S0
it(p,QCit) = QCit = QCit + f(p), where f(p) = 0, ∀p ∈ [p, p̄].

2. Bids of bidders type 1 S1
it(p) can be calculated from equation (2.5), which can be

rewritten as

S1
it(p) =

[
(p− C ′it

(
S1
it(p)

)] Hp (p, S1
it(p); ki, QCit)

Hs (p, S1
it(p); ki, QCit)

+QCit

=
[
(p− C ′it

(
S1
it(p)

)] ∫
l−i
γ
(
Dt(p)− Ŝ1

it(p)
)
·∆(l−i)

−
∫
l−i
γ
(
Dt(p)− Ŝ1

it(p)
)
D′t(p)∆(l−i)

+QCit

= α1
it(p) +QCit
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because the argument [(p− C ′it (S1
it(p))]

∫
l−i

γ(Dt(p)−Ŝ1
it(p))·∆(l−i)

−
∫
l−i

γ(Dt(p)−Ŝ1
it(p))D′t(p)∆(l−i)

is a function of

price p.

Therefore, bids of bidders type 1 are additive separable and can be represented by

S1
it(p) = α1

it(p) +QCit, where α1
it(p) = [(p− C ′it (S1

it(p))]

∫
l−i

γ(Dt(p)−Ŝ1
it(p))·∆(l−i)

−
∫
l−i

γ(Dt(p)−Ŝ1
it(p))D′t(p)∆(l−i)

.

�

For a bidder type 2 the procedure to derive optimal bids is exactly the same, with

one difference. Rival firms j are now either type-0 or type-1 with additive separable

bids. This is, for a firm bidding Ŝ2
it(p)

Hit(p, Ŝ
2
it(p); ki = 2, QCit) =

∫
QC−it×l−i×εt

1(
∑
j 6=i

S
lj
jt(p,QCjt) + Ŝ2

it(p) ≥

Dt(p) + εt)dF (QC−it, l−i, εt|Ŝ2
it(p), ki = 2, QCit)

=

∫
QC−it×l−i×εt

1(
∑
j 6=i

QCjt +
∑
j 6=i

α
lj
jt(p) + Ŝ2

it(p) ≥

Dt(p) + εt)dF (QC−it, l−i, εt|Ŝ2
it(p), ki = 2, QCit)

=

∫
QC−it×l−i×εt

1(θit ≥ Dt(p)−
∑
j 6=i

α
lj
jt(p)− Ŝ2

it(p))

dF (QC−it, l−i, εt|Ŝ2
it(p), ki = 2, QCit) (2.6)

where, as before, θit ≡
∑

j 6=iQCjt − εt, but lj ∈ {0, 1}.

In this way, we can write Hit just as before but taking into account that θit

corresponds to the difference between the sum of contract position by rivals and εt.

Taking derivatives of H(·) to find HS and Hp and plugging into to solve for HS
Hp

:

Hs (p, S∗it(p); ki, QCit)

Hp (p, S∗it(p); ki, QCit)
=

∫
l−i
γ
(
Dt(p)−

∑
j 6=i α

lj
jt(p)− Ŝ2

it(p)
)
·∆(l−i)

−
∫
l−i
γ
(
Dt(p)−

∑
j 6=i α

lj
jt(p)− Ŝ2

it(p)
)
D′t(p)∆(l−i)

.
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Therefore, when solving for any type k bidder for k > 0, we use this iterative

procedure that relies on the assumption that bidders type 0 submit perfectly inelastic

bid functions.

Next, we make two assumptions about and ∆i(·) and Γi(·). For ∆i(·), we adopt

the Poisson assumption from Camerer et al. [2004]:

Assumption 2.2 ∆(·) is an independent multivariate Poisson distribution trun-

cated at k − 1, as given by Poisson Cognitive Hierarchy model.

Finally, for Γi we assume it is a uniform distribution.

Assumption 2.3 Γi(·) is a uniform distribution.

Allowing for other distributions, such as Normal, is possible, though it increases

the computational burden as one needs to solve the first-order condition by successive

approximations.

Proposition 2.2 Under the assumption that Γi(·) is uniform, the value of γ(·) in

HS and Hp is independent of rival type, so the first-order condition simplifies to

p− C ′it
(
Ŝkit(p)

)
=

1

−RD′t(p)
∗
[
Ŝkit(p)−QCit

]
,

It is computationally straightforward to solve for the Ŝkit(p) that solves the above

equation. This yields a straightforward method to calculate firm i’s best-response bid

function for any type k. To see this, note that the equation above is just the familiar

“inverse elasticity pricing rule”. Firm markups of bid over marginal cost are inversely

proportional to their residual demand elasticity. Each component of the residual

demand function can be iteratively solved for, using our data and Assumptions 2.1-

2.3.
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2.5 Estimation and Results

2.5.1 Details on Estimation

Estimation follows a minimum-distance approach. Key to this approach is τi, a

scalar that provides information about firm i’s type. We assume that τi = exp(X ′iγ)

and, because Xi is public information, so it is τi.

Each firm i observes τ−i, the vector of τ ’s of its rivals. Also, each firm i has

private information about its own type. Assume firm i is type k ∈ {0, . . . , K}. If

k = 0, then, by Assumption 2.1 above, firm i would submit a vertical bid on its own

contract position, regardless of its rivals. For all k 6= 0, firms have beliefs about its

rivals’ type. Specifically, by Assumption 2.2, these believes are assumed to follow a

Poisson distribution truncated at k, meaning that firm i believes all its rivals to be

type k−1 or less. The specific probability associated with each type varies according

to each rivals’ τ .

Then, we can use the model to compute, for each firm i and auction t, the optimal

bid function given i’s type and its beliefs over its rivals’ type. Note, however, that in

a specific auction, even if two bidders are of the same type, differences in (observed)

marginal costs will generate differences in predicted bids.

Once firm i has computed what it expects its rivals to do for each possible type,

it maximizes expected profits according to its beliefs about its rivals’ types. This

results in a bid function, conditional on i′s type. However, types are unknown to

the econometrician. For this reason, we proceed as follows. First, we compute bid

functions over a grid of price points. Denote a price point by p. Second, we compute

the square of the scaled difference between the bid data for bidder i in auction t at

price point p and the bid predicted by the model for i when we assume i to be of

type k. Scaling is done using the quantity-difference between the predicted bid for
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each firm for types K and 0. Third, we sum these differences across price points

for bidder i in auction t, weighting price points by a triangular distribution centered

at the market clearing price. Fourth, as all of this is done conditional on bidder i

being type k, we weight each of these sums by the probability of a firm of being of

each type. This probability is modeled as following a Poisson distribution truncated

at the number of possible types considered in estimation (level-0 and 20 levels of

strategic sophistication) and not truncated at each firms’ beliefs. We use each firms’

τ to compute this probability. Finally, we add over firms and auctions.

In this context, our estimate γ̂ is

ω(γ̂) =
∑
i

∑
t

[∑
k

[∑
p

( bdata
it (p)− bmodel

it (p|k)

bmodel
it (p|K)− bmodel

it (p|0)

)2

× P(p)
]
Pi(k| |K|, γ̂)

]
,

where P(p) corresponds to the probability of observing a price point p as given by the

triangular distribution and Pi(k| |K|, γ̂) corresponds to the probability of bidder i

being type k, conditional on there being |K| possible types and γ̂ being the estimated

parameters.

2.5.2 Results: Estimated Parameters

To guarantee that we find the global minimum, we run estimation starting from

50 sets of random initial points. We then re-estimate via Bootstrap starting each

Bootstrap estimation from the set of points that minimized the objective function in

the first stage. We do this for two specifications that differ in how τi is computed.

The first specification includes only size in the parametrization of τ , while the second

one uses size and size squared. The estimated parameters are reported in Table 2.1

and the implied probability distributions over type for the first two specifications are

presented in figure 2.4.
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Table 2.1: Structural model: estimated parameters

(1) (2)
Constant -0.547 -0.126

(0.164) (0.084)

Size 15.625 -1.604
(1.766) (0.357)

Size2 88.257
(6.558)

Number of auctions 99 99

Note: Bootstrapped standard errors us-
ing 20 samples.
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Figure 2.4: Estimated distributions of types allowing for 21 types (level-0 and 20
levels of strategic sophistication)
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It is important to make a number of comments regarding the estimates and

figures. First, we expect the constant to be negative in order to rationalize level-0

players, as a positive constant would decrease the probability of observing a level-0

player significantly. Note, however, that this is not required by the CH model as one

need not observe level-0 behavior in the data. However, as we have specified level-0

behavior according to what we observe in our data, a negative constant shows that

the type of level-0 behavior that we have assumed is not uncommon.

Second, as described above, larger firms appear to be higher-level thinkers, though

there is significant heterogeneity across firms, which shows up in that the first spec-

ification has a positive coefficient on size but the second specification has a negative

one and a positive coefficient on sized squared. This means that only the largest

firms actually engage in behavior that is similar to what a Bayesian Nash model

would predict.

Third, the number of types allowed in estimation plays an important role. Specif-

ically, if one allows for many types wanting the data to “talk” about which types are

actually relevant, then for a large number of types, all predicted bids are identical as

bids converge as type increases. As a consequence, starting estimation from multiple

initial values is critical as one may reach local minima. Having said this, we do not

find two set of different estimated parameters that result in the minimum objective

function.

2.6 Counterfactual Analysis: Increasing Strategic Sophistication

Having estimated our model of bidding behavior that allows for heterogeneity

in strategic sophistication, we now turn to a key question of this paper: How does

the lack of strategic sophistication affect market efficiency? As described above, HP

show that most of all productive inefficiencies can be explained by bidding depart-
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ing from Bayesian Nash bidding, while the rest is explained by the exploitation of

market power in an oligopoly setting. For this reason, we now turn to studying how

increasing strategic sophistication of low-type firms may affect efficiency. We do this

in two steps. We first ask how exogenous increases in strategic sophistication of

specific firms affect market efficiency. We believe this is an important first step as

market structure does not change with this intervention. Hence, though the actual

intervention may appear as unreal (though consulting and hiring more qualified em-

ployees to operate the trading floor are probably good examples that could fit in this

description), it provides a way to isolate the impact of increasing sophistication in

the absence of changes in market power. We then turn to studying how increases in

strategic sophistication that result from low-type firms merging with high-type firms,

may affect market efficiency. In this case, bidding approaches that of Bayesian Nash

but market concentration increases as well. Hence, the overall effect of the merger is

ex-ante unknown.

To keep our results in perspective, it is important to note that there is an upper

bound on the magnitude of the effects studied in our simulations. Indeed, while a

social planner would minimize dispatch cost by inducing generation at marginal costs,

we lack data on marginal costs for all bidders. These means that in our simulations

the benchmark will not be the outcome of the social planner but that of a planner

that forces firms in the CH to bid at their marginal costs but keeps bids of firms not

included in the CH as they are in the data. For this reason, we measure all resulting

inefficiencies with respect to this benchmark. Nonetheless, because the unmodeled

fringe includes firms for which we do have marginal cost data for some auctions, we

define as “Social Planner” the outcome of the simulation in which all firms for which

we have marginal cost data bid their marginal costs and those firms for which we do

not have marginal cost data bid according to their realized bids.
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2.6.1 Exogenous Increase

Table 2.2 present results for the two specifications presented in table 2.1. We

report results separately for auctions with positive and balancing demand as this

makes comparisons easier.

The results show that, regardless of the specification, exogenously increasing so-

phistication of a large fraction of low-type firms has significant impact on efficiency.

Indeed, when using the first specification of table 2.1 and considering auctions with

positive balancing demand (INC side), we find that the estimated inefficiency de-

creases by 17.4% relative to the baseline (the model at the estimated parameters),

with the remaining inefficiencies being caused by the exploitation of market power.

In the case of auctions with negative balancing demand (DEC side, column 2), we

find that increasing sophistication results in reducing inefficiencies by 8.3%. Similar

results are obtained when considering the second specification of table 2.1.

The results also show that there are decreasing returns to increasing sophistica-

tion. Indeed, the last row of table 2.2 shows that increasing sophistication to the

median type results in essentially identical efficiency gains to those that follow from

increasing sophistication to the highest estimated type.

Finally, there is one important result that is not presented in the table and

that has to be discussed. This is that increasing sophistication of just one firm has

little effect on efficiencies. It is necessary for a group of low-type firms to increase

sophistication for efficiency to increase significantly.

2.6.2 Endogenous Increase: Mergers

We now turn to studying how mergers may affect efficiency. As mentioned above,

we focus on potential mergers that do not generate cost synergies but do increase

concentration. In this setting, mergers can only increase efficiency by relocating

33



Table 2.2: Counterfactuals: exogenous increase in sophistication

Average cost of generation (US dollars)
τ̂i = exp(γ̂0 + γ̂1 sizei) τ̂i = exp(γ̂0 + γ̂1 sizei + γ̂2 size2

i )
Scenario INC side DEC side INC side DEC side
Social Planner 8721.28 -46674.69 8721.28 -46674.69
CH firms bidding MC 16352.42 -39536.33 16352.42 -39536.33
Baseline 23663.82 -31850.44 24425.79 -31221.04
Low-type firms to high 22390.97 -32505.22 22480.30 -32418.45
Low-type to median 22420.11 -32488.84 24214.91 -32402.31

Note: These numbers are computed using the estimates in table 2.1. Calculations are
done separately for auctions with positive balancing demand (INC side, 60 auctions)
and negative balancing demand (DEC side, 39 auctions).

generation from high-cost, high-type firms to low-cost, low-type firms that have

priced themselves out of the market. For this reason, to model the merger we take

into account two sources of data. First, the marginal cost of each of the firms

involved in the merger. Second, the day-ahead schedule of each of the merging

parties. Then, we horizontally add the marginal cost functions and the day-ahead

schedules to compute the marginal cost of supplying power to the grid for the merged

firm, relative to the aggregate day-ahead schedule. This is shown in figure 2.5 for

one of the auctions in the data.
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Figure 2.5: Marginal costs, day-ahead schedule, and net marginal costs
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In this setting, we explore two potential mergers. The first one corresponds

to a merger between a small firm and the largest one. The second one considers

the merger of the two largest firms. These results, that only consider the second

specification of table 2.1, show that mergers between the two largest firms result in

the smallest increase in efficiency because there is little generation to rellocate and

the increase in market power limits the gains from this rellocation. Furthermore,

the increase in sophistication of the second largest firm has no impact on the bids

of the smaller firms under the assumptions of the CH model as the second largest

firm was of higher type than all small firms before the merger. Hence, the gains

in efficiency from this merger are small and only due to rellocation of generation.

Second, the biggest gain in efficiency is obtained from the merger between the largest

and the smallest firm (19.6% reduction in inefficiency for auctions with positive

balancing demand and 68% for auctions with negative balancing demand). These

gains, however, come from three sides. First, there is a direct effect of rellocation of

generation. Second, the newly formed firm also has correct beliefs about its rivals

and bids more competitively. Third, all rivals observe the increase in sophistication

of the generating units that belonged to the smallest firm in the merger and bid more

aggresively (conditional on their types). This is recognized by the newly created firm

and induces this firm to bid more aggresively too.

2.7 Summary

Models of strategic equilibrium form the foundation of many studies in industrial

organization that investigate market efficiency in oligopoly settings. These models

rely on the existence of a unique mapping from unobserved fundamentals, such as

marginal costs or valuations, to observed prices or bids, to study questions about

market efficiency and evaluate policy interventions, among others. However, there is
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Table 2.3: Counterfactuals: increasing sophistication via mergers

Average cost of generation (US dollars)
τ̂i = exp(γ̂0 + γ̂1 sizei + γ̂2 size2

i )
Scenario INC side DEC side
Social Planner 8721.28 -46674.69
CH firms bidding MC 16352.42 -39536.33
Baseline 24425.79 -31221.04
Merger 1: Small and big firm 22840.84 -36850.03
Merger 2: Two largest firms 24070.73 -32727.13

Note: These numbers are computed using the estimates in the second spec-
ification of table 2.1. Calculations are done separately for auctions with
positive balancing demand (INC side, 60 auctions) and negative balancing
demand (DEC side, 39 auctions).

some evidence suggesting that the application of such strategic equilibrium models to

all settings has to be done with caution, as in some settings observed behavior may

depart significantly and persistently from what equilibrium models predict. Further-

more, the literature has shown that these departures from (Bayesian) Nash behavior

may have significant implications for efficiency.

In this chapter we study bidding in the Texas electricity market, a market in which

bidding by some firms departs significantly from what Bayesian Nash models predicts,

while bidding from other firms closely resembles these predictions. We use this

setting, as well as a unique dataset containing information on bids and marginal costs,

to embed a Cognitive Hierarchy model into a structural model of bidding behavior.

Our unique dataset, in addition to our model, allows us to identify and estimate

heterogeneity in levels of strategic sophistication across electricity generators. Our

results show that while small firms seem to behave as if they were boundedly rational

in a Cognitive Hierarchy way, large firms behave closely to what a Bayesian Nash

model would predict. We then use the estimated levels of strategic sophistication to
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study how increasing strategic sophistication of low-type firms, either exogenously or

through mergers with higher-type firms, may affect efficiency. Our results show that

not only exogenously increasing sophistication may increase efficiency significantly,

but that also mergers that do not generate cost synergies but increase concentration

may also increase efficiency as long as the higher sophistication of one of the merging

parties is transfered to the rest of firms involved in the merger.
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3. A DYNAMIC MODEL OF ENDOGENOUS MERGERS

3.1 Introduction

Governments are frequently forced to predict the impacts of mergers on the evo-

lution of markets because breaking up consummated mergers could be extremely

costly. The technique known as merger simulation is usually used by governments

and researchers to forecast price and welfare changes caused by prospective mergers

and to challenge mergers that are predicted to increase market price and decrease

welfare. In a standard merger simulation exercise, the demand system is recovered

using pre-merger data, marginal costs are estimated using firms’ first order condition

and price and welfare changes in the next period are simulated under the assump-

tion of a static oligopoly game. As is mentioned in Weinberg and Hosken [2013],

there might be bias in such simulation. The bias might come from the fact that

only changes in the period right after the merger are considered in a merger review.

There are many reasons to believe long-term welfare changes after a merger should

be reviewed as well because a merger could have a considerable impact on the dy-

namic evolution of the market. Structural changes of the market after the merger

would lead to post-merger changes in firms’ behavior. Both merging and non-merging

firms would adjust their entry, exit, investment or price strategies according to the

new market structure. In addition, a current merger might trigger future mergers,

therefore, mergers happening after a successful one should also be considered when

reviewing a prospective merger.

Take the U.S. airline industry as an example. The Delta-Northwest merger was

proposed in April 2008 and was cleared by the Department of Justice on October 29,

2008. A standard merger simulation exercise would suggest that this merger would
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reduce the competition, allow airlines to raise their ticket prices and provide poorer

service. However, raw data exhibited exactly the opposite. Memphis, for example,

was considered to be one of the worst affected cities by the Delta-Northwest merger

in terms of market concentration. According to figure 3.1, the average ticket prices of

Delta and Northwest airlines in Memphis decreased after the merger while the market

price in Memphis stayed the same. Furthermore, figure 3.2 shows that the average

flight frequency of Delta and Northwest increased after Northwest began to use Delta

as its title in 2010. It seems that traditional merger simulations fail to forecast price

and service quality changes after that merger. Figure 3.3 provides one of the many

reasons as to why this happens. According to figure 3.3, the number of markets Delta

used to serve in U.S. domestic market decreased from about 500-650 to 350-500. In

fact, Delta began to cut off the routes served in Memphis after the merger and later

the Memphis hub was officially closed in September, 2013. Since their market power

after merger in Memphis was reduced because of exit behavior, average itinerary

fare of Delta in Memphis decreased instead of increasing. Furthermore, Delta could

concentrate on those remaining markets to provide higher flight frequency since they

reduced the number of markets they served. Clearly that exit behavior and many

other firm behaviors after a prospective merger could have significant effect on the

evolution of a market, but traditional static merger simulation exercises might miss

these changes and therefore provide poor forecast.

All of these suggest a need to build dynamic models of mergers. However, the

merger literature has moved very slowly in doing so. It is not that people are not

aware of the dynamic features mergers exhibit, but the complication that come with

modeling dynamic mergers and the computational burden involved in estimating

those models have kept researchers from developing a more flexible model. A small

number of papers analyze mergers in dynamic settings. Gowrisankaran [1999] suc-
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Figure 3.1: Average ticket price of Delta and Northwest and market average
price in Memphis - The data comes from the Airline Origin and Destination Survey

(DB1B) provided by the U.S. Department of Transportation (DOT).

Figure 3.2: Average flight frequency of Delta and Northwest - The data comes
from the Airline Origin and Destination Survey (DB1B) provided by the U.S.

Department of Transportation (DOT).
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Figure 3.3: Number of markets that Delta and Northwest served in the U.S.
domestic market - The data comes from the Airline Origin and Destination Survey

(DB1B) provided by the U.S. Department of Transportation (DOT).

cessfully models a dynamic endogenous merger process. However, his paper imposes

equilibrium selection rule on merger game’s multiple equilibria and can only simulate

the effect of artificial mergers. In his sequential game, larger firms have the priority

to merge with smaller firms. Smaller firms can merge with other small firms only

when all larger firms have failed in their merger attempts. Additionally, his model

fails to include the situation where a small firm acquires a large firm. In Chen [2009],

a dynamic oligopoly model under capacity constraint is used, but the merger is just

a one-time exogenous shock in his model. These two methods are complicated and

are hard to apply when considering prospective mergers.

Benkard et al. [2010] examines the effect of several mergers within the U.S. airline

industry in a dynamic setting. The straightforward simulation method proposed in

their paper provides a computationally easy way to implement model by avoiding

repeatedly computing the Markov perfect Nash equilibrium in a dynamic oligopoly
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model. However, like Chen [2009], their method also assumes that a merger is an

one-time exogenous shock. They can only exam the medium and long term effect of

a merger without considering future mergers in markets. The dynamic endogenous

merger process is not modeled in their method.

The theoretical equilibrium concept of dynamic oligopoly game, referred to as

Markov perfect Nash equilibrium, is proposed in Maskin and Tirole [1988a, 1988b].

Ericson and Pakes [1995] add to this a framework by which we can empirically analyse

dynamic oligopoly game. Their method has proven versatile in analysing dynamic

evolution of markets. The early estimation methods for dynamic oligopoly game

turn out to be quantitatively burdensome and difficult to apply to industries with a

more complicated structure.

In recent years, researchers have proposed several new methods to ease the com-

putational burden of estimating dynamic oligopoly model. These include Bajari et

al. [2007] (hereafter BBL), Aguirregabiria and Mira [2007], and Pakes et al. [2007],

etc. With newly available estimation methods, the Ericson and Pakes [1995] model

has been used to tackle many empirical problems. Recent empirical applications

of dynamic oligopoly models using new computational methods include advertising,

capacity accumulation, and learning by doing. In this paper, we extend the classic

Ericson and Pakes [1995] model and include merger as a dynamic strategy. To be

more specific, we built a dynamic game with five steps in each period. These five

steps are merger, exit, production, entry and investment respectively.

Our infinite repeated five-step game follows Gowrisankaran [1999], but our as-

sumption of merger game diverges from his framework. As is mentioned in Gowrisankaran

[1999], merger games involving more than two firms possess the problem of multiple

equilibria, he has to impose equilibrium selection rule on his merger game because

of the limitation of econometric method in solving a multi-equilibria game.
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In recent years, much work has been done to solve the inference of multiple

equilibria. One of the methods that has been fruitful in both applications and e-

conometric theory is the moment inequality condition method.1 With the help of

newly available econometric estimation technique, we are able to build a more intu-

itive dynamic merger process and identify that merger game. In our game, every firm

proposes a simultaneous bid for every other firm and it gets a asking price from other

firms. As long as the post merger expected discounted value (value function) of the

buyer is larger than the sum of the before merger expected discounted value (value

function) of the two participants, the merger might happen. The particular merger

which occurs depends on factors found unnecessary in our model. For instance, the

final buyer may make her move earliest or act more aggressively. This more intuitive

game can be identified with the necessary conditions in our game. The moment

inequality conditions method proposed in Tamer [2003] identifies the binary choice

in a two agent game with multiple equilibria and is applied in our multiple choice

multiple agents game as well.

We propose an infinite repeated dynamic game with five steps in each period

and a three-step estimation method to identify our model. We estimate the model

from the last step to the first step using backwards induction. The last four steps

of the game (exit, production, entry and investment) are simultaneously estimated

following the spirit of the two-step estimation proposed by BBL [2007]. This method

is an appealing solution to deal with complicated industry structures. It can capture

the industry structures easily and the compute value function relatively quick by

avoiding computing Markov perfect Nash equilibrium.

In the first step, we estimate policy functions and transition functions of the

1Ciliberto and Tamer [2009] uses moment inequality condition studying firm entry behavior in
the U.S. airline industry.
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dynamic game. In the second step, value functions of the game under various initial

states are simulated. Then, in the third step, the moment inequality condition is

implemented to identify the merger game using the value function estimators from

the second step. With a fully identified structural model, we can forecast medium

and long term effects of mergers. Additionally, the model forecasts the effect of

a merger more accurately when there exists strategic behavior after a merger. The

three-step estimation method presented here proves relatively simple to compute and

easily applied to review prospective mergers.

3.2 Markov Perfect Nash Equilibrium

In a typical dynamic oligopoly model, time is infinite and firms repeatedly choose

their strategies at each period. For example, in the classic Ericson and Pakes [1995]

model, firms make entry and exit decisions and choose their investment and produc-

tion level according to current state at each period. Markov perfect Nash equilibrium

(hereafter MPNE), which is a generalization of Nash equilibrium, is the equilibrium

concept used in dynamic oligopoly games. In the games, no firm wants to unilat-

erally deviate from a strategy set in MPNE. Every agent chooses strategies (policy

functions) to maximize her expected discounted profit (value function) each period.

The firm value function is represented as the conditional expectation of discounted

long-term profits:

E[Σ∞t β
τ−tπi(στ , sτ , viτ )|sτ ]

Here, πi is profit function, στ is a vector that contains policy functions of each firm,

sτ represents state such as firm capacity or product quality at time τ , viτ is firm

specific random shock, and β is discount factor, which captures the fact that firms

value current profit more than future profits.
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The distribution of state in the next period only depends on all firms’ policy

function made in this period and current state. Therefore, state in the next period

st+1 is distributed as a Markov process:

P (st+1|σt, st)

Since the behavior is given by Markov stratgy, we can rewrite value function as a

Bellman equation:

Vi(s;σ) = Ev

[
πi(σ(s,v), s, vi) + β

∫
Vi(s

′,σ)dP (s′|σ(s,v), s)|s
]

We claim σ is Markov Perfect Nash Equilibrium if for each firm, σi is her best

response given that other firms do not change their policy function:

Vi(s;σ) ≥ Vi(s;σ′i,σ−i)

Here,

Vi(s;σ′i,σ−i) =Ev

[
πi(s;σ′i(s, vi),σ−i(s,v−i), vi)

∫
+β

∫
Vi(s

′;σ′i(s, vi),σ−i(s,v−i), s)dP (s′|s, σ′i(s, vi),σ−i(s,v−i))|s
]

3.3 Model: An Infinite Repeated Five-Step Game

In a static merger game, a merger is usually followed by a one-period production

which is assumed to be some production games as shown in Cournot or Bertrand. Our

endogenous dynamic merger game is an infinitely repeated version of the static one.

To be more specific, a merger process is followed by an exit, a Bertrand production
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game among the firms that are still in the market, and finally investment and entry

decisions. These five steps are then repeated over and over. Our dynamic model is

also an extension of the Ericson and Pakes [1995] model. We add merger process

into their game, which involves exit, production, entry and investment. Our model

captures firms’ dynamic behaviors after a merger and that merger’s impact on the

evolution of markets.

3.3.1 Merger

Two obstacles impede the development of modeling dynamic merger procedure:

nonexistence of equilibrium and multiple equilibria. We detail the reasons below and

explain our methods to solve each setback.

Existence of equilibrium of dynamic model is generally shown by Brouwer’s fixed-

point theorem which requires the continuity of the operator, but here the after merg-

er value function of nonparticipants are discontinuous. We follow Gowrisankaran

[1999]’s method and add a source of randomness to the merger process, but our as-

sumption on the source of randomness differs in that we assume that a firm’s after

merger value function is not only determined by the value function predicted under

the post-merger industry structure, but also other factors like bargaining power. For

instance, even if a potential buyer knows the after merger value of the firm that she

is interested in, the potential seller might want to bargain a higher price. Therefore,

the merger would proceed under a higher price. Here, we assume this randomness

from bargaining is independently and identically drawn from a mean-zero uniform

distribution U [−ς, ς].

To the best of our knowledge, Gowrisankaran [1999] is the only paper which

successfully models an endogenous merger process. He solves multiple equilibria by

imposing a sequential merger process assumption. In his game, larger firms have the
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priority to merge with smaller firms. Smaller firms can merge with others only after

all larger firms have failed in their attempts in mergers. However, his model fails to

include the situation where a small firm acquires a large firm. Moreover, he claims

that even under this assumption, the multiple equilibrium problem is not solved.

A sequential merger process can only avoid some of the major sources of multiple

equilibria. Instead of imposing restrictive assumption on merger game, we will give a

more intuitive merger game and use moment inequality method proposed in Tamer

[2003] to solve the game with multiple equilibria directly. We will explain how this

method works in more detail in Section 3.4.

Let us first describe the merger game process. In our game, every firm proposes

a simultaneous bid for every other firm and it gets a asking price from other firms.

As long as the post merger expected future value of the buyer is bigger than the sum

of the before merger expected future value of the two participants, the merger might

happen. The particular merger which would happen depends on factors not specified

in the game which will not affect our estimation. For instance, the final buyer might

make her move earliest. In this case, let ml = {m1,m2, ...,mn} denote one possible

merger outcome in a market where mi ∈ {−1, 0, 1}. Here, −1 represents a scenario

in which firm i is merged by another firm, 0 means that firm i does not participate

in the merger process, and 1 means that firm i is the buyer.

LetM denote a set that contains all merger outcomes. DefineMM asM/{0, ..., 0}.

Here, MM contains all merger outcomes except the one that no merger happens

({0, ..., 0}). Let V bf
buyer(s

bf ,ml) denote the value function of buyer before merger,

V af
buyer(s

bf ,ml) represent the value function of buyer after merger, ulk denote the

random shock we have mentioned earlier, and V bf
seller(s

bf ,ml) denote the value func-

tion of buyer before merger. For a specific merger outcome ml, it is one potential

outcome in the market under before merger state sbf if:
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V af
buyer(s

bf ,ml) + ulk > V bf
buyer(s

bf ,ml) + V bf
seller(s

bf ,ml) (3.1)

Let MM
(1) denote the set of merger outcomes in MM that satisfy condition (3.1).

(a) If |MM
(1)| > 1, there are more than one ml which satisfy (3.1) and any one

of them can be the merger outcome, i.e., ∀j,mj ∈ MM
(1) merger outcomes exist. As

mentioned previously, outside factors not considered here may determine the chosen

merger.2

(b) If |MM
(1)| = 1, there is only one ml which satisfies (3.1). In this case, ml is

the merger outcome.

(c) If |MM
(1)| = 0, there is no ml which satisfies (3.1). Then no merger will happen

making {0, 0, ..., 0} the only outcome.

3.3.2 Exit

After the merger, every incumbent firm decides simultaneously whether or not to

exit the market with a scrap value φ. Suppose there are n incumbent firms in the

market and we define χ(s) = {χ1(s), ..., χi(s), ..., χn(s)} as a vector of exit policy

functions. An incumbent firm i will exit the market when its scrap value φ is larger

than its value function.

χi(s) =


1 if si > 0 & φ > πi(s̄i)− xi(s̄i) + β

∫
Vi(s̄;σ(s))dP (s̄|σ(s), s)

0 otherwise

where s̄ = (χ1, ..., χi−1, 1, χi+1, ..., χn) · s represents after merger state in the next

period, and σ(s) is policy functions at state s. χi(s) = 1 means the firm will stay in

2Here, | · | denotes the number of value in the set.
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the market and χi(s) = 0 means the firm will exit the market.

3.3.3 Production

Following the typical assumption of the Ericson and Pakes model, we model

production process as a static Bertrand game. We assume a logit demand system.

Consumer r gets utility Uri from consuming good i,

Uri = γ0ln(si) + γ1ln(yr − pi) + εri

where si represents the quality of good i, yr is person r’s income, pi is the price

of good i, and εri is a independently and identically distributed logit error term. For

simplicity, incomes for all consumers are assumed to be a constant, yr = y. We also

assume that each firm has a constant marginal cost:

mc(qi, µ) = µ.

3.3.4 Entry and Investment

The last two steps of the game are entry and investment. It is common practice

to assume that they happen simultaneously at each period because both of them

contribute to the state evolution. A firms state sit+1 at period t+ 1 is affected by its

investment in period t in the following way:

sit+1 = sit + νit − ν̄t
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Here, νit represents firm i’s random return of investment xit realized in the next

period and α denotes the parameter.

νit =


1 with prob. αxit/(1 + αxit)

0 with prob. 1/(1 + αxit)

ν̄t is an industry wide random depreciation at period t and market state decreases

by 1 with probability δ.

ν̄t =


1 with prob. δ

0 with prob. 1− δ

For a situation in which entry happened simultaneously with investment, each

potential entrant receives a random entry cost from a uniform distribution U(−e, e).

The firm knows its entry cost before it makes entry decision. If it chooses to enter

the market, potential entrants state at next period is sE − ν̄t.

3.4 Three-step Estimation Method

We estimate the model from the last step to the first step using backwards in-

duction. The last four steps of the game (exit, production, entry and investment)

are simultaneously estimated following the spirit of the two-step estimation proposed

by BBL [2007]. The BBL [2007] method is chosen here because it is an appealing

method to deal with complicated industry structures. It can capture the industry

structures easily and compute the value function relatively quickly without comput-

ing MPNE even once. In the first step, we estimate policy functions and transition

functions of the dynamic game. Second, value functions of the game under various

initial states are simulated. Then, in the third step, we apply the moment inequality

conditions proposed in Tamer [2003] to identify the merger game using the value
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function estimators from the second step.

To reduce computation, we assume firms’ profit functions are linear in the un-

known parameters like BBL [2007]. Therefore, their value functions are also linear

in parameters in that:

Vi(s) = W 1(s) +W 2(s) · ξ +W 3(s) · φ (3.2)

Since W 1(s), W 2(s), W 3(s) can be estimated from simulation in the 2nd step,

estimation of Vi(s) can be represented as a function with two parameters:

V̂i(s) = Ŵ 1(s) + Ŵ 2(s) · ξ + Ŵ 3(s) · φ (3.3)

≡ f(ξ, φ, s) (3.4)

Now again, let us define V bf
i as before merger incumbent value function and

V af
i as after merger incumbent value function for firm i. Define sbf ∈ S as before

merger state and safl ∈ S as its after merger state when merger outcome is ml. We

can estimate before merger value function from V̂ bf
i (sbf ,ml) = f(ξ, φ, sbf ) and after

merger value function from V̂ af
i (sbf ,ml) = f(ξ, φ, safl ). Moving forward, we can

identify the merger game with moment inequality conditions using these before and

after merger value functions.

3.4.1 A Simple 2× 2 Entry Game

In this section, a 2×2 game is used to show the identification problem of multiple

equilibria and illustrate the main idea of moment inequality conditions which are

proposed by Tamer [2003] to solve the problem of multi-equilibria. Then, we describe

the moment inequality conditions which are used to identify our merger game.
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Figure 3.4: Entry game with multiple equilibria

Let us consider a binary simultaneous equation system:

y1 = 1[α′1X1 + δ2y2 + ε1 ≥ 0],

y2 = 1[α′2X2 + δ1y1 + ε2 ≥ 0],

where X1 and X2 are vectors of observed firm-specific exogenous regressors. This

game can be viewed as a two agent entry game. A firm’s entry decision depends on

its own characteristics and whether its competitor enter the market. As is shown in

Tamer [2003], this game has multiple equilibria if support for ε is large enough. In

figure 3.4, multiple equilibria appear in the shade region.

This multiple equilibrium problem complicates the estimation process because

it proves impossible to find out the theoretical probability of the realization of a

market outcome when it is difficult to determine which equilibrium is realized in the

overlapping multiple equilibrium region. Hence, an equilibrium selection rule must

be specified in a traditional method. This rule is used to “pick up” an equilibrium

from the multiple equilibria.
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Usually, there is little guidance on how to choose the rule. To avoid an unrealistic

assumption about the equilibrium selection, Tamer [2003] proposed the following

method, which gets around imposing any assumption about the multiple equilibrium

selection process.

Let us consider the case where (y1, y2) = (1, 0) is the market outcome.

Pr(1, 0|X) =Pr((ε1, ε2) ∈ R1(X, θ))+∫
Pr(1, 0|ε1, ε2, X)1[(ε1, ε2) ∈ R2(X, θ)]dFε1,ε2

where

R1(θ,X) ={(ε1, ε2) : (ε1 ≥ −α′1X1; ε2 ≤ −α′2X2}

∪ (ε1 ≥ −α′1X1 − δ2;−α′2X2 ≤ ε2 ≤ −α′2X2 − δ1)},

R2(θ,X) ={(ε1, ε2) : (−α′1X1 ≤ ε1 ≤ −α′1X1 − δ2;

− α′2X2 ≤ ε2 ≤ −α′2X2 − δ1)},

P r(1, 0|ε1, ε2, X) is the selection mechanism for multi-equilibria.

Furthermore, the above equation implies the following inequality condition:

Pr((ε1, ε2) ∈ R1) ≤ Pr((1, 0)) ≤ Pr((ε1, ε2) ∈ R1) + Pr((ε1, ε2) ∈ R2) (3.5)

In figure 3.5, the shaded area in the graph on the right hand side represents the

region that would predict (1, 0) uniquely, which is R1. The shaded area in the graph

on the left hand side represents the region that (1, 0) is a possible outcome, which

represents R1 +R2.
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Figure 3.5: Upper and lower bounds for entry game

For the simple 2 × 2 game, we can represent all the inequality conditions in the

following way:

H1(θ,X) ≡



H1
1 (θ, X)

H2
1 (θ, X)

H3
1 (θ, X)

H4
1 (θ, X)


≤



Pr((0, 0)|X)

Pr((1, 0)|X)

Pr((0, 1)|X)

Pr((1, 1)|X)


≤



H1
2 (θ, X)

H2
2 (θ, X)

H3
2 (θ, X)

H4
2 (θ, X)


≡H2(θ,X)

where H1(θ,X) is the lower bound function which represents the probability

that a particular market structure is the unique equilibrium. H2(θ,X) is the upper

bound function which also counts the probability that multiple equilibria happen in

the market. H1(θ,X) and H2(θ,X) can be analytically solved when the distribu-

tion of ε = {ε1, ε2} is assumed to be known. For example, H1
1 and H1

2 can be solved

from equation (3.5). The above inequality condition is then used to identify the 2×2

simple game.
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3.4.2 Moment Inequality Conditions in the Merger Game

According to the merger game we propose in section 3.3, we can use the following

moment inequality conditions to estimate the dynamic parameters. Suppose that

Pr(ml|sbf ) is the probability of merger outcome ml happens when state is sbf . We

can derive the inequality condition for the game as follows:

L(ml|sbf ) ≤ Pr(ml|sbf ) ≤ U(ml|sbf )

Here, L(ml|sbf ) is the lower bound for ml to happen under state sbf . It is the

probability that ml is the only merger outcome that satisfy equation (3.1) at state

sbf . U(ml|sbf ) is the upper bound for ml to happen under state sbf . It is the

probability that ml is the the merger outcome that satisfies equation (3.1) at state

sbf . All the moment inequality conditions of the merger game are represented as

follows:

L(ϑ, sbf) ≡



L1(ϑ, sbf )

.

.

LL(ϑ, sbf )


≤



Pr(m1|sbf )

.

.

P r(mL|sbf )


≤



U1(ϑ, sbf )

.

.

UL(ϑ, sbf )


≡ U(ϑ, sbf)

where ϑ is a vector that contains dynamic parameters ξ, φ and ς.

3.4.3 Simulate Upper and Lower Bounds

In the simple 2×2 game, analytical solutions of upper bound and lower bound can

be easily derived. In our merger game, it is not easy to find the analytical solutions

of the corresponding upper and lower bounds, but we follow Ciliberto and Tamer

[2007]’s simulation method to find them. Let us rewrite equation (3.1) in another
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form:

Π(sbf ,ml) ≡ V af
buyer(s

bf ,ml)− V bf
buyer(s

bf ,ml)− V bf
seller(s

bf ,ml) + ul (3.6)

If Π(sbf ,ml) > 0, ml is one possible merger outcome when state is sbf .

We first draw R simulations of unobservable for each state sbf . Then we obtain

the Π(sbf ,ml) for every possible ml ∈ M as a function of states, observables, and

parameters. If Π(sbf ,ml) > 0 for some l ∈ L, ml is an potential outcome of that

game (one of the equilibria). If this equilibrium is unique, 1 is added to the lower

bound probability (L̂(ml|sbf )) for outcome p(ml|sbf ) and 1 is added to the upper

bound probability (Û(ml|sbf )). If the equilibrium is not unique, then we only add a

1 to the upper bound. For example, the lower bound for merger outcome ml under

state sbf is:

L̂(ml|sbf ) =
1

R

R∑
j=1

1
[
Π(sbf ,ml) > 0,Π(sbf ,m−l) < 0

]

which simulate the probability that ml is the only merger outcome at state sbf .

3.4.4 Identification

To recover the primitives of the model, we can minimize the following objective

function,

Qn(θ) =
1

n

n∑
i=1

[
||p(ml|sbf )− L̂(ml|sbfk )||− + ||p(ml|sbf )− Û(ml|sbf )||+

]

where (A)− = [a11[a1 6 0], ..., an(n−1)+11[an(n−1)+1 6 0]] and similarly (A)+ =

[a11[a1 > 0], ..., an(n−1)+11[an(n−1)+1 > 0]] for a n(n − 1) + 1 vector A, and where

|| · || is the Euclidian norm.
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3.5 Simulation Result

Table 3.1 shows Monte Carlo estimation result of the static primitives including

demand system, marginal cost and investment evolution from our 3-step estimation

method. In general, estimators are very close to true parameters. We follow Benkard

et al. [2010] and Chernozhukov et al. [2007] to infer our dynamic primitives from the

game. Chernozhukov et al. [2007], which is a iterative process involving subsampling

from the second step, is used to do inference of the merger game. We only show the

results from the first step in table 3.2 for now because it extremely time consuming

to do subsampling. According to table 3.2, true value of investment cost falls in

the estimated bounds. Moreover, lower and upper bounds are close to true value.

However, our bounds of scrape value do not contain true value. Although true value

of random shock fall in the estimated interval, the estimated interval are too wide to

contain any information. We expect more accurate bound estimation after we finish

iterative process of Chernozhukov et al. [2007].

Table 3.1: Endogenous merger game Monte Carlo results (static primitives)

Parameter True Value Mean SE

Demand
γ0 0.1 0.100 0.000
γ1 1.5 1.492 0.000

Marginal cost µ 3 2.991 0.000
Investment evolution

δ 0.7 0.755 0.244
ρ 1.25 1.553 0.243
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Table 3.2: Endogenous merger game Monte Carlo results (dynamic primitives)

Parameter True Value Bounds

Investment cost ξ -1 [-2.152, 0.578]
Scrape value φ 6 [11.914, 30.000]

Random shock ς 2 [-28.578, 25.357]
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4. CONCLUSION

This dissertation studies merger simulation exercises used by governments and

researchers to evaluate prospective mergers. Specifically, we extend the traditional

static merger models.

In the second chapter, we build and estimate a model in which firms are bound-

edly rational and simulate the effect of mergers in such settings. Models of strategic

equilibrium form the foundation of many studies in industrial organization that in-

vestigate market efficiency in oligopoly settings. However, there is some evidence

suggesting that the application of such strategic equilibrium models to all settings

has to be done with caution, as in some settings observed behavior may depart signif-

icantly and persistently from what (Bayesian) Nash behavior models predict. In this

chapter,we study bidding in the Texas electricity market, a market in which bidding

by some firms departs significantly from what Bayesian Nash models predicts, while

bidding from other firms closely resembles these predictions. Our unique dataset, in

addition to our model, allows us to identify and estimate heterogeneity in levels of

strategic sophistication across electricity generators. Our results show that not only

exogenously increasing sophistication may increase efficiency significantly, but that

also mergers that do not generate cost synergies but increase concentration may also

increase efficiency as long as the higher sophistication of one of the merging parties

is transfered to the rest of firms involved in the merger.

In the next chapter, we study mergers in a dynamic setting. In a standard

merger simulation exercise, only the price and welfare changes in the next period

are simulated under the assumption of a static oligopoly game. As is mentioned

in Weinberg and Hosken [2013], there might be bias in such simulation. The bias
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might come from the fact that only changes in the period right after the merger

are considered in a merger review. There are many reasons to believe long-term

welfare changes after a merger should be reviewed as well because a merger could

have a considerable impact on the dynamic evolution of the market. In this chapter,

we build an infinite five-step repeated game under the framework of the Ericson and

Pakes model [1995]. Then, we propose a three-step estimation method to estimate the

game in which Markov perfect Nash equilibrium is played. Our three-step estimation

method is flexible and can be easily modified to estimate various market structures.
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APPENDIX A

PROOFS

A.1 1st Order Condition of Optimality under CH

Suppressing the i and t indices, the maximization problem of player i with level

k is given by,

Max
Ŝ(p)

∫ p

p

(U (p · S(p)− C (S(p))− (p− PC)QC)) dH (p, S(p); k,QC)

Integration by parts of the objective function yields, modulo a constant term:

∫ p̄

p

U ′(pS(p)− C(S(p))− (p− PC)QC)(pS ′(p) + S(p)− C ′(S(p))S ′(p)−QC)

H
(
p, Ŝ(p); k,QC

)
dp

Label the integrand:

F (p, S, S ′) =U ′(pS(p)− C(S(p))− (p− PC)QC)(pS ′(p) + S(p)− C ′(S(p))S ′(p)−QC)

H
(
p, Ŝ(p); k,QC

)

FS =−H l
SU
′(·)(pS ′ + S − C ′S ′ −QC) +H lU ′′(·)(p− C ′)(pS ′ + S − C ′S ′ −QC)

+H lU ′(·)(1− C ′′S ′)
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Fs′ = −H lU ′(·)(p− C ′)

d

dp
Fs′ =−H l

pU
′(·)(p− C ′) +H l

SS
′U ′(·)(p− C ′)

+H lU ′′(·)(p− C ′)(pS ′ + S − C ′S ′ −QC) +H lU ′(·)(1− C ′′S ′)

Since the Euler-Lagrange necessary condition for the optimal S(p) is given by:

d

dp
Fs′ = FS

Therefore,

p− C ′ = HS

Hp

(S −QC)

A.2 Proof of Proposition 2.2

Given additive separable form of bid function for bidders type 0 to type K from

Proposition 2.1, uncertainty in rivals’ contract obligation, QC−jt, and the aggregate

demand act a parallel shift in residual demand. Thus, all that matters is the dis-

tribution of a scalar random variable that is the sum of functions of rival contract

position (
∑

j 6=iQCjt) and total demand shock (−εt). Hence, for a bidder type k

(k = 0, 1, ..., K), we can rewrite his believe about distribution of market clearing
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price as

Hit(p, Ŝ
k
it(p); ki, QCit)

=

∫
QC−i×l−i×εt

1(
∑
j 6=i

αlj(p) +
∑
j 6=i

QCjt + Ŝkit(p) ≥ Dt(p) + εt)

dF (QC−i, l−i, εt|Ŝkit(p), ki, QCit)

=

∫
QC−i×l−i×εt

1(
∑
j 6=i

QCjt − εt ≥ Dt(p)−
∑
j 6=i

αlj(p)− Ŝkit(p))

dF (QC−i, l−i, εt|Ŝkit(p), ki, QCit)

=

∫
QC−i×l−i×εt

1(θit ≥ Dt(p)−
∑
j 6=i

αlj(p)− Ŝkit(p))dF (QC−i, l−i, εt|Ŝkit(p), ki, QCit)

Let θit denote
∑

j 6=iQCjt − εt, Γ(·) be distribution of θit and ∆(l−i) denote the

marginal distribution of the vector of rival firm types. Then, a bidder type k’s believe

about distribution of market clearing price involves two source of uncertainty, θit and

rival type l−i.

Hit(p, Ŝit(p); ki, QCit) =

∫
l−i

[
1− Γ

(
Dt(p)−

∑
j 6=i

αlj(p)− Ŝkit(p)

)]
·∆(l−i)

Take derivatives to find HS and Hp

HS =

∫
l−i

γ

(
Dt(p)−

∑
j 6=i

αlj(p)− Ŝkit(p)

)
·∆(l−i)

=

∫
l−i

γl−i(p) ·∆(l−i)
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where γ(·) is derivative of Γ(·).

Hp = −
∫
l−i

γ

(
Dt(p)−

∑
j 6=i

αlj(p)− Ŝkit(p)

)(
D′t(p)−

∑
j 6=i

αl ′j (p)

)
·∆(l−i)

= −
∫
l−i

γl−i(p)

(
D′t(p)−

∑
j 6=i

αl ′j (p)

)
·∆(l−i)

Since the residual demand function faces by a bidder type k under a certain belief

about rival type (l−i) is given by

RDit(p, Ŝ
k
it(p); ki, QCit) = Dt(p) + εt −

∑
j 6=i

αljt(p)−
∑
j 6=i

QCjt

with derivative

RD′it(p) = D′t(p)−
∑
j 6=i

αl′jt(p)

Therefore,

Hp = −
∫
l−i

γl−i(p)RD′it(p) ·∆(l−i)

Replace Hs and Hp in equation (2.5) that represent first order condition of profit

maximizing problem of a bidder type k, we get

p− C ′it (S∗it(p)) =

∫
l−i
γl−i(p) ·∆(l−i)

−
∫
l−i
γl−i(p)RD′it(p) ·∆(l−i)

(S∗it(p)−QCit)

Then, under assumption 2.3, optimal bidding strategy for a type k bidder, Skit(p),
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is traced out by

p− C ′it
(
Ŝkit(p)

)
=

1

RD′t(p)
∗
[
Ŝkit(p)−QCit

]
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