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ABSTRACT

The detection, tracking, identification, and characterization (DTIC) of resident

space objects (RSOs) is an important aspect of space situational awareness (SSA).

Monitoring the space environment can prevent collisions and eliminate hazards for

spacecraft, as well as help enforce norms in the on-orbit regime. Consequently, there

is a strong need for accurate RSO state estimates. For radar measurements of RSOs,

these estimates are initiated by algorithms such as Gibbs and Herrick-Gibbs. Both

methods use a track containing three sets of position vector (i.e., range + bearings)

observations to analytically compute the objects’ velocity at the time of the second

observation.

Presently, there is no clear distinction on when to switch between these two

methods. In this paper, we present a statistical comparison between Gibbs and

Herrick-Gibbs, taking into account measurement errors. We implement two separate

approaches to investigate this problem. The first approach is via Monte Carlo. We

add Gaussian white noise at several iterations and evaluate Gibbs and Herrick-Gibbs

performances over track length. The second approach is an analytic probability

density function approach used to characterize the uncertainty of the Herrick-Gibbs

state estimate.

We observe that the overall trend of the performance of the methods is consistent

with what is expected. However, the results also show that Herrick-Gibbs can remain

the more accurate method for much larger track lengths than is suggested in the

literature. This is shown by both numerical and analytic statistical error analysis.
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CHAPTER I

INTRODUCTION

There is a strong need for accurate resident space object (RSO) state estimates.

Monitoring the space environment is an important aspect of space situational aware-

ness (SSA). Precise tracking of RSOs can prevent collisions and eliminate hazards

for spacecraft, as well as help enforce norms in the on-orbit regime [1]. Consequently,

there is a strong need for accurate RSO state estimates. For radar measurements

of RSOs, these estimates are initiated by algorithms such as Gibbs and Herrick-

Gibbs [2]. Both methods use a track containing three sets of position vector (i.e.,

range + bearings) observations to analytically compute the object’s velocity at the

time of the second observation.

I.A. Problem Statement

Gibbs and Herrick-Gibbs are two frequently used initial orbit determination

(IOD) methods. IOD is needed when a satellite has been launched or when a new

object is detected. Once IOD has been performed, precise orbit determination can

then be used to predict the orbit into the future as needed [3]. Thus, more accurate

IOD will give more precise propagation. The problem is that there is not a clear

distinction on when to switch between the aforementioned two methods. In Vallado,

Gibbs is recommended for track arcs longer than 5◦, and Herrick-Gibbs for track arcs

shorter than 1◦. These numbers, however, do not take into account measurement

errors or orbit parameters of the target object. There thus needs to be a holistic,

quantitative study on when to use one method over the other. We investigate this

issue in this dissertation, as outlined in the thesis statement:
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Herrick-Gibbs is the more accurate IOD method for longer track lengths

than was previously known. This is shown by both numerical and analytic

statistical error analyses.

I.B. Background

I.B.1. Gibbs Method

Gibbs method was proposed in 1889 by Josiah Gibbs. It uses three position

vectors, and a geometric approach to determine the velocity of the middle position [4].

There are two major assumptions used for Gibbs method: the three position vectors

are time sequential and co-planar. This second assumption can be somewhat relaxed

as it is expected for measurement errors to cause the position vector’s inclinations

to vary slightly. Gibbs method is similar to the Gauss IOD method which utilizes

the same assumptions and has the same first few steps. As stated by Vallado [5],

Gibbs method should work well when the track length between the position vectors

is greater than 5◦. Using three time sequential position vectors (r1, r2, r3), Gibbs

method defines the three vectors

N = r1(r2 × r3) + r2(r3 × r1) + r3(r1 × r2) (1.1)

D = r1 × r2 + r2 × r3 + r3 × r1 (1.2)

S = r1(r2 − r3) + r2(r3 − r1) + r3(r1 − r2). (1.3)

The estimated velocity of the middle observation, v2, is then defined as

v2 =

√
µ

ND

[
D× r2
r2

+ S

]
. (1.4)

A detailed derivation of the Gibbs method is shown in Appendix B [5] [6].
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I.B.2. Herrick-Gibbs Method

When the track lengths between the position vectors are very small, the three

vectors are almost parallel, so observation errors will likely degrade the determination

of the orbit plane. Hence, Sam Herrick proposed the Herrick-Gibbs method which

applies a power series of the two-body solution flow to the Gibbs method [7]. Herrick-

Gibbs was not intended to be a generally applicable method, but rather only to be

used when the track length is too short for an accurate Gibbs result. Defining ∆tij

as the difference between times of observations i and j, the following expression for

v2 may be derived

v2 = −∆t32

[
1

∆t21∆t31
+

µ

12r31

]
r1 + (∆t32 −∆t21)

[
1

∆t21∆t32
+

µ

12r32

]
r2

+ ∆t21

[
1

∆t32∆t31
+

µ

12r33

]
r3. (1.5)

A detailed derivation of the Herrick-Gibbs method is shown in Appendix B [8].

I.B.3. Transition Point

Since it is known that Gibbs works better for longer tracks and Herrick-Gibbs

works better for shorter tracks, there must be a transition point that dictates which

method will provide a more accurate solution. As the track length between radar

observations increases, there will eventually be a track length value at which Gibbs

and Herrick-Gibbs provide an equally accurate solution. For track lengths above this

transition point, Gibbs will provide the better estimate and for track lengths below

the transition point, Herrick-Gibbs will provide the better estimate. The transition

point is visualized in Figure I.1. Determining the transition point is a key focus of

this investigation.
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Figure I.1. Track length transition point. As Gibbs and Herick-Gibbs
accuracies change over track length, there will be a value at which both
methods produce an equally accurate estimate. This is defined as the
transition point

I.C. Contributions

In our work, we present a holistic, quantitative study of IOD accuracy between

Gibbs and Herrick-Gibbs. In this thesis, we present two methods for statistical

comparisons of IOD accuracy between Gibbs and Herrick-Gibbs, taking into account

measurement error for different observation geometries and target orbits. These are a

Monte Carlo approach and an analytic probability density function (PDF) approach.

I.D. Literature Review

Previous research has compared IOD methods to evaluate what scenarios they

are best suited for. Most of this work has been directed to angles-only orbit determi-

nation methods, such as the Gauss method. Taff acknowledges the popularity of the

Gauss orbit determination method but rejects it in favor the Laplace method for gen-
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eral cases [9]. Taff, Randall, and Stansfield expand upon this finding and give specific

scenarios when Laplace should be used over Gauss [10]. In later work, Taff cautions

against using the Laplace method when possessing only a small amount of data [11].

Celletti and Pinzari also compared the Laplace and Gauss methods [12] [13]. How-

ever, they concluded the Gauss method performed better in general. Additional

comparisons between angles-only orbit determination methods were conducted by

Fadrique et al [14]. They compared the Gauss, Gooding, and Baker Jacoby meth-

ods. They concluded that, in general, the Gooding algorithm performs better than

the rest, although there are specific situations in which Gauss and/or Baker-Jacoby

produce better results. A very comprehensive IOD analysis has been performed by

Schaeperkoetter [3]. Schaeperkoetter tests Laplace, Gauss (using Gibbs and Herrick-

Gibbs to supplement), the Double R, and the Gooding methods. He concludes that,

in almost all cases, the Gooding method best estimates the orbit. The exception is

for polar orbits in which it depends on the observation interval whether one uses the

Gooding or Double R methods.

It was Foster [15] who directly compared the Gibbs and Herrick-Gibbs methods.

He compared Gibbs and Herrick-Gibbs performances at 1◦ and 5◦ track lengths using

two types of radar. At 1◦, he found that Herrick-Gibbs was the more accurate method

which was expected. At 5◦, however he found that Herrick-Gibbs was better for one

of the radars, and in the second it was less than 1% different than the Gibbs. He

acknowledged that this was a surprising result. We can expand upon these results

with a much more comprehensive comparison between the two methods.
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CHAPTER II

STATISTICAL ANALYSIS

The objective of this research will be achieved in two separate statistical analy-

ses. The first part is a computational comparison using Monte Carlo, and the second

part will be an analytic solution from a derived partial density function (PDF).

II.A. Monte Carlo Analysis

For the Monte Carlo analysis, we implement measurement errors to observe

how Gibbs and Herrick-Gibbs performance change as track length is varied. We per-

formed two types of tests: Test 1 and 2. In Test 1, we vary track arclength so as to

determine the track length transition point at which the more accurate IOD method

switches. Both the observer and the target orbit apse line are fixed such that the

second observation takes place at zenith and at periapsis. Tracks symmetric about

this second observation as well as asymmetric tracks are analyzed separately. For

each track arclength, we consider 1,000 instantiations of Gaussian white noise mea-

surement error, which are added to the measurements in the topocentric spherical

coordinates. Finally, we determine the transition point based on the mean results.

These tests are repeated for five target objects: GeoEye-1, the Hubble Space Tele-

scope, the International Space Station, a Molniya orbit, and a generic geostationary

spacecraft. In Test 2, we evaluated the sensitivity of the aforementioned transition

point to orbital parameters and observer location. That is, the transition point is

determined as the semi-major axis and eccentricity of the target orbit are changed

individually. The effects of measurement errors are again assessed with 1,000 Monte

Carlo samples.
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II.B. Analytic PDF Analysis

To validate our Monte Carlo results, we implemented an analytic PDF method.

The goal is to derive a probability density function for a state estimate determined

by Herrick-Gibbs. The PDF is a direct representation of how Herrick-Gibbs maps

measurement errors to the uncertainty of the state. Since Herrick-Gibbs takes three

position vectors as inputs to estimate the velocity of the middle position vector, we

need to represent the joint state estimate PDF p(ṙ2, r2) from the joint position vector

PDF p(r1, r2, r3).

The main source of this method comes from a paper and dissertation by Ryan

Weisman [16]. Weisman presents an analytic approach to derive a PDF for a state

estimate determined by the Herrick-Gibbs method.

II.B.1. Transformation of Variables

The transformation of variables (TOV) method allows for a known PDF to

be mapped from one domain to another [17]. Equation (2.1) shows how the TOV

method can be used to map a PDF from the y-domain to the x-domain. p(y) is

multiplied by the inverse of the determinant of the absolute value of the Jacobian of

y with respect to x.

p(x) = p(y)|J |−1 (2.1)

The TOV method can be used to determine the joint PDF of our observed

position vectors, p(r1, r2, r3). First, using the assumption that our three position

vectors are independent, Equation (2.2) shows how we can express a joint PDF

based on the individual distributions of range, azimuth, and elevation.

p(z̃1, z̃2, z̃3) =
3∏
i=1

p(ρi)p(eli)p(azi) (2.2)
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|Ji| =
∣∣∣∣ ∂ri
{ρ, el, az}i

∣∣∣∣ = ρ2 cos(el) (2.3)

We assume a Gaussian distribution for the range and bearings based on the measure-

ment errors used in the Monte Carlo analysis. Equation (2.3) shows the determinant

of the absolute value of the Jacobian based on the partial derivatives of the range and

bearings with respect to the position vectors. Using the TOV approach, the position

vector joint PDF is evaluated based on the joint PDF of the range and bearings and

the inverse of the determinant.

p(r1, r2, r3) =

[
p(z̃1, z̃2, z̃3)

3∏
i=1

|Ji|−1
]
z=f(ri)

(2.4)

II.B.2. Dirac Delta Method

The Herrick-Gibbs method uses three position vectors to determine the state

at the second epoch. Since this not a one-to-one mapping (we are mapping three

states into two), the Jacobian will be non-square, which poses an issue for the TOV

method. This can be resolved by using the Dirac generalized function [18]. The

Dirac delta, also known as the impulse function, can be related to the PDF by the

following theorem:

Theorem 1: Suppose that zi, i = [1, n], are continuous random variables with

joint probability distribution p(z1, z2, ..., zn). Let D be the n-dimensional set of every

possible outcome of the zi. Then the continuous random variable

x = ψ−1(z1, z2, ..., zn)

has the probability distribution given by use of the Dirac generalized function δ(x)

in the form

p(x) =

∫
Dz
p(z1, z2, ..., zn) δ

[
ψ−1(z1, z2, .., zn)− x

]
dz1dz2...dzn (2.5)

8



We can make use of the composition and translation properties of the Dirac

delta function to simplify the expression:

Composition Property:

δ[f(y)] =
∑

δ(y − yn)

∣∣∣∣∂f(y)

∂y

∣∣∣∣−1 (2.6)

Translation Property:

δ[f(y)] =

∫ ∞
−∞

f(y) δ(y − a)dy (2.7)

II.B.3. Example

To illustrate the Dirac delta method, here is an example of a 2-D circle defined

by radius ρ and angle α from Weisman [16]. The x, y coordinates on the circle can

be defined by these two parameters.

ρ =
√
x2 + y2 (2.8)

α = arctan

[
x

y

]
(2.9)

The PDF for x based on the distributions of ρ and α is a two-to-one mapping, and

thus, an ideal candidate to implement Theorem 1.

An expression for the PDF of x is shown in Equation (2.10).

p(x) =

∫
Dρ

∫
Dα
p(ρ, α) δ[ρ cos(α)− x] dρ dα (2.10)

This expression can be simplified using the composition and translation properties:

p(x) =

∫
Dρ

∫
Dα

p(ρ, α)

ρ sinα
δ

[
α− arccos

(
x

ρ

)]
dρ dα ... Composition (2.11)

=

∫ ρf

ρ0

∣∣∣∣ 1

ρ sinα

∣∣∣∣ [p(ρ = ρ, α = arccos

(
x

ρ

)]
dρ ... Translation (2.12)

9



CHAPTER III

METHODOLOGY

In this section, we outline the approach we used to conduct our analysis. The

accuracy of IOD methods for angles-only observations has been compared before [10],

but here we present our own method of comparing Gibbs and Herrick-Gibbs perfor-

mance.

III.A. Monte Carlo Approach

As previously mentioned, we conducted two types of tests. In Test 1, we analyze

how performance changes with respect to both symmetric and asymmetric track

lengths. In Test 2, we quantify how orbital elements and measurement error can

affect performance through a sensitivity analysis.

III.A.1. Test 1

We used the following approach to test the accuracy of Gibbs and Herrick-Gibbs

as a function of track length. This approach provides a way to quantify the Gibbs

/ Herrick-Gibbs track length transition point. We use the two IOD algorithms to

estimate the velocity of the middle position at each track length for a known orbit.

We then determine the deviation between the estimated velocity and the true velocity.

Here are the steps in detail.

1. Define a known orbit and observer location A specific orbit is defined as

the target object, whose position and velocity vectors shall be determined.

The observer location is then determined to be directly below the object at

10



Figure III.1. Earth and its target orbit. The 3 observed position vectors
(r1, r2, r3) and their respective times of observation (t1, t2, t3). The track
length θ is symmetric about the middle observation, which is directly
above the observer at perigee.

perigee, at which point the object will appear to be at zenith.

2. Determine position vectors, times of observation, and true velocity The

track length, or the angle between measurements, is then varied symmetrically

from the observer to provide three position vectors (r1, r2, and r3). r2, the

middle position vector, remains constant at perigee as track length is varied.

Orbital mechanics equations based on two-body dynamics can determine the

true positions, velocities and observation times based on the track length, which

is analogous to the change in true anomaly. This point is illustrated in Figure

III.1.

3. Run 1,000 tests for each track length For each set of position vectors, 1,000

Monte Carlo iterations are run to introduce Gaussian measurement noise at

each track length. The measurement errors are 0.015◦ 1-σ for the azimuth

and elevation, and 30 meters 1-σ for the range [5]; they are assumed to be

uncorrelated. To introduce error to the range, azimuth, and elevation, the line-

of-sight vectors need to be determined from the position vectors and observer

11



locations. The line-of-sight vectors are then brought to the topocentric-horizon

or SEZ coordinates, at which the errors can be directly added to the range and

bearings. From there, the error affected position vectors in the Earth-centered

inertial frame are determined.

4. Determine v2 from Gibbs and Herrick-Gibbs At each iteration, Gibbs and

Herrick-Gibbs use the three error affected position vectors to estimate v2. Both

methods follow the procedures discussed earlier and are repeated at each track

length.

5. Determine velocity deviation magnitude To quantify the accuracy of the

estimated v2, the estimated value needs to be compared to the true value.

The parameter d is introduced and defined as the magnitude of the deviation

between the true and estimated velocities

d = ‖v2,estimate − v2,actual‖ (3.1)

There should be 1,000 results for d at each track length.

6. Plot d versus track length From there, a plot of the mean value of d vs. track

length can be made to show how Gibbs and Herrick-Gibbs performance varies

over track length. The track length at which the Gibbs and Herrick-Gibbs

curves intersect will be the aforementioned transition point. These steps are

then repeated for different orbits to compare results. Furthermore, this ap-

proach can be continuously repeated as parameters such as orbital elements

and observer location are changed to see what effect they have on the transi-

tion point.

These steps can be visualized in the flowchart shown in Figure III.2. This

12



Figure III.2. Flowchart outlining the steps to conduct Test 1 of the Monte
Carlo Analysis
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procedure outlined was tested for five orbits. The orbits and their Keplerian orbit

elements are

• ISS (a = 6778 km, e = 0.0005818, i = 51.65◦, ω = 212.054◦, Ω = 45.14◦)

• GeoEye-1 (a = 7057 km, e = 0.0008018, i = 98.11◦, ω = 279.6◦, Ω = 168.5◦)

• Molniya (a = 26610 km, e = 0.722, i = 63.4◦, ω = −90◦, Ω = 0)

• Hubble (a = 6924 km, e = 0.0003128, i = 28.4693◦, ω = 52.6829◦, Ω =

130.3495◦)

• Geostationary orbit (a = 42241 km, e = 0, i = 0, ω = 0, Ω = 0).

Additionally, we extended our methods to examine the accuracy of Gibbs and

Herrick-Gibbs algorithms for the case of asymmetric tracks, as in most cases, it

cannot be expected that an object will be observed at equally spaced intervals. In

this procedure, we considered two separate track lengths: θ1, the angle between

the first and second observations, and θ3, the angle between the second and third

observations. We tested 100 iterations at each θ1-θ3 combination from 0 to 90 degrees.

We then performed the same Gibbs and Herrick-Gibbs analysis as before – adding

Gaussian white noise for each iteration and determining the deviation between the

true and estimated velocities – and recorded the number of iterations that Herrick-

Gibbs had a lower value of d than Gibbs. If, for instance, Herrick-Gibbs outperformed

Gibbs for all 100 iterations, one may conclude that the former is the preferred option,

and vice versa.

III.A.2. Test 2

It would useful to determine how continuous changes to individual inputs would

affect the Gibbs / Herrick-Gibbs transition point. To test this, we repeated Test
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1 for symmetric tracks but varying a given orbital element – semi-major axis or

eccentricity – or measurement noise standard deviation.

To evaluate the effects of orbital parameters, we repeated our analysis for 20

linearly spaced values of semi-major axis between 7,000 and 50,000 km. We then did

the same for 20 linearly spaced values of eccentricity between 10−5 and 0.7. From

this, we aim to see how Gibbs and Herrick-Gibbs performance are affected by these

parameters. The 1,000 Monte Carlo instantiations of measurement noise will be

run for each input to determine the mean transition point between the Gibbs and

Herrick-Gibbs results. We also introduce a new metric to evaluate the performance

of each method. Since velocity changes significantly with respect to orbital elements,

we can’t rely on the absolute error. Instead we normalize by the true velocity at

periapsis. The new parameter d2 is:

d2 =
‖v2,estimate − v2,actual‖

‖v2,actual‖
(3.2)

We also performed an error sensitivity analysis to see what effect measurement error

size has on our results. We tested 25 different combinations of range and azimuth

/ elevation error and repeated our analysis to determine the Gibbs / Herrick-Gibbs

transition point at each case. From our results, we can determine how sensitive the

transition point is to different error magnitudes.

III.B. PDF Approach

To validate the results found by Monte Carlo, we also want to implement an

analytic PDF approach. We want to develop a PDF for the Herrick-Gibbs state

estimate, p(ṙ2, r2) based on the joint PDF of the position vectors using TOV.

Since Herrick-Gibbs is over constrained, we will get a non-square Jacobian, pre-

venting us from directly implementing the TOV. To get around this issue, we invoke
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the Dirac delta method [16].

III.B.1. Dirac Delta Method

Using the properties of the Dirac delta function, we can create an expression for

the state estimate PDF. Using Theorem 1, we can determine an expression for the

Herrick-Gibbs state estimate:

p(r2, ṙ2) =

∫∫
p(r1, r2, r3) δ[HG(r1, r2, r3)− ṙ2] dr1dr2dr3 (3.3)

This expression is too complicated to evaluate directly, so we invoke Dirac delta prop-

erties to simplify the expression and eliminate the delta expression. The composition

property (2.6) lets us simplify the delta expression in the integral:

δ[HG(r1, r2, r3)− ṙ2] =

∣∣∣∣∂ṙ2
∂r3

∣∣∣∣−1
r3=g32

δ(r3 − g32) (3.4)

where g32 is the root of the Herrick-Gibbs expression with respect to r3. g32 is an

expression of r3 in terms of r1, r2 and ṙ2. r3 needs to be approximated using the

F and G series [16] because of the complexity in evaluating the root for r3. The

analytic expressions for F and G are based on a Taylor series approximation and

shown in Equations (3.5)-(3.10).

r3 = g32(ṙ2, r2, r1) =
ṙ2 − t23

(
1

t21t31
+ µ

12r31

)
r1 − (t32 − t21)

(
1

t21t32
+ µ

12r32

)
r2

t21

(
1

t31t32
+ µ

12
|F32r2 +G32ṙ2|−3

) (3.5)

Fi2 = 1− τ 2i2
2
ε+

τ 3i2
2
ελ− τ 4i2

24
(15ελ2 − 3εψ + 2ε2) + ... (3.6)

Gi2 = τi2 −
τ 3i2
6
ε+

τ 4i2
4
ελ+ ... (3.7)

ε = µ(rT2 r2)
−3/2 (3.8)

λ = (rT2 r2)
−1(rT2 ṙ2) (3.9)

ψ = (rT2 r2)
−1(ṙT2 ṙ2) (3.10)
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The τ terms correspond to the times of observations for the objects. With these

approximations, we can simplify our state estimate PDF:

p(r2, ṙ2) =

∫∫
p(r1, r2, r3)

∣∣∣∣∂r2
∂r3

∣∣∣∣−1
r3=g32

δ(r3 − g32) dr1dr3 (3.11)

We can then use the translation property to eliminate the delta expression completely

and simplify the integration. We now have a form of the PDF we can directly

evaluate.

p(r2, ṙ2) =

∫ ∣∣∣∣∂r2
∂r3

∣∣∣∣−1
r3=g32

p(r1, r2, r3 = g32) dr1 (3.12)

III.B.2. Analytic PDF Evaluation

Now that we have an expression for the Herrick-Gibbs state estimate PDF, we

can evaluate this PDF for each component of ṙ2 with the following steps.

1. Define a known orbit and observer location As with the Monte Carlo, the

first step is to fully define an orbit and observer location. We also define a

constant track length value. We determine the true position vectors and obser-

vation times based on two-body orbital mechanics equations. Once again, the

observer is located directly below the middle observation, which is at perigee.

The PDF is integrated over the range of r1 domain. We determine the practical

limits of integration based on results obtained from Monte Carlo. We also

determine the mean ṙ2, range, azimuth and elevation values.

2. Vary ṙ2 We then vary the ṙ2 components to see how the PDF value changes

with respect to each ṙ2 component. We vary one component at a time; i.e.,

while we vary ẋ2, ẏ2 and ż2 are held constant at their mean values. The limits

of each ṙ2 component are determined via Monte Carlo.
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Figure III.3. Flowchart outlining the steps to evaluate the PDF analyti-
cally over the ṙ2 components

3. Evaluate Integral We then evaluate the PDF integral by defining quadrature

volumes and multiplying by the integrand value. We sum all the values over

the limits of integration. We obtain a solution for the analytic pdf for each

value of ṙ2.

These steps can be outlined in the flowchart shown in Figure III.3. We chose to

implement this approach for the Hubble orbit at 5◦ track length. In this case, the

mean r2 value is [− 6404.8129, 64.8310, 2.62411] km in ECI. We found the following

range of r1 components from Monte Carlo, which are the limits of integration to
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evaluate the PDF:

x1 : [−6446.341,−6445.773] (3.13)

y1 : [637.556, 638.950] (3.14)

z1 : [2439.174, 2440.343] (3.15)

III.B.3. Monte Carlo PDF Evaluation

We also want to evaluate the PDF numerically through Monte Carlo. The steps

required are as follows.

1. Define a known orbit and observer location Once again, we start by defin-

ing our initial conditions. We specify a known orbit, track length and observer

location. We can then determine the true states with two body orbital me-

chanics equations.

2. Run 106 Monte Carlo Iterations We then run one million Monte Carlo iter-

ations to add Gaussian white noise to our position vectors at the specified orbit

condition. As before, the errors we used were 0.015◦ 1-σ for azimuth/elevation

and 30 m 1-σ for range.

3. Estimate ṙ2 with Herrick-Gibbs At each iteration, we implement Herrick-

Gibbs to estimate v2 = ṙ2 from the three error affected position vectors.

4. Filter results to emulate a 1-D PDF Since our analytical PDF results are

varied for one ṙ2 component at a time, we must ensure that the Monte Carlo

results are similarly one-dimensional in the ṙ2 space. For example, when we

evaluate the PDF value vs. ẋ2, we only store the Monte Carlo values when all

other states are close to their mean results. The tolerances were set as 4×10−4
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for ẋ2 and ẏ2; 5× 10−4 for ż2; 0.02 for x1 and y1; and 0.04 for z1. We then plot

a histogram of the MC outcomes as a function of ẋ2.

These steps are visualized in the flowchart shown in Figure III.4.
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Figure III.4. Flowchart outlining the steps to evaluate the PDF via Monte
Carlo
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CHAPTER IV

RESULTS

In this section, we present the results obtained from our study. Only the main

results for each test are highlighted; additional plots are available in Appendix A.

IV.A. Monte Carlo Results

IV.A.1. Test 1 - Symmetric Tracks

Figure IV.1 below shows the mean d vs. track length plot for the ISS from 5◦

to 90◦. In reality, above a certain track length, the object will be below the horizon

of the observer, but plotting to 90◦ nonetheless gives insight into IOD performance

at large track lengths. Both Gibbs and Herrick-Gibbs follow the trends that are

expected. Gibbs starts off with high error but quickly decreases for longer track

lengths. Herrick-Gibbs, on the other hand, does the opposite, although it does not

appear to level off like with Gibbs; in fact, Herrick-Gibbs has very high inaccuracy

at large track lengths. If we examine the same plot but at a smaller track length

range (0.1◦ to 20◦) to get a better look at the transition point, we find that for the

tested case, Herrick-Gibbs remains more accurate than Gibbs for up to about 14◦: a

value higher than expected. Although Herrick-Gibbs starts losing accuracy for tracks

longer than 12◦, it still remains more accurate than Gibbs.

Figures IV.2 shows the error bar plots for the ISS. For the Gibbs case, the bars

remain approximately the same size at all track lengths. For Herrick-Gibbs, however,

the bars start off similarly sized as Gibbs but become much smaller for longer track

lengths. This result suggests that Herrick-Gibbs becomes insensitive to measurement
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Figure IV.1. Log-y plot of mean d vs. track length for the ISS. The plot
on the right is a zoomed up version of the plot on the left.

Figure IV.2. Error bar plots for the ISS for Gibbs (left) and Herrick-Gibbs
(right) IOD. The lines represent the mean d value, where as bars represent
the range of d values for each track length based on measurement error.
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Table IV.1. Transition points for each orbit.

Orbit Transition Point [deg]

ISS 14.4

GeoEye-1 15.2

Molniya 13.3

Geostationary 6.4

Hubble 14.3

errors for tracks longer than about 20◦.

Similar results were found for all orbits tested. In all cases, Gibbs starts off less

accurate than Herrick-Gibbs at short track lengths, but as track length increases,

starts performing better and transitions to become the more accurate method for

larger track lengths. The insensitivity of Herrick-Gibbs to measurement error for

long tracks were also seen for all tested orbits.

Finally, one of our remaining objectives was to quantify the transition point

that determines which method provides the better result. To reiterate, Herrick-

Gibbs provides the more accurate estimate until the transition point is reached,

after which Gibbs becomes the better method. Table IV.1 shows the transition track

lengths determined for each orbit. In all cases, it’s between 6◦ to 16◦. Now that

there is a way to evaluate the transition point for a known orbit, this procedure

can be repeated as target and noise parameters are varied to see how the transition

point changes. For instance, although the orbits with the largest semi-major axes

(Molniya and Geostationary) have the smallest transition points, as we will see later,

this result is not a general one.
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Figure IV.3. Pseudocolor plot representation of Gibbs and Herrick-Gibbs
IOD performance for asymmetric tracks for GeoEye-1. The coloring of
each block corresponds to the method that provided the more accurate
result more consistently at each track length combination. Yellow blocks
are when Herrick-Gibbs provided the more accurate result for all Monte
Carlo iterations, and blue blocks are when Gibbs provided the more ac-
curate result.

IV.A.2. Test 1 - Asymmetric Tracks

Figure IV.3 represents the results of the asymmetric track test. Each block

on the pseudocolor plot represents one θ1-θ3 combination. The color represents the

method that consistently provided the more accurate velocity estimate over 100

Monte Carlo iterations. Regions colored in green suggest that one method was not

consistently the best for all iterations. There is a specific region in the plot where

Herrick-Gibbs most frequently provides the best solution than Gibbs; i.e., when both

track lengths are less than 18◦. This result is consistent with the transition points we

determined for symmetric tracks. Only at much smaller track lengths (less than 5◦),

however, can we expect Herrick-Gibbs to consistently deliver the best IOD solution

every time.
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Figure IV.4. (Left) Initial orbit determination error as a function of track
length for GeoEye-1. Cool colors indicate Gibbs results, whereas warm
colors indicate Herrick-Gibbs results. Target semi-major axis increases as
colors become lighter. Transition point indicated by black circles. (Right)
Transition point of Gibbs / Herrick-Gibbs performance as a function of
target semi-major axis.

IV.A.3. Test 2 - Sensitivity to Orbit Elements

Figure IV.4 simultaneously shows the results of 20 comparisons between Gibbs

and Herrick-Gibbs as in the previous section, but the semi-major axis of the target

object is altered between 7,000 km to 50,000 km. All other orbit elements are fixed to

those of GeoEye-1. The transition point is highlighted with a black circle; a separate

plot of the transition point as a function of semi-major axis is also given.

When the track length is short, both Gibbs and Herrick-Gibbs performance

degrade for larger semi-major axis values since the line-of-sight error becomes more

and more exaggerated. As track length increases, however, these errors become

smoothed out, and thus the degradation is suppressed. Furthermore, when the target

semi-major axis is greater than approximately 1.5×104 km, d2 starts to decrease for

all track lengths. For these altitudes, the decrease in the output velocity magnitude

has a larger effect on the absolute error than the line-of-sight error. The locus of the

transition point in the d2-θ space is the result of a combination of these phenomena;
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Figure IV.5. Similar to Figure IV.4, (Left) Initial orbit determination
error as a function of track length for a geostationary satellite. (Right)
Transition point of Gibbs / Herrick-Gibbs performance as a function of
target semi-major axis.

as such, there is no general behavior for the transition point as a function of semi-

major axis. For instance, Figure IV.5 is a similar analysis but for a geostationary

satellite. Here, the transition point first occurs on the increasing segment of the

Herrick-Gibbs d2-θ plot, but moves to the decreasing segment for semi-major axes

over approximately 1.2 × 104 km. As such, in opposite fashion to Figure IV.4, the

transition point is lower for higher semi-major axes.

Trends are similar for when the target eccentricity is changed, albeit in reverse

as before because now the periapsis orbit radius decreases as eccentricity increases.

In Figure IV.6, 20 values of eccentricity linearly spaced between 10−5 and 0.7 are

substituted into the orbit elements for the Molniya orbit. The transition point locus

remains on the decreasing segment of the Herrick-Gibbs d2-θ, so consequently, the

transition point increases as eccentricity increases.
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Figure IV.6. Similar to Figure IV.4, (Left) Initial orbit determination
error as a function of track length for a Molniya satellite. Target ec-
centricity increases as colors become lighter. (Right) Transition point of
Gibbs / Herrick-Gibbs performance as a function of target eccentricity.

IV.A.4. Test 2 - Sensitivity to Measurement Error

Figure IV.7 shows the transition points of the GeoEye-1 satellite for 25 combi-

nations of range and angle errors. We tested 5 different range error magnitudes log10-

space between 1 and 100 m, and 5 azimuth / elevation error magnitudes log10-spaced

between 0.001 and 0.1 degrees. Overall, the larger the error in either direction, the

higher the transition point, indicating that Herrick-Gibbs is more accurate at longer

track lengths. This behavior may be explained by the reduction in sensitivity to

measurement errors that Herrick-Gibbs exhibited in the error bar plots; e.g., Figure

IV.2. Furthermore, the transition point is more sensitive to range errors than angle

errors. As a consequence, should range errors be large, it dominates the transition

point behavior, as can be seen in the left most column. This result shows that larger

errors enable Herrick-Gibbs to be the more accurate method for a longer set of track

lengths. More significantly, we can get an idea of which method to use based on the

magnitude of the range errors.
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Figure IV.7. Transition point as a function of measurement error magni-
tude. Blue represents low transition point values, and yellow represents
high values.

IV.B. Analytic PDF Results

Figure IV.8 shows a histogram of the ẋ2 values found by Monte Carlo, which

is a visualization of the PDF. The histogram is normalized so that the sum of all

bars is 1. The histogram only contains the values that emulate a 1-D PDF along

ẋ2. The curve along the histogram shows the analytic PDF values at each value

of ẋ2. The values are normalized by the total sum of analytic PDF values. This

normalization allows us to visualize both analytic and Monte Carlo PDF values on

the same scale. The curve falls along the histogram, showing that the Monte Carlo

and analytic PDF results are consistent with each other. This validates our Monte

Carlo results and strengthens our claim about the robustness of the Herrick-Gibbs

method. Furthermore, the consistency between both approaches suggests that the

analytic PDF was evaluated correctly. Consistent results are found for Monte Carlo

and analytic PDF results for ẏ2 and ż2 as well; see Figure IV.9. All PDF values
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Figure IV.8. Analytic and Monte Carlo PDF vs ẋ

demonstrate no skewness with a single mode.
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Figure IV.9. Analytic and Monte Carlo PDF vs. ẏ and ż
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CHAPTER V

CONCLUSIONS

We set out to solve the problem of determining when to switch between us-

ing Gibbs and Herrick-Gibbs IOD methods. Having a more accurate initial state

estimate will provide more precise orbit determination. We performed a compre-

hensive statistical analysis of IOD accuracy for both methods using a Monte Carlo

and analytic PDF approach. The results provide a greater understanding of the

reliability of Gibbs and Herrick-Gibbs methods. For the Monte Carlo test, by intro-

ducing measurement errors and varying track length, the overall trends of Gibbs and

Herrick-Gibbs performance are tested and determined to be consistent with expec-

tations. We then quantified the transition point that determines the method that is

more accurate for a given track length. For the tested orbits, transition points were

between 6◦ to 16◦. This result is significant as it was previously suggested to use

Herrick-Gibbs for track lengths less than 1◦. Instead, Herrick-Gibbs can remain the

more accurate method for much larger track lengths. Once the track length passes

the transition point, however, Gibbs takes over as the more accurate method.

The effects of orbital parameters on the Gibbs / Herrick-Gibbs transition point

were also tested. The results show that, although there is no general behavior of the

transition point as a function of target semi-major axis or eccentricity, the behavior

of the normalized error vs. track length plot for each individual method can be

explained physically. We also determined that the transition point is more sensitive

to range error magnitudes compared to azimuth and elevation errors.

Finally, The PDF value for the state estimate provided by Herrick-Gibbs was

evaluated both analytically and through Monte Carlo. The PDF was determined by
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employing the transformation of variables method along with properties of the Dirac

delta function. Both methods were found to be consistent with each other. This

result validates the previous results we obtained from our Monte Carlo approach.

For future work, there are further variations to the approach that can be used

to evaluate Gibbs and Herrick-Gibbs performance. For example, the location of the

middle position vector can be varied to test other positions along the orbit than

perigee. Another issue to further investigate is the apparent insensitivity of the

Herrick-Gibbs method to measurement errors at longer track lengths. The PDF for

the state estimate provided by the Gibbs method could also be evaluated analytically.
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APPENDIX A

d VS. TRACK LENGTH PLOTS

For each satellite tested, a log-y plot of the mean d vs. track length for both IOD

methods (top) as well as individual error bar plots for Gibbs (left) and Herrick-Gibbs

(right) are given. As in the main text, the lines represent the mean d value, where

as bars represent the range of d values for each track length based on measurement

error.
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Figure A.1. Comparison of IOD performance for GeoEye-1.
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Figure A.2. Comparison of IOD performance for Molniya.
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Figure A.3. Comparison of IOD performance for Geostationary.

39



Figure A.4. Comparison of IOD performance for Hubble.

40



APPENDIX B

IOD METHOD DERIVATIONS

B.1. Gibbs Derivation

If three position vectors are coplanar (r1, r2, r3), there exists 3 constants that

satisfy the expression:

c1r1 + c2r2 + c3r3 = 0 (B.1)

Crossing this term with each position vector, yields the following expressions:

c2(r1 × r2) = c3(r3 × r1) (B.2)

c1(r1 × r2) = c3(r2 × r3) (B.3)

c1(r3 × r1) = c2(r2 × r3) (B.4)

Dot Equation (B.1) with the eccentricity vector e:

c1(e · r1) + c2(e · r2) + c3(e · r3) = 0 (B.5)

This step will allow us to get an expression with the position vectors in terms of

the semiparameter p. Recalling that the angle between the eccentricity and position

vector is the true anomaly, we can use the expression:

e · r = er cos f (B.6)

To get a new expression from the trajectory equation:

p = r(1 + e cos f) = r + re cos f = r + e · r⇔ e · ri = p− ri (B.7)

Using Equation (B.7) in Equation (B.5) yields:

c1(p− r1) + c2(p− r2) + c3(p− r3) = 0 (B.8)
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Multiply this by r3 × r1:

c1(p− r1)(r3 × r1) + c2(p− r2)(r3 × r1) + c3(p− r3)(r3 × r1) = 0 (B.9)

Substituting in Equations (B.2) and (B.4) to express the previous equation in terms

of the constant c2:

c2(p− r1)(r2 × r3) + c2(p− r2)(r3 × r1) + c2(p− r3)(r1 × r2) = 0 (B.10)

Dividing out c2:

p(r1 × r2 + r2 × r3 + r3 × r1) = r1(r2 × r3) + r2(r3 × r1) + r3(r1 × r2) (B.11)

We can define the right side of Equation (B.11) as N and the the vector part of the

left side as D

D = r1 × r2 + r2 × r3 + r3 × r1 (B.12)

N = r1(r2 × r3) + r2(r3 × r1) + r3(r1 × r2) = pD (B.13)

N and D have the same direction which is the direction of the angular momentum

vector h. This is also the direction of Ŵ in the perifocal coordinate system. The P̂

vector from the perifocal frame points towards periapsis, like the eccentricity vector.

Ŵ and P̂ can be expressed as:

Ŵ =
N

|N|
(B.14)

P̂ =
e

|e|
(B.15)

Since Ŵ and P̂ are orthogonal, we can define a third vector Q̂ as:

Q̂ = Ŵ × P̂ =
N× e

|N||e|
(B.16)
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Substituting the definition of N from Equation (B.13) into this expression gives:

NeQ̂ = N× e = r1[(r2 × r3)× e] + r2[(r3 × r1)× e] + r3[(r1 × r2)× e] (B.17)

Then, using the general relationship for triple cross products of vectors:

(a× b)× c = (a · c)b− (b · c)a (B.18)

Equation (B.17) can be simplified to:

NeQ̂ = r1(r2·e)r3−r1(r3·e)r2+r2(r3·e)r1−r2(r1·e)r3+r3(r1·e)r2−r3(r2·e)r1 (B.19)

Using Equation (B.7) once again and factoring p from the right side gives us:

NeQ̂ = p[(r2 − r3)r1 + (r3 − r1)r2 + (r1 − r2)r3] = pS (B.20)

Where S is defined by the bracketed quantity in (B.20). Q̂ and S must be in the

same direction which makes it possible to write Ne = pS since the magnitudes must

be equal. This allows us to express:

e =
S

D
(B.21)

Since P̂, Q̂ and Ŵ are orthogonal:

P̂ = Q̂× Ŵ (B.22)

We can use the defined N, D, and S vectors to define the velocity at the middle

time, ṙ2. First, we start with the following expression for ṙ2:

ṙ2 × h = µ

[
r2
r2

+ e

]
(B.23)

Crossing both sides by the angular momentum vector, h yields:

h× (ṙ2 × h) = µ

[
h× r2
r2

+ h× e

]
(B.24)
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Once again using the cross product identity in Equation (B.18), this expression can

be simplified to:

h2ṙ2 = µ

[
h× r2
r2

+ h× e

]
(B.25)

We can then write h = hŴ and e = eP̂ and express the velocity as:

ṙ2 =
µ

h

[
Ŵ × r2
r2

+ eŴ × P̂

]
=
µ

h

[
Ŵ × r2
r2

+ eQ̂

]
(B.26)

Using N = pD and h =
√
pµ allows us to express the angular momentum magnitude

as:

h =

√
Nµ

D
(B.27)

Using this expression along with e = S/D, Q̂ = S/S and Ŵ = D/D gives the final

expression for the velocity:

ṙ2 =
1

r2

√
µ

ND
(D× r2) +

√
µ

ND
S =

√
µ

ND

[
D× r2
r2

+ S

]
(B.28)

The Gibbs method does use any approximations and is a geometric approach to

determine the exact velocity at the second epoch. It falls short if the position vectors

are too closely spaced or affected by measurement errors as the D vector is poorly

determined from Equation (B.12).

B.2. Herrick-Gibbs Derivation

Defining three position vectors (r1, r2, r3) and their times of observation (t1, t2, t3),

allow us to define the following power series expansions up to the fifth order:

r = a0 + ta1 + t2a2 + t3a3 + t4a4 + t5a5 (B.29)

v = a1 + 2ta2 + 3t2a3 + 4t3a4 + 5t4a5 (B.30)

− µ
r3

r = 2a2 + 6ta3 + 12t2a4 + 20t3a5 (B.31)
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The last expression uses the equation of motion of the two-body problem to replace

the acceleration term. The an terms are time independent unknowns from the power

series. Next, we define the following terms as the difference between the times of

observation:

∆t32 = t3 − t2 (B.32)

∆t31 = t3 − t1 (B.33)

∆t21 = t2 − t1 (B.34)

We can replace the t terms in the power series and get the following set of equations:

r1 = a0 −∆t21a1 + ∆t221a2 −∆t321a3 + ∆t421a4 −∆t521a5 (B.35)

r2 = a0 (B.36)

r3 = a0 −∆t32a1 + ∆t232a2 −∆t332a3 + ∆t432a4 −∆t532a5 (B.37)

v2 = a1 (B.38)

− µ
r31

r1 = 2a2 − 6∆t21a3 + 12∆t221a4 − 20∆t321a5 (B.39)

− µ
r32

r2 = 2a2 (B.40)

− µ
r33

r3 = 2a2 + 6∆t32a3 + 12∆t232a4 + 20∆t332a5 (B.41)

We can immediately eliminate a0, a1, and a2 and reduce the system to four equations

solving for four vector unknowns (a3, a4, a5,v2). When ∆t32 = ∆t21, however, the

v2 term cancels out and we cannot find a direct solution. We can get around this by

first reducing our power series approximation to the fourth order. Then, we eliminate

the a2 terms in Equations (B.35) and (B.37) by multiplying them by ∆t32 and ∆t21,
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respectively, and subtracting. The resulting equation is:

∆t232r1 −∆t221r3 = (∆t32 −∆t21)∆t31a0

−∆t32∆t31∆t21a1 −∆t232∆t31∆t
2
21a3

+ ∆t232∆t31∆t
2
21(∆t21 −∆t32)a4 (B.42)

Equation (B.42) is used in place of (B.35) and (B.37). We now have 6 equations for

6 unknowns (a0, a1, a2, a3, a4,v2). We can then solve directly for v2:

v2 = −∆t32

[
1

∆t21∆t31
+

µ

12r31

]
r1 + (∆t32 −∆t21)

[
1

∆t21∆t32
+

µ

12r32

]
r2

+ ∆t21

[
1

∆t32∆t31
+

µ

12r33

]
r3. (B.43)
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