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ABSTRACT

We study discrete resource allocation problems in which agents have unit demand

and strict preferences over a set of indivisible objects. Such problems are known as

house allocation problems. We define a new property that we call “balancedness.”

We characterize the top trading cycles from individual endowments by Pareto ef-

ficiency, group strategy-proofness, reallocation-proofness and balancedness. When

there are at least four agents or just two agents, we characterize the top trading cy-

cles from individual endowments by Pareto efficiency, group strategy-proofness and

balancedness. When there are three agents, an allocation rule is Pareto efficient,

group strategy-proof and balanced if and only if it is a top trading cycles rule from

individual endowments or a trading cycles rule with three brokers.

We also study house allocation problems with weak preferences. We show that the

serial dictatorship with fixed tie-breaking satisfies weak Pareto efficiency, strategy-

proofness, non-bossiness, and consistency. Furthermore, the serial dictatorship with

fixed tie-breaking is not Pareto dominated by any Pareto efficient and strategy-proof

rule. We also show that the random serial dictatorship with fixed (or random) tie-

breaking is equivalent to the top trading cycles from random endowments with fixed

(or random) tie-breaking.

ii



ACKNOWLEDGEMENTS

Over the past five years I have received enormous help and support from many

people. I am grateful to all those people who have made my dissertation possible

and, because of whom, I will cherish my Ph.D experience forever.

My deepest gratitude goes first and foremost to my advisor, Dr. Guoqiang Tian

who is also my coauthor of chapter 4. I have been very fortunate to have an advisor

and mentor who made these five years a rewarding journey for me. His guidance and

encouragement helped me overcome many difficulties and finish this dissertation.

My co-advisor, Dr. Rodrigo A. Velez who is also my coauthor of chapter 3, has

initiated my interests in matching theory and market design. I am deeply grateful to

him for the discussions that helped me sort out the ideas as well as technical details

of my work.

Dr. Vikram Manjunath’s insightful suggestions and constructive criticisms during

the course of my research were really helpful. I am also thankful to him for carefully

reading and commenting my manuscript and for correcting my grammatical errors

and typos.

I am grateful to Dr. Ximing Wu for his support over the past two years. Dr. Wu

has always been willing to help when I need.

I am also thankful to speakers and participants of our department seminars,

including but not limited to Dr. Alexander Brown, Dr. Daniel Fragiadakis, Dr. Eun

Jeong Heo, Dr. Silvana Krasteve, Dr. Parag Pathak and Dr. Yuzhe Zhang, for the

valuable discussions that helped me understand my research area better.

Finally, I thank Dr. Richard Anderson for teaching me the art of teaching.

iii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 House allocation problems . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Interim fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Weak preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Relationship between various allocation rules . . . . . . . . . . . . . . 11
2.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Trading cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Models without brokers . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Generalized model with social and private endowment . . . . . 18
2.4.2 Hierarchical exchange . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3 Top trading cycles from individual endowments . . . . . . . . 27
2.4.4 Priority rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. BALANCED HOUSE ALLOCATION . . . . . . . . . . . . . . . . . . . . 33

3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.1 Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Top trading cycles algorithm . . . . . . . . . . . . . . . . . . . 36

3.2 The result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Hierarchical exchange rules . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Trading cycles rules . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

iv



4. HOUSE ALLOCATION WITH WEAK PREFERENCES . . . . . . . . . . 60

4.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 The matching rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Serial dictatorships with fixed tie-breaking . . . . . . . . . . . 64
4.2.2 Top trading cycles with fixed tie-breaking . . . . . . . . . . . 65

4.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

v



LIST OF FIGURES

FIGURE Page

2.1 Relationship between various allocation rules . . . . . . . . . . . . . . 13

3.1 A hierarchical exchange rule . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 The procedure of a HE rule . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 A serial dictatorship . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 A fixed endowment HE rule . . . . . . . . . . . . . . . . . . . . . . . 46

vi



LIST OF TABLES

TABLE Page

2.1 Weak core 6= strict core. . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Strict core many not exist . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 The preferences for a HE rule . . . . . . . . . . . . . . . . . . . . . . 43

3.2 The preferences for a TC rule . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Original preference profile R . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Transformed preference profile R′ . . . . . . . . . . . . . . . . . . . . 51

3.5 Example 3.6 for proposition 3.1 . . . . . . . . . . . . . . . . . . . . . 52

3.6 Example 3.8 for theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Serial dictatorship with fixed tie-breaking is not Pareto efficient . . . 68

4.2 The preferences for example 4.1 . . . . . . . . . . . . . . . . . . . . . 69

4.3 The outcomes of example 4.1 . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Two schools with same capacities . . . . . . . . . . . . . . . . . . . . 78

5.2 Two schools with asymmetric capacities . . . . . . . . . . . . . . . . 79

5.3 Schools with different capacities . . . . . . . . . . . . . . . . . . . . . 79

vii



1. INTRODUCTION

1.1 House allocation problems

Since the pioneering work of Shapley and Scarf (1974), a large literature has stud-

ied discrete resource allocation problems. Such a problem consists of a set of agents

and a set of indivisible objects. Each agent consumes one object, and has a privately

known preference relation over the set of objects. Each object can only be assigned

to one agent, and objects do not care who they are assigned to. These problems are

known as one-sided matching problems as opposed to two-sided matching problems.

In a two-sided matching problem, there are two disjointed sets of agents, and each

agent in one set has a preference relation over the agents in the other set. Real life

examples of discrete resource allocation problems include assigning students to uni-

versity apartments (Abdulkadiroğlu and Sönmez 1999), allocating and exchanging

transplant organs, like kidneys (Roth, Sönmez, and Ünver 2004) or lungs (Ergin,

Sönmez and Ünver 2015), etc. There are no monetary transfers in these settings.

When Shapley and Scarf (1974) initiated the problem, they used the example of

houses and traders. Since then, such problems are now known as house allocation

problems. In their problem, each agent initially owns one house and can possibly

trade it for a better one in the market. So their model is also known as a housing

market model in the literature. They defined the strict core. An allocation is in

the strict core if there is no subset of agents such that by reallocating their endowed

houses among themselves, at least one of them is strictly better off, and the others

in the subset are not worse off. They proposed the top trading cycles algorithm

invented by David Gale to find an allocation in the strict core. The top trading

cycles algorithm consists of a serial of finite steps. At each step, each remaining
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agent points to the agent who owns her best choice among the remaining houses. A

set of agents forms a cycle whenever their best choices are the houses owned by the

agents in this set. A single agent who owns her favorite house also forms a cycle by

pointing to herself. Remove all cycles from the market, assign each agent in a cycle

her best choice, and proceed to the next step. The algorithm stops when everyone is

assigned. Shapley and Scarf (1974) used an example to show that the strict core may

disappear if indifferences are allowed. In what follows, we assume that preferences

are strict unless otherwise mentioned.

Roth and Postlewaite (1977) showed that the strict core allocation is unique.

Roth (1982a) showed that the strict core mechanism is strategy-proof, i.e., truthfully

reporting one’s preference is a weakly dominant strategy for each agent. Bird (1984)

showed that it is group strategy-proof, i.e., there is no subset of agents who can

jointly misreport their preferences such that at least one agent in the group is strictly

better off while the others are not worse off. Ma (1994) characterized the strict core

mechanism by individual rationality (i.e., each agent weakly prefers her assigned

object to her endowed object), Pareto efficiency (i.e., no other allocation exists such

that all agents are weakly better off and some agent is strictly better off) and strategy-

proofness. However, in the two-sided matching problems even with strict preferences,

efficiency and strategy-proofness are incompatible. For example, in the marriage

problem, it is well-known that there exists no individual rational mechanism that is

both Pareto efficient and strategy-proof (Theorem 3 in Roth 1982b; Proposition 1 in

Alcalde and Barberà 1994).

Unlike Shapley and Scarf’s (1974) housing market model, all objects could be

initially owned by a social planner and she determines a priority ranking of agents.

Agents choose their best choices sequentially according to a priority ranking. This

allocation rule is a serial dictatorship. Svensson (1999) characterized the serial dic-
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tatorships by strategy-proofness, non-bossiness (i.e., if an agent cannot change their

assignment by misreporting their preference relation, then she cannot change the

assignments of other agents) and neutrality (i.e., the “real” outcome is independent

of the indexes of objects). Ergin (2002) generalized the serial dictatorships by allow-

ing each distinct object type to have multiple copies (for example, each school has

multiple seats for students) and different object types may have different priority

rankings of agents. Ergin studied the deferred acceptance (DA) mechanism, defined

a property of acyclicity for a priority structure (i.e., for house allocation problems

with unit capacity for each object type, there exist no objects o and o′ and agents i, j

and k such that for object o, i has a higher priority than j and j has a higher priority

than k, and for object o′, k has a higher priority than i), and showed the equivalence

between acyclical priority, Pareto efficient DA mechanism, group strategy-proof DA

mechanism, and consistent (i.e., whenever some agents receives their assignments,

we can remove these agents and their assignments from the market without changing

the assignments of other agents) DA mechanism.

Abdulkadiroğlu and Sönmez (1999) studied a hybrid model known as house al-

location with existing tenants. In their model, some agents each initially owns one

object and some objects are social endowments. They proposed the so-called “you

request my house-I get your turn (YRMH-IGYT)” algorithm to find the allocation.

Sönmez and Ünver (2010) characterized the YRMH-IGYT rules by individual ra-

tionality, Pareto efficiency, strategy-proofness, weak neutrality (i.e., the labeling of

unowned objects has no effect on the outcome of the mechanism), and consistency.

Ekici (2013) defined a property reclaim-proofness for a matching (i.e., it is robust to

blocking coalitions with respect to any conceivable interim endowments of agents)

and showed its relationships between the YRMH-IGYT rules and competitive allo-

cation.

3



Pápai (2000) extended Gale’s top trading cycles algorithm used in the housing

market model to more general environments by allowing some agents to initially own

more than one object and each object is owned by some agent. She constructed

a class of rules known as hierarchical exchange rules and showed that an allocation

rule that is Pareto efficient, group strategy-proof, and reallocation-proof (i.e., no pair

of agent can jointly misreport their preferences and swap their assignments ex post

to make at least one of them strictly better off) if and only if it is a hierarchical

exchange rule. A hierarchical exchange rule also utilizes the top trading cycles to

find the allocation. Each rule is defined by an inheritance structure which specifies

who initially owns and who potentially inherits what. The formal definition of the

hierarchical exchange rules is introduced in chapter 2. To distinguish the top trading

cycles used in Shapley and Scarf’s housing market where each agent initially owns

one object and the top trading cycles used in Pápai’s (2000) hierarchical exchange

rules where some agent may initially own more than one object, we refer to the former

as the top trading cycles from individual endowments. For a hierarchical exchange

rule, if each agent initially owns one object, then it is a top trading cycles rule from

individual endowments; if one agent initially owns all the objects, the second agent

inherits all the remaining objects after the first agent chooses, the third agent inherits

all the remaining objects after the second agent chooses, and so forth, then it is a

serial dictatorship; if different objects have possibly different inheritance orderings

of agents, then it is a Ergin’s priority rule.

Velez (2014) studied the set of consistent hierarchical exchange rules. He defined

the CHE rules, showed the equivalence of the CHE rules and consistent hierarchical

exchange rules, and proved that the CHE rules are the only rules that are efficient

in two-agent problems, consistent in two-agent problems, and strategy-proof. Tang

and Zhang (2016) redefined individual rationality and the strict core for Pápai’s
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hierarchical exchange rules. They characterized these rules by Pareto efficiency,

strategy-proofness and their newly defined individual rationality. They also showed

that the hierarchical exchange rule selects the unique strict core allocation.

Pycia and Ünver (2016a) generalized Pápai’s hierarchical exchange rules by al-

lowing at most one agent to be a broker who brokers only one object, or allowing

all the three remaining objects to be brokered by three agents. The assignment is

formed by running the same top trading cycles algorithm as a hierarchical exchange

rule with the additional requirement that a broker may not be allowed to points to

herself if her favorite object is her brokered object. They call such an allocation rule

as a trading cycles rule. The formal definition of the trading cycles rules could be

found in chapter 3 when the number of agents is equal to or greater than the number

of objects. When there are more objects than agents, the definition is available in

chapter 2. The trading cycles rules are quite general. They subsume the top trading

cycles from individual endowments, the serial dictatorships, and the hierarchical ex-

change rules as special cases. Surprisingly, Pycia and Ünver showed that the trading

cycles rules are the only rules that are Pareto efficient and group strategy-proof.

1.2 Interim fairness

When we design an allocation rule, Pareto efficiency and group strategy-proofness

are among the most important properties of our concern. Pareto efficiency should

be the minimum requirement when preferences are strict. Group strategy-proofness

prevents manipulation among agents, therefore, it minimizes information searching

costs. It also does not discriminate agents who do not have access to information

and who are less able to play strategically. All the trading cycles rules, including

serial dictatorships, are both Pareto efficient and group strategy-proof. But a serial

dictatorship seems unfair in the sense that the agent at the top of the priority list is
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always guaranteed to her best choice, while the agent at the end of the list receives

her best choice only if her best choice is not the best choice of any other agent.

A Pareto efficient allocation rule cannot be ex post fair because if all agents have

the same preferences, then Pareto efficiency implies that each agent receives a dis-

tinct object. Therefore, agents cannot be treated equally. But the random serial

dictatorship seems more desirable than a deterministic allocation rule in the sense

that all agents have equal chances to be the first to choose, have equal chances to

be the second to choose, and so forth. Given a deterministic allocation rule, we

can interpret agents in the rule as “roles.” A corresponding random allocation rule

is defined by assigning agents to the “roles” via a uniform lottery. Surprisingly,

Abdulkadiroğlu and Sönmez (1998) showed that the random serial dictatorship is

equivalent to the top trading cycles from random endowments as their distributions

over assignments are exactly the same for a given preference profile. Pathak and

Sethuraman (2011) showed the equivalence between the random serial dictatorship

and the multiple lottery mechanism where each object independently draws a lottery

to determine agents’ priorities. Lee and Sethuraman (2011) showed that this equiva-

lence still holds for all random hierarchical exchange rules. Bade (2014) extended the

equivalence result to all random trading cycles rules. Therefore, all random trading

cycles rules are equally ex ante fair. We refer to this kind of fairness as ex ante

fairness because the expectations of outcomes are based on beliefs before knowing

who actually owns or brokers what. After knowing the realizations of the lotteries,

it is clear that a serial dictatorship is less equitable than a rule of top trading cycles

from individual endowments.

During the course of assigning students to public schools in New York City,

policymakers and parents believed that a single lottery used for all schools is less

equitable than lotteries at each school. As quoted in Pathak and Sethuraman (2011),
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a policymaker from the New York City Department of Education said:

“I cannot see how the children at the end of the line are not disenfranchised

totally if only one run takes place. I believe that one line will not be acceptable

to parents. When I answered questions about this at training sessions, (it did

come up!) people reacted that the only fair approach was to do multiple runs.”

Since no mechanism could be ex post fair, and all of the random mechanisms con-

structed from Pareto efficient and group strategy-proof rules are equally ex ante fair,

our chapter 3 tries to formally define a interim fairness property and to characterize

the set of rules that satisfies this interim fairness property without compromising

Pareto efficiency and group strategy-proofness.

Consider the following timing of the allocation mechanism:

• First: Mechanism designer picks an allocation rule including the realization of

the lottery.

• Second: Agents report their preferences.

• Third: Assignment is realized.

After knowing the realization of the lottery, i.e., after knowing which deterministic

allocation rule would be used to find the assignment, but before agents submit their

preferences, no one knows what are the true preferences. When fixing the allocation

rule and considering all possible preference profiles, we can count the number of

preference profiles that an agent, say agent i, receives her best choice. We can

also count the number of preference profiles that agent i receives her second best

choice, and so forth. If for any two agents i and j, the number of preference profiles

that agent i receives her best choice is equal to the number of preference profiles

that agent j receives her best choice, the number of preference profiles that agent

7



i receives her second best choice is equal to the number of preference profiles that

agent j receives her second best choice, and so forth, then the allocation rule is

balanced. Balancedness means that if all possible preference profiles are equally

likely to occur, then a balanced deterministic allocation rule assigns all agents to

their best choices with equal probabilities, assigns all agents to their second best

choices with equal probabilities, and so forth. Unlike the previous equivalence results

which consider all possible permutations over the “roles” of a deterministic rule for

the fixed preference profile, our definition considers all possible preference profiles

for a given deterministic rule.

Our theorem 3.1 states that an allocation rule is Pareto efficient, group strategy-

proof, reallocation-proof, and balanced if and only if it is a top trading cycles rule

from individual endowments. As stated in theorem 3.2, when there are at least

four agents or just two agents, we can drop reallocation-proofness in theorem 3.1;

when there are just three agents, a deterministic allocation rule is Pareto efficient,

group strategy-proof, and balanced if and only if it is a top trading cycles rule from

individual endowments or a trading cycles rule with three brokers. We may also relax

the requirements of balancedness by only requiring all agents have equal chances to

their worst choices. We show that theorem 3.1 and theorem 3.2 still hold under the

relaxed version of balancedness. Our new characterizations of the top trading cycles

from individual endowments have important policy implications. Whenever policy

makers can freely choose any allocation rule, for the sake of interim fairness, they

should randomly assign each agent a distinct object and then use the top trading

cycles algorithm to find the allocation.
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1.3 Weak preferences

So far, we assume preferences are strict. A large literature on matching theory

assumes strict preferences. Without this assumption, many good properties fail to

hold. For example, in the marriage problem with strict preferences, stability (that is,

a matching is stable if no unmatched pair can be better off by matching each other,

and no matched agent can be better off by being single) implies Pareto efficiency

(Proposition 2.1 in Abdulkadiroǧlu and Sönmez 2013). But with weak preferences,

a stable matching might fail to be Pareto efficient. For example, consider a marriage

problem with two men and two women. Each man is indifferent between the two

women, woman 2 is indifferent between two men, but woman 1 prefers man 1 to

man 2. The matching that matches man 1 to woman 2, and man 2 to woman

1 is stable, but it is not efficient. Alternatively, Pápai (2000) showed that group

strategy-proofness is equivalent to strategy-proofness and non-bossiness under strict

preferences; but this equivalence breaks down on the weak domain (Ehlers 2002).

Due to the undesirable properties and the complexity induced by ties, weak pref-

erences are ignored in most of the existing matching literature. But indifferences pre-

vail in the real world. For example, in the kidney exchange problem (Roth, Sönmez,

and Ünver 2004), each patient-donor pair wants to exchange for a compatible kidney

from another patient-donor pair. If their preferences are based on checklist criteria

such as blood and tissue types, then different kidneys with the same criteria should

be regarded as indifferent. Another example is the school choice problem (Erdil and

Ergin 2008) which consists of a set of students and a set of public schools with limited

numbers of seats. Each school has a priority ranking over students. The ranking is

determined by local laws and educational policies. Such priorities are weak orderings

and the indifference classes are quite large.
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When we design allocation mechanisms for house allocation problems, in addition

to the minimum requirement of efficiency or weak efficiency, we also want agents to

truthfully reveal their preferences. In the two-sided matching problems even with

strict preferences, efficiency and strategy-proofness are incompatible. Fortunately,

in the one-sided matching problems, positive results exist. Recently, Alcalde-Unzu

and Molis (2011) and Jaramillo and Manjunath (2012) defined two different class-

es of rules that are Pareto efficient, strategy-proof, and individual rational for the

housing market problem when indifferences are allowed. Ehlers (2014) provided a

characterization for top trading cycles with fixed tie-breaking for the housing mar-

ket problems with indifference by individual rationality, strategy-proofness, weak

efficiency, non-bossiness, and consistency.

In chapter 4, we study the serial dictatorship with fixed tie-breaking when in-

differences are allowed. We show that it satisfies weak Pareto efficiency, strategy-

proofness, non-bossiness, and consistency; moreover, it is not Pareto dominated by

any Pareto efficient and strategy-proof rule. As a corollary to Abdulkadiroğlu and

Sönmez (1998), the equivalence between the random serial dictatorship and the top

trading cycles algorithm from random endowments still holds when we use fixed

tie-breaking or random tie-breaking.

The remaining dissertation is organized as follows: chapter 2 surveys axiomatic

approaches to house allocation problems; chapter 3 introduces a new property that

we call “balancedness,” and we characterize the set of allocation rules that satisfies

this new fairness property as well as the efficiency and incentive properties; chapter

4 discusses the serial dictatorships with fixed tie-breaking; and chapter 5 concludes.
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2. LITERATURE REVIEW

2.1 Relationship between various allocation rules

The seminal work on house allocation problems was written by Shapley and

Scarf (1974). They introduced the so-called housing marking model in which each

trader initially owns one house and can possibly trade it for a better one in the

market. The question they were interested in is whether the strict core allocation

defined by weak dominance exists. They showed that the strict core always exists

when preferences are strict. They proposed a simple algorithm known as top trading

cycles which was invented David Gale to find an allocation in the strict core. Since

then, Roth and Postlewaite (1977), Roth (1982a), Bird (1984), Ma (1994), among

others, studied properties of the top trading cycles algorithm. Specifically, Ma (1994)

characterized top trading cycles rules by Pareto efficiency, individual rationality and

strategy-proofness.

Unlike the housing market model, all objects could be initially owned by a social

planner and she determines a priority ranking of agents. Agents choose their best

choices sequentially according to the priority ranking. This allocation rule is called

a serial dictatorship. Svensson (1999) characterized serial dictatorships by strategy-

proofness, non-bossiness and neutrality. Ergin (2002) generalized the serial dictator-

ship by allowing each distinct object type to have multiple copies (for example, each

school has multiple seats for students) and different object types may have differen-

t priority rankings of agents. Ergin studied deferred acceptance (DA) mechanism,

defined a property of acyclicity for priority structure, and showed the equivalence

between acyclical priority, Pareto efficient DA mechanism, group strategy-proof DA

mechanism, and consistent DA mechanism.
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Abdulkadiroğlu and Sönmez (1999) studied a hybrid model in which some a-

gents each initially owns one object and some objects are social endowment. The

proposed the so-called you request my house-I get your turn (YRMH-IGYT) algo-

rithm to find the allocation. Sönmez and Ünver (2010) charactized YRMH-IGYT

rules by individual rationality, Pareto efficiency, strategy-proofness, weakly neutral-

ity, and consistency. Ekici (2013) defined a property reclaim-proofness and showed

its relationship between YRMH-IGYT rules and competitive allocation.

Pápai (2000) extended Gale’s top trading cycles algorithm used in housing mar-

ket model to more general environments by allowing some agents to initially own

more than one object and each object is owned by some agent. She constructed a

class of rules known as hierarchical exchange rules and characterized these rules by

Pareto efficiency, group strategy-proofness, and reallocation-proofness. Velez (2014)

studied the set of consistent hierarchical exchange rules. He defined the CHE rules,

showed the equivalence of the CHE rules and consistent hierarchical exchange rules,

and proved that the CHE rules are only rules that are 2-efficient, 2-consistent, and

strategy-proof. Tang and Zhang (2016) redefined individual rationality and the core

for Pápai’s model. They characterized hierarchical exchange rules by individual

rationality, Pareto efficiency, and strategy-proofness. They also showed that the

hierarchical exchange rule selects the unique core allocation.

Pycia and Ünver (2016a) modified the top trading cycles algorithm by allowing

at most one agent to be a broker who brokers only one object when there are more

objects than agents. The assignment is formed by running the same top trading

cycles algorithm as a hierarchical exchange rule with the additional requirement

that the broker points to her favorite object owned by others. Such allocation rules

are called trading cycles rules. Surprisingly, they characterized the trading cycles

rules by Pareto efficiency and group strategy-proofness.
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The following figure 2.1 shows the relationship between various allocation rules.

Rules with owners and an broker

Pycia and Ünver 2016a

Generalized rules with social and private endowment
Pycia and Ünver 2016a

Special case: house allocation with existing tenants
Abdulkadiroğlu and Sönmez 1999, etc.

Rules with only owners
Pápai 2000, Velez 2014, etc.

Individual endowments

(Housing market)
Shapley and Scarf 1974

etc.

Priorities
Ergin 2002

Dictatorships
Svensson 1999

Figure 2.1: Relationship between various allocation rules

The remaining chapter is organized from general models to specific ones. Section

2.2 introduces the notation for general models. Section 2.3 describes the trading cy-

cles. Section 2.4 discusses models without brokers, including models with social and

private endowments, the hierarchical exchange, the top trading cycles from individual

endowments, and Ergin’s priority rules and serial dictatorship.

2.2 The model

Let N be the set of agents and O be the set of objects. We assume there are

more objects than agents unless otherwise mentioned. Each agent i has a strict
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preference relation over O, denoted by Pi. Let Ri be the weak preference relation

associated with Pi, i.e., for all o, o′ ∈ O, oRio
′ if and only if o = o′ or oPio

′. The

set of strict preference relations for agent i is Pi. For any J ⊆ N , PJ is the set of

preference relations for all agents j ∈ J . A preference profile P = (Pi)i∈N is an

element from P ≡ PN . PJ = (Pi)i∈J is the restriction of P to J . Let P−i denote

PN\{i}. We do not consider outside options, and assume all objects are acceptable

to all agents.

A house allocation problem (Hylland and Zeckhauser 1979) consists of N ,

O, and P . The outcome of a house allocation problem is simply a allocation (or

an matching), denoted by µ, such that each agent receives a distinct object, i.e.,

µ : N → O is an injective (one-to-one) function. Let µi be the assignment of

agent i at matching µ. Let M denote the set of all matchings. A submatching

σ is a restriction of a matching to a subset of agents. Let S be the set of all

submatchings. For any σ ∈ S, let Nσ be the set of matched agents and Oσ be

the set of matched objects under σ. For each i ∈ Nσ, let σ(i) denote the assigned

object of agent i. For each o ∈ Oσ, let σ(o) denote the agent that receives o. Let

Nσ be N \Nσ, Oσ be O \ Oσ, and M be S \M. And the set of submatchings that

objects o is unmatched is denoted by S−o.

Fixed N and O, the domain of all problems is the set of preference profiles. An

allocation rule ϕ : P →M is function that assigns a matching for each problem.

2.3 Trading cycles

Pycia and Ünver (2016a) defined trading cycles rules by novelly introducing brok-

age right.
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Definition. A control rights structure is a collection of functions

{
(cσ, bσ) : Oσ → Nσ × {ownership, brokerage}

}
σ∈M .

A control rights structure specifies at each submatching σ each unmatched object

o ∈ Oσ is controlled by a unique unmatched agent cσ(o). The type of control

bσ(o) = ownership if agent cσ(o) owns o at σ, and bσ(o) = brokerage if agent cσ(o)

brokers o at σ.

A trading cycles rule have to satisfy the following requirements R1 to R6.

Within-round Requirements. For any σ ∈M,

(R1) There exists at most one brokered object at σ.

(R2) If i is the only unmatched agent at σ, then i owns all unmatched objects at

σ.

(R3) If agent i brokers an object at σ, then i does not own or broker any other

objects at σ.

Across-round Requirements. For any σ ⊂ σ′ ∈ M, if agent i ∈ Nσ′ owns

object o ∈ Oσ′ at σ, then:

(R4) Agent i owns o at σ′.

(R5) If i′ brokers object o′ at σ and i′ ∈ Nσ′ , o
′ ∈ Oσ′ , then i′ brokers o′ at σ′.

(R6) If agent i′ ∈ Nσ′ controls o′ ∈ Oσ′ at σ, then i′ owns o at σ ∪ {(i, o′)}.

Requirement R4 postulates that ownership rights are persistent: if agent i owns

an object at a smaller submatching, and agent i is unmatched at a larger submatch-

ing, then agent i still owns the object at the larger submatching. Requirement R5

is a counterpart of R4 for brokage right. It implies that the brokage right persists

whenever there is at least one owner at the base submatching σ. The loss of bro-

kerage right can only happen when there is no owner at the base submatching σ.
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In this case, R2 implies that the unmatched agent owns all unmatched objects. Re-

quirement R6 assumes that when an agent i is matched with an object controlled by

i′, then i′ owns the objects previously owned by i.

A trading cycles (TC) rule consists of a finite sequence of rounds described

below, with a structure of control rights satisfying requirements R1-R6. We set null

submatching σ0 = ∅ and construct submatchings σr of matched agents and objects

before round r + 1 for all r = 1, 2, 3, · · · . Each round r consists of three steps:

• Pointing step. Each object o ∈ Oσr−1 points to the agent who controls it at

σr−1. Each owner in Nσr−1 points to her favorite object among Oσr−1 . If there

is a broker in Nσr−1 , she points to her favorite object among objects owned at

σr−1.

• Trading step. As the number of agents is finite, each agent points to one object,

and each object points to one agent, there exists an integer number n and a

trading cycle consisting of a set of agents {i1, i2, · · · , in} ⊆ Nσr−1 and a set of

objets {o1, o2, · · · , on} ⊆ Oσr−1 such that ol points to il, il points to ol+1 for all

l = 1, 2, · · · , n, and on+1 = o1, i.e., o1 → i1 → o2 → · · · → on → in → o1. No

two trading cycles intersect. Each agent in a trading cycle is matched with the

object she points to.

• Departure step. Newly matched agents and objects are removed from Nσr−1 and

Oσr−1 . Submatching σr is the union of σr−1 and newly matched agent-object

pairs. The algorithm stops when all agents are matched. The submatching

formed at the last round is the outcome of the TC rule.

Example. Consider an economy with three agents 1, 2, 3, four objects a, b, c, d,

and a control-right structure that at submatching ∅, 1 brokers a, 2 owns b and c, and
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3 owns d, respectively. Suppose each agent i has the preference relation aPibPicPid

for all i = 1, 2, 3. Then in the first round 1 points to b, and 2 and 3 both point to

a. A trading cycle “1 → b → 2 → a → 1” exists. 1 is matched with b and 2 is

matched with a. In the second round, 3 owns c and d and she is matched with c.

The algorithm stops.

Definition. An matching µ ∈M is Pareto efficient if there exists no matching

µ′ ∈ M such that for all i ∈ N , µ′iRiµi, and there exists some agent j ∈ N , µ′jPjµj.

An allocation rule is Pareto efficient if it selects a Pareto efficient matching for

each problem.

Definition. An allocation rule ϕ is strategy-proof is truthfully revealing one’s

preference is a weakly dominant strategy for each agent, i.e., for all i ∈ N , all P ∈ P ,

and all P ′i ∈ Pi, ϕi(P )Riϕi(P
′
i , P−i). An allocation rule ϕ is group strategy-proof

if no group of agent can jointly misreport their preferences to make all agents in the

group are weakly better off and some agent in the group are strictly better off, i.e.,

for all P ∈ P , there exists no J ⊆ N and P ′J ∈ PJ such that ϕi(P )Riϕi(P
′
J , PN\J)

for all i ∈ J , and ϕj(P )Pjϕj(P
′
J , PN\J) for some j ∈ J .

Theorem (Theorem 1 in Pycia and Ünver 2016a): An allocation rule is Pareto

efficient and group strategy-proof if and only if it is a trading cycles rule.

For any allocation rule, we call an agent an owner* of an object if she obtains

the object whenever she ranks it first; we call an agent a broker* of an object if she

obtains her second best choice among all preference profiles such that all agents rank

the brokered object first. To show the only if part of theorem, the authors construct

a TC rule that is equivalent to the Pareto efficient and group strategy-proof rule. To

prove that this construction finds all candidates, it is necessary to check that each

unmatched object is either owned* or brokered*, as shown in the following theorem.

Theorem (Theorem 2 in Pycia and Ünver 2016a): For any Pareto efficient and
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group strategy-proof rule, for any submatching σ, each unmatched object at σ is

either owned* or brokered* by some unique agent.

2.4 Models without brokers

2.4.1 Generalized model with social and private endowment

Let O = {Oi}i∈{0}∪N be a collection of pairwise-disjointed subsets of O such that

∪i∈{0}∪NOi = O. O0 is social endowment of agents, Oi is private endowment of agent

i. Some agents may have empty private endowment.

Definition. A matching is individually rational if the assignment of each

agent is weakly preferred to any object that she could choose from her private en-

dowment. An allocation rule is individually rational if it finds an individually

rational matching for each problem.

The following theorem is corollary of theorem 1 in Pycia and Ünver (2016a).

Theorem (Theorem 3 in Pycia and Ünver 2016a): An allocation rule is indi-

vidually rational, Pareto efficient and group strategy-proof if and only if it is an

individually rational trading cycles rule.

The following theorem identifies individually rational trading cycles rule.

Theorem (Theorem 4 in Pycia and Ünver 2016a): An trading cycles rule is

individually rational if and only if it may be represented by a persistent structure

of control rights in which each agent has the initial ownership rights over all objects

from her endowment.

As a corollary, the following theorem characterize the top trading cycles.

Theorem (Theorem 5 in Pycia and Ünver 2016a): Suppose each agent’s endow-

ment is nonempty. An allocation rule is individually rational, Pareto efficient, and

group strategy-proof if and only if it is a top trading cycles rule that assigns all

agents the initial ownership rights over objects from their endowment.
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A special case of the generalized model without a broker is a house allocation

problem with existing tenants (Abdulkadiroğlu and Sönmez 1999) where some

agents (existing tenants) each initially owns one object (an occupied house) and un-

owned objects (vacant houses) are social endowment. They proposed two allocation

rules to find the matching. One is a top trading cycles rule with a priority

ordering of agents over the set of unowned objects (TTC with a priority ordering).

It consists of a serial of steps:

• At step 1, the set of available objects is the set of unowned objects.

• At step t, the set of available objects is the remaining previously unowned

objects at the end of step t−1. Each remaining agent points to her best choice

among the remaining objects. Each remaining owned object (an occupied

house) points to its owner (an existing tenant). And each available object

points to the remaining agent with the highest priority. This algorithm is just

a special case of trading cycles algorithm without a broker. The definition

of cycles and the submatchings formed in this step are similar to that of the

trading cycles rule.

Abdulkadiroğlu and Sönmez (1999) showed that the TTC with a priority ordering

satisfies good properties.

Theorem (Theorem 1 in Abdulkadiroğlu and Sönmez 1999): Fix a priority or-

dering, the TTC with the priority ordering is individually rational, Pareto efficient,

and strategy-proof.

The other allocation rule that Abdulkadiroğlu and Sönmez (1999) proposed is the

you request my house-I get your turn (YRMH-IGYT) algorithm described

below.
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1. For any priority ordering, match the agent with the highest priority her best

choice, the agent with the second highest priority her best choice among the

remaining one, and so forth, until the object is owned by some owner (an

existing tenant).

2. If at some point, the owner whose owned object is demanded is already matched,

then step 1 proceeds. Otherwise reorder the priority ordering by adding this

owner at the top of the remaining priority ordering and proceed.

3. Similarly, add any owner whose owned object is demanded to the top of the

remaining priority ordering and proceed.

4. If at any point a cycle consisting only of owners exists, then match each agent in

a cycle her best choice among the remaining ones, remove them, and proceed.

Abdulkadiroğlu and Sönmez (1999) showed the equivalence of the TTC algorithm

and YRMH-IGYT algorithm.

Theorem (Theorem 3 in Abdulkadiroğlu and Sönmez 1999): Fix a priority or-

dering, the TTC with the priority ordering and the YRMH-IGYT with the priority

ordering find the same matching.

Sönmez and Ünver (2010) provided a characterization of YRMH-IGYT mecha-

nism. Before introducing their result, we introduce some axioms used in their result.

Definition. An allocation rule is weakly neutral if labeling of unowned objects

(vacant houses) has no effect on the outcome of the mechanism.

Definition. An allocation rule ϕ is consistent for the house allocation problem

with existing tenants if we remove a set of agents J along with their matched objects

and some unmatched objects G, provided that the remaining problem is a well-
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defined reduced problem, then

ϕi

(
P
O\{ϕJ (P )∪G}
N\J

)
= ϕi(P ), ∀i ∈ N \ J,

where P
O\{ϕJ (P )∪G}
N\J is the restricted preference relations of agents in N \ J over the

set of objects O \ {ϕJ(P ) ∪G}.

Theorem (Theorem 1 in Sönmez and Ünver 2010): An allocation rule is Pareto-

efficient, individually rational, strategy-proof, weakly neutral, and consistent if and

only if it is a YRMH-IGYT rule.

Ekici (2013) defined a new property called reclaim-proofness and established a

link between reclaim-proof allocations and the class of YRMH-IGYT mechanisms.

Definition. An interim endowment function ω of an allocation µ satisfies

ω(o) ∈ {the agent who initially owns o, the agent who is matched with o at µ, the

social planner} for all o. An allocation is reclaim-proof if it is robust to blocking

coalitions with respect to every interim endowment function of µ.

Theorem (Theorem 1 and 2 in Ekici 2013): An allocation is reclaim-proof if

and only if it is induced by a YRMH-IGYT mechanism and if and only if it is a

competitive allocation.

2.4.2 Hierarchical exchange

A hierarchical exchange rule defined by Pápai (2000) is a TC rule without a

broker. To define a hierarchical exchange rule, we can simplify the control rights

structure to the ownership rights structure.

Definition. A ownership rights structure is a collection of functions {cσ :

Oσ → Nσ}σ∈M denoted by {cσ} for short. It specifies that at each submatching each

unmatched object is owned by a unique unmatched agent. The ownership rights

structure is persistent if for all submatchings σ ⊆ σ′ ∈ M, if agent i and object o
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are unmatched at σ′, and i owns o at σ, then i owns o at σ′, i.e., if i ∈ Nσ′ owns

o ∈ Oσ′ at σ, then i owns o at σ′. For each submatching σ and each unmatched

object o, we write cσ(o) = i if agent i owns o at submatching σ.

Definition. Each persistent structure of ownership rights defines a hierarchical

exchange rule. A fixed endowment allocation rule is a hierarchical exchange

rule satisfying cσ(o) = cσ′(o) for all o, and for all σ and σ such that Nσ = Nσ′ .

Pápai (2000) defined inheritance trees to describe this persistent TC rule without

brokerage right. An inheritance tree of an object specifies who initially owns and

who potentially becomes new owner of the object at different submatchings formed

when the algorithm proceeds.

An inheritance tree of an object a denoted by Γa consists of a set of vertices V

and a set of arcs Q ⊆ V × V . A arc (vi, vj) ∈ Q for vi, vj ∈ V if there is an arrow

from vi to vj. A Q-path from v1 to vr is a sequence {vs}rs=1, where r ≥ 2, such that

(vs, vs+1) ∈ Q. There exists a vertex v0 ∈ V which is the unique root of Γa, that is,

there exists no vertex v ∈ V such that (v, v0) ∈ Q.

A well-defined inheritance tree Γa satisfies the following requirements.

(A.1) All vertices are labeled by individuals.

(A.2) Every vertex of a Q-path represents a different individual.

(B.1) All arcs are labeled by objects other than a.

(B.2) Every arc of a Q-path represents a different object.

(B.3) Arcs from the same vertex represent different objects.

(C.1) maxv∈V d(v0, v) = m− 1, where m = min{|N |, |O|}.

(C.2) The number of arcs starting from v0 is |O| − 1.

(C.3) For all v ∈ V such that there is a Q-path from v0 to v, with d(v0, v) = r <

m− 1, the number of arcs starting from v is |O| − r − 1.

If a path of the tree for an object (say o1) is i1
o2→ i2

o3→ i3
o4→ · · ·

o|N|→ i|N |, then i1
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initially owns o1; if i1 is assigned o2, then i2 inherits o1; if i1 is assigned o2, and i2 is

assigned o3, then i3 inherits o1, etc.

Definition. An allocation rule ϕ is non-bossy if no agent can misreport her

preference to make her allocation unchanged but change the allocation of some other

agent, i.e., for all P ∈ P and all P ′i ∈ Pi, ϕi(P ′i , P−i) = ϕi(P ) implies ϕ(P ′i , P−i) =

ϕ(P ).

Theorem (Lemma 1 in Pápai 2000): An allocation rule is strategy-proof and

non-bossy if and only if it is group strategy-proof.

Definition. An allocation rule ϕ is reallocation-proof if no pair of agent can

jointly misreport their preferences and swap their assignments ex post to make at

least one of them strictly better off, i.e., there exists no i, j ∈ N such that for

some P ∈ P , P ′i ∈ Pi and P ′j ∈ Pj with ϕ(P ′i , P−i) = ϕ(P ′j , P−j) = ϕ(P ), we have

ϕi(P
′
i , P

′
j , PN\{i,j})Piϕi(P ) and ϕj(P

′
i , P

′
j , PN\{i,j})Rjϕi(P ).

The following theorem characterizes the hierarchical exchange rules.

Theorem (Theorem 1 in Pápai 2000): An allocation rule is Pareto efficient, group

strategy-proof, and reallocation-proof if and only if it is a hierarchical exchange rule.

Velez (2014) studied the set of consistent hierarchical exchange rules. He defined

CHE rules, showed the equivalence of CHE rules and consistent hierarchical exchange

rules, and characterized the CHE rules.

Definition. CHE-1 rules. Let Π1 ≡ (πl)
m
l=1 be a partition of agents into sets

of at most two agents and |πm| = 1. Let T1 : O × Π1 → N be a function such that

for Ti(O, π) = π for all π ∈ Π1. For each o ∈ O, the CHE-1 rule satisfies:

C1-1: Between two agents who belong to two different components of Π1, the one

who belongs to the component with the smaller index inherits o first.

C1-2: Between two agents who belong to the same component of Π1, say πl, agent

T1(o, πl) inherits o first.
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Definition. CHE-2 rules. Let Π2 ≡ (πl)
m
l=1 be a partition of agents into sets

of at most two agents and |πm| = 2. Let T2 : O×Π2 \ {πm} → N be a function such

that T2(O, π) = π for all π ∈ Π2. Let Q : O2 \ {(o, o) : x ∈ O} → πm be an onto

function. For each o ∈ O, the CHE-2 rule satisfies:

C2-1 Between two agents who belong to two different components of Π2 the one

who belongs to the component with the smaller index, inherits o first.

C2-2 Between two agents who belong to the same component of Π2 \ {πm}, say πl,

agent T2(o, πl) inherits o first.

C2-3 If πm ⊆ N , then for each o ∈ O and each leaf edge of γO\{o} (i.e. an end arc

in a tree), say e, we have that Γo(p(e)) = Q(o, ς(e)), where p(e) is the vertex that

connects e and the end vertex, and ς(e) is the labelling of e.

Definition. CHE-3 rules. Let Π3 ≡ (πl)
m
l=1 be a partition of agents into sets

of at most two agents and the last three sets in the partition are singletons. Let

T3 : O × Π3 \ {πm−2, πm−1, πm} → N be a function such that T3(O, π) = π for all

π ∈ Π3 \ {πm−2, πm−1, πm}. Let Q : O2 \ {(o, o) : x ∈ O} → πm be an onto function.

Let ω ∈ O and Y ⊆ O \{ω} be non-empty. For each o ∈ O, the CHE-3 rule satisfies:

C3-1: Between agent in
⋃m−3
l=1 πl who belong to two different components, the

one who belongs to the component with the smaller index, inherits o first. Moreover,

each agent in
⋃m−3
l=1 πl inherits o before each agent in

⋃m
l=m−2 πl.

C3-2: Between two agents in
⋃m−3
l=1 πl, who belong to the same component of Π3,

say πl, agent T3(o, πl) inherits o first.

C3-3: For that last three agents, im−2 inherits o before im−1 if and only if o 6= ω.

C3-4: im−1 inherits o before im.

C3-5: If {im−1, im} ⊆ N , then for each o ∈ O and each leaf edge of γO\{o}, say e,

we have that Γo(p(e)) = im if and only if o ∈ Y and ς(e) = ω.

Definition. A rule is a CHE rule if it belongs to one of the three classes defined
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above.

Theorem (Lemma 1 in Velez 2014): CHE rules are consistent.

Definition. A rule is 2-efficient if it is efficient for each two-agent problem. A

rule is 2-consistent if it is consistent for each two-agent problem.

Theorem (Theorem 1 in Velez 2014): In a variable population and variable

resource environment with at least four objects, a rule is 2-efficient, 2-consistent,

and strategyproof if and only if it is a CHE rule.

Theorem (Propositin 1 in Velez 2014): In a variable population and variable re-

source environment with at least four objects, the following statements of a allocation

rule ϕ are equivalent.

1. ϕ is a CHE rule.

2. ϕ is a consistent HE rule.

3. ϕ is a 2-consistent HE rule.

4. ϕ is a consistent TC rule.

5. ϕ is a 2-consistent TC rule.

6. ϕ is efficient, consistent, and strategy-proof.

Theorem (Theorem 2 in Velez 2014): In a variable population and variable

resource environment with at least four objects, A rule is 2-efficient, 2-consistent,

and conversely consistent if and only if it is a CHE-1 or a CHE-2 rule.

Tang and Zhang (2016) generalized the definition of individual rationality for the

hierarchical exchange rules and provided a new characterization for these rules.

Definition. Given an inheritance structure {cσ}, the induced set of feasible

submatchings denoted by Fc is a subset of S such that:

1. ∅ ∈ Fc;

2. σ ∈ Fc if there exists σ′ ∈ Fc with σ′ ( σ such that σ is minimal in {σ̃ : σ′ (

σ̃, and Oσ̃ \Oσ′ ⊂ cσ′(Nσ̃ \Nσ′)}.
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Condition 2 implies that a submatching is feasible only if it is a minimal enlarge-

ment of a feasible submatching that satisfies persistency. The following theorem

illustrates the structure of the set of feasible submatchings.

Theorem (Proposition 1 in Tang and Zhang 2016): Let σ, σ′ ∈ Fc.

1. If σ ⊂ σ′, then Oσ′ \Oσ ⊆ cσ(Nσ′ \Nσ).

2. If σ, σ′ are both submatchings of a matching, then σ ∩ σ′, σ ∪ σ′ ∈ Fc.

Given a matching µ and an agent i, the above result implies that there exists a

maximal feasible submatching of µ denoted by σmax(µ \ i) that does not include i.

Definition. The contingent endowment of agent i at a matching µ is defined

as the set of objects that i would be endowed with a the contingency that the maximal

submatching of µ that excludes i has been removed, i.e., ω(i|µ) = σmax(µ \ i)(i).

Definition. Agent i is individually rational at matching µ if µiRio for all

o ∈ ω(i|µ). An allocation rule is individually rational rational if it always finds

an individually rational allocation.

Theorem (Theorem 1 in Tang and Zhang 2016): An allocation rule is Pareto

efficient, individually rational, and strategy-proof if and only if it is a hierarchical

exchange rule.

Tang and Zhang (2016) also generalized the definition of core defined by Shapley

and Scarf (1974) to hierarchical exchange rules.

Definition. A matching µ is in the core of house allocation problem with a

persistent ownership structure if there do not exist any coalition B ∈ N and matching

ν such that

1. νi /∈ ω(j|ν), for all i ∈ B and all j ∈ N \B.

2. νiRiµi for all i ∈ B, and νjPjµj for some j ∈ B.

Theorem (Theorem 2 in Tang and Zhang 2016): For any house allocation prob-

lem with a persistent structure of ownership, the hierarchical exchange rule selects
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the unique core allocation.

2.4.3 Top trading cycles from individual endowments

A housing market problem (Shapley and Scarf 1974) is a four-tuple (N,O, P, ω)

with |N | = |O|, where matching ω is the initial endowment.

Definition. An allocation µ ∈M belongs to the weak core denoted by C(P ) if

there is no submarket that could have done strictly better for all its members, i.e.,

if there does not exist a set of agents S ⊆ N and a matching µ′ ∈M such that

1. For all i ∈ S, µ′iPiµi and

2. {µ′i|i ∈ S} = {ωi|i ∈ S}.

Definition. An allocation µ ∈M belongs to the strict core denoted by SC(P )

if there is no submarket that could make at least one agent in the group strictly

better off, while the others in the group are not worse off, i.e., if there does not exist

a set of agents S ⊆ N and a matching µ′ ∈M such that

1. For all i ∈ S, µ′iRiµi, and for some j ∈ S, µ′jPjµj.

2. {µ′i|i ∈ S} = {ωi|i ∈ S}.

Example. The following example shown in table 2.1 illustrates that the weak

core and strict core are not equivalent even under strict preferences.

P1 P2 P3

o3 o1 o2

o2 o2 o3

o1 o3 o1

Table 2.1: Weak core 6= strict core.

When ω = (o1, o2, o3), the boxed allocation is in weak core but not in the strict

core.

27



Shapley and Scarf (1974) utilized Scarf’s theorem to show that strict core always

exists. They also provided a constructive way by using Gale’s top trading cycles

algorithm to find an allocation in the strict core. Top trading cycles algorithm

from individual endowments is a special case of the hierarchical exchange rules in

which each agent is initially endowed with exact one object. A top trading cycles

algorithm from individual endowments consists of a serial of round. At each

round t, each remaining object points to its owner, and each remaining agent points

to her favorite object among the remaining ones. A set of agents forms a cycle

whenever their favorite objects among the remaining ones are the objects owned

by the agents in this set. At least one cycle exists. Assign each agent in a cycle

the object she points to and remove the assigned agents along with their assigned

objects. The algorithm stops when all agents are assigned.

Theorem (Shapley and Scarf 1974): The strict core exists when preferences are

strict. The top trading cycles algorithm finds an allocation in the strict core.

It is clear that the strict core is a subset of the weak core. The weak core

always exists, even under weak preferences. However, Shapley and Scarf (1974) also

illustrated that strict core may not exist when preferences are not strict, as shown

in the following example.

Example. Let ω = (o1, o2, o3). The preferences are given in table 2.2. For all

possible allocations, none of them is in the strict core defined by weak dominance.

P1 P2 P3

o2 o1, o3 o2

o1, o3 o2 o1, o3

Table 2.2: Strict core many not exist
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Sönmez (1999) studied a general class of allocation problems that includes housing

markets, marriage problems, roommate problems, networks, etc. He showed that the

strict core, if it exists, is essentially single-valued.

Theorem (Sönmez 1999): If there exists an individually rational, Pareto efficient,

and strategy-proof allocation rule ψ, then we have:

1. For all R ∈ R, for all i ∈ N , for all µ, µ′ ∈ SC(R), i is indifferent between µi

and µ′i.

2. For all R ∈ R with SC(R) 6= ∅, ψ(R) ∈ SC(R).

Roth and Postlewaite (1977) built the relationship between the strict core allo-

cation and competitive allocation.

Definition. The budget set of agent i is defined as Bi(p) = {ωj|pj ≤ pi}. A

matching µ is a competitive allocation for a housing market problem if there

exists a price vector p, for all i ∈ N , µi ∈ arg maxRi, subject to Bi(p).

Theorem (Roth and Postlewaite 1977): In a housing market model with weak

preferences, we have:

1. There exists a competitive allocation.

2. If strict core SC(R) exists, then for all µ ∈ SC(R), µ is a competitive allocation.

When preferences are strict, then:

3. If µ is a competitive allocation, then µ belongs to the strict core.

4. The set of strict core equals the set of competitive allocation and top trading

cycles algorithm finds the unique matching in the strict core.

Moreover, the strict core mechanism satisfies some remarkable incentive proper-

ties.

Theorem (Roth 1982a): In the top trading cycles procedure, it is a weakly

dominant strategy for each player to reveal his true preferences. That is, the strict

core mechanism is strategy-proof.
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Theorem (Bird 1984): In the top trading cycles procedure, no group of agent

can jointly misreport their preferences to make at least one agent in the group strictly

better off, and other agents in the group are not worse off. That is, the strict core

mechanism is group strategy-proof.

Takamiya (2001) proved the equivalence of group strategy-proofness and Maskin

monotonicity.

Definition. Fix an allocation rule ϕ, a preference profile P ′ ∈ P is a monotonic

transformation of P ∈ P if ϕi(P )Pio implies ϕi(P )P ′io for all i ∈ N and all o ∈ O,

i.e., for each agent, the set of objects better than the original profile allocation weakly

shrinks from the original profile to its transformed profile. An allocation rule ϕ is

Maskin monotonic if ϕ(P ′) = ϕ(P ) whenever P ′ is a monotonic transformation of

P .

Theorem (Takamiya 2001): An allocation rule is group strategy-proof if and

only if it is Maskin monotonic.

Ma (1994) provided a characterization of top trading cycles from individual en-

dowments.

Theorem (Ma 1994): An allocation rule for the housing market model is Pareto

efficient, individually rational, and strategy-proof if and only if it is a top trading

cycles rule from individual endowments.

2.4.4 Priority rules

Ergin (2002) studied a indivisible objects model with a finite set of object types

and each type has a finite quota of objects. One interesting example is assigning

students to public schools. Each schools has a limited number of seats. Students

has strict preference over schools, but are indifferent between seats from the same

school. In the following section, we assume quota of each object type (or the number
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of seats of each school) is one, which means this is a house allocation problem. A

key component of in Ergin’s model is a vector of linear orders known as a priority

structure denoted by �= (�o)o∈O. The priority structure could be viewed as a

fixed endowment hierarchical inheritance ownership. The assignment is computed

via deferred acceptance algorithm invented by Gale and Shapley.

The deferred acceptance algorithm associated with a priority structure �

denoted by DA� consists of a serial of steps as follows:

• At step 1: each agent applies to her favorite object. Each object temporarily

accept the applicant with the highest priority.

• In general, at step k: each agent who is rejected in the previous step applies

to favorite object among the ones that she has not applied for. Each object

temporarily accept the applicant with the highest priority among the new ap-

plicants and the applicant that she temporarily accept at step k−1, and reject

others.

• The algorithm stops when no agent applies.

Unlike the hierarchical exchange rule, the outcome of the deferred acceptance al-

gorithm may not be Pareto efficient. Ergin (2002) defined a new property of a priority

structure that is called acyclicity and showed that it is sufficient and necessary for

Pareto efficiency, group strategy-proofness, and consistency separately. Acyclicity is

defined for a model with object types by a cycle condition and a scarcity condition.

In a house allocation problem that each type has one object, the scarcity condition

is always satisfied.

Definition. Let � be a priority structure. A cycle consists of distinct o, o′ ∈ O

and i, j, k ∈ N such that i �o j �o k �o′ i. A priority structure is acyclical if it has

no cycles.
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Theorem (Ergin 2002): The following are equivalent.

1. DA� is Pareto efficient.

2. DA� is group strategy-proof.

3. DA� is consistent.

4. � is acyclical.

When all objects use the same priority ordering of agents, then the deferred

acceptance algorithm is just a serial dictatorship. In the language of the hierarchical

exchange, a serial dictatorship is a special case of the hierarchical exchange rules

in which one agent owns all unmatched objects at all submatchings.

Definition. Let π : O → O be a bijection, i.e., a permutation (or a change

of names) of objects. If µ is an allocation, πµ is defined by (πµ)(i) = π(µ(i)) for

all i ∈ N . A preference relation π(Ri) is defined by aπ(Ri)b ⇐⇒ π(a)Riπ(b). An

allocation rule ϕ is neutral if ϕ(π(R)) = π(ϕ(R)).

Theorem (Svensson 1999): ϕ is strategy-proof, non-bossy, and neutral if and

only if ϕ is a serially dictatorship.

32



3. BALANCED HOUSE ALLOCATION

In this chapter, we define a new property that we call “balancedness.” It is a

fairness property in the sense that if all possible preference profiles are equally likely

to happen, an allocation rule is balanced if it assigns all agents to their best choices

with equal probabilities, it assigns all agents to their second best choices with equal

probabilities, and so forth. We provide new characterizations for the top trading

cycles from individual endowments. These rules are the only rules that are Pareto

efficient, group strategy-proof, reallocation-proof, and balanced (theorem 3.1). When

the number of objects is at least four or just two, they are the only rules that

are Pareto efficient, group strategy-proof, and balanced; when there are just three

objects, an allocation rule is Pareto efficient, group strategy-proof, and balanced if

and only if it is a top trading cycles rule from individual endowments, or a trading

cycles rule with three brokers (theorem 3.2).

Previous results imply that all random allocation rules induced by some Pare-

to efficient and group strategy-proof deterministic allocation rules are equally ex

ante fair (Abdulkadiroğlu and Sönmez 1998, Pathak and Sethuraman 2011, Lee and

Sethuraman 2011, Bade 2014) because before knowing the realization of the lottery,

the distribution over outcomes of a random trading cycles rule is the same as the

distribution over outcomes of the random serial dictatorship. However, it is clear

that after knowing the realization of the lottery (i.e., knowing which deterministic

allocation rule would be used to find the assignment) but before knowing agents’

true preferences, not all Pareto efficient and group strategy-proof rules assign all a-

gents to their best choices, to their second best choices, etc, with equal probabilities.

Specifically, in a serial dictatorship, the agent with the highest priority is always
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guaranteed to her best choice, while the agent with the lowest priority has a lower

chance to receive her best choice. A Pareto efficient deterministic allocation rule

cannot be ex post fair because if all agents have the same preferences, they cannot

be treated equally. Balancedness is an interim fairness property since chances that

agents receive their best choices, their second best choices, etc., are the expectations

calculated after knowing the realization of the lottery, but before knowing agents’

preferences.

The intuition of the fact that a top trading cycles rule from individual endow-

ments satisfies balancedness is symmetry: if each agent initially endows with one

object, all of them would be treated equally if all possible preference profiles are

taken into account with equal weights. We construct a bijection τ from the set of

preference profiles to itself, and show that given the top trading cycles from individ-

ual endowments, if agent i receives her kth best choice and agent j receives her lth

best choice under R, then agent i receives her lth best choice and agent j receives

her kth best choice under τ(R).

The proof of the only if part of theorem 3.1 relies on the persistence property of

the hierarchical exchange rules, i.e., once an agent owns an object, she retains it until

she is assigned. To prove the only if part of theorem 3.2, we also have to use our

proposition 3.1: given a trading cycles rule defined by Pycia and Ünver (2016a), if

we change the rule by depriving the control right of one agent and give it to another

agent, then some agents’ gains mean other agents’ losses because the sums of the

probabilities that agents receive their best choices are the same. We may also relax

the definition of balancedness to the one where all agents have equal chances to their

worst choices. Theorem 3.1* and theorem 3.2* state that the top trading cycles

from individual endowments can be characterized by the efficiency and the incentive

properties and the relaxed version of balancedness.
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The remaining chapter is organized as follows: section 3.1 introduces our model

and defines the top trading cycles, section 3.2 presents the main result, and section

3.3 concludes.

3.1 The model

Let N ≡ {1, 2, · · · , n} be the set of agents, and O ≡ {o1, o2, · · · , on} be the set

of objects. We assume the number of agents equals the number of objects. Each

agent has a strict preference relation over the set of objects. Let P be the set of

strict preference relations on O, and let PN be the set of preferences profiles. Note

that |P| = n!, and |PN | = (n!)n. We use R ≡ (Ri)i∈N ∈ PN to denote a generic

preference profile. Ri and Pi denote the weak and strong preference relation for agent

i, respectively. For any group of agents S ⊆ N , denote the preferences of the agents

in S by RS. Suppose each object is acceptable to all agents and each agent has no use

for more than one object. Each object can only be assigned to one agent and objects

have no preferences. An assignment µ is a matching such that each agent receives

a distinct object. Let µi be the object assigned to agent i under the µ. Let M be

the set of all possible matchings. A (deterministic) allocation rule is a mapping from

P to M. We use f to denote a generic allocation rule. fi(R) is the assignment for

agent i under R.

Examples of these problems include allocating and exchanging transplant organs,

like kidneys (Roth, Sönmez and Ünver, 2004), assigning students to university a-

partments (Abdulkadiroğlu and Sönmez, 1999), etc. When Shapley and Scarf (1974)

initiate this model, they use an example of houses and traders. Since then, such

problems are now known as house allocation problems. The allocation mechanisms

in these problems are based on the top trading cycles algorithm invented by David

Gale and introduced by Shapley and Scarf (1974). Before describing the algorithm,
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we first introduce some properties used in our main result.

3.1.1 Axioms

A matching µ is Pareto efficient if there does not exist a matching µ′ ∈ M,

such that some agent is strictly better off while others are not worse off. That is,

∀µ′ ∈ M, µ′iPiµi for some i ∈ N implies µjPjµ
′
j for some j ∈ N . An allocation rule

f is Pareto efficient if it always selects a Pareto efficient matching, i.e., ∀R ∈ PN ,

f(R) is Pareto efficient matching.

An allocation rule f is strategy-proof if truthfully revealing her preference is a

weakly dominant strategy for each agent, i.e., ∀i, ∀Ri, R
′
i ∈ P , fi(R)Rifi(R

′
i, RN\{i}).

A stronger version of strategy-proofness is group strategy-proof which means no

group of agents can be weakly better off by misreporting their preferences, i.e., ∀

R ∈ PN , there exists no S ⊆ N and R′S ∈ PS, such that fi(R
′
S, RN\S)Rifi(R) for all

i ∈ S, and fj(R
′
S, RN\S)Pj fj(R) for some j ∈ S.

An allocation rule ϕ is reallocation-proof if no two agents can jointly misreport

their preferences and swap their assignments ex post to make at least one of them

strictly better off, i.e., there exist no i, j ∈ N such that for some R ∈ PN , R′i ∈ P and

R′j ∈ P with ϕ(R′i, R−i) = ϕ(R′j, R−j) = ϕ(R), we have ϕi(R
′
i, R

′
j, RN\{i,j})Piϕi(P )

and ϕj(R
′
i, R

′
j, RN\{i,j})Rjϕi(R).

3.1.2 Top trading cycles algorithm

Shapley and Scarf (1974) initiated a model where each agent owns one house and

can trade it for a better one in the market. They showed that the strict core (in the

sense that there is no submarket such that all agents in a group can be weakly better

off and some agent can be strictly better off by reallocating their initial endowments)

is nonempty, and the top trading cycles (TTC) algorithm finds an allocation in the

strict core. To distinguish the TTC used in Shapley and Scarf’s housing market
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model from the TTC used in Pápai (2000)’s hierarchical exchange rules where some

agents may initially own more than one object, we refer to the former as the TTC

from individual endowments. It consists of a list of steps described below.

• At the beginning of step 1: each agent owns exactly one object.

• At step 1: each agent points to the agent who owns her favorite object. A list

of agents {i1, i2, · · · , ik} forms a cycle if agent il points to agent il+1 for all

l = 1, 2, · · · , k, and ik+1 = i1. An agent points to herself also forms a cycle.

Because each agent points (as all objects are acceptable) and the number of

agents is finite, at least one cycle exists. And no two cycles intersect since

preferences are strict. Remove all cycles from the market and assign each

agent in a cycle her best choice.

• In general, at step k: each remaining agent points to the agent who owns

her best choice among the remaining objects. Again, there exists one cycle.

Remove all cycles from the market and assign each agent in a cycle her best

choice among the remaining objects.

• The algorithm stops when all agents are removed from the market. Note that

the algorithm stops in no more than n steps since at least one agent is removed

at each step.

Roth and Postlewaite (1977) proved that the TTC from individual endowments

finds the unique matching in the strict core. Roth (1982a) showed that TTC from in-

dividual endowments is strategy-proof. Bird (1984) showed that it is group strategy-

proof. Ma (1994) characterized the strict core mechanism by Pareto efficiency, in-

dividual rationality (one’s assignment is at least as good as her endowment), and

strategy-proofness.
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3.2 The result

Let f be a deterministic allocation rule. For any i ∈ N , define

#(1, i) ≡
∣∣{R ∈ PN : fi(R) is the best in Ri

}∣∣ ;
· · ·

#(k, i) ≡
∣∣{R ∈ PN : fi(R) is the kth best in Ri

}∣∣ ;
· · ·

#(n, i) ≡
∣∣{R ∈ PN : fi(R) is the worst in Ri

}∣∣ .
Given an allocation rule f , we define #(k, i) as the number of preference profiles

that agent i receives her kth best choice for all k = 1, 2, · · · , n, and all i ∈ N .

Example 3.1: Consider a serial dictatorship with agent t has the tth high-

est priority for all t = 1, 2, · · · , n. Then, for all (n!)n possible preference pro-

files, agent 1 always receives her best choice, so #(1, 1) = (n!)n. Agent 2 has

a chance of n−1
n

to receive her best choice and a chance of 1
n

to receive her sec-

ond best choice, so #(1, 2) = n−1
n
· (n!)n and #(2, 2) = 1

n
· (n!)n. In general, the

chance for agent t to receive her kth choice (t ≤ k) is given by
Pk−1
t−1 (n−t+1)(n−k)!

n!
, so

#(k, t) = (n−t+1)(t−1)!(n−k)!
(t−k)!n!

· (n!)n.

Definition: A deterministic allocation rule f is balanced if for any two agents

i, j ∈ N , and for all k = 1, 2, · · · , n, we have

#(k, i) = #(k, j).

After knowing the realization of the lottery which determines who controls what,

but before agents submit their preferences, the mechanism designer does not know
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agents’ true preferences. If each possible preference profile happens with equal prob-

ability, then a rule is balanced if all agents have equal chances to their best choices,

have equal chances to their second best choices, and so forth. So we say balanced-

ness is an interim fairness property. Although previous results show that all random

trading cycles rules (including random hierarchical exchange rules) are equally ex

ante fair in the sense that their distributions over outcomes are exactly the same

(Abdulkadiroğlu and Sönmez 1998, Pathak and Sethuraman 2011, Lee and Sethura-

man 2011, Bade 2014), our theorem 3.1 shows that any hierarchical exchange rule

satisfying balancedness is a TTC from individual endowments, and our theorem 3.2

shows that when there are at least four agents or just two agents, any trading cycles

rule satisfying balancedness is a TTC from individual endowments; when there are

three agents, a rule is Pareto efficient, group strategy-proof, and balanced if and

only if it is a TTC from individual endowments, or a trading cycles rule with three

brokers (see section 3.2.2 for its definition). Therefore, our theorem 3.1 and theorem

3.2 provide new characterizations of the TTC from individual endowments.

Theorem 3.1: A deterministic allocation rule is Pareto efficient, group strategy-

proof, reallocation-proof, and balanced if and only if it is a TTC from individual

endowments.

If we drop reallocation-proofness and restrict the problems to the ones with at

least four agents or just two agents, the result of theorem 3.1 still holds, as shown in

the following theorem 3.2.

Theorem 3.2: When |N | = |O| 6= 3, a deterministic allocation rule is Pareto

efficient, group strategy-proof, and balanced if and only if it is a TTC from indi-

vidual endowments. When |N | = |O| = 3, a deterministic allocation rule is Pareto

efficient, group strategy-proof, and balanced if and only if it is a TTC from individual

endowments or a TC rule with three brokers.
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Papai (2000) characterized the hierarchical exchange rules by Pareto efficiency,

group strategy-proofness, and reallocation-proofness. Since a TTC from individual

endowments belongs to set of the hierarchical exchange rules, to prove theorem 3.1,

we just show that among all hierarchical exchange rules, only the rules of TTC from

individual endowments are balanced. Similarly, to prove theorem 3.2, we use Pycia

and Ünver’s (2016a) characterization of trading cycles rules by Pareto efficiency and

group strategy-proofness. Trading cycles rules are generalized from Papai’s hierarchi-

cal exchange rules. In the following subsections, we introduce hierarchical exchange

rules first, then introduce trading cycles rules. And finally, we prove theorem 3.2.

The proof of theorem 3.1 is similar to part of the proof of theorem 3.2. We also

introduce theorem 3.1* and theorem 3.2* in this section.

3.2.1 Hierarchical exchange rules

Pápai (2000) generalized Shapley and Scarf’s (1974) model to the case where

some agents may initially owns more than one object and each object is initial owned

by some agent, but still kept the assumption of unit demand. She defined the hi-

erarchical exchange (HE) rules and characterized them by Pareto efficiency, group

strategy-proofness, and reallocation-proofness.

Like in Shapley and Scarf’s model, the TTC algorithm finds the allocation for

a HE rule. As each agent demands one object but some agent may initially owns

more than one object, a HE rule has to specify how the objects are inherited. During

the TTC procedure, who inherites what depends only on the assignments that have

formed in previous cycles. More specifically, the inheritance rule of a HE rule is

defined by an inheritance forest. In the inheritance forest, there is an inheritance

tree for each object. Each tree defines who initially owns and who potentially inherits

the object under different allocation scenarios. An inheritance tree consists of a set
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of vertices and a set of arcs. Each vertex is connected to other vertex(es) via arc(s).

Each arc connects two distinct vertices. In each tree, there is a unique vertex such

that there is no arc from other vertices to the vertex. We call this vertex level 1

vertex. In our model with n agents and n objects, there are n− 1 arcs pointing from

the level 1 vertex to n − 1 vertices which we call level 2 vertices. For each level 2

vertex, there n − 2 arcs pointing from the level 2 vertex to n − 2 vertices which we

call level 3 vertices. In general, for each level k vertex (1 ≤ k ≤ n − 1), there are

n− k arcs pointing from the level k vertex to n− k level k + 1 vertices. There is no

arc pointing from a level n vertex.

Each vertex is labeled by an agent and each arc is labeled by an object. The

labeling of each inheritance tree (say the tree for object o) should satisfy the following

conditions to make it well-defined:

• A level 1 vertex can be labeled by any agent (say i). The labeled agent initially

owns the object.

• Each arc from vertex i should be labeled by distinct objects other than o; so

there are n− 1 arcs pointing to n− 1 level 2 vertices.

• There is a unique path from a level 1 vertex to a level n vertex. Each vertex

on a path should be labeled by a distinct agent, and each arc on a path should

be labeled by a distinct object.

If a path of the tree for an object (say o1) is i1
o2→ i2

o3→ i3
o4→ · · · on→ in, then i1

initially owns o1; if i1 is assigned o2, then i2 inherits o1; if i1 is assigned o2, and i2 is

assigned o3, then i3 inherits o1, etc.

Example 3.2: Consider a HE rule with three agents 1, 2, 3, and three objects

a, b, c shown in figure 3.1.

41



Γa
1

3 2

2 3

b c

c b

Γb
1

2 2

3 3

a c

c a

Γc
2

3 3

1 1

a b

b a

Figure 3.1: A hierarchical exchange rule

The inheritance forest in figure 3.1 implies that agent 1 initially owns objects a

and b, agent 2 initially owns c, and agent 3 initially owns nothing. For tree Γa, the

path 1
b→ 3

c→ 2 means if 1 is assigned b, then 3 inherits a; if 1 is assigned b, and 3 is

assigned c, then 2 inherits a. Similarly, for tree Γa, the path 1
c→ 2

b→ 3 means if 1 is

assigned c, then 2 inherits a; if 1 is assigned c, and 2 is assigned b, then 3 inherits a.

Given a HE rule, the TTC algorithm is applied to find the allocation:

• At the beginning of step 1: each object is owned by an agent. Some agent

may initially owns more than one object and some agent may initially owns

nothing.

• At step 1: each agent who owns some object(s) points to the agent who owns

her best choice. Like the TTC from individual endowments, at least one cycle

exists. Remove all cycles from the market and assign each agent in a cycle

her best choice. The remaining agents keep their initial endowments, and they

inherit the objects left by the assigned agents according to the inheritance

forest.

• In general, at the beginning of step k: each remaining object is owned by some

agent. Each remaining agent who owns some object(s) points to the agent who

owns her favorite object among the remaining ones. Again, at least one cycle
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exists. Remove all cycles from the market and assign each agent in a cycle

her best choice among the remaining objects. Each remaining agent keeps her

endowment that she owns at the beginning of step k. Remaining agents also

inherit the object(s) left by the assigned agent(s) at step k according to the

inheritance forest.

• The algorithm stops when all agents are removed from the market.

A important feature of the HE rules is persistence property, i.e., once an agent

owns an object (initially endowed or inherited), she retains it until she is assigned.

The following example 3.3 illustrates how a HE rule works.

Example 3.3: Suppose the HE rule is determined by the inheritance forest in

example 3.2, and the preference profile is given in table 3.1.

R1 R2 R3

b a b
a c c
c b a

Table 3.1: The preferences for a HE rule

Table 3.1 shows agents’ preferences over objects (from top to bottom). At step

1, since agent 1 initially owns a and b and her top choice is b, so agent 1 points

to herself; agent 2 initially owns c and her top choice is a, so she points to agent

1. There is only one cycle at this step: agent 1 points to herself. So agent 1 is

allocated with object b and we remove agent 1 along with her assignment from the

market. At the beginning of step 2, agent 2 still owns object c. Object a is left by

agent 1. The inheritance tree of object a indicates that given agent 1 receives b, the
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one who inherits a is agent 3. So at the beginning of step 2, agent 2 owns object

c and agent 3 owns object a. In the reduced market, agent 2’s best choice among

the remaining ones is c, and agent 3’s best choice among the remaining ones is a.

So agent 2 and agent 3 point to each other and swap their endowments. Figure 3.2

shows the procedure.

1
a b

2 c

Step 1:

1
a 3 b

2 c

Step 2:

Figure 3.2: The procedure of a HE rule

If each tree in the inheritance forest has a distinct level 1 vertex labeling, then

the HE rule is a TTC from individual endowments. Other special cases of HE rules

include serial dictatorships and fixed endowment HE rules described below.

3.2.1.1 Serial dictatorships

In a HE rule, if the same level vertices are labeled by the same agent and different

levels vertices are labeled by distinct agents for all trees, we call such rule a serial

dictatorship (Svensson 1999). In a serial dictatorship, the level 1 agent initially

owns all objects, the level 2 agent inherits all objects when the level 1 agent chooses,

the level 3 agent inherits all objects when the level 2 agent chooses, and so forth.
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An agent labeled at a lower level vertex has a higher priority for all objects than

an agent labeled at a higher level vertex. Figure 3.3 shows an example of a serial

dictatorship in which agent 1 has the highest priority, agent 2 has the second highest

priority, and agent 3 has the lowest priority.

Γa
1

2 2

3 3

b c

c b

Γb
1

2 2

3 3

a c

c a

Γc
1

2 2

3 3

a b

b a

Figure 3.3: A serial dictatorship

The random serial dictatorship (or single lottery mechanism) proposed

by Abdulkadiroğlu and Sönmez (1998) is a random mechanism aims at ex ante fair-

ness. The agent are ordered randomly with any one of the n! orderings being equally

likely. For any given priority ordering, the corresponding serial dictatorship finds the

allocation. They also define the TTC from random endowments as a random

mechanism such that each agent random endows with one object with n! possibilities

being equally likely. For a given realization of endowments, the TTC from individ-

ual endowments is used to find the allocation. Abdulkadiroğlu and Sönmez (1998)

showed that the random serial dictatorship is equivalent to the TTC from random

endowments as the distributions of assignments are the same for both mechanisms.

3.2.1.2 Fixed endowment HE rules

The inheritance forest of a fixed endowment HE rule can be represented by

the trees such that different trees may be labeled differently, but the same level
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vertices in each tree are labeled with the same agent. The following figure 3.4 shows

a fixed endowment HE rule.

Γa
2

3 3

1 1

b c

c b

Γb
1

2 2

3 3

a c

c a

Γc
1

3 3

2 2

a b

b a

Figure 3.4: A fixed endowment HE rule

The fixed endowment HE rules can be used to define multiple lottery mechanism

(Pathak and Sethuraman 2011). In a multiple lottery mechanism, each object

randomly uses an ordering of agents among n! possibilities, therefore, (n!)n possible

fixed endowment inheritance forests are equally likely to be selected. Given a fixed

endowment HE rule, the corresponding allocation is selected as the outcome.

A serial dictatorship is a special case of a fixed endowment HE rule in which

the labelings of all trees in the inheritance forest are the same. We can also write

a TTC from individual endowments as a fixed endowment HE rule since the level k

vertices for k ≥ 2 will never be reached. Pathak and Sethuraman (2011) generalized

Abdulkadiroğlu and Sönmez’s (1998) result by showing that the single lottery mech-

anism (random serial dictatorship) is equivalent to the multiple lottery mechanism

as their ex ante distributions over assignments are the same. Given a HE rule, if

we view the labeling of vertices as “roles” in the mechanism, then we can define the

corresponding random HE rule by assigning agents to the “roles” via a unifor-

m lottery over n! possibilities. Lee and Sethuraman (2011) showed that the single
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lottery mechanism is equivalent to any random HE rule.

3.2.2 Trading cycles rules

Pycia and Ünver (2016a) constructed trading cycles (TC) rules. The TC rules

subsume the HE rules as special cases and they are characterized by Pareto efficiency

and group strategy-proofness. The major difference between the HE rules and the

TC rules is that one agent in a TC rule may not own but, instead, brokers an object,

or all the three remaining objects could be brokered by three agents. During the

procedure of a TC rule, the broker may not be allowed to point to herself. A TC

rule consists of a serial of steps described below.

• In general, at the beginning of step k: each object is either owned or brokered by

an agent. There is at most one brokered object, or all three remaining objects

are brokered. If an agent brokers an object, then the agent owns nothing.

• At step k, there are two cases.

– Case 1: there is at most one broker.

Each owner points to the agent who owns or brokers her best choice. If

there exists a broker, then she points to her favorite object owned by other

agents. Similar to the TTC from individual endowments, at least one cycle

exists. Assign each owner in a cycle her best choice. If a broker is part

of a cycle, then the broker is assigned her favorite object owned by other

agents. All assigned agents and objects are removed from the market.

Each remaining owner keeps her initial endowment, and she may inherit

the objects left by the assigned agents according to the inheritance rule.

If the broker is still in the market and there exists at least one remaining

owner, then the broker retains her brokerage right. If the broker is the only
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remaining agent, then the brokered object is assigned to her. If there are

three remaining agents and none of them owns an object at the beginning

of step k, then each one of the three agents or at most one agent brokers

an object at the beginning of step k + 1.

– Case 2: there are three brokers and each brokers one object.

Each broker points to the agent who brokers her best choice. If these

three agents forms a cycle, then assign each broker her best choice. If the

cycle of three brokers does not exist, then there exists a cycle such that

broker i points to a brokered object and there is another broker points

to this brokered object. Then we force broker i points to the agent who

brokers her next choice. If now three brokers form a cycle, then assign each

broker the object brokered by the agent that she points to. Otherwise,

there exists a non-three-agent cycle such that broker j points to a brokered

object and there is another broker points to this brokered object. Then

we force broker j points to the agent who brokers her next choice. If now

three brokers form a cycle, then assign each broker the object brokered

by the agent that she points to. Otherwise, iterate the process until three

brokers form a cycle.

• The algorithm stops when all agents are assigned.

Note that in a model with at least four agents, there exists at most one broker at

the beginning of step 1. As the procedure goes on, we may have three brokers and

each of them brokers one object. If there are no brokers throughout the procedure,

then the TC rule is a HE rule. Similar to the HE rules, TC rules also satisfy

persistence property, i.e., once an owner owns an object, she retains it until she

receives her assignment, and a broker also keeps her brokerage right until she is
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assigned. In our model that the number of agents is equal to the number of objects,

a broker never has a chance to inherit objects. The following example 3.4 illustrates

how a TC rule works.

Example 3.4: Suppose agent 1 initially brokers object a, and agent 2 and 3

initially own objects b and c, respectively. Preference profile is given in table 3.2.

Then at step 1, agents 1 points to agent 2, agents 2 and 3 both point to agent 1. So

agents 1 and 2 are assigned objects b and a, respectively. At step 2, agent 3 points

to herself and is assigned object c.

R1 R2 R3

a a a
b b b
c c c

Table 3.2: The preferences for a TC rule

Fix a TC rule and define the corresponding random TC rule by assigning agents

to the “roles” in the TC rule via a uniform lottery. Bade (2014) showed that given

a preference profile, the distribution over outcomes that arises from a random TC

rule is the same as the distribution over outcomes that arises from the random serial

dictatorship.

The random serial dictatorship is considered to be ex ante fair as all agents

have the same chances on the priority list before knowing the realization of the

lottery. Therefore, all the random TC rules are equally ex ante fair because their

distributions over outcomes are the same. But after knowing its realization, a single

lottery ordering seems to be unfair since the agent at the top of the priority list

always receives her best choice, while the agent at the end of the list receives her best
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choice only if her best choice is not the best choice of any other agent. Preferences

are private information. Before knowing the preferences, and suppose all possible

preference profiles are equally likely to occur, if a deterministic mechanism assigns

all agents to their kth best choices with equal probabilities for all k = 1, 2, · · · , n, we

say the mechanism is interim fair. We show that among all TC rules, an allocation

rule that satisfies our new property balancedness if and only if it is a TTC from

individual endowments if there are at least three agents or just two agents. Our

theorem 3.2 characterizes the TTC from individual endowments by Pareto efficiency,

group strategy-proofness, and balancedness when the number of agents is not three.

The fact that a TTC from individual endowments is balanced follows from sym-

metry. To prove it, we construct a bijection τ from PN to PN such that for any

preference profile R ∈ PN , if agent i receives the kth best choice in Ri and agent j

receives the lth best choice in Rj, then for the preference profile R′ = τ(R), agent i

receives the lth best choice in R′i and agent j receives the kth best choice in R′j. We

use the following example 3.5 to illustrate the idea.

Example 3.5: In a three agents and three goods economy, the initial endowment

is given by ω = (o1, o2, o3). Under the original preference profile R given in table

3.3, the assignment is shown in boldface where agents 1, 2, and 3 receive their best,

second best, and best choices, respectively. We want to construct a new preference

profile R′ = τ(R) under which agent 2 and 3 receive their best and second best

choices, respectively, while agent 1 still receives her best choice. To this end, we first

switch the preferences of R2 and R3 to get R̄ = (R1, R3, R2). Then for each R̄1, R̄2,

and R̄3, we swap the position of o2 and o3 to get R′ shown in table 3.4. Note that

agent 1 is assigned the same ranked object under R′ as under R, while the rankings

of agents 2 and 3’s assignments under R′ are switched when compared with their

assignments under R.
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R1 R2 R3

o2 o3 o3

o1 o1 o2

o3 o2 o1

Table 3.3: Original preference profile R

R′1 R′2 R′3
o3 o2 o2

o1 o3 o1

o2 o1 o3

Table 3.4: Transformed preference profile R′

To prove the only if part of theorem 3.2, we need the following proposition 3.1.

Proposition 3.1: Let f and f ′ be two different TC rules. Define #′(k, i) as the

number of preference profiles that agent i receive her kth best choice under f ′, i.e.,

#′(k, i) ≡
∣∣{R ∈ PN : f ′i(R) is the kth best in Ri

}∣∣. Then

∑
i∈N

#(k, i) =
∑
i∈N

#′(k, i), ∀k = 1, 2, · · · , n.

Proposition 3.1 follows from symmetry and the result of Bade (2014), i.e., random

TC rules are equivalent since their distributions over outcomes are the same. We use

the following example 3.6 to verify proposition 3.1, and then provide a proof.

Example 3.6: Consider a three agents and three objects economy. Let f be

a TC rule such that agent 1 brokers a, agents 2 and 3 own b and c, respectively.

Let f ′ be a TTC from individual endowments such that agent 1, 2, and 3 own

objects a, b and c, respectively. Rows 2 to 4, and rows 7 to 9 in table 3.5 show

the numbers of preference profiles that agent i receives her kth best choice under

rules f and f ′, respectively. We can verify that
∑3

i=1 #(1, i) =
∑3

i=1 #′(1, i) = 432,
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∑3
i=1 #(2, i) =

∑3
i=1 #′(2, i) = 144, and

∑3
i=1 #(3, i) =

∑3
i=1 #′(3, i) = 72.

f #(1, i) #(2, i) #(3, i)
i = 1 96 72 48
i = 2 168 36 12
i = 3 168 36 12∑3

i=1 #(k, i) 432 144 72

f ′ #′(1, i) #′(2, i) #′(3, i)
i = 1 144 48 24
i = 2 144 48 24
i = 3 144 48 24∑3

i=1 #′(k, i) 432 144 72

Table 3.5: Example 3.6 for proposition 3.1

Proof of proposition 1. Given a deterministic TC rule f , interpret agents

in the rule as “roles” in the rule. By assigning agents to the “roles” via a uniform

lottery, we construct a corresponding random allocation rule. A random allocation

rule consists of n! deterministic rules. All of them are equally likely to be selected.

Denote these deterministic rules as f(t) for all t = 1, 2, · · · , n!. And define

#t(k, i) ≡
∣∣{R ∈ PN : f(t)i(R) is the kth best in Ri

}∣∣ ,
where f(t)i(R) is the assignment agent i receives under the rule f(t) when preference

profile is R. Similarly, for another deterministic TC rule f ′, we can construct n!

deterministic rules by assigning agents to “roles” via a uniform lottery. Denote these

rules as f ′(t) for all t = 1, 2, · · · , n!. Define

#′t(k, i) ≡
∣∣{R ∈ PN : f ′(t)i(R) is the kth best in Ri

}∣∣ .
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Bade (2014) showed that given a preference profile, for any two random TC rules,

their distributions over outcomes are the same. When we consider all possible pref-

erence profiles, for all k = 1, 2, · · · , n, we have the following result

n!∑
t=1

n∑
i=1

#t(k, i) =
n!∑
t=1

n∑
i=1

#′t(k, i). (1)

It is clear that given a deterministic allocation rule, the assignment depends only on

the preferences of “roles”. Therefore, for any two t, t′, and for all k = 1, 2, · · · , n,

we have

n∑
i=1

#t(k, i) =
n∑
i=1

#t′(k, i), (2)

and

n∑
i=1

#′t(k, i) =
n∑
i=1

#′t′(k, i). (3)

Equations (1) to (3) imply proposition 3.1. �

Armed with proposition 3.1, we can prove theorem 3.2.

Proof of theorem 3.2. “⇐” Pycia and Ünver’s (2016a, 2016b) results imply

that a TTC from individual endowments and a TC rule with three brokers are

both Pareto efficient and group strategy-proof. Let f be a TTC from individual

endowments. Denote ωi as the initial endowment of agent i. For any R ∈ PN ,

suppose fi(R) is the kth in Ri, fj(R) is the lth in Rj. Construct a mapping τ :

PN → PN such that for any R ∈ PN , and any k /∈ {i, j}, switch the positions of

ωi and ωj in Rk to form τ(Rk), while τ(Ri) is formed by switching the positions of

ωi and ωj of Rj, and τ(Rj) is formed by switching the positions of ωi and ωj of Ri.

Then fi(τ(R)) is the lth in τ(Ri), and fj(τ(R)) is the kth in τ(Rj). This is true
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because during the TTC procedure, any agent points to agent i (or j) under R would

point to agent j (or i) under R′, while the agent who points to m /∈ {i, j} under

R still points to m under R′. So under the transformed preference profile, agent i

plays the “role” as if she was agent j, and agent j plays the “role” as if she was

agent i. Hence for the new preference profile R′, agent m /∈ {i, j} still receives the

same ranked choice under R′ as under R, even though what she receives may not

be the same as the one under R, while agent i receives the lth choice in τ(Ri), and

agent j receives the kth choice in τ(Rj). Also note that τ is a bijection. Therefore,

a TTC from individual endowments is balanced. Similarly, we can prove that a TC

rule with three brokers is also balanced.

“⇒” When |N | = |O| 6= 3, based on Pycia and Ünver’s (2016a, 2016b) result, to

prove the only if part, we only have to show that among all TC rules, a balanced

rule is a TTC from individual endowments. Suppose not. Two cases are considered.

Case 1: suppose there exists an agent, say i, who initially owns more than one

object. Then by persistence, for any preference profile, agent i will not be assigned

her worst choice. But if all agents have the same preferences, then Pareto efficiency

implies someone would receive the worst choice, a violation to the last condition of

balancedness. Case 2: Suppose no agent initially owns more than one object and

the rule is not a TTC from individual endowments, then there exists a broker, say

agent i, who brokers one object (say o) while other agents each initially owns one

object (we use TC to denote this rule). Now, consider a corresponding TTC from

individual endowments where agent i initially not brokers but owns object o (we

use TTC to denote this rule), while other agents in the TTC own what they own

in the TC. For any preference profile R, two subcases are considered. Subcase 2.1:

if TTC assigns agent i an object other than o, then the outcomes of TC and TTC

are the same. Subcase 2.2: if TTC assigns agent i object o, then agent i will be
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assigned o or an object that is ranked below o since she cannot point to herself

unless she is the unique agent in the market. For example, if o is the best choice

under Ri, then TTC will assign i object o. But if o is also the best choice of all other

agents, then TC will assign i her second best choice. Therefore, subcases 2.1 and 2.2

imply that the number preference profiles that agent i receives her best choice under

TC is smaller than the number of preference profiles that agent i receives her best

choice under TTC. But proposition 2.1 shows that the summation of the numbers

of preference profiles that all agents receive their best choices under TTC is equal

to the summation of the numbers of preference profiles that all agents receive their

best choices under TC. Therefore, the TC rule with one broker is not balanced.

When |N | = |O| = 3, a TC rule with a owner who initially owns two or three

objects, or a TC rule with two owners and one broker are not balanced; therefore, an

Pareto efficient, group strategy-proof, and balanced allocation rule could be a TTC

from individual endowments, or a TC rule with three brokers. �

Three conditions required in Theorem 3.2 are independent. If one of them is

violated, we can find an allocation rule that satisfies the others. A serial dictatorship

is Pareto efficient and group strategy-proof, but no balanced. A fixed allocation

rule where agent i always receives oi is balanced and group strategy-proof, but not

Pareto efficient. The rule in example 3.7 is Pareto efficient and balanced, but not

group strategy-proof.

Example 3.7: Let N = {1, 2, 3}, O = {a, b, c}, initial endowment ω = (a, b, c),

two preference profiles R̂ and R̃, and the rule ψ are given by

ψ(R) =


(b, c, a), if R = R̂;

(c, a, b), if R = R̃;

TTC(R), otherwise.
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R̂1 R̂2 R̂3

b a a
c c c
a b b

R̃1 R̃2 R̃3

c a a

b b b
a c c

The rule ψ is Pareto efficient and balanced, but it is not group strategy-proof as

under R̂, if agent 2 reports R2 = aP2bP2c, then ψ2(R̂−2, R2)P̂2ψ2(R̂).

We use the following example 3.8 to verify theorem 3.2.

Example 3.8: Consider an economy with two agents and two objects. Let

N = {i, j}, O = {a, b}. There are two kinds of preferences and hence four possible

preference profiles shown in columns 2 to 5 of table 3.6. And there are eight TC rules

including four HE rules. The first column shows these TC rules, where ωi denotes

the initial endowment for agent i, and βi denotes agent i initially brokers an object.

Since there are only two agents, we do not have specify an inheritance structure

to define a TC rule. The assignments are shown in boldface. We can see that two

TTC rules from individual endowments satisfy balancedness, while the other six rules

violate balancedness.

Note that the proof of the only if part in theorem 3.2 implies that if f belongs to

the set of the HE rules, then f is a TTC from individual endowment if and only if all

agent have equal chances to their worst choice, i.e., for all i, j ∈ N , #(n, i) = #(n, j).

Based on this observation, we have the following theorem 3.1* and theorem 3.2*.
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Ri Rj Ri Rj Ri Rj Ri Rj #(k, i) #(k, j)

ωi = {a, b} a a a b b a b b #(1, i) = 4 #(1, j) = 2
ωj = ∅ b b b a a b a a #(2, i) = 0 #(2, j) = 2
ωi = {a} a a a b b a b b #(1, i) = 3 #(1, j) = 3
ωj = {b} b b b a a b a a #(2, i) = 1 #(2, j) = 1
ωi = ∅ a a a b b a b b #(1, i) = 2 #(1, j) = 4

ωj = {a, b} b b b a a b a a #(2, i) = 2 #(2, j) = 0
ωi = {b} a a a b b a b b #(1, i) = 3 #(1, j) = 3
ωj = {a} b b b a a b a a #(2, i) = 1 #(2, j) = 1
βi = {a} a a a b b a b b #(1, i) = 2 #(1, j) = 4
ωj = {b} b b b a a b a a #(2, i) = 2 #(2, j) = 0
βi = {b} a a a b b a b b #(1, i) = 2 #(1, j) = 4
ωj = {a} b b b a a b a a #(2, i) = 2 #(2, j) = 0
ωi = {a} a a a b b a b b #(1, i) = 4 #(1, j) = 2
βj = {b} b b b a a b a a #(2, i) = 0 #(2, j) = 2
ωi = {b} a a a b b a b b #(1, i) = 4 #(1, j) = 2
βj = {a} b b b a a b a a #(2, i) = 0 #(2, j) = 2

Table 3.6: Example 3.8 for theorem 3.2

Theorem 3.1*: An allocation rule f is Pareto efficient, group strategy-proof,

reallocation-proof and satisfying #(n, i) = #(n, j) for all i, j ∈ N if and only if it is

a TTC from individual endowments.

Theorem 3.2*: When |N | = |O| 6= 3, an allocation rule f is Pareto efficient,

group strategy-proof, and satisfies #(n, i) = #(n, j) for all i, j ∈ N if and only if

it is a TTC from individual endowments. When |N | = |O| = 3, an allocation rule

f is Pareto efficient, group strategy-proof, and satisfies #(n, i) = #(n, j) for all i,

j ∈ N if and only if it is a TTC from individual endowments or a TC rule with three

brokers.

Proof of theorem 3.2*. We only have the show the only if part. An allocation

rule in which some agent initially owns at least two objects violates the condition

that #(n, i) = #(n, j). Let us pick an agent i in a TTC from individual endowments.
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Now change the allocation rule to a TC rule such that i is a broker. Then for any

preference profile, i cannot better off. When all agent have the same preferences and

rank the brokered object as their (n − 1)th best choice, then i is strictly worse off

under TC by receiving her worst choice. Again, by proposition 3.1, #(n, i) = #(n, j)

for all i, j ∈ N is violated. �

The only if part of theorem 3.1* (or theorem 3.2*) is less restrictive than that

of theorem 3.1 (or theorem 3.2). It says that whenever the number of agents is

not three, even if we only care the chances that agents would be assigned to their

worst choice, only the TTC from individual endowments are desirable among all

rules satisfying the efficiency and the incentive properties.

3.3 Conclusion

This chapter is motivated by policymakers and parents’ intuition quoted in Pathak

and Sethuraman (2011) that the single lottery mechanism seems less equitable than

the multiple lottery mechanism in school choice problem. An extreme case of the

realization of the multiple lottery is that each agent is initially endowed with one

object. But previous results by Abdulkadiroğlu and Sönmez (1998), Pathak and

Sethuraman (2011), Lee and Sethuraman (2011), and Bade (2014) showed that giv-

en any two Pareto efficient and group strategy-proof deterministic allocation rules,

the corresponding random allocation rules, including single lottery mechanism and

multiple lottery mechanism, are equivalent. We formally define an interim fairness

property that we call “balancedness.” It is an interim fairness property in the sense

that before knowing agents’ true preferences, if all possible preference profiles are

equally likely to happen, then a deterministic allocation rule is balanced if all agents

have equal chances to their best choices, have equal chances to their second best

choices, and so forth. Our main result shows that in models with at least four agents
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or just two agents, among all Pareto efficient and group strategy-proof rules, only the

top trading cycles from individual endowments satisfy balancedness; and when there

are only three agents, an allocation rule satisfies Pareto efficiency, group strategy-

proofness and balancedness if and only if it is a TTC from individual endowments

or a TC rule with three brokers.

In practice, the single lottery mechanism and the multiple lottery mechanism are

used in assigning students to public schools. The policy implication of our result is

if policymakers can freely choose any allocation rule, for the sake of fairness, then

they should randomly assign each agent an object and then use the TTC algorithm

to find the assignment.
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4. HOUSE ALLOCATION WITH WEAK PREFERENCES

This chapter studies problems of allocating indivisible resources to people. For

example, offices have to be assigned to new faculty, public school seats have to be

assigned to students, and organs for transplant have to be assigned to patients. Such

problems are referred to as one-sided matching problems as opposed to two-sided

matching problems in the sense that in the two disjointed sets of agents (offices

and faculty members, school seats and students, and organs and patients), only the

agents of one side have preferences over the agents of the other side. An important

constraint in real-world indivisible goods allocation problems is the lack of monetary

transfers: faculty offices, public school seats and organs for transplant cannot be

traded for money. This constraint implies that classical competitive market cannot

be applied to find efficient outcomes.

The pioneering work on one-sided matching problems was initiated by Shapley

and Scarf (1974). They presented a housing market model. In this model, each

agent is endowed with one indivisible good and wants to trade it for a better one

that might be endowed by another agent in the market. They were interested in

whether the core allocation defined by weak dominance exists. They showed that

a top trading cycles algorithm invented by David Gale finds an allocation in the

core. Roth and Postlewaite (1977) proved that the top trading cycles algorithm

finds the unique matching in the core of each problem when preferences are strict.

Hylland and Zeckhauser (1979) presented a house allocation model in which no agent

initially owns any house. Svensson (1999) showed that for a house allocation problem

with strict preferences, an allocation rule is strategy-proof, non-bossy, and neutral if

and only if it is serially dictatorial. Abdulkadiroğlu and Sönmez (1998) studied the
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relationship between the serial dictatorships and the core from assigned endowments,

and they also showed that the random serial dictatorship is equivalent to the core

from random endowments when indifference is excluded.

A large literature on matching theory assumes that preferences are strict. With-

out strict preferences, many good properties fail to hold. For example, Shapley and

Scarf (1974) provided an example showing that the core may disappear when indiffer-

ences are allowed. Alternatively, Pápai (2000) showed that group strategy-proofness

is equivalent to strategy-proofness and non-bossiness; but this equivalence breaks

down on the weak domain (Ehlers 2002). Due to the undesirable properties and

the complexity induced by ties, weak preferences are ignored in most of the existing

matching literature. But indifferences are prevailing in the real world. For example,

in the kidney exchange problem (Roth, Sönmez, and Ünver 2004), each patient-donor

pair wants to exchange for a compatible kidney from another patient-donor pair. If

their preferences are based on checklist criteria such as blood and tissue types, then

different kidney with the same criteria should be regarded as indifferent. Another

example is school choice problem (Erdil and Ergin 2008) which consists of a set of

students and a set of public schools with limited numbers of seats. Each school has

a priority ranking over students. The ranking is determined by local laws and edu-

cational policies. Such priorities are weak orderings and the indifference classes are

quite large.

Recently, Alcalde-Unzu and Molis (2011) and Jaramillo and Manjunath (2012)

defined two kinds of allocation rules that are Pareto efficient, strategy-proof, and

individual rational for housing market problem when indifferences are allowed. Ehlers

(2014) provided a characterization of top trading cycles with fixed tie-breaker for

the housing market problem with indifferences by individual rationality, strategy-

proofness, weak efficiency, non-bossiness, and consistency.
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This chapter studies house allocation problem with weak preferences. By extend-

ing the results proved by Abdulkadiroğlu and Sönmez (1998), our corollary 4.1 and

corollary 4.2 show that the strong relationship between the serial dictatorships and

the top trading cycles, and the equivalence of random serial dictatorship and the

top trading cycles with random endowments still hold under weak preferences when

we use fixed tie-breaking or random tie-breaking. Our theorem 4.1 and theorem 4.2

show that the serial dictatorship with fixed tie-breaking satisfies weak Pareto effi-

ciency, strategy-proofness, non-bossiness, and consistency; moreover, it is not Pareto

dominated by any Pareto efficient and strategy-proof rule.

This chapter is organized as follows: section 4.1 formally presents the model,

section 4.2 introduces allocations rules, section 4.3 shows our main result, and section

4.4 concludes.

4.1 The model

Consider the following problem: a department hires n new faculty member-

s and wants to assign each one of them a distinct office. Each faculty member

has preferences over n available offices. A house allocation problem (Hylland

and Zeckhauser 1979) is a triple (A,H,R), where A = (1, 2, · · · , n) is the set of

agents, H = (h1, h2, · · · , hn) is the set of indivisible goods (hereafter houses), and

R = (R1, R2, · · · , Rn) is a preference profile consisting of a list of preference relations

over houses. Following the classical assumptions, we assume that the number of

agents equals the number of houses.

Let the set of all preference relations be R, and the set of all preference profiles

be RA. Given a preference profile R ∈ RA, agent a’s preference relation Ra might be

weak, and it is complete and transitive. Let R−a be the list of preference relations of

all agents but a. For all agents a ∈ A, let Pa and Ia denote the “better than” relation
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and “indifference” relation induced by the preference relation Ra. For all S ⊆ A, let

RS = (Ra)a∈S be the restriction of R to S and R−S = RA\S. For all M ⊆ H, let

Ra|M be the restriction of Ra to M and RS|M = (Ra|M)a∈S.

A binary relation >a is a strict order on a set H if it is irreflexive (h >a h

does not hold for any h ∈ H), asymmetric (if h >a h
′, then h′ >a h does not hold),

and transitive (h >a h
′ and h′ >a h

′′ implies h >a h
′′). Let a list of strict orders

>= (>1, >2, · · · , >n) denote a profile of fixed tie-breakers and � be the set of all

possible profiles of fixed tie-breakers. Note that the number of all profiles of fixed

tie-breakers is | � | = (n!)n. The choice of the tie-breakers is arbitrary and it is

independent of the preference profile to break ties. The random tie-breakers is a

uniform distribution over the set of all profiles of fixed tie-breakers, i.e., each profile

of fixed tie-breakers is chosen with equal probability.

Given Ra, R
′
a ∈ R, we say R′a is a strict transformation of Ra if (i) R′a is

strict (i.e,. for all hi 6= hj, we cannot have both hiR
′
ahj and hjR

′
ahi) and (ii) for all

hi, hj ∈ H, hiPahj implies hiP
′
ahj (where P ′a is the “better than” relation associated

with R′a). For each agent a ∈ A, let R>
a be the strict transformation of Ra with a

profile of fixed tie-breakers > such that for all hi, hj ∈ H with hiIahj and hi >a hj,

we have hiP
>
a hj, where P>

a is the “better than” relation associated with R>
a . That is,

R>
a is a strict transformation of Ra with a profile of tie-breakers > in the sense that

strict preferences are preserved but ties are broken according to tie-breakers >. If Ra

is a strict preference, then R>
a = Ra. Let R> = (R>

a )a∈A be the strict transformation

of R with a profile of fixed tie-breakers >. Note that only >a matters to break ties

in Ra, so a better way to express R>
a is R>a

a . But we use the former for notational

simplicity.

Given a profile of fixed tie-breakers >, the choice function X>
a (H ′) of an agent

a ∈ A from a set of houses H ′ ⊆ H is the best house under the transformed strict
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preference R>
a among H ′, i.e.,

X>
a (H ′) = h′ ⇐⇒ h′ ∈ H ′ and h′P>

a h for all h ∈ H ′ \ {h′}.

The outcome of a house allocation problem is an assignment of houses to agents

such that each house is assigned to a distinct agent. Formally, the outcome is a

matching µ : A → H which is an one-to-one and onto function from A to H. For

all a ∈ A, µ(a) is the assignment of agent a under matching µ. Let the set of all

matchings be M . Note that the number of all matchings is |M | = n!.

Now we consider a slightly different problem: each faculty member is allocated

with one office, and they are allowed to trade it for a better one that might be

allocated by another agent in the market. A housing market problem (Shapley and

Scarf 1974) is simply a house allocation problem with a matching which is referred

to as the initial endowment. Formally, a housing market problem is a four-tuple

(A,H,R, µ), where µ is an initial endowment matching.

A matching rule is a mapping from preference profiles to the set of matchings,

i.e., a matching rule selects a matching for each problem. We will introduce two

matching rules in the next section.

4.2 The matching rules

4.2.1 Serial dictatorships with fixed tie-breaking

We first introduce a matching rule for the house allocation problem. Let an

ordering f : {1, 2, · · · , n} → A be a bijective function. We can interpret an ordering

as a list of priorities. That is, agent f(1) has the highest priority, agent f(2) has the

second highest priority, and so forth. Let F be the set of all such orderings. Note

that the number of all possible orderings is |F | = n!.
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Given a preference profile R ∈ RA, for any ordering f ∈ F and any profile of

fixed tie-breakers >, defined a simple serial dictatorship induced by f with a

profile of fixed tie-breaker >, ϕ>f as

(ϕ>f )f(1) = X>
f(1)(H),

(ϕ>f )f(i) = X>
f(i)

(
H \

i−1⋃
j=1

{ϕ>f (f(j))}

)
for i ⊆ {2, 3, · · · , n}.

That is, agent f(1) chooses her top choice among all houses under her transformed

preference R>
f(1), agent f(2) chooses her top choice among those remaining under her

transformed preference R>
f(2), and so on. When preferences are strict, we can simply

write serial dictatorship as ϕf . Now we introduce a matching rule for the housing

market problem.

4.2.2 Top trading cycles with fixed tie-breaking

Given a preference profile R ∈ RA, for each profile of fixed tie-breakers > and

each endowment µ, let ϕ>µ denote the top trading cycles (TTC) algorithm with

the profile of fixed tie-breakers > from the endowment µ. The algorithm goes as

follows:

At step 1: each agent a ∈ A points to the agent who owns her favorite house under

the transformed preferences R>
a (that is, X>

a (H)). A set of agent {a1, a2, · · · , am} ⊆

A consists a cycle if agent a1 points to agent a2, agent a2 points to agent a3, ... ,

agent am points to agent a1. Since the number of agents is finite and each agent

points to one agent, there is at least one cycle. Note that an agent points to herself

also forms a cycle. In each cycle, each agent receives the house owned by the agent

she points to. All agents with their allocated houses in all cycles are removed from
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the housing market. At step 1, each agent leaves the market receives (possibly) one

of her favorite houses among all houses.

· · ·

At step t: each remaining agent a points to the agent who owns her favorite

house among those remaining houses under the transformed preferences R>
a . Again,

at least one cycle exists. In each cycle, each agent receives the house owned by the

agent she points to and all agents with their houses in the cycles are removed from

the housing market. The algorithm stops when no agent is in the market.

Because the number of agents is finite and at lease one agent is removed from the

market at each step, the algorithm terminates in finite k>µ steps. We partition agents

according to the steps at which they leave the market. Let A(µ,>) = {A1(µ,>

), A2(µ,>), · · · , Ak>µ (µ,>)} be such partition and we call this the cycle structures

for µ and >.

For all t ∈ {1, 2, · · · , k>u }, let H t(µ,>) = {h ∈ H : µ(a) = h for some a ∈ At(µ,>

)}. That is, H t(µ,>) is the set of houses that are initially owned by and allocated

to agents who leave the market at the tth step. Given a preference profile R ∈ RA,

we can write the outcome of the TTC algorithm with the profile of fixed tie-breakers

> under endowment µ, ϕ>µ as

∀a ∈ A1(µ,>), ϕ>µ (a) = X>
a (H).

∀t ∈ {2, 3, · · · , k>µ }, ∀a ∈ At(µ,>), ϕ>µ (a) = X>
a

(
H \

t−1⋃
s=1

Hs(µ,>)

)
.
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4.3 Main result

A matching ν Pareto dominates another matching µ if ν(a)Raµ(a) for all a ∈ A

and ν(a)Paµ(a) for some agent a ∈ A. A matching is Pareto efficient if it is

not Pareto dominated by any matching. Let E be the set of Pareto efficient

allocations. A matching ν strictly Pareto dominates another matching µ if

ν(a)Paµ(a) for all a ∈ A. A matching is weakly Pareto efficient if it is not strictly

Pareto dominated by any matching. Let W E be the set of weakly Pareto efficient

allocations.

When preferences are strict, Abdulkadiroğlu and Sönmez (1998) established a

strong link between the serial dictatorship and top trading cycles algorithm. They

showed that for any ordering f and any matching µ, the serial dictatorship induced

by f and the outcome of the TTC algorithm from assigned endowments µ (which is

also the unique matching in the core when preferences are strict) both yield Pareto

efficient matchings; for any Pareto efficient matching η, there is a serial dictator-

ship and a outcome of top trading cycles from assigned endowments that yields it.

Formally, ϕM = ϕF = E , where ϕM = {η ∈ M : ϕµ = η for some µ ∈ M },

ϕF = {η ∈M : ϕf = η for some f ∈ F}.

But under weak preferences, Ehlers (2014) showed that the outcome of the TTC

algorithm with fixed tie-breaking is just weakly Pareto efficient. Similarly, a serial

dictatorship with fixed tie-breaking may fail to yield a efficient allocation when pref-

erences are weak. We can illustrate this in an example of two agents and two houses.

Preferences are given in the following table 4.1. When the priority ordering satisfies

agent 1 chooses first, and the tie-breaker satisfies h2 >1 h1, then the outcome of the

serial dictatorship with the fixed tie-breaker is (h2, h1) which is Pareto dominated

by (h1, h2).
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R1 R2

h1, h2 h2

h1

Table 4.1: Serial dictatorship with fixed tie-breaking is not Pareto efficient

We have the following corollary that extends Abdulkadiroğlu and Sönmez (1998)’s

result when preferences are weak.

Corollary 4.1:

(1) The set of matchings induced by serial dictatorships with fixed tie-breaking coin-

cides with the set of matchings induced by the TTC algorithm with fixed tie-breaking;

(2) the induced matchings are weakly Pareto efficient;

(3) for any Pareto efficient matching, there exists a serial dictatorship with fixed tie-

breaking and a TTC from assigned endowment with fixed tie-breaking that yields it.

That is,

E ⊆ ϕ�M = ϕ�F ( W E ,

where ϕ�M = {η ∈M : ϕ>µ = η for some µ ∈M and some >∈�}, and ϕ�F = {η ∈

M : ϕ>f = η for some f ∈ F and some >∈�}.

Corollary 4.1 implies that the strong link between serial dictatorship and Gale’s

TTC algorithm still holds for the full preference domain. Contrary to the scenario

of strict preferences, the outcomes are not necessarily Pareto efficient; they are just

weakly Pareto efficient. But they are not weak enough in the sense that i) some

“extremely” weakly Pareto efficient allocations could not be yielded by any serial

dictatorship or any Gale’s TTC algorithm (see the following example 4.1); and ii)

all the Pareto efficient allocations can be yielded by any one of the two classes of
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rules. We can illustrate the theorem in the following example 4.1 with three agents

and three houses.

Example 4.1: Preferences are given in the following table 4.2.

R1 R2 R3

h2, h3 h1 h1

h1 h3 h2

h2 h3

Table 4.2: The preferences for example 4.1

There are six serial dictatorships F = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2),

(3, 2, 1)} and six initial endowments M = {(h1, h2, h3), (h1, h3, h2), (h2, h1, h3),

(h2, h3, h1), (h3, h1, h2), (h3, h2, h1)}. And there are (3!)3 = 216 profiles of fixed

tie-breakers, but only two types of them matter in this problem. Let the type 1 tie-

breaker >̄ be such that h2>̄1h3, and the type 2 tie-breaker >̂ be satisfying h2>̂1h3.

The following table 4.3 list the outcomes of serial dictatorships and Gale’s TTC

algorithm.

ϕ>f ↘ >= >̄ >= >̂ ϕ>µ ↘ >= >̄ >= >̂

f1 = (1, 2, 3) (h2, h1, h3) (h3, h1, h2) µ1 = (h1, h2, h3) (h2, h1, h3) (h3, h2, h1)

f2 = (1, 3, 2) (h2, h3, h1) (h3, h2, h1) µ2 = (h1, h3, h2) (h2, h3, h1) (h3, h1, h2)

f3 = (2, 1, 3) (h2, h1, h3) (h3, h1, h2) µ3 = (h2, h1, h3) (h2, h1, h3) (h3, h1, h2)

f4 = (2, 3, 1) (h3, h1, h2) (h3, h1, h2) µ4 = (h2, h3, h1) (h2, h3, h1) (h2, h3, h1)

f5 = (3, 1, 2) (h2, h3, h1) (h3, h2, h1) µ5 = (h3, h1, h2) (h3, h1, h2) (h3, h1, h2)

f6 = (3, 2, 1) (h2, h3, h1) (h2, h3, h1) µ6 = (h3, h2, h1) (h2, h3, h1) (h3, h2, h1)

Table 4.3: The outcomes of example 4.1

From table 4.3 we can see that ϕ�F = {(h2, h1, h3), (h3, h1, h2), (h2, h3, h1), (h3, h2, h1)}
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= ϕ�M , and the set of Pareto efficient allocations is E = {(h2, h3, h1), (h3, h1, h2)}.

Also note that (h1, h3, h2) ∈ W E but (h1, h3, h2) /∈ ϕ�F = ϕ�M , which verifies

E ⊆ ϕ�M = ϕ�F ( W E .

Proof of corollary 4.1. The fact that ϕ�M = ϕ�F follows directly from

Abdulkadiroğlu and Sönmez (1998). We first show that E ⊆ ϕ�M . Let η ∈ E .

For any fixed tie-breaker >∈�, we apply Gale’s TTC algorithm with the fixed tie-

breaker from the endowment η. At each step, no agent would point to a house that

is worse than her endowment, i.e., for all a ∈ A, ϕ>η (a)Raη(a). Since η is Pareto

efficient, we have ϕ>η (a)Iaη(a) for all a ∈ A. Now we pick up a tie-breaker >̄ such

that for each agent, her endowment is ordered first, i.e., for each a ∈ A, and each

h ∈ H \ η(a), η(a)>̄ah. With this tie-breaker >̄, whenever an agent is indifferent

between a house and her endowment and they are in the set of her most preferred

houses among the remaining houses, she would point to her endowment under Gale’s

TTC algorithm. This observation together with ϕ>η (a)Iaη(a) for all >∈� and all

a ∈ A imply ϕ>̄η (a) = η(a) for all a ∈ A which in turn implies η = ϕ>̄η ∈ ϕ�M ,

completing the proof of E ⊆ ϕ�M . Now we show that ϕ�F ( W E . Let η ∈ ϕ�F , then

there exist f ∈ F and >∈� such that η = ϕ>f . Agent f(1) chooses (one of) her

most preferred house(s) among all the houses. It is impossible to assign agent f(1)

a better house, showing that η ⊆ W E . The example 4.1 shows that ϕ�F 6= W E . �

Abdulkadiroğlu and Sönmez (1998) also showed that the random serial dicta-

torship is equivalent to the TTC from random endowments when preferences are

strict. We generalize this result in corollary 4.2 by allowing weak preferences. Before

presenting the result, we have to introduce more terminology. A lottery m is a

probability distribution over matchings, that is, m = (m1,m2, · · · ,mn!) such that∑n!
k=1mk = 1 and mk ≥ 0 for all k. Let mµ be the lottery that assigns probability 1

to matching µ. Let the set of all lotteries be ∆M . A lottery rule selects a lottery
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for each problem.

Given a preference profile R ∈ RA, define a random serial dictatorship with

a profile of fixed tie-breakers >, ψ>rsd as

ψ>rsd =
∑
f∈F

1

n!
mϕ>f ,

i.e., each serial dictatorship with the fixed tie breakers is chosen with equal proba-

bility.

Given a preference profile R ∈ RA, define a random serial dictatorship with

random tie-breakers, ψ�rsd as

ψ�rsd =
∑
>∈�

∑
f∈F

1

(n!)n+1
mϕ>f ,

i.e., each serial dictatorship and each profile of fixed tie breakers are randomly se-

lected with uniform distribution and the induced serial doctorship is applied.

Given a preference profile R ∈ RA, define the outcome of the TTC algorithm

with a profile of fixed tie-breakers from random endowments, ψ>ttcre as

ψ>ttcre =
∑
µ∈M

1

n!
mϕ>µ ,

i.e., endowment is randomly selected with uniform distribution and each outcome of

the TTC algorithm with the fixed tie-breakers > is chosen with equal probability.

Given a preference profile R ∈ RA, define the outcome of the TTC algorithm

with random tie-breakers from random endowments, ψ�ttcre as

ψ�ttcre >=
∑
>∈�

∑
µ∈M

1

(n!)n+1
mϕ>µ ,
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i.e., each endowment and each profile of fixed tie-breakers are randomly chosen with

uniform distribution and each outcome produced via the TTC algorithm is chosen

with equal probability.

The following corollary 4.2 follows directly from Abdulkadiroğlu and Sönmez

(1998).

Corollary 4.2:

(1) For any profile of fixed tie-breakers >, the random serial dictatorship with fixed

tie-breaking is equal to the TTC from random endowments with fixed tie-breaking,

i.e.,

ψ>rsd = ψ>ttcre.

(2) A random serial dictatorship with random tie-breakers is equivalent to the TTC

with random tie-breakers from random endowments, i.e.,

ψ�rsd = ψ�ttcre.

In the previous example 4.1,

ψ>̄rsd =

(
2

6
⊗ (h2, h1, h3),

3

6
⊗ (h2, h3, h1),

1

6
⊗ (h3, h1, h2)

)
= ψ>̄ttcre.

ψ>̂rsd =

(
3

6
⊗ (h3, h1, h2),

2

6
⊗ (h3, h2, h1),

1

6
⊗ (h2, h3, h1)

)
= ψ>̂ttcre.

ψ�rsd =

(
2

12
⊗ (h2, h1, h3),

4

12
⊗ (h3, h1, h2),

4

12
⊗ (h2, h3, h1),

2

12
⊗ (h3, h2, h1)

)
= ψ�ttcre.

Now we introduce some more definitions to present our theorem 4.1.
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A matching rule is Pareto efficient if it always selects a Pareto efficient matching

for each problem. A matching rule ϕ Pareto dominates another matching rule ϕ′

if for all (A,H,R), ϕa(R)Raϕ
′
a(R) for all a ∈ A, and ϕā(R)Pāϕ

′
ā(R) for some ā ∈ A

and some R, where ϕa(R) is agent a’s allocation under the rule ϕ with the preference

profile R.

A matching rule ϕ is strategy-proof if for all R ∈ RA, all a ∈ A, and all R′a ∈ R,

we have ϕa(R)Raϕa(R
′
a, R−a). Strategy-proofness requires that no agent can ben-

efit by unilaterally misreporting her preference relation. This incentive-compatible

condition ensures that truthfully reveal one’s preference is weakly dominant strategy.

A matching rule ϕ is non-bossy if for all R ∈ RA, all a ∈ A, and all R′a ∈ R,

if ϕa(R) = ϕa(R
′
a, R−a), then we have ϕ(R) = ϕ(R′a, R−a). Non-bossiness requires

that no agent can change the assignments of others by misreporting her preferences

without change the her allocation.

A matching rule ϕ is consistent if for all S ⊆ A and allR ∈ RA,
⋃
a∈A\S{ϕa(R)} =

H \M (with M ⊆ H) implies ϕa(RS|M) = ϕa(R) for all a ∈ S. Consistency requires

that whenever some set of agents receives their assigned houses, we can remove these

agents and their assignments from the economy without changing the allocation of

other agents.

Ehlers (2014) showed that in the housing market problem with indifference, Gale’s

TTC algorithm with fixed tie-breaking satisfying individual rationality, weak Pareto

efficiency, strategy-proofness, non-bossiness and consistency. We obtain a similar

result in the house allocation problem with weak preferences.

Theorem 4.1: For any profile of fixed tie-breakers > and any priorities ordering

f , the serial dictatorship ϕ>f satisfies weak Pareto efficiency, strategy-proofness, non-

bossiness and consistency.

Proof of theorem 4.1. Weak Pareto efficiency was proved in corollary 4.1.

73



Strategy-proofness: for all R ∈ RA, all a ∈ A, and all R′a ∈ R, since ϕf satisfies

strategy-proofness on the strict domain of preferences, so we have

(ϕ>f )a(R)R>
a (ϕ>f )a(R

′
a, R−a),

where (ϕ>f )a(R) is the allocation for agent a under the matching ϕ>f (R). Since R>
a

is the transformed preference that only break ties in Ra, so we have

(ϕ>f )a(R)Ra(ϕ
>
f )a(R

′
a, R−a),

i.e., strategy-proofness is satisfied.

Non-bossiness: for all R ∈ RA, all a ∈ A, and all R′a ∈ R, suppose we have

(ϕ>f )a(R) = (ϕ>f )a(R
′
a, R−a); we want to prove ϕ>f (R) = ϕ>f (R′a, R−a). Since ϕ>f (R) =

ϕf (R
>), so we have (ϕf )a(R

>) = (ϕf )a(R
′
a
>, R−a

>). Since ϕf satisfies non-bossiness

on the strict domain, we have (ϕf )(R
>) = (ϕf )(R

′
a
>, R−a

>). Again, by ϕ>f (R) =

ϕf (R
>), we have ϕ>f (R) = ϕ>f (R′a, R−a).

Consistency: for all S ⊆ A, all a ∈ S, and all R ∈ RA, suppose

⋃
a∈A\S

{(ϕ>f )a(R)} = H \M ;

we want to prove (ϕ>f )a(RS|M) = (ϕ>f )a(R). Since ϕ>f (R) = ϕf (R
>), so we have⋃

a∈A\S{(ϕf )a(R>)} = H \ M . Since ϕf satisfies consistency on strict domain,

so we have (ϕf )a(R
>
S |M) = (ϕf )a(R

>). Again, by ϕ>f (R) = ϕf (R
>), we have

(ϕ>f )a(RS|M) = (ϕ>f )a(R), completing the proof of consistency. �

Even though fixed tie-breaking fails to achieve strict Pareto efficiency, it is com-

monly used in matching theory and market design. Abdulkadiroğlu, Pathak and Roth
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(2009) and Kesten (2010) independently studied the school choice problem with indif-

ferences in priorities in which ties are broken according to fixed tie-breakers and then

apply student-proposing deferred acceptance algorithm to find the stable matching.

Kesten (2010) showed that no other strategy-proof and Pareto efficient rules Pareto

dominates the DA algorithm with fixed tie-breaking. While Abdulkadiroğlu, Pathak

and Roth (2009) defended this practice by showing that no other strategy-proof rules

Pareto dominates the DA algorithm with fixed tie-breaking. Ehlers (2014) presented

the housing market problem with indifferences and shows that the TTC algorithm

with fixed tie-breaking is not Pareto dominated by a rule satisfying strategy-proofness

and Pareto efficiency. We prove a similar result as showed in theorem 4.2.

Theorem 4.2: Serial dictatorship with fixed tie-breaking is not Pareto dominat-

ed by any strategy-proof and Pareto efficient rule.

Proof of theorem 4.2. Let A = {1, 2, 3, 4}, H = {h1, h2, h3, h4}. Let the pref-

erence relations be the same as the ones in Ehlers (2014), as shown in the following

table.

R1 R2 R3 R4 R′3
h2, h3 h1 h1 h3 h1

h1 h2 h2 h4 h2

h4 h3 h4 h2 h3

h4 h3 h1 h4

Let f = (1, 2, 3, 4) and > be such that h2 >
1 h3. Then ϕ>f (R) = (h2, h1, h4, h3).

Suppose ϕ dominates ϕ>f and ϕ is Pareto efficient, then we have ϕ(R) = (h2, h1, h4, h3)

= ϕ>f (R). We also have ϕ>f (R′3, R−3) = (h2, h1, h3, h4). Since ϕ is Pareto efficient and

it Pareto dominates ϕ>f , so ϕ(R′3, R−3) = (h3, h1, h2, h4) and thus ϕ(R′3, R−3)P3ϕ(R)

which means strategy-proofness is violated. �
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4.4 Conclusion

This chapter studies house allocation problems when indifferences are allowed.

It shows that the serial dictatorship with fixed tie-breaking satisfies weak Pareto

efficiency, strategy-proofness, non-bossiness, and consistency, and further it is not

Pareto dominated by any Pareto efficient and strategy-proof rule. As corollaries

to Abdulkadiroğlu and Sönmez (1998), it also shows that the relationship between

the serial dictatorships and the TTC algorithm from individual endowments, and

the equivalence of random serial dictatorship and the TTC algorithm with random

endowments still holds under weak preferences.
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5. CONCLUSION

This dissertation studies house allocation problems. The chapter 3 on balance

house allocation is motivated by Pathak and Sethuraman’s (2011) work. When

students are assigned to public schools in New York City, policymakers and parents

believe that a single lottery used for all schools is less equitable than lotteries at

each school. We formally define a fairness property that we call “balancedness.”

If all possible preference profiles are equally likely to happen, then a deterministic

allocation rule is balanced if all agents have equal chances to their best choices,

have equal chances to their second best choices, and so forth. When preferences

are strict, we show that in models with non-three agents, an allocation rule satisfies

Pareto efficiency, group strategy-proofness, and balancedness if and only if it is a top

trading cycles rule from individual endowments; and when there are three agents, an

allocation rule is Pareto efficient, group strategy-proof and balanced if and only if it

is a TTC from individual endowments or a TC rule with three brokers.

However, this balancedness property cannot hold for school choice problems when

capacities of each school is not one. In a school choice problem, agents has a strict

preference relation over schools, but they are indifferent between the seats of the

same school. The top trading cycles algorithm for school choice problem consists of

a serial of steps described as follows:

• At step 1: Each student points to her favorite school. Each school points to

the student with the highest priority. At least one cycle exists. Assign each

student the school she points to.

• In general, at step k: each remaining student points to her favorite school

with non-zero number of available seats. Each school with non-zero number
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of available seats points to the student with the highest priority among the

reaming students. Again, at least one cycle exists. Assign each student the

school she points to.

• The algorithm stops when no school or no student points.

Example. Consider a school choice problem with two schools, S1 and S2, and

four students, i, j, k and l. Each school has two seats. Table 5.1 shows the priority

ranking of each school.

S1 S2

i k
j l

Table 5.1: Two schools with same capacities

The numbers of preference profiles that each student receives her first and her

second best choices are given by:

#(1st, i) = 14, #(2nd, i) = 2. #(1st, k) = 14, #(2nd, k) = 2.

#(1st, j) = 12, #(2nd, j) = 4. #(1st, l) = 12, #(2nd, l) = 4.

We can see that the student at the top of the priority list has a higher chance to

her best choice than the student at the bottom of the priority list can.

Example. Consider another example with asymmetric capacities described in

table 5.2. School 1 has two seats, but school 2 has one seat.

The numbers of preference profiles that each student receives her first and second

best choices are given by:
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S1 S2

i k
j

Table 5.2: Two schools with asymmetric capacities

#(1st, i) = 6, #(2nd, i) = 2. #(1st, k) = 7, #(2nd, k) = 1.

#(1st, j) = 5, #(2nd, j) = 3. #(1st, l) = 12, #(2nd, l) = 4.

Again, for students who are each initially endowed with one seat at the same

school, the student with a higher ranking on the priority list has a higher chance

to her best choice than the student at a lower ranking on the priority list. But for

students at the same ranking position at distinct schools with different capacities,

the student who owns a seat in a school with a smaller capacity is favored.

In geneal, we can partition schools into groups such that schools in the same

group have the same capacity, as shown in table 5.3. Let ikt (j) be the student on jth

position at school Skt , where school Skt is a school from group Gk with k seats.

G1 G2 · · · Gq

S1
1 · · · S1

t1 S2
1 · · · S2

t2 · · · Sq1 · · · Sqtq

u · · · u u · · · u · · · u · · · u
u · · · u · · · u · · · u

· · · · · · · · · · · ·
u · · · u

Table 5.3: Schools with different capacities

We conjecture that the top trading cycles from individual endowments for school

choice problems satisfies:

1. #(nth, ikt (j)) = #(nth, ikt′(j)), ∀n, ∀k, ∀j.
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2. #(1st, ikt (j)) > #(1st, ikt (j
′)), ∀j < j′.

3. #(1st, ikt (j)) > #(1st, ik
′

t′ (j)), ∀k < k′.

That is, two students who are each initially endowed with one seat with the same

position at the schools with same capacities have the same chances to their kth best

choices. For two students who are each initially endowed with one seat at different

positions on the priority lists at the schools with same capacities, the one at a higher

ranked position has a higher chance to her best choice. And for two students who are

each initially endowed with one seat at the same position on the priority list at the

schools with different capacities, the student from the school with smaller capacity

has a higher chance to her best choice.

When we talk about the chances or probabilities in the above school choice prob-

lem or in the house allocation problem discussed in chapter 3, we basically assume

that all possible preferences are equally like to occur. However, some schools or

objects might be more popular than others in the real world. How to formalize the

definition of fairness in these settings remains an open question.

In chapter 4, we study house allocation problems when indifferences are allowed.

We show that the serial dictatorship with fixed tie-breaking satisfies weak Pareto

efficiency, strategy-proofness, non-bossiness, and consistency, and further it is not

Pareto dominated by any Pareto efficient and strategy-proof rule. As corollaries

to Abdulkadiroğlu and Sönmez’s (1998) result, the relationship between the serial

dictatorships and the top trading cycles algorithm from individual endowments, and

the equivalence of random serial dictatorship and the top trading cycles algorithm

with random endowments still holds under weak preferences.
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Abdulkadiroğlu, Atila, Parag A. Pathak and Alvin E. Roth, 2009. Strategy-

proofness versus efficiency in matching with indifferences: Redesigning the NYC

high school match, American Economic Review (99) 1954-78.
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