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ABSTRACT

In this thesis, our main aims are expressing some strong relations between modular

forms, Hecke operators, and L-functions. We start with background information for mod-

ular forms and give some information about the linear space of modular forms. Next, we

introduce Hecke operators and their properties. Also we find a basis of Hecke eigenforms.

Then, we explain how to construct L-functions from modular forms. Finally, we give a

nice functional equation for completed L-function.
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1 INTRODUCTION

Amodular form of weight k is a holomorphic function on the upper half planeH and

at i∞ and satisfies the relation

f (γ(z)) = (cz+d)k f (z) for all γ =
(

a b
c d

)
∈ SL2(Z).

Modular forms have been one of the main interest area in number theory for almost

200 years. It was first considered by Jacobi in Fundamenta Nova Theorie Functionum

Ellipticarum which was published in 1829. Then, Riemann, Dedekind, Eisenstein, and

Kronecker made great contributions to the area; but, mathematicians have given more

consideration to the area after Ramanujan’s works, especially his paper about τ-function.

Especially, after Ramanujan’s death, Hecke extended the area with new theorems which

supply new solution methods for old conjectures such as Ramanujan conjectures about

τ-function.

The thesis is organized as follows. In Chapter 2, we define modular forms and cusp

forms. We provide some examples of the modular forms such as Eisenstein series and

Poincare series. Lastly, we prove two main theorems called the valence formula and the

dimension formula.

In Chapter 3, we define Hecke operators and show some properties of them such as

commutativity. We prove Ramanujan conjectures about τ-function by using Hecke the-

ory. Then, we focus on the Hecke operators for Hecke congruence subgroup. At the end

of the chapter, we state the theorems that give us information about eigenfunctions and
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eigenvalues of the Hecke operators.

In Chapter 4, we introduce ζ -function and L-functions and show how to produce an

L-function from a cusp form. At the end, we present a nice functional equation for the

completed L-function.

2



2 MODULAR FORMS

2.1 Modular Group

We start with the definition of the most famous group for number theorists who study

the area.

Definition 2.1.1. The set of 2×2 matrices of determinant 1 with integer entries

SL2(Z) =
{(

a b
c d

)
| a,b,c,d ∈ Z ,ad −bc = 1

}
forms a group under matrix multiplication. It is called the (full) modular group.

Theorem 2.1.2. [1],[2] SL2(Z) is generated by T =
(

1 1
0 1

)
and S =

(
0 −1
1 0

)
.

Proof. Let γ =
(

a b
c d

)
∈ SL2(Z). If c = 0, then a = d = ±1 which implies γ = ±

(
1 b
0 1

)
=

±T b. If | c |> 0, without loss of generality, we assume | a |>| c | (Otherwise, applying S

arranges the desired form since Sγ = S
(

a b
c d

)
=

(−c −d
a b

)
). Then, there are q,r ∈ Z such

that a = cq+ r with 0 ≤ r < |c| by the Division Algorithm. Now T−qγ =
(1 −q

0 1

)(
a b
c d

)
=(

a−cq b−dq
c d

)
has upper left entry that is smaller then absolute value of lower left entry.

Applying S again gives us the desired form again. Finally, we reach the lower left entry

equals to 0, which is the c = 0 case, by iterating the process finitely many times.

Remark 2.1.3. SL2(Z) acts on the upper half-planeH= { z ∈C | Im(z)> 0} by the linear

fractional transformations

γ(z) =
az+b
cz+d

for every γ =
(

a b
c d

)
∈ SL2(Z).
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Now, we define the principal congruence subgroup of level q.

Definition 2.1.4. [3] Let q be a natural number. The group

Γ(q) =
{(

a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡
(

1 0
0 1

)
(mod q)

}
is called the principal congruence subgroup of level q. In particular, Γ(1) = SL2(Z).

Remark 2.1.5. Γ(q) is a normal subgroup of SL2(Z). To see this we check Γ(q) is the

kernel of the homomorphism α : SL2(Z) → SL2(Z/qZ) given by α(g) ≡ g (mod q) for

every g ∈ SL2(Z).

Next, we continue by giving definitions of two special subgroups of SL2(Z) which

contain Γ(q).

Definition 2.1.6. [3] The Hecke congruence group, denoted by Γ0(q), is defined by the

following set

Γ0(q) =
{(

a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod q)

}
.

Moreover, the map β : Γ0(q)→ (Z/qZ)x given by β
(

a b
c d

)
≡ d (mod q) is a homo-

morphism and the set

Γ1(q) =
{(

a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod q),d ≡ 1 (mod q)

}
is the kernel of β .

Remark 2.1.7. Obviously, T ∈ Γ0(q) for every q; but, ST S−1 =
(

1 0
−1 1

)
/∈ Γ0(q) for q > 1.

Hence, Γ0(q) is not a normal subgroup of SL2(Z). Moreover, the relation

Γ(q)⊂ Γ1(q)⊂ Γ0(q)⊂ SL2(Z)
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can easily be seen.

For simplicity, we use Γ instead of the modular group SL2(Z).

Now, we introduce fundamental domain for Γ.

Definition 2.1.8. Let F be a closed subset of the upper half plane H with connected inte-

rior. Then, F is a fundamental domain for Γ if the following conditions are satisfied:

(i) For any z ∈H, there exists w ∈F such that z and w are Γ-equivalent, i.e. there exists

γ =
(

a b
c d

)
∈ Γ such that γ(z) =

az+b
cz+d

= w.

(ii) For any interior points z,w ∈ F , z and w are not Γ-equivalent.

(iii) The boundary of F is a finite union of smooth curves.

We need to give a lemma to prove the next theorem.

Lemma 2.1.9. [3] Let z = x+ iy ∈ H. Then, the set of (c,d) ∈ Z×Z\{(0,0)} such that

|cz+d| ≤ 1 is finite and nonempty.

Proof. If |cz+d| ≤ 1, then (cx+d)2+c2y2 ≤ 1which implies c2y2 ≤ 1 so that |c| ≤ 1
y
. That

shows there are finitelymany possibility for c. Moreover, (cx+d)2 ≤ 1 implies |cx+d| ≤ 1

which means −1− cx ≤ d ≤ 1− cx. Hence there are also finitely many possibility for d.

On the other hand, (c,d) = (0,1) satisfies |cz+1| ≤ 1 that shows the set is nonempty.

Now, we are ready to introduce a special example of a fundamental domain for Γ.

Theorem 2.1.10. [2], [4] The set

F = {z ∈H | |z| ≥ 1, |Re(z)| ≤ 1
2
}

is a fundamental domain for Γ.

5



Proof. Firstly, we observe that for every γ =
(

a b
c d

)
∈ Γ, Im(γ(z)) =

Im(z)
|cz+d|2

. Now, fix

z = x+ iy ∈ H. We can push T n(z) =
(

1 n
0 1

)
(z) = z+ n to be an element of the set {z ∈

H | |Re(z)| ≤ 1
2
} with an appropriate integer n (Particularly, n equals to either −⌊x⌋, or

−⌊x⌋− 1). By Lemma 2.1.9, we may select γ =
(

a b
c d

)
∈ Γ such that |cz+ d| is minimal

which implies Im(γ(z)) =
Im(z)

|cz+d|2
is maximal. Our claim is T n(γ(z)) ∈ F . Assume

T n(γ(z)) /∈ F . Then, |T n(γ(z)) < 1. However, the first observation and |T n(γ(z))| < 1

imply Im(S(T n(γ(z))) =
Im(T n(γ(z))
|T n(γ(z)|2

> Im(T n(γ(z)) = Im(γ(z)) which contradicts the

minimality of Im(γ(z)). Hence T n(γ(z)) ∈ F and (i) is proven.

On the other hand, suppose z,w ∈F are Γ-equivalent interior points. Then there ex-

ists γ =
(

a b
c d

)
∈ Γ such that γ(z) = w. Without loss of generality, assume Im(z)≤ Im(w).

Then, Im(z) ≤ Im(γ(z)) =
Im(z)

|cz+d|2
that implies |cz + d| < 1 so that |Im(cz + d)| =

|c|Im(z)≤ 1. Therefore, |c| ≤ 1
Im(z)

<
2√
3
and so c = 0 or c =±1. If c = 0, then ad = 1

which means a = d =±1. Thus, γ is either −T n or T n where n is nonzero integer. How-

ever, it is not possible unless z ∈ ∂F ; because, S2T n(z) = z+ n = T n(z). If c = 1, then

1 ≥ |cz+d|2 = (x+d)2+y2 > (x+d)2+
3
4
that implies

1
2
> |x+d|. As |x|< 1

2
and x+ iy

is fixed, we deduce d = 0. Thus, 1 ≥ |cz+d|= |z| and this derives contradiction because z

is taken as an interior point. If c =−1, then, by applying S2 to γ in order to get c = 1 case

and mimicing the previous case, we prove (ii).

Lastly, it is obvious that the boundary of F is a finite union of smooth curves. Con-

sequently, F is a fundamental domain for Γ.

Definition 2.1.11. F in the previous theorem is called the standard fundamental domain
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for Γ.

2.2 Modular Forms

We now introduce modular forms and cusp forms.

Definition 2.2.1. [5] A modular form of weight k is a function which is holomorphic onH

and at i∞ and satisfies the following

f (γ(z)) = (cz+d)k f (z) for all γ =
(

a b
c d

)
∈ Γ.

The set of modular forms of weight k is denoted by Mk.

Remark 2.2.2. For odd k, a modular form f vanishes identically since for γ =−I, f (γ(z))=

f (z) = (−1)k f (z) = − f (z). Hence, there are no modular forms (except identically zero)

of weight odd number k.

Remark 2.2.3. By taking γ = T , we obtain f (T (z)) = f (z+1) = f (z) for every modular

form f . Therefore, f is periodic.

Let q = e2πiz. Since a modular form f is periodic with period 1 by Remark 2.2.3,

there is a map from the unit disk to complex numbers, i.e.

q 7→ f (z).

Moreover, f (q) is holomorphic on the punctured disk because f is holomorphic.

Therefore, f (q) has a Laurent expansion, called q-expansion, around q = 0,

f (q) =
∞

∑
n=−∞

anqn.

7



Definition 2.2.4. The series

f (z) =
∞

∑
n=−∞

ane2πizn

is called the Fourier expansion(series) of f at i∞.

Remark 2.2.5. Note that a Fourier expansion of a modular form starts from n = 0 since a

modular form is holomorphic at i∞.

Next, we define a special kind of modular forms.

Definition 2.2.6. [5],[6] A cusp form of weight k is a modular form of weight k whose

Fourier expansion has leading coefficient a0 = 0, i.e. f (z) = ∑∞
n=1 anqn , q = e2πiz. The

set of cusp forms of weight k is denoted by Sk.

The simplest examples of modular forms are the zero function (of every weight) and

constant functions (of weight 0). The first nontrivial example of modular forms of weight

k > 2 is

Gk(z) = ∑
(m,n)∈

Z×Z\(0,0)

(mz+n)−k , z ∈H.

We give a theorem known as the Lipschitz formula in order to introduce the Eisen-

stein series.

Theorem 2.2.7 (Lipschitz formula). [3] For k ≥ 2 and for q = e2πiz where z ∈H, we have

∑
n∈Z

1
(z+n)k =

(−2πi)k

(k−1)!

∞

∑
n=1

nk−1qn.

Proof. By taking logarithmic derivative of the function

8



sin πz = πz
∞

∏
n=1

(
1− z2

n2

)
,

we obtain

π cot πz =
1
z
+

∞

∑
n=1

(
1

z+n
+

1
z−n

)
.

When we differentiate both sides k−1 times, we complete the proof.

By using the Lipschitz formula, we deduce the following identity:

Gk(z) = 2ζ (k)+2
(2πi)k

(k−1)!

∞

∑
n=1

σk−1(n)qn where q = e2πiz,σs(n) = ∑
d|n

ds. (2.1)

Definition 2.2.8. [5] From the identity (2.1), we define the Eisenstein series as follows

Ek(z) :=
Gk(z)
2ζ (k)

=
1
2 ∑
(m,n)=1

(mz+n)−k.

From the identities

2ζ (2k) =−(2πi)2kB2k

(2k)!
, (2.2)

where k > 0 and Bk is the kth Bernoulli number defined by

x
ex −1

=
∞

∑
k=0

Bkxk

k!
,

and the identity (2.1), we deduce that

Ek(z) = 1− 2k
Bk

∞

∑
n=1

σk−1(n)qn f or k ≥ 4 (2.3)

is a modular form of weight k that is not a cusp form.
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Another famous example of modular forms is the delta function defined by

∆(z) =
E3

4(z)−E2
6(z)

1728
.

Moreover, it can easily be checked that the ∆-function is also a cusp form of weight

12.

Ramanujan introduced the following τ-function as being coefficients in the Fourier

expansion of the infinite product

q
∞

∏
n=1

(1−qn)24 =
∞

∑
n=1

τ(n)qn.

Jacobi proved that the infinite product equals the ∆-function. Furthermore, the τ-

function has properties that are conjectured by Ramanujan [7] , as follows

(i) τ(mn) = τ(m)τ(n) for (m,n) = 1;

(ii) if p is prime, then τ(pα+1) = τ(p)τ(pα)− p11τ(pα−1) for α ≥ 1;

(iii) if p is prime, then |τ(p)| ≤ 2p11/2.

In the chapter 2, we prove the first and second conjecture. The third conjecture is

more complicated. It was proven by Pierre Deligne and he was awarded a field medal in

1978.

We return to the modular forms. Modular forms of weight k and cusp forms of weight

k build linear spaces of finite dimensions. By using the identity (2.3), we obtain the fol-

lowing result:

Corollary 2.2.9. For k ≥ 4,

dim Mk = 1+dim Sk.

10



Proof. For f ∈ Mk, f (i∞) = a0 which is the constant term in Fourier expansion. Then

f −a0Ek ∈ Sk because it vanishes at i∞. Hence,

Mk = CEk +Sk (2.4)

as f = a0Ek +( f −a0Ek). The conclusion is immediate.

2.3 The Valence and Dimension Formulas

We now define the order of a meromorphic function and state two famous theorems

known as the valence formula and the dimension formula.

Definition 2.3.1. Let f be a not identically zero meromorphic function from H to C. For

every z0 ∈H, there is a unique integer n such that
f (z)

(z− z0)n is holomorphic and nonzero at

z0. Then, n is called the order of f at z0 and denoted by vz0( f ). In particular, vi∞( f ) is the

smallest value of n such that an is the first nonzero Fourier coefficient.

Theorem 2.3.2 (The valence formula). [2], [8] Let f be a not identically zero modular

form of weight k. Then

vi∞( f )+
1
2

vi( f )+
1
3

vρ( f )+ ∑
z ̸=i,ρ
z∈F ′

vz( f ) =
k

12

where ρ = e2πi/3 and F ′ is the standard fundamental domain except its boundary in first

quadrant.

Proof. [2], [3], [9], [10] The main tool for the proof is the residue theorem. A complete

proof can be found in ([2] , part 1 chapter 4).

By the valence formula, we deduce the following corollary:
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Corollary 2.3.3. [6] (i) M0 = C,

(ii) M2 = {0},

(iii) M4 = CE4(z),

(iv) M6 = CE6(z),

(v) M8 = CE8(z) = CE2
4(z),

(vi) M10 = CE10(z) = CE4(z)E6(z).

Proof. When we plug in k = 0 in the valence formula, the right hand size is 0. Then,

obviously, f (z)− f (i) ∈ M0 for any f ∈ M0 which implies f is constant so that M0 = C.

For k = 2, the right hand side of the valence formula is
1
6
; hence, f is identically zero

and so M2 = {0}. If k ≤ 10, than the right hand side of the valence formula is less then

1. This implies there is no cusp form f of weight k since, otherwise, vi∞( f ) would be 1

which derives contradiction. Therefore, by identity (2.4), Mk =CEk for k = 4,6,8,10. On

the other hand, particularly, M8 and M10 are one dimensional linear spaces. Furthermore,

E8 and E10 are the modular forms of weight 8 and 10, respectively, as well as E2
4 and

E4E6. This implies that E8 and E10 are constant times E2
4 and E4E6, respectively. Since

E8(i∞) = E10(i∞) = E2
4(i∞) = E4(i∞)E6(i∞) = 1, the constant should be 1. Therefore,

E8 = E2
4 and E10 = E4E6 that completes the proof.

Theorem 2.3.4 (The dimension formula). [3],[6] For k ≥ 0,

dim Mk =


[k/12], if k ≡ 2 (mod 12)

1+[k/12], if k ̸≡ 2 (mod 12)

 .

Proof. Corollary 2.3.3 implies M0,M4,M6,M8,andM10 are linear spaces of dimension 1

12



and M2 is a linear space of dimension 0. On the other hand, for any f ∈ Mk where k ≥ 12,

f ∆ ∈ Sk+12 since the ∆-function is a cusp form of weight 12. Conversely, if g ∈ Sk+12, then

g
∆
is analytic because ∆ does not vanish on H; hence,

g
∆
∈ Mk. Consequently, the operator

defined by f 7→ ∆ f is an isomorphism from Mk to Sk+12. Lastly, by using Corollary 2.2.9,

we deduce dimMk = dimSk+12 = dimMk+12−1. The conclusion follows by induction.
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3 HECKE THEORY

The τ-function has exciting multiplicativity

τ(m)τ(n) = ∑
d|(m,n)

d11τ(mnd−2)

which was first established by Mordell in 1917; but, E. Hecke systemized the idea in 1936.

That is why, although Mordell introduced the operator which is used to prove the multi-

plicativity, we call it as Hecke operator. Moreover, the theory of Hecke operators gives an

explanation to many other identities.

3.1 Hecke Operators

We first mention the slash operators to go further in Hecke theory.

Definition 3.1.1. [6]

The slash operator which is applied on functions f : H→ C as

f |A(z) = (detA)k/2 jk
A(z) f (Az) f or A =

(
a b
c d

)
∈ GL+

2 (R),

where jA(z) = (cz+d) andGL+
2 (R) is the set of elements in GL2(R) with positive deter-

minant.

We need the following lemma in order to prove the next theorem.

Lemma 3.1.2. [3] For A =
(

a b
c d

)
,B =

(
e f
g h

)
∈ GL+

2 (R),

jAB(z) = jA(Bz) jB(z).

14



Proof. By the definition of the j function, we get

jAB(z) = (ce+dg)z+(c f +dh)

=

(
c
(

ez+ f
gz+h

)
+d

)
(gz+h)

= jA(Bz) jB(z).

Theorem 3.1.3. [6] For A,B ∈ GL+
2 (R), the slash operator is associative, i.e.

f |AB = ( f |A)|B.

Proof. By the definition of slash operator, we have

( f |A)|B)(z) = (detB)k/2 j−k
B (z)( f |A)(Bz)

= (detB)k/2 j−k
B (z)

(
(detA)k/2 j−k

A (Bz) f (A(B(z))
)

= (detAB)k/2( jA(Bz) jB(z)
)−k f (ABz).

By Lemma 3.1.2, the equation becomes

(detAB)k/2( jAB(z))−k f (ABz)

which is equal to f |AB(z).

Definition 3.1.4. For a positive integer n, the nth Hecke operator Tn on function f ∈ Mk is

defined by

Tn f := nk/2−1 ∑
ad=n

∑
0≤b<d

f
∣∣(a b

0 d

)
= nk/2−1 ∑

ρ∈Γ\Gn

f |ρ

where Gn :=
{(

a b
c d

)
: a,b,c,d ∈ Z, ad −bc = n

}
.
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Lemma 3.1.5. [6] The set

∆n =

{(
a b
0 d

)
: ad = 0, 0 ≤ b < d

}
is the set of right coset representatives of Gn modulo Γ, i.e.

Gn =
⊔

ρ∈∆n

Γρ.

where
⊔
denotes disjoint union.

Proof. Let ( x y
z w) ∈ Gn. We need to find matrices

(
a b
c d

)
∈ Γ and ( r s

0 t ) ∈ ∆n such that

( x y
z w) =

(
a b
c d

)
( r s

0 t ) =
(ar as+bt

cr cs+dt

)
.

It is clear that we need to take r = (x,z),a = x/r,c = z/a. Moreover,

( r s
0 t ) =

(
a b
c d

)−1
( x y

z w) =
(

d −b
−c a

)
( x y

z w)

as
(

a b
c d

)
∈ Γ. This implies

s = dy−bw,

t = aw− cy.

Taking the determinant of both sides implies rt = n and for suitable k, the set(
1 −k
0 1

)
( r s

0 t )
(

r s−kt
0 t

)
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is also a set of representatives with 0 ≤ s < t.

On the other hand, assume ( r s
0 t ),

(
r′ s′
0 t ′

)
are two elements of ∆n that are Γ-equivalent.

Then, there is
(

a b
c d

)
∈ Γ such that(

a b
c d

)
( r s

0 t ) =
(ar as+bt

cr cs+dt

)
=
(

r′ s′
0 t ′

)
.

Hence, c = 0 which implies ad = 1 and so a = d =±1. Since a = r/r′ and r,r′ > 0,

then a = d = 1 which implies r = r′ and so t = t ′. Lastly, in the equation as+bt = s+bt =

s′, b must be zero since 0 ≤ s,s′ < t. Therefore, ( r s
0 t ) =

(
r′ s′
0 t ′

)
.

By Lemma 3.5, we write Tn as

Tn f = nk/2−1 ∑
ρ∈∆n

f |ρ .

3.2 Properties of Hecke Operators

Now, we present some nice properties of Hecke operators.

Theorem 3.2.1. [3],[6] Let f ∈ Mk such that the Fourier expansion of f at i∞ is

f =
∞

∑
n=0

anqn.

Then, the Fourier expansion of Tm f at i∞ is

Tm f =
∞

∑
n=0

(
∑

d|(n,m)

dk−1amn/d2

)
qn.

Proof. Firstly, by the definitions of slash operator and Tm f , we write

Tm f (z) = mk/2−1 ∑
ad=m

∑
0≤b<d

(
f
∣∣(a b

0 d

))
(z)

=
1
m ∑

ad=m

(
m
d

)k d−1

∑
b=0

∞

∑
n=0

ane2πin(az+b)/d .

17



Then, switching the two inner sums and using the identity

d−1

∑
b=0

e2πinb/d =


d, if d|n

0, otherwise

 ,

we have

Tm f (z) = ∑
ad=m
d>0

(
m
d

)k−1

∑
n=0
d|n

ane2πinaz/d .

When we write n = dr and take ar = s, we obtain

Tm f (z) =
∞

∑
s=0

(
∑

ad=m
ar=s

(
m
d

)k−1

adr

)
qn

=
∞

∑
s=0

(
∑

a|(m,s)
ak−1ams/a2

)
qn,

that proves the theorem.

Theorem 3.2.2. [3],[8] For (m,n) = 1,

TmTn = Tmn = TnTm.

Proof. Let f ∈ Mk and the Fourier expansion of f be

f =
∞

∑
l=0

alql.

Then, the Fourier expansion of Tn f is

Tn f =
∞

∑
l=0

(
∑

b|(l,n)
bk−1anl/b2

)
ql

18



by Theorem 3.2.1. Hence,

Tm(Tn f ) =
∞

∑
l=0

(
∑

c|(m,l)
ck−1 ∑

b|(n,ml/c2)

bk−1amnl/b2c2

)
ql

=
∞

∑
l=0

(
∑

c|(m,l)
ck−1 ∑

b|(n,l/c)
bk−1amnl/b2c2

)
ql

=
∞

∑
l=0

(
∑

c|(m,l)
∑

b|(n,l)
(cb)k−1amnl/b2c2

)
ql

=
∞

∑
l=0

(
∑

d|(mn,l)
dk−1amnl/d2

)
ql.

Therefore, for (m,n) = 1,

TmTn = Tmn = Tnm = TnTm.

Theorem 3.2.3. [3],[8] For a prime p and s ≥ 1,

TpsTp = Tps+1 + pk−1Tps−1.

Proof. See ([2], part 1 chapter 7).

By using Theorem 3.2.3 and induction, we deduce

Theorem 3.2.4. [3]For r,s ≥ 1,

TprTps = TpsTpr .

We now say the Hecke operators commute.

Theorem 3.2.5. [3], [6] For all m,n ≥ 1,

TnTm = TmTn.
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Proof. Let m,n ≥ 1 with the prime decompositions m = pr1
1 ...p

rα
α , and n = qs1

1 ...q
sβ
β . Thus,

we obtain

TmTn = Tpr1
1
...Tprα

α
Tqs1

1
...T

q
sβ
β

from Theorem 3.2.2. For the distinct primes powers, the Hecke operators commute by

Theorem 3.2.2 and for the same primes powers, the Hecke operators also commute by

Theorem 3.2.5. Consequently, we reach

TmTn = Tpr1
1
...Tprα

α
Tqs1

1
...T

q
sβ
β
= Tqs1

1
...Tqsα

α
Tpr1

1
...T

p
rβ
β
= TnTm

as desired.

We now give a significant property of Hecke operators.

Theorem 3.2.6. [3], [6] The Hecke operator Tn maps a modular form to a modular form

and a cusp form to a cusp form, i.e.

Tn : Mk → Mk,

Tn : Sk → Sk.

Proof. One can show that there is a one-to-one correspondence between ∆n×Γ and Γ×∆n,

i.e. for any ρ ∈ ∆n,γ ∈ Γ, there are unique ρ ′ ∈ ∆n,γ ′ ∈ Γ such that ργ = γ ′ρ ′. Therefore,
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for any γ ∈ Γ and f ∈ Mk,

(Tn f )|γ = nk/2−1 ∑
ρ∈∆n

f |ργ

= nk/2−1 ∑
ρ ′∈∆n

f |γ ′ρ ′

= nk/2−1 ∑
ρ ′∈∆n

( f |γ ′)|ρ ′

= nk/2−1 ∑
ρ ′∈∆n

f |ρ ′

= Tn f .

By Theorem 3.2.2, we clearly see that Tn f is holomorphic at i∞ for a modular form

f and also vanishes at i∞ for a cusp form f . Consequently, Tn maps a modular form to a

modular form and a cusp form to a cusp form.

3.3 Ramanujan τ-function

It is time to prove Ramanujan conjectures about τ-function. Recall that τ-function

[7] is defined as

q
∞

∏
n=1

(1−qn)24 =
∞

∑
n=1

τ(n)qn.

Theorem 3.3.1. [3] For (m,n) = 1,

τ(mn) = τ(m)τ(n).

Proof. We know that ∆-function is a cusp form of weight 12 and so Tn∆ ∈ S12. On the

other hand, S12 has dimension one so that ∆ spans S12 which means there is a constant λn
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such that Tn∆ = λn∆. Moreover, by Theorem 3.2.1, the mth Fourier coefficient of Tn∆ is

∑
d|(m,n)

d11τ(mn/d2).

Hence, for (m,n) = 1, the mth Fourier coefficient of Tn∆ equals to τ(mn). However,

τ(mn) = λnτ(m) as Tn∆ = λn∆. For m = 1, τ(n) = λn; therefore, τ(mn) = τ(m)τ(n).

Theorem 3.3.2. [3] If p is prime,then, for α ≥ 1,

τ(pα+1) = τ(p)τ(pα)− p11τ(pα−1).

Proof. If we compare the mth coefficients of λn∆ = τ(n)∆ and Tn∆, for any m,n, we obtain

τ(n)τ(m) = ∑
d|(m,n)

d11τ(mn/d2).

By taking n = p and m = pα , we reach the conclusion that

τ(pα+1) = τ(p)τ(pα)− p11τ(pα−1),

that gives desired result.

3.4 Hecke Operators for Γ0(q)

Hecke theory gives more significant results for the Hecke congruence subgroup

Γ0(q) =
{

γ =
(

a b
c d

)
∈ Γ | c ≡ 0 (mod q)

}
.

with the Dirichlet character χ modulo q.

Definition 3.4.1. [6] Let Mk(Γ1(q)) be the linear space of modular functions for Γ1(q) and

χ be a Dirichlet character modulo q. Then Mk(Γ0(q),χ) is a linear subspace of Mk(Γ1(q))

defined by

Mk(Γ0(q),χ) =
{

f ∈ Mk(Γ1(q)) | f |γ = χ(d) f for all γ =
(

a b
c d

)
∈ Γ0(q)

}
.
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Theorem 3.4.2. [3] We have the decomposition

Mk(Γ1(q)) =
⊕

χ
Mk(Γ0(q),χ).

Proof. See ([2], part 1 chapter 8)

We write coset representatives of Gn modulo Γ0(q) as

∆q
n =

{(
a b
0 d

)
∈ ∆n | (a,q) = 1

}
.

Likewise the Hecke operators, the Hecke operators with character χ has the follow-

ing property:

Theorem 3.4.3. [3], [6] The Hecke operator T χ
n maps a modular form to a modular form

and a cusp form to a cusp form, i.e.

T χ
n : Mk(Γ0(q),χ)→ Mk(Γ0(q),χ),

T χ
n : Sk(Γ0(q),χ)→ Sk(Γ0(q),χ).

Proof. In the proof of Theorem 3.2.6, we see that there is one-to-one correspondence be-

tween ∆n ×Γ and Γ×∆n. We see that the correspondence is also valid for ∆q
n ×Γ0(q) and

Γ0(q)×∆q
n, i.e. for any ρ ∈ ∆q

n,γ ∈ Γ0(q), there are unique ρ ′ ∈ ∆q
n,γ ′ ∈ Γ0(q) such that

ργ = γ ′ρ ′. Therefore, for any γ ∈ Γ0(q) and f ∈ Mk(Γ0(q),χ),

χ̄(ρ) f |ργ = χ̄(ρ) f |γ ′ρ ′ = χ̄(ρ)( f |γ ′)|ρ ′ = χ̄(ρ)χ(γ ′) f |ρ ′ = χ(γ)χ̄(γ ′) f |ρ ′

which implies (Tn f )|ρ = χ(γ)Tn f for γ ∈ Γ0(q). The rest of the proof goes as the proof of

Theorem 3.2.6.

23



3.5 Hecke Eigenforms

We start the section with the definition of the Petersson inner product.

Definition 3.5.1. [8] Let f ,g be two cusp forms and z = x+ iy. Then we define the Pe-

tersson inner product as

( f ,g) =
∫ ∫

F
yk f (z)g(z)

dxdy
y2 .

Remark 3.5.2. From the definition of the Petersson inner product, we easily deduce

(i) ( f ,g) is bilinear ;

(ii) ( f ,g) is conjugate symmetric, i.e. ( f ,g) = ( f ,g);

(iii) ( f , f )> 0 for f ̸= 0.

Hence, the Petersson inner product is a Hermitian inner product on Sk.

Now we give a lemma that help us to show that Hecke operators are Hermitian.

Lemma 3.5.3. [3] For a prime number p, there is a polynomial Ps(x) ∈ Z[x] such that

Tps = Ps(Tp).

Proof. We prove the lemma by induction on s.

For s = 0 and s = 1, P0(x) = 1 and P1(x) = x are the desired polynomials.

Now, assume we have a desired polynomial Ps for t ≤ s. Then, by Theorem 3.2.3,

we have

Tps+1 = TpsTp − pk−1Tps−1

= Ps(Tp)− pk−1Ps−1Tp

=: Ps+1
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that is a desired polynomial for t = s+1.

Theorem 3.5.4. [3] For cusp forms f,g and any n > 0,

(Tn( f ),g) = ( f ,Tn(g)).

Proof. The algebra of Hecke operators called Hecke algebra is generated by Tp’s where p

is prime by Theorem 3.2.3 and Lemma 3.5.3. Hence it is enough to see

(Tp( f ),g) = ( f ,Tp(g)).

We write

Tp( f ) = pk/2−1
{

f
∣∣( p 0

0 1

)
+

p−1

∑
b=0

f
∣∣(1 b

0 p
)}

from the definition of Tn. Since the Petersson inner product is bilinear, we obtain the

identity

(Tp( f ),g) = pk/2−1
{(

f
∣∣( p 0

0 1

)
,g
)
+

p−1

∑
b=0

(
f
∣∣(1 b

0 p
)
,g
)}

.

One can show that if δ = Aγ where A = detγ and γ ∈ GL+
2 (Q) , then ( f |γ ,g) =

( f ,g|δ ) for cusp forms f ,g. Therefore,(
f
∣∣( p 0

0 1

)
,g
)
=

(
f ,g

∣∣(1 0
0 p

))
and (

f
∣∣(1 b

0 p
)
,g
)
=

(
f ,g

∣∣( p −b
0 1

))
.

Furthermore, for 1 ≤ b ≤ p−1, α =
(0 −1

1 b

)
,β =

( 0 1
−1 −b

)
∈ Γ one shows(

f ,g
∣∣( p −b

0 1

))
=

(
f |β ,g

∣∣( p −b
0 1

)
β
)
.
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Lastly, we say(
f |β ,g

∣∣( p −b
0 1

)
β
)
=

(
f ,g

∣∣α( p −b
0 1

)
β
)
=

(
f ,g

∣∣(1 b
0 p

))
because f |β = f and g|α = g. Collecting all of these together, we derive the conclusion

that

(Tp( f ),g) = ( f ,Tp(g))

which implies

(Tp( f ),g) = ( f ,Tp(g)).

Theorem 3.5.5. The eigenvalues of Hecke operator Tn are real numbers.

Proof. Let λn be an eigenvalue of Tn; then, Tn( f ) = λn f . Since (Tn( f ), f ) = ( f ,Tn( f )) by

Theorem 3.5.4, we deduce (λn f , f ) = ( f ,λn f ) which implies λn( f , f ) = λn( f , f ). There-

fore, λn is a real number.

Lemma 3.5.6. Assume f = ∑∞
n=1 anqn ∈ Sk is an eigenfunction for all Tm. Then a1 ̸= 0 and

the eigenvalue of Tm is am/a1.

Proof. Let λm be an eigenvalue of Tm; then, Tm( f ) = λm f . We know the coefficient of q

in the Fourier expansion of Tm( f ) is am by Theorem 3.2.1. Therefore, am = λma1 which

means that λm = am/a1 and am = 0 for all m when a1 = 0. However, this implies f is zero

function and so f is not a eigenvector. Hence a1 ̸= 0.

We now define Hecke eigenforms.
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Definition 3.5.7. The cusp form f =∑∞
n=1 anqn ∈ Sk in Lemma 3.5.6 is calledHecke eigen-

form. If a1 = 1 then it is called normalized Hecke eigenform.

Thus, we say that the Fourier coefficients of a normalizedHecke eigenform are eigen-

values of Tm’s.

Next, we give the following theorem to go further.

Theorem 3.5.8. Let R be a commutative ring of Hermitian operators on a finite dimen-

sional Hilbert space V. Then V has an orthogonal basis f1, f2, ..., fr of eigenvectors of R.

Proof. See ([2], part 1 chapter 7).

We state a theorem which satisfies the relation between cusp forms and Hecke eigen-

forms.

Theorem 3.5.9. [6] The space of cusp forms of weight k Sk has an orthogonal basis of

Hecke eigenforms.

Proof. Put the finite dimensional Hilbert space Sk instead of V and the commutative ring

of Hecke eigenforms instead of R in Theorem 3.5.8.

We end this chapter by giving some information about eigenforms of Sk(Γ0(q),χ).

Theorem 3.5.10. [3] Let f ∈ Mk(Γ1(q)), and g ∈ Sk(Γ1(q)). For each a ∈ (Z/qZ)×, fix

γa ∈ Γ such that

γa ≡
(

a−1 0
0 a

)
( mod q),
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where a−1 is the inverse of a( mod q). If (n,q)=1, then

(Tn( f ),g) = ( f |γn,Tn(g)).

In particular, if f ∈ Mk(Γ0(q),χ), then

(Tn( f ),g) = χ(n)( f ,Tn(g)).

From Theorem 3.5.10, we deduce

Corollary 3.5.11. [3] Let (n,q) = 1, let χ be a Dirichlet character modulo q, and let cn

be a square root of χ(n). Then cnTn is a Hermitian operator on Sk(Γ0(q),χ), i.e.

(cnTn( f ),g) = ( f ,cnTn(g)).

Proof. Since cn is a square root of χ(n), it is a root of unity. By using Theorem 3.5.10, we

obtain

(cnTn( f ),g) = cn(Tn( f ),g)

= cnχ(n)( f ,Tn(g))

= cnc̄n
2( f ,Tn(g))

= c̄n( f ,Tn(g))

= ( f ,cnTn(g)),

as desired.

Lastly, we refer where to find a basis of eigenforms for Tn.

Theorem 3.5.12. [6] The space of cusp forms Sk(Γ0(q),χ) contains a basis of eigenforms

for all the Tn with (n,q)=1.
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Proof. First of all, we have Sk(Γ0(q),χ) is a finite dimensional Hilbert space. Moreover,

by Corollary 3.5.11, we say the Hecke operators Tn’s with (n,q) = 1 forms a ring of Her-

mitian operators. The result is immediate from Theorem 3.5.8.
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4 L-FUNCTIONS

In this chapter we discuss L-functions and its relation with modular forms.

4.1 Riemann ζ -function

We first take the series
∞

∑
n=1

an

ns .

which is called theDirichlet series [11]. This series was first stated byDirichlet in 1839 and

he was able to proof that there are infinitely many primes by using the series. Nevertheless,

Dirichlet did not pay much attention to the case that s is complex number.

Riemann was the first mathematician who discovered the importance of the Dirichlet

series for the case that s is a complex number. He especially focused on the case when

an = 1 for all n and define the zeta function which is the Dirichlet series for an = 1 for all

n, i.e.

ζ (s) =
∞

∑
n=1

n−s, Re(s)> 1.

Although Euler was aware of the zeta function, it is known as Riemann zeta function

[11] as Riemann studied it extensively.

By integrating the gamma function

Γ(s) =
∫ ∞

0
e−yys−1dy,
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Riemann reached the conclusion [6] that

(2π)−sΓ(s)ζ (2s) =
1
2

∫ ∞

0
(θ(iy)−1)ys−1dy

where the theta function is

θ(z) =
∞

∑
n=−∞

e2πin2z.

From that conclusion, we deduce the functional equation [11]

πs/2Γ
(

s
2

)
ζ (s) = π−(1−s)/2Γ

(
1− s

2

)
ζ (1− s).

For the Dirichlet L-function

L(χ,s) =
∞

∑
n=1

χ(n)n−s,

the functional equation given above is also supplied. In the chapter we focus contribution

of Hecke in L-function theory.

4.2 Introduction to L-functions

We start with a cusp form and derive an L-function from that cusp form. Let f ∈

Sk(Γ0(q),χ) with the Fourier expansion at the cusps 0 and i∞

f (z) =
∞

∑
n=1

ane(nz),

and for w =
(

0 −1
q 0

)
, g = f |w with the Fourier expansion at the cusps 0 and i∞

g(z) =
∞

∑
n=1

bne(nz).

Then, g ∈ Sk(Γ0(q),χ).

Now we have enough tools to define Hecke L-functions.

Definition 4.2.1. [6] Let f ,g be as above. Then the Hecke L-functions associated to f ,g
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are

L( f ,s) =
∞

∑
n=1

ann−s,

and

L(g,s) =
∞

∑
n=1

bnn−s.

Remark 4.2.2. From their Fourier expansion, we easily obtain the identity

g(z) = qk/2(qz)−k f
(
− 1

qz

)
,

and by taking z = iy for y > 0, we derive

g(iy) = i−kq−k/2y−k f
(

i
qy

)
.

Now we give a significant theorem about Euler product expressions of L-functions

introduced by Hecke.

Theorem 4.2.3 (Hecke). [6] Let f be a Hecke eigenform with Fourier expansion

f (z) =
∞

∑
n=1

ane2πinz,

and let its associated L-function be

L( f ,s) =
∞

∑
n=1

ann−s.

Then for Re(s)> (k+1)/2, L( f ,s) has the Euler product

L( f ,s) = ∏
p
(1−ap p−s + pk−1−2s)−1.

Proof. Since the Fourier coefficients of a Hecke eigenform are eigenvalues of Tm’s, we

obtain

anam = anm for (m,n) = 1
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by commutativity of Hecke operators.Moreover, Theorem 3.2.3 implies

apr = apapr−1 − pk−1apr−2.

and this relation allows us to write
∞

∑
r=0

apr

prs = 1+
∞

∑
r=0

apr+1

p(r+1)s

= 1+
∞

∑
r=0

apapr − pk−1apr−1

p(r+1)s

= 1+
ap

ps

∞

∑
r=0

apr

prs −
pk−1

ps

∞

∑
r=0

apr−1

prs

= 1+
ap

ps

∞

∑
r=0

apr

prs −
pk−1

ps

∞

∑
r=1

apr−1

prs

= 1+
ap

ps

∞

∑
r=0

apr

prs −
pk−1

ps

∞

∑
r=0

apr

p(r+1)s

= 1+
ap

ps

∞

∑
r=0

apr

prs −
pk−1

p2s

∞

∑
r=0

apr

prs .

Here, for the first line we use a1 = 1, for the forth line we use ap−1 = 0. Therefore,

we obtain
∞

∑
r=0

apr

prs = (1−
ap

ps +
pk−1

p2s )−1.

Hence, we deduce

L( f ,s) =
∞

∑
n=1

ann−s

= ∏
p

( ∞

∑
r=0

apr p−rs
)

= ∏
p
(1−ap p−s + pk−1−2s)−1

33



4.3 Completed L-function

In this section, we introduce the completed L-function which satisfies a nice func-

tional equation.

Theorem 4.3.1. [6],[3] Let f ,g ∈ Sk(Γ0(q),χ) with the Fourier expansion at the cusps 0

and i∞

f (z) =
∞

∑
n=1

ane(nz),

g(z) =
∞

∑
n=1

bne(nz),

and

L( f ,s) =
∞

∑
n=1

ann−s,

L(g,s) =
∞

∑
n=1

bnn−s.

Then L( f ,s) and L(g,s) extend analytically to the following entire functions with

poles at s=0 and s=k

Λ( f ,s) =
(√

q
2π

)s

Γ(s)L( f ,s)

and

Λ(g,s) =
(√

q
2π

)s

Γ(s)L(g,s),

which satisfy the functional equation

Λ( f ,s) = ikΛ(g,k− s).

Proof. First, we say that

(2π)−sΓ(s)L(g,s) =
∫ ∞

0
g(iy)ys−1dy.
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Then, by plugging in

g(iy) = i−kq−k/2y−k f
(

i
qy

)
,

the integral becomes

i−kq−k/2
∫ ∞

0
f
(

i
q

)
y−k+s−1dy.

Next, by changing variables t = 1/qy, the integral becomes

i−kq−k/2
∫ ∞

0
f (it)qk−stk−s−1dt = i−kqk/2−s

∫ ∞

0
f (it)tk−s−1dt. (4.1)

Lastly, taking termwise integration of L( f ,s) gives the identity

(2π)−sΓ(s)L( f ,s) =
∫ ∞

0
f (iy)ys−1dy.

and by putting this identity into (4.1), the integral equals to

i−kqk/2−s(2π)−(k−s)Γ(k− s)L( f ,k− s)

which gives the desired functional equation.

Definition 4.3.2. The entire function Λ( f ,s) in previous theorem is called

the completed L− f unction.

Although we force f ,g to be cusp forms in the previous theorem, it is not essential.

However, Λ( f ,s) and Λ(g,s) may have simple poles at s = 0 and s = k if we relax the

assumption.

Next, we give a theorem stated by Hecke that shows under suitable hypotheses the

functional equation

Λ( f ,s) = ikΛ(g,k− s)
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implies g = f |w. However, we need the following theorem known as Phragmén-Lindelöf

theorem to prove Hecke’s theorem.

Theorem 4.3.3 (Phragmén-Lindelöf). [9],[10] Suppose that f(s) is analytic in the vertical

strip a ≤ Re(s)≤ b, and that for some α ≥ 1,

| f (s)|= O(e|t|
α
)

as |t| → ∞. If f(s) is bounded on the two vertical lines Re(s)=a and Re(s)=b, then f(s) is

bounded in the entire vertical strip.

Theorem 4.3.4 (Hecke). [6] Assume f ,g are functions with Fourier expansions

f (z) =
∞

∑
n=0

ane(nz),

g(z) =
∞

∑
n=0

bne(nz)

with an,bn bounded by O(nα) for some positive constant α . Put

L( f ,s) =
∞

∑
n=1

ann−s,

L(g,s) =
∞

∑
n=1

bnn−s,

Λ( f ,s) =
(√

q
2π

)
Γ(s)L( f ,s),

Λ(g,s) =
(√

q
2π

)
Γ(s)L(g,s)

where q is a positive number and for w =
(

0 −1
q 0

)
, ( f |w)(z) = qk/2(qz)−k f

(
− 1

qz

)
. Then

the following conditions are equivalent:

(i) g = f |w,
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(ii) Λ( f ,s),Λ(g,s) extend to the entire complex plane and both

Λ( f ,s)+
a0

s
+

b0ik

k− s

and

Λ(g,s)+
b0

s
+

a0i−k

k− s

are entire and bounded in every vertical strip and satisfy the functional equation

Λ( f ,s) = ikΛ(g,k− s).

Proof. When we assume (i), we have the integral representations

Λ( f ,s)+
a0

s
+

b0ik

k− s
=

∫ ∞

1

(
f
(

it
√

q

)
−a0

)
ts−1dt + ik

∫ ∞

1

(
g
(

it
√

q

)
−b0

)
tk−s−1dt,

and

Λ(g,s)+
b0

s
+

a0i−k

k− s
=

∫ ∞

1

(
g
(

it
√

q

)
−b0

)
ts−1dt + i−k

∫ ∞

1

(
f
(

it
√

q

)
−a0

)
tk−s−1dt.

Both sides of identities converge for all s ∈ C since an’s and bn’s have polynomial

growth. If we put s instead of k− s in the identities, we derive the functional equation

Λ( f ,s) = ikΛ(g,k− s)

because the polar part also satisfies the functional equation.

For the converse implication, one usesMellin inversion, the Phragmén-Lindelöf con-

vexity principal and Stirling’s estimate for gamma function.

Firstly, we obtain Γ(s+ 1) = sΓ(s) from integration by parts of gamma function.

Therefore, we extend Γ(s) to the entire plane with only poles at s = 0,−1,−2, ....

On the other hand, Stirling’s estimate for gamma function implies that if σ is fixed,
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and |t| → ∞, then

|Γ(σ + it)| ∼
√

2πe(−π/2)|t||t|σ−1/2.

Hence, we deduce that, for any vertical strip σ1 ≤ Re(z)≤ σ2, L( f ,s) and L(g,s) are

O(|t|1/2−σ eπ|t|/2) as |t| → ∞ if Λ( f ,s),Λ(g,s) are bounded in every vertical strip.

Furthermore, L( f ,s) and L(g,s) are bounded in some fixed half plane by the

Phragmén-Lindelöf convexity principal. Furthermore, by the functional equation in (ii)

and Stirling’s estimate, for some positive A,

s(s− k)L( f ,s) = O(|t|A),

s(s− k)L(g,s) = O(|t|A)

in any vertical strip.

On the other hand,

1
2πi

∫ σ+i∞

σ−i∞
Λ( f ,s)y−sds =

1
2πi

∫ σ+i∞

σ−i∞

(√
q

2π

)s

Γ(s)L( f ,s)y−sds

=
∞

∑
1

an

(
1

2πi

∫ σ+i∞

σ−i∞
Γ(s)

(
2πny
√

q

)−s

ds
)

=
∞

∑
1

ane−2πny/
√

q

= f
(

iy
√

q

)
−a0.
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Then, by moving the line integration to Re(s) =−U for positive U ,

f
(

iy
√

q

)
−a0 =

1
2πi

∫ −U+i∞

−U−i∞
Λ( f ,s)y−sds−a0 − ikb0y−k

=
1

2πi

∫ −U+i∞

−U−i∞
ikΛ(g,k− s)y−sds− ikb0y−k −a0

=
1

2πi

∫ k+U+i∞

k+U−i∞
ikΛ(g,s)ys−kds− ikb0y−k −a0

= ik
(

g
(

iy
√

q

)
−b0

)
y−k −a0.

Here, for first line we used Cauchy’s Theorem, for second line we use the functional

equation, for third line we change k− s to s, and for the last line we use the above integral

representation for g. Therefore, we reach

f
(

iy
√

q

)
= ik

(
g
(

iy
√

q

)
−b0

)
y−k.

Lastly, we replace y by 1/
√

qt and we get

f
(

i
qt

)
= ikqk/2tkg(it),

which means, for z = it,

f
(
− 1

qz

)
= qk/2zkg(z).

Thus f |w = g and that proves the other direction.
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5 SUMMARY

In this thesis, we have discussed three main subject arising in the study of modular

forms.

In the second chapter, we defined and explained full modular group and some of

its subgroups, standard fundamental domain, modular forms and cusp forms. We also

mentioned the Fourier expansion of a modular form and introduced Eisenstein series and

delta function as examples of modular forms. At the end of the chapter, we expressed the

valence and dimension formulas.

In the third chapter, we discussed Hecke operators and some of their commutativ-

ity. Then, we saw that Hecke operators map a modular form to a modular form and a

cusp form to a cusp form. Further, we used Hecke operators to prove two conjectures

about Ramanujan-τ function. Moreover, we defined Hecke operators for Hecke congru-

ence subgroup. At the end of the chapter, we mentioned Hecke eigenforms and some

theorems about that eigenforms.

In the forth chapter, we started with the definition of Riemann-ζ function and some

identities. Then, we defined L-function and completed L-function and gave a theorem

about its Euler product. At the end of the chapter, we established a nice functional equation

about completed L-function.
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