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ABSTRACT

Planning motion is an essential component for any autonomous robotic system.

An intelligent agent must be able to efficiently plan collision-free paths in order to

move through its world. Despite its importance, this problem is PSPACE-Hard which

means that even planning motions for simple robots is computationally difficult.

State-of-the-art approaches trade completeness (always able to provide a solution

if one exists or report none exists) for probabilistic completeness (probabilistically

guaranteed to find a solution if one exists but cannot report if none exists) and

improved efficiency. These methods use sampling-based techniques to design a se-

quence of motions for the robot. However, as these methods are random in nature,

the probability of their success is directly related to the expansiveness, or openness,

of the underlying planning space. In other words, narrow passages, complex systems,

and various constraints make planning with these methods difficult. On the other

hand, humans can often determine approximate solutions for these difficult solutions

quickly.

In this research, we explore user-guided planning in which a human operator

works together with a sampling-based motion planner. By having a human-in-the-

loop, a human can steer a sampling-based planner towards a solution. This strategy

can provide benefits to many applications such as computer-aided design and virtual

prototyping, to name a few.

We begin by classifying and creating simple models of common user-guided and

heuristic-guided motion planning methods. Our models encompass three forms of

user input: configuration-based, path-based, and region-based input. We compare

and contrast these approaches and motivate our choice of a region-based collaborative
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framework. Through this analysis, we gain insight into user-guided planning and

further motivate methods that harness low interface complexity and work entirely

in workspace, which is most natural to a human operator. Further, we extend the

theory of expansiveness to analyze the various types of user inputs.

Our novel region-based collaboration framework takes advantage of human intu-

ition by allowing a user to define regions in the workspace to bias and/or constrain

the search space of a sampling-based motion planner. This approach allows a user

to bias a high dimensional search with low dimensional input, supports intermittent

user hints, and empowers a user to customize motion solutions.

Finally, we extend region steering to both non-holonomic robotic systems and a

human-inspired approach to motion planning.

Our results show that this region-based framework can aid many variants of

sampling-based planning, reduce computation time, support solution customization,

and can be used to develop advanced heuristic methods for solving motion planning

problems. We provide experiments exemplifying our approach in planning motions

for complex robotic applications such as mobile manipulators, car-like, and free-flying

robots.
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1. INTRODUCTION

The human mind is a powerful problem solving tool. Many domains leverage this

by combining automation with human guidance. Robotics is no exception as both

teleoperation [38] and user-guided motion planners, e.g., [45, 8, 59, 94, 102], have

been developed to explore these synergies over the past few decades.

Our study focuses on motion planning, or the problem of finding a valid (e.g.,

collision-free) path for a robot among various robot and/or obstacle constraints.

Motion planning has application in robotics, virtual reality [7, 64, 65, 83, 82], bioin-

formatics [90, 5, 4, 92, 91, 95], and computer-aided design [8, 59, 94, 102], among

others.

Over the past few decades, many approaches have been proposed to solve the

motion planning problem. Early research classified the general problem in the com-

plexity class PSPACE-Hard [81], which implies there is little hope to find an efficient,

complete algorithm for this problem — a complete algorithm will find a solution to a

problem if one exists or report ‘NO’ if none exists. In fact, the best known complete

algorithm is exponential in the complexity of the robot [13]. Most variants of the

motion planning problem are equally difficult. Thus, research has explored other

avenues for success, one of which is combining automated algorithms with human

guidance.

A specific application that illustrates the potential benefit of combining user-

guidance and motion planning is Product Lifecycle Management (PLM), shown in

Figure 1.1, which is the process of design, implementation, and maintenance of prod-

ucts. Motion planning can be used in a few portions of PLM. First, in the design

phase, virtual prototyping could be used to validate constraints of possible designs.
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Figure 1.1: Overview of Product Lifecycle Management (PLM). Figure adapted
from [102].

Planning is important here to make sure the product can be maintained properly,

i.e., parts can be replaced. Second, planning is often found in the manufacturing

of products as robots are often used to make products. Third, in the service phase

motion planning can be used in determining how to maintain the product. If user in-

put/assistance can be incorporated into PLM, then these phases can be made better

and/or more efficient and ultimately cheaper. For example, if user-guided planning is

incorporated directly in a computer-aided design tool, then an engineer can validate

constraints of the design in a cheap and efficient manner as compared with creating

expensive and time consuming physical mock-ups of the product. There are specific

challenges to designing a collaborative planner for these applications: (1) collabora-

tion should occur seamlessly in real-time, (2) a user should provide “good” input to
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aid the planner — “good” input will aid the planner in identifying the most difficult

portions of a planning problem, (3) the planner should plan as close to real-time as

possible, and (4) the planner should provide quality feedback on the effectiveness of

the user input. This dissertation proposes a novel framework designed to address

these challenges and constraints.

There are numerous automated approaches to motion planning. State-of-the-

art automated techniques solve this problem through sampling-based methods [53,

43, 61]. These techniques approximate the free planning space by building random

graphs, often called roadmaps, that contain representative feasible paths for the

robot. As an example, Probabilistic RoadMaps (PRMs) [53], randomly sample the

entire planning space and connect nearby samples together to form a roadmap. The

map can then be queried for paths through the space by first connecting the start

and goal configurations to the roadmap, and then by performing a single-source

shortest path search in the graph, e.g., A∗ [33]. However, it is known that these

sampling-based techniques lack efficiency in the presence of narrow passages and

difficult robot constraints [42, 52, 40, 43, 58, 41]. In these scenarios, research has

aimed at developing intelligent approaches which bias sampling, e.g., [2, 11, 24, 21,

71], yet there are still problems which are difficult to solve efficiently.

User-guided planners encompass methodologies to limit the search space of the

planner through user input. By specifying a presumably important (or unimportant)

portion of the space, the user enables the planner to focus on a particular subset

of the planning problem. Previous user-guided planners address this difficulty by

attempting to harness the power of human intuition [45, 8, 59, 94, 102]. In these

systems, the human often performs a global scene analysis of the workspace, while the

machine handles high-precision tasks such as collision detection and low level path-

finding [48, 32]. Recent work has explored sampling-based planning strategies that
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incorporate interactive and collaborative planning techniques [94]. These approaches

are restricted both to specific sampling-based planners and to an interface which can

fully control the robot. To date, no one has come up with theoretically grounded

methods for incorporating user input in a planner to solve problems cooperatively,

which is the focus of this dissertation.

This dissertation addresses the challenges of providing an effective collaboration

mechanism that (1) allows simple user input (not dependent on the complexity of the

robot), (2) can work with any sampling-based motion planner, and (3) provides for

efficient and effective collaboration and planning. Further, we develop and analyze

the theoretical foundations of user-guided planning leading to a deeper understanding

of how much and when user-input aids a sampling-based motion planner.

1.1 Research Contribution

In this work, we first seek to classify, model, and compare common user-guided

approaches. We classify methods based upon the types of input they gather from

the user. In this research, we focus on region-based approaches as they have a good

trade-off between interface complexity and performance impact.

We introduce a region-based framework (Figure 1.2), in which a user can collab-

oratively interact with a sampling-based planner by specifying a workspace region

for the planner to prefer or avoid. In turn, this planner can inform the user of its

progress and how useful the regions are to the user. Our framework maintains prob-

abilistic completeness of the automated planner used. We show how this framework

can be extended for common variants of sampling-based planning.

Our framework is demonstrated in an interactive system that requires only in-

termittent user action on a standard computer interface, e.g., a mouse. The goal of

this work is to understand how these hints and cooperation affect sampling-based
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Figure 1.2: Overview of our region-based collaborative framework.

planning. The analysis and optimization of the user interface is the subject of future

study.

We analyze each of the user input modalities. To do this, we expand on the con-

cept of expansiveness [41] to theoretically analyze the impact these modalities have

on the planning process. Our results indicate two things for each user-input modal-

ity. First, we define conditions for each user-input method for when the input will

aid a sampling-based motion planner. Second, we show that when these conditions

are met, the user-input will make a motion planning problem “easier” and lead to

more efficient planning for a sampling-based planner.

We show how this region-based framework can be extended to handle complex

robot constraints such as non-holonomic constraints, e.g., car-like robots, and how

the user-strategies seen in region steering can inspire a novel automated planning

approach using geometric techniques for scene analysis.

In summary, this work proposes:
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• classification, modeling, and analysis of three types of user-guided input modal-

ities: namely configuration-based, path-based, and region-based input,

• a generic region-based framework for collaborating with any sampling-based

planner,

• a theoretical analysis of various user-guided input modalities quantifying both

when user input aids in planning and proving that input will make the problem

“easier” for a sampling-based motion planner,

• variants of our framework geared toward specific sampling-based planning

paradigms, non-holonomic constraints, and a novel human-inspired approach

to motion planning,

• and experimental validation of the aforementioned theoretic and algorithmic

developments.

Portions of this research were previously published. The basic framework was

presented as Region Steering in the proceedings of the Eleventh Workshop on the

Algorithmic Foundations of Robotics (WAFR) [27]. The variants of our framework

applied to graph-based, tree-based, and hybrid sampling-based planning approaches

were published in the proceedings of the Seventeenth International Symposium on

Robotics Research (ISRR) [26]. The discussions of user-guidance input models and

theoretical impact of user-guidance on sampling-based motion planning were pub-

lished in the proceedings of the International Conference on Intelligent Robots and

Systems (IROS) [25].

1.2 Outline

Chapter 2 discusses important foundational knowledge in representing robots,

configuration space, and current approaches to solving the motion planning problem.
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Chapter 3 categorizes, models, and compares existing user-guided motion planning

algorithms to motivate the algorithmic decisions taken in our region-based user-

guidance. Our region-based framework is presented in Chapter 4, and we discuss

extensions of the framework to three common paradigms of sampling-based plan-

ning: graph-based, tree-based, and hybrid approaches. We revisit the various user

input strategies and introduce the concept of augmented (ǫ′, α′, β ′)–expansiveness

as a means to theoretically study the models in Chapter 5. Then we delve into two

interesting extensions of our framework. First in Chapter 6, we extend our frame-

work for handling non-holonomic constraints. Second in Chapter 7, we discuss an

automated approach inspired from the user-guidance seen in our approach. Finally,

we conclude and discuss future work in Chapter 8.
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2. PRELIMINARIES AND RELATED WORK

In this chapter, we discuss motion planning preliminaries and relevant related

work.

2.1 Preliminaries

In this section, we discuss preliminary definitions of modeling motion planning

problems, and we discuss a few of the basic building blocks for sampling-based motion

planning algorithms.

2.1.1 Motion Planning

A robot is a movable object whose position and orientation can be described by n

parameters, or degrees of freedom (dofs), each corresponding to an object component

(e.g., object positions, object orientations, link angles, and/or link displacements).

The following definitions provide the formal specification of this placement, called a

configuration (Definition 2.1.1), and the set of all placements, called the configuration

space (Cspace) [67] (Definition 2.1.2).

Definition 2.1.1. A configuration is a unique placement of the movable object in

an environment. It is described by a point q = 〈x1, x2, ..., xn〉 in an n-dimensional

space (where xi is the ith dof).

Definition 2.1.2. The configuration space (Cspace) is the set of all configurations,

feasible or not.

The Cspace may be partitioned into two subsets, free space (Cfree) and obstacle

space (Cobst), Definition 2.1.3 and Definition 2.1.4 respectively. The boundary be-

tween the two subsets is referred to as the contact space and is denoted by ∂Cobst

(Definition 2.1.5).
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Definition 2.1.3. The free space (Cfree) is the subset of all feasible configurations

in Cspace.

Definition 2.1.4. The obstacle space (Cobst) is the union of all infeasible config-

urations in Cspace. It can be described as Cspace \ Cfree.

Definition 2.1.5. The contact space (∂Cobst) is the boundary of Cobst.

In general, it is infeasible to compute Cspace explicitly [81, 13], but we can often

determine the validity of a single configuration quite efficiently, e.g., by performing

a collision detection test in the workspace, the robot’s natural space. Validity is

often defined as collision-free (i.e., avoiding both self-collision and collision with the

environment) but can be generalized to other constraints such as closure constraints

for closed chain systems [60] or energy requirements for computational biology ap-

plications [90, 5, 4, 92, 91, 95].

Using the configuration space abstraction, the motion planning problem becomes

that of finding a continuous trajectory in Cfree from a given start configuration to a

goal configuration or region.

2.1.2 Local Transitions

Often in motion planning, we are concerned with proximity between two config-

urations, which is measured by a distance metric (Definition 2.1.6). Many metrics

are possible, e.g., Euclidean, Manhattan, or Minkowski distances, and ideally should

approximate the cost of transitioning between two configurations. In other words, a

lower distance should represent an easier transition between the two configurations.

Definition 2.1.6. A distance metric δ(q1, q2) measures the distance between two

configurations q1 and q2.
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When two configurations can be connected by a simple path, these configurations

are said to be visible to each other. Visibility is checked by a local planner that

returns a sequence of configurations such that all are in Cfree and the distance between

consecutive configurations is below some resolution threshold or reports that no path

is found. Local planners are often deterministic and must either be recomputable or

stored. While in principle any local planner can be used, Definition 2.1.7 describes

a common strategy, a straight-line interpolation through Cspace, that is also used in

this work.

Definition 2.1.7. Two configurations q1 and q2 are visible if q1q2 ∈ Cfree, where

q1q2 is a straight-line interpolation in Cspace. Let Visible(q1, q2) be a function which

verifies this constraint up to a particular environmental resolution, referred to as a

local planner.

Other common local planners include rotate-at-s [3] (which translates a configu-

ration to a specified percentage, s, of its path towards its goal, rotates it, and then

completes the translation to the goal), A∗ [33], and Toggle Local Planning [23] (which

performs local planning in a 2-dimensional triangular subspace of Cspace).

We define a sequence of local transitions as a path (Definition 2.1.8).

Definition 2.1.8. Two configurations qi and qj are adjacent if δ(qi, qj) ≤ r, where r

is an environmental resolution. A path Π = {q1, q2, . . . , qm} is a continuous sequence

of adjacent configurations.

2.1.3 Regions

We define a region as any bounded volume in the workspace (Definition 2.1.9).

Two common examples are axis-aligned bounding boxes (AABBs) and bounding

spheres (BSs), shown in Figure 2.1.

10



p1

p2

(a) Axis-Aligned Bounding Box

p

r

(b) Bounding Sphere

Figure 2.1: Region examples.

Definition 2.1.9. A region R is any bounded volume in the workspace.

The usage of bounding volumes is not unique to motion planning and can be found

in many fields. For example, collision detection libraries use bounding volumes to

expedite validity checking of configurations [66].

“Region” can also be seen as a very broad term. A region might be seen as a path

or constraint in the workspace to bias planning in Cspace. For example, one could

imagine selecting a wall as a contact-constraint for an end-effector of an articulated

robot. There are many possibilities, and we selected a few representative and simple

region types for our study.

2.2 Sampling-based Motion Planning

Because of the cost of explicitly computing Cspace [81, 13], research has turned to

sampling-based techniques to efficiently explore Cfree for valid paths. These meth-

ods generally fall under two classes: graph-based approaches, e.g., Probabilistic

RoadMaps (PRMs) [53], and tree-based approaches, e.g., Rapidly-exploring Ran-

dom Trees (RRTs) [61] or Expansive Space Trees (ESTs) [43].
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Algorithm 1 Probabilistic RoadMap (PRM) Construction

Input: A Environment e
Output: A Roadmap G
1: G = {V,E} ← {∅, ∅}
2: while ¬done do

3: V ← Sample(e)
4: Connect(G, V )
5: return G

2.2.1 Graph-based Techniques

Probabilistic RoadMaps (PRMs) [53], shown in Algorithm 1, belong to the class

of graph-based approaches. They construct a map of Cfree by first randomly sam-

pling valid configurations. Then, nearby samples are connected to form the edges of

the roadmap by validating paths using some simple and fast local planner (e.g., a

straight-line in Cspace). This process is repeated until an end condition is reached, e.g.,

a maximum number of configurations have been sampled. After construction, start

and goal configurations are connected to the roadmap (using the local planner) and a

graph search, e.g., A∗ [33], extracts a solution path. PRMs are particularly suited for

solving many start and goal queries in the same environment because the roadmap

does not need to be recomputed. Various sampling schemes [2, 11, 39, 22, 24, 21]

and local planners [46, 3, 24] have been used, and these algorithms are easily imple-

mentable, computationally efficient, and applicable to a wide variety of robots.

An important shortcoming of these methods is their poor performance on prob-

lems requiring paths that pass through narrow passages in the free space. This is a

direct consequence of how the nodes are sampled from Cfree. For example, using the

traditional uniform sampling over Cfree [53], any corridor of sufficiently small volume

is unlikely to contain any sampled nodes whatsoever [42, 52, 40, 43, 58, 41]. A num-

ber of strategies have been proposed to modify the sampling strategy to increase the
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number of nodes sampled in narrow corridors.

Obstacle-Based PRM (OBPRM) [2] and Uniform OBPRM (UOBPRM) [21] sam-

ple configurations near Cobst surfaces either by pushing configurations to the Cobst

boundary or by finding surface intersections of randomly placed line segments.

UOBPRM has been theoretically and experimentally shown to generate configura-

tions uniformly distributed on Cobst surfaces.

Gaussian PRM [11] and Bridge Test PRM [39] filter samples with inexpensive

tests to find samples near Cobst boundaries or directly in narrow passages, respectively.

However, both methods use the same basic sampling as uniform random sampling

and suffer from needing many samples to find one in a narrow passage. Additionally,

both methods suffer from parameter tuning, which can greatly affect the performance

and quality of the mappings produced.

Toggle PRM [22, 24] performs a coordinated mapping of both Cfree and Cobst.

It retains witnesses from failed connection attempts in one space to augment the

roadmap in the opposite space. It theoretically and experimentally outperforms

uniform random sampling. Toggle PRM can efficiently map “separable” narrow

passages, which are those passages that have one less dimension than the overall

problem [24].

Some planners transition the problem to other types of spaces to provide more

efficient sampling for problems with kinematic constraints, e.g., robots with closure

constraints. One method, Reachable Volume sampling [96, 71, 70, 72] performs sam-

pling in Reachable Volume Space, which is an implicit representation of all constraint

satisfying samples, in order to plan effectively in these scenarios.

PRM∗ [51] is a PRM variant that finds asymptotically optimal paths according

to some cost function. It differs from PRM in two ways: the number of neighbors

considered for connection is a function of the current roadmap size (instead of fixed),
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and it attempts all such connections, even if they are already in the same connected

component (most PRM implementations ignore such neighbors for efficiency). The

cost function is typically path length. PRM∗ can optimize other cost functions, but

these have not been well explored. While PRM∗ produces asymptotically optimal

paths, in practice it requires large roadmaps to do so, and thus is computationally

expensive.

Asymptotically near-optimal PRM planners reduce the size of roadmaps produced

by PRM∗ without a significant reduction in path optimality using sparse roadmap

spanners [68]. This work filters out edges of the original PRM∗ graph retaining only

those that guarantee that paths between nodes are at most a constant stretch factor

greater in cost than the optimal path. While this work reduces the number of edges

required, it does not address the issue that all sampled nodes are included in the

graph, thus still requiring infinite-sized graphs to meet the near-optimality goals.

This infinite node problem is addressed in [28] by only accepting nodes that meet

certain coverage, connectivity, and path quality criteria.

2.2.2 Tree-based Techniques

Rapidly-exploring Random Trees (RRTs) [61] and Expansive Space Trees (ESTs)

[43] belong to the class of tree-based approaches tailored for solving single-query

motion planning problems. RRTs, shown in Algorithm 2, iteratively grow a tree

outwards from a root configuration qroot. In each expansion attempt, a random

configuration qrand is chosen, and the nearest configuration within the tree qnear is

extended towards qrand up to or at a fixed step size ∆q. From this extension, a new

configuration qnew is computed and added to the tree if and only if there is a valid

path from qnear to qnew. RRTs have been quite useful for a broad range of robotic

systems including dynamic environments, kinodynamic robots, and non-holonomic
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Algorithm 2 Rapidly-exploring Random Tree (RRT) Construction

Input: An Environment e, a root configuration qroot, and a step-size ∆q
Output: A Tree T
1: T = {V,E} ← {{qroot}, ∅}
2: while ¬done do

3: qrand ← GetRandomCfg(e)
4: qnear ← NearestNeighbor(T, qrand)
5: qnew ← Extend(qnear, qrand,∆q)
6: T.Update(qnear, qnew)
7: return T

robots. They are probabilistically complete and have an exponential convergence to

the sampling distribution over Cfree because of Voronoi bias, i.e., RRTs explore Cfree

efficiently. Despite these important properties, RRTs suffer in the presence of narrow

passages or very complex planning systems. In this section, we highlight a few of the

RRT variants most relevant to this research.

In an effort to solve single query problems faster, RRT-Connect [55] constructs

two trees, one rooted at a start configuration qs and one rooted at a goal configuration

qg. Each tree grows towards the other using a greedy heuristic. Once the two trees

meet, a path can be extracted between qs and qg using a simple path finding algorithm

in the tree. This work also showed the benefit of allowing RRTs to grow with variable

step sizes in their greedy heuristic. More specifically, a tree expansion is sometimes

allowed to extend until either an obstacle, a maximum expansion distance, or qrand

is reached instead of a fixed step size ∆q.

There are a few approaches which attempt to limit needless RRT extensions. RRT

with collision tendency [17] tracks which inputs have been tried when extending a

node to reduce duplicated computations. Once all inputs have been tried, the node

is excluded from nearest neighbor selection. Dynamic-Domain RRT [103] biases the

random node selection to be within a radius r of qnear or expansion will not occur. The
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radius is dynamically determined from failed expansion attempts. RRT-Blossom [50]

uses the idea of regression constraints to only add edges to a tree which explore

new portions of the space. This algorithm also proposes a flood-fill approach when

expanding from a node. Reachability-guided RRT [87] looks at reducing needless

extensions by only expanding from a node if qrand is closer to the reachability set of

a node than the node itself.

Obstacle-based RRT (OBRRT) [84] exploits obstacle information to bias the

growth of the tree. Influenced by OBPRM [2] where samples are generated near

Cobst surfaces, OBRRT incrementally chooses growth methods based on user-provided

probabilities. There are nine growth methods presented including biasing growth

with random vectors, random obstacle vectors, tangent obstacle vectors, and even a

medial axis biased growth, among others.

Retraction-based motion planning has been explored, primarily to enhance navi-

gation of narrow passages. Retraction-based RRT [104] uses information gained via

obstacle contact analysis and optimization to retract RRT growth along the bound-

ary of Cobst to improve RRT performance in narrow passages. It was later extended to

handle articulated models [76]. Selective Retraction-based-RRT (SR-RRT) [62] uses

tests such as a line bridge-test to focus the expensive retractions to narrow passages

and avoid growth in open areas of Cfree.

Transition-RRT (T-RRT) [49] is a method for growing trees along a cost-map

over Cspace. In this approach, a cost-map is defined over the space, and optimization

techniques are used to explore this space. However, T-RRT requires a definition of

an allowed transition cost threshold that can be difficult to tune. This method does

not guarantee any growth along the medial axis of the space and does not optimize

the cost of the path. However, T-RRT has been adopted for obstacle clearance in

the workspace and performs well in practice.
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RRT∗ [51] is an approach to ensure asymptotic optimality of the tree. RRT∗ ex-

pands in the same way as RRT except after expansion the tree will locally “rewire”

itself to ensure optimization of the cost function. RRT∗ has been shown to be quite

effective in asymptotically finding shortest paths. As with PRM∗, it can handle dif-

ferent cost functions, but these have not been explored in the literature. In practice,

RRT∗ requires many iterations to produce near optimal solutions.

2.2.3 Hybrid Techniques

There have been successful approaches combining PRMs and RRTs with the

goal of achieving scalability on high performance computers [78] or more effectively

exploring narrow passages [86]. Commonly, these approaches use some sort of global

sampling over the space, i.e., PRM techniques, to cover Cspace, and then use RRTs

for local exploration to achieve high roadmap connectivity.

RRTLocTrees [93] grows local trees rooted at random samples that are unable to

easily connect to other trees. RRTLocTrees attempts to connect every new sample

to local trees with probability pgrow, which tunes the growth of the two global trees

(rooted at the start and goal) relative to the local trees. Attempts to merge trees

occur when the bounding box of a local tree has grown.

Multi-Modal-PRM [36] can also combine different planning strategies and has

shown success in manipulation and legged locomotion applications.

2.2.4 Completeness and Expansiveness

Sampling-based planners are often probabilistically complete [19]. The probabilis-

tic completeness property implies that the probability of finding a solution, if one

exists, will tend to one as the number of random selections (samples) tends toward

infinity. It is a loose guarantee on reliably being able to solve a problem.

Beyond this, some research has explored bounds on the expected number of sam-
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Figure 2.2: Configuration q and its visibility set V (q) (red).

ples required to solve a particular problem instance. One common approach to

analysis is through expansiveness [41], which we also use in this work. Loosely, if

a problem exhibits expansiveness, then uniform sampling will perform adequately.

Before we can define expansiveness, we must explore a few preliminary concepts.

The visibility set (Definitions 2.2.2 and Figure 2.2) of a configuration or a set of

configurations is the subset of Cfree for which Visible(q1, q2) returns true. Visibility

has been a useful concept in sampling-based planners [89] and experimental analyses

of sampling-based planners [74].

Definition 2.2.1. The Visibility Set [41] V (q) of a configuration q is the set of

all configurations q′ in Cfree such that a local planner is able to connect q and q′, i.e.,

Visible(q, q′) = true.

V (q) = {q′ ∈ Cfree|Visible(q, q′)}

Definition 2.2.2. The Visibility Set [41] V (Q) of a set of configurations Q is the

union of the visibility sets of the individual configurations in Q.

V (Q) =
⋃

q∈Q

V (q)
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An essential property of Cfree is ǫ–‘goodness’, Definition 2.2.3, or the ability of

all configurations in Cfree to be connectible to at least an ǫ proportion of other

configurations in Cfree. From here on, without loss of generality, we assume Cfree is

one connected component. Let µ(X) denote the hypervolume, or the measure, of a

set X .

Definition 2.2.3. Let ǫ be a constant in (0, 1]. A free space Cfree is ǫ–good [41] if

for all configurations q ∈ Cfree then µ (V (q)) ≥ ǫµ (Cfree).

When a Cfree is ǫ–good, it is able to be covered by samples in reasonable time.

That is, a larger ǫ implies an easier problem because it will be easier to generate

samples that cover the planning space.

(ǫ, α, β)–expansiveness is a property of Cfree describing how easily the problem

can be solved through sampling-based techniques. Being able to sample Cfree, i.e.,

ǫ, is only one requirement for sampling-based planners. The other parameters of

(ǫ, α, β)–expansiveness, α and β, describe the difficulty of sampling-based planners

to generate edges, or motion transitions, through the Cspace. Put another way, they

describe how easy it is to generate configurations that expand the visibility of the

roadmap or connect various components of a roadmap representing Cfree.

First, the β–lookout, Definition 2.2.4 and Figure 2.3, of a subset X of Cfree is

the portion of X that can see at least a β fraction of the compliment of X . In this

way, β relates to the probability of sampling a new configuration that can expand

the visibility of X .

Definition 2.2.4. Let β be a constant in (0, 1]. The β–lookout(X) [41] of a set

X ⊆ Cfree is the set of configurations of X which can connect to at least a β fraction
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Figure 2.3: Set X (red) and its β–lookout (green).

of the compliment of X, that is

β–lookout(X) = {q ∈ X|µ (V (q) \X) ≥ βµ (Cfree \X)} .

With this definition in hand, the full definition of (ǫ, α, β)–expansiveness is given

in Definition 2.2.5.

Definition 2.2.5. Let ǫ, α, β be constants in (0, 1]. A configuration space Cfree is

(ǫ, α, β)–expansive [41] if

1. Cfree is ǫ–good

2. For any set M of points, the β–lookout (V (M)) is at least an α fraction of

the hypervolume of V (M), that is

µ (β–lookout (V (M))) ≥ αµ (V (M)) .

A higher α and β describe an easier ability to expand and connect a roadmap

of Cfree through sampling-based planning. (ǫ, α, β)–expansiveness is an inherent

property of Cfree for a given motion planning problem which cannot be altered.

Additionally, these parameters are as difficult to compute explicitly as computing
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∂Cobst. Despite this, the parameters can help understand trends in the expected

number of samples and how the probability of finding a solution corresponds to

the difficulty of the space. Specifically, with probability at least 1− γ, a roadmap of

n = ⌈16 ln(8/ǫαγ)/ǫα+6/β+4⌉ nodes chosen uniformly at random will be connected,

where γ ∈ (0, 1) [42].

2.2.5 Workspace-biased Planning Methods

Many planners use workspace information, e.g., regions or decompositions, to aid

in the planning process. Here we describe a few relevant frameworks.

Feature Sensitive Motion Planning [73, 75] recursively subdivides the space into

“homogeneous” regions (regions of the environment containing similar properties,

e.g., free or clutter), individually constructs a roadmap in each region, and merges

them together to solve the aggregate motion problem. This framework adaptively

determines the specific planning mechanism to map to each homogeneous region,

e.g., choosing OBPRM in cluttered regions and uniform sampling in open regions.

Similar frameworks have been proposed [85, 97]. RESAMPL samples spherical re-

gions in the space and uses entropy information to decide on the specific planner

to use [85]. The Unsupervised Adaptive Strategy (UAS) uses a K-means clustering

algorithm to learn important regions of the space and then applies Hybrid PRM in

each region [97]. Hybrid PRM uses a reward-based learning mechanism to adaptively

select appropriate sampling schemes for a space [44]. A recent approach, Adaptive

Neighborhood Connection (ANC), extends Hybrid PRM to connection [30]. ANC

could also be incorporated into UAS, but this direction has yet to be explored.

Other approaches utilize workspace decompositions to find narrow or difficult ar-

eas of the workspace to bias Cspace sampling [98, 57, 79]. These methods begin by

decomposing the workspace using an adaptive cell decomposition [98] or a tetrahe-
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dralization [57], and then weight the decomposition to bias sampling. However, by

automatically identifying regions and disallowing dynamic region specification and

modification, the planner might suffer from inefficiencies, such as oversampling in a

fully covered region. Additionally, these planners do not typically consider regions

that repel sampling.

Some approaches deviate from standard sampling-based methodologies and use

heuristic guided search mechanisms built from the A∗ methodology. One such ap-

proach uses an A∗-like approach to find a workspace path of overlapping circles, and

then uses this to heuristically search for a path composed of predefined kinematic

motions [14]. This has been extended to modeling traffic scenarios [15] and dynamic

environments [16]. This method however has difficulty extending past 2-dimensional

workspaces, car-like robots, and simplistic obstacles.

2.3 User-guided Motion Planning

In many approaches to human-assisted planning, a human operator (user) per-

forms global analysis of the workspace to determine an approximate solution while

the machine handles high-precision tasks such as collision detection. In [45, 8, 99] the

user can select configurations that are critical to finding a collision-free path, while

the planner performs collision checking and path-finding between sub-goals (shown

as Cfg Input in Figure 2.4). Certain approaches allow a user to input an approximate

path in the scene, and an autonomous planner then morphs this motion into a fea-

sible plan [8, 59, 102] (shown as Path in Figure 2.4). Often, these types of planners

have distinct phases for user input and automated planning.

More recently, a two-way communication approach was developed for RRTs,

called Interactive-RRT (I-RRT) [94]. In this system, the planner and the user inter-

act in an online fashion to cooperatively solve the problem. I-RRT allows the user
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Figure 2.4: Interface complexity in terms of degrees of freedom manipulated versus
level of autonomy in expected behavior, where c is the degrees of freedom of the
Cspace and w is the degrees of freedom of the workspace is shown. The approach
described in Chapter 4, called Region Steering here (underlined), is a combination
of high autonomy mixed with a simple interface.

to control a robot avatar that biases RRT growth in a virtual scene. This approach,

however, is limited to single-query scenarios, requires continuous user input, and is

constrained to robotic systems that are fully controllable by the avatar interface (as

seen in Figure 2.4).

2.3.1 Crowd-sourcing

There is a distinct but related approach to user-guided planning by which crowd-

sourcing is used to steer a large swarm [10] or perform protein folding [9]. In these

solutions, a single problem is given to a large number of people in the hopes of finding

a global solution or deriving a future control law. However, these approaches have

a separate goal compared with user-guided planning, in that user-guided planning

allows a user to interact directly with the planner. Despite the different goals how-

ever, these approaches can inform each other on best practices in interfacing with a

user.
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2.3.2 Bilateral Teleoperation

Teleoperation approaches provide closed-loop interactions between an operator

and a robot such that the operator has a sense of presence-at-a-distance [38]. Tele-

operation focuses on capturing and/or augmenting a user’s mechanical skills directly.

Often, these approaches try to assist the human operator by predicting where the

user is headed, ensuring proper collision avoidance, and maximizing user control over

the system [63]. However, these approaches provide minimal automation focusing

on presence-at-a-distance allowing human operators to perform tasks in typically

dangerous environments, e.g., exploration in space, oceans, or volcanoes. In con-

trast, human-in-the-loop planning aims to leverage a user’s high-level intuition by

augmenting an automated planner with information about difficult aspects of the

problem.

Nonetheless, both seek to provide a form of two-way communication, referred

to as bilateral control in teleoperation literature. Often these approaches have a

high interface complexity, e.g., using haptic devices with many degrees of freedom

and provide as much control to the user as possible (Figure 2.4). A recent study

in teleoperation [69] shows that this form of interaction can be burdensome on the

user, e.g., in situations with cyclic or repetitive motions, and takes steps to provide

the robot with greater autonomy so that the user need only provide global guidance

rather than direct control. Other teleoperation systems allow the user to control a

subset of the robot’s dofs through a precomputed Cspace, as in [48, 47], but these

are limited to low dimensional problems. This approach is referred to as Cspace in

Figure 2.4.
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2.3.3 Robot Learning from Demonstration

In Robot Learning from Demonstration (LfD) or Robot Programming by Demon-

stration (PbD), a human operator trains a robot to perform a new task that the robot

has never done before [6]. Typically, this involves a user physically moving the robot

through the task. Afterwards, the robot extracts features of this task, i.e., important

aspects of the motion or task, and attempts to extrapolate a new control law to com-

plete the task. LfD-PbD research is multi-faceted towards solving various questions

such as what tasks should/can be imitated, how to compute/perform an imitation,

when can a robot imitate, and whom should the robot imitate [20]? A good example

of LfD-PbD is in preparing food using a robot, e.g., pouring ingredients or flipping

a pancake [54].

LfD-PbD is in some ways the opposite of teleoperation. In teleoperation, a robot

is used to augment a human in various ways, e.g., being physically present on another

planet when the human cannot. However, in LfD-PbD a human augments a robots

task capabilities by teaching a robot something the human already knows how to do.

Naturally, user-guided motion planning is similar to both. In the case of LfD-PbD, a

human manually performs the task for the robot upon which a robot then learns and

extrapolates information of the task. However, in user-guided planning a higher level

of collaboration is sought. There, the human attempts to cooperatively complete

a task, e.g., motion planning, splitting the work with the automated abilities of

the robot, i.e., the human does high level thinking while the robot does low level

computations. Again, we believe that these fields can learn from each other, in

the same way user-guided planning might learn from teleoperation and/or crowd-

sourcing applications.
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3. USER-GUIDED PLANNING

In this chapter, we classify and model common user-guided approaches discussing

the interface requirements and trade-offs in the context of sampling-based planning.

We augment our discussion with experimental analysis.

3.1 Models of User-guidance

User-guided planners encompass methodologies to limit the search space of the

planner through user input. By specifying a presumably important (or unimportant)

portion of Cspace, the user restricts the planner to focus on a particular subset of Cspace.

For example, if a region biases PRM construction, e.g., to a narrow passage, then the

planner will focus and build a denser roadmap in the narrow passage as compared

with the portions of the Cspace not covered by the region. Thus, collaborative planners

have the potential to provide more effective planning.

There are a few important design considerations when implementing a collabo-

rative motion planner. First, rendering and feedback should be real-time, or close

to real-time, to allow a seamless collaboration. Second, an intuitive mechanism for

region specification is needed. Finally, proper user feedback should be customized for

the planner. For example, a region might be colored based upon an algorithm-specific

perception of usefulness.

Additionally, there is an important trade-off to be made based on PRM time

versus the time taken for the user. Essentially, user-guidance can only truly help if

the time taken between capturing the user input and planning with it is less than an

unaided planner. Our recent work, which is also the core subject of this dissertation

(Chapter 4), has shown this is viable for region-based input [27, 26].

From common approaches in the literature, we propose a simple classification
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and modeling of user-guided methods into three categories based upon their input

modalities: configuration-based input, path-based input, and region-based input.

3.1.1 Configuration-based Input

First, we define a basic model of input where a user places specific configurations

in Cfree to act as waypoints for a sampling-based motion planner, e.g., [45]. We call

these augmenting configurations “beacons.” To specify a configuration the interface

must have an equal number of degrees of freedom as the robot itself. Hence, it might

be prohibitive or expensive to design such an interface which is intuitive and easy

to use — we note you could have a user simply specify all dofs explicitely, but this

might not be intuitive.

Because of the precision required and interface complexity related to gathering

this information, this methodology of user-guidance may not be ideal in terms of total

planning time. However, this input modality will aid in solving a motion planning

problem when a user specifies a difficult configuration. In this way, it would provide

a divide-and-conquer approach to planning, where the planner solves the problem

from the start to each beacon in order and then to the goal.

3.1.2 Path-based Input

In the path-based input model, the user provides a set of paths Π (Definition 2.1.8)

in Cfree. A few methods do allow for path specification approximately [8, 59, 102],

and then modify the path to be in Cfree. However, the input device would require

full control of a robot, and might be prohibitive to design a simple and intuitive

interface for all robot types.

Here we specifically study a simplified model for our motion planners in which

we assume that the end points of each path are added as nodes to the roadmap, and

the path is then added as an edge in the same graph. After, a planner progresses as
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normal.

3.1.3 Region-based Input

Some approaches allow the user to specify approximate Cspace regions, e.g., [94, 27,

26]. The regions are then used to bias the sampling phase of a sampling-based planner

to steer planning toward or away from specific portions of Cspace. An interesting

aspect of this type of input is that in order to specify a region of Cspace a user does

not specifically require an interface with numerous of degrees of freedom. Rather, a

low dimensional device can be used (see [27, 26]) — this makes designing interfaces

and algorithms with this input modality especially attractive.

Region-based input can be approximate in its specification and still encapsulate

knowledge of the difficult portions of the planning space. In problems where the

workspace shows strong correlation with the Cspace narrow passages, then region-

based input is particularly useful. For example, a user can place a region around

the workspace narrow passage to effectively guide the planner through the narrow

passage.

3.2 Experimental Analysis of User Input Modalities

In this experiment, we study the impact of user-guided planning on PRMs by

comparing a PRM’s performance with and without the various types of user inputs.

Specifically, we explore the effect of the three user models: configuration-based input

(Cfg), path-based input (Path), and region-based input (Region). We show that the

various user inputs can all aid a sampling-based planner in discovering a solution

more efficiently than the planner alone, and we highlight differences in each input’s

effectiveness. Specifically, we show that, while path-based input might help solve the

problem the fastest compared with both configuration-based and region-based input,

region-based input allows for a nice trade-off of ease of input and planner efficiency.
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3.2.1 Setup

All methods were implemented in a C++ motion planning library developed in

the Parasol Lab at Texas A&M University. It uses a distributed graph data structure

from the Standard Template Adaptive Parallel Library (STAPL) [12], a C++ library

designed for parallel computing.

All experiments were run on a Dell Optiplex 9010 running Fedora 20 with an

Intel(R) Core(TM) i7-3770 CPU with 24 GB of RAM with the GNU gcc compiler

version 4.8.3.

All methods use uniform random sampling, Euclidean distance, straight-line local

planning, and a k = 10-closest connection strategy. In all cases of input, high school

students provided the key configurations, paths, or regions to satisfy the assumptions

of the corresponding models. For configuration-based input, configurations were

placed approximately as knowing the exact placements of configurations might not

be obvious in a given problem instance. The same input is used for each trial of our

experiments. Trials are run until either 10,000 nodes are sampled or a representative

query is solved for a scenario.

We compare these different methods in a variety of toy scenarios featuring various

types of narrow passages:

• STunnel (Figure 3.1(a)) – A simple 2 dof square robot traverses a difficult

S-like narrow passage from top to bottom.

• ZTunnel (Figure 3.1(b)) – A 6 dof cube robot must pass through a difficult

Z-shaped narrow passage between the ends of the environment.

• MazeTunnel (Figure 3.1(c)) – A 6 dof spinning-top meanders through a com-

plex series of tubes from top to bottom.
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Table 3.1: Success rates of experimental methods.
STunnel ZTunnel MazeTunnel Walls Hook

PRM 40% 80% 100% 0% 60%
Cfg 100% 100% 100% 100% 90%
Region 100% 100% 100% 100% 100%
Path 100% 100% 100% 100% 100%

• Walls (Figure 3.1(d)) – A 7 dof articulated linkage must cross a series of

narrow passages (walls with holes) from one end of the environment to the

other.

• Hook (Figure 3.1(e)) – A 10 dof free-flying articulated linkage bridges two ends

of the environment through a narrow slit in a central wall.

For each trial, we recorded the number of nodes in the final roadmap, the number

of collision detection (CD) calls for construction, the time it takes to build, and

whether the planner succeeded or not in solving the query in under 10,000 nodes.

3.2.2 Results

We performed ten trials and reported averages of all runs, successful or not, i.e.,

we average failed cases (as a best case metric for that specific trial) as well. Success

rates are shown in Table 3.1 and metrics are shown in Figure 3.2. We also note that

we are not including computations needed for capturing the input, and discuss this

trade-off in the discussion below.

Figure 3.2(a) shows the average number of nodes it took to construct a roadmap

to solve the example query. As we can see by this plot, all of the user-based methods

solved the scenario with fewer nodes than standard PRM. Figure 3.2(b) shows the

average number of CD calls, and Figure 3.2(c) exhibits the average time in seconds

each method took to solve the problem. These metrics further indicate that using
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(a) STunnel (2 dof) (b) ZTunnel (6 dof)

(c) MazeTunnel (6 dof)

(d) Walls (7 dof) (e) Hook (10 dof)

Figure 3.1: Test scenarios. The start (solid red) to end (hollow blue) of an example
solution path is shown.
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Figure 3.2: Experimental results for building a roadmap without user-input (PRM),
configuration-based input (Cfg), path-based input (Path), and region-based input
(Region). (a) Number of nodes, (b) number of CD Calls, and (c) time in seconds to
solve the representative query averaged over ten trials are shown.

user input solves our example problems faster than PRM alone.

An interesting aspect of the data which we discuss more below is that Path

generally outperformed Region which in turn outperformed Cfg. The only case this

did not hold is in ZTunnel. In this case, the specific placements of configurations

used avoided the rotational challenge of the narrow passage. They were placed at

each turn and reduced the difficulty of the passage to just a translational problem.

However, this was not possible with the regions. Moreover, this is a specific narrow
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passage and this effect is unlikely to happen in practice.

3.3 Discussion

User-guided planing has been shown to improve over PRM in each of our toy

environments. User-guidance helps PRM through the narrow passage by aiding the

planner specifically with the most difficult aspects of the problem. That is to say

for example with Cfg, the input configurations give PRM waypoints representing the

most difficult aspects of the problem. In other words, the area PRM has to search

for a solution is reduced by adding critical information from the user. Cfg, Region,

and Path all perform well and show that these forms of user input are viable tools

to aide future planners.

Figure 3.2 displays an interesting trend that Path required fewer nodes than

Region, which requires fewer nodes than Cfg. The main intuition behind this trend

is as follows. First, Path input clearly avoids PRM’s need to map any configurations

in the most difficult portions of a problem. In other words, Path acts as another

planner giving a partial solution path to the overall problem reducing the work the

PRM has to do. Second, both Cfg and Region still require sampling and connection

phases of PRM to finish solving the problem. With Cfg, the need to sample critical

configurations is avoided and requires only connection. With Region, a method will

still need to sample and connect in difficult portions, but the probability of doing so

is altered based on the placement of regions. Finally, Region generally can beat Cfg

because it, again, alters the underlying sampling process biasing it towards difficult

portions of the space.

33



4. REGION-BASED COLLABORATIVE PLANNING∗

In this Chapter, we describe our general framework for region-based collaborative

planning, through which an automated planner and a human operator, referred to as

a user, interact to cooperatively discover a solution to a motion planning problem.

The general idea is that a user specifies regions of the workspace to bias a planner

in Cspace, and the planner informs the user of its progress by displaying the current

roadmap and possibly some indications of region usefulness.

4.1 Framework

Our framework provides a methodology to limit the search space of the planner.

By specifying a presumably important (or unimportant) workspace region R, the

user restricts the planner to focus on a particular subset of Cspace. For example, if

a region biases PRM construction, e.g., to a narrow passage, then the planner will

focus and build a more dense roadmap in the narrow passage as compared with the

portions of the Cspace not covered by the region. Thus, our collaborative planner has

the potential to provide more effective and efficient planning in terms of coverage

and plan construction time.

To provide an intuitive mechanism for region specification, we allow a user to

specify either Axis-Aligned Bounding Box (AABB) or Bounding Sphere (BS) regions

for their simplicity and the ability to specify them with a common mouse interface.

Note, we do not claim that the user interface is optimal or intuitive: it is merely

sufficient for the user to communicate with the planner and allows us to study the

∗The description of the method and some of the experimental results are reprinted from Algo-

rithmic Foundations of Robotics XI, “A Region-based Strategy for Collaborative Roadmap Con-
struction,” volume 107, 2015, pp. 125–141, J. Denny, R. Sandström, N. Julian, and N. M. Amato,
c©2015 with permission of Springer.
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Figure 4.1: Alpha puzzle. A pathologically difficult motion planning problem in
which the two α shaped peices must be separated.

usefulness of our collaboration framework. We leave further development of the

interface to future work.

While our framework is quite general, it is important to note that our workspace

regions are primarily effective in problems where the translational degrees of freedom

dominate the system. This occurs often in systems such as mobile robots, unmanned

aerial vehicles, or certain CAD applications. In contrast, applying this framework in

other scenarios such as strongly rotational problems (e.g., the alpha puzzle, shown in

Figure 4.1) would require an alternative region type to successfully limit the planner.

4.1.1 Overview

Our two-way communication framework is shown in Figure 4.2.

In one direction, the user specifies workspace regions to bias the planner. Regions

have “types,” that can be arbitrarily extended for a particular application. By

default, we allow two kinds of regions: attract (bias the planner) and avoid (disallow

plans in this region). We allow these regions to be modified at any time, including

addition of new regions, resizing/repositioning of current regions, and deletion of

regions from the planning scene.

In the other direction, the planner presents its current progress in the scene.
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Figure 4.2: In one direction, the user specifies workspace regions, and in the other
direction, the planner displays the current progress in planning.

For sampling-based planners this would be the current roadmap being constructed,

whether it is a graph or a tree. The tree is drawn by embedding the d-dimensional

tree in the 2- or 3- dimensional workspace. Nodes are drawn by a point located at

its positional data. Nodes in the same connected component are displayed with the

same color so that the user can easily determine whether two nodes are connected.

Edges are displayed as polygonal chains of intermittent configurations along the edge.

Additionally, we present the current regions to the user. Our framework is able to

present a perceived usefulness of regions and recommend regions to the user.

The algorithmic framework for the automated planner shown in Algorithm 3 fol-

lows this scheme. Generally, it performs a loop until the planner is finished, e.g.,

solves an example query or reaches a specific number of nodes. In each iteration,

a specific planner biased by the user-defined regions first does automated planning.
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Algorithm 3 Region-based Collaborative Motion Planning Framework

Input: Environment e
Output: Roadmap G
1: G = (V,E)← (∅, ∅)
2: while ¬done do

3: r ← SelectRegion(e.regions)
4: RegionBiasedPlanner(G, e, r)
5: G.UpdateMap()
6: e.UpdateRegions()
7: return G

Next, the planner provides feedback to the user through the roadmap and region

displays. This is important visual information to help the user adjust regions appro-

priately.

4.1.1.1 Example

Figure 4.3 shows a simple example that illustrates the general progression of our

algorithm in a 2D environment with large obstacles and a few narrow passages. In

this example, we create a map-construction query to represent our desired coverage of

the space with start and goal configurations. The user begins by specifying particular

regions to influence the sampler, as shown in Figure 4.3(a). The user specifies two

attract regions (green) in areas that will be difficult for the planner (e.g., a long,

narrow passage), as well as one avoid region (striped). The avoid region exemplifies

the customizability aspect of our strategy. Though the planner would be likely to

sample successfully in that wider passage, the user indicates a desire to avoid that

area, perhaps due to environmental considerations not available to the planner.

Over time, the planner identifies one of the attract regions as unproductive and

changes its color to red, as shown in Figure 4.3(b). In contrast, the other attract

region, within the narrow passage, has proven to be useful and remains green. The
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(a) (b)

(c) (d)

Figure 4.3: Example scenario. (a) A user pre-specifies one avoid and two attract
regions. (b) An attract region is shaded red to indicate declining usefulness. (c) The
user responds by moving the region to a more productive location. (d) The resulting
roadmap.

avoid region behaves as a virtual obstacle and remains devoid of samples. The user

appropriately modifies the unproductive region (Figure 4.3(c)) by moving it into the

narrow area around the goal and then resizing it accordingly to focus sampling in

this area to increase the connectivity of the map.

By exchanging cooperative feedback, the planner and user have discovered the

difficult regions of the environment in which to focus node creation. The roadmap

can thus be completed and connected efficiently (Figure 4.3(d)).
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4.1.1.2 Discussion

We would like to make a note on the overhead of our collaborative framework.

Rendering a projected graph in the virtual scene can be expensive for large roadmaps,

but this can mitigated by executing the rendering/UI code in a separate thread.

Without any user interaction, this results in minimal overhead compared with the

un-rendered, unguided planner. Otherwise, the only added cost for our region-based

framework is the selection of a region on each iteration, which takes constant time.

Our approach allows the user to customize the roadmap by specifying avoid re-

gions. Avoid regions act like virtual obstacles and block the planner from generating

nodes within. By blocking out unwanted workspace areas, the user can easily and

intuitively steer the planner toward producing a desirable roadmap. For example,

suppose our system is used to plan motions for a robot surveying an area. The user

can alter the roadmap in real time by specifying dangerous areas as avoid regions

that the robot must evade. This flexibility offers an efficient means for handling

transient or previously unknown hazards as the roadmap can be modified without

needing to conduct further sampling.

4.1.2 User Input

In our collaborative system, we allow various forms of input to manipulate the

regions in an online and interactive fashion. First, the user can pre-provide regions

to the planner before planning begins. Second, the user can add, delete, move, and

resize regions during the planning process. Finally, the user can optionally handle the

regions which are recommended by the system. All of these options are constructed

to avoid the need for continuous interaction: the user can provide as much or as little

input as desired.

We use simple mouse input to accommodate the various forms of interaction.
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Based upon where the user clicks, we can project the 2D window coordinate w =

〈wx, wy〉 to a 3D plane defined by a point p = 〈px, py, pz〉 and a normal ~n =

〈nx, ny, nz〉. We use this operation to allow intuitive region definition and manipu-

lation. We outline all of the operations on regions below:

4.1.2.1 Addition

When adding a region, the user can click in the scene to define a vertex of the

bounding volume and drag the mouse to size appropriately. In planar environments,

the mouse position is projected directly onto the environment plane. For volumetric

environments, the mouse position is projected onto the plane defined by a point

p = campos + d ∗ −−−−→camdir and a direction ~n = −−−−−→camdir, where campos is the position

of the camera, −−−−→camdir is the direction the camera is facing in the scene, and d is

a displacement distance (typically 1/3 of the environment’s bounding radius). For

example, to add an AABB region, the user clicks the scene, which defines a single

vertex, and then drags the mouse to size the box and define a second, opposite vertex

to complete the AABB (shown in Figure 2.1).

4.1.2.2 Deletion

The user can select any region at any given point in time. If the user selects a

region, it can be ordered for deletion. Selection is based upon projecting the mouse

position into the scene to identify the object it hits first.

4.1.2.3 Manipulation

Manipulation is a bit more difficult. All regions can be translated and resized in

the scene. When translating, we allow for two motions. If the user left-clicks the

selected region, we translate on the plane defined by p = c and ~n = −−−−−→camdir, where

c is the center of the region. If the user right-clicks the selected region, then we
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translate in and out along −−−−→camdir. To resize a given region, the user highlights the

edge of the region and resizes via click-and-drag. For example, with AABB regions,

selecting an edge allows manipulation for two of three dimensions at any given time,

or for BS regions, the radius can be manipulated by selecting the boundary of the

projected sphere. When a region is manipulated, the numbers of successful and

failed sampling attempts are reset so that the region’s effectiveness and coloring can

be recomputed.

4.1.2.4 Recommendation Processing

When the user sees a recommended region, which is initially proposed, the user

can ignore the region completely, delete it, or manipulate and commit it as either an

attract or an avoid region. Thus, these regions do not affect the planner until they

are handled by the user.

4.1.3 Completeness

To retain the completeness properties of the underlying planner, we consider the

entire workspace as a region. Drawing a sample from this region is identical to

drawing a sample from the entire Cspace, which is equivalent to the behavior of the

underlying unguided planner. By having a probability to select this global region,

we inherit the probabilistic completeness property of the underlying planner(s) —

our framework can be extended to handle multiple planners easily, for example by

planning with both in parallel.

There are two cases in which our framework cannot guarantee probabilistic com-

pleteness. The first is when the underlying planner is not probabilistically complete

— while the user may still be able to manipulate regions to solve the problem, a

solution is not guaranteed. The second is when the user places an avoid region that

changes the topology of Cfree. Recall that avoid regions are hard constraints, i.e.,
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Algorithm 4 Region-biased PRM

Input: A Roadmap G, an Environment e, and a Region r
1: q ← r.sampler.Sample(r)
2: if q 6∈ a, ∀a ∈ e.avoidRegions then

3: G.AddAndConnect(q)
4: if IsDifficultNode(q) then
5: e.RecommendRegion(q)

placing such a region is equivalent to placing a virtual obstacle in the scene. Hence,

the user can make the problem unsolvable by placing avoid regions to block all avail-

able solutions. This is a powerful tool that requires some discretion. While the

user can unintentionally block valid solutions, they can also employ avoid regions to

block out unimportant areas of the workspace. In the future, one could expand our

framework to allow avoid regions to be soft constraints or modify the planner to find

the minimally invasive plan [35].

4.2 Framework Variants

In this section, we show three variants of our framework: collaborative region-

biased roadmap construction, collaborative region-biased tree construction, and a

collaborative region-biased hybrid method.

4.2.1 Collaborative Region-biased Roadmap Construction

This variant, called Region-biased PRM, is a collaborative roadmap construction

approach in which a user specifies regions to bias a graph-based planning method,

e.g., PRM. Shown in Algorithm 4 and Figure 4.4, Region-biased PRM allows the user

to select a different sampler for each region. For example, if the user specifies a region

around a narrow passage, they could also direct the planner to use obstacle-based

sampling [2] within that region.

During sampling, an attract region is first selected at random (recall that the en-
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Figure 4.4: A user has drawn a region to mark the narrow passage and set the
sampler to OBPRM [2] in the region. Region-biased PRM uses this to bias roadmap
construction to the narrow passage.

tire environment is also considered an attract region). Then, a sample is generated

within that region by selecting a random point within the region to set positional

dofs and randomizing all other dofs. Afterwards, a user-specified sampling mech-

anism, e.g., OBPRM [2], is applied to the region-biased sample. We additionally

require that when the robot is placed at the random configuration that all points of

the robot are still located within a region. The reasoning is to provide a predictable

behavior for the user. Once a sample is created, it is checked to ensure it does not lie

within any avoid regions. If the sample meets the criterion, it is added and connected

to the roadmap. If the sample fails to connect, i.e., it is in a difficult area of Cspace,

the planner can additionally recommend regions to the user. After each iteration,

the perceived usefulness of each region to the planner is shown.

To guide the user’s manipulation of the regions, we color the regions based upon

their perceived usefulness u to the planner by setting the region’s RGB value to be

〈1−u, u, 0〉. In this manner, the region is green when it is most useful and red when
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it is least productive. We base the usefulness on the approximated density d of the

successful samples within the region in Cfree:

d =
n

µ(Cfree ∩ r)
≈

n

µ(r) n
n+f

=
n + f

µ(r)
,

where n is the number of successful samples, f is the number of failed sampling

attempts, and µ(r) is the volume of the region r. Essentially, we are loosely approxi-

mating the ratio of successful samples to the volume of Cfree covered by r. We define

usefulness as u = e−d2 , which allows a smooth transition from useful to unproductive

region coloring. Our choice in metric is a monotonically decreasing function over

time motivated by the fact that too many samples in Cobst do not add anything to

the roadmap and too many samples in Cfree create oversampling and again do not

greatly help the planning process. It is important to note, other metrics could be

used to indicate usefulness and achieve various goals. For example, if the goal is to

provide samples of high clearance (i.e., large distances from obstacles), then useful-

ness might be defined as the clearance of the center of the region. We chose our

metric to specifically indicate success of sampling to aid a user in discovering the

solution faster.

4.2.2 Collaborative Region-biased Tree Construction

Our region-based framework can also be extended to bias tree-based approaches,

e.g., RRT. Our algorithm, called Region-biased RRT, is shown in Algorithm 5 and

Figure 4.5. The algorithm proceeds as a typical RRT by selecting a configuration

qrand, though in this case the selection is biased by a region. First, the planner selects

a random region and generates a new configuration qrand within that region (using

the same process as with Region-biased PRM). Then, the nearest node in the tree

qnear is determined, and a node qnew is generated by extending qnear towards qrand.
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Algorithm 5 Region-biased RRT

Input: A Roadmap G, an Environment e, and a Region r
1: qrand ← r.GetRandomCfg()
2: qnear ← NearestNeighbor(G, qrand)
3: qnew ← Extend(qnear, qrand,∆q)
4: G.Update(qnear, qnew)

Figure 4.5: A user has drawn a region to act as a waypoint for the RRT, influencing
Region-biased RRT to grow through the narrow passage.

In our system, this extension is not permitted to extend through avoid regions in the

environment.

4.2.3 Collaborative Region-biased Hybrid Methods

Here, we extend a recent hybrid approach called Spark PRM [86], which is essen-

tially a PRM planner that grows or “sparks” RRTs in narrow passages to increase

roadmap connectivity. Using our framework, a user can specify regions to control

where RRTs are sparked in the environment to aid PRM connection. These sparked

RRTs are grown until they connect to the roadmap or a maximum number of itera-

tions is reached. Our algorithm, Region-biased Spark PRM, is shown in Algorithm 6
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Algorithm 6 Region-biased Spark PRM

Input: A Roadmap G, an Environment e, and a Region r
1: q ← r.sampler.Sample(r)
2: if q 6∈ a, ∀a ∈ e.avoidRegions then

3: G.AddAndConnect(q)
4: if r 6= e ∧ InNarrowPassage(q) then
5: G← G ∪ConstructRRT(q)

Figure 4.6: A user has created a region to mark a narrow passage and Region-biased
Spark PRM begins growing a RRT within.

and Figure 4.6.

4.3 Experimental Analysis of Variants

In this section, we evaluate the collaborative planners in two scenarios, involving

a 2 dof omnidirectional robot and an 8 dof mobile manipulator measuring speedup

compared to their fully automated counterparts.

4.3.1 Setup

All methods were implemented in a C++ motion planning library developed in

the Parasol Lab at Texas A&M University. It uses a distributed graph data structure
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from the Standard Template Adaptive Parallel Library (STAPL) [12], a C++ library

designed for parallel computing.

All experiments were run on a Dell Optiplex 9010 running Fedora 20 with an

Intel(R) Core(TM) i7-3770 CPU with 24 GB of RAM with the GNU gcc compiler

version 4.8.3.

We evaluate each method in two scenarios as seen in Figure 4.7. Queries are

shown in start configuration (red) and goal configuration (blue) pairs.

• In Planar (Figure 4.7(a)), a planar 2 dof robot must traverse a series of

difficult narrow passages and cluttered areas from the left to the right of the

environment.

• In Manipulator (Figure 4.7(b)), a simulated 8 dof KUKA youBot [56] begins

by reaching into an open box. It must then pass through doorways while

navigating around boxes in an industrial scene. The query ends with the robot

reaching into a cabinet on a table. This robot has an omnidirectional base and

an arm with five joints.

We are interested in the success rate and the total time for the planner to solve

each scenario (including user input and collaboration time). Experiments are run

with 10 trials, and the metrics reported are averages of the successful runs.

The user-guided executions were performed by graduate and undergraduate stu-

dents studying motion planning. In order to minimize the impact of user variance,

the same user performed all of the executions in a given environment. Additionally,

the users were allowed to practice with the system until they developed familiarity

with the interface and environments. Recall, as mentioned previously, this research

is focused on the usefulness of user collected information and not on the particular

interface.
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(a) Planar (2 dof) (b) Manipulator (8 dof)

Figure 4.7: Example scenarios used in experimental analysis. (a) A planar 2 dof
scenario. (b) An 8 dof mobile manipulator. All queries require traversal through
narrow passages between the start (solid red) and goal (hollow blue) configurations.

4.3.2 Region-biased PRM

In this experiment, we compare Region-biased PRM with other common PRM

sampling techniques in order to show its ability to efficiently compute a roadmap.

4.3.2.1 Setup and Results

In this experiment, we analyze Region-biased PRM by comparing its performance

with Basic PRM (referred to as Uniform) [53], OBPRM [2], and Gaussian PRM [11]

(referred to as Gaussian). We analyze Region-biased PRM with a homogeneous use

of uniform random sampling (referred to as RBPRM-U) and a heterogeneous use

of uniform and obstacle-based sampling (RBPRM-H). For Gaussian PRM, we use

both a tuned and untuned d value of the Gaussian distribution based upon twice
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Table 4.1: Success rates of various PRM construction methods.
Planner Planar Manipulator

Uniform 0% 100%
Gaussian-T 90% 100%
Gaussian-U 40% 100%
OBPRM 10% 100%
RBPRM-U 100% 100%
RBPRM-H 100% 100%
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Figure 4.8: Speedups of various PRM construction methods compared with a tuned
Gaussian PRM (Gaussian-T).

the robot radius for the environment (referred to as Gaussian-T and Gaussian-U

respectively). All methods use Euclidean distance, straight-line local planning, and

a k = 10-closest neighbor connection strategy.

Each planner is run until either a construction query is solved or 5,000 nodes

are sampled. The construction query is designed to verify that the roadmap well-

represents Cfree by requiring connectivity through the major areas of the environ-

ment. Success rates are shown in Table 4.1 and speedups compared with Gaussian-T

are shown in Figure 4.8.
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4.3.2.2 Performance Comparison

In terms of success rates, Region-biased PRM outperforms each method solving

both problems 100% of the time. Even including the interaction time, Region-biased

PRM generally solves each problem faster when compared to the fully automated

approaches. In the easier environment, using a tuned Gaussian PRM has comparable

performance to ours. Typically, we saw improvements up to two times compared with

the best PRM performance in each problem. We note that tuning Gaussian PRM

can be difficult and require running the problem many times to find an optimal value.

Region-biased PRM is capable of acquiring more consistent results because the user

can visually determine where the PRM has yet to map in the environment and focus

planning there.

4.3.2.3 User Strategy

In Planar, the user’s strategy generally involved allowing the planner to progress

for a second, identifying the narrow passage where configurations were scarce, and

using regions to patch the roadmap in these areas. Similarly, the user’s strategy

in Manipulator was to create attract regions wherever the planner had not yet

connected in the first three quadrants of the environment (i.e., those quadrants not

containing the goal). However, the strategy changed for the goal quadrant because it

contained a joint-posturing aspect. Here, the user employed avoid regions to remove

unproductive configurations that sampled near the goal but did not connect to it.

This improved the likeliness that a connectible configuration would see the goal as

a nearest neighbor, thereby expediting the difficult task of connecting the goal to

the map. The user deleted or moved attract regions to new locations as soon as the

roadmap connected through them to limit redundant configurations.
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Table 4.2: Success rates of various RRT construction methods.
Planner Planar Manipulator

RRT 10% 90%
OBRRT 90% 100%
I-RRT 100% –
RBRRT 100% 100%

4.3.3 Region-biased RRT

In this experiment, we compare Region-biased RRT with other common RRT

growth methods in their effectiveness in solving queries.

4.3.3.1 Setup and Results

We compare Region-biased RRT (referred to as RBRRT) with RRT [61], OBRRT

[84], and I-RRT [94]. We use ∆q = 10 which is approximately 10% of the diagonal of

each environment. With OBRRT, we use appropriate distribution of growth methods

for each environment, but note there could be a more effective parameterization to

optimize performance. I-RRT’s parameters were selected based on recommendations

in [94]. We only compare against I-RRT in the Planar environment because this is

the only robot fully controllable by our interface, a mouse with 2 dof (recall that

I-RRT requires a 1-to-1 mapping between interface and robot dof). Success rates

are shown in Table 4.2 and speedups compared with RRT are shown in Figure 4.9.

4.3.3.2 Performance Comparison

The interactive methods were able to solve both scenarios 100% of the time,

whereas the automated planners were not able to in Planar. Unguided RRTs per-

formed poorly because the maze-like shape of the problem’s narrow passages made

growth difficult. In contrast, the user directed the expansion of the tree through

the passages in the interactive approaches. Compared with RRT, both I-RRT and
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Figure 4.9: Speedup of various RRT techniques compared with RRT.

RBRRT had speedups of up to 12 times in Planar, and RBRRT had speedups of

up to four times in Manipulator. These results show the power of the interactive

methods when compared to the fully automated approaches.

4.3.3.3 User Strategy

The user’s strategy in both problems was to start the planner immediately and

drag a single attract region through the environment, staying just ahead of the

tree growth. This differed from the PRM-based strategies because RRTs always

grow outward from the existing roadmap. This leading strategy allowed the user

to effectively guide the RRT through narrow passages. The attract region used was

roughly twice the size of the robot’s base, which provided a good mix of flexibility

and precision for steering the RRT. This is similar to the strategy used by I-RRT

which explains their comparable performance in Planar.

4.3.4 Region-biased Spark PRM

In this experiment, we compare Region-biased Spark PRM with another hybrid

technique to again show the extensibility of our framework and exemplify how it can

make planning more efficient.
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Table 4.3: Success rates for Region-biased Spark PRM and Spark PRM.
Planner Planar Manipulator

Spark PRM 90% 100%
Region-biased Spark PRM 100% 100%
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Figure 4.10: Speedup comparison between Region-biased Spark PRM and Spark
PRM.

4.3.4.1 Setup and Results

Here, we compare Region-biased Spark PRM (referred to as RB Spark PRM) to

Spark PRM [86]. Parameters for Region-biased Spark PRM and Spark PRM are

identical and based upon recommendations in [86]. Both methods use Euclidean dis-

tance, straight-line local planning, and a k = 10-closest neighbor connection strategy.

Each planner is run until either a construction query is solved (identical to the

Region-biased PRM experiments) or 5,000 nodes are sampled. Success rates are

shown in Table 4.3 and speedups compared with Spark PRM are shown in Fig-

ure 4.10.

4.3.4.2 Performance Comparison

In this experiment, we can see that RB Spark PRM was able to focus Spark

PRM’s planning process effectively to provide more consistent and faster results, up
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to nine times speedup. The interactivity of these methods and our framework is

extensible enough to speedup very efficient hybrid approaches to planning.

4.3.4.3 User Strategy

The user’s strategy for RB Spark PRM was similar to that of Region-biased PRM.

The primary difference in Manipulator was that fewer attract regions were required

as the sparked RRTs quickly bridged unconnected components of the roadmap.

4.4 Experimental Analysis of Collaboration Loop

The previous section established that our framework is widely applicable to many

sampling-based planning approaches. In this section, we look in-depth at the collab-

oration loop and region shape as it influences one of the variants of our framework,

Region-biased PRM.

4.4.1 Setup

In our experiments, we study the impact of Region-biased PRM on PRM sampling

techniques by comparing its performance with Basic PRM (referred to as Uniform)

[53], OBPRM[2], and Gaussian PRM[11] (referred to as Gaussian), and I-RRT [94].

Our strategy is not restricted to any underlying sampling technique. We use uniform

random sampling in these experiments, but any sampler can be used. As such, we

believe it is fair to compare against other samplers which bias sampling for narrow

and cluttered environments, such as OBPRM and Gaussian PRM. For Gaussian

PRM, we configure the d value of the Gaussian distribution to twice the robot ra-

dius for the environment, which provided consistent results. Though there may be

better d values, we believe that this maintains a fair basis of comparison. I-RRT’s

parameters were selected based on recommendations in [94]. We test Region-biased

PRM with both AABB regions, referred to RB-AABB, and BS regions, referred to
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as RB-BS. Additionally, we test Region-biased PRM using both one-way and two-

way interaction to demonstrate the benefit of two-way collaboration. In the one-way

tests, all regions are input prior to the PRM execution, i.e., the user is not allowed to

alter any regions during mapping. In the two-way tests, the user is allowed to add,

alter, and delete regions during roadmap construction as they see fit. All methods

use Euclidean distance, straight-line local planning, and a k = 10-closest neighbor

connection strategy.

The user-guided executions were performed by graduate students studying motion

planning. To minimize the impact of user variance, the users were allowed to practice

with the system until they developed consistent performance. Consequently, one- and

two-way strategies did not vary significantly across trials and in many cases differed

primarily in greater care taken in region creation for one-way tests and ability to

delete unproductive regions in two-way tests. However, it should be noted that in

practicing with the system the users were able to receive feedback from the planner

on their one-way strategies; no such feedback would be available in a true one-way

system. The one-way tests thus represent the idealized performance of a user who

knows an effective strategy a priori. Recall, as mentioned previously, this research

is focused on the usefulness of user collected information and not on the particular

interface.

For these experiments, roadmap construction halts after solving a construction

query or sampling ten thousand nodes. The construction query is designed to verify

complete coverage of the environment such that if the query can be solved using

the roadmap, then the roadmap sufficiently covers Cfree. Failing to solve the query

indicates that there are areas that are disconnected or not covered in the roadmap.

Thus, the roadmaps constructed by Region-biased PRM are reusable for multi-query

use, i.e., after the initial query, subsequent queries can be solved with minimal or no
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further sampling. We report the number of successful completions, the number of

nodes in the final roadmap produced, the time required for initial user input (for our

collaborative region strategy), and the time needed to build the map. All experiments

are run with 10 trials, and the metrics reported are averages of the successful runs.

Environments are shown in Figure 4.11. Construction queries are shown in start

configuration (red) and goal configuration (blue) pairs.

• In Heterogeneous (Figure 4.11(a)), a simple 2 dof robot must traverse a

series of cluttered regions and narrow passages from the top to the bottom of

the environment.

• In FloorPlan (Figure 4.11(b)), a 3 dof mobile robot must traverse through

a cluttered apartment from a living room to a bedroom. This environment

is representative of a possible robotic assisted-living platform for retirement

communities, upon which the floor plan is based.

• In LTunnel [1] (Figure 4.11(c)), an L-shaped, 6 dof free-flying robot must tra-

verse two difficult narrow passages to get from the left side of the environment

to the right.

• In Walls [1] (Figure 4.11(d)), a simple 6 dof stick-like robot must traverse a

series of narrow passages (walls with holes) from one end of the environment

to the other.

• In Hook (Figure 4.11(e)), an 8 dof free-flying robot with three articulated links

must maneuver through a wall with a small hole.

We only compare against I-RRT in the Heterogeneous environment because this

is the only robot fully controllable by our interface, a mouse with 2 dof.
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(a)
Heterogeneous

(2 dof)

(b) FloorPlan (3 dof)

(c) LTunnel (6 dof) (d) Walls (6 dof)

(e) Hook (8 dof)

Figure 4.11: Various environments for experimental analysis. All queries require
traversal through narrow passages between the start (solid red) and goal (hollow
blue) configurations.
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Table 4.4: Success rates for the various PRMs in the test environments.
Planner Heterogeneous FloorPlan Hook LTunnel Walls

Uniform 30% 50% 80% 0% 0%
OBPRM 70% 100% 100% 30% 100%
Gaussian 90% 80% 90% 0% 100%
I-RRT 100% – – – –
RB-AABB-1way 100% 100% 100% 100% 100%
RB-BS-1way 100% 100% 100% 20% 100%
RB-AABB-2way 100% 100% 100% 100% 100%
RB-BS-2way 100% 100% 100% 100% 100%

4.4.2 Results

In our first experiment, we compare the mapping efficiency of Region-biased PRM

with other PRMs. Table 4.4 shows the success rates of the various methods in the

environments, Figure 4.12(a) displays the number of nodes in the final roadmap

produced in each environment, and Figure 4.12(b) presents the time required by

each method. In FloorPlan, Uniform and Gaussian had normalized times of 6.786

and 1.755, respectively, and were cut-off to better show the data.

4.4.2.1 Performance

Our experiments demonstrate that Region-biased PRM offers more reliable and

efficient roadmap creation compared to the tested automatic methods. The user’s

input improves the number of successful construction attempts to 100% across all en-

vironments (in the intended two-way case). By examining the planner feedback, the

user can identify workspace areas where the planner is unable to sample or connect

nodes to the map, and then intervene by creating an attract region to bias sam-

pling in those areas. This allows the collaborative strategy to focus system resources

on difficult regions and provides greater robustness to sampling-based randomness

compared to the automatic methods. Additionally, Region-biased PRM typically
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Figure 4.12: (a) Number of nodes, and (b) time required by each method to solve the
construction query, normalized to OBPRM. For the Region-biased PRM methods in
(b), the upper portion of the bar represents the user’s pre-specification time, while
the lower portion represents the time taken by the automated planner after pre-
specification.

improves construction efficiency in terms of both the number of nodes and the total

time required to build the map (even with the overhead of collecting initial user

input). Region-biased PRM’s running time improved on the fastest automatic plan-

ners by a minimum of 46% in Walls and a maximum of 91% in Hook. I-RRT’s

performance is comparable to Region-biased PRM which performed slightly better

in Heterogeneous. We also note that if the number of queries to solve were greater,

the difference between the methods would be more pronounced as Region-biased

PRM can reuse the computed roadmap. By taking advantage of the user’s intuitive

global analysis of the scene, Region-biased PRM can focus sampling in difficult areas

between the connected components of a roadmap and, thus, achieve higher connec-

tivity and reduced planning time. In turn, the reciprocal feedback given to the user,
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including showing the roadmap and connected components, visualizing a region’s

usefulness, and recommending specific regions, can guide the user toward achieving

these ends.

4.4.2.2 One- vs. Two-Way Communication

In three of the environments (FloorPlan, Hook, and Walls), the user strategies

for one-way communication were very similar to their two-way counterparts. While

the ability to correct input errors and delete unproductive regions contributed to

performance, it was not the dominating factor in these cases. Conversely, the user

strategies differed significantly in the other two environments (Heterogeneous and

LTunnel). In these environments, the two-way strategies relied on the ability to mod-

ify the regions in order to map the space efficiently. For example, in Heterogeneous

the user would typically begin with a large region in the center and modify it as the

system provided feedback to make it smaller and more focused on areas that were

not yet connected. This approach is not possible in one-way planning, and perfor-

mance in that environment suffered from the inability to re-target the PRM’s focus.

In LTunnel, the two-way strategy for boxes achieved better performance than its

one-way counterpart by simply deleting attract regions once a single connected com-

ponent had broken through. The one-way spheres case for this environment was far

more dramatic because it was too difficult for the user to precisely specify spherical

regions that conservatively estimated the box-like tunnel. In the two-way case, the

user could roughly estimate the regions required and then modify those that failed

to contribute to the roadmap. The inability to make such adjustments prevented the

user from building this map consistently with spherical regions. This implies that

two-way interaction provides significant benefits when the workspace area of interest

is shaped differently than the planning region.
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4.4.2.3 Region Shape

Our data shows that the user specification time for BS regions is generally less

than that of AABB regions, but the planning time for BS regions is generally greater

than for AABB regions. This suggests a trade-off between the ease of a region’s

manipulability and its effectiveness. However, the total mapping time does not

seem to differ significantly. Furthermore, from our experience, different users prefer

different region types depending on the environment and situation. While the one-

way/two-way comparison hints that some of this disparity is related to how well a

planning region fits the workspace area of interest, we leave the full investigation of

these choices to a future user study. Additionally, in the future it would be interesting

to study other region shapes that can be simply specified with a few user inputs.

Specifically, Oriented Bounding Boxes (OBB) and ellipsoids would be of interest.

4.5 Experimental Analysis of Roadmap Customization

In this experiment, we illustrate roadmap customization through Region-biased

PRM. The user is tasked with creation of a roadmap that avoids a specific area.

We test this in the two environments shown in Figure 4.13. Building is an

office building in which several homotopically equivalent paths exist for a 2 dof

omni-directional robot. The avoidance region shown in dark gray represents some

area of danger (such as a fire or collapsed portion of the building) that the robot

should avoid. Helicopter is a cityscape that is traversed by a flying robot with 3

dofs. In this environment, we require the robot to avoid flying through an open

architecture of a building (again shown as a dark gray region). The construction

query is designed so that there are at least two homotopically distinct paths from

start to goal and at least one of them passes through the avoid region. We show

the percentage of roadmaps in which the shortest path successfully avoids the region
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(a) Building (b) Helicopter

Figure 4.13: (a) Building and (b) Helicopter environments used to illustrate
roadmap customizability. Avoidance regions are shown in dark gray and queries
are shown as solid red/hollow blue pairs.

Table 4.5: Percentage of maps with shortest paths correctly steering away from the
avoidance regions.

Environment PRM Region-biased PRM
Building 20% 100%

Helicopter 50% 100%

for our Region-biased PRM compared to PRM. Ten trials were completed, and the

successful percentages of ‘safe’ maps are shown in Table 4.5.

As we can see, our strategy is successfully able to avoid the regions that might

be traversed by an automatically planned path. Additionally, the roadmaps created

by Region-biased PRM contain no nodes in the avoid region, while the successful

roadmaps created by PRM simply did not use their nodes in the avoid region for

their shortest path. We would like to emphasize that although it may be possi-

ble to design these constraints into the problem specification or graph search, our

strategy allows online customization during roadmap construction. This as-needed
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specification makes Region-biased PRM well suited to handling newly discovered or

temporary constraints without needing to alter the environment description. These

simple tools enable a user to customize solutions for a variety of scenarios with min-

imal operational burden.
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5. ON THE THEORY OF USER-GUIDED PLANNING

In this chapter, we extend the concept of (ǫ, α, β)–expansiveness [41] (Sec-

tion 2.2.4) to theoretically explain when and by how much user input modalities

(Chapter 3) perform better than uniform sampling alone.

5.1 Determining Cfree Parameters

Before analyzing the models of user-guidance, we determine the ǫ and β for a given

instance of Cfree. We characterize two important sets E∗ and B∗ that represent the

critical configurations of Cfree to sampling and connecting in sampling-based planning

algorithms.

We note that these parameters and sets are as difficult to compute as the explicit

boundaries of Cobst. However, their purpose is twofold. First, this is the first work, to

our knowledge, that attempts such descriptions of α and β that describe important

notions of an instance of Cfree — the hardest portions of the problem. Second, they

provide a tool for analyzing the effect that specific (user) inputs have on planning

with sampling-based motion planners.

5.1.1 ǫ

ǫ for a given Cfree represents the ratio of volume of the smallest visibility set of

any configuration to the volume of the entire space. Thus,

ǫ = min
q∈Cfree

µ(V (q))

µ(Cfree)

.

64



Figure 5.1: E (red line) is the set of configurations with the smallest visibility ratio.
V (E) is shown in transparent red. E∗ is shown as a configuration in blue. Notice
that E∗ has an equivalent visibility to E.

Let E be the set of configurations with that smallest visibility ratio ǫ (Figure 5.1).

E =

{

q ∈ Cfree

∣

∣

∣

∣

µ(V (q))

µ(Cfree)
= ǫ

}

Let E∗ be the smallest subset of E such that V (E∗) ≡ V (E). In this way, E∗

now represents a set of configurations with the lowest visibility in Cfree (Figure 5.1).

5.1.2 β

Given a visibility set, there always exists a 0–lookout — the set of config-

urations the visibility set was based on. Instead, we seek the smallest maximal

β–lookouts possible in Cfree to represent the most difficult visibility sets to ex-

pand on or merge. We let

β(q) = max
q′∈V (q)

µ(V (q′) \ V (q))

µ(Cfree \ V (q))

be a function to compute the largest β for a visibility set around a configuration q.

Then,

β = min
q∈Cfree

β(q)
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Figure 5.2: B (green line) is the set of configurations that are part of the smallest
maximal β–lookouts across all of Cfree. Configurations qa, qb, qc are representative
configurations that have a small maximal β–lookout, their visibility sets are shown
in transparent red. B∗ is shown in blue. Notice that B∗ has an equivalent visibility
to B.

.

Let B be the set of configurations that are part of the smallest maximal

β–lookouts across all of Cfree (Figure 5.2).

B = {q ∈ Cfree| ∃q
′ ∈ Cfree : β(q

′) = β ∧ q ∈ β–lookout(V (q′))}

Let B∗ be the smallest subset of B such that V (B∗) ≡ V (B) (Figure 5.2). B∗

represents a set of configurations that are the most difficult to expand a roadmap to

include, i.e., represent the configurations to which it is the hardest to connect.

Because the β–lookout might not have any volume, α can be zero, therefore we

do not analyze any effects on this parameter for any user-model. Recall that α and β

correlate to the probability of sampling one node in the visible area of a roadmap and

one in the complement of the roadmap’s visibility. In our formulation of β, a single

configuration may be chosen instead of sampled, which both connects to the roadmap

and sees a maximal portion of the complement to the roadmap’s visibility. In other

words, the one configuration is an optimal selection to serve the same purpose as a

node both in the visible region of a roadmap and in its complement, thus expanding
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the roadmap’s visibility and connectivity simultaneously.

5.2 Analysis of User-guided Planning

In this section, we explore a novel extension of (ǫ, α, β)–expansiveness, which

we call augmented (ǫ′, α′, β ′)–expansiveness. At the core of this concept is consider-

ing (ǫ, α, β)–expansiveness of an augmented Cfree, namely Cfree with configuration

“beacons” located at the points of lowest visibility or most difficult portions of the

space to connect. When placed properly, the “beacons” allow derivation of aug-

mented (ǫ′, α′, β ′)–expansiveness parameters that are greater than the inherent (ǫ,

α, β)–expansiveness of Cfree implying the motion planning problem is easier to solve.

In the following models, we explore various user inputs using this augmentation of

Cfree. When our assumptions of the user input hold the problem becomes easier

to solve. Finally, we examine open questions and discuss aspects of the models for

future exploration. Experimental support of the proposed theory can be found in

Section 3.2.

5.2.1 Configuration-based Input

First, we assume an idealized model of input, where a user places specific con-

figurations in Cfree to act as waypoints for the sampling-based motion planner, e.g.,

[45] (Section 3.1.1). We call these augmenting configurations “beacons” and analyze

the augmented (ǫ′, α′, β ′)–expansiveness parameters of Cfree.

Lemma 5.2.1. When a user provides a set of configurations R as input to a sampling-

based planner such that V (R) ⊇ V (E∗∪B∗) (Figure 5.3), the augmented (ǫ′, α′, β ′)–

expansiveness parameters of Cfree are greater than the inherent (ǫ, α, β)–expansiveness

parameters of Cfree.

Proof. ǫ′–Since V (E∗) ⊆ V (R), the set of configurations R provides coverage to the
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Figure 5.3: Configurations placed on E∗ and B∗ that represent configuration-based
input that can help a sampling-based motion planner. The visibility regions of each
configuration are shown, notice how they act as “beacons” for the space making the
problem “easier.”

set of lowest visibility configurations in Cfree, and by definition there are no lower

visibility configurations in Cfree \ V (R). Thus, we have

ǫ′ = min
q∈Cfree\V (R)

µ(V (q))

µ(Cfree)
> ǫ.

β ′–Since V (B∗) ⊆ V (R), the set of configurations R represents regions of Cfree

that are most difficult to connect to, and by definition there will be no configurations

more difficult to connect left in Cfree \ V (R). Thus, we have

β ′ = min
q∈Cfree\V (R)

β(q) > β.

α′–Based on our definition of β and β ′ and the fact that β is not decreased, we

have α′ ≥ α.

We note that because of the precision required related to gathering this infor-

mation, this methodology of user-guidance may not be ideal. Hence, a goal of this

theory is to explore the effect of this guidance. As such, we have shown that this

input modality clearly solved the problem. We can extend the analysis to better un-
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derstand the improvement gained from augmented (ǫ′, α′, β ′)–expansiveness, which

is expected to simply be an improved convergence rate in the probability of suc-

cess as the number of samples increases. Specifically, Corollary 5.2.2 shows that the

expected number of random samples in the augmented space is a fraction of the

expected number in Cfree to generate a connected roadmap.

Corollary 5.2.2. Let γ ∈ (0, 1) be a constant. Let δǫ = ǫ′/ǫ, δβ = β ′/β, and

δǫ = α′/α. Let n = ⌈16 ln(8/ǫαγ)/ǫα + 6/β + 2⌉ be the size of a roadmap in Cfree.

When a user provides a set of configurations R as input to a sampling-based planner

such that V (R) ⊇ V (E∗ ∪ B∗), a roadmap generated in the augmented space of size

O( 1
δβ
− ln δǫδα

δǫδα
)-ratio of n will be connected with probability 1− γ.

Proof. In [42], it was shown that a roadmap of size n = ⌈16 ln(8/ǫαγ)/ǫα+6/β+2⌉

will be connected with probability 1 − γ. We analyze the ratio n′/n where n′ is the

number of nodes required to elicit a connected roadmap with probability 1−γ in the

augmented space. Based on [42], n′ = ⌈16 ln(8/ǫ′α′γ)/ǫ′α′+6/β ′+4⌉. We substitute

δǫ, δβ , and δα to find n′/n = O( 1
δβ
− ln δǫδα

δǫδα
).

In summary, Lemma 5.2.1 analyzed augmented (ǫ′, α′, β ′)–expansiveness param-

eters to show they are improved over the inherent parameters of Cfree, and Corol-

lary 5.2.2 showed that fewer random samples are expected to be required to generate

a connected roadmap covering Cfree.

5.2.2 Path-based Input

In this model, the user provides a set of paths Π through the narrow passages

of Cfree, essentially so that V (Π) ⊇ V for some visibility region (Section 3.1.2). In

this model, we assume that the end points of each path are added as nodes to the

roadmap, and the path is then added as an edge in the same graph.
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Lemma 5.2.3. When a user specifies a set of paths Π such that V (Π) ⊇ V (E∗∪B∗),

the augmented (ǫ′, α′, β ′)–expansiveness parameters of Cfree are greater than the

inherent (ǫ, α, β)–expansiveness parameters of Cfree.

Proof. Since, Π is a path contained within Cfree that encapsulates all the difficult

portions of the problem, then based on similar logic to the proof of Lemma 5.2.1, the

augmented (ǫ′, α′, β ′)–expansiveness parameters are greater than the inherent (ǫ, α,

β)–expansiveness parameters.

5.2.3 Region-based Input

Here, we extend the theory to approximate Cspace regions (input model as de-

scribed in Section 3.1.3). We assume that given a visibility region V ∗ the user can

provide regions R as input in Cspace such that V ∗ ⊆ R ⊂ Cspace and R∩Cfree ⊂ Cfree.

Without loss of generality, we let the planner have a probability p > 0 to select a

sample from R and probability 1 − p to sample from the entire space — this is to

maintain probabilistic completeness of the automated technique. Here, augmented

(ǫ′, α′, β ′)–expansiveness is derived not from configuration “beacons” but from a

subset of Cfree.

Lemma 5.2.4. When a user specifies regions R such that R ∩ Cfree ⊂ Cfree and

R ⊇ V (E∗ ∪ B∗), the augmented (ǫ′, α′, β ′)–expansiveness parameters of Cfree are

greater than the inherent (ǫ, α, β)–expansiveness parameters of Cfree.

Proof. First, we analyze ǫ′. We define ǫR = minq∈Rfree

µ(V (q))
µ(Rfree)

where Rfree = R ∩

Cfree. Then based on the probability of sampling, the overall ǫ′ = (1 − p)ǫ + pǫR

which is surely greater than ǫ because ǫR is strictly greater than ǫ.

Second, we analyze β ′. We define βR = minq∈Cfree β(q). Then based on the

probability of sampling, the overall β ′ = (1− p)β + pβR which is surely greater than

β based on similar logic as before.
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In summary, we presented a novel description of the inherent parameters of Cfree

and described conditions that various user input methods aid sampling-based plan-

ners through a novel concept called augmented (ǫ′, α′, β ′)–expansiveness.
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6. KINODYNAMIC REGION-BIASED RRT

In this chapter, we present a region-biased kinodynamic planner to handle non-

holonomic systems, which are complex systems planning under velocity and acceler-

ation constraints, e.g. a car-like robot.

6.1 State Space

When considering kinodynamic constraints, forces must be applied to a robot in

order for a robot to move. Because of this, Cspace is not a sufficient abstraction for

these types of robots. Instead, we consider planning in State Space (Xspace). Here a

state of our robot will include all of the positional dofs along with velocities of each

dof. Note that this doubles the dimensionality of the motion planning problem.

At each time-step, an action, or control, can move a robot state to a new one.

This is equivalent to applying a force and/or torque to the robot for an amount of

time.

6.2 Algorithmic Modifications

RRTs are well suited for motion planning in Xspace. Here, we apply our region-

based framework to an algorithm called Kinodynamic RRT. Our algorithm, a mod-

ification of Region-biased RRT, is shown in Algorithm 7. We will keep referring to

this approach as Region-biased RRT for simplicity.

The algorithm first selects a random region r for the current iteration. Note here,

that the entire Xspace is defined as an implicit region in order to maintain probabilistic

completeness of RRT, and each region has an equal probability to be selected. From

r a random position is sampled to seed the position values of xrand while the rest of

the state (rotations and velocities) are randomly sampled like a typical RRT. In this
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Algorithm 7 Kinodynamic Region-biased RRT

Input: An Environment e, a maximum step-size ∆
Output: Tree T
1: T ← ∅
2: while ¬done do

3: r ← SelectRegion(e.regions)
4: xrand ← r.GetRandomState()
5: xnear ← NearestNeighbor(T, xrand)
6: xnew ← Steer(xnear, xrand,∆)
7: T.Update(xnear, xnew)
8: UpdateDisplay(T, e)
9: return T

way, the 2- or 3- dimensional workspace region can bias random samples in Xspace.

Then, the algorithm proceeds as a typical RRT. the nearest node in the tree xnear

is determined, and a node xnew is generated by extending from xnear towards xrand.

Because the robot has kinodynamic constraints, in order to steer towards a new state,

we must select a control and integrate over a time step ∆t for the Steer function.

The original kinodynamic RRT [61] presented two heuristics each for selecting a

control and time step. For the control, we can select one of the available controls

either randomly or based on the resulting distance to xrand. For the time step, we

can choose either a fixed or variable length time over which to apply the control. We

support all four of the control selection/integration time combinations. We could

also use an exact steering function if one is available for the specific robotic system.

After finding xnew, the tree is updated by adding a new node xnew and the edge

{xnear, xnew} to it. Essentially, the only change to our region-based collaboration

framework when considering kinodynamic constraints is a change to the underlying

planner.

If a user defines any avoid regions (essentially a virtual obstacle not known a

priori to planning), RRT extensions are not permitted to enter these regions.
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Finally, the planner will communicate the progress to the user through updating

the display of regions and the tree.

6.3 Experimental Analysis

In this section, we compare our collaborative planner against its unguided, fully

automated counterpart in two scenarios. Because our region-based guidance can be

used in conjunction with many RRT variants, we chose to evaluate the proof-of-

concept by testing guidance on the canonical Kinodynamic RRT.

6.3.1 Setup

To evaluate our methods, we compare the running time of our Region-biased RRT

with its unguided counterpart in solving the single-query scenarios seen in Figure 6.1.

Queries are defined as a start configuration (red) and goal configuration (blue) pair.

• In Planar (Figure 6.1(a)), a non-holonomic robot with 3 positional dof and 4

discrete controls must steer around a set of right-angle barriers.

• In Tunnel (Figure 6.1(b)), a non-holonomic robot with 6 positional dof and

12 discrete controls must traverse a narrow tunnel.

Experiments consisted of 10 trials. Execution continued until the query was

solved or the tree grew to 15,000 nodes. We evaluate the number of successful

completions and the average time for all executions (including user input and col-

laboration time).

The user-guided executions were performed by graduate and high school students

studying motion planning. To minimize the impact of user variance, the users were

allowed to practice with the system until they developed consistent performance.

Recall, as mentioned in Chapter 4, this research is focused on the usefulness of user

collected information and not on the particular interface.
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(a) Planar (6 dof) (b) Tunnel (12 dof)

Figure 6.1: Example scenarios used in experimental analysis. (a) A non-holonomic
robot with 3 positional dofs in a planar environment (6-dimensional state space).
(b) A non-holonomic robot with 6 positional dofs in a volumetric environment
(12-dimensional state space). All queries require traversal through narrow passages
between the start (solid red) and goal (hollow blue) configurations.

6.3.2 Analysis

We compared our Region-biased RRTwith a standard kinodynamic RRT (KRRT)

in the Planar and Tunnel environments. We used a weighted Euclidean distance

function, fourth order Runge-Kutta (RK) integration, an integration time-step of

0.01, and a maximum RRT time-step of one second. For both of these approaches,

we select our control based on a variable time step and best control selection as

described in [61]. Essentially, we pick a random time-step up to one second, attempt

all controls, and select the one which is closest to the growth node xrand.

The robots in these scenarios use discrete rather than continuous controls. In

Planar, the robot can apply a linear force to accelerate forward or backward or

apply an angular force to spin left or right. In Tunnel, the system is fully actuated,

as in, a forward and backward force can modify each degree of freedom separately.

There is no friction analog to disperse momentum in either scenario, so the robots

must apply retrograde forces to reduce velocity.
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Figure 6.2: Average running times and standard deviations for non-holonomic ex-
periments. For Planar, Region-biased RRT exhibits reduced mean planning time
with a p-value of 0.0064 for a one-tailed t-test. For Tunnel, the difference is more
dramatic with a p-value of 0.0001.

Table 6.1: Non-holonomic scenario success rates.
Planar Tunnel

KRRT 50% 10%
Region-biased RRT 100% 100%

Results, shown in Figure 6.2 and Table 6.1, demonstrate that user guidance

significantly reduced the mean and variance of planning time and improved success

rates in both cases. For Planar, Region-biased RRT exhibits reduced mean planning

time with a p-value of 0.0064 for a one-tailed t-test. For Tunnel, the difference is

more dramatic with a p-value of 0.0001.

The user’s strategy was to create a single region and slowly drag it through the

environment as a way to lead the RRT around obstacles. This was expected because

the extensions that cause the robot to build forward velocity tend to travel further

than those that don’t. Thus, the configurations nearest to a given xrand (sampled
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from within a region) tended to have larger momentum and therefore required more

control applications to change course.

Another point of interest is that the user-guided method shows less variation in

running time than the fully automatic method. After some initial exploration of

the easily reachable areas, the majority of new nodes tended to follow the user’s

guidance. This had a stabilizing effect on performance because the user’s strategy

essentially dominated the planner’s general progress and because the users tended to

recycle successful strategies. Thus, the user-guided planner focused its resources on

finding a plan in the same homotopy class across each execution, whereas the fully

automated method had no such consistency.
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7. DYNAMIC REGION-BIASED RRT

The motion planning problems in many of the environments discussed in this

dissertation, and in many problems in robotics, are strongly related to the workspace.

That is to say, the solution paths of the motion planning problem are highly similar

to the paths in the workspace. A user can provide great intuition in these problems

as we have shown. However, there is hope for some types of environments that we

can create a fully automated approach that can mimic the human’s input. By doing

this, we can eliminate the time required to gather information from a user and the

time needed to render the scene and provide feedback to the user. So, we can trade

the full power of human intuition for a more efficient automated approach. In the

future, one could explore synergies between the two approaches.

In this chapter, we explore a fully automated collaborative algorithm that was

inspired by the human collaboration techniques of Chapter 4. The idea is to compute

a graph embedding in the workspace that can be used to automatically guide the

regions as a planner progresses. We specifically target an RRT approach as it was

most natural for this approach.

7.1 Algorithm

Our methodology to automate region-based collaboration relies on a spatially

embedded graph in the workspace which will bias a planner in a similar way to

Region-biased RRT. In this section, we specifically outline the general methodology

and define the data structures used and the requirements they must possess.

Our algorithm, Dynamic Region-biased RRT, Algorithm 8, first begins with a

pre-computation step in which the workspace is processed and a spatially embedded

graph, called the Embedding Graph (Definition 7.1.1), is computed. Then, when a
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Algorithm 8 Dynamic Region-biased RRT

Input: Environment e and a Query {qs, qg}
Output: Tree T
1: G← ComputeEmbeddingGraph(e)
2: F ← ComputeFlowGraph(G, qs)
3: T ← (∅, ∅)
4: R← InitialRegions(F, qs)
5: while ¬done do

6: RegionBiasedRRTGrowth(T, F,R)
7: return T

query is given, we compute a directed version of the embedding graph, which we

call the Flow Graph (Definition 7.1.2), which encodes the directions of exploration

throughout the environment. Last, as discussed in a following section, our planner

will dynamically create, modify, and destroy regions to bias RRT growth in Cspace.

This approach is inspired by the human collaboration found in Region-biased RRT,

and attempts to mimic it.

7.1.1 Embedding Graph

Dynamic Region-biased RRT begins by pre-computing an Embedding Graph (Def-

inition 7.1.1) of the free workspace. It is a one dimensional, spatially embedded

skeleton of the workspace.

Definition 7.1.1. An Embedding Graph, G = (V,E), is a one dimensional,

spatially embedded skeleton of the workspace (undirected graph). The skeleton must

be a retraction, i.e., every point in the free workspace can be mapped onto the skeleton.

The vertices are points, and the edges, also referred to as arcs, are polygonal chains

through the workspace.

The embedding graph has certain requirements to maintain desirable proper-

ties. Namely, the embedding graph must be a deformation retract [34] of the free
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workspace. This implies that every point in the free workspace can be mapped onto

the skeleton, i.e., the embedding graph encodes the topology of the workspace. This

property is quite desirable in motion planning because we can infer and approximate

the total number of possible paths for a motion planning problem. In the future, we

plan to relax these properties through an approximation of a true embedding graph

and analyze how it affects our planner.

There are a few possible data structures that satisfy this property. One, a Gener-

alized Voronoi Graph (GVG) [18] is the set of points equidistant to m obstacles in a

space of dimension m. The GVG, however, is not always guaranteed to be connected.

A few methods have proposed ideas to overcome this [18, 31]. Another possibility is

a Reeb Graph [80] that represents transitions in level sets of a real-valued function

on a manifold, i.e., nodes of the graph are critical values of the function, referred

to as a Morse function, and edges are the topological transitions between them. It

has applications in various parts of computational geometry and computer graphics,

e.g., shape matching [37], iso-surface remeshing [101], and simplification [100].

In this work, we introduce a novel algorithm for computing an embedding graph.

Our algorithm computes and spatially embeds a Reeb Graph in the free workspace.

We do not claim that this algorithm is optimal in any sense, but it is sufficiently

simple to compute a Reeb Graph that satisfies our requirements of an embedding

graph.

Our algorithm, Algorithm 9, begins by computing a Delaunay tetrahedralization

of the free workspace [88]. Using the 2-skeleton of the computed tetrahedralization

to initialize a Reeb Graph, we use the triangles of the tetrahedrons to inform and

reduce the Reeb Graph through the algorithm found in [77]. We then embed the

Reeb graph into the free workspace by shifting each node of the Reeb Graph to its

closest tetrahedron. Then, for each arc of the Reeb Graph we find a path through the
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Algorithm 9 Compute Embedding Graph

Input: Environment e
Output: Embedding Graph G
1: D ← Tetrahedralization(e)
2: R = (RV , RE)← ConstructReebGraph(D)
3: G = (V,E)← (∅, ∅)
4: for all v ∈ RV do

5: V ← V ∪ {D.ClosestTetrahedron(v)}
6: for all e ∈ RE do

7: s← e.Source(); t← e.Target()
8: E ← E ∪ (s, t, D.FindPath(s, t))
9: return G

dual of the tetrahedralization between nodes. We specifically bias the path search to

be constrained to the tetrahedrons related to that specific Reeb arc. We know this

mapping because we associate tetrahedrons with each edge of the 2-skeleton used to

initialize the Reeb edges, and then as arcs are merged, we merge the associated sets

of tetrahedrons. In the path construction, we also choose paths which lie entirely

in the free workspace by always going through the adjacent triangle between two

tetrahedrons instead of using straight lines between tetrahedrons. In this way, the

final embedding graph is a set of points and polygonal chains connecting these points

that are spatially contained in the free workspace.

7.1.2 Flow Graph

Once the Embedding Graph is computed and a query is requested to be solved,

our planning algorithm computes a Flow Graph (Definition 7.1.2) of the environ-

ment that will be used in the coordination of region construction, modification, and

deletion. We define a flow graph as a directed embedding graph.

Definition 7.1.2. A Flow Graph, F = (V,E) is a directed embedding graph.

To compute the flow graph, we first find the closest embedding graph vertex
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to the start configuration. Then, we compute our flow with a breadth-first search

traversal of the embedding graph. We include cross-edges in the final directed graph.

7.1.3 Region-biased RRT Growth

Our RRT growth strategy is shown in Algorithm 10. The algorithm takes in

an RRT tree T , the flow graph F , and the set of regions R, and is broken into four

phases. In the first phase, the algorithm acts like Region-biased RRT (Section 4.2.2).

We select a region uniformly at random and select a random configuration from it —

note that the entire environment is still considered a region to maintain probabilistic

completeness just like the collaborative algorithms in Chapter 4. In the second phase,

we advance the selected region r along its associated flow graph edge. In order to do

this, we simply determine if the extended node qnew reached some portion of r. If

so, we move r to the next point on the embedded flow edge in the workspace. The

third phase will delete old and useless regions determined by some threshold τ of

failure. Finally, we will spark new regions if qnew comes within an ǫ distance of an

unexplored flow vertex v. We create a region for each outgoing edge of v and mark

v as explored in the flow graph.

Our algorithm has little overhead compared with standard RRT growth. It comes

in the form of selecting, advancing, creating, and deleting regions which all occurs

in amortized constant time.

7.1.4 Example

Figure 7.1 shows a model execution of our approach. First, given an environment,

shown in Figure 7.1(a), we compute an embedding graph (magenta) representing the

possible routes of exploration in the workspace, shown in Figure 7.1(b). Then, at

query time, we compute a flow graph (magenta), shown in Figure 7.1(c), to guide the

exploration of the collaborative planning algorithm. From here, we initialize a set
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Algorithm 10 Region-biased RRTGrowth

Input: Tree T , Flow Graph F , Regions R
Require: ǫ is a multiple of the robot radius, τ is a maximum for failed extension
{Region-biased RRT extension}

1: r ← SelectRegion(R)
2: qrand ← r.GetRandomCfg()
3: qnear ← NearestNeighbor(T, qrand)
4: qnew ← Extend(qnear, qrand,∆)
{Advance region along Flow edge}

5: while r.InRegion(qnew) do
6: r.AdvanceAlongFlowEdge()
7: if r.AtEndOfFlowEdge() then
8: R← R \ {r}
{Delete useless regions}

9: if r.NumFailures() > τ then

10: R← R \ {r}
{Create new regions}

11: for all v ∈ F.UnexploredVertices() do
12: if δ(v, qnew) < ǫ then
13: R← R ∪NewRegion(v)
14: F.MarkExplored(v)

of regions (green), which in this case is only one region, from the start node of the

embedding graph to begin exploring the space, Figure 7.1(d). Figure 7.1(e) shows

how the regions bias tree growth (blue) similar to our collaborative Region-biased

RRT algorithm. As the algorithm proceeds and reaches the next node of the flow

graph, three more regions are created to traverse the outgoing edges from that node,

Figure 7.1(f). The algorithm proceeds in this manner until a stopping criteria is met,

e.g., query is solved or maximum number of iterations is reached.

7.2 Experimental Analysis

In this section, we highlight current results of Dynamic Region-biased RRT com-

pared against RRT. There is still room for performance improvement which we in-

clude in the discussion.
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(a) Environment (b) Embedded Graph

(c) Flow Graph (d) Initial Regions

(e) Tree Growth (f) Multiple Regions

Figure 7.1: Example execution of Dynamic Region-biased RRT: (a) environment; (b)
precomputed embedding graph (magenta) in workspace; (c) flow graph (magenta)
computed from the start position; (d) initial region (green) placed at the source
vertex of the flow graph; (e) Region-biased RRT growth (blue); and (f) multiple
active regions (green) guiding the tree (blue) among multiple embedded arcs of the
flow graph (magenta).
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7.2.1 Setup

All methods were implemented in a C++ motion planning library developed in

the Parasol Lab at Texas A&M University. It uses a distributed graph data structure

from the Standard Template Adaptive Parallel Library (STAPL) [12], a C++ library

designed for parallel computing.

All experiments were run on a Dell Optiplex 9010 running Fedora 20 with an

Intel(R) Core(TM) i7-3770 CPU with 24 GB of RAM with the GNU gcc compiler

version 4.8.3.

We compared Dynamic Region-biased RRT and RRT [61] in the MazeTunnel

environment, shown in Figure 7.2. This environment was particularly chosen because

it contains narrow passages in the workspace which do not exist in Cspace. Our method

will detect and attempt to plan on all these paths, but will dynamically adjust away

from the false passages accordingly. We use ∆q = 10 which is approximately 10% of

the diagonal of each environment.

We compute total on-line planning time in seconds averaged over 10 trials. Out-

liers are removed using standard statistical techniques. Averages and standard de-

viations are shown in Figure 7.3.

7.2.2 Discussion

As Figure 7.3 shows, our planner exhibits faster online planning time as compared

with RRT. The results are significant at α = 0.05 with a p-value of 0.0358 using

a student’s t-test. In terms of pre-computation time, our embedding graph took

on average 30 seconds to build. It took a little over half a second to compute

a tetrahedralization of this complex environment with 2388 triangles into 44,086

tetrahedrons. It took about 29 seconds to reduce the tetrahedralization to a Reeb

Graph of 26 nodes and 27 edges and negligible time to perform the edge embedding.
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Figure 7.2: MazeTunnel environment. Note how there are false passages in the
workspace in which the robot cannot pass through.

Interestingly, we can clearly see the benefit when we have the embedding graph,

however if there will only be one query performed in an environment the pre-

computation might not be worth it. It is important to note that the Reeb Graph

computational efficiency is O(n2) in the worst case, where n is the number of points

in the tetrahedralization [77]. It is theoretically possible to reduce this computa-

tion time to a little worse than O(n logn) with a more sophisticated construction

algorithm [29]. In other words, if the environment was simpler the Reeb Graph

computation would be more efficient.

Beyond this, we would like to make a special note of the dynamic aspect of our

regions. In this test environment, there are false passages in the workspace. Our

algorithm will create a region for those edges, which in turn distracts the planner.

However, if enough failures occur, we will delete the region as it is likely a false

passage and the region was not useful. In this way, our algorithm is robust to
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Figure 7.3: On-line planning time comparing Dynamic Region-biased RRT with
RRT.

complex environments with multiple homotopy classes in the workspace. This is

one of the unique aspects to our workspace-biased approach compared with similar

approaches. In the future, we believe that we can effectively extend this approach

for planning among dynamically changing environments by modifying the embedding

graph during runtime to adjust for the movement of the obstacles.
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8. CONCLUSION

In this work, we developed and analyzed a novel collaboration framework that

captures human intuition and uses it to bias a sampling-based motion planner. We

ensured our framework could be applied to many different sampling-based planners,

applicable to complex robot systems, and even used these ideas to create a new

fully automated approach to motion planning. Through this research, we saw the

immense benefit of collaboration. Collaboration can have impact in various domains

such as robotics and virtual prototyping, which we had in mind when developing our

methodologies.

Specifically, we classified, modeled, and compared common approaches to user-

guided motion planning to motivate further study into region-based approaches

(Chapter 3). From here, we presented a region-based framework whereby a user

can specify workspace regions to attract or repel a sampling-based motion planner

(Chapter 4). We showed variants of our framework for graph-based, tree-based, and

hybrid methods. In Chapter 5, we revisited the various user input modalities to

analyze the approaches theoretically. Finally, we showed that the framework can be

extended in a few interesting directions. First, it is able to handle kinodynamic con-

straints and plan motions for non-holonomic robotic systems (Chapter 6). Second,

we showed a human-inspired approach for automatically moving regions through an

environment (Chapter 7). We showed how low-dimensional workspace input can

effectively bias a high dimensional motion search in a variety of ways. By keeping

a simple interface for a user, we are able to provide a collaboration framework for

many types of robots and sampling-based planners. This framework also has an

added benefit of allowing intermittent user intervention into the planning process.
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Through our theory and discussion of user inputs, we motivate the need to further

explore a few directions. Specifically, the effectiveness of the user-input can inform

interface designers for human-robot interaction and virtual prototyping. Through

these applications the trade-off of user input time vs planning effectiveness can be

fully explored. Additionally, we motivate future advanced heuristics in planning. As

an example, two automated planners might be able to work together through region

input or path based input instead of only working with singular configurations. In

fact, a few examples have been seen of this [73, 98, 79], but more research is needed

in this direction.

Additionally in the future, we would like to extend our region-based framework

in several ways. First, we believe that we can generalize the biasing of the method

to not only set the center of mass of the robot, but really any point of interest on

the robot. This would allow a user to influence planners in difficult scenarios where

rotational degrees of freedom might dominate, e.g., manipulator arms. In this case,

we can use the regions to bias the position of the end effector and let the plan-

ner determine the remaining dofs. Second, we can see the approach extended to

control motions for many agents cooperating for use in gaming and virtual reality

settings. Our framework could provide a general path the agents should follow in the

workspace, while the underlying planner utilizes reactive behaviors within the agent

group to derive precise motions. Last, we would like to incorporate this framework

into computer-aided design scenarios by studying its applicability to virtual proto-

typing. Specifically, a human operator can use our framework to plan a motion to

remove a part from a complex assembly. Then, by analyzing the part’s motions, the

product by extension can be validated in terms of maintainability.
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