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ABSTRACT 

 

Objectives of this study were characterize residual feed intake (RFI) in finishing 

steers to examine relationships with performance, feed efficiency, feeding behavior 

traits, and blood metabolite profiles and identify biomarkers (feeding behavior traits and 

blood metabolites) to understand underlying biological mechanisms of RFI. 

Performance, DMI, and feeding behavior traits were measured for 70 d in Angus 

crossbred steers (N = 168) using a GrowSafe system. Steers were classified into low (n = 

52), medium (n = 64), and high (n = 52) RFI groups based on ± 0.5 SD from the mean 

RFI of 0.00 (SD = 0.82). Partial least squares (PLS; MetaboAnalyst) were used to 

examine associations between RFI, and feeding behavior traits and metabolites.  

Components 1 and 2 of the PLS analysis accounted for 39.1% of between animal 

variance in RFI, and 4 feeding behavior traits had a variable of importance in projection 

(VIP) score > 1, which included HD duration, BV duration, HD to meal duration ratio, 

and bite frequency. Steers with low RFI had 15% greater (P < 0.0001) bite frequency, 

34% lower HD duration, 24% lower BV duration, and 24% lower HD:MD ratio than 

high RFI steers. To examine associations between RFI and blood metabolite profiles to 

identify RFI biomarkers, blood was collected on day 0 and 70 of the trial for steers with 

RFI that were ± 1 SD from the mean RFI (0.00 ± 0.82 kg/d), which included 25 low and 

24 high-RFI steers. Partial least squares analysis of day 0 metabolite profiles resulted in 

overfitting of the data (P = 0.264), but day 70 metabolite data was not over-fitted (P = 

0.009). Components 1 and 2 of the PLS analysis accounted for 34.2% of between animal 



 

iii 

 

variance in RFI. Of the 44 metabolites detected by 1H-NMR, 5 metabolites had VIP 

scores > 2, which included glycine, betaine, tyrosine, valine, and leucine. Steers with 

low-RFI had 54% higher (P < 0.0003) concentrations of glycine, and 14% lower (P < 

0.05) concentrations of betaine, 12% lower (P < 0.05) concentration of tyrosine, 9% 

lower (P < 0.06)  concentration of valine, and 14% lower (P < 0.04) concentration of 

leucine than high-RFI steers. Results from this study indicate glycine, betaine, tyrosine, 

valine, and leucine are possible biomarkers for identification of feed-efficient cattle. 

Further studies are needed to evaluate the repeatability and robustness across breeds, 

diets, etc. for these metabolites. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction 

Improvements in the efficiency of feed utilization by livestock are needed more 

than ever due to increasing demands for animal-sourced foods by a growing global 

population in the face of finite availability of natural resources. Selection of livestock 

with favorable feed efficiency and/or adoption of other technologies that improve feed 

efficiency will enhance the economic sustainability of livestock operations as the 

expense of feed inputs represents the largest variable cost of livestock production 

systems. Along with reducing costs of production, favorable selection for feed efficiency 

will also decrease the environmental impact of animal agriculture due to reductions in 

methane emissions and manure excretions.   

In recent years, feed efficiency has been well characterized in growing beef cattle 

(Archer et al., 2001a; Bishop et al., 1991). The most widely used trait to measure feed 

efficiency is feed conversion ratio (FCR), which has been shown to be moderately 

heritable and highly correlated in a negative manner with average daily gain (ADG) and 

body weight (BW; Archer et al., 2001a; Bishop et al., 1991). Consequently, favorable 

selection for FCR would result in indirect selection for faster growing cattle that are 

larger in mature size. Thus, FCR is not an ideal trait for use in selection programs to 

improve genetic merit for feed efficiency.  
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Residual feed intake (RFI) is an alternative trait to measure feed efficiency that is 

calculated as the actual intake minus predicted intake, with predicted intake for an 

individual animal typically computed by regressing feed intake on mid-test BW0.75 and 

ADG. Because RFI is phenotypically independent of variation in body size and growth, 

selection based on RFI will improve feed efficiency with minimal effects on mature size 

or level of productivity (Basarab et al., 2003; Lancaster et al 2009a; Lancaster et al., 

2009b). Therefore, RFI is an ideal trait for selection of feed efficiency in beef cattle.  

Historically, the beef industry has focused on selecting cattle based on output 

traits, with little emphasis on selection to reduce inputs traits. The heritability of RFI has 

been well characterized in growing animals (Arthur et al., 2001b; Archer et al., 1997; 

Schenkel et al., 2004). In young bulls and heifers, RFI has been shown to be moderately 

heritable trait (≈ 0.30 to 0.45; Arthur et al., 2001b; Archer et al., 1997; Schenkel et al., 

2004), suggesting that genetic improvement in RFI will reduce feed inputs independent 

of variation in body size or level of production. 

Sources of Variation in Residual Feed Intake 

Genetic variation in feed efficiency in cattle is influenced by many factors. The 

ability to identify and understand these factors will enable development of improved 

selection tools for producers to breed more feed-efficient animals. Richardson and Herd 

(2004) characterized RFI in Angus cross-bred steers, and concluded that differences in 

body composition, digestion, feeding behavior, protein turnover, tissue metabolism and 

stress, heat increment of fermentation, activity, and other unknown mechanisms 
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accounted for 5, 10, 2, 37, 9, 10, and 27% of the inter-animal variation in RFI, 

respectively.  

Numerous studies have examined the associations between composition of 

growth and RFI in beef cattle (Carstens et al., 2002; Nkrumah et al., 2004; Robinson and 

Oddy, 2004; Schenkel et al., 2004; Lancaster et al., 2009a). The consensus has 

developed that feed-efficient (low-RFI) cattle have less propensity to deposit fat than 

feed-inefficient (high-RFI) cattle. The phenotypic and genetic correlations between back 

fat thickness (BF) and RFI were weak to moderately positive in beef cattle (Arthur et al., 

2001a; Nkrumah et al., 2004; Richardson et al., 2004; Lancaster et al., 2009a; Lancaster 

et al., 2009b; Schenkel et al., 2004; Shaffer et al., 2011).The longissimus muscle area 

(LMA) phenotypic and genetic correlations with RFI were more variable and ranged 

from weakly negative to weakly positive (Arthur et al., 2001a; Basarab et al., 2003; 

Nkrumah et al., 2004; Schenkel et al., 2004; Lancaster et al., 2009a; Lawrence et al., 

2011). In growing cattle, most studies demonstrated minimal associations between intra-

muscular (IM) fat and RFI (Carstens et al., 2002; Schenkel et al., 2004; Lancaster et al., 

2009b). However, in finishing cattle, some studies have shown that IM fat was weakly 

correlated in a positive manner with RFI (Nkrumah et al., 2004; Basarab et al., 2003). 

The positive correlations between RFI and BF depth, means that more efficient cattle are 

leaner most likely due to increased energetic cost to deposit fat compared to muscle. To 

minimize the potential detrimental effects of selection for RFI on carcass quality (e.g. 

reduced marbling), it has been suggested that BF depth be included in the model to 

compute RFI (Basarab et al., 2003; Lancaster et al., 2009a; Lancaster et al., 2009b). 
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Although Richardson and Herd (2004) reported that body composition accounted for 5% 

of inter-animal variation in RFI, several studies have reported higher variances in RFI 

due to body composition of approximately 8-10% (Lancaster et al., 2009a; Basarab et 

al., 2003; Arthur et al., 2003).  

 The association between dry matter digestibility (DMD) and RFI has been 

evaluated in several studies. McDonald et al. (2010) reported that low-RFI cows had a 

19% higher DMD than high-RFI cows. Nkrumah et al. (2006) reported that low-RFI 

steers tended (P = 0.10) to have a greater DMD than high-RFI steers, and Richardson et 

al. (1996) also found a tendency for low-RFI bulls and heifers to have greater DMD than 

high-RFI bulls and heifers. In contrast, Cruz et al. (2010) and Fitzsimons et al. (2013) 

did not find differences in DMD between low- and high-RFI steers or heifers. The 

inconsistent results reported in these studies may be due to the variable diets fed among 

studies and the methods used to measure individual animal DMD. More research is 

needed to fully understand how digestibility influences feed efficiency.  

 Numerous studies have examined the associations between feeding behavior 

traits and RFI in beef cattle. Nkrumah et al. (2007b) reported that low-RFI steers had 

14% fewer visits to the feed bunk and spent 24% less time at the feed bunk than high-

RFI steers. The frequency of feed bunk events has been shown to have weak-to-

moderately positive correlation with RFI (Nkrumah et al., 2007b; Kelly et al., 2010a; 

Kelly et al., 2010b). However, Basarab et al. (2007) found that bunk visit frequency was 

not correlated with RFI. Bunk visit duration has been found to have a positive 

correlation with RFI (Nkrumah et al., 2007b; Basarab et al., 2007; Lancaster et al., 
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2005). Moderate to strong positive correlations between HD duration and RFI have been 

reported (Basarab et al., 2007; Nkrumah et al., 2007a; Lancaster et al., 2009a). Likewise, 

daily meal duration was positively associated with RFI (Basarab et al., 2007; Nkrumah 

et al., 2007b; Lancaster et al., 2009a). Eating rate was also positively correlated to RFI 

(Kelly et al., 2010a; Kelly et al., 2010b), but Lancaster et al. (2009a) found that RFI was 

not correlated with meal eating rate. These results indicate that cattle with divergent RFI 

phenotypes have distinct feeding behavior patterns associated with consumption of feed. 

Feeding behavior accounts for inter-animal variation in RFI most likely due to the 

physical nature of eating. Kayser and Hill (2013) reported feeding behavior accounted 

for approximately 20% of the inter-animal variation in RFI, which is significantly higher 

than Richardson and Herd (2004) reported variance of 2%. Feeding behaviors traits 

identified as being most influential in accounting for inter-animal variation in RFI may 

have potential as biomarkers for identification of feed-efficient animals. 

There is much to be learned about the underlying mechanisms that control feed-

efficiency in cattle. Richardson and Herd (2004) reported that 27% of the inter-animal 

variation in RFI was due to unknown mechanisms, which indicates that other 

mechanisms yet to be fully identified or quantified (e.g. mitochondria) also contribute to 

variation in RFI. One of the main barriers to widespread adoption of RFI is the cost of 

measuring feed intake. Thus, biomarkers or genetic markers would be valuable tools for 

identification and selection of animals that have improved RFI.  

The association between blood metabolites concentrations and RFI has been 

investigated in numerous beef cattle studies. β-hydroxybutyrate (BHB) was positively 
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correlated (P < 0.01) with RFI in heifers fed grower and finisher diets (Kelly et al., 

2010ab). However, Richardson et al. (2004) did not find a significant correlation 

between RFI and BHB in steers fed a finisher diet. Serum glucose concentrations were 

not correlated with RFI in heifers fed grower and finisher diets (Kelly et al., 2010a and 

b), but Richardson et al. (2004) reported a positive correlation (P < 0.05) between 

glucose and RFI. Urea was positively correlated (P < 0.05) with RFI in heifers fed 

grower and finisher diets (Kelly et al., 2010a and b), but Richardson et al. (2004) found 

no correlation between urea and RFI in steers fed a finisher diet. Blood concentrations of 

creatinine were found to be greater (P < 0.01) in low RFI animals compared to high RFI 

animals (Lawrence et al., 2011), and Richardson et al. (2004) reported a negative 

correlation (P < 0.05) between creatinine and both RFI and DMI. The metabolite that is 

most consistently correlated with RFI is BHB, and is a possible biomarker for feed 

efficiency, while glucose is the metabolite that is the most inconsistently associated with 

RFI. The variable results reported with metabolites association with RFI could be due to 

differences in gender and/or diets fed during the studies. 

Genetic Selection for RFI 

 Identifying feed-efficient animals before maturity is critical for effective 

selection decisions. The associations between post-weaning RFI and efficiency of feed 

use in older animals has been evaluated in several studies (Arthur et al., 2001b; 

Nieuwhof et al., 1992; Archer et al., 2002; Hafla et al., 2013). Arthur et al. (2001b) 

measured RFI in the same bulls at 15 and 19 mo of age, and found strong phenotypic 

(0.85) and genetic (0.95) correlation coefficients. These results suggest that RFI at 15 
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mo of age is representative for RFI at 19 mo of age for bulls fed the same diet (Arthur et 

al., 2001b). Similar studies have measured RFI in heifers shortly after weaning and at 

maturity with the genetic correlations between them ranging from 0.42 to 0.98 

(Nieuwhof et al., 1992; Archer et al., 2002; Hafla et al., 2013). These results suggest that 

measurements of post weaning RFI is a good predictor of efficiency at maturity 

(Nieuwhof et al., 1992; Archer et al., 2002; Hafla et al., 2013).  

Ideally, selection for RFI will have minimal influences on other economically 

relevant production traits. Several studies reported slightly negative to moderately 

positive genetic correlations between ADG and RFI, and genetic correlations between 

feed intake and RFI range from 0.39 to 0.85 (Robinson and Oddy, 2004; Van der 

Westhuizen et al., 2005; Nkrumah et al., 2007a; Herd and Bishop, 2000; Schenkel et al., 

2004; Lancaster et al., 2009a). These genetic correlations indicate that selection for RFI 

will reduce feed intake with minimal effects on performance (Archer et al., 1999; Archer 

et al., 2002). Beef producers will be able to select for cattle that will consume less feed 

with minimal effects on performance and body size, if they include RFI as a trait in 

breeding selection.  

Metabolomics 

Recent studies have indicated the use of metabolomics has considerable potential 

to help decipher the underlying mechanisms associated with inter-animal variation in 

RFI. Metabolomics is the study of metabolite profiles for comprehensive charactrization 

of biological mechanisms at the molecular and cellular level (Sun et al., 2015). 

Metabolites are low-molecular weight compounds that have been processed by animal’s 
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enzymes and transporter proteins, and can be measured in an animal’s biofluid such as 

blood, milk, and rumen fluid (Kühn et al., 2014). An animal’s metabolome is considered 

to be an intermediary phenotype between the whole-animal phenotype and the 

transcriptome or proteome (Kuhn et al., 2014). 

Nuclear Magnetic Resonance (NMR) spectroscopy has been used for more than 

30 years to identify numerous metabolites due it being non-biased, does not destroy 

samples, and can be easily quantified (Wishart, 2008). Spectral patterns measured by 

NMR are processed and compared to databases of pure compounds to identify 

metabolites, with an internal standard (usually 4,4-dimethyl-4-silapentane-1-sulfonic 

acid) used to quantify the metabolites (Wishart, 2008).  

 Metabolomics has been used to identify biomarkers associated with various 

disease states, and with phenotypic traits (Chan et al., 2010; Dutta et al., 2012; Kuhn et 

al., 2014). Combining metabolomics and genomics offer opportunities to identify 

important pathways and genes associated with economically relevant traits in livestock 

(Widmann et al., 2015). The metabolomic approach involves the identification of 

metabolites and subsequent discovery of metabolic pathways, then combining genomics 

to identify genes that influence economically relevant traits. These ‘omics techniques are 

useful for understanding the etiology of a disease and to better understand biological 

mechanisms that underlies the phenotypic variation in economically relevant traits 

(Gieger et al., 2008).   

Metabolomic approaches have been used to study rumen fluid, milk, and blood 

metabolites to understand diet effects and disease states in lactating and transition dairy 
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cows (Ametaj et al., 2010; Bertram et al., 2009; Boudonck et al., 2009; Maher et al., 

2013; Saleem et al., 2012; Sun et al., 2015; Zhao et al., 2014). Saleem et al. (2012) 

investigated the association between metabolite profiles and metabolic disorders in dairy 

cows on high grain diets, and discovered several novel metabolites including putrescine, 

ethanolamine, and short-chain fatty acids as being related to sub-acute rumen acidosis. 

Hailemariam et al. (2014) used metabolomics to identify 3 metabolites (carnitine, 

propionyl carnitine, and lysophosphatidylcholine acyl C14:0) that can be used as a 

biomarkers to identify periparturient diseases in transition dairy cows up to 4 wk before 

parturition.  

 To completely comprehend the underlying mechanisms associated with RFI, the 

genetic component must be understood. Metabolite profiles combined with genetic data 

can be used to identify and interpret the genetic and metabolic interactions (Weikard et 

al., 2010; Widmann et al., 2013; Widmann et al., 2015). Weikard et al. (2010) identified 

novel metabolic pathways associated with genetic variation in fat tissue deposition in 

cattle using metabolomics. Widmann et al. (2013) combined metabolite analysis and 

genetic data to understand gene networks that affect growth in cattle. Widmann et al. 

(2015) combined metabolomics and genomics to identify key genes and gene networks 

associated with variation in RFI in cattle. Combining metabolomics and genomics will 

help give insight of why one animal is more efficient than another. 

 An accurate statistical analytical method is needed to correctly interpret complex 

metabolite profiles. Various metabolites are often times highly correlated with each 

other, otherwise known as multi-collinearity, and normal statistical methods such as 
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multiple linear regression does not account for multi-collinearity. Consequently, the use 

of multiple linear regression has the potential to inflate the significance due to 

unmeasured nonlinear terms (Cortina, 1993). Mason and Perreault (1991) used Monte 

Carlo simulations to investigate the effects of multi-collinearity in multiple linear 

regression analysis. As multi-collinearity was increased the inaccuracies in estimated 

coefficients and the percentage of Type II errors also increased (Mason and Perreault, 

1991). Karisa et al. (2014) used multiple regression analysis to examine associations 

between metabolite profiles and RFI. Carnitine, creatine, and hippurate were all found to 

be associated with RFI in both the discovery and validation populations with partial r-

squares for both populations being 0.25 and 0.35 (Karisa et al., 2014). Since metabolites 

have high multi-collinearity, the results from Karisa et al. (2014) could have possibly 

inflated the proportion of variance in RFI attributed to these metabolites. There is a need 

to use a statistical method that accounts for multicollinearity when analyzing metabolite 

profiles.  

 Statistical methods such as Partial Least Squares (PLS) and Principal Component 

Analysis (PCA) are designed to account for multicollinearity, which are both data 

reduction methods used to identify variables that have the most influence on group 

differences (Xia and Wishart, 2011). A supervised pattern recognition method such as 

PLS uses discriminate analysis to determine differences between groups, but PCA is an 

unsupervised pattern recognition method (Xia and Wishart, 2011). Both methods are 

useful in identifying variables that are most associated with the dependent variable of 

interest.   
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 Programs such as MetaboAnalyst (http://www.metaboanalyst.ca; Xia et al., 

2015) combine univariate and multivariate statistical methods to aid in the interpretation 

of metabolite data. MetaboAnalyst includes PLS and PCA methods and score and 

loading plots to evaluate group differences. It is critical that prior to PLS analysis that 

data is first normalized and standardized (Xia et al., 2015; Dong et al., 2011).  

 For this literature review, PLS is the only multivariate analysis discussed. Partial 

least squares transforms the data into latent components, and these latent components 

maximize covariance between the predictor and response variables (Hailemariam et al., 

2014). Score plots are used to evaluate group separations (Xia and Wishart, 2011). Score 

plots have the first component as the X-axis and the second component as the Y-axis, 

and then plots each animal’s score for the components (Xia and Wishart, 2011). The 

variable of importance in projection (VIP) score is used to identify metabolites that 

account for the most variation between groups, which takes into account the amount of 

explained y variance of each component using a weighted sum of squares of the PLS 

loadings (Xia and Wishart, 2011). Permutation and cross validation methods are used to 

assess whether or not over-fitting of the data by PLS (Westerhuis et al., 2008; Xia and 

Wishart, 2011). Partial least squares is a valuable tool to identify metabolites that are 

important for group separation.  

  

http://www.metaboanalyst.ca/
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CHAPTER II 

ASSOCIATIONS BETWEEN RFI AND FEEDING BEHAVIOR TRAITS IN 

FEEDLOT CATTLE 

 

Introduction 

Improvements in the efficiency of feed utilization by livestock are needed more 

than ever due to increasing demands for animal-sourced foods by a growing global 

population in the face of finite availability of natural resources. Residual feed intake 

(RFI) is alternative feed efficiency trait that quantifies inter-animal variation in DMI 

independent of differences in body size and productivity (e.g. ADG), and has been 

shown to be favorably linked with variation in metabolic processes (e.g., heat 

production, digestion) involved with efficient utilization of feed. Thus, RFI is an ideal 

trait for identification of predictive biomarkers of efficiency.  

The ability to identify the underlying mechanisms that contribute to inter-animal 

variation in feed-efficiency is necessary for selection of these animals. As the ability to 

collect larger and more complex data sets become easier, accurate statistical methods are 

essential for correct interpretation. Multiple linear regression (MLR), has been widely 

used in beef cattle research to identify variables that are associated with economically 

relevant traits (Karisa et al., 2014; Kelly et al., 2010a; Basarab et al., 2007; Arthur et al., 

2003). 

Multiple linear regression does not account for multi-collinearity between the 

variables, and will inflate the significance due to unmeasured nonlinear terms (Cortina, 
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1993). Statistical method like partial least squares (PLS) that accounts for multi-

collinearity are better suited for data sets with this issue (Cramer III, 1993), which will 

enable more accurate interpretation of the data, and identification of independent 

variables (feeding behavior traits) associated with the dependent variable (RFI).  

The objective of this study is to compare statistical methods (multiple linear 

regression vs. partial least squares) to identify biomarkers (feeding behavior traits) that 

are associated with RFI, and the use of divergent subsets of the population to represent 

the entire population.  

Material and Methods 

Animals and Experimental Design 

  All animal care and use procedures were in accordance with the guidelines for 

use of Animals in Agricultural Teaching and Research and approved by the Texas A&M 

University Institutional Animal Care and Use Committee. 

  Angus-crossbred steers (N = 168) from the Rex Ranch (Ashby, NE) with an 

initial body weight (BW) of 274 ± 26 kg and age of 290 ± 16 d were used in this study. 

Upon arrival at McGregor Research Center (McGregor, TX), cattle were fitted with 

passive, half-duplex transponder ear tags (Allflex USA Inc., Dallas, TX) and randomly 

assigned to 1 of 2 pens (46 x 58 m) with each pen containing 10 electronic feed bunks 

(GrowSafe System LTD., Airdrie, AB, Canada). Steers were adapted to a high grain diet 

(Table 2.1) for 28 d prior to start of the study. Following the diet adaptation period, the 

steers were fed ad libitum and individual animal feed intake and feeding behavior data 

collected for 70 d. 
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Table 2.1 Ingredient and chemical composition of the experimental diet. 

Item Amount 

Ingredient, as-fed  

Dry rolled corn 73.7 

Chopped sorghum-sudan hay 6.0 

Cottonseed meal 6.0 

Cottonseed hulls 6.0 

Molasses 5.0 

Mineral Premixa 2.5 

Urea 0.8 

Chemical analysis, DM basis  

DM % 90.2 

CP 12.6 

NDF 20.3 

ME, Mcal/kg 3.0 

aMineral Premix contained minimum 15.5% Ca, 2800 ppm Zn, 1200 ppm Mn, 12 ppm 

Se, 14 ppm Co, 30 ppm I, 45.4 KIU/kg Vit-A, 2.3 KIU/kg Vit-D, 726 IU/kg Vit-E, 

1200 ppm Monensin, and 400 ppm Tylan. 
 

 

The GrowSafe system (DAQ 4000E) consisted of feed bunks with load bars to 

measure feed disappearance and an antenna located within each feed bunk to record 

animal presence via detection of EID ear tags. Feed intake was assigned to each 

individual animal based on continuous recordings of feed disappearance during each 

bunk visit (BV) event. Assigned feed disappearance (AFD) rates were computed daily 

for each bunk to assess data quality. Feed intake and feeding behavior data were omitted 

for 23 d in pen 1 and 5 d in pen 2 due to system failure (equipment malfunction), or low 
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AFD (< 95%). Average AFD for the remaining days of study was 98.7%. Feeding 

behavior traits evaluated in this study were based on frequency and duration of BV 

events. A BV event commences when the EID ear tag of an animal enters the bunk, and 

ended when the time between the last 2 consecutive EID recordings exceeded 100 s 

(parameter in the GrowSafe 4000E software [GrowSafe Systems Ltd.]), the EID ear tag 

was detected at another feed bunk, or the EID ear tag of another animal was detected at 

the same feed bunk (Mendes et al., 2011).  All BV events were recorded regardless of 

whether or not feed was consumed. Feeding bouts were defined as BV events during 

which feed was consumed (Table 2.2). Non-feeding intervals (NFI) were defined as the 

interval lengths between BV events. Head-down (HD) duration was computed as the 

sum of the number of times the EID ear tag for an animal was detected each day 

multiplied by the scan rate of the GrowSafe system (1.0 s). Using R statistical software 

(R Core Team, 2014), daily time to bunk (TTB) was computed daily as the interval 

between time of feed-truck delivery within pen and each animal’s first BV event 

following feed delivery. 

To compute meal data, a 2-pool Gaussian-Weibull distribution model was fit to 

log-transformed non-feeding interval data, and the intercept of the 2 distributions used to 

define meal criterion (Bailey et al., 2012; Yeates et al., 2001). Meal criterion was used to 

compute individual animal meal data (meal frequency and duration, meal length and 

size, BV per meal, and head down to meal duration ratio). Meal duration was defined as 

the sum of the lengths of meal events recorded each day, and meal length and size as the 

average meal event length (min) and size (kg/meal). 
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Frequency and duration of bite events were derived from continuous scale-

weight measurements of feed disappearance recorded during each FB event. To compute 

bite events, baseline linear regressions were fit to scale-weight data within FB events, 

and a bite threshold line established at 1 SD above the baseline regression. The 1-s scale-

weight values exceeding the bite threshold line were used to compute bite events. For 

this study, a static criterion of 8 s was used to differentiate bite events. Non-bite intervals 

≤ 8 s were considered to be part of a bite event, and those exceeding 8 s used to define 

the start of the next bite event. Daily bite frequency was defined as number of bite events 

per FB, and daily bite duration as the sum durations of all bite events for each FB. Bite 

duration per feeding bout duration is the ratio of bite duration per feeding bout duration 

(Table 2.2).   
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Table 2.2. Definition of feeding behavior traits analyzed in this study. 

Trait Definition 

BV frequency, events/d Number of BV events recorded each day  

Bunk visit (BV) duration, 

min/d 
Sum of the lengths of all BV events recorded each day 

Feeding bout (FB) 

frequency, events/d 

 

BV events when feed intake > 0 

FB duration, min/d Sum of the lengths of FB events recorded each day 

FB eating rate, g/min DM intake ÷ FB duration 

NFI duration, min/d Sum of the intervals between BV events each day 

Meal criterion 
Longest NFI interval between BV events that is still part 

of a meal 

Meal frequency, events/d Average number of meals each day  

Meal duration, min/d Sum of the lengths of meal events recorded each day 

Meal length, min Average meal length 

Meal size, kg Average DM intake per meal 

Meal eating rate, g/min DM intake ÷ meal duration 

Bite frequency per FB, 

events/min  
Average number of bites for all feeding bout events 

Bite duration, s 
Sum of the lengths of all bite events per feeding bout 

event 

Bite duration per feeding 

bout duration 
Ratio of bite duration per FB duration 

HD duration, min/d 
Number of EID recordings each day multiplied by the 

scan rate of the GrowSafe1 system  

Time to bunk, min 
Length of interval between feed-truck delivery and the 

first BV event following feed delivery recorded each day 

BV frequency per meal 

event 
Ratio of number of BV events per meal events 

HD duration per meal 

duration  
Ratio of HD duration per meal duration  

1GrowSafe Systems Ltd., Airdrie, AB, Canada.  
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Steers were weighed at 14-d intervals during the study. Diet samples were 

collected weekly and composited by weight at the end of the study for subsequent 

chemical analysis. Moisture analysis was conducted by drying in a forced-air oven for 

48 h at 105°C and chemical analysis was conducted by an independent laboratory 

(Cumberland Valley Analytical Services Inc., Hagerstown, MD). Metabolizable energy 

concentration of the diet was computed using the Large Ruminant Nutrition System 

(http://www.nutritionmodels.com/lrns.html), which is based on the Cornell Net 

Carbohydrate and Protein System (Fox et al., 2004). 

Statistical Analysis 

Individual animal growth rates were modeled by linear regression of serial BW 

on day of test using the GLM procedure of SAS (SAS Inst., Cary, NC), and regression 

coefficients used to compute ADG and mid-test BW0.75. Moisture analysis of the diet 

samples were used to compute average daily DMI from feed intake data. PROC GLM 

procedures were used to derive expected DMI from linear regression of DMI on ADG 

and mid-test BW0.75, and RFI was calculated as actual minus expected DMI (Koch et al., 

1963).  

  Steers were sorted by RFI and classified into 2 divergent RFI groups based on ± 

0.5 SD and ± 1 SD from the mean RFI of 0.00 (SD = 0.82); low (n = 52 and 25) and 

high (n = 52 and 24) RFI groups to examine the effects of RFI classification on 

performance, feed efficiency, and feeding behavior traits using PROC GLM of SAS.  

 To examine associations between RFI and feeding behavior traits, PROC REG 

procedure was used for stepwise selection in multiple linear regression. Pearson 
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correlations between performance, feed efficiency, and feeding behavior traits were 

calculated using PROC CORR of SAS.  

MetaboAnalyst software (Xia and Wishart, 2011) was used to conduct a 

multivariate analysis of the data using Partial Least Squares discriminant analysis (PLS-

DA), which is a supervised pattern recognition analysis method. Feeding behavior traits 

were normalized and standardized using Censcale statement of SAS. Score plots were 

used to graphically display differences between divergent RFI groups based on ± 0.5 and 

± 1 SD. The variable of importance in projection (VIP) scores were used to identify 

feeding behavior traits that accounted for the most variation between RFI groups (Xia 

and Wishart, 2011). The VIP scores take into account the amount of variance in the 

dependent variable (RFI) of each component using a weighted sum of squares of the 

PLS loadings (Xia and Wishart, 2011).  Permutation and cross validation analysis were 

used in MetaboAnalyst to assess whether data were over-fitted by PLS (Westerhuis et 

al., 2008; Xia and Wishart, 2011). A receiver-operator characteristics (ROC) curve was 

used in MetaboAnalyst to determine the predictive ability of the identified biomarkers 

from PLS (Xia et al., 2015). Area under the curve (AUC) is the metric of ROC curve 

that was used to determine predictive ability, and Hailemariam et al. (2014) guidelines 

on AUC scores were used for this trial. 

Results and Discussion 

Summary statistics are presented in Table 2.3 for this trial. Steers had a mean 

DMI of 9.90 ± 1.04 kg/d, ADG of 1.76 ± 0.21 kg/d, and F:G ratio of 5.62 ± 0.66 kg/d. 

The average RFI for the trial was 0.00 ± 0.81 kg/d and ranged from -2.60 to 2.31 kg/d, 
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with a difference between the most and least efficient steer of 4.91 kg/d. Differences 

between RFI groups based on ± 0.5 SD are presented in Table 2.4. Classification of RFI 

did not affect (P > 0.10) initial BW or ADG, but low-RFI steers consumed (P < 0.0001) 

7.4 and 16.9% less feed than medium and high-RFI steers, respectively. Low-RFI steers 

had a 12% lower (P < 0.0001) F:G than medium-RFI steers, and medium-RFI steers had 

a 8% lower (P < 0.0001) F:G than high-RFI steers. Performance, feed intake, and feed 

efficiency traits of the Angus-crossbred steers were similar to previously published 

studies using growing steers. Nkrumah et al. (2007b) reported means and SE for ADG, 

DMI, and RFI of 1.46 ± 0.27, 10.45 ± 1.61, and 0.00 ± 0.88 kg/d, respectively, in 

crossbred steers fed a finisher ration.  
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Table 2.3. Summary statistics of performance, feed intake, feed efficiency, and 

feeding behavior traits for Angus-cross steers.  

Item Mean SD Minimum Maximum 

Initial age, d 284 9 265 310 

Performance and feed efficiency:      

Initial BW, kg 273.9 26.3 219.1 375.5 

ADG, kg/d 1.76 0.21 1.07 2.43 

DMI, kg/d 9.90 1.04 7.11 12.8 

F:G ratio 5.62 0.66 4.12 7.62 

Residual feed intake, kg/d 0.00 0.81 -2.60 2.31 

Bunk visit (BV) and feeding bout (FB) 

traits: 

    

BV frequency, events/d 48.7 11. 2 22.3 76.9 

BV duration, min/d 61.9 12.9 36.1 98.6 

FB frequency, events/d 41.6 9.07 20.2 63.4 

FB duration, min/d 57.3 12.0 33.8 91.3 

FB eating rate, g/min 178 0.03 113 296 

Non-feeding interval duration, min/d 1324 31.1 1262 1379 

Meal traits:      

Meal criterion, min 13.1 8.58 1.92 66.5 

Meal frequency, events/d 6.44 2.32 2.55 17.9 

Meal duration, min/d 131.5 28.4 67.6 218.1 

Meal length, min/event 25.5 11.7 5.58 87.4 

Meal size, kg 1.72 0.59 0.13 0.68 

Meal eating rate, g/min 78.4 16.9 45.9 130.6 

Intensity traits:     

Bite frequency, events per FB  3.43 0.62 2.08 5.31 

Bite duration, s per FB 14.2 4.65 6.00 28.5 

Bite duration per FB duration, ratio 0.25 0.06 0.11 0.47 

Head down duration (HD), min/d 46.3 14.6 18.9 90.7 

Time to bunk, min 94.9 35.8 34.7 254.1 

BV per meal, ratio 8.22 2.79 2.93 16.8 

HD duration per meal duration, ratio  0.36 0.11 0.12 0.68 
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Residual feed intake was not correlated with initial BW or ADG, but was 

correlated (P < 0.0001) with F:G (0.67) and DMI (0.78) (Table 2.5). Other studies have 

Table 2.4. Comparison of performance, feed efficiency, and feeding behavior traits for 

steers with divergent phenotypes for RFI1. 

Item 

Low 

RFI 

Medium 

RFI 

High 

RFI SE P-value 

No. of steers  52 64 52   

Performance and feed efficiency:       

Initial BW, kg 274.6 270.1 277.8 5.1 0.27 

ADG, kg/d 1.79 1.72 1.77 0.04 0.15 

DMI, kg/d 9.05a 9.77b 10.89c 0.14 0.0001 

F:G ratio 5.05a 5.68b 6.11c 0.10 0.0001 

Residual feed intake, kg/d -0.92a 0.01b 0.91c 0.07 0.0001 

Bunk visit (BV) and feeding bout (FB) 

traits: 

     

BV frequency, events/d 46.2 49.7 50.1 2.2 0.14 

BV duration, min/d 54.4a 60.2b 71.8c 2.1 0.0001 

FB frequency, events/d 39.5 42.3 42.7 1.3 0.15 

FB duration, min/d 50.2a 55.5b 66.6c 1.4 0.0001 

FB eating rate, kg/min 186a 181a 167b 0.01 0.007 

Non-feeding interval duration, min/d 1334.7a 1323.6b 1314.2b 5.9 0.003 

Meal traits:       

Meal criterion, min 13.2 13.3 12.8 1.7 0.95 

Meal frequency, events/d 6.44 6.42 6.47 0.45 0.99 

Meal duration, min/d 123.6a 131.5ab 139.3b 5.5 0.01 

Meal length, min/event 23.6 25.9 26.7 2.3 0.36 

Meal size, kg  1.55a 1.73ab 1.88b 0.08 0.01 

Meal eating rate, g/min 76.4 77.4 81.5 2.3 0.27 

Intensity traits:      

Bite frequency, events per FB  3.62a 3.51a 3.16b 0.08 0.0004 

Bite duration, s per FB 12.9a 14.0a 15.8b 0.63 0.005 

Bite duration per FB duration, ratio 0.26 0.25 0.24 0.01 0.16 

Head down duration (HD), min/d 37.9a 44.2b 57.4c 2.4 0.0001 

Time to bunk, min 95.6 99.7 88.5 7.0 0.24 

BV per meal, ratio 7.66 8.44 8.50 0.54 0.23 

HD duration per meal duration, ratio 0.32a 0.35a 0.42b 0.02 0.0001 
a, b, cMeans in the same row with unlike superscripts are different at P < 0.05.  
1Low, medium, and high RFI phenotypes were based on ± 0.50 SD from mean RFI of 0.00 (SD = 0.82).  
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reported similar positive correlations between RFI, and F:G or DMI (Lancaster et al., 

2009b; Hafla et al., 2013; Nkrumah et al., 2007a). Dry matter intake was positively 

correlated (P < 0.0001) to initial BW (0.49) and ADG (0.48), which is consistent with 

previous results from Nkrumah et al. (2007a) and Lancaster et al. (2009b). Feed to gain 

was negatively correlated (P < 0.0001) with ADG (-0.62).  

 

 

 

 

 

 

 

 

Differences between RFI groups based on ± 0.5 SD for feeding behavior traits 

are presented in Table 2.4. Low-RFI steers spent 24% less time (P < 0.0001) at the bunk 

(BV duration) than high-RFI steers, and consequently low-RFI steers had greater (P < 

0.003) duration of non-feeding intervals than high-RFI steers. Previous studies have 

reported that bunk visit duration was shorter for low- compared to high-RFI steers 

(Nkrumah et al., 2007b; Lancaster et al., 2005; Basarab et al., 2007). The duration of FB 

events, which were the BV events during which feed is consumed, was also 25% less (P 

< 0.0001) in low-RFI steers compared to high-RFI steers. The frequencies of FB, BV, 

Table 2.5. Pearson correlations among performance and feed 

efficiency for Angus-cross steers.  

Trait1 ADG DM intake F:G 

Residual 

feed 

intake 

IBW 0.23* 0.49* 0.19* 0.00 

ADG  0.48* -0.62* 0.00 

DM intake   0.37* 0.78* 

F:G    0.67* 
*Correlations differ from zero at P < 0.05. 
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and NFI events, as well as TTB were not affected (P > 0.10) by RFI classification in this 

trial.  

Meal criterion and frequency were not affected (P > 0.10) by RFI classification. 

Meal duration was 11% lower (P < 0.01) for low- than high-RFI steers, which likely 

reflects the fact that BV duration was lower in low-RFI steers. Average meal size was 

18% less in low-RFI compared to high-RFI steers, which can be attributed to lower DMI 

of low-RFI steers, as average meal length was not affected by RFI classification. In 

addition, the rate of DMI consumption during meal events was not affected by RFI 

classification.  

Steers with low RFI had 34% lower (P < 0.0001) HD duration than high-RFI 

steers, which is consistent with previous results from Lancaster et al. (2009b) and 

Nkrumah et al. (2007b). While both HD duration and duration of meal events were 

lower in low-RFI steers, the magnitude of the reduction in HD duration was greater such 

that the ratio of HD duration to meal duration was 24% lower (P < 0.0001) in low- 

compared to high-RFI steers. For this study, we also examined an additional 

characteristic of feeding behavior patterns associated with the frequency and duration of 

bite events, which were derived from scale-weight measurements recorded during FB 

events (Table 2?). Steers with low-RFI phenotypes had 15% greater (P < 0.001) 

frequency of bite events within FB events than high-RFI steers. However, the duration of 

bite events was 18% less (P < 0.005) in low-RFI steers, which likely reflects the fact that 

the duration of FB events was also lower in low-RFI steers. Consequently, the ratio of 

bite duration per FB duration was not affected (P > 0.10) by RFI classification. The 
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higher frequency of bite events suggests that low-RFI steers may have been more 

aggressive in consuming feed during FB events as indicated by the 11% faster (P < 0.01) 

eating rate during FB events exhibited in low- compared to high-RFI steers. These 

differences in bite-related traits further illustrate that steers with divergent RFI 

phenotypes have distinctive feeding behavior patterns associated with consumption of 

feed.  

 Performance, feed efficiency, and feeding behavior traits for steers with more 

diverse RFI (± 1.0 SD) are presented in Table 2.6. As expected, the magnitude of the 

differences between the low- and high-RFI steers was greater between the ± 1.0 SD RFI 

groups than between the ± 0.5 SD RFI groups. The low-RFI steers consumed 22% less 

(P < 0.0001) DMI and had 34% lower (P < 0.0001) duration of BV events than high-RFI 

steers. In contrast to the comparison between RFI groups based on ± 0.5 SD, the 

frequencies of BV and FB events were significantly lower for low- compared to high-

RFI steers based on ± 1.0 SD. In general, differences in meal patterns between divergent 

RFI groups were fairly similar for the ± 0.5 SD and ± 1.0 SD RFI groups. 

The magnitude of the differences in bite frequency and duration and HD duration 

between steers with divergent RFI was greater based on ± 1.0 SD RFI groups than the ± 

0.5 SD RFI groups. Although the ratio of bite duration to FB duration was not affected 

by RFI classification when evaluating the ± 0.5 SD RFI groups, this ratio was 17% 

higher in low- compared to high-RFI steers when the RFI classification was based on ± 

1.0 SD.   
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The feeding behavior traits that were most highly correlated with RFI for all 

steers were HD (0.60), BV duration (0.58), HD:MD ratio (0.41), bite frequency (-0.32), 

Table 2.6 Comparison of performance, feed efficiency, and feeding behavior traits for 

steers with divergent phenotypes for RFI1. 

Item 

Low 

RFI 

High 

RFI SE P-value 

No. of steers 25 24   

Performance and feed efficiency:      

Initial BW, kg 275.8 276.9 8.7 0.90 

ADG, kg/d 1.80 1.81 0.06 0.95 

DMI, kg/d 8.77 11.31 0.21 0.0001 

F:G ratio 4.88 6.25 0.15 0.0001 

Residual feed intake, kg/d -1.23 1.27 0.12 0.0001 

Bunk visit (BV) and feeding bout (FB) 

traits: 

    

BV frequency, events/d 45.0 52.3 3.1 0.02 

BV duration, min/d 50.5 76.1 3.2 0.0001 

FB frequency, events/d 38.8 44.4 2.5 0.03 

FB duration, min/d 46.7 70.4 2.9 0.0001 

FB eating rate, g/min 193 165 0.01 0.006 

Non-feeding interval duration, min/d 1339.8 1316.5 8.0 0.005 

Meal traits:      

Meal criterion, min 14.9 11.4 2.6 0.18 

Meal frequency, events/d 6.07 7.17 0.70 0.12 

Meal duration, min/d 124.6 140.9 8.1 0.04 

Meal length, min/event 25.5 24.8 3.3 0.82 

Meal size, kg/d  1.61 1.79 0.18 0.32 

Meal eating rate, g/min 73.9 83.3 3.6 0.06 

Intensity traits:     

Bite frequency, events per FB  3.75 3.08 0.18 0.0006 

Bite duration, s per FB 12.8 17.1 1.4 0.003 

Bite duration per FB duration, ratio 0.28 0.24 0.02 0.04 

Head down (HD) duration, min/d 33.4 63.7 3.6 0.0001 

Time to bunk, min 91.1 90.1 9.2 0.91 

BV per meal, ratio 8.05 7.97 0.77 0.92 

HD duration per meal duration, ratio 0.28 0.46 0.03 0.0001 
1Low, medium, and high RFI phenotypes based on ± 1 SD from mean RFI 0.00 (SD = 0.82). 
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bite duration (0.26), and meal duration (0.25). As would be expected, the magnitude of 

the correlations increased as the divergence between RFI groups increased (Table 2.7). 

Positive correlations between RFI and HD duration, BV duration, or meal duration has 

been previously reported (Nkrumah et al., 2007b; Basarab et al., 2007; Lancaster et al., 

2005 and 2009b; Kayser and Hill, 2013). 

 

Table 2.7 Pearson correlations among performance, feed efficiency, feed behavior 

traits and temperament traits for Angus-cross steers.  

Trait RFI1 RFI2 RFI3 

Bunk visit (BV) traits:    

BV frequency 0.16* 0.20* 0.30* 

BV duration 0.58* 0.66* 0.74* 

NFI duration -0.23* -0.27* -0.33* 

Meal traits:    

Meal criterion 0.00 -0.02 -0.10 

Meal frequency 0.00 0.02 0.13 

Meal duration 0.25* 0.28* 0.32* 

Meal length 0.11 0.13 0.06 

Intensity traits:    

Bite frequency -0.32* -0.40* -0.47* 

Bite duration 0.26* 0.30* 0.37* 

Bite duration per FB duration -0.17* -0.25* -0.33* 

Head down (HD) duration 0.60* 0.67* 0.77* 

Time to bunk -0.02 -0.03 0.03 

BV per meal 0.13 0.14 0.08 

HD duration per meal duration 

ratio 
0.41* 0.49* 0.62* 

1Correlations with RFI for the full population.  
2Correlations with RFI for ± 0.5 SD RFI groups. 
3Correlations with RFI for ± 1.0 SD RFI groups. 

*Correlations differ from zero at P < 0.05. BV frequency = bunk visit frequency; BV duration = bunk 

visit duration; NFI duration = non-feeding interval; BV per meal = bunk visit per meal; HD duration per 

meal duration ratio = head down duration per meal duration ratio. 
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Multiple linear regression analysis of the full population revealed that HD, bite 

duration per feeding bout duration ratio, BV frequency, and bite duration were 

significantly associated with RFI, and accounted for 44.3% of the phenotypic variation 

in RFI (Table 2.8). When MLR analysis was performed with the ± 0.5 SD RFI groups, 

there were only 2 feeding behaviors (HD duration and bite duration per feeding bout 

duration ratio) that were significant, which accounted for 50.1% of the phenotypic 

variation in RFI. The same 2 feeding behavior traits were significant when analysis was 

performed with the ± 1 SD RFI groups, and as expected the amount of variance 

explained was higher at 66.2%.  

 

 

Table 2.8 Feeding behavior traits associated with RFI using multiple 

regression.                                                                                                

Population Feeding behavior traits: P-value 

Partial R-

square 

Model R-

square 

Full HD duration 0.0001 0.356 0.356 

 Bite duration: FB duration 0.0003 0.048 0.404 

 BV frequency 0.01 0.022 0.426 

 Bite duration 0.03 0.017 0.443 

± 0.5 SD  HD duration 0.0001 0.454 0.454 

 Bite duration: FB duration 0.003 0.047 0.501 

± 1 SD HD duration 0.0001 0.587 0.587 

 Bite duration: FB duration 0.003 0.074 0.662 
HD duration = head down duration; bite duration: FB duration  = bite duration per feeding bout 

duration; BV frequency = bunk visit frequency. 

 

 

The variance inflation factor (VIF) is used to assess the degree of multi-

collinearity between independent variables, with VIF > 10 providing strong evidence for 
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multi-collinearity (Ott and Longnecker, 2015; Mason and Perreault, 1991). Mason and 

Perreault (1991) suggested one method to handle multi-collinearity was to remove 

variables with VIF > 10. As shown in Table 2.9, only 5 out of 16 feeding behavior traits 

had VIF values less than 10. Moreover, the VIF values were considerably higher as the 

divergence of population used in the analysis increased.  

 

 

Table 2.9 Variance inflation factors (VIF) for feeding behavior traits for 

contemporary groups. 

Trait VIF1 VIF2 VIF3 

Bunk visit (BV) 

traits: 
   

BV frequency 16.8 28.7 40.5 

BV duration 29.6 36.1 55.7 

NFI duration 3.74 4.04 7.16 

Meal traits:    

Meal criterion 18.3 20.1 33.5 

Meal frequency 10.4 12.4 14.9 

Meal duration 25.9 42.3 43.8 

Meal length 49.8 112.7 173.9 

Intensity traits:    

Bite Frequency 8.61 9.10 10.3 

Bite duration 46.7 40.1 51.8 

Bite duration per 

FB duration 
31.6 28.3 31.1 

Head down 38.4 44.1 68.8 

Time to bunk 1.36 1.54 1.99 

BV per meal 27.6 62.7 85.7 

HD duration per 

meal duration 

ratio 

33.9 37.1 40.8 

1Correlations with RFI for the full population.  
2Correlations with RFI for ± 0.5 SD RFI groups. 
3Correlations with RFI for ± 1.0 SD RFI groups. 

NFI duration = non-feeding interval; BV per meal = bunk visit per meal; HD duration per 

meal duration ratio = head down duration per meal duration ratio.  
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Partial least squares analysis of the full population revealed some degree of 

separation between the low and high-RFI groups based on score plots (Figure 2.1). Of 

the 16 feeding behavior traits measured in this study, 4 had a variable of importance in 

projection (VIP) score > 1, which included HD (2.10), BV duration (2.08), HD to meal 

duration ratio (1.56), and bite frequency (1.31; Figure 2.1 and Table 2.10). These 4 

feeding behavior traits accounted for 39.1% (components 1 and 2) of the inter-animal 

variance in RFI.. For the ± 0.5 SD group the PLS score plot revealed very similar pattern 

of separation between the low and high-RFI groups as was seen with all the steers 

(Figure 2.2). Of the 16 feeding behavior traits measured in this study, 5 had a VIP score 

> 1, which included BV duration (2.10), HD (2.08), HD to meal duration ratio (1.45), 

bite frequency (1.13), and NFI duration (1.03) (Figure 2.2 and Table 2.10). These 5 

feeding behavior traits accounted for 43.9% (components 1 and 2) of the inter-animal 

variance in RFI. The AUC for the receiver-operator characteristic curve based on the 

PLS model that used these 4 feeding behavior traits with highest VIP scores was 0.864; 

Figure 2.4), which based on Hailemariam et al. (2014) AUC guide has good predictive 

ability. Steers with low-RFI had 34% lower HD duration, 24% lower BV duration, 24% 

lower HD:MD ratio, and 15% more bites per minute (bite frequency) than high RFI 

steers (Table 2.4).  
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Figure 2.1 Score plots between first and second components on the left panel and 

variable of importance in projection scores (PLS) on the right panel for feeding behavior 

traits for all steers (N = 168). Variance in RFI (shown in brackets) explained based on 2-

component PLS analysis. HD-dur = head down duration; BV dur = bunk visit duration; 

HD-MD = head down duration per meal duration ratio; Bite-Freq = bite frequency; Bite-

dur = bite duration; TTB = time to bunk; NFI-dur = non-feeding interval duration; Meal-

dur = meal duration; Bitedur-FBdur = bite duration per feeding bout duration ratio; 

Meal-Freq = meal frequency; BV-freq = bunk visit frequency. 
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Figure 2.2 Score plots between first and second components on the left panel and 

variable of importance in projection scores (PLS) on the right panel for feeding behavior 

traits for ± 0.5 SD group (N = 104). Variance in RFI (shown in brackets) explained 

based on 2-component PLS analysis. HD-dur = head down duration; BV dur = bunk visit 

duration; HD-MD = head down duration per meal duration ratio; Bite-Freq = bite 

frequency; Bite-dur = bite duration; TTB = time to bunk; NFI-dur = non-feeding interval 

duration; Meal-dur = meal duration; Bitedur-FBdur = bite duration per feeding bout 

duration ratio; Meal-Freq = meal frequency; BV-freq = bunk visit frequency. 
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Figure 2.3 Score plots between first and second components on the left panel and 

variable of importance in projection scores (PLS) on the right panel for feeding behavior 

traits for ± 1 SD group (N = 49). Variance in RFI (shown in brackets) explained based 

on 2-component PLS analysis. HD-dur = head down duration; BV dur = bunk visit 

duration; HD-MD = head down duration per meal duration ratio; Bite-Freq = bite 

frequency; Bite-dur = bite duration; TTB = time to bunk; NFI-dur = non-feeding interval 

duration; Meal-dur = meal duration; Bitedur-FBdur = bite duration per feeding bout 

duration ratio; Meal-Freq = meal frequency; BV-freq = bunk visit frequency. 
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Figure 2.4 Receiver-operator characteristics curve of the top 4 feeding behavior traits 

identified by VIP scores for ± 0.5 SD group (N = 104) on the left panel and ± 1 SD 

group (N = 49) on the right panel. 

Table 2.10 Feeding behavior traits associated with RFI using partial least 

squares. 

Population Feeding behavior traits: 

VIP 

score 

Accounted 

variance AUC  

Full HD duration 2.10 39.1  

 BV duration 2.08   

 HD per meal duration 1.56   

 Bite frequency 1.31   

± 0.5 SD  HD duration 2.10 43.9 0.864 

 BV duration 2.08   

 HD per meal duration 1.45   

 Bite frequency 1.13   

 NFI duration 1.03   

± 1 SD HD duration 2.15 53.8 0.958 

 BV duration 2.05   

 HD per meal duration 1.66   

 Bite frequency 1.13   
HD duration = head down duration; BV duration = bunk visit duration; HD per meal duration 

= head down duration per meal duration; NFI duration = non-feeding interval duration.  
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Partial least squares analysis was also performed after excluding the bite-related 

traits to further assess their contributions in accounting for inter-animal variance in RFI. 

A PLS score plot for all steers revealed separation between the low and high-RFI groups 

with the medium-RFI group overlaying both (data not shown). Of the 12 feeding 

behavior traits considered in the analysis, 3 had VIP scores > 1, which included HD 

(2.03), BV duration (2.01), and HD to meal duration ratio (1.51; Table 2.11), and 

accounted for 31.7% of inter-animal variance in RFI. For the ± 0.5 SD groups, PLS 

score plot displayed a similar pattern of separation between the low- and high-RFI 

steers. Of the 12 feeding behavior traits measured in this study, 3 had VIP scores > 1, 

which included BV duration (1.99), HD (1.96), and HD to meal duration ratio (1.37; 

Table 2.11), and accounted for 37.3% of inter-animal variance in RFI. These results 

suggest bite-related traits should be included in PLS analysis to help account for more 

inter-animal variance in RFI.   

Table 2.11 Feeding behavior traits excluding bite-related traits associated with 

RFI using partial least squares. 

Population Feeding behavior traits: 

VIP 

score 

Accounted 

variance AUC  

Full HD duration  2.03 31.7  

 BV duration 2.01   

 HD per meal duration  1.51   

± 0.5 SD BV duration  1.98 37.3 0.859 

 HD duration 1.96   

 HD per meal duration 1.37   

± 1 SD HD duration  2.03 62.8 0.942 

 BV duration  1.94   

 HD per meal duration 1.57   
HD duration = head down duration; BV duration = bunk visit duration; HD per meal duration = 

head down duration per meal duration; NFI duration = non-feeding interval duration.  
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 As expected, the ± 1 SD group revealed similar separation between the low and 

high-RFI groups (Figure 2.3). Of the 16 feeding behavior traits measured in this study, 4 

had VIP scores > 1, which included HD (2.15), BV duration (2.05), HD to meal duration 

ratio (1.66), and bite frequency (1.13) (Figure 2.3). These 4 feeding behavior traits 

accounted (components 1 and 2) for 53.8% of inter-animal variance in RFI. Steers with 

low-RFI had 48% lower HD duration, 34% lower BV duration, 39% lower HD:MD 

ratio, and 22% more bites per minute (bite frequency) than high RFI steers (Table 2.6).  

The PLS score plot for ± 1 SD group with all feeding behaviors with the 

exception of bite-related traits displayed separation between the low and high-RFI 

groups. Of the 12 feeding behavior traits measured in this study, 3 had VIP scores > 1, 

which included HD (2.03), BV duration (1.94), and HD to meal duration ratio (1.57; 

Table 2.11), and accounted for 62.8% of inter-animal variance in RFI. The ± 1 SD group 

PLS analysis without bite-related traits accounts for more inter-animal variance in RFI, 

which is the opposite of the full population and the ± 0.5 SD group PLS analysis. Further 

research is needed to fully understand this change.  

Partial least squares analysis for the different RFI groups all had similar patterns 

of separation between the low- and high-RFI steers. As expected, the ± 1 SD RFI groups 

had the clearest separation between the low- and high-RFI groups and accounted for the 

most inter-animal variation in RFI. The feeding behavior traits identified as contributing 

the most towards the inter-animal variation in RFI were the same for all the RFI groups 

with the exception of NFI duration also being identified in the ± 0.5 SD RFI groups. The 

ROC curve using these 4 feeding behavior traits have an AUC of 0.864, which suggests 
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good predictability as biomarkers. These results support the theory more divergent 

groups are able to be used for identification of biomarkers for the entire population, but 

will increase the amount of accounted variance in RFI as the group becomes more 

divergent. There is one study to the author’s knowledge that has used PLS analysis to 

study feed efficiency and feeding behavior traits in beef cattle research (Montanholi et 

al., 2010).   

The same feeding behavior traits identified by PLS were also the ones highly 

correlated with RFI, but MLR did not recognize those same feeding behavior traits. The 

amount of accounted variance were similar between PLS and MLR for each 

contemporary group, but due to feeding behavior traits that have very high VIF, this 

suggests that MLR has inflated r-squared values with possible artificial significance 

(Cortina, 1993; Ott and Longnecker, 2015). Based on these results, PLS is a better 

method for identifying associations between feeding behaviors and RFI.  

Conclusion 

Results from this study demonstrated that steers with divergent RFI phenotypes 

have distinctive feeding behavior patterns associated with consumption of feed. Bite-

related traits were also shown to help account for more inter-animal variance in RFI. The 

results also demonstrated the use of multiple linear regression to quantify inter-animal 

variance in RFI associated with feeding behavior patterns has limitations due the high 

degree of multi-collinearity between independent variables. This was illustrated by the 

fact that 11 out of the 16 feeding behavior traits had a high VIF scores. Partial least 

squares is resistant to multi-collinearity, and will provide more accurate interpretation 
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than multiple regression. The results also showed more divergent RFI groups could be 

used to represent all the steers, and bite-related traits are valuable in identifying 

differences in feeding behavior patterns between divergent RFI groups. Based on partial 

least squares HD, BV duration, HD to meal duration ratio, and bite frequency are 

possible predictive biomarkers for RFI. These need to be validated with further trials, 

and could be used for identification of efficient cattle. 
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CHAPTER III  

ASSOCIATIONS BETWEEN RFI AND BLOOD METABOLITE PROFILES IN 

FEEDLOT CATTLE 

 

Introduction  

  The largest variable expense associated with the production of beef is the cost of 

feed inputs, thus, strategies that seek to improve efficiency of feed utilization is key to 

improving profitability of beef cattle systems (Arthur et al., 2004). Residual feed intake 

(RFI) is a feed efficiency trait that quantifies inter-animal variation in DMI independent 

of differences in BW and ADG, and has been shown to be favorably linked with 

variation in metabolic processes (e.g., heat production, digestion) involved with efficient 

utilization of feed. Thus, RFI is an ideal trait for identification of predictive biomarkers 

for feed efficiency. The cost of measuring individual-animal feed intake remains the 

largest barrier to widespread adoption of technology to improve feed efficiency in beef 

cattle. Thus, there is a need to identify genomic markers or phenotypic biomarkers for 

identification of feed-efficient cattle to reduce the cost associated with selection for feed 

efficiency. 

The recent advances in metabolomics have provided opportunities for discovery 

of biological mechanisms responsible for inter-animal variation in economically relevant 

traits like RFI. Technology such as nuclear magnetic resonance (NMR) and gas 

chromatography mass spectrometry (GC-MS) are becoming more widely used in 

research to identify and quantify metabolite concentrations. The metabolome, or the 
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entire set of metabolites present within an animal’s biological fluid (blood, urine) or 

tissue is comprised of numerous low-molecular-weight molecules (metabolites) 

processed by enzymes and transporter proteins, and is considered to be an intermediary 

phenotype between the whole-animal phenotype and the transcriptome or proteome 

(Kuhn et al., 2012). 

Weikard et al. (2010) used a metabolomics approach to identify novel metabolic 

pathways associated with genetic variation in fat tissue deposition in cattle. 

Metabolomics has also been used in cattle to identify biomarkers predictive of feed 

efficiency in beef steers (Karisa et al., 2014), and metabolic diseases in transition dairy 

cows (Hailemariam et al., 2014). Combining metabolomics with genomics, Widmann et 

al. (2015) identified key genes and gene networks associated with variation in residual 

feed intake (efficiency) in cattle.  

Few studies have examined the association between serum metabolite profiles 

and RFI, and to our knowledge no one has used partial least squares to account for 

multi-collinearity to examine associations between serum metabolite profiles and RFI. 

The objective of this study was to use partial least squares analysis to identify 

metabolites contributing the most to inter-animal variation in RFI, and to identify 

metabolic pathways associated with RFI.  
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Material and Methods 

Animals and Experimental Design 

  All animal care and use procedures were in accordance with the guidelines for 

the use of Animals in Agricultural Teaching and Research and approved by the Texas 

A&M University Institutional Animal Care and Use Committee. 

  A detailed description of the animals and management can be found in chapter 2 

of Miller et al. (2016). In brief, Angus-crossbred steers (N = 168) from the Rex Ranch 

(Ashby, NE) with an initial BW of 274 ± 26 kg and age of 290 ± 16 d were used in this 

study. The feed intake and feeding behavior traits were measured daily using the 

GrowSafe system (DAQ 4000E) for 70 d. Individual animal growth rates were modeled 

by linear regression of BW using the general linear model of SAS (SAS Inst., Cary, 

NC), and regression coefficients were used to compute ADG, initial and mid-test BW.75. 

Moisture analysis of the diet samples was used to compute average daily dry matter 

intake (DMI) from feed intake data. RFI was calculated by using PROC GLM (SAS 

Institute Inc., Cary, NC) as the difference between actual and expected DM intake from 

linear regression of ADG, DM intake, and mid-test BW0.75 (Koch et al., 1963).  

Blood Samples 

 Blood samples were collected on days 0 and 70 of the trial from steers with RFI 

that were ± 1 SD from the mean RFI (0.00 ± 0.82 kg/d), which included 25 low and 24 

high-RFI steers. Samples were collected via jugular vein in evacuated blood tubes (7 

mL), and stored on ice until centrifuged at 3000 g for 20 min. Serum samples were 

harvested and stored at -20ºC for subsequent metabolite analysis. Serum metabolite 
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concentrations were analyzed using 1H-NMR spectroscopy (Bruker 600-MHz AVANCE 

III solution NMR spectrometer) at Montana State University (Bozeman, Montana). Each 

sample was independently fitted for NMR spectral patterns using Chenomx small-

molecule library for 600 MHz magnetic field strength NMR (Chenomx NMR software 

Version 8.1), with 4,4-dimethyl-4-silapentane-1-sulfonic acid used as an internal 

standard to quantify identified metabolites.  Forty-four metabolites were identified based 

on 1H-NMR spectroscopy for this study. 

Statistical Analysis 

MetaboAnalyst software (Xia and Wishart, 2011) was used to conduct a 

multivariate analysis of the data using Partial Least Squares (PLS) procedures, which is 

a supervised pattern recognition analysis method. Prior to PLS analysis, the metabolite 

data were first normalized by median (metabolite data divided by the median of all the 

metabolites for that animal) and then standardized using auto-scaling (mean centered and 

divided by SD) so that variances of all metabolites equal 1 (Craig et al., 2006; Van den 

Berg et al., 2006; Ametaj et al., 2010; Hendriks et al., 2007). Separation between the low 

and high RFI animals was determined using score plots. The variable of importance in 

projection (VIP) score were used to determine metabolites that accounted for the most 

variation between RFI groups (Xia and Wishart, 2011). The VIP score takes into account 

the amount of explained y variance of each component using a weighted sum of squares 

of the PLS loadings (Xia and Wishart, 2011).  Permutation and cross validation analysis 

were used in MetaboAnalyst to assess over-fitting of the data by PLS (Westerhuis et al., 

2008; Xia and Wishart, 2011). A receiver-operator characteristics (ROC) curve was used 
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in MetaboAnalyst to determine the predictive ability of the identified biomarkers from 

PLS (Xia et al., 2015). Area under the curve (AUC) is the metric of ROC curve that was 

used to determine predictive ability, and Hailemariam et al. (2014) guidelines on AUC 

scores were used for this trial. The Pathway analysis module of MetaboAnalyst was 

utilized to identify metabolite-associated pathways for RFI. The pathways associated 

with metabolite profiles for the high and low RFI groups were identified by a P-value ≤ 

0.05 and pathway impact value ≥ 0.30 (Xia and Wishart, 2011).  

  The effects of RFI classification on performance, feed efficiency, and serum 

metabolite concentrations were evaluated using PROC GLM of SAS. Pearson 

correlations between performance, feed efficiency, and serum metabolite concentrations 

were calculated using PROC CORR of SAS.   

Results and Discussion 

Summary statistics are presented in Table 3.1 for this trial. Steers had a mean 

DMI of 9.90 ± 1.04 kg/d, ADG of 1.76 ± 0.21 kg/d, and F:G ratio of 5.62 ± 0.66 kg/d. 

The average RFI for the trial was 0.00 ± 0.81 kg/d and ranged from -2.60 to 2.31 kg/d, 

with a difference between the most and least efficient steer of 4.91 kg/d. Performance, 

feed intake, and feed efficiency traits of the Angus-crossbred steers were similar to 

previously published studies using growing steers. Nkrumah et al. (2007b) reported 

means and SE for ADG, DMI, and RFI of 1.46 ± 0.27, 10.45 ± 1.61, and 0.00 ± 0.88 

kg/d, respectively, in crossbred steers fed a finisher ration. Basarab et al. (2003) also 

reported means and SE for DMI and ADG of 8.52 ± 1.02 and 1.52 ± 0.22 kg/d, 

respectively, in crossbred steers fed a finisher ration. 
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Table 3.1. Summary statistics of performance, feed intake, and feed efficiency for 

Angus-cross steers.  

Item Mean SD Minimum Maximum 

Initial age, d 284 9 265 310 

Performance and feed 

efficiency:  

    

Initial BW, kg 273.9 26.3 219.1 375.5 

Final BW, kg 397.2 33.2 333.6 505.5 

ADG, kg/d 1.76 0.21 1.07 2.43 

DMI, kg/d 9.90 1.04 7.11 12.8 

F:G ratio 5.62 0.66 4.12 7.62 

G:F ratio  0.17 0.02 0.12 0.24 

Residual feed intake, kg/d 0 0.81 -2.60 2.31 

 

 

 

 

 

 

 

 

 

 

 

Residual feed intake was not correlated with initial BW or ADG, but was 

correlated (P < 0.0001) with F:G (0.67) and DMI (0.78) (Table 3.2). Similarly, other 

studies reported non-significant correlations between RFI and initial BW or ADG, and 

Table 3.2. Pearson correlations among performance and feed 

efficiency for Angus-cross steers.  

Trait1 ADG DM intake F:G 

Residual 

feed 

intake 

IBW 0.23* 0.49* 0.19* 0.00 

ADG  0.48* -0.62* 0.00 

DM intake   0.37* 0.78* 

F:G    0.67* 
*Correlations differ from zero at P < 0.05. 
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positive correlations between RFI and F:G or DMI (Lancaster et al., 2009b; Hafla et al., 

2013; Nkrumah et al., 2007a). Dry matter intake was positively correlated (P < 0.0001) 

to initial BW (0.49) and ADG (0.48), which is consistent with previous results from 

Nkrumah et al. (2007a) and Lancaster et al. (2009b). Feed to gain was negatively 

correlated (P < 0.0001) to ADG (-0.62). 

 

 

 

  

 

The ± 1 SD group is made up of the top 15% most (n = 25) and least (n = 24) 

efficient steers selected to have serum metabolite profiles analyzed. Differences between 

the RFI groups are presented in Table 3.3. As expected, RFI classification did not affect 

(P > 0.05) initial BW or ADG, but low-RFI steers consumed 22% less (P < 0.0001) DMI 

than high-RFI steers. Steers with low RFI phenotypes had 22 % lower (P < 0.0001) F:G 

ratio compared to high-RFI steers.  

Table 3.3. Comparison of performance and feed efficiency for steers with divergent 

phenotypes for RFI1. 

Item Low RFI High RFI SE P-value 

No. of steers 25 24   

Performance and feed efficiency:      

Initial BW, kg 275.8 276.9 8.7 0.90 

ADG, kg/d 1.80 1.81 0.06 0.95 

DMI, kg/d 8.77 11.3 0.21 0.0001 

F:G ratio 4.88 6.25 0.15 0.0001 

G:F ratio  0.19 0.15 0.00 0.0001 

Residual feed intake, kg/d -1.23 1.27 0.12 0.0001 
1Low and high-RFI phenotypes based on ± 1 SD from mean RFI of 0.00 (SD = 0.82). 
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Table 3.4. List of metabolites identified and quantified by 1H-NMR spectroscopy. 

Item Metabolite  

Alcohols Ethanol 

Amino acids Alanine, Arginine, Asparagine, Aspartate, Betaine, Creatine, Creatine 

phosphate, Cysteine, Glutamate, Glutamine , Glycine, Histidine, 

Isoleucine, Leucine, Lysine, Methionine, Phenylalanine, Proline, 

Sarcosine, Serine, Threonine, Tryptophan, Tyrosine, Valine 

Carbohydrates Glucose, Glycerol  

Dialkylamines Dimethylamine 

Imidazoles Allantoin, Creatinine, Imidazole 

Ketones Acetone 

Nucleic acids Thymine 

Organic acids 3-Hydroxybutyrate, 3-Hydroxyisobutyrate, Acetate, Caprylate, 

Formate, Lactate, Malonate, Pyruvate, Succinate 

Sulfones Dimethyl Sulfone 

Urea Urea 
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Figure 3.1 Score plots between first and second components on the left panel and 

variable of importance in projection scores (PLS) on the right panel for serum metabolite 

profiles for divergent population (n = 49). Variance in RFI (shown in brackets) 

explained based on 2-component PLS analysis. Creatine-phosp = creatine phosphate. 

 

 

Metabolites identified and quantified using 1H-NMR spectroscopy are presented 

in Table 3.4. Partial least squares analysis of day 0 metabolite profiles resulted in over 

fitting of the data (P = 0.264), and consequently results were not presented (Westerhuis 

et al., 2008; Xia and Wishart, 2011). The PLS analysis of the day 70 metabolite data 

were not over-fitted (P = 0.009), and the PLS score plot revealed clear separation 

between the low- and high-RFI groups (Figure 3.1). The 1st 2 components of PLS 

analysis accounted for 34.2% of between animal variance in RFI. Of the 44 metabolites 

detected by 1H-NMR, 5 metabolites had VIP scores > 2, which included glycine (2.6), 

betaine (2.29), tyrosine (2.19), valine (2.08), and leucine (2.04) (Figure 3.1). Steers with 
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low-RFI had 54% higher (P < 0.0003) concentrations of glycine, and 14% lower (P < 

0.05) concentrations of betaine, 12% lower (P < 0.05) concentration of tyrosine, 9% 

lower (P < 0.06)  concentration of valine, and 14% lower (P < 0.04) concentration of 

leucine than high-RFI steers (Table 3.5).  

 

 

 

 

The ratio of serum metabolite concentrations per DMI was used to determine if 

the lower concentrations of metabolites in the low-RFI steers were associated with lower 

feed intakes (Table 3.6). The low-RFI steers have a higher ratio of serum metabolite 

concentration per DMI for glycine, betaine, tyrosine, valine, and leucine, which provides 

evidence that lower feed intake by the low-RFI steers was not the reason for lower 

concentrations of those metabolites (Table 3.5 and 3.6). With only one time point for 

blood collection, there could be a diurnal fluctuation of metabolites so further research is 

needed to help discern metabolite variations.  

Table 3.5. Concentrations of serum metabolites identified as having high VIP 

scores for steers with divergent phenotypes for RFI1 as determined by using 1H-

NMR spectroscopy. 

Item2 Low RFI High RFI SE P-value 

No. of steers  25 24   

Metabolites:      

Glycine, mM 0.043 0.028 0.004 0.0003 

Betaine, mM 0.077 0.09 0.007 0.05 

Tyrosine, mM 0.036 0.041 0.002 0.05 

Valine, mM 0.159 0.175 0.008 0.06 

Leucine, mM  0.104 0.121 0.008 0.04 
1Top 15% low (n = 25) and high (n = 24) RFI phenotypes. 
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Karisa et al. (2014) used multiple regression to examine the associations between 

plasma metabolites and RFI in beef cattle. Carnitine, creatine, and hippurate were all 

found to be associated with RFI in both the discovery and validation populations with 

partial r-squares for both populations being 0.25 and 0.35 (Karisa et al., 2014). As shown 

in Chapter 2, multiple linear regression does not account for multi-collinearity, which 

can potentially inflate the variance associated with independent variables of interest 

(Cortina, 1993; Ott and Longnecker, 2015). For this reason, PLS was used in this study 

as it is more resilient to multi-collinearity (Cramer III, 1993). The metabolites identified 

as being significantly associated with RFI included glycine, betaine, tyrosine, valine, and 

leucine. This is interesting to note that all of the significant metabolites associated with 

RFI were amino acids. Likewise, Karisa et al. (2014) also identified glycine, betaine, and 

tyrosine as being associated with RFI in beef cattle.  

A possible theory for these amino acids being significantly associated with RFI is 

that steers with low RFI phenotypes may have a lower protein turnover rate in muscle. 

Table 3.6. Ratio of serum metabolites concentrations to DMI for metabolites 

identified as having high VIP scores for steers with divergent phenotypes for RFI1 as 

determined by using 1H-NMR spectroscopy. 

Item Low RFI High RFI SE P-value 

Metabolites:      

Glycine, mM/kg DMI 0.49 0.25 0.00 0.0001 

Betaine, mM/kg DMI 0.88 0.80 0.00 0.19 

Tyrosine, mM/kg DMI 0.42 0.36 0.00 0.06 

Valine, mM/kg DMI 1.84 1.55 0.00 0.005 

Leucine, mM/ kg DMI  1.20 1.08 0.00 0.14 
1Top 15% low (n = 25) and high (n = 24) RFI phenotypes. 
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Richardson et al. (2004) and McDonagh et al. (2001) speculated that more feed-efficient 

(low-RFI) cattle have a lower protein turnover rate than feed-inefficient (high-RFI) 

cattle. Protein turnover is costly process energetically with an average cost of 20% of the 

basal metabolic rate (Richardson et al., 2004; Rauw et al., 2002). Since the metabolite 

concentrations are not influenced by intake, then the higher concentrations of betaine, 

tyrosine, valine, and leucine in the high-RFI steers may have been associated with higher 

protein turnover rates. Therefore more of the energy the high-RFI steers consume will be 

used towards protein turnover.  

 

 

 

Figure 3.2 Receiver-operator characteristics curve of low (n = 25) and high (n = 24) RFI 

steers for the top 5 serum metabolites. 
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The AUC for the receiver-operator characteristic curve based on the PLS model 

that used the 5 metabolites with highest VIP scores was 0.842 (Figure 3.2). As 

recommended by Hailemariam et al. (2014), AUC values of 0.9 to 1.0, 0.8 to 0.9, and 

0.7 to 0.8 will have excellent, good, and fair predictability. The 5 metabolites have good 

predictive ability based on the AUC. The pathways associated with the metabolites with 

high VIP scores included valine, leucine, and isoleucine biosynthesis, phenylalanine, 

tyrosine, and tryptophan biosynthesis, and, glycine, serine, and threonine metabolism 

(Table 3.7). The identification of these amino acid biosynthesis pathways as being 

associated with inter-animal variation in RFI, supports the idea that differences in 

energetic costs of protein turnover may be contributing to variance in RFI. Further 

studies will identify the genetic markers such as single nucleotide polymorphisms 

(SNPs) that are regulating the metabolite-associated pathways.  

 

Table 3.7. Pathways identified to be associated with RFI. 

Pathways 

Total 

compounds P-value FDR Impact 

Valine, leucine and 

isoleucine biosynthesis 
11 0.0005 0.005 0.66 

Phenylalanine, tyrosine, 

and tryptophan 

biosynthesis 

4 0.004 0.004 0.50 

Glycine, serine and 

threonine metabolism 
32 0.00002 0.0002 0.29 
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Conclusion 

Results from this study suggest that glycine, betaine, tyrosine, valine, and leucine 

may be possible biomarkers for the prediction of RFI. While the AUC for the receiver-

operator characteristic curve for prediction of RFI was relatively good at 0.84, the 

repeatability of these biomarkers could not be evaluated as the PLS model over-fit the 

metabolite data collected on day 0 of the trial. Moreover, as the associations between 

metabolite profiles and RFI was only evaluated in 1 trial, the robustness of these 

biomarkers for the prediction of RFI could not be assessed in this study. If these 

biomarkers are validated then an accurate, cost effective, and quick assay needs to be 

created for identification of efficient animals. The metabolite-associated pathways 

identified were valine, leucine, and isoleucine biosynthesis, phenylalanine, tyrosine, and 

tryptophan biosynthesis, and, glycine, serine, and threonine metabolism. These results 

suggest low-RFI cattle have a lower protein turnover rate in muscle compared to high-

RFI cattle. Further studies are needed to evaluate the repeatability and robustness across 

breeds, diets, etc. for these metabolites.  
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CHAPTER IV 

CONCLUSIONS 

 Results from this study demonstrated that steers with divergent RFI phenotypes 

have distinctive feeding behavior patterns associated with consumption of feed. Bite-

related traits were also shown to help account for more inter-animal variance in RFI. The 

results also demonstrated the use of multiple linear regression to quantify inter-animal 

variance in RFI associated with feeding behavior patterns has limitations due the high 

degree of multi-collinearity between independent variables. This was illustrated by the 

fact that 11 out of the 16 feeding behavior traits had a high VIF scores. Partial least 

squares is resistant to multi-collinearity, and will provide more accurate interpretation 

than multiple regression. The results also showed more divergent RFI groups could be 

used to represent all the steers, and bite-related traits are valuable in identifying 

differences in feeding behavior patterns between divergent RFI groups. Based on partial 

least squares HD, BV duration, HD to meal duration ratio, and bite frequency are 

possible predictive biomarkers for RFI. These need to be validated with further trials, 

and could be used for identification of efficient cattle. 

Results from this study suggest that glycine, betaine, tyrosine, valine, and leucine 

may be possible biomarkers for the prediction of RFI. While the AUC for the receiver-

operator characteristic curve for prediction of RFI was relatively good at 0.84, the 

repeatability of these biomarkers could not be evaluated as the PLS model over-fit the 

metabolite data collected on day 0 of the trial. Moreover, as the associations between 

metabolite profiles and RFI was only evaluated in 1 trial, the robustness of these 
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biomarkers for the prediction of RFI could not be assessed in this study. If these 

biomarkers are validated then an accurate, cost effective, and quick assay needs to be 

created for identification of efficient animals. The metabolite-associated pathways 

identified were valine, leucine, and isoleucine biosynthesis, phenylalanine, tyrosine, and 

tryptophan biosynthesis, and, glycine, serine, and threonine metabolism. These results 

suggest low-RFI cattle have a lower protein turnover rate in muscle compared to high-

RFI cattle. Further studies are needed to evaluate the repeatability and robustness across 

breeds, diets, etc. for these metabolites.  
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