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ABSTRACT 

 

Effect of Electrode Microstructure on Lithium Ion Electrodes. (May 2013) 

 

 

Malcolm Stein IV 

Department of Mechanical Engineering 

Texas A&M University 

 

 

Research Advisor: Dr. Partha Mukherjee 

Department of Mechanical Engineering 

 

 

 

In a Lithium-ion battery, increases in the effective conductivity can lead to a reduction in internal 

cell resistance and improved cell performance. Previous efforts to improve cell conductivity have 

focused on the effect of conductive additives in the electrode, but particle interaction within the 

electrode plays a critical role. This study investigates the effect of Li-ion particle shape on the 

effective conductivity of Li-ion battery electrodes. Generated 3D electrode microstructure 

models consisting of active material, binder, conductive additive, and an electrolyte are based on 

macroscopic parameters or imported experimental data. This work considers spherical, 

cylindrical, and cubic electrode active materials for virtual material analysis. The effective 

conductivity was evaluated using these 3D microstructures. The effective conductivity of the 

electrode was found to be indirectly dependent on the shape of the active material within the 

electrode. This virtual electrode simulation offers a theoretical guideline for optimal Li-ion 

electrode battery design. 
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CHAPTER I 

INTRODUCTION 

 

Increasing concerns about rising fuel prices, energy security, and climate change have given rise 

to interest in the adoption of alternative fuels in place of traditional, petroleum-based fuels. 

Despite growing interest, the implementation and usage of alternative fuels has been limited by a 

lack of effective storage and transportation mediums. Improvements in the energy density and 

durability of lithium ion batteries have made them an attractive means of energy transportation 

and storage. Further improvements in lithium ion technology would increase the viability of 

alternative fuel sources and thus assist in their widespread adaptation.  

 

In the past, implementation of batteries in vehicle design was limited to supporting roles such as 

ignition and lighting due to difficulties associated with the development of reversible, cost 

effective electrochemical systems. Today however, major car manufacturers such as General 

Motors, Nissan, and Toyota all have electric or hybrid vehicles on the market. This is primarily 

due to improvements in the overall efficiency and cost effectiveness of batteries as a means of 

storage and transportation of energy. Lithium ion technology is one of the battery systems used 

in many of the electric and hybrid vehicles on the market. Improvements in the capacity of 

lithium ion batteries would increase the effective range of electric vehicles and increase their 

safety. 

 

Lithium ion technology can also be applied to grid energy storage. Consumer demand for 

electricity fluctuates based on a number of factors, including time and environmental factors. In 
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order to deal with these fluctuations in demand, it is more efficient to store excess power in times 

of low demand and use it up in times of high demand, rather than adjusting production to meet 

the unpredictable loads. Lithium ion batteries are an obvious choice for storage due to its 

excellent cyclability as compared to other battery types. If the amount of energy discharged from 

the battery is kept small, stresses within the electrodes can be kept a minimum, thereby 

extending their cyclability. Improvements in the capacity of Lithium ion batteries would allow 

for smaller discharges per cycle, thus extending the lifetime of the batteries. 

 

Despite the wide range of ideal applications for Lithium ion batteries, there is still room for 

improvement in their performance, as previously mentioned. The performance of batteries, 

regardless of type, is dependent on the materials that that form the positive and negative 

electrode, the choice of electrolyte, and the cell architecture [5]. One of the main barriers to the 

improvement of Lithium ion batteries is conduction within the electrodes. The efficiency of Li-

ion batteries depends, in part, on the ability of the electrodes to conduct electrons. Generally, a 

battery is composed of an anode, cathode, porous separator, and current collectors, as shown 

below in Figure 1. 
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Figure 1. Typical sandwich-type lithium ion battery configuration. 

 

A typical Li-ion electrode is composed of a combination of active material, conductive filler, 

binder, and void space that is filled with an electrolyte. The addition of conductive additives 

improves the efficiency of electrodes by reducing the internal resistance. The conductive 

additives are attached to the cathode by means of a binder. The incorporation of the additive and 

binder into a traditional 2-D architecture can be seen below. In the figure, the red spherical 

particles represent the active material, the green disks represent the conductive additive, the 

continuous blue material represents the binder, and the tan region represents the electrolyte. 
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Figure 2. Conductive additive incorporation through the addition of graphite. 

 

The inclusion of conductive additive is crucial for the efficient transport of electrons through the 

electrode. However, since the ability of additives to improve conductivity is dependent on the 

formation of conductive pathways through the material, interactions with other particles in the 

electrode, such as binder, active material, and the electrolyte, have a large impact on the effective 

conductivity of the electrode [6]. 

 

Interactions between the binder, conductive additive, and active material particles have been 

previously studied by Liu et. Al [7]. It was found that at a specified ratio of conductive additive 

to binder, the bulk conductivity of electrode laminates increased with decreasing active material 

content. With decreasing amounts of active material, the conductive additive and binder phase 

became dominant, approaching the conductivity of a pure additive and binder phase. With higher 

active material loadings (approximately 50% by volume) conductivities of electrodes with 

different additive to binder ratios are very low and similar to one another.  
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It is clear that the content of components within a Li-ion battery plays a role in the bulk 

conductivity of the electrode, but the shape of the individual particles should also be significant. 

Variations in the shape of conductive additives have been shown to affect the performance of Li-

ion electrodes, but the shape of the active material particles has not been considered [7].  

 

In order to determine the relationship between the active particle shape and conductivity, a 

stochastic modeling technique was used to create electrodes consisting of four distinct phases 

(active material, binder, conductive additive, and electrolyte). The active material, binder, and 

conductive additive content were systematically changed to observe the shape effect at varying 

active material contents. The effective conductivity was then evaluated using ohm’s law and the 

conductivities of each electrode component.  This understanding of the effective conductivity 

can be used to determine the preferred particle size and shape that results in the largest capacity 

and overall effectiveness.  
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CHAPTER II 

METHODS  

 

Stochastic modeling 

The stochastic modeling technique is a method by which the geometric characteristics of a given 

microstructure are used to generate a representative 3D model. The generated models are then 

fitted by choosing parameters such that the characteristic properties of the material are 

realistically represented [9].  This method takes into account the macroscopic homogeneity 

present in the actual structures, while allowing for the random distribution of objects within the 

generated structures. The utilization of stochastic modeling is demonstrated in Figure 1. 

 

 

Figure 1. (a): SEM image of battery electrode. (b): Stochastic representation of (a) [10, 11]. 

 

 

The active material particles are generated as small spheres of varying size, and a binder is 

represented as continuous matter in between areas where two spheres are close. 

 

Governing equation and boundary conditions 

In order to determine the effective conductivity of multi-component porous media it is necessary 

to solve the stationary conduction equation in three dimensions. This can be written as 
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∇(𝜎∇𝑉) = 𝐼 ̇ in Φ                           (2.1) 

 

where V is the potential, σ is the local electrical conductivity,  𝐼 ̇is a source term, and Φ is the 

domain under consideration. Several methods, such as finite difference or analytical, have been 

previously used; however they are lacking in terms of computational efficiency when dealing 

with large, complex geometries [12]. Weigmann and Zemitis solved the energy equation by 

harmonic averaging and introducing discontinuities or jumps in the materials as variables [13]. 

The interface between each object within the generated structures is continuous such that the 

potential is the same for the two objects on opposite sides of an interface. The Schur-complent 

formulation for each new variable is then solved using a combination of FFT and BiCGStab 

methods. This method is implemented in the simulation package GeoDict, which was used to 

generate the structures and determine their effective conductivities. 

 

Modeling domain 

The computational domains must necessarily represent small volumes to alleviate computational 

intensity, so size effect has to be taken into account. As such, a domain length to particle 

diameter ratio was set to 5 for the initial spherical active particle [6]. Variations in the shape of 

the active particle were assumed negligible. The representative volume was set to 50 µm × 50 

µm × 50 µm, with a voxel size of 0.5 µm. The structures were created using voxel-based 

modeling. That is, the 3D structures were represented as a series of small volume elements that 

each represents a value on a grid in three-dimensional space. 
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Model parameters 

A series of SEM images, shown in Figure 2, were used to determine the modeling parameters for 

the particles present within the electrode.  

 

 

Figure 2. Stochastic modeling geometries for electrode constituents. (a): Spherical active material 

particles and stochastic representation [10]. (b): Graphite particle and stochastic representation [14]. (c): 

Cylindrical active material particle and stochastic representation [15]. (d): Cubic active material particle 

and stochastic representation [15]. 

 

The active material was modeled as a sphere, cube, and cylinder in each set of trials. The 

properties of LiNi0.8Co0.15Al0.05O2 were used to generate the initial spherical particles, with the 

dimensions of the remaining particles set with equal volumes. Only cathodes were considered in 

this study, so no other active materials were used. Graphite particles were modeled as thin 

spherical disks with aspect ratios a/b, a/c, and b/c set to 1, 7.4, and 7.4, respectively [6]. The 

dimensions of each particle can be seen below in Table I. 

 

 

 

 (a) 

 (c) 

 (b) 

 (d) 
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TABLE I. Active Particle Dimensions. 

Particle Length Diameter Volume Surface Area 

Sphere
6
 -- 10.0 µm 5.24 E-16 m

3
 31.4 E-9  m

2
 

Cylinder AM 13.867 µm 6.933 µm 5.24 E-16 m
3
 37.75 E-9  m

2
 

Cube AM 8.059 µm -- 5.24 E-16 m
3
 38.97 E-9 m

2
 

 

 

The binder was added into the generated electrodes in locations where two or more objects were 

close together. The remaining void space was filled with a continuous electrolyte phase. The 

stages of an electrode fabrication process are illustrated in Figure 3.  

 

 

Figure 3. Electrode build process, as shown proceeding from left to right, then down. (a): Electrode is 

filled with active material particles (b): Conductive additives are added to the electrode (c): Binder is 

added between the active material and conductive additive particles (d):   

Remaining space is filled with an electrolyte. 

 

 

 (a)  (b) 

 (c)  (d) 
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The electric conductivities of each material are listed below in Table II. 

 

TABLE II. Component Electrical Conductivities. 

Material Electrical Conductivity 

Active Material 1 S/m 

Electrolyte 10 S/m 

Graphite
6
 1.0 × 10

4
 S/m 

PVDF
16

 1.0 × 10
-13

 S/m 

 

 

The original estimations for the electrical conductivities of the active material and the electrolyte 

are approximately one order of magnitude higher than typical values observed for those 

materials. However, due to the nature of the results obtained from this study and the relatively 

high conductivity of the conductive additive, the results are expected to be unaffected by this 

overestimation. 

 

Representative elementary volume 

The concept of representative elementary volume is used to identify the smallest volume over 

which a measurement can be made that is representative on an entire heterogeneous system. The 

coefficient of variation (CV) can be used as an estimate of the variability of an effective property. 

The CV is given as 

𝐶𝑉 =  
𝜎

𝜇
                            (2.2) 
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where σ is the standard deviation and µ is the arithmetic mean. A CV of less than 0.5 indicates 

homogeneity, with a value above 0.5 indicating heterogeneity [17]. 

 

To ensure that the generated models were free from variation of size effect, the coefficient of 

variation was evaluated for the final conductivity data. The correction factor [1+1/4(N-1)] was 

used when calculating the coefficient of variation due to the small sample size of 5. As shown in 

Figure 4, the coefficient of variation remained under 0.16 for each electrode that was evaluated. 

 

 

Figure 4. Coefficient of variation for each of the evaluated electrodes. 

 

Multiple-Phase bounds 

Due to the random nature of stochastically generated models, it is often difficult to empirically 

predict their properties. An alternative to empirical correlations is the usage of property bounds, 

which give an upper and lower limit on the expected behavior of randomly generated structures. 
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These bounds incorporate microstructural information and can be applied to arbitrarily complex 

structures. Two types of bounds that can be applied to microstructures consisting of more than 

two components are Hashin-Shtrikman (H-S) bounds and Weiner bounds [18,19,20]. 

 

The H-S bounds can be applied to isotropic structures and are independent of the pore structure 

of the microstructure. The lower and upper H-S bounds for the electrical conductivity of an 

isotropic mixture of (3+1) components with thermal conductivities of 0 , 
1 ,..., 4 , where 0 < 

1 …< N ,  and volume fractions  0 ,..., N ∈[0,1] are given below as 

 

      (2.3) 

 

      (2.4) 

where 

  

      (2.5-2.7 

 

      (2.8-2.10) 

 

The Weiner bounds are applicable for both isotropic and anisotropic structures. They were 

derived assuming the combinations of materials as shown in Figure 5. 
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Figure 5. Physical material orientation used in deriving Weiner bounds. [Adapted from 19] 

 

 

The resistances in parallel represent lowest resistance and upper limit of conductivity, whereas 

resistors in series represent highest possible resistance and lower limit on conductivity. The 

upper and lower Weiner bounds are given below as 

max i i

i

                                                              (2.11) 

 
1

1
min

1

i
i

i

 





 


                                                     (2.12) 

 

Two-Phase bounds 

For the case of ion transport in a battery (or electrode), there is an electrolyte conducting phase 

and a solid phase that is not ionically conductive. In this type of situation, the conductivity of all 

phases, except electrolyte, are assumed to be zero. The percolation and Bruggeman equations 

give expressions for the effective conductivity of a two-phase porous electrode [19]. The 

percolation equation serves to quantify the conductivity of random media due to geometrical 

connectivity of particles. The lower limit for the percolation equation is assumed to be equal to 

the lowest component conductivity, while the upper limit is given as  

  

                    (2.13) 

2( )   1
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where p is the pore phase conductivity, p is the volume fraction of the pore phase, and 
c is the 

critical volume fraction for percolation.  

 

The Bruggeman equation is an empirically obtained formula used to relate effective conductivity 

with porosity. The lower bound of this formula is zero, and the upper bound is given by  

 

                                          (2.14) 

  

3/2

B p p  
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CHAPTER III 

RESULTS  

 

 

Stochastic Model Validation 

In order to validate the premise of stochastic modeling, a separate 3D microstructure was made 

to correspond with experimental results obtained by Liu et al. In their study, electrodes were 

created with varying amount of active material and a changing ratio of conductive additive to 

binder. In this case the active material percentages chosen were 98.8, 97.6, 96.4, 95.2, 90.4, 88.0, 

82.0, 76.0, and 64% by mass. The ratio of acetylene black (AB), the conductive additive, to  

polyvinylidine difluoride (PVDF), the binder, was varied between 0.2:1 to 0.8:1. The electrical 

conductivities of the prepared electrodes can be seen below in Figure 1.  

 

 

Figure 1. Electric conductivities of electrodes at varying composition based on experimental 

measurements using a four-point probe [Adapted from 5]. 
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A stochastic model was created using spherical active material particles as previously mentioned, 

with the conductive additive modeled as short circular fibers. The electrolyte was neglected 

during the experimental electrode construction. As such, the 3D structures only had active 

material, conductive additive, and binder. The results can be seen below in Figure 2. 

 

 

Figure 2. Effective conductivities of stochastic electrode models. 

 

In the experimental trials, percolation was typically achieved at approximately 4 weight % AB. 

The stochastic model achieved percolation at roughly 4 weight % as well, indicating agreement 

between expected and empirical behavior. Moreover, a clear trend exists in the experimental data 

and the model results as it pertains to the variation in effective conductivity with varying active 

material percentages and AB/PVDF ratios. With decreases in the amount of active material 

present, the effective conductivity increases due to the increase in the AB/PVDF composite 

present. As the ratio of AB/PVDF increases, the effective conductivities observed in the 

stochastic model increase, but the effective conductivities of the experimental electrodes deviate 
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from this with an AB/PVDF loading of 0.8:1. Although the stochastic model does not perfectly 

mimic the behavior of the experimental results obtained by Liu et al., the close similarity in the 

trends in the data indicate at least moderate modeling success. 

 

 

Effective conductivity  

Simulation results for the effective electrical conductivities for each set of electrodes are reported 

in Figure 3 below. Averaged data were plotted in the figure, with error bars of ±σ. 

 

 

Figure 3. Average effective conductivities for each electrode for active material loadings ranging from  

49.51% to 20.06%. 

 

For active material loadings above 40%, there is no statistically significant difference in the 

evaluated electrical conductivities for all three active material shapes. At loadings below 30%, 

the variation in conductivity between the cylinder and sphere is not significant. However, both 
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the cylinder and sphere exhibit higher electrical conductivities than the cube by approximately 9-

15%, based on the averages. For the active material loading of 30%, a clear hierarchy exists in 

terms of average values, but there is no statistically significant difference between the sphere and 

cylinder. At a loading of 35%, there is a statistically significant hierarchy between the sphere, 

cylinder and cube. As expected, increases in the amount of conductive additive and binder result 

in an increase in the conductivity of the electrode, regardless of active material particle shape.  

 

The trends in the data suggest that a more compact active particle shape will improve the 

conductivity of the electrode at moderate active material loadings. The formation of conductive 

pathways is hindered by the active material, whose particle size and shape can adversely affect 

pathway formation. This can be quantified in terms of the tortuosity of the electrodes before the 

conductive additives are added. The averaged tortuosities of each base electrode before the 

addition of conductive additives can be seen below in Figure 4. 
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Figure 4. Averaged tortuosities in each electrode. 

 

At every active material loading a hierarchy exists between the sphere, cylinder, and cube in 

terms of tortuosity. At active material loadings greater than 40%, the density of the structure 

restricts the ability of conductive additives to form pathways, regardless of active material shape. 

This indicates that above a certain tortuosity threshold, the formation of pathways is very 

difficult with the low amount of additives present within the structures. As the active material 

volume percent decreases, the tortuosity decreases for all active material particle shapes. For the 

loadings of 30% and 35%, increases in the tortuosities correspond to a decrease in the effective 

conductivities. However, at loadings of 25% and 20% the conductivities of the sphere and 

cylinder are roughly the same, despite their tortuosity differences. This seems to indicate a 

minimum tortuosity threshold below which the formation of conductive pathways is independent 

of active material particle shape. 
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A set of electrodes whose behavior matched that of the average data was used to analyze the 

microstructure at a closer level. The number of percolation paths and the tortuosities of the 

conductive system are given below in Table I. 

 

Table I. Characteristics of conductive pathways. 

 Conductive 

Paths 

Conductivity 

(S/m) 

Tortuosity AM Surface 

Area (m
2
) 

Sphere     

45% 0 12.52  -- 3.39e-08 

35% 6 36.22  86.051 2.63e-08 

30% 25 60.8  42.288 2.26e-06 

25% 47 73.56  36.446 1.88e-06 

Cylinder     

45% 0 12.26 -- 3.88e-08 

35% 3 30.30  192.67 3.11e-08 

30% 9 50.90 55.266 2.66e-08 

25% 28 71.74 35.96 2.25e-08 

Cube     

45% 0 11.11 -- 3.93e-08 

35% 1 23.73 1254.93 3.13e-08 

30% 6 39.72 159.672 2.69e-08 

25% 34 64.69 42.4 2.23e-08 
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The number of conductive paths increases with decreasing active material loadings for each 

active material shape. As expected, this led to an increase in the effective conductivity of the 

electrode. However, the number of pathways alone is not an effective metric for a comparison 

with effective conductivity. For the active material loading of 25%, the cylinder and sphere cases 

have roughly the same effective conductivity, despite the large difference in conductive 

pathways. Similarly, the cube at 25% has a lower conductivity then the cylinder, despite the 

larger number of pathways. Although the cube active material loading has a higher number of 

pathways than the cylinder, the tortuosity of the paths is higher than that of the cylinder.  This 

concept can also be applied to the cylinder and sphere comparison. These trends indicate that 

both the quantity and quality of the conductive pathways have an impact on the effective 

conductivity of the electrode.  

 

Effective conductivity bounds 

The multiple phase Hashin-Shtrikman and Weiner bounds and two-phase Bruggeman and 

percolation equations were applied using the volume percentage of each material present and 

their respective conductivities. The averaged data for the spherical case was plotted as well, for 

comparison. This can be seen in Figure 5 below. 
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Figure 5. Effective conductivity bounds applied to averaged sphere-based microstructure data. 

 

As can be seen above, both of the multiple-phase bounds vastly overestimate the effective 

electrical conductivities of the electrodes. This is likely due to the fact that these bounds are not 

meant for direct implementation with models whose properties are primarily dependent on 

pathway formation of a single phase. The Bruggeman equation more closely estimates the 

behavior of the electrodes, but still over predicts the conductivities by almost one order of 

magnitude. Because the Bruggeman equation is meant to relate the porosity of an electrode with 

its conductivity, it is better suited for the determination of ionic conductivity in liquid-electrolyte 

soaked porous media than the electrical conductivity based on particle connectivity [20]. The 

percolation equation is the most accurate predictor of the electrode behavior. For active material 

loading less than approximately 30%, the percolation equation slightly under predicts the 

effective conductivities. For loadings greater than approximately 30%, the percolation equation 

over predicts the behavior of the electrodes. The close agreement between the conductivities of 
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the electrode models and the percolation equation is due to the fact that the percolation equation 

is meant to characterize the conductivity based on the random connectivity of particles within a 

microstructure. The central point to this is the existence of a critical volume percentage, above 

which conductive networks will form, and below which none will form. By utilizing the critical 

volume percentage from the generated structures, a more accurate representation of their 

behavior was obtained with the percolation equation. 
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CHAPTER IV 

CONCLUSIONS 

 

In this study, a stochastic modeling technique was used to model electrode microstructures of 

varying active material shape and loading percentage. The modeling domain was selected such 

that variations due to size effect were negligible. The effective conductivity was evaluated for all 

of the generated electrodes, and significant conclusions were drawn from the results. 

 

The data suggested that a lower surface area to volume ratio of active particles increases the 

amount of continuous space available for pathway formation within the electrodes at moderate 

active material loadings. At higher active material loadings, the density of the structure and low 

additive content prevent the formation of conductive pathways through the electrode. At lower 

active material loadings, the formation of pathways seems to be less predictable based on the 

parameters utilized in this study.  

 

The percolation equation best predicts the effective conductivity of the electrode, indicating the 

conductive additive dominates the conductivity of the electrode. This means that the electrode it 

may be treated as consisting of two phases for effective conductivity prediction based on 

microstructural content.  
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