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ABSTRACT 

 

Epigenetic patterns established during early bovine embryogenesis via DNA 

methylation and histone modification patterns are essential for proper gene expression and 

embryonic development. Epigenome patterns established during this period, if improperly 

maintained, can lead to developmental anomalies and may partially explain the lower 

pregnancy rates of in vitro-produced embryos. We hypothesized that the histone 

methyltransferase of ASH2L would alter preimplantation development, epigenetic 

reprogramming, and gene expression profiles in the early bovine embryo. We observed that 

the depleted and deleted ASH2L embryos developed to the blastocyst stage with suppressed 

ASH2L having comparable development rates with its respective control (31.3 ± 2.0%, 

n = 466 v. 34.8 ± 1.9%, n = 418). To see if errors were in the chromatin structure at the 

blastocyst stage, DNA methylation and histone modifications were examined to further 

explain the role of ASH2L during embryonic development. Blastocysts from each treatment 

(N = 601) were fixed and prepared for immunocytochemistry following standard laboratory 

protocol. Our findings show ASH2L may play a role in DNA methylation by decreasing 5mc 

and 5hmc conversion, which is a key event during early embryonic development. 

Suppression of ASH2L also alters global levels of H3H4me3 and H3K27me3 (p<0.001), 

which may lead to transcription aberrations. RNA-seq showed altered gene expression 

profiles in 407 genes in the morphologically comparable Day 17 conceptus (p<0.05). Closer 

examination showed that there is altered mesenchymal stem cell differentiation present in the 

Day 17 conceptuses. Analysis of ASH2L shows to not have a detrimental effect during 
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preimplantation development but altered chromatin status and gene expression profiles 

suggest that ASH2L could play a vital role later in development.   
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NOMENCLATURE 

 

5hmc   5-hydoxymethylcystosine 

5mc   5-methylcytosine 

Amp   Ampicillin  

ARTs   Assisted reproductive technologies 

AS   Angelman Syndrome 

bp   Base pairs 

BWS   Beckwith-Wiedemann Syndrome 

cDNA   Complementary DNA 

ChIP   Chromatin histone immunoprecipitation 

CIDR   Controlled internal drug release 

CL   Corpus luteum  

CpG   Cytosine-Guanine (dinucleotides) 

CRISPR  Clustered regularly-interspaced short palindromic repeats 

DNMTs  DNA methyltransferases 

dsRNA  Double-stranded RNA 

FBS   Fetal bovine serum 

H3K4   Histone 3 Lysine 4 

H3K9   Histone 3 Lysine 9 

H3K27   Histone 3 Lysine 27 

HMTs    Histone methyltransferases 

HOX   Homeobox  
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ICC   Immunocytochemistry 

IFNT   Interferon tau 

InDels   Insertion or deletions 

IVC   In vitro culture 

IVF   In vitro fertilization 

IVM   In vitro maturation 

IVP   In vitro produced 

IVT   In vitro transcription 

NHEJ   Nonhomologous end joining 

LOS   Large offspring syndrome 

MDBK  Madin-Darby bovine kidney  

me2   Dimethylation 

me3   Trimethylation  

MLL   Mixed Lineage Leukemia 

mRNA   Messenger RNA 

PAM   Protospacer adjacent motif 

PcG   Polycomb group 

PCR   Polymerase chain reaction 

PHD   Plant homeodomain 

Puro   Puromycin  

RISC   RNA induced silencing complex 

RNAi   RNA interference 

RT-qPCR  Real-time quantitative PCR 
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SCNT   Somatic cell nuclear transfer 

Seq   Sequencing 

siRNA   small interfering RNA 

sgRNA  small guide RNA  

SPRY   SPIa/RYanodine receptor 

TrxG   Trithorax Group 

TSS   Transcription start sites 
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CHAPTER I 

INTRODUCTION 

 

Assisted Reproductive Technologies in Cattle and Humans 

With the introduction of the first in vitro produced bovine calf in 1981, in vitro 

fertilization (IVF) has become an increasingly utilized technique within the bovine embryo 

transfer industry [1]. Assisted reproductive technologies (ARTs) that produce embryos 

outside of the in vivo environment include in vitro maturation (IVM), IVF, and in vitro 

culture (IVC). When these technologies are combined the embryos are often refered to as in 

vitro produced (IVP).  IVP is a useful method that producers can incorporate into their 

business to increase offspring from superior cattle at a faster rate when compared to in vivo 

production. The attraction to this technique is demonstrated by the reported 443,533 bovine 

IVP embryos in 2013 (IETS Statistics, 2013). When compared to five years earlier, there is a 

substantial increase as only 245,260 embryos were reported from IVP techniques (IETS 

Statistic, 2008). Over this period, there was also an increased proportion of IVP embryos 

being transferred into recipients (38.8% vs 29.7%; IETS Statistics, 2013 & 2008 

respectively).  

As in vitro technologies began to be commercialized, these IVP embryos resulted in 

inferior pregnancy rates (56% fresh and 42% frozen) when compared to their in vivo 

counterparts derived from superovulation and embryo transfer (76% fresh and 64% frozen) 

[2]. In a more recent examination of the industry, lower pregnancy rates were still present on 

Day 30 (32% vs 46%) and Day 60 (27% vs 42%) [3]. Additional studies support this 

decrease in pregnancy on Day 60 when comparing the in vitro and in vivo produced embryos 
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(33.5% verse 41.2%, respectively) [4]. These decreased pregnancy rates suggest IVP 

embryos are developmentally inferior and improvements are necessary in culture systems in 

order to optimize embryo quality and pregnancy rates [5].   

 Altered development rates were further highlighted with the increase use of somatic-

cell nuclear transfer (SCNT) in cattle. It was shown that cloned fetuses had increased 

abortion rates during pregnancy, with viability being reported as low as 10% on Day 180 [6]. 

Failure in normal placentation was found to be the major cause of this failure in pregnancy 

[7]. The small percent of fetuses from SCNT survived through gestation sometimes exhibited 

phenotypic anomalies at birth. It was observed that cloned fetuses resulted in an approximate 

20% increase in birth weight when compared to calves from embryo transfer and artificial 

insemination. This phenomenon became commonly known as large offspring syndrome 

(LOS). LOS calves also presented multiple health issues that were believed to be caused by 

cloning techniques and in vitro culture conditions [8, 9]. These abnormal calves from SCNT 

were also found to have abnormal gene expression patterns of developmentally important 

genes that lead to the altered physiological and phenotypic variation from the in vivo 

offspring [10, 11]. These findings in bovine provide insight for other species, including 

humans, that have similar phenotypic anomalies in offspring associated with ARTs.  

In humans, there is increase use of ARTs since the first IVF baby born in 1978. In 

2013, more than 1.5% (63,286) of children were reported to be born in the United States 

from these techniques. However, there were also numerous failed instances of producing a 

viable offspring from ARTs, with a reported 111,676 (63.8%) attempts being unsuccessful 

(2013 Fertility Clinic Report, CDC). With the average age of the human reproductive 

population increasing, there is a projected decrease in fertility.  This suggests ARTs will be a 
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more commonly used technique in the future [12]. With the reported large number of failed 

IVF attempts in humans, it suggests errors are present in gene expression patterns of these 

early embryos [13, 14]. Similar to observations of LOS in cattle and sheep; ARTs in humans 

have also been linked to imprinting disorders Beckwith-Wiedemann Syndrome (BWS) and 

Angelman Syndrome (AS) [15, 16]. Children born with BWS are reported to be overweight 

and have atypical phenotypes present at birth. Children with BWS are also more prevalent to 

tumorigenesis and other health risks throughout life [17]. With the mounting evidence of 

epigenetic errors present in these offspring, it is important to investigate factors present 

during in vitro culture that cause abnormal embryonic development [18].  

These findings from ARTs in both humans and cattle offspring have led researchers 

to take a closer look at gene expression profiles of IVP embryos and the subsequent offspring 

[19]. It has been shown in mice that abnormal regulation of genomic imprinting regions were 

present due to different in vitro culture mediums being utilized [20]. Epigenetic disruption to 

imprinted genes has previously been identified as a potential mechanism that leads to the 

abnormal placentation, and thus, phenotypic difference for LOS, BWS, and AS. Further 

investigation of IVP embryos in cattle discovered a large proportion of embryos exhibited 

errors in  gene expression profiles when compared to in vivo produced embryos [21]. Later 

studies used deep transcriptome analysis further validated these differenes in gene expression 

between the in vitro and in vivo produced embryos. These anomalies associated with ARTs 

shows a need for better culture systems in order to facilitate fertilization without the 

detrimental side effects.  
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Epigenetics 

Epigenetics means “above genetics” and refers to DNA methylation and/or histone 

modifications that regulate transcription [22]. These modifications do not alter the underlying 

DNA sequence, but instead influence transcription by alterations in chromatin structure. It 

was believed for the majority of the twentieth century that genetics, environment, and 

developmental biology were entirely separate fields [23]. It was not until the 1960s, the 

science of epigenetics established a link between these fields [24]. Due in part to technical 

advances in analysis of chromatin components, a vast amount of research has been 

accomplished to characterize epigenetic regulation of the genome.  

Epigenetic regulation can come in the form of DNA methylation and/or histone 

modifications. The modifications that occur during early embryonic development can be 

heritable to subsequent daughter cells in the lineage [25]. These modifications help to shape 

the developmental plan from the zygote stage and throughout development. Substantial, 

research has focused on environmental factors present in vitro and how they may effect the 

establishment of DNA methylation and histone modification patterns of the early embryo 

[26]. With the increase use of in vitro embryo production in both humans and livestock 

species, research into epigenetic patterns is important in order to understand chromatin 

remodeling of the early embryo. Moreover, how these perturbations to the chromatin may 

lead to subsequent manifestation of abnormal phenotypes associated with ARTs.  

 

DNA Methylation and Hydroxymethylation 

DNA methylation is an epigenetic mechanism that can be used to modulate the 

transcriptional status of mammalian cells. DNA methylation has been associated with playing 
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a vital role in transcription, chromatin structure, genomic imprinting, embryonic 

development, and chromatin stability [27-30].  Of the different types of DNA methylation, 

the fifth carbon position of cytosine (5mc) has been popularly studied and is shown to be 

inherited through somatic cell division [31, 32].  Thus far, most studies examining DNA 

methylation have focused on CpG islands [33, 34]. CpG islands are regions of the DNA 

where a cytosine nucleotide is followed by a guanine nucleotide and are typically located 

near the transcription start sites (TSS) of genes. Cytosine methylation at the CpG sites in 

promoter regions are often associated with a decrease in transcriptional activity due to 

inhibition of the binding of RNA polymerase, thus inhibiting gene transcription [35, 36]. 

However, this is not always true as it has been shown that 5mc levels have been associated 

with both a positive and negative correlation on regulating gene transcription [37].  

The DNA methyltransferases (DNMTs), are a conserved family of proteins that play 

a key role in DNA methylation and are considered to be necessary for mammalian 

development [38]. DNMT1 is considered to be maintenance protein as it is responsible for 

passing on the methylation patterns from the dividing cells onto daughter cells in order to 

maintain chromatin stability [39].  DNMT3a and DNMT3b play a pivotal role in de novo 

methylation and establishing 5mc levels in primordial germ cells and during preimplantation 

development [40].  

During the preimplantation stage, global DNA methylation patterns play a valuable 

role in epigenetic reprogramming in most mammalian species (Figure 1.1) [41, 42]. Shortly 

after fertilization, the paternal and maternal genome undergo asymmetrical demethylation 

patterns that converts 5mc to 5-hydroxymethylcytosine (5hmc) [43-46]. Hydroxymethylation 

in 5mc in the early embryo is mediated by the enzymes of ten-eleven translocation 1 (TET1), 



6 
 

TET2, and TET3 [47, 48]. In mice, suppression of TET1 in the early embryo resulted in a 

bias towards trophectoderm differentiation [49]. These findings in mice suggest that 5hmc 

plays a role in differentiation and proper gene expression profiles in the early embryo. 

However, examples in sheep and cloned embryos, from a variety of species, proved that this 

methylation pattern is not always essential for embryo viability [42, 50, 51]. 

 

 

 

 
 

Figure 1.1 – DNA methylation patterns in primordial germ cells and early embryo in mice 

[41]. 

 

 

 

5mc and 5hmc patterns established during the early stages of preimplantation 

development are thought to be a necessary for viability of the early embryo [52]. After 

fertilization the early stages in embryo development are controlled by maternal mRNA and 

proteins. Genome activation is needed in the early embryo for it to synthesize new protein 

and thus allowing further cleavage stages to take place [53]. During this reprogramming 
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event, DNA methylation has been shown to associate with chromatin modifiers to aid in this 

reprogramming process.  

Imprinted genes have been shown to bypass regular DNA methlylation patterens 

present in the  early embryo [54]. Imprinted genes were first discovered in mice and it was 

revealed that it was required for both the paternal and maternal allele to create a viable 

embryo [55]. These allele specific patterns have been shown to be improperly maintained by 

epigenetic factors that give rise to abnormal phenotypes that are associated with ARTs 

[56,57]. Ambnormal regulation of imprinting genes has been shown to be the problem with 

loss of imprinting and abnormal placentaion during fetal development [58,59]. Finding the 

epigenetic factors that cause this abnormal regulation of imprinting genes in the early embryo 

would be beneficial for future development.  

 

Histone Modifications  

In 1964, it was first discovered that acetylation and methylation of core histone 

proteins are associated with changes in RNA synthesis [60]. Two copies each of the core 

histone proteins of H2A, H2B, H3 and H4 aid in packaging DNA and together form the 

nucleosome [61]. The DNA wrapped around these histones are approxamitaly 147 base pairs 

(bp) long, while linker DNA connects the histones to one another [62]. Histone modifications 

take place on these core proteins are associated with facilitating gene transcription based on 

the accessibility of the chromatin [63]. Modifications to histone tails are key regulators for 

chromtin assembly and transcriptional activity [64]. The most commonly studied 

modifications to histone tails include methylation, phosphorylatin, acetylation, and 

ubiquitation [65].  
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Histone methyltransferases (HMTs) are key components of epigenetic 

reprogramming, as they are associated with the initiation of gene expression [66]. Many 

different mechanisms are found to play a role in this process. Some of these histone 

methylation sites include, but are not limited to, histone 3 lysine 4 (H3K4), H3K9, H3K20, 

H3K27, H3K36, and H3K79. Methylation of H3K4, H3K36 and H3K79 have been 

associated with a more acitve chromatin while H3K9 and H3K27 have been associated with 

transcriptionally repressed chromatin [67,68]. The methylation on the histone tails can be 

quite specific as it can be mono-, di-, and tri-methylated, with trimethylation generally 

having the most substantial effect on regulation of gene expression [69].  

Two major protein groups, the Trithorax group (TrxG) and Polycomb group (PcG), 

aid in maintating the methylation status on histone tails and are associated with playing a role 

in the cell cycle (Figure 1.2) [70]. The TrxG and PcG of proteins are also able to exchange 

their binding sites with histones multiple times throughout cell divisions, thus showing 

histone modifications can be erased and re-established [71]. In general, the TrxG of proteins 

are associated with leaving the chromatin more accessible for gene transcription while the 

PcG of proteins has an inverse function.  
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Figure 1.2 – Overview of the role of Mixed Lineage Luekemia 1 (MLL1) on chromatin 

remodeling. MLL1 is a component of Trithorax Group, and Polycomb Group (PcG) role 

during the cell cycle and how they exchange their binding sites with histones multiple times 

throughout cell division. The resulting effect is condensation and relaxation of the chromatin 

[70].  

 

 

 

The TrxG and PcG proteins work together to regulate Homeobox (HOX) genes 

expression during early embryonic development. Regulation of H3K4 by the TrxG and 

H3K27 by the PcG is critical for HOX gene expression and the layout of developmental plan 

for the early embryo [72]. Abnormal HOX gene expression has been linked to atypical 

development throughout the body including skeletal, reproductive, and digestive systems 

[73,74].  To date, the majority of studies investigating the role of histone methylation on the 

control of HOX gene expression and other histone modifications have been completed by 

using a mouse model [75]. 
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Biomedical Animal Models 

The majority of studies of  epigenetic modifications during the preimplantation period 

have used the mouse as the mammalian model. However, differences in terms of epigenetic 

reprogramming and epigenetic regulation of gene expression between species is apparent 

[76]. Therefore, defining key epigenetic modifiers during preimplantation development in 

bovine is valuable as they are a biologically more relevant model to the human as compared 

to the mouse [77]. Cattle are also an economically important livestock species where ARTs 

are often used, making bovine studies relevant in human medicine and agricultural industries. 

 Reproductively, the mouse has a shorter preimplantation and gestational period (21 

days) when compared to humans (280 days). Cattle are more similar to humans in gestational 

length (approximately 282 days, depending on breed) [78]. During preimplantation 

development, there are noticeable differences in embryo development when comparing 

humans to mice and cattle. Mice reach the blastocyst stage of embryonic development on 

Day 3.5 as compared to humans and bovine (Day 5-6 and Day 6-7 respectively) [79]. 

Embryonic genome activation also varies between the mammalian species as the mouse 

genome activation occurs at the two-cell, humans begin at the four-cell stage, and bovine at 

the 8-16 cell stage [80]. It has also been shown that the bovine genome is more comparable 

in alignment to human genome than mice [81, 82].  

With over 95% of studies analyzing gene function occurring in mice, utilizing animal 

models that are genetically more similar to humans would be beneficial [83]. Utilizing the 

bovine as a research model can benefit the cattle industry as well as providing a better 

understanding of epigenetic regulation, which could help increase pregnancy rates and 

decrease disease pathogenesis that are associated IVP embryos. With the increase use of IVP 
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and commercially available oocytes in cattle, this further makes the bovine an attractive 

research model.  

 

Tools for Studying Functional Genomics 

RNA Interference  

RNA interference (RNAi) is an evolutionarily conserved mechanism that has been 

associated with modulating gene expression in eukaryotes. RNAi was first discovered in 

plant species and was found to play a role in translational repression by post-transcriptional 

gene siliencing [84]. It was later shown that double stranded RNA (dsRNA) caused the 

silencing of the targeted genes  [85]. The use of RNA interference can target specific RNA 

sequences with high specificity base pairing. This is achieved in mammalian cells by long 

dsRNA that are cleaved, by the enzyme Dicer, into short double-stranded RNA that are 

approximately 21 to 26 nucleotides long [86]. This RNA induced silencing complex (RISC) 

contains two single-stranded RNAs that consist of a guide strand and a passenger strand that 

results in the passenger strand binding to a specific sequence of the mRNA [87]. Gene 

silencing by RISC is achieved by three different mechanisms: homology dependent mRNA 

degradation, translational suppression, or transcriptional gene silencing [88]. This can be 

utilized in cells and embryos by delivering double stranded siRNAs to a specific sequence to 

mediate post-transcriptional silencing and achieve reduction of protein [89]. 

 

CRISPR-Cas9 

The type II prokaryotic clustered regularly-interspaced short palindromic repeats 

(CRISPR) when combined with the DNA endonuclease enzyme Cas9 has been shown to be 
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effective for precise genome editing in mammalian cells [89]. CRISPR-Cas9 is a bacterial 

adaptive immune system that has been engineered to function in eukaryotic cells in a quick, 

efficient, and low cost manner [90]. It can be designed to target a specific location to disrupt 

gene function with a Cas9 enzyme and a 20 base pair guide RNA target sequence adjacent to 

a PAM site (3’ NGG). After the guide RNA aligns the Cas9 enzyme to a specific sequence, 

Cas9 will recognize the PAM site and perform a double strand break. The double strand 

break is then repaired by nonhomologous end joining (NHEJ); an error prone repair 

mechanism that frequently causes insertion or deletions (InDels) in the DNA.  These InDels 

will likely cause a frameshift mutation in the coding sequence, thus disrupting the function of 

the gene. It has been shown that CRISPR/Cas9 can have a wide array of functions from 

knockout and insertion of certain gene sequences to repair mutations [91, 92].  This wide 

spread high specificity is useful for analyzing the function for different genes. Since the 

result is the loss of gene function, it is also an effective tool for analyzing gene function in 

the early embryo [93]. 

 

Bovine Uterine Environment for Transfer and Collection 

In vitro embryo culture systems can only support the development of the bovine 

embryo until shortly after the blastocyst embryo is hatched out of the zona pellucida. After 

this point in time, the embryo requires an in vivo environment for continuation of 

development. In bovine, there is a period of development after the blastocyst stage where the 

embryo undergoes rapid elongation before attaching to the endometrial cells of the uterus 

[94]. The initiation of elongation of the blastocyst occurs on Day 12 to 14  in bovine. In the 

uterine environment, progesterone works to stimulate blastocyst growth and elongation 
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during this pre-implantation period [95-97]. The elongation of the trophectoblast cells is 

critical for the for the release of interferon tau (IFNT) for maternal recognition of pregnancy 

in cattle [98]. If an insufficient quantity of IFNT is produced, PGF2-alpha will be released to 

lyse the corpus lutea and thus contining the estrus cycle.  

Embryos require transfer into estrus synchronized recipients in order to replicate the 

uterine environment for the Day 7 embryos [99]. Estrous synchronization protocols are 

common in the embryo transfer industry, with the standard CIDR method being used for 

timed embryo transfer [100]. In order to avoid surgical procedures on recipient females, 

embryos can be collected on Day 17 of development [101]. On Day 17 embryo elongates into 

a long filamentous conceptus to contains a small embryonic disc [102]. On Day 19 the 

elongated bovine conceptus will begin binding to the uterine epithelium [103]. Once this 

binding begins, conventional nonsurgical embryo collection would no longer be possible for 

examination of the conceptus. Later in development, the elongated filamentous 

trophectoderm will become the placenta, while the embryonic disc will develop into the 

fetus. In previous studies, it has been shown that transferring of up to eleven embryos per 

recipient can be achieved while still maintaining elongation and embryo viability [104]. 

Collection of conceptuses at this time allows for non-invasive techniques to the recipient that 

will allow her to be used for future experiments.  

 

Epigenetic Modifiers in Bovine Embryos 

 DNMTs and HMTs have previously been studied in bovine preimplantation embryos 

by using a RNA interference approach [105-109]. All of the genes studied, when suppressed 

in the early embryo, have had an inhibitory effect on preimplantation development up to the 
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blastocyst stage (Table 1.1). Due to morphological and developmental changes caused by the 

suppression of the DNMTs and HMTs, analysis of ASH2L will give valuable information on 

its role during preimplantation development in bovine. Furthermore, no member of the TrxG 

of proteins has yet to be analyzed for their role during bovine preimplantation development. 

 

 

 

DNA 

Methyltransferases 

Histone 

Methyltransferases 

DNMT1 SUZ12 

DNTM3A SMYD3 

DNTM3B EHMT2 (G9A) 

LSH SETDB1 

 SUV3-9H1 

 SUV4-20H1 

 

Table 1.1 – DNMTs and HMTs previously studied during bovine preimplantation 

development.  

 

 

 

Ash2 (Absent, Small, and Homeotic)-Like (ASH2L)  

Ash2 was first discovered in Drosophila and was determined to belong to the TrxG 

gene family as a positive regulator of gene expression. The ASH2L protein is a known HMT 

that plays a role in H3K4 [110]. ASH2L is also a core component of the Trithorax group of 

proteins, also known as the Mixed Lineage Leukemia (MLL) protein. The Trithorax group is 

a multiprotein complex that requires the presence of ASH2L, WD Repeat Domain 5 

(WDR5), Retinoblastoma Binding Protein 5 (RBBP5), Dpy-30 Histone Methyltransferase 

Complex Regulatory Subunit (DPY30) and Host Cell Factor (HCF) proteins in order for the 
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complex to be in an active state [111]. Its interaction with RBBP5 is necessary for complex 

integrity and activity regulation [112]. The binding of ASH2L to DPY30 is important for the 

regulation of the trimethylation of H3K4 [113, 114].  

This active state could be a key factor in the epigenetic reprogramming as it is a 

member of the MLL complex that regulates the methylation of the histone H3 Lysine 4 

(H3K4) and facilitates the chromatin to be more accessible for transcription [115, 116]. It has 

been shown that trimethylation of H3K4 is associated with active gene transcription and thus 

plays a role in developmental regulation. If improperly maintained it can lead to disease 

pathogenesis, including cancer in mammals [117]. ASH2L and the trimethylation of H3K4 

are associated with increased transcription of HOX genes (Figure 1.3) [118, 119].  

 

 

 

 

Figure 1.3 – Role of ASH2L on H3K4me3 and HOX gene expression. ASH2L when 

complexed with Mixed Lineage Leukemia (MLL), WDR5, RBBP5, and DPY-30 increases 

H3K4me3 levels and HOX gene expression during development (South and Briggs, 2011).   
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From the 5’ to 3’ end of the ASH2L gene, it contains a plant homeodomain (PHD) 

finger, a wing helix domain, a SPIa/RYanodine receptor (SPRY) domain, and a DPY-30 

binding-Motif [120, 121]. The wing helix domain is associated with binding of ASH2L to the 

DNA and when this region is disrupted, it reduces the localization of ASH2L within the 

HOX locus.  The SPRY domain on the C-terminal end of the ASH2L gene works with 

RBBP5 to regulate the methyltransferase activity of the Trithorax group of proteins [122]. 

For gene studies, it would be necessary to target these regions of the gene in order to have a 

disruptive phenotype. 

Previous work in mice has shown that suppression of ASH2L globally decreases 

H3K4 trimethylation levels [115]. ASH2L-null mice have a lethal phenotype at embryonic 

Day 3.5 to 8.5 [123]. ASH2L-null embryos achieved the blastocyst stage but were non-viable 

in mid-gestation. Furthermore, ASH2L-null embryos were unable to establish embryonic 

stem cell lines. Depletion of ASH2L in mouse embryonic stem cells, led to a loss of 

pluripotency and a repressed transcriptional status [124]. Additionally, over expression of 

ASH2L is related to tumorigenesis and diseases in adults [125, 126]. Regulation of this gene 

in the early embryo is important due to the detrimental side effects caused by both over and 

under expression of ASH2L. ASH2L is also important in stabilizing X chromosome 

inactivation when paired with Saf-A [127]. The effect of the ASH2L on imprinted genes has 

yet to be analyzed. ASH2L has not been studied in mammalian models other than mice.  

 

Research Goal and Hypothesis 

Given the importance of ARTs in both human medicine and livestock industry, in 

vitro production of high quality, epigenetically normal embryos is essential. Further 
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investigation of the epigenetic modifiers during the critical period of preimplantation 

development is necessary to develop production systems capable of achieving this endpoint. 

The overall goal of this research is to characterize the role of ASH2L during early bovine 

preimplantation development. Our initial hypothesis was depletion or deletion of ASH2L 

would alter embryonic development during the preimplantation period. It was also suspected 

that suppression of ASH2L in the early embryo would cause variations in histone 

modifications and result with an altered transcriptional status. We utilized experimental 

techniques to examine embryonic development when ASH2L is depleted or deleted in the 

early bovine embryo.  

We investigated the suppression or knockout of ASH2L in the early embryo by 

microinjection of siRNAs or CRISPR-Cas9 complexes into bovine zygotes. In vitro produced 

blastocysts depleted of ASH2L were evaluated in comparison with controls for epigenetic 

modifications by immunocytochemistry (ICC). ASH2L suppressed embryos and appropriate 

controls were transferred into recipient females and collected on Day 17 to better 

characterize preimplantation development. On Day 17 of development, global transcriptome 

analysis was performed by RNA-seq to examine if alterations were present in ASH2L 

embryos targeted with RNA interference. The data collected from these experiments have 

helped to define the role of ASH2L during preimplantation development and give insight on 

possible factors that can inhibit bovine IVP systems.  
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CHAPTER II 

MATERIALS AND METHODS 

 

RNA Interference Targeting ASH2L in Bovine Cells 

Stealth siRNAs (Invitrogen) targeting the bovine ASH2L gene were tested in Madin-

Darby bovine kidney (MDBK) cells. Three siRNA sequences were designed to target the 

sense and antisense strand of the bovine ASH2L mRNA (NM_001205473.1): ASH2L siRNA 

349 (5’ –GGUAGAGCUGCAGUGUGGAAUAUGU- 3’), ASH2L siRNA 1124 (5’ –

GAUCUCUACAGAGCCUGCUUAUAUG- 3’) and ASH2L siRNA1492 (5’ –

CGAAGAUACAGAGACAGCCAAGUCA- 3’). Sequences shown correspond to the sense 

strand, with numbers indicating the target positions of the bovine ASH2L transcript. Stealth 

siRNAs were resuspended in nuclease-free water at a 20 µM concentration and aliquoted to 

avoid repeat freeze/thaw cycles. Individual or combined siRNAs were diluted to 20 nM and 

transfected into MDBK cells using Lipofectimin 2000 (Invitrogen). Control MDBK cells 

were transfected with a non-targeting siRNA (CY3, Invitrogen).  RNA was extracted from 

transfected cells with a RNeasy kit (Qiagen) by following manufacturer guidelines. RNA was 

converted to cDNA and ASH2L expression ascertained by quantitative PCR (qPCR). When 

ASH2L targeted cells were compared to the CY3 control cells, the siRNAs of 349 and 1124 

were shown to be the most effective at supressing ASH2L (Figure 2.1). An even mixture of 

the dual Stealth siRNAs were subsequently used for all experiments targeting the depletion 

of ASH2L in the embryo. 
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Figure 2.1 – ASH2L expression levels in cell lines transfected with siRNAs. The suppression 

of ASH2L is observed when compared to the control group (CY3) in Madin-Darby bovine 

kidney (MDBK) cells (Courtesy of Mike Peoples).  

 

 

 

CRISPR-Cas9  

Plasmid Design and Linearization 

 The plasmid pSpCas9 (BB)-2A-Puro (PX459) from Addgene was used for all 

CRISPR-Cas9 experiments for targeting the ASH2L gene (Figure 2.2). PX459 was 

developed by the Zheng lab (MIT) and is a modified version of the PX330 CRISPR plasmid. 

PX459 contains two expression cassettes that include the hSpCas9 (Cas9) and the small 

guide RNA (sgRNA). The chimeric backbone of the plasmid has a tracrRNA (85 

nucleotides) sequence downstream of the Bbs1 cut site that allows for increased efficiency of 

the sgRNA. PX459 also contains the selection markers of a puromycin (Puro) and ampicillin 

(Amp).  
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Figure 2.2 – Design of the PX459-Puro plasmid. PX459-Puro was used for insertion of guide 

RNA (also known as sgRNA) for future experiments targeting ASH2L gene with CRISPR-

Cas9 (Courtesy of Carlos Pinzon). 

 

 

 

 Linearization of the PX459 (1 µg) was performed with a restriction digest by the 

following conditions:  5 µl Buffer 2.1 (NEB), 1 µl Bbs1 (NEB) enzyme, and brought up to 50 

µl volume with nuclease-free water.  The reaction was mixed well and digested at 37ºC for 

one hour and then heat inactivated at 65ºC for 20 minutes. The linearized plasmid was stored 

at -20ºC. 

 

Small Guide RNA Design 

 The bovine ASH2L coding sequence was retrieved from the NCBI (NM_00120547) 

database.  Each intron-exon junctions and PAM sequences (3’-NGG) were identified within 

the ASH2L mRNA coding sequence. Small guide RNAs were identified and then examined 

for off-targeting effects with NCBI Blast. After sgRNAs were verified to target the ASH2L 

gene and had no off-targeting effects, oligonucleotides (Invitrogen) were ordered for both the 

sense and antisense strand (Table 2.1). Additional nucleotides for the Bbs1 cut sites were 
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added to the sense and antisense strand for insertion into previously linearized plasmid 

(Figure A1). Oligonucleotides (Invitrogen) were resuspended in nuclease-free water at a 100 

µM concentration and stored at -20ºC. 

 

 

 

Target Location Strand Oligonucleotide 

Sequences 

PAM 

Sequence 

ASH2L 

Guide 1 

100 Sense CACCGAGAAGAAGGGGAGACGAAGC AGG 

Antisense AAACGCTTCGTCTCCCCTTCTTCTC  

ASH2L 

Guide 2 

49 Sense AAACGGCCCCGGCAGCAGCTGCTAAC  

Antisense CACCGTTAGCAGCTGCTGCCGGGCC TGG 

ASH2L 

Guide 3 

1422 Sense CACCGAAACACTACTCTTCTGGCTA CGG 

Antisense AAACTAGCCAGAAGAGTAGTGTTTC  

ASH2L 

Guide 4 

1439 Sense CACCGCTACGGACAGGGAGACGTCC TGG 

Antisense AAACGGACGTCTCCCTGTCCGTAGC  

 

Table 2.1 – Oligonucleotide sequences designed for targeting ASH2L coding sequence with 

Bbs1 insertion nucleotides. Target sequences are underlined for each of the individual 

sgRNAs with PAM sequences located on the target allele. Numbers indicate the target 

location in the ASH2L coding sequence. 

 

 

 

Primer Design 

Primers were designed to amplify the ASH2L target sites for CRISPR-Cas9 

experiments. The ASH2L sequence was retrieved from NCBI (NM_00120547) and 

NetPrimer (Premier Biosoft) were used to design primers for amplification of target 

sequences of the sgRNAs (350-600 bp). The forward and reverse primer were located at a 
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minimum of 100 bp away sgRNA target sequences (Table 2.2). The following conditions 

were used for selection of PCR primers: 20-22 nucleotides in length, Tm of 57-60˚C, GC 

content of 40-60%, and minimal dimerization. Oligonucleotides were reconstituted from 

lyophilized pellets with nuclease-free water at a concentration of 100 µM. 

 

 

 

Target Strand Primers Annealing 

Temperature 

Amplicon 

Length 

ASH2L 

Target 1 

Forward CTTTACTGTTTGAAGGTGAGCAG 60ºC 386 

Reverse TAGGTTCGGAGGAGGGATG 

ASH2L 

Target 2 

Forward TGGATTTTGTGGGCATAATG 57ºC 573 

Reverse CTAGGTATTGGGCATTTGGAC 

 

Table 2.2 – Primers sequences for DNA amplification of ASH2L target sites.  

 

 

 

Insertion of sgRNA into CRISPR Plasmid 

Oligonucleotides were phosphorylated individually with the following components: 2 

µl of oligonucleotide stock (100 µM, Invitrogen), 2 µl of 10X T4 DNA ligase buffer (NEB), 

2 µl of T4 PNK (NEB), and brought to a 20 µl volume with nuclease-free water. The reaction 

was mixed well and then incubated at 37˚C for 1 hour. T4 PNK was then heat inactivated at 

65˚C for 20 minutes. Phosphorylated oligonucleotides were combined, 5 µl of sense and 

antisense, with 90 µl of nuclease-free water. The mixture was incubated for 3 minutes at 

95˚C and then the reaction was slowly cooled to room temperature for one hour. To ligate the 

plasmid, 1 µl of annealed oligonucleotides was combined with 1.5 µl of linearized PX459, 5 

µl of Rapid DNA Ligation Buffer (Rosche), 1 µl of Rapid DNA Ligation (Rosche), and 
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brought to a 10 µl volume with nuclease-free water. The reaction was mixed well and 

incubated at room temperature for 10 minutes. 

After the reaction, 5 µl of the ligated mixture was added to 25 µl of TOP10 

competant cells (Invitrogen) and was placed on ice for twenty minutes. The mixture was then 

heat shocked for 60 seconds at 42˚C to start transformation of the bacteria. After heat shock, 

the mixture was left on ice for two minutes to finalize the transformation. To maximize 

transformation efficiency, 200 µl of room temperature S.O.C Medium (Invitrogen) was then 

added to transformed bacteria and subsequently shaken for 1 hour at 37˚C. From the mixture, 

150 µl was pipetted onto a prewarmed LB agar-ampicillin plate and placed in a 37˚C 

incubator for 12-16 hours. Plates were then examined for colony formation and moved to 4˚C 

for storage.  

 Individual colonies were selected and placed into tubes with 2 ml of LB Broth 

(Invitrogen) supplemented with 1 µg/ml of Ampicillin. Tubes were shaken overnight at 37˚C 

to propagate the bacteria. After propagation, bacterial DNA was then isolated from the LB 

Broth with Qiagen Miniprep Kit (Qiagen). DNA was examined for concentration, purity 

(NanoDrop, Thermo Scientific), and then stored at -20˚C. 

  

Verification of sgRNA Insertion into Plasmid 

 Purified DNA (1 µg) from the transformed plasmids underwent a restriction digest to 

determine if the guide sequence was inserted into PX459. DNA was double digested with 0.5 

µl Ecor1 (NEB), 0.5 µl Bbs1 (NEB), 2 µl Buffer 2.1 (NEB), and adjusted the volume to 20 µl 

with nuclease-free water. A positive control of untransformed PX459 and negative control 

with water were substituted for the transformed plasmid. The mixture was digested for 1 hour 
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at 37˚C in a humidified incubator and then heat inactivated at 65˚C for 20 minutes. The 

reaction was then analyzed on a 1% agarose gel to see if the Bbs1 site was destroyed from 

the insertion of the sgRNA (Figure A2).   

 

Transfection of CRISPR-Cas9 Complex into Bovine Cells 

Culture of Bovine Fibroblast Cells 

Early passage bovine fibroblast cells, produced at the Reproductive Science Lab 

(Bryan, TX), were maintained in T75 tissue culture flasks (VWR) and cultured in an 

incubator at 37˚C, 5% CO2, and humidified air. Cells were cultured in Dulbecco’s Modified 

Eagle Medium with nutrient mixture F-12 (DMEM/F12, Life Technologies) supplemented 

with 10% fetal bovine serum (FBS, Atlanta Biologicals), 1% antibiotic/antimycotic (Anti-

Anti, Life Technologies), and 50mg/ml gentamicin (Life Technologies). Cells were passed 

once they obtained a confluency of 80-90% in order to maintain cell viability. During the 

passage of fibroblast cells, the cells were washed twice with 10 ml of calcium and 

magnesium free DPBS (Life Technologies) and then 2 ml of trypsin (Trypsin-EDTA 0.25%, 

Life Technologies) was added onto to the cells. The cells incubated in the trypsin at 37˚C 

until the cells released from the bottom of the flask. Once the cells were released, the trypsin 

was neutralized with 10% culture media (DMEM/F12, 10% FBS, 1% antibiotic-antimycotic 

(Gibco), and 50 mg/ml gentamicin), and centrifuged for 5 minutes at 200x g. The 

supernatant, with the trypsin, was removed and replaced with prewarmed culture media and 

divided evenly amongst new culture flasks. For transfections, fibroblast cells were plated 

eighteen hours pretransfection into a 6-well polystyrene culture dish (VWR) so monolayer of 

cells reached 70-80% confluency at the time of the transfection.  
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Preparation of PolyJet-DNA Complex for Transfection 

 Plasmid DNA (1 µg), with inserted sgRNA, was diluted in 50 µl of DMEM with high 

glucose (Gibco) in a 0.6 ml conical tube. In a separate 0.6 ml conical tube, 3 µl of PolyJet 

(SignaGen Laboratories) was diluted in 50 µl of DMEM with high glucose. Once mixed, the 

diluted PolyJet was added to plasmid DNA and incubated for 12 minutes at room 

temperature to allow the PolyJet/DNA complex to form. After incubation, the PolyJet/DNA 

complex was evenly added drop by drop to bovine fibroblast cells and incubated at 37˚C for 

12 hours. Fresh 10% culture media (2 ml) was then added to each group of cells. For each 

transfection, the plasmid PX458-GFP (Addgene, Plasmid #48138) was added to a separate 

group of cells to serve as a positive control and allowed visual determination of transfection 

efficiency (Figure A4).    

 

Puromycin Selection and Single Cell Colony Propagation 

After transfections, bovine fibroblast cells were allowed to recover for 36 hours in 

10% culture media before selection of positive colonies with puromycin (Invitrogen). 

Puromycin, at a concentration of 1 µg/ml, was added to 10% culture media for 72 hours or 

until single cell colonies were visible. Singe cell colonies then recuperated in 20% culture 

media (DMEM/F12, 20% FBS, 1%Anti-Anti, and 50mg/ml Gentamicin) for 24 hours. Clonal 

rings (Scienceware) was then used for selection of single cell colonies. Trypsin was added 

drop by drop until it covered the cell and was incubated at 37˚C for 5 minutes or until the cell 

released from the well. The 20% culture media was added to clonal ring to collect cell and 

was transferred to a 24-well polystyrene plate (VWR) to continue culture.  
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DNA Extraction and Preparation for Sequencing 

DNA Extraction from Bovine Cells 

A DNeasy kit (Qiagen) was used to isolate DNA from the proliferated single cell 

colonies. DNA extraction was performed according to manufacturer guidelines except 30 µl 

of elution buffer was used to increase DNA concentration. DNA was examined for 

concentration, purity (NanoDrop, Thermo Scientific), and stored at -20˚C or amplified 

immediately by PCR. 

 

DNA Extraction from Embryos 

On Day 8 post IVF, blastocysts from sgASH2L Target 1 and Target 2 groups were 

washed twice through DPBS to rinse any culture media and mineral oil away. Embryos were 

then exposed to Tyrode's Salt Acidic (TSA, Invitrogen) for 2 to 5 minutes or until the zona 

pellucida was removed. The embryo was then washed three more times in DPBS and placed 

into 10 µl of lysis buffer (Buffer AL, Qiagen) with a sterile Drummond pipet. A new pipet 

was used for each embryo to avoid cross contamination of the DNA. Embryos were then 

stored at -20ºC until DNA extraction.  

Embryos were thawed and 50 µl of lysis buffer was added to each sample. Lysed 

embryos were exposed to EDTA, Tris·HCl, and Proteinase K (Qiagen); and incubated at 

45ºC for 1 hour to digest any proteins. After incubation, a 1:1 ratio of phenol chloroform: 

isoamyl alcohol (Sigma) was added to each embryo sample. Embryos were vortexed and 

centrifuged at 13,000x g for 10 minutes at room temperature. The aqueous layer (top layer) 

was transferred to a sterile 0.6 mL conical tube (VWR). Double the volume of 100% ethanol 

was added to precipitate the DNA and was stored overnight at -20ºC. Precipitated DNA was 
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pelleted by centrifugation at 13,000x g for 30 minutes at 4ºC. Ethanol was then removed 

from the pelleted DNA and washed again with freshly prepared 70% ethanol at 13,000x g for 

10 minutes at 4ºC. Ethanol was removed from the pellet and was air dried for 5 to 10 

minutes. The dried pellet was resuspended in 10 µl of filtered TE Buffer and stored at -20ºC. 

 

DNA Amplification for sgRNA Target Regions 

DNA extracted from individual cell colonies and embryos were used for PCR 

amplification of target regions for the sgRNAs. A mastermix was made with the following 

components for each reaction: 2.5 µl 10X buffer (Invitrogen), 0.5 µl dNTPs (Promega), 0.5 

µl forward primer (Target 1 or Target 2), 0.5 µl reverse primer (Target1 or Target 2), 0.75 µl 

MgCl2 (Invitrogen), 0.125 µl taq polymerase (Invitrogen), and brought to a 21 µl volume 

with nuclease-free water (Table A1). The master mix was vortexed, centrifuged down, and 

aliquoted into individual PCR tubes. DNA from the individual embryo or cell colony (4 µl) 

was added to the mastermix, vortexed, and then centrifuged down. For each reaction, a 

positive bovine genomic DNA and negative water control were used. The reactions were 

placed into the thermo cycler (Peltier) and exposed to the respective conditions for sgASH2L 

Target 1 or Target 2 (Table A2 and Table A3, respectively). Once the reaction was complete, 

the samples were stored at -20ºC or went directly for gel analysis.  

 DNA from the PCR reaction was mixed with a 1:6 dilution of loading dye 

(Invitrogen) and was visually analyzed by 1% agarose (Invitrogen) gel, with GelRed 

(Phenix) being used as a nucleic acid stain. The 1kb+ ladder (Invitrogen) was used to 

reference of the size (Target 1- 386 bp or Target 2- 573 bp) of the amplified DNA. After 

positive lanes were identified, an additional PCR reaction was made as previoiusly described 
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for DNA from the individual embryos (Table A1). Positive DNA bands were stabbed from 

the gel with a 20 µl pipet tip and placed into the PCR premix. The DNA underwent an 

additional amplification in order to increase the total amount of DNA obtained from 

individual embryos. After the DNA was amplified, it was gel analyzed under the same 

conditions previously described. Once a positive lane was identified, the remaining 15 µl of 

amplified DNA was extracted with a PCR Purification Kit (Invitrogen). DNA purification 

was completed by following manufacturer guidelines with a change in the elution step. DNA 

was eluted with 25 µl of prewarmed nuclease-free water in order to increase DNA 

concentration from the colomn. DNA was then stored at -20ºC or was used for sequence 

analysis. 

 

Sequence Analysis  

DNA was examined for concentration and quality before being sent for sequence 

analysis. DNA was sequenced with an ABI PRISM(R) 3100 Genetic Analyzer at the Gene 

Technology Laboratory (GTL) on the Texas A&M campus. Plasmid DNA was sent for 

sequencing at a concentration of 400-600 ng/µl while DNA from PCR purification was sent 

at a concentration of 10ng/100bp. All sequence primers were sent in at a concentration of 6-

10 pM per sequence reaction. The Primer LKO 1.5’- GACTATCATATGCTTACCGT was 

used to sequence the PX459 plasmid for insertion of the sgRNAs (Figure A5). DNA from 

single-cell colonies and individual embryos were sequenced with the forward primer for each 

of the respective target regions. Sequences were retrieved from the GTL website and 

sequence analysis was completed with NCBI Blast to analyze sequence result with the wild 

type sequence. Chromatographs from the sequences were analyzed with ApE software to 
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examine if mutations present were suggested to be monoallelic (Figure A6) or biallelic 

(Figure A7).  

 

Bovine Embryo Production  

In Vitro Embryo Production and Culture 

Bovine oocytes were collected from a commercial vendor (DeSoto Biosciences, 

Seymour, TN) and shipped in an MOFA metal bead incubator (MOFA Global) overnight at 

38.5˚C in sealed vials containing 5% CO2 in air-equilibrated Medium 199 with Earle’s salts 

(Gibco), 10% fetal bovine serum (Hyclone), 1% penicillin–streptomycin (Invitrogen), 0.2-

mM sodium pyruvate, 2-mM L-glutamine (Sigma), and 5.0 mg/mL of Folltropin 

(Vetoquinol). Only high quality oocytes were selected for embryo experiments. Once oocytes 

were matured (22-24 hours), they were washed twice in warm Tyrode lactate (TL) HEPES 

(MOFA) media supplemented with 50 mg/ml of gentamicin (Invitrogen) while being handled 

on a 38.5˚C stage warmer. Fertilization stock medium contained the following ingredients: 

114 mM NaCl (Sigma), 3.2 mM KCl (Sigma), 25.0 mM NaHCO3 (Sigma), 0.34 mM 

NaH2PO4•H2O (Sigma), 10 mM Na Lactate (Sigma), 1µl/ml Phenol Red (Sigma), 2.0 mM 

CaCl2•2H20 (Sigma), and 0.5 mM MgCl2•6H20 (Sigma). Fertilization stock medium was 

supplemented the day of IVF with 250-mM sodium pyruvate (Sigma), 1% penicillin–

streptomycin (Gibco), 6 mg/mL of fatty acid–free BSA (Sigma), 20-mM penicillamine 

(Sigma), 10-mM hypotaurine (Sigma), and 10 mg/mL of heparin (Sigma). The fertilization 

medium was pre-equilibrated at 38.5˚C in a 5% CO2 humidified air incubator for at least 2 

hours before the start of IVF procedures. Oocytes were washed once in bovine fertilization 

media and then was placed into the fertization well. Frozen semen (Logan 62M27, 
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Beefmaster, Lot 03237) was thawed at 35˚C for 1 minute, then live/dead separated by 

centrifugation at 200x g for 20 minutes in a density gradient medium (Isolate, Irvine 

Scientific). The supernatant was removed and 200 µl of sperm pellet was resuspended in 2 

ml of pre-equilibated bovine fertilization media and centrifuged at 200x g for 10 minutes. 

The sperm pellet was removed and placed into a warm 0.65-ml microtube (VWR). A 1:20 

dilution of the semen pellet in ddH20 was placed onto a hemocytometer with averages the 

two counts being used to calculate sperm concentration. Semen was diluted in pre-

equilibrated fertilization media before bulk fertilization in Nunclon four-well dishes (VWR) 

containing up to 50 matured oocytes per well at a concentration of 1.0  x 106 sperm/ml. 

Embryo development for the transfers were preformed with the some modifications. The sire 

was a bos indicus bull (Suville Poncrata 102, Brahman, Lot 89387) and the following 

modifications were made to bovine fertilization media to optimize fertilization conditions for 

the sire: 20 µg/ml heparin, 2.0  x 106 sperm/ml, and fertilization occurred in 50 µl drops.  

Fertilization lasted for 16 to 18 hours in a 5% CO2 and humidified air incubator. 

Presumptive zygotes were washed out of fertilization media and placed into TL Hepes. The 

cumulus cells were removed by a 2-minute vortex in 45 µl of TL HEPES in a 0.65 ml 

microtube (VWR). Cumulus cells not removed by vortex were cleaned with a 125 µM 

stripper tip (Origio). Presumptive zygotes underwent multiple washes to be separated from 

cumulous cells. Once presumptive zygotes were cleaned, they were placed into Bovine 

Evolve medium (Zenith Biotech) supplemented with 4 mg/ml of BSA (Probumin, Millipore). 

Embryos were cultured in groups of approximately one embryo per 10 µl of culture media 

(50 embryos/500µl Bovine Evolve) in a 5% CO2 and 5% O2 humidified incubator.  Cleavage 

rates were recorded on Day 2, and viable embryos were separated from nonviable embryos at 
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this time. Embryos were monitored daily for morphologic progression, and blastocyst rates 

were recorded on Day 8 post IVF.  

  

Cas9  mRNA and sgRNA Preparation for Microinjections 

In Vitro Transcription of Cas9 mRNA   

The linearized PX459 plasmid was used for production of the Cas9 messenger RNA 

(mRNA). Production of the Cas9 mRNA was prepared by in vitro transcription (IVT) with 

the T7 mMESSAGE mMACHINE Kit (Ambion), with 1 µg of DNA template being used. 

IVT, extraction, and purification of the Cas9 mRNA was prepared by following manufacturer 

guidelines. Cas9 mRNA was resuspended in TE Buffer and analyzed for concentration and 

purity. Cas9 mRNA was then aliquoted into 0.65 ml microtubes to avoid repeated 

freeze/thaw cycles and stored at -80˚C. 

 

Production of sgRNAs for Microinjections 

 Plasmids verified for the insertion of the target sequence for ASH2L were used for 

the production of sgRNAs.  PX459 does not have a T7 promoter located upstream of the 

sgRNA sequence so a forward primer was designed with a T7 promoter on the 5’ end of the 

Bbs1 insertion region and reverse primer on the 3’ end of the tracrRNA sequence (Figure 

A8). This allows for insertion of the promoter sequence and amplification of the sgRNA 

sequence needed for in vitro transcription (IVT).  

The PCR reaction was mixed under the following conditions: 12.5 µl of Hifi PCR 

Premix (CloneAmp), 0.5 µl forward primer, 0.5 µl reverse primer, 100 ng of DNA template, 

and brought to a 25 µl volume with nuclease-free water. The T7 promoter and target 



32 
 

sequence was then PCR amplified in a thermo cycler under the appropriate conditions (Table 

A4). The DNA from the PCR was then placed on a 1% agarose gel to analyze amplification 

of the target sequence with the T7 promoter. After visual confirmation, a QIAquick Gel 

Extraction Kit (Qiagen) was used for extracting the T7 promoter and target sequence. After 

the DNA was eluted, it was analyzed for concentration and quality and then stored at -20˚C 

until future use. 

After insertion of the T7 promoter upstream of the sgRNA sequence and extraction of 

plasmid DNA, each of the plasmids were in vitro transcribed with the T7 MEGASCRIPT Kit 

(Ambion) in order to produce the sgRNAs. IVT was completed by following manufacturer 

guidelines with a 4 hour incubation time for the reaction. After terminating the reaction, the 

sgRNA was collected with a phenol:chloroform extraction and isopropanol precipitation. The 

sgRNA was resuspended in TE Buffer and analyzed for concentration and purity. The 

sgRNAs were aliquoted into 0.65 ml microtubes and stored at -80˚C. 

 

Bovine Intracytoplasmic Microinjections 

Microinjections of siRNAs Targeting ASH2L 

Presumptive zygotes were randomly assigned to three different treatment groups: 

non-injected controls (Control), non-targeting siRNA injected controls (siNULL), and 

injection with dual siRNAs targeting ASH2L (siASH2L). The siNULL embryos were 

injected with a fluorescently (Cy3) labeled negative control siRNA (Invitrogen) mixed with a 

green fluorescent dextran (Invitrogen) in  TE buffer. The siASH2L embryos were injected 

with target verified siRNAs (20 nM),  and mixed with a green fluorescent dextran in TE 

buffer. The green fluorescent dextran was used for visual confirmation of the 
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intracytoplasmic microinjections (Figure 2.3). Presumptive zygotes from the siNULL and 

siASH2L groups were injected with approximately 100 pl of there respective construct. After 

injection, fluorescent embryos were placed back into Bovine Evolve medium (Zenith 

Biotech) and cultured in a humidified incubator with the gas concentrations of 5% CO2, 5% 

O2, and 90% N2.  

 

 

 

        

Figure 2.3 – Representative image of intracytoplasmic microinjection in bovine embryos. 

Microcinjections of siRNAs targeting ASH2L or CRISPR-Cas9 complex targeting ASH2L 

into presumptive bovine zygote (A) with confirmation of microinjection taking place (B) 

(Courtesy of Jane Pryor). 

 

 

 

Microinjections of CRISPR-Cas9 Complex Targeting ASH2L  

Presumptive zygotes were randomly assigned to four different treatment groups: non-

injected controls (Control), sham-injected controls (sgNULL), sgASH2L Target 1 (Guide 1 

and Guide 2), and sgASH2L Target 2 (Guide 3 and Guide 4).  Prior to microinjections, Cas9 

mRNA and the dual sgRNAs were mixed and incubated on ice for 20 minutes to create the 

CRISPR-Cas9 target cascade. The non-targeting injection controls were made with the dual 

sgRNAs (25 ng/µl each), a green fluorescent dextran, and mixed in TE Buffer. Each 

sgASH2L target group was mixed with Cas9 mRNA (40 ng/µl), the respective dual sgRNAs 

A B 
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(25 ng/µl), green fluorescent dextran, and suspended in TE Buffer. Presumptive zygotes were 

injected with approximately 100 pl with their respective construct (Figure 2.3). After 

injection, fluorescent embryos were placed into Bovine Evolve medium (Zenith Biotech) and 

cultured in a humidified incubator with the gas concentrations of 5% CO2, 5% O2, and 90% 

N2. 

 

Expression Levels of ASH2L in Suppressed Embryos 

RNA Extraction and Reverse Transcription 

 RNA was extracted from 3 biological repititions of each treatment group at the 8-cell 

(N=15) and blastocyst (N=10) stage of development by using RNeasy Mini Kit (Qiagen). 

RNA was extracted by following manufacturer protocol with one modification. Due to the 

lower concentration of RNA present in these samples, each was eluted with 20 µl of 

nuclease-free water. RNA was DNase treated by adding 1 µl of DNase Buffer (Invitrogen), 1 

µl DNase (Invitrogen), and incubated at 65ºC for 10 minutes. Reverse transcription reactions 

were performed by using the SuperScriptII kit (Invitrogen) by combining 1 µl of 10mM 

dNTP (Promega), 1 µl of random hexamer oligonucleotides (Invitrogen), 8.5 µl of nuclease-

free water, and 2.5 µl of DNase treated RNA. The constant volume was done due to the low 

concentration of RNA from the embryos that is unable to be detected (NanoDrop, Thermo 

Scientific). The DNase treated RNA was separated into four groups for reverse transcription 

with one sample of being used to create a negative control for the qPCR step and did not 

undergo reverse transcription.  The reaction ran for 5 minutes at 70ºC and then cooled to 

room temperature. Volumes of 5 µl of SuperScriptII (Invitrogen) reaction buffer, 3 µl 

dithiothreitol (Invitrogen), and 1 µl SuperScriptII (Invitrogen) were then added to the 
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reaction mixture. The mixture was then incubated for 50 minutes at 42ºC, 20 minutes at 

45ºC, 15 minutes at 50ºC, and then 5 minutes at 70ºC. After the incubation, the cDNA 

samples were stored at -20ºC or went directly to quantitative PCR.  

 

Quantitative PCR 

 Quantitative PCR (qPCR) analysis of the cDNA was performed by using 6.25 µl of 

DyNAmo Flash SYBR Green qPCR Mastermix (Fisher Scientific), 0.25 µl Forward and 

Reverse Primer (125pM), 0.25 ROX inhibitor (Invitrogen), 5 µl cDNA (0.6 µM) or negative 

control and brought up to a volume of 12.5 µl with nuclease-free water. The reactions were 

loaded into a 96 well plate with the reactions being performed with a StepOnePlus Real-Time 

PCR system (Applied Biosystems). Relative gene expression levels from each sample was 

calculated in triplicate by using the SYBR Green comparative ΔCt method. 

 

Immunocytochemistry 

Fixing of Bovine Blastocyst Embryos 

For each treatment group (N=12), a minimum of 3 biological repitions of blastocyst 

stage embryos was removed from culture media, washed twice with DPBS (Life 

Technologies), and fixed with ice-cold 99% methanol for a minimum of one minute. 

Embryos were washed in DPBS with 0.1% Tween-20 (Sigma, 0.1% DPBS-Tween) and 

stored at 4˚C until future use.  
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Labelling for 5mc, 5hmc, and Posttranslational Histone Modifications 

Fixed blastocyst embryos were permeabilized for 15 minutes at room temperature 

with 1% Triton X-100, diluted in DPBS, and then washed 3 times for 5 minutes each in 0.1% 

DPBS-Tween. Embryos used for examination of cytosine methylation and 

hydroxymethylation were treated with 2M HCl diluted in ddH2O, for removal of the zona 

pellucida. The embryos were removed from the 2M HCl once the zona pellucida was 

dissolved (10-15 minutes). The embryos were washed through 100 mM Trizma 

hydrochloride buffer (pH 8.5) for 10 minutes at room temperature to neutralize the HCl. All 

embryo groups were washed through 0.1% DPBS-Tween and then incubated in blocking 

buffer (10 mg/mL of BSA, 2% goat serum, and 11.25 mg/mL of glycine in DPBS) overnight 

at 4˚C. Embryos were then placed into 500 µl of diluted (1:200) primary antibodies (Table 

2.4) in blocking buffer for 1 hour at room temperature. Negative control embryos were 

incubated in blocking buffer with no primary antibody present. Embryos were washed 

through blocking buffer 3 times for 30 minutes each. Alexa 488 (Invitrogen) and Alexa 594 

(Invitrogen) were diluted (1:200) in 0.1% DPBS-Tween and embryos were incubated for 1 

hour at room temperature with no light. The remaining steps were carried out with no light. 

The secondary antibody labeled embryos were washed 3 times for 30 minutes each in 0.1% 

DPBS-Tw. Hoechst (Sigma) was diluted at a concentration of 5 µg/ml in DPBS and embryos 

were added for 15 minutes at room temperature. Embryos were washed three times with 

0.1% DPBS-Tw for 5 minutes each at room temperature. Embryos were placed in a 20 

µl mounting media 50-50 solution of antifade and glycerol with a diluted 5 µg/ml of Hoechst. 

Cover slips were mounted with parafilm wax on the edge to prevent damage of the embryos 

and sealed with clear fingernail polish for storage at -20ºC.  
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Type Target Antibody  Source (cat#) 

Primary 5mc 5-Methylcytidine mAb Epigentek (33D3) 

Primary 5hmc 5-Hydroxymethylcytosine pAb Active Motif (39791) 

Primary H3K4me3 Histone 3 trimethyl Lys4 Rabbit pAb Active Motif (39159) 

Primary H3K4me2 Histone 3 dimethyl Lys4 Rabbit pAb Abcam (ab11946) 

Primary H3K9me2-3 Histone 3 di-trimethyl Lys9 Rabbit mAb Abcam (ab71604) 

Primary H3K27me3 Histone 3 trimethyl Lys27 Rabbit mAb Abcam (ab6002) 

Secondary Rabbit IgG Alexa Flour 488 Goat Anti-Rabbit IgG Invitrogen (A-11008) 

Secondary Goat IgG Alexa Flour 488 Donkey Anti-Goat IgG Invitrogen (A-11055) 

Secondary Mouse IgG Alexa Flour 594 Goat Anti-Rabbit IgG Invitrogen (A-11005) 

 

Table 2.3 – Primary and secondary antibodies used for ICC. 

 

 

 

Digital Microscopy and Analysis 

Digital imaging microscopy was performed at the Texas A&M University, College of 

Veterinary Medicine and Biomedical Sciences Image Analysis Laboratory at the Zeiss 

Stallion digital imaging workstation. Z-series were taken from individual embryos that were 

equally represented with five images taken from top to bottom of the embryo with various 

sizes and shapes depending on the embryo. Each photograph had an image of the DNA stain 

(Hoechst), image for the antibody of interest, and a merge of all images. Intensity 

measurements were taken using NIS Elements 3.0 (Nikon) software. Mean intensity 

measurements were set at a baseline level with negative control embryos that were only 

secondary antibody labeled. The mean flourescent intensity measurement for the targeting 
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antibody was divided by the DNA stained nuclei to give a fluorescent intensity ratio for each 

embryo.  

 

Embryo Transfer and Collection of Day 17 Conceptuses 

Estrous Synchronization of Recipient Cows 

 Fourteen reproductively mature cows were prepalpated and examined for 

reproductive soundness before being utilized for estrous synchronization. On the morning of 

Day -9 IVF, cycling cows were given a 2cc Combo Injection (Progesterone and Estradiol 17-

beta, Med Shop 280881) and a sterilized EAZI-BREED CIDR (Pfizer S1104231) being 

properly placed into the cycling cow. On Day -2 IVF, the EAZI-BREED CIDR was pulled 

and each cow was given a 5cc injection of prostaglandin (Lutalyse, Zoetis). The following 

afternoon, recipient cows were given a 1cc injection of Estradiol 17-beta (Med Shop 280883) 

with expected synchrony to occur the following day. The synchronized recipients waited 

until Day 7 for siNULL and siASH2L embryos to be transferred. 

 

Embryo Transfer of Day 7 Embryos 

 On Day 7 post-IVF, embryos were graded for development and quality. Blastocyst 

and morula staged embryos from the siNULL and siASH2L groups were washed into Vigro 

holding media (BioNiche) and loaded into ¼ cc straws (PETS), with two to five embryos per 

straw. Once the embryos were loaded, straws were placed in a 38.5ºC Micro-Q straw warmer 

to wait for transfer. Straws with embryos were loaded into 0.25 transfer sheaths (PETS) and 

transferred ipsilateral to the side of the corpus luteum (CL) with an embryo transfer gun (Dr. 
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Looney, Ovagenix, Bryan, TX). If no CL was present  the receipt was not used for the 

experiment.  

 

Day 17 Conceptus Collection and Morphological Analysis 

 On Day 17 post IVF, previously transferred siNULL and siASH2L embryos were 

collected from the cows (Dr. Looney, Ovagenix). Embryos were collected with one liter of 

lactated ringers supplemented with FBS, a 22 gauge BARD Foley Catheter (PETS), and 

collected into an EZ Way Filter (PETS). The filter was rinsed three times with 30 ml of 

rinsing media (BioNiche). Filters were then searched for Day 17 conceptuses within the dish 

and placed into 35 mm petri dish, with TL HEPES once found. Conceptuses were collected 

and washed five times in TL HEPES to wash the conceptus out of uterine fluid and rinsing 

media from the collection. Day 17 conceptuses were examined for an embryonic disc and 

size of the filamentous conceptus was recorded. The Day 17 conceptuses for the siNULL and 

siASH2L groups were washed out of TL HEPES five times in DPBS. Once the embryos 

were washed, they were placed in a minimal amount of DPBS and stored at -80ºC until RNA 

extraction. 

 

RNA Sequencing and Pathway Validation 

RNA Extraction and Sequencing 

RNA extraction and genomic DNA elimination from the Day 17 conceptus was 

completed by using RNeasy Plus Mini kit (Qiagen). After extraction, RNA was examined for 

concentration, purity, and then stored at -80˚C. If RNA met quality standards (1.9-2.1) and 

had high enough concentration (15 ng/µl) it was sent to the Whitehead Institute 
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(Massachusetts Institute for Technology) for RNA prep and RNA-seq. RNA from 

conceptuses from siASH2L (N=4) and siNULL (N=3) embryos were sent in for RNA-seq.  

Once quality was verified, RNA samples underwent library preparation and 

sequencing (1µg RNA in 20µl nuclease free water). Libraries were pooled for each embryo 

group and then sequenced on an Illumina HISEQ 2500 (pair-end, 2x100 bp). The RNA-seq 

reads were assessed for quality with FastQC. Adapters were removed with Cutadapt and 

processed for quality with FastX-toolkit.   

 

Pathway Validation 

 After RNA-seq analysis, significantly altered genes from common pathways had 

primers designed for quantitative PCR (qPCR).  Primers were designed as previously 

described in the methods section of Primer Design for quantification analysis of the genes in 

developmental pathways (Table 2.4). Conceptuses of the siNULL (N=4) and siASH2L (N=4) 

groups for used for analysis with duplicate reverse transcription reactions being performed. 

Reverse transcription was carried out with 250 ng/µl for each reaction by following the 

conditions as previously defined. The qPCR reaction was carried out as before described for 

analysis of ASH2L in 8-cell and blastocyst embryos. 
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Gene Strand Primer Sequence 

ZFP3 
Forward GTAGCTGCCTGAGATTGTGAG 

Reverse TGCTCCAAACTCATGACCCT 

ZNF521 
Forward ACATGATTGATGAAGGGCTG 

Reverse TTGGGTCATCGTATGGTTCTG 

DLX5 
Forward CTACCGATTCCGACTACTACAG 

Reverse ACTTCTTTCTCTGGCTGGCT 

CCL27 
Forward GTGTGAGTCCCTGTCCCAAG 

Reverse GTGCACACGAGGGAAGATCA 

WNT11 
Forward GACACTCTGACAGTGGACAGG 

Reverse GGAGCATCGGAAAACTTGGC 

GAPDH 
Forward CTGCCCGTTCGACAGATAG 

Reverse CTCCGACCTTCACCATCTTG 

SDHA 
Forward ACCTGATGCTTTGTGCTCTG 

Reverse TCGTACTCGTCAACCCTCTC 

YWAHZ 
Forward CTGAACTCCCCTGAGAAAGC 

Reverse CCTTCTCCTGCTTCAGCTTC 

 

Table 2.4 – Primers used for quantitative amplification of bovine genes. Forward and reverse 

primers were designed for both the reference genes (GAPDH, SDHA, and YWAHZ) and 

genes of interest (ZFP3, ZNF521, DLX5, CCL27, and WNT11).  

 

 

 

Statistical Analysis 

Embryo Development 

Statistical analysis for developmental data was performed using GraphPad Prism 6 

(GraphPad Software, Inc). Cleavage and blastocyst rates underwent an arcsine square root 

transformation to make the distribution normal. A One-Way ANOVA was used to compare 

the means of the three treatment groups, alpha was set at 0.05. If significant differences were 

observed a Tukey HSD test was used to determine which development group was significant.  
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Real-time Quantitative PCR 

CT values from three biological replicates  were normalized to the geometric mean of 

the bovine reference genes (GAPDH, SDHA, and YWHAZ) [128].  Relative gene expression 

levels were obtained in triplicates by using the ΔΔCT method. Values obtained were then 

analyzed by the GraphPad Prism 6 (GraphPad Software, Inc). Data underwent log 

transformation to make data more symmetrical. A One-Way ANOVA was used to compare 

the means of the three treatment groups, alpha was set at 0.05. If significant difference was 

observed a Tukey HSD test was utilized to determine what treatment groups was significant. 

Analysis with only two treatment groups was performed with a Student t-test.    

 

Immunocytochemistry 

Statistical analysis for fluorescence intensity ratios generated by ICC was completed 

with the software program JMP (SAS software). Developmental data was checked for 

normality with a Shapiro-Wilk test with outliers within each treatment group being identified 

with Quantile Range Outliers. A One-Way ANOVA was used to compare the means of the 

three treatment groups, alpha was set at 0.05. If significant differences were observed, a 

Tukey HSD test was performed.  

 

RNA Sequence 

Day 17 conceptuses of similar morphological sizes were compared with each other 

for RNA-seq analysis. RNA expression levels were determined with Cuffmerge and 

Cuffdiff.  Statistical analysis and visualization was performed with R, using RStudio running 

cummeRbund. Read depth was a minimum of ten counts per mRNA for each gene. A log 



43 
 

ratio of 1.5 was used to determine the threshold. Pathway analysis was examined by using 

Ingenuity software with a significant value set at p<0.05. 
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CHAPTER III 

RESULTS 

 

Embryo Development 

RNA Interference Targeting ASH2L 

After five rounds of IVF, embryos (N=1,309) were examined for cleavage and 

blastocysts rates between the Control, siNULL, and siASH2L groups. Analysis of embryo 

cleavage rates showed no significant difference between each of the treatment groups 

(p=0.27, Figure 3.1, Table 3.1). On Day 8, the Control embryos tended to have higher 

blastocyst rates (p=0.06). When siASH2L embryos were compared with siNULL, no 

significant difference was observed in blastocyst development (31.3% vs 33.3%, respectively 

p>0.2). All embryo groups developed to the blastocyst stage with good morphology and a 

low number of extruded cells, suggesting good quality embryos in each treatment group 

(Figure 3.2).   
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Figure 3.1- Cleavage and blastocyst rates for bovine embryos in the Control, siNULL, and 

siASH2L embryo groups. Data was analyzed with a one-way ANOVA and Tukey HSD, 

alpha was set at 0.05.  

 

 

 

Treatment 
Number 

Cultured 

Number 

Cleaved 

Percent 

Cleaved 

Number 

Blastocyst 

Percent 

Blastocyst 

Control 425 357 84.0 ± 3.2%a 179 42.1 ± 4.7%a 

siNULL 418 347 83.0 ± 4.2%a 139 33.3 ± 1.9%a 

siASH2L 466 404 86.7 ± 1.8%a 146 31.3 ± 2.0%a 

 

Table 3.1 - Embryo development rates ± S.E.M for Control, siNULL, and siASH2L embryo 

groups. Same letter indicates no sirnigicant difference amongst each of the embryo groups. 
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Figure 3.2 – Representative images of blastocysts embryos on Day 8 of development. Bright 

field images were taken for the Control (20X), siNULL (20X), and siASH2L (40X) embryos. 

Fluorescent photos (right image) are shown in the siNULL and siASH2L for visual 

confirmation of microinjection.  

 

 

 

CRISPR-Cas9 Targeting ASH2L 

After three rounds of IVF and microinjections, embryos (N=770) were analyzed for 

cleavage and blastocysts rates between the Control, sgNULL, sgASH2L Target 1, and 

sgASH2L Target 2 embyro groups. Cleavage rates were consistent between all embryo 

Control 

siNULL 

siASH2L 
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groups (Figure 3.3, Table 3.2). Blastocysts rates for the sgNULL, sgASH2L Target 1, and 

sgASH2L Target 2 were all significantly different from the non-injected controls (p=0.02, 

Figure 3.3, Table 3.2). When sgNULL was compared with the sgASH2L Target 1 embryos 

no significant difference in blastocyst development was observed (p=0.12). A significant 

decrease in blastocyst rates was observed between sgNULL and sgASH2L Target 2 group 

(40.3 ± 3.0% vs 31.9 ± 2.1%, respectively, p=0.03). Morphology of blastocyst embryos in  

each treatment groups were of similar stage and quality on Day 8 (Figure 3.4).  

 

Treatment 
Number 

Cultured  

Number 

Cleaved 

Percent 

Cleaved 

Number 

Blastocyst 

Percent 

Blastocyst 

Control 159 144 91.0 ± 1.5%a 79 49.1 ± 3.3%a 

sgNULL 235 202 85.0 ± 3.0%a 94 40.3 ± 3.0%b 

sgASH2L 

Target 1 
185 159 85.0 ± 5.0%a 63 33.6 ± 5.0%bc 

sgASH2L 

Target 2 
191 170 87.0 ± 6.5%a 61 31.9 ± 2.1%c 

Table 3.2 - Embryo development rates ± S.E.M for Control, sgNULL, sgASH2L Target 1 

and sgASH2L Target 2 embryo groups. Values within a column with different superscripts 

are significantly different (p <0.05)  
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Figure 3.3 – Cleavage and blastocyst development rates for bovine embryos for the Control, 

siNULL, and sgASH2L embryo groups. Data was analyzed with a one-way ANOVA and 

Tukey HSD, alpha was set at 0.05. Significant difference between treatment groups is 

represented by a change in letter.  
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Figure 3.4 – Representative images for morphological analysis of blastocyst embryos on Day 

8 of development. Bright field (20X) and flourescent photos (right) are shown in the 

sgNULL, sgASH2L Target 1 and sgASH2L Target 2 for confirmation of being 

microinjected.  

Control 

sgNULL 

sgASH2L 

Target 1 

sgASH2L 

Target 2 
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ASH2L Expression Levels in Bovine Embryos 

 Embryos were examined at the 8-cell and blastocyst stage to see if the siRNAs were 

effective for suppressing ASH2L in the early embryo. Three biological replicates showed 

that the siRNAs targeting ASH2L reduced expression by 98% at the 8-cell stage and 82% at 

the blastocyst stage when compared to the sham-injected controls (P<0.0001, Figure 3.5). 
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Figure 3.5 – ASH2L expression levels at the 8-cell and blastocyst stage in comparison to the 

Control and siNULL embryo groups. Data was analyzed with a one-way ANOVA and Tukey 

HSD, alpha was set at 0.05. Data observed to be significantly different from Control and 

siNULL groups is represented by *.   
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Immunocytochemistry 

Analysis of 5mc and 5hmc 

5mc and 5hmc levels were examined at the blastocyst stage to determine the effects 

of suppression of ASH2L in the early embryo. ICC analysis showed a significant increase in 

global cytosine methylation in the ASH2L suppressed embryo group when compared to the 

Control and siNULL embryos (0.35, 0.26, and 0.30, respectively, P<0.01, Figure 3.6). 

Hydroxymethlyation decreased in siASH2L embryos when matched with the non-injection 

and sham-injected controls (0.75, 0.93,  and 0.87, respectively, P<0.0001,Table 3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 – ICC results of 5mc and 5hmc levels in blastocyst stage embryos for Control, 

siNULL, and siASH2L groups. Data was analyzed with a one-way ANOVA and Tukey 

HSD, alpha was set at 0.05. Significant difference between treatment groups is represented 

by a change in letter. 
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Primary 

Antibodies 

Control siNULL siASH2L 

5hmc 0.93 ± .02a 0.87 ± .02b 0.75 ± .01c 

5mc 0.26 ± .01a 0.30 ± .02b 0.35 ± .01c 

H3K4me2 1.61 ± .04a 1.28 ± .10b 1.53 ± .03c 

H3K9me2-3 0.71 ± .01a 0.69 ± .01ab 0.67 ± .01b 

H3K4me3 0.57 ± .02a 0.58 ± 02a 0.48 ± .02b 

H3K27me3 0.53 ± .01a 0.54 ± .02a 0.62 ± .02b 

 

Table 3.3 - ICC results showing fluorescent intensity ratios with S.E.M. of DNA and histone 

methylation at the blastocyst stage of development. Different letters within a row indicate 

significant (p<0.05) difference between the groups. 

 

 

 

Analysis of Posttranslational Histone Modifications 

Blastocyst (N=425) from each treatment group were examined for posttranslational 

histone modifications by ICC. Depletion of ASH2L altered histone methylation levels with 

decreased levels of H3K4me3 (0.48, 0.57, and 0.58, p<.0006) and increased levels of 

H3K27me3 (0.62, 0.53, 0.54 p<.001) present in the siASH2L, Control and siNULL embryos, 

respectively (Figure 3.7, Table 3.3, and Figure 3.8). Depletion of ASH2L in the early embryo 

had no effect on H3K9me2-3 levels at the observed stage of development (p=.16). H3K4me2 

levels were significantly altered due to injection of either the null siRNA or siASH2L, thus 

no meaningful interpretation of these data can be made. This may be due to increased non-

specific fluorescence seen in the H3K4me2 embryos (Figure 3.9). 
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Figure 3.7 – ICC results analyzing histone methylation levels in blastocyst embryos in 

Control, siNULL, and siASH2L groups. Data was analyzed with a one-way ANOVA and 

Tukey HSD, alpha was set at 0.05. Significant difference from Control group is indicated by 

*. Significant difference from the Control and sgNULL group is represented by **.  

 

 

 

 
Figure 3.8 – ICC images of Day 7 blastocyst for the Control, siNULL, and siASH2L groups 

labeled for H3K4me3 and H3K27me3. Embryos stained and labeled images are for 

H3K4me3 (FITC), H3K27me3 (CY3), DNA (DAPI), and a merge of the three images. 
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Figure 3.9 – ICC images of Day 7 blastocyst for the Control, siNULL, and siAHS2L groups 

labeled for H3K4me2 and H3K9me2-3. Embryos stained and labeled images are for 

H3K4me2 (FITC), H3K9me2-3 (CY3), DNA (DAPI), and a merge of the three images. 

 

 

 

Preliminary Data of Targeted Mutations of ASH2L in Embryos  

sgASH2L Target 1 Sequences 

Individual sgASH2L Target 1 blastocysts were randomly selected from three different 

repilicates (N=20)  and sequenced to observe if mutations were present in the ASH2L coding 

sequence. Observation of the targeted portion of the ASH2L gene sequenced showed the dual 

sgRNAs for the Target 1 site was 65% (13/20) effective for altering the ASH2L coding 

sequence (Figure 3.10). From the mutated embryos 69% (9/13) resulted in missense/silent 

mutation that caused no shift in the coding sequence. The remaining four mutated embryos 

resulted in either an in-frame or frameshift mutation. Two embryos were suggested to have a 

biallelic frameshift mutations that would suggest disruption to the ASH2L coding sequence 

for Exon 1. Further sequence analysis of reverse strand is needed to confirm this result.  
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Figure 3.10 – Sequence results from Day 8 embryos targeted with the first site of the 

CRISPR-Cas9 cascade. Green letters represent the PAM sequences for the target sites of the 

sgRNAs. Red letters indicate were the mutations are present with lower case letters 

representing a monoallelic mutation with capital letters representing a biallelic mutation.  

Right column shows change in coding sequence is present with Δ represents a mutation that 

did not result in change to the coding sequence. WT represents that the wild type sequence 

was present. 
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sgASH2L Target 2 Sequences 

Individual blastocyst from the sgASH2L Target 2 group were randomly selected from 

three different repilicates (N=21)  and the targeted portion of the ASH2L gene sequenced to 

examine if mutations were present (Figure 3.11). The overall targeting efficiency for the dual 

guides for the Target 2 site was 48% (10/21). From the ten mutations, seven resulted in what 

is a suggested biallelic frameshift mutations that would suggest by a chromatograph a 

disruption of the coding sequence in Exon 12. Further sequence analysis of the 

complementary strand is needed in order to confirm this preliminary result. The other three 

mutations caused a single nucleotide polymorphism (SNP) that would cause no shift in the 

coding sequence.  
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Figure 3.11 – Sequence results from Day 8 embryos targeted with the second site of the 

CRISPR-Cas9 cascade. Green letters represent the PAM sequences for the target sites of the 

sgRNAs. Red letters indicate were the mutations that are present with lower case letters 

representing a monoallelic mutation with capital letters representing biallelic mutation.  Right 

column show change in coding sequence is present with Δ representing a mutation that did 

not result in change to the coding sequence. WT represents that the wild type sequence was 

present. 
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Day 17 Conceptus Collection Morphology 

 On Day 17, conceptuses were collected from the siNULL and siASH2L transfers 

groups. The overall recovery rate from the siASH2L embryos transferred was 58.3% (7/12), 

while the siNULL recovery rate was 56.3% (9/16).  Conceptuses collected from both 

treatment groups had an intact embryonic disc and also shown to be elongated  at this point 

in developement (Figure 3.12 and 3.13). Variation in size of the filamentous conceptus was 

observed with both treatment groups. 

 

 

  

   
 

Figure 3.12 - Representative images of early elongation Day 17 conceptuses from the 

siNULL (A) and siASH2L (B) collected conceptuses.  Green arrow points to embryonic disc 

that is intact in the preimplanted embryos.  
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Figure 3.13 – Representative images of elongated Day 17 conceptus from the siNULL (A) 

and siASH2L (B) collected conceptuses.  

 

 

 

RNA-Seq Data 

 RNA was collected from  Day 17 conceptuses from the siNULL (N=3) and siASH2L 

(N=4) groups. These conceptuses were analyzed for global transcript profiles by RNA-Seq. 

Embryos of similar morphological appearance were compared with from the siNULL and 

siASH2L embryos during RNA-seq analysis. RNA-seq data showed the suppression of 

ASH2L by siRNA injection of zygotes resulted in altered gene expression profiles on Day 17 

conceptuses (Table 3.4). Genes that were the most significantly altered were examined for 

common cell lineages in the Day 17 conceptus (Table 3.5). The BMP pathway was 

discovered to have significantly altered transcript levels present that originate from 

mesenchymal stem cells present in the Day 17 embryo. 

 

 

 

 

A B 
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Gene Exp. Value Up 

Regulated 

Gene Exp. Value Down 

Regulated 

SLC27A6 7.173 CCL27 -4.636 

ZFP3 6.041 AQP3 -3.709 

FAM213A 2.873 CALB1 -3.453 

PAGE4 2.374 PCK1 -3.245 

GAL3ST2 2.184 GPX2 -3.170 

EEF1A1 1.999 S100A1 -2.893 

ZNF521 1.983 SLC38A5 -2.846 

PKD2L1 1.957 LFITM7 -2.807 

SLC16A9 1.830 VCAN -2.564 

DLX5 1.784 WNT11 -2.563 

 

Table 3.4 – Genes most significantly up and down regulated due to the suppression of 

ASH2L in the Day 17 conceptuses. 

 

 

 

Transcriptional Changes 

in Day 17 Conceptuses 

(siNULL vs siASH2L) 

Upregulated 

Genes 

Down Regulated 

Genes 

109 318 

 

Table 3.5- Number of genes altered in gene expression when compared to siNULL 

conceptuses (p<0.05). 

 

 

 

RNA-Seq Validation 

RNA-seq showed abnormal gene expression patterns present in mesynchymal stem 

cells. The mRNA expression levels of ZFP3, ZNF521, DLX5, CCL27, and WNT11 were 

examined via RT-qPCR in order to validate the RNA-seq expression results. Gene expression 

analysis showed that ZNF521 and DLX5 were significantly increased in siASH2L when 

compared to siNULL conceptuses (P=0.023 and P=0.033, respectively, Figure 3.14). No 

significant difference was observed with ZFP3 (P=0.303). Changes in CCL27 and WNT11 

were not observed in mRNA expression analysis.   
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Figure 3.14 – Relative gene expression of genes associated with the BMP pathways in 

siNULL and siASH2L conceptuses. Data was analyzed with a one-way ANOVA and Tukey 

HSD, alpha was set at 0.05. Data that was observed to be significantly different from 

siNULL group is represented by *.  
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CHAPTER IV 

CONCLUSIONS 

 

Introduction 

 We hypothesized  that depletion or deletion of ASH2L in bovine zygotes would alter 

preimplantation development, epigenetic reprogramming, gene expression, and result in 

morphological differences in the early bovine embryo. Results showed that reduction or 

removal of ASH2L did not inhibit blastocyst development. Further investigation found that 

suppression of ASH2L showed no morphological variation from sham-injected controls on 

Day 17. This result suggests that suppression of ASH2L in the early embryo does not have a 

detrimental effect on development during the preimplantation period. 

We investigated epigenetic modifications in the ASH2L depleted embryos and found 

abnormal DNA and histone methylation patterns were present. Transcriptome analysis of the 

Day 17 conceptuses showed altered gene expression profiles that resulted from suppression 

of  ASH2L in the early embryo. Even though these embryos appeared to be morphologically 

and developmentally competent, chromatin modifications and gene expression on Day 17 

suggest otherwise. These findings propose that reduction of ASH2L during the 

reprogramming period of the embryo would have a detrimental effect later during post-

implantation development.  
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Embryo Development for RNA Interference  

Suppression of ASH2L did not alter cleavage and blastocyst development in the early 

embryo. When comparing these results with other HMTs and DNMTs, ASH2L was the only 

gene studied, when suppressed, did not alter development up to the blastocyst stage [107-

111]. This result in the bovine is comparable to a study in mice that showed ASH2L-null 

embryos were viable at the blastocyst stage [125].  It also suggests that histone modifications 

associated with ASH2L may not play a necessary role during this developmental period.  

With low expression levels of ASH2L present in bovine embryos, it is not an exact 

comparison to the mouse study. The low level of transcripts present suggest that some 

ASH2L protein is being produced in the early embryo. Analysis of ASH2L protein 

expression in the early bovine embryo would be ideal to further validate this assumption. 

However, this is not an option as there are no commercially produced antibodies that 

effectively target bovine ASH2L. To have a more comparable model to the ASH2L-null 

mouse, a knockout of ASH2L in the bovine embryo is needed to see if the technical 

limitations from RNA interference allowed for continuation of development [89].  

 

CRISPR Embryo Development and Sequencing 

To create a bovine model similar to what was previously used in mice, we utilized the 

CRISPR-Cas9 approach to target the bovine ASH2L coding sequence. The preliminary data 

from the sequence analysis comfirmed we were able to create mutations in the coding 

sequence as previously seen in other mammals using CRISPR-Cas9 [89, 129-131]. The 

suggested double strand break caused by Cas9 was repaired by the error prone repair 

mechanism of NHEJ that resulted with InDels being present [132, 133].  A portion of these 
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InDels caused a frameshift mutation thus disrupting the function of the ASH2L protein. 

Embryos with the suggested biallelic frameshift mutations still developed to the blastocyst 

stage, which is comparable to results reported with ASH2L-null mice [123]. Sequence 

analysis of the reverse stand would need to be performed in order to confirm that the double 

strand mutations are present.  

With the sgASH2L Target 1 group, the majority of the sequences had missense or 

silent mutations present, which may not cause a change in protein function. Mutations from 

the sgASH2L Target 2 were advocated to have more biallelic frameshift mutations, but were 

less efficient at targeting the coding sequence. Selection of competent sgRNAs has become 

an increased area of research for increasing the efficiency of CRISPR-Cas9 and is similar to 

that previously seen with RNA interference [134-136]. Since the targeting efficiency for 

CRISPR-Cas9 was not 100% effective, we reverted back to the RNA interference approach 

for the rest of the studies analyzing the role of ASH2L during preimplantation development.  

The sgRNAs used to target site 2 in the ASH2L gene resulted in a small but 

significant reduction in blastocyst development.  The lower blastocyst  rates from the 

sgASH2L Target 2 group can be explained by a couple of different possibilities. One could 

be off-target effects that are sometimes observed with CRISPR-Cas9 studies [137, 138]. It 

has been shown that off-targeting effects can happen with mismatches of up to 5 nucleotides 

upstream of the seed sequence for the sgRNA [139]. The other possibility could be from 

impurities present during preparation of the sgRNAsthat were used for microinjections. Any 

impurity or osmolarity change in the injection buffer could alter development of the early 

embryo.  
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Epigenetic Modifications  

Similar to studies in mice, the suppression of ASH2L in the early embryo resulted in 

a global decrease of H3K4me3 levels in the blastocyst embryos [115]. This suggest that an 

altered gene transcription profile would be present in the ASH2L depleted blastocyst with 

numerous studies showing H3K4me3 having a role on facilitating a transcriptionally 

permissive chromatin status [100, 101]. Abnormal histone methylation patterns were also 

observed with the decease of H3K27me3 levels in the ASH2L suppressed embryo.  

We observed H3K4me2 levels were significantly different from both the Control and 

siNULL embryos at the blastocyst stage. However, these altered levels of H3K4me2 are 

likely caused by problems with nonspecific binding of the primary antibody that leads to 

overstaining of secondary antibody, causing variation in fluorescent intensity levels.  The 

reason for the nonspecific binding may have been due to the blocking buffer not being 

optimized for the primary polyclonal antibody produced in goat verses the other monoclonal 

antibodies utilized in these studies. 

Even with the observed changes in histone methylation, the siASH2L embryos still 

developed comparably to the Control and siNULL embryos. The altered epigenetic status 

shows these changes did not result in embryonic lethality at this point in development. It also 

advocates that H3K4me3 may not play as critical role during the early developmental stages 

of the embryo. A previous study in Drosopila, has showed H3K4me3 levels are higher in 

stably expressed genes when compared to actively expressed genes [140]. This study 

suggests that ASH2L when regulating H3K4me3 levels may not facilitate active gene 

expression patterns as we had previously hypothesized during preimplantation development.  
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Altered DNA methylation patterns were present in ASH2L suppressed and NULL 

injected embryos at the blastocyst stage. This shows that even the micromanipulation 

methods that were utilized reformed the methylation status of the early embryo. With the 

ASH2L suppressed group, it was observed that these abnormal methylation patterns were 

more prevalent in the bovine blastocyst. It has been shown that an increase in DNMT3a was 

present when H3K4me3 was absent in mammalian cells [141]. Previous studies have also 

shown that the Polycomb group can mediate recruitment of DNA methyltransferases by 

regulation of H3K27me3 [142]. The altered histone methylation patterns are thus likely cause 

for the decrease in hydroxymethylation that is present in the ASH2L depleted blastocysts.  

 

Day 17 Embryo Collections 

 Since it was previously observed that suppression of ASH2L did not alter 

development to the blastocysts stage, it would be advantageous to examine siASH2L 

embryos later in development. Previous studies in mice suggest ASH2L suppressed embryos 

would not be viable after the blastocyst stage since ASH2L-null embryos were nonviable 

between the blastocyst stage and mid gestation [123]. Collection of the Day 17 conceptuses 

showed suppression of ASH2L did not inhibit development of the embryonic disc and 

elongation of the conceptus. The ASH2L embryos did have various lengths of filamentous 

conceptuses at this point in development. The altered elongation patterns were present in 

both siNULL and siASH2L conceptus groups thus suggesting it is caused by the maternal 

environment. It has been shown when high levels of progesterone are present in the maternal 

uterine environment, elongation of conceptus occurs more rapidly when compared to lower 
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levels [143, 144]. These findings show that the suppression of ASH2L did not alter 

morphological development of the conceptus before binding to the uterine epithelium.  

 

RNA-Seq and Validation  

As we hypothesized, abnormal gene expression profiles were present in the Day 17 

conceptus due to the suppression of ASH2L in the early embryo. The most significantly up 

and down regulated RNA-seq data showed abnormal transcripts were present in the BMP and 

TGF-beta pathways that arise from mesenchymal stem cells present in the Day 17 conceptus 

[145]. This was validated by RT-qPCR, that showed abnormal gene expression patterns were 

higher, when compared to control group, for ZNF521 and DLX5. The altered mRNA 

expression levels for these genes were consistent with the RNA-seq data. When these 

messenchymal stem cells begin to differention they form osteocytes, chondrocyts, that are 

responsible for making cartilage and bone [146, 147]. To see if this would has an effect on 

pregnancy, embryos depleted of ASH2L in the early embryo would need to develop past Day 

17 conceptus. ZNF521 and DLX5 have also been shown to be expressed in trophoblastic 

cells that form into the placenta [148]. DLX5 is also a maternally expressed gene that has 

been shown to be abnormally methylated and mRNA expression upregulated in preclamptic 

placentas of humans [149, 150]. The effect of overexpression of DLX5 in the bovine placenta 

has yet to be studied. No effect was observed with other imprinting genes due to the 

suppression of ASH2L in the Day 17 conceptus.  

No change in gene expression was observed in RNA-seq validation of ZFP3, CCL27, 

and WNT11. In control embryos, expression levels were examined in comparison to 

reference genes (Figure A9). This showed lower expression levels were present in the genes 
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than those that were validated by RT-qPCR. It has been shown that RNA-seq is more 

sensitive and can detect low level transcripts [151]. This shows that the altered transcriptome 

profile that was observed with RNA-seq not have as wide spread outcome as previously 

thought.  

It was previously shown that ASH2L played a role in HOX gene expression by 

increasing the trimethylation of H3K4me3 [118, 119]. Altered histone methylation patterns 

of H3K27me3 and H3K4me3 were present in blastocysts suppressed for ASH2L and was 

suggested to have an inhibitory effect on HOX gene expression during embryonic 

development.  Studies have shown H3K27me3, via the PcG, and H3K4me3, by way of TrxG, 

are associated with HOX gene expression of the early embryo [152, 153]. This change in 

HOX gene expression suggests that phenotypic abnormalities would be present later in 

development [154]. However, we did not observe drastic alterations in HOX gene expression 

patterns were present in the Day 17 conceptus. Studies in mice have showed that HOX gene 

expression was higher in mid gestation (Day 10.5-16.5) [155]. These findings in mice would 

suggest that HOX gene expression would be more prevalent later in development.   

 

Summary 

 To characterize the role of ASH2L, we examined whether depletion or deletion of 

ASH2L would alter preimplantation development, embryo morphology, epigenetic 

reprogramming, and gene expression. Developmental data showed the suppression or 

deletion of ASH2L in the early embryo did not affect the developmental potential to the 

blastocyst stage during in vitro development. Embryos from both studies had morphology 

that suggested good quality blastocysts in accordance to IETS guidelines. Furthermore, the 
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ASH2L suppressed embryos continued development throughout preimplantation and on Day 

17 no morphological variances were observed when compared to respective controls.  

 More in depth analysis of ASH2L depleted embryos showed abnormal distribution of 

cytosine and histone methylation patterns at the blastocyst stage. This altered epigenetic state 

suggested a chromatin status that does not facilitate transcription and would alter gene 

expression later in development. It also questions the role of H3K4me3 in the early embryo 

due to the decrease levels present in the ASH2L suppressed embryos. Transcriptome analysis 

of ASH2L suppressed conceptuses showed altered gene transcriptome profiles were present 

that are associated with mesenchymal stem cells on Day 17. These findings suggest that the 

suppression of ASH2L in the early embryo altered gene expression associated with stem cells 

and this could have an effect later during post-implantation development. These findings 

show alteration to normal ASH2L levels in the early embryo could be a link to inferior 

embryos that arise from IVP.  
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APPENDIX 

Sense Strand        5’ – CACCGNNNNNNNNNNNNNNNNNNNN  – 3’ 

Antisense Stand   3’ –            CNNNNNNNNNNNNNNNNNNNNCAAA   – 5’  

Figure A1 – Design of sgRNA to allow for insertion of oligonucleotides into the previously 

linearized Bbs1 linearized PX459-Puro plasmid. 

 

 

 

               
 

Figure A2 - Gel image for double digest with EcoRV and Bbs1. Left lane are undigested 

Miniprep of the inserted plasmid, middle lane is EcoRV digested, and right lane is double 

digested with EcoRV and Bbs1. 

 

 

 

PX459 ASH2L Target 1 

AAAGGACGAAACACCGAGAAGAAGGGGAGACGAAGCGTTTTAGAGCTAGAAAT 

 

PX459 ASH2L Target 2 

AAAGGACGAAACACCGTTAGCAGCTGCTGCCGGGCCGTTTTAGAGCTAGAAATA 

 

PX459 ASH2L Target 3 

AAAGGACGAAACACCGAAACACTACTCTTCTGGCTAGTTTTAGAGCTAGAAATA 

 

PX459 ASH2L Target 4 

AAAGGACGAAACACCGAGTAGTGTTTGCCAATGGACGTTTTAGAGCTAGAAATA 

 

Figure A3 – Sequence results from plasmid DNA with inserted sgRNA sequences for 

targeting ASH2L gene. Underlined green letters indicate the target sequence to be inserted 

into the plasmid. 

PX459 1F PX459 2F PX459 2R PX459 1R 
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Figure A4 – Image of positive control transfected cell at 36 hours post transfection. Cells 

were transfected with the plasmid PX458 (GFP) in bovine fibroblasts with BF (Image A) and 

FITC (Image B). Transfection efficiency was an overall 30-35% in positive control wells. 

 

 

 

Component Reaction Volume 

10X Buffer 2.5 µl 

dNTPs 0.5 µl 

ASH2L Target 1 or 2 Forward 

Primer 

0.5 µl 

ASH2L Target 1 or 2 Reverse 

Primer 

0.5 µl 

MgCl2 0.75 µl 

DNA/RNase Free Water 16.125 µl 

Taq Polymerase .125 µl 

Total Volume 21.0 µl 

Table A1 – PCR components for amplification of the ASH2L targeted regions.  

 

 

A B 
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Step Temperature Time Cycles 

1 95ºC 30 seconds 1 

2 95ºC 15 seconds 40 

3 60ºC 30 seconds 40 

4 68ºC 1 minute 40 

5 68ºC 5 minutes 1 

6 4ºC Forever 1 

 

Table A2 – Thermocycler conditions for running reactions for the embryos targeted with 

ASH2L Target 1 sgRNAs. 

 

 

 

Step Temperature Time Cycles 

1 95ºC 30 seconds 1 

2 95ºC 15 seconds 40 

3 57ºC 30 seconds 40 

4 68ºC 1 minute 40 

5 68ºC 5 minutes 1 

6 4ºC Forever 1 

 

Table A3 – Thermocycler conditions for running reactions for the embryos targeted with 

ASH2L Target 2 sgRNAs. 
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sgASH2L Guide 1 Sequence  

ACCGGCAGAAGAAGGGGAGACGAATCAGGCAGCAGCCGTAGCGGC       119 T-G 

sgASH2L Guide 2 Sequence  

AGTGAGCGCAGGACCCGGCCCGGCAGCTGCTGCTAATGCAACACCG          49 A-C 

sgASH2L Guide 3 Sequence  

TTCTGGCAAACACTACTCTTCTGGCTATGGACAGGGAGACGTCCTG         1443 C-T 

sgASH2L Guide 4 Sequence 

TTCTGGCTACGGACAGGGAGACGTCCTGGAAATTTTATATCAACCT         1463 G-A 

 

Figure A5 – Sequences from bovine fibroblast cells transfected with CRISPR plasmids 

targeting the coding sequence of ASH2L. PAM sequences are underlined in order to show 

the target site of the plasmid. The sgASH2L Guide 2 sequence from the antisense strand so 

the PAM site is represented as CCN. 

 

 

 

 
Figure A6 – Chromatograph from an embryo that represents a monoallelic mutation in the 

coding sequence. The PAM target sequence is underlined to indicate the target site of the 

CRISPR-Cas9 Complex. 

1463x AA 

56 T-A 
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 Figure A7 – Chromatograph of a sequence with a biallelic mutation in the coding sequence.  

 

 

 

T7 Forward Primer- TTAATACGACTCACTATAGGCTTTATATATCTTAGTAG 

T7 Reverse Primer – AAAAGCACCGACTCGGTGCC 

Figure A8 – Primers used for the insertion of the T7 promoter and amplification of the 

sgRNA sequence. The underlined portion of the forward primer is the T7 promoter sequence 

needed for T7 MEGASCRIPT Kit (Ambion).  

 

Step Temperature Time Cycles 

1 98ºC 30 seconds 1 

2 98ºC 10 seconds 35 

3 55ºC 15 seconds 35 

4 72ºC 5 seconds 35 

5 72ºC 5 minutes 1 

6 4ºC Forever 1 

 

Table A4 – PCR conditions for insertion of the T7 promoter and amplification of the target 

sequence. 
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Figure A9 – Relative expression levels of gene expression in the Day 17 conceptuses of the 

siNULL embryo group when compared to the reference genes.  
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