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ABSTRACT 

A multi-physics model and computational method is presented for predicting the performance 

of thermal microactuators at high input powers. The model accounts for nonlinear temperature 

dependence of material properties, heat loss due to radiation, and intra-device heat transfer by 

conduction across an air gap. To solve the highly nonlinear governing heat equations and compute 

the temperature distribution in the actuator, the Galerkin method with Newton-Raphson iteration 

is employed, enabling the calculation of device displacement. To verify accuracy, the model is 

applied to the case of a flexure actuator operating at steady state, and model predictions are 

compared with experimental voltage, current, and displacement measurements. To investigate the 

effects of each nonlinearity in the model, the predictions of six additional hypothetical models are 

considered in which (1) intra-device heat transfer is neglected, (2) heat loss due to radiation is 

neglected, (3) the thermal conductivity of silicon is assumed to be temperature-independent, (4) 

the thermal conductivity of air is assumed to be temperature-independent, (5) the electrical 

resistivity of silicon is assumed to be a linear function of temperature, and (6) the thermal 

expansion coefficient of silicon is assumed to be temperature-independent. With the exception of 

heat transfer due to radiation, each source of non-linearity was shown to have a significant impact 

on the accuracy of model predictions at high electrical power input. The model is further applied 

to predict the dynamic performance of the flexure actuator using an implicit Euler method to 

predict the evolution of the temperature distribution over time. The dynamic implementation is 

then used to calculate the thermal time constant for the flexure actuator, and model predictions for 

the transient voltage-current response are verified experimentally. 
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NOMENCLATURE 

𝐴 Cross-sectional area 

𝐴𝑐𝑑 Surface area over which heat is conducted to the external environment 

𝐴ℎ , 𝐴𝑔 𝐴𝑐 , 𝐴𝑓 , 𝐴𝑒 , 𝐴𝐴𝑢, 𝐴𝑆𝑖 
Cross-sectional area of the hot arm, connector, cold arm, flexure arm, 

extension arm, gold Pad Metal layer of the cold arm, and silicon layer 

of the cold arm respectively 

𝑐 Specific heat capacity 

𝒄 Set of scalar coefficients to the test functions 

𝑐𝑎 Specific heat capacity of air 

𝑐𝑆𝑖 Specific heat capacity of silicon 

𝑑 Damping coefficient 

𝐸 Elastic modulus 

𝒇 Flexibility matrix 

𝑭 Global load vector 

𝑭𝒆 Element load vector 

𝐹ℎ,𝑖, 𝐹𝑔,𝑖, 𝐹𝑐,𝑖, 𝐹𝑓,𝑖 
Axial forces in the hot arm, connector, cold arm, and flexure arm 

respectively 

𝐹𝑡ℎ Thermal force 

𝑔 Width of air gap 

𝑔𝑎 Gravitational acceleration 

𝐺𝑟 Grashof number 

ℎ Thickness of device 

ℎ𝑐𝑣 Heat transfer coefficient for convection 

ℎ𝑒𝑞 Overall heat transfer coefficient 
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𝐼ℎ , 𝐼𝑐 , 𝐼𝑓 
Moment of inertia of the hot arm, cold arm, and flexure arm 

respectively 

𝐼𝑒𝑙 Electric current 

𝐽 Current density 

𝐾 Boltzmann constant 

𝑲 Global stiffness matrix 

𝑲𝒆 Element stiffness matrix 

𝑘 Thermal conductivity 

𝑘0𝑆𝑖, 𝑘𝑖𝑎  𝜌𝑖𝑆𝑖, 𝛼𝑖 , 𝜌𝑖𝑐 , 𝑐𝑖𝑆𝑖 , 𝑐𝑖𝑎 Curve fitting parameters 

𝑘𝑎 Thermal conductivity of air 

𝑘𝑎,𝑎𝑣𝑔 Temperature average of the thermal conductivity of air 

𝑘𝑚 Mechanical stiffness of the actuator 

𝑘𝑆𝑖 Thermal conductivity of silicon 

𝐿 Length 

𝐿ℎ, 𝐿𝑐 , 𝐿𝑓 , 𝐿𝑒 , 𝐿𝐴𝑢 
Length of the hot arm, cold arm, flexure arm, extension arm, and gold 

Pad Metal layer respectively 

𝑚 Effective mass of the actuator 

𝑀ℎ,𝑖, 𝑀𝑔,𝑖, 𝑀𝑐,𝑖 , 𝑀𝑓,𝑖 
Moments in the hot arm, connector, cold arm, and flexure arm 

respectively 

𝑁𝑢 Nusselt number 

𝒏 Unit vector normal to a boundary 

𝑛 Mesh parameter 

𝑃∞ Ambient pressure 

𝑃𝑟 Prandtl number 

𝑞 Heat flux 
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𝑞𝑐𝑑𝑖 Heat flux conducted internally 

𝑞𝑐𝑑𝑒 Heat flux conducted to the environment 

𝑞𝑔 Heat flux from the actuator to the air gap 

𝑞𝐽 Volumetric rate of heat generation by Joule heating 

𝑞𝑚 Heat flux from the air gap to the actuator 

𝑞𝑟 Heat flux due to radiation 

𝑅 Total electrical resistance of the actuator 

𝑅𝑐 , 𝑅𝐴𝑢, 𝑅𝑆𝑖 
Electrical resistance of the cold arm, gold Pad Metal layer of the cold 

arm, and silicon layer of the cold arm respectively 

𝑅𝑖 Radial distance from the centroid of an arm to the arm surface 

𝑅𝑜 Radial distance from the centroid of an arm to the substrate 

𝑅𝑎 Rayleigh number 

𝑠 
Coordinate from terminal of the hot arm, following the axis of each 

arm around the perimeter of the actuator 

𝑆𝑐𝑑 
Length of the boundary over which conduction to the environment 

occurs 

𝑆𝑓 Conduction shape factor 

𝑆𝑟 Length of the boundary over which radiation to the environment occurs 

𝑇 Temperature 

𝑇∞ Ambient temperature 

𝑢 Displacement in the 𝑦-direction 

𝑢𝑡𝑖𝑝 Displacement in the y-direction at the tip of the extension arm 

𝑉 Applied voltage across the actuator terminals 

𝑤ℎ , 𝑤𝑐 , 𝑤𝑓 , 𝑤𝑒 , 𝑤𝐴𝑢 
Width of the hot arm, cold arm, flexure arm, extension arm, and gold 

Pad Metal layer respectively 
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𝑥, 𝑦 Rectangular coordinates 

𝑿 Redundant component vector 

𝛼 Thermal expansion coefficient of silicon 

𝛼𝑑 Thermal diffusivity of the working fluid 

𝛽 Volumetric thermal expansion coefficient of the working fluid 

𝚫 Displacement vector at the terminal of the hot arm 

Δ𝐿 
Thermal expansion mismatch between the hot and cold sides of the 

flexure actuator 

𝛿𝑀 Moment resulting from the application of a unit redundant 

𝛿𝑝 Thermal penetration depth 

휀 Emissivity  

𝜗 Coordinate following perimeter of an arm’s cross section 

𝜉, 𝜂 
Local coordinates for the master element used in the finite element 

approximation 

𝜈 Kinematic viscosity 

𝜌 Electrical resistivity  

𝜌𝐴𝑢 Electrical resistivity of gold 

𝜌𝑆𝑖 Electrical resistivity of silicon 

𝜌𝑐 Effective electrical resistivity in the cold arm 

𝜚 Mass density 

𝜚𝑆𝑖 Mass density of silicon 

𝜚𝑎 Mass density of air 

𝜎 Stefan-Boltzmann constant 

𝜍 Volumetric rate of heat production 
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𝜏 Thermal time constant 

𝜑 Electrical potential 

𝝓 Set of shape functions 

𝜒 Error parameter 

𝜓 Weight function 
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 INTRODUCTION AND LITERATURE REVIEW 

In recent years, micromachined devices have become widely used for applications in sensing 

and actuation. The use of microelectromechanical systems (MEMS) specifically for actuation has 

allowed for precise manipulation of micro- and nano-scale structures at relatively high frequency 

and with high repeatability. MEMS actuators have been used in a variety of applications, including 

use as microgrippers, micropumps, microvalves, and optical switches. Several mechanisms of 

electro-mechanical coupling have been exploited to achieve actuation, including electrostatics, the 

piezoelectric effect, and thermal expansion.  

Electrostatic comb drives [1] are capacitive actuators composed of two combs, a stationary 

comb fixed to the substrate and a moveable comb mounted to the substrate via a flexible tether. 

The two combs are arranged such that each finger of the moveable comb is equidistant from two 

fingers on the stationary one. Applying a potential difference between the two combs creates an 

electrostatic force that causes motion in the moveable comb. Though these actuators can be 

operated at high frequency, displacement is often limited by the stiffness of the tether required to 

prevent pull-in instability. 

To achieve a larger stroke, inchworm actuators have been introduced [2]. These devices 

consist of a long flexible strip of material mounted to two support structures. The foreword support 

structure is first clamped to the substrate to prevent motion while the strip is deflected, causing the 

aft support to move foreward. The aft support is then clamped while the foreword support is 

released, allowing the actuator to move incrementally along the line of action. Variations of this 

basic concept have also been implemented, as shown in [3]. 

Piezoelectric material containing polarized dipoles have also been employed as MEMS 

actuators. Electro-mechanical coupling in the material induces a strain when an electric potential 
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gradient is applied. Displacements attainable with piezoelectric material alone are relatively small, 

so piezoelectric actuators are usually designed in a manner that amplifies these displacements. 

Thermal microactuators are widely used for their ability to reliably produce relatively large, 

precise displacements with high actuation force. Electro-mechanical coupling in thermal 

microactuators is achieved by applying an electrical potential gradient across a micromachined 

device, resulting in controlled nonuniform temperature changes via Joule heating. The thermal 

expansion caused by Joule heating can be used for actuation at the nano- and micrometer scale. 

Numerous designs have been proposed to achieve both in-plane and out-of-plane displacement 

through thermal actuation. 

U-shaped flexure actuators and V-shaped bent-beam actuators are the most commonly used 

thermal microactuator designs for in-plane displacement [4]. Flexure actuators operate on the 

principal that the heat generated by an electrical current in a conductive element scales 

proportionally with the electrical resistance of the element. The rise in temperature therefore scales 

inversely with the cross-sectional area. To use this principle in flexure actuators, thick and thin 

elements (respectively referred to as cold and hot arms) are electrically connected in series. By 

arranging these two arms in a U-shape, the difference in thermal expansion creates in-plane 

bending. In a V-shaped bent-beam actuator, current flows across a single symmetric V-shaped 

beam, considered to be in a state of “pre-bending.” Thermal expansion in the beam causes a central 

shuttle to move in the direction of the bend.  

In an attempt to improve the efficiency of the flexure actuator design, modifications have been 

made to incorporate two hot arms, eliminating current flow in the cold arm [5]. Arrangements of 

both flexure actuators and bent-beam actuators have also been established to create more intricate 

devices, including microgrippers [6, 7] and 6-axis positioners [8]. Out-of-plane actuation can also 

be achieved by offsetting the hot and cold arms in the out-of-plane direction [9, 10]. 
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The design of thermal actuators requires multi-physics models that can reliably predict the 

electro-thermo-mechanical response of the device. Analytical solutions have been established to 

predict the displacement of thermal microactuators in [5-7, 10-16]. To model the temperature 

distribution in a device, these analytical solutions require that significant simplifying assumptions 

be made. For instance, thermal conductivity in many cases is assumed to be temperature-

independent and electrical resistivity is assumed to vary linearly with temperature, despite both 

showing a strong nonlinear temperature dependence [17]. With regards to electrical resistivity, a 

temperature increase in semiconductors initially corresponds with a reduction in carrier mobility, 

resulting in an increase in the observed electrical resistivity. However, after exceeding a critical 

temperature, any further increase in temperature results in a decrease in the observed electrical 

resistivity due to an increase in carrier concentration [18].  It is therefore important to capture this 

nonlinear behavior when modeling devices at high operating temperature. Analytical solutions 

often also assume that intra-device heat transfer and radiative heat transfer are insignificant. Intra-

device heat transfer, caused by heat conducting from one location of the actuator to another 

through an adjacent air gap, can become quite significant when temperature gradients are large or 

when arms of an actuator are spaced close together. Radiative heat transfer, though insignificant 

at low temperatures, may become significant in a vacuum or when high input powers are required.  

Attempts have been made to improve upon the accuracy of analytical models using 

commercially available finite element software. References [19] and [20] have established models 

using the commercial finite element package ANSYS, accounting for intra-device heat transfer, 

temperature-dependent convection, and the nonlinear temperature dependence of thermal 

conductivity in silicon. However, radiation was excluded from the analyses, and resistivity was 

assumed to be a monotonically increasing function of temperature, in contrast with the nonlinear 

dependence stated previously. References [9] and [21] have established ANSYS models that 
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consider intra-device heat transfer, temperature-dependent convection, radiative heat transfer, and 

the nonlinear temperature dependence of thermal conductivity in silicon. However electrical 

resistivity was assumed to show only linear temperature dependence. A tabulated summary of the 

current literature can be found in Table I. 

Although the emphasis of this work is placed on applications in thermal microactuation, 

accurate thermal modeling is important in nearly all heat producing micromachined devices. The 

development of accurate electro-thermal models for large temperature ranges can help better 

predict the conditions that will lead to thermal runaway and device failure. Due to the cost and 

long lead times associated with fabrication of micromachined devices, it is not always feasible to 

iterate on device designs, making the establishment of accurate thermal models essential to the 

design process. The current work establishes a model that fully retains the temperature dependence 

of material properties and allows for the consideration of convection, conduction, and radiative 

heat transfer boundary conditions. To solve the highly nonlinear heat equation and determine the 

temperature distribution in the device, a computational approach that incorporates the Galerkin 

method with Newton-Raphson iteration is employed. This approach is then applied to a thermal 

flexure microactuator to determine the steady state device displacement over a wide range of input 

powers. The results are then verified experimentally using a flexure actuator fabricated from the 

SOIMUMPS micromachining process, and the significance of each nonlinearity is investigated 

with regards to model accuracy. The computational approach is further employed to determine the 

evolution of the temperature distribution over time, permitting the calculation of the dynamic 

device displacement and frequency response. Though measurement of device displacement is 

difficult at high frequencies, the model is verified experimentally by comparing the predicted 

voltage-current response with that measured experimentally. 
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[11] Flexure A C C C L C N N 

[22] Flexure (electrostatic/thermal) FE C F F C C N N 

[23] Flexure FE C C C C C N N 

[12] V-shaped A C C C L N N N 

[24] Dual Flexure FE C F F C F F F 

[7] V-shaped/Flexure A/FE/FD C C C L C N N 

[10] Bi-directional out-of-plane A/FE C C C L C N N 

[8] 6-axis positioner FE C C C C N N N 

[25] Unique Microgripper FE C C C C C N N 

[26] Gap Adjustable Comb (flexure) M/NA/FE C L L L C N N 

[20] Flexure FE C F F MI F F N 

[27] Flexure FE C C F L C N N 

[13] Flexure A C C C C C N N 

[14] Flexure (externally heated) A/FE C C C n/a C N N 

[5] Two Hot Arm Flexure A/FE C C C L C N N 

[28] Flexure FE L F B L F F N 

[29] Flexure NA C L L L C N N 

[30] Flexure A/FE C I I I C F N 

[9] Out-of-plane FE C F F L F F F 

[21] Flexure FE C F F L F F F 

[31] Beam TN C C C C C N N 

[32] Flexure M/FD/FE C F* C C C N N 

[33] Flexure FE C F F L F F L 

[19] Flexure FE C F F MI F F N 

[34] V-shaped FD C C F L F N F 

[35] Out-of-plane (eccentric loading) FE C L F L N N N 

[15] Dual flexure A/FE C C C L C N N 

[6] Dual flexure A/FE C C C L C N N 

[36] Flexure FD C C C L C N N 

[37] Out-of-plane FD C C F L C N F 

[16] Flexure A C C C C C N N 

[38] V-shaped FD C F F MI F N F 
 

Summary of the current literature. (A) analytical, (C) constant, (B) minimum of two values, (F) fully 

accounts for temperature dependence or the given heat transfer mechanism, (F*) uses average 

temperature to determine the value,  (FE) finite element, (FD) finite difference, (I) iterative approach, (L) 

linear, (M) macromodel, (MI) monotonically increasing function of temperature, (N) does not account 

for the corresponding mechanism, (NA) nodal analysis, (n/a) not applicable, (TN) thermal network. 
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Overviews of the flexure actuator design, fabrication process, and the applicable material 

properties are outlined in Sections 2.1 through 2.3.1. Summaries of the electro-thermal and 

thermo-mechanical models are then provided in Sections 2.3.2 and 2.3.3, and a computational 

approach used to predict the steady state behavior of the flexure actuator is discussed in Section 

3.2. The predictions of this steady state model are presented in Section 3.5 along with an 

investigation into the significance of each source of nonlinearity in the model. In Section 4.3, the 

computational method is then extended to predict the dynamic performance of the flexure actuator, 

and the model predictions and experimental verification are presented in Section 4.5. 
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 DEVICE OVERVIEW 

2.1. Conceptual Design 

The design of micromachined flexure actuators has been widely studied in the literature and 

has been selected as the test actuator for experimental verification of the presented model. As 

shown in Fig. 1(a), the typical flexure actuator consists of a hot arm, a cold arm, and a flexure arm. 

An extension arm is often placed at the tip of the actuator to amplify the displacement and has 

therefore been incorporated into the design of the test actuator. When an electric potential 

difference is applied between the hot and cold terminals, current flows through the hot arm, cold 

arm, and flexure arm. Because these arms are electrically connected in series, the applied voltage 

induces Joule heating proportional to the resistance. The resistance itself is inversely proportional 

to the width of the arm, resulting in greater heating of the hot arm. The larger thermal expansion 

of the hot arm relative to the cold arm produces a bending moment, resulting in lateral 

displacement of the actuator tip in the direction of the cold arm. A microscope image of this 

actuation is shown in Fig. 2. 

For the purposes of this work, the body of air contained between the cold/flexure arm and the 

hot arm is referred to as the air gap. If a significant temperature gradient exists across this air gap, 

heat conducted between the hot and cold/flexure arm through the air gap (henceforth referred to 

as intra-device heat transfer) may become significant. This mechanism of heat transfer decreases 

the temperature of the hot arm and increases the temperature of the cold arm, ultimately decreasing 

the displacement of the actuator for a given electrical input. To enhance the displacement of the 

actuator, an electrically conductive thin film can be deposited on the surface of the cold arm. This 

decreases the resistivity of the arm, thus decreasing the heat generated by Joule heating. Therefore, 

as shown in Fig. 1(a) and (b), a gold Pad Metal layer (described in Section 2.2) was deposited on 

the cold arm of the test actuator and will be considered in the development of the electro-thermal 
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(a) 

 
(b)  

 
 (c) 

 
(d) 

Fig. 1. (a) Flexure actuator schematic; (b) Optical microscope image of the test actuator;  (c) Cross-sectional 

schematic of the test actuator, where boundaries across which heat is conducted to the external environment 

are displayed in bold; (d) Schematic of the SOIMUMPs process [39]. 
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model. A full list of the test actuator dimensions [corresponding with those shown in Fig. 1(a)] is 

given in Table II. 

2.2. Device Fabrication 

The test actuator, shown in Fig. 1(b), was fabricated using the SOIMUMPs Silicon-on-

Insulator micromachining process. A detailed description can be found in [39], and a schematic of 

the process is shown in Fig. 1(d). The SOIMUMPs silicon substrate is covered with a 2 µm thick 

layer of oxide covered by a 25 µm thick layer of single crystal silicon. Doping of the active 

 

 

Fig. 2. Flexure actuator before actuation (top) and after actuation with a 16.5 V excitation (bottom). 

TABLE II 

NOMINAL TEST ACTUATOR DIMENSIONS 

𝐿𝑐 693.25 𝑤𝑐 59.75 𝑤𝑒 14.50 

𝐿ℎ   1145.00 𝑤ℎ 7.50 𝑤𝐴𝑢 49.75 

𝐿𝑒 313.00 𝑤𝑓 7.50 𝑔 13.50 

𝐿𝐴𝑢 673.25 𝑤𝑔 10.00 ℎ 25.00 

𝛿𝑡𝑟 16.00 𝑤𝑡𝑟 232.00 ℎ𝑠𝑢𝑏 400.00 
 

Nominal dimensions for the test actuator are given in µm and correspond with the dimensions shown in Fig. 

1(a). The SOIMUMPs process uses a 0.25 µm grid spacing, with a 2 µm minimum feature size. 
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(moveable) silicon layer is first performed by depositing a layer of phosphosilicate glass (PSG) on 

the frontside of the wafer and annealing at 1050°C for 1 hour. A Pad Metal layer is then patterned 

onto the frontside of the wafer by depositing a 20 nm layer of chrome followed by a 500 nm layer 

of gold. Patterning of the active silicon layer is performed using a Deep Reactive Ion Etch (DRIE) 

to the frontside of the wafer. A trench is then patterned into the substrate by applying a Reactive 

Ion Etch to the backside, followed by a wet etch to remove the exposed oxide layer. This step 

releases portions of the active silicon layer positioned above the trench. A final vapor HF etch is 

used to remove remaining oxide from the frontside. 

2.3. Theoretical Modeling 

Accurate modeling of the flexure actuator requires knowledge of the temperature distribution 

in the device. To predict this, the electro-thermo-mechanical problem is first decoupled into an 

electro-thermal problem and a thermo-mechanical problem. The solution to the heat balance 

equations governing the electro-thermal problem permits the calculation of the temperature 

distribution in the device, which subsequently forms the input to the thermo-mechanical problem. 

Using the calculated temperature distribution, thermal expansion in each arm is calculated, and the 

method of virtual work is applied to calculate the displacement at the tip of the extension arm. 

2.3.1. Temperature Dependence of Material Properties 

The temperature dependence of the thermal conductivity, thermal expansion coefficient, and 

electrical resistivity of silicon in the SOIMUMPS process has been investigated and reported in 

[17]. Although the thermal conductivity of single crystal silicon shows little doping dependence, 

the dopant concentration can have a significant effect on the thermal expansion coefficient and 

electrical resistivity. However, because the SOIMUMPs process is a standardized commercial 

process, the values in [17] have been assumed to be applicable to the current work. In the current 

model, a least squares fit was performed to establish the functional relationship between the 
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material properties and temperature. Equations (1), (2), (3), and (4) were determined to model the 

thermal conductivity of silicon, 𝑘𝑆𝑖, the thermal conductivity of air, 𝑘𝑎, the electrical resistivity of 

silicon, 𝜌𝑆𝑖, and the thermal expansion coefficient of silicon, 𝛼, sufficiently well. 

 
𝑘𝑆𝑖 =

𝑘0𝑆𝑖

𝑇
 (1) 

 𝑘𝑎 = 𝑘0𝑎 + 𝑘1𝑎𝑇 + 𝑘2𝑎𝑇2 (2) 

 𝜌𝑆𝑖 = 𝜌0𝑆𝑖 + 𝜌1𝑆𝑖𝑇 + 𝜌2𝑆𝑖𝑇2 + 𝜌3𝑆𝑖𝑇3 + 𝜌4𝑆𝑖𝑇4 (3) 

 𝛼 = 𝛼0 + 𝛼1𝑇 + 𝛼2𝑇2 + 𝛼3𝑇3 + 𝛼4𝑇4 + 𝛼5𝑇5 (4) 

Here 𝑇 is temperature and 𝑘0𝑆𝑖, 𝑘𝑖𝑎, 𝜌𝑖𝑆𝑖, and 𝛼𝑖 are curve fitting parameters. Although these 

functions were used for simplicity, the model is not limited to the forms given in (1)-(4). Because 

the electrical resistivity of silicon is highly process-dependent, the reader is directed to [18] and 

[40] for physics-based analytical models should empirical data be unavailable. 

The change in the elastic modulus of silicon, 𝐸, has been shown to be less than 10% in the 

range of 298-1273 K for Boron-doped silicon [41, 42]. Therefore, because there is limited data in 

the literature characterizing the temperature dependence of 𝐸 for Phosphorus-doped silicon, a 

constant value of 169 GPa has been assumed for this work (corresponding with the <110> crystal 

direction) [43]. In Section 3.5.4, it will be shown that assuming 𝐸 to be temperature-independent 

does not significantly affect the accuracy of the model.  

A Pad Metal layer was deposited on the cold arm of the test actuator to decrease the effective 

resistivity in the arm and increase the displacement of the actuator. Therefore it is necessary to 

model the functional relationship between the effective resistivity in the cold arm and temperature. 

The cold arm is approximately modeled as two parallel temperature-dependent resistors. Hence 

the total resistance in the cold arm is given by 
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𝑅𝑐(𝑇) = [

1

𝑅𝑆𝑖(𝑇)
+

1

𝑅𝐴𝑢(𝑇)
]

−1

. (5) 

Here 𝑅𝑆𝑖 and 𝑅𝐴𝑢 are the total resistances of the silicon and gold layer respectively, where 𝑅(𝑇) =

𝜌(𝑇)𝐿/𝐴. The parameter 𝐴 is the cross-sectional area of the layer, 𝜌 is the electrical resistivity of 

that layer, and 𝐿 is the length of that layer. The effective resistivity can now be obtained by taking 

into account the resistivity of gold and silicon, 𝜌𝐴𝑢 and 𝜌𝑆𝑖 respectively, where both 𝜌𝐴𝑢 and 𝜌𝑆𝑖 

can be modeled using (3). The effective resistivity of the cold arm, 𝜌𝑐, is given by 

 
𝜌𝑐(𝑇) =

𝐴𝐴𝑢 + 𝐴𝑆𝑖

𝐿𝑐
 [

𝐴𝑆𝑖

𝜌𝑆𝑖(𝑇)𝐿𝑐
+

𝐴𝐴𝑢

𝜌𝐴𝑢(𝑇)𝐿𝐴𝑢
]

−1

, (6) 

where 𝐴𝐴𝑢 and 𝐴𝑆𝑖 are the cross-sectional areas of the gold and silicon layer respectively, and 𝐿𝑐 

and 𝐿𝐴𝑢 are the lengths of the cold arm and gold layer respectively. For consistency and simplicity, 

a least squares fit was performed on the values given by (6) to give 𝜌𝑐(𝑇) the same form as (3). 

Equation (7), in which function parameters are designated 𝜌𝑖𝑐, will therefore replace (3) henceforth 

when considering the electrical resistivity of the cold arm. A list of the material properties and 

function parameters used in the implementation of the presented model is given in Table III. 

TABLE III 

MATERIAL PROPERTIES AND FUNCTION PARAMETERS 

𝜶𝟎 (K-1) 𝜶𝟏 (K-2) 𝜶𝟐 (K-3) 𝜶𝟑 (K-4) 𝜶𝟒 (K-5) 𝜶𝟓 (K-6) 

-2.12×10-6 2.62×10-8 -4.65×10-11 4.27×10-14 -1.96×10-17 3.59×10-21 

𝒌𝟎𝒂 (W·m-1·K-1) 𝒌𝟏𝒂 (W·m-1·K-2) 𝒌𝟐𝒂 (W·m-1·K-3) 𝒌𝟎𝑺𝒊 (W·m-1) 𝜺 𝑬 (GPa) 

4.76×10-3 7.81×10-5 -1.53×10-8 40166.3 0.7 169 

𝝆𝟎𝑺𝒊 (Ω·m) 𝝆𝟏𝑺𝒊 (Ω·m·K-1) 𝝆𝟐𝑺𝒊 (Ω·m·K-2) 𝝆𝟑𝑺𝒊 (Ω·m·K-3) 𝝆𝟒𝑺𝒊 (Ω·m·K-4)  

2.64×10-4 -1.38×10-6 4.36×10-9 -4.13×10-12 1.19×10-15  

𝝆𝟎𝒄 (Ω·m) 𝝆𝟏𝒄 (Ω·m·K-1) 𝝆𝟐𝒄 (Ω·m·K-2) 𝝆𝟑𝒄 (Ω·m·K-3) 𝝆𝟒𝒄 (Ω·m·K-4)  

2.02×10-8 4.10×10-9 8.23×10-13 6.16×10-16 -3.44×10-19  

 

Function parameters for 𝛼, 𝑘𝑆𝑖, and 𝜌𝑆𝑖 were established from data reported in [17], 𝐸 was obtained from 

[43], function parameters for 𝑘𝑎were obtained from data reported in [44], and function parameters for 𝜌𝑐 

were calculated using resistivity data for gold reported in [45]. 
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To model the dynamic performance of the thermal microactuator, the temperature dependence 

of the specific heat capacity of silicon, 𝑐𝑆𝑖, the specific heat capacity of air, 𝑐𝑎, and the mass density 

of air, 𝜚𝑎, must also be considered. The following functional relationships were found to model 

these temperature dependences sufficiently well: 

 𝑐𝑆𝑖 = 𝑐0𝑆𝑖 + 𝑐1𝑆𝑖𝑇 + 𝑐2𝑆𝑖𝑇2 (8) 

 𝑐𝑎 = 𝑐0𝑎 + 𝑐1𝑎𝑇 + 𝑐2𝑎𝑇2 (9) 

 
𝜚𝑎 =

𝑃∞

𝑅𝑇
, (10) 

where 𝑐𝑖𝑆𝑖 and 𝑐𝑖𝑎 are function parameters, 𝑃∞ is the ambient air pressure, and 𝑅 is the specific 

gas constant for air. For all calculations that follow, atmospheric conditions at sea level will be 

assumed where 𝑃∞ = 101 325 Pa, and 𝑅 = 287.058 J·kg-1·K-1. A summary of these material 

properties and function parameters used in the dynamic implementation of the model is shown in 

Table IV. Here mass density of silicon, 𝜚𝑆𝑖, is assumed to be temperature-independent. 

 𝜌𝑐 = 𝜌0𝑐 + 𝜌1𝑐𝑇 + 𝜌2𝑐𝑇2 + 𝜌3𝑐𝑇3 + 𝜌4𝑐𝑇4 (7) 

TABLE IV  

MATERIAL PROPERTIES AND FUNCTION PARAMETERS FOR DYNAMIC IMPLEMENTATION OF THE MODEL 

𝒄𝟎𝑺𝒊 (J·kg-1·K-1) 𝒄𝟏𝑺𝒊 (J·kg-1·K-2) 𝒄𝟐𝑺𝒊 (J·kg-1·K-3) 

5.95×102 5.38×10-1 -1.77×10-4 

𝒄𝟎𝒂 (J·kg-1·K-1) 𝒄𝟏𝒂 (J·kg-1·K-2) 𝒄𝟐𝒂 (J·kg-1·K-3) 

9.53×102 1.50×10-1 3.03×10-5 

𝝔𝑺𝒊 (kg·m-3) 𝑷∞ (Pa) 𝑹 (J·kg-1·K-1) 

2329.6 101 325 287.058 

 

Function parameters for 𝑐𝑆𝑖 were obtained from data reported in [46] and function parameters for 𝑐𝑎were 

obtained from data reported in [47]. 
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2.3.2. Electro-Thermal Model 

To reliably predict the displacement induced by thermal actuation, the temperature distribution 

in the actuator must be accurately described. The mechanisms of heat transfer will first be 

formulated pointwise in a manner that is applicable to both the actuator arms and the air gap, 

assuming temperature to be uniform in the out-of-plane direction. The temperature will also be 

assumed uniform over the cross section of each actuator arm, thus permitting the formulation of a 

1-D governing differential equation for the actuator arms and a 2-D governing differential equation 

for the air gap. After the governing differential equations are developed, the Galerkin method with 

Newton-Raphson iteration will be applied to solve for the temperature distribution in the actuator 

(see Section 3 and 4 for the implementation of the computational method).  

The heat balance equation is written as:  

 
𝜚𝑐

𝜕𝑇

𝜕𝑡
= −𝛁 ∙ 𝑞 + 𝜍, (11) 

where 𝜚 is mass density, 𝑐 is specific heat capacity, 𝑡 is time, 𝑞 is the heat flux entering a point, 

and 𝜍 is volumetric rate of heat production. The term 𝜍 is equal to zero within the air gap and equal 

to the heat generated by Joule heating, 𝑞𝐽, within the actuator. Equation (11) will now be developed 

for the actuator arms and air gap to account for radiation, conduction, and convection boundary 

conditions. Towards this end, we first consider the non-dimensional numbers commonly used to 

evaluate the relative importance of natural convection and conduction in the surrounding medium. 

The Nusselt number provides the ratio of the convective heat transfer to the conductive heat 

transfer and is given by 𝑁𝑢 = ℎ𝑐𝑣𝐿/𝑘 where ℎ𝑐𝑣 is the heat transfer coefficient for convection and 

𝑘 is the thermal conductivity of the working fluid. The test actuator has a Nusselt number on the 

order of 10-3 to 10-2, assuming the heat transfer coefficient of natural convection in air to be in the 

range of 10-100 W·m-2·K-1. The Grashof number provides a ratio of buoyant forces to viscous 
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forces and is used to determine the significance of natural convection. A small value indicates that 

viscous forces dominate, and air flow is therefore limited. The Grashof number is given by 𝐺𝑟 =

𝑔𝑎𝛽(𝑇 − 𝑇∞)𝐿3/𝜈2 where 𝑔𝑎 is the gravitational acceleration, 𝛽 is the volumetric thermal 

expansion coefficient of the fluid, 𝐿 is the characteristic length, and 𝜈 is the kinematic viscosity of 

the fluid [48]. For the actuator in this work, the Grashof number is on the order of 10-4, suggesting 

that the effects of natural convection are small. 

The Prandtl number provides the ratio of momentum diffusivity to thermal diffusivity and is 

given by 𝑃𝑟 = 𝜈/𝛼𝑑, where 𝛼𝑑 is the thermal diffusivity of the fluid. The Rayleigh number, 𝑅𝑎, 

is the product of the Prandtl number and the Grashof number, and, when lower than 1708 for air, 

the effects of convection can be considered negligible relative to conduction [49]. For the actuator 

in this work, the Rayleigh number is on the order of 10-5 to 10-4. This provides sufficient evidence 

to justify neglecting convection in favor of conduction to the external environment. 

It is now necessary to model the mechanisms of heat transfer and heat generation within the 

actuator and air gap. Properties are assumed uniform in the out-of-plane direction, and temperature 

is, therefore, only considered to be a function of position, (𝑥,𝑦), and time, 𝑡. The volumetric rate 

of heat production within the actuator can now be expressed as the heat generated by Joule heating: 

 
𝑞𝐽 =

1

𝜌(𝑇)
𝛁𝜑(𝑥, 𝑦, 𝑡) ∙ 𝛁𝜑(𝑥, 𝑦, 𝑡), (12) 

where 𝜌 is the electrical resistivity of the semiconductor/conductor, and 𝜑 is the electrical 

potential. In semiconductors 𝜌 is a strong function of doping concentration and temperature. For 

a given micro-scale device, however, the area of the die covered by the device is generally small 

enough that the doping concentration can be assumed uniform. Therefore for a given doping, the 

resistivity can be assumed to be a function of temperature only. The heat flux conducted internally 

can now be written in the following general form for both the air gap and the actuator: 
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 𝑞𝑐𝑑𝑖 = −𝑘(𝑇)𝛁𝑇(𝑥, 𝑦, 𝑡), (13) 

where 𝑘 is the thermal conductivity of either the air or the actuator material. Because this thermal 

model is intended to predict the behavior of thermal microactuators at high operating temperatures, 

the effects of radiation will also be considered for the arms of the actuator. The heat flux due to 

radiation, 𝑞𝑟, is given by  

 𝑞𝑟 = 휀𝜎[𝑇(𝑥, 𝑦, 𝑡)|𝜕𝑎
4

− 𝑇∞
4 ], (14) 

where 휀 is the emissivity of the semiconductor/conductor, 𝜎 is the Stefan-Boltzmann constant, 𝑇∞ 

is the temperature of the ambient environment, and 𝑇(𝑥, 𝑦, 𝑡)|𝜕𝑎 denotes the temperature evaluated 

on the surface of the actuator exposed the external environment. Any boundaries between the 

microactuator and the air gap are not included in 𝜕𝑎. Because thermal microactuators often do not 

operate in a vacuum, the heat flux due conduction to the external environment, 𝑞𝑐𝑑𝑒, must also be 

considered. This can be written in the general form 

 𝑞𝑐𝑑𝑒 = −[𝑘𝑎(𝑇)𝛁𝑇|𝜕𝑎] ∙ 𝒏|𝜕𝑎 , (15) 

where 𝑘𝑎 is the thermal conductivity of air and 𝒏 is the unit vector normal to the boundary. To 

simplify the analysis, this term will be reformulated in terms of a temperature-dependent effective 

heat transfer coefficient and applied to both the actuator arms and the air gap. An isothermal arm 

will now be considered, and the spatial dependence of temperature will temporarily be excluded. 

The rate of heat transfer due to conduction to the external environment, 𝑄𝑐𝑑𝑒, can be written in 

terms of a conduction shape factor, 𝑆𝑓, as 

 𝑄𝑐𝑑𝑒 = [
1

𝑇−𝑇∞
∫ 𝑘𝑎(𝑇)𝑑𝑇

𝑇

𝑇∞
] 𝑆𝑓[𝑇 − 𝑇∞] = 𝑘𝑎,𝑎𝑣𝑔𝑆𝑓[𝑇 − 𝑇∞]. (16) 

The term 𝑘𝑎,𝑎𝑣𝑔 is the result of taking a temperature average of the thermal conductivity of air 

[50]. The rate of heat transfer is given by the product of a flux and an area. The shape factor is 
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therefore given by an area through which heat is conducted divided by a length across which the 

temperature gradient is calculated. The term 𝑄𝑐𝑑𝑒 can also be written in the following form: 

 𝑄𝑐𝑑𝑒 = ℎ𝑒𝑞(𝑇)𝐴𝑐𝑑[𝑇 − 𝑇∞], (17) 

where ℎ𝑒𝑞 is the effective heat transfer coefficient for conduction and 𝐴𝑐𝑑 is the surface area of 

the arm over which heat is conducted to the external environment. This area excludes that over 

which heat is exchanged between the arms through the air gap. The temperature-dependent 

effective heat transfer coefficient can now be written as 

 ℎ𝑒𝑞(𝑇) =
𝑆𝑓

𝐴𝑐𝑑
[

1

𝑇−𝑇∞
∫ 𝑘𝑎(𝑇) 𝑑𝑇

𝑇

𝑇∞
] =

𝑆𝑓𝑘𝑎,𝑎𝑣𝑔

𝐴𝑐𝑑
 . (18) 

This form of ℎ𝑒𝑞 can now be applied pointwise, yielding the following form for 𝑞𝑐𝑑𝑒: 

 𝑞𝑐𝑑𝑒 = ℎ𝑒𝑞(𝑇)[𝑇(𝑥, 𝑦, 𝑡)|𝜕𝑎 − 𝑇∞]. (19) 

The arms of the microactuator are sufficiently slender such that the temperature variation 

within each cross section can be considered negligible relative to temperature variation along the 

length of each arm. A coordinate, 𝑠, is therefore introduced to represent the axial distance from 

the terminal of the hot arm, following the axis of each arm around the actuator, as shown in Fig. 

1. Temperature can now be considered a function of only 𝑠 within the actuator. Furthermore, the 

Joule heating term can be rewritten in terms of the current density, 𝐽, where 𝐽 = 𝛁𝜑/𝜌. Due to the 

conservation of charge principle and because the arms of the actuator have different cross-sectional 

areas, the current density is a piecewise constant function in 𝑠. Furthermore, a unique shape factor 

is considered for each arm such that the function for ℎ𝑒𝑞(𝑇) is also considered piecewise in 𝑠. 

Combining all mechanisms of heat transfer given in (12), (13), (14), and (19), the differential 

equation describing the heat transfer in each arm can be expressed as 
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−𝜚𝑆𝑖𝑐𝑆𝑖(𝑇)𝐴

𝜕𝑇(𝑠, 𝑡)

𝜕𝑡
+

𝜕

𝜕𝑠
[𝑘𝑆𝑖(𝑇) 𝐴

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
]  + 𝐽(𝑡)2𝜌(𝑇)𝐴

− ℎ𝑒𝑞(𝑇)𝑆𝑐𝑑[𝑇(𝑠, 𝑡) − 𝑇∞] − 휀𝜎𝑆𝑟[𝑇(𝑠, 𝑡)4 − 𝑇∞
4 ] − ℎ𝑞𝑔(𝑠, 𝑡) = 0, 

(20) 

where 𝜚𝑆𝑖 is the mass density of silicon, 𝑐𝑆𝑖 is the specific heat of silicon, 𝑘𝑆𝑖 is the thermal 

conductivity of silicon, 𝐴 is the cross-sectional area of the actuator arm, ℎ is the thickness of the 

actuator, 𝑞𝑔 is the heat flux into the air gap, 𝑆𝑐𝑑 is the length of the boundary over which 

conduction to the environment occurs, and 𝑆𝑟 is the length of the boundary over which radiation 

to the environment occurs. 𝑆𝑐𝑑 and 𝑆𝑟 for each arm are given by the portion of its cross-sectional 

perimeter illustrated with a bold line in Fig. 1 (c). 

For the air gap, the temperature can be considered to be uniform in the out-of-plane direction 

but spatially varying in the 𝑥-𝑦 plane. Using (13) and (19), the differential equation describing 

heat transfer within the air gap can be expressed as 

 
−𝜚𝑎(𝑇)𝑐𝑎(𝑇)ℎ

𝜕𝑇(𝑥, 𝑦, 𝑡)

𝜕𝑡
+ 𝛁 ∙ [𝑘𝑎(𝑇) ℎ 𝛁𝑇(𝑥, 𝑦, 𝑡)]

− ℎ𝑒𝑞(𝑇)𝑆𝑐𝑑[𝑇(𝑥, 𝑦, 𝑡) − 𝑇∞] − ℎ𝑞𝑚(𝑥, 𝑦, 𝑡)|𝜕𝑚 = 0, 

(21) 

where 𝜚𝑎 is the mass density of air, 𝑐𝑎 is the specific heat of air, and 𝑞𝑚|𝜕𝑚 is the heat flux into 

the microactuator evaluated on the boundary. In (21), the value of 𝑆𝑐𝑑 is 2, corresponding to the 

top and bottom surfaces of the actuator. In the formulation of the governing differential equations, 

𝑞𝑔 and 𝑞𝑚 have been introduced to represent intra-device heat transfer. However, in the solution 

method presented, both gap elements and actuator elements will be included within a single model. 

The spatial coupling of (20) and (21) will therefore be captured by the common nodes shared 

between actuator elements and air gap elements, and intra-device heat transfer will inherently be 

considered. The terms 𝑞𝑔 and 𝑞𝑚 have only been added for illustrative purposes and will be 

dropped from the equation when applying the Galerkin method. Furthermore, both (20) and (21) 
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will be considered independent of the mechanical behavior of the device such that the electro-

thermal and thermo-mechanical responses can be solved sequentially.   

Determining the effective heat transfer coefficient to be used in (19) first requires calculation 

of the conduction shape factor for each arm. Due to the rather complicated geometry of the device 

being analyzed in this problem, closed-form solutions for these shape factors are not available. To 

minimize the computational cost associated with running an additional finite element analysis, a 

method is proposed to establish an equivalent system for which there exists an analytical solution 

for the conduction shape factor. 

For the purposes of this calculation, a two dimensional cross section of each arm is examined, 

as shown in Fig. 3. It will be assumed that all heat is conducted radially outward from the centroid 

of the cross section and reaches ambient temperature at the substrate. Therefore, heat conduction 

can be approximately modeled as 

 𝑄𝑐𝑑𝑒

𝑑𝑠
= 𝑘𝑎,𝑎𝑣𝑔 ∮

[𝑇(𝑠) − 𝑇∞]

Δ𝑅
 𝑑𝜗, (22) 

 

Fig. 3. Cross-sectional schematic for calculating the conduction shape factor. 
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where 𝜗 is the dimension along the perimeter of the arm’s cross section, representing the area over 

which heat is conducted to the external environment per unit length of the arm. As shown in (23), 

Δ𝑅 represents the smaller of two quantities: either the radial distance from the external surface of 

the arm to the substrate or the thermal penetration depth, 𝛿𝑝. The thermal penetration depth 

represents the depth at which the surrounding medium reaches ambient temperature, and it can be 

approximated using (24) [48]. Hence (22) replaces the shape factor [shown in (16)] with the area 

over which heat is conducted divided by the distance required for temperature to drop from 𝑇 to 

𝑇∞. As mentioned previously, heat transfer between arms through the air gap will inherently be 

considered in the implementation of the computational method, and thus it is not to be included in 

the calculation of this heat transfer coefficient. Therefore any boundaries between the air gap and 

the microactuator arms are not included in the boundary integral.  

 Δ𝑅 = min(𝑅𝑜 − 𝑅𝑖, 𝛿𝑝) (23) 

 𝛿𝑝 = √𝜏𝛼𝑑 (24) 

In (23), 𝑅𝑖 is the radial distance from the centroid of the arm to the surface of the arm, and 𝑅𝑜 is 

the radial distance from the centroid of the arm to the surface of the substrate. The thermal time 

constant, 𝜏, is the time required for the actuator to reach a state of equilibrium with the 

environment. For thermal microactuators, 𝜏 generally ranges from 0.5-1.0 ms [51]. If the thermal 

diffusivity of air at 298 K is assumed, this leads to a penetration depth ranging from 105 µm to 

149 µm. Therefore in the implementation of the steady state model, this range of penetration depths 

will be used as an initial approximation. As will be shown in Section 4, however, the 

implementation of the dynamic model will permit the approximation of the thermal time constant 

and, therefore, the thermal penetration depth. 
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In order to calculate a conduction shape factor to describe heat loss to the environment, we 

will consider a simpler geometry that is approximately equivalent to the actuator geometry in terms 

of heat transfer. The use of this simpler geometry permits the utilization of closed-form solutions 

already developed in literature. To this end, an isothermal cylinder (representing the actuator arm) 

is considered with radius, 𝑟𝑖, such that the surface area of the cylinder is equal to the surface area 

of the actuator arm. A larger concentric cylinder with an isothermal surface (representing the depth 

at which temperature reaches that of the ambient environment) and radius 𝑟𝑜 is then considered 

such that ∮ 𝑑𝜗/Δ𝑅 is the same for both cases, resulting in comparable heat flow: 

 2𝜋𝑟𝑖

𝑟𝑜 − 𝑟𝑖
= ∮

𝑑𝜗

Δ𝑅
. (25) 

The left hand side of (25) is ∮ 𝑑𝜗 Δ𝑅⁄  evaluated for the equivalent cylinder geometry in which 

heat flows from the surface of the smaller cylinder to the surface of the larger cylinder. This is set 

equal to the same integral evaluated for the actuator geometry shown in Fig. 3. By satisfying (25), 

a given temperature difference, Δ𝑇, will result in approximately the same heat flow per unit length 

of the arm for both geometries. From (25), 𝑟𝑜 can be calculated. With this approximation, a 

complicated geometry with no explicit analytical shape factor can be converted into an 

approximately equivalent geometry with a known closed-form solution for the shape factor. The 

shape factor for this equivalent configuration is given by 

 
𝑆𝑓 =

2𝜋𝐿

ln (
𝑟𝑜
𝑟𝑖

)
, (26) 

where 𝐿 is the length of the arm [50]. Equations (26) and (2) are then substituted into (18) to yield 

the temperature-dependent heat transfer coefficient for each arm.  
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ℎ𝑒𝑞(𝑇) =

2𝜋

𝑆𝑐𝑑 ln (
𝑟0
𝑟𝑖

)

1

𝑇 − 𝑇∞
[𝑘0𝑎[𝑇 − 𝑇∞] +

𝑘1𝑎[ 𝑇2 − 𝑇∞
2 ]

2
+

𝑘2𝑎[𝑇3 − 𝑇∞
3 ]

3
] (27) 

This process for calculating ℎ𝑒𝑞(𝑇) is performed individually for each arm of the actuator. 

Conduction to the environment is also considered from the top and bottom surfaces of the air gap, 

requiring a shape factor to be calculated for this region as well. 

Given a known temperature distribution, the electrical properties of the actuator can be 

calculated. The total resistance, 𝑅, is found by integrating the resistance over the length of the 

actuator, given by: 

 
𝑅 = ∫

𝜌𝑆𝑖(𝑇)

𝐴ℎ
 𝑑𝑠

𝐿ℎ

0

+ ∫
𝜌𝑆𝑖(𝑇)

𝐴𝑔
 𝑑𝑠

𝐿ℎ+𝑔

𝐿ℎ

+ ∫
𝜌𝑐(𝑇)

𝐴𝑐
 𝑑𝑠

𝐿ℎ+𝑔+𝐿𝑐

𝐿ℎ+𝑔

+ ∫
𝜌𝑆𝑖(𝑇)

𝐴𝑓
 𝑑𝑠

2𝐿ℎ+𝑔

𝐿ℎ+𝑔+𝐿𝑐

, (28) 

where 𝐴ℎ, 𝐴𝑔, 𝐴𝑐, and 𝐴𝑓 are the cross-sectional areas of the hot arm, connector, cold arm, and 

flexure arm respectively, and 𝐿ℎ, 𝑔, and 𝐿𝑐 are the lengths of the hot arm, connector, and cold arm 

respectively. Furthermore, once the resistance is known, the applied voltage, 𝑉, and the electrical 

current, 𝐼𝑒𝑙, can be related using 

 𝑉 = 𝐼𝑒𝑙𝑅. (29) 

2.3.3. Thermo-Mechanical Model 

The method used to model the deflection of the flexure actuator is largely the same as that 

outlined in [11]. In this analysis, the thickness of the gold layer on the cold arm is sufficiently thin 

such that its contribution to the mechanical properties of the device are assumed negligible. Given 

a known temperature distribution, the relative thermal expansion in the hot arm is first calculated 

with respect to the cold arm and flexure arm. The mechanical boundary conditions are then 

removed at the terminal of the hot arm and replaced with redundant loads, allowing the reaction 

forces required to enforce the displacement- and rotation-free boundary conditions to be calculated 
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using the method of virtual work. The method presented herein deviates slightly from [11] in that 

the following method considers axial deformation of each arm and calculates the moment in each 

arm about its centroid.  

The flexure actuator is considered to be an indeterminate frame with arms fixed at the 

terminals. The degree of indeterminacy in this problem is 3. Therefore to calculate the deflection, 

the support at the terminal of the hot arm is removed and replaced with three redundant forces and 

moments (shown in Fig. 4): a force in the negative y-direction 𝑋1, a force in the x-direction 𝑋2, 

and a rotational moment about the negative z-axis 𝑋3. The moment in each arm resulting from the 

application of the three redundant loads are as follows: 

 𝑀ℎ,1 = 𝑋1𝑠 𝑀ℎ,2 = 0 𝑀ℎ,3 = −𝑋3 

(30) 

 𝑀𝑔,1 = 𝑋1 [𝐿ℎ −
𝑤𝑔

2
] 𝑀𝑔,2 = −𝑋2 [𝑠 − 𝐿ℎ +

𝑤ℎ

2
] 𝑀𝑔,3 = −𝑋3 

 𝑀𝑐,1 = 𝑋1[2𝐿ℎ + 𝑔 − 𝑠] 𝑀𝑐,2 = −𝑋2 [𝑔 +
𝑤ℎ

2
+

𝑤𝑐

2
] 𝑀𝑐,3 = −𝑋3 

 𝑀𝑓,1 = 𝑋1[2𝐿ℎ + 𝑔 − 𝑠] 𝑀𝑓,2 = −𝑋2 [𝑔 +
𝑤ℎ

2
+

𝑤𝑓

2
] 𝑀𝑓,3 = −𝑋3, 

where 𝑤ℎ, 𝑤𝑔, 𝑤𝑐, and 𝑤𝑓 are the widths of the hot arm, connector, cold arm, and flexure arm 

respectively. The terms 𝑀ℎ,𝑖 , 𝑀𝑔,𝑖, 𝑀𝑐,𝑖, and 𝑀𝑓,𝑖 represent the moments in the hot arm, connector, 

cold arm, and flexure arm respectively, resulting from the application of the 𝑖𝑡ℎ redundant. 

 

Fig. 4. Mechanical modeling of the flexure actuator as an indeterminate rigid frame. 
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Similarly the axial force in each arm resulting from the application of the three redundant loads 

are as follows: 

 
𝐹ℎ,1 = 0 

𝐹𝑔,1 = −𝑋1 

𝐹𝑐,1 = 0 

𝐹𝑓,1 = 0 

𝐹ℎ,2 = −𝑋2 

𝐹𝑔,3 = 0 

𝐹𝑐,2 = 𝑋2 

𝐹𝑓,2 = 𝑋2 

𝐹ℎ,3 = 0 

𝐹𝑔,2 = 0 

𝐹𝑐,3 = 0 

𝐹𝑓,3 = 0, 

(31) 

where 𝐹ℎ,𝑖, 𝐹𝑔,𝑖, 𝐹𝑐,𝑖, and 𝐹𝑓,𝑖 are the axial forces in the hot arm, connector, cold arm, and flexure 

arm respectively, resulting from the application of the 𝑖𝑡ℎ redundant. Equating internal and 

external virtual work yields 

 
Δ𝑖 = ∫ [𝛿𝑀ℎ,𝑖

∑ 𝑀ℎ,𝑗

𝐸(𝑇)𝐼ℎ
+ 𝛿𝐹ℎ,𝑖

∑ 𝐹ℎ,𝑗

𝐸(𝑇)𝐴ℎ
]  𝑑𝑠

𝐿ℎ

0

+ ∫ [𝛿𝑀𝑔,𝑖

∑ 𝑀𝑔,𝑗

𝐸(𝑇)𝐼𝑔
+ 𝛿𝐹𝑔,𝑖

∑ 𝐹𝑔,𝑗

𝐸(𝑇)𝐴𝑔
]  𝑑𝑠

𝐿ℎ+𝑔

𝐿ℎ

+ ∫ [𝛿𝑀𝑐,𝑖

∑ 𝑀𝑐,𝑗

𝐸(𝑇)𝐼𝑐
+ 𝛿𝐹𝑐,𝑖

∑ 𝐹𝑐,𝑗

𝐸(𝑇)𝐴𝑐
]  𝑑𝑠

𝐿ℎ+𝑔+𝐿𝑐

𝐿ℎ+𝑔

+ ∫ [𝛿𝑀𝑓,𝑖

∑ 𝑀𝑓,𝑗

𝐸(𝑇)𝐼𝑓
+ 𝛿𝐹𝑓,𝑖

∑ 𝐹𝑓,𝑗

𝐸(𝑇)𝐴𝑓
]  𝑑𝑠

2𝐿ℎ+𝑔

𝐿ℎ+𝑔+𝐿𝑐

, 

(32) 

where 𝛿𝑀 is the moment in the arm resulting from the application of a virtual load, Δ𝑖 is the 

displacement vector at the removed support, 𝐸 is the elastic modulus in the arm, and 𝐼 is the 

moment of inertia about the out-of-plane axis. The redundant components can be factored out of 

the expression, leading to the following simple algebraic equation relating the value of the 

redundant components to the displacement at the removed support: 
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 Δ𝑖 = 𝑓𝑖𝑗𝑋𝑗 . (33) 

From (32) and (33), the flexibility matrix 𝑓𝑖𝑗 can be expressed as  

 
𝑓𝑖𝑗 = ∫ [𝛿𝑀ℎ,𝑖

𝛿𝑀ℎ,𝑗

𝐸(𝑇)𝐼ℎ
+ 𝛿𝐹ℎ,𝑖

𝛿𝐹ℎ,𝑗

𝐸(𝑇)𝐴ℎ
]  𝑑𝑠

𝐿ℎ

0

+ ∫ [𝛿𝑀𝑔,𝑖

𝛿𝑀𝑔,𝑗

𝐸(𝑇)𝐼𝑔
+ 𝛿𝐹𝑔,𝑖

𝛿𝐹𝑔,𝑗

𝐸(𝑇)𝐴𝑔
]  𝑑𝑠

𝐿ℎ+𝑔

𝐿ℎ

+ ∫ [𝛿𝑀𝑐,𝑖

𝛿𝑀𝑐,𝑗

𝐸(𝑇)𝐼𝑐
+ 𝛿𝐹𝑐,𝑖

𝛿𝐹𝑐,𝑗

𝐸(𝑇)𝐴𝑐
]  𝑑𝑠

𝐿ℎ+𝑔+𝐿𝑐

𝐿ℎ+𝑔

+ ∫ [𝛿𝑀𝑓,𝑖

𝛿𝑀𝑓,𝑗

𝐸(𝑇)𝐼𝑓
+ 𝛿𝐹𝑓,𝑖

𝛿𝐹𝑓,𝑗

𝐸(𝑇)𝐴𝑓
]  𝑑𝑠

2𝐿ℎ+𝑔

𝐿ℎ+𝑔+𝐿𝑐

. 

(34) 

Assuming 𝐸 to be temperature-independent, the terms of the flexibility matrix evaluate to: 

 

𝑓11 =
𝐿ℎ

3

3𝐸𝐼ℎ
+

[𝐿ℎ − 𝐿𝑐]3

3𝐸𝐼ℎ
+

𝐿ℎ
2 𝐿𝑐

𝐸𝐼𝑐
−

𝐿ℎ𝐿𝑐
2

𝐸𝐼𝑐
+

𝐿𝑐
3

3𝐸𝐼𝑐
+ 𝑔 [

1

𝐴𝑔𝐸
+

[𝐿ℎ −
wg

2 ]
2

𝐸𝐼𝑔
] 

(35) 

 

 
𝑓12 = 𝑓21 = −

[𝐿ℎ − 𝐿𝑐]2[𝑔 + 𝑤ℎ]

2𝐸𝐼ℎ
−

𝑔[2𝐿ℎ − 𝑤𝑔][𝑔 + 𝑤ℎ]

4𝐸𝐼𝑔

−
[2𝐿ℎ − 𝐿𝑐]𝐿𝑐[2𝑔 + 𝑤𝑐 + 𝑤ℎ]

4𝐸𝐼𝑐
 

 

𝑓13 = 𝑓31 = −
𝐿ℎ

2

𝐸𝐼ℎ
−

𝐿ℎ𝐿𝑐

𝐸𝐼𝑐
+

𝐿ℎ𝐿𝑐

𝐸𝐼ℎ
+

𝐿𝑐
2

2𝐸𝐼𝑐
−

𝐿𝑐
2

2𝐸𝐼ℎ
−

𝑔 [𝐿ℎ −
𝑤𝑔

2 ]

𝐸𝐼𝑔
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𝑓22 =

𝐿ℎ

𝐴ℎ𝐸
+ [𝐿ℎ − 𝐿𝑐] [

1

𝐴𝑓𝐸
+

[−𝑔 − 𝑤ℎ]2

𝐸𝐼ℎ
]

+ 𝐿𝑐 [
1

𝐴𝑐𝐸
+

[−𝑔 −
𝑤𝑐
2

−
𝑤ℎ
2 ]

2

𝐸𝐼𝑐
] +

𝑔[4𝑔2 + 6𝑔𝑤ℎ + 3𝑤ℎ
2]

12𝐸𝐼𝑔
 

 

𝑓23 = 𝑓32 =
𝑔2

2𝐸𝐼𝑔
−

[𝐿ℎ − 𝐿𝑐][−𝑔 − 𝑤ℎ]

𝐸𝐼ℎ
−

𝐿𝑐 [−𝑔 −
𝑤𝑐
2

−
𝑤ℎ
2 ]

𝐸𝐼𝑐
+

𝑔𝑤ℎ

2𝐸𝐼𝑔
 

 
𝑓33 =

𝑔

𝐸𝐼𝑔
+

𝐿ℎ

𝐸𝐼ℎ
+

𝐿ℎ − 𝐿𝑐

𝐸𝐼ℎ
+

𝐿𝑐

𝐸𝐼𝑐
. 

The displacement vector, Δ𝑖, is considered to be known, provided that the temperature field in the 

actuator is known. The vector components are the displacements/rotation that must be applied to 

the removed support to enforce the mechanical boundary conditions of the indeterminate frame. 

Δ𝑖 can be determined by evaluating the thermal expansion mismatch between the hot and cold 

sides of the actuator: 

 
Δ𝑖 = |

0
Δ𝐿
0

|, (36) 

where 

 
Δ𝐿 = Δ𝐿ℎ − Δ𝐿𝑐 − Δ𝐿𝑓 = ∫ 𝛼(𝑇)[𝑇(𝑠) − 𝑇∞] 𝑑𝑠

𝐿ℎ

0

− ∫ 𝛼(𝑇)[𝑇(𝑠) − 𝑇∞] 𝑑𝑠
𝐿ℎ+𝑔+𝐿𝑐

𝐿ℎ+𝑔

− ∫ 𝛼(𝑇)[𝑇(𝑠) − 𝑇∞] 𝑑𝑠
2𝐿ℎ+𝑔

𝐿ℎ+𝑔+𝐿𝑐

. 

(37) 

Equation (33) can then be used to solve for the values of the redundant loads, which represent 

the reaction forces at the terminal of the hot arm. Given the reaction forces and assuming the elastic 
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modulus to be temperature-independent, Euler Bernoulli beam theory can be employed to calculate 

the displacement at the tip of the actuator, 𝑢(𝐿ℎ), as follows: 

 
𝑀ℎ(𝑠) = −𝐸𝐼ℎ

𝑑2𝑢(𝑠)

𝑑𝑠2
= [−𝑋1𝑠 + 𝑋3] (38) 

 
𝑢(𝐿ℎ) =

[𝐿ℎ
3 𝑋1 − 3𝐿ℎ

2 𝑋3]

6𝐸𝐼ℎ
. (39) 

The displacement at the tip of the extension arm can also be determined by evaluating the 

displacement and rotation at the tip of the hot arm and extrapolating over the length of the 

extension arm. The displacement at the tip of the extension arm is therefore given by 

 
𝑢𝑡𝑖𝑝 =

[𝐿ℎ
3 𝑋1 − 3𝐿ℎ

2 𝑋3]

6𝐸𝐼ℎ
+ 𝐿𝑒

𝐿ℎ
2 𝑋1 − 2𝐿ℎ𝑋3

2𝐸𝐼ℎ
. (40) 

2.3.4. Validation of the Mechanical Model 

The test actuator was modeled in ABAQUS to provide finite element analysis (FEA) 

validation of the mechanical model presented in the previous section. A zero displacement/rotation 

boundary condition was enforced in all directions at the terminal face of the flexure arm, while a 

zero displacement/rotation boundary condition was enforced in all directions except for an applied 

displacement in the 𝑥-direction at the terminal face of the hot arm. The actuator was meshed with 

20 node three-dimensional brick elements with reduced integration (designated C3D20R in 

ABAQUS) as shown in Fig. 5. 

 

Fig. 5. Finite element mesh used for validation of the mechanical model. 
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Several x-displacements corresponding with different values of Δ𝐿 were applied to the 

terminal face of the hot arm, and the resulting displacements at the tip of the extension arm were 

compared with the predictions of the mechanical model. Fig. 6 illustrates the deformed actuator 

after applying the displacement/rotation boundary conditions corresponding with Δ𝐿 = 1.1 µm. 

Results comparing FEA to the mechanical model are displayed in Fig. 7. As shown, the mechanical 

model predictions exhibit good agreement with those of the finite element model. 

 

Fig. 6. Deformation of the actuator, where Δ𝐿 = 1.1 µm. Contours correspond with displacement in m. 
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Fig. 7. Finite element validation of the mechanical model. The above plot illustrates the predicted 

displacement at the tip of the extension arm for different values of Δ𝐿. 
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 STEADY STATE MODELING 

3.1. Introduction 

As stated previously, accurate prediction of the electro-thermo-mechanical response of 

thermal microactuators requires the solution of multi-physics models that properly retain the 

physics of the problem. As illustrated in Table I, full consideration of the nonlinearities in the 

governing heat balance equations has yet to be carried out in the literature. The goal of this section 

is to outline a computational method for the implementation of the electro-thermal model 

presented in Section 2.3.2, assuming steady state operating conditions. The resulting temperature 

distribution is then used as the input to the thermo-mechanical problem presented in Section 2.3.3, 

from which the steady state extension arm tip displacement of the actuator can be calculated. In 

addition to the full thermal microactuator model that retains all mechanisms of heat transfer and 

the temperature dependences of material properties, several hypothetical models are introduced in 

which simplifying assumptions are made with regards to the nonlinearities in the model. Through 

comparison with experimental measurements and the predictions of the full thermal microactuator 

model, the significance of these sources of nonlinearity are evaluated, providing a better 

understanding of the suitability of different simplifying assumptions for different ranges of power 

input.  

To solve the highly nonlinear electro-thermal problem, a computational method is presented 

in which the domain of the thermal microactuator is discretized into finite elements. Using the 

Galerkin method, the weak forms of the governing heat balance equations are enforced throughout. 

Due to the nonlinearity of these governing equations, the weak forms are linearized and the nodal 

temperatures are iterated upon using Newton-Raphson iteration. A discussion of this 

computational method is presented in Section 3.2. The computational method and electro-thermal 

model are initially verified in Section 3.5.2 by comparing model predictions with the 
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experimentally measured temperatures for a V-shaped bent beam actuator presented in [52]. The 

model is then applied to the test actuator to provide additional experimental verification. Results 

and an investigation into the significance of nonlinearities in the model are compiled in Section 

3.5.3.  

3.2. Computational Method 

Calculation of the actuator displacement first requires the evaluation of the electro-thermal 

response for use as the input to the thermo-mechanical model. In the computational method that 

follows, the governing differential equations, (20) and (21), will be converted into their weak form, 

and the actuator and air gap will be discretized into finite elements. Application of the Galerkin 

method with Newton-Raphson iteration will then permit the calculation of an approximate solution 

to (20) and (21). The resulting temperature field will be used as an input into (36). The reaction 

forces at the hot terminal will then be determined using (33), and the final steady state 

displacement of the actuator will be solved for using (40). 

3.2.1. Mesh Strategy 

Due to the large aspect ratio of each arm, the temperature can be assumed constant over the 

cross section. This permits the discretization of each arm into one-dimensional line elements to 

minimize computational cost. The temperature field in the air gap, however, can vary in the plane 

of the wafer (the 𝑥-𝑦 plane) but is assumed to remain uniform through the thickness of the actuator 

(the out-of-plane direction). The air gap is, therefore, discretized into two-dimensional 

quadrilateral elements. The mesh strategy is depicted in Fig. 8. To solve the nonlinear finite 

element problem, the two governing differential equations, (20) and (21), must be converted to 

weak form and enforced over the domain of each element.    



 

32 

 

3.2.2. Weak Formulation for the Heat Equation 

For development of the weak form of the governing differential equations, (20) and (21) are 

first arranged in the form of a residual, 𝑅(𝑠) and 𝑅(𝑥, 𝑦) respectively, assuming steady state 

operating conditions. The temperature distribution that results in 𝑅(𝑠) = 0 and 𝑅(𝑥, 𝑦) = 0 over 

the entire domain is the solution to the differential equation. Equation (20) can first be rewritten 

as 

 
𝑅(𝑠) = −𝑘𝑆𝑖(𝑇)𝐴

𝑑2𝑇(𝑠)

𝑑𝑠2
−

𝑑𝑘𝑆𝑖(𝑇)

𝑑𝑇
𝐴 [

𝑑𝑇(𝑠)

𝑑𝑠
]

2

+ 휀𝜎𝑆𝑟[𝑇(𝑠)4 − 𝑇∞
4 ] + ℎ𝑒𝑞(𝑇)𝑆𝑐𝑑[𝑇(𝑠) − 𝑇∞] − 𝐽2𝜌(𝑇)𝐴 = 0. 

(41) 

To derive the weak form, (41) is first multiplied by the weight function, 𝜓(𝑠) and integrated over 

the length of the domain, 𝐿. 

 
𝑅(𝑠) = ∫ [−𝑘𝑆𝑖(𝑇)𝐴

𝑑2𝑇(𝑠)

𝑑𝑠2
−

𝑑𝑘𝑆𝑖(𝑇)

𝑑𝑇
𝐴 [

𝑑𝑇(𝑠)

𝑑𝑠
]

2

+ 휀𝜎𝑆𝑟[𝑇(𝑠)4 − 𝑇∞
4 ]

𝐿

0

+ ℎ𝑒𝑞(𝑇)𝑆𝑐𝑑[𝑇(𝑠) − 𝑇∞] − 𝐽2𝜌(𝑇)𝐴] 𝜓(𝑠) 𝑑𝑠 = 0 

(42) 

Applying integration by parts, (42) can be rewritten in the following weak form:  

 

Fig. 8. Mesh strategy used for the discretization of the actuator and air gap. 
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𝑅(𝑠) = −𝑘𝑆𝑖(𝑇)𝐴

𝑑𝑇(𝑠)

𝑑𝑠
𝜓(𝑠)|

0

𝐿

+ ∫ [𝑘𝑆𝑖(𝑇)𝐴
𝑑𝑇(𝑠)

𝑑𝑠

𝑑𝜓(𝑠)

𝑑𝑠
+ 휀𝜎𝑆𝑟[𝑇(𝑠)4 − 𝑇∞

4 ]𝜓(𝑠)
𝐿

0

+ ℎ𝑒𝑞(𝑇)𝑆𝑐𝑑[𝑇(𝑠) − 𝑇∞]𝜓(𝑠) − 𝐽2𝜌(𝑇)𝐴𝜓(𝑠)]  𝑑𝑠 = 0. 

(43) 

Similarly, the governing differential equation for the air gap, (21), can be arranged in residual form 

as follows:  

 𝑅(𝑥, 𝑦) = 2ℎ𝑒𝑞(𝑇)[𝑇(𝑥, 𝑦) − 𝑇∞] − 𝛁 ∙ [𝑘𝑎(𝑇)ℎ∇𝑇(𝑥, 𝑦)] = 0 (44) 

This can also be written as: 

 
𝑅(𝑥, 𝑦) = 2ℎ𝑒𝑞(𝑇)[𝑇(𝑥, 𝑦) − 𝑇∞] −

𝑑𝑘𝑎(𝑇)

𝑑𝑇
ℎ [[

𝜕𝑇(𝑥, 𝑦)

𝜕𝑥
]

2

+ [
𝜕𝑇(𝑥, 𝑦)

𝜕𝑦
]

2

]  

− 𝑘𝑎(𝑇)ℎ [
𝜕2𝑇(𝑥, 𝑦)

𝜕𝑥2
+

𝜕2𝑇(𝑥, 𝑦)

𝜕𝑦2
] = 0. 

(45) 

Equation (45) can now be multiplied by the weight function, 𝜓(𝑥, 𝑦), and integrated over the 

domain, Ω, to obtain 

 

𝑅(𝑥, 𝑦) =  ∬ [2ℎ𝑒𝑞(𝑇)[𝑇(𝑥, 𝑦) − 𝑇∞] −
𝑑𝑘𝑎(𝑇)

𝑑𝑇
ℎ [[

𝜕𝑇(𝑥, 𝑦)

𝜕𝑥
]

2

+ [
𝜕𝑇(𝑥, 𝑦)

𝜕𝑦
]

2

]
Ω

− 𝑘𝑎(𝑇)ℎ [
𝜕2𝑇(𝑥, 𝑦)

𝜕𝑥2
+

𝜕2𝑇(𝑥, 𝑦)

𝜕𝑦2
]] 𝜓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 0. 

(46) 

The order can now be reduced using partial integration, producing the following weak form: 
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𝑅(𝑥, 𝑦) = − ∮ 𝑘𝑎(𝑇)ℎ

𝑑𝑇(𝑥, 𝑦)

𝑑𝑛
𝜓(𝑥, 𝑦)𝑑𝑠

𝜕Ω

+ ∬ [2ℎ𝑒𝑞(𝑇)[𝑇(𝑥, 𝑦) − 𝑇∞]𝜓(𝑥, 𝑦)
Ω

+ 𝑘𝑎(𝑇)ℎ [
𝜕𝑇(𝑥, 𝑦)

𝜕𝑥

𝜕𝜓(𝑥, 𝑦)

𝜕𝑥
+

𝜕𝑇(𝑥, 𝑦)

𝜕𝑦

𝜕𝜓(𝑥, 𝑦)

𝜕𝑦
]]  𝑑𝑥 𝑑𝑦 = 0, 

(47) 

where 𝑛 represents the normal to the boundary of the domain. 

3.2.3. Galerkin Formulation 

A solution to (43) and (47) is sought such that temperature in the one-dimensional actuator 

elements and two dimensional gap elements can be approximated by (48) and (49) respectively. 

 𝑇(𝑠) = 𝜙𝑗(𝑠)𝑐𝑗 (48) 

 𝑇(𝑥, 𝑦) = 𝜙𝑗(𝑥, 𝑦)𝑐𝑗 (49) 

Here 𝑐𝑗 ∈ ℝ𝑛 and represents a set of scalar coefficients to the shape functions, 𝜙𝑗 ∈ ℝ𝑛. When 

applying the Galerkin method, the weight function is considered to be a linear combination of the 

shape functions. Therefore (43) can now be rewritten as: 

 

𝐹𝑖(𝑐) = −𝑘𝑆𝑖(𝜙𝑗(𝑠)𝑐𝑗)𝐴
𝑑[𝜙𝑗(𝑠)𝑐𝑗]

𝑑𝑠
𝜙𝑖(𝑠)|

0

𝐿

+ ∫ [𝑘𝑆𝑖(𝜙𝑗(𝑠)𝑐𝑗)𝐴
𝑑[𝜙𝑗(𝑠)𝑐𝑗]

𝑑𝑠

𝑑𝜙𝑖(𝑠)

𝑑𝑠
+ 휀𝜎𝑆𝑟 [[𝜙𝑗(𝑠)𝑐𝑗]

4
− 𝑇∞

4 ] 𝜙𝑖(𝑠)
𝐿

0

+ ℎ𝑒𝑞(𝜙𝑗(𝑠)𝑐𝑗)𝑆𝑐𝑑 [[𝜙𝑗(𝑠)𝑐𝑗] − 𝑇∞] 𝜙𝑖(𝑠) − 𝐽2𝜌(𝜙𝑗(𝑠)𝑐𝑗)𝐴𝜙𝑖(𝑠)]  𝑑𝑠, 

(50) 
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where 𝐹𝑖 is the weak form of the residual after specifying the weight function and applying the 

approximations given by (48) and (49). This weak form of the residual is analogous to the load 

vector and will be referred to as such. Likewise, (47) can be rewritten as 

 
𝐹𝑖(𝑐) = − ∮ 𝑘𝑎(𝜙𝑗(𝑥, 𝑦)𝑐𝑗)ℎ

𝑑[𝜙𝑗(𝑥, 𝑦)𝑐𝑗]

𝑑𝑛
𝜙𝑖(𝑥, 𝑦) 𝑑𝑙

𝜕Ω

 

+  ∬ [𝑘𝑎(𝜙𝑗(𝑥, 𝑦)𝑐𝑗)ℎ [
𝜕[𝜙𝑗(𝑥, 𝑦)𝑐𝑗]

𝜕𝑥

𝜕𝜙𝑖(𝑥, 𝑦)

𝜕𝑥Ω

+
𝜕[𝜙𝑗(𝑥, 𝑦)𝑐𝑗]

𝜕𝑦

𝜕𝜙𝑖(𝑥, 𝑦)

𝜕𝑦
] + 2ℎ𝑒𝑞 [[𝜙𝑗(𝑥, 𝑦)𝑐𝑗] − 𝑇∞] 𝜙𝑖(𝑥, 𝑦)]  𝑑𝑥 𝑑𝑦. 

(51) 

3.2.4. Shape Functions 

It is now necessary to define the set of shape functions to be used. In the presented method, 

each shape function is associated with a particular node such that 𝜙𝑖 corresponds with the 𝑖𝑡ℎ node. 

The shape functions are selected such that they evaluate to unity at their respective nodes and 

evaluate to zero at all other nodes. Moreover, the shape functions only evaluate to a nonzero value 

within the elements to which they are associated. This implies that, with regards to (48) and (49), 

the temperature at each node is equal to the value of the scalar coefficient, 𝑐𝑖, corresponding to 

that node. For the purposes of this work, it is sufficient to assume a set of quadratic Lagrangian 

shape functions such that each one-dimensional line element is composed of three nodes, and each 

two-dimensional quadrilateral element is composed of nine nodes. An overview of these shape 

functions is given in [53]. The element shape functions, 𝜙𝑖
𝑒, for the one-dimensional line elements 

are as follows: 
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𝜙1
𝑒 =

1

2
𝜉(𝜉 − 1) 

𝜙2
𝑒 = 1 − 𝜉2 

𝜙3
𝑒 =

1

2
𝜉(𝜉 + 1), 

(52) 

where 𝜉 represents the local coordinate ranging from -1 to 1 on the master line element, shown in 

Fig. 9. The element shape functions for the two-dimensional quadrilateral elements are as follows: 

 

𝜙1
𝑒 =

1

4
(𝜉2 − 𝜉)(𝜂2 − 𝜂) 

𝜙2
𝑒 =

1

4
(𝜉2 + 𝜉)(𝜂2 − 𝜂) 

𝜙3
𝑒 =

1

4
(𝜉2 + 𝜉)(𝜂2 + 𝜂) 

𝜙4
𝑒 =

1

4
(𝜉2 − 𝜉)(𝜂2 + 𝜂) 

𝜙5
𝑒 =

1

2
(1 − 𝜉2)(𝜂2 − 𝜂) 

𝜙6
𝑒 =

1

2
(𝜉2 + 𝜉)(1 − 𝜂2) 

𝜙7
𝑒 =

1

2
(1 − 𝜉2)(𝜂2 + 𝜂) 

𝜙8
𝑒 =

1

2
(𝜉2 − 𝜉)(1 − 𝜂2) 

𝜙9
𝑒 = (1 − 𝜉2)(1 − 𝜂2) 

(53) 

 

 

where 𝜉 and 𝜂 are local coordinates ranging from -1 to 1 and corresponding to the axes defined on 

the master quadrilateral element, also shown in Fig. 9. The subscript of each shape function 

described herein corresponds to the local node number to which the shape function is associated 

on the master element.  
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To carry out the necessary computations for each element, that element is first transformed 

from the global coordinates to the local coordinates of the master element. For the geometry of 

this problem, the transformation for each line element is 

 

𝑠 =
𝜉

2
[𝑠3 − 𝑠1] + 𝑠2 

𝑑𝑠 =
1

2
[𝑠3 − 𝑠1] 𝑑𝜉, 

(54) 

where 𝑠𝑖 is the 𝑠-coordinate associated with the 𝑖𝑡ℎ node on the master element. Similarly, the 

transformation for each quadrilateral element is 

 

𝑥 =
𝜉

2
[𝑥6 − 𝑥8] + 𝑥9 

𝑑𝑥 =
1

2
[𝑥6 − 𝑥8] 𝑑𝜉 

𝑦 =
𝜂

2
[𝑦7 − 𝑦5] + 𝑦9 

𝑑𝑦 =
1

2
[𝑦7 − 𝑦5] 𝑑𝜂, 

(55) 

where 𝑥𝑖 and 𝑦𝑖 are the 𝑥- and 𝑦-coordinates respectively, associated with the 𝑖𝑡ℎ node on the 

master element. Equations (52), (53), (54), and (55) can now substituted into (50) and (51). The 

 

Fig. 9. Master element for a quadratic line element (left) and quadrilateral element (right). 
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integrals in (50) and (51) can then be performed with respect to the local coordinates on the master 

element (ranging from -1 to 1) to evaluate the elemental contribution to the global load vector. 

Equation (50) can now be rewritten to compute the element load vector 𝐹𝑖
𝑒 as follows: 

 
𝐹𝑖

𝑒(𝑐) = −𝑘𝑆𝑖(𝜙𝑗(𝜉)𝑐𝑗)𝐴
𝑑𝜙𝑗(𝜉)

𝑑𝜉

𝑑𝜉

𝑑𝑠
𝑐𝑗𝜙𝑖(𝜉)|

−1

1

+ ∫ [𝑘𝑆𝑖(𝜙𝑗(𝜉)𝑐𝑗)𝐴
𝑑𝜙𝑗(𝜉)

𝑑𝜉

𝑑𝜉

𝑑𝑠
𝑐𝑗

𝑑𝜙𝑖(𝜉)

𝑑𝜉

𝑑𝜉

𝑑𝑠

1

−1

+ 휀𝜎𝑆𝑟 [[𝜙𝑗(𝜉)𝑐𝑗]
4

− 𝑇∞
4 ] 𝜙𝑖(𝜉)

+ ℎ𝑒𝑞(𝜙𝑗(𝜉)𝑐𝑗)𝑆𝑐𝑑 [[𝜙𝑗(𝜉)𝑐𝑗] − 𝑇∞] 𝜙𝑖(𝜉)

− 𝐽2𝜌(𝜙𝑗(𝜉)𝑐𝑗)𝐴𝜙𝑖(𝜉)]
𝑑𝑠

𝑑𝜉
 𝑑𝜉. 

(56) 

Furthermore, (51) can be rewritten to compute the element load vector for the quadrilateral 

elements: 

 
𝐹𝑖

𝑒(𝑐) = − ∮ 𝑘𝑎(𝜙𝑗(𝜉, 𝜂)𝑐𝑗)ℎ [
𝜕𝜙𝑗(𝜉, 𝜂)

𝜕𝜉

𝜕𝜉

𝜕𝑛
𝑐𝑗 +

𝜕𝜙𝑗(𝜉, 𝜂)

𝜕𝜂

𝜕𝜂

𝜕𝑛
𝑐𝑗] 𝜙𝑖(𝜉, 𝜂) 𝑑𝑙

𝜕Ω𝑚
 

+  ∬ [𝑘𝑎(𝜙𝑗(𝜉, 𝜂)𝑐𝑗)ℎ [
𝜕𝜙𝑗(𝜉, 𝜂)

𝜕𝜉

𝑑𝜉

𝑑𝑥
𝑐𝑗

𝜕𝜙𝑖(𝜉, 𝜂)

𝜕𝜉

𝑑𝜉

𝑑𝑥Ω𝑚

+
𝜕𝜙𝑗(𝜉, 𝜂)

𝜕𝜂

𝑑𝜂

𝑑𝑦
𝑐𝑗

𝜕𝜙𝑖(𝑥, 𝑦)

𝜕𝜂

𝑑𝜂

𝑑𝑦
]

+ 2ℎ𝑒𝑞 [[𝜙𝑗(𝜉, 𝜂)𝑐𝑗] − 𝑇∞] 𝜙𝑖(𝜉, 𝜂)]
𝑑𝑥

𝑑𝜉

𝑑𝑦

𝑑𝜂
 𝑑𝜉 𝑑𝜂, 

(57) 

where Ω𝑚 is the domain of the element in the coordinate system of the master element. As will be 

explained later, these integrals are carried out using 3 point Gaussian quadrature in the 

implementation of this computational method. 
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3.2.5. Newton-Raphson Method 

The application of the Newton-Raphson iterative method first requires the linearization of the 

residual with respect to the unknown coefficients, 𝑐𝑗. A discussion of this can be found in [54]. 

The linearization of 𝐹𝑖
𝑒(𝑐) for iteration 𝑘 takes the following form:  

 
𝐾𝑖𝑗

𝑒 (𝑐𝑘) =
𝜕𝐹𝑖

𝑒(𝑐)

𝜕𝑐𝑗
|

𝑐𝑘

, (58) 

where, 𝐾𝑖𝑗
𝑒 (𝑐) is analogous to the elemental stiffness matrix. To compute the global stiffness 

matrix, the element stiffness matrix 𝐾𝑖𝑗
𝑒  and element load vector 𝐹𝑖

𝑒 must be computed for each 

subdomain and compiled into global form by summing values at shared nodes [53]. The local 

nodal numbers are given the subscripts 𝑖 and 𝑗 in (58). These correspond to the nodal numbering 

of the master element and their respective shape functions [53]. The global stiffness matrix and 

load vector can now be assembled. 

 𝐾𝑚𝑛 = ∑ 𝐾𝑝𝑞
𝑒

𝑒

 (59) 

 𝐹𝑚 = ∑ 𝐹𝑝
𝑒

𝑒

 (60) 

Here the subscripts 𝑝 and 𝑞 are used to denote the local nodal numbers on the master element 

corresponding with global node numbers 𝑚 and 𝑛 respectively. The summation in (59) and (60) 

is performed over all elements, and, if the element does not contain the nodes 𝑚 and 𝑛, that element 

does not contribute to 𝐾𝑚𝑛. An attempt can now be made to set the residual of the differential 

equation to zero.  

 𝐹𝑚(𝑐𝑘+1) ≈ (𝑐𝑛
𝑘+1 − 𝑐𝑛

𝑘)𝐾𝑚𝑛(𝑐𝑘)+𝐹𝑚(𝑐𝑘) = 0 (61) 
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 𝑐𝑛
𝑘+1 = 𝑐𝑛

𝑘 − 𝐾𝑚𝑛(𝑐𝑘)
−1

𝐹𝑚(𝑐𝑘) (62) 

3.2.6. Boundary Conditions 

Before carrying out the iterative method described in Section 3.2.5, a temperature guess must 

first be applied to each node, allowing for an initial evaluation of 𝐾𝑚𝑛 and 𝐹𝑚. Each node is set to 

an initial temperature of 𝑇∞, corresponding with the temperature in the unpowered state. A 

Dirichlet boundary condition is then enforced at all nodes located at the same 𝑥-position as the 

terminals. Because the terminals are considered to be large thermal masses, it is appropriate to fix 

the temperature at these nodes to that of the ambient environment, 𝑇∞. To enforce this boundary 

condition, all members in the global stiffness matrix and global load vector corresponding with 

these nodes are removed. This ensures that 𝑐𝑛
𝑘+1 = 𝑐𝑛

𝑘 = 𝑇∞. A conduction boundary condition of 

the Neumann type is also enforced at the tip of the extension arm. This Neumann type boundary 

condition is captured by the first term in (50). When assembling the global load vector at nodes 

without applied Neumann type boundary conditions, the first terms in (50) and (51) sum to zero, 

enforcing the conservation of heat flux across the boundary of each element. This condition is 

given by 

 
𝐹𝑚,0 = ∑ − 𝑘𝑆𝑖(𝜙𝑞(𝜉)𝑐𝑞)𝐴

𝑑𝜙𝑞(𝜉)

𝑑𝜉

𝑑𝜉

𝑑𝑠
𝑐𝑞𝜙𝑝(𝜉)|

−1

1

𝑒𝑎

− ∑ ∮ 𝑘𝑎(𝜙𝑞(𝜉, 𝜂)𝑐𝑞)ℎ [
𝜕𝜙𝑞(𝜉, 𝜂)

𝜕𝜉

𝜕𝜉

𝜕𝑛
𝑐𝑞

𝜕Ω𝑚
𝑒𝑔

+
𝜕𝜙𝑞(𝜉, 𝜂)

𝜕𝜂

𝜕𝜂

𝜕𝑛
𝑐𝑞] 𝜙𝑝(𝜉, 𝜂) 𝑑𝑙 = 0, 

(63) 

where 𝑒𝑎 is used to denote actuator elements and 𝑒𝑔 is used to denote gap elements. This condition 

holds because all heat conducted out of an element, parallel to the 𝑥-𝑦 plane, is also conducted 
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into another element. The exception to this is along the actuator arms where heat is conducted to 

the external environment via the side of the actuator arm. However, because this external 

conduction boundary condition is captured in the integral of (50), including it in (63) would be 

redundant. Therefore, although the terms contained within (63) were included for completeness in 

the development of the computational method, they are not evaluated when calculating the element 

load vector or stiffness matrix unless a Neumann type boundary condition is to be applied (i.e. at 

the tip of the extension arm). This ensures conservation of heat flux in the 𝑥-𝑦 plane. To enforce 

the Neumann boundary condition at node 𝑝, corresponding with the local node number at the tip 

of the extension arm, the first term in (56), 𝐹𝑝,0
𝑒 , is evaluated as: 

 
𝐹𝑝,0

𝑒 = −𝑘𝑆𝑖(𝜙𝑗(𝜉 = 1)𝑐𝑗)𝐴
𝑑𝜙𝑗(𝜉 = 1)

𝑑𝜉

𝑑𝜉

𝑑𝑠
𝑐𝑗𝜙𝑝(𝜉 = 1)

= ℎ𝑒𝑞(𝜙𝑗(𝜉 = 1)𝑐𝑗)𝐴𝑒[𝜙𝑗(𝜉 = 1)𝑐𝑗 − 𝑇∞]

= ℎ𝑒𝑞(𝑐𝑝)𝐴𝑒[𝑐𝑝 − 𝑇∞]. 

(64) 

In (64) 𝐴𝑒 is the cross-sectional area at the tip of the extension arm. The contribution of 𝐹𝑝,0
𝑒  to the 

element stiffness matrix, 𝐾𝑝𝑞,0
𝑒 , must also be considered: 

 
𝐾𝑝𝑞,0

𝑒 =
𝑑

𝑑𝑐𝑞
[ℎ𝑒𝑞(𝑐𝑝)𝐴𝑒[𝑐𝑝 − 𝑇∞]]. (65) 

3.2.7. Error Analysis 

To evaluate the error in the finite element approximation, the root sum of squares is calculated 

for the elements in the load vector. This is then normalized by the heat dissipated by the entire 

actuator. Iteration is performed until this value is less than an error parameter, 𝜒. This criteria is 

given by 
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√∑ 𝐹𝑖

2

𝐼𝑒𝑙
2 𝑅

< 𝜒. 
(66) 

3.3. Implementation of the Numerical Method 

The presented computational method was implemented using the Python programming 

language. The “quad” function, which is a readily available general purpose numerical integration 

tool from the SciPy library, was used to carry out the integration for calculating the total resistance 

in the actuator, the thermal expansion in each arm, and the conduction shape factor. Furthermore, 

the integration required to compute the load vector and stiffness matrix was carried out using 3 

point Gaussian quadrature. 

3.4. Experimental Measurements 

To verify the accuracy of the electro-thermal and thermo-mechanical models, it was necessary 

to compare model predictions with experimental measurements for the flexure actuator discussed 

in Section 2.1. Owing to the difficulty of experimentally measuring the temperature distribution 

in the microactuator, a combination of both current and displacement measurements were 

performed. A constant electrical potential difference ranging from 0 to 16.5 V was applied across 

the hot and cold arm terminals of the test actuator, and the current drawn by the actuator was 

measured using a Keithley 4200. The resulting displacement of the actuator was captured using an 

upright optical microscope. Captured images were then analyzed to extract the extension arm tip 

displacement corresponding with each applied voltage. The displacement of the actuator was 

measured with GetData digitizing software, using a 145 µm reference feature and a fixed origin. 

Both the voltage-displacement and current-voltage responses were used for model verification to 

help better ensure that the model predictions corresponded with the correct temperature magnitude 

and distribution in the device.  
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3.5. Results and Discussion 

3.5.1. Mesh Convergence Study 

A mesh convergence study was performed to determine the mesh fineness required to produce 

reliable results. In this study, both the fineness of the mesh and the significance of the error 

parameter, 𝜒, were examined. Results of the study are shown in Fig. 10. Here, the parameter, 𝑛, is 

used to represent the number of elements with which the width of the gap and the lengths of the 

flexure arm, cold arm, and extension arm were meshed. For simplicity, each of these features was 

meshed with an equal number of elements. The hot arm was partitioned into two sections such that 

the first partition was directly opposite of the flexure arm and contained 𝑛 elements, and the second 

partition was directly opposite of the cold arm and also contained 𝑛 elements. This mesh strategy 

was illustrated in Fig. 8. The convergence of the model was quantified using the term, 𝛾, defined 

by 

 

𝛾 = √∑ (
𝑉 − 𝑉𝑖

∗

𝑉𝑖
∗ )

216

𝑖=1

+ ∑ (
𝑢𝑡𝑖𝑝 − 𝑢𝑡𝑖𝑝,𝑖

∗

𝑢𝑡𝑖𝑝,𝑖
∗ )

216

𝑖=1

 , (67) 

where 𝑉𝑖
∗ and 𝑢𝑡𝑖𝑝,𝑖

∗  are reference values for the voltage drop across the actuator and the extension 

arm tip displacement respectively at a given electrical current input. In this study, the input into 

the model was an electrical current given by  

 𝐼𝑒𝑙 = (1.5 + 0.5𝑖) mA, (68) 

where 𝑖 ranged from 1 to 16. The reference values 𝑉𝑖
∗ and 𝑢𝑡𝑖𝑝,𝑖

∗  were obtained from model results 

in which 𝑛 =16 and 𝜒 =1×10-8 were assumed.  

The results of the mesh convergence study indicate that, while the fineness of the mesh is 

significant in determining the upper limit of attainable convergence, the value selected for 𝜒 has 
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far greater importance. Based on the findings of this study, values of 𝑛 = 2 and 𝜒 = 1×10-4 were 

selected for predicting the steady state performance of the flexure actuator. Selection of these 

values would permit both sufficient convergence and computational efficiency in the calculations 

that follow.  

3.5.2. Literature-Based Verification of the Thermal Model and Computational Method 

To verify the accuracy of the presented thermal model and computational method, they were 

first used to predict the temperature distribution in the P34 V-shaped bent-beam actuator presented 

in [52]. Geometry of the actuator corresponded with that presented in [52], and the temperature 

dependences of material properties were modeled using the relations reported in [38]. A mesh 

convergence study similar to that described in Section 3.5.1 was first performed to ensure the 

fidelity of the computations. A comparison of the model predictions with the experimental results 

(obtained using Raman thermometry in [52]) is shown in Fig. 11.  

 

Fig. 10. Mesh convergence study.  
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Using the material properties outlined in [38], the model predictions were shown to deviate a 

significant amount from experimental results. However, a wide range of values have been reported 

in literature for the thermal conductivity of polysilicon due to variations in measurement 

techniques and fabrication processes [55]. Therefore, the temperature-dependent thermal 

conductivity measurements obtained from [56] for the fourth polysilicon layer of the SUMMiT V 

process (the same process used to fabricate the device in [52]) were curve fitted and incorporated 

into the model. Results using these thermal conductivity measurements are also included in Fig. 

11 and show good agreement with the experimental measurements. Therefore, the results of this 

study are considered to provide sufficient confidence in the accuracy of the presented thermal 

model and computational approach. 

 

Fig. 11. Verification of the thermal model and computational method. Temperature measurements were 

performed in [52] with respect to position along one of the legs of the P34 V-shaped bent beam actuator. 
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3.5.3. Model Predictions and Experimental Verification 

The thermal microactuator model was verified with experimental measurements obtained 

using the flexure actuator discussed previously. Furthermore radiation, intra-device heat transfer, 

and the temperature dependence of material properties were examined to determine their 

significance in producing accurate model predictions. The electrical current was selected as the 

input to the model, from which the steady state voltage drop across the actuator and extension arm 

tip displacement were calculated. To investigate the accuracy of the model, the relationship 

between current and voltage and the relationship between voltage and extension arm tip 

displacement were examined and compared with experimental data.  

The thermal time constant, 𝜏, was considered to be an unknown parameter in the model. Hence 

three different values were considered in the interest of investigating the significance of 𝜏. Results 

are shown in Fig. 12, for which 𝜏1 = 0.5 ms, 𝜏2 = 1.0 ms, and 𝜏3 = 7.25 ms. These thermal time 

constant values correspond with penetration depths of 105 µm, 149 µm, and 400 µm respectively. 

As will be shown in Section 4, 𝜏3 corresponds with the calculated value for the thermal time 

constant, obtained using the dynamic implementation of the model. However, as shown in Fig. 12, 

the predicted voltage-current and voltage-displacement responses show only slight 𝜏 dependence. 

Moreover, the model predictions match very well with experimental data. Both show a slight 

inflection point in the current-voltage response at an input current of ~7.2 mA, indicating that a 

portion of the actuator has approached the critical temperature at which resistivity begins to 

decrease. Because this inflection point occurs at approximately the same input current in both 

experimental measurements and model predictions (and because the voltage-current and 

displacement-voltage trends match very well), it can be deduced that the model accurately predicts 

the temperature of the device up until this point. It can be seen, however, that the current-voltage 

relationship begins to diverge at currents exceeding 7.2 mA. This discrepancy is likely the result 
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of a change in heat transfer path due to large displacements which is not taken into consideration 

in the model. As the actuator deforms, it approaches the side of the trench (see Fig. 1) and 

eventually passes over part of the substrate. With decreasing distance from the side of the trench, 

heat is removed more rapidly due to the close proximity to the substrate. This would decrease the 

resistance of the actuator, and, therefore, decrease the voltage drop across the device for a given 

current input. Because the model does not account for this change in conduction path, it slightly 

overestimates the voltage drop at high input powers. 

The results presented in Fig. 12 are the predictions of what we consider the full model, which 

takes into account intra-device heat transfer, heat loss due to radiation, and the full temperature 

dependence of the thermal conductivity of silicon, thermal conductivity of air, electrical resistivity 

of silicon, and thermal expansion coefficient of silicon. The predictions of this model match 

experimental results very well. In addition to the full model already presented, six additional 

  

Fig. 12. Experimental verification of the thermal microactuator model, considering three different values for 

the thermal time constant. Displacement at the tip of the extension arm vs. applied voltage (left) and applied 

voltage vs. input current (right). 
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hypothetical cases were modeled to illustrate the significance of each of the aforementioned 

sources of nonlinearity. Each of these models is identical to the full model, with the exception of 

a single modified parameter. Model 1 excludes the effects of intra-device heat transfer across the 

air gap, Model 2 excludes heat loss due to radiation, Model 3 assumes a temperature-independent 

value for the thermal conductivity of silicon (maintained at the room temperature value), Model 4 

assumes a temperature-independent value for the thermal conductivity of air (maintained at the 

room temperature value), Model 5 assumes the temperature dependence of resistivity to be 

linearized about its room temperature value, and Model 6 assumes a temperature-independent 

value for the thermal expansion coefficient of silicon (maintained at the room temperature value).  

A summary of these models is given in Table V. Because the thermal and mechanical problems 

have been decoupled, only the voltage-displacement relationship was examined for Model 6. As 

mentioned previously, the thermal time constant will be shown to be 7.25 ms using the dynamic 

implementation of the thermal microactuator model. Hence this value was used in all computations 

of these hypothetical models. A comparison of the model predictions is shown in Fig. 13, where 

the temperature field plot illustrated corresponds with an applied current input of 8 mA for all 

models. 

TABLE V 

OVERVIEW OF INVESTIGATED HYPOTHETICAL MODELS 

Model 1 No intra-device heat transfer 

Model 2 No heat loss due to radiation 

Model 3 𝑘𝑆𝑖 = 146.6 Wm-1K-1 (Temperature-independent) 

Model 4 𝑘𝑎 = 0.026 Wm-1K-1 (Temperature-independent) 

Model 5 
𝜌𝑆𝑖 = 2.22 × 10−5 + 3.93 × 10−7𝑇 Ω·m  

𝜌𝑐 = −3.06 × 10−7 + 5.38 × 10−9𝑇 Ω·m 

Model 6 𝛼 = 2.57 × 10−6 K-1 (Temperature-independent) 
 

Overview of the models used to investigate the significance of different sources of nonlinearity. Each 

model is equivalent to the full model, with the exception of the modification listed in the adjacent column. 
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Fig. 13.  Displacement at the tip of the extension arm vs. applied voltage (top left), applied voltage vs. input 

current (top right), and predicted temperature distribution given an input current of 8 mA (bottom right). All 

models are equivalent to the full model, except for the modifications shown in Table V. 
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In Model 4, the increase in the thermal conductivity of air with temperature was neglected, 

thus eliminating the temperature dependence of the heat transfer coefficient. Consequently, less 

heat was removed from the actuator through the air, and the predicted temperature was 

significantly higher than that predicted by the full model. This was especially significant in the hot 

arm, where the heat transfer coefficient should be expected to reach a maximum. The predicted 

displacement and voltage drop across the actuator in Model 4 were, therefore, noticeably larger 

than those predicted by the full model. At high input powers, however, the temperature was 

sufficiently high in the hot arm that resistivity began to decrease with increasing current, and the 

slope of the voltage-current response began to decrease. This is shown in the voltage-current plot 

of Fig. 13 by the pronounced inflection point, which occurs at a significantly lower input current 

than in experimental measurements, indicating an over-prediction of device temperature. As may 

be expected, a similar trend was observed in Model 1, which neglected intra-device heat transfer. 

In this case, however, the predicted temperature in the cold arm was lower than that predicted by 

the full model due to the absence of heat flux from the hot arm through the air gap. Furthermore, 

despite high operating temperatures, radiation was shown to have a minor effect on the temperature 

distribution in the actuator, as shown by the predictions of Model 2. Even at high input powers, 

the heat lost due to conduction was sufficiently large such that the effect of radiation was 

insignificant. 

In Model 5, the assumption that electrical resistivity was linear in temperature yielded 

predictions similar to those of the full model at low to moderate input power. However, at high 

operating temperatures, the model overestimated electrical resistivity and, therefore, the heat 

generated via Joule heating. Model 5, therefore, over-predicted the temperature in the hot arm at 

high input power, resulting in over-prediction of displacement and voltage drop across the 

actuator. Model 3 neglected the decrease in the thermal conductivity of silicon that occurs with 
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increasing temperature, which resulted in significantly more heat conducted internally than in the 

full model. This prevented heat from accumulating as much in the hot arm, and, thus, Model 3 

predicted a lower tip displacement and voltage drop than the full model. Though the voltage-

current curve for Model 3 appears to match experimental measurements slightly better than the 

full model, the inflection point is not present, indicating an under-prediction of the device 

temperature. Model 6 was unable to capture the increase in the thermal expansion coefficient with 

temperature. Therefore, as expected, this model predicted a significantly lower tip displacement 

than the full model. 

3.5.4. Effect of Elastic Modulus 

Because there is insufficient data in the literature to characterize the temperature dependence 

of the elastic modulus of phosphorus-doped silicon, 𝐸 was assumed to be temperature-independent 

in the implementation of the thermal microactuator model. To determine the validity of this 

assumption, an investigation was performed to examine the significance of considering the 

temperature dependence of the elastic modulus. For Boron doping in the range of 1.3×1015 to 

8.5×1018 atoms/cm3, the elastic modulus of <110> silicon can be modeled as: 

 
𝐸(𝑇) = 1.51 × 105(eV)𝑒

(
2.7×10−3(eV)

𝐾𝑇
)
 (MPa) 

(69) 

from room temperature to 1273 K [41]. Here 𝐾 is the Boltzmann constant. Though this relation is 

intended for Boron-doped silicon, (69) was used in this study to obtain an approximation of its 

effect on model predictions.  

The consideration of the full temperature dependence of the elastic modulus required (34) to 

be numerically integrated over each arm of the actuator in the interest of computing the flexibility 

matrix. Calculating the displacement of the actuator also required the moment in (38) to be 

numerically integrated over the length of the hot arm. The displacement at the tip of the hot arm 
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could then be extrapolated over the length of the extension arm to determine the extension arm tip 

displacement. Results from this study are shown in Fig. 14 and verify that assuming the elastic 

modulus of silicon to be temperature-independent has negligible effect on the accuracy of model 

predictions. 

3.6. Conclusions 

A computational method has been presented to permit the solution of the highly nonlinear 

governing heat equations for calculation of the steady state displacement of a thermal 

microactuator. The model employs the Galerkin method with Newton-Raphson iteration to fully 

account for radiation, intra-device heat transfer, and the full temperature dependence of material 

properties. The accuracy of the electro-thermal model and computational method presented herein 

were verified with experimental temperature measurements performed on a V-shaped bent beam 

actuator presented in [52]. The model was further verified using voltage, current, and extension 

 

Fig. 14. Effect of neglecting the temperature dependence of the elastic modulus of silicon. Both plotted 

curves assume 𝜏 = 7.25 ms, corresponding with 𝛿𝑝 = 400 µm.   
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arm tip displacement measurements from experiments performed on a flexure actuator. For the 

first time, an analysis has been performed to determine the significance of each source of 

nonlinearity in the model, assuming a penetration depth of 400 µm which corresponds to a thermal 

time constant of 7.25 ms.  

The results presented illustrate that, at relatively high current inputs, assuming the thermal 

conductivity of silicon to be temperature-independent underestimates the temperature in the 

device, causing the model to under-predict the extension arm tip displacement of the actuator. 

Similarly, assuming the thermal expansion coefficient of silicon to be temperature-independent 

also causes the model to significantly under-predict the displacement. Neglecting either intra-

device heat transfer or the temperature dependence of the thermal conductivity of air, however, 

was shown to significantly over-predict the voltage drop and tip displacement for a given input 

current. 

Radiation was shown to have a minor effect on the accuracy of the model, despite the high 

operating temperature of the hot arm. Thermal conduction is sufficiently large such that heat 

transferred due to radiation is negligible, even at high input powers. The findings of this study also 

indicate that assuming resistivity to be linear in temperature accurately predicts the performance 

of the actuator until high input powers, at which point the predictions begin to diverge from both 

experimental results and the full model predictions.  
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 DYNAMIC MODELING 

4.1. Introduction 

It is very common in MEMS to use microactuators for high frequency applications, thus 

necessitating the prediction of the frequency response of thermal microactuators. To approximate 

the maximum frequency of operation for a given actuator, it is necessary to have appropriate 

models to predict the thermal behavior of the device over time.  

In this regard, the dynamic performance of an out-of-plane thermal microactuator has been 

modeled in [37] using a finite difference method and the Runge-Kutta algorithm, and the dynamic 

performance of a flexure actuator has been modeled in [19] using a lumped model that incorporates 

both FEA and analytical methods. Transient models have also been developed in ANSYS to 

predict the behavior of flexure actuators [20, 33] and bent beam actuators [20]. A finite difference 

model was developed in [34] to predict the transient temperature rise in a bent beam actuator and 

in [36] to predict the temperature rise in a flexure actuator. Nodal analysis has also been used to 

investigate the dynamic behavior of flexure actuators in [29], and thermal networks have been 

used to predict temperature rise for general applications in thermal microactuators in [31]. 

Though these works have all presented methods for predicting transient behavior of thermal 

microactuators, it is desirable to permit the consideration of all nonlinearities introduced by 

radiation, intra-device heat transfer, and the nonlinear temperature dependence of material 

properties. This may allow for more accurate prediction of temperature distribution over time, and, 

therefore, permit the prediction of actuator displacement amplitude at different frequencies of 

operation.  

To predict the dynamic behavior of thermal microactuators, the evolution of the temperature 

distribution in the actuator will first need to be computed. This requires the solution of the time-

dependent electro-thermal model presented in Section 2.3.2. An initial temperature state will first 
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be assumed for the microactuator, and the temperature distribution at the end of a finite time step 

will be sought. The terms in (20) and (21) will be linearized with respect to time using the implicit 

Euler method and integrated over each time step. Equations (20) and (21) will then be converted 

to weak form, and the Galerkin method with Newton-Raphson iteration will be applied to predict 

the temperature distribution within the device at the end of each time step. The thermo-mechanical 

model presented in Section 2.3.3 will then be solved, permitting the calculation of the actuator 

displacement at the end of each time step. 

In this chapter, the dynamic equation of motion will first be introduced in Section 4.2. A 

solution for the mechanical response of the actuator, however, will require knowledge of the 

transient thermal response, including the thermal time constant. In this regard, a computational 

method similar to that used in the previous chapter will be introduced in Section 4.3. This will 

then be applied to the test actuator in Section 4.5.2 to calculate the thermal time constant. After 

performing a modal analysis on the actuator, appropriate assumptions will be made to the dynamic 

equation of motion that will simplify the dynamic calculation of the tip displacement. Model 

predictions and experimental verification will then be discussed in Section 4.5.4. 

4.2. Dynamic Equation of Motion 

The motion of the actuator is governed by the following differential equation: 

 𝑚�̈� + 𝑑�̇� + 𝑘𝑚𝑢 = 𝐹𝑡ℎ(𝑡), (70) 

where 𝑚 is the effective mass of the actuator, 𝑑 is the coefficient of damping, 𝑘𝑚 is the mechanical 

stiffness, and 𝐹𝑡ℎ is the thermal force acting on the actuator due to thermal expansion in the arms. 

The natural frequency of most thermal microactuators, however, is sufficiently high that the 

dynamic response is limited by the rate at which temperature changes in the device. In cases where 

this is valid, (70) becomes 
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 𝑘𝑚𝑢 = 𝐹𝑡ℎ(𝑡). (71) 

This implies that, provided the natural frequency is sufficiently large, the same thermo-mechanical 

model can be used to model the dynamic behavior as was used to model the steady state behavior. 

In this case, the transient effects are captured by the electro-thermal response. 

Before any simplifying assumptions are made with regards to (70), it is necessary to model 

the transient thermal response of the actuator and estimate the thermal time constant. A modal 

analysis can then be performed to calculate the natural frequency of the primary mode of vibration, 

enabling a comparison to be made between the time scales of the mechanical response and the 

thermal response. 

4.3. Computational Method 

4.3.1. Weak Formulation 

For development of the weak form of the governing differential equations to be used in 

dynamic computations, an implicit Euler method is first applied to the terms in (20) and (21). 

Contrary to the previous chapter, time dependence in (20) and (21) will be considered for this 

analysis. These equations will be integrated over each time step and arranged in the form of 

residuals, 𝑅(𝑠) and 𝑅(𝑥, 𝑦). For a given time step, the temperature distribution that results in 

𝑅(𝑠) = 0 and 𝑅(𝑥, 𝑦) = 0 over the entire domain is the solution to the differential equation. 

Equation (20) will be considered first. 

 
𝜚𝑆𝑖𝑐𝑆𝑖(𝑇)𝐴

𝜕𝑇(𝑠, 𝑡)

𝜕𝑡
= 𝑘𝑆𝑖(𝑇)𝐴

𝜕2𝑇(𝑠, 𝑡)

𝜕𝑠2
+

𝜕𝑘𝑆𝑖(𝑇)

𝜕𝑇
𝐴 [

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
]

2

+ 𝐽(𝑡)2𝜌(𝑇)𝐴

− 휀𝜎𝑆𝑟[𝑇(𝑠, 𝑡)4 − 𝑇∞
4 ] − ℎ𝑒𝑞(𝑇)𝑆𝑐𝑑[𝑇(𝑠, 𝑡) − 𝑇∞] 

(72) 

For a finite time step, Δ𝑡, this equation can be linearized and integrated using an implicit Euler 

strategy. 
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∫ 𝜚𝑆𝑖𝑐𝑆𝑖(𝑇)𝐴 𝜕𝑇(𝑠, 𝑡)
𝑇

𝑇0

= ∫ [𝑘𝑆𝑖(𝑇)𝐴
𝜕2𝑇(𝑠, 𝑡)

𝜕𝑠2
+

𝜕𝑘𝑆𝑖(𝑇)

𝜕𝑇
𝐴 [

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
]

2𝑡0+Δ𝑡

𝑡0

+ 𝐽(𝑡)2𝜌(𝑇)𝐴 − 휀𝜎𝑆𝑟[𝑇(𝑠, 𝑡)4 − 𝑇∞
4 ]

− ℎ𝑒𝑞(𝑇)𝑆𝑐𝑑[𝑇(𝑠, 𝑡) − 𝑇∞]]  𝜕𝑡 

(73) 

Within a single time step, each term on the right hand side will be considered a linear function of 

time, linearized about its value at the end of the time step. This is given by: 

 
𝑓 = 𝑓0 +

𝑑𝑓

𝑑𝑡
|

𝑡=Δ𝑡
𝑡 (74) 

where 𝑓 represents the value of the term at time 𝑡 measured from the beginning of the time step, 

and 𝑓0 represents the value at the beginning of the time step. When integrated over the time step, 

one arrives at the following: 

 
∫ 𝑓 𝑑𝑡

𝑡=𝛥𝑡

𝑡=0

= 𝑓0Δ𝑡 +
1

2

𝑑𝑓

𝑑𝑡
|

𝑡=Δ𝑡
Δ𝑡2. (75) 

Now the term 𝑑𝑓/𝑑𝑡 must be evaluated. To account for temperature dependence, this is evaluated 

using the chain rule: 

 𝑑𝑓

𝑑𝑡
|

𝑡=Δ𝑡
=

𝑑𝑓

𝑑𝑇
|

𝑡=Δ𝑡

𝑑𝑇

𝑑𝑡
|

𝑡=Δ𝑡
=

𝑑𝑓

𝑑𝑇
|

𝑡=Δ𝑡

𝑇 − 𝑇0

Δ𝑡
. (76) 

Applying this to (73) and multiplying by the weight function produces 

 
𝑅(𝑠, 𝑡) = − ∫ [∫ 𝜚𝑆𝑖𝑐𝑆𝑖(𝑇)𝐴 𝜕𝑇(𝑠, 𝑡)

𝑇

𝑇0

] 𝜓(𝑠) 𝑑𝑠
𝐿

0

+ 𝐶1𝑚 + 𝐶2𝑚 + 𝐶3𝑚 + 𝐶4𝑚 + 𝐶5𝑚 = 0, 

(77) 

where 
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𝐶1𝑚 = ∫ [𝑘𝑆𝑖(𝑇)𝐴

𝜕2𝑇(𝑠, 𝑡)

𝜕𝑠2
Δ𝑡|

𝑇=𝑇0

+
1

2
𝐴

𝜕𝑘𝑆𝑖(𝑇)

𝜕𝑇
 
𝜕2𝑇(𝑠, 𝑡)

𝜕𝑠2
[𝑇(𝑠, 𝑡) − 𝑇0(𝑠, 𝑡)]Δ𝑡

𝐿

0

+
1

2
𝑘𝑆𝑖(𝑇)𝐴 [

𝜕2𝑇(𝑠, 𝑡)

𝜕𝑠2
−

𝜕2𝑇0(𝑠, 𝑡)

𝜕𝑠2
] Δ𝑡 ] 𝜓(𝑠) 𝑑𝑠 

(78) 

 

𝐶2𝑚 = ∫ [
𝜕𝑘𝑆𝑖(𝑇)

𝜕𝑇
𝐴 [

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
]

2

Δ𝑡|

𝑇=𝑇0

𝐿

0

+
1

2

𝜕2𝑘𝑆𝑖(𝑇)

𝜕𝑇2
𝐴 [

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
]

2

[𝑇(𝑠, 𝑡) − 𝑇0(𝑠, 𝑡)]Δ𝑡

+
𝜕𝑘𝑆𝑖(𝑇)

𝜕𝑇
𝐴

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
[
𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
−

𝜕𝑇0(𝑠, 𝑡)

𝜕𝑠
] Δ𝑡 ] 𝜓(𝑠) 𝑑𝑠 

(79) 

 
𝐶3𝑚 = ∫ [𝐽0(𝑡)2𝜌(𝑇)𝐴 Δ𝑡|𝑇=𝑇0

+
1

2
𝐽(𝑡)2

𝜕𝜌(𝑇)

𝜕𝑇
𝐴[𝑇(𝑠, 𝑡) − 𝑇0(𝑠, 𝑡)]Δ𝑡

𝐿

0

+ 𝐽(𝑡)𝜌(𝑇)𝐴[𝐽(𝑡) − 𝐽0(𝑡)]Δ𝑡] 𝜓(𝑠) 𝑑𝑠 

(80) 

 
𝐶4𝑚 = ∫ [ −휀𝜎𝑆𝑟[𝑇(𝑠, 𝑡)4 − 𝑇∞

4 ]Δ𝑡|𝑇=𝑇0

𝐿

0

− 2휀𝜎𝑆𝑟𝑇(𝑠, 𝑡)3[𝑇(𝑠, 𝑡) − 𝑇0(𝑠, 𝑡)]Δ𝑡]𝜓(𝑠) 𝑑𝑠 

(81) 

 
𝐶5𝑚 = ∫ [−ℎ𝑒𝑞(𝑇)𝑆𝑐𝑑[𝑇(𝑠, 𝑡) − 𝑇∞]Δ𝑡|

𝑇=𝑇0
−

1

2
ℎ𝑒𝑞(𝑇)𝑆𝑐𝑑[𝑇(𝑠, 𝑡) − 𝑇0(𝑠, 𝑡)]Δ𝑡

𝐿

0

−
1

2

𝜕ℎ𝑒𝑞(𝑇)

𝜕𝑇
𝑆𝑐𝑑[𝑇(𝑠, 𝑡) − 𝑇∞][𝑇(𝑠, 𝑡) − 𝑇0(𝑠, 𝑡)]Δ𝑡] 𝜓(𝑠) 𝑑𝑠. 

(82) 

The order of the differential equation must now be reduced using partial integration. The following 

are the applicable relations used for this equation: 
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∫  𝑘𝑆𝑖(𝑇)𝐴 

𝜕2𝑇(𝑠, 𝑡)

𝜕𝑠2
𝜓(𝑠)Δ𝑡 𝑑𝑠

𝐿

0

= [𝑘𝑆𝑖(𝑇)𝐴
𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
 𝜓(𝑠)Δ𝑡]|

0

𝐿

− ∫
𝜕𝑘𝑆𝑖(𝑇)

𝜕𝑇
𝐴 [

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
]

2

𝜓(𝑠)Δ𝑡 𝑑𝑠
𝐿

0

− ∫ 𝑘𝑆𝑖(𝑇)𝐴
𝜕𝑇(𝑠, 𝑡)

𝜕𝑠

𝜕𝜓(𝑠)

𝜕𝑠
Δ𝑡 𝑑𝑠

𝐿

0

 

(83) 

 
∫

1

2

𝜕𝑘𝑆𝑖(𝑇)

𝜕𝑇
𝐴 

𝜕2𝑇(𝑠, 𝑡)

𝜕𝑠2
[𝑇(𝑠, 𝑡) − 𝑇0(𝑠, 𝑡)]𝜓(𝑠) Δ𝑡 𝑑𝑠

𝐿

0

= [
1

2

𝜕𝑘𝑆𝑖(𝑇)

𝜕𝑇
𝐴

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
 [𝑇(𝑠, 𝑡) − 𝑇0(𝑠, 𝑡)]𝜓(𝑠)Δ𝑡]|

0

𝐿

− ∫
1

2

𝜕2𝑘𝑆𝑖(𝑇)

𝜕𝑇2
𝐴 [

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
]

2

[𝑇(𝑠, 𝑡) − 𝑇0(𝑠, 𝑡)]𝜓(𝑠)Δ𝑡 𝑑𝑠
𝐿

0

− ∫
1

2

𝜕𝑘𝑆𝑖(𝑇)

𝜕𝑇
𝐴

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
[
𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
−

𝜕𝑇0(𝑠, 𝑡)

𝜕𝑠
] 𝜓(𝑠)Δ𝑡 𝑑𝑠

𝐿

0

− ∫
1

2

𝜕𝑘𝑆𝑖(𝑇)

𝜕𝑇
𝐴

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
[𝑇(𝑠, 𝑡) − 𝑇0(𝑠, 𝑡)]

𝜕𝜓(𝑠)

𝜕𝑠
Δ𝑡 𝑑𝑠

𝐿

0

 

(84) 

 
∫

1

2
𝑘𝑆𝑖(𝑇)𝐴 [

𝜕2𝑇(𝑠, 𝑡)

𝜕𝑠2
−

𝜕2𝑇0(𝑠, 𝑡)

𝜕𝑠2
] 𝜓(𝑠)Δ𝑡 𝑑𝑠

𝐿

0

= [
1

2
𝑘𝑆𝑖(𝑇)𝐴 [

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
−

𝜕𝑇0(𝑠, 𝑡)

𝜕𝑠
] 𝜓(𝑠)Δ𝑡]|

0

𝐿

− ∫
1

2

𝜕𝑘𝑆𝑖(𝑇)

𝜕𝑇
𝐴

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
[
𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
−

𝜕𝑇0(𝑠, 𝑡)

𝜕𝑠
] 𝜓(𝑠)Δ𝑡 𝑑𝑠

𝐿

0

− ∫
1

2
𝑘𝑆𝑖(𝑇)𝐴 [

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
−

𝜕𝑇0(𝑠, 𝑡)

𝜕𝑠
]

𝜕𝜓(𝑠)

𝜕𝑠
Δ𝑡 𝑑𝑠

𝐿

0

. 

(85) 
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Equations (83)-(85) can now be inserted into the (78) and (79) to arrive at (86) which is, in turn, 

substituted back into (77) to arrive at the weak form of the differential equation. 

 
𝐶1𝑚 + 𝐶2𝑚 = [𝑘𝑆𝑖(𝑇)𝐴

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
𝜓(𝑠)Δ𝑡|

𝑇=𝑇0

+
1

2
𝑘𝑆𝑖(𝑇)𝐴 [

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
−

𝜕𝑇0(𝑠, 𝑡)

𝜕𝑠
] 𝜓(𝑠)Δ𝑡

+
1

2

𝜕𝑘𝑆𝑖(𝑇)

𝜕𝑇
𝐴

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
[𝑇(𝑠, 𝑡) − 𝑇0(𝑠, 𝑡)]𝜓(𝑠) Δ𝑡]|

0

𝐿

+ ∫ [−𝑘𝑆𝑖(𝑇)𝐴
𝜕𝑇(𝑠, 𝑡)

𝜕𝑠

𝜕𝜓(𝑠)

𝜕𝑠
Δ𝑡 |

𝑇=𝑇0

𝐿

0

−
1

2

𝜕𝑘𝑆𝑖(𝑇)

𝜕𝑇
𝐴

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
[𝑇(𝑠, 𝑡) − 𝑇0(𝑠, 𝑡)]

𝜕𝜓(𝑠)

𝜕𝑠
Δ𝑡

−
1

2
𝑘𝑆𝑖(𝑇)𝐴 [

𝜕𝑇(𝑠, 𝑡)

𝜕𝑠
−

𝜕𝑇0(𝑠, 𝑡)

𝜕𝑠
]

𝜕𝜓(𝑠)

𝜕𝑠
Δ𝑡  ]  𝑑𝑠 

(86) 

Similarly, the governing differential equation for the air gap can be arranged in residual form as 

follows: 

 
𝑅(𝑥, 𝑦, 𝑡) = − ∬ [∫ 𝜚𝑎(𝑇)𝑐𝑎(𝑇)ℎ 𝜕𝑇(𝑥, 𝑦, 𝑡)

𝑇

𝑇0

] 𝜓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
Ω

+ 𝐶1𝑔 + 𝐶2𝑔 + 𝐶3𝑔 = 0, 

(87) 

where 
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𝐶1𝑔 = ∬ [𝑘𝑎(𝑇)ℎ  𝛁 ∙ 𝛁𝑇(𝑥, 𝑦, 𝑡)|𝑇=𝑇0

Δ𝑡 +
1

2

𝜕𝑘𝑎(𝑇)

𝜕𝑇
ℎ𝛁

Ω

∙ 𝛁𝑇(𝑥, 𝑦, 𝑡)  [𝑇(𝑥, 𝑦, 𝑡) − 𝑇0(𝑥, 𝑦, 𝑡)]Δ𝑡

+
1

2
𝑘𝑎(𝑇)ℎ [𝛁 ∙ 𝛁𝑇(𝑥, 𝑦, 𝑡) − 𝛁 ∙ 𝛁𝑇0(𝑥, 𝑦, 𝑡)]Δ𝑡] 𝜓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 

(88) 

 
𝐶2𝑔 = ∬ [

𝜕𝑘𝑎(𝑇)

𝜕𝑇
ℎ  [𝛁𝑇(𝑥, 𝑦, 𝑡) ∙ 𝛁𝑇(𝑥, 𝑦, 𝑡)]Δ𝑡|

𝑇=𝑇0
Ω

+
1

2

𝜕2𝑘𝑎(𝑇)

𝜕𝑇2
ℎ  [𝛁𝑇(𝑥, 𝑦, 𝑡) ∙ 𝛁𝑇(𝑥, 𝑦, 𝑡)][𝑇(𝑥, 𝑦, 𝑡) − 𝑇0(𝑥, 𝑦, 𝑡)]Δ𝑡

+
𝜕𝑘𝑎(𝑇)

𝜕𝑇
ℎ 𝛁𝑇(𝑥, 𝑦, 𝑡) ∙ [𝛁𝑇(𝑥, 𝑦, 𝑡) − 𝛁𝑇0(𝑥, 𝑦, 𝑡)]Δ𝑡 ] 𝜓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 

(89) 

 
𝐶3𝑔 = − ∬ [ℎ𝑒𝑞(𝑇)𝑆𝑐𝑑[𝑇(𝑥, 𝑦, 𝑡) − 𝑇∞]Δ𝑡|

𝑇=𝑇0Ω

+
1

2
ℎ𝑒𝑞(𝑇)𝑆𝑐𝑑[𝑇(𝑥, 𝑦, 𝑡) − 𝑇0(𝑥, 𝑦, 𝑡)]Δ𝑡

+
1

2

𝜕ℎ𝑒𝑞(𝑇)

𝜕𝑇
𝑆𝑐𝑑[𝑇(𝑥, 𝑦, 𝑡) − 𝑇∞][𝑇(𝑥, 𝑦, 𝑡)

− 𝑇0(𝑥, 𝑦, 𝑡)]Δ𝑡] 𝜓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦. 

(90) 

Now integration by parts must be employed to reduce the order of the equation. The applicable 

relations are the following: 
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∬ 𝑘𝑎(𝑇)ℎ 𝛁 ∙ 𝛁𝑇(𝑥, 𝑦, 𝑡) 𝜓(𝑥, 𝑦)Δ𝑡 𝑑𝑥 𝑑𝑦

𝛺

= ∮ 𝑘𝑎(𝑇)ℎ 𝛁𝑇(𝑥, 𝑦, 𝑡)𝜓(𝑥, 𝑦)Δ𝑡 𝑑𝑙
𝜕𝛺

− ∬
𝜕𝑘𝑎(𝑇)

𝜕𝑇
ℎ 𝛁𝑇(𝑥, 𝑦, 𝑡) ∙ 𝛁𝑇(𝑥, 𝑦, 𝑡)𝜓(𝑥, 𝑦)Δ𝑡 𝑑𝑥 𝑑𝑦

𝛺

− ∬ 𝑘𝑎(𝑇)ℎ 𝛁𝑇(𝑥, 𝑦, 𝑡) ∙ 𝛁𝜓(𝑥, 𝑦)Δ𝑡 𝑑𝑥 𝑑𝑦
𝛺

 

(91) 

 
∬

1

2

𝜕𝑘𝑎(𝑇)

𝜕𝑇
ℎ 𝛁 ∙ 𝛁𝑇(𝑥, 𝑦, 𝑡)[𝑇(𝑥, 𝑦, 𝑡) − 𝑇0(𝑥, 𝑦, 𝑡)]

𝛺

𝜓(𝑥, 𝑦)Δ𝑡 𝑑𝑥 𝑑𝑦

= ∮
1

2

𝜕𝑘𝑎(𝑇)

𝜕𝑇
ℎ 𝛁𝑇(𝑥, 𝑦, 𝑡)[𝑇(𝑥, 𝑦, 𝑡) − 𝑇0(𝑥, 𝑦, 𝑡)]𝜓(𝑥, 𝑦)Δ𝑡 𝑑𝑙

𝜕𝛺

− ∬
1

2

𝜕2𝑘𝑎(𝑇)

𝜕𝑇2
ℎ 𝛁𝑇(𝑥, 𝑦, 𝑡)

𝛺

∙ 𝛁𝑇(𝑥, 𝑦, 𝑡)[𝑇(𝑥, 𝑦, 𝑡) − 𝑇0(𝑥, 𝑦, 𝑡)]𝜓(𝑥, 𝑦)Δ𝑡 𝑑𝑥 𝑑𝑦

− ∬
1

2

𝜕𝑘𝑎(𝑇)

𝜕𝑇
ℎ 𝛁𝑇(𝑥, 𝑦, 𝑡)

𝛺

∙ [𝛁𝑇(𝑥, 𝑦, 𝑡) − 𝛁𝑇0(𝑥, 𝑦, 𝑡)]𝜓(𝑥, 𝑦)Δ𝑡 𝑑𝑥 𝑑𝑦

− ∬
1

2

𝜕𝑘𝑎(𝑇)

𝜕𝑇
ℎ 𝛁𝑇(𝑥, 𝑦, 𝑡)

𝛺

∙ 𝛁𝜓(𝑥, 𝑦)[𝑇(𝑥, 𝑦, 𝑡) − 𝑇0(𝑥, 𝑦, 𝑡)]Δ𝑡 𝑑𝑥 𝑑𝑦  

(92) 
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∬

1

2
𝑘𝑎(𝑇)ℎ[𝛁 ∙ 𝛁𝑇(𝑥, 𝑦, 𝑡) − 𝛁 ∙ 𝛁𝑇0(𝑥, 𝑦, 𝑡)]𝜓(𝑥, 𝑦)Δ𝑡 𝑑𝑥 𝑑𝑦

𝛺

= ∮
1

2
𝑘𝑎(𝑇)ℎ[𝛁𝑇(𝑥, 𝑦, 𝑡) − 𝛁𝑇0(𝑥, 𝑦, 𝑡)]𝜓(𝑥, 𝑦)Δ𝑡 𝑑𝑙

𝜕𝛺

− ∬
1

2

𝜕𝑘𝑎(𝑇)

𝜕𝑇
ℎ[𝛁𝑇(𝑥, 𝑦, 𝑡) − 𝛁𝑇0(𝑥, 𝑦, 𝑡)]

𝛺

∙ 𝛁𝑇(𝑥, 𝑦, 𝑡)𝜓(𝑥, 𝑦)Δ𝑡 𝑑𝑥 𝑑𝑦

− ∬
1

2
𝑘𝑎(𝑇)ℎ[𝛁𝑇(𝑥, 𝑦, 𝑡) − 𝛁𝑇0(𝑥, 𝑦, 𝑡)] ∙ 𝛁𝜓(𝑥, 𝑦)Δ𝑡 𝑑𝑥 𝑑𝑦

𝛺

. 

(93) 

Now these relations can be substituted back into (88) and (89) to arrive at (94). This is, in turn, 

substituted back into (87) to produce the weak form of the differential equation for the air gap. 

 
𝐶1𝑔 + 𝐶2𝑔 = ∮ [𝑘𝑎(𝑇)ℎ 𝛁𝑇(𝑥, 𝑦, 𝑡)|𝑇=𝑇0

𝜕𝛺

+
1

2

𝜕𝑘𝑎(𝑇)

𝜕𝑇
ℎ𝛁𝑇(𝑥, 𝑦, 𝑡)[𝑇(𝑥, 𝑦, 𝑡) − 𝑇0(𝑥, 𝑦, 𝑡)]

+
1

2
𝑘𝑎(𝑇)ℎ[𝛁𝑇(𝑥, 𝑦, 𝑡) − 𝛁𝑇0(𝑥, 𝑦, 𝑡)]] 𝜓(𝑥, 𝑦)Δ𝑡 𝑑𝑙

− ∬ [𝑘𝑎(𝑇)ℎ 𝛁𝑇(𝑥, 𝑦, 𝑡) ∙ 𝛁𝜓(𝑥, 𝑦)|𝑇=𝑇0
−

1

2

𝜕𝑘𝑎(𝑇)

𝜕𝑇
ℎ 𝛁𝑇(𝑥, 𝑦, 𝑡)

𝛺

∙ 𝛁𝜓(𝑥, 𝑦)[𝑇(𝑥, 𝑦, 𝑡) − 𝑇0(𝑥, 𝑦, 𝑡)]

−
1

2
𝑘𝑎(𝑇)ℎ[𝛁𝑇(𝑥, 𝑦, 𝑡) − 𝛁𝑇0(𝑥, 𝑦, 𝑡)] ∙ 𝛁𝜓(𝑥, 𝑦)] Δ𝑡  𝑑𝑥 𝑑𝑦 

(94) 

4.3.2. Iterative Approach 

To solve for the time evolution of the temperature distribution in the actuator, the same 

solution approach can be applied as in Sections 3.2.3 through 3.2.7. In this case, the temperature 

distribution at the end of the previous time step is specified as the initial condition. The Galerkin 
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method is then applied at each time step, replacing the weight function with shape functions and 

iteratively solving for the temperature distribution using Newton-Raphson iteration. Because 

MEMS actuators are most often controlled by inputting a potential function, the applied voltage 

has been selected as the input to the dynamic problem. During the first iteration of each time step, 

the electrical current input to the actuator is calculated based on the temperature distribution at the 

end of the previous time step. This means that during the first Newton-Raphson iteration for each 

time step, 𝐽 = 𝐽0. In each of the following iterations, the electrical current is updated using (29), 

based on the most recently calculated temperature distribution. As shown in the previous section, 

both 𝐽 and 𝐽0 are required to evaluate each element of the load vector. Therefore, to evaluate 

whether 𝜒 is sufficiently small to warrant proceeding to the next time step, the load vector must 

be reevaluated with the updated value of 𝐽 following each Newton-Raphson iteration. 

4.4. Experimental Methods 

Due to the difficulty of directly measuring device displacement at high frequency, verification 

of the dynamic implementation of the model was performed by applying a potential difference 

across the hot and cold terminals and measuring the current drawn by the device over time. The 

purpose of this experiment was to verify the time response predicted by the model. 

A voltage was applied to the actuator with an Agilent 33220A signal generator. A 1.01 Ω shunt 

resistor was placed in series with the device, and the potential drop across the resistor was 

measured to calculate the current flow through the circuit. The voltage drop was also measured 

across the actuator itself and used as the input to the microactuator model for model verification. 

Measurements were taken in LabView using a National Instruments USB-6211 at a sample rate of 

20 kHz. The highest potential drop across the actuator that could be achieved using the signal 

generator was 9.6 V, and, therefore, this value was used for many of the dynamic computations. 
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4.5. Results and Discussion 

4.5.1. Convergence Study 

A convergence study was performed to determine an acceptable range for the size of each time 

step, Δ𝑡, and the magnitude of the error parameter, 𝜒, used in the computational method. Because 

a mesh convergence study was already performed in Section 3.5.1, a mesh corresponding with 

𝑛 = 2 was assumed for all calculations in this study and all other computations involving the 

dynamic implementation of the thermal microactuator model henceforth. In this study, several 

different time steps were considered: 1 ms, 0.5 ms, 0.25 ms, and 0.125 ms. A voltage input of 9.6 

V was applied as the electrical input to the problem, and the current draw and extension arm tip 

displacement were calculated from time 𝑡 = 0 to 𝑡 = 30 ms. Similar to how the mesh convergence 

study was performed in Section 3.5.1, all predictions were compared with those corresponding to 

a reference time step and error parameter value. For this study 0.1 ms was selected for the reference 

value of Δ𝑡, and 1×10-14 was selected for the reference value of 𝜒. The following equation was 

then used to quantify convergence: 

 

𝜆 = √∑ (
𝐼 − 𝐼𝑖

∗

𝐼𝑖
∗ )

230

𝑖=1

+ ∑ (
𝑢𝑡𝑖𝑝 − 𝑢𝑡𝑖𝑝,𝑖

∗

𝑢𝑡𝑖𝑝,𝑖
∗ )

230

𝑖=1

 , (95) 

where 𝐼∗ is the calculated current draw of the reference at a given time, and 𝑢𝑡𝑖𝑝
∗  is the calculated 

extension arm tip displacement of the reference at a given time. To ensure compatibility of results 

regardless of time step size, the calculation of 𝜆 included predictions at 30 different times, 𝑡, where 

𝑡 = 𝑖 ms. Results of this study are presented in Fig. 15. From the findings, a maximum allowable 

step size of Δ𝑡 = 0.5 ms and a value of 𝜒 = 10-8 were selected to be used for the remainder of the 

computations involving the dynamic implementation of the model. 
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4.5.2. Computation of the Thermal Time Constant 

The value of the thermal time constant can be approximated by considering the actuator 

response to a pulse-width modulated voltage input with 50% duty cycle. When voltage is applied, 

the temperature, and therefore the resistance, of the actuator rises. The reverse occurs when voltage 

is removed, causing the resistance to oscillate between a maximum peak value and a minimum 

peak value. At very low frequencies, the actuator has ample time to reach thermal equilibrium, 

and the peak to peak resistance is at a maximum. As the frequency of the electrical input is 

increased, a frequency is eventually reached at which the actuator no longer has sufficient time to 

reach a thermal equilibrium, causing the peak to peak resistance to decrease. To approximate the 

thermal time constant, the frequency of the electrical input required to reduce the peak to peak 

resistance to 70% (-3 dB) the maximum peak to peak resistance is considered [57]. This frequency 

is denoted by 𝑓3𝑑𝐵. The thermal time constant is then given by   

 

Fig. 15.  Convergence study performed to determine an acceptable range for the size of each time step, Δ𝑡, 

and the magnitude of the error parameter, 𝜒, used in the computational method. 
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𝜏 =

1

𝑓3𝑑𝐵
. (96) 

To determine the thermal time constant of the flexure actuator, a pulse-width modulated 

voltage with 50% duty cycle and 9.6 Vpp was applied as the input to the dynamic model. The 

resulting temperature distribution was calculated over time using at least 20 time steps per period, 

ensuring that the maximum time step was no larger than 0.5 ms to achieve appropriate 

convergence. At each frequency observed, the peak to peak resistance was calculated [see (28) for 

the calculation of the total actuator resistance] after a steady state waveform was achieved. The 

results of this analysis are shown in Fig. 16. From these findings, it was found that 𝑓3𝑑𝐵, 

corresponding with a peak to peak resistance of 70% the maximum peak to peak resistance, was 

 

Fig. 16. Peak to peak resistance at different frequencies of applied voltage using a pulse-width modulated 

signal at 50% duty cycle and 9.6 Vpp. 
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achieved at a frequency of approximately 138 Hz. Hence the thermal time constant is 

approximately 7.25 ms. This, in turn, corresponds with a thermal penetration depth of 400 µm, 

which will be used for the remaining computations. 

4.5.3. Natural Frequency 

A modal analysis was performed in ABAQUS to determine the natural frequency of the 

primary mode of vibration. If the natural frequency is sufficiently high the thermo-mechanical 

problem can be modeled quasi-statically. The test actuator was modeled in ABAQUS and meshed 

with 20 node three dimensional brick elements. Both the terminal face of the hot arm and flexure 

arm were constrained against displacement and rotation in all directions. As shown in Fig. 17, the 

primary mode of vibration was found to be 8.7 kHz. Because the thermal time constant was found 

to be 7.25 ms, the actuator can be considered to reach mechanical equilibrium much faster than it 

reaches thermal equilibrium. Thus the same thermo-mechanical model that was used for the steady 

state problem can also be used for predicting the dynamic response. 
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4.5.4. Dynamic Model Predictions and Experimental Verification 

To verify the accuracy of the dynamic model three different DC voltages were applied to the 

test actuator using a signal generator. The resulting current flow was measured over time and the 

resistance in the actuator was calculated. These were then compared with the predictions of the 

dynamic implementation of the thermal microactuator model. Results illustrating the current-time 

response of the actuator and the model predictions are shown in Fig. 18. The trends illustrated for 

the experimental measurements and model predictions are slightly offset due to the imperfect 

current-voltage predictions of the model, but the significance of these results is in the time 

response. Though the model predicts a slightly faster time response, it appears to show good 

agreement with experimental results.  

To further illustrate the transient behavior and to examine the significance of the nonlinearities 

previously discussed (see Table V), the ratio of the rise in resistance to the total rise in resistance 

at steady state is shown in Fig. 19 for a 9.6 V input. This ratio is given by  

 

Fig. 17. Modal analysis in ABAQUS. 
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𝜇 =

[𝑅(𝑡) − 𝑅(𝑡 = 0)]

[𝑅(𝑡 = ∞) − 𝑅(𝑡 = 0)]
. (97) 

As shown in Fig. 19, the model predicts a faster initial rise time than that found experimentally. 

However, the time required to reach 𝜇 ≈ 1 is comparable. It is also shown that the assumptions 

made in Models 1, 3, and 4 do not significantly affect the predicted time response of the actuator 

(Models 2 and 5 were not considered because in Section 3.5.3 they were shown to be insignificant 

at 9.6 V). However, the time response of Model 4 presents a slight improvement over the full 

model and can offer some insight into the shortcomings of the presented full model. Model 4, 

which assumes a temperature-independent value for the thermal conductivity of air, applies a 

temperature-independent (and, therefore, time-independent) heat transfer coefficient. This is 

 

Fig. 18. Transient current response of the test actuator and corresponding model predictions. 
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contrary to the full model, which applies a heat transfer coefficient that increases with temperature, 

and, therefore, increases over time. A likely reason for the discrepancy between the model and 

experimental results is that the temperature gradients in the air surrounding the actuator change 

over time. Initially, after the actuator has been heated slightly but heat has not yet had enough time 

to diffuse radially, there exists a large temperature gradient in the air surrounding the actuator (i.e. 

a small penetration depth). This creates a higher heat transfer coefficient than is predicted by the 

thermal microactuator model. As time advances, heat begins to diffuse radially outward from the 

actuator, reducing this temperature gradient (eventually reaching the gradient predicted by the full 

model at 𝑡 = 𝜏). This has the effect of reducing ℎ𝑒𝑞(𝑇) over time. Hence, the time dependence of 

the penetration depth increases the time required for the temperature to rise. Because the presented 

model assumes the penetration depth to be constant, it predicts a slightly faster time response. 

 

 

Fig. 19. Ratio of the rise in resistance to the total rise in resistance at steady state with respect to time, 

assuming 9.6 V input. 
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 Fig. 20 and Fig. 21 illustrate the effect of signal frequency on the total resistance of the 

actuator and the displacement at the tip of the extension arm, respectively, assuming a 9.6 Vpp 

pulse-width modulated input with 50% duty cycle. As is shown, at frequencies significantly higher 

than 𝑓3𝑑𝐵, the time response of both the resistance and the tip displacement approaches a form that 

largely resembles the response for a DC voltage input, scaled down in magnitude. As may be 

expected, this is because, when the applied voltage is set to zero, the actuator is not allowed 

sufficient time to cool before the voltage is again applied. As frequency is increased, the device is 

permitted less time to cool, causing the waveform to converge toward the response of a reduced 

DC voltage input. As time progresses, the resistance and tip displacement eventually reach steady 

state values around which they oscillate slightly. Furthermore, as can be seen in Fig. 21 at low 

frequency, the extension arm reaches a maximum displacement before decreasing to a steady state 

value. Likewise, during cooling, the displacement actually becomes negative before approaching 

zero. This is due to the larger thermal mass of the cold arm relative to the hot arm. As the device 

heats up, the hot arm reaches steady state before the cold arm. As the temperature in the cold arm 

increases to its steady state temperature, the thermal expansion mismatch between the hot arm and 

the cold arm and, therefore the displacement, is reduced. The reverse is true during cooling.  
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Fig. 20. Frequency response of the total actuator resistance, assuming a 9.6 Vpp pulse-width modulated 

input with 50% duty cycle. 

 

 

Fig. 21. Frequency response of the extension arm tip displacement, assuming a 9.6 Vpp pulse-width 

modulated input with 50% duty cycle. 
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4.6. Conclusions 

A computational method has been presented that permits the calculation of the transient 

temperature distribution in a thermal microactuator, accounting for radiation, intra-device heat 

transfer, and the nonlinear temperature dependence of material properties. In the study presented, 

it was shown that the mechanical response of the actuator was limited by the thermal response 

time, permitting the thermo-mechanical problem to be treated quasi-statically. Displacement could 

be calculated by evaluating the time evolution of the temperature distribution and inputting it into 

the thermo-mechanical model. 

Applying the presented model to the test actuator, the thermal time constant was estimated to 

be 7.25 ms, corresponding with a thermal penetration depth of approximately 400 µm. Verification 

of the computational method for the dynamic implementation of the microactuator model was 

performed by experimentally measuring the time evolution of the current drawn by the test 

actuator. Model predictions for the time response of the actuator show relatively good agreement 

with experiments, though the model predictions exhibit a slightly faster time response. This is 

likely due to the large temperature gradients that initially exist in the air surrounding the actuator. 

As heat has time to diffuse radially, the penetration depth increases, causing ℎ𝑒𝑞(𝑇) to decrease. 

The presented model does not account for the evolution of the penetration depth, and therefore 

predicts a slightly more rapid thermal response. 
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 SUMMARY AND CONCLUSIONS 

In this paper, a model has been introduced to predict the performance of thermal 

microactuators at high power inputs, fully considering radiation, intra-device heat transfer across 

an air gap, and the nonlinear temperature dependence of material properties. An electro-thermal 

model was first developed to predict the temperature distribution in the actuator, and a 

computational method was presented in which the Galerkin method with Newton-Raphson 

iteration was employed to solve the highly nonlinear governing heat balance equations. The 

temperature distribution computed using the electro-thermal model then composed the input to the 

thermo-mechanical model, which applied the method of virtual work to calculate the displacement 

of the actuator given the thermal expansion in the device.  

The thermal microactuator model was first utilized to predict the steady state performance of 

a thermal flexure actuator, and model predictions were found to match experimental measurements 

very well. Sources of nonlinearity in the model were then investigated, and all but the effects of 

radiation were found to have a significant impact on model predictions at high power inputs. 

Neglecting intra-device heat transfer or the nonlinear temperature dependence of either the 

electrical resistivity of silicon or the thermal conductivity of air was shown to over-predict the 

operating temperature in the device at high power inputs. As a consequence of this over-prediction, 

models making the aforementioned assumptions were found to over-predict both actuator 

displacement and resistance. Models that assumed the thermal conductivity of silicon or the 

thermal expansion coefficient of silicon to be temperature-independent were shown to 

significantly under-predict device displacement at high power inputs. Moreover, assuming the 

thermal conductivity of silicon to be temperature-independent was shown to also under-predict the 

resistance of the actuator. 
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The implementation of the microactuator model was then expanded to consider the dynamic 

performance of the flexure actuator. The same computational method was used for the dynamic 

implementation as for the steady state, with the addition of an implicit Euler method that permitted 

the calculation of the temperature distribution after a finite time step. Using the dynamic 

implementation of the model, the thermal time constant for the presented flexure actuator was 

found to be approximately 7.25 ms. Model predictions using the dynamic implementation were 

then verified by measuring the current and voltage across the flexure actuator over time. The model 

was found to predict the electrical performance of the device relatively well, but was found to 

predict a slightly faster time response than was observed experimentally. This was determined to 

be the result of neglecting the variation in the thermal penetration depth over time. 

The presented thermal microactuator model and computational method enable the prediction 

of thermal microactuator performance over a large range of electrical power inputs without 

requiring a fine mesh to produce accurate results. Implementation of the presented methodology 

offers MEMS designers the ability to design high performance thermal microactuators while 

minimizing the cost associated with design iteration. Moreover, the presented model offers 

improved capability for design and analysis of a wide range of heat producing micromachined 

devices and enables designers to better predict operating temperatures for devices used in 

temperature-sensitive applications. 
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APPENDIX A 

ELEMENT STIFFNESS MATRIX 

To illustrate the derivation of the element stiffness matrix, the steady state implementation of 

the thermal microactuator model will be considered as an example. The element stiffness matrix 

can be determined by taking the derivative of the element load vector with respect to the 

coefficients of the shape functions, 𝑐𝑖.  

 
𝐾𝑖𝑗

𝑒 (𝑐𝑘) =
𝜕𝐹𝑖

𝑒

𝜕𝑐𝑗
|

𝑐𝑘

 (98) 

 

Within the actuator, this can be written as: 

 
𝐾𝑖𝑗

𝑒 (𝑐) = [−
𝑘0𝑆𝑖

𝜙𝑚(𝜉)𝑐𝑚
𝐴𝜙𝑖(𝜉)

𝑑𝜙𝑗(𝜉)

𝑑𝜉

𝑑𝜉

𝑑𝑠
 +

𝑘0𝑆𝑖

[𝜙𝑚(𝜉)𝑐𝑚]2
𝐴𝜙𝑖(𝜉)𝜙𝑗(𝜉)]|

−1

1

+ ∫ [
𝑘0

𝜙𝑚(𝜉)𝑐𝑚
𝐴

𝑑𝜙𝑖(𝜉)

𝑑𝜉

𝑑𝜉

𝑑𝑠

𝑑𝜙𝑗(𝜉)

𝑑𝜉

𝑑𝜉

𝑑𝑠

1

−1

−
𝑘0

[𝜙𝑚(𝜉)𝑐𝑚]2
 𝐴

𝑑[𝜙𝑚(𝜉)𝑐𝑚]

𝑑𝜉

𝑑𝜉

𝑑𝑠

𝑑𝜙𝑖(𝜉)

𝑑𝜉

𝑑𝜉

𝑑𝑠
𝜙𝑗(𝜉)

+ 4휀𝜎𝑆𝑟[𝜙𝑚(𝜉)𝑐𝑚]3𝜙𝑖(𝜉)𝜙𝑗(𝜉)

+ 𝑆𝑐𝑑𝛬[𝑘𝑎0 + 𝑘𝑎1𝜙𝑚(𝜉)𝑐𝑚 + 𝑘𝑎2[𝜙𝑚(𝜉)𝑐𝑚]2]𝜙𝑖(𝜉)𝜙𝑗(𝜉)

− 𝐽2𝐴𝜙𝑖(𝜉)𝜙𝑗(𝜉)[𝜌1 + 2𝜌2𝜙𝑚(𝜉)𝑐𝑚 + 3𝜌3[𝜙𝑚(𝜉)𝑐𝑚]2

+ 4𝜌4[𝜙𝑚(𝜉)𝑐𝑚]3] ]
𝑑𝑠

𝑑𝜉
 𝑑𝜉  

(99) 

Here Λ = 𝑆𝑓/𝐴𝑐𝑑. 
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𝐾𝑖𝑗

𝑒 (𝑐) = [−
𝑘0𝑆𝑖

𝑇(𝜉)
𝐴𝜙𝑖(𝜉)

𝑑𝜙𝑗(𝜉)

𝑑𝜉

𝑑𝜉

𝑑𝑠
 +

𝑘0𝑆𝑖

𝑇(𝜉)2
𝐴𝜙𝑖(𝜉)𝜙𝑗(𝜉)]|

−1

1

+ ∫ [
𝑘0

𝑇(𝜉)
𝐴

𝑑𝜙𝑖(𝜉)

𝑑𝜉

𝑑𝜉

𝑑𝑠

𝑑𝜙𝑗(𝜉)

𝑑𝜉

𝑑𝜉

𝑑𝑠

1

−1

−
𝑘0

𝑇(𝜉)2
 
𝑑𝑇(𝜉)

𝑑𝜉

𝑑𝜉

𝑑𝑠
 𝐴

𝑑𝜙𝑖(𝜉)

𝑑𝜉

𝑑𝜉

𝑑𝑠
𝜙𝑗(𝜉)

+ 4휀𝜎𝑆𝑟𝑇(𝜉)3𝜙𝑖(𝜉)𝜙𝑗(𝜉)

+ 𝑆𝑐𝑑Λ[𝑘𝑎0 + 𝑘𝑎1𝑇(𝜉) + 𝑘𝑎2𝑇(𝜉)2]𝜙𝑖(𝜉)𝜙𝑗(𝜉)

− 𝐽2𝐴𝜙𝑖(𝜉)𝜙𝑗(𝜉)[𝜌1 + 2𝜌2𝑇(𝜉) + 3𝜌3𝑇(𝜉)2 + 4𝜌4𝑇(𝜉)3] ]
𝑑𝑠

𝑑𝜉
 𝑑𝜉  

(100) 

 

To enforce the Neumann boundary condition at the tip of the extension arm, the first term is 

replaced by the following: 

 𝐾𝑝𝑝,0
𝑒 = Λ[𝑘𝑎0 + 𝑘𝑎1𝑇(𝜉 = 1) + 𝑘𝑎2𝑇(𝜉 = 1)2]𝐴𝑒 . (101) 

Within the air gap, the stiffness matrix can be written as: 
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𝐾𝑖𝑗

𝑒 (𝑐) = − ∮ [[𝑘𝑎1 + 2𝑘𝑎2𝜙𝑚(𝜉, 𝜂)𝑐𝑚]ℎ [
𝜕[𝜙𝑚(𝜉, 𝜂)𝑐𝑚]

𝜕𝜉

𝜕𝜉

𝜕𝑛
𝜕Ω𝑚

+
𝜕[𝜙𝑚(𝜉, 𝜂)𝑐𝑚]

𝜕𝜂

𝜕𝜂

𝜕𝑛
] 𝜙𝑖(𝜉, 𝜂)𝜙𝑗(𝜉, 𝜂)

+ [𝑘𝑎0 + 𝑘𝑎1𝜙𝑚(𝜉, 𝜂)𝑐𝑚

+ 𝑘𝑎2[𝜙𝑚(𝜉, 𝜂)𝑐𝑚]2]ℎ𝜙𝑖(𝜉, 𝜂) [
𝜕𝜙𝑗(𝜉, 𝜂)

𝜕𝜉

𝜕𝜉

𝜕𝑛

+
𝜕𝜙𝑗(𝜉, 𝜂)

𝜕𝜂

𝜕𝜂

𝜕𝑛
]]  𝑑𝑙

+ ∬ [[𝑘𝑎1𝜙𝑗(𝜉, 𝜂)

Ω𝑚

+ 2𝑘𝑎2𝜙𝑚(𝜉, 𝜂)𝑐𝑚𝜙𝑗(𝜉, 𝜂)]ℎ [
𝜕[𝜙𝑚(𝜉, 𝜂)𝑐𝑚]

𝜕𝜉

𝑑𝜉

𝑑𝑥

𝜕𝜙𝑖(𝜉, 𝜂)

𝜕𝜉

𝑑𝜉

𝑑𝑥

+
𝜕[𝜙𝑚(𝜉, 𝜂)𝑐𝑚]

𝜕𝜂

𝑑𝜂

𝑑𝑦

𝜕𝜙𝑖(𝜉, 𝜂)

𝜕𝜂

𝑑𝜂

𝜕𝑦
]

+ [𝑘𝑎0 + 𝑘𝑎1𝜙𝑚(𝜉, 𝜂)𝑐𝑚

+ 𝑘𝑎2[𝜙𝑚(𝜉, 𝜂)𝑐𝑚]2]ℎ [
𝜕𝜙𝑖(𝜉, 𝜂)

𝜕𝜉

𝑑𝜉

𝑑𝑥

𝜕𝜙𝑗(𝜉, 𝜂)

𝜕𝜉

𝑑𝜉

𝑑𝑥

+
𝜕𝜙𝑖(𝜉, 𝜂)

𝜕𝜂

𝑑𝜂

𝑑𝑦

𝜕𝜙𝑗(𝜉, 𝜂)

𝜕𝜂

𝑑𝜂

𝑑𝑦
]

+ Λ𝑆𝑐𝑑[𝑘𝑎0 + 𝑘𝑎1𝜙𝑚(𝜉, 𝜂)𝑐𝑚

+ 𝑘𝑎2[𝜙𝑚(𝜉, 𝜂)𝑐𝑚]2]𝜙𝑖(𝜉, 𝜂)𝜙𝑗(𝜉, 𝜂)] 
𝑑𝑥

𝑑𝜉

𝑑𝑦

𝑑𝜂
 𝑑𝜉 𝑑𝜂 

(102) 
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𝐾𝑖𝑗

𝑒 (𝑐) = − ∮ [[𝑘𝑎1 + 2𝑘𝑎2𝑇(𝜉, 𝜂)]ℎ [
𝜕𝑇(𝜉, 𝜂)

𝜕𝜉

𝜕𝜉

𝜕𝑛
𝜕Ω𝑚

+
𝜕𝑇(𝜉, 𝜂)

𝜕𝜂

𝜕𝜂

𝜕𝑛
] 𝜙𝑖(𝜉, 𝜂)𝜙𝑗(𝜉, 𝜂)

+ [𝑘𝑎0 + 𝑘𝑎1𝑇(𝜉, 𝜂)

+ 𝑘𝑎2𝑇(𝜉, 𝜂)2
]ℎ𝜙𝑖(𝜉, 𝜂) [

𝜕𝜙𝑗(𝜉, 𝜂)

𝜕𝜉

𝜕𝜉

𝜕𝑛

+
𝜕𝜙𝑗(𝜉, 𝜂)

𝜕𝜂

𝜕𝜂

𝜕𝑛
]]  𝑑𝑙

+ ∬ [[𝑘𝑎1𝜙𝑗(𝜉, 𝜂)

Ω𝑚

+ 2𝑘𝑎2𝑇(𝜉, 𝜂)𝜙𝑗(𝜉, 𝜂)]ℎ [
𝜕𝑇(𝜉, 𝜂)

𝜕𝜉

𝑑𝜉

𝑑𝑥

𝜕𝜙𝑖(𝜉, 𝜂)

𝜕𝜉

𝑑𝜉

𝑑𝑥

+
𝜕𝑇(𝜉, 𝜂)

𝜕𝜂

𝑑𝜂

𝑑𝑦

𝜕𝜙𝑖(𝜉, 𝜂)

𝜕𝜂

𝑑𝜂

𝜕𝑦
] + [𝑘𝑎0 + 𝑘𝑎1𝑇(𝜉, 𝜂)

+ 𝑘𝑎2𝑇(𝜉, 𝜂)2]ℎ [
𝜕𝜙𝑖(𝜉, 𝜂)

𝜕𝜉

𝑑𝜉

𝑑𝑥

𝜕𝜙𝑗(𝜉, 𝜂)

𝜕𝜉

𝑑𝜉

𝑑𝑥

+
𝜕𝜙𝑖(𝜉, 𝜂)

𝜕𝜂

𝑑𝜂

𝑑𝑦

𝜕𝜙𝑗(𝜉, 𝜂)

𝜕𝜂

𝑑𝜂

𝑑𝑦
]

+ Λ𝑆𝑐𝑑[𝑘𝑎0 + 𝑘𝑎1𝑇(𝜉, 𝜂)

+ 𝑘𝑎2𝑇(𝜉, 𝜂)2
]𝜙𝑖(𝜉, 𝜂)𝜙𝑗(𝜉, 𝜂)] 

𝑑𝑥

𝑑𝜉

𝑑𝑦

𝑑𝜂
 𝑑𝜉 𝑑𝜂. 

(103) 

 

The global stiffness matrix can then be assembled using (59). 

 

 

 




