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ABSTRACT

The penalized spline estimator has been formally introduced in the context of

the nonparametric regression model. Despite the wide range of its application, the

theory of penalized spline estimator has fallen behind. In this dissertation, we first

look into the existing theoretical results about the penalized spline estimator with

some scrutiny and point out the room left for improvement, that is, they are built

upon certain asymptotic scenarios for one specific model. Then we state and prove

a unified theory, that is, the convergence rate of the penalized spline estimator is

established for the set of extended linear models, which holds under various asymp-

totic scenarios. The application of the main theory to a list of extended linear

models including nonparametric regression, generalized regression, counting process,

density estimation, spectral density estimation, diffusion process and nonparametric

M-regression is also provided for completeness.
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1. INTRODUCTION

1.1 Background and terminology

Extended linear modeling (Hansen (1994),Stone et al. (1997)) provides a flexible

framework regarding function estimation problems with either one covariate or multi-

ple covariates, including ordinary and generalized regression, density and conditional

density estimation, hazard regression or more generally counting process regression,

spectral density estimation and diffusion process, nonparametric M-estimation and

etc. The extended linear modeling has already drawn people’s attention because

the models within have been found to share some common property regardless of its

impressive capacity.

The penalized spline estimator has been formally introduced in Eilers and Marx

(1996) in the context of the nonparametric regression model. Since then it has be-

come a popular smoothing technique and a proper tool as long as the computational

cost is taken into consideration. From the application aspect, Ruppert et al. (2003)

provides a nice coverage of modeling situations suitable for this technique. Despite

the wide range of applications, the theory of penalized spline estimate has fallen

behind.

We will first briefly summerize the existing theoretical results about penalized

spline smoothing, while later in chapter 2 some details will be added.

Hall and Opsomer (2005) utilizes the equivalence between nonparametric regres-

sion and its white noise representation and obtained the mean integrated squared

error for the estimator. The white noise representation assumes that both the data

points and knots are continuously distributed.

Li and Ruppert (2008) finds an equivalent kernel representation for piecewise
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constant and linear B-splines using first or second order difference penalties un-

der regression model, which provides similarity of these penalized splines and the

Nadaraya-Watson kernel estimators. It is worth noting that the theoretical results

in their paper are derived under the assumption that the degree of the spline space

is smaller or equal to the penalty order while the latter is half the smoothness of the

true function. Also in their setting the optimal convergence rate would not depend

on the penalty parameter as well as the number of knots when certain regularity

conditions are fullfilled.

Kauermann et al. (2009) works on the generalized regression model and obtained

the mean squared error and the central limit theorem of the penalized spline esti-

mator. The optimal rate of convergence in the theoretical results is built when the

penalty parameter is shrinking relatively fast and that the number of knots grows at

some fixed rate.

The first work that found a transition in the asymptotic behavior of penalized

spline and that of two other techniques, the so-called regression spline and smoothing

spline, in terms of the mean squared rate of convergence is provided in Claeskens et al.

(2009). The transition from penalized spline to regression spline (smoothing spline)

is achieved when few (many) knots are used while the penalty tuning parameter is

small (large). Holland (2012) further extends the result in Claeskens et al. (2009) to

the partially linear model in the multivariate case.

Wang et al. (2011) compares penalized spline with smoothing spline by treating

both as ODE solutions and characterizes the equivalence between the two when the

number of knots is large. Their setting is similar to Li and Ruppert (2008) in that

the penalty order is half the smoothness of the true function but the degree of spline

is said to be not related the penalty order.

On the other hand, as already discovered in the nonparametric regression set-
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ting, penalized spline smoothing has an interesting link to mixed effects model, by

comprehending the penalty imposed on the spline coefficients as a Gaussian prior,

see Wand (2003). The key ingredient is the Laplace approximation to the integral

calculation involved in the marginal distribution, where the integral is taken with

respect to the random coefficients. In Kauermann et al. (2009), the equivalence in

generalized smoothing model and generalized linear mixed models is established and

the rates at which the spline basis dimension increases and the precision of the ran-

dom coefficients shall increase that together garantee the Laplace approximation is

also investigated.

The existing works focus on the asymptotic properties for some specific models.

The techniques are restrictive and not easy to extend to cases corresponding to

estimators that have no explicit form. In our case, we establish a general theory that

captures the rate of convergence property of the penalized spline estimator for all

extended linear models. The proposed method makes use of the concave property

of the objective functional instead of its specific form so that we are able to provide

the proofs for various models. Indeed, even under the regression model, the proof is

comparatively neat than Claeskens et al. (2009).

One can formulate the penalized spline estimation quite flexibly, leading to dif-

ferent asymptotic scenarios. This is the main reason that demonstrating a unified

theory requires a hard work while appears interesting. These asymptotic scenarios

depend on the specification of three components. First, the design of data could

be treated as fixed or random and the placement of the knots can be either equally

spaced or not, leading to balanced design or unbalanced design. In reality, it is natu-

ral to have random draws for the data and unbalanced design of knots but we could

control the positions of knots. Second, we need simultaneously specify the degree of

spline, the order of function derivative used in the penalty term and the smoothness
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order corresponding to the function class of the parameter of interest. Third, we

could allow the number of knots and the penalty parameter vary along with the

sample size, whose rates could affect the property of the estimator. By “asymptotic

scenario” we mean one combination of certain scenario in each of the three compo-

nents. As we will see in chapter 2, the existing work mainly covers certain scenarios,

in other words, the combination of the three components is quite restricted.

The contribution of the current paper is stated here. First, as mentioned above,

the established theory applies to a general class of models with an unknown function

to be estimated. To our best knowledge, this is the first paper that provides a unified

theory for the penalized spline estimator. Second, our theory is built over a broadly

varying asymptotic scenarios, it is quite general in this sense too.

This rest of this paper is organized as follows. In section 1.2 and 1.3, we briefly

introduce the extended linear model and formulate the penalized spline estimator for

the extended linear model. In chapter 2, we are going to zoom in some of the existing

works mentioned above for better illustration of limitation and comparison with the

current paper. In chapter 3, we present the convergence rate of the penalized spline

estimators together with the conditions that make it complete and rigorous. We

provide the detailed proofs in chapter 4. We end this article with chapter 5, which

serves as the know-how application of the general theory to a number of selected

extended linear models.

1.2 Extended linear model

Let η0 be a nonzero function of interest with support U . To be concise, we only

consider U to be an one dimensional interval [a, b]. The function η0 is always associ-

ated with the distribution of a random variable W, W is possibly a random vector

or a random function or a vector of random functions. For the purpose of estimating
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η0, an i.i.d. sample, W1, . . . ,Wn, shall be obtained from the distribution of W (In

some cases, we are capable of working with independent but not identical sample,

W1, . . . ,Wn, one example lies in spectral density estimation, the corresponding sec-

tion is 5.5). It is typical to impose some smoothness structure on η0, in other word,

we assume η0 belongs to a function space Hm containing smooth functions (in some

sense) defined on U :

Hm = {f : f (m−1) is absolutely continuous and f (m) ∈ L2}. (1.1)

Here f (l) denotes the l-th derivative of f . The function space Hm is widely spread in

the smoothing spline literature. From here and now on, we refer to H = Hm as the

model space, i.e., η0 ∈ H.

For a candidate function η and an i.i.d. observation ~W = {W1, . . . ,Wn}, the

scaled log-likelihood is written as l(η, ~W) (Here the scaling is given by the factor 1/n).

Furthermore, we could come up with the expected log-likelihood, namely, Λ(η) =

El(η, ~W), where the expectation is taken with respect to the true distribution of W.

Meanwhile, for simplicity, we would assume η0 is the maximizer of the expected log-

likelihood, that is, η0 = arg maxη∈H Λ(η), this is not quite an assumption when η0 ∈ H

as one can show the maximizer of Λ(η) agrees with η0 by the information inequality.

l(η, ~W) and Λ(η) could be more general than log-likelihood and its expectation. In

some circumstances, η0 is not involved in the joint probability distribution of ~W, but

is only associated with the conditional distribution, or even more complicated psuedo

likelihood as well as loss function, the scaled logarithm of which can be treated as

l(η, ~W). From here and now on, such broad representation of l(η, ~W) is allowed in

extended linear modeling. Under these circumstances, the previous assumption that

“η0 is the maximizer of Λ(·)” might not hold, the theorem still holds when replacing
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η0 by the maximizer of Λ(·) instead. For simplicity of making statements, we shall

still call l(η, ~W) and Λ(η) as the scaled log-likelihood and the expected log-likelihood

respectively when the focus is not on a specific model.

We shall call the model an extended (concave) linear model if (i) for each value

of ~W, l(·, ~W) is concave in its first argument and (ii) Λ(·) is strictly concave. That

means, given any h1 ∈ H, h2 ∈ H and 0 ≤ α ≤ 1, l(αh1 + (1 − α)h2, ~W) ≥

αl(h1, ~W) + (1 − α)l(h2, ~W), while Λ(αh1 + (1 − α)h2) > αΛ(h1) + (1 − α)Λ(h2).

Note in the above definition, the functions h1, h2 ∈ H is implicitly assumed to be

selected from the set of functions in H such that both the log-likelihood functions

and the expected log-likelihood are well-defined. From here and after this feasible

set is supposed to be convex.

Condition 1.2.1. For each value of ~W, l(η, ~W) is concave in η and Λ(η) is strictly

concave in η.

For simplicity, we will omit ~W in the argument of l(·, ·) and write l(η, ~W) as l(η).

The class of extended linear models (Hansen (1994),Stone et al. (1997)) is ex-

tremely rich, such models include the ordinary and generalized nonparametric re-

gression, density (or conditional density) estimation, counting process regression,

spectral density estimation, diffusion process and nonparametric M-regression, read-

ers could refer to Huang (2001), Stone et al. (1997) for a more complete review.

In chapter 5 we will elaborate on a list (belonging to the extended linear model

framework) to which we will apply the general theory stated in chapter 3. Hence

readers will be convinced that the penalized likelihood method considered in this

paper would behave similarly when it is applied to the group of models, e.g., the

extended linear models.

Notation. Given two sequence of positive numbers an and bn, let an . bn
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denotes the ratio an/bn is bounded for all n and an � bn if and only if an . bn

and bn . an. Let ‖h‖∞ denotes the sup norm of h, ‖ · ‖ be the norm defined on H

such that ‖h‖2 = V (h) =
∫
h2(x)ω(x)dx, where ω(x) is some weight function which

might vary under different model. Note that two notations representing the same

norm as
∫
h2(x)ω(x)dx are introduced just for convenience and notation uniformity.

Using this norm, we could introduce an inner product on H denoted as V (h1, h2) =∫
h1(x)h2(x)ω(x)dx.

1.3 Penalized spline estimator

Suppose η0 ∈ H is the underlying parameter of interest. In practice, to seek an

estimator for η0, we would like to restrict ourselves on a smaller space that is usually

of finite dimension. In contrast to the model space, the space where the estimator

lies in is refered to as the estimation space. In this paper the estimation space is

considered to be the B-spline space.

1.3.1 Basics of spline

We start with a partition or knot sequence, i.e., a nondecreasing sequence k
.
=

. . . k−2, k−1, k0, k1, k2, . . .. We shall only adopt the “simple knot” setup where the

knots have no ties, that is, ki < ki+1. The b-splines of degree 0 or order 1 for this

knot sequence are the characteristic functions of the partition given by k, i.e.,

bi,0(x) =


1 if ki ≤ x < ki+1

0 if otherwise.

(1.2)

From these zero degree b-splines, the higher-order b-splines are defined recur-

sively, that is
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bi,p(x) := ωip(x)bi,p−1(x) + (1− ωi+1,p(x))bi+1,p−1(x) (1.3)

with the weight function

ωip(x) :=
x− ki

ki+p−1 − ki
.

Definition 1.3.1. A spline of degree p with any knot sequence k is a linear combi-

nation of the b-splines bi,p above.

In our setup, the interested region for the unknown function is the interval [a, b].

The relevant knots are finite. The knot k̃ could be, as an attempt, selected to be

a = k̃0 < k̃1 < · · · < k̃Kn+1 = b. This, however, could cause some problem of

characterizing a function near the boundary, because there is less non zero basis

functions near the boundary than those in the interior. To avoid this issue, in

practice, we would specify some extra knots outside the interval [a, b] such that the

b-splines corresponding to the extra knots are not vanishing on [a, b]. The number of

knots after including the extra knots is denoted as Nn, which is determined by both

the number of interior knots Kn and the degree p. Let k̃ together with the extra

knots be called the extended knot and is denoted as k := k1, . . . , kNn .

The spline space (restricted on [a, b]) of degree p is the set of all splines of degree

p with the extended knot k,

Gn = {g : g =
Nn∑
k=1

gkbk,p} (1.4)

where {bk,p}k=1,...,Nn are the b-spline basis functions of degree p associated with ex-

tended knot k. The number of basis functions Nn (or equivalently, the number of
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extended knots) and the number of interior knots Kn satisfy that

Nn = Kn + p+ 1. (1.5)

Let δn be the largest distance between all the neighboring knots, that is,

δn = max
1≤i≤Nn−1

|ki+1 − ki|. (1.6)

The knots are pre-specified for Gn. It is not necessary that they distribute equally

between [a, b] (rigorously the range of knot k is a little wider than [a, b]). We do

require that the knots are not spreading too unevenly, to be specific, the knots

are supposed to have “bounded mesh ratio”, that is, the ratio of the maximum

and minimum distance between two neighbouring knots is bounded from above and

below by two positive numbers, which do not depend on n. Under this assumption,

we would have δn � 1
Kn

.

We will state two basic results regarding spline functions, the proof of which can

be found in Section 4.4 and Theorem 5.1.2 of DeVore and Lorentz (1993) correspond-

ingly.

Lemma 1.3.1 (L2 norm of spline functions). There exist constant C1 > 0 and C2 > 0

which do not depend on n such that for any g ∈ Gn having expression (1.4), it holds

that

C1δn
∑
k

g2
k ≤

∫
g2(x)dx ≤ C2δn

∑
k

g2
k.

Proposition 1.3.1 (Ratio between L∞ and L2 norm of spline function). Let An =

supg∈Gn,‖g‖6=0{‖g‖∞/‖g‖L2}. Then An � δ
−1/2
n , that is, there exist constants C3 > 0

and C4 > 0 such that

C3 ≤ Anδ
1/2
n ≤ C4.
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It is worth noting that the previously defined notations might vary as n increases,

for notation simplicity, we will drop the subscript from here and now on. So G = Gn,

K = Kn, δ = δn, λ = λn.

1.3.2 Penalized spline estimation in extended linear model

With the scaled log-likelihood l(η) defined on each spline function, one could seek

the estimator of η0 by maximizing l(η) within Gn, leading to the maximum likelihood

estimator. Such estimators have been well studied, the convergence rates for extended

linear models have been treated in Huang (2001), while Huang (2003) deals with

the asymptotic distribution in the nonparametric regression setting. On the other

hand, to mitigate overfitting when there are too many knots selected, another type

of estimator called penalized spline estimator was introduced in O’Sullivan (1986),

O’Sullivan (1988) and later a modified version in Eilers and Marx (1996). Penalized

spline fitting is considered a flexible smoothing technique while at the same time

computational efficient, readers could refer to Ruppert et al. (2003) and many others

for its variety of applications.

In the present work, we are focusing on the penalized spline estimator by minimiz-

ing the penalized (negative) log likelihood within the spline space G, to be specific,

η̂ = arg minη∈G{−l(η) + λnJ(η)},

which is directly estimating the minimizer of its expectation

η̄ = arg minη∈G{−Λ(η) + λnJ(η)}.

Here the penalty term J(h) = J(h, h) is a quadratic functional (defined on H) quan-

tifying the roughness of h ∈ H, we consider J(·) to be the integral of the squared
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derivative of order q, as introduced by O’Sullivan (1986),

J(h) =

∫
{h(q)(x)}2dx.

With the penalty being defined, we can provide more stories regarding the pe-

nalized spline estimator. Take a concrete example in the context of nonparametric

regression model, yi = η0(xi) + εi, the criterion functional becomes penalized sum of

squared loss,

η̂ = arg minη∈G

{
1

n

∑
i

(yi − η(xi))
2 + λ

∫
{η(q)(x)}2dx

}
. (1.7)

For the validity of the derivative operation on η0, we assume that q ≤ m; also,

we would require that the estimation space is contained in the model space, which

leads to m ≤ p (p and m are defined in (1.4) and (1.1) respectively).

Penalized spline estimation can be thought of as an intermediate step between

two other approaches in nonparametric estimation. For the ease of illustration, we

use the penalized spline in the regression model as an example. Two related methods,

regression spline and smoothing spline, are defined as

η̂reg = arg minη∈G

{
1

n

∑
i

(yi − η(xi))
2

}
(1.8)

and

η̂ss = arg minη∈H

{
1

n

∑
i

(yi − η(xi))
2 + λ

∫
η(m)(x)2dx

}
(1.9)

respectively. η̂reg is a natural extension of MLE estimator or quasi MLE estimator

(where no penalty is added) to the nonparametric estimation problem, it can be
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problematic when too many knots are used which causes overfitting. η̂ss originates

from Wahba (1990) which makes use of the RKHS theory to study the property of

the estimator. The criterion function looks similar to (1.7), however, because the

estimator is searched in a larger space H it can get into trouble from the aspect

of computation. Both regression spline and smoothing spline have been studied for

quite a long period of time. Because of the similarity of η̂ from η̂reg and η̂ss, the

connection of penalized spline and these two related methods remains an open topic

and requires further investigation.

In addition to the B-spline basis, we could also adopt polynomial spline basis,

φi(x) =


xi if 0 ≤ i ≤ p

(x− k̃i−p)p+ if p+ 1 ≤ i ≤ K + p

(1.10)

as the estimation space used in Ruppert et al. (2003). In this case, it has become

standard to add a penalty to all but the first p+ 1 coefficients

min
~g∈RK+p+1

{
1

n

n∑
i=1

(yi −
K+p∑
k=0

gkφk(xi))
2 + λ

K+p∑
j=p+1

g2
k

}
. (1.11)

In this approach (1.11), the penalty is not directly connected to the usual measure of

roughness of using derivatives (in fact, the penalty in (1.11) is equal to the integral

of squared generalized (p + 1)-th derivative of the spline function, thus involves the

derivative of dirac functions). Our theory will not cover this choice of penalty, say,

q = p+ 1.
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2. LITERATURE REVIEW

2.1 Hall and Opsomer (2005)

Hall and Opsomer (2005) utilizes the white noise model version of the nonpara-

metric regression, yt = f0(t) + εt. The penalized spline can be adapted to the white

noise model, assuming that the knots are placed continuously and therefore the coef-

ficients of the basis functions which depend on the knots are formulated as a function.

Meanwhile, the data points {(t, yt), t ∈ [a, b]} are likewise continuous. The criterion

(1.11) becomes

I(β0, . . . , βp, β(s)) =

∫
{yt−

p∑
k=0

βkφk(t)−
∫
β(s)ρ(s)φ(t|s)ds}2h(t)dt+λ

∫
β(t)2dt,

(2.1)

where φ0(·), . . . , φp(·), φ(·|s) can be any basis functions and in the case of polyno-

mial spline, φk(t) = tk, φ(t|s) = (t − s)p+, h is the density of the distribution of

xi’s and ρ equals the distribution of knots. In this section, f̂ =
∑p

k=0 β̂kφk(t) −∫
β̂(s)ρ(s)φ(t|s)ds, where β̂0, . . . , β̂p, β̂(s) denotes the minimizer of (2.1).

Under the white noise model, the effect of estimating {βk}pk=0 has negligibly small

influence on both the bias and variance of the estimator, hence they can be set to

zero. Utilizing spectral functional decomposition arguments and under the equally

spaced knots design meaning that ρ(s) ≡ ρ, the solution to (2.1) can be explicitly

worked out. the expressions of the bias, stochastic error and mean integrated squared

error of the resulting estimator are given. For the mean integrated squared error,

Hall and Opsomer obtained that under the white noise model

∫
E(f̂ − f0)2h = O{(nλ1/2(p+1))−1 + λ}, (2.2)
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where f0 is assumed to be having p+ 1 well-defined, square integrable derivatives.

We now turn to the limitations of this paper. First of all, all the explicit expres-

sions derived in this work are based on the uniform knots design. Second, there is

no freedom in choosing the degree of spline p and smoothness of true function m,

which is kept to be p = m − 1. More importantly, the white noise model is consid-

ered as the limiting case of the discrete model, where the knots and data points are

continuous, it is unclear how the results (e.g. MSE, bias and variance) in this paper

can be extended to the discrete model (1.11).

2.2 Li and Ruppert (2008)

In this paper, the authors considered a nonparametric regression model yi =

f0(xi) + εi, with heteroscedastic error εi having mean zero and variance σ2(xi). They

studied the following penalized spline estimator (as a note here, I change the first

term by scaling it with 1/n for notation conformity, therefore, the λ in this section

would need to be adjusted to λ/n to get the original results):

min
~g∈RN

{
1

n

n∑
i=1

(yi −
N∑
j=1

gjbj,p(xi))
2 + λ

N∑
j=q+1

{∆q(gj)}2

}
(2.3)

where the penalty involves the q-th order difference operator on the coefficients,

which has been used in Eilers and Marx (1996).

The solution to problem (2.3) can be obtained by solving a linear system of

equations, (B
TB
n

+ λ(Dq)TDq)~̂g = 1
n
BTY , where matrix B = (Bik)

k=1,...,K+p−1
i=1,...,n =

(bk,p(xi))
k=1,...,K+p
i=1,...,n and Dq~g = (∆q(gq+1), · · · ,∆q(gK+p−1))T . The authors showed for

some combination of p = 0, 1 and q = 1, 2, by cleverly making use of the banded

pattern of BTB
n

+λ(Dq)TDq and choosing λ, the coefficient vector ~̂g can be explicitly

written out as a weighted average of binned data, so can f̂ . As an illustration,
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consider zero degree spline with first order penalty, e.g. p = 0 and q = 1. Under

equally spaced knots 0 = k0 < . . . < kK = 1 and xi = i/n assumption, 1
n
BTB +

λ(Dq)TDq becomes a Toeplitz matrix with modified first and last diagonal elements.

It is shown that the first and the last element ~̂g can be solved separately while the

middle elements of ~̂g depend on these two. For any x ∈ (0, 1) and t = tn(x) such

that t/K → x, when λ and K be chosen as

λ ∼ n−1{Khn−1/5}2 for some h > 0, (2.4)

the estimator is equivalent to a binned Nadaraya-Watson kernel estimator, with

equivalent kernel H(x) = 1
2

exp(−|x|) and bandwidth of order n−1/5

f̂(x) = ĝt ∼
∑K

j=1 ρ
|t−j|
n ȳj∑K

j=1 ρ
|t−j|
n

, (2.5)

where ρn = exp{−h−1n1/5K−1}, ȳj is the average of all yi such that kj−1 < xi ≤ kj.

The bin size is controlled by total number of knots, under the following condition

K ∼ nγ for γ > 2/5, (2.6)

the binning effect by knots negligible, that is,

ȳt = f0(x̄t) + ε′ + o(n−2/5) (2.7)

with x̄t being the midpoint of the t-th bin, and ε′ ∼ N(0, [K/n]σ2(x̄t)).

Therefore, asymptotic distribution including bias, variance can be derived based

on the kernel representation (2.5) and binned data representation (2.7) using well-
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known techniques, such as Wand and Jones (1995)

n2/5{f̂(x)− f0(x)} → N(B(x),V(x)), (2.8)

where B = h2f
(2)
0 (x) and V(x) = 4−1h−1σ2(x). In addition to (2.4), there are other

conditions needed to show (2.8). First, f0 is assumed to be having continuous sec-

ond derivative. Second, the response has a finite higher-than-second order moment

E(Y 2+δ) <∞, for some δ > 0.

Remark 2.2.1. In order to derive (2.8), it is required that f0 has continuous second

derivative. This is due to the order of the equivalent kernel.

The above result for p = 0, q = 1 and x ∈ (0, 1) can be extended to some other

cases. For other values of p, q, the equivalent kernel expression can be found with

different condition than (2.4) and (2.6). When x is at the boundary, it is more

complicated than x ∈ (0, 1), although equivalent kernel may be found but it is not

always easy to build the asymptotic for it. To be specific, the authors provided

asymptotic normality in cases such as p = 0, q = 2 and x ∈ (0, 1) or x is at the

boundary region; p = 1, q = 1 and x ∈ (0, 1). They did an analysis on the equivalent

kernel for p = 1, q = 1 and x is at the boundary region without giving the asymptotic

normality. For the linear spline p = 1 they have no discussion on cases other than

the one just mentioned.

We will end this section with some remarks on the critical conditions in the paper.

The design of data and knots does not apply to the general case, to be specific, the

authors say “our theory does not cover the situation where the data points are

unequally spaced but the knots are equally spaced”, because otherwise the structure

of the matrix which formulates the linear system for the solution will be destroyed.

Also, it is worthy to point out that the order specification is in a quite different
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flavor. Suppose the true function f has continuous m-th derivative. The theoretical

results are constrained to be one of the following combinations: p = 0, q = 1,m = 2;

p = 0, q = 2,m = 4; p = 1, q = 1,m = 2 for the interior points; p = 0, q = 2,m = 2

for the boundary points (see the discussion in the last paragraph). Last but not least,

the asymptotic results, e.g.(2.8), is based on the choice of λ and K as in (2.4) and

(2.6), which indicates that the relationship between penalty parameter and number

of knots is fixed, and one is completely determined by the other. Last but not least,

the idea of solving the linear system is very smart but turns out to be restrictive,

the whole method will fail in models other than nonparametric regression model.

2.3 Wang et al. (2011)

Wang et al. (2011) shows the equivalence between P-spline and smoothing spline

under the large number of knots assumption (there will be further explaination on

what this means in the following context). Here P-spline refers to the solution to

(2.3). Unlike Li and Ruppert (2008), there is no restriction on the order p and q.

They first investigated the case when p = q. The most effort is put into the process

of writing P-spline f̂ and smoothing spline f̂ss (defined in (1.9)) as the solutions to

two differential equations sharing the same Green function (Kλ(x, y) below) which

differ in terms that are of small estimable order. The whole process depends on

matrix operation on the first order equation, where matrices that are discrete anaogs

of integration are used. The construction of such matrix is a result of equal design

of data points and knots.

Under the above differential equation setup, the difference function f̂− f̂ss can be

controlled by the boundedness of the Green function and the small terms. Concisely

speaking, the convergence rates under the supreme norm over any compact subset
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and over the whole interval are

sup
x∈[%,1−%]

|f̂(x)− fss(x)| = Op

(
λ1/2

K

)
+Op

((
logK

nλK

)1/2)
sup
x∈[0,1]

|f̂(x)− fss(x)| = Op

(
1

K

)
+Op

((
logK

nλK

)1/2)
, (2.9)

It is known that the smoothing spline estimator fss is asymptotically equivalent

to the kernel smoothing (Silverman (1984))

fss(x) =

∫
Kλ(x, y)f(y)dy +

1

n

n∑
i=1

Kλ(x, xi)εi + higher order terms, (2.10)

where the equivalent kernel Kλ(x, y) is the Green’s function for an ordinary differ-

ential equation with boundary conditions

(−1)qλu(2q)(t) + u(t) = v(t)

subject to u(q)(0) = u(q)(1) = 0, for k = q, . . . , 2q − 1. (2.11)

Based on (2.9) and (2.10), the former characterizes the pointwise distance be-

tween f̂ and f̂ss while the latter connects f̂ss with Kernel smoothing, of which the

asymptotic normality is known, one is able to derive the asymptotic normality of f̂

under some conditions indicating that the number of knots is large enough such that

the pointwise distance f̂ − f̂ss is negligible compared to the asymptotic rate of f̂ss,

explicitly, this requires the number of knots increases faster than certain (negative)

power of λ (readers could refer to Corollary 3.1 in their paper, however, the au-

thors did not explain on the conditions and it’s not easy to understand). Meanwhile,

the asymptotic distribution result is built upon the assumption that f0 is 2q times

continuously differentiable.
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Next, the authors considered the cases when p 6= q. The idea is that they come

up with a bridge f̃ [q] that is a q-th degree spline but sharing the same coefficients

as f̂ , roughly speaking. The author claims that it would be easy to establish the

asymptotic normality result for f̃ [q] follwing the similar discussion as they did when

p = q, while they are also providing the distance between f̂ and f̃ [q], thus the

asymptotic result could be passed from f̃ [q] to f̂ .

Next, we are going to point out some concerns. First, when the design is not

balanced or the knots are not equally spaced, the paper did not provide the equiva-

lence (2.9) explicitly except some remarks in the last section. Without equal knots,

∆pb̂p+j = 1
Kp

dp

dxp
f̂(x), x ∈ (kj−1, kj], j = 1, . . . , K would not hold, therefore, the esti-

mator would not be easily written as the solution to the differential equation as in

Theorem 2.1. Second, the asymptotic distribution is built under the condition that

f0 is 2q continuously differentiable with bounded 2q-th derivative, or equivalently,

m = 2q, in practice, this hidden relationship could hardly be achieved when m is

unknown. Third, the number of knots has to be large enough to ensure that the ap-

proximation error (2.9) is negligible relative to the variance of f̂ss. Last but not least,

the proposed method may not be extended to models other than the nonparametric

regression model.

2.4 Kauermann et al. (2009)

Kauermann et al. (2009) considers the penalized spline estimator for the gener-

alized exponential family model

y|x ∼ exp

[
yϑ(x)− a{ϑ(x)}

φ
+ c(y, φ)

]
, (2.12)

with ϑ(x) = ϑ{η0(x)} as the natural parameter of the underlying exponential family

and φ as dispersion parameter. The unknown function η(x) is assumed to be smooth
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in x.

The penalized spline estimator can be formulated as the maximizer of (as a note

here, I change the first term by scaling it with 1/n for notation conformity, therefore,

the λ in this section would need to be adjusted to λ/n to get the original results)

l(~θ, λ) :=
1

n
l(~θ)− λuTu =

1

n

n∑
i=1

[
yiϑ(Pi~θ)− a{ϑ(Pi~θ)}

]
− λuTu, (2.13)

where Pi is the row vector of polynomial spline basis of degree p (1.10) evaluated at

xi, θ = (βT , uT )T with β and u denotes the coefficients of the polynomial basis and

the truncated polynomials. The penalty in (2.13) could also be written as ~θTD~θ,

where D is a diagonal matrix with the upper left diagonals zero and lower right

diagonals 1 such that ~θTD~θ = uTu.

Changing the polynomial spline basis in (2.13) with b-spline basis, that is, Pi~θ =

Bi~g, where Bi is the row vector of spline basis evaluated at xi, ~g = K−pL−1~θ, for

some matrix L

l(~g, λ) :=
1

n
l(~g)− λ~gTDp+1~g =

1

n

n∑
i=1

[
yiϑ(Bi~g)− a{ϑ(Bi~g)}

]
− λK2p~gT D̃~g (2.14)

with D̃ = LTDL.

We briefly list the key steps in the argument to the main result. For the gener-

alized exponential model, the first order estimating equation is

0 =
1

n
Blη{BT ~̂g} − 2λD̃~̂g, (2.15)

where lη{BT ~̂g} :=

(
∂ϑ

∂η(Bi~̂g)
[yi − a′(ϑ(Bi~̂g))]

)
i=1,...,n

, B = (BT
1 , . . . , B

T
n ).

To solve (2.15), they expand each component as a function of ~g around ~g0, the
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coefficient of best spline approximation of the true function η0 based on Kullback-

Leibler measure. The series inversion is then applied to get a series expression of

ĝl− g0l, where g0l is the l-th component of ~g0. Writing in matrix form the expression

of ~̂g − ~g0 is obtained

~̂g − ~g0 = F−1(λ)(Blη{BT~g0} − nλK2qD̃~g0) + op(K/n) (2.16)

where F (λ) = BŴBT + nλK2pD̃ (Ŵ is the estimator of the diagonal matrix W

with the diagonal elements equals the conditional variances, var(yi|u)), under the

condition that λ = O(nγ), γ ≤ −(2p + 1)/(2p + 3) and K � n1/(2p+3), the or-

der of (j, l)-th entry of F−1(λ) is shown to be ρ|j−l|O[(n/K + nλK2p)−1], which is,

ρ|j−l|n−(2p+2)/(2p+3).

The first and second term in (2.16) can be seen as the shrinkage bias and es-

timation error. When η0 is (p + 1)-times continuously differentiable and K �

n1/(2p+3), ‖K2pD̃~g0‖∞ = O(Kp−1) = O(n−(p−1)/(2p+3)) together with the rate for

F−1(λ), E(~̂g − ~g0) = −F−1(λ)nλK2pD̃~g0{1 + o(1)} = O(n−(p+1)/(2p+3)), var(~̂g) =

F−1(λ)F (0)F−1(λ){1 + o(1)} = O(n−(p+1)/(2p+3)). The mean squared error of ~̂g − ~g0

is of the same order as MSE of ~̂g − ~g0, combining the results above, the latter is

O(n−(p+1)/(2p+3)).

On the other hand, the approximation bias η0(x) − B(x)~g0 is of the same rate

O(n−(p+1)/(2p+3)) when η0 is (p+1)-times continuously differentiable andK � n1/(2p+3).

Hence the mean-squared error for generalized penalized spline estimator η̂(x) is

shown to be

MSE{η̂(x)} = O(n−(2p+2)/(2p+3)). (2.17)

The authors also provide the asymptotic distribution as well as its bias and
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variance expressions

bias{η̂(x)} = −nλB(x)F (λ)−1K2pD̃~g0 − δ(x) (2.18)

and

var{η̂(x)} = B(x)F−1(λ)F (0)F−1(λ)B(x)T , (2.19)

where B(x) is the row vector of spline bases evaluated at x, δ(x) denotes the smallest

approximation bias δ(x) = η0(x)−B(x)~g0.

The paper also considers 1) the connection of mixed model and penalized ap-

proach and 2) the fully Bayesian approach with the mixed model.

Although the results in this paper are relatively complete, the conditions imposed

are less satisfied. The knots are required to be equally spaced. Moreover, there is

a “coupling of order” phenomenon, that is, m = p + 1, the original problem (2.13)

is not dealing with the penalty, therefore q does not exist in this setting. Unlike

the previous paper, it focuses on proving results under the small number of knots

assumption, namely, the smoothing effect is small compared to the modeling bias.

Also, to get the MSE (2.17), the rate at which the dimension of the spline basis

grows is considered to be fixed K � n1/(2p+3).

2.5 Claeskens et al. (2009)

This paper also considers the nonparametric regression model and the penalized

spline estimator (1.7). Compared with other works, Claeskens et al. (2009) is the

very first work that found a breakpoint in the (mean squared) rate of convergence as

well as the bias and variance of penalized regression spline, either close to regression

spline (1.8) or close to smoothing spline (1.9) depending on an explicitly defined
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function of the number of knots, the sample size and the penalty parameter Kq =

(K + p + 1 − q)(nλc̃1)1/(2q)n−1/(2q). In this section, ~h = (h(x1), . . . , h(xn))T for any

h ∈ H.

The proof requires a lot of mathematical derivation, here we will sketch the

outline. By solving the normal equation corresponding to (1.7), The penalized esti-

mator (evaluated at the sample points) takes the form of a ridge regression estimator

~̂
f = BT (BBT +nλDq)

−1BY , where B is the same as defined in the previous section

2.4, Dq is the penalty matrix such that
∫

(g(q)(x))2dx = ~gTDq~g for any g ∈ G with ~g

as the coefficients of b-spline expansion. This expression can be simplified by making

use of the following eigen decomposition

(BBT )−1/2Dq(BBT )−1/2 = Udiag(s)UT . (2.20)

With (2.20), define A = BT (BBT )−1/2U , then we can rewrite the penalized spline

estimator as

~̂
f = A{I + nλdiag(s)}−1ATY. (2.21)

We shall point out that
~̂
freg = AATY . And we would denote ~̃f = A{I+nλdiag(s)}−1AT ~f0

as the conditional mean of
~̂
f given x1, . . . , xn and ~̃freg = AATf0 as the conditional

mean of
~̂
freg given x1, . . . , xn.

Furthermore the expression (2.21) can be used to obtain the average mean squared
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error (AMSE)

AMSE(f̂) =
1

n
E{( ~̂f − ~f0)T (

~̂
f − ~f0)} (2.22)

=
1

n
E{( ~̂f − ~̃f)T (

~̂
f − ~̃f) +

1

n
E{( ~̃f − ~̃freg)

T ( ~̃f − ~̃freg)}}

+ E{( ~̃freg − ~f0)T ( ~̃freg − ~f0)}

=
σ2

n

∑
j

1

(1 + λ∗sj)2
+ nλ)2

∑
j

s2
jb

2
j

(1 + λ∗sj)2
+

1

n
~fT0 (I − AAT )~f0.

The first, second and third term in the expression of AMSE correspond to the asymp-

totic variance, shrinkage bias and approximation bias separately.

The approximation bias K−2(p+1) has been constructed elsewhere under the some-

what stronger condition f ∈ Cp+1. The main theorem states the approximation

bias as K−2q when f ∈ W 2q, however, there is no clear evidence that the ap-

proximation bias holds for f ∈ W q. To this point, the first two terms in the

rate of convergence measured in AMSE (2.22) rely on the rate of sj’s. The au-

thor stated it as lemma A3 in their paper which says that s1 = . . . = sq = 0,

sj = n−1(j− q)2q c̃1, j = q+ 1, . . . , K + p+ 1. The authors mentioned that this result

on sj is adapted from (2.5d) in Speckman (1985), where sj represents the eigenvalue

in the following sense, there exists {ϕ1, . . . , ϕn} lying in the natural spline space of

degree 2q − 1 such that

∑n
l=1 ϕi(xl)ϕj(xl) = δij∫

ϕ
(q)
i (x)ϕ

(q)
j (x)dx = δijsj (2.23)

0 = s1 = . . . ,= sq ≤ sq+1 ≤ . . . ≤ sn.

(2.23) differs from (2.20) in that the latter involves the basis in the b-spline space
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of degree p that simultaneously diagonalizes the two functional in (2.23) and the

number of basis in the latter case is K + p + 1 instead of n in the natural spline

scenario. It seems that the two problems (2.20) and (2.23) are not the same.

Here are the main results in this paper. If Kq < 1 and f0 ∈ Cp+1[a, b]

AMSE(f̂) = O

(
K

n

)
+O(λ2K2q) +O(K−2(p+1)). (2.24)

If Kq ≥ 1 and f0 ∈ W q[a, b]

AMSE(f̂) = O

(
1

(nλ)1/(2q)

)
+O(λ) +O(K−2q). (2.25)

The expressions of asymptotic bias and variance also take different forms condi-

tioning on the value of Kq. To save space, they will not be printed here.

We found the results in this paper interesting, however, imperfect. The reason

lies in the following aspects. First, The design of data points in this paper is the

same as that in Speckman (1985), which is quite stringent. It requires the empirical

distribution of the deterministic design points to be converging to some distribu-

tion function uniformly with rate O(K−1). Next, The AMSE of f̂ in (2.24) builds

upon a stronger smoothness condition on f ∈ Cp+1 (wanted W p+1 or even W q), the

extension from Cp+1 to W p+1 does not apply by just following the remark in this

paper. Specifically, the approximation bias in (2.22), (the expression of which can be

found in equation (7) of Claeskens et al. (2009)), is built upon the assumption that

f ∈ Cp+1. Although the authors mentioned that “according to Barrow and Smith

(1978) the expression for the approximation bias (7) holds for f ∈ W p+1 as well”, we

do not find the evidence from Barrow and Smith (1978). Last but not least, there

exists an abuse of result for the eigenvalues (lemma A3), which might be the most
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key results needed in deriving (2.24) and (2.25) and in calculating the higher order

terms in the bias and variance expression of f̂ . The references for lemma A3, Utreras

(1981), Speckman (1985), are intended for natural spline basis instead of b-spline.

Hence the validity of lemma A3 is under question.
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3. STATEMENT OF THE MASTER THEOREM

This chapter states the main theorem about the convergence rates of the penalized

spline estimators for extended linear model defined in section 1.2. As mentioned in

the introduction, Claeskens et al. (2009) considered the convergence rate of penalized

spline estimator under the regression setting. Our result generalizes their result in

two aspects. First of all, we will show that the same convergence rate holds for a

wide set of models known as extended linear models and for arbitrary penalty terms

under some straightforward regularity conditions. Second, we prove that the same

convergence rate holds under a different norm, which is related to the RKHS space

H, and the norm, defined by V (h) + λJ(h) or (V + λJ)(h) in short, is stronger than

the L2 norm considered in Claeskens et al. (2009).

3.1 Regularity conditions

The main conditions needed for showing the convergence rates can be summarized

into two categories. Some are imposed on the penalized log-likelihood, others are

relevant to the expected log-likelihood. We begin with two such conditions:

Condition 3.1.1. For any pair of g1, g2 ∈ G, l(g1 +αg2) as a function of α is twice

continuously differentiable. Moreover,

(i)

sup
g∈G

∣∣∣∣− 1
2n

d
dα
l(η̄ + αg)|α=0 + λJ(η̄, g)

∣∣∣∣
(V + λJ)(g)1/2

= OP

(
min

{(
1

nλ1/2q

)1/2

,

(
1

nδ

)1/2})
.

Here η̄ is the minimizer of −Λ(·) + λJ(·), as defined in section 1.3.2.
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(ii) For any B > 0, there exists a constant M > 0 (might depend on B) such that

d2

dα2
l(g1 + αg2) ≤ −M‖g2‖2, 0 ≤ α ≤ 1,

holds for any pair of g1, g2 ∈ G as long as ‖g1‖∞ ≤ B, ‖g2‖∞ ≤ B, with probability

tending to one as n −→∞.

The next condition states the equivalence between d2

dα2 Λ(h1 + αh2) and −‖h2‖2.

Condition 3.1.2. For each pair of h1, h2 ∈ H, Λ(h1 + αh2) as a function of α is

twice continuously differentiable. Furthermore, for any B > 0, there are constants

M1 > 0 and M2 (might depend on B) such that

−M1‖h2‖2 ≤ d2

dα2
Λ(h1 + αh2) ≤ −M2‖h2‖2, 0 ≤ α ≤ 1,

holds for all h1, h2 ∈ H whenever ‖h1‖∞ ≤ B, ‖h2‖∞ ≤ B.

The main theorem could be established under the conditions above. For com-

pleteness, we need make it clear the circumstances under which the above conditions

would hold. For this purpose, we will state several commonly used technical condi-

tions in the smoothing spline literature (Gu (2013)), which simplifies the calculation

when dealing with two quadratic functionals. Some of these conditions are satisfied

for the previously defined J(h) =
∫
{h(q)(x)}2dx and V (h) =

∫
h2(x)ω(x)dx (when

ω meets condition 3.1.3), if this is the case, they will be phrased as propositions.

Condition 3.1.3. The weight function ω(x) used in defining the norm V (h) (equiv-

alently ‖h‖) is bounded away from zero and infinity, that is, there exists c, C > 0

such that

c ≤ ω(x) ≤ C, for any a < x < b.
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Definition 3.1.1. A quardratic functional A is said to be completely continuous

with respect to another quadratic functional B, if for any ε > 0, there exists a finite

number of linear functionals L1, · · · , Lk such that L1(h) = · · · = Lk(h) = 0 implies

that A(h) ≤ εB(h).

Proposition 3.1.1. Under condition 3.1.3, V is completely continuous with respect

to J .

By theorem 3.1 of Weinberger (1974), proposition 3.1.1 implies that V and J

can be simultaneously diagonalized in the following sense. There exists a sequence

of eigenfunctions φν ∈ H and the associated nonnegative sequence of eigenvalues

ρν such that V (φν , φµ) = δνµ and J(φν , φµ) = ρνδνµ where δνµ is the Kronecker

delta, V (φν , φµ) =
∫
φν(x)φµ(x)ω(x)dx, J(φν , φµ) =

∫
φ

(q)
ν (x)φ

(q)
µ (x)dx; see, e.g.,

Silverman (1982), Section 9.1 of Gu (2013). Furthermore, any function h ∈ H

satisfying J(h) <∞ can be expressed as the series expansion with basis {φν} defined

above, h =
∑

ν hνφν , where hν = V (h, φν). Immediately with the Fourier series

expansion, we are able to express V (h) and J(h) as V (h) =
∑

ν h
2
ν and J(h) =∑

ν ρνh
2
ν . Therefore, (V + λJ)(h) =

∑
ν(1 + λρν)h

2
ν .

Proposition 3.1.2. Under condition 3.1.3, we have ρν � ν2q for sufficiently large

ν.

Proposition 3.1 and 3.2 are well known in the literature, readers could refer to

Utreras (1981) or section 9.1 of Gu (2013).

We will close this section with a general result on the equivalence of some em-

pirical and theoretical norm on G as supporting material in the process of verifying

condition 3.1.1 and 3.1.2.
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Let the empirical and theoretical inner product on G be defined by

< f1, f2 >n,Ψ= En[Ψ(f1, f2,W)], < f1, f2 >Ψ= E[Ψ(f1, f2,W)]

where Ψ(f1, f2; W) is a real valued functional that is symmetric and bilinear in

its first two arguments: Ψ(f1, f2; W) = Ψ(f2, f1; W) and Ψ(af1 + bf2, f ; W) =

aΨ(f1, f ; W) + bΨ(f2, f ; W). Furthermore, Ψ has the following property

‖Ψ(f1, f2, ; W)‖∞ ≤M5‖f1‖∞‖f2‖∞

and

var[Ψ(f1, f2; W)] ≤M6‖f1‖2‖f2‖2
∞.

The norms corresponding to these inner products are denoted as ‖·‖n,Ψ and ‖·‖Ψ. In

the special case when W is a random variable X from a density gX(·) taking value in

U and Ψ(f1, f2, ;X) = f1(X)f2(X), we get < f1, f2 >Ψ= V (f1, f2) with ω(·) = gX(·).

In this case, the two properties are satisfied with W5 = W6 = 1.

Condition 3.1.4. limnA
2
nN/n = 0.

Remark 3.1.1. Under condition 3.1.4, the empirical and theoretical norm are asymp-

totically equivalent, in the sense that supg∈G |‖g‖n,Ψ/‖g‖Ψ − 1| = oP (1). Refer to

Lemma 10 in Huang (1998b).

3.2 Main theorem

Theorem 3.2.1. Assuming conditions 3.1.1-3.1.2 are true. Suppose limnAn(δm ∨

λ1/2) = 0, then η̄ exists for n sufficiently large and (V + λJ)(η̄ − η0) = O(δ2m +

λ). On the other hand, suppose limnA
2
n( 1

nλ1/2q
∧ 1

nδ
) = 0, (V + λJ)(η̂ − η̄) =

Op

(
min

{
1

nλ1/2q
, 1
nδ

})
. Consequently,
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(V + λJ)(η̂ − η0) = Op

(
δ2m + λ+ min

{
1

nλ1/2q
,

1

nδ

})
.

Remark 3.2.1. Consider the case when setting q = m, that is, J(h) =
∫
{h(m)(x)}2dx.

It is clearly shown in Theorem 3.2.1 that two scenarios could happen:

(a) if λ1/2m < δ, the convergence rate, δ2m + 1
nδ

, is similar to the spline estimator

without penalty. The optimal rate of convergence n−2m/(2m+1) for η0 ∈ H under L2

norm is achieved when δ � n−1/(2m+1).

(b) if λ1/2m > δ, the convergence rate, λ + 1
nλ1/2m

, is similar to the smoothing

spline estimator. The optimal rate of convergence for n−2m/(2m+1) for η0 ∈ H under

the ’smoothing spline norm’ is achieved when λ � n−2m/(2m+1).

Remark 3.2.2. The two scenarios in Remark 3.2.1 are consistent with the result

shown in Claeskens et al. (2009) for the regression model, furthermore, it is shown

here that the same convergence rate holds under the stronger norm V + λJ .

Corollary 3.2.2. Under the conditions given in the main theorem, it is easy to

obtain that

J(η̂ − η0) = Op

(
δ2mλ−1 + min

{
1

nλ1/2q
,

1

nδ

}
λ−1

)
+Op(1).

3.3 Lemmas

The following lemmas will be used in the proofs. A detailed proofs can be found

in section 9.2 of Gu (2013) for Lemma 3.3.1; in Theorem 6.25 of Schumaker (1981)

for Lemma 3.3.2.
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Lemma 3.3.1. Under proposition 3.1.2, as λ→ 0, we have

∑
ν

1

(1 + λρν)2
= O(λ−1/2q), (3.1)

∑
ν

1

1 + λρν
= O(λ−1/2q), (3.2)

∑
ν

λρν
(1 + λρν)2

= O(λ−1/2q). (3.3)

Lemma 3.3.2. For any function η0 ∈ H, there exists a function η∗ ∈ G such that

V (η∗ − η0) ≤ L2
1δ

2m, J(η∗) ≤ L2
2

and

‖η∗ − η0‖∞ ≤ L3δ
m−1/2.

Here the constants L1, L2 and L3 only depends on p and η0.

Lemma 3.3.3. Suppose that Λ(·) satisfies condition 3.1.2. Then for any B > 0, there

exist positive constants M3 and M4 (might depend on B) such that −M3‖h− η0‖2 ≤

Λ(h)− Λ(η0) ≤ −M4‖h− η0‖2 holds for all h ∈ H whenever ‖h‖∞ ≤ B.

Proof. The proof can be easily derived by Taylor expansion (with integral remainder)

of Λ(h) at η0 together with the fact that d
dα

Λ(η0 +α(h− η0))|α=0 = 0 and Condition

3.1.2. The proof can also be found in Huang (2001).

To be specific, the Taylor expansion of Λ(h) at η0 indicates

Λ(h)− Λ(η0) =
d

dα
Λ(η0 + α(h− η0))|α=0 +

∫ 1

0

(1− α)
d2

dα2
Λ(η0 + α(h− η0))dα.

The first order derivative d
dα

Λ(η0+α(h−η0))|α=0 equals zero since η0 is the minimizer

of Λ in H. The desired result follows from the above expression and condition
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3.1.2.

In the proof of the main theorem, we might as well need the following results that

are of slight variations as statements in lemma 3.3.2, without loss of generality, we

will not differentiate the constant in these cases, that is, there exists a L depending

on p and η0 such that

V (η∗ − η0) + λJ(η∗) ≤ L2(δ2m + λ) (3.4)

V (η∗ − η0) + λJ(η∗ − η0) ≤ L2(δ2m + λ) (3.5)

‖η∗‖∞ ≤ ‖η0‖∞ + Lδm−1/2. (3.6)

(3.4) comes directly from the first two inequalities of lemma 3.3.2; (3.5) follows from

V (η∗ − η0) + λJ(η∗ − η0) ≤ V (η∗ − η0) + λJ(η∗) + λJ(η0) and the fact that J(η0) is

bounded; (3.3.2) is due to the triangle inequality ‖η∗‖∞ ≤ ‖η0‖∞ + ‖η∗ − η0‖∞ and

the third inequality of lemma 3.3.2.

Now we are ready to prove the rate of convergence of penalized spline estimator.
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4. PROOF OF THE MASTER THEOREM

This chapter aims to prove the main theorem of convergence rates of the penalized

spline estimator, that is, Theorem 3.2.1, in detail. Thanks to the convexity in all

extended linear models and the smoothness penalty, we are able to show it in a

general and uniform way.

Before preceding, we will state a lemma regarding the property of any convex

functional since it appears more than once in our proof.

Lemma 4.0.4. Suppose L(·) is a convex functional defined on a linear space N.

‖ · ‖psuedo is a psuedo-metric associated with the linear space N meaning that for any

η1, η2 ∈ N, |‖η1‖psuedo − ‖η2‖psuedo| ≤ ‖η1 − η2‖N, where ‖ · ‖N is a norm defined on

N. If there exists a function η∗ with ‖η∗‖psuedo < s such that for all η ∈ N satisfying

‖η‖psuedo = s, we have

L(η∗) < L(η). (4.1)

Then L(η̃) > L(η∗), for all η̃ ∈ N with ‖η̃‖psuedo > s. Or we can say that ηm is the

minimizer of L(·), then ‖ηm‖psuedo < s.

Proof. The proof is done by contradiction. Suppose the statement is incorrect, that

is, there exists an η̃ ∈ N with ‖η̃‖psuedo > s such that L(η̃) ≤ L(η∗).

Consider the convex combination of η∗ and η̃ as ηα
.
= αη∗+ (1−α)η̃, 0 ≤ α ≤ 1.

Define C(α)
.
= ‖ηα‖psuedo. Since C(α1)−C(α2) ≤ (α1 − α2)‖(η∗ − η̃)‖N, hence C(α)

is continuous in α, and it is easy to check that C(0) > s,C(1) < s, then there exists

an ᾰ ∈ (0, 1) such that C(ᾰ) = s. Denote η̆
.
= ᾰη∗+ (1− ᾰ)η̃, immediately ‖η̆‖psuedo

= s. We conclude from the convexity of L(·) and the property of η̆ that

L(η̆) ≤ ᾰL(η∗) + (1− ᾰ)L(η̃) ≤ L(η∗).
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This violates the condition given in (4.1). We complete the proof by contradiction.

Proof of Theorem 3.2.1. The proof of Theorem 3.2.1 borrows some idea from Huang

(2001). In order to prove the convergence rate of η̂ − η0, we will decompose η̂ −

η0 = η̂ − η̄ + η̄ − η0, where the convergence rate of the first (second) term is the

approximation (estimation) error. Here η̄ is the minimizer corresponding to

η̄ = argminη∈G

(
−Λ(η) + λJ(η)

)
. (4.2)

I. Approximation error:

Suppose a > 1 (to be determined later), take η ∈ G satisfying

V 1/2(η − η0) + λ1/2J1/2(η) ≤ a(δm + λ1/2) (4.3)

and η∗ as in Lemma 3.3.2.

Then

‖η − η∗‖∞ ≤ AnV
1/2(η − η∗)

≤ An(V 1/2(η − η0) + V 1/2(η∗ − η0))

≤ AnCa,L1(δ
m + λ1/2), (4.4)

where Ca,L1 is a constant depending on a and L1 only. The last inequality in (4.4) is

due to (4.3) and lemma 3.3.2.
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For any η ∈ G satisfying (4.3),

‖η‖∞ ≤ ‖η − η∗‖∞ + ‖η∗ − η0‖∞ + ‖η0‖∞ (4.5)

≤ AnCa,L1(δ
m + λ1/2) + C(δm−1/2) + ‖η0‖∞

< M‖η0‖∞.

holds for all η ∈ G in (4.3). The second inequality can be obtained from (4.4) and

the third inequality in lemma 3.3.2. The last inequality in (4.5) can be demonstrated

under the fact that limnAnδ
m = 0, limnAnλ

1/2 = 0 and limn δ = 0.

Then we can apply Lemma 3.3.3 to η satisfying equality in (4.3) to obtain

−Λ(η) + Λ(η0) + λJ(η) ≥M4V (η − η0) + λJ(η) (4.6)

≥ min(M4, 1)(V (η − η0) + λJ(η))

≥ a2

2
min(M4, 1)(δ2m + λ).

The last inequality can be justified using V (η − η0) + λJ(η) ≥ 1
2
(V 1/2(η − η0) +

λ1/2J1/2(η))2 = a2

2
(δm + λ1/2)2 ≥ a2

2
(δ2m + λ).

On the other hand, it is easy to verify by (3.6) and limn δ = 0 that

‖η∗‖∞ < ‖η0‖∞ +O(δm−1/2) ≤M‖η0‖∞.

Applying Lemma 3.3.3 again to η∗ and then (3.4) shows

−Λ(η∗) + Λ(η0) + λJ(η∗) ≤M3V (η∗ − η0) + λJ(η∗)

≤ (M3 + 1)(V (η∗ − η0) + λJ(η∗))

≤ (M3 + 1)L2(δ2m + λ). (4.7)
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Take a >
√

2(M3+1)
min(M4,1)

L. The right hand side of (4.6) is greater (not equal) than

that of (4.7). Thus, for all η such that V 1/2(η− η0) +λ1/2J1/2(η) = a(δm +λ1/2) and

this choice of a,

−Λ(η) + λJ(η) > −Λ(η∗) + λJ(η∗).

Thus we can apply lemma 4.0.4 to the convex functional −Λ(·) + λJ(·) and the

psuedo metric V 1/2(· − η0) + λ1/2J1/2(·) to conclude that

V 1/2(η̄ − η0) + λ1/2J1/2(η̄) < a(δm + λ1/2). (4.8)

Furthermore, it follows immediately that

V (η̄−η0)+λJ(η̄−η0) ≤ V (η̄−η0)+λJ(η̄)+λJ(η0) < a2(δ2m+λ)+λ = O(δ2m+λ).

(4.9)

Thus the proof for the approximation error is finished.

As a by-product, we could derive the upper bound for ‖η̄‖∞. Since η̄ satisfies

(4.3) we would deduce from (4.5) that

‖η̄‖∞ < M‖η0‖∞. (4.10)

II. Estimation error:

Taking Taylor Expansion to the optimization function at η̄ we will get

−l(η) + λJ(η) = −l(η̄) + λJ(η̄)− d

dα
l(η̄ + α(η − η̄))|α=0 + 2λJ(η̄, η − η̄) (4.11)

−
∫ 1

0

(1− α)
d2

dα2
l(η̄ + α(η − η̄))dα + λJ(η − η̄).

Suppose a > 1(to be determined later), in the following derivation we consider
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η ∈ G satisfying

(V + λJ)(η − η̄) = a2 min

{
1

nλ1/2q
,

1

nδ

}
. (4.12)

Then by the definition of An and any η such that (4.12) holds, ‖η−η̄‖∞ ≤ An‖η−η̄‖ =

Anamin

{
1

nλ1/2q
, 1
nδ

}1/2

= o(1). Consequently, for n sufficiently large,

‖η‖∞ ≤ ‖η − η̄‖∞ + ‖η̄‖∞ ≤ B (4.13)

for all η satisfying (4.12). The second inequality also makes use of the (4.10).

We will take a closer look at (4.11). By condition 3.1.1 (ii) and (4.12), the

summation of the last two terms in (4.11) has a lower bound

−
∫ 1

0

(1− α)
d2

dα2
l(η̄ + α(η − η̄))dα + λJ(η − η̄) (4.14)

≥ min{M/2, 1}(V + λJ)(η − η̄)

= a2 min{M/2, 1}min

{
1

nλ1/2q
,

1

nδ

}
.

On the other hand, it is also given in condition 3.1.1 (i) that the sum of the middle

two terms in (4.11) has an upper bound

∣∣∣∣− d

dα
l(η̄ + α(η − η̄))|α=0 + 2λJ(η̄, η − η̄)

∣∣∣∣
= (V + λJ)(η − η̄)1/2Op

(
min

{(
1

nλ1/2q

)1/2

,

(
1

nδ

)1/2})
= aOp

(
min

{
1

nλ1/2q
,

1

nδ

})
. (4.15)

Thus we can choose a so large that the right hand side of (4.15) is bouned above by

38



the lower bound in (4.14), except on an event whose probability is less than ε,

∣∣∣∣− d

dα
l(η̄ + α(η − η̄))|α=0 + λJ(η̄, η − η̄)

∣∣∣∣ < a2 min{M/2, 1}
(

min

{
1

nλ1/2q
,

1

nδ

})
.

(4.16)

Now with (4.11) (4.14) and (4.16) we are able to demonstrate that with probability

tending to one

−l(η) + λJ(η) > −l(η̄) + λJ(η̄)

holds for all η satisfying (4.12).

Apply lemma 4.0.4 to the convex functional −l(·) + λJ(·) and the psuedo metric

(V + λJ)1/2(· − η̄), η̂ has the following property, with probability tending to one

(V + λJ)(η̂ − η̄) < a2 min

{
1

nλ1/2q
,

1

nδ

}
. (4.17)

This completes the proof of rate of convergence for estimation error.
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5. APPLICATION OF THE MASTER THEOREM TO VARIOUS SETTINGS

We have established the general convergence rate theorem in chapter 3 under

some regularity conditions. Before concluding on the validity of such a result for the

extended linear models, we would like to show that the regularity conditions are not

very stringent. In this chapter, we will verify that condition 3.1.1 and condition 3.1.2

are valid for several regular models, which garantees that our main theorem can be

applied to a broad set of models.

To begin with, we state two useful lemmas, which synchronize the main techniques

used in checking condition 3.1.1 (i). In the proof of lemma 5.0.6, we will make use of

one simple observation that under Condition 3.1.3, the previously defined norm ‖ · ‖

or V (·) on H are equivalent to L2 norm.

Lemma 5.0.5. For any g ∈ G, we have that

−1

2

d

dα
l(η̄ + αg)|α=0 + λJ(η̄, g) = −1

2

d

dα
l(η̄ + αg)|α=0 +

1

2

d

dα
Λ(η̄ + αg)|α=0.

Proof. By the definition of η̄, it is the minimizer of the convex functional −Λ(η) +

λJ(η). Therefore, η̄ satisfies the first order condition

− d

dα
Λ(η̄ + αg)|α=0 + 2λJ(η̄, g) = 0.

The desired result is obtained simply by substituting λJ(η̄, g) with 1
2
d
dα

Λ(η̄+αg)|α=0.

Lemma 5.0.6. Let {hn} be a sequence of functions in H with ‖hn‖∞ ≤M for some

positive constant M and any n ≥ 1. Qn(f, g) = 1
n

∑n
i=1 q(f, g;wi) is a quadratic
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functional defined on H, w′is are i.i.d. observation of some random variable (possibly

vector valued) w. Also Qn(f, g) is linear in g. Denote Q(f, g) = E(Qn(f, g)). Sup-

pose E(q(hn, φν ;w1)2) ≤ K1, for some constant K1 > 0 that does not depend on φν

and n, then

supg∈G

∣∣∣∣Qn(hn, g)−Q(hn, g)

(V + λJ)(g)
1
2

∣∣∣∣ = Op

((
1

nλ1/2q

)1/2)
. (5.1)

Furthermore, if we have E(q(hn, bk,p;w1)2) ≤ K2δ, for some constant K2 > 0 that

does not depend on bk,p, then

supg∈G

∣∣∣∣Qn(hn, g)−Q(hn, g)

(V + λJ)(g)
1
2

∣∣∣∣ = Op

((
1

nδ

)1/2)
. (5.2)

Proof. First let us assume E(q(hn, φν ;w1)2) ≤ K1. Taking eigen decomposition of

g =
∑

ν gνφν and by Cauchy Schwartz inequality we would obtain that

|Qn(hn, g)−Q(hn, g)| = |
∑
ν

gν(Qn(hn, φν)−Q(hn, φν))| (5.3)

≤
[∑

ν

g2
ν(1 + λρν)

]1/2[∑
ν

(Qn(hn, φν)−Q(hn, φν))
2

1 + λρν

]1/2

.

Since the first term on the right hand side of (5.3) is the same as the denumerator

of (5.1), it remains to show the upper bound for the second term of (5.3).

It is not hard to establish the upper bound for the expectation of the random
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component in each summand.

E(Qn(hn, φν)−Q(hn, φν))
2 = Var(Qn(hn, φν)) (5.4)

=
1

n
Var

(
q(hn, φν , w1)

)
≤ 1

n
E

(
q(hn, φν , w1)

)2

≤ K1

n
.

Notice that (5.4) indicates

E

[∑
ν

(Qn(hn, φν)−Q(hn, φν))
2

1 + λρν

]
≤ K1

n

(∑
ν

1

1 + λρν

)
. (5.5)

(5.5) together with (3.1) in Lemma 3.3.1 shows the upper bound for the second term

of (5.3) is Op

((
1

nλ1/2q

)1/2)
. Notice that this upper bound does not depend on g, it

would also be the upper bound when taking supreme over g ∈ G, hence (5.1) holds.

On the other hand, if E(q(hn, bk,p;w1)2) ≤ K2δ holds. Taking basis expansion of

g =
∑

k gkbk,p and by Cauchy Schwartz inequality we would obtain that

|Qn(hn, g)−Q(hn, g)| = |
∑
k

gk(Qn(hn, bk,p)−Q(hn, bk,p))| (5.6)

≤
[
δ
∑
k

g2
k

]1/2[
δ−1

∑
k

(Qn(hn, bk,p)−Q(hn, bk,p))
2

]1/2

.

Due to lemma 1.3.1

δ
∑
k

g2
k ≤ CV (g) ≤ C(V + λJ)(g), (5.7)

which means the first term on the right hand side of (5.6) is bounded by the denu-

merator of (5.2), it remains to show the upper bound for the second term of (5.6).

Repeat (5.4) and (5.5) toQn(hn, bk,p)−Q(hn, bk,p) and the summation
∑

k(Qn(hn, bk,p)−
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Q(hn, bk,p))
2, one would get

E

[
δ−1

∑
k

(Qn(hn, bk,p)−Q(hn, bk,p))
2

]
= Op

(
1

nδ

)
. (5.8)

Therefore, (5.2) follows from (5.6), (5.7) and (5.8).

As we have said, the required conditions 3.1.1, 3.1.2 for our main theorem are not

very stringent, in the following sections, we are going to devote some effort in checking

them for some specific models. To do this, we need some model specific conditions

together with lemma 5.0.5 and lemma 5.0.6 above. For most of the models below, it

is of little necessity to verify condition 3.1.1 (ii) and condition 3.1.2 (which do not

involve the penalty functional) here, since they have been demonstrated elsewhere,

the reference will be pointed out later on.

5.1 Regression model

For the regression model yi = η0(xi) + εi, its conventional (negative) sum of

squares criterion is defined as

l(η) = − 1

n

n∑
i=1

(
yi − η(xi)

)2

.

If in addition εi ∼ N(0, σ2), then l(η) coincides with the (conditional) log-

likelihood, otherwise l(η) can be treated as a psuedo log-likelihood.

Suppose that x′is are i.i.d random sample from density fX(·). And its expected

log-likelihood would be (up to a constant)

Λ(η) = −
∫

(η(x)− η0(x))2fX(x)dx
.
= −V (η − η0).

The above formulation leads to a concave extended linear model with random
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variable W containing a random pair, that is, W = (X, Y ).

By lemma 5.0.5,

−1

2

d

dα
l(η̄ + αg)|α=0 + λJ(η̄, g) =

1

n

n∑
i=1

(
η̄(xi)− yi

)
g(xi)− V (η̄ − η0, g). (5.9)

Immediately we have condition 3.1.3 is equivalent to

Condition 5.1.1.

c ≤ fX(x) ≤ C, for any a < x < b.

Define Qn(η, g) = 1
n

∑n
i=1 q(η, g;wi) = 1

n

∑n
i=1(η(xi) − yi)g(xi), then Q(η, g) =

V (η − η0, g). With these definitions, (5.9) can be rewritten as

−1

2

d

dα
l(η̄ + αg)|α=0 + λJ(η̄, g) = Qn(η̄, g)−Q(η̄, g). (5.10)

Because of (5.10), condition 3.1.1 (i) is just a direct application of lemma 5.0.6.

The rest is to show the conditions in lemma 5.0.6 holds, namely,

E(q(η̄, φν ;w1)2) < K1 and E(q(η̄, bk,p;w1)2) < K2δ. (5.11)

E(q(η̄, φν ;w1)2) = E

[(
η̄(x1)− y1

)2

φν(x1)2

]
= E

[(
η̄(x1)− η0(x1)

)2

φν(x1)2

]
+ E

[
ε21φν(x1)2

]
≤ (M + 1)2‖η0‖2

∞ + σ2 .
= K1.
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The last inequality comes from (4.10) and V (φ2
ν) = E(φ2

ν) = 1.

Similarly, pointed out by lemma 1.3.1 E(b2
k,p) ≤ Cδ, the above derivation regard-

ing q(η̄, φν ;ω1) can be applied to q(η̄, bk,p;ω1), hence

E(q(η̄, bk,p;w1)2) ≤ Cδ[(M + 1)2‖η0‖2
∞ + σ2] ·K2.

Thus (5.11) holds.

Since

d2

dα2
l(g1 + α(g2 − g1)) = − 2

n

n∑
i=1

(g2(xi)− g1(xi))
2.

The empirical norm on the right hand side of the above equation is equivalent to the

theoretical norm in the sense that 1
n

∑n
i=1 g(xi)

2 = (1 + op)V (g) as long as condition

3.1.4 is met. Condition (3.1.1) (ii) follows.

Similarly

d2

dα2
Λ(h1 + α(h2 − h1)) = −2V (h2 − h1).

Therefore, it is obvious that condition 3.1.2 is satisfied.

5.2 Generalized regression model

Like the nonparametric regression model in the previous section, the generalized

regression model involves a random pairW = (X, Y ), whereX is a U -valued covariate

and Y is a real-valued response variable. In this context, the conditional distribution

of Y given X is characterized.

P (Y ∈ dy|X = x) = exp[B(η0(x))y − C(η0(x))]Φ(dy), (5.12)

where C(·) is a normalizing coefficient function, the dependence of Y on X is through

the function of interest η0. The generalized regression model is a natural extension
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of generalized linear model, where η0 is supposed to be linear. The generalized

regression model itself contains a variety of popular models (see below), B(·) and

C(·) are known functions that take certain form for any specific model.

We would need some conditions on B(·) and C(·) such that the regularity condi-

tions for the main theorem is valid.

Condition 5.2.1. B(·) is twice continuously differentiable and its first derivative is

strictly positive. Φ is a nonzero reference measure on R not degenerated at a single

point.

Condition 5.2.2. S1 is a subintervals of R such that Φ is concentrated on S1 the

following inequality holds

B
′′
(ζ)y − C ′′

(ζ) < 0,

for all y ∈ S1 and ζ ∈ R.

Remark 5.2.1. Under condition 5.2.1, C(·) is also twice continuously differentiable.

Moreover, assuming condition 5.2.2, we could deduce that B
′
(·), B

′′
(·), C

′
(·) and

C
′′
(·) are bounded functions on any compact subinterval S2.

The generalized regression model (5.12) belongs to a concave extended linear

model with W = (X, Y ). As special cases, we get logistic regression, Poisson re-

gression models, which are introduced in the following examples. We will also pay

attention to whether conditions 5.2.1 and 5.2.2 hold for these specific examples.

Example 5.2.1 (Logistic Regression). Y is a binary {0, 1}-valued response variable.

The probability of Y = 1 usually depends on the covariate X, thus P (Y = 1|X = x)

shall be characterized. The logistic regression takes the logistic transform of P (Y =
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1|X = x) as a function of x,

log

(
P (Y = 1|X = x)

1− P (Y = 1|X = x)

)
= η0(x).

Solving the above equality for P (Y = 1|X = x) we could get

P (Y = 1|X = x) =
exp η0(x)

1 + exp η0(x)
.

Equivalently,

P (Y = y|X = x) = exp{η0(x)y − log(1 + exp η0(x))}, y = 0, 1

This is a special case of generalized regression model (5.12) with B(s) = s and

C(s) = log(1+exp(s)). Condition 5.2.1 and 5.2.2 are satisfied. For this special case,

the boundedness of B
′
(·), B

′′
(·), C

′
(·) and C

′′
(·) are always guaranteed so there is no

need to assume that the range of η0 is a subinterval of R.

Example 5.2.2 (Poisson Regression). Poisson regression assumes that Y represent-

ing count data has a Poisson distribution whose intensity parameter (expected value)

depends on X. Therefore,

P (Y = y|X = x) =
λ0(x)y

y!
exp(−λ0(x)), y = 0, 1, 2, . . . .

To get around the positive constraint on λ0(·), it is convenient to reparameterize

λ0(·) = exp(η0(·)). The conditional probability can be easily reformulated as

P (Y = y|X = x) = exp[yη0(x)− log(y!)− exp(η0(x))].
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Clearly, Poisson regression belongs to the generalized regression model with B(s) = s

and C(s) = log(y!) + exp(s). It is very easy to verify that the conditions 5.2.1 and

5.2.2 hold.

The conditional mean and variance of Y given X = x have closed form expressions

µ(x) = E(Y |X = x) =
C

′
(η0(x))

B′(η0(x))
, (5.13)

V (x) = Var(Y |X = x) =
C

′′
(η0(x))

B′(η0(x))2
− C ′

(η0(x))
B

′′
(η0(x))

B′(η0(x))3
. (5.14)

Given i.i.d samples w1 = (x1, y1), . . . , wn = (xn, yn), the scaled (conditional)

log-likelihood for generalized regression at a candidate function η is given by

l(η) =
1

n

n∑
i=1

[
B(η(xi))yi − C(η(xi))

]
.

And its expectation

Λ(η) = E

[
B(η(x1))

C
′
(η0(x1))

B′(η0(x1))
− C(η(x1))

]
.

By lemma 5.0.5,

−1

2

d

dα
l(η̄ + αg)|α=0+λJ(η̄, g) =

1

2n

n∑
i=1

[C
′
(η̄(xi))−B

′
(η̄(xi))yi]g(xi) (5.15)

+
1

2
E

{[
B

′
(η̄(x1))

C
′
(η0(x1))

B′(η0(x1))
− C ′

(η̄(x1))

]
g(x1)

}
.

Define Qn(η, g) = 1
2n

∑n
i=1 q(η, g;wi) = 1

2n

∑n
i=1[B

′
(η(xi))yi − C

′
(η(xi))]g(xi),

then Q(η, g) = 1
2
E

{[
B

′
(η(x1))C

′
(η0(x1))

B′ (η0(x1))
− C ′

(η(x1))

]
g(x1)

}
.
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With these definitions, (5.15) can be rewritten as

−1

2

d

dα
l(η̄ + αg)|α=0 + λJ(η̄, g) = Qn(η̄, g)−Q(η̄, g). (5.16)

Because of (5.16), condition 3.1.1 (i) is just a direct application of lemma 5.0.6. The

rest is to show that

E(q(η̄, φν ;w1)2) < K1 and E(q(η̄, bk,p;w1)2) < K2δ. (5.17)

E(q(η̄, φν ;w1)2)

= E([B
′
(η̄(x1))y1 − C

′
(η̄(x1))]2φν(x1)2)

= E([B
′
(η̄(x1))(y1 − µ(x1)) +B

′
(η̄(x1))µ(x1)− C ′

(η̄(x1))]2φν(x1)2)

= E[B
′
(η̄(x1))2V (x1)φν(x1)2] + E([B

′
(η̄(x1))µ(x1)− C ′

(η̄(x1))]2φν(x1)2)

≤ K1E(φν(x1)2) = K1.

The second but last inequality makes use of the boundedness of B
′
(·), C ′

(·), B′′
(·)

and C
′′
(·), under which µ(·) and V (·) defined in (5.13) and (5.14) are also bounded.

Therefore, the first claim in (5.17) follows.

Similarly, as pointed out by lemma 1.3.1 E(b2
k,p) ≤ Cδ, replacing φν in the above

derivation with bk,p we would get

E(q(η̄, bk,p;w1)2) ≤ K2δ.

Thus the second claim in (5.17) arises.

For part (ii) of condition 3.1.1 and condition 3.1.2, details are provided in lemma
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4.1 and 4.3 of Huang (1998a).

5.3 Counting process regression

The counting process regression is so broad that it serves as a general framework

for survival analysis, e.g., hazard regression is a special case of counting process

regression, and even more complicated event history analysis.

Let T = [0, τ ] for some positive τ be the time interval for the counting process

N(t). Let (Ω,F , P ) be a complete probability space. There is an associated filtration

{Ft : t ∈ T } satisfying Ft is a family of right-continuous, increasing σ-algebras and

F0 contains the P-null sets of F . The expected count within a very short period of

time dt at time t, given all the past information Ft− = ∪s<tFs, is characterized as

E[N(dt)|Ft−] = Y (t) exp η0(X(t))dt, (5.18)

the intensity is proportional to the product of Y (t) and the hazard function at X(t)

(to get rid of the positivity constraint on the hazard function, the log-hazard function

η0 is modeled), where Y (t) is a {0, 1}-valued, predictable process, equals 1 when

N(t) is observed and 0 otherwise, and X(t) is an U -valued, predicatable stochastic

process. As a special case, in the context of hazard regression, τ corresponds the so-

called censoring time, Y (t) is constant process that equals one or zero corresponding

to T ≤ τ (uncensored) or T > τ (censored), where T denotes the survival time.

N(t) = I(T ≤ τ ∧ t) is the counting process with a single jump at the survival

time T if uncensored. Let η0 is again the log-hazard function. Then (5.18) becomes

the hazard regression model for the right censored data. Rigorously speaking, we

are considering a “marker dependent hazard model”, see Nielsen and Linton (1995),

where the log-hazard function η0(t,X(t)) depends only on the marker process, that

is, η0(t,X(t)) = η0(X(t)).
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To estimate the log-hazard function η0, the random realizations Wi = (Ni(t), Yi(t),

Xi(t)), 1 ≤ i ≤ n are collected. We write the scaled log-likelihood for a candidate

function h for η0 as

l(h) =
1

n

∑
i

(∫
T
h(Xi(t))Ni(dt)−

∫
T
Yi(t) exph(Xi(t))dt

)
.

The expected log-likelihood is thus given by

Λ(h) = E

(∫
T
h(X(t))N(dt)−

∫
T
Y (t) exph(X(t))dt

)
.

Again for the marker dependent hazard model, the definition of the above log-

likelihood agrees with the traditional log-likelihood in hazard regression based on the

random sample (Ti, Xi(t))

l(h) =
1

n

∑
i

(
h(X(Ti))I{Ti ≤ τ} −

∫ Ti∧τ

0

exph(Xi(t))dt

)
.

In this context, we could define the empirical inner product and squared norm

for square-integrable functions h1, h2 by 〈h1, h2〉n = En
∫
T Y (t)h1(X(t))h2(X(t))dt

and ‖h1‖2
n = 〈h1, h1〉n. The corresponding theoretical quantities are denoted as 〈·, ·〉

and ‖ · ‖2, where 〈h1, h2〉 = E
∫
T Y (t)h1(X(t))h2(X(t)))dt and ‖h1‖2 = 〈h1, h1〉.

The counting process regression falls into the extended linear modeling framework

with W = (N(t), Y (t), X(t)). The main theorem applies when some additional model

specific conditions are satisfied.

Condition 5.3.1. The function η0 is bounded on U .

Condition 5.3.2. For t ∈ T fixed, the Radon-Nikodym derivative of the measure

P (Y (t) = 1, X(t) ∈ ·) is fY (t)=1,X(t)(t, x) w.r.t. the Lebesgue measure on U . It is
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required that this RN derivative fY (t)=1,X(t)(t, x) as a function of (t, x) is bounded

from below and above uniformly in t ∈ T and x ∈ U .

Remark 5.3.1. Under condition 5.3.2, the inner product defined in this section

can be rewritten as the 〈h1, h2〉 =
∫
x
h1(x)h2(x)

∫ τ
0
fY (t)=1,X(t)(t, x)dtdx. Therefore,

it agrees with our general notation V (h) = ‖h‖2 =
∫
h2(x)ωcp(x)dx, for ωcp(x) =∫ τ

0
fY (t)=1,X(t)(t, x)dt.

The rest is to show that condition 3.1.1 and 3.1.2 hold.

By lemma 5.0.5,

1

2

d

dα
l(η̄ + αg)|α=0 + λJ(η̄, g) (5.19)

=
1

2
(En − E)

(∫
T
g(X(t))dN(t)

)
− [〈exp(η̄), g〉n − 〈exp(η̄), g〉].

We are about to show that

sup
g∈G

∣∣∣∣〈exp(η̄), g〉n − 〈exp(η̄), g〉
(V + λJ)(g)

1
2

∣∣∣∣ = Op

(
min

{(
1

nλ1/2q

)1/2

,

(
1

nδ

)1/2})
. (5.20)

and

sup
g∈G

∣∣∣∣(En − E)
∫
T g(X(t))dN(t)

(V + λJ)g1/2

∣∣∣∣ = Op

(
min

{(
1

nλ1/2q

)1/2

,

(
1

nδ

)1/2})
. (5.21)

Both (5.20) and (5.21) are direct applications of lemma 5.0.6. It remains to demon-

strate the conditions in lemma 5.0.6 hold.
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Noticing that

E

(∫
T
Y (t) exp(η̄(X(t)))φν(X(t))dt

)2

(5.22)

≤ E

(∫
T
Y (t) exp(η̄(X(t)))2dt

)
E

(∫
T
Y (t)φν(X(t))2dt

)
=

∫
exp(η̄(x))2ωcp(x)dx

∫
φν(x)2ωcp(x)dx

≤ K1.

The last inequality follows from (4.10) and condition 5.3.2.

The same argument can be used to see that

E

(∫
T
Y (t) exp(η̄(X(t)))bk,p(X(t))dt

)2

≤ K2δ. (5.23)

Therefore, we are able to apply lemma 5.0.6 to obtain that (5.20) holds.

On the other hand, we could construct a square integrable martingale from the

counting process N(·) as follows

M(·) = N(·)−
∫ ·

0

E(N(dt|Ft−)),

with its predictable variation process 〈M〉 =
∫ ·

0
E(N(dt|Ft−). From stochastic inte-

gral theory, the process

(∫ ·
0

g(X(t))dM(t)

)2

−
∫ ·

0

g2(X(t))N(dt|Ft−)

is also a martingale.

Now we are ready to show (5.21) with the help of lemma 5.0.6. Thus it boils

53



down to show

E

(∫
T
φν(X(t))dN(t)

)2

≤ K1, for some K1 > 0 (5.24)

and

E

(∫
T
bk,p(X(t))(X(t))dN(t)

)2

≤ K2δ, for some K2 > 0. (5.25)

E

(∫
T
φν(X(t))dN(t)

)2

(5.26)

≤ E

(∫
T
φν(X(t))dM(t)

)2

+ E

(∫
T
φν(X(t))E(N(dt)|Ft−)

)2

.

From the theory of martingale and Markov inequality, the first and second term on

the right hand side of (5.26) is equal and bounded by the following quantity

E

∫
T
φ2
ν(X(t))E(N(dt)|Ft−) = E

∫
T
φ2
ν(X(t))Y (t) exp η0(X(t))dt. (5.27)

Under Condition 5.3.1 and 5.3.2

E

∫
T
φ2
ν(X(t))Y (t) exp η0(X(t))dt (5.28)

≤ CE

∫
T
φ2
ν(X(t))Y (t)dt

= CV (φν)
.
= K1.

Combining (5.26), (5.27) and (5.28), we have proved (5.24). The same argument

can be used to see that (5.25) is true.

With (5.20) and (5.21) verified, we conclude that condition 3.1.1 (i) holds for
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counting process.

Proof of condition 3.1.1 (ii) and condition 3.1.2 can be found in Huang (2001).

5.4 Probability density estimation

Let Xi, i = 1, . . . , n be i.i.d. random samples being drawn from a probability

density f0(x) on a bounded interval U . There are two intrinsic constraints that a

f0 must satisfy, the positivity constraint that f0 ≥ 0 and the unity constraint that∫
U f0dx = 1. Our interest lies in estimating f0 based on xi’s. Assuming f0 > 0 on

U , make a logistic density transform to f0 in which f0(·) = exp η0(·)/
∫
U exp η0(x)dx

and the quantity to estimate is η0 instead, which itself is free of the two constraints

on f0. Due to the identifiability issue, to make the estimator unique, it is convenient

to consider a subspace of the spline space G under the orthogonality relative to the

L2 inner product.

Specifically, let this subspace of the spline space be G1, to make a one to one map

f0(·) = exp η0(·)/
∫
U exp η0(x)dx between G1 and the set of all density functions, take

G1 to be those splines whose integral equals zero, G1 = {g ∈ G :
∫
U g(x)dx = 0}.

Conditioning on G1 the identifiability of η is ensured. Denote the L2 inner product

and norm by 〈·, ·〉 and ‖ · ‖, G0 be the space consisting of all constant functions on

U , it follows that G1 = {g ∈ G : 〈g, gc〉 = 0, for all gc ∈ G0}.

The scaled log-likelihood at a candidate function h based on xi’s is written as

l(h) =
1

n

∑
i

(
h(xi)− log

∫
U

exph(x)dx

)
.

The expected log-likelihood therefore is given by

Λ(h) = E(h(X))− log

∫
U

exph(x)dx.
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The density model just formulated is a special case of extended linear model with

W = X. It turns out that we can apply the main theorem 3.2.1 to the context

of probability density estimation without any higher level conditions. As a note,

replacing G by the subspace G1, the lemmas in chapter 3 are valid, thus the proof

of the main theorem can be extended to the penalized spline estimator in G1. On

the other hand, it is sufficient to impose the regularity conditions on G1. In the

following, we will still check the regularity condition 3.1.1 (i) for G (thus G1) while

verify that condition 3.1.1 (ii) and condition 3.1.2 holds for G1.

By lemma 5.0.5,

−1

2

d

dα
l(η̄ + αg)

∣∣∣∣
α=0

+ λJ(η̄, g) = −1

2

n∑
i=1

g(xi) +
1

2
E(g(X)). (5.29)

Define Qn(f, h) = −1
2

1
n

∑n
i=1 q(f, h;wi) = −1

2
1
n

∑n
i=1 f(xi)h(xi), then Q(f, h) =

−1
2
E

(
f(X)h(X)

)
.

With these definitions, (5.29) can be rewritten as

−1

2

d

dα
l(η̄ + αg)|α=0 + λJ(η̄, g) = Qn(1, g)−Q(1, g). (5.30)

Because of (5.30), condition 3.1.1 (i) is just a direct application of lemma 5.0.6. The

rest is to show that

E(q(1, φν ;w1)2) < K1 and E(q(1, bk,p;w1)2) < K2δ. (5.31)

Meanwhile (5.31) is equivalent to

E(φν(X)2) < K1 and E(bk,p(X)2) < K2δ, (5.32)
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which are the properties of the basis functions φν and bk,p that have been introduced

before. Till now we complete the proof for condition 3.1.1 (i).

Next, we claim that

d2

dα2
l(g1 + α(g2 − g1)) =

d2

dα2
Λ(g1 + α(g2 − g1)) = −Var(g2(Xα)− g1(Xα)), (5.33)

whereXα has the density fXα(x) = exp gα(x)/
∫
U exp gα(x)dx and gα = g1+α(g2−g1).

Under the assumption ‖g1‖∞ ≤ K and ‖g2‖∞ ≤ K, we are able to show that

Var(g2(Xα)− g1(Xα)) �
∫
X

(g2(x)− g1(x))2dx. (5.34)

Condition 3.1.1 (ii) and condition 3.1.2 now follow from (5.33) and (5.34).

5.5 Spectral density estimation

In this section, we are going to verify condition 3.1.1 and 3.1.2 holds in the context

of spectral density estimation. We want to point it out that the formulation of the

maximum likelihood here has also been done elsewhere, such as Kooperberg et al.

(1995). The conditions appeared here is very similar to theirs.

We will first impose an additional condition on the eigenfunctions {φj}∞j=1, which

are defined under Proposition 3.1.1.

Condition 5.5.1. The eigenfunctions are uniformly bounded, to be specific, that is

maxj ‖φj(λ)‖∞ <∞.

We consider a stationary linear time series {Xt} taking the form

Xt =
∞∑

j=−∞

ajZt−j

where {Zj}∞j=−∞ are white noise with mean zero and variance σ2.

57



The theoretical autocovariance function γ(·) for this linear process {Xt} has the

expression

γ(u) = cov(Xt, Xt+u) = σ2
∑
j

aj−uaj,

while its spectral density function f(·) is given by

f(λ) =
σ2

2π

∣∣∣∣ ∞∑
j=−∞

aj exp(−ijλ)

∣∣∣∣2 − π ≤ λ ≤ π.

To fit into the general extended linear model framework, we need to impose the

smoothness condition and positive condition on the spectral density f . In the context

of linear time series {Xt}, it is more common to put the condition on the original

series if possible.

Definition 5.5.1. For any positive real number s, let l be the floor of s and α

be the remaining decimal. We call a function g on [0, π] s-smooth if g is l-times

differentiable on [0, π] and g(l) satisfies a Hölder condition with exponent α, that is,

|g(l)(λ)− g(l)(λ0)| ≤ c|λ− λ0|α for λ, λ0 ∈ [0, π].

Condition 5.5.2. {Xt} is a stationary linear process with
∑

j |aj|js <∞ for some

s > 1/2. In addition, the white noise process has normal distribution, Zj ∼i.i.d.

N(0, σ2).

Condition 5.5.3. The spectral density function f is bounded away from zero on

[0, π].

Remark 5.5.1. Under condition 5.5.2, the spectral density function is s-smooth, so

is the logarithm η = log f . Condition 5.5.3 indicates that η is bounded. Meanwhile,

the time series {Xt} is Gaussian given condition 5.5.2, the distribution assumption

on Xt will play a role in determining the asymptotic distribution of the periodogram.
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Suppose X0, . . . , XT−1 be a realization of length T of the series, it is known that

the periodogram

I(T )(λ) = (2πT )−1

∣∣∣∣T−1∑
t=0

exp(−iλt)Xt

∣∣∣∣2 − π ≤ λ ≤ π

has the following asymptotic properties:

I(T )(λk) = f(λk)Wk λk =
2πk

T
for k = 0, . . . , [T/2] (5.35)

where Wk, k = 0, . . . , [T/2], are the ratios of the periodogram and the spectral

density function evaluated at the grid points λk between [0, π]. Wk, k = 0, . . . , T/2

are asymptotically independent; The asymptotic distribution of Wk is free of f(·),

which is exponential distribution with mean one when λk is not on the boundary

of [0, π]. W0 and W[T/2] (if T is even) have approximately the χ2 distribution with

degree of freedom one, and W0,W1, . . . ,W[T/2] ; see Brockwell and Davis (1991) and

references therein.

Since the spectral density function is symmetric about zero on [−π, π] and is pe-

riodic (with period 2π), it is sufficient to model the segment on [0, π] with additional

constraints that f
′
(0) = f

′′′
(0) = f

′
(π) = f

′′′
(π) = 0 and η

′
(0) = η

′′′
(0) = η

′
(π) =

η
′′′

(π) = 0. Let G1 denote the spline space and we use the following subspace of

spline (denoted as G) as the estimation space.

G = {g ∈ G1 : g
′
(0) = g

′′′
(0) = g

′
(π) = g

′′′
(π) = 0}.

Define

ψ(y, λ; g) =

{
δπ(λ)

2
− 1

}
[g(λ) + y exp(−g(λ))]
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for 0 < λ ≤ π and y ≥ 0, where δπ(λ) = 1 if λ = π and δπ(λ) = 0 otherwise.

Set Ik = I(T )(λk) k = 1, 2, . . . , [T/2], we can write the (approximate) log-

likelihood function of the periodogram for a candidate function h ∈ G, according to

(5.35), as

l(h) =
1

[T/2]

[T/2]∑
k=1

ψ(Ik, λk, h) =
1

[T/2]

[T/2]∑
k=1

{
δπ(λk)

2
− 1

}
[h(λk) + Ik exp(−h(λk))].

Define the (approximate) expected log-likelihood function

Λ(h) =
1

[T/2]

[T/2]∑
k=1

{
δπ(λk)

2
− 1

}
[h(λk) + E(Ik) exp(−h(λk))].

The context of nonparametric spectral density belongs to the extended linear

model with W = (λ, I [T ](λ)). One may notice that instead of i.i.d. random sample

Wi’s, the observations Wi are independent but not identically distributed. The trou-

ble it causes when checking condition 3.1.1 can be overcome later on in this section.

Also, it can be seen in Theorem 8.12 of Schumaker (1981) that Lemma 3.3.2 holds

when the space is changed from G1 to G. Therefore, the proof of convergence rate

of ‖η̂− η0‖ for spectral density model is exactly the same as that for extended linear

model.

The rest is to show that Condition 3.1.1 and 3.1.2 holds.

We first check that part (i) of Condition 3.1.1 holds.

By lemma 5.0.5,

−1

2

d

dα
l(η̄+αg)

∣∣∣∣
α=0

+λJ(η̄, g) =
1

2[T/2]

∑
k

{
δπ(λk)

2
−1

}
g(λk)[Ik−E(Ik)] exp(−η̄(λk)).

(5.36)

Define Qn(f, h) = 1
2[T/2]

∑
k

{
δπ(λk)

2
− 1

}
h(λk)Ik exp(−f(λk)), then Q(f, h) =
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1
2[T/2]

∑
k

{
δπ(λk)

2
− 1

}
h(λk)E(Ik) exp(−f(λk)).

With these definitions, (5.36) can be rewritten as

−1

2

d

dα
l(η̄ + αg)|α=0 + λJ(η̄, g) = Qn(η̄, g)−Q(η̄, g). (5.37)

Lemma 5.0.6 can not be directly applied here since the summands in Qn(η̄, g) are

not identically distributed. However, we can modify the proof of lemma 5.0.6 to

accommodate the situation here. Overthere instead of bounding E(Qn(hn, φν) −

Q(hn, φν))
2 by 1

n
E(q(hn, φν , w1)2), we can directly find a bound for this term.

E(Qn(η̄, φν)−Q(η̄, φν))
2 = Var(Qn(η̄, φν)) (5.38)

= Var

(
1

2[T/2]

∑
k

{
δπ(λk)

2
− 1

}
φν(λk)[Ik − E(Ik)] exp(−η̄(λk))

)
.

By applying Theorem 10.3.2 (ii) of Brockwell and Davis (1991) together with

Condition 5.5.1 and the boundedness of ‖η̄‖∞ given in (4.5),

E(Qn(η̄, φν)−Q(η̄, φν))
2 = O

(
1

T

)
. (5.39)

Plug in (5.39) to the proof of Lemma 5.0.6, we could obtain the first result in lemma

5.0.6

sup
g∈G

∣∣∣∣Qn(η̄, g)−Q(η̄, g)

(V + λJ)(g)
1
2

∣∣∣∣ = Op

((
1

Tλ1/2q

)1/2)
. (5.40)

Similarly, we are able to derive the second result in lemma 5.0.6

sup
g∈G

∣∣∣∣Qn(η̄, g)−Q(η̄, g)

(V + λJ)(g)
1
2

∣∣∣∣ = Op

((
1

Tδ

)1/2)
. (5.41)

Therefore, Condition 3.1.1 (i) follows from (5.38), (5.40) and (5.41).
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Next, we want to check that condition 3.1.1(ii) holds.

Define gα = g1 + α(g2 − g1), taking second derivative of l(gα) with respect to α

yields

d2

dα2
l(gα) =

1

[T/2]

[T/2]∑
k=1

{
δπ(λk)

2
− 1

}
[Ik(g2(λk)− g1(λk))

2 exp(−gα(λk))]. (5.42)

To see that Condition 3.1.1 (ii) holds. It is sufficient to check that except on an event

whose probability tends to zero when T −→∞,

1

[T/2]

[T/2]∑
k=1

Ik(g2(λk)− g1(λk))
2 ≥M‖g2 − g1‖2. (5.43)

Similarly, Condition 3.1.2 is equivalent to

M2‖g2 − g1‖2 ≤ 1

[T/2]

[T/2]∑
k=1

E(Ik)(g2(λk)− g1(λk))
2 ≤M1‖g2 − g1‖2. (5.44)

It turns out that we do not bother to check (5.43) once (5.44) is satisfied. The

reason is due to the next lemma.

Lemma 5.5.1.

sup
g∈G

| 1
[T/2]

∑[T/2]
k=1 (Ik − E(Ik))g(λk)

2|
‖g‖2

= Op

(
1√
T

)
.

Proof. We first introduced some notations. Let Ai = [xi, xi+1], 0 ≤ i ≤ K − 1.

Denote Gi = {g|Ai , g ∈ G} and gi = g|Ai .
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If
| 1
[T/2]

∑
λk∈Ai

(Ik−E(Ik))gi(λk)2|
‖gi‖2 ≤ t for all i and g ∈ G, then

∣∣∣∣ 1

[T/2]

[T/2]∑
k=1

(Ik − E(Ik))g(λk)
2

∣∣∣∣ ≤ K−1∑
i=0

∣∣∣∣ 1

[T/2]

∑
λk∈Ai

(Ik − E(Ik))gi(λk)
2

∣∣∣∣
≤

K−1∑
i=0

t‖gi‖2 = t‖g‖2.

Thus

sup
g∈G

∣∣∣∣ 1
[T/2]

∑[T/2]
k=1 (Ik − E(Ik))g(λk)

2

∣∣∣∣
‖g‖2

≤ sup
i

sup
g∈G

∣∣∣∣ 1
[T/2]

∑
λk∈Ai(Ik − E(Ik))gi(λk)

2

∣∣∣∣
‖gi‖2

.

It follows that for any t > 0

P

(
sup
g∈G

∣∣∣∣ 1

[T/2]

[T/2]∑
k=1

(Ik − E(Ik))g(λk)
2

∣∣∣∣ > t‖g‖2

)
≤ P

(
sup
i

sup
g∈G

∣∣∣∣ 1

[T/2]

∑
λk∈Ai

(Ik − E(Ik))gi(λk)
2

∣∣∣∣ > t‖gi‖2

)
≤
∑
i

P

(
sup
g∈G

∣∣∣∣ 1

[T/2]

∑
λk∈Ai

(Ik − E(Ik))gi(λk)
2

∣∣∣∣ > t‖gi‖2

)
.

Let φj, j = 1, . . . , p + 1 be an orthonormal basis of Gi relative to 〈·, ·〉, gi =∑
j βjφj.

If

∣∣∣∣ 1

[T/2]

∑
λk∈Ai

(Ik − E(Ik))φj(λk)φj′(λk)

∣∣∣∣ ≤ t

p+ 1
, for j, j′ = 1, . . . , p+ 1,

then ∣∣∣∣ 1

[T/2]

∑
λk∈Ai

(Ik − E(Ik))gi(λk)
2

∣∣∣∣ ≤∑
j,j′

|βj||βj′|
t

p+ 1
≤ t‖gi‖2.
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Consequently,

P

(
sup
g∈G

∣∣∣∣ 1

[T/2]

∑
λk∈Ai

(Ik − E(Ik))gi(λk)
2

∣∣∣∣ > t‖gi‖2

)
≤
∑
i

(p+ 1)2P

(∣∣∣∣ 1

[T/2]

∑
λk∈Ai

(Ik − E(Ik))φj(λk)φj′(λk)

∣∣∣∣ > t

p+ 1

)
.

Due to condition 5.5.1, Mφ = supj‖φj‖∞ <∞, hence

P

(
sup
g∈G

∣∣∣∣ 1

[T/2]

∑
λk∈Ai

(Ik − E(Ik))φj(λk)φj′(λk)

∣∣∣∣ > t

p+ 1

)
≤ P

(
sup
g∈G

∣∣∣∣ 1

[T/2]

∑
λk∈Ai

(Ik − E(Ik))

∣∣∣∣ > t

(p+ 1)Mφ

)
.

Applying Cauchy-Schwarz inequality to the right hand side of the last inequality

yields

P

(
sup
g∈G

∣∣∣∣ 1

[T/2]

∑
λk∈Ai

(Ik−E(Ik))

∣∣∣∣ > t

p+ 1

)
≤

(p+ 1)2M2
φE[( 1

[T/2]

∑
λk∈Ai(Ik − E(Ik)))

2]

t2
.

By Theorem 10.3.2 (ii) of Brockwell and Davis (1991),

E

[(
1

[T/2]

∑
λk∈Ai

(Ik − E(Ik))

)2]
= O

(
Ni

T 2

)
,

where Ni = #{λk, λk ∈ Ai}.

Combining all the above results, it can be obtained that for any t

P

(
sup
g∈G

∣∣∣∣ 1

[T/2]

[T/2]∑
k=1

(Ik − E(Ik))g(λk)
2

∣∣∣∣ > t‖g‖2

)
≤ O

(
1

Tt2

)
.

We finish the proof of the lemma.
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From Lemma 5.5.1, both Condition 3.1.1 (ii) and 3.1.2 reduces to show (5.44),

which can be simplified to the argument that

M1‖g‖2 ≤ 1

[T/2]

[T/2]∑
k=1

g(λk)
2 ≤M2‖g‖2 (5.45)

holds except on an event whose probability tends to zero as T −→ 0 for some M1 > 0

and M2 > 0.

Finally, (5.45) can be easily justified using the definition of integral and Riemann

sum.

5.6 Diffusion process

Diffusion type processes are widely used to describe continuous time stochastic

processes with application to physical, biological, medical, economic, and social sci-

ences. See Rao (1999) for a study on the development of statistical estimation and

inference in the field of diffusion processes.

Here, as in Stone and Huang (2003), the focus is on the nonparametric estimation

of the drift coefficient as a function of some time dependent covariates while assuming

the diffusion coefficient as a function of time is known. The estimator is constructed

given continuous realizations of the relevant processes.

To be specific, we will define a one-dimensional diffusion type process {Y (t), 0 ≤

t ≤ τ} accompanied by a covariate process {X(t), 0 ≤ t ≤ τ}

dY (t) = η0(X(t))dt+ σ(t)dW (t), 0 ≤ t ≤ τ,

where 0 < τ < ∞ and W (t) is a Wiener process. The diffusion coefficient σ(t) is a

known function of time, while the drift coefficient η0(X(t)) is an unknown function of

a covariate process X(t). Moreover, let Z(t) be a {0, 1} valued process as a censoring
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indicator, Z(t) = 1 indicating the processes X(t) and Y (t) are observed , Z(t) = 0

otherwise.

The estimation of η0 will be based on a random sample of n realizations of

{(Xi(t), Yi(t), Zi(t)) : 0 ≤ t ≤ τ}, 1 ≤ i ≤ n. The scaled (partial) log-likelihood

at a candidate function h can be expressed as

l(h) =
1

n

n∑
i=1

(∫
Zi(t)

h(Xi(t))

σ2(t)
dYi(t)−

1

2

∫
Zi(t)

h2(Xi(t))

σ2(t)
dt

)
.

The expected (partial) log-likelihood is given by conditioning Y (t) on X(t), then

take expectation on X(t),

Λ(h) = E

(∫
Z(t)

h(X(t))

σ2(t)
dY (t)− 1

2

∫
Z(t)

h2(X(t))

σ2(t)
dt

)
= E

(∫
Z(t)

h(X(t))η0(X(t))

σ2(t)
dt− 1

2

∫
Z(t)

h2(X(t))

σ2(t)
dt

)

With l(h) and Λ(h) being defined above, the diffusion type of process fits the

extended linear model with W = (X(t), Y (t), Z(t)). Moreover, theorem 3.2.1 holds

for the above diffusion process under two conditions.

Condition 5.6.1. There are two positive constants M2 ≥ M1 such that M1 ≤

σ−2(t) ≤M2 whenever Z(t) = 1.

Condition 5.6.2. There are constants M4 ≥M3 > 0 such that

M3ψ(A) ≤ E

(∫
Z(t)ind(X(t) ∈ A)

)
≤M4ψ(A)

for all Borel subset A of X . Moreover, ψ(A) denotes the Lebesgue measure of A.

All we need is to verify condition 3.1.1 and condition 3.1.2 hold.
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By lemma 5.0.5

−1

2

d

dα
l(η̄ + αg)

∣∣∣∣
α=0

+ λJ(η̄, g) = −1

2

1

n

n∑
i=1

∫
Zi(t)

g(Xi(t))

σ2(t)
[dYi(t)− η̄(Xi(t))dt]

(5.46)

+
1

2
E

(∫
Z(t)

g(X(t))

σ2(t)
[η0(X(t))− η̄(X(t))dt]

)

Define Qn(f, h) = −1
2

1
n

∑n
i=1

∫
Zi(t)

h(Xi(t))
σ2(t)

[dYi(t)− f(Xi(t))dt], then it immediately

follows that Q(f, h) = −1
2
E

(∫
Zi(t)

h(Xi(t))
σ2(t)

[dYi(t)− f(Xi(t))dt]

)
.

With these definitions, (5.46) can be rewritten as

−1

2

d

dα
l(η̄ + αg)|α=0 + λJ(η̄, g) = Qn(η̄, g)−Q(η̄, g). (5.47)

Because of (5.47), condition 3.1.1 (i) is just a direct application of lemma 5.0.6. The

rest is to show that

E

([∫
Z(t)

φν(X(t))

σ2(t)
[dY (t)− η̄(X(t))dt]

]2)
< K1 (5.48)

and

E

([∫
Z(t)

bk,p(X(t))

σ2(t)
[dY (t)− η̄(X(t))dt]

]2)
< K2δ. (5.49)

For (5.48), it suffices to verify that

E

([∫
Z(t)

φν(X(t))

σ2(t)
[dY (t)− η0(X(t))dt]

]2)
≤M (5.50)

and

E

([∫
Z(t)

φν(X(t))

σ2(t)
[η0(X(t))− η̄(X(t))]dt

]2)
≤M. (5.51)

Using the fact that E(
∫
f(t,X(t))dW (t))2 = E(

∫
f 2(t,X(t))dt), we can express
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(5.50) as

E

([∫
Z(t)

φν(X(t))

σ2(t)
[dY (t)− η0(X(t))dt]

]2)
= E

(∫
Z(t)

φ2
ν(X(t))

σ2(t)
dt

)
. (5.52)

Under Condition 5.6.1 and 5.6.2, we can bound (5.52) by

M1 ·M3 ≤ E

(∫
Z(t)

φ2
ν(X(t))

σ2(t)
dt

)
≤M2 ·M4. (5.53)

Thus, (5.50) is proved to be true.

On the other hand, by applying the fact that (
∫
g(t)dt)2 ≤

∫
g2(t)dt and ‖η0‖∞ ≤

∞ and boundedness of ‖η̄‖∞ (4.5), (5.51) is upper bounded by

E

([∫
Z(t)

φν(X(t))

σ2(t)
[η0(X(t))− η̄(X(t))]dt

]2)
≤ τE

(∫
Z(t)

φ2
ν(X(t))

σ4(t)
dt

)
. (5.54)

Similarly as in (5.53), the right hand side of (5.54) is bounded by

E

(∫
Z(t)

φ2
ν(X(t))

σ4(t)
dt

)
≤M2

2 ∗M4. (5.55)

Combining (5.54) and (5.55), we finished the proof of (5.51).

In summary, (5.48) is true. The same argument remains true for (5.49). Hence

we complete the proof of condition 3.1.1 (i).

We can refer to Stone and Huang (2003) for the verification of condition 3.1.1 (ii)

and condition 3.1.2.

5.7 Nonparametric M-regression

The theoretical results in our extended linear modeling can be modified to handle

contexts in which the log-likelihood function may not be twice differentiable (the

regularity conditions are no longer feasible), e.g., nonparametric M-regression, that
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includes but may not be limited to, least absolute deviations (LAD) regression or

more generally, quantile regression and Huber’s robust regression. The current set

up finds its root in Stone (2005) and the references therein.

The idea of Nonparametric M-regression is to find some other loss functions than

the squared loss used in the ordinary regression. The (negative) loss function could

be specified through a concave function Ψ on R. One feature of Ψ is that there exists

some a1 ≤ a2, Ψ is linear with positive slope when its argument is smaller than a1

while takes the form of another linear function with negative slope when its argument

is to the right of a2. Furthermore, let ψ be the average of the left- and right-hand

derivatives of Ψ. By the above property of Ψ, ψ(x) is nonincreasing and that it

equals ψ(−∞) > 0 when x ≤ a1 and equals ψ(∞) < 0 when x ≥ a2. Consequently,

ψ(−∞) ≥ ψ(y) ≥ ψ(∞) for y ∈ R and ‖ψ‖∞ = max(ψ(−∞),−ψ(∞)).

Though ψ can only be thought of as the psuedo derivative of Ψ, the Newton-

Leibniz formula still holds, meaning

Ψ(y2)−Ψ(y1) =

∫ y2

y1

ψ(y)dy, y1, y2 ∈ R

and hence that

|Ψ(y − θ)−Ψ(y)| ≤ |θ|‖ψ‖∞ θ, y ∈ R.

As in the regression setup, consider a pair of random variables (X, Y ) with X

being an U -valued and Y being real-valued. Suppose the joint density function

of (X, Y ) is positive on U × R. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be independent

observations from the same distribution as (X, Y ). Then the scaled (normalized)

log-likelihood function is formulated by replacing the negative squared loss with Ψ
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(the shift term does not affect the estimation of η0, is added just for later derivation),

l(h) =
1

n

n∑
i=1

[Ψ(Yi − h(Xi))−Ψ(Yi)].

Hence the expected log-likelihood is simply written as

Λ(h) = E[Ψ(Y − h(X))−Ψ(Y )].

For better understanding, we will pause for some concrete examples in the context

of nonparametric M-estimation. Consider the choice of Ψ(y) = −(1 − p)y− − py+,

where y− = max(−y, 0) while y+ = max(y, 0), this type of Ψ will lead to a conditional

p-th quantile function estimator. The corresponding ψ-function is ψ(y) = 1 − p for

|y| < 0, ψ(0) = 1/2 − p and ψ(y) = −p for |y| > 0. Another famous example was

introduced by Huber et al. (1964) with the purpose of robust estimation, there they

proposed Ψ(y) = −y2/2 for |y| ≤ c and Ψ(y) = −c|y| + c2/2 for |y| > c, where c is

a positive constant. The corresponding psuedo derivative function ψ can be easily

obtained also, ψ(y) = −y for |y| ≤ c and ψ(y) = −c sign(y) for |y| > c.

As pointed out in Stone (2005), the function −ψ could define a finite measure

on R which assigns measure in the following way: For a < b, the interval (a, b] has

measure ψ(a+)−ψ(b+). In particular, the whole real line has a finite positive measure

ψ(−∞) − ψ(∞). As the general measure theory shows, the newly defined measure

can be decomposed to be the summation of an absolutely continuous component, a

discrete component and a singular component.

It is denoted later in this section that (X, Y ) has a joint density f(x, y) and a

marginal density fX(x) for X, the former is bounded on U × R while the latter is

bounded on U .
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Using the joint density f(x, y), the expected log-likelihood has an expression

Λ(h) =

∫
X

(∫
R
[Ψ(y − h(x))−Ψ(y)]f(x, y)dy

)
dx.

Let g1 and g2 be bounded functions on X . Then

d

dα
Λ(g1 + αg2) =

∫
X
g2(x)

(∫
R
ψ(y − g1(x)− αg2(x))f(x, y)dy

)
dx.

Moreover, by Fubini’s theorem,

d2

dα2
Λ(g1 + αg2) = −

∫
X
g2

2(x)

(∫
R
f(x, y)dψ(y − g1(x)− αg2(x))

)
dx (5.56)

in the sense that

∫ α2

α1

d2

dα2
Λ(g1 + αg2)dα =

d

dα
Λ(g1 + αg2)

∣∣∣∣
α2

− d

dα
Λ(g1 + αg2)

∣∣∣∣
α1

.

It follows from (5.56) that there are positive numbers M3 and M4 such that

−M3‖g2‖2 ≤ d2

dα2
Λ(g1 + αg2) ≤ −M4‖g2‖2.

Thus condition 3.1.2 holds for the nonparametric M-regression model.

Now let’s verify that condition 3.1.1 (i) holds for this model as well.

According to lemma 5.0.5 and the definition of l(h) and Λ(h)

−1

2

d

dα
l(η̄ + αg)

∣∣∣∣
α=0

+λJ(η̄, g) = −1

2
(En − E)[g(X)ψ(Y − η̄(X))]. (5.57)

Define Qn(f, g) = −1
2
En[g(X)ψ(Y − η̄(X))], then Q(f, g) = −1

2
E[g(X)ψ(Y −

η̄(X))].
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With these definitions, (5.57) can be rewritten as

−1

2

d

dα
l(η̄ + αg)

∣∣∣∣
α=0

+λJ(η̄, g) = Qn(η̄, g)−Q(η̄, g). (5.58)

The rest is to show that

E[φ2
ν(X)ψ2(Y − η̄(X))] < K1 (5.59)

and

E[b2
k,p(X)ψ2(Y − η̄(X))] < K2δ. (5.60)

(5.59) ((5.60)) is easily obtained by the boundedness of ψ and the fact that

E[φ2
ν(X)] = 1 (E[b2

k,p(X)] ≤ Cδ for some C not depending on k).

Since l(h) is not twice differentiable, in the light of Stone (2005), we need the

following condition instead of 3.1.1 (ii), which only involves the first derivative

Condition 5.7.1. There is a constant M > 0 such that, with probability tending to

one as n −→∞, we have

sup
g∈G

(
d

dα
l(η̄ + αg)

∣∣∣∣
α=1

− d

dα
l(η̄ + αg)

∣∣∣∣
α=0

)
≤ −M‖g‖2.

With condition 3.1.1 (ii) replaced by condition 5.7.1 and other conditions re-

mained, we are still able to prove that theorem 3.2.1 holds for the nonparametric

M-regression model.

The approximation error part remains the same as its correspondence in chapter

4. Some adjustments are needed to obtain the estimation error.

Suppose condition 5.7.1 is true, it is easy to derive that, for n sufficiently large
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and any 1 > ε > 0,

sup
g∈G

(
d

dα
[−l(η̄ + αg) + λJ(η̄ + αg)]

∣∣∣∣
α=1

− d

dα
[−l(η̄ + αg) + λJ(η̄ + αg)]

∣∣∣∣
α=0

)
(5.61)

≥ min{M, 2}(V + λJ)(g)

holds except on an event whose probability is less than ε.

On the other hand, it is follows from condition 3.1.1 (i) that for all g ∈ G satisfying

(V + λJ)(g) = a2 min

{
1

nλ1/2q
, 1
nδ

}

∣∣∣∣ ddα
[
− l(η̄ + αg) + λJ(η̄ + αg)

]∣∣∣∣
α=0

∣∣∣∣ (5.62)

≤ 2aOp

(
min

{
1

nλ1/2q
,

1

nδ

})
.

Thus for g satisfying (V + λJ)(g) = a2 min

{
1

nλ1/2q
, 1
nδ

}
we can choose a sufficiently

large such that for n sufficiently large, except on an event whose probability is less

than ε,

d

dα

[
−l(η̄ + αg) + λJ(η̄ + αg)

]∣∣∣∣
α=1

> 0. (5.63)

Hence

−l(η̄ + αg) + λJ(η̄ + αg) > −l(η̄ + g) + λJ(η̄ + g) α > 1

for all g with (V + λJ)(g) = a2 min

{
1

nλ1/2q
, 1
nδ

}
.

Consequently, for n sufficiently large, except on an event having probability less

than 2ε, (V + λJ)(η̂ − η̄) ≤ a2 min

{
1

nλ1/2q
, 1
nδ

}
.

Finally for a detailed proof of validity of condition 5.7.1, refer to section 5 of
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Stone (2005).
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6. CONCLUSION AND FUTURE WORK

In this dissertation, the convergence rate of penalized spline is brought into at-

tention. Compared to the existing work, which deals with one specific model or some

selected asymptotic scenarios, the main theorem here is very general, it holds for the

set of extended linear models under various asymptotic scenarios. The next step

might be to analyze the asymptotic distribution of the penalized spline estimator.

There are some related results, see chapter 2. However, it is worthy to explore a

general approach.
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APPENDIX A

PROOFS ON DETAILS

A.1 Proof of equation (5.34) in probability density estimation

In section 5.4, we have outlined the lines in checking condition 3.1.1 (ii) and

condition 3.1.2 with (5.34) left to be proved. We display (5.34) again here.

Var(g2(Xα)− g1(Xα)) �
∫
X

(g2(x)− g1(x))2dx. (A.1)

Let’s denote the density of Xα by fα, refering back to section 5.4, fα(y) =

exp(g1(y)+α(g2(y)−g1(y)))∫
exp(g1(x)+α(g2(x)−g1(x)))dx

.

By the definition of variance, the left hand side of (A.1) is equal to

∫
(g2(y)− g1(y))2fα(y)dy − E(g2(Xα)− g1(Xα))2, (A.2)

where E(g2(Xα)− g1(Xα)) =
∫

(g2 − g1)(x)fα(x)dx.

It is very easy to see that the left hand side of (A.1) is bounded by the right hand

side. The rest is to show that the right hand side is upper bounded by the left hand

side up to multiplication of a constant. Since we have the equivalent form (A.2), it

is enough to verify that

E(g2(Xα)− g1(Xα)) ≤ A

∫
(g2(y)− g1(y))2fα(y)dy (A.3)

for some 0 < A < 1.
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Since g1, g2 satisfy that
∫
gi(x)dx = 0, i = 1, 2, therefore

E(g2(Xα)−g1(Xα)) =

∫
(g2−g1)(x)fα(x)dx =

∫
(g2−g1)(x)(fα(x)−t)dx, for any t ∈ R.

(A.4)

Applying the Cauchy Schwartz inequality to the right hand side of (A.4) leads to

E(g2(Xα)− g1(Xα)) ≤
∫

(g2(x)− g1(x))2fα(x)dx

∫
(fα(x)− t)2

fα(x)
dx. (A.5)

Hence it remains to show that

∫
(fα(x)− t)2

fα(x)
dx ≤ A, for some 0 < A < 1. (A.6)

Or equivalently,

t

∫
2dx− t2

∫
1

fα(x)
dx ≥ δ, for some δ > 0. (A.7)

The existence of some t such that (A.7) holds will follow from the basic knowledge

of quadratic functions. Hence the proof is finished.
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