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  ABSTRACT 

 

The construction industry generates a substantial amount of solid waste. Cutting 

building materials into smaller pieces to fit the design is one of the sources of waste in 

new construction. This type of waste is known as leftover or residual. Drywall leftover is 

an example of such waste. Currently, contractors do not perform a detailed analysis of 

how many drywall panels would be required. Moreover, they do not use a consistent 

system for reusing their scrap and often cut a needed piece from a brand new panel instead 

of using available scrap.  

Building Information Model (BIM), as an object-oriented representation of the 

building contains all the required data and can be utilized to provide drywall crews with 

layouts indicating how to cut the panels into the required pieces so the leftover could be 

reduced. Also, some commercially available software applications, such as Autodesk 

Revit provide a platform to automate processes such as optimization by implementing 

algorithms through their Application Programming Interface (API).  

Similar problems have been studied in other fields and industries. Bin packing 

problem in mathematics and Nesting process in the cutting industry are examples of such 

research. As the result, automated optimization methods that utilize Evolutionary 

Algorithms (EA) are introduced to address these problems. There is an opportunity to 

apply Evolutionary Algorithms to solve a similar problem in the construction industry. 

This study investigates if it is feasible to implement EA-based optimization methods on a 

BIM platform to develop an automated optimization tool. 



 

iii 

 

In light of available tools and methods, an automated optimization tool is 

developed as a Revit add-in.  It extracts geometrical data from BIM and receives 

dimensions of available drywall panel(s) from the user. The algorithm, finds the most 

desirable arrangement of panels and the number of full panels is calculated. The outline 

of smaller pieces that need to be cut out of full panels are also determined. Then by 

utilizing an EA-based optimization method, it generates the cutting layouts. 

The add-in is tested on a certain number of simple models for several iterations 

and the generated cutting layouts show very optimal leftover. On a very specific model 

containing twenty pieces that need to be cut out of full panels, the add-in application spent 

100 minutes to generate the cutting layouts, which resulted in 36% reduction in the 

leftover, compared to the layouts generated in the initial iterations. The test proved that 

the proposed algorithm is able to optimize cutting layouts. It demonstrates that utilizing 

such optimization algorithm on a BIM platform could be considered as an effective way 

to reduce the material waste. 
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1. INTRODUCTION  

 

There has been many efforts and innovations to address chronic problems of 

construction such as low productivity and insufficient quality (Koskela, 1997) in the past 

two decades. In the ongoing paradigm shift (Tommelein, 2015) which is a fundamental 

shift of the construction industry from conventional state to a more efficient state, two 

major developments are very influential.  

First is a conceptual approach to construction management that originally comes 

from a production philosophy in manufacturing. Lean construction encompasses the idea 

of identifying and eliminating all kinds of waste (Womack, 1999). It is about removing 

any waste without reducing customer value. According to Koskela (1992), waste includes 

any unnecessary task as well as the use of materials in larger quantities than necessary – 

i.e. material loss. Therefore, the focus in lean construction is on reduction in waste and 

increase in value to the customer. 

On the other hand, Building Information Modeling, as a transformative 

information technology, is affecting the development of construction industry. BIM 

simulates the construction project in a virtual environment (Li, et al., 2008; Azhar, 2011) 

containing an object-oriented model of the building as well as all the data related to the 

building elements (Sabahi, 2010). In a building information model, elements are expressed 

as objects that exhibit form, function, and behavior. Also, some commercially available 

BIM applications, such as Revit provide a platform to automate processes such as 
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optimization by implementing algorithms through their Application Programming 

Interface (API). 

Lean construction and BIM are not dependent on one other and either of those can 

be adopted without the other. However, there seems to be synergies between them. BIM 

is expected to provide the foundation for some of the results that lean construction is 

expected to deliver (Sacks, 2010). Especially in the case of eliminating material waste in 

construction, considering the embedded data and automation platform, BIM has features 

and capabilities that would be intrinsically instrumental. 

Currently, the waste generated within the construction industry accounts for a 

substantial portion of solid waste stream in the United States. Studies have shown that 

about 10% of the waste generated in new construction is the result of cutting the building 

materials into pieces during the construction process (Poon, 2007). This type of waste is 

also known as leftover or residual and includes leftover material scraps from cutting stock 

material into smaller pieces to fit the design (Gavilan & Bernold, 1994).  

While drywall is a major component of construction waste, in almost all 

construction projects there is no detailed analysis of how many drywall panels would be 

required. Furthermore, drywall crews working on the job site do not use any cutting layout 

or a consistent system for reusing their scrap and often cut a needed piece of sheetrock 

from a brand new panel instead of using available scrap.  

However, all required pieces can be identified in advance using the embedded data 

in building information model and layouts to cut those pieces out of drywall panels can be 
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generated. If those generated layouts are already optimized, drywall leftover could be 

reduced to accomplish the main objective of lean construction. 

1.1. Motivation 

Drywall is a major component of material waste in new construction and the 

process of cutting drywall panels into smaller pieces is one of the main reasons for drywall 

waste. Similar problems have been studied in other fields and industries. Bin packing 

problem in Mathematics and Nesting process in the cutting industry are examples of such 

research. As the result, optimization methods that mostly utilize Evolutionary Algorithms 

(EA) are introduced to address those problems. 

Building information modeling is providing us with all the required data regarding 

building elements including their form, function and material. Also, some commercially 

available software applications, such as Revit provide a platform to automate processes 

such as optimization by implementing algorithms through their Application Programming 

Interface (API). 

Methods and algorithms proposed to address similar problem in other industries 

could be adopted and customized to develop an automated optimization tool for the same 

purpose in the construction industry.  
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1.2. Research Question 

There is an opportunity to reduce construction waste through generating optimized 

layouts to cut drywall panels. Similar problem has been already studied and addressed in 

other industries by utilizing evolutionary algorithms. One may speculate if the proposed 

optimization methods coupled with evolutionary algorithms can be implemented on a 

Building Information Modeling platform, so that the drywall panel cutting layouts can be 

optimized automatically 

1.3. Research Objectives 

This objectives of study include: a) developing an add-in drywall cutting 

optimization application on a BIM platform using EA-based optimization techniques, and 

b) proving if this application can actually suggest a drywall cutting plan that generates 

minimum waste. 

1.4. Delimitations and Assumptions 

The following are the assumptions and delimitations that were considered 

throughout this study: 

a) The add-in application was developed in the Autodesk Revit platform. 

b) A Revit model containing 4 walls was used for the test. The application can 

handle irregular shapes but the test included only rectangular shapes. 

c) The only factor studied was material wastage in the construction industry and 

cultural trends as well as other constraints – such as framing – were not 

considered. 
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2. REVIEW OF LITERATURE  

 

2.1. Construction Waste and Its Composition 

Construction and Demolition waste is generated when new structures including 

buildings and projects such as streets, highways and bridges are built and when such 

structures are renovated or demolished (EPA, 2003). However, building-related C&D 

waste only refers to the waste generated in construction, renovation and demolition of 

residential and nonresidential buildings. Building-related C&D waste generated in the 

United States was estimated to be 170 million tons in year 2003. Table 1 shows the amount 

of waste classified by different activities and building types.   

 

 Residential Nonresidential Total 

Million tons Million tons Million tons Percent 

Construction 10 5 15 9% 

Renovation 38 33 71 42% 

Demolition 19 65 84 49% 

Total 67 103 
170 Million tons 

Percent 39% 61% 

Table 1: Estimated building-related C&D waste generated in the U.S. (EPA, 2003) 

 

There is not much information available on C&D generation in the United States 

and the existing information is limited to case studies conducted at specific points in time 

(McKeever, 2004). Furthermore, waste amounts are rarely described in terms of volume 

because the volume can change due to compaction or other processing. The amounts are 

generally compared in terms of weight because it generally remains constant (EPA, 2003). 
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Although the amount of waste generated in new construction activities is smaller 

than renovation and demolition activities, it seems to be more important to study and 

reduce because construction waste contains a big amount of chemical waste relative to 

demolition waste. In addition, the cost reduction caused by reducing the construction 

waste has direct and tangible benefit for contractors and owners (Bossink & Brouwers, 

1996).  

The waste generated in construction of residential buildings is twice the amount of 

waste for nonresidential construction (Figure 1). Moreover, it is more practical to find 

ways to reduce the residential construction waste due to the homogeneity of residential 

buildings. Therefore, this study will focus on construction of residential buildings. 

 

There has been much research interest on construction waste recycling but 

construction waste minimization has received less attention. It should be taken into 

consideration that the single most effective way of dealing with any solid waste is not to 

create it in the first place (Gavilan & Bernold, 1994). Source reduction, which is avoiding 

the generation of waste, saves not only money but also landfill space. 

0 2 4 6 8 10 12

Nonresidential

Residential

Figure 1: Construction waste in residential and nonresidential sector (million tons) 
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Several studies show that two major components of residential construction waste 

are wood and drywall (Castelo Branco, 2007; EPA, 2003; Sandler, 2003). McKeever 

(2004) studied the wood waste in the United States for 2002 and estimated the C&D wood 

waste at 35.7 million tons. He also estimated the generated wood waste in new residential 

to be 3.7 million tons, which is 10% of C&D wood waste. Depending on the economic 

state of the country, there are fluctuations in the number of construction projects and 

consequently in the amount of waste generated in each sector. For example, C&D wood 

waste was 36.4 Million tons in 2010 (Falk & McKeever, 2012). 

Sandler (2003) studied the waste of drywall and estimated the drywall waste in 

residential new construction to be 1.4 Million tons per year. This means, in the new 

residential category, the generated waste of drywall is roughly 38% of wood waste. It 

should be considered that wood waste consists of the waste generated in several types of 

activities including framing, flooring, siding, paneling, roofing, cabinetry, decking, etc. 

Dimensional lumber is the major component of wood waste in residential new 

construction and studies show that in new residential construction the waste of drywall is 

more than the waste of lumber in terms of weight. Composition of building C&D debris 

provided by EPA (1998; 1995) shows the waste of drywall has a larger amount than of 

dimensional lumber. Also in typical construction waste composition provided by NAHB 

(1995) estimated weight of drywall waste and solid sawn wood (including lumber) are 

2,000 pounds and 1,600 pounds respectively. Therefore, the scope of this research will be 

limited to waste of drywall in residential new construction. 
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2.2. Cutting and Packing Problem 

The cutting and packing problem is the problem of finding an arrangement of 

pieces (items) to cut from or pack inside larger objects (bins). The conditions are (a) all 

items must lie entirely within a bin and (b) the items must not be overlapping (Wong & 

Lee, 2009). 

The cutting stock problem is a branch of cutting and packing problem and aims to 

find the optimal way to cut required pieces from stock material in the way that the total 

leftover would be minimum. This problem is a combinatorial optimization problem and 

has been applied to many fields including steel, textile, paper, wood, metal and glass 

industry (Cheng, et al., 1994). Generally, in any industry that deals with cutting specific 

pieces out of raw material, this problem can be tracked because in such industries, in order 

to minimize the material waste, a good cutting layout is always beneficial.  

In cutting and packing problem, hence in cutting stock problem, both items and 

bins can be defined in one, two, three or even larger number of dimensions. In one-

dimensional problem, the width or section of the piece to cut out is equal to the width or 

section of the stock, so the problem deals with determining the lengths (Timmerman, 

2013). Cutting cripple and sill studs out of raw lumber is such problem. 

In two-dimensional setting, the stock has a fixed width. However, the length of 

stock can be either constrained or infinite. If the stock length is infinite, the problem is 

also known as 2D strip packing problem and if the stock length is constrained, the problem 

is called 2D bin packing problem (Timmerman, 2013). Cutting required pieces out of a 
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huge roll of fabric in textile industry is a 2D strip packing problem and cutting drywall 

pieces out of drywall panels is a 2D bin packing problem (Figure 2).  

 

2.2.1. Variations of 2D Bin Packing 

2D bin packing problem has many variations based on the following factors: 

Regular items vs. Irregular items: Items that need to be cut or packed can be regular 

or irregular. When the 2D objects to be cut are irregular, the above-mentioned problem is 

also known as the Nesting problem. Nesting strategies have been used in other industries 

for several years. In shipbuilding industry, in order to cut specified number of each of 

certain types of two dimensional shapes out of raw material, a set of cutting layouts need 

to be generated in such a way as to minimize the amount of leftover. Implementing nesting 

strategies in an automated way using computers and manufacturing machinery is a branch 

of Computer Aided Manufacturing (CAM) field. 

Guillotine vs. non-guillotine: The guillotine cutting method refers to the procedure 

in which a planar (2D) panel is cut in such a way as to obtain two pieces of material. In 

Figure 2: Visualization of 2D bin packing problem 
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other words, only orthogonal cuts that bisect one component of the sheet are allowed. 

Guillotine method is more effective from a time standpoint. However, non-guillotine 

approach results in less leftover. Also, guillotine cutting is preferred among trade 

personnel. 

Oriented vs non-oriented: Whether the items are allowed to rotate or not is the 

source of variations in 2D bin packing. In most cases, the items are allowed to rotate based 

on a certain degree such as {0, 90, 180, 270}. 

2.2.2. Packing Algorithms 

Zhang et al. (2011) describes the most common packing algorithms as follows: 

Next-Fit (NF): The item is put in the active bin if it fits. Otherwise it is put into a 

new bin and the new bin is marked as the active bin. 

First-Fit (FF): All the non-empty bins are checked and the item is put into the first 

bin it fits. Otherwise it is put into a new bin. 

Best-Fit (BF): The item is put into a bin that is filled to maximum degree but still 

having enough vacant space for the item. Otherwise the item is put into a new bin. 

First-Fit Decreasing (FFD): The items are sorted in non-increasing order. Then, 

they are packed according to FF. 

Best-Fit Decreasing (BFD): The items are sorted in non-increasing order. Then, 

they are packed according to BF. 

The performance of the above algorithms depend on the sequence of items to be 

packed. Applying the Next-Fit algorithm on a sequence of items might produce the exact 

same results as applying the Best-Fit algorithm on a permutation of the same items. 



 

11 

 

Among these algorithm, BFD is the one with the most efficient packing. The main 

reasons are that the items are sorted and also the algorithm checks all the bins. However, 

checking all the bins is a negative attribute of most of these algorithms from the time 

standpoint. Next-Fit is the fastest algorithm because it only checks the active bin. This 

means if it is fed with a proper sequence its performance could be as good as BFD while 

it runs in a shorter time. 

2.3. Cutting Problem in the Construction Industry 

Although many research has been conducted on how to manage or recycle 

construction waste after being generated on the jobsite, very little research was focused 

on eliminating waste at the design phase or early stages of the construction. Some studies 

have discussed dimensional coordination and standardization, minimizing the use of 

temporary works or avoiding late design modifications (Poon, 2007) but very few studies 

have proposed innovative solutions. 

Manrique et al. (2011) studied the problem of optimizing lumber waste in framing 

designs. In this study, a combinatorial algorithm is proposed which constructs all possible 

solutions of cutting lumber, and then computes the amount of leftover associated with 

each possible solution. Finally, it finds and proposes the most optimal solution. In this 

method each solution is a set of cutting layouts of lumbers. The developed algorithm is 

called CUTEX and it uses the framing layouts generated by another algorithm called 

FRAMEX (Manrique et al., 2007). FRAMEX used the 3D-CAD models to generate the 

framing layouts for wood light frame residential buildings. CUTEX not only generates 

cutting schedule for lumbers but also it generates cutting layout for plywood. As the result, 
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the wood waste for studied projects was reduced by 96 percent. However, the combination 

of these two algorithms could be implemented only on small sets (i.e. small projects). 

Therefore, Manrique (2009) has suggested using evolutionary algorithms to find optimal 

cutting layouts. 

Shahin and Salem (2004) studied one-dimensional cutting stock problem in the 

construction industry. They developed an optimization application based on genetic 

algorithms. It can be implemented in solving the one-dimensional cutting stock problem 

in the construction industry no matter the size of data. The data input for this algorithm 

consists of first, the table of standard lengths of the stock and second, the table of required 

lengths and the number of times each one is needed. Then, the algorithm generates the 

optimal cutting schedule. This method does not use CAD or BIM capabilities. This method 

is taking advantage of Genetic Algorithms which make it possible to process larger sets 

of data in a relatively short amount of time. However, as it is not using BIM or CAD, it 

does not automatically extract data from a model and in case that the number or 

composition of the required pieces are not defined or optimized, it is not feasible to utilize 

this method. 

2.4. Evolutionary Algorithms 

Solving a problem can be perceived as a search through a space of potential 

solutions. This search is supposed to result in the best solution. For small spaces, 

exhaustive methods that include comparing each and every one of the potential solutions, 

usually perform well. However, for larger spaces, a different approach should be used. 
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Evolutionary Algorithms are based on the concept of simulating the evolution of 

individual structures based on their perceived performance (fitness). EAs maintain a 

population of structures that evolve based on nature-inspired operations and focus on 

exploiting the available fitness information while exploring the search space. 

The evolutionary algorithm maintains a population of individuals for iteration t. 

Each individual represents a potential solution to the problem at hand. Each solution is 

evaluated to give some measure of its "fitness". Members of the population undergo 

transformations to form new solutions (Exploration). For example crossover is a 

transformation, which create new individuals by combining parts from several (two or 

more) individuals. Or mutation is another transformation, which create new individuals 

by a small change in a single individual. Then, a new population (iteration t + 1) is formed 

by selecting the more fit individuals (Figure 3). After some number of generations the 

algorithm converges and it is hoped that the best individual represents a near-optimum 

(reasonable) solution (Dasgupta & Michalewicz, 1997). 

The origins of evolutionary algorithms can be traced to at least the 1950s. 

However, the three most historically significant methodologies are "evolutionary 

programming", "evolution strategies", and "genetic algorithms" (Spears, 2000). 
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2.4.1. Differential Evolution 

Differential Evolution is one the most recent branches of Evolutionary Algorithms. 

DE is based on the same principles as EA and while being simple, it is one of the most 

powerful tools for optimization (Feoktistov, 2006). 

DE is mostly utilized for continuous optimization, where the search space is a 

continuous space instead of being limited by a finite number of feasible solutions 

(Feoktistov, 2006). DE in its simplest form, performs as the following. 

• Consider solutions to the problem look like:   x = {x 1 , x 2 , x 3 , …, x s} and 

solutions can be evaluated based on a fitness function:  f(x) 

• Initialization:   

A set of random solutions are generated 

Figure 3: Main stages of an evolutionary algorithm 
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• Mutation:   

For each solution x in the population, three other solutions are randomly selected 

from the population  a , b , c 

Mutant vector is constructed v = a + F (b – c)   F is a constant 𝜖 [0,2] 

• Crossover: 

Trial vector u is constructed  

 ∀ 𝑖 ∈ (1, 𝑠) Pick a random probability  𝑟𝑎𝑛𝑑 ∈ (0, 1)  𝑢𝑖  = {
𝑣𝑖 , 𝑟𝑎𝑛𝑑 ≤ 𝐶𝑅
𝑥𝑖 , 𝑟𝑎𝑛𝑑 > 𝐶𝑅

 

• Selection: 

If f(u) is better than f(x), x is replaced with u 

• The same is done for all solutions in the first iteration and next iteration runs 
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3. RESEARCH METHODOLOGY  

 

There is an opportunity to reduce construction waste through generating optimized 

layouts to cut drywall panels. Similar problem has been already studied and addressed in 

other industries by utilizing EAs. 

This study investigates if it is feasible to implement EA-based optimization 

methods on a BIM platform and develop an automated optimization tool. Then, the 

developed tool can be utilized to generate optimized cutting layouts for drywall panels and 

the leftover material could be minimized.  

To answer the research question and fulfill the main objective of the study, it is 

designed to have two main stages: 

 

 To develop a Revit add-in that identifies the required pieces of drywall and also 

generates the optimized layouts to cut such pieces out of full panels. 

 To test the developed optimization tool on building information models and 

evaluate the generated cutting layouts in terms of leftover and time. 

 

The way each stage was implemented and the details regarding methods, 

challenges and complications are explained in the following sections.  
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3.1. Developing the Add-in 

Autodesk Revit provides a platform to automate processes such as optimization by 

implementing algorithms through its Application Programming Interface (API). The Revit 

.NET API allows to program with any .NET compliant language such as C#. Using Revit 

API, it is possible to gain access to all the embedded data in the model, analyze and edit 

the data and also create model elements. In other words, it enables us to create add-ins to 

automate repetitive tasks. 

To design and create the optimization tool, a study was conducted on the various 

optimization methods proposed for similar problems in other industries. Based on the 

literature review, it was decided to follow a hybrid approach. Next-Fit packing algorithm 

was chosen considering that it is the fastest packing algorithm while its performance is 

equally desirable if it is fed with a certain sequence. This sequence can be called the 

optimized sequence and it can be determined through an evolutionary algorithm. 

The algorithm has two main phases. In the first phase, it extracts geometrical data 

from BIM and having the dimensions of available drywall panel(s), it finds the most 

desirable arrangement of panels. The number of full panels is calculated and the outline 

of smaller pieces that need to be cut out of full panels are also determined and a stack of 

two dimensional polygons representing the pieces is established. 

The objective of the second phase is to generate layouts to cut these pieces out of 

full panels in the way that leftover is minimized. This is the same as minimizing the 

number of full panels required to cut the pieces. Therefore, the algorithm is supposed to 
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solve a 2D bin packing problem. Required pieces are the items that have to be packed and 

the panels are the equal-sized bins. 

The second phase of algorithm is designed based on Next-Fit packing. In Next-Fit 

packing, the item is put into the current bin if it fits in the bin. Otherwise a new bin is used 

which is declared as the current bin (Johnson, 1974). 

There are three main procedures in the second phase. The packing procedure 

implements Next-Fit algorithm and “puts” items into bins. The fitting procedure is the one 

that decides whether the item fits into the bin or not. It also determines the location, the 

rotation factor and the mirror factor of the item upon placement. The fitting procedure is 

designed based on differential evolution. 

The third procedure in this phase is sorting procedure. It is an EA-based algorithm 

that find the optimal sequence of items and is designed based on what Blum and Schmid 

(2013) have proposed. 

The details of the first phase and the procedures of the second phase along with 

the challenges, are explained in the following sections. 

 

 

 

 

.  
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3.1.1. Identification of the Required Pieces 

The first step in the process of hanging drywall panels is planning the job. In this 

step, the crew determine the materials and the application method.  They also measure the 

surfaces, determine the starting point and do markings. It is in this step that they decide to 

hang the panels horizontally (long dimension across studs or joists) or vertically (long 

dimension parallel to studs or joists). Moreover, they may decide to offset end joints in 

adjacent rows hanging the panels following a staggered pattern. 

Similarly, the beginning part of the algorithm aims to determine the application 

method and the starting point. The building information model already contains the 

geometry of surfaces and all their dimensions. Dimensions of available panels are received 

from the user as inputs.  

It is assumed that all the interior surfaces need to be covered by drywall. For each 

wall in the Revit model, based on its type parameter “Function”, the faces that need to be 

covered are selected. If “Function” is interior, both interior and exterior faces of the wall 

and if “Function” is exterior, only interior face of the wall is selected and the following 

analysis is performed on it.  

Firstly, for each face, a basepoint is determined in the way that it is the bottom-left 

corner of the face’s bounding rectangle (Figure 4). Considering that the face can be 

represented by a polygon, the height of the basepoint is equal to the height of the lowest 

vertex. And its two other coordinates are the same as the leftmost vertex of the polygon. 

Then a coordinate transformation is performed and the face is represented with a 2-

dimensional polygon with the basepoint located at the origin. 
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Suppose there is a matrix of drywall panels with the specified dimensions and 

specified orientation on this face. The bottom left corner of the first panel in the matrix is 

defined as the starting point of the matrix. One possible arrangement is that the starting 

point and the basepoint are identical (Figure 5). For each panel, its intersection with the 

face can be determined. If the intersection and the panel are identical, it will be counted 

toward the number of full panels needed to cover that face. Otherwise, the intersection is 

stacked as one of the required pieces to cover the face. 

  

Required Pieces 

Basepoint 

Full Panel 

Figure 5: Matrix of drywall panels 

Bounding rectangle 

Selected Face 

Basepoint 

Figure 4: Location of the basepoint 
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The starting point is not necessarily on the basepoint. It can be any point on the 

plane. However, it can be assumed that the starting point is within a certain rectangle. This 

rectangle has the same dimensions as a drywall panel and its top right corner is located at 

the basepoint. Any starting point outside this rectangle corresponds to a starting point 

inside this rectangle (Figure 6). 

 

Theoretically there is unlimited number of points in the mentioned rectangle and 

it is not possible to analyze all of them. Therefore, the algorithm analyzes a limited number 

of starting points. The basepoint and all points in increments of one inch are considered 

as possible starting points. As an example, for 10’ × 4’ drywall panels, the number of 

points the algorithm analyzes is:  (10×12) × (4×12) = 5,760 

The corresponding arrangements of possible starting points are evaluated based on 

the number of full panels in each arrangement. The one with the maximum number of full 

panels is the most desirable. 

Basepoint 

Corresponding 

Starting Point 

Starting Point 

Figure 6: Location of starting point 
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For panels with different dimensions or different orientation – horizontal vs. 

vertical – the same analysis is performed using the corresponding matrix (Figure 7). Then 

the most desirable arrangements of different scenarios are compared based on the same 

criteria. Eventually for the given face, an arrangement with the maximum number of full 

panels is determined and the corresponding required pieces are added to the main stack of 

stencils. If the maximum number of full panels for two scenarios are the same, the one 

with the minimum number of stencils has priority. 

 

 

The same process of handling the faces, finding the most desirable arrangement of 

panels to cover the faces and adding the required stencils to the main stack is performed 

on each and every wall selected from the Revit model. 

Eventually, a stack of 2D polygons representing the required pieces to cover the 

walls is available. For the purpose of geometry handling, a basepoint is determined for 

each polygon in the main stack of pieces. The bottom-left corner of the polygon’s 

bounding rectangle is declared as its basepoint.   

Figure 7: Arrangements of panels with different sizes and orientation 
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3.1.2. Packing Procedure 

In the “Packing” procedure, items are packed into bins based on Next-Fit packing. 

In other words, “Packing” procedure aims to generate the cutting layouts by performing 

Next-Fit algorithm on a certain sequence of items that is already generated. Items are 

packed into bins one by one following the order of the input sequence. 

Such sequence of items is the input of the procedure and the output is a set of 

layouts showing how the pieces are packed based on the input. Also, an objective value is 

reported which indicates how desirable the packing is using the specific input sequence. 

This value is used to compare different sequences. 

The items are represented by polygons (not necessarily regular) that were stacked 

in the previous phase. Since each bin refers to a drywall panel with specified dimensions 

and orientation, they are geometrically represented by rectangles of the same dimensions. 

The dimension of the available drywall panel along the x axis is denoted by 𝐿𝑝𝑎𝑛𝑒𝑙 and its 

dimension along the y axis is denoted by 𝑊𝑝𝑎𝑛𝑒𝑙.  

Packing procedure is an iterative process which starts with fitting the first item into 

the first bin. Then, in each iteration, the algorithm performs the fitting procedure on the 

next item. The fitting procedure which is explained in the following section is an attempt 

to find the optimal position of the item following certain criteria. If the item does not fit 

into the current bin according to the fitting procedure, the algorithm fits the item into the 

next bin. 

The fitting procedure reports an objective value (F) indicating how desirable the 

placement of each item is. In the “Packing” procedure, Index of Packing (denoted by IP) 
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for each bin is calculated to be the average of the objective values reported by fitting 

procesure for each item in that bin: 

     𝐼𝑃𝑗∈𝐵 = 𝐴𝑣𝑔. (𝐹𝑖) 

where: 

B is the set of bins and the corresponding layouts created  

𝐹𝑖 is the objective value reported by fitting procedure for item i in the j-th bin. 

The objective of packing procedure is to provide an opportunity to compare 

different input sequences. The ultimate objective is to minimize the number of bins used. 

Therefore, it is the main criterion to evaluate input sequences. However, a secondary 

function in required to compare the input sequences that use the same number of bins. 

Therefore, the following objective function is designed to compare the input sequences 

that use the same number of bins: 

E(sequence) =  ∑ 𝐼𝑃𝑗
𝑗∈𝐵

 

Larger values of  𝐼𝑃𝑗 indicate that the placements of the items in the j-th bin are 

more desirable. As the result between two input sequences that use the same number of 

bins, the one with larger E(sequence) value is more desirable. 
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3.1.3. Fitting Procedure 

The fitting procedure aims to place an item into a bin considering that there are 

already other items in the bin.  To place the item in the bin, the following values has to be 

determined: 

a) The horizontal (x) and the vertical (y) coordinates of the item basepoint – these 

values define the position of the item and their range is limited to specified 

dimensions of drywall panels. 

b) The rotation angle (r) of the item upon placement – based on the practical 

routines in the industry, only angles of 0, 90, 180, 270 degrees are considered 

in this study and are represented by values 0, 1, 2, 3. 

c) The mirror factor (m) – this value indicates whether the item is mirrored upon 

placement or not and its value is either 0 (not mirrored) or 1 (mirrored). 

Therefore, the solution is of the form s = [x, y, r, m] and clearly, there are unlimited 

number of possible solutions – i.e. a large search space (Figure 8).  

 

 

 

 

 

 

  

s = [2.55, 3.44, 3, 1] 

3
.4

4
 

2.55 

Figure 8: A potential solution in fitting procedure 
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Since it is not feasible to compare all the possible solutions using an exhaustive 

search, an evolutionary algorithm is utilized. Differential Evolution is selected because it 

is an appropriate evolutionary algorithm for continuous search spaces and also its 

implementation is relatively simple (Figure 9).  

The DE algorithm is designed based on the following: 

 The population size N is specified by the user. Since the possible solutions 

have four parameters (x, y, r, m), the parameter vectors representing the 

possible solutions have the form: 

si = (xi , yi , ri , mi )   i = 1, 2, … , N. 

 The initial parameter vectors are generated randomly in the following ranges: 

xi  ∈ [0, Lpanel] yi  ∈ [0, Wpanel] ri  ∈ {0, 1, 2, 3} mi  ∈ [0, 1] 

 For a given parameter vector si in the population, three other vectors sa , sb , sc 

are randomly selected such that indices i, a, b, c are distinct and mutant vector 

vi is constructed such that: 

vi = sa + F (sb – sc) 

 To keep the parameters within the appropriate ranges, if any parameter in vi is 

not in the corresponding range, it is replaced by a random number in that range. 

 Trial vector ui is constructed through crossover between si and vi 

 If trial vector ui has an equal or lower objective function value than that of its 

target vector, si , it replaces the target vector in the next generation. 
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Mutation:   

For each solution x in the population, three other 

solutions are randomly selected  a , b , c 

Mutant vector is constructed vi = sa + F (sb – sc)  

  F is a constant 𝜖 [0,2] 

Crossover: 

Trial vector u is constructed  

 ∀ 𝑖 ∈ (1, 𝑠) pick a random probability  𝑟𝑎𝑛𝑑 ∈ (0, 1)  𝑢𝑖  = {
𝑣𝑖, 𝑟𝑎𝑛𝑑 ≤ 𝐶𝑅
𝑥𝑖, 𝑟𝑎𝑛𝑑 > 𝐶𝑅

 

 

 

The objective function is proposed based on the criteria upon which the placement 

should be evaluated. The placement of the item is desirable when: 

a) It is completely inside the bin. 

b) It does not have any overlaps with other items that are already in the bin. 

c) Its distance to the bottom left corner of the bin is the minimum possible.  

d) Total length of its common sides with the items already in the bin is maximum. 

For each placement of the item that is represented by a parameter vector si , three 

indices are calculated to measure the desirability of the solution. 

Index of Satisfactory placement (denoted by IS) as its name implies is the main 

factor to determine the desirability of the placement. The requirements of a desirable 

placement of the item are (a) the item is completely inside the bin (b) the item upon 

Figure 9: Mutation and crossover in DE 
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placement does not have any overlaps with other items that are already in the bin (Figure 

10). In other words, if these two requirements are not met, the placement is not desirable 

at all. The proposed formula to calculate IS is the following: 

IS =
Sin −  µ Sout

Sin + µ Sout
 

where: 

Sout =  Total area of overlaps the item has with other items in the bin +  

 Total area of regions of the item that are not inside the bin 

Sin  =  Total area of the item – Sout   

µ  = Constant of sensitivity 

 

 

 

 

 

 

 

Based on the formula if both requirements (a) and (b) are met then Sout = 0 and 

therefore IS = 1. Otherwise IS <1 and the larger value for µ results in IS being more 

sensitive to Sout. For example assume µ=2, if only one third of the item area is outside the 

bin or overlapped the value for IS would be zero. Upon testing different values for IS, it 

was decided that µ=5 results in a relatively better performance of the algorithm because it 

is neither too strict nor lenient.  

Sout 

Sin 

Figure 10: Index of satisfactory placement 
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Index of Distance (denoted by ID) indicates how close the item is to the bottom 

left corner of the bin. In other words it evaluates the third criterion of desirability (Figure 

11). The proposed formula to calculate ID is the following: 

IS = 1 −  
𝑑

𝐷
 

where: 

d = The Euclidean distance between the basepoint of the item and the bottom left 

corner of the bin  𝑑 =  √𝑥𝑖
2 +  𝑦𝑖

2 

D = The maximum Euclidean distance that the basepoint of the item can assume 

to the bottom left corner 𝐷 =  √𝐿𝑝𝑎𝑛𝑒𝑙
2 +  𝑊𝑝𝑎𝑛𝑒𝑙

2 

 

Based on the formula, if the basepoint of the item is placed at the bottom left 

corner of the bin then ID = 1 and if it is placed at the top right corner of the bin which is 

the least desirable, ID = 0 and therefore always:  0 ≤ ID ≤ 1 

Clearly  
𝑑

𝐷
  could report the closeness of the item to the bottom left corner of the 

bin but the indices should be designed in such way that they behave similarly. In other 

words for the most desirable placement they all should be maximum.  

d 

D 

Figure 11: Index of distance 
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Index of Adjacency (denoted by IA) evaluates how well criterion (d) of 

desirability is met. In other words it indicates how much is the length of the common sides 

between the item and other items in the bin and the bin itself. IA is supposed to make the 

more packed arrangements preferable (Figure 12). 

The proposed formula to calculate ID is the following: 

IA =  ∑ 𝑆𝑜𝑢𝑡𝑘
𝑘∈𝑀

 

where: 

M  = A set of small-scale movements (within 0.5”) toward up, down and left 

𝑆𝑜𝑢𝑡𝑘
 = Total area of overlaps the item would have under movement k +  

 Total area of regions that would be outside the bin under movement k 

 

 

 

The larger values of IA indicate that the item, upon placement, has more common 

sides with other items in the bin and/or the bin itself. The maximum and minimum value 

for IA depends on the size of item and also the number and location of other items in the 

bin. However, it is designed in such way that the value is in the range of [0, 1] for pieces 

with common sizes.  

𝑆𝑜𝑢𝑡𝑘
 

 

𝑆𝑜𝑢𝑡𝑘
Figure 12: Index of adjacency 
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As an example, imagine a piece that is slightly smaller than the full panel and the 

panel size is 4’ × 10’. Then it can be assumed that the required piece is a 4’×10’ rectangle. 

There is only one way to fit the piece into the bin and there would be no other items into 

that bin (Figure 13). In such case if the panel is moved 0.5” upward some portion of it 

would be outside the panel and the area of that portion is: 0.5” × 10’ ≃ 0.417 sf 

Similarly, if it is moved 0.5” downward a portion of it with the same area would 

be outside the panel:     0.5” × 10’ ≃ 0.417 sf 

If the panel is moved 0.5” toward left the area of the region outside the panel 

would be:      0.5” × 4’ ≃ 0.167 sf 

Hence:     IA ≃ 0.417 + 0.417 + 0.167 ≃ 1 

All indices are designed in a way that the higher values indicate more desirability. 

Since the value of each index is independent of other indices, the objective would be to 

maximize the summation of all indices. However, the indices do not have the same 

deciding role because for example an arrangement with no overlaps (large IS) but small 

IA is preferable to one with overlaps and large IA. Therefore, each index should have a 

different factor in the summation. 

𝑆𝑜𝑢𝑡𝑘
 

 

𝑆𝑜𝑢𝑡𝑘Figure 13: Maximum value of IA 
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The objective function of the DE algorithm is designed as the following:  

𝐹(𝑠) = (4 × 𝐼𝑆) + (0.5 × 𝐼𝐷) + (0.5 × 𝐼𝐴) 

Or alternatively, 

𝐹(𝑠) = (4 × 𝐼𝑆) +  
𝐼𝐷 + 𝐼𝐴

2
 

Upon testing the algorithm, it was decided to use the above factors because they 

results in relatively better performance of the algorithm. This process is similar to 

calibration. 

Since both IA and ID are in the range of [0, 1], the value for 
𝐼𝐷+𝐼𝐴

2
 is in the range 

of [0, 1]. However, IS has only an upper bound which happens when the item is placed 

fully inside the bin and does not have any overlaps with other items in the bin and in such 

case IS=1; Hence:  𝐹(𝑠) ≥ 4 

Similarly, if  𝐹(𝑠) < 4 , it can be concluded that the item is overlapping with some 

other items or it is not fully inside the bin. Hence, it does not fit in the bin and based on 

Next-Fit algorithm it will be put into a new bin. 

In other words, the proposed designation of objective function not only aims to 

find the most desirable placement of the item, but also it can determine if the item fits into 

the bin or not. 
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3.1.4. Sorting Procedure 

The packing procedure was introduced as a process to generate layouts based on a 

sequence and evaluate that sequence. Sequence optimization procedure aims to find the 

sequence which results in the minimum number of bins being used. Note that any input 

sequence is a permutation of all items that must be packed.  

If p is the number of pieces that must be packed and the pieces are assumed to be 

distinct, 𝑝! is the number of permutations of those pieces. As an example, if 5 pieces must 

be packed, there are 5 × 4 × 3 × 2 × 1 = 120 permutations of those pieces. Clearly, as 

the number of pieces increase, the number of permutations increase exponentially. 

Therefore, for large sets of items, it is not practical to generate all the permutations and 

compare them together. In this situation, Evolutionary Algorithms can be utilized and the 

literature shows they are capable of finding a nearly optimal solution in a relatively shorter 

time. 

The proposed EA to find the nearly optimal sequence is based on what Blum and 

Schmid (2013) have proposed. They proposed the algorithm as part of a hybrid 

evolutionary algorithm to solve the 2D bin packing problem.  

As mentioned, a solution in the context of this problem is an input sequence s for 

packing procedure. The first step of EA is generating the initial population of size P based 

on the following. 

First, the input sequence in which items are ordered with respect to non-increasing 

area is denoted as the reference sequence. The position of an item in the reference 

sequence is called  𝑝𝑜𝑠𝑖 . Then a value 𝑣𝑖 is calculated and assigned to each item i : 
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𝑣𝑖 =  (𝑛 − 𝑝𝑜𝑠𝑖)
2 

To fill the positions of sequence s from 1 to n, an item is chosen randomly 

according to the following probability: 

𝑝(𝑖) =  
𝑣𝑖

∑ 𝑣𝑖𝑖∈𝑇
 

where 𝑇 is the set of items that are not yet assigned. 

Selection of items based on this principle – i.e. fitness proportionate – is known as 

roulette wheel selection. As an example, consider that a sequence must be generated for 

three following pieces based on the above approach (Figure 14). Values 𝑝𝑜𝑠𝑖 and 𝑣𝑖 are 

calculated:  

 

 

Now to fill the first position of the sequence, one item is randomly selected. The 

probabilities to select items are: 
9

9+4+1
, 

4

9+4+1
, 

1

9+4+1
  

Assume the one in the middle is selected to fill the first position in the sequence. 

To fill the second position, one item from the other two is randomly selected based on the 

following probabilities: 
9

9+1
 , 

1

9+1
 

The last position is filled with the only item left and the probability is 1. 

𝑝𝑜𝑠1 = 0 

𝑣1 = 9 

𝑝𝑜𝑠2 = 1 

𝑣2 = 4 

𝑝𝑜𝑠3 = 2 

𝑣3 = 1 

Figure 14: Selection of items in sorting procedure 
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All P members of the initial population are generated according to the above steps. 

Based on this algorithm, the large pieces are more likely to show up in the early positions 

of the sequence. 

The next step in the EA algorithm is the crossover operation which applies 

recombination to a certain number of population members. The number of solutions that 

go under crossover is determined by 𝑐𝑟𝑎𝑡𝑒  which is a parameter of the algorithm. For 

example in the proposed algorithm in this study,  𝑐𝑟𝑎𝑡𝑒 = 0.7 and it means that the best 70 

percent of solutions go under crossover and they are denoted by 𝑃𝑐.  

To perform the crossover, first the solutions in 𝑃𝑐 are ranked based on their 

evaluation by packing procedure. For each solution s from 𝑃𝑐  a crossover partner 𝑠𝑐  is 

chosen from 𝑃𝑐 by means of roulette wheel selection that was described in the initialization 

stage. 

Given two solutions s and 𝑠𝑐, a new solution 𝑠𝑜,  known as offspring is generated 

as explained in the following. Assume k, l and r to be the current positions in s, 𝑠𝑐 and 𝑠𝑜 

respectively. The algorithms starts with k = l = r = 1 and in each iteration to fill r the 

following is done.  

K and l are compared. If they are the same, r is filled with the same item and r is 

incremented. Also K and l move to the next positions until reaching an item which is not 

yet in 𝑠𝑜. 

In case K and l are not the same, r is filled by randomly choosing between k and l 

with a probability of 0.75 given to the item from the better of the two solutions. Then r is 
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incremented. Also, either k or l, whichever was chosen to fill r, moves to the next positions 

until reaching an item which is not yet in 𝑠𝑜. 

Figure 15 shows how an offspring is generated from two solutions – permutations 

of 1, 2, … , 7. 

 

 

 

 

 

 

Afterward, 𝑠𝑜 is evaluated by packing procedure and if it is more desirable – i.e. 

smaller number of bins or larger value of E – than s, it replaces s in the population. When 

the crossover and comparison was performed on all the members in 𝑃𝑐 , a number of new 

solutions are generated in the same way as the initial solutions in order that the number of 

solutions in the population stays the same. 

  

4 | 3 | 5 | 7 | 2 | 1 | 6  

4 | 3 | 1 | 6 | 5 | 7 | 2  

4 | 3 | 5 | 7 | 1 | 6 | 2  

Figure 15: Order-based crossover in sorting procedure 
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3.2. Testing the Add-in  

After developing the add-in, it was necessary to test it and evaluate its 

performance. This is different than debugging and the trial-error process to calibrate the 

objective functions. 

The algorithm was tested at two different levels. In the first phase, the packing 

procedure, as the heart of the add-in, was tested being fed with one randomly generated 

sequence. The objective of this test is to evaluate the performance of differential evolution. 

DE was utilized as the optimization method to find the most desirable placement – 

including location, orientation and mirror factor – of an item into a bin. In the developed 

add-in, DE implements Next-Fit packing. Testing of the packing procedure was carried 

out in six rounds. The variable in each round was the number of iterations that DE runs to 

pack an item into a bin. For example, in the first round this number was set to 100. It 

means that for each item, DE runs 100 iterations to find the most desirable placement. 

Table 2 shows the number of iterations in each round. 

 

Round 1 2 3 4 5 6 

Number of Iterations 100 120 130 140 160 180 

 

Table 2: Number of iterations in each round 

 

After the packing procedure proved to have a satisfactory performance, the overall 

performance of the developed add-in was tested. Since, there was evidence confirming the 

acceptable performance of the packing procedure, this set of tests were an indicator of the 

performance of sorting procedure. 
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Testing the overall performance of the add-in was carried out in four rounds. The 

variable in each round was the number of iterations that EA algorithm of the sorting 

procedure runs to find the most desirable sequence of items. Number of iterations that DE 

algorithm in the fitting procedure runs was set to 180 based on the first phase of testing. 

All tests were carried out on a simple Building Information Model containing a 

rectangle room with walls of the same height. Figure 16 illustrates the isometric view of 

the subject model. For the purpose of these tests, available drywall panels were assumed 

to be 4’× 10’ and these dimensions were given to the add-in. All the walls were considered 

to be exterior walls. Therefore, their interior face were analyzed by the add-in. Phase one 

of the algorithm identified 20 pieces that need to be cut out of full panels. 

Figure 16: Subject building information model for testing  
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4. OUTCOME OF THE TEST  

 

4.1. Layouts Generated by Packing Procedure 

The following are the layouts generated by packing procedure (Figures 17 – 22). 

 

Number of Iterations: 100 

Processing Time: 2 min 30 sec  

Figure 17: Layouts generated by packing procedure - 100 iterations 

1    5 

2     6 

3     7 

4     8 
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Number of Iterations: 120 

Processing Time: 2 min 45 sec  

Figure 18: Layouts generated by packing procedure - 120 iterations 
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3     7 

4     8 
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Number of Iterations: 130 

Processing Time: 2 min 55 sec  

Figure 19: Layouts generated by packing procedure - 130 iterations 
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4     8 
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Number of Iterations: 140 

Processing Time: 3 min 15 sec  

Figure 20: Layouts generated by packing procedure - 140 iterations 
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Number of Iterations: 160 

Processing Time: 3 min 45 sec   

Figure 21: Layouts generated by packing procedure - 160 iterations 
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Number of Iterations: 180 

Processing Time: 4 min  

Figure 22: Layouts generated by packing procedure - 180 iterations 
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4.2. Analysis of the First Phase of Testing 

The layouts generated by packing procedure demonstrate that increasing the 

number of iterations DE runs result in a noticeable improvement of layouts. As an 

example, in the layouts generated in the first round (100 iterations), items are not very 

well packed, there are vacant spaces between the items and more importantly, some items 

are not totally inside the bin. As the number of iterations increase the layouts become more 

packed and items are completely inside the bin with little vacant space between them. The 

layouts generated in the final round (180 iterations) are very well packed with no overlaps 

nor any vacant space between the items. 

In these tests, only the performance of the packing procedure is evaluated.  The 

algorithm does not optimize the sequence of the items and they are packed by a randomly 

generated sequence. Therefore, the increase in the number of iterations does not have any 

effect on the number of panels used or material wastage. Although in the last run the items 

are packed into eight panels, it is more desirable than the ones with seven panels. 

Figure 23 demonstrates how the process time depends on the number of iterations.  

120

180

240

300

100 120 140 160 180

Figure 23: Processing time plotted by number of iterations DE runs 
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4.3. Optimized Cutting Layouts Generated by Add-in 

The following are optimized layouts generated by the add-in (Figures 24 – 27). 

 

Number of Iterations: 10 

Processing Time: 20 min  

Figure 24: Optimized cutting layouts generated by add-in - 10 iterations 
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Number of Iterations: 20 

Processing Time: 40 min  

Figure 25: Optimized cutting layouts generated by add-in - 20 iterations 
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Number of Iterations: 30 

Processing Time: 60 min  

  

Figure 26: Optimized cutting layouts generated by add-in - 30 iterations 
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Number of Iterations: 50 

Processing Time: 100 min  

  

Figure 27: Optimized cutting layouts generated by add-in – 50 iterations 

1    5 
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3     7 

4     8 
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4.4. Analysis of the Second Phase of Testing 

In the layouts generated, there is minimum overlaps and there is no vacant spaces 

between items. All the items are totally inside the bins and the packings are all desirable. 

It is empirical evidence that the performance of the packing procedure is optimal. 

Now, the layouts generated should be compared in regards to the main objective, 

which is to minimize the leftover. In the layouts generated in the first three rounds (10, 

20, 30 iterations), the items are packed into seven bins. Looking at these arrangements,   

however, it is noticed that they could be improved. For example, bin number 3 in the first 

round (10 iterations) and bin number 4 in the third round (30 iterations) contain only one 

item and both have a large vacant space that can be used to fit other items.  

In the last round (50 iterations), the sequence is evidently more optimal because 

the items are packed into 6 bins (less than all the other arrangements). Moreover, no 

swapping or replacement can be recommended. 

In the arrangements generated in the first three rounds and in all the random 

arrangements, one full panel could have been saved. Therefore, total wastage in those 

arrangements, is clearly more than 4’×10’ = 40 sf of drywall, which means more than 

40

280
× 100 ≅ 14 %  of stock material is wasted. 

Based on calculations, total area of the required items were 218 sf. Therefore, in 

the last round, 
240−218

240
× 100 ≅ 9 %  of stock material is wasted. This means that the 

algorithm could reduce the waste of drywall by about 
14%−9%

14%
≅ 36% 
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5. CONCLUSION 

 

This study was carried out to investigate if an optimization application coupled 

with Evolutionary Algorithms can be implemented on a Building Information Modeling 

platform to generate optimized drywall cutting layouts automatically. 

The objectives of this study were: 1) developing an add-in drywall cutting 

optimization application on a BIM platform using EA-based optimization techniques, and 

2) proving if this application can actually suggest a drywall cutting plan that leaves 

minimum waste. 

The add-in application was developed through Autodesk Revit API based on the 

optimization methods proposed for similar problems in other industries. Then, it was 

tested on a simple Revit model containing four walls. Tests proved that the proposed 

algorithm is able to generate optimized cutting layouts. It generated layouts that, compared 

to the layouts generated in initial iterations has 36% less leftover. 

This study proves that it is possible to develop an EA-based optimization 

application coupled with Building Information Modeling for the purpose of generating 

drywall cutting layouts automatically. It demonstrates that utilizing such optimization 

algorithm on a BIM platform should be considered as an effective way to reduce the 

material waste. 

Considering the large number of construction activity in the United States, 

contractors and consequently owners can save a considerable amount of money utilizing 
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this method. Also, there is an opportunity to utilize this automated optimization tool to 

reduce the waste of other building materials. 

5.1. Future Research 

Considering the scope of this study and the generated results, future research can 

scrutinize the proposed algorithm. Clearly, this algorithm can be improved in terms of 

both the generated layouts and processing time. 

More tests could be carried out on a larger number of benchmark models to 

evaluate the performance of the optimization method. It can be tested on different building 

types – residential and commercial – to compare its efficiency based on the size of the 

model.  

Also, there is an opportunity to customize this tool to apply on other building 

materials such as façade panels.  
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