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ABSTRACT 

 

This work proposes the study on physicochemical characterization of crude oils 

and their asphaltenes to understand the destabilization mechanism of asphaltenes. 

Knowledge on the molecular-scale interactions between components of crude oil is vital 

for the assessment of potential reserves and mitigation efforts of asphaltene-related 

problems. 11 heavy oil and bitumen samples from various regions of the world were 

subjected to characterization to attain universal yet simple correlations that are applicable 

under operating conditions. Comprehensive physicochemical analysis of the samples were 

performed through density and viscosity measurements of the crude oil, Saturates, 

Aromatics, Resins, and Asphaltenes (SARA) fractionation, Fourier Transform InfraRed 

(FTIR) spectroscopy analysis, elemental analysis, solubility profile assessment, and onset 

asphaltene precipitation (OAP) tests on the crude oil samples. Furthermore, two different 

types of asphaltenes were examined; n-pentane and n-heptane insolubles. Accordingly, 

density, zeta potential, and cluster size measurements, as well as high resolution 

microscopy imaging techniques, were conducted on these asphaltene samples to support 

the asphaltene stability and onset precipitation test results. The results have revealed that 

heteroatoms contained within the crude oils and asphaltenes play an important role in 

defining the physicochemical characteristics of crude oil. In particular, oxygen and metal 

(mostly V and Ni) functional groups were found to contribute significantly towards 

asphaltene stability and polarity. Additionally, this study has established that the presence 

of impurities in the saturates fraction causes it to have a destabilizing power towards 
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asphaltenes. Thus, higher concentration of saturate fraction in the crude oil may pose 

higher risks of asphaltene-related issues. Moreover, it is highly recommendable that OAP 

experiments are conducted by using the crude oil’s own saturate fraction to achieve better 

accuracy and provide representative results of actual reservoir conditions. 
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NOMENCLATURE 

 

AFM Atomic Force Microscopy 

ASTM American Society for Testing and Materials 

ATR Attenuated Total Reflectance 

DSC Differential Scanning Calorimetry 

EDS Energy Dispersive X-ray Spectroscopy 

ELSD Evaporative Light Scattering Detector 

ESI-MS ElectroSpray Ionization – Mass Spectrometry 

FTIR Fourier Transform InfraRed 

HPLC High Performance Liquid Chromatography 

nC5 n-pentane 

nC7 n-heptane 

NMR Nuclear Magnetic Resonance 

SARA Saturates, Aromatics, Resins, Asphaltenes 

SEM Scanning Electron Microscopy 

TDS Total Dissolved Solids 

TGA ThermoGravimetric Analysis 

wt% weight percent 

 



 

vii 

 

TABLE OF CONTENTS 

 Page 

 

ABSTRACT .......................................................................................................................ii 

DEDICATION .................................................................................................................. iv 

ACKNOWLEDGEMENTS ............................................................................................... v 

NOMENCLATURE .......................................................................................................... vi 

TABLE OF CONTENTS .................................................................................................vii 

LIST OF FIGURES ........................................................................................................ viii 

LIST OF TABLES ............................................................................................................ xi 

CHAPTER I INTRODUCTION ........................................................................................ 1 

CHAPTER II RESEARCH STATEMENT ....................................................................... 7 

CHAPTER III EXPERIMENTAL PROCEDURES .......................................................... 8 

3.1 Characterization of Crude Oils .......................................................................... 8 

3.2 Characterization of Asphaltenes ...................................................................... 11 
3.3 Onset Asphaltene Precipitation (OAP) Test .................................................... 14 

CHAPTER IV EXPERIMENTAL RESULTS ................................................................ 15 

4.1 Characterization of Crude Oil and Bitumen Samples ...................................... 15 
4.2 Characterization of Asphaltenes ...................................................................... 31 
4.3 Onset Asphaltene Precipitation Results ........................................................... 50 

CHAPTER V CONCLUSIONS ....................................................................................... 61 

REFERENCES ................................................................................................................. 63 

APPENDIX ...................................................................................................................... 77 

 

 



 

viii 

 

LIST OF FIGURES 

 Page 

Figure 1: Correlation of heavy-to-light fractions of crude oil to API gravity and 

viscosity (Heavy: Asphaltenes and Resins; Light: Aromatics and Saturates) .. 17 

Figure 2: FTIR spectra of 4 different types of crude oil. Other FTIR spectra can be 

found in the appendix section (Figure A-1). ..................................................... 20 

Figure 3: Correlations of heteroatom content (Table 2) with physical properties of crude 

oil (Table 1). Blank circles represent outliers in the dataset. ............................ 24 

Figure 4: Correlations of sulfur content (Table 2) with physical properties of crude oil 

(Table 1). Blank circles represent outliers in the dataset. ................................. 26 

Figure 5: Correlations of metals content (Table 2) with physical properties of crude oil 

(Table 1). Blank circles represent outliers in the dataset. (Metals detected: Al, 

Ca, Cr, Cu, Fe, K, Mg, Mo, Na, Ni, Pb, Sn, Ti, V, and Zn) ............................. 27 

Figure 6: Solubility profile of 4 different types of crude oil. The solubility profiles for 

other crude oil samples are listed in Figure A-3. .............................................. 28 

Figure 7: Correlations of ∆PS parameter (Table 3) with SARA (Table 1) and elemental 

compositions (Table 2) of crude oil. Blank circles represent outliers in the 

dataset. .............................................................................................................. 30 

Figure 8: Correlations of asphaltene density (Table 4) with physical properties of crude 

oil (Table 1). Blank circles represent outliers in the dataset. ............................ 33 

Figure 9: FTIR spectra of original crude oil, n-pentane and n-heptane asphaltenes of 

sample EH2 ....................................................................................................... 34 

Figure 10: Correlations of elemental composition with density of n-pentane 

asphaltenes. Blank circles represent outliers in the dataset. Asphaltene 

densities are reported in Table 4 and elemental analysis data are obtained 

from Table 5. In Figure 8D, metals include: Al, Ca, Cr, Cu, Fe, K, Mg, Mo, 

Na, Ni, Pb, Sn, Ti, V, and Zn elements. ........................................................... 38 



 

ix 

 

Figure 11: Correlations of SARA fractions (Table 1) with zeta potential and cluster size 

of n-pentane asphaltenes (Table 6). Blank circles represent outliers in the 

dataset. .............................................................................................................. 41 

Figure 12: Correlations of elemental composition of nC5 asphaltenes (Table 5) with 

zeta potential of nC5 asphaltenes (Table 6). Blank circles represent outliers in 

the dataset. Metal content is the summation of all metallic elements, which 

include Al, Ca, Cr, Cu, Fe, K, Mg, Mo, Na, Ni, Pb, Sn, Ti, V, and Zn. ........... 43 

Figure 13: Correlations of elemental composition of nC5 asphaltenes (Table 5) with 

cluster size of nC5 asphaltenes (Table 6). Blank circles represent outliers in 

the dataset. ........................................................................................................ 44 

Figure 14: Optical microscopic images for nC5 and nC7 asphaltenes under 100X 

magnification .................................................................................................... 45 

Figure 15: SEM images of n-pentane asphaltenes ........................................................... 47 

Figure 16: Correlation of oxygen content (EDS) with zeta potential and cluster size of 

n-pentane asphaltenes. Blank circles represent outliers in the dataset. ............ 49 

Figure 17: Onset asphaltene precipitation tests with saturate fraction and n-pentane for 

sample H1 ......................................................................................................... 52 

Figure 18: FTIR spectra of n-pentane, n-heptane, and saturate fraction of H1. ............... 54 

Figure 19: TGA and DSC curves for nC7 (purple curves), nC10 (green curves), and 

saturate fractions of sample H1 (black curves) and B2 (red curves). ............... 55 

Figure 20: 1H and 13C NMR spectroscopy of saturate fraction of sample H1. .............. 56 

Figure 21: Positive ions ESI-MS of H1 saturate fraction ................................................. 57 

Figure 22: Negative ions ESI-MS of H1 saturate fraction ............................................... 57 

Figure 23: SEM Images of A-Nylon Membrane (organic), B- Nylon Membrane with 

H1 Saturates, C- Nylon Membrane with B2 Saturates, D-Silver Membrane 

(inorganic), E- Silver Membrane with H1 Saturates, F- Silver Membrane with 

B2 Saturates. ..................................................................................................... 59 



 

x 

 

Figure A- 1: FTIR spectra of crude oil and its separated asphaltenes .............................. 78 

Figure A- 2: FTIR spectra for reference samples ............................................................. 80 

Figure A- 3: Asphaltene solubility profile for crude oil samples ..................................... 81 

Figure A- 4: Comparison of AFM image of W1 asphaltenes in toluene with reference 

samples ............................................................................................................. 83 

Figure A- 5: FTIR spectra of the saturate fractions of the bulk samples. The FTIR 

spectrum for nC5 is provided for comparison purpose since nC5 is a saturated 

hydrocarbon. ..................................................................................................... 83 

Figure A- 6: FTIR spectra of SARA fractions of 11 different crude oils ........................ 84 

Figure A- 7: SARA fractions of 11 different crude oils ................................................... 86 

 

 



 

xi 

 

LIST OF TABLES 

 Page 

 

Table 1: Physical properties and SARA fractions of 11 crude oils. API gravity is 

measured at standard temperature (60 °F) while other measurements are taken 

at room temperature (22.3 °C). ......................................................................... 16 

Table 2: Elemental analysis of crude oil .......................................................................... 23 

Table 3: ∆PS values for 11 crude oil samples .................................................................. 29 

Table 4: Asphaltene densities in g/cc. Calculation and measurement methods are based 

on the procedure developed by Barrera et al. (2013). ....................................... 32 

Table 5: Elemental analysis of n-pentane asphaltene samples ......................................... 37 

Table 6: Zeta potential and cluster size measurements of asphaltene samples. pH and 

Total Dissolved Solids (TDS) of the solution are also recorded. ..................... 39 

Table 7: EDS results of n-pentane asphaltenes ................................................................ 48 

Table 8: Onset asphaltene precipitation results for n-pentane and n-heptane .................. 51 

Table 9: EDS results of nylon (organic) and silver (inorganic) membranes and saturate 

fractions of sample H1 and B2. ........................................................................ 58 

Table A- 1: ASTM method comparison for asphaltene separation .................................. 77 

 

 

 

 

 

 



 

1 

 

CHAPTER I 

INTRODUCTION 

 

Asphaltenes are defined as the fraction of crude oil that are insoluble in normal 

alkanes (aliphatic hydrocarbons) but soluble in aromatic solvents (Speight 2006). 

Asphaltenes are also known to contain the heaviest and the most polar components of 

crude oil (Li and Firoozabadi 2010). Because of these polar elements, asphaltene 

molecules have an inherent ability to self-associate between themselves to create larger 

and heavier clusters (Speight 2014). When the aggregates become too heavy, asphaltene 

molecules then precipitate out of the crude oil and transition into a solid phase. Because it 

is a phase related issue, pressure, temperature, and compositional changes are known as 

the main cause of asphaltene precipitation during production (Mullins et al. 2007; Speight 

and Long 1996).  

Asphaltene precipitation can essentially occur at all stages of petroleum 

production, which can lead to various undesired problems (Leontaritis 1989; Kokal and 

Sayegh 1995; Izquierdo and Rivas 1997). Inside the reservoir, asphaltene buildup can 

significantly reduce permeability and productivity through pore blockage, alter wettability 

from water-wet to oil-wet, and increase oil viscosity (Khalifeh et al. 2013; Leontaritis et 

al. 1994; Seifried et al. 2013; Uetani 2014). The accumulation of asphaltene can also 

damage well tubular, downhole equipment, and pumps (Alkafeef et al. 2005; Limanowka 

et al. 1999). Furthermore, previous cases of flow restriction in pipelines and production 
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facilities have been reported to be caused by asphaltene deposition (Wylde and Slayer 

2010; Thawer et al. 1990). 

Chemical composition of asphaltenes vary greatly depending on the precipitation 

conditions (Ortega et al. 2015; McLean and Kilpatrick 1997; Dabir et al. 1996). Previous 

studies have found that asphaltene deposits obtained from the wellbore have different 

characteristics compared to synthetically precipitated asphaltenes through solvent addition 

(Klein et al. 2006; Rogel, Miao, et al. 2015). However, the impracticalities associated with 

generating such high pressure and temperature makes precipitation by solvents much more 

feasible for extensive characterization of asphaltenes (Gawel and Speight 2010). Hence, 

simulation of asphaltene precipitation behavior is conducted through onset asphaltene 

precipitation experiments by deliberately altering the chemical composition of the crude 

oil with addition of n-alkanes (Akbarzadeh et al. 2004). 

Onset precipitation is based on solubility of asphaltenes in different solvents  

(Speight 1994; Speight et al. 1984). The amount of precipitated asphaltenes decreases as 

the carbon number of the precipitating alkane increases (Kokal et al. 1992; Buenrostro-

Gonzalez et al. 2004). For instance, the weight of the n-heptane insoluble fractions of 

crude oil should be less than the n-pentane insoluble fractions (Speight 2006). Branching 

of the alkane solvent also results in more asphaltene yield (Brons and Yu 1995). This 

precipitating behavior is found to be related to the solvent power of hydrocarbon solvents, 

or otherwise known as the solubility parameter (Mitchell and Speight 1973; Hildebrand 

1919). As the solubility parameter of non-polar solvents increases, the solvent is able to 

dissolve larger proportions of the crude oil while leaving behind lesser amounts of the 
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heavier and more complex fractions of asphaltenes. In accordance with this theory, Ortega 

et al. (2015) have found that asphaltenes precipitated by n-heptane (nC7) are more polar, 

more viscous, and have higher molecular weight and density compared to n-pentane (nC5) 

asphaltenes. As a side note, they also mentioned that n-heptane asphaltene separation 

techniques, e.g. ASTM D3279, D4124, and D6560, are mainly chosen due to their high 

reproducibility while n-pentane separation, e.g. ASTM D893 and D2007, are more similar 

to industrial deasphalting operations that uses C4-C6 condensates (ASTM 2012a, 2009, 

2012b, 2014, 2011). Hence, the identification of asphaltenes (n-alkane insolubles) used in 

every characterization studies based on their precipitating solvent become crucial to 

understand the applicability of the research results. 

The popular belief is that asphaltene molecules are stable colloids suspended in 

crude oils or bitumen (Ravey et al. 1988; Ramos et al. 2001; Mullins et al. 2013; Goual et 

al. 2014). However, there has been many controversies surrounding this topic, where other 

researchers suggest the possibility of asphaltenes being dissolved in crude oil (Yarranton 

et al. 2000; Sirota 2005). Moreover, the literature has yet to agree on the primary molecular 

interaction that can be held accountable for asphaltene precipitation, with one side 

favoring the London dispersion forces (Wiehe 2012; Redelius and Soenen 2015) whereas 

others signify the effect of polar bonds (Taylor 1998; Spiecker et al. 2003). Nevertheless, 

the presence of polar functional groups within asphaltene molecules have consistently 

been linked to higher polarity of asphaltenes (Moschopedis and Speight 1976b; Nalwaya 

et al. 1999; Wattana et al. 2005). Therefore, n-C7 asphaltenes should have more polar 

functional groups than n-C5 asphaltenes for the same crude oil. Hence, understanding how 



 

4 

 

different polar functional groups contribute to the overall polarity of asphaltenes is crucial 

to formulate the mechanism of asphaltene stability. 

Metallo-organic compounds have consistently been discovered to reside in crude 

oils and asphaltenes originating from various reservoirs (Erickson et al. 1954). These trace 

elements naturally occur in petroleum during the formation of the source rock, where 

organisms and organic materials decay to form metal-rich organic layers (Barwise 1990). 

It is generally believed that some of these metallo-organic complexes, which can comprise 

of Cr, Cu, Mo, Ni, Pb, Ti, V, or Zn, are present by chelating to the porphyrin structures 

(McKenna et al. 2009). Most of them, however, can also exist in non-porphyrin 

compounds (Ali and Livingstone 1974; Fish et al. 1984). Once these metals attach onto 

the organic molecules, the resulting organometallic compounds have been shown to have 

an increase in polarity (Dunning and Rabon 1956; Fish et al. 1984; Nalwaya et al. 1999). 

Vanadium, in particular, was found to have a predominant role in coke formation, which 

is associated to asphaltene instability (Furimsky 1978; Prakoso et al. 2016). Thus, the 

profusion of metals in crude oils and asphaltenes can insinuate higher asphaltene polarity 

and instability. 

Another fundamental knowledge that is necessary to describe the stability of 

asphaltenes in crude oil is the molecular interaction of asphaltenes with the other 

remaining constituents of crude oil, which can be classified as Saturates, Aromatics, and 

Resins (Kharrat et al. 2007; Gaspar et al. 2012). The lighter components of crude oil, 

which is mostly comprised of saturated hydrocarbons in the form of straight, branched, or 

cyclic alkanes without double or triple bonds, are identified as the saturate fraction. The 
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aromatic compounds, which may also contain heteroatoms such as oxygen, nitrogen, and 

sulfur, are classified as the aromatic fraction. Lastly, the remaining heavier portions that 

have similar characteristics to asphaltenes yet are more soluble in n-alkanes with higher 

molecular weight (e.g. n-pentane or n-heptane) are considered as the resin fraction 

(Speight 2006; Akbarzadeh et al. 2007). Saturates and aromatics comprise the non-polar 

fractions while resins and asphaltenes make up the polar fractions of crude oil (Fan and 

Buckley 2002). 

Each fractions have different roles in establishing the thermodynamic equilibrium 

of the system (Rogel et al. 2012). Resins have been consistently found to have a peptizing 

effect on asphaltene particles in the crude oil (Carnahan et al. 1999; Lian et al. 1994; Jada 

and Salou 2002). Aromatic hydrocarbons, such as toluene, benzene, or xylene, are known 

as asphaltene dispersants. Since the aromatic fraction is primarily composed of these 

compounds, aromatics are generally believed to have the same dispersing effect on 

asphaltenes in crude oil (Jamaluddin et al. 1996; Loeber et al. 1998; Wang and Buckley 

2003). In contrast, asphaltenes are observed to be insoluble in n-alkanes, which are the 

main constituents of saturate fraction (Wiehe et al. 2005; Akbarzadeh et al. 2005). Early 

studies have confirmed these findings, where crude oils with higher saturate fraction are 

revealed to be unstable while crude oils with higher aromatic fraction are more stable 

(Carbognani et al. 1999).   Nonetheless, details of the interactions between these fractions 

and the impact they have on the overall stability of the system still require further 

clarification. 



 

6 

 

To evaluate the stability of asphaltenes, numerous methods have been developed 

over the years, which include polarity determination through dielectric constant 

determination (Punase et al. 2016), zeta potential measurements (Prakoso et al. 2015), 

onset asphaltene precipitation tests  (Hammami et al. 2000), refractive index 

measurements (Buckley 1999), dipole moment estimations (Goual and Firoozabadi 2002), 

and solubility profile analysis (Rogel et al. 2010). For the first time, the contribution of 

various functional groups, especially for organometallic compounds, and SARA fractions 

towards asphaltene stability are assessed through zeta potential measurements and 

solubility profile analyses. Through this study, possible sources of asphaltene polarity and 

instability are identified. These findings would prove to be beneficial for mitigation efforts 

of asphaltene-related issues and enhancement of existing asphaltene precipitation models. 

The goal of this study is to find a link between polarity and asphaltene stability 

through physicochemical characterization of the crude oil and its separated asphaltenes. 

Precipitating behavior of asphaltenes was also visualized with onset asphaltene 

precipitation tests using n-pentane, n-heptane, and the crude oil’s saturate fraction as the 

precipitating agent. The results of these experiments provide a comprehensive insight into 

the variables which influence the overall stability of asphaltenes in crude oil. 



 

7 

 

CHAPTER II 

RESEARCH STATEMENT 

 

Knowledge of the molecular interactions between asphaltene and other 

components of crude oil (saturate, aromatic, and resin) is essential to enhance our 

understanding of the petroleum fluid thermodynamics. The physical and chemical 

properties of crude oil are primarily determined from these molecular interactions. 

Manipulation of these interactions can also be beneficial to reduce asphaltene-related 

issues and maximize the potential of a reservoir. 

In this study, correlations between physical and chemical properties of crude oil 

are investigated to find universal, yet, simple correlations that can be used to predict 

asphaltenes stability. The contribution of the saturates fraction towards the overall stability 

of asphaltenes in crude oil is evaluated. Furthermore, the possible sources of polarity 

within asphaltenes and crude oils are identified and their effect on asphaltene stability is 

assessed. 
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CHAPTER III 

EXPERIMENTAL PROCEDURES 

 

The 11 different heavy oil and bitumen samples analyzed in this study come from 

various regions around the world, which include Canada, Colombia, Indonesia, Mexico, 

USA, and Venezuela. With these selection of samples, asphaltene behavior from varying 

original crude composition and depositional environment can be assessed to generate 

universal correlations. The crude oil samples were first subjected to characterization, 

followed by characterization on their separated asphaltenes, and finally the flocculation of 

asphaltene under compositional changes was simulated through onset precipitation tests. 

 

3.1 Characterization of Crude Oils 

The experiments started on density and viscosity measurements of the original 

crude samples. Density measurement of the samples was conducted using the Anton Paar 

DMA 4100 density meter at decreasing temperatures starting from 90 °C to 20 °C. The 

density had to be measured at higher temperatures because some of the crude were too 

viscous at lower temperatures, thus, restricting measurement with the density meter.  

However, due to the requirement described in API MPMS (2004) which specifies that API 

gravity measurements should be done under standard conditions (60 °F or 15.6 °C), 

previous densities found at different temperatures were extrapolated to calculate the 

density at standard conditions, then, this value was converted to API gravity. A similar 

approach was used for viscosity measurements. The Brookfield DV-III Rheometer was 
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used to measure viscosity at 90 °C, then temperature was reduced till the minimum 

temperature values which could still provide viscosity readings. The results were then 

plotted and the trend line extrapolated to determine the crude oil viscosity at room 

temperature (22.3 °C) to be consistent with the rest of the experimental conditions. 

Accuracy of the measurements were determined to be within ±0.15% °API and ±1% cP 

error range. From the obtained density and viscosity properties, the crude oil samples were 

then classified into different categories following the criteria established by the World 

Petroleum Council (Meyer and de Witt 1990), which acknowledges three distinct classes: 

heavy oil (H), extra heavy oil (EH), and bitumen (B). Crude oils with viscosity below 

10,000 cP and API gravity around 10-22.3 °API are classified as Heavy oil (H). The Extra 

Heavy oil (EH) category is for heavier crudes which have API gravity and viscosity below 

10 °API and 10,000 cP, respectively. Other samples with viscosity higher than 10,000 cP 

are regarded as Bitumens (B). Additionally, a special category was also created for Waxy 

crude oils (W) to avoid analytical errors that may be caused by the presence of 

hydrocarbon wax (Fuhr and Holloway 1999). 

After density and viscosity measurement  of the samples were completed, the bulk 

samples were then separated into Saturates, Aromatics, Resins, and Asphaltenes (SARA) 

fractions by following the ASTM D2007-11 standard (2011). In this method, asphaltene 

was first separated from the bulk sample through precipitation using n-pentane. 

Afterwards, the deasphalted oil, also known as maltenes, was charged to a percolation 

chamber that contains attapulgus clay in the upper section and silica gel in the lower 

section. The resin fractions were adsorbed in the attapulgus clay while the aromatic 
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fractions were trapped in the silica gel. The unadsorbed fractions were collected below the 

percolation chamber and defined as the saturate fractions. During the separation and 

desorption process of saturates, aromatics, and resins, specific volumes of n-pentane were 

continuously charged into the percolation chamber to assist the flow of the fluid. A mixture 

of 50% toluene and 50% acetone was also used to desorb resins from the attapulgus clay. 

The collected fractions were then heated to 100 – 105 °C to ensure that the samples were 

free from contamination of the solvents. The solvents were considered to have evaporated 

once the weight difference within 10 minutes was less than 10 mg. Once this requirement 

was achieved, the weight fractions were recorded and the remaining weight fraction was 

assigned to the aromatic fractions. 

To provide accurate comparisons with n-pentane asphaltenes as well as minimize 

solvent and time consumption, the n-heptane asphaltenes were taken from the OAP test 

results which used the same ratio of 10 mL of solvent / g of oil and followed similar 

filtration procedure as ASTM D2007-11 (Buenrostro-Gonzalez et al. 2004). The amount 

of n-heptane insoluble obtained from this experiment have been checked to be similar to 

the ones produced from other ASTM method, i.e. ASTM D3279-12 (2012a). The 

procedure details for n-heptane separation is elaborated more in the OAP test section. 

Chemical characterization of the crude samples include Fourier Transform 

InfraRed (FTIR) spectroscopy using the Agilent Cary 630 Attenuated Total Reflection 

(ATR) spectrometer. The analyses of FTIR spectra are complex, hence, the obtained FTIR 

spectra were compared with the FTIR spectra of reference samples; such as attapulgus 

clay, silica gel, acetone, toluene, n-pentane, n-heptane and distilled water.  
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Elemental analyses were conducted by Chevron on both the crude oil and the n-

pentane asphaltene to assist in the detection of polar functionalities within the samples 

(Rogel, Roye, et al. 2015). Standard combustion method, using a Leco CHN analyzer 

Carlo Erba model was used to estimate the carbon, hydrogen, and nitrogen content in the 

test sample. A Thermo Intrepid Inductively Coupled Plasma was then used to measure the 

composition of the trace elements. 

To assess asphaltene stability in crude oils, Solubility Profile Analysis was 

conducted by Chevron using their in-house High Performance Liquid Chromatography 

(HPLC) system which consisted of a HP Series 1100 chromatograph and an Alltech 

Evaporative Light Scattering Detector (ELSD) 2000. To begin the experiment, the crude 

samples were first mixed with dichloromethane. The resulting solution was then injected 

into the HPLC column together with n-heptane which acted as the mobile phase. After all 

of the n-heptane solubles (maltenes) have eluted from the column, the mobile phase was 

gradually changed to 90:10 dichloromethane/methanol and then to 100% methanol (Rogel 

et al. 2010). The ELSD was then used to quantify the amount of asphaltenes precipitated 

and generate the solubility curve. From the solubility curve, the stability parameter known 

as ∆PS was then calculated from the time difference between 75% and 25% elution of the 

material (Rogel et al. 2010).  

 

3.2 Characterization of Asphaltenes 

Three methods were used to determine asphaltene content of crude oils; ASTM 

D2007-11 in which nC5 was used as the precipitating agent, ASTM D6560-12 and the on-
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column precipitation from the HPLC experiment which used nC7 to separate the 

asphaltenes. Physical characterization of asphaltenes then include: i- visual inspection, ii- 

optical microscopic imaging, iii- SEM imaging for surface morphology, iv- density 

measurements, v- cluster size determination by particle size analyzer. All of these analyzes 

were conducted for both nC5 and nC7 asphaltenes. It is important to note, however, that 

asphaltenes determined from the HPLC method was consumed, rendering it unavailable 

for further analysis.  

Asphaltene density measurements followed the procedure developed by Barrera et 

al. (2013) which calculates the density from asphaltene-toluene mixtures. Varying 

amounts of asphaltenes were first prepared and mixed with a constant volume of toluene 

to produce solutions with different asphaltene weight fractions. The mixture density was 

then measured using the Anton Paar DMA 4100 density meter at room temperature and 

the specific volume of mixture calculated (inverse of density). A plot of specific mixture 

volume vs asphaltene weight fraction would then generate the slope and intercept value 

which will be used in simple mixture density calculations to estimate the density of 

asphaltene. 

Then, nC5 and nC7 asphaltenes were subjected to zeta potential and cluster size 

analyses. The Brookhaven Instruments Corporation ZetaPALS Zeta Potential Analyzer 

and 90 Plus Particle Size Analyzer were used to measure zeta potential and cluster size, 

respectively. Zeta potential is a measure of electrostatic repulsion between colloidal 

particles, which is known to affect colloidal stability (Jada and Salou 2002). Hence, zeta 

potential measurements can provide definitive information regarding polarity of 
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asphaltenes. Both zeta potential and cluster size measurements were conducted on the 

same solutions that were prepared by following the procedure reported by Parra-Barraza 

et al. (2003). Accordingly, 50 mg of asphaltenes was added into 15 mL of ethanol and 

sonicated in an ultrasound tub for 20 minutes to homogenize the dispersion of asphaltenes. 

1.5 mL of this solution was then mixed with 100 mL of 1 mM KCl (Parra-Barraza et al. 

2003). 1 mM KCl solution was selected as the dispersion medium due to its low ionic 

strength which can minimize the effect of the dispersion medium on zeta potential 

measurements (Wiącek and Chibowski 1999; Salgın et al. 2012). The same solutions were 

used to measure the total dissolved solids (TDS) and pH value with the Oakton TDS and 

pH meter. 

The asphaltene samples were further analyzed under different microscopy 

techniques. The optical microscopy observation was conducted using the Meiji Techno 

Microscope equipped with Jenoptik ProgRes CT5 camera under 100X magnification. 

Another microscopic imaging technique used in this study is the SEM-EDS. The Tescan 

Vega 3 microscope was used to examine the surface chemistry and morphology of the 

asphaltene samples. Furthermore, the Digital Instruments MultiMode AFM microscope 

was also tested to assess the particle size of asphaltenes when dispersed in toluene.  

Asphaltene samples were analyzed using the Agilent Cary 630 Attenuated Total 

Reflection (ATR) spectrometer for the same purposes as FTIR analysis of crude oil. First, 

the obtained FTIR spectra were compared with the FTIR spectra of reference samples, 

such as distilled water, n-pentane, n-heptane, toluene, acetone, silica gel, and attapulgus 

clay, to detect traces of contamination or presence of water or wax in the samples. 
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 3.3 Onset Asphaltene Precipitation (OAP) Test 

To mimic the alteration in crude oil composition during production, the bulk 

samples were mixed with n-pentane, n-heptane, or the crude oil’s own saturate fraction 

(Buenrostro-Gonzalez et al. 2004). 5 g of oil is mixed with varying concentrations of 

solvent ratio (mL of solvent / g of oil), starting from 1 mL/g to 30 mL/g. The solution is 

then homogenized in an ultrasound tub for 15 minutes and left to equilibrate for 24 hours. 

Subsequently, the solution is charged through a 0.45 microns filter paper using the 

filtration assembly. The unfiltered fractions are then heated inside the vacuum oven for at 

least 24 hours to ensure the evaporation of the solvents and the remaining weight is 

measured. The ratio of asphaltene weight to original weight of the sample is then taken as 

the weight fraction of the precipitated asphaltenes. 

For the OAP test using the saturates fraction, similar procedures were followed but 

at lower concentrations of solvent ratio. This is due to the difficulties associated with the 

procurement of saturates from the SARA separation of the bulk samples, since the ASTM 

D2007-11 method only produces small amounts of saturates (maximum 3 g of saturates 

out of 10 g of oil). Hence, only solvent ratios of 1, 3, and 5 ml/g were feasible for these 

tests.  
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CHAPTER IV 

EXPERIMENTAL RESULTS* 

 

4.1 Characterization of Crude Oil and Bitumen Samples 

The results from viscosity and density measurements of the 11 different bitumen 

and crude oil samples are listed below in Table 1. The crude oils were then categorized 

based on their physical properties following the criteria established by the World 

Petroleum Congress (Meyer and de Witt 1990). Crude oils with viscosity below 10,000 

cP and API gravity around 10-22.3 °API are classified as Heavy oil (H). The Extra Heavy 

oil (EH) category is for heavier crudes which have API gravity and viscosity below 10 

°API and 10,000 cP, respectively. Other samples with viscosity higher than 10,000 cP are 

regarded as Bitumens (B). Additionally, a special category was also created for Waxy 

crude oils (W) to avoid analytical errors that may be caused by the presence of 

hydrocarbon wax (Fuhr and Holloway 1999). 

 

 

 

 

                                                 

* Reprinted with permission from “A Mechanistic Understanding of Asphaltene Precipitation from 

Varying Saturate Concentration Perspective” by Prakoso, A.A., Punase, A.D., Hascakir, B., 2015. 

Presented at SPE Latin American and Carribean Petroleum Engineering Conference, Quito, Ecuador, 18-

20 November. Copyright 2016 by Society of Petroleum Engineers. 
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Table 1: Physical properties and SARA fractions of 11 crude oils. API gravity is 

measured at standard temperature (60 °F) while other measurements are taken at 

room temperature (22.3 °C). 

Sample API Gravity Viscosity Saturates* Aromatics* Resins* nC5 Asph.* nC7 Asph.** nC5:nC7 

  (°API) (cP) (wt%) (wt%) (wt%) (wt%) (wt%) Ratio 

H1† 17.12 496 30.03 41.84 15.56 12.57 1.72 7.31 

H2 12.19 167660 11.01 44.89 20.75 23.35 11.15 2.09 

H3 18.84 884 22.63 37.57 16.03 23.76 5.71 4.16 

H4† 12.56 263273 32.02 21.95 7.95 38.08 8.26 4.61 

EH1 7.97 251083 12.70 42.11 22.93 22.26 13.40 1.66 

EH2 11.56 208585 10.14 38.01 13.09 38.76 21.42 1.81 

B1 12.09 10139 16.51 37.81 17.10 28.58 9.90 2.89 

B2† 8.19 53146 23.60 20.00 21.90 34.30 30.41 1.13 

B3 6.11 12050473 10.68 29.10 20.14 40.08 21.27 1.88 

B4 10.01 19196251 11.05 30.47 16.06 42.41 37.74 1.12 

W1 27.05 676 24.28 25.00 5.43 45.30 9.90 4.58 

*Based on ASTM D2007-11 

**Based on results from 10 mL/g solvent ratio (Buenrostro-Gonzalez et al. 2004) 

H, EH, B, and W correspond to the classification of crude oil: Heavy oil, Extra Heavy 

oil, Bitumen, and Waxy crude oil, respectively. 

†Samples contain water. 

 

From a quick glance, we can see that API gravity and viscosity do not show direct 

correlation. Hence, the popular preconception that heavier oil would lead to a more 

viscous oil is proven to be not valid for all crude oils. However, there should still be an 

indirect relationship between viscosity and API gravity, which will be investigated in later 

sections. 

After physical properties of the bulk samples have been measured, composition of 

the crude oils were then quantified. The SARA weight fractions for all samples are also 

included in Table 1. When physical properties of the bulk samples are compared with their 

SARA fractions, some correlations between the dataset can be found. The weight percent 
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of saturate fraction is found to have weak linear relationship with API gravity and inverse 

exponential correlation with viscosity. The opposite trends are observed for the resin and 

asphaltene weight fractions, where increasing weight percent is followed by decreasing 

API gravity and increasing viscosity. 

 

 
Figure 1: Correlation of heavy-to-light fractions of crude oil to API gravity and 

viscosity (Heavy: Asphaltenes and Resins; Light: Aromatics and Saturates) 

 

From these correlations we can conclude that higher concentration of heavier 

molecules have a tendency to increase density and viscosity of crude oil. To further test 

this hypothesis, we looked into the comparison of physical properties with compositional 

ratios of heavy-to-light fractions [(ASP+RES)/(ARO+SAT)]. In Figure 1, the two of such 

ratios are compared with density and viscosity of the sample. The results have exhibit 

trends which agree to our previous hypothesis. Therefore, heavy molecules within crude 

oils play an important role in the determination of crude oil’s physical properties, though, 

their interactions with light fractions can also surpass their impact on API gravity and 

viscosity of the bulk oil. 
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Nevertheless, some outliers are still noticeable within the dataset. Even though 

SARA fractionation have helped to simplify the characterization process of the diverse 

components of crude oil (McCain 1990), it is clear that information obtained solely from 

weight percent of SARA fractions is still not sufficient to fully describe the complex 

molecular interactions occurring within the crude oil. Hence, chemical characterization on 

the crude samples through FTIR analysis is required to gain further insight on these 

molecular-scale mechanisms. 

FTIR spectroscopy is a powerful tool which can be used to determine 

physicochemical properties of crude oil such as asphaltene content and viscosity (Wilt et 

al. 1998; Sastry et al. 1998; Li et al. 2012). Analysis of FTIR spectroscopy provide 

valuable information regarding the molecular structure and bonds which exists within the 

sample. To interpret FTIR curves, the observed peaks are connected to the corresponding 

molecular bonds and the combination of these bonds are then construed to describe the 

molecular formulation of the sample. For hydrocarbon molecules, –CH3 groups exhibit a 

significant peak around 2953 cm-1 wavenumber while –CH2 bonds are shown by the peak 

at 2853 cm-1 (Benkhedda et al. 1992). Significant peaks in the range of 1475, 1450, and 

1375 cm-1 are associated with bending vibrations of methylene and methyl groups (Wilt 

et al. 1998). Aromatic C–H bonds appear at the shoulder peak around 3100-3000 cm-1 

while the in-plane and out-of-plane bending are represented by peaks in the 1300-1000 

and 900-675 cm-1 wavenumber regions, respectively (Sastry et al. 1998). Additionally, 

aromatic compounds would also display a peak at 1600 cm-1 which are linked to C=C 

bonds (Bellamy 1980). 
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In this study, determination of functional groups within the crude oil components 

are of particular interest because of their effect on the overall polarity and stability of the 

system. Hydrogen bonds (e.g. O–H or N–H bonds) are shown by a stretched peak in the 

wavenumber range of 3600-3100 cm-1 (Castro and Vazquez 2009; Moschopedis and 

Speight 1976a). Oxygen functional groups, such as esters, ketones, aldehydes, carboxylic 

acids, and carbonyls are found within the 1735-1650 cm-1 regions (Calemma et al. 1995; 

Kar et al. 2014). Another type of heteroatoms often found in crude oils are sulfurs, which 

are generally in the form of sulfoxides (1030 cm-1), aliphatic sulfides, thiols (2600-2400 

cm-1), and thiopenes (Green et al. 1993). Moreover, nitrogen functional groups also exist 

as pyrroles, pyridines, indoles, and carbazoles, where –NH and C–N bonds may appear at 

around 3600-3100 cm-1 and 1300-1100 cm-1 respectively (Snyder et al. 1968; Larkin 

2011). 

One example is provided in Figure 2 to explain how FTIR spectra can be analyzed. 

Four crude oils from different categories were selected, which are samples H1, EH2, B3, 

and W1, shown in black, red, green, and blue lines, respectively. FTIR spectra for the rest 

of the samples are given in Figure A-1. 
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Figure 2: FTIR spectra of 4 different types of crude oil. Other FTIR spectra can be 

found in the appendix section (Figure A-1). 

 

As observed in Figure 2, these crude oils are primarily dominated by hydrocarbon 

chains (mostly aliphatic and aromatic) but also show hints of specific functional groups in 

the fingerprint region. Aside from the C–H groups that are shown in 2950-2853 cm-1 and 

1458-1376 cm-1 wavenumbers, other functional groups that seem predominant in crude oil 

are hydrogen bonds (3364 cm-1), carbonyl groups (1704 cm-1 and 1305 cm-1), and sulfur 

groups (1033 cm-1) (Moschopedis and Speight 1976a; Siddiqui and Ali 1999; Wilt et al. 

1998). However, multiple molecular groups have overlapping peaks within these 

wavenumber regions, which further complicate the distinction of specific functional 

groups in the crude oil without other complementary techniques (Siddiqui and Ali 1999). 
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It is also important to note that the peaks in the 2300-1800 cm-1 can be disregarded due to 

a noise caused by the ATR diamond crystal (Unur 2013). 

When four spectra of different types of crude oils are compared, their FTIR spectra 

exhibit a lot of similarities with each other. However, it can be discerned that the heavier 

crudes and bitumens display higher absorbance values in the aromatic and functional 

groups wavenumber regions compared to their lighter counterparts. This trend suggests 

that heavier crudes and bitumens are more aromatic and contain larger amounts of 

heteroatoms, which is the cause for heavier and more viscous nature of the crude oil.  

Additionally, an anomaly was observed for the FTIR spectrum of sample W1 in the 

(CH2)n, n>4 bond region shown by the tall peak at 722 cm-1, which represents very long 

aliphatic hydrocarbon chains and has previously been connected to the signature of 

hydrocarbon wax (Musser and Kilpatrick 1998; Krump et al. 2005). 

To further understand the chemical composition of the crude oil, elemental 

analyses were carried out by Chevron and the results were listed in Table 2. The analysis 

have indicated the presence of N, O, S, and other metallic (inorganic) elements within the 

crude oil. Hence, the functional groups identified through the FTIR spectra have been 

verified to exist, with oxygen groups being the most abundant followed by sulfur and 

nitrogen functional groups, respectively.  Note that oxygen amount was calculated by the 

remaining wt%, thus, it may also include other elements that are not detected by the 

machine, mainly anions such as Cl. 

The elemental composition of crude oils can give significant clues on the 

molecular structure of the crude oil and the inorganic content of the reservoir rock host 
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the crude oil. For example, nickel (Ni) and vanadium (V) are common organometallic 

content of crude oils; however, other metals, such as calcium (Ca), iron (Fe), magnesium 

(Mg), potassium (K), sulfur (S), nickel (Ni), and sodium (Na), are known to originate from 

the reservoir rocks and/or brine (Groen and Craig 1994; Bennett et al. 1993). For instance, 

crude oil B4 has the highest amount of calcium and magnesium. This crude oil is most 

likely produced from a carbonate reservoir, which consists of mainly calcite (CaCO3) and 

dolomite (CaMg(CO3)2). Crude oil B2 shows similar patterns due to the fact that it comes 

from a Canadian oil sands reservoir, which is known to have sections of carbonate 

formations (Bayliss and Levinson 1976). Sample EH2 has high amounts of iron and sulfur, 

which may come from iron-rich sediments containing large amount of pyrite (FeS2). 

Similarly, the high concentration of iron in H2 and H4 crude oils, which are produced 

from sandstone reservoirs, may come from the hematite and magnetite minerals. 

Additionally, crude oils B3, B4, and B2 contain appreciable amounts of potassium, an 

indication of high clay content (Weaver 1967), which may come from shale layers found 

throughout the reservoirs (Takahashi and Torigoe 2008; Bayliss and Levinson 1976). 

These samples also have high sodium content, which is most likely due to brine from the 

shales. Furthermore, sulfur can constantly be seen as the largest source of heteroatoms 

among the crude oil samples. Sulfur can exist in either organic or inorganic compounds, 

such as thiols, sulfides, thiophenes, and pyrites (Manahan 1990; Waldo et al. 1991). From 

these analyses, it is clear that the crude oils analyzed in this study have both organic and 

inorganic contents. 
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Table 2: Elemental analysis of crude oil 
Crude oil composition 

Elements, wt% H1† H2 H3 H4† EH1 EH2 B1 B2† B3 B4 W1 

C 81.3 80.9 81 72.91 83.5 80.6 80.9 80.3 81.2 80.8 84.4 

H 11.5 11 11 10.53 10.6 10.5 10.8 10.3 10.4 10.3 13.4 

H/C 1.70 1.63 1.63 1.73 1.52 1.56 1.60 1.54 1.54 1.53 1.91 

O* 2.99 4.45 5.55 14.71 1.24 2.53 2.86 1.46 1.48 1.56 1.08 

N ≤1 1.26 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 

S 3.2 2.35 1.43 0.81 3.6 5.24 4.41 6.87 5.82 6.22 0.119 

Heteroatoms** 7.2 8.1 8 16.56 5.9 8.9 8.3 9.4 8.4 8.9 2.2 

Trace elements, ppm 

Al 1.2 2.35 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

B 9.41 14.6 4.02 20.5 1.87 1.59 2.68 22.8 18.1 3.32 n.d. 

Ca 6.96 14.4 7.14 1.5 2.5 n.d. n.d. 84.1 10.2 291 n.d. 

Cu 1.77 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Fe 6.4 80.3 6.82 147 3.68 224 2.49 14.6 31.9 5 n.d. 

K 5.1 5.1 5 6 5.7 5.2 5.8 23 13 42 5.1 

Mg 12.4 2.73 2.08 1.2 n.d. n.d. n.d. 5.11 n.d. 20.3 n.d. 

Mo n.d. 2.41 n.d. n.d. 1.4 475 8.9 7.82 14.6 11.4 n.d. 

Na 21.5 67 74.5 17 58.1 8.46 23.3 235 504 209 14.8 

Ni 4.31 78.4 20 20.9 95.3 88.4 68.1 80.3 9.76 100 7.46 

P 2.1 2.1 2 2.4 2.3 2.1 2.4 2 2.1 2.2 2.1 

Pb n.d. 2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Si 3.49 11.4 n.d. 112 n.d. 45.1 n.d. 7.49 131 2.7 n.d. 

Sn n.d. 1.4 n.d. 1.2 n.d. 1.4 1.2 1.5 n.d. n.d. n.d. 

Ti n.d. 4.22 n.d. n.d. 2.68 n.d. 2.94 3.18 3.9 n.d. n.d. 

V 10.4 110 38.8 77.3 402 469 172 218 258 512 n.d. 

Zn n.d. 1.1 n.d. 1.2 4.09 n.d. n.d. 5 n.d. n.d. n.d. 

Metals*** 70 371 154 273 575 1271 285 678 845 1191 27 

*O is calculated from the remaining wt% 

**Heteroatoms is the sum of all elements and trace elements (in wt%) except for C and H 

***Metals (in ppm) is the sum of all metallic elements (i.e. Al, Ca, Cr, Cu, Fe, K, Mg, 

Mo, Na, Ni, Pb, Sn, Ti, V, and Zn) 

†Samples contain water. 

 

To determine the effect of heteroatoms on the physicochemical characteristics of 

crude oil and bitumens, elemental values of the samples were compared with the physical 

properties of crude oil (Table 1) using correlation plots in Figure 3. Accordingly, Figure 

3-A, 3-B, 3-C, and 3-D provide the relationship of heteroatom content with respect to API 

gravity, viscosity, n-pentane and n-heptane asphaltene content. 
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Figure 3: Correlations of heteroatom content (Table 2) with physical properties of 

crude oil (Table 1). Blank circles represent outliers in the dataset. 

 

The outliers in each dataset are shown as blank circles while data points that are in 

good agreement with the trend are represented by the black dots. Contribution of the 

outliers were excluded from the correlations given in each figure. Though linear relations 
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were provided in the graph, Figure 3-C and 3-D also exhibited good exponential 

correlations (R2 value of 0.9242 and 0.9196). 

Correlations in Figure 3 show that crude oils and bitumens with higher 

concentration of heteroatoms will be heavier, more viscous, and contain more asphaltenes. 

This trend agrees with the FTIR spectra, where the heavier and more viscous samples 

show higher peaks in the wavenumber regions for heteroatom functional groups. 

Nevertheless, the dataset contain some anomalies for sample H4, EH1, and W1. Sample 

H4 have abnormally higher concentration of non-hydrocarbon elements compared to the 

other samples while the opposite holds true for sample EH1. Sample W1 has a 

fundamental difference in chemical composition caused by the presence of hydrocarbon 

waxes (Fuhr and Holloway 1999). 

To isolate the elements which have the most impact on the physicochemical 

constitution of crude oil, each elemental group are analyzed in the same manner as the 

heteroatoms. From assessment on the organic components, sulfur content seem to have 

the best correlation with physical characteristics of the crude oil as displayed in Figure 4. 

The correlation plots revealed that sulfur contributes to the increase in density, viscosity, 

and asphaltene content of crude oil. Oxygen, to a lesser extent, also show similar trends 

but not for nitrogen. 
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Figure 4: Correlations of sulfur content (Table 2) with physical properties of crude 

oil (Table 1). Blank circles represent outliers in the dataset. 

  

Another elemental group which show great relationship with physical parameters 

of crude oil is the metallic constituents. In Figure 5, the concentration of metals in the 

crude oil is revealed to correlate well with API gravity, viscosity, and asphaltene content 

of the bulk samples. Therefore, even though these inorganic elements make up only a very 



 

27 

 

small portion of the crude oil, they still have a large influence in determining the physical 

properties of the crude oils and bitumens. Unfortunately, the presence of these trace 

elements cannot be detected through FTIR spectroscopy due to the limitations of the ATR 

spectrometer (Chan and Kazarian 2006). 

 

 
Figure 5: Correlations of metals content (Table 2) with physical properties of crude 

oil (Table 1). Blank circles represent outliers in the dataset. (Metals detected: Al, 

Ca, Cr, Cu, Fe, K, Mg, Mo, Na, Ni, Pb, Sn, Ti, V, and Zn). 
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Evaluation of the solubility profile of asphaltenes can provide additional insight 

into the colloidal stability of crude oils (Rogel et al. 2010). Varying solubility profile 

distributions can be observed on crude oils from different origins as seen in Figure 6 and 

Figure A-3. The black, red, green, and blue curves represent solubility profile of sample 

H1, EH2, B3, and W1, respectively. 

 

 
Figure 6: Solubility profile of 4 different types of crude oil. The solubility profiles 

for other crude oil samples are listed in Figure A-3. 

 

Looking at the curves in Figure 6 and A-3, two distinct distribution of asphaltene 

solubility profile are observed: unimodal and bimodal. In terms of asphaltenes stability, 

the unimodal distribution represents higher stability compared to the bimodal distribution 
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(Rogel et al. 2010). Two or more peaks within the solubility profile indicate that molecular 

compounds within the sample have varying solubility, which can imply immiscibility 

between the components, hence, higher risk of precipitation (Rogel et al. 2010, 2012). 

From this definition, samples with bimodal and wider distribution can then be regarded as 

less stable compared to their counterparts. To help relate the shape of the distribution with 

stability, a quantifiable parameter ∆PS is created. ∆PS values for each sample were 

calculated from the solubility profiles using Equation 1 (in Appendix) and listed in Table 

3. Accordingly, samples with higher ∆PS value is found to be less stable and are more 

prone to precipitation (Rogel et al. 2010). 

 

Table 3: ∆PS values for 11 crude oil samples 

Sample ∆PS 

H1† 0.40 

H2 1.25 

H3 1.04 

H4† 2.02 

EH1 1.79 

EH2 1.83 

B1 1.36 

B2† 1.24 

B3 1.17 

B4 0.63 

W1 1.99 

†Samples contain water. 
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Figure 7: Correlations of ∆PS parameter (Table 3) with SARA (Table 1) and 

elemental compositions (Table 2) of crude oil. Blank circles represent outliers in the 

dataset. 
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The values in Table 3 were then correlated to SARA fractions (Table 1) and 

elemental compositions of crude oil (Table 2). From correlation plots in Figure 7, it can 

be observed that both SARA fractions and elemental compositions of crude oil have a 

large influence on the colloidal stability of crude oils. 

Figure 7A displays how increasing asphaltene concentration can negatively affect 

stability of crude oil. However, the presence of resins within the crude oil also need to be 

accounted for, because they have a significant contribution toward stabilizing asphaltenes 

within the crude oil, as seen in Figure 7B. Heteroatoms such as oxygen and sulfur in the 

form of different functional groups may affect the stability of asphaltenes (Figure 7C and 

7D). Furthermore, vanadium and nickel play a vital role in destabilizing asphaltenes 

(Figure 7E and 7F), even though their concentration within the crude oil are miniscule 

compared to the major heteroatoms (N, O, S). 

 

4.2 Characterization of Asphaltenes 

Asphaltene characterization were carried out in a similar approach that was applied 

to the crude oil samples. Since there is no unique definition of asphaltenes, 

characterization studies for asphaltenes were conducted on asphaltenes separated from 

three different methods. In the literature, separation of asphaltenes using n-heptane (nC7) 

have been found to isolate heavier and more polar materials from the crude oil compared 

to n-pentane (nC5) separation (Ortega et al. 2015; Barrera et al. 2013). However, as seen 

in Table 4, the density of nC7 asphaltenes are not always higher than nC5 asphaltenes. 

This trend is also seen across the four different class of crude oil, not only for a specific 
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class of crude oil. Our results suggest that more polar part of the asphaltenes are not always 

denser than the less polar part of asphaltenes. 

 

Table 4: Asphaltene densities in g/cc. Calculation and measurement methods are 

based on the procedure developed by Barrera et al. (2013). 

Sample nC5 Asphaltene Density nC7 Asphaltene Density 

H1† 1.21 1.10 

H2 1.16 1.12 

H3 1.16 1.21 

H4† 1.08 1.20 

EH1 1.18 1.16 

EH2 1.16 1.17 

B1 1.28 1.12 

B2† 1.05 1.16 

B3 1.12 1.44 

B4 1.15 1.17 

W1 0.95 0.89 

†Samples contain water. 

 

When densities of both n-pentane and n-heptane asphaltenes (Table 4) are 

correlated with physical properties of crude oil (Table 1) in Figure 8, asphaltene density 

is shown to directly relate with density and viscosity of crude oils. This finding purports 

the logic that denser materials would contribute to higher crude density and viscosity. 

Thus, the heavy constituents of crude oil can be regarded as the dominant components in 

shaping the physical properties of crude oil. 
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Figure 8: Correlations of asphaltene density (Table 4) with physical properties of 

crude oil (Table 1). Blank circles represent outliers in the dataset. 

 

Molecular assessment of the asphaltene samples is necessary to distinguish the 

polar functional groups that are responsible for the stability of asphaltenes within the crude 

oil. A similar approach is taken to analyze these properties, where FTIR spectroscopy and 

elemental analysis are utilized to isolate functional groups of interest. A comparison of 
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FTIR spectra between original crude oil and the separated n-pentane and n-heptane 

asphaltenes are provided for sample EH2 in Figure 9. The red, black, and grey lines each 

represent FTIR spectrum of the crude oil, n-pentane asphaltenes, and n-heptane 

asphaltenes, respectively. FTIR spectra for other samples are included in Figure A-1. 

 

 
Figure 9: FTIR spectra of original crude oil, n-pentane and n-heptane asphaltenes 

of sample EH2 

 

Previous studies have concluded that FTIR spectra of n-pentane and n-heptane 

asphaltenes exhibit similar molecular structures and undistinguishable features (Nalwaya 

et al. 1999). Observation from Figure 9 show that the overall spectra of n-pentane and n-

heptane asphaltenes are similar, though, the intensity of the absorbance peaks are different 
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in several wavenumber regions. For instance, in the hydrogen bond region n-pentane 

asphaltene is shown to have larger peak than n-heptane asphaltene. This finding agrees 

with the literature where abundance of hydroxyl molecules have previously been found 

for n-pentane asphaltenes (Moschopedis and Speight 1976b; Ignasiak et al. 1977). 

However, this peak may actually indicate the presence of water which may be separated 

together with the asphaltenes because water is more soluble in n-pentane than n-heptane 

(Yang 2011). Additionally, higher absorbance peaks in the region for other functional 

groups indicate that n-heptane asphaltenes contain larger proportions of heteroatoms than 

n-pentane asphaltenes (Speight and Moschopedis 1982). 

Another distinctive feature between n-pentane and n-heptane asphaltenes is their 

aromaticity. As observed from the FTIR spectra, n-heptane asphaltenes appear to have 

shorter peaks in the aliphatic bond regions (2955-2851 cm-1) but taller peaks in the 

aromatic bond regions (1600 cm-1) compared to n-pentane asphaltenes (Figure A-1), 

indicating a higher degree of aromaticity for n-heptane asphaltenes (Speight 1994; 

Ancheyta et al. 2002). Additionally, when the FTIR spectra of n-pentane and n-heptane 

asphaltenes are compared to the FTIR spectra of crude oil (Figure A-1), both asphaltenes 

exhibit higher concentrations of hetero elements, supporting the notion that most of the 

heteroatoms in the crude oil are concentrated in the asphaltene fraction (Speight 2014). 

Surprisingly, the peak representing carbonyl functional groups (1700 cm-1) are not clearly 

distinguishable, more so for the asphaltene samples than the crude oil, due to the noise 

from atmospheric water vapors (Tennyson et al. 2009). 
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The FTIR spectra of the asphaltene samples (Figure A-1) are also compared with 

the reference spectra (Figure A-2) to ensure that the samples are free of contamination. 

From this comparison, the samples are not found to show similar peaks with the reference 

samples. Thus, it can be concluded that the asphaltene samples are free from 

contamination of solvents and adsorbent materials. However, some anomalies are noticed 

for sample B2 and W1 (Figure A-1H and A-1K). The FTIR spectrum for the n-pentane 

asphaltene of B2 exhibit significant peak in the 3600-3100 cm-1 region, indicating the large 

presence of O-H bonds. With the addition of a distinctive peak in the 800-600 cm-1 region, 

the FTIR profile for sample B2 seems identical to distilled water FTIR spectrum shown in 

Fig. A-2C. Since distilled water was not used in asphaltene separation, it is inferred that 

this sample contain water, especially in the separated asphaltenes. Moreover, similar to its 

waxy original crude oil, the FTIR spectrum for W1 asphaltenes displayed significant peaks 

in the C-H bonds region, confirming the presence of wax in the sample. 

Further molecular-scale evaluation of asphaltenes are performed through 

elemental analysis. Elemental composition of the n-pentane asphaltene samples are shown 

in Table 5 below. 
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Table 5: Elemental analysis of n-pentane asphaltene samples 
n-Pentane asphaltenes composition 

Elements H1† H2 H3 H4† EH1 EH2 B1 B2† B3 B4 W1 

C 78.78 79.01 83.87 79.25 81.77 80.4 80.3 66.38 78.59 78.35 80.46 

H 7.42 7.81 8.41 7 7.98 8.21 8.19 7.96 8.36 7.63 11.9 

H/C 1.13 1.19 1.20 1.06 1.17 1.23 1.22 1.44 1.28 1.17 1.77 

O* 3.61 7.02 -2.62 9.25 -0.07 1.79 6.52 13.66 6.47 3.96 6.34 

N 1.12 2.43 1.35 1.28 1.84 1.38 1.43 1.06 1.27 1.28 1.03 

S 8.83 3.55 8.66 2.61 8.34 7.84 3.38 10.6 5.09 8.51 0.26 

Heteroatoms** 13.8 13.18 7.72 13.75 10.25 11.39 11.51 25.66 13.05 14.02 7.64 

Trace elements, ppm 

Al 60.5 14.3 n.d. n.d. n.d. n.d. n.d. 6.34 n.d. n.d. n.d. 

B 8.3 13.8 58.8 149 11.2 n.d. 6.4 100 7.16 8.71 n.d. 

Ca 535 70 27.7 195 n.d. n.d. 35.6 270 7.96 805 n.d. 

Cu 40.1 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Fe 154 427 107 1340 12.8 761 46.1 46.4 15.5 12 n.d. 

K 141 24 53.8 6.53 28 n.d. 26 60 25 91.6 26 

Mg 332 18.3 n.d. 13.2 n.d. n.d. 23.8 22.1 n.d. 57.9 n.d. 

Mo n.d. 13.7 52.7 n.d. 54.9 1460 n.d. 38.1 5.51 29.7 n.d. 

Na 764 325 1690 2450 147 34.1 1100 1750 262 65 43.8 

Ni 59.5 293 279 201 309 251 172 277 346 260 44.3 

P 17 9.6 10 12 9.9 n.d. 11 11 10 11 11 

Pb n.d. 8.37 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Si 157 66.6 301 913 n.d. 16.2 n.d. 41 11 6.4 n.d. 

Sn n.d. 17 n.d. 24.1 6 n.d. n.d. 12 n.d. n.d. n.d. 

Ti n.d. 22.1 13.8 n.d. 17.1 n.d. n.d. 14.3 11.1 n.d. n.d. 

V 145 489 753 793 792 1290 358 775 1490 1310 n.d. 

Zn 16.9 5.15 n.d. 9.1 n.d. n.d. n.d. 9.01 5.15 n.d. n.d. 

Metals*** 2248 1727 2977 5032 1367 3796 1762 3280 2168 2631 114 

*O is calculated from the remaining wt% 

**Heteroatoms is the sum of every elements (in wt%) except for C and H 

***Metals (in ppm) is the sum of all metallic elements (i.e. Al, Ca, Cr, Cu, Fe, K, Mg, 

Mo, Na, Ni, Pb, Sn, Ti, V, and Zn) 

†Samples contain water. 

 

Comparing these data (Table 5) with elemental constituents of crude oil (Table 2), 

it is clear that asphaltenes are more concentrated with heteroatoms and have higher degree 

of aromaticity compared to crude oil, which is in agreement with the FTIR spectra. The 
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effect of these elements on the density of asphaltenes are also analyzed though correlation 

plots given in Figure 10.  

 

 
Figure 10: Correlations of elemental composition with density of n-pentane 

asphaltenes. Blank circles represent outliers in the dataset. Asphaltene densities are 

reported in Table 4 and elemental analysis data are obtained from Table 5. In 

Figure 8D, metals include: Al, Ca, Cr, Cu, Fe, K, Mg, Mo, Na, Ni, Pb, Sn, Ti, V, and 

Zn elements. 

 

Larger proportions of polyaromatic condensed rings, described by the low H/C 

ratio, is found to contribute to the higher density of asphaltenes, which is in accordance 

with the literature (Rogel and Carbognani 2003). The increasing amount of sulfur and 
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nitrogen elements resulted in heavier asphaltenes. On the other hand, oxygen and metal 

content in asphaltenes are observed to reduce asphaltene density, which is rather 

counterintuitive. Conceivably, this unique behavior may elucidate the fact that the sulfur 

and nitrogen compounds have more of a dominant effect on the density of asphaltenes 

rather than oxygen and other metallic constituents. 

This thesis analyzed, for the first time, asphaltene behavior using the zeta potential 

concept. Zeta potential measurements coupled with particle size analysis on both n-

pentane and n-heptane asphaltenes were conducted to evaluate the reliability of these 

measurements on the estimation of asphaltene stability within the crude oil. The results 

from these experiments are listed in Table 6. 

 

Table 6: Zeta potential and cluster size measurements of asphaltene samples. pH 

and Total Dissolved Solids (TDS) of the solution are also recorded. 

Sample 
 
 

n-pentane asphaltene n-heptane asphaltene 

Cluster Size Abs. Zeta Potential pH TDS Cluster Size Abs. Zeta Potential pH TDS 

(nm) (mV)  (ppm) (nm) (mV)  (ppm) 

H1† 905.6 33.95 6.72 198 6943.2 17.40 6.72 198 

H2 2337.6 37.03 6.96 88 7093.7 31.66 7.22 176 

H3 1888.4 27.63 6.54 86 4114.4 18.20 7.49 167 

H4† 3804.4 22.47 7.50 104 891.1 21.48 6.33 78.8 

EH1 573.9 34.48 6.27 185 3891.5 23.18 6.27 185 

EH2 5796.9 27.09 7.27 102 15224.7 14.41 5.92 102 

B1 1739.7 30.86 6.70 172 802.7 17.34 6.70 172 

B2† 4766.6 41.60 8.01 93 8877.6 41.80 7.75 173 

B3 6279.7 27.42 7.23 173 1757 22.07 7.76 166 

B4 1776.6 29.08 6.80 164 6364.9 18.64 7.40 170 

W1 1636.5 31.05 6.84 180 267.8 25.26 6.97 170 

*The zeta potential and particle size values were obtained from asphaltenes suspended in 

1mM KCl solution. 

†Samples contain water. 
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The literature has defined higher absolute values of zeta potential to represent a 

stable solution while the opposite holds true for lower absolute values (Riddick 1968). 

Comparing the zeta potential of n-pentane and n-heptane asphaltenes, lower values of zeta 

potential are observed for n-heptane asphaltenes in almost all of the samples, which 

implies higher tendency to aggregate, leading to higher polarity and lower stability. This 

trend agrees with the literature which have consistently found n-heptane asphaltenes to be 

more polar than n-pentane asphaltenes (Ortega et al. 2015). Only B2 does not follow this 

trend and has an increase in zeta potential value of 0.2, which may be due to water content 

of B2. The cluster size of the asphaltenes is also found to be inversely related to the zeta 

potential values of the asphaltenes. However, H2 and B2 seem to show irregular behavior 

with the large cluster size that they have despite their high zeta potential value. These 

inconsistencies may be due to the overestimation of zeta potential that is caused either by 

the contamination of resin, high pH value of the solution (Parra-Barraza et al. 2003; 

Hannisdal et al. 2006), or water content of bulk oil which cannot be separated through n-

pentane treatment (Yang 2011). 

When composition of SARA fractions (Table 1) is taken into consideration in 

Figure 11, asphaltene content exhibit linear relationship with cluster size of the samples. 

This trend may suggest that higher concentration of asphaltenes increase the chances of 

asphaltenes molecules to come into contact with each other, leading to more aggregation 

and increase in cluster size. Resins and aromatics weight percent also correlate linearly 

with zeta potential, emphasizing their roles in stabilizing asphaltenes within the crude oil. 

Zeta potential is also shown to increase as the ratio of resins-to-asphaltenes increases, 
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further signifying the peptizing ability of resins (Jada and Salou 2002). These results have 

proven that interaction between the polar compounds of crude oil are important to be 

analyzed because they can affect the overall polarity of the sample (Kar and Hascakir 

2015). 

 

 
Figure 11: Correlations of SARA fractions (Table 1) with zeta potential and cluster 

size of n-pentane asphaltenes (Table 6). Blank circles represent outliers in the 

dataset. 
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The zeta potential and cluster size values are also correlated with elemental 

composition of n-pentane asphaltenes to determine the functional group that is responsible 

for stability of asphaltenes. From the correlation plots in Figure 12, higher degree of 

condensation for the polycyclic aromatic hydrocarbons (PAH) signified by the low H/C 

ratio is found to create more stable asphaltene molecules (Ruiz-Morales 2002; Ruiz-

Morales and Mullins 2007). Some anomalies can still be observed, however, which may 

be due to the contribution of some inorganic carbon compounds that can deviate the H/C 

ratio. The presence of oxygen and, to a lesser extent, nitrogen cause asphaltenes to become 

more polar as implied by the decrease in zeta potential of the asphaltenes. However, an 

inconsistency is observed for the sulfur element, where increasing concentration of sulfur 

leads to higher stability of asphaltenes. This trend seems implausible because the existence 

of heteroatoms within the asphaltene molecule causes charge imbalances on the atomic 

scale and should generate permanent electrical dipoles, making the molecule more polar 

(Wattana et al. 2005). In contrast, the metallic components contribute to higher polarity of 

the asphaltene molecules as expected (Kaminski et al. 2000; Nalwaya et al. 1999). 
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Figure 12: Correlations of elemental composition of nC5 asphaltenes (Table 5) with 

zeta potential of nC5 asphaltenes (Table 6). Blank circles represent outliers in the 

dataset. Metal content is the summation of all metallic elements, which include Al, 

Ca, Cr, Cu, Fe, K, Mg, Mo, Na, Ni, Pb, Sn, Ti, V, and Zn. 

 

When the elemental composition of the n-pentane asphaltenes are compared with 

the cluster sizes in Figure 13, some of the functional groups are proven to have clear-cut 

influence on asphaltene polarity. Oxygen moieties are revealed to increase the tendencies 

of asphaltene molecules to aggregate in larger clusters, which is in accordance to the 
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previous zeta potential results (based on Table 5 and 6). Similarly, the metal contents are 

also enhancing the polarity of asphaltene molecules as indicated by the increase in cluster 

size (Figure 13). In contrast, the sulfur and nitrogen functional groups are exhibiting 

inconsistent trends when correlated with asphaltene cluster sizes (Table 5 and 6). 

 

 
Figure 13: Correlations of elemental composition of nC5 asphaltenes (Table 5) with 

cluster size of nC5 asphaltenes (Table 6). Blank circles represent outliers in the 

dataset. 

 

Asphaltene stability was investigated through several microscopy technique to 

observe the aggregation behavior of asphaltenes that have been precipitated under 

different conditions. Visual inspection from optical microscopy in Figure 13 shows how 

some asphaltenes tend aggregate in smaller clusters while others form larger clusters. 

Asphaltenes precipitated from n-heptane are exhibiting larger clusters compared to the n-

pentane asphaltenes, corroborating the high polarity nature of n-heptane asphaltenes. It 

should be noted that the asphaltenes clusters can easily break during sample preparation 
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or microscopic observation. Also, asphaltenes are highly oxidative, hence, these images 

should be acquired just after asphaltene separation and measurements should be conducted 

quickly. However, if separation and imaging can be accomplished under inert atmosphere, 

interpretation of images would be more useful to understand asphaltene stability. 

 

           
Figure 14: Optical microscopic images for nC5 and nC7 asphaltenes under 100X 

magnification 
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Figure 14: Continued 

 

To investigate the surface chemistry and morphology of asphaltenes, SEM-EDS 

imaging was also conducted. Figure 15 are examples of SEM images and Table 7 lists 

the EDS results of n-pentane asphaltenes. As seen in Figure A-6, asphaltenes from 

different origins show a wide variety of surface morphology, from really smooth surfaces 

to clustered and rough surfaces. 
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Figure 15: SEM images of n-pentane asphaltenes 

 

Interestingly, almost all of the EDS (Table 7) did not detect the presence of the 

nitrogen and heavy metals, even though they are the primary constituents of asphaltenes 

and are known to be present within the samples based on the elemental analysis results 

(Table 5). Other than for sample H1, sulfur wt% in the other samples are also significantly 

smaller than expected. Since EDS only have depth resolution of around 1-5 µm (Lee 2002; 

Klein and Hercules 1983), the EDS may not be able to capture elements transmitted from 

the core of asphaltenes, implying that the heavier elements are contained within the core 

of asphaltenes rather than on the exterior ends (Speight 2014). In contrast, oxygen is 

abundantly found on the surfaces of asphaltenes due to the oxidative nature of asphaltenes 
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(Moschopedis and Speight 1975). Furthermore, the EDS results show the presence of 

chlorine (Cl) which was not detected previously in the elemental analysis of asphaltenes 

(Table 5). The source of Na and Cl elements may be from contamination of crude oil by 

the reservoir brines (Tang and Morrow 1999). 

 

Table 7: EDS results of n-pentane asphaltenes 
n-Pentane asphaltenes surface elements 

Elements, wt% H1† H2 H3 H4† EH1 EH2 B1 B2† B3 B4 W1 

C 89 87.73 91.1 80.9 87.9 93.1 88.8 89.2 88.02 89.87 91.67 

O 2 10.87 7.9 18.7 10.8 4.4 8.6 6.6 10.13 8.47 8.1 

S 8.6 0.87 0.6 0.2 0.6 2.2 2.3 2.8 0.59 1.29 0.02 

N 0 0 0 0 0 0 0 0.8 0 0 0 

Al 0.2 0.16 0.3 0.1 0.5 0.2 0.1 0.1 1.11 0.21 0.19 

Ca 0.1 0 0 0 0 0 0 0 0 0 0 

Cl 0 0.07 0 0 0 0 0 0.1 0.04 0.08 0 

Cr 0 0 0 0 0 0 0 0 0 0 0 

Fe 0 0.03 0 0 0 0 0 0 0 0 0 

Mg 0 0.01 0 0 0 0 0 0 0.07 0.01 0.01 

Na 0 0.21 0.1 0 0 0 0 0.2 0 0.07 0 

Ni 0 0 0 0 0 0 0 0 0.03 0 0 

Si 0 0.05 0 0 0 0 0 0 0.01 0.01 0.01 

V 0 0.01 0 0 0 0 0 0 0 0 0 

*EDS cannot detect hydrogen. 

†Samples contain water. 

 

To understand the role of surface elements in the aggregation mechanism of 

asphaltene molecules, the EDS results (Table 7) were correlated with zeta potential and 

cluster size of asphaltenes (Table 6) in Figure 16. 
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Figure 16: Correlation of oxygen content (EDS) with zeta potential and cluster size 

of n-pentane asphaltenes. Blank circles represent outliers in the dataset. 

 

The abundance of oxygen functions in the form of hydroxyl groups at peripheral 

sites of asphaltene molecules have previously been observed (Moschopedis and Speight 

1976b) and their effects on asphaltene stability analyzed (Moschopedis and Speight 

1976a). Comparison of zeta potential and cluster size data with oxygen content from the 

surface of asphaltenes (Figure 16) shows that oxygen moieties, most likely to be in 

hydroxyl structure, can cause asphaltene molecules to have higher propensity towards 

aggregation. This result falls in agreement with the literature which signifies the 

importance of hydrogen bonds in asphaltene agglomeration mechanism (Moschopedis and 

Speight 1976a). Note that oxygen could be added to asphaltene due to exposure to air. 

Nevertheless, this information is crucial to understand the oxidation tendencies of 

asphaltenes, which can have a direct impact on asphaltene stability. 
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Another attempt to characterize the cluster size of asphaltenes when suspended in 

toluene is through the use of AFM microscopy. Figure A-4 presents the 3D image of the 

particles that are contained within the toluene solution. However, obtaining a 

representative result from this experiment proved to be difficult due to the really small 

scale of observation. Accurate measurements were also hard to perform because of the 

impurities contained within the toluene solvent, even though an ACS reagent grade 

(≥99.5%) have been used to dilute the samples. Through comparison of the images in 

Figure A-5, it is evident that the impurities within the toluene solvent can also exhibit 

peaks, creating noises that are hard to differentiate with signs of the asphaltene particles. 

When just the sample holder (mica) was analyzed, no peaks can be seen, which means that 

the noise should only come from the impurities in toluene. Hence, to achieve accurate 

measurements with AFM microscopy, the toluene solvent used to dilute the asphaltenes 

should have 100% purity, which is quite hard and costly to attain. 

 

4.3 Onset Asphaltene Precipitation Results 

Different volumes of n-pentane or n-heptane were mixed with the bulk samples to 

precipitate asphaltenes. The results from these tests are given in Table 8. Comparison of 

the outcome from n-pentane and n-heptane showed that higher carbon number of n-alkane 

precipitate lower amount of asphaltenes (Buenrostro-Gonzalez et al. 2004). Some 

discrepancies are found for sample EH2 and B2 where increasing concentration of solvent 

ratio actually decreases the amount of precipitated asphaltenes, though, this trend have 

also been observed previously in heavy oil samples (Kokal et al. 1992). For most of the 
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viscous samples, the low solvent ratios produce inaccurate results. These error may be 

caused by experimental challenges related to filtration of highly viscous samples or the 

erroneous nature of asphaltene precipitation at low solvent ratios (Speight et al. 1984). 

The insufficient proportions of solvents to completely separate resin from asphaltenes at 

lower solvent ratios may be another explanation for these high amount of precipitation 

(Speight 1994; Speight et al. 1984). 

 

Table 8: Onset asphaltene precipitation results for n-pentane and n-heptane 

Solvent 
Ratio* 

H1 H2 H3 H4 EH1 EH2 

nC5 nC7 nC5 nC7 nC5 nC7 nC5 nC7 nC5 nC7 nC5 nC7 

1 6.64 0.77 26.57 5.80 7.26 3.14 26.86 8.42 15.66 2.51 23.66 16.33 

3 8.82 1.24 35.77 7.78 9.57 3.44 29.50 7.51 16.68 11.13 26.83 23.69 

5 6.93 1.07 23.87 10.75 14.90 4.07 31.72 9.34 17.66 11.77 27.79 22.50 

10 12.14 1.72 23.35 11.15 14.00 5.71 33.75 8.26 20.70 13.40 29.91 21.42 

30 13.33 6.80 28.30 12.73 13.80 7.64 32.69 12.92 26.94 15.94 23.94 18.55 

Solvent 
Ratio* 

B1 B2 B3 B4 W1 

nC5 nC7 nC5 nC7 nC5 nC7 nC5 nC7 nC5 nC7 

1 15.41 9.27 34.61 5.63 47.02 33.65 67.71 55.97 37.81 28.61 

3 12.78 9.85 32.34 25.92 47.86 23.41 57.52 45.80 39.48 28.07 

5 19.40 10.40 38.98 30.21 35.09 16.29 42.62 37.24 39.71 14.68 

10 16.13 9.90 42.76 30.41 40.08 21.27 42.41 37.74 45.30 24.01 

30 22.51 9.43 32.46 27.52 36.64 20.81 53.89 40.63 45.51 24.85 

*Solvent ratio is mL of solvent / g of oil 

 

Oil composition continuously changes during production due to the variation in 

pressure and temperature throughout the production system (McCain 1990). To model this 

operating condition, the saturate fraction is used to alter the chemical composition of the 

crude oil. Pseudo mixture of saturates fraction and H1 crude oil was prepared and the OAP 

was repeated.  From Figure 16, it can be observed that the addition of saturate fraction 
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induces larger amount of asphaltene precipitation. It can be observed from the graph that 

the addition of saturate induces larger amount of precipitated asphaltenes as compared to 

n-pentane and n-heptane asphaltenes, thus, highlighting lower solvating power and 

stronger destabilization force of the saturate fraction of the crude oil as compared to n-

pentane and n-heptane.  Therefore, precipitation of asphaltene during production can 

actually accelerate further precipitation due to increasing volume percentage of saturate 

fraction in the crude oil, resulting in a more severe asphaltene depositional problem. This 

characteristic is opposite that of resins and aromatics which are found to stabilize 

asphaltene in solution (Parra-Barraza et al. 2003).  

 

 
Figure 17: Onset asphaltene precipitation tests with saturate fraction and n-

pentane for sample H1 

 

In accordance to the OAP results, because saturates fraction precipitated more 

asphaltenes, the carbon number of the straight chain aliphatic saturates fraction of the 
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crude oil was expected to be lower than 5. However, the absorbance peaks which indicate 

the aliphatic regions in FTIR spectra give the lowest magnitude for nC5, intermediate for 

nC7, and the highest for saturates fraction of H1 (Figure 18). This contradiction highlights 

that in addition to the straight chain structure, saturates originated from bulk crude oils 

may also have branched but saturated structure and may contain functional groups, or 

heteroatoms. Presence of impurities in the saturate fraction of the crude oil has been 

previously reported by He et al. (2013). There are a few studies on how the asphaltene 

destabilization is established by the addition of saturated hydrocarbons with cyclic 

structures, or branched chained saturated hydrocarbons with impurities (Mukhametshina 

et al. 2015; Pereira et al. 2011; Wiehe et al. 2005). 

Also, the analysis of the FTIR spectra of saturates fractions may further elaborate 

the behavior of asphaltenes when the saturates fraction of crude oil increases. The FTIR 

spectra of the saturates fraction of sample H1 shown in Figure 18, indicates high 

absorbance peaks corresponding to hydrocarbon bonds of n-alkane. In addition to the 

normal alkane absorbance signature, the wavenumber region specified by the red arrow at 

the peak around 950-910 cm-1 may correspond to the presence of functional groups with 

impurities (Silverstein and Bassler 1967). The polarity associated with the functional 

groups and heteroatoms can significantly alter the overall polarity of the saturate fraction 

and consequently cause more asphaltene precipitation (Clayden 2001; Reichardt 1988; 

Skoog et al. 2014; Rappoport 2003). 
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Figure 18: FTIR spectra of n-pentane, n-heptane, and saturate fraction of H1. 

 

The FTIR spectra of all saturates fractions originated from 11 crude oil samples 

were examined and are included in the appendix section (Fig. A-5). Possible signature of 

similar functional groups were observed in all the saturates fractions, with H1 saturate 

sample yielding the highest absorbance peak in the signature region. Interpretations of 

these signatures in FTIR spectra are difficult, however, these peaks are the indication of 

presence of impurities in saturates fractions. 

Additional experiments were conducted to validate the presence of impurities 

within the saturates fraction and identify its molecular functionalities. First of all, 

Thermogravimetric Analysis and Differential Scanning Calorimetry (TGA-DSC) were 

conducted on the saturates fraction of sample H1 and B2 as well as n-heptane and n-decane 

for comparison purposes. TGA-DSC analyses were carried out under air injection by 

applying 10 °C/min heating rate and the temperature was increased till 900 °C. From the 

TGA-DSC curve in Figure 19, it can be observed that at 62 °C and 150 °C, respectively, 
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n-heptane and n-decane are completely consumed (purple and green TGA curves, 

respectively). At the same temperature values, DSC curves indicate endotherms (peaks) 

which are the indication of evaporation of these solvents. After those chemicals are 

consumed, DSC curve does not indicate any endothermic or exothermic reactions. 

However, saturates fractions are consumed at around 400 °C (black and red TGA curves). 

At the same temperature, DSC curves show a deep valley which is the indication of 

exothermic reactions. DSC curve between 320 – 500 °C shows several exotherms (valleys) 

and endotherms (peaks) which indicates the presence of impurities in saturates fraction. 

 

 
Figure 19: TGA and DSC curves for nC7 (purple curves), nC10 (green curves), and 

saturate fractions of sample H1 (black curves) and B2 (red curves). 

 

After confirming the presence of impurities with FTIR and TGA-DSC analyses, 

we also conducted Nuclear Magnetic Resonance (NMR) spectroscopy to further 

understand the molecular structure of the saturates fraction. From Figure 20, the proton 

NMR spectrum revealed that there is a possibility of carboxylic acids (O-H bond) as 

shown by the small peak. In contrast, no carbonyl peaks are observed from the 13C NMR 
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spectrum, this can be due to the lower sensitivity of 13C spectra (S/N ratio of 913:1) 

compared to 1H spectra (S/N ratio of 4300:1). Still the sensitivity of these measurements 

methods highly depends on the amount of the component (oxygen or sulfur) present in the 

sample. In other words, if the impurity content is below the detection limit of NMR, then, 

the impurity may not appear in the spectrum. 

 

 
Figure 20: 1H and 13C NMR spectroscopy of saturate fraction of sample H1. 

 

The Electrospray Ionization-Mass Spectrometry (ESI-MS) analysis was also 

conducted on the saturates sample of H1. Comparison of the resulting spectrum with 

available spectrums in online databases (http://www.massbank.jp/SearchPage.html) lead 

to many matches with compounds containing oxygen compounds and also provide some 

matches with compounds containing sulfur and phosphates functional groups. The 

positive and negative ions ESI-MS are given in Figure 20 and 21. 

While the existing libraries are rich, since the saturates fraction is a complex 

hydrocarbon mixture, no exact match for the saturates fraction was found in the library. 
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However, while these results could not provide us the presence of sulfur groups, it still 

proves the existence of impurities in saturates fraction. 

 

 
Figure 21: Positive ions ESI-MS of H1 saturate fraction 

 

 
Figure 22: Negative ions ESI-MS of H1 saturate fraction 

 

Finally, SEM-EDS analysis was also conducted on the saturates fraction of sample 

H1 and B2 to analyze their elemental compositions. To analyze these liquid samples, the 

saturates samples were dropped onto two (an organic and an inorganic) filter papers and 

dried under the vacuum oven. The dried filter papers were then analyzed under SEM-EDS 
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microscope. The initial filter paper was also analyzed through SEM-EDS for comparison 

purposes. EDS results and SEM images of the samples are given Table 9 and Figure 23. 

 

Table 9: EDS results of nylon (organic) and silver (inorganic) membranes and 

saturate fractions of sample H1 and B2. 

Elements 
0.45 µm Nylon Membrane 0.20 µm Silver Membrane 

Membrane Only H1 B2 Membrane Only H1 B2 

C 73.67 85.83 87.40 16.45 73.78 75.78 

O 19.90 14.13 12.43 0.00 1.49 1.42 

N 6.43 0.00 0.00 0.00 0.00 0.00 

S 0.00 0.40 0.17 0.00 0.00 0.00 

Mg 0.00 0.00 0.00 1.32 0.37 0.30 

Ag 0.00 0.00 0.00 82.22 24.37 22.49 

 

The EDS results confirm the presence of oxygen within the saturates fraction for 

both H1 and B2 for the measurements conducted both with nylon and silver membranes. 

However, nylon membrane also shows the presence of sulfur in very low quantity. Even 

though, both membranes have high resistance to several chemicals, with this study, these 

membranes have been tested for the first time with saturates. 
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Figure 23: SEM Images of A-Nylon Membrane (organic), B- Nylon Membrane with 

H1 Saturates, C- Nylon Membrane with B2 Saturates, D-Silver Membrane 

(inorganic), E- Silver Membrane with H1 Saturates, F- Silver Membrane with B2 

Saturates. 

 

The SEM images revealed that the pores of the silver membrane after exposure to 

saturates fraction are larger than the original silver membrane (0.20 microns pore size). 

This observation may imply that a reaction occurred between the silver membrane and the 

components of the saturates fraction which causes a damage in the silver membrane. With 

previous studies signifying the high affinity of carboxylic acids to bond with silver 

(Schlotter et al. 1986; Wang et al. 1998; Quaroni and Chumanov 1999), this finding 

indicates a possibility that the saturate fraction may contain carboxylic acid compounds. 

A- SEM of Nylon Membrane
B- SEM of H1 Saturates on Nylon 

Membrane
C- SEM of B2 Saturates on Nylon 

Membrane

D- SEM of Silver Membrane
E- SEM of H1 Saturates on Silver 

Membrane
F- SEM of B2 Saturates on Silver 

Membrane
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However, the possibilities of sulfur functional groups occuring within the saturates 

fraction still exist. Silver complexation with sulfur organics is also a known phenomenon 

(Bell and Kramer 1999). However, the damage in membranes and possible low 

concentration of sulfur in saturates fraction was not sufficient to observe the complexation. 

Still, it can be concluded that the saturates fractions has oxygen and may also contain 

sulfur functional groups. 
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CHAPTER V 

CONCLUSIONS 

 

In this thesis, 11 different crude oils and bitumens and their separated n-pentane 

and n-heptane asphaltenes were analyzed to investigate the variables pertaining to the 

destabilization mechanism of asphaltenes. Physicochemical correlations were also 

examined to generate a simple yet universal technique to estimate asphaltene stability.  

Characterization of the crude oil have signified that heavier and more polar 

components of the crude oil, i.e. asphaltenes and resins, have a predominant role in 

shaping up the physicochemical characteristics of crude oil. Heteroatoms such as nitrogen, 

oxygen, sulfur, and metallic elements are revealed to contribute to higher levels density, 

viscosity, and asphaltene content of the crude oil. 

The presence of polar functionalities within the asphaltene molecules have been 

proven to increase the overall polarity of asphaltenes. Oxygen and metallic functional 

groups, in particular, have shown great correlations with zeta potential and cluster size of 

asphaltenes. Microscopic images also revealed n-heptane asphaltenes form bigger clusters 

than n-pentane which might be the indication of higher polarity of n-heptane asphaltenes 

than n-pentane asphaltenes. Comparison of SEM-EDS with elemental analysis results also 

verified the location of heteroatoms to be at the core of the asphaltene molecules, except 

for hydroxyl functional groups. 
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Finally, onset asphaltene precipitation results have reaffirmed the destabilizing 

power of the saturate fraction. Thus, the higher concentration of saturate fraction within 

the crude oil can pose higher risks of asphaltene-related issues.  
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APPENDIX 

 

∆𝑷𝑺 = 𝒕(𝟕𝟓%) − 𝒕(𝟐𝟓%) .............................................................................. Equation 1 

Where: 

t(75%) is the time required to elute 75% of the material 

t(25%) is the time required to elute 25% of the material 

 

𝟏

𝝆𝒎𝒊𝒙
=

𝒘𝒔𝒐𝒍𝒗𝒆𝒏𝒕

𝝆𝒔𝒐𝒍𝒗𝒆𝒏𝒕
+

𝒘𝒂𝒔𝒑𝒉𝒂𝒍𝒕𝒆𝒏𝒆

𝝆𝒂𝒔𝒑𝒉𝒂𝒍𝒕𝒆𝒏𝒆
 ......................................................................... Equation 2 

Where: 

ρ is density in g/cc 

w is mass fraction 

 

Table A- 1: ASTM method comparison for asphaltene separation 

Name Solvent Type Crude Amount 
(g) 

Solvent Amount 
(mL) 

ASTM D2007-11 nC5
* 10 100 

ASTM D3279-12 nC7
* 1 100 

HPLC Method nC7
** 0.8 25 

* uses filtration (0.45 microns filter paper) 

** uses HPLC 
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Figure A- 1: FTIR spectra of crude oil and its separated asphaltenes 
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Figure A- 1: Continued 
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Figure A- 2: FTIR spectra for reference samples 

 

A-FTIR spectrum of n-pentane B-FTIR spectrum of n-heptane

C-FTIR spectrum of Distilled Water D-FTIR spectrum of [50% acetone + 50% toluene]

E-FTIR spectrum of silica gel F-FTIR spectrum of attapulgus clay
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Figure A- 3: Asphaltene solubility profile for crude oil samples 
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Figure A- 3: Continued 
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Figure A- 4: Comparison of AFM image of W1 asphaltenes in toluene with 

reference samples 

 
Figure A- 5: FTIR spectra of the saturate fractions of the bulk samples. The FTIR 

spectrum for nC5 is provided for comparison purpose since nC5 is a saturated 

hydrocarbon. 
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Figure A- 6: FTIR spectra of SARA fractions of 11 different crude oils 
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Figure A- 6: Continued 
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Figure A- 7: SARA fractions of 11 different crude oils 


