# EXPERIMENTAL STUDY ON SUPPRESSION CHAMBER THERMALHYDRAULIC BEHAVIOR FOR LONG-TERM REACTOR CORE ISOLATION COOLING SYSTEM OPERATION 

A Dissertation<br>by<br>MATTHEW ALAN SOLOM

# Submitted to the Office of Graduate and Professional Studies of Texas A\&M University <br> in partial fulfillment of the requirements for the degree of <br> DOCTOR OF PHILOSOPHY 

Chair of Committee, Karen Vierow
Committee Members, R. Cable Kurwitz
Yassin Hassan
Gerald Morrison
Head of Department, Yassin Hassan

May 2016

Major Subject: Nuclear Engineering


#### Abstract

In current Station Blackout analyses for Generation II Light Water Reactors, battery failure in 4-8 hours is expected to result in the failure of the Reactor Core Isolation Cooling System. The RCIC System, which uses a steam-turbine driven pump to pump cooling water to the reactor, theoretically requires DC power for the controller to operate. However, in the Fukushima Daiichi accidents at Units 2 and 3, the RCIC System performed for much longer than expected. It managed to continue working long after the loss of critical DC power, even without operator intervention.

In order to better understand the RCIC System and Suppression Pool in longterm system operation, a model of the system was constructed at the Laboratory for Nuclear Heat Transfer Systems at Texas A\&M University. This experiment investigated the thermal hydraulic limitations of the RCIC System, focusing on the Suppression Pool. In 32 individual tests, several parameters were varied; these included the steam flow rate, the steam quality, the sparger design, and the pressure conditions in the Suppression Chamber.

It was found that the Suppression Pool, with a strong dependence on conditions, can experience a great deal of thermal stratification resulting from RCIC System operations. Such stratification can be both beneficial and limiting; pump suction from the bottom of the pool will be cooler when stratified, protecting the pump, while at the same time containment pressurization will be accelerated. Chugging at the beginning and bubbling later on tended to enhance pool mixing while calm conditions in the


intermediate period tended towards stratification. A chugging correlation has been adapted and modified to describe the state of mixing in the scaled pool.

The SRV-analog tests had little to no effective thermal stratification in the Suppression Chamber, whereas every RCIC-analog test had some. Pressure in the Suppression Chamber in particular was strongly associated with the degree of stratification; one pressurized case had $>65^{\circ} \mathrm{C}$ of thermal separation, while a similar but fully-vented atmospheric case saw only $13^{\circ} \mathrm{C}$. While steam quality and steam flowrate affected the thermal stratification, their effects were neither as pronounced nor as simple as those of the pressurization conditions.

## ACKNOWLEDGMENTS

A number of people were instrumental in contributing to the success of this research. The patience of my advisor, Dr. Karen Vierow, as well as that of the program sponsor (the Office of Nuclear Regulatory Research at the United States Nuclear Regulatory Commission), was critical. In addition, the funding provided by the US Nuclear Regulatory Commission was instrumental for the completion of this research, and is gratefully acknowledged. The efforts of (in no particular order) Bruce Washington, Troy Stepan, Joshua Hanophy, Nick Wynne, Nick Luthman, Mason Childs, Mark Silberberg, Chris Faucett, Alexandra Sitdikova, Yuhei Hamada, Hiroki Kokami, Hiroto Endo, Brad Beeny, Matt Garza, Robert Pinkston, Julien Clayton, Nate Jones, Michael Homer, and many others who provided much-needed assistance are very much appreciated.

## NOMENCLATURE

| AP | Absolute Pressure |
| :--- | :--- |
| $\beta_{p}$ | Vapor Pressure Ratio, $=\left(\mathrm{P}_{\text {vap }} / \mathrm{P}_{\text {tot }}\right)^{0.5}$ |
| BWR | Boiling Water Reactor |
| DAQ | Data Acquisition [System] |
| DCC | Direct Contact Condensation |
| DI | Deionized/Deionization [Water] |
| DP | Differential Pressure |
| Fr | [Steam Injection] Froude Number |
| Ja | Two-Phase Jakob Number |
| KP | Ney Point [\#] |
| NPS | [United States] Nuclear Regulatory Commission |
| NRC | Reactor Core Isolation Cooling [System] |
| RCIC | Residual Heat Removal [System] |
| RHR | Station Blackout |
| SBO | Safety/Relief Valve |
| SRV | Turbine Driven Pump |
| TDP |  |

## TABLE OF CONTENTS

## Page

ABSTRACT ..... ii
ACKNOWLEDGMENTS ..... iv
NOMENCLATURE ..... v
TABLE OF CONTENTS ..... vi
LIST OF FIGURES ..... x
LIST OF TABLES ..... xv

1. INTRODUCTION ..... 1
1.1 Problem Statement ..... 2
1.2 Technical Approach ..... 2
2. BACKGROUND ..... 4
2.1 RCIC Control Logic ..... 10
2.2 Terry Turbines ..... 12
2.2.1 Terry Turbine Design ..... 12
2.2.2 RCIC Turbine ..... 14
2.3 RCIC System Reliability ..... 15
2.4 Direct Contact Condensation ..... 18
2.5 Thermal Stratification in the Suppression Pool ..... 25
2.6 Fukushima Daiichi RCIC Performance ..... 27
2.7 Recent Experiments ..... 29
3. EXPERIMENTAL FACILITY DESIGN AND CONSTRUCTION ..... 33
3.1 Experimental Equipment ..... 35
3.1.1 Water Deionization System ..... 39
3.1.2 Flowmeters ..... 41
3.1.3 Pressure Transmitters ..... 43
3.1.4 Thermocouples ..... 45
3.1.5 Pump ..... 47
3.1.6 Steam Generator ..... 48
3.1.7 Suppression Chamber Analog ..... 52
3.1.8 RCIC Turbine Analog ..... 64
3.1.9 Data Acquisition System ..... 65
3.1.10 Calibrations ..... 76
3.2 Shakedown Testing ..... 79
3.2.1 Liquid Fill ..... 80
3.2.2 SRV Shakedown ..... 80
3.2.3 RCIC Shakedown ..... 84
3.3 Identified Issues ..... 92
3.3.1 Pump ..... 92
3.3.2 Air Compressor Oil ..... 93
3.3.3 Thermocouple SP4 ..... 94
3.3.4 Magnetic Flowmeter Failure ..... 94
3.3.5 Limit for Vortex Flowmeter ..... 95
3.3.6 Level Indication. ..... 95
3.4 Post-Shakedown Repairs ..... 98
3.5 System Modifications and Enhancements ..... 101
3.5.1 Pump and Related Equipment ..... 101
3.5.2 Heat Exchange System ..... 102
4. EXPERIMENTAL FACILITY OPERATIONS ..... 105
4.1 Testing Plan ..... 105
4.2 Varied Parameters ..... 106
4.3 Procedures ..... 109
4.3.1 Pre-Startup. ..... 111
4.3.2 Water Level Verification/Fill ..... 113
4.3.3 Suppression Chamber Pre-Test Pressurization ..... 116
4.3.4 Agitation ..... 117
4.3.5 Steam Generator Startup ..... 118
4.3.6 System Warmup ..... 119
4.3.7 Primary Data Operations ..... 121
4.3.8 System Shutdown ..... 124
4.3.9 System Cooldown ..... 126
4.3.10 Cold Shutdown ..... 133
4.4 Results ..... 134
4.4.1 Test \#1 ..... 137
4.4.2 Test \#2 ..... 138
4.4.3 Test \#3 ..... 140
4.4.4 Test \#4 ..... 141
4.4.5 Test \#5 ..... 146
4.4.6 Test \#6 ..... 148
4.4.7 Test \#7 ..... 150
4.4.8 Test \#8 ..... 152
4.4.9 Test \#9 ..... 153
4.4.10 Test \#10 ..... 155
4.4.11 Test \#11 ..... 156
4.4.12 Test \#12 ..... 158
4.4.13 Test \#13 ..... 159
4.4.14 Test \#14 ..... 161
4.4.15 Test \#15 ..... 162
4.4.16 Test \#16 ..... 163
4.4.17 Test \#17 ..... 165
4.4.18 Test \#18 ..... 166
4.4.19 Test \#19 ..... 167
4.4.20 Test \#20 ..... 169
4.4.21 Test \#21 ..... 170
4.4.22 Test \#22 ..... 172
4.4.23 Test \#23 ..... 173
4.4.24 Test \#24 ..... 174
4.4.25 Test \#25 ..... 176
4.4.26 Test \#26 ..... 177
4.4.27 Test \#27 ..... 179
4.4.28 Test \#28 ..... 180
4.4.29 Test \#29 ..... 181
4.4.30 Test \#30 ..... 183
4.4.31 Test \#31 ..... 185
4.4.32 Test \#32 ..... 187
4.5 Observations ..... 188
4.5.1 Steam Generator Power / Steam Flowrate ..... 193
4.5.2 Pressurization Conditions ..... 194
4.5.3 Two-Phase Steam/Water Testing ..... 196
4.5.4 Combined Parameters ..... 198
4.5.5 Active Venting Operations ..... 198
4.5.6 Comparison with Results from Other Facilities ..... 198
5. ANALYSIS ..... 203
5.1 Goals of the Analysis ..... 203
5.2 Definition of Thermal Stratification Key Points ..... 205
5.3 Correlation Development ..... 210
5.4 Error Analysis ..... 222
5.5 Full System Model Considerations ..... 225
5.6 Scaling Discussion ..... 228
6. CONCLUSIONS ..... 231
6.1 Key Findings ..... 234
6.2 Relevance to the Events at Fukushima Daiichi ..... 235
6.3 Future Work ..... 236
REFERENCES ..... 238
APPENDIX A ..... 244
APPENDIX B ..... 251
APPENDIX C ..... 266
APPENDIX D ..... 369

## LIST OF FIGURES

## Page

Figure 1: BWR Mark I Containment [11]5Figure 2: RCIC Turbine Vent Line from Fukushima Daiichi Unit 2 [6] ..... 6
Figure 3: RCIC Turbine Sparger from Unit 3 [7] ..... 7
Figure 4: Monticello T-Quencher [8] ..... 8
Figure 5: RCIC System in a BWR Mark II Containment [12]. ..... 9
Figure 6: Terry Turbine with Steam Jet [13]. ..... 13
Figure 7: Terry Turbine Steam Path [14] ..... 14
Figure 8: Chan and Lee DCC Regime Map [26] ..... 21
Figure 9: Aya and Nariai DCC Regime Map [28] ..... 22
Figure 10: Influence of Noncondensibles on Chugging [29] ..... 24
Figure 11: POOLEX STB-20 Stratification Test Pool Temperatures [35] ..... 30
Figure 12: Completed Suppression Chamber and Nearby Plumbing. ..... 34
Figure 13: Simplified Experiment P\&ID ..... 37
Figure 14: Pump Performance Curve (Data from [46]) ..... 48
Figure 15: Steam Generator System ..... 49
Figure 16: Suppression Chamber Analog During Facility Assembly ..... 54
Figure 17: View of Vessel Internals Near Front Head. ..... 55
Figure 18: View of Spargers from Vessel Rear Head ..... 58
Figure 19: Thermocouple Layout ..... 61
Figure 20: Data Acquisition System ..... 66
Figure 21: Current to Voltage Signal Conversion ..... 68
Figure 22: Data Acquisition Program UI ..... 70
Figure 23: SRV Shakedown Pool Thermal Progression ..... 83
Figure 24: Shakedown Steam and Water Flowrates ..... 85
Figure 25: Steam Chugging Spikes ..... 86
Figure 26: Stable Flow without Chugging ..... 87
Figure 27: Lateral Pool Temperatures ..... 88
Figure 28: Sparger-End (Rear, x = 0 Inches) Temperature Profile ..... 89
Figure 29: Pool Temperatures, Pool Center ( $\mathrm{x}=48$ Inches) ..... 90
Figure 30: Pool Temperatures, Vessel Front (x = 84 Inches) ..... 91
Figure 31: Common-Mode Pressure Level Reading Offset ..... 96
Figure 32: Level Offset after Correction ..... 97
Figure 33: Silencer Plate ..... 100
Figure 34: Heat Exchanger Tubing ..... 103
Figure 35: Heat Exchange System ..... 104
Figure 36: Test \#1 Thermal Progression ..... 138
Figure 37: Test \#2 Thermal Progression ..... 139
Figure 38: Test \#3 Thermal Progression ..... 140
Figure 39: Test \#4 Thermal Progression (Vessel Front) ..... 142
Figure 40: Test \#4 Pool Thermal Progression, Mid-Pool ..... 143
Figure 41: Test \#4 Pool Mid-Level Axial Temperature Progression ..... 144
Figure 42: Test \#4 Sparger Performance ..... 145
Figure 43: Test \#2 Sparger Performance ..... 146
Figure 44: Test \#5 Thermal Progression ..... 147
Figure 45: Test \#6 Thermal Progression ..... 149
Figure 46: Test \#7 Thermal Progression ..... 150
Figure 47: Test \#7 Sparger Behavior ..... 151
Figure 48: Test \#8 Thermal Progression ..... 152
Figure 49: Test \#9 Thermal Progression ..... 154
Figure 50: Test \#10 Thermal Progression ..... 155
Figure 51: Test \#11 Thermal Progression ..... 157
Figure 52: Test \#12 Thermal Progression ..... 159
Figure 53: Test \#13 Thermal Progression ..... 160
Figure 54: Test \#14 Thermal Progression ..... 161
Figure 55: Test \#15 Thermal Progression ..... 163
Figure 56: Test \#16 Thermal Progression ..... 164
Figure 57: Test \#17 Thermal Progression ..... 165
Figure 58: Test \#18 Thermal Progression ..... 167
Figure 59: Test \#19 Thermal Progression ..... 168
Figure 60: Test \#20 Thermal Progression ..... 169
Figure 61: Test \#21 Thermal Progression ..... 171
Figure 62: Test \#22 Thermal Progression ..... 172
Figure 63: Test \#23 Thermal Progression ..... 174
Figure 64: Test \#24 Thermal Progression ..... 175
Figure 65: Test \#25 Thermal Progression ..... 177
Figure 66: Test \#26 Thermal Progression ..... 178
Figure 67: Test \#27 Thermal Progression ..... 179
Figure 68: Test \#28 Thermal Progression ..... 181
Figure 69: Test \#29 Thermal Progression ..... 182
Figure 70: Test \#30 Thermal Progression ..... 184
Figure 71: Test \#31 Thermal Progression ..... 185
Figure 72: Test \#32 Thermal Progression ..... 187
Figure 73: SIET Multi-Hole Sparger Pool Thermal Progression [40] ..... 199
Figure 74: Atmospheric Thermal Progression, Reprinted with Permission from [55]. 200
Figure 75: Vacuum Thermal Progression, Reprinted with Permission from [55] ..... 200
Figure 76: POOLEX STB-21 Test Thermal Progression [35] ..... 202
Figure 77: Key Point Progression in a Test. ..... 207
Figure 78: Liang and Griffith Correlation at Key Point \#4 ..... 214
Figure 79: Liang and Griffith Correlation at Key Point \#4, nondimensional ..... 215
Figure 80: Saturation Water/Steam Density Ratio Dependency ..... 216
Figure 81: Mixing Number at Key Point \#4 ..... 220
Figure 82: Mixing Number at Key Point \#10 ..... 221
Figure 83: Turbine Analog Design ..... 245
Figure 84: Enhanced System P\&ID Overview ..... 246
Figure 85: DI System and Hot Water Tank ..... 247

Figure 86: Steam Generator System P\&ID ................................................................... 248
Figure 87: Suppression Chamber System .................................................................... 249
Figure 88: Cooldown Setup.......................................................................................... 250

## LIST OF TABLES

## Page

Table 1: Vessel Internal Thermocouple Positions ..... 59
Table 2: Current Loop Instruments ..... 73
Table 3: Module 3 Thermocouples ..... 74
Table 4: Module 2 and 4 Thermocouples ..... 75
Table 5: Test Parameters ..... 107
Table 6: Baseline/Cold Shutdown Valve Alignments ..... 111
Table 7: Main Data Period Valve Alignments ..... 123
Table 8: Primary Cooldown Valve Alignments ..... 127
Table 9: Mean Measured Flow Conditions ..... 135
Table 10: Peak Stratification ..... 136
Table 11: Spread in As-Measured Correlation Values ..... 222
Table 12: Total Error in Correlation. ..... 225
Table 13: Output File Columns 1-28 ..... 270
Table 14: Output File Columns 29-56 ..... 271
Table 15: Output File Columns 57-84 ..... 272
Table 16: Output File Columns 85-112. ..... 273
Table 17: Output File Columns 113-136. ..... 274
Table 18: Additional Cooldown Output File Columns ..... 275

## 1. INTRODUCTION

On March 11, 2011, the Great East Japan Earthquake struck off the eastern coast of the Japanese island of Honshu. The magnitude 9.0 temblor spawned a massive set of tsunamis; the earthquake and tsunami officially resulted in 15,889 dead, 6,152 injured, and 2,598 missing people [1]. The immediate damage has been estimated to be $\$ 300$ billion, with significant long-term ramifications [2]. Also severely damaged was the Fukushima Daiichi nuclear power plant, which suffered widely-publicized accidents. The tsunami cut off all offsite electrical power and caused most of the on-site emergency diesel generators to fail; this, in turn, led to the failure of cooling systems and eventual core damage at Units 1, 2, and 3. Unit 4 suffered major damage as well [3].

In the course of events during the accident, one emergency cooling system applicable only to Units 2 and 3 functioned for time periods much longer than had been predicted in earlier analyses: the Reactor Core Isolation Cooling (RCIC) System [4]. The RCIC system is a turbine-driven system that takes steam from the reactor and passes it through said turbine to generate sufficient mechanical power to drive a pump; the pump sends water back to the reactor to maintain core cooling. While the system does not require large amounts of electric power for pumping, the system's controller does require some small amount of power. In current analyses, when the controller loses all electrical power, the RCIC system is assumed to fail. This is expected to happen in 4-8 hours in short-term station blackout scenarios as the station batteries are depleted and Suppression Pool temperatures rise; normally, "one should not expect the RCIC system
to run much beyond 8 hours in a station blackout (SBO)" [4]. However, the RCIC system in Unit 3 performed its duty for 19.5 hours before finally going offline; in Unit 2, the system ran for nearly 3 days, long after the station's batteries went offline [3]. It is not clear how or why the systems performed so well.

### 1.1 PROBLEM STATEMENT

The goal of this research is to investigate parts of a genericized RCIC system to gain insight into extended operations. In at least some cases, as evidenced by the Fukushima events, the system can perform much longer than anticipated. The focus will be on the thermal-hydraulic behavior of the Suppression Pool as it relates to RCIC System operation.

### 1.2 TECHNICAL APPROACH

This research intends to establish some of the physical thermal hydraulic limitations of the RCIC System, with a highlight on the interplay between the Suppression Pool and RCIC System. It will examine potential thermal stratification in the Suppression Pool, pump inlet conditions, and two-phase steam/water injection through the RCIC Sparger. While neither the control system nor an actual turbine will be examined, these tests are expected to yield certain phenomena that affect system operability. Once known, such data can be used in plant safety analyses to gain a greater understanding of the system, assist in the development of procedures in off-normal or accident conditions, and to inform decisions about modifications to improve overall plant safety.

The data gathered in the experimental tests will be subject to further analysis focusing on key locations. Their time-dependent conditions shall be examined and the evolution of their thermal-hydraulic profiles investigated. Ultimately, a correlation will be developed to relate the overall mixing state of the Suppression Pool, a key interfacing system affecting RCIC System operability.

## 2. BACKGROUND

The Reactor Core Isolation Cooling System is found in some, but not all, GE Boiling Water Reactors with the Mark I Containment. It was originally designed to ensure adequate cooling water is supplied to the reactor in isolation events; i.e., when the isolation valves are closed for the steam lines and feedwater. This results in the reactor, which produces significant amounts of decay heat long after shutdown, being isolated from the outside world - and its primary ultimate heat sink. In such an isolation event, the RCIC system is engaged. It draws steam from the reactor via the in-containment portion of the Main Steam Line, passes it through the RCIC Turbine's governor valve and then the turbine, and exhausts it through a sparger into the Suppression Pool [5]. The Suppression Pool in a BWR with the Mark I containment partially fills the torus, and can store a large volume of water $-76,000$ cubic feet at Monticello [8], and more than 125,000 cubic feet at Peach Bottom [9]. It is inside the containment boundary. An illustration of the BWR Mark I Containment can be seen in Figure 1.


Figure 1: BWR Mark I Containment [11]

The RCIC Pump sits on a common shaft with the RCIC Turbine, and draws its motive power directly from the turbine. It is a conventional multistage centrifugal pump, and can be aligned to draw its suction from multiple sources. The initial default alignment is to draw water from the Condensate Storage Tank. Once that source is depleted, it can be realigned to draw from the Suppression Pool. Past the pump, the makeup water flows into the reactor pressure vessel via injection into a feedwater line
[5]. As there is no control valve past the pump to regulate water flow, regulation is performed by controlling the turbine speed with the throttling governor valve. In addition to these main flowpaths, there are several others for system support - system cooling, lubrication, hydraulics, etc. The cooling function is noteworthy, as cooling water is the same water supplied by the RCIC Pump [5].


Figure 2: RCIC Turbine Vent Line from Fukushima Daiichi Unit 2 [6]

The outlet into the Suppression Pool is a sparger that appears to be unique for each plant. Based on information made public by TEPCO, the sparger design may even differ from unit to unit at the same plant; this was the case at Fukushima Daiichi. There do, however, appear to be generic classes of design employed. The simplest is a vertical pipe, open at the end, pointed downwards and depositing steam well below the surface
of the pool as used in Fukushima Daiichi Unit 2 [6]; this is shown in Figure 2. Another design maintains the verticality, but caps off the end of the pipe and has small holes bored in the side, again well below the water surface; this design was featured in Unit 3 [7] and is shown in Figure 3. Variations on these designs may angle the pipe or use alternate ends. It is not known if any plants use a design having more in common with the SRV T-Quencher designs (an example of a T-Quencher from Monticello, which discharges near the bottom of the Suppression Pool, is shown in Figure 4 [8]). A diagram of the RCIC System used in the Mark II Containment, much the same as the Mark I system, can be seen in Figure 5.


Figure 3: RCIC Turbine Sparger from Unit 3 [7]


Figure 4: Monticello T-Quencher [8]

In addition, the relative positions of spargers and suction inlets in the Suppression Pool are unclear, and may have a high degree of plant dependency. If, for example, the RCIC suction draws from a part of the Suppression pool in the immediate vicinity of the SRV T-Quencher with the lowest opening setpoint, then it may attempt to draw water into the pump from a localized hot spot. Other thermal stratification issues may come in to play as well.


Figure 5: RCIC System in a BWR Mark II Containment [12]

No AC power is required to start or operate the system; only DC power is necessary to operate the system controller [10]. Without DC power, the controller is expected to cause the turbine governor valve to open fully. Given sufficient steam pressure, this would result in the turbine accelerating until an overspeed condition is reached. At the turbine overspeed setpoint, a mechanical turbine trip system is actuated, which shuts off flow into the turbine. The mechanical overspeed trip does not reset itself; once it trips, an operator needs to physically reset it [10]. In existing analyses, this is a
major limiting condition. In station blackout (SBO) scenarios, the station batteries are predicted to be depleted in 4-8 hours after the loss of all AC power; this will leave the RCIC controller without a viable source of DC power.

There are two major capacities for RCIC systems installed in existing plants, and between them 400 to 800 gpm of makeup water can be supplied [10]. Both small and large sizes are designed to be able to supply sufficient cooling water to the reactor from shortly after reactor trip when the system is at high pressures and temperatures ( 1150 psi at saturation temperature) down to much cooler, lower pressure states ( 150 psi , saturated) [5].

### 2.1 RCIC CONTROL LOGIC

The RCIC System control logic is described here because it influences experimental facility operational procedures. The system, by design, will automatically start when a reactor vessel low-low water level signal is received after a reactor shutdown is initiated [5]. It can also be started manually from the control room, or physically by operators acting directly on the equipment using "blackstart" (system startup through the manual/physical alignment of valves and direct local control of system components by operators in the absence of electrical power) procedures.

Operation of the RCIC system will generally be expected to continue until a trip signal is sent to the turbine. There are 5 such automatic signals that come in to play: high reactor vessel water level, turbine overspeed, low pump suction pressure, high turbine exhaust pressure, and an Auto Isolation Signal [5]. Each of these signals require DC power to operate correctly. The overspeed trip can occur as a control signal that
closes a steam valve with the ability to remotely reactivate the system, or as a mechanical overspeed trip (at a higher setpoint) that, once actuated, requires operators to physically reset the trip on the turbine after actuation before the system can start once again. All the remaining trips, with the exception of the high reactor water signal, will require operators to reset the system before it restarts. The high reactor water level signal allows the system to automatically restart once the level again drops to the lowlow mark without any operator intervention [5].

In addition to the automatic signals, operators can take more direct control of system operation. They are given controls to manually set a desired output flowrate or turbine speed; not only can they control the system from the control room, but a local hand wheel on the trip and throttle valve for the turbine allows operators to physically control the steam flow into the turbine [10].

The ability for such manual, physical control can be an important feature, especially when electrical power sources are unavailable. The governor systems appear to have been designed with this in mind, and upon loss of electrical power is set to have the governor valve open fully. At that point, it is intended for an operator to locally take over the control functions using the trip and throttle valve if an overspeed trip is to be avoided [10]. This is achieved in the way the electro-hydraulic control system is designed. A certain non-zero voltage ( -.75 to -1.00 V DC ) is required to be present on the actuator terminals in order to maintain the pilot valve at its centered, steady-state position. When the voltage disappears, springs move it slightly to allow oil to flow to the remote servo, opening the governor valve; eventually, it will open fully [10].

### 2.2 TERRY TURBINES

The RCIC system employs a non-condensing Terry turbine as produced by Dresser-Rand, formerly the Terry Steam Turbine Co. A Terry turbine resembles a simple water wheel or Pelton wheel, and was developed in the very early 20th Century. It is an impulse-type turbine with jet and reversing chambers mounted on the casing, and "buckets" milled into the outer end of a rotating wheel [10].

### 2.2.1 Terry Turbine Design

Steam passes through the turbine's governor valve, and proceeds to enter the turbine assembly. It is accelerated through a nozzle, transforming some of its enthalpy into kinetic energy. Almost the entirety of the pressure drop in the turbine is across the nozzle; the more it accelerates the flow, the more efficient the turbine becomes. A converging-diverging nozzle designed to accelerate steam to supersonic conditions is, therefore, well suited to the turbine. The nozzle directs the flow to be nearly tangential to the rotating wheel and into U-shaped buckets milled into it. The flow imparts energy to the wheel as it is redirected at the bottom of the bucket and turned around. Upon departing the bucket, the flow enters a series of one or more reversing chambers on the stator assembly. The reversing chamber redirects the flow back towards the wheel, and into a subsequent bucket [10]. After the set of reversing chambers, the steam is released into the casing space, and exhausted from the turbine. Historically, there were usually four reversing chambers for each nozzle assembly, and 4 to 8 nozzle assemblies in the turbine [13]. Terry turbines are illustrated in Figure 6 and Figure 7.


Figure 6: Terry Turbine with Steam Jet [13]

Non-condensing turbines such as the Terry turbine are not efficient turbines; they do not take advantage of the massive amounts of energy stored in steam's latent heat. In emergency systems such as the RCIC system, efficiency is not an important characteristic, and constitutes a lower priority than ruggedness or functionality. It does not initially consume a large fraction of the steam generated by the reactor; the majority of the generated steam will be dumped by the relief valves into the Suppression Pool. The RCIC system is sized to provide sufficient makeup water to replace that which boils off; it is not intended to maintain reactor water levels when significant leakage (pipe breaks) is present [5], [10].


Figure 7: Terry Turbine Steam Path [14]

### 2.2.2 RCIC Turbine

The RCIC Turbine is designed to operate across a wide range of input conditions.
The turbine wheel has a nominal diameter of 24 inches [10], and has different numbers of steam inlets and jet/reversing chamber assemblies based on the required power output. The two different RCIC size classes use the same turbine wheel, but different casings. The smaller casing allows for up to five jet-reversing chamber assemblies, while the larger casing allows for up to ten [10]. The wide operating range places high demands on the controller; successful operation of the system requires the controller to be responsive and well-maintained [10]. This is the result of significant amounts of excess
mechanical power supplied by the turbine under some conditions; the turbine is designed to supply sufficient pump power from inlet steam pressures of 100 to 150 psi . When greater pressures are supplied, up to more than 1150 psi , "the turbine is capable of several times the rated horsepower" [10], and therefore the controller must be welldesigned in order to maintain system operability and stability. Startup transients are an important consideration in the design, as the system must go from stopped to full rated flow in 30-90 seconds.

Documentation shows that the valve for the turbine's mechanical overspeed trip can double as a throttling control valve; it is a trip and throttle valve independent of the governor valve. However, based on Electric Power Research Institute (EPRI) diagrams of the mechanical overspeed trip system, it would appear that the mechanical trip cannot provide regulating functions. It instead appears to be a two-state system: ready, and tripped [10], [11]. Rather, the throttling function is provided by a local valve hand wheel on all systems, as well as an electric motor on some [10].

### 2.3 RCIC SYSTEM RELIABILITY

The RCIC system has limitations beyond DC power failure. Some potential limitations may not be immediately apparent. One potential avenue of interest, not actively pursued here, involves the system's lubrication oil. The RCIC turbine-driven pump (TDP) assembly and associated plumbing constitutes a containment boundary, and sits in a shielded room in the reactor building. Cooling to that room may be limited in some scenarios. In prolonged operation of the system, the ambient temperature may rise to a high enough temperature that the lubrication cooling is insufficient (if cooling is
based on room temperatures; in Peach Bottom, cooling is based on pump inlet water [5]); the lubricant would then heat up. If hot enough, it could be unable to perform its functions correctly. As a result, the bearings and seals could fail, halting operation of the system.

As the heart of the system is the RCIC Turbine and Pump assembly. It can logically be expected to have limitations similar to other TDP systems: valve misalignments, pump cavitation or deadheading, turbine damage, lubricant problems, seal failure, air ingress, etc. The turbine, a Terry turbine, is considered to be very robust; however, even without damage, the system may not perform in severely off-normal conditions.

In fact, the system may have difficulties performing in relatively normal conditions. In 2000, a study was published examining the performance of TDP systems in nuclear power plants. It found that, in the 1987-1998 period, RCIC turbine driven pumps in BWR plants had a mean probability of failure on demand of $2 \%$; from 19871995, the mean failure rate was $1.3 \mathrm{E}-5$ /hour [15]. The vast majority of failures, $70 \%$, were in the governor. The turbine accounted for $27 \%$, and the remaining $3 \%$ was in the pump. Overall, the causes of the majority of failures were age/wear (30\%) and maintenance/procedures (27\%). A significant (23\%) fraction of failures had undetermined/unknown causes. The remainder of the causes of failure were dirt/contamination (7\%), design defects (10\%), and other (3\%) [15].

The high proportion of failures related to the turbine is somewhat surprising, given that the Terry turbines are designed to be very robust. Testing has been performed
in the past, and they were found to be fairly rugged. When high fractions of water are injected into the steam flow, a condition that can damage turbines not built to withstand it, the water spraying out of the Terry turbine exhaust made an impressive display for the investigators. However, the turbine itself, in post-excursion disassembly and inspection, was found to be completely unharmed [16].

Mechanical and power failures are not the only adverse conditions facing RCIC systems; operational conditions should be considered as well. These include out-ofbounds or incorrect control signals from the control room (for example, incorrect start/stop signals) and hostile inlet/outlet conditions for both the turbine and pump. For example, the switchover from the Condensate Storage Tank to the Suppression Pool for pump suction may fail, and there may be insufficient net positive suction head or vapor could then be drawn into the pump. The pump suction may draw water at temperatures too close to saturation, either from a localized hot spot in the pool or an overheated pool, and then give rise to pump cavitation. Alternately, there may be too little driving pressure for the turbine, too much back pressure, or liquid may enter the turbine inlet. This is not expected to damage the turbine, but its performance may suffer.

If water slugs are present, the governor may be unable to compensate for rapid speed changes fast enough, and the turbine could experience an overspeed trip; the controller has historically had difficulties with more than $1 \%$ moisture content [10]. At higher moisture contents, the performance of the nozzles can be expected to suffer; they are not jet ejectors intended to operate with two-phase flow. Interestingly, two-phase flow through jet ejectors is under consideration to enhance the efficiency of refrigeration
cycles [17], which might provide some insight into the two-phase behavior of traditional nozzles. In addition, conditions in the turbine exhaust sparger in the Suppression Pool may generate hot spots in the pool, or possibly cause flow disruptions. Rapid condensation in the exhaust line may have only limited impacts in system operation, as there are both check valves and vacuum breakers installed to prevent the development of major vacuum conditions in the line [5].

### 2.4 DIRECT CONTACT CONDENSATION

When steam comes into contact with subcooled water, it will tend to condense. Given sufficient water subcooling and steam purity, the steam can condense very rapidly, even violently. This method of condensation, called Direct Contact Condensation (DCC), has been employed by the nuclear industry in a number of safety systems, including the RCIC System. As a result, interest in the subject has been more than simply academic; comprehending the complex phenomena that can present in it is important for a complete understanding of the operation of such systems, making it important for plant safety.

A number of efforts have been made to classify, categorize, and correlate the phenomena seen in DCC systems. Some treatments, both experimental [18] and analytical [19], have examined stratified/separated flows, while others have investigated vapor injection into pools. With steam injection into a pool, published results tend to find it "difficult to analyze the DCC phenomena around the sparger by simple analyses due to its geometrical complexity and complicated flow patterns" [20]. There is an apparent sensitivity to the design of experimental facilities in the results relating not just
to the sparger design and orientation, but also to the steam injection feedback (a "hard" steam injection rate being fixed, while "soft" steam injection responds to pressure transients); some systems can experience severe water hammer issues [21]. Some tests have focused on pressure pulses from violent condensation and their potential effects on structures, such as those in [22]. A common line of inquiry involves the effective heat transfer coefficient. Others involve pool circulation patterns (such as [23]), and some explore steam plumes from a variety of outlet sizes and orientations as in [24].

Upon inspection, a number of DCC regimes have been identified by researchers in the field. Notably, these studies have limited to no examination of the effects of system pressurization (limited rather than nonexistent; for example, Celata et al. did investigate pressurization [18]), saturated two-phase steam-water injection, or extensively superheated steam injection in DCC systems. In the de With study [25], it was reported that 15 different regimes have been identified, and for the sake of simplicity were grouped into seven regimes. Each regime is identified by broadly similar shapes, locations, and behaviors of the steam/water interface. In traditional regime maps, the key variables are steam mass flux and bulk water subcooling; the de With maps add the diameter of the steam injector as a third variable; this showed the transitions between often significantly different regime maps and resolved some of their noncorroborating features.

The regimes include variants of chugging, bubble, and jet regimes. In the traditional regime map established by Chan and Lee (presented in Figure 8) [26], seven separate regimes were established; one, the chugging regime, was further subdivided
into three regions. At high steam fluxes, they identified two jetting regimes; one at low pool temperatures which was unstable and showed steam bubble detachments, and another at high pool temperatures which showed no bubble detachment. At sonic conditions, the steam jet was very stable. When they reduced the steam mass flux, the conical jet shape of the steam bubble at the exit of the vent tube (vertically downward in their tests) became more bubble-shaped, resembling ellipsoids, and had frequent detachments and oscillations in both warm and cool pool temperatures. Even lower steam mass fluxes demonstrated chugging:
"Further reduction in the steam mass flux caused the point of detachment to occur closer to the pipe exit and ultimately right at the exit. This was taken as the boundary for the steam chugging regime, because the vapor region could only exist periodically in the pool, and the pool water would periodically enter the pipe" [26].

Chugging was noted to cease as the pool warmed up; at that point, an oscillating bubble formed around the pipe exit. Greater pool temperatures, as it approaches saturation, limits condensation and allowed steam to escape from the pool surface [26].

Chugging is associated with (sometimes large) rapid drops and subsequent rises in pressure in and in the immediate vicinity of a submerged vent tube. Damped "ringout" oscillations follow the initial spikes; these are associated with the presence and radius oscillation of small gas bubbles in the pool [27].


Figure 8: Chan and Lee DCC Regime Map [26]

Another DCC regime map was assembled by Aya and Nariai [28]. In conjunction with their experiment, they developed correlations defining the boundaries of the regimes in their map. Their proposed analytical approach produced regime boundaries that, in some parts of the map, began to diverge from the experimental results. Further complicating matters is their use of a significant header volume between the main flow restriction and the vent tube; this volume appears in the correlation, and the correlation is resultingly unclear in its applicability to systems without such a header. The correlations presented tended to be complicated; the boundary between condensation oscillation and chugging was given as Eq. (1) [28] in terms of pool subcooling, where the Hodgson Number in the experiment, $\mathrm{N}_{\mathrm{H}}$ (a derived time constant
for oscillating bubbles divided by the measured pulsation period), was determined to be 0.44. Thermal conductivity was expressed as $\lambda$, and $\xi$ expresses a coefficient of flow resistance. It was based on a previous empirical correlation involving oscillating condensing bubbles. The regime map is given in Figure 9.


Figure 9: Aya and Nariai DCC Regime Map [28]

$$
\Delta T_{T}^{2 / 3}=K\left(\frac{\rho_{s}}{G_{s}}\right)^{1.3}
$$

where

$$
\begin{align*}
& K=\frac{N_{H}}{1.54 \xi\{ \}^{1 / 3}}  \tag{1}\\
& \left\}=\frac{C_{P L} \lambda_{L} \rho_{s}^{0.9}\left(\frac{\partial \rho_{s}}{\partial p}\right)^{2}\left(\frac{V_{D}}{\frac{\pi}{4} d_{V}^{2}}\right)}{L^{2} v_{L}^{0.9} \rho_{L}^{1.9} d_{V}^{2.1}}\right.
\end{align*}
$$

Liang and Griffith [29] produced a DCC regime map with correlations as well. In comparison with other regime maps, the Liang and Griffith maps were largely expressed in terms of the analytical correlations produced in their research. The presented relationship for the transition between chugging and bubbling/jetting was remarkably different from that of Aya and Nariai; it was much simpler and expressed in terms of (not entirely standard uses of) standard thermofluid nondimensional numbers.

The Liang and Griffith expression for the chugging regime is given in Eq. (2) [29], and expanded/restated in Eq. (3) at the regime boundary in terms using definitions of the nondimensional numbers compatible with those herein, and was based on a transient conduction model. It was noted that the model applies to horizontal injection, and that vertical downward injection, owing to the effects of buoyancy, required less steam to transition past the chugging regime. They also investigated the effect of noncondensables in the steam, and found that even small amounts were effective at preventing chugging; this can be seen in Figure 10 [29].

$$
\begin{gather*}
0.06 \operatorname{Re}_{s w}^{\frac{1}{2}} \operatorname{Pr}_{w}^{\frac{1}{2}} J a_{d e n s}^{-1} \leq 1  \tag{2}\\
0.06 \operatorname{Pr}_{w}^{\frac{1}{2}}\left(\frac{\mu_{s}}{\mu_{w}}\right)^{\frac{1}{2}}\left(\frac{\rho_{s}}{\rho_{w}}\right)^{\frac{1}{2}} J a_{w}^{-1} \operatorname{Re}_{s}^{\frac{1}{2}}=1 \tag{3}
\end{gather*}
$$



Figure 10: Influence of Noncondensibles on Chugging [29]

From these previous efforts, it can be seen that system differences can play a major role in the resultant DCC regime map. This can limit the applicability of the maps to systems that have a great deal of similarity, including scale. This is a disappointing result, as the chaotic fluid motions chugging can be very effective at dispersing material.

### 2.5 THERMAL STRATIFICATION IN THE SUPPRESSION POOL

Thermal stratification in the Suppression Pool may or may not be a problem from the consideration of plant operations; this has yet to be determined. There is, however, some evidence that it can exist [8], [30]. It is more than the presence of hot or cold spots in the pool; it is the bulk presence of significantly different temperatures over significant regions in the pool. For the purposes of this research, it can be said to be expressed vertically, horizontally/laterally, or in any irregular shape. Due to the difference in density between warm and cold water, vertical stratification is expected to be more stable than longitudinal expressions. However, that does not preclude the potential for such stratification; the pool is a very large body, and transient conditions may persist for long periods.

Stratification may be an issue for several reasons. If, for example, pumps draw water from the warmer regions, then they may exceed their inlet constraints earlier than expected from a consistent bulk pool temperature. Conversely, if they draw from relatively cool regions, they may operate longer than expected. Furthermore, when heat is injected into a stratified, warm region, the heat is effectively being absorbed by a smaller volume of water than anticipated. The parts of the pool that remain cool essentially do not participate as much or, in severe cases, at all in the thermal loading. It may seem as if large parts of the pool are absent. In such cases, it may fail to fulfill its pressure suppression/steam condensing functions early as uncondensed steam would begin to escape from the pool surface, and lead to pressurization of containment much quicker than predicted in analyses. In addition, attempts to condense steam in regions
with out-of-specification temperatures may lead to instabilities and large, potentially damaging, vibrations as in the 1972 Wurgassen incident [31].

There have been some investigations that shed light into stratification in the Suppression Pool. Tests at the Monticello Nuclear Generating Station were conducted circa 1978 to examine pool mixing with and without modifications to T-quencher devices and to RHR lines. Monticello has a single 2004 MWth BWR/3 reactor with the Mark I containment [32]. Its Suppression Pool has a limiting water volume of 76,000 cubic ft ; tests were performed with 69,000 cubic feet [8].

Without RHR operation, it was found that steam flow through unmodified Tquenchers resulted in significant vertical pool thermal stratification; a temperature difference from pool top to bottom of $52^{\circ} \mathrm{F}$ was observed at the end of the steam injection [30]. When the RHR was engaged, the pool's thermal stratification disappeared.

Further testing used modified T-quenchers. These had holes bored into one end with the aim of inducing circulating currents in the Suppression Pool from SRV discharges; modifications with the same end goal were made to the RHR system as well. Test results found that, without the RHR, the modifications to the T-quenchers was sufficient to cause a degree of pool circulation after a few minutes. Tests with the modified RHR system revealed that the modifications induced "considerable pool mixing" [8]; it was so significant that within 6 minutes of the end of steam injection, the pool came to an essentially uniform temperature.

These full-scale tests demonstrate the effects of injector geometry for steam injection into the Suppression Pool. Given an appropriate injector/sparger design, the Suppression Pool can be thoroughly mixed in all directions via steam injection.

### 2.6 FUKUSHIMA DAIICHI RCIC PERFORMANCE

The RCIC systems in Fukushima Daiichi Units 2 and 3 performed their duties in a very challenging situation. They both operated much longer than expected, and did so without any electrical power or operator intervention for a prolonged period.

In Unit 2, the RCIC system initially started and stopped as designed on reactor water levels. The tsunamis generated by the earthquake began to reach the plant 41 minutes after the earthquake; by 55 minutes after the quake, parts of the building had flooded. This resulted in the eventual loss of all AC power as diesel generators went offline, and most DC power as the distribution system was damaged. The RCIC system had been restarted by operators about the time the first tsunami hit the plant, and subsequently continued operating until its ultimate failure. Workers were sent to the RCIC room to verify operation on multiple occasions, but were unable to examine the RCIC system in detail or even approach the equipment as the room itself was partially flooded. After a number of hours, the RCIC source was realigned from the Condensate Storage Tank to the Suppression Pool. Eventually, the Suppression Pool's indicators revealed that it had reached saturation. By 70.5 hours after the earthquake, trends in reactor water levels revealed that the RCIC had failed. All told, it operated for nearly three days, and did so largely without available DC power or operator direct intervention
[3]. In addition, the reactor had not depressurized; it remained at high pressure until it was depressurized manually to initiate seawater injection [4].

The RCIC system in Unit 3 initially behaved as in Unit 2. It started and stopped normally as the designated water levels in the reactor were reached. However, not all DC power was lost after tsunami inundation; there was sufficient power and connectivity that operators were able to start RCIC operation after the tsunamis struck; the system was restarted 1.3 hours after the earthquake. The RCIC System shut down 20.8 hours after the earthquake after running for 19.5; operators were then unable to restore it [3]. Investigations have concluded that the system likely tripped on a high turbine exhaust pressure signal; sufficient DC power was available (albeit becoming unstable) for such signals [33]. As in Unit 2, the reactor in Unit 3 did not depressurize in the period of RCIC operation.

It is not clear why the RCIC Systems performed as they did, or what eventually caused the Unit 2 failure. It has been speculated that the Unit 2 reactor overfilled, and that spillover into the then-unregulated turbine provided an unintentional yet beneficial feedback control mechanism. The water injected into the turbine would degrade its performance, slow it down, and lead to less water being injected into the reactor. In turn, this would limit the spillover into the Main Steam Line and from there to the RCIC turbine. So long as any transients were slow and stable, this could potentially reach a stable operating point.

### 2.7 RECENT EXPERIMENTS

Testing has been done at the Lappeenranta University of Technology to explore the phenomena associated with a condensation pool, especially one of the type employed in the Olkiluoto BWR containment. A number of these POOLEX tests were performed, where the facility consisted of a vertical cylindrical vessel filled with water, into which steam is injected downward through a vertical tube open at the bottom. In the blowdown tests, full condensation in the blowdown pipe was observed at very low temperatures, which transitioned through chugging to condensation oscillation as the pool temperatures were increased [34]. Water hammer was observed in the tests, and stresses severe enough to cause plastic deformation in some components were estimated for some pulses.

Further POOLEX testing was done to study thermal stratification in the facility [35]. Strong vertical thermal stratification was observed in the water in the STB-20 test, peaking at a difference of $37^{\circ} \mathrm{C}$ difference from pool top to bottom when the steam was shut off. The steam flow was not constant during the test, but gradually reduced to maintain condensation within the pipe rather than outside it in the pool. The pool temperatures are illustrated in Figure 11 [35].

POOLEX data have been used as benchmarks. Test STB-31, for example, was simulated in CFD to compare different codes and DCC models, finding differences of a full order of magnitude for the condensation rate [36].


Figure 11: POOLEX STB-20 Stratification Test Pool Temperatures [35]

More recent testing at the Lappeenranta University of Technology has used the PPOOLEX facility [37]. It shares some similarity to the POOLEX facility, but models more features of containment. Notably, the vessel is separated into a drywell and wetwell, and the drywell is vented to the wetwell through the blowdown line. Thermal stratification was found to be significant, but had a slightly different development than the most comparable of POOLEX stratification tests [37].

Additional recent studies in Japan at the University of Tokyo demonstrated the potential for transient thermal stratification in the Suppression Pool with spargers based on the RCIC turbine exhaust discharge. These, however, were conducted in a scaled facility rather than a full-size power plant. Numerical and experimental data showed a
fair amount of vertical stratification near the injection point [38]. Early on during steam injection, low points in the pool maintain a near-constant temperature. With a more pronounced vacuum and varying flow rates, the thermal stratification profile changes. A high steam flow rate produced little stratification in the test chamber. At a more moderate rate, stratification only appeared after a fair amount of thermal energy had been injected into the pool; it later vanished as the bulk temperature increased. At low injection rates, stratification was apparent from almost the beginning of the test. Then, towards the end of the test, the stratification disappeared in stages: first, the higherelevation temperatures jumped to the top-level temperatures, then, progressively, the lower-level temperatures did the same [39].

Another set of experiments has been performed at the Società Informazioni Esperienze Temoidrauliche (SIET) laboratory in Italy. Those tests focused, among other (less-related to this work) areas, on the RCIC sparger designs rather than the complete system and Suppression Pool, and explored the effect of the presence of noncondensibles in the exhaust flow. The open-bottom (Fukushima Daiichi Unit 2-style) sparger had a diameter of 20 cm (vs. 28.3 in Unit 2), and the tube was large when compared to the pool. The multiple-hole (Unit 3-style) preserved the hole sizes of the plant system, but reduced their number; the tube was similarly large when compared to the pool [40]. Those tests have an admitted distortion for pool circulating currents due to the limited pool dimensions and its shape.

Both sparger types in the SIET tests produced a measurable vertical dependence for the pool temperatures [40], [41]. The open-bottom type produced some stratification,
which was eliminated by the addition of $3 \%$ air to the steam flow [41]. The more complex (multiple holes with differing diameters venting solely from the side of the sparger) design produced significantly more thermal stratification. Chugging was found to end as the pool warmed up beyond $45^{\circ} \mathrm{C}$, at which point stratification began. Even as the pool (open to the atmosphere) approached saturation, the lowest portions of the pool in the SIET facility appeared to remain unmixed [40].

## 3. EXPERIMENTAL FACILITY DESIGN AND CONSTRUCTION

In order to investigate the operation of the RCIC System in BWR units with the Mark I containment, an experimental facility was designed and constructed at the Laboratory for Nuclear Heat Transfer Systems at Texas A\&M University. In the RCIC System, steam from the reactor is drawn off of the Main Steam Line, directed through the RCIC Turbine, and exhausted into the Suppression Pool. The turbine, in turn, drives a pump on their common shaft. This RCIC pump draws water either from the Condensate Storage Tank or from the Suppression Pool and pumps it back to the reactor. This maintains the reactor's water level as decay heat in the core boils it off.

In the experimental facility, the alignment to draw water from the Condensate Storage Tank will not be explored in this endeavor; only the pump suction's alignment to the Suppression Pool will be considered. The experiment, therefore, is analogous to a RCIC system operating in its closed-loop mode in the long-term. The role of the reactor will be played by the laboratory's steam generator, which directs steam through a manual control valve (an analog to the RCIC Turbine's governor valve), through an analog to the RCIC turbine (currently an orifice), and through a sparger in a large pressure vessel analogous to the RCIC sparger in the Suppression Pool. A second sparger setup performs as an analog to an SRV. The Suppression Chamber analog and proximate equipment are shown in Figure 12.


Figure 12: Completed Suppression Chamber and Nearby Plumbing

Water from the analog to the Suppression Pool is drawn into a centrifugal multistage pump, analogous to the RCIC pump. Here, the pump will not be directly connected to the turbine analog, and instead will be fully separated from it. This allows for independent investigation of both the pump and turbine sides of the system. From the pump, water will be returned to the steam generator to complete the closed loop. In addition to recirculation lines, there is an injection line to the steam path upstream of both the RCIC and SRV sparger analogs. This will allow the investigation of potential water carryover into the Main Steam Line from an overfilled reactor. The recirculation
flow is used to prevent deadheading the pump as well as to assist in preventing overpressurization of the downstream lines. It can also be used to circulate the water in the Suppression Chamber Analog.

The experimental system uses deionized water throughout, and is thoroughly instrumented to examine all variables of interest.

### 3.1 EXPERIMENTAL EQUIPMENT

In the standard alignment, steam is directed from the outlet of the steam generator system to the manual steam control valve. This is entirely in standard-wall (Schedule 40) 1.5-inch NPS Stainless Steel 304 piping, and the entirety of the steam piping is covered with 2-inch thick rigid fiberglass pipe insulation. From the control valve, the steam continues in a straight horizontal path through the Foxboro vortex flowmeter and past its associated pressure and temperature taps until it encounters the liquid trap and facility branch-off point; this consists of a tee where liquid in the line drains downward to the trap valve and the steam flows vertically until it reaches the appropriate height. The branch-off, not used in this experiment during data collection but used for cooldown operations, is located near the bottom by the liquid trap valve. The change in elevation is due to physical limitations of the laboratory space; the plumbing must be directed up and over a region that cannot have permanent installations blocking access. Once the requisite elevation is achieved, the steam line returns to a horizontal path, and encounters a block valve. From the block valve, the piping is directed over the clear area to the Suppression Chamber Analog area, where it is turned downward until it meets the various branches of the Suppression Chamber Analog
assembly. The top branch connects to the top 1.5 -inch flange on the Suppression Chamber Analog through a normally-closed ball valve. The lower branch flows contains the water injection point, and downstream of that point the line branches off once again to two ball valves; one for each sparger assembly. Pressure and temperature are monitored at the bottom of the vertical section of the steam line, right at the lower (second) branch off point upstream of the water injection. One of the sparger lines, analogous to an SRV, aligns the steam line directly to the SRV sparger when its ball valve is opened. The other, a RCIC analog, passes the steam through the RCIC Turbine analog and then to the RCIC sparger analog. Both spargers deposit their steam below the surface of the water in the Suppression Chamber Analog, which contains a major support structure for the spargers as well as internal instrumentation. A simplified P\&ID of the experimental system, omitting some components, is given in Figure 13. Complete P\&IDs for the entire system are given in Appendix A.


Figure 13: Simplified Experiment P\&ID

The water line consists of several pipe sizes. All are Schedule 40, and the majority is 0.75 -inch NPS. All of the water lines are insulated, largely with 1.5 -inch thick rigid fiberglass pipe insulation. The water is drawn from the outlet of the Suppression Chamber Analog (the bottom-most flange) through a 0.75 -inch line that immediately becomes a 1 -inch line. The water temperature at the vessel outlet is measured by a thermocouple. From there, the line traverses a block valve and joins with recirculation flow coming from the pump outlet through stainless steel tubing. It then goes past a thermocouple and pipe size reduction to 0.75 -inches to enter the pump inlet. From the outlet of the pump, the water temperature is again measured with a thermocouple and then the pipe size is expanded to 1 -inch. This 1 -inch segment handles the major branch-offs: a 0.5 -inch recirculation line to an upper and lower flange on the front of the Suppression Chamber Analog, the aforementioned stainless steel tubing recirculation lines back to the pump inlet, a visual pressure gauge and relief valve, the injection line, and the return flow (to the steam generator) control valve.

From the return flow control valve, the flow is directed vertically and the pipe size is reduced to 0.75 -inch NPS, and it travels horizontally alongside/slightly below the steam line until it too crosses the reserved/clear area. It then drops down and enters a length of 0.5 -inch NPS pipe for the Yamatake magnetic flowmeter. From the flowmeter and its associated thermocouple, there is a short vertical segment of 1-inch pipe to provide a U-trap meant to keep the meter full of water at all times. The size is then reduced back to 0.75 -inch NPS, horizontally, until it reaches the vicinity of the steam generator. There, it drops to near the level of the bottom of the steam generator, and
encounters a block valve. From there, the pipe size is reduced to 0.5 -inch NPS and there is a visual pressure gauge and a branch point with a thermocouple. Both branch points have block valves; one connects to the hot water tank, and the other connects to a low penetration in the steam generator to complete the loop.

The injection line to the main steam line takes water from the pump's branching outlet and passes it through a control valve and a block valve. Then, it reduces the pipe size down to 0.25 -inch NPS. The flow encounters a thermocouple, passes through a Badger M2000 magnetic flowmeter, encounters a second (downstream) thermocouple, and then hits another block valve. From the block valve, the water injection flow is directed to a tee in the steam line, where the steam and water mix.

The relevant process variables, i.e., pressures, temperatures, and flows, are measured by appropriate instruments. These include flowmeters, pressure transmitters, and thermocouples. Their measurements are then processed and recorded by a data acquisition system. More detailed information on the subsystems and components in the experimental facility are given in the following sections.

### 3.1.1 Water Deionization System

The entirety of the water used in the RCIC experimental facility is deionized water. This DI water is provided by passing city water through a Culligan ${ }^{\circledR}$ mixed bed system consisting, in order of the flow, an activated charcoal filter, a cartridge filter, two mixed bed resin tanks in series, and a final cartridge filter. An indicator lamp turns from greed to red when it senses that the resin needs regeneration. Due to the level of
dissolved material in the supply water, the DI system can only purify about 350 gallons of water between regenerations.

In order to fill the system with DI water, the valve connecting the DI system to the hot water tank is opened, as are the valves between the hot water tank and steam generator. Then the hot water tank is filled, which drains into the steam generator. Once the steam generator is filled, all of the valves on the steam generator and DI system are closed. Next, using the laboratory's air compressor, the steam generator is pressurized to a moderate level with air. Slowly, the valves aligning the return water line from the Suppression Chamber Analog to the steam generator are opened, allowing the pressurized water to flow in reverse through the water line back to the Suppression Chamber Analog. In turn, valves for the branching lines are opened and closed to purge all the air from the lines. Before the water level in the steam generator drops too low, the block valves are closed to trap the water in the lines, and the steam generator is depressurized. The valves are then realigned, opening up flow through the DI system to the hot water tank and steam generator. In addition, the valves on the return water line from the Suppression Chamber Analog to the steam generator are reopened. The water in the steam generator and hot water tank can then siphon over into the Suppression Chamber Analog as the DI system adds water to the vessels. This is a slow process, as the DI system processes 1 to 2 GPM. Filling approximately 700 gallons into the Suppression Chamber Analog, as well as any additional necessary fill for the steam generator and hot water tank, takes a minimum of two complete regeneration cycles and more than 7 hours of fill time.

### 3.1.2 Flowmeters

There are three primary flowmeters used in the experiment; a vortex flowmeter is on the steam line, and two magnetic flowmeters are on water lines. An additional magnetic flowmeter was used for monitoring flows while cooling the system down, but is not available in the actual tests' alignment.

### 3.1.2.1 Vortex Flowmeter

The vortex flowmeter on the steam line is a Foxboro 83W wafer-style meter in the 1.5 -inch steam line nearly 100 inches downstream of the main steam control valve. It uses a standard analog 4-20 mA signal to the DAQ, and can register saturated steam flow at atmospheric pressure up to nearly $96 \mathrm{~g} / \mathrm{s}$ when properly configured. At higher fluid densities, the maximum measurable mass flowrate increases. At 6 and 8.25 inches downstream of the meter are pressure and temperature taps, respectively, for use in calculating the correct flow value from the signal generated by the meter.

A vortex flowmeter, as implied by its name, measures fluid flow by utilizing vortices; these vortices are generated as fluid flow past an engineered obstruction in the flow path. The meter measures the frequency of vortex shedding, which is directly related to the flow rate. This is achieved by the use of a small piezoelectric differential pressure sensor near the obstruction; the shedding of vortices alternates from side to side of the obstruction and generates time-varying differential pressures across the sensor at the frequency of the shedding [42]. When combined with the fluid's thermophysical conditions as measured near the meter i.e., pressure and temperature in a pure superheated steam system to determine density and the meter's correction factors, the
flow can be fully characterized. The equations for the flow characterization and correction factors appear in Eqs. (4), (5), (6), and (7) [42].

$$
\begin{gather*}
U R F=C R F \cdot C F \cdot \frac{U R V}{T i m e} \cdot \frac{1}{\rho_{f}}  \tag{4}\\
C R F=B C F \cdot K_{r e f}  \tag{5}\\
B C F=T C F \cdot M C F \cdot U C F  \tag{6}\\
T C F=1-3 \cdot \alpha \cdot\left(T-T_{0}\right) \tag{7}
\end{gather*}
$$

In the equations, URF is the upper range vortex shedding frequency while URV is the upper range value of the flow, i.e., $\mathrm{kg} / \mathrm{s} . \mathrm{K}_{\text {ref }}$ is the reference K -factor characteristic of the meter, which needs to be corrected for changes in temperature, pipe wall thickness and nearby disturbances. Only the temperature correction factor given in Eq. (7) will be nonunity in Eq. (6); it corresponds to thermal expansion in the meter material (expansion rate of $\alpha$ ) at fluid temperatures T other than reference $\mathrm{T}_{0}$. Both CF and Time are used as unit scaling factors.

### 3.1.2.2 Magnetic Flowmeters

A magnetic flowmeter works by passing a conductive liquid through a magnetic field. By the laws of magnetic induction, this generates a voltage perpendicular to both the magnetic field and the flow of the conductive liquid; it is picked up by electrodes in proper locations. With a known electrode spacing and magnetic field, the voltage will be directly proportional to the flow velocity [43].

Of the two magnetic flowmeters, one is a Yamatake MagneW 3000 PLUS system with a 0.5 -inch NPS wafer-style detector. The system consists of an MGG18
detector connected to a remote MGG14C converter. It can measure flowrates up to 28.01 gpm with an error of $\pm 0.2 \%$ to $0.5 \%$, given a minimum liquid conductivity of 3 micromhos $/ \mathrm{cm}$ [43]. The range, however, is set to $0-5 \mathrm{gpm}$ on its analog $4-20 \mathrm{~mA}$ output. Liquid temperature is measured a few inches downstream of the meter to assist in fully characterizing the mass flow. This meter is situated to measure the flow from the Suppression Chamber Analog back to the steam generator.

The second magnetic flowmeter is a Badger M2000; it is used for measuring the liquid injection flow into the steam line. It uses a 0.25 -inch flange connection, and can register flowrates from 0.02 to 5 GPM ; its accuracy can be better than $\pm 0.25 \%$ [44]. In addition, it can handle process fluid temperatures of up to $150^{\circ} \mathrm{C}$, and requires a minimum fluid conductivity of 5 micromhos/cm [44]. Temperatures are measured 6 inches upstream and 2 inches downstream.

### 3.1.3 Pressure Transmitters

Four different primary models of pressure transmitter are used in the RCIC facility: one Dywer 682-3, four Dwyer 673-7 gauge pressure transmitters, three Honeywell ST3000 STA940 absolute pressure transmitters, and three Honeywell ST3000 STD924 differential pressure transmitters. In addition to the electronic pressure transmitters, there are a number of simple visual pressure gauges placed throughout the facility. These, however, are not intended for any actual measurement and are present only for operator convenience as well as sanity checks.

The Dwyer 673-7 pressure transmitters are factory set to a fixed range from 0 to 100 psig (the 682-3 goes up to 250), and transmit on an analog 4-20 mA line. No end-
user adjustments are possible, and they do not communicate with a Honeywell Smart Field Communicator. The 673-7 transmitters have a maximum case pressure of 200 psig , and therefore can survive exposure to pressures beyond their ability to communicate. This is an important feature, as one was originally installed on an outlet to a highpressure multistage centrifugal pump; that line may see pressures approaching 150 psi before the relief opens.

Four such Dwyer gauge pressure transmitters are deployed in the experimental facility: one on the RCIC pump analog's discharge (originally, it was later upgraded to the 682-3 and moved to the pump suction), another on the outlet to the RCIC turbine analog, a third on the Suppression Chamber Analog's top vapor space, and a fourth on the Main Steam Line on the branch-off point in proximity to the Suppression Chamber Analog, far downstream of the vortex flowmeter. Especially in light of the age and calibration difficulties for these transmitters, their transmitted data are not considered high-quality for the purposes of this experiment and are therefore seen as rough monitors rather than as accurate measurements.

Both of the Honeywell models can be used with a Honeywell Smart Field Communicator. This allows for fast and simple connections to the transmitter, quick adjustments to the output ranges, simplified calibration procedures, and in general they are easier to work with than if they did not have that capability. With the communicator, reading and adjusting ranges is a matter of connecting the leads and pressing a short sequence of buttons. No potentiometers need to be adjusted. In addition, the output can
be directed to hold at specified values to assist in calibrating the 4-20 mA analog current loop.

The STD924 model can measure differential pressures ranging from -20 to +400 inH2O. This range may seem limited in higher-pressure situations, such as highpressure choked flow through a restriction, but combined with a capability for withstanding a high common-mode case pressure, these transmitters are very useful for measuring liquid levels in pressure vessels. Two of them are used for exactly that: one on the steam generator to measure its water level, and another on the Suppression Chamber Analog to measure its level. The third is installed to measure the differential pressure from the RCIC Turbine Analog's outlet to the Suppression Chamber Analog's bulk vapor space pressure, which is not expected to be large.

The STA940 model can measure absolute pressures ranging from 0 to 500 psia ; however, none of the three used here are set to such a broad range. One measures the pressure in the steam generator, a second measures the pressure in the vapor space of the Suppression Chamber Analog, and a third measures the pressure in the Main Steam Line at the appropriate location shortly downstream of the vortex flowmeter. The widest range is set for the transmitter on the steam generator, transmitting from 0 to 150 psia ; the narrowest set range is on the Suppression Chamber Analog, being 0 to 100 psia. The main steam line pressure transmitter's range is set to 0 to 130 psia.

### 3.1.4 Thermocouples

In this experimental facility, a total of 44 thermocouples are used to measure temperatures at various locations. Of them, 24 are installed in the interior of the

Suppression Chamber Analog proper, with an additional $25^{\text {th }}$ that can effectively considered to be internal much of the time. The remainder are distributed throughout the system; near the Suppression Chamber Analog, one is on the vessel's outlet, one on the RCIC pump analog's inlet, another on its outlet, one is on the Main Steam Line at its branchoff point, another near 6 feet downstream of the water injection point in the steam line, another on the outlet of the RCIC Turbine Analog, one is immediately upstream and another immediately downstream of the Badger M2000 magnetic flowmeter on the water injection line to the steam line, and one even monitors the bottom temperature of the blowdown drum. Four monitor temperatures inside the steam generator, another measures the temperature on the water return line to the steam generator at the point of injection, another on that line is immediately downstream of the Yamatake magnetic flowmeter, one measures the steam temperature at an appropriate location downstream of the vortex flowmeter, and one even monitors the room temperature of the laboratory.

All of the thermocouples used in this experiment are Omega type T (copperconstantan) thermocouples with special limits of error for accuracy within $0.5^{\circ} \mathrm{C}$ [49]. They are all of the ungrounded type, with stainless steel sheathing. However, they do not have the same lengths nor do they have the same sheath diameter. The lengths range from 12 inches to 120 inches, and the diameters range from 0.032 inches to 0.062 inches. With the exception of the room temperature thermocouple, all the loop resistances are well below 100 ohms.

The SCXI-1102/b/c modules used in conjunction with SCXI-1303 terminal blocks on the Data Acquisition System are built to enable open thermocouple detection.

This uses high resistances to pass a very small current through the thermocouple; when the thermocouple is disconnected or damaged, it will result in a (safe) offscale high voltage on the positive terminal. However, with long extension wires, high thermocouple loop resistances, or when very high accuracy is desired, it is recommended that such detection be disabled, as it can result in measurement errors [45]. As a result, it has largely been disabled in this experimental facility.

Additionally, as the thermocouples used here are universally of the ungrounded type, it is recommended that they be ground referenced on one terminal (the negative terminal). The SCXI-1303 terminal blocks make this a simple matter, and such ground referencing has been enabled for all of the thermocouples.

### 3.1.5 Pump

The pump used in this experiment is a five-stage centrifugal pump, and should provide a reasonable analog to the multistage centrifugal RCIC pump. It is a Dayton 5UXF5 with a 0.75 HP electric motor running off of 115 VAC , and can produce up to 93 psi of boost pressure; the performance curve is shown in Figure 14. Both the inlet and outlet of the pump are 0.75 -inch NPT connections. The speed of the motor, nominally 3450 rpm , is not controlled by the user; as a result, any pressure and flow regulation must be done using valves connected to the system.


Figure 14: Pump Performance Curve (Data from [46])

While some of the wetted materials on the pump are cast iron and the listed maximum liquid temperature is $194{ }^{\circ} \mathrm{F}$ [46], it was predicted that corrosion would not be a major issue for the duration of the experiment. It was also assumed that the liquid temperature limit could be exceeded at elevated inlet pressures without causing significant damage to the pump for the duration of the experiment. In the event that damage does occur, all of the components of the pump are serviceable/replaceable.

### 3.1.6 Steam Generator

The steam generator pressure vessel used in this experiment is a Kennedy Tank and Manufacturing Co., acquired in the past for use on other experiments; it has a
capacity of 130-135 gallons and limits of 135 psig and $350^{\circ} \mathrm{F}$. It can be represented as a vertically-mounted cylinder, with a diameter of 24 inches and a height of 60 inches; the top and bottom both have curved heads that bring the height to approximately 72 inches in addition to the legs below and the equipment mounted above. It was made out of schedule 10 stainless steel 304 pipe. The entire assembly is wrapped in two-inch thick rigid fiberglass insulation. The steam generator pressure vessel and associated equipment is shown in Figure 15.


Figure 15: Steam Generator System

The steam is generated by six strategically placed electric immersion heaters; they are wired for 3-phase 480 VAC , and can produce a grand total of 157 kW of heat nominal. They are submerged beneath the water level in the main vessel, and heat the water to boil it. The heaters are not all of the same size; two are two kW in capacity (screw-in type), one is three kW (screw-in type), and the remaining three are fifty- kW heaters (8-inch flanged type). Of the fifty-kW heaters, two can be powered in $25-\mathrm{kW}$ intervals, while the third has $6.25-\mathrm{kW}$ intervals. This allows for a staggered resolution of available heating powers by using different combinations of heaters: $2,3,4,5,6.25$, $7,8.25,9.25,10.25,11.25,12.5,13.25, \ldots, 157 \mathrm{~kW}$. The heaters and electrical control panel were manufactured by Watlow Process Systems.

As it was originally wired, a total of 6.25 kW from the 7 th and 8th circuit of the third $50-\mathrm{kW}$ heater were unavailable. This brought the total available power down to 150.75 kW at 480 VAC 3-phase. This was rectified after shakedown testing.

In addition to the main vessel, there is a smaller separator attached to the main steam output line. It is a separate pressure vessel manufactured by Clark Reliance and is connected to the main steam line upstream of the control valves. Both it and the steam generator are ASME-code rated. Wet steam from the steam generator flows into it through a 1.5 -inch line, it removes entrained liquid from the output flow, and the liquid is returned to the steam generator while the exiting steam continues its journey; thus, the steam exiting from the overall steam generator system is nearly dry saturated steam.

There are a number of instruments that monitor the steam generator. For bulk temperature measurements, there are four thermocouples placed at different vertical
locations penetrating the vessel; these give the DAQ the temperature readings from the cooler water near the bottom of the main vessel to the steam space near the top. The DAQ also monitors two pressure transducers on the steam generator: an absolute pressure meter connected to the top for pressure determination, and a differential pressure meter tapped to the top and bottom of the main vessel for water level determination.

In addition to the instruments connected to the DAQ, there are visual gauges attached to the system: pressure gauges at the top and bottom of the main vessel, and a magnetic float-based level indicator. The level indicator is also used by the interlock circuitry for the heaters; the heater interlock cuts power when a thermal overload is detected in the heaters or when the level float falls below the cutoff level, triggering a reed switch.

There are several lines that connect to the steam generator: the main steam line, two Kunkle relief valves, a manual blowdown line, a vacuum breaker line, an air line featuring a pneumatic quick-connect fitting, a drain line, and a fill/return water line.

The Kunkle relief valves are ASME-code rated, each set to lift at 115 psi . They both open to a large atmospheric blowdown drum partially filled with water to condense any escaping steam during their operation. This prevents hot steam from being ejected directly into the laboratory space. The blowdown line, however, does not direct steam into the drum. Instead, it directs the steam to an outdoor location away from laboratory personnel.

The vacuum breaker is meant to prevent a significant vacuum from developing in the steam generator when it is shut off and cools down. It consists of a ball valve, a check valve, and a filter. The ball valve should be closed when the system is under pressure to prevent leakage back through the check valve. At any other time, it should be open, allowing one-way airflow through the check valve into the steam generator. The inlet has a filter on it to prevent dust or other contaminants from entering the system. When used properly, this system should prevent a vacuum from developing in the steam generator, and thus preventing vacuum damage to the vessel.

### 3.1.7 Suppression Chamber Analog

The Suppression Chamber Analog is, in this experiment, the analog to the Torus/Suppression Chamber in BWR plants with the Mark I containment. Unlike the actual Suppression Chambers, it is in the shape of a cylinder rather than a torus. It is a large (approximately a 1,400 gallon capacity and empty weight of near 3,000 pounds) pressure vessel originally constructed in 1952 by Wyatt Metal \& Boiler Works. It is made of 304 Stainless Steel, and has a pressure rating of 88 psi with a temperature rating of $400^{\circ} \mathrm{F}$. It is a horizontally-mounted cylinder with an inner diameter of 59 inches and a length of 96 inches from head weld to head weld; from each head weld, each head extends out approximately 3 inches before the curvature changes, extending the cylindrical section to approximately 102 inches total. The longest length is from head to head through the centerline; this length is about 122 inches internally. The vessel's legs near either end elevate the bottom center 18 inches above the surface beneath it. For reference here, the front face will be deemed the head with the ASME-API stamped
plate, and the right-hand side will be the right-hand side of the vessel when facing toward the front head from the rear head. It has a number of useful penetrations, including a 6-inch NPS flange underneath at the front end where it feeds the pump suction. In addition, the front face has four 0.75 -inch NPS flanges arranged rectangularly about the head. The centers of these four flanges are spaced 17 inches horizontally and 52.25 inches vertically, and extend several inches out from the head. The rear face has a 6-inch NPS flange near the top center. The top of the tank has four penetrations, in order from front to back: nearest the front, a 1.5-inch NPS flange without pipe significantly extending past the inner weld; a 20 -inch manhole at the top center giving personnel access to the interior of the pressure vessel; a 2-inch NPS flange with tubing extending several inches into the interior, and a 4-inch NPS flange near the back end, also without tubing extending into the vessel. In Figure 16, the vessel can be seen during the construction phase of the experiment.


Figure 16: Suppression Chamber Analog During Facility Assembly

### 3.1.7.1 Vessel Internals

The vessel is heavily instrumented, and has 24 thermocouples placed strategically throughout its interior. In order to position the thermocouples and provide support for the sparger systems, a support structure was assembled inside the vessel.

The support structure system was pieced together out of stainless steel channel strut and stainless steel fasteners. It has four feet made out of heavy stainless steel blocks to weigh down and secure the entire assembly; there are no mechanical attachments to the vessel itself. Instead, the feet have silicone rubber pads adhered to their edges with JB

Weld to provide a cushion and dampening where the blocks sit on the bottom of the vessel's interior. Some of the internals can be seen in Figure 17.


Figure 17: View of Vessel Internals Near Front Head

The feet are connected to channel strut pieces that, when attached, form an " X " shape; there are two such assemblies, each with feet only on the bottom of the X . They are roughly positioned to be above the vessel's legs at either end, and have channel strut pieces run lengthwise along the vessel attached to each leg of the X. Under normal operating conditions, two of the lengthwise pieces will be below the water's surface and
two above it. The lower two pieces sit roughly 16.75 inches above the very bottom center of the cylindrical portion of the vessel, and span 102 inches. The lengthwise gap between them is roughly 16 inches. In addition to these major elements, there are a number of minor pieces bolted to them to increase the structure's overall strength and rigidity, and to provide mounting points to anchor the sparger systems.

There are two separates sparger systems in the vessel: one for the RCIC line, and one for the SRV line. Only one is intended for operation at any given time. Both spargers are anchored to the support structure within 12 inches of their outlet ends. The SRV line comes in through an adapter on the 2-inch pipe flange on the top of the vessel, and drops straight down through a length of 1.25 -inch pipe, which is then reduced to 1 inch for half of the vertical drop. It then meets a 1 -inch tee that is 3 inches wide, and each end of the tee has an additional 2 inches of 1 -inch pipe extending from it. These outlets are aligned to be pointed lengthwise along the vessel toward either head, and their centers are 7 inches above the vessel's bottom. The alignment of the vertical section is not perfect, however, and the tee actually sits almost 2 inches off-center towards the right when viewed from the front head looking toward the back. It is 24.5 inches from the back head weld.

The RCIC sparger system uses a simpler sparger type: a single open pipe end. The pipe enters through an adapter on the rear side 6-inch flange and proceeds horizontally to an elbow, which angle the pipe down vertically. After the adapter, the pipe expands to a 1.5 -inch line, and stays that size. Shortly before the outlet, there is a 1.5 -inch tee in the line used to insert a thermocouple into the flow, which goes straight
through the tee without bending. A pipe stub of less than two inches extends past the tee; the thermocouple is therefore less than 4 inches from the outlet. The outlet end itself, still pointing vertically towards the vessel bottom, sits 11 inches inward from the back head weld and 15 inches above a jet shield intended to protest the vessel wall from any steam jet and violent phenomena associated with it. The shield is made from a 6 -inch long piece of 6-inch schedule 10 stainless steel pipe cut in half lengthwise. This is kept a small distance above the vessel bottom by using silicone rubber feet adhered to the shield with JB Weld as well as bolts mounting it to the main support structure. Both the SRV and RCIC analog spargers can be seen in Figure 18; the RCIC sparger analog is in the foreground along with its jet shield, and the SRV sparger analog is in the background.


Figure 18: View of Spargers from Vessel Rear Head

Aside from the thermocouple in the RCIC sparger, there are 23 other thermocouples spaced throughout the vessel to examine any thermal stratification that may appear. A 24th, while not in the vessel proper, can be considered to be in the vessel under the valve alignments for most operating conditions. It sits in a pipe attached directly to the 1.5 -inch top flange just a few inches from the flange, and the valve between it and the main steam line is normally closed. The internal vessel thermocouples enter through two multiconductor feedthroughs installed in the four-inch
flange on the top of the vessel; they have 120 inch leads, allowing their sensitive ends to be placed relatively far from their entry points.

Table 1: Vessel Internal Thermocouple Positions

| SP Thermocouple | x-position | y-position | z-position |
| :---: | :---: | :---: | :---: |
| SP 1 | Inside RCIC Sparger |  |  |
| SP 2 | 0 | 0 | 58 |
| SP 3 | 0 | 0 | 22 |
| SP 4 | 0 | 0 | 15 |
| SP 5 | 0 | 0 | 8 |
| SP 6 | 0 | 12 | 15 |
| SP 7 | 0 | -12 | 15 |
| SP 8 | 12 | 0 | 15 |
| SP 9 | 24 | 0 | 15 |
| SP 10 | 36 | 0 | 15 |
| SP 11 | 48 | 0 | 22 |
| SP 12 | 48 | 0 | 15 |
| SP 13 | 48 | 0 | 8 |
| SP 14 | 48 | 12 | 15 |
| SP 15 | 48 | -12 | 15 |
| SP 16 | 60 | 0 | 15 |
| SP 17 | 72 | 0 | 15 |
| SP 18 | 84 | 0 | 44 |
| SP 19 | 84 | 0 | 22 |
| SP 20 | 84 | 0 | 15 |
| SP 21 | 84 | 0 | 8 |
| SP 22 | 84 | 12 | 15 |
| SP 23 | 84 | -12 | 15 |
| SP 24 | 96 | 0 | 15 |

With an expected water level near half-full, there are two thermocouples in the tank proper to measure vapor space temperatures: one close to the top of the tank just
below the back head weld, and a second roughly 12 inches back from the front head weld, 15 inches below the top of the tank. The remaining internal thermocouples are spaced throughout the liquid space. A line of 9 thermocouples is set up along the vessel axis, 15 inches above the bottom and spaced 12 inches apart. As a result, they span from the back weld to the front weld. At three points along that thermocouple line, there are an additional 4 thermocouples offset from the line: one 7 inches above, a second one seven inches below, a third at the same height and axial location but 12 inches to the left (toward the side wall), and a fourth similarly situated, but 12 inches to the right instead. These sets are placed such that one is, axially, at the back head weld, the second is in the middle between the welds, and the third is 12 inches back from the front head weld. This should be sufficient to give at least a minimal indication of thermal gradients in three dimensions in the liquid pool, and to highlight potential hot spots within it. The internal $\mathrm{x}, \mathrm{y}, \mathrm{z}$ positions of the thermocouple ends in the vessel are given in Table 1 and depicted in Figure 19. The positions are given in inches; the x-position is measured from the rear head weld pointing toward the front head, the y-position is from the center of the vessel pointing to the right as one looks towards the front head from the rear, and the z-position is the height measured from the bottom centerline inside the vessel.


Figure 19: Thermocouple Layout

### 3.1.7.2 External Instrumentation

Besides the thermocouples inside the vessel, several instruments positioned externally monitor vessel conditions. An Orion magnetic level indicator, very similar to the one used in the steam generator system, is mounted to the front head to give a visual indication of the vessel's water level. In addition, a Honeywell DP transmitter is used to formally measure the liquid fill level and $\log$ it in the data acquisition system. It has the high pressure side connected to a column of water terminating at the top of the vessel, open to the vessel's internal pressure in the upper vapor space. The low pressure side is connected to the liquid space, and measures the hydrostatic head of the water fill above it. The head difference between the two depends on the fill level, and can be easily calculated under standard conditions.

A second Honeywell DP transmitter is connected across the RCIC Turbine Analog outlet and the bulk vessel vapor space. This allows monitoring of pressure fluctuations appearing in the RCIC sparger, especially those that can be expected to occur in a chugging regime or when liquid is injected through the turbine analog.

A third Honeywell pressure transmitter, an absolute pressure transmitter, is connected to the top of the vapor space in the vessel and observes the bulk pressure in the vessel.

In addition, there is a Dwyer gauge pressure transmitter installed on the 1.5 -inch flange that monitors vessel/flow pressure at that point. However, it is of lower quality and precision than the Honeywell transmitters. While its data does get recorded by the data acquisition system, it is used more as a monitor of general conditions than as a fullfledged measurement.

### 3.1.7.3 Pressure Relief, Vacuum Breaking, and Blowdown

The aforementioned 1.5 -inch flange on the top front of the vessel serves a number of functions. Besides the pressure and temperature readings taken there, it feeds the relief, vacuum breaking, blowdown, and generic main steam line functions. On the 1.5 -inch pipe, a cross piece branches components out onto a number of lines. With everything attached, it resembles a crown or antlers on the pressure vessel. The top line is connected to a valve, normally closed, that opens into the main steam line. This can be used to pressurize the vapor space, or alternately, to depressurize it by running the main steam line in reverse. Both the left and right branches then tee off to connect to the relief valves. There is a total of two relief valves, each a 0.5 -inch Kunkle spring-
operated ASME relief set to 88 psi . They are, with the exception of the pressure setting, identical to those on the steam generator. They open to an atmospheric blowdown drum, somewhat smaller than that of the steam generator system, also partially filled with water to condense any steam present in the release. In addition, a manual blowdown line drains to the drum. This line comes from the tee on one of the vessel's relief valve lines. There is also a line draining to the drum from a non-code relief valve on the outlet of the RCIC Pump analog, set to keep the pump's maximum case pressure ( 150 psi ) from being reached. The tee on the other line, past the relief valve, connects to a check valve aligned to allow flow into the vessel. Much like the steam generator, this is set up as a vacuum breaker, except that it does not have the shutoff valve and it is much larger - the full 1.5 -inch pipe size. It too is fed from a filter, again scaled up in size. This is arranged so that a surprise vacuum condition will not damage the vessel; it is possible to align the pump to spray water into the vapor space in the vessel. It is conceivable that this could cause a rapid steam void collapse even under pressure; therefore, there is no operating condition in which the vacuum breaker should ever be closed off from the vessel.

### 3.1.7.4 Insulation

The vessel and the attachments, aside from the blowdown drum, are all wellinsulated. This is intended not only to protect laboratory personnel from potentially high temperatures, but to thermally isolate the system as well. A layer of 2-inch thick fiberglass tank wrap insulation was applied around the pressure vessel, not without difficulty. Both heads and all the penetrations are insulated. The vessel's legs are
insulated as well, but only part of the way. It was assumed to be sufficient to insulate them only part of the way down below the vessel, as they are carbon steel (limited thermal conductivity) and beyond insulating a few inches the marginal additional heat retention is not expected to be high.

### 3.1.8 RCIC Turbine Analog

The turbine in the RCIC system of BWR plants with the Mark I containment is a non-condensing Terry Turbine as described earlier. The analog to this in the current experimental setup is an orifice followed by a loop. The orifice consists of a $7 / 16$ " (originally 0.348 -inch) hole drilled in the center of a 0.25 -inch thick stainless steel disc. The edges of the hole are chamfered at $135^{\circ}\left(67.5^{\circ}\right.$ with respect to the axis). The disc itself is sandwiched into a 1-inch NPS Class 150 flange. Downstream, the flange has a 6-inch length of 1-inch Schedule 80 pipe connecting to an even thicker elbow. This elbow, in turn, is connected to a 3-inch length of 1-inch Schedule 80 pipe that connects to another (standard) elbow; two more 3-inch pipe lengths and elbow complete the loop (here, closer to a rounded square). From the final elbow, there is a 6-inch length of 1 inch Schedule 80 pipe connected to an end flange; this pipe is parallel to the first 6 -inch length with flow in the same direction, but shifted to be below the first length.

While not an ideal representation of the turbine, the orifice was deemed to be sufficient for the purposes of this experiment. It preserves a choke point as would exist in the nozzles of the real turbine, and provides some swirl in the flowpath downstream of the choke point. As a result, the upstream flows into the turbine analog are isolated from downstream conditions when there is a sufficient pressure drop across the turbine analog
to result in choked flow, and the outlet conditions are very turbulent; both are expected from the genuine article. Although no work is done in the analog, the low efficiency of Terry turbines means the work done in a real system is itself limited. In addition, while the transient dynamics of the turbine are not preserved, the steady-state operations considered here do not involve transient responses.

The use of thick-wall rather than standard pipe as well as the more robust first elbow downstream of the orifice is a response to potential erosion issues. As the experiment expects some two-phase choked flow through the orifice, erosion from sonic velocity droplets impacting the first elbow and the pipes to a lesser extent, was expected. While thicker walls will not prevent such erosion, is does provide a more robust barrier and resulting additional operating time before replacement would become necessary.

### 3.1.9 Data Acquisition System

The Data Acquisition System consists of the collection of both hardware and software that combine to interpret and record all the relevant data produced during operation of the experiment. This includes each of the 44 thermocouples as well as the $164-20 \mathrm{~mA}$ pressure and flow transmitters.

### 3.1.9.1 Hardware

The primary hardware consists of a National Instruments SCXI system connected to a PC. This is the nerve center of the data acquisition system, and is shown in Figure 20. The SCXI system itself consists of an SCXI-1000 chassis with four modules installed: two SCXI-1102 modules, one SCXI-1102B module, and one SCXI-1102C module. The primary difference between the $1102,1102 \mathrm{~B}$, and 1102 C is the specific
lowpass filter specified for each one; the 1102 has a bandwidth of 2 Hz , while the 1102 B and 1102 C have bandwidths of 200 Hz and 10 kHz , respectively [47]. These modules each have 32 nominal voltage/thermocouple inputs in addition to a cold junction sensor input from the attached terminal block, and each channel has an independent amplifier and filter [47]. Each module in use is connected to its instruments via an SCXI-1303 terminal block and appropriate wiring; one of the SCXI-1102 modules is unused in this setup.


Figure 20: Data Acquisition System

The PC is connected to the SCXI-1000 chassis through a shielded cable connected from the back of one of the SCXI-1102 modules to an NI PCIe-6341 card in the PC. The analog input signals are multiplexed onto a single channel between the chassis and PC; when using LabVIEW software with the DAQmx drivers, much of the multiplexing and demultiplexing is invisible to the end user. However, care should still be taken in signal configuration to reduce the effects of sometimes unexpected or unclear phenomena such as extra settling time due to channel-to-channel gain transitions, as recommended by NI [48]. Essentially, signals of certain type and expected level should be clustered together physically on the terminals; for example, one would group channels 0-15 for one class of signal, and channels 16-31 for another in an SCXI-1303 terminal block. One would want to avoid putting a small signal on channel 0 , a large one on channel 1 , a small one on channel 2 , etc.


Figure 21: Current to Voltage Signal Conversion

While thermocouples can be connected directly to the terminal blocks with the current hardware, current loops cannot. Therefore, in order to use instruments with 4-20 mA analog outputs, some intermediate hardware is needed. For each channel, this consists of little more than a 249 -Ohm precision resister in the loop as illustrated by Figure 21 (only one channel is shown; the chassis contains multiple identical channels). Nominally, a 250 -Ohm resistor would be used to convert the signal to $1-5 \mathrm{~V}$; here, the use of 249 Ohms gives a little bit of additional headroom for offscale high signals, and is what would be used internally in the 1102 module to permanently make it a $4-20 \mathrm{~mA}$ channel [47]. The instrument's current is passed through its connected downstream resistor, and the voltage drop across said resistor is measured by the SCXI system by
connecting both ends of the resistor to the input terminals for that specific channel. This generates a voltage signal slightly less than 1-5 V, depending on calibrations.

### 3.1.9.2 Software

The primary software environment is 32-bit LabVIEW 2012 SP1 running under 64-bit Microsoft Windows 7 Enterprise with SP1. The DAQmx drivers are more recent, being version 14. As the system is limited in its CPU resources (Pentium D 930), care was taken in designing the LabVIEW VI (Virtual Instrument, stored in a .vi file) to reduce CPU utilization while still maintaining functionality. Figure 22 shows the user interface for the data acquisition program.


Figure 22: Data Acquisition Program UI

The LabVIEW VI produced for this experiment was based off of those for earlier experiments performed in the Laboratory for Nuclear Heat Transfer Systems, primarily the earlier Counter-Current Flow Limitation experiments. It uses similar conventions in both the User Interface and data logging output. However, it does some processing that was not done in earlier experiments. Most notably, in its averaging scheme, it not only logs the raw mean value for the channel (either raw voltage or internally determined temperature, depending on whether the channel is for general voltage or for a
thermocouple) but the standard deviation in the averaged sample set as well. This can assist not only in determining aspects of a channel's uncertainty, but can also assist in characterizing the amount of rapid fluctuations occurring in a channel that happen on timescales between those of the sample rate and the logging rate.

Each channel's processing follows a similar path. A collection of samples is taken and then passed on to the averaging scheme, which reports both the mean and standard deviation in either the temperature (thermocouples) or voltage (other instruments). Both the mean and standard deviation are recorded. Then, the mean value is passed on to a block that contains a calibration profile for that particular signal, transforming the raw voltage to a fraction from 0 to 1 of the instruments full scale ( 0 corresponding to $4 \mathrm{~mA}, 1$ corresponding to 20 mA ). This value, in turn, is passed to a block transforming it with the instrument's set range, thereby reporting the value determined by the instrument (i.e., $20 \mathrm{psia}, 0.5 \mathrm{gpm}$, etc.). For some instruments, that is all that is needed. For thermocouples, such processing is done internally by DAQmx and is unnecessary downstream. For others, however, additional processing may be needed. For example, to transform the differential pressure readings into levels, the reported value must be subtracted from a reference level as the DP transmitters are set up to read the level on the low pressure side. Unit conversions may also need to be done, especially when the values for one instrument are used as part of another's calculations. The final computed value for each instrument is recorded as well.

This is very important for the vortex flowmeter. Both pressure and temperature compensations are applied, and steam density is actively computed using a dll from the X Steam Tables. In such cases, some of the intermediate values are recorded as well.

Besides logging all the relevant data, the LabVIEW VI presents much of it to the operator in the form of numerical indicators and charts. The indicators are overlaid on a simplified graphic of the RCIC System Experiment. This allows the operator not only to observe the live data, but also provides critical information enabling the determination of valve positions and any other relevant manual control.

All of the $4-20 \mathrm{~mA}$ instruments used by the data acquisition software for this experimental facility are given in Table 2; it gives the address/channel occupied in the data acquisition system as well as each instrument's basic information. The same is done in Table 3, except that it does so for the thermocouples in the system.

Table 2: Current Loop Instruments

| Model | Range | Purpose | DAQ Channel | $\begin{aligned} & \text { P\&ID } \\ & \hline \text { Label } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Honeywell ST3000 STA940 | $\begin{aligned} & 0-150 \\ & \text { psia } \\ & \hline \end{aligned}$ | Steam Generator Pressure | SC1Mod2/ai27 | I-1 |
| $\begin{aligned} & \text { Honeywell } \\ & \text { ST3000 STD924 } \end{aligned}$ | $\begin{aligned} & 0-110 \\ & \text { inH2O } \end{aligned}$ | Steam Generator Level (DP) | SC1Mod2/ai29 | I-2 |
| $\begin{aligned} & \hline \text { Honeywell } \\ & \text { ST3000 STD924 } \end{aligned}$ | $\begin{aligned} & \hline 1-80 \\ & \text { inH2O } \end{aligned}$ | Suppression Pool Level (DP) | SC1Mod2/ai30 | I-3 |
| $\begin{aligned} & \text { Honeywell } \\ & \text { ST3000 STA940 } \end{aligned}$ | $\begin{aligned} & 0-100 \\ & \text { psia } \\ & \hline \end{aligned}$ | Suppression Chamber Pressure | SC1Mod2/ai31 | I-4 |
| Yamatake <br> MagneW 3000 PLUS | $\begin{aligned} & 0-5 \\ & \text { GPM } \end{aligned}$ | Water Return to Steam Generator | SC1Mod4/ai22 | I-5 |
| Foxboro 83W | $\begin{aligned} & 0-2400 \\ & \mathrm{~Hz} \end{aligned}$ | Main Steam Flowrate | SC1Mod4/ai24 | I-6 |
| $\begin{aligned} & \hline \text { Honeywell } \\ & \text { ST3000 STA940 } \end{aligned}$ | $\begin{aligned} & \hline 0-130 \\ & \text { psia } \\ & \hline \end{aligned}$ | Main Steam Line Pressure | SC1Mod4/ai25 | I-7 |
| Honeywell ST3000 STD924 | $\begin{aligned} & -20- \\ & 400 \\ & \text { inH2O } \\ & \hline \end{aligned}$ | RCIC Turbine Exhaust to Suppression Chamber DP | SC1Mod4/ai26 | I-8 |
| Dwyer 682-3 | $\begin{aligned} & \hline 0-250 \\ & \text { psig } \\ & \hline \end{aligned}$ | Pump Discharge Pressure Monitor | SC1Mod4/ai27 | I-9 |
| Dwyer 673-7 | $\begin{aligned} & 0-100 \\ & \text { psig } \end{aligned}$ | Suppression Chamber Pressure Monitor | SC1Mod4/ai28 | I-10 |
| Dwyer 673-7 | $\begin{aligned} & 0-100 \\ & \text { psig } \end{aligned}$ | RCIC Turbine Exhaust Pressure Monitor | SC1Mod4/ai29 | I-11 |
| Badger M2000 | $\begin{aligned} & 0-1.0 \\ & \text { GPM } \end{aligned}$ | Water Injection to Steam Line Flowrate | SC1Mod4/ai30 | I-12 |
| Dwyer 673-7 | $\begin{aligned} & 0-100 \\ & \text { psig } \end{aligned}$ | Steam Line Pressure Monitor | SC1Mod4/ai31 | I-13 |
| Dwyer 673-7 | $\begin{aligned} & 0-100 \\ & \text { psig } \end{aligned}$ | Pump Inlet Pressure Monitor | SC1Mod4/ai17 | I-14 |
| $\begin{aligned} & \text { Omegadyne } \\ & \text { PX309-005G5V } \end{aligned}$ | $\begin{aligned} & 0-5 \\ & \text { psig } \end{aligned}$ | Hot Water Tank Level | SC1Mod2/ai28 | I-15 |
| Yamatake <br> MagneW 3000 PLUS | $\begin{aligned} & 0-15 \\ & \text { GPM } \\ & \hline \end{aligned}$ | HX Hot-Side Flowrate | SC1Mod4/ai23 | I-16 |

Table 3: Module 3 Thermocouples

| Thermocouple | $\underline{\text { DAQ Channel }}$ | P\&ID Label |
| :--- | :--- | :--- |
| SP 24* | SC1Mod3/ai0 | T-9 |
| SP 23* | SC1Mod3/ai1 | T-10 |
| SP 22* | SC1Mod3/ai2 | T-11 |
| SP 21* | SC1Mod3/ai3 | T-12 |
| SP 20* | SC1Mod3/ai4 | T-13 |
| SP 19* | SC1Mod3/ai5 | T-14 |
| SP 18* | SC1Mod3/ai6 | T-15 |
| SP 17* | SC1Mod3/ai7 | T-16 |
| SP 16* | SC1Mod3/ai8 | T-17 |
| SP 15* | SC1Mod3/ai9 | T-18 |
| SP 14* | SC1Mod3/ai10 | T-19 |
| SP 13* | SC1Mod3/ai11 | T-20 |
| SP 12* | SC1Mod3/ai12 | T-21 |
| SP 11* | SC1Mod3/ai13 | T-22 |
| SP 10* | SC1Mod3/ai14 | T-23 |
| SP 9* | SC1Mod3/ai15 | T-24 |
| SP 8* | SC1Mod3/ai16 | T-25 |
| SP 7* | SC1Mod3/ai17 | T-26 |
| SP 6* | SC1Mod3/ai18 | T-27 |
| SP 5* | SC1Mod3/ai19 | T-28 |
| SP 4* | SC1Mod3/ai20 | T-29 |
| SP 3* | SC1Mod3/ai21 | T-30 |
| SP 2* | SC1Mod3/ai22 | T-31 |
| SP 1* | SC1Mod3/ai23 | T-32 |
| RCIC Turbine Analog Outlet | SC1Mod3/ai24 | T-33 |
| Steam Line 6-ft Post-Water Injection | SC1Mod3/ai25 | T-34 |
| Pump Inlet | SC1Mod3/ai26 | T-35 |
| Pump Outlet | SC1Mod3/ai27 | T-36 |
| Suppression Chamber Outlet | SC1Mod3/ai28 | T-37 |
| Steam Line Upstream of Water Injection | SC1Mod3/ai29 | T-38 |
| Water Injection Line Pre-Flowmeter | SC1Mod3/ai30 | T-39 |
| Water Injection Line Post-Flowmeter | SC1Mod3/ai31 | T-40 |
| *Location given in Table 1 |  |  |

Table 4: Module 2 and 4 Thermocouples

| Thermocouple | DAQ Channel | P\&ID Label |
| :--- | :--- | :--- |
| Room Temperature | SC1Mod2/ai0 | T-1 |
| Steam Generator Top | SC1Mod2/ai1 | T-2 |
| Steam Generator Upper | SC1Mod2/ai2 | T-3 |
| Steam Generator Middle | SC1Mod2/ai3 | T-4 |
| Steam Generator Lower | SC1Mod2/ai4 | T-5 |
| Steam Generator Water Injection | SC1Mod2/ai6 | T-6 |
| Suppression Chamber Top 1.5-inch <br> Flange | SC1Mod2/ai7 | T-7 |
| Suppression Chamber Blowdown Drum | SC1Mod2/ai8 | T-8 |
| Main Steam Line Near Vortex Flowmeter | SC1Mod4/ai0 | T-41 |
| Water Return to Steam Generator Line <br> Near Flowmeter | SC1Mod4/ai1 | T-42 |
| Hot Water Tank Outlet | SC1Mod2/ai5 | T-43 |
| Auxiliary Hot Water Pump Inlet | SC1Mod4/ai13 | T-44 |

### 3.1.9.3 Cable Shielding and Grounding

Proper cable shielding is a paramount issue when assembling an instrumentation system. While current loops have some immunity to noise that is lacking in pure voltage transmission, such immunity is not absolute. In addition, with weak voltage signals such as those generated by thermocouples, noise picked up in long cable runs can swamp the signal. Therefore, in order to obtain high quality data, the transmission paths must be protected from noise - the cables must be properly shielded and all grounds set up correctly.

In this facility, all cables save five are shielded. The five unshielded cables connect to the four thermocouples in the steam generator and the one room temperature
thermocouple. Each of these was installed in earlier experiments, uses relatively short cables, and functioned well in previous endeavors.

The other cables are shielded, and connect their shields to ground only at one end in order to prevent ground loops. For the cables carrying the $4-20 \mathrm{~mA}$ signals, they all ground on the chassis to the converter box containing the instrument's 249 -ohm resistor. The thermocouple cables land their grounds on the ground connector in their respective SCXI-1303 terminal blocks. While some of the thermocouple cables bundle eight twisted pairs into a single shielded cable, crosstalk between pairs is not expected to be an issue. The short unshielded distances at some of the cables' connector ends is also not expected to cause any appreciable noise injection.

### 3.1.10 Calibrations

In order to have any confidence in the recorded data, all the instruments must have some sort of calibration. Therefore, where applicable, calibrations have been carried out.

The Honeywell ST3000 Series 900 transmitters were calibrated in two phases: sending them out to calibrate their pressure readings, and a signal calibration on their 420 mA outputs to implement in the data acquisition software. Of the six shipped to a calibration service, two of the existing transmitters were found to have defective electronics in need of replacement. Once their measurements were calibrated, signal calibration profiles could be developed as well. The signal calibration profiles were developed in the same way for the pressure transmitters as for the magnetic flowmeters. Using a small LabVIEW VI developed for this particular task, two-point calibration
profiles can be easily computed. With the Honeywell Smart Field Communicator or (if present) a built in menu system, the transmitters were set to output their full-scale $(100 \%$, $20 \mathrm{~mA})$ signals. These were recorded by the software and time-averaged over a period of at least 100 seconds. Then, they were each set to output their low-end $(0 \%, 4 \mathrm{~mA})$ signal. Again, the signal was recorded and time-averaged for a minimum of 100 seconds. Assuming full linearity straight through from the measurement to the analog output to the analog to digital conversion in the DAQ, such two point calibrations are sufficient to fully derive the curve.

Not all of the instruments could be so easily calibrated. Each of the gauge pressure transmitters, unable to connect with a Smart Field Communicator, had to have a more creative approach. Some of them, easily disconnected from the system, were able to follow a similar paradigm (a two-point, low-pressure and high-pressure, approach). Their low-end ( $0 \%$ of full scale) points were developed from exposure to atmospheric pressure. The high-end points, however, were somewhat different. By connecting an Omega DPI 603 calibrator (last calibration date: July 19, 2005), and holding at 90.00 psig, points for $90 \%$ of full scale ( 18.4 mA nominal) were found and two-point calibration profiles were estimated. Since the last known calibration date for the calibrator is so far in the past, is not considered reliable. However, it is not expected to have drifted very far.

The remaining two Dwyer gauge pressure transmitters were not easily removed from the system for calibration. For them, a sort of point-and-a-half technique was employed. By measuring the height of the water column above them, a low-end
pressure can be estimated. For the transmitters in question, this is between $0.05 \%$ and $1.5 \%$ of full scale. The high points were estimated with a bit of a creative leap. It was assumed that their nominal 20 mA output actually corresponds to a 20.00 mA current at $100 \%$ full scale output. An additional assumption was that the measured current on the DPI 603 calibrator was accurate. Then, the transmitter was disconnected from the circuit and the calibrator wired in with its $\sim 12 \mathrm{~mA}$ current generator enabled. The result was scaled to 20 mA , and assumed to correspond to the nominal 20 mA signal from the transmitter. As this is not expected to be a very accurate technique, the resulting data from the Dwyer transmitters are not expected to be of high quality and are not used analytically.

The most intricate calibration technique used in this experimental facility may belong to the Foxboro vortex flowmeter. As documented in the manual, the procedure involves the calculation of an expected upper range frequency, the temporary setting of DIP switches, the removal of the electronics unit from the flowmeter body, disconnecting the sensor unit and in its place connecting a function generator, and operating the function generator at the predetermined upper range frequency and then at zero while adjusting the appropriate potentiometers. Once complete, the temporary connections must be disconnected, the electronics returned to the housing and the DIP switches set appropriately [42]. For this setup, an upper range frequency of 3000 Hz was used (later reduced to 2400 Hz ), as it is the maximum that the flowmeter can handle, and the calculated result for an absolute limiting flowrate was close to it. In addition, the function generator available does not isolate its signals as required by the transmitter but
rather ground-references them. Therefore, in order to provide the requisite isolation to allow the signals to float, the function generator was plugged into a UPS; the UPS was then unplugged from the wall to remove the ground reference during operation. Furthermore, the frequency was monitored by an oscilloscope to verify that the reported frequency on the function generator was indeed within tolerance.

Profiles for reading thermocouples are built in to the LabVIEW packages, and the thermocouples themselves are assumed to have maintained their "Special Limits of Error" [49] tolerances with little drift or degradation. There is little to do other than to ensure that the electrical connections are sound and that the DAQ hardware on the receiving end is reading the signals correctly. The current DAQ card, where the actual measurements take place, is an NI PCIe-6341 X Series data acquisition card. It replaced an older NI PCI-6034E DAQ card that would no longer accept a calibration or produce consistent, high quality data. The new card was procured with a two-year calibration compliant to ANSI/NCSL Z540-1-1994 (the NI "Compliant Calibration" calibration service level), and is therefore believed to have excellent accuracy.

### 3.2 SHAKEDOWN TESTING

After the loading of DI water into the system, two major shakedown tests of the experimental facility were performed. The first aligned the system to the SRV sparger analog, and warmed the system up to a relatively mild degree when compared to later tests (final pool temperatures near $63^{\circ} \mathrm{C}$ for the SRV-alignment shakedown test). The second test aligned the system to the RCIC analog, and warmed the system up to near saturation conditions.

### 3.2.1 Liquid Fill

A full complement (half of the Suppression Chamber's capacity) of DI water was filled into the system prior to the major shakedown tests. The Suppression Chamber Analog had previously been filled to capacity with clean city water, which was fully drained before the DI water was added. An attempt was made to do some flushing with DI water to remove contamination in the system, but it was minimal and as a result there is expected to be some degree of residual salts, particulates, etc. from the city water. During the fill, it was discovered that the high purity of the DI water was such that the water's conductivity dropped below the point at which the empty pipe detection circuitry in both the Yamatake and Badger magnetic flowmeters would function correctly. This led to a small bit of unmonitored flow into the system, but further examination of other instruments led to the conclusion that total volume injected in that period was somewhat more than one gallon. The empty pipe detection circuitry was subsequently disabled in both flowmeters. Across the three days in which system filling was conducted (two resin bed regeneration cycles were necessary), the Suppression Chamber Analog was supplied with nearly 768.6 gallons, bringing the water level in the vessel to slightly higher than the halfway mark ( 31.8 out of 59 inches).

### 3.2.2 SRV Shakedown

The first shakedown test performed was a primary alignment with the SRV sparger analog. At certain points, operational verification of most of the flowpaths was ascertained. The pump and recirculation paths were found to be operational, as was the
water injection into the steam line. The RCIC turbine and sparger analog alignment was not tested, as this was planned for a second shakedown test.

During this test, it was determined that the wiring connecting the Yamatake magnetic flowmeter's detector to the converter had an easily resolved problem: on one end, two of the wires were connected to each other's terminals. This resulted in the flow being measured in reverse, and indicated as such on the converter. As there is a limit to how much reverse flow can be transmitted on the 4-20 mA line (roughly 5\%), the flow back to the steam generator recorded by the DAQ is not correct; the limit had been exceeded by a fair amount, according to the converter. This issue was quickly and easily resolved.

A second issue, perhaps more serious than the first, was identified as well. Based not only on indications from the vortex flowmeter assembly, but by a rough heat balance on the temperature rise in the Suppression Chamber Analog pool, the steam generator was not providing as much heating power as it should have. It was set at full power; every heater was turned on for a nominal power of 157 kW . However, at the full delivered power, steady state output (without makeup water from the return line being injected) was near $50 \mathrm{~g} / \mathrm{s}$; this was equivalent to roughly 109 kW based on steam table data. Further investigation revealed 5 blown fuses in the main electrical control panel, disabling 50 kW of heater power. It is not known why 5 of the fuses blew; examination revealed no problems on those circuits. It was in those examinations that it was discovered that two of the 6.25 kW heater circuits were wired to only operate at half power. It is not known why those heaters were wired in that manner. Even with the
fuses replaced, this brings to total nominal power of the steam generator to 150.75 kW . After shakedown testing, an electrician restored full operating power $(157 \mathrm{~kW})$ to the steam generator

With a steady state steam flow around $50 \mathrm{~g} / \mathrm{s}$, intermittently lower when water was pumped back into the steam generator, the bulk water temperature in the Suppression Chamber Analog pool went from an initial temperature of 24 to $63^{\circ} \mathrm{C}$. The entire test lasted nearly 2.5 hours, but heat (steam) was only injected into the Suppression Chamber Analog for a little more than half that time.

The test itself was not quiet, even with 2-inch thick fiberglass insulation surrounding the Suppression Chamber Analog. There were sounds emanating from within the vessel that seemed to be produced by violent void collapse near the sparger. This is not a surprise, as the bulk water temperature was highly subcooled.


Figure 23: SRV Shakedown Pool Thermal Progression

From the beginning of the shakedown test to its end, the Suppression Chamber Analog pool temperatures seem to have been remarkably even; very little thermal stratification appears to have been present. The pool appears to have been well-mixed; a thermal profile for the test is given in Figure 23. The only deviations are at the pool outlet; due to intermittent operation of the RCIC Pump, water in the line at the measurement point was able to cool down between pumping operations. Whether or not this mixing would be maintained through increased final temperatures was left undetermined at shakedown; such a test was conducted in the data-gathering tests.

### 3.2.3 RCIC Shakedown

The second shakedown test aligned the facility to the RCIC sparger analog.
Before the test, the blown fuses in the steam generator were replaced and the miswiring in the Yamatake magnetic flowmeter was corrected. Several days had passed since the first shakedown test, and yet the bulk pool temperatures were still significantly higher than room temperature. After using the pump in recirculation mode to thoroughly mix the pool, the temperatures were near $48^{\circ} \mathrm{C}$; the room temperature of the lab was $21^{\circ} \mathrm{C}$. Some time was allowed to pass before proceeding with the test in order for the circulation currents in the vessel to die down. For comparison to the earlier shakedown test, a target steam flow rate of roughly $50 \mathrm{~g} / \mathrm{s}$ was chosen. The steam generator started with a full water load, and the return flow was not engaged until the level had dropped sufficiently for makeup water to be necessary for continued operation. The steam and makeup water flow rates can be seen in Figure 24.


Figure 24: Shakedown Steam and Water Flowrates

This test seemed to be louder than the first, and the void collapses sounded to be more violent as well. As there are additional instruments in this alignment, they may be able to shed some light on the phenomena occurring in the sparger. Major (audible through earplugs) violent events seem to have some recorded presence in the data; they seem to produce spikes appearing in both the sparger's internal temperature as well as in the differential pressure reading from the Suppression Chamber Analog to the turbine analog's outlet. An example of this can be seen in Figure 25. The largest spikes occurred roughly every 2-5 seconds; smaller events (still audible to operators) seemed to be occurring more frequently.


Figure 25: Steam Chugging Spikes

After some time, major chugging events appeared to cease as the pool temperatures warmed up. At the time period in the test focused on in Figure 25, the bulk pool temperatures were between 50 and $60^{\circ} \mathrm{C}$. Later in the test, when they were in the vicinity of $70^{\circ} \mathrm{C}$, corresponding spikes in both the differential pressure and sparger temperature vanished; Figure 26 (with the pool mid-level near $90^{\circ} \mathrm{C}$ ) has a distinct lack of corresponding spikes on both measurements. However, other phenomena of interest were taking place. While the lateral pool temperatures were very close to each other throughout the test (seen in Figure 27), vertical stratification appears to occur.


Figure 26: Stable Flow without Chugging

The thermocouples near the mid-level of the pool ( $\mathrm{z}=15$ inches in Table 1), with the notable exception of Thermocouple SP8, are all very consistent. Thermocouple SP8, which in Figure 27 reads much higher than the others and appears very noisy, is rather close to the outlet of the RCIC sparger analog. It would appear to be picking up very local disturbances near the sparger's outlet.


Figure 27: Lateral Pool Temperatures

The thermal profiles appear somewhat different when looking at a comparison of vertical thermocouples. This is seen in Figure 28. Readings from the five submerged thermocouples at the $\mathrm{x}=0$ inch position are compared.


Figure 28: Sparger-End (Rear, $x=0$ Inches) Temperature Profile

The vertical stratification is not seen only at the sparger end of the vessel; it appears in the middle as well as the front end. If anything, the vertical stratification is more pronounced in the $\mathrm{x}=48$ inch position than at $\mathrm{x}=0$; this is depicted in Figure 29.


Figure 29: Pool Temperatures, Pool Center ( $x=48$ Inches)

Separation between top, middle, and bottom-level temperatures is clear in the front end of the vessel as well. These temperatures, measured at the $x=84$ inch position, show the same appearance and disappearance of vertical stratification as the others.

They are shown in Figure 30, along with the vapor space temperature at that axial location.


Figure 30: Pool Temperatures, Vessel Front (x = 84 Inches)

The most interesting feature of the vertical temperature comparisons is the appearance and sudden disappearance of vertical thermal stratification. It appears that early in the test, at cooler pool temperatures, the apparent chugging in the sparger was an effective method for agitating the pool and maintaining uniformity. Once the chugging largely ceased, a significant amount of pool mixing would therefore end as well. With stabilized condensing flows through the sparger, if a jet does not traverse much below the outlet, the bottom of the pool may remain relatively stagnant and cool. However, it is not permanent; at some point, there appears to be a remarkably sudden rise in the lower pool temperatures. The reason behind this was at first unclear, but based on subsequent testing, the condensation rate around the sparger would tend to decrease as
pool temperatures increase. Steam bubbles would then emerge from the sparger and rise towards the pool surface until they either reach it or condense, producing currents that would tend to agitate the pool. They would therefore mix the water and bring the temperatures back to uniformity.

### 3.3 IDENTIFIED ISSUES

Several, mostly minor, issues arose during the operation of the experimental facility.

### 3.3.1 Pump

The pump employed in these tests experienced multiple, independent failures and had somewhat misleading characteristics given in its data sheet. The original seal installed in the pump is a Buna-N mechanical seal, which failed with a large tear through the rubber on the shaft side during the first attempt at Test \#1 (later completed as Test \#15). Upon replacement, it was discovered that the seal itself is rated for much lower temperatures than those listed for the pump as-delivered; therefore, SEAL FAILURE IS TO BE EXPECTED WHEN OPERATING THE PUMP AT HIGHER TEMPERATURES STILL WITHIN ITS GIVEN LIMITS. As a result, the failed seal was not replaced in-kind but rather was upgraded to a Viton seal, with a listed temperature limit of $250^{\circ} \mathrm{F}$.

During the pump disassembly, it was found that significant corrosion had already begun attacking the cast iron components. This was not surprising, as the system at the beginning of testing can be expected to have significant oxygen in the water. Furthermore, the pump contains the only cast iron in a largely stainless steel system;
given the difference in galvanic potentials between the materials, corrosion is to be expected. This results in the pump being a potential source of water contamination if the water is not re-purified in long-term reuse schemes.

Later on during testing, the pump developed an unrelated failure between Test \#4 and Test \#5. During a period of lower-temperature cooldown operations, the centrifugal switch in the motor shattered, and the motor became completely inoperable. Pieces were found embedded in the stator coils, and the motor was deemed unfit for repair due to the potential electrical hazards. As the pump is relatively inexpensive, instead of replacing only the motor, a brand new replacement pump (including the motor) was procured. Since it was the same pump model, the seal was immediately replaced with a new Viton version to prevent premature failure.

### 3.3.2 Air Compressor Oil

The air compressor employed in this experiment for both system air pressurization as well as air purging is a reciprocating type. Even with significant filtration, lubrication oil from the compressor made its way into the test facility. This is evident based upon the characteristic oily odor it gave the Suppression Chamber volume; facility operators found the odor to be present when decompressing the Suppression Chamber. It was stronger when significant amount of air had been pumped into the system through the compressor. As a result, the compressor can contribute to system contamination.

### 3.3.3 Thermocouple SP4

During shakedown testing, it was found that Thermocouple SP4 read with greater noise than any of the others installed in the system, and the noise was found to not be an issue with the wiring but with the thermocouple itself. The noise appeared to be centered around the correct reading, and it may be possible to filter most of it out in post-processing. Furthermore, the correct reading can be inferred from the nearby lateral thermocouples. Therefore, due to the inherent difficulty and risk of damage to other components in replacement operations, it was decided to leave the thermocouple in place and label it as an 'unreliable' source of data.

### 3.3.4 Magnetic Flowmeter Failure

Near the end of the testing program, the magnetic flowmeter measuring feedwater flow to the steam generator began producing wildly erratic and incorrect results. Experimental testing was immediately aborted, and the flowmeter was removed from service. Diagnostics revealed that one of the electrodes was no longer electrically connected to its terminal inside the detector head, necessitating manufacturer service and repair. In order to continue the testing program with the little time left, an alternate flowmeter was installed. It too is a Yamatake MagneW 3000 PLUS; however, it has a lower labeled temperature limit of $120^{\circ} \mathrm{C}$. As a result, care must be taken by operators to ensure that its thermal limits are not exceeded until the original meter can be repaired and reinstalled.

### 3.3.5 Limit for Vortex Flowmeter

The noise issue with the vortex flowmeter necessitating the use of a flow silencer was resolved for the primary power levels employed in the tests performed for this research (see Section 3.4). However, extended very-low-power ( 32 kW ) testing revealed that it could still be an issue. It was only observed to be a problem at the end of testing in the standard alignment, when the steam density is greater and the velocity resultingly lower. It is also approaching the lower limit for the flowmeter's accurate Reynolds number range. Problems did not occur until the vortex shedding frequency was below 200 Hz (between 150 and 200 Hz ); it is advisable for future efforts to either avoid this operating range or to make alterations to the system to address it.

### 3.3.6 Level Indication

Level indication in both the Suppression Chamber and the Steam Generator was performed by using differential pressure measurements with Honeywell STD924 transmitters. Observation during system operation, and by specific testing of the issue, found a common mode pressure dependency. When a common pressure, i.e., system pressurization, appeared on both the high pressure and low pressure ports on the transmitters, the differential pressure reading was altered. Ideally, the measured differential pressure does not have any dependence on common pressures appearing on both ports, only the pressure difference, but this was found to not be the case. As pressures changed, the level readings were seen to vary by several centimeters, even though the actual water levels were not changing. While this could correspond to incorrect volume readings of 100 gallons in the 1,400 gallon vessel (when the level is
near the middle of the vessel), the error is still on the order of $1 \%$ for the full range of the transmitter. The change in reading (offset) for the Suppression Chamber is shown in Figure 31, where the system pressure was increased and then decreased without any changes in pool inventory.


Figure 31: Common-Mode Pressure Level Reading Offset

Such an issue could be the result of bubbles in the instrument pressure reading lines. Indeed, if installed according to the manual, the particular transmitter model employed in this experimental facility may permanently trap air bubbles within the meter body without the ability to bleed them off. However, such bubbles are not expected to be large enough to account for the observed degree of pressure dependence.


Figure 32: Level Offset after Correction

Fortunately, the common mode pressure dependencies were found to be consistently repeatable. While they did not match each other for the different transmitters (the Suppression Chamber level vs. the Steam Generator level), the profiles were found to have very little variation with time. Therefore, a correction profile for the level reading in the Suppression Chamber was developed and applied in the data processing script to correct the common mode pressure issue. It uses a polynomial (a function only of the Suppression Chamber's pressure) to compute an absolute offset (the shift was taken to be absolute rather than relative/fractional) and subtract it from the
originally indicated reading. The offset in the level reading with the correction term applied is shown in Figure 32.

### 3.4 POST-SHAKEDOWN REPAIRS

Further shakedown testing revealed other latent issues in the experimental facility. Significantly, the low conductivity present in the water required large time constants $\geq 10 \mathrm{~s}$ to be set in the magnetic flowmeters to smooth out the resulting unrealistic fluctuations in the reported flow measurements. However, this also has the impact of reducing measurement responsiveness; high-speed flow transients will not appear correctly in the readings, if at all. Fortunately, the test conditions are not such that the water flowrates would be rapidly changing, and such time constants are therefore acceptable.

A more insidious and difficult to resolve issue revolved around the vortex flowmeter. Close attention to steam generator power levels and fluid flowrates (after the resolution of the steam generator's electrical problems) revealed discrepancies that were not constant in time. It appeared that the vortex flowmeter would sometimes transmit flow rates that were well in excess of $150 \%$ of their proper values. This was especially noticeable at lower flowrates/power levels with higher pressures in the steam generator.

After thorough investigation, it was determined that the likely culprit was excess noise in the steam flow; in the flowmeter employed, gas flows, especially at lower flowrates, produce a relatively weak acoustic signal at the transducer element, and noise at similar frequencies may be difficult or impossible for the electronics package to discriminate from the vortex shedding signal. The result is significant misreading.

The determination was done by connecting the sensor element to an oscilloscope and running various flows through the meter as installed in the system. Under the conditions that tended to produce the most severe misreading, the waveform read by the oscilloscope was severely distorted; the expected readout in a trouble-free system is a relatively pure sine wave at the vortex shedding frequency. This came as a bit of a surprise, as the flowmeter was installed with careful attention to its given requirements, and had $\mathrm{L} / \mathrm{D}$ ratios both upstream and downstream well in excess of the minimum given values.

Further probing with a stethoscope revealed that the likely source of the noise was the main steam control valve. Under the most troublesome conditions, the valve is near closed. Such shallow valve angles are known to produce noise. In addition, the valve may encounter moisture. While the separator in the steam generator system can effectively remove the vast majority of entrained moisture, it is not perfect. As the system up to the valve is at saturation, any heat losses would work to condense small fractions of the steam. Such condensate would naturally flow to the valve. As it passes through the valve into the lower-pressure downstream piping, any moisture left in the steam would tend to flash; this can also be expected to add noise to the flow.


Figure 33: Silencer Plate

In order to limit the noise found in the flow to more tolerable levels, a thick multi-orifice plate was produced (Figure 33) and inserted into the steam line six inches downstream of the main steam control valve. It consists of a 1.5-inch NPS CL150 stainless steel flange blind with 19 holes bored through it in a hexagonal array. Of these holes, 5 have a diameter of $3 / 16$ ", while the remaining 14 have a diameter of $1 / 8$ "; all are chamfered on both sides of the plate. Once installed, this silencer plate appeared to function well; the distortions and fluctuations present before installation largely disappeared. While it adds a flow restriction/head loss to the system, it has the effect of
staging the loss from the control valve and allows the valve to be opened further than it otherwise would have been. Not only does it limit the downstream propagation of valve noise, it also allows for less to be generated in the first place.

### 3.5 SYSTEM MODIFICATIONS AND ENHANCEMENTS

After the shakedown tests and repairs, some enhancements were made to the system as well as other modifications. The original orifice plate in the RCIC Turbine analog was found to be too small to allow full-power testing under reasonable conditions, and was therefore modified between Test \#1 and Test \#2. Its original $0.348^{\prime \prime}$ bore diameter was enlarged to $7 / 16 "$, and Test $\# 1$ was repeated with the new orifice as Test \#2.

In addition to the adjustments to the orifice, modifications were made to the pump and connected equipment. A heat exchange system was added as well in order to reduce the cooldown period to reasonable timeframes as well as to conserve deionized water by reducing the demand for Suppression Chamber atmospheric blowdown operations.

### 3.5.1 Pump and Related Equipment

A further enhancement came after the second major failure of the original RCIC pump (between Test \#4 and Test \#5). A strainer was added upstream of the pump to prevent debris from accumulating in the impellors, which was discovered during postfailure examination of the first RCIC pump.

Based on the experimental system's performance through Test \#10, it was determined that additional capacity on the RCIC Pump Recirculation Line was needed to prevent pump case overpressure during certain tests. To that end, the original
recirculation line (with RCIC Pump Recirculation Valve V-67) was supplemented with a higher-capacity controllable recirculation line (containing recirculation globe valve V-66) before Test \#11. This allowed the operator to shunt enough additional pump flow to direct pump outlet-inlet recirculation to shift the operating position on the pump curve (limiting boost pressure) without changing net system flow rates. This is especially important near the end of pre-pressurized tests, where the pump head in addition to the pressurized inlet conditions could easily exceed the pump's casing pressure limit.

Between Test \#11 and Test \#12, RCIC Pump-side instrumentation was upgraded. The original Dwyer 673-7 gauge pressure transmitter used for I-9, with a $0-100 \mathrm{psig}$ range, was replaced with a Dwyer 682-3 with a $0-250$ psig range. This allows for operators to electronically monitor the outlet pressure on the RCIC pump over its full range up to the casing pressure limit, rather than a subset of it. In addition, a Dwyer 673-7 gauge pressure transmitter was installed immediately before the pump inlet on the suction line as I-14. With the two new instruments, the data acquisition software was updated, and significant additional pump performance parameters could be inferred. Some of the updates to the data acquisition software were operational in nature - alarms were added to alert operators to conditions in the facility that approach design limits.

### 3.5.2 Heat Exchange System

While not a modification to the system during experimental runs, a heat exchange system added to the facility greatly enhanced the ability to run multiple tests in a week, as such was previously hindered by low cooldown rates. It provided sufficient cooling to allow for three tests per week.


Figure 34: Heat Exchanger Tubing

The centerpiece is an ad hoc heat exchanger. It was assembled from spare parts in the NHTS Laboratory, including $0.5 "$ stainless steel tubing (many short lengths connected together as shown in Figure 34), a 55-gallon drum, and pumps. Due to the potential pressures in the Suppression Chamber as well as the flow restriction of the tubing, more than one pump was needed to provide adequate head for reasonable flow rates through the tubing (the hot liquid flows through the tubing and is cooled by the pool of cooler city water in the drum). The tubing sits inside the drum, below the
waterline. The pool of water in the drum was rapidly circulated by a circulation pump as well as the flows of incoming (cold) and outgoing (heated) city water.

Figure 35 depicts the heat exchange system as aligned during cooldown operations. Hot water from the Suppression Chamber flows into the atmospheric hot water tank through the main water lines and V-10. From there, the hot water is pumped through a magnetic flowmeter and the heat exchange drum. It then flows into the repurposed Main Steam Line as cooled water through V-6, through V-5 and then back to the Suppression Chamber through the RCIC and SRV spargers.


Figure 35: Heat Exchange System

## 4. EXPERIMENTAL FACILITY OPERATIONS

After shakedown testing and problem corrections, the experimental facility was operated in a data gathering mode. Given a set of testing objectives, a set of variable parameters was determined and procedures were developed to meet the objectives. Copious amounts of resultant data were collected, and general trends could then be identified.

### 4.1 TESTING PLAN

There are two primary alignments for system operation: steam discharge through the RCIC sparger analog, and discharge through the SRV analog. For each primary alignment, the steam can flow with or without active water injection that produces twophase injection through the sparger. In addition, the flow rates are continuously variable, within reason. Furthermore, tests can be conducted to stay at low temperatures, or extended to go to higher temperatures, which could conceivably result in the premature failure of the pump. Therefore, there are a multitude of combinations of alignment, steam flow, and water injection rates. The variability of the water flow rate to the steam generator is lower, as it needs to balance the steam removal rate to ensure long-term steam supplies in the testing. Pre-pressurization and venting conditions can be added to the mix as well, very effectively increasing the potential number of unique combinations.

The overall testing plan focuses on examining the time-based thermal profiles developed in each test. These profiles will be compared across tests with different combinations of test parameters.

### 4.2 VARIED PARAMETERS

The experimental runs conducted varied several parameters. The parameters varied were steam generator heater power (steam flow rate), Suppression Chamber pressurization conditions, water injection rate into the steam line, and sparger type. Variations were considered not just on one parameter at a time, but also for the compounding effects of multiple parameters. While a very wide range of potential parameters can be tested, time constraints limited the total number of tests performed to 32. The parameters for each test are shown in Table 5.

Table 5: Test Parameters

| Test \# | Sparger/System | Power Level | Pressurization | Water Injection to Steam |
| :---: | :---: | :---: | :---: | :---: |
| 1 | RCIC* | 57 kW | Standard | None |
| 2 | RCIC | 57 kW | Standard | None |
| 3 | RCIC | 157 kW | Standard | None |
| 4 | RCIC | 107 kW | Standard | None |
| 5 | SRV | 157 kW | Standard | None |
| 6 | RCIC | 107 kW | Atmospheric | None |
| 7 | RCIC | 107 kW | Atmospheric | 0.4 gpm |
| 8 | RCIC | 107 kW | Standard | 0.4 gpm |
| 9 | RCIC | 107 kW | 14 psig Start | None |
| 10 | RCIC | 157 kW | 10 psig Start | None |
| 11 | RCIC | 107 kW | 15 psig Start | 0.4 gpm |
| 12 | RCIC | 107 kW | 5 psig Start | None |
| 13 | RCIC | 157 kW | Standard | 0.6 gpm |
| 14 | RCIC | 157 kW | Atmospheric | None |
| 15 | SRV | 107 kW | Standard | None |
| 16 | SRV | 107 kW | 15 psig Start | None |
| 17 | SRV | 107 kW | Standard | 0.4 gpm |
| 18 | RCIC | 107 kW | 5 psig Start | 0.4 gpm |
| 19 | RCIC | 157 kW | 10 psig Start | 0.6 gpm |
| 20 | RCIC | 57 kW | Atmospheric | None |
| 21 | RCIC | 57 kW | Standard | 0.2 gpm |
| 22 | RCIC | 57 kW | 5 psig Start | None |
| 23 | RCIC | 57 kW | 5 psig Start | $0.2 \mathrm{gpm}$ |
| 24 | RCIC | 107 kW | 15 psig Start, Vented | None |
| 25 | SRV | 57 kW | Standard | None |
|  |  |  | Atmospheric, Vent |  |
| 26 | RCIC | 107 kW | Closed | None |
| 27 | RCIC | 107 kW | Standard | 0.8 gpm |
| 28 | RCIC | 107 kW | Constant 2 atm | None |
| 29 | RCIC | 107 kW | Constant 2 atm | 0.4 gpm |
| 30 | RCIC | 57 kW | Standard | 0.8 gpm |
| 31 | RCIC | 32 kW | Standard | None |
| 32 | RCIC | 107 kW | Standard | None |

*Used smaller orifice in RCIC Turbine analog

Steam generator power levels through each of the tests remained set at a constant value for the test duration. To limit the number of tests, only 3 primary power levels were examined: full power ( 157 kW ), standard power ( 107 kW ), and low power ( 57 $\mathrm{kW})$. A special-case very low power test ( 32 kW ) was performed as well. The 157, 107, and 57 kW power levels provided test-average steam mass flowrates near 66, 45, and 24 $\mathrm{g} / \mathrm{s}$, respectively. Without water injection to the steam line, these correspond to mass fluxes through the RCIC Sparger of 50,34 , and $18 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$. Feedwater flowrates to the steam generator were kept as close to the steam flowrate as achievable to maintain a balance between the two as well as a constant inventory in the steam generator.

Tests used either single-phase or two-phase steam/water injection. For most of the two-phase tests, water injection into the steam line was selected based on the steam generator power level to target 55-60\% quality in the steam line. At 157 kW , the standard injection rate was 0.6 gpm , while the flowrates were 0.4 gpm and 0.2 gpm for 107 kW and 57 kW , respectively. In addition, 0.8 gpm testing was done for two tests (power levels of 107 and 57 kW ), producing lower steam qualities. The use of volumetric rather than mass flowrates or other derived quantities was due to operational simplicity: the control valve is next to the Badger magnetic flowmeter, which actively displays flow in GPM and can be read directly by operators while correcting the position of the control valve. Due to the thermal expansion of water, the mass flowrate of the water injected into the steam line will tend to slightly decrease in time with increasing pool temperatures; this is the opposite trend of the steam mass flow, which slightly increases over the test duration due to constant heater power and increasing feedwater
temperatures. As a result, the expected trend is a slight increase in steam quality as the test progresses; this can, however, be complicated in tests where high initial steam superheat drops significantly over the test duration.

Pre-pressurization testing included a wider variety of conditions: the Suppression Chamber fully vented to the atmosphere through the test, a 2 -atm constant pressure by pre-pressurizing with air and maintained by a backpressure regulator, the "Standard Alignment" in which the Suppression Chamber starts at atmospheric pressure and is isolated from the outside (builds up pressure as the pool heats up), and prepressurized variants of the Standard Alignment where the test starts with additional air pressures of 5, 10, or 14-15 psig and continues to pressurize as the pool warms. The pressurization tests were performed at numerous combinations of other parameters.

There were only two options for sparger type: SRV and RCIC Sparger analogs. More tests were performed with the RCIC than SRV sparger analogs, and no test was performed with both simultaneously or both alternated; each test was only performed with one sparger, and the same sparger, for the duration of the test.

### 4.3 PROCEDURES

Procedures were developed to safely operate the system and collect quality data. Here, they are divided into the relevant operational modes for the system (startup, shutdown, etc.). Each test will progress through several modes; some, such as pressurizing the Suppression Chamber with air, are not relevant for certain tests and are therefore omitted. The basic steps are:

1. Pre-Startup
2. Verify Suppression Chamber and Steam Generator Levels
3. Pressurize the Suppression Chamber
4. Agitate and Ensure Temperatures Meet Requirements
5. Start the Steam Generator
6. Warm the System
7. Maintain Stability for Data Operations
8. System Shutdown
9. System Cooldown
10. Securing at Cold Shutdown

More detailed procedures for each of the operational modes follow. The valve numbers are shown on the P\&IDs in Appendix A. In addition, basic tables for primary valve alignments are included. The baseline valve alignment (used for Cold Shutdown) is given in Table 6; it is the starting point for valve realignments.

Table 6: Baseline/Cold Shutdown Valve Alignments

| Valve | Position | Valve | Position | Valve | Position |
| :---: | :---: | :---: | :---: | :---: | :---: |
| V-1 | CLOSED | V-28 | OPEN | V-55 | CLOSED |
| V-2 | CLOSED | V-29 | OPEN | V-56 | OPEN |
| V-3 | N/A | V-30 | OPEN | V-57 | CLOSED |
| V-4 | N/A | V-31 | CLOSED | V-58 | CLOSED |
| V-5 | OPEN | V-32 | OPEN | V-59 | OPEN |
| V-6 | CLOSED | V-33 | OPEN | V-60 | CLOSED |
| V-7 | CLOSED | V-34 | OPEN | V-61 | CRACKED |
| V-8 | CLOSED | V-35 | OPEN | V-62 | 150 PSIG |
| V-9 | OPEN | V-36 | OPEN | V-63 | CRACKED |
| V-10 | CLOSED | V -37 | OPEN | V-64 | OPEN |
| V-11 | CLOSED | V-38 | OPEN | V-65 | CLOSED |
| V-12 | N/A | V-39 | OPEN | V-66 | CLOSED |
| V-13 | OPEN | V-40 | CLOSED | V-67 | OPEN |
| V-14 | OPEN | V-41 | CLOSED | V-68 | CRACKED |
| V-15 | CLOSED | V-42 | CLOSED | V-69 | OPEN |
| V-16 | CLOSED | V -43 | N/A | V-70 | OPEN |
| V-17 | CLOSED | V -44 | N/A | V-71 | CLOSED |
| V-18 | CLOSED | V -45 | N/A | V-72 | CLOSED |
| V-19 | CLOSED | V -46 | CLOSED | V-73 | OPEN |
| V -20 | OPEN | V-47 | CLOSED | V-74 | OPEN |
| V-21 | CLOSED | V -48 | OPEN | V-75 | OPEN |
| V-22 | CLOSED | V-49 | CLOSED | V-76 | CLOSED |
| V-23 | CLOSED | V-50 | CLOSED | V-77 | CLOSED |
| V-24 | OPEN | V-51 | CLOSED | V-78 | OPEN |
| V-25 | CLOSED | V-52 | CLOSED | V-79 | THROTTLE |
| V-26 | CLOSED | V-53 | CLOSED |  |  |
| V-27 | OPEN | V-54 | CLOSED |  |  |

### 4.3.1 Pre-Startup

Cold Start - Everything powered off

1. Ensure all cables are appropriately connected
2. Plug in and power on the Data Acquisition Computer (including the speakers), SCXI chassis, 24 V supply, and remaining instruments
3. Once startup has completed, log into the Data Acquisition Computer and load the appropriate LabVIEW program ('RCIC Facility v2.vi' for running a test, 'RCIC Facility Cooldown Alignment v1c.vi' for cooldown mode)
4. Enter the output datafile information, and begin running

Warm Start - Everything powered on

1. Power cycle instruments as necessary
2. Stop any programs using the data acquisition hardware
3. If necessary, reset the Data Acquisition Card driver. Necessary when the SCXI chassis has been power cycled, instruments are misreading, the system has been operating for long periods, significant noise has been injected into the electrical mains (i.e., thunderstorms), etc.
a. Open the Windows Device Manager
b. Under "Data Acquisition Devices", disable the "PCIe-6341" adapter
c. After a few moments, re-enable the adapter
d. Close the Device Manager
4. Load the appropriate LabVIEW program ("RCIC Facility v2.vi" for running a test, "RCIC Facility Cooldown Alignment v1c.vi" for cooldown mode)
5. Enter the output datafile information, and begin running

Stopping:

1. Click the red "End Execution" button in the LabVIEW program, and give it a few moments to complete its end tasks
2. Close the LabVIEW program

If another test/data acquisition operation is forthcoming, the DAQ System can be left as-is for a warm start. Otherwise, power off the instruments, 24 V supply, SCXI chassis, and Data Acquisition PC (unless needed for other tasks).

### 4.3.2 Water Level Verification/Fill

Check the indicated water levels on both the Steam Generator and Suppression Chamber magnetic float indicators; verify against the transmitted values read by the DAQ

TO FILL THE HOT WATER TANK FROM THE DI WATER SOURCE:

1. Start the DAQ system in Cooldown Mode
2. Ensure that the outlet/drain valves V-10, V-31, V-33, and V-72 are closed
3. Open Culligan DI system valves V-24 and V-26 to begin filling
4. Close Culligan DI system valve V-26 when fill is completed

## TO FILL THE HOT WATER TANK FROM THE SUPPRESSION CHAMBER

1. Start the DAQ in Cooldown Mode
2. Ensure the vapor space pressure in the suppression chamber is atmospheric and that the water is subcooled, and open the valves connecting them (V-9, V-10, and V-63)
3. Align the RCIC Pump to the hot water tank (Closed: V-1 and V-11; Open: V-9, V-10, and V-63)
4. Start the RCIC Pump and regulate flow to the hot water tank at a reasonable rate by throttling V-63
5. Once in range, stop the RCIC pump
6. Close the applicable valves (V-10)

## TO FILL THE HOT WATER TANK FROM THE STEAM GENERATOR

This is the reverse of filling the steam generator from the hot water tank. The alignment is the same, but the water level in the steam generator needs to be greater than that of the hot water tank for reverse flow

## TO FILL THE STEAM GENERATOR FROM THE SUPPRESSION

## CHAMBER

1. Start the DAQ in either Cooldown or Test Operation Mode
2. Ensure the vapor space pressures in the steam generator and suppression chamber are equal, and open the valves connecting them (V-9, V-11 and V-63; open V-16 if at atmospheric pressure)
3. Align the RCIC Pump to the steam generator (Closed: V-1 and V-10; Open: V-9, V-11, and V-63)
4. Start the RCIC Pump and regulate flow to the SG at a reasonable rate
5. Once in range, stop the RCIC pump
6. Close the applicable valves (V-11)

## TO FILL THE STEAM GENERATOR FROM THE HOT WATER TANK

1. Start the DAQ in Cooldown Mode
2. Ensure that the Hot Water Tank has sufficient water. Concurrent filling of the hot water tank and steam generator is permissable.
3. Ensure that the steam generator is depressurized before filling. Open the blowdown valve (V-16)
4. Open the valves between the steam generator and hot water tank (V10 and V-11; V-9 is nominally closed)
5. Close V-10 and V-11 when the steam generator is filled to the appropriate level, and open V-9

### 4.3.3 Suppression Chamber Pre-Test Pressurization

If pre-pressurization of the Suppression Chamber is needed, perform these steps.

1. Ensure that all atmospheric connections are closed
2. Open the Suppression Chamber Airspace Steam Line Connection Valve V-35
3. Open wide the Main Steam Line Control Valve V-1
4. Connect the air compressor hose to the air line quick connect on the steam generator, and power on the compressor
5. Open the steam generator air inlet valve V-17 and allow the system to begin pressurizing
6. Carefully monitor the Suppression Chamber pressure, and allow it to rise to the target pressure
7. Close the steam generator air inlet valve V-17
8. Shut down the compressor
9. Allow the system pressure to stabilize, and add more air via the inlet valve V-17 as necessary; close the valve when complete
10. Close the Suppression Chamber Airspace Steam Line Valve V-35, and ensure that the SRV Block Valve V-36 and RCIC Block Valve V34 are closed
11. With all personnel safely clear of the vent area, open the steam generator blowdown valve $\mathrm{V}-16$ to depressurize the steam generator
12. When fully depressurized, tightly close the steam generator blowdown valve V-16 and the Main Steam Control Valve V-1

### 4.3.4 Agitation

To ensure a uniform-temperature pool

1. Ensure that the vessel water levels and all electrical connections are suitable, and power cycle/turn on the instruments as necessary
2. Enter the test (especially the parameters/conditions) into the logbook, and make notes as milestones are reached
3. Start the RCIC Pump cooling fan on maximum speed
4. Start the data acquisition computer in test/experiment mode, and enter in the correct output file information - record everything
5. Set/ensure the following valve alignment: Open: V-53 or V-54 (alternate), throttle V-61; Closed: V-10, V-11
6. Start the RCIC pump and allow it to agitate the tank; continue agitation for several minutes after all submerged thermocouples come to uniform values
7. Close the recirculation block valves V-53 and V-54, then stop the RCIC Pump. Sufficient time needs to pass between the end of pumped agitation and the start of the data period after warmup to allow for the water motion to cease.
8. Ensure that the bulk pool temperatures are within range. If agitation is concurrent with subcooled Steam Generator warmup, it needs to be terminated before the Steam Generator is purged of air to allow for sufficient pool calming time.

### 4.3.5 Steam Generator Startup

Suppression Chamber agitation may continue into the early part of the Steam Generator warmup, while the Steam Generator temperatures are still below $100^{\circ} \mathrm{C}$.

## STEAM GENERATOR STARTUP SEQUENCE

1. Close the vacuum breaker block valve V-13
2. Ensure that valves V-1 and V-11 are closed
3. Turn on the breaker and main power switch for the steam generator
4. Power on the applicable heaters. In warmup, all may be run.
5. If heaters do not power on, and the level is appropriate, bump the water level interlock reed switch with a magnet to unstick it
6. When the steam generator temperatures are above $105^{\circ} \mathrm{C}$, purge the air from the steam generator. SUPPRESSION CHAMBER AGITATION SHOULD HAVE CEASED BY THIS POINT.
7. Make sure no personnel are near the steam blowdown exhaust point
8. Open the Steam Generator blowdown line V-16, and wait until the sound changes to indicate steam rather than air flow
9. After a few moments of pure steam flow, close the blowdown valve V-16
10. Wait until the steam generator pressure rises above 40 psia , then set the power level to that of the test

### 4.3.6 System Warmup

Operators should exercise caution during system warmup procedures to maintain safety and to prevent damage to the system.

1. Close the steam line block valves V-34, V-35, and V-36, and open (with a partly-filled water bucket underneath) the main steam line condensate drain valve V-7. Be sure to catch any draining water with the bucket
2. SLOWLY open the main steam control valve V-1 until a VERY LOW steam flow passes through it
3. Condensate will begin draining out the open steam condensate drain line.
4. When the condensate draining out the condensate line becomes steam, CAREFULLY close the condensate drain valve V-7 and allow the steam line to pressurize and warm up. Adjustment of the steam flow rate may be necessary
5. If the steam generator pressurizes too fast, turning off some heaters may be necessary. The heaters should be re-energized before steam is
injected into the Suppression Chamber to ensure that the correct heater power level is maintained throughout the test period.
6. Once the steam line has pressurized, drain any new condensate from the line by slowly cracking open the valve V-7 until water slowly flows, and closing it when liquid flow becomes mostly steam. Do not open fully. Caution: HOT!
7. Adjust the main steam control valve $\mathrm{V}-1$ to near the expected position to maintain the pressures and flows during the test
8. Open the appropriate (for the particular test) sparger valve (RCIC/SRV, V-34/V-36) carefully
9. Adjust the steam flow rate to near the target rate with the steam control valve V-1. Typically, steam generator pressures should be maintained to 70-90 psia, constant (and well above the steam line pressure) once full-circuit flow is established to ensure superheat through the vortex flowmeter
10. Barely crack open the feedwater control valve V-63
11. Start the RCIC Pump
12. Open the block valves V-9 and V-11 (V-10 closed) to permit feedwater flow to the steam generator, and adjust the control valve V 63 and pump recirculation valve V-68 to attain the correct flow to the steam generator. Note: V-53 and V-54 should both be closed
13. If water injection is directed to the steam line, carefully crack open the injection control valve V-68, and open the block valves V-49 and V-69
14. Adjust the Suppression Chamber Atmospheric block/regulator valve V-50 as determined for the particular test
15. Ensure that the basic valve alignment is appropriate for the current particular test
16. Adjust the control valves V-1, V-63, V-66, and V-68 to bring all the flows into their appropriate ranges for the test
17. Allow the system to heat up/approach the test begin condition, adjusting valves as appropriate and draining any collected steam condensate (through V-7)

### 4.3.7 Primary Data Operations

Ensure that the valves are correctly aligned for the test during the warmup period.
Once full injection conditions/alignments are met, make only minor adjustments to maintain the correct flowrates and pressure/temperature conditions (i.e., more than the minimum necessary superheat at the vortex flowmeter)

While temperatures are below the test begin condition in the Suppression Chamber, but near the temperature, fully drain any new condensate from the steam line by CAREFULLY cracking open the condensate drain valve V-7 until all the collected
liquid is vented. Limit the flow rate to a slow drain and only open the valve slightly; DO NOT OPEN THE VALVE FULLY DURING TESTING.

Once the test period has begun, only make slight, slow changes to control valve positions to maintain flows/temperatures/pressures

For fine-tuning the flow rate from the RCIC pump back to the steam generator, multiple valves are employed. The main control valve, V-63, can be thought of as a 'rough adjustment'; it is difficult with just that valve to make fine adjustments to the flow. Small adjustments can be made by varying the position of the pump recirculation globe valve V-66; such adjustments will result in a reverse effect as a similar adjustment would have for the main control valve (i.e., opening the control valve will increase flow to the steam generator, while opening the recirculation valve will tend to decrease flow to the steam generator. The gate valve V-67 should ALWAYS BE OPEN to ensure adequate minimum flow through the pump, and should not be used to regulate flow. In addition, the recirculation valve should be opened enough to limit the pump outlet pressure to below its case pressure limit ( 150 psig ) and below the outlet relief valve's (V62 ) set point. This can be a concern in the latter stages of a pre-pressurized test.

At the end of the test period, or if any equipment limits have been met/exceeded (or if something unspecified goes wrong), proceed immediately to the shutdown sequence. It should be noted that the data processing scripts look for the termination of steamflow as a flag that the test has been terminated, and define and endpoint as 60 seconds before detection of that signal to allow for beginning shutdown procedures.

A summary of the valve alignments for the data period is given in Table 7. Items in bold differ from their cold shutdown positions.

Table 7: Main Data Period Valve Alignments

| Valve | Position | Valve | Position | Valve | Position |
| :--- | :--- | :--- | :--- | :--- | :--- |
| V-1 | THROTTLE | V-28 | OPEN | V-55 | CLOSED |
| V-2 | CLOSED | V-29 | OPEN | V-56 | OPEN |
| V-3 | N/A | V-30 | OPEN | V-57 | CLOSED |
| V-4 | N/A | V-31 | CLOSED | V-58 | CLOSED |
| V-5 | OPEN | V-32 | OPEN | V-59 | OPEN |
| V-6 | CLOSED | V-33 | OPEN | V-60 | CLOSED |
| V-7 | CLOSED | V-34 | TEST | V-61 | CRACKED |
| V-8 | CLOSED | V-35 | CLOSED | V-62 | 150 PSIG |
| V-9 | OPEN | V-36 | TEST | V-63 | THROTTLE |
| V-10 | CLOSED | V-37 | OPEN | V-64 | OPEN |
| V-11 | OPEN | V-38 | OPEN | V-65 | CLOSED |
| V-12 | N/A | V-39 | OPEN | V-66 | THROTTLE |
| V-13 | CLOSED | V-40 | CLOSED | V-67 | OPEN |
| V-14 | OPEN | V-41 | CLOSED | V-68 | THROTTLE |
| V-15 | CLOSED | V-42 | CLOSED | V-69 | OPEN |
| V-17 | CLOSED | V-43 | N/A | V-70 | OPEN |
| V-18 | CLOSED | V-44 | V/A | V-71 | CLOSED |
| V-19 | CLOSED | V-46 | CLA | V-72 | CLOSED |
| V-20 | OPEN | V-47 | CLOSED | V-73 | OPEN |
| V-21 | CLOSED | V-48 | OPEN | V-75 | OPEN |
| V-22 | CLOSED | V-49 | TEST | V-76 | CLOSED |
| V-23 | CLOSED | V-50 | TEST | V-77 | CLOSED |
| V-24 | OPEN | V-51 | CLOSED | V-78 | OPEN |
| V-25 | CLOSED | V-52 | CLOSED | V-79 | THROTTLE |
| V-26 | CLOSED | V-53 | CLOSED |  |  |
| V-27 | OPEN | V-54 | CLOSED |  |  |

### 4.3.8 System Shutdown

## IMPORTANT!

FIRST, close the downstream water injection to steam line block valve V-49
to prevent water hammer and steam exposure to the Badger flowmeter.
In rapid sequence, QUICKLY

1. close the main steam control valve V-1,
2. switch off the steam generator entirely,
3. close the feedwater block valve V-9, and
4. switch off the RCIC pump

Allow the system to sit for at least two minutes before proceeding. It is permissible to delay 3 and 4 above to give extra fill to the steam generator if the RCIC pump's limits are not at risk of being exceeded.
5. Open the SRV and RCIC sparger block valves V-36 and V-34
6. Open wide the main steam control valve V-1 to blow down the steam generator to the Suppression Chamber
7. Open the Suppression Chamber blowdown valve V-50 to dump the hot steam-air mixture into the Suppression Chamber Blowdown Drum.
8. Close the Suppression Chamber Blowdown valve V-50 once nearly all the available air from the Suppression Chamber has been vented (sounds of steam condensation rather than air bubbling in the drum's
water volume) or the Suppression Chamber reaches a sustainable atmospheric pressure. Do not allow the drum's water to reach saturation temperatures.
9. Once the steam generator finishes blowing down to the Suppression Chamber, close the main steam line control valve V-1 tightly
10. Ensure that all personnel are clear of the vent area, open the steam generator blowdown valve $\mathrm{V}-16$, and bring the steam generator to atmospheric conditions
11. Operate the air compressor until it has sufficient pressure to fill the steam generator with sufficient pressure to blow air into the Suppression Chamber, and attach the quick connect hose to the air hose connection on the steam generator.
12. Close the steam generator blowdown valve V-16
13. Open the steam generator air inlet valve $\mathrm{V}-17$ and fill it with air until it has sufficient air pressure to purge the steam line all the way to the Suppression Chamber - generally at least 15 psi above the Suppression Chamber's pressure.
14. Close the steam generator air inlet valve V-17
15. Open the main steam control valve V-1 to blow air through the steam line through the spargers until the steam generator pressure drops to that of the Suppression Chamber
16. Tightly close the main steam control valve V-1
17. Close the RCIC Sparger block valve V-34
18. With all personnel clear of the vent area, open the steam generator blowdown valve $\mathrm{V}-16$, and allow the steam generator to come to atmospheric pressure
19. open the steam generator vacuum breaker block valve V-13
20. Close the steam generator blowdown valve V-16
21. End execution of the test-mode LabVIEW VI, and begin execution of the cooldown mode VI
22. Proceed with cooldown procedures. If the pool temperature is still pressurized or above $100^{\circ} \mathrm{C}$, it is in the Superheated Hot Shutdown condition

### 4.3.9 System Cooldown

Follow these steps to proceed through system cooldown. As a basic reference, the normal operating alignments of the valves are given in Table 8. Items in bold differ from their cold shutdown positions, and items in italics differed from their cold shutdown positions during the main data period.

Table 8: Primary Cooldown Valve Alignments

| Valve | Position | Valve | Position | Valve | Position |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V-1$ | CLOSED | V-28 | OPEN | V-55 | CLOSED |
| V-2 | CLOSED | V-29 | OPEN | V-56 | OPEN |
| V-3 | N/A | V-30 | OPEN | V-57 | CLOSED |
| V-4 | N/A | V-31 | CLOSED | V-58 | CLOSED |
| V-5 | OPEN | V-32 | OPEN | V-59 | OPEN |
| V-6 | OPEN | V-33 | OPEN | V-60 | CLOSED |
| V-7 | CLOSED | V-34 | OPERATE | V-61 | THROTTLE |
| V-8 | CLOSED | $V-35$ | OPERATE | V-62 | 150 PSIG |
| V-9 | OPEN | V-36 | OPERATE | V-63 | throttle |
| V-10 | OPEN | V-37 | OPEN | V-64 | OPEN |
| V-11 | CLOSED | V-38 | OPEN | V-65 | CLOSED |
| V-12 | N/A | V-39 | OPEN | V-66 | throttle |
| $V-13$ | OPEN | V-40 | CLOSED | V-67 | OPEN |
| V-14 | OPEN | V-41 | CLOSED | V-68 | CRACKED |
| V-15 | CLOSED | V-42 | CLOSED | V-69 | OPEN |
| V-16 | CLOSED | V-43 | N/A | V-70 | OPEN |
| V-17 | CLOSED | V-44 | N/A | V-71 | CLOSED |
| V-18 | CLOSED | V-45 | N/A | V-72 | CLOSED |
| V -19 | CLOSED | V-46 | CLOSED | V-73 | OPEN |
| V-20 | OPEN | V-47 | CLOSED | V-74 | OPEN |
| V-21 | CLOSED | V-48 | OPEN | V-75 | OPEN |
| V-22 | CLOSED | $V-49$ | CLOSED | V-76 | THROTTLE |
| V-23 | CLOSED | $V-50$ | OPERATE | V-77 | OPEN |
| V -24 | OPEN | V-51 | CLOSED | V-78 | OPEN |
| V-25 | CLOSED | V-52 | CLOSED | V-79 | THROTTLE |
| V-26 | CLOSED | V-53 | OPERATE |  |  |
| V-27 | OPEN | V-54 | OPERATE |  |  |

## From SUPERHEATED HOT SHUTDOWN

1. Ensure that the heat exchange drum is filled with water and that there is sufficient water in the hot water tank to drain a substantial volume
without dropping below the minimum level for operation of the hot water pump
2. Start the heat exchange recirculation pump
3. Open the heat exchange drum outlet valve V-77 fully, and throttle open the cold water inlet valve V-76 to match the drain flowrate in the heat exchange drum. Maintain full levels.
4. Ensure that the Main Steam Control Valve V-1 is tightly closed, the SRV line (V-36) is open, the RCIC and Suppression Chamber Airspace valves V-34 and V-35 are closed, and that the main steam line has been purged with air
5. Ensure that the Cooldown Heat Exchange Auxiliary Pieces are properly connected to the system
6. Fully open hot water valves V-29, V-32, V-33, V-73, V-74, and V-75

In rapid succession, quickly
7. Turn on the hot water pump
8. Turn on the auxiliary hot water pump
9. Open the Cooldown System Block Valve V-6

If additional makeup water is needed in the system, the hot water tank can be simultaneously filled via the Culligan DI system (opening V-26)

Once a substantial amount of water has been added to the bottom of the Suppression Chamber, there should be sufficient thermal stratification that hot subcooled water can be extracted from the bottom and fed to the hot water tank without flashing issues

ALWAYS maintain a MINIMUM of 50 inches of water above the outlet of the hot water tank to ensure sufficient NPSH at the hot water pump

To send hot water to the hot water tank,

1. Close the steam generator feedwater block valve V-11
2. Open the hot water tank feedwater block valve V-10
3. Open the feedwater block valve V-9
4. Open the Suppression Chamber Recirculation Lower Block Valve V54
5. Fully open the Suppression Chamber Recirculation Control Valve V61
6. Throttle open the main feedwater control valve V-63 to refill the hot water tank (fill rate greater than water removal rate)

Optimum feedwater temperatures are between 95 and $98^{\circ} \mathrm{C}$ to have a high enough $\Delta \mathrm{T}$ across the heat exchanger to provide for effective heat removal.

Once temperatures at the outlet drop below around $90^{\circ} \mathrm{C}$, open the RCIC Sparger Block Valve V-34 to weaken the thermal stratification layers in the pool

When either the pool's pressure is insufficient to maintain necessary feedwater flow or the outlet temperatures stay below $90^{\circ} \mathrm{C}$, begin forced recirculation:

1. Throttle the main feedwater control valve V-63 and the Suppression Chamber Recirculation Valve V-61 to barely open
2. Start the RCIC Pump
3. Throttle the main feedwater control valve V-63 to provide sufficient feedwater flow to the hot water tank
4. Throttle the Suppression Chamber Recirculation Valve V-61 to provide a small mixing current in the lower regions of the vessel, to maintain outlet temperatures near $95^{\circ} \mathrm{C}$

Continue to maintain flows (all heat exchanger flow rates, balanced flows to the hot water tank, near-saturation water to the hot water tank) until the Suppression Chamber bulk pool temperatures drop several degrees below saturation. NOTE: THESE CONDITIONS MAY BE CONDUCIVE TO PUMP CAVITATION. Avoid cavitation in the pump, flashing in valves, lines, etc.

Once the bulk pool temperatures drop several degrees below saturation:

1. Provide additional recirculation flow (throttle open V-61) to achieve and maintain pool thermal uniformity.
2. Open the Suppression Chamber Vapor Space Steam Line Valve V-35 to discourage the formation of cool thermal layers on the bottom of the pool

Once the pool is below $100^{\circ} \mathrm{C}$, if operator fatigue becomes an issue, the system can be shut down, depressurized, and allowed to sit safely overnight (Hot Shutdown). To do so:

1. Close the Suppression Chamber Vapor Space Steam Line Valve V-35
2. Open the Suppression Chamber Blowdown Valve V-50 and vent the remaining pressure through the blowdown drum
3. Once the Suppression Chamber pressure reaches atmospheric pressure, close the Suppression Chamber Blowdown Valve V-50
4. Open the Suppression Chamber Vapor Space Steam Line Valve V-35
5. Shut off all pumps
6. Close the Feedwater Block Valve V-9
7. Close the cooling water supply valve V-76 and the heat exchange drum drain valve V-77
8. Switch off the RCIC Pump Cooling Fan

The Data Acquisition System may be allowed to continue collecting data while the system is left to perform a natural cooldown. To resume active cooldown from the Hot Shutdown state:

1. switch on the RCIC Pump Cooling Fan
2. ensure that the Lower Suppression Chamber Recirculation Block Valve V-54 is open (may alternate with Upper Suppression Chamber Recirculation Block Valve V-53)
3. Throttle open the Suppression Chamber Recirculation Control valve V-61
4. Start the RCIC Pump
5. Open the Heat Exchange Drum Drain Valve V-77
6. Throttle open the Heat Exchange Cold Water Valve V-76 to maintain level in the heat exchange drum
7. Start the Heat Exchange Drum Recirculation Pump
8. Ensure that valves V-6, V-29, V-32, V-33, V-73, V-74, and V-75 are full open and start the hot water pump
9. Start the auxiliary hot water pump
10. Throttle open the Feedwater Control Valve V-63
11. Open the Feedwater Block Valve V-9
12. Regulate feedwater flow with the Feedwater Control Valve V-63 to maintain level in the hot water tank

Maintain levels and flows with cooling until the bulk Suppression Chamber temperatures reach the appropriate cold shutdown temperatures (i.e., cold enough to run another test, typically at or below $37^{\circ} \mathrm{C}$ )

If performing another test within the next few days, the overnight shutdown procedures (above) can be applied, and the next test started at some point afterward. Otherwise, follow the long-term Cold Shutdown sequence

### 4.3.10 Cold Shutdown

To reach Cold Shutdown, start from an appropriate (subcooled, unpressurized) Hot Shutdown at low temperature.

1. Perform an overnight shutdown sequence for Hot Shutdown
2. close the V-6 Cooldown System Block Valve
3. close the hot water tank feedwater block valve V-10 (V-11 still closed)
4. open the feedwater block valve V-9
5. end execution of the cooldown mode VI
6. shut down the instruments
7. switch off the 24 V power supply
8. power off the SCXI chassis
9. Back up collected data from the Data Acquisition Computer
10. Shut down the data Acquisition Computer
11. Reached Cold Shutdown

At cold shutdown, all pressures should be atmospheric and all temperatures
should be well below saturation. The primary valve alignment in Cold Shutdown should be that of Table 6 .

### 4.4 RESULTS

A total of 32 tests were performed. Each of them will be briefly described in the order in which the tests were performed. Summaries of the tests are given in Table 9 and Table 10.

Test \#4 has been used in the past as a baseline reference case. The typical progression of phenomena common in these tests is given in 4.4.4, which discusses Test \#4. In addition, only a limited number of thermocouple positions are plotted in these results for simplicity. The typical plot includes the vessel front stratification set, consisting of an Upper (Thermocouple SP19), Middle (Thermocouple SP20), Lower (Thermocouple SP21), Left (Thermocouple SP22, at the same elevation as the Middle), Right (Thermocouple SP23, at the same elevation as the Middle), and a Bottom/Vessel Outlet temperature reading.

Table 9: Mean Measured Flow Conditions

| Test \| \# | Steam <br> Flow, g/s | FW <br> Flow, g/s | Water Injection Flow, $\mathrm{g} / \mathrm{s}$ | Sparger Steam Quality | SC <br> Start P, psia | SC End <br> P, psia | Initial Water Level, in. | Final Water Level, in. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 23.5 | 22.2 | 0.0 | 1.012 | 16.2 | 29.7 | 28.0 | 28.8 |
| 2 | 23.5 | 25.0 | 0.0 | 1.012 | 15.0 | 30.8 | 30.8 | 31.1 |
| 3 | 65.8 | 65.9 | 0.0 | 1.019 | 15.1 | 54.3 | 30.2 | 30.3 |
| 4 | 45.3 | 45.1 | 0.0 | 1.017 | 14.7 | 47.8 | 29.7 | 33.9 |
| 5 | 66.4 | 65.6 | 0.0 | 1.017 | 15.1 | 32.5 | 29.6 | 33.0 |
| 6 | 45.0 | 43.8 | 0.0 | 1.022 | 14.8 | 15.6 | 29.7 | 30.1 |
| 7 | 45.4 | 44.0 | 24.5 | 0.638 | 14.7 | 15.4 | 30.1 | 30.4 |
| 8 | 45.5 | 44.9 | 24.8 | 0.625 | 14.7 | 42.2 | 29.9 | 33.6 |
| 9 | 43.5 | 43.4 | 0.0 | 1.003 | 29.6 | 72.3 | 33.5 | 33.5 |
| 10 | 65.4 | 64.2 | 0.0 | 1.013 | 25.9 | 74.8 | 32.0 | 32.8 |
| 11 | 43.7 | 43.1 | 24.9 | 0.585 | 30.2 | 100.7 | 32.7 | 32.7 |
| 12 | 44.7 | 43.7 | 0.0 | 1.009 | 20.7 | 72.1 | 30.5 | 32.6 |
| 13 | 66.3 | 65.9 | 37.2 | 0.626 | 15.1 | 46.8 | 30.8 | 35.2 |
| 14 | 66.8 | 65.2 | 0.0 | 1.028 | 14.8 | 16.2 | 30.4 | 30.6 |
| 15 | 45.7 | 45.6 | 0.0 | 1.012 | 15.1 | 39.0 | 30.2 | 31.8 |
| 16 | 45.5 | 45.4 | 0.0 | 1.005 | 30.2 | 56.9 | 30.1 | 30.2 |
| 17 | 45.4 | 45.4 | 25.3 | 0.623 | 15.3 | 39.2 | 29.7 | 30.0 |
| 18 | 44.4 | 44.8 | 25.3 | 0.599 | 20.3 | 62.4 | 29.7 | 29.8 |
| 19 | 66.4 | 65.7 | 37.4 | 0.606 | 25.1 | 95.9 | 30.6 | 31.1 |
| 20 | 23.9 | 23.5 | 0.0 | 1.017 | 14.8 | 15.5 | 31.0 | 31.1 |
| 21 | 23.8 | 23.2 | 12.5 | 0.635 | 15.2 | 40.7 | 30.7 | 31.7 |
| 22 | 23.7 | 23.5 | 0.0 | 1.005 | 20.2 | 49.3 | 30.5 | 31.2 |
| 23 | 23.3 | 22.9 | 12.5 | 0.618 | 20.3 | 48.2 | 30.4 | 31.1 |
| 24 | 44.8 | 44.0 | 0.0 | 1.011 | 30.5 | 32.3 | 30.9 | 31.2 |
| 25 | 23.9 | 23.7 | 0.0 | 1.008 | 14.9 | 42.3 | 30.7 | 31.6 |
| 26 | 45.6 | 44.7 | 0.0 | 1.019 | 15.0 | 35.4 | 30.6 | 31.4 |
| 27 | 44.8 | 44.4 | 49.9 | 0.441 | 15.0 | 42.7 | 30.4 | 31.3 |
| 28 | 44.6 | 43.9 | 0.0 | 1.011 | 30.1 | 30.7 | 31.0 | 31.3 |
| 29 | 44.4 | 43.8 | 25.0 | 0.606 | 30.8 | 30.6 | 31.3 | 31.5 |
| 30 | 23.3 | 23.0 | 49.8 | 0.261 | 14.9 | 40.8 | 30.6 | 31.7 |
| 31 | 13.0 | 12.9 | 0.0 | 1.000 | 14.6 | 39.6 | 30.6 | 31.6 |
| 32 | 44.7 | 44.3 | 0.0 | 1.015 | 15.1 | 49.6 | 31.1 | 31.3 |

Qualities greater than unity are superheated steam

Table 10: Peak Stratification

| Test \# | Duration, <br> s | $\begin{aligned} & \hline \text { Start } \\ & \text { Pool T } \end{aligned}$ | End Pool T | Strat. <br> Period, s | Max Top- <br> Mid DT | Max Mid- <br> Low DT | Max LowOutlet DT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1* | 10368 | 40 | 95 | 6972 | 2.1 | 10.8 | 20.7 |
| 2 | 12878 | 40 | 100 | 8247 | 1.4 | 9.3 | 22.6 |
| 3 | 6678 | 40 | 127 | 3731 | 2.1 | 5.5 | 43.1 |
| 4 | 8917 | 40 | 122 | 5373 | 3.1 | 20.9 | 43.3 |
| 5 | 4710 | 40 | 104 | 0 | 2.6 | 2.3 | 5.0 |
| 6 | 6466 | 40 | 99 | 2846 | 2.4 | 5.9 | 21.0 |
| 7 | 5932 | 40 | 94 | 2809 | 1.9 | 3.4 | 13.2 |
| 8 | 8436 | 40 | 117 | 5206 | 2.3 | 11.7 | 36.8 |
| 9* | 9336 | 40 | 128 | 8075 | 5.1 | 29.4 | 61.9 |
| 10* | 6452 | 40 | 134 | 4506 | 4.0 | 29.0 | 55.0 |
| 11~ | 11407 | 40 | 146 | 10381 | 5.6 | 28.9 | 65.1 |
| 12~ | 10942 | 40 | 136 | 7521 | 4.1 | 26.9 | 55.9 |
| 13 | 6361 | 40 | 121 | 2372 | 2.2 | 1.9 | 15.4 |
| 14 | 4542 | 40 | 100 | 1127 | 2.2 | 1.5 | 9.1 |
| 15 | 8081 | 40 | 113 | 0 | 2.3 | 2.1 | 4.1 |
| 16 | 8120 | 41 | 112 | 3859 | 2.4 | 3.0 | 5.5 |
| 17 | 7977 | 40 | 113 | 0 | 2.2 | 2.1 | 4.2 |
| 18~ | 9795 | 40 | 129 | 7111 | 3.7 | 25.5 | 52.6 |
| 19~ | 8367 | 40 | 147 | 6235 | 2.7 | 12.0 | 44.4 |
| 20 | 12992 | 40 | 100 | 6260 | 1.6 | 5.8 | 14.0 |
| 21 | 15915 | 40 | 114 | 8952 | 1.5 | 10.6 | 23.9 |
| 22 | 16254 | 40 | 117 | 10082 | 1.7 | 13.2 | 30.7 |
| 23 | 16122 | 40 | 115 | 10733 | 1.8 | 14.4 | 32.9 |
| 24 | 8209 | 40 | 113 | 5575 | 5.1 | 14.6 | 36.6 |
| 25 | 16930 | 40 | 116 | 10297 | 1.9 | 2.3 | 4.4 |
| 26 | 8602 | 40 | 116 | 3683 | 2.2 | 5.8 | 27.7 |
| 27 | 8705 | 40 | 117 | 4709 | 1.7 | 3.7 | 15.7 |
| 28 | 10221 | 30 | 120 | 7568 | 4.5 | 21.0 | 39.6 |
| 29 | 9483 | 35 | 119 | 7233 | 4.5 | 22.9 | 40.5 |
| 30 | 17979 | 30 | 113 | 7817 | 1.3 | 10.1 | 24.2 |
| $31^{\prime}$ | 31398 | 35 | 112 | 22584 | 1.0 | 8.4 | 27.9 |
| 32 | 9675 | 41 | 123 | 5994 | 2.8 | 20.7 | 43.5 |

*Stopped before completion
$\sim$ Destratification did not complete before termination
'Steam Flow Measurement Issues

### 4.4.1 Test \#1

Test \#1 was the only test to use the smaller-diameter orifice ( 0.348 ") in the RCIC Turbine analog. It ran at 57 kW in the Standard Alignment - Suppression Chamber isolated with an initial near-atmospheric pressure and no water injection to the steam. This produced main steam line pressures on the order of 10 psi greater than those of Test \#2, which was almost identical; the only difference was the use of the larger orifice.

Procedurally, the test was terminated earlier than the others. The final pool lower-outlet destratification point was not found, but the others (upper-mid level, mid-lower level) were.

The test ran with steam flowrates of $23.5 \pm 0.5 \mathrm{~g} / \mathrm{s}$, and feedwater flows were $22.2 \pm 0.9 \mathrm{~g} / \mathrm{s}$. As with the other tests, chugging was evident and decreased in intensity as the test progressed. Thermal stratification was evident (and can be seen in Figure 36) for most of the test, appearing after about 56 minutes and enduring through the end near 173 minutes; the beginning and end of the stratification period as determined by the data processing script are identified by gray vertical lines, while the vertical dotted gold line indicates plume detection as defined in Section 5.2. The top-mid level stratification peaked at $2.1^{\circ} \mathrm{C}$ at 124 minutes, followed by a peak $10.8^{\circ} \mathrm{C}$ maximum mid-low level separation at 159 minutes. The low-outlet separation reached $20.7^{\circ} \mathrm{C}$ at the very end, and was still growing. Over the test period, the pressure in the Suppression Chamber nearly doubled.


Figure 36: Test \#1 Thermal Progression

### 4.4.2 Test \#2

Test \#2 was nearly identical to Test \#1, with the exception of the larger orifice diameter being used. It too ran 57 kW of heater power in the steam generator with a standard alignment RCIC profile. Unlike Test \#1, it was run to completion - the full destratification and reconvergence of all pool temperatures to essentially a uniform bulk temperature was observed. It was also reported in [50].


Figure 37: Test \#2 Thermal Progression

While not identical, the results and thermal profiles for Test \#2 were similar to those of Test \#1. Steam and feedwater flowrates were $23.5 \pm 1.1$ and $25.0 \pm 2.2 \mathrm{~g} / \mathrm{s}$, respectively. The initial water inventory was slightly greater, and the initial (postwarmup) pressures slightly less than Test \#1. Thermal stratification appeared somewhat later, after 65 minutes (see Figure 37), and was slightly, but not significantly when compared to instrument tolerances, lower than Test \#1 for the top-mid $\left(1.4^{\circ} \mathrm{C}\right)$ and midlow regions $\left(9.3{ }^{\circ} \mathrm{C}\right)$. Owing to the run through completion, the peak low-outlet stratification was greater, and measured $22.6^{\circ} \mathrm{C}$.

As was the case earlier, the period of major thermal stratification ran for the majority of the test - more than $2 / 3$ of a nearly 203 minute period.

### 4.4.3 Test \#3

Test \#3 was a full-power ( 157 kW ) standard alignment run. With its nearly triple the heater power of the previous tests, the water in the Suppression Chamber heated up at a much faster rate, and proved somewhat more difficult to control than lower-power tests. This test was also discussed in [50].


Figure 38: Test \#3 Thermal Progression

With $65.8 \pm 3.0 \mathrm{~g} / \mathrm{s}$ of steam flow and $65.9 \pm 9.2 \mathrm{~g} / \mathrm{s}$ of feedwater, there proved to be more variation in steam and water flow rates. In order for the increased flowrate through the orifice, greater upstream pressures were needed in the main steam line. To maintain superheat through the vortex flowmeter, somewhat greater pressures were
needed in the steam generator ( $\sim 90$ psia with a main steam line running $\sim 70-80 \mathrm{psia}$ ). Not only were flows through the main steam control valve no longer choked (it would be choked through the orifice for most of the run), but the high differential pressure between the RCIC Pump and steam generator made it difficult for operators to maintain a stable, balanced flow back to the steam generator.

Thermal stratification (shown in Figure 38) in the upper levels of the pool were similar to those of the earlier low-power tests. The peak separation in the top-mid regions was $2.1^{\circ} \mathrm{C}$, and the mid-low difference peaked at $5.5^{\circ} \mathrm{C}$. The low-outlet stratification, however, was much larger. At $43.1^{\circ} \mathrm{C}$, the difference was more than $20^{\circ} \mathrm{C}$ greater, and nearly twice that of Test \#2. Destratification occurred later, and the final pool temperature was resultingly greater than earlier tests.

### 4.4.4 Test \#4

Test \#4 was a mid-power ( 107 kW ) standard alignment test, and was considered the quintessential/base-case RCIC test in [50] and [51]. It produced some of the clearest stratification and chugging profiles in the basic tests.


Figure 39: Test \#4 Thermal Progression (Vessel Front)

With steam and feedwater flowrates of $45.3 \pm 1.3$ and $45.1 \pm 3.8 \mathrm{~g} / \mathrm{s}$, respectively, a peak stratification of $3.1^{\circ} \mathrm{C}$ top-mid was produced, only slightly more than the tests at higher and lower powers. The mid-low difference, however, was remarkable: $20.9^{\circ} \mathrm{C}$, the greatest of the standard alignment tests. The peak low-outlet stratification was the greatest of the standard alignment tests as well at $43.3^{\circ} \mathrm{C}$, although that is within instrument tolerance of the same value for Test \#3. The thermal profiles can be seen in Figure 39 for the front of the vessel, which shows essentially the same profile as in the (axially) middle region of the pool (shown in Figure 40).


Figure 40: Test \#4 Pool Thermal Progression, Mid-Pool

Axial temperatures were very consistent at similar elevations in the pool with one major exception: Thermocouple SP8. It is located very near the outlet for the RCIC Sparger, and displays behavior indicating a somewhat chaotic hot spot. Initially, it matches the others on its elevation, but eventually separates. The separation is an important part of the analysis of the data collected in these tests, and is taken to represent the formation of a thermal plume. The axial profile can be seen in Figure 41.


Figure 41: Test \#4 Pool Mid-Level Axial Temperature Progression

By about 2780 seconds into the test, operators had noticed that the sounds of violent steam condensation in the Suppression Chamber had begun to die down, and that there had appeared noticeable hesitation in the chugging. This coincides with an apparent transition period starting at roughly 2000 seconds and appearing to end sometime before 3500 seconds in both the sparger DP and sparger outlet temperature data, and can be found in Figure 42. Qualitative reports from operator's notes (regarding the sounds that were being heard by operators) reveal that by 3080 seconds, the acoustic profile had changed significantly, with a longer time between pops. By 3680 seconds, pops were few, far between, and much quieter than before; by 4520 seconds, they had stopped almost entirely. The recorded data shows the largest pressure and temperature
spikes in the sparger occurring approximately once every 7 seconds, with smaller spikes more frequent, similar to the shakedown tests. Similar responses are visible in data from other tests; the temperature and pressure spikes are clear in Test \#2, as shown in Figure 43; its largest spikes in the instrument data seemed to occur more frequently, on the order of 1 per second. Test \#3 had its largest spikes, appearing somewhat lesser in magnitude than the lower-power tests, occurring on roughly 2-7 second intervals.


Figure 42: Test \#4 Sparger Performance

Long after this test completed, near the end of cooldown operations in preparation for Test \#5, the pump motor experienced a catastrophic failure of the centrifugal switch which necessitated replacement of the whole motor. Due to the
relatively small cost difference between a new motor and a completely new pump, a complete replacement pump was procured. In the process of replacement, a Y-strainer was added to the pump inlet to reduce the debris ingestion by the pump.


Figure 43: Test \#2 Sparger Performance

### 4.4.5 Test \#5

Test \#5 was the first of the SRV alignment tests, and has been presented previously in [50]. It was conducted at full power ( 157 kW ), and was like the standard alignment in terms of water injection to the steam line (none) and pressurization conditions (Suppression Chamber isolated from the lab, beginning at atmospheric pressure); the main difference was that instead of the RCIC Turbine analog and sparger,
steam flow was aligned to the SRV sparger. This resulted in reduced main steam line pressures (no orifice to obstruct the steam flow) and a lack of data for DP across the sparger as well as temperatures at the outlet - neither instrument exists on the SRV sparger analog.


Figure 44: Test \#5 Thermal Progression

The test ran with $66.4 \pm 2.1 \mathrm{~g} / \mathrm{s}$ of steam and $65.6 \pm 3.5 \mathrm{~g} / \mathrm{s}$ of feedwater. While it did not run for quite as long as the high power standard alignment test, it ran long enough to go to completion. There were measureable differences in temperature between different locations - a peak of $2.6^{\circ} \mathrm{C}$ top-mid, $2.3^{\circ} \mathrm{C}$ mid-low, and $5.0^{\circ} \mathrm{C}$ low-
outlet (see Figure 44), but that appears to be the result of fluctuating currents within the vessel; no consistent bulk stratification was detected to develop.

Operators did hear what sounded like the violent 'pops' and 'bangs' of condensation events characteristic of chugging in the RCIC sparger; at the beginning of the test, they were loud, violent, and fast. They lost much intensity by around 3700 seconds, and were quiet and non-violent by the end of the test.

### 4.4.6 Test \#6

Test \#6 was a fully-vented medium power $(107 \mathrm{~kW})$ RCIC test with no water injection to the steam line. Instead of isolating from the atmosphere, a valve (V-50) to the airspace in the Suppression Chamber was left open for the entire duration of the test, maintaining near-atmospheric pressures in the vessel. This test was discussed previously in [51].


Figure 45: Test \#6 Thermal Progression

Steam flow registered at $45.0 \pm 1.4 \mathrm{~g} / \mathrm{s}$, and feedwater was $43.8 \pm 1.9 \mathrm{~g} / \mathrm{s}$. This test finished faster than some of the others. The stratification period, at 2846 seconds in duration, was less than half of the test period shown in Figure 45. It also produced weaker gradients than the standard alignment test of the same power (Test \#4); the greatest top-mid stratification was $2.4^{\circ} \mathrm{C}$, the mid-low differences were limited to $5.9^{\circ} \mathrm{C}$, and the low-outlet differences peaked at $21.0^{\circ} \mathrm{C}$ - a little less than half of the standard alignment value.

The early parts of the test tended to resemble the standard alignment.
Pressurization in the standard alignment tends to happen in the latter parts of the test, while the early increases are much smaller. The detected onset of thermal stratification
in the pool only happens about 3 minutes earlier (out of a nearly 108-minute run) in the atmospheric case and has similar bulk pool temperatures. However, in the atmospheric case, the stratification terminates much sooner.

### 4.4.7 Test \#7

Test \#7 was a RCIC atmospheric test at medium power with water injection (targeting 0.4 GPM) into the steam line. It was the first of the water injection tests, and was essentially Test \#6 run with water injection.


Figure 46: Test \#7 Thermal Progression

Steam flow was measured at $45.4 \pm 2.3 \mathrm{~g} / \mathrm{s}$ over the test. Feedwater was $44.0 \pm$ $6.5 \mathrm{~g} / \mathrm{s}$, and water injection to the steam line was $24.5 \pm 1.9 \mathrm{~g} / \mathrm{s}$. The resulting main steam line steam quality was $0.59 \pm 0.03$, while post-orifice it was $0.64 \pm 0.03$.


Figure 47: Test \#7 Sparger Behavior

The thermal stratification in the Suppression Chamber (shown in Figure 46) was very limited in this test. The top-mid difference peaked at $1.9^{\circ} \mathrm{C}$, while the mid-lower stratification was limited to just $3.4^{\circ} \mathrm{C}$. The low-outlet stratification was less than $2 / 3$ that of Test \#6 at only $13.2^{\circ} \mathrm{C}$. The stratification period was similar in duration to that of Test \#6, being less than one minute shorter for a nearly 47 minute period. The temperature curves, when compared to Test \#4, appear smaller and somewhat distorted.

Even the chugging signatures in the data become much harder to discern; the operator's observations do not line up nearly as well with the sparger outlet temperatures and DP readings (Figure 47) as in other tests.

### 4.4.8 Test \#8

Test \#8 was a mid-power $(107 \mathrm{~kW})$ RCIC test under standard pressurization with 0.4 GPM of water injection into the main steam line - essentially a standard alignment test with water injection. The results show a somewhat diminished amount of thermal stratification in the Suppression Chamber when compared to the mid-power standard alignment test (Test \#4).


Figure 48: Test \#8 Thermal Progression

Steam was injected at a rate of $45.5 \pm 1.0 \mathrm{~g} / \mathrm{s}$. Feedwater was $44.9 \pm 1.3 \mathrm{~g} / \mathrm{s}$, and water was injected into the steam line at $24.8 \pm 1.1 \mathrm{~g} / \mathrm{s}$. This produced a steam quality of $0.59 \pm 0.02$, rising to $0.63 \pm 0.02$ past the orifice.

The resulting thermal stratification in the Suppression Chamber (Figure 48) was below that of Test \#4, but was not orders of magnitude less. The top-mid difference peaked at $2.3^{\circ} \mathrm{C}$, while the low-outlet separation was limited to $36.8^{\circ} \mathrm{C}$. The mid-low stratification was the biggest change, both in absolute and relative terms, with a maximum of $11.7^{\circ} \mathrm{C}$ (compare to $20.9^{\circ} \mathrm{C}$ in Test \#4). As with Test \#7, the chugging regime was more difficult to distinguish in the recorded data than in the earlier tests. It should also be noted that the pool mid-level thermal profile, while stratified, did not have the same flattening out as displayed in Test \#4 ca. 5000 seconds, but instead continued to trend upwards.

### 4.4.9 Test \#9

Test \#9 was the first of the pre-pressurized tests conducted, and was previously presented in [51]. It was a mid-power ( 107 kW ) RCIC test, and other than the initial 14 psig of air pressure in the Suppression Chamber it was the same as the standard alignment. It proved challenging on the then-installed equipment, and even had to be terminated early due to reaching the casing pressure limit on the RCIC pump.


Figure 49: Test \#9 Thermal Progression

Steam flow was maintained at $43.5 \pm 1.1 \mathrm{~g} / \mathrm{s}$, and feedwater flowed at $43.4 \pm 1.7$ $\mathrm{g} / \mathrm{s}$. Over the course of nearly 156 minutes, the pool displayed a remarkable amount of thermal stratification; this is shown in Figure 49. The top-mid stratification peaked at a difference of $5.1^{\circ} \mathrm{C}$, and maintained a clear separation for approximately an hour. The mid-low stratification reached a $29.4^{\circ} \mathrm{C}$ difference, the greatest at that location in the entire test series. The low-outlet separation, which was still growing at the termination of the test, reached $61.9^{\circ} \mathrm{C}$.

Not only did the pump outlet pressure limit the test, but it is likely that the relief valve on the line experienced some chattering. The relief's outlet line was observed to be warm to the touch several minutes before the termination of the test. However, the
receiving blowdown drum's temperatures were not observed to be rising significantly; therefore, it is not believed much system inventory was lost through that route.

### 4.4.10 Test \#10

Test \#10 was a high-power ( 157 kW ) pre-pressurized RCIC test. With 10 psig of initial air pressure, it behaved in manners similar to both Test \#3 and Test \#9. As with Test \#9, high pump discharge pressures required early test termination.


Figure 50: Test \#10 Thermal Progression

The steam flowrate was $65.4 \pm 3.2 \mathrm{~g} / \mathrm{s}$, and feedwater flowed at $64.2 \pm 8.5 \mathrm{~g} / \mathrm{s}$.
Unlike Test \#9, which maintained steam generator pressures in the mid to upper 70s psia until late in the test when it was necessary to allow it to rise to provide adequate flow
and superheat in the vortex flowmeter, the steam generator pressure was maintained above 100 psia for most of the test. In addition, early steam flowrates tended to be slightly low as operators slowly worked towards a stable pressure and flow envelope for the entire loop.

The thermal stratification limits in the Suppression Chamber (see Figure 50) were similar to that seen in Test \#9. The top-mid difference had a maximum of $4.0^{\circ} \mathrm{C}$, and the mid-low separation reached $29.0^{\circ} \mathrm{C}$. Unlike Test \#9, the top-mid profiles did not have such a clear lengthy separation. Similar to Test \#9, the low-out stratification was still increasing in intensity at the end of the test, at which point it has reached a difference of $55.0^{\circ} \mathrm{C}$.

### 4.4.11 Test \#11

Test \#11 was a mid-power ( 107 kW ) pre-pressurized ( 15 psig ) RCIC test with 0.4 GPM of water injection to the steam line. It was an operationally challenging test, and the first to use the enhanced pump recirculation flow lines (allowing greater flow through the pump to limit the discharge pressure). By the end of the test, much of the equipment was at or fast approaching limiting operational conditions (steam generator, Suppression Chamber, pump discharge). As a result, while the limits of thermal stratification were found, full destratification in the Suppression Chamber was not complete at test termination.


Figure 51: Test \#11 Thermal Progression

Steam generator pressures were kept well above 100 psia for the test duration, rising above 120 psia at the very end as needed. For comparison, the Suppression Chamber rose to 100.7 psia at the end - barely 2 psi below the relief valve set point, and its greatest pressure in these tests. This maintained steamflows of $43.7 \pm 1.0 \mathrm{~g} / \mathrm{s}$ while feedwater was $43.1 \pm 1.9 \mathrm{~g} / \mathrm{s}$. The water injection to the steam line was $24.9 \pm 1.5 \mathrm{~g} / \mathrm{s}$. The resulting steam quality was $0.57 \pm 0.02$, rising to $0.59 \pm 0.02$ post-orifice.

As with the other pre-pressurized RCIC tests, the thermal stratification in this test was severe; this is revealed in Figure 51. The top-mid differences peaked at $5.6^{\circ} \mathrm{C}$, the greatest in these tests at that location. The mid-low stratification reached $28.9^{\circ} \mathrm{C}$, also one of the highest values recorded at its location. The low-outlet stratification hit its
maximum with a difference of $65.1^{\circ} \mathrm{C}$ - not only the maximum recorded for this location, but the maximum one-level separation overall in the entire collection of these tests.

### 4.4.12 Test \#12

Test \#12 was a mid-power, moderately pre-pressurized ( 5 psig ) RCIC test essentially Test \#9 with lower start pressurization and abilities to operate the pump longer. It was also documented previously in [51]. In addition, due to the significant fraction of time that the pump discharge pressure monitor was out-of-range high in previous tests, it was upgraded to a higher pressure monitor and the original was instead moved to the pump inlet. This allowed operators better monitoring at the DAQ station of a parameter that had been shown to be limiting for system operation without traveling to the readout gauge.

Flowrates were $44.7 \pm 0.8 \mathrm{~g} / \mathrm{s}$ for steam and $43.7 \pm 1.8 \mathrm{~g} / \mathrm{s}$ for feedwater. As with other pre-pressurized tests, equipment limitations played a major role in the test termination. While it did run to completion, and the destratification was mostly complete, it was not fully complete. The test was terminated when the pump suction temperature approached the thermal limit for the upgraded Viton seal.


Figure 52: Test \#12 Thermal Progression

Thermal stratification in the Suppression Chamber was severe (shown in Figure 52), although not as severe as in other pre-pressurized tests. The top-mid separation reached $4.1^{\circ} \mathrm{C}$, and the mid-low difference peaked at $26.9^{\circ} \mathrm{C}$. At $55.9^{\circ} \mathrm{C}$, the lowoutlet stratification limit was well above most other tests.

### 4.4.13 Test \#13

Test \#13 was a high-power ( 157 kW ) RCIC test with 0.6 GPM of water injection and standard pressurization - a version of Test $\# 3$ with water injection into the steam line. As tended to be the case with other high-power tests with atmospheric pressure in the Suppression Chamber at some point during operation, control was difficult for operators to maintain. In fact, the first attempt at this test went unstable (unable to
balance steamflow with feedwater) and the test had to be aborted at the beginning. The second attempt, however, was successful in collecting data. As a result of the operational demands, superheat in the vortex flowmeter was more limited than in other tests.


Figure 53: Test \#13 Thermal Progression

Steam flow was $66.3 \pm 2.9 \mathrm{~g} / \mathrm{s}$, and feedwater was maintained at $65.9 \pm 5.1 \mathrm{~g} / \mathrm{s}$. Water injection to the steam line was was $37.2 \pm 2.6 \mathrm{~g} / \mathrm{s}$. This produced steam qualities of $0.58 \pm 0.03$, increasing to $0.63 \pm 0.02$ downstream of the orifice.

Thermal stratification in this test, depicted in Figure 53, was more limited than in a number of other RCIC tests. The peak top-mid difference was $2.2{ }^{\circ} \mathrm{C}$, while the
maximum mid-low separation was only $1.9^{\circ} \mathrm{C}$. The low-outlet stratification was limited to $15.4^{\circ} \mathrm{C}$, a far cry from the $65.1^{\circ} \mathrm{C}$ seen in Test \#11.

### 4.4.14 Test \#14

Test \#14 was a full-power ( 157 kW ) atmospheric RCIC test with no water injection into the steam line. Due to the number of tests terminated early by equipment limitations, revisions were made to the data acquisition software for this and subsequent tests to notify operators when certain limits are close, and to sound an alarm if conditions get too close to said limits.


Figure 54: Test \#14 Thermal Progression

Steam flow ran at $66.8 \pm 2.0 \mathrm{~g} / \mathrm{s}$. Feedwater was $65.2 \pm 10.6 \mathrm{~g} / \mathrm{s}$; as with the other high-power tests, this test was more difficult to keep stable than the mid-power ones. Over the course of this (more than 75-minute) test, pressures in the Suppression Chamber were nearly constant at atmospheric.

The thermal stratification developed in this test, shown in Figure 54, was some of the weakest developed in all of the RCIC tests. Top-mid separation was limited to $2.2^{\circ} \mathrm{C}$, and the mid-low numbers were even less at just $1.5^{\circ} \mathrm{C}$. Even the low-outlet values had a relatively small peak separation, being just $9.1^{\circ} \mathrm{C}$. The profiles themselves were not only weak, the outlet temperature meandered more so than in other tests. It did not develop the clean flattening profile seen in the standard alignment runs.

### 4.4.15 Test \#15

Test \#15 was a mid-power ( 107 kW ) standard pressurization SRV test. Over the course of its nearly 135 minute run, no major consistent thermal stratification profile was detected.


Figure 55: Test \#15 Thermal Progression

Steam flowrates were $45.7 \pm 1.6 \mathrm{~g} / \mathrm{s}$. Feedwater was maintained at $45.6 \pm 1.7 \mathrm{~g} / \mathrm{s}$.
While a major stratification profile was not detected (see Figure 55), there were still detectable differences in the measured temperatures at different pool elevations. The top-mid difference was limited to $2.3^{\circ} \mathrm{C}$, and the mid-low differences peaked at $2.1^{\circ} \mathrm{C}$. This test had the weakest low-outlet temperature separation at that level for the entire test series, with a maximum of only $4.1^{\circ} \mathrm{C}$.

### 4.4.16 Test \#16

Test \#16 was a pre-pressurized SRV test at mid-power ( 107 kW ). It was much the same as Test \#15, with the notable exception of starting at 15 psig. An operational
error in the first attempt to run this test resulted in termination at the beginning of the first attempt; after cooling, a second attempt was able to complete successfully.


Figure 56: Test \#16 Thermal Progression

The test ran for a period of more than 135 minutes. The steam flowrate was 45.5 $\pm 1.2 \mathrm{~g} / \mathrm{s}$, and the feedwater flowrate was $45.4 \pm 1.8 \mathrm{~g} / \mathrm{s}$.

The stratification detection routines report a stratification period for nearly half the test. Indeed, the outlet temperatures do appear to be measurably lower than those of the higher elevations as depicted in Figure 56. However, they also fluctuate more and are not far below the higher elevation temperatures, making detection problematic. The detected stratification here may be more of an issue with heat loss at the vessel outlet
than inhomogeneous thermal deposition. The top-mid and mid-low differences peaked at 2.4 and $3{ }^{\circ} \mathrm{C}$, respectively; the low-outlet difference reached a maximum of $5.5^{\circ} \mathrm{C}$.

### 4.4.17 Test \#17

Test \#17, much like Test \#15, was a mid-power $(107 \mathrm{~kW})$ standard pressurization SRV test. Unlike \#15, this test included water injection into the steam line at a target rate of 0.4 GPM. It remained well mixed, as demonstrated by Figure 57.


Figure 57: Test \#17 Thermal Progression

This test was less than two minutes shorter than Test \#15, finishing just short of 133 minutes. It had a steam flowrate of $45.4 \pm 1.6 \mathrm{~g} / \mathrm{s}$, and feedwater flowed at $45.4 \pm$
$1.9 \mathrm{~g} / \mathrm{s}$. Water was injected into the steamline at $25.3 \pm 1.4 \mathrm{~g} / \mathrm{s}$, producing a quality of $0.62 \pm 0.02$.

The peak thermal differences in this test were almost identical to those of Test \#15, although their times in the test were different. The top-mid and mid-low differences were 2.2 and $2.1^{\circ} \mathrm{C}$ (compare to 2.3 and $2.1^{\circ} \mathrm{C}$ in Test \#15), respectively. The peak low-outlet difference was $4.2^{\circ} \mathrm{C}$ (Test \#15 showed $\left.4.1^{\circ} \mathrm{C}\right)$.

### 4.4.18 Test \#18

Test \#18 a bit of a cross between Test \#8 and Test \#12. It was a mid-power (107 kW ), somewhat pre-pressurized ( 5 psig ) RCIC test with 0.4 GPM water injection into the steam line. As was the case for several other tests, this test was terminated before full destratification was complete to keep the pump's seal within its thermal limits.

Steam flowed at $44.4 \pm 0.8 \mathrm{~g} / \mathrm{s}$, and feedwater ran at $44.8 \pm 1.6 \mathrm{~g} / \mathrm{s}$. The water injection rate was $25.3 \pm 1.0 \mathrm{~g} / \mathrm{s}$, producing qualities of $0.58 \pm 0.01(0.60 \pm 0.02$ past the orifice). As with other water-injected RCIC tests, the whole chugging period is difficult to identify from instrument data alone.


Figure 58: Test \#18 Thermal Progression

The thermal profile for this test (Figure 58) followed that of Test \#12 more than that of Test \#8. The top-mid difference was limited to $3.7^{\circ} \mathrm{C}$. The mid-low and lowoutlet separations peaked at 25.5 and $52.6^{\circ} \mathrm{C}$, respectively; these were much closer to Test \#12's 26.9 and $55.9^{\circ} \mathrm{C}$ than to Test \#8's 11.7 and $36.8^{\circ} \mathrm{C}$.

### 4.4.19 Test \#19

Test \#19 was another pre-pressurized RCIC test with water injection. In this case, the test ran at full power ( 157 kW ) with 0.6 GPM of water injection into the steam, and had the Suppression Chamber pre-pressurized to 10 psig. Similar in nature to Test \#11, the necessary pressures in the steam generator were relatively high; they ran above 100 psia for most of the test, and finished well above 120 psia - at which point the reliefs on
the steam generator, while not lifted, were noticeably leaking steam. Destratification, while detected, once again could not go through to completion in order to protect the pump seal.

Over the course of this nearly 140-minute test, the Suppression Chamber pressure rose to 95.6 psia - the second highest termination pressure in these tests. Steam flowed at $66.4 \pm 2.8 \mathrm{~g} / \mathrm{s}$, and feedwater fed the steam generator at $65.7 \pm 3.3 \mathrm{~g} / \mathrm{s}$. Water injection into the steam at $37.4 \pm 1.2 \mathrm{~g} / \mathrm{s}$ produced a quality of $0.58 \pm 0.02$, which rises to $0.61 \pm 0.02$ past the orifice.


Figure 59: Test \#19 Thermal Progression

The stratification profile (Figure 59) did not flatten out as much as in other tests; rather, temperatures separated but kept increasing (albeit at slower rates) as was seen in other water injection tests. The degree of stratification was also lower than seen in other pre-pressurized tests. The top-mid difference was limited to $2.7^{\circ} \mathrm{C}$, and the mid-low values peaked at $12.0^{\circ} \mathrm{C}$. While not small, the maximum low-outlet separation of $44.4{ }^{\circ} \mathrm{C}$ here was still only around $2 / 3$ the largest value in these tests.

### 4.4.20 Test \#20

Test \#20 was a low-power ( 57 kW ) atmospheric RCIC test with no water injection to the steam line. It ran for nearly 217 minutes.


Figure 60: Test \#20 Thermal Progression

Steam flowed at $23.9 \pm 0.8 \mathrm{~g} / \mathrm{s}$, and feedwater to the steam generator ran at 23.5 $\pm 1.1 \mathrm{~g} / \mathrm{s}$. The resulting stratification, shown in Figure 60, was weaker than in many other tests, consistent with the low power and atmospheric conditions. The top-mid profile only saw a peak separation of $1.6^{\circ} \mathrm{C}$, and the mid-low stratification was limited to $5.8^{\circ} \mathrm{C}$. The low-outlet stratification reached a maximum of only $14.0^{\circ} \mathrm{C}$, one of the smaller values in the RCIC tests.

### 4.4.21 Test \#21

Test \#21 was a low-power ( 57 kW ) RCIC test with standard pressurization and 0.2 GPM water injection into the steam line. This test was akin to Test \#2 with the addition of water injection to the steam. The test ran for more than 265 minutes, well beyond the point of full thermal destratification in the Suppression Chamber.

Steam flowed at $23.8 \pm 0.8 \mathrm{~g} / \mathrm{s}$, and feedwater sent $23.2 \pm 0.9 \mathrm{~g} / \mathrm{s}$ back to the steam generator. With $12.5 \pm 0.4 \mathrm{~g} / \mathrm{s}$ of water injection into the steam line, the quality was maintained at $0.62 \pm 0.02$. This rose to $0.63 \pm 0.01$ downstream of the orifice.


Figure 61: Test \#21 Thermal Progression

Interestingly, the resulting thermal stratification in the Suppression Chamber (see Figure 61 ) tended to be greater than that of Test \#2 (although not much greater, and was similar to the results from Test \#1). The top-mid separation was $1.5^{\circ} \mathrm{C}$. The mid-low difference peaked at $10.6{ }^{\circ} \mathrm{C}$, on par with the $10.8^{\circ} \mathrm{C}$ of Test \#1 and more than the $9.3{ }^{\circ} \mathrm{C}$ of Test \#2. The peak low-outlet stratification was $23.9^{\circ} \mathrm{C}$, more than the $22.6{ }^{\circ} \mathrm{C}$ of Test \#2; Test \#1 terminated before a fully comparable limit was found (terminated at $\left.20.7^{\circ} \mathrm{C}\right)$.

### 4.4.22 Test \#22

Test \#22 was a low-power ( 57 kW ) pre-pressurized ( 5 psig ) RCIC test with no water injection to the steam line. At nearly 271 minutes, it was one of the longest tests performed; the thermal profile is shown in Figure 62.


Figure 62: Test \#22 Thermal Progression

Steam flowed through the RCIC Sparger at $23.7 \pm 0.6 \mathrm{~g} / \mathrm{s}$, and feedwater flowed back to the steam generator at $23.5 \pm 0.9 \mathrm{~g} / \mathrm{s}$. As was the case with other pre-pressurized tests, the resulting thermal stratification in the Suppression Chamber was greater than in the comparable test without pre-pressurization (here, Test \#2).

While the stratification limit for the top-mid region had an insignificant difference between this test and Test \#2 $\left(1.7^{\circ} \mathrm{C}\right.$ here vs. $1.4^{\circ} \mathrm{C}$ in Test \#2), the lower regions did show greater stratification. The mid-low difference peaked at $13.2{ }^{\circ} \mathrm{C}$, measurably more than the $9.3^{\circ} \mathrm{C}$ of Test $\# 2$, and the low-outlet separation reached $30.7^{\circ} \mathrm{C}$ (more than $8^{\circ} \mathrm{C}$ greater than the $22.6^{\circ} \mathrm{C}$ of Test \#2).

### 4.4.23 Test \#23

Test \#23 (profiled in Figure 63) was a low-power ( 57 kW ) pre-pressurized (5 psig) RCIC test with 0.2 GPM water injection into the steam line. It was essentially Test \#22 with the addition of water injection, and ran for almost the same amount of time; it was just two minutes shorter.

The steam flowrate was $23.3 \pm 0.5 \mathrm{~g} / \mathrm{s}$, and feedwater flowed at $22.9 \pm 1.2 \mathrm{~g} / \mathrm{s}$. The water injection rate to the steam line was $12.5 \pm 0.4 \mathrm{~g} / \mathrm{s}$, resulting in a steam quality of $0.61 \pm 0.01$. Downstream of the orifice, this became $0.62 \pm 0.01$.

As was the case with Test \#21, the addition of water injection into the steam line seemed to increase the degree of thermal stratification in the Suppression Chamber when compared to a similar water-injection free test (here, Test \#22). This appears to be limited to low power tests; higher power levels appeared to experience the opposite.


Figure 63: Test \#23 Thermal Progression

The peak difference for the top-mid levels was $1.8^{\circ} \mathrm{C}$, not significantly greater than the $1.7^{\circ} \mathrm{C}$ of Test \#22. The $14.4^{\circ} \mathrm{C}$ separation at the mid-lower level was greater than the $13.2^{\circ} \mathrm{C}$ at that level in Test \#22, but not by much. The greatest increase was seen in the low-outlet region, which experienced up to $32.9^{\circ} \mathrm{C}$ of separation; this was a $2.2^{\circ} \mathrm{C}(\sim 7 \%)$ increase from the $30.7^{\circ} \mathrm{C}$ of Test \#22.

### 4.4.24 Test \#24

Test \#24 was the first of two tests (the other being Test \#26) which investigated the effects of a simple venting operation. In this test, a mid-power ( 107 kW ) RCIC test with no water injection to the steam line started out with the Suppression Chamber prepressurized to 15 psig . Then, when temperatures in the upper middle of the pool (SP 11)
were greater than $86^{\circ} \mathrm{C}$, operators opened a vent line from the vapor space and let the Suppression Chamber blow down to near atmospheric pressure. At that point (Thermocouple SP11~89 ${ }^{\circ} \mathrm{C}$ ), the vent line was closed and the Suppression Chamber re-isolated from the outside atmosphere; pressure once again began to rise through the final end of the test.


Figure 64: Test \#24 Thermal Progression

The steam flow was maintained at $44.8 \pm 1.3 \mathrm{~g} / \mathrm{s}$, and feedwater was $44.0 \pm 1.8$ $\mathrm{g} / \mathrm{s}$. The initial stratification profile developed as it had in the pre-pressurization case of Test \#9. The peak top-mid level stratification was found to be $5.1^{\circ} \mathrm{C}$, the same as in Test \#9. It was not impacted by the venting, as venting did not occur until about 21
minutes after the peak had passed. However, there was still significant stratifcation at that level when the venting occurred, and during venting (the sudden drop in saturation temperature in Figure 64) the difference suddenly and rapidly disappeared.

Similarly, the mid-low thermal stratification appears to have been strongly impacted by the venting procedure. Shortly after the end of the operation, the lower level temperatures jumped up to those of the upper levels. The peak stratification was then $14.6^{\circ} \mathrm{C}$, falling between the fully vented case (Test \#6,5.9 ${ }^{\circ} \mathrm{C}$ ) and the standard alignment (Test \#4, $20.9^{\circ} \mathrm{C}$ ). This was reflected in the low-outlet profiles as well, which produced a maximum difference of $36.6^{\circ} \mathrm{C}$, closer to Test \#4's $43.3^{\circ} \mathrm{C}$ than to Test \#6's $21.0^{\circ} \mathrm{C}$.

### 4.4.25 Test \#25

Test \#25 ws a low-power ( 57 kW ) standard pressurization SRV test. It was also the last SRV test performed, and ran for more than 282 minutes.

The test had a steam flowrate of $23.9 \pm 0.9 \mathrm{~g} / \mathrm{s}$, and feedwater was at $23.7 \pm 1.1$ $\mathrm{g} / \mathrm{s}$. The thermal profile in the Suppression Chamber was, as with the other SRV tests, largely well-mixed as depicted in Figure 65. The top-mid levels showed a peak separation of $1.9^{\circ} \mathrm{C}$, and the mid-low levels kept within $2.3^{\circ} \mathrm{C}$. The outlet temperatures did tend to lag behind the rest of the Suppression Chamber; the maximum difference was $4.4{ }^{\circ} \mathrm{C}$, but the profile itself triggered the stratification detection algorithm.


Figure 65: Test \#25 Thermal Progression

### 4.4.26 Test \#26

Test \#26 was, in a manner not completely unlike Test \#24, a venting procedure RCIC test. However, in this test the vent was initially open, and then closed partway through the test. As a result, the early portion of the test was essentially identical to the fully-vented mid-power case (Test \#6). When the temperature from SP 11 registered $82^{\circ} \mathrm{C}$, however, the vent was closed and the Suppression Chamber subsequently began to pressurize (note the change in behavior for the saturation temperature in Figure 66); this was maintained through the end of the test. This test ran at mid-power $(107 \mathrm{~kW})$ for more than 143 minutes, and had no water injection into the steam line.


Figure 66: Test \#26 Thermal Progression

The steam flowrate was $45.6 \pm 1.3 \mathrm{~g} / \mathrm{s}$, and the feedwater flowed at $44.7 \pm 1.6 \mathrm{~g} / \mathrm{s}$. Up to the vent closure, this test produced results in line with those of Test \#6, and the timings were within a few short minutes for the major features. Here, both the top-mid and mid-low peak thermal stratification occurred before vent closure, producing separations of $2.2{ }^{\circ} \mathrm{C}$ and $5.8^{\circ} \mathrm{C}$, respectively. The values, in order, from Test \# 6 were $2.4^{\circ} \mathrm{C}$ and $5.9^{\circ} \mathrm{C}$.

The low-outlet stratification limit, however, occurred in Test \#6 after more than 87 minutes; the vent closure in this test occurred near the 75 -minute mark, and all subsequent data should reflect the influence of the vent closure. The low-outlet
stratification reached a greater limit at $27.7^{\circ} \mathrm{C}$ here vs. the $21.0^{\circ} \mathrm{C}$ seen in Test \#6, and occurred at the 105 minute mark.

### 4.4.27 Test \#27

Test \#27 was a mid-power $(107 \mathrm{~kW})$ standard pressurization RCIC test with extra water injection to the steam line ( 0.8 GPM ). It was similar to Test \#8, except with a greater water injection to steam flowrate ( 0.8 vs 0.4 GPM ). It was also the final test performed in the NRC testing program.


Figure 67: Test \#27 Thermal Progression

Steam was kept to a flowrate of $44.8 \pm 1.5 \mathrm{~g} / \mathrm{s}$, and feedwater flowed at $44.4 \pm$ $1.6 \mathrm{~g} / \mathrm{s}$. With water injected to the steam line at $49.9 \pm 1.6 \mathrm{~g} / \mathrm{s}$, the steam quality was lower than most other tests at $0.40 \pm 0.03(0.44 \pm 0.02$ past the orifice $)$.

As was the case with other water-injected tests, the resulting thermal stratification profiles (Figure 67) did not flatten out as much as in the non-injected cases. In this test, the thermal stratification was more limited than the less-injected case (Test \#8), and much more so than in the non-injected case (Test \#4). The top-mid separation peaked at $1.7^{\circ} \mathrm{C}$ here, reduced from the $2.3^{\circ} \mathrm{C}$ in Test $\# 8$ and the $3.1^{\circ} \mathrm{C}$ from Test \#4. Similarly, the mid-low difference was $3.7^{\circ} \mathrm{C}$ vs. the $11.7^{\circ} \mathrm{C}$ and $20.9^{\circ} \mathrm{C}$ of Tests $\# 8$ and \#4, respectively. The diminished peak separation for the low-outlet temperatures was similarly significant, dropping to $15.7^{\circ} \mathrm{C}$ from $36.8^{\circ} \mathrm{C}$ in Test \#8 and $43.3^{\circ} \mathrm{C}$ in Test \#4.

### 4.4.28 Test \#28

Test \#28 was the first of two constant 2-atm pre-pressurized RCIC tests performed. For this test, the vent line on the Suppression Chamber normally connected from the block valve to the blowdown drum was instead reconnected from the block valve to a backpressure regulator; after charging the Suppression Chamber with 15 psig of air, the regulator was carefully adjusted as necessary to maintain as constant as achievable the pressure in the Suppression Chamber.

This test was notable for starting at a much lower temperature than the earlier tests, and the test period began at $30^{\circ} \mathrm{C}$ rather than the normal $40^{\circ} \mathrm{C}$ (significant extra cooldown time permitted a cooler start temperature); this permitted the mid-power (107
kW ) test to run for more than 170 minutes until temperatures approached saturation (demonstrated in Figure 68). There was no water injection into the steam line.


Figure 68: Test \#28 Thermal Progression

The steam flow was maintained at $44.6 \pm 1.5 \mathrm{~g} / \mathrm{s}$, and feedwater was sent to the steam generator at $43.9 \pm 1.6 \mathrm{~g} / \mathrm{s}$. This produced a peak top-mid stratification of $4.5^{\circ} \mathrm{C}$, and a mid-low separation of $21.0^{\circ} \mathrm{C}$. The peak low-outlet difference was $39.6^{\circ} \mathrm{C}$.

### 4.4.29 Test \#29

Test \#29 was the second of two constant-pressure (2 atm) pre-pressurized RCIC tests. The vent line was arranged as in Test \#28. The primary difference between this test and Test \#28 was that this test used 0.4 GPM of water injection into the steam line.

In addition, early stages of work on another experimental facility at the lab (where the steam generator is a common component) may have slightly increased heat losses from the steam generator's steam piping. The start point was also lower than that of the standard tests, being $35^{\circ} \mathrm{C}\left(40^{\circ} \mathrm{C}\right.$ in a standard test, $30^{\circ} \mathrm{C}$ in Test \#28).


Figure 69: Test \#29 Thermal Progression

This test was conducted at mid-power ( 107 kW ), which produced a steam flow of $44.4 \pm 1.3 \mathrm{~g} / \mathrm{s}$. Feedwater to the steam generator ran at $43.8 \pm 1.4 \mathrm{~g} / \mathrm{s}$, and water injection to the steam line flowed at $25.0 \pm 1.0 \mathrm{~g} / \mathrm{s}$. This produced a steam quality of $0.58 \pm 0.02$, which rose to $0.61 \pm 0.03$ downstream of the orifice.

Thermal stratification (see Figure 69) was largely comparable to that of Test \#28, but measured to be very slightly larger. The top-mid limit was essentially identical at $4.5^{\circ} \mathrm{C}$. The mid-low and low-outlet differences, however, were greater at $22.9^{\circ} \mathrm{C}$ and $40.5^{\circ} \mathrm{C}$, compared to Test \#28's $21.0^{\circ} \mathrm{C}$ and $39.6^{\circ} \mathrm{C}$, respectively.

### 4.4.30 Test \#30

Test \#30 was another test that started at below-standard temperatures; it ran for almost 300 minutes with a nominal beginning temperature of $30^{\circ} \mathrm{C}$. It was the test with the most severe two-phase conditions sent to the RCIC turbine analog and sparger. It was a low-power ( 57 kW ) RCIC test with standard pressurization conditions and 0.8 GPM of water injection into the steam line.

Steam flowed at $23.3 \pm 0.8 \mathrm{~g} / \mathrm{s}$, and feedwater was sent to the steam generator at $23.0 \pm 0.8 \mathrm{~g} / \mathrm{s}$. The water injection to the steam line, at $49.8 \pm 0.9 \mathrm{~g} / \mathrm{s}$, produced the lowest steam quality in these tests at $0.24 \pm 0.03$, which rose to $0.26 \pm 0.03$ downstream of the orifice.


Figure 70: Test \#30 Thermal Progression

Stratification (seen in Figure 70) was similar to both Test \#2 and Test \#21. The peak top-mid separation was only $1.3^{\circ} \mathrm{C}$ (vs. $1.4^{\circ} \mathrm{C}$ and $1.5^{\circ} \mathrm{C}$ in Test \#2 and Test \#21, respectively). There was a limit of $10.1^{\circ} \mathrm{C}$ difference for the mid-low region, between the $9.3^{\circ} \mathrm{C}$ of Test \#2 and the $10.6^{\circ} \mathrm{C}$ of Test \#21. The $24.2{ }^{\circ} \mathrm{C}$ maximum separation for the low-outlet region was greater than that of either of Test \#2 or Test \#21 $\left(22.6^{\circ} \mathrm{C}\right.$ and $23.9^{\circ} \mathrm{C}$, respectively). One note of interest is that the thermal profile showed a flattening off not seen in higher-power water injection tests, and more closely resembled the non-injected cases.

### 4.4.31 Test \#31

Test \#31 was the lowest-power test conducted ( 32 kW ). It ran for more than 523 minutes, the longest test on record by far, and started nominally at $35^{\circ} \mathrm{C}$ (lower than the $40^{\circ} \mathrm{C}$ in standard tests). Unfortunately, late in the test, the vortex flowmeter displayed symptoms of excessive acoustic noise in the steam flow. With low vapor velocities, the signal generated by the sensor in the vortex flowmeter can be relatively weak and may be susceptible to noise (especially valve hiss or water droplets flashing in the valve). The silencer installed after the shakedown tests proved adequate at higher velocities, but the threshold appears to have been reached late in this test.


Figure 71: Test \#31 Thermal Progression

Sometime after 400 minutes, the recorded flow rate showed spikes and trending increases in the flowrate that were unrealistic, and for this period can not be considered fully accurate. It should be noted that as the test progressed, pressure in the steam line rose in line with the Suppression Chamber's pressure, and was low compared to the steam generator. With a constant heater power and only lightly changing feedwater and pressure conditions in the steam generator, the actual flow through the main choke point (the main steam control valve, which should have experienced critical flow for most if not all of the test) should have remained fairly consistent during the excursions and inaccurate readings. However, with the greater pressures, the density of the steam would have been increasing; therefore, for the same massflow, the velocity through the vortex flowmeter would be lower. With the low velocities at the end of the test, it is estimated that the flowmeter would have been operating in the vicinity of $5 \%$ of its full scale range, relatively close to its lower limits.

This test was a standard alignment RCIC test at very low power. In the period up to the 400 minute mark, the steam and feedwater flowrates were $12.7 \pm 0.4 \mathrm{~g} / \mathrm{s}$ and 12.5 $\pm 0.6 \mathrm{~g} / \mathrm{s}$, respectively. For the entire test duration, including the period of inaccuracy for the vortex flowmeter, feedwater flowed at $12.9 \pm 1.1 \mathrm{~g} / \mathrm{s}$. The measured value of the steam flowrate for the whole test was $13.0 \pm 1.7 \mathrm{~g} / \mathrm{s}$; however, a more realistic value is estimated to be $12.8 \pm 0.4 \mathrm{~g} / \mathrm{s}$.

Thermal stratification (profiled in Figure 71) in the topmost levels of the pool was more limited than in most of the other tests, and peaked at $1.0^{\circ} \mathrm{C}$. The mid-low separation, however, was not as remarkably low at $8.4{ }^{\circ} \mathrm{C}$. Both are below the $1.4{ }^{\circ} \mathrm{C}$
and $9.3^{\circ} \mathrm{C}$, respectively, recorded in Test \#2, the closest comparison. The low-outlet difference reached a maximum of $27.9^{\circ} \mathrm{C}$, a value greater than the $22.6^{\circ} \mathrm{C}$ of Test \#2.

### 4.4.32 Test \#32

Test \#32 was a repeatability test for Test \#4. It was a standard alignment RCIC test at mid-power $(107 \mathrm{~kW})$. It was intended to be the first of two repeatability tests, but a magnetic flowmeter failed during the first attempt to run this test. Diagnosis and replacement with a similar model took enough time to limit the repeatability series to this test. As a result, this was the final test performed.


Figure 72: Test \#32 Thermal Progression

Steam flowed at $44.7 \pm 1.0 \mathrm{~g} / \mathrm{s}$. Feedwater to the steam generator had a flowrate of $44.3 \pm 1.4 \mathrm{~g} / \mathrm{s}$.

The limits of thermal stratification and temperature profiles (shown in Figure 72) were very close to those of Test \#4, and were all within one half of one degree of the Test \#4 values. The top-mid peak difference was $2.8^{\circ} \mathrm{C}\left(3.1^{\circ} \mathrm{C}\right.$ in Test \#4). The midlow and low-outlet separations were $20.7^{\circ} \mathrm{C}$ and $43.5^{\circ} \mathrm{C}$, respectively; the comparable values for Test \#4 were $20.9^{\circ} \mathrm{C}$ and $43.3^{\circ} \mathrm{C}$, respectively.

### 4.5 OBSERVATIONS

Of the 32 tests performed, a minority (5) used the SRV-analog sparger. Even in the most severe case (Test \#16), the thermal stratification was almost non-existent; these tests demonstrate the ability of the pool to be well-mixed by steam-condensing action. In the case where the pool would be much larger in comparison to the sparger and the mixing rate slower than the heatup rate, the development of a significant hot spot might still be possible with such a sparger design; however, these tests have provided little evidence to support it. The pool was essentially uniform.

The 27 RCIC-sparger tests, on the other hand, produced results demonstrating significant thermal stratification. While some tests produced limited and short-lived stratification, EVERY RCIC-ALIGNMENT TEST PRODUCED THERMAL

STRATIFICATION in the Suppression Pool. Some tests produced very large gradients; Test \#11, for example, had a peak thermal separation of $65.1^{\circ} \mathrm{C}$. The stratification, it should be noted, was entirely vertical; a characteristic horizontal profile (end-to-end and side-to-side within the Suppression Chamber) did not develop. That does not mean there
were no differences whatsoever; in fact, it would appear that the vessel-front thermocouple group (SP19-SP23) tended to reveal destratification somewhat earlier than the middle and rear sets. This could be the result of imprecision in placement of the thermocouples; the sensitive end has several (sometimes more than 6) inches of lead to its nearest anchor point, allowing for a fair degree of movement if any force is applied. As the vessel was not opened after testing, the current positions of the thermocouples are unclear. In addition, the vessel-font group is relatively close to the vessel outlet; it is not beyond the realm of possibility that the pump suction produces a local distortion in the thermal profile.

A second deviation from lateral uniformity comes from Thermocouple SP8, the thermocouple in the immediate vicinity of the RCIC Sparger outlet. It is unsurprising that a very local and chaotic hot spot develops there; it may in the condensing region once steam bubbles can grow beyond the sparger outlet, and likely represents a thermal plume. It is unclear if the rapid swings in temperature it sees result from very chaotic hot-cold water turbulence, or if it comes into contact with two-phase steam/water mixtures. The installation of additional instrumentation would clarify this and enable comparison to point-source plumes modeled in [52] or later adaptations of plume theory [53]. Before that point, the thermocouple's readings are in line with the other thermocouples at that level. The appearance of the hot spot at that location is a key feature of these tests, and is taken to represent a significant weakening of the mixing currents in the pool along with the weakening of the condensation.

While there are significant variations between the RCIC tests, a characteristic thermal profile can be defined. Test \#4 produced a relatively prototypic profile, which has a number of features common to the tests. It is a convenient test to use in comparisons, and has therefore been labeled the 'baseline' test. Early on, the pool is almost uniform; operators in this period observed loud metallic 'pops' and 'bangs' not unlike the popping sounds of popcorn coming from the Suppression Chamber. Coincident with them were spikes in the differential pressure reading across the sparger as well as in Thermocouple SP1 (inserted into the sparger line near the outlet). These sounds and spikes revealed the presence of violent steam condensation events; the thermocouple readings even dipped (for very short periods) into well-subcooled values, indicating the presences of subcooled water being drawn into the steam line. These sounds and spikes are clear evidence for chugging oscillations, whose presence is expected with sufficient subcooling in the pool. The largest spikes in standard alignment tests occurred roughly once every 1 to 7 seconds; smaller pulsations seemed to be at greater frequencies. However, it should be noted that due to the data logging frequency of 10 points/second, events with frequencies greater than about 1 Hz would not be preserved well, and those greater than 5 Hz cannot be resolved at all. Although similar sounds come from SRV-alignment testing, that alignment lacks the differential pressure and sparger temperature instruments that can clearly resolve the events in the data.

As the pool warms up, the violence of the condensation events weakens. The spikes in the sparger temperature and differential pressure trend toward decreasing severity, suggesting that the chugging oscillations are of decreasing intensity.

Eventually, the spikes disappear altogether and the chugging transitions through less violent condensation regimes. Meanwhile, as the oscillations weaken, the thermal plume around the sparger begins to establish itself. Subsequently, the pool begins to thermally stratify; it would appear that the chugging oscillations are the primary driver of pool circulation in the early parts of the tests. There are chaotic, transient flows in and near the sparger in the chugging regime, and they are effective at distributing energy and maintaining bulk pool uniformity. With the diminished chugging oscillations, the pool stratifies with some residual mixing; the temperatures all continue to rise, but at different rates at different vertical positions. The lower levels of the pool have thermal profiles that begin to flatten out, and may stop rising entirely.

The pool upper and middle readings continue to rise, and typically display some slight divergence in their trends. Such divergence is limited; the greatest separation (seen in Test \#11) was $5.6^{\circ} \mathrm{C}$, while the other tests tended to be well below that. At that peak, the active pool mixing from concurrent condensation is thought to be at its lowest point, although total mixing from residual earlier action may continue to decay away. Afterward, the upper and middle temperature readings reconverge to common values while continuing to rise. The sounds coming from the sparger tend to be, at this point, notably calmer than at the beginning of the test; the chugging oscillations have given way to less violent condensation, and bubbling from the sparger outlet begins. At first, this seems to agitate only the portion of the pool above the sparger outlet; the buoyancy drives flows in the upper parts of the pool, but only limited momentum seems to penetrate into the lower regions.

As the upper parts of the pool continue to absorb energy and heat up, the penetration depth from the bubbling-based agitation increases. As the test continues, the lower parts of the pool intermix with the above areas, and eventually the whole pool from top to bottom joins the agitated part; the entirety of the pool once again becomes well-mixed and essentially uniform. This destratification front can show steep thermal profiles; as the front creeps past a thermocouple, even several dozen degrees of thermal separation can be seen to vanish in just a few minutes.

After full destratification, effectively no re-stratification of the pool has been observed. The degree of stratification, as well as distortions to the prototypical profile, depend on the major independent variables in these tests: the steam flowrate/steam generator heater power, the pressurization condition, and the steam quality.

In addition to the characteristic thermal profile these tests generated, operators noticed one important piece of information (more accurately, the lack thereof): during none of the tests was the pump observed to cavitate. While this cannot be guaranteed to be the case for a full-scale system with a much different impellor design, it is important to note here. To ensure that operators were not missing it, during a cooldown period the pump was deliberately driven into a cavitating state; such a state was obvious to the operators.

With the number of different independent variables explored, it is useful to divide them into groups. For example, "Power Series" groups standard RCIC-alignment tests for comparison. Likewise, a "Pressurization Series" exists for constant power levels, and a "Two-Phase Series" similarly considers the effects of injecting water into
the steam line. Combinations of parameters can then more conveniently be compared to determine the greatest effects, and a special set of venting actions can be explored.

### 4.5.1 Steam Generator Power / Steam Flowrate

Part of the "Power Series" has been previously presented [50]. Tests \#1, \#2, \#3, \#4, \#31, and \#32 can be considered its primary constituents with some repetition for repeatability. The greatest stratification was seen at moderate power levels, while high and low power tests had much of their thermal profiles in common. While the uppermiddle level separation for the high and low powers were closer to each other than to the moderate power cases ( $1.4-2.1$ vs. $2.8-3.1^{\circ} \mathrm{C}$ ), even when the extra-low power test is added to the mix the spread, in actual numbers, is not great (between 1.0 and $3.1^{\circ} \mathrm{C}$ ). The middle-lower differences, greater in numerical value, again showed a clear difference between the moderate-power tests and the others $\left(20.7-20.9^{\circ} \mathrm{C}\right.$ at midpower vs. $5.5-10.8^{\circ} \mathrm{C}$ ). The peak separation was (in sheer numbers) very clear in the lower-outlet profile, ranging from $20.7-43.5^{\circ} \mathrm{C}$.

The moderate-power tests, which appear to be repeatable, seem to have found a sort of "sweet spot" for enhanced thermal stratification. Interestingly, the extra-low power test showed a greater separation in the lower-outlet profile than the low power tests ( 27.9 vs $20.7-22.6^{\circ} \mathrm{C}$ ). The mid and high power tests were nearly identical, ranging from 43.1 to $43.5^{\circ} \mathrm{C}$. This suggests a complicated set of phenomena contribute to the overall stratification relating to the steam flowrate; this would include the size/shape of any jet forming at the outlet (likely to be larger/deeper and more stable at greater flow rates), the ability to resist water ingress during chugging (greater steam
flowrates would better resist ingress), and the scale of buoyant flows (greater steam flows likely produce larger buoyant flows to distribute the thermal energy).

### 4.5.2 Pressurization Conditions

Some of the standard "Pressurization Series" has been presented previously [51]. The pressurization condition of the Suppression Chamber turned out to be the most important of the variables considered, and had a clear effect: greater pre-pressurization leads to greater bulk thermal stratification in the pool. If the pool is fully vented (atmospheric), the resulting stratification will be reduced below that of the standard alignment; it is enough to severely distort the prototypic thermal profile; at high power (Test \#14), the distortion is so severe that the prototypic profile is unrecognizable. With increased pre-pressurization, the stratification is not only more pronounced, but even the characteristic thermal profile becomes clearer. The stratification is also longer-lived.

The primary tests in this series are mid-power Tests \#4, \#6, \#9, \#12, \#28, and \#32. Test \#6 and Test \#28 were at constant pressure (1 and 2 atm, respectively), while the rest isolated the Suppression Chamber from the atmosphere and accumulated pressure beginning with their starting points ( $1,2,4 / 3$, and 1 atm , respectively). A smaller lowpower pressurization series can be assembled from Tests \#1 (standard), \#2 (standard), \#20 (atmospheric), and \#22 (building up from 5 psig ); a similar set of high power tests consists of Tests \#3 (standard), \#10 (building up from 5 psig ), and \#14 (atmospheric).

The low-power tests showed significantly more stratified lower regions with increasing pressure; the standard alignment temperature differences were on the order of $40 \%$ greater than those of the atmospheric test, and the 5 psig pre-pressurization was
more than double that of the atmospheric test. At mid-power, similar effects are seen: the constant 2-atm test has maximum temperature differences on the order of twice those of the atmospheric test (more than triple for the mid-low level separation). Test \#12 (4/3 atm start point) had stratification that was almost $1 / 3$ greater than the standard alignment, and Test \#9 (starting from 2 atm ) was roughly $1 / 2$ greater than the standard alignment (and was still increasing for the lowest levels when equipment limitations forced cessation of the test).

Full power testing showed equally pronounced pressure effects. The atmospheric test was almost uniform from the top to lower thermocouple, and only saw $9.1^{\circ} \mathrm{C}$ separation from the lower region to the outlet. While the pool upper levels were just as mixed as in the standard alignment, the lower and outlet stratification in the standard alignment were quadruple the values of the atmospheric test. Comparing the standardalignment high power test to its pre-pressurized variant revealed an enormous fractional increase in the mid-low stratification: the peak separation increased by more than a factor of five. The low-outlet region did not see nearly as much of an effect (increasing less than $30 \%$ ), but that in part could be due to the test ending (due to equipment limitations) long before its destratification point was reached.

Intuitively, the pressure effect can be connected to the differences in steam density. As the water in the pool is essentially incompressible, and the steam is introduced to the pool at similar pressures, the largest difference would relate to the fact that, without a phase change, the steam density at twice the absolute pressure would be approximately double that of the lower pressure. Similar-volume bubbles at greater
pressure would have more mass, and would then tend to take longer to condense as the latent heat from the bubble is distributed to greater liquid volumes, decreasing the violence of the condensation. For a given mass flowrate, the volumetric flowrate at higher pressures would be reduced; in latter stages of tests, the reduced bubble flow at the sparger outlet would result in less overall agitation

### 4.5.3 Two-Phase Steam/Water Testing

Injection of a two-phase steam/water mixture through the RCIC Sparger rather than single-phase steam appears to have a complicated set of effects. The mid-power "Two-Phase Series" consists of Tests \#4 (standard), \#8 (0.4 GPM injection), \#27 (0.8 GPM injection), and \#32 (standard). The high-power series consists of Tests \#3 (standard) and \#13 (0.6 GPM); at low power, the series contains Tests \#1 (standard), \#2 (standard), \#21 (0.2 GPM), and \#30 (0.8 GPM). In many, but not all, cases two-phase injection reduced the amount of stratification that developed. It tended to distort the characteristic thermal profile, and added some slight mixing to the lower pool levels throughout the test period. Instead of heat being deposited solely in the upper parts of the pool, the two-phase tests indicate some energy being deposited at lower levels in the pool; the "flattening out" part of the thermal profiles does not get as flat as in singlephase testing. Some of this is likely the result of condensed water in the steam penetrating further down into the lower regions of the pool than the injected vapor phase, well below the condensation interface.

High-power testing saw reductions on the order of $2 / 3$ for the peak temperature differences in both the mid-low and low-outlet regions when water was injected,
reducing the sparger outlet quality to $\sim 63 \%$. A similar quality at mid-power resulted in smaller but still significant reductions in stratification severity; the peak mid-low stratification dropped by more than $40 \%$ and the low-outlet numbers decreased by $15 \%$. Decreasing the steam quality further, to $\sim 44 \%$, resulted in decreases (compared to the standard alignment) revealing a much more mixed pool; the peak mid-low region temperature difference dropped by more than $80 \%$, while the low-outlet region saw nearly $2 / 3$ of the difference vanish.

At low power, an interesting trend reversal appears. Two-phase testing revealed an INCREASE in thermal stratification at the $63 \%$ steam quality level (only a small one; the low-outlet region saw an increase in the peak temperature difference of less than $6 \%$ ). Further increase in water injection (decreasing the test-average steam quality to about $32 \%$ ) further increased the ultimate degree of stratification (still by small amounts, on the order of $10 \%$ from the standard alignment). It would appear that the water injection interferes with the chugging oscillations, which seem to be suppressed at correspondingly lower pool temperatures with decreased steam quality. At the same time, in the low-power tests, the slower flow rates would give the condensed water in the steam line less penetrative power and a resultantly lower ability to agitate the pool.

It should be noted that the dry steam supply is consistent with the standard alignment case; in these two-phase tests, additional (liquid) flow is sent through the sparger, increasing the mass flux for essentially the same heat addition rate to the pool. The necessary changes in mass flux or heat addition makes separating the effects (mass flux and steam quality) more challenging.

### 4.5.4 Combined Parameters

When combinations of parameters were applied (i.e., pressurization with twophase injection), the pressurization condition was the dominant factor in the overall stratification profile. The power levels and steam quality did play their roles, but they were of less significance than the pressure. Combined parameter testing was performed in Tests \#7, \#11, \#18, \#19, \#23, and \#29.

### 4.5.5 Active Venting Operations

Two tests were performed in which operators actively changed the venting condition mid-test: Test \#24, in which a pre-pressurized Suppression Chamber was decompressed mid-test, and Test \#26, which was maintained at atmospheric until a midtest isolation. Test \#26 performed as the atmospheric single-phase mid-power test (Test \#6) until it was isolated as the pool bulk temperature crossed $82^{\circ} \mathrm{C}$; after that, it behaved as something of a cross between the atmospheric and standard alignment tests

The pre-pressurized depressurization test (Test \#24) provides additional insight into the mixing behavior of the pool. Upon depressurization, the mid-low elevation stratification disappeared almost immediately. This effectively reveals that the mixing state of the pool is largely determined by current conditions rather than the heatup history in a test. While the temperatures of the unmixed portions are a function of the pool history, the active mixing state is not.

### 4.5.6 Comparison with Results from Other Facilities

The characteristic thermal profile found in these tests shows similar trends to those from both the University of Tokyo as well as the SIET tests. Remarkably, this
applies not only to the open-ended pipe sparger design but the multiple-side-hole design as well as depicted in Figure 73 [40] (notably, the pool was open to the atmosphere in the SIET tests).


Figure 73: SIET Multi-Hole Sparger Pool Thermal Progression [40]


Figure 74: Atmospheric Thermal Progression, Reprinted with Permission from [54]


Figure 75: Vacuum Thermal Progression, Reprinted with Permission from [54]

Of particular relevance here, the effects of the pressurization conditions can be seen in the University of Tokyo tests. An interesting characteristic of them was that instead of above atmospheric pressures, testing was performed under atmospheric as well as vacuum conditions. In a manner not unlike the profiles seen for the NHTS tests, lower pressure in the test facility resulted in decreased thermal stratification. Vertical thermal profiles are shown for the atmospheric case in Figure 74 and for a vacuum (starting at -84 kPa gauge) case in Figure 75 [54].

A degree of similarity to the thermal progression in these NHTS tests was seen in POOLEX testing. As seen in Figure 76 [35], during the stratified period, the lower levels of the pool stayed at a relatively uniform, constant temperature. There was some separation in the upper portions of the pool, but the temperatures appear to move in concert with each other. It is important to note that steam injection was not constant, and the flowrate was dramatically increased at 4200 s to effect additional pool mixing; it was reduced over the succeeding hour until only small adjustments were needed to maintain the condensation position [35]. Even with the very different facility design and operation in the POOLEX tests, there remains a striking resemblance to the stratification data seen in the NHTS tests.

STB-21


Figure 76: POOLEX STB-21 Test Thermal Progression [35]

## 5. ANALYSIS

The meaning and consequences of the data collected in this experimental program are presented here. The analysis attempts to produce a correlation that describes the aggregate mixing state of the Suppression Pool.

### 5.1 GOALS OF THE ANALYSIS

The characteristic thermal profiles seen developing through the test suite in this experimental program are the product of multiple phenomena occurring throughout each test. As direct contact condensation is a fundamental part of the experiment, relevant condensing regimes can be expected to play roles in the progression of each test. The notable, qualitatively observable, decrease in chugging intensity in the course of the RCIC tests in particular seems to be an important transition, as it appears to correspond well with the onset of bulk thermal stratification in the pool. While chugging appears to dominate the circulation patterns early in the tests, it is not the sole driver of pool circulation. Buoyancy-driven flows near the sparger outlet, especially late in the tests where steam bubbles may be able to reverse their initial direction and flow upward before condensing, become increasingly influential.

The transitions observed in the tests may be abrupt (as noted by operator observation in some tests, like Test \#3, where the loud pops associated with strong chugging rapidly ceased) and easily noted by observant operators, or they may be smooth as one phenomenon gradually gives way to another (as in Test \#21). The destratification profiles seen in the tests, in particular, would be near-impossible to
identify without the direct temperature measurements. The multiplicity of phenomena involved in this experiment, especially when two-phase injection is considered, can make the use of existing correlations problematic as the phenomena may interfere with each other or interact in unexpected ways. Furthermore, the bulk effects measured may not be due largely to one phenomenon at a time.

For the purposes of this endeavor, the phenomena that may appear in the tests shall be considered in aggregate rather than separately; the goal is a single expression at any given time to describe the system state rather than the effective summation of several independent relationships. As chugging features so prominently in these tests, the result is expected to appear in the form of a chugging-like formula. Instead of strictly establishing the chugging conditions, however, it will reveal an aggregate bulk mixing state in the pool; i.e., whether the heat from the injected steam is distributed into just a small portion of the pool or is dispersed into the entire pool at large.

The bulk thermal mixing state of the Suppression Pool is an important part of whether or not the Suppression Pool RCIC System will be able to perform their safety functions in extended operations. When the RCIC Pump draws suction at sufficiently low elevations in the pool, thermal stratification will tend to provide it protection; the cooler inlet water would be less of a cavitation risk and would provide better cooling for the system's lubrication oil. However, limiting the heat injection to just the upper portion of the pool would tend to increase containment pressurization as that is the driving interface between the pool and containment airspace. The model developed herein should provide a framework to address these concerns.

### 5.2 DEFINITION OF THERMAL STRATIFICATION KEY POINTS

The broadly similar thermal profiles found in the RCIC-alignment tests, and the distinctive features of those profiles, allow for the identification of specific "key points" in the data. Aside from certain operational points (e.g., the beginning and ending points of a test), these key points identify features of the tests that should share common phenomenologies. These include the beginning and ending of identified bulk pool thermal stratification, the first formation of an identifiable thermal plume near the RCIC sparger outlet, the peak thermal separation between vertical levels, and the subsequent disappearance/reconvergence of said thermal separation. Presumably, the similar features in the thermal profiles of the tests that identify specific key points relate to phenomenological similarity across the suite of RCIC tests at those points. The key points identified are as follows:

1. Beginning of test
2. First appearance of identifiable thermal plume at the RCIC sparger outlet
3. Onset of detectable bulk thermal stratification
4. Peak thermal separation between the upper and middle vertical levels of the pool
5. Disappearance of the thermal separation between the upper and middle pool levels
6. Peak thermal separation between the middle and lower vertical levels of the pool
7. Disappearance of the thermal separation between the middle and lower pool levels
8. Peak thermal separation between the lower vertical level of the pool and the outlet at the bottom
9. Beginning of reconvergence for the lower vertical pool level and the outlet at the bottom
10. Disappearance of the thermal separation between the lower vertical level of the pool and the outlet at the bottom
11. End of test
12. Minimum recorded value for the proposed correlation (as defined for KP2-4
13. Maximum recorded value for the proposed correlation (as defined for KP2-4)
14. Peak thermal difference between the condensing/lower plume region and the bulk pool middle regions (unclear phenomena)


Figure 77: Key Point Progression in a Test

The descriptions of several of the above key points would benefit from further discussion, and are placed in their test progression in Figure 77. The thermal plume, central to Key Points 2 and 14, is only defined for RCIC tests (SRV runs are insufficiently instrumented). It is identified by comparison of the values for Thermocouples SP8 and SP9; SP8 is adjacent to the outlet of the RCIC sparger at the middle-level of the pool (approximately one inch away along the vessel axis) and SP9 is at the same vertical level, 12 inches further away axially from the sparger outlet. Due to the wild fluctuations in temperatures resulting from the nearby chaotic condensation, a smoothing algorithm is applied to these specific readings to determine the average local conditions. After the pool warms up sufficiently (this varies on test conditions), the
average SP8 readings rise significantly above the SP9 readings (which maintain bulk middle-level readings). Once the average difference between SP8 and SP9 rises above $2{ }^{\circ} \mathrm{C}$ and remains so for the following 60 seconds, a thermal plume is considered to have formed; this indicates the test has progressed through Key Point \#2. Key Point \#14 is where the average difference is at its maximum. However, due to the poor spatial resolution of the thermal profile and indeterminate flow patterns, the phenomena relating to this are largely unclear and unresolved.

The bulk thermal stratification, defined primarily through Key Points 3 and 9, uses more smoothing than was used for the plume detection. Bulk pool temperatures are taken as averages of thermocouples SP11, SP12, and SP13, and compared to the temperatures read at the bottom outlet of the pool. To trigger the detection of the onset of bulk thermal stratification (Key Point \#3), three main conditions must be met. First, the difference between smoothed bulk and outlet temperatures must be greater than $2{ }^{\circ} \mathrm{C}$ at the onset and for a full minute after. Second, the rate of temperature increase for the smoothed bulk and outlet temperatures must be different; at the onset and for a full minute afterward, the outlet temperature can be increasing at a rate no more than $75 \%$ of that of the bulk. Third, for the subsequent three minutes (to four minutes after the onset), the smoothed outlet temperature can be increasing at no more than $95 \%$ of the rate of increase for the bulk temperatures.

Detection of the onset of full destratification (Key Point \#9) has fewer requirements: the rate of increase of the smoothed temperature at the pool outlet must be at least twice that of the smoothed bulk temperatures at the detection point and for the
subsequent 60 seconds. Typically, the detection of Key Point \#3 is well after that of Key Point \#2. However, slowly-evolving temperature fluctuations can overcome the smoothing algorithms and lead to premature or inaccurate detection of the actual divergent trends; this appears to be the case, for example, in Test \#21 as well as SRV Tests \#16 and \#25.

For Key Points 4, 6, and 8, the peak temperature differences are instantaneous (unsmoothed) values. The temperature differences are those within a vertical set (SP3-SP4-SP5-Outlet, SP11-SP12-SP13-Outlet, and SP19-SP20-SP21-Outlet), and the vertical set displaying the greatest difference is selected. However, due to the increasingly erratic behavior of Thermocouple SP4, Thermocouple SP4 was declared defective; this effectively limits that entire vertical set to consideration of lower to outlet region temperature differences (SP5-Outlet). The disappearances of the differences, as defined in Key Points 5, 7, and 10, use the same vertical thermocouple set as was found to have the maximum respective difference. This reconvergence is defined to be between the time of the maximum difference and the end of the test, and to be the point where the difference (with a smoothing algorithm applied) first drops below $1 / 3$ of its peak value and stays below it for the subsequent 60 seconds. If the peak difference is less than $3{ }^{\circ} \mathrm{C}$, the difference only needs to drop and stay below $1^{\circ} \mathrm{C}$. It should be noted that some tests did not proceed all the way through full destratification. For those tests, the relevant Key Points (generally Key Points 8, 9, and 10) are placed at the very end of the test.

### 5.3 CORRELATION DEVELOPMENT

Correlation development was based on the Key Points extracted from the RCICalignment tests. While five SRV runs were performed, their consistent full mixing in the Suppression Pool provides little impetus for more detailed mathematical modeling. Of the 27 RCIC-alignment tests, only those with clear and well defined Key Points in the early stages (Key Point \#3 in particular, which should follow Key Point \#2) were used in the development of the relationship; several tests had their bulk thermal stratification onset detection by the detection algorithm apparently go awry. To simplify things, only tests with steam qualities greater than $50 \%$ and steam mass flowrates greater than $20 \mathrm{~g} / \mathrm{s}$ were considered in the development. This excludes Tests \#27, \#30, and \#31. The primary Key Points used for development are Key Points 2, 3, 4, 5, 7, and 10; these cover the plume formation and initial stratification through the full destratification of the pool. Some skew is expected to result in the Key Point \#10 results, as full destratification had not been achieved in some cases (Tests \#1, \#9, \#10, \#11, and \#19); in such cases, Key Point \#10 is placed at the very end of the test in the assumption that full destratification would have been forthcoming had the test proceeded.

For the correlation to be useful, it was essential to have a set of features. The values at the differing Key Points needed to be clear, consistent, and well-separated from those of other Key Points; there needed to be a 1:1 correspondence between the correlation value and the associated Key Point. As the tests progressed in time, the correlation needed to change monotonically (increasing was selected in this analysis).

The correlation development proceeds from a chugging-type relationship. As certain Key Points are thought to reflect transitions in the DCC regime, a correlation for the chugging regime boundary such as Aya and Nariai's (Eq. (1) [28]) or Liang and Griffith's (Eq. (2) [29]) was considered a good starting point. Due to the difficulties in directly applying Eq. (1) to the current system, Liang and Griffith's correlation (Eqs. $(2) /(3))$ was selected as the starting point. While bubbling does appear to play a significant role late in the tests, no consistent feature is present in the thermal profiles and therefore no Key Point is defined at temperatures specifically very close to saturation; condensation is expected to be a major part of every phenomenological Key Point. As a result, while one would expect that, near saturation, the primary relationship would be of a bubbling-type, the transformation from a chugging-type to bubbling-type relationship is far from complete for the current data set. Without the necessary data near or at saturation, the development of a bubbling-type relationship for the end-state data cannot be performed and the transition from the chugging-type to the bubbling-type relationship from the data gathered in this endeavor is at best incomplete and left for future researchers to explore. With adjustments for the latter Key Points, the form of the chugging-type relationship is believed to be valid for the current data.

In every test performed where the Suppression Chamber was isolated from atmospheric conditions, the pressure in the vapor space built up significantly as the pool temperature increased. This comes as no surprise; the air inventory was constant and heating up. In addition, the partial pressure of water vapor increased along with the pool surface and airspace temperatures. It is simple enough to estimate such conditions, and
is an important phenomenon in thermal hydraulics. As exemplified by Equation 7-23 in the classic text by Todreas and Kazimi, the containment pressure has contributions from water vapor and from the volume's heated air as shown in Eq. (8) [55].

$$
\begin{equation*}
p_{2}=p_{w_{2}}\left(T_{2}\right)+p_{a_{1}} \frac{T_{2}}{T_{1}} \tag{8}
\end{equation*}
$$

Not only was the pressure increase predictable in the tests, it was significant. The only tests that achieved pool temperatures close to saturation were those with some sort of vent mechanism. Indeed, Eq. (8) [55] reveals that such systems under reasonable isolation conditions can never fully saturate; in order for the water vapor pressure to equal the airspace pressure, all the noncondensibles would need to be vented away. While a local hot spot could produce localized boiling, such would be suppressed over the pool as a whole by the presence of noncondensibles.

With the qualitative observations of the operators noting that the chugging noises would be relatively quiet at the point that thermal stratification was accelerating, with a fair degree of support by the recorded data, it is considered here that Key Point \#4 (peak temperature difference between the upper and middle vertical regions of the pool) represents the overall minimum of active mixing in the pool, and effectively represents a termination of the chugging regime. This is not to suggest that a chugging-type correlation would immediately lose meaningfulness after progression through the general end of major chugging events, or even that the chugging regime has such a sharp boundary. However, the relationship would be expected to begin transformation at that point into another form, if it is to continue to relate to the phenomena present in the
system after the cessation of major chugging. Key Points 2 and 3, then, represent the weakening of the chugging oscillations that the resultant decrease in overall pool mixing that allow their respective phenomena to appear. Key Points 5, 7, and 10 would then indicate increasing pool circulation from buoyancy-driven flows and an increasing role of bubbles surviving past the sparger outlet as the condensation rate slows.

Direct application of the chugging correlation from Liang and Griffith [29], as Eq. (3), to Key Point \#4 reveals strong residual dependencies/unaccounted-for trends and that, on its own, it is insufficient to adequately describe the Key Point. The other Key Points have similar dependencies when examined with the correlation. This should come as little surprise, given the differing situations as well as the inclusion of twophase injection and pressurization in these tests. In addition, gravitational effects are not addressed; these may be significant given the downward vertical orientation of the steam injection as buoyancy would tend to act in opposition to the direction of flow and cause an ultimate reversal of the injected fluid, especially later in the tests. Of lesser relevance to a strict chugging correlation, but of note here, is the depth of the outlet beneath the water surface; as a thermal plume forms around the sparger, the depth of the plume and its flows would conceivably affect the bulk vessel circulation.


Figure 78: Liang and Griffith Correlation at Key Point \#4

It can be seen in Figure 78 that the steam velocity has a strong residual dependency in Key Point \#4. The sparger depth shows some dependency as well. If gravity is included, these can be grouped together in the form of a steam injection Froude number (Eq. (9) [57]) as in Eq. (10), where $v_{s}$ is the velocity of the steam in the sparger and $d_{\text {depth,outlet }}$ is the depth of the outlet of the tube beneath the surface of the water; this again shows a trend at Key Point \#4 when compared against the Liang and Griffith correlation as demonstrated in Figure 79. While this adaptation might be considered a stretched definition of the Froude number, it is useful in this analysis. The depth term provides a characteristic scale for natural convection in conjunction with the gravitational term; such was not part of the original correlation.

$$
\begin{gather*}
F r=\frac{v}{\sqrt{g \cdot L}}  \tag{9}\\
F r_{s} \equiv \frac{v_{s}}{\sqrt{g \cdot d_{\text {depth,outlet }}}} \tag{10}
\end{gather*}
$$



Figure 79: Liang and Griffith Correlation at Key Point \#4, nondimensional

Multiplying the original correlation from Liang and Griffith, Eq. (3), by the Froude number expressed in Eq. (10) to a power of -0.5 will eliminate the trend, but another dependency remains (Figure 80, dropping the leading coefficient of 0.06): the steam and water density ratio. Upon inspection, the cleanest profile shows dependency
on the ratio of steam and water at saturation, where the saturation pressure is taken to be that of the steam line just upstream of the sparger. Cleary this in some form, or a surrogate for it, needs to be accounted for in the relationship. To account, the correlation can be casted to be that of Eq. (11):

$$
\begin{equation*}
\operatorname{Pr}_{w}^{\frac{1}{2}}\left(\frac{\mu_{s}}{\mu_{w}}\right)^{\frac{1}{2}}\left(\frac{\rho_{s}}{\rho_{w}}\right)^{\frac{1}{2}} J a_{w}^{-1} \operatorname{Re}_{s}^{\frac{1}{2}} F r_{s}^{-\frac{5}{8}}\left(\frac{\rho_{w, s a t}}{\rho_{s, s a t}}\right)^{\frac{5}{16}} \tag{11}
\end{equation*}
$$



Figure 80: Saturation Water/Steam Density Ratio Dependency

Inclusion of the density ratio, to account for the dependencies, required adjustment of the exponent of the Froude number. It should be noted at this point that
inclusion of a form of the Froude number with this density ratio can be rearranged to reveal a form of the Richardson number (used in various forms in meteorology and in mixed convection problems; Eq. (12) [56] is occasionally used as a definition). With the Grashof number (Eq. (13) [58]) and considering a simplification not unlike the Boussinesq approximation in Eq. (14) [58], it follows that (when density differences are enormous) a simple density ratio shown in Eq. (15) leads to Eq. (16).

$$
\begin{gather*}
R i=\frac{G r}{\operatorname{Re}^{2}}  \tag{12}\\
G r=\frac{g \beta\left(T_{s}-T_{\infty}\right) L^{3}}{v^{2}}  \tag{13}\\
\beta \approx-\frac{1}{\rho} \frac{\Delta \rho}{\Delta T}=-\frac{1}{\rho} \frac{\rho_{\infty}-\rho}{T_{\infty}-T}  \tag{14}\\
\left.R i=\frac{G r}{\operatorname{Re}^{2}}=\frac{\left(\frac{g \beta\left(T_{h}-T_{\text {ref }}\right) L^{3}}{v^{2}}\right)}{\left(\frac{v L}{v}\right)^{2}}=\frac{g \beta\left(T_{h}-T_{r e f}\right) L}{v^{2}}\right) \approx \frac{\rho_{r e f}}{\rho_{h o t}}  \tag{15}\\
\approx \frac{\rho_{r e f}}{\rho_{h o t}} L  \tag{16}\\
\approx \frac{g \cdot L}{v^{2}} \cdot \frac{\rho_{r e f}}{\rho_{\text {hot }}}=\frac{1}{F r^{2}} \cdot \frac{\rho_{r e f}}{\rho_{\text {hot }}}
\end{gather*}
$$

While Eq. (11) - the Liang and Griffith correlation with corrections - resolves the dependencies that were shown to exist in the uncorrected version at Key Point \#4, when applied to other Key Points, dependencies re-enter the picture. However, they are dependencies on terms already in the corrected relationship; resolving the dependencies
means adjusting the exponents rather than the addition of terms at the end of the formula. As the dependencies seemed to increase the further away in time/Key Points the period of interest is, a method to smoothly correct the growing dependencies was sought. One of the more promising enhancements came from defining a pressure ratio $\beta_{\mathrm{p}}$ in Eq. (17) to assist in defining the progression within a test. It compares the vapor pressure of the bulk liquid at the level of the sparger outlet (a function of its temperature) to the overall pressure at that level.

$$
\begin{equation*}
\beta_{p} \equiv \sqrt{\frac{P_{v a p}}{P}} \tag{17}
\end{equation*}
$$

Instead of attaching the parameter to the end of the relationship as with the other correction factors, Eq. (17) was inserted into the changing exponents. This was not limited to those of the correction factors, but to the Jakob number as well, producing a corrected correlation of Eq. (18):

$$
\begin{equation*}
\operatorname{Pr}_{w}^{\frac{1}{2}}\left(\frac{\mu_{s}}{\mu_{w}}\right)^{\frac{1}{2}}\left(\frac{\rho_{s}}{\rho_{w}}\right)^{\frac{1}{2}} J a_{w}^{-1+\frac{1}{16} \beta_{p}} \operatorname{Re}_{s}^{\frac{1}{2}} F r_{s}^{-\frac{3}{8}-\frac{1}{2} \beta_{p}}\left(\frac{\rho_{w, s a t}}{\rho_{s, s a t}}\right)^{\frac{1}{4}+\frac{3}{16} \beta_{p}} \tag{18}
\end{equation*}
$$

While Eq. (18) was sufficient for relating to Key Points 2-4 for single-phase tests, two-phase injection required additional accounting. Careful inspection revealed a correction that was surprisingly simple: division of the Jakob number by the steam quality. If the quality term is "unbounded" - that is, allowed to be greater than 1 for superheated steam following Eq. (19), then the Jakob number can be re-expressed as a "Two-Phase Jakob Number" shown in Eq. (20), which expresses a ratio of the thermal energy needed to bring the pool's water to saturation to that needed to fully condense the
two-phase steam. While not explored here, the "unbounded" quality may enable the extension of the correlation into the superheated steam region.

$$
\begin{gather*}
x_{u}=\frac{h_{s}-h_{w, s a t}}{h_{s, s a t}-h_{w, s a t}}  \tag{19}\\
J a_{T P}=\frac{J a_{w}}{x_{u}}=\frac{h_{w, s a t}-h_{w}}{h_{s}-h_{w, s a t}}  \tag{20}\\
\operatorname{Pr}_{w}^{\frac{1}{2}}\left(\frac{\mu_{s}}{\mu_{w}}\right)^{\frac{1}{2}}\left(\frac{\rho_{s}}{\rho_{w}}\right)^{\frac{1}{2}}\left(\frac{J a_{w}}{x_{u}}\right)^{-1+\frac{1}{16} \beta_{p}} \operatorname{Re}_{s}^{\frac{1}{2}} \operatorname{Fr}_{s}^{-\frac{3}{8}-\frac{1}{2} \beta_{p}}\left(\frac{\rho_{w, s a t}}{\rho_{s, s a t}}\right)^{\frac{1}{4}+\frac{3}{16} \beta_{p}} \tag{21}
\end{gather*}
$$

In addition to the steam quality, a definition for the two-phase viscosity in the Reynolds number was needed if the viscosity terms would remain. Here, a volumetric mean (with no slip between water and steam phases; a presumed equality of their velocities) was considered, along with other homogenization methods such as qualityweighted reciprocals [59]. However, it was recognized that the viscosity terms cancel out of the correlation as currently expressed (including those from the Prandtl number, viscosity ratio, and Reynolds number).

With the above corrections, the chugging-type relationship of Eq. (21) was found to work well for Key Points 2-4. However, at Key Point \#5, the saturation steam/water density ratio again shows a major dependency; correcting it greatly altered its exponent. The same is true of all later phenomenological Key Points. Worse, the exponent for the saturation steam/water density ratio is not the only one that may need adjusting. With adjustments made to it, by the final phenomenological Key Point (Key Point \#10), a new dependency on the Jakob number can be seen to be developing (compare Figure 81 and

Figure 82). This is evidence to suggest that, at that point, the chugging-style relationship is finally breaking down and likely giving way to another type, probably bubbling-type, or one unencumbered by a zero/infinite value resulting from applying the Jakob number approaching saturation. However, even with the new dependency beginning to emerge at Key Point 10, the experiment's state can still be described with the final corrected form of the chugging-type relationship (henceforth called the "Mixing Number" or Mx) given in Eq. (22); it simplifies to Eq. (23). The $\mathrm{F}_{1}$ term is expressed as part of Eq. (23). Unfortunately, Key Point 5 and later were unable to be smoothly transitioned through by use of $\beta_{\mathrm{p}}$ in the density ratio exponent; individual expressions for the exponent became the cleanest way to resolve the destratification Key Points.


Figure 81: Mixing Number at Key Point \#4

$$
\begin{align*}
& M x=\operatorname{Pr}_{w}^{\frac{1}{2}}\left(\frac{\mu_{s}}{\mu_{w}}\right)^{\frac{1}{2}}\left(\frac{\rho_{s}}{\rho_{w}}\right)^{\frac{1}{2}}\left(\frac{J a_{w}}{x_{u}}\right)^{-1+\frac{1}{16} \beta_{p}} \operatorname{Re}_{T P}^{\frac{1}{2}} \operatorname{Fr}_{s}^{--\frac{3}{8}-\frac{1}{2} \beta_{p}}\left(\frac{\rho_{w, s a t}}{\rho_{s, s a t}}\right)^{F_{1}}  \tag{22}\\
& M x=\left(\frac{c_{p, w} \cdot G_{s} \cdot d_{\text {outlet }}}{k_{w}}\right)^{\frac{1}{2}}\left(\frac{\rho_{s}}{\rho_{w}}\right)^{\frac{1}{2}} J a_{T P}^{-1+\frac{1}{16} \beta_{p}} \operatorname{Fr}_{s}^{-\frac{3}{8}-\frac{1}{2} \beta_{p}}\left(\frac{\rho_{w, s a t}}{\rho_{s, s a t}}\right)^{F_{1}}
\end{align*}
$$

where

$$
F_{1}=\left\{\begin{array}{cc}
\text { Value } & K P  \tag{23}\\
\frac{1}{4}+\frac{3}{16} \beta_{p}, & 2-4 \\
13 / 16, & 5 \\
15 / 16, & 6-7 \\
1, & 8-10
\end{array}\right.
$$



Figure 82: Mixing Number at Key Point \#10

A summary of the results of the new correlation can be found in Table 11. For the decreasing-circulation period (Key Points 2-4), the relationship shows good agreement between the tests as well as clear separation between the Key Points. The increased spread for Key Point \#3 (onset of bulk thermal stratification) is likely due to the difficulty of detection in the data processing; the other Key Points tend to be better defined and easier to detect in the data. Even with the expression beginning to break down by Key Point \#10, the results were still within $11 \%$.

Table 11: Spread in As-Measured Correlation Values

|  | Correlation <br> Mean | Min | Max | $\sigma$ | $\sigma /$ mean |
| :--- | :--- | :--- | :--- | :--- | :--- |
| KP2 | 42.95 | 38.50 | 46.33 | 1.99 | $4.64 \%$ |
| KP3 | 47.11 | 29.23 | 73.24 | 7.67 | $16.3 \%$ |
| KP4 | 62.51 | 53.58 | 81.60 | 6.03 | $9.64 \%$ |
| KP5 | 1796 | 1614 | 1923 | 94.7 | $5.27 \%$ |
| KP7 | 5064 | 3894 | 5701 | 377 | $7.45 \%$ |
| KP10 | 9274 | 7376 | 11093 | 1009 | $10.9 \%$ |

### 5.4 ERROR ANALYSIS

Due to the lack of a large number of tests with the same testing parameters, full statistical development of repeatability is not possible with the data gathered in this testing program. While Test Nos. $1 \& 2$ and $4 \& 32$ demonstrated a capacity for repeatability, they are insufficient for full quantitative analysis and reflect more qualitative measures. However, that does not preclude an analysis of the uncertainty in the collected data; it simply adds a limitation on its scope. Furthermore, if the correlation developed is assumed to be valid, then the comparison of data at
phenomenological Key Points can provide some insight into the overall spread, especially when combined with individual major contributions to error (i.e., instrument error) that would tend to shift the position/correlation value of the individual Key Point.

The approach used here to determine the error in the Mixing Number presents two outcomes: a probable conservative evaluation, and what should be a bounding evaluation that produced almost twice the value. Covariances were ignored/assumed to be zero (the use of the same instruments to compute multiple terms in the correlation will result in covariance terms), and in a number of cases "worst-case" evaluations were used. The relative standard deviations were calculated for each major term of the simplified expression for the Mixing Number; as a result, due to their dropping out of the final form, viscosities produced no impact on the error determination. The oft-used error propagation formula given by Eq. (24) [60] was used to propagate instrument error through to the total instrument error contribution.

$$
\begin{align*}
& \sigma_{u}^{2}=\left(\frac{\partial u}{\partial x}\right)^{2} \sigma_{x}^{2}+\left(\frac{\partial u}{\partial y}\right)^{2} \sigma_{y}^{2}+\left(\frac{\partial u}{\partial z}\right)^{2} \sigma_{z}^{2}+\cdots  \tag{24}\\
& \text { where } \\
& u=u(x, y, z, \ldots)
\end{align*}
$$

The single largest contributor in the baseline evaluation was the error propagated through the two-phase Jakob number ( $\sigma=2.2 \%$ ). This has contributions not only from the vortex flowmeter instrument cluster and pool conditions, but also includes significant uncertainty due to an approximately $13 \%$ value in the heat loss coefficient in the main steam line (the effects of this are limited by the low heat loss values). The Froude number comes in a distant second in its contribution ( $\sigma=1.2 \%$ ).

In what should be a bounding determination, the uncertainty in $\beta_{\mathrm{p}}$ becomes the dominant factor, enlarging every term that utilizes it. This is no surprise, as it exists in the exponents and constitutes a significant part of their overall values. In that evaluation, the Froude number becomes the largest single contributor ( $\sigma=3.2 \%$ ) and the two-phase Jakob number drops to second place ( $\sigma=2.2 \%$ ).

As the Mixing Number has multiple expressions for different points in the experiment's progression, multiple error terms have been developed. In the early stages (Key Points 2-4), the likely conservative estimate is that the Mixing Number can be determined by the experiment's instruments to a standard deviation of $2.7 \%$; a bounding estimate puts it at $4.4 \%$. Later (when $\mathrm{F}_{1}=1$, which is applied to Key Points 5-10 as an overestimate), the measurements should produce a standard deviation of $2.8 \%$ in the Mixing Number. The respective bounding value is $4.0 \%$.

With the bounding estimate, the measurement error in the Mx correlation is comparable to the spread in measured values for Key Points 2 and 5. As the measurement error applies to every datum, it contributes additional error to the measured values for each Key Point. Inclusion of the measurement error (using the bounding value of $4.4 \%$ ) as well as the spread in measured correlation values at the various Key Points produce the estimated total uncertainty values show in Table 12. This assumes correct placement of the Key Point by the data processing script. Further development of the measurement error analysis can be found in Appendix B.

Table 12: Total Error in Correlation

|  | Correlation <br> Mean | Total Error, <br> $\sigma /$ mean |
| :--- | :--- | :--- |
| KP2 | 42.95 | $4.72 \%$ |
| KP3 | 47.11 | $16.31 \%$ |
| KP4 | 62.51 | $9.69 \%$ |
| KP5 | 1796 | $5.35 \%$ |
| KP7 | 5064 | $7.50 \%$ |
| KP10 | 9274 | $10.92 \%$ |

### 5.5 FULL SYSTEM MODEL CONSIDERATIONS

With the developed expression for the Key Points, one may begin to model the progression from state to state, given certain modeling assumptions. A number are made for the sake of simplicity, and significant room is left for future efforts to enhance the model.

The water in the pool is assumed to be representable by two separate volumes vertically stacked, and each is assumed to be homogenous. In the early parts of a test, Key Points 2-4, the upper volume consists of all the water at a vertical level above that of the RCIC sparger outlet. The lower level has the remainder of the water (below the sparger outlet). The upper volume is assumed to be in thermal equilibrium with the vapor space above it (including a relative humidity of $100 \%$ ), and as a result it drives the pressurization of the chamber. Steam is injected and condensed in the upper volume. The lower volume provides water for the pump suction, and defines the pump inlet conditions.

From the beginning of steam injection up through Key Point \#3, both water volumes are intermixed; the entire pool is uniform. In the data, stratification begins at

Key Point 3, but residual mixing tends to remain through Key Point \#4 as different levels have their temperatures branch off from the upper level at different times, and tend to flatten out around Key Point \#4. This is seen not only in the data gathered here but also in a number of profiles from the University of Tokyo [54], POOLEX [35], and SIET [40] tests, which have a greater vertical thermal resolution; the separation resembles a retreating front between the well-mixed upper and poorly-mixed lower regions. In this model, after Key Point \#3, mixing between the upper and lower volumes ceases; the lower volume maintains its state, while heat is dumped solely to the upper volume.

The greatest thermal stratification in the upper pool regions in the data define Key Point \#4, which is taken to represent the minima of pool mixing. Due to the modeling simplification of a uniform upper volume, no thermal separation is defined here in the upper regions. As the peak is relatively low, this simplification is thought to be less significant than others present in this model. Once Key Point \#5 is reached, the upper region is considered to be well mixed.

After Key Point \#5, there appears a vertical (downward) progression of a mixing front; the bottom of the upper water volume progresses down from the level of the sparger outlet. The upper volume, therefore, grows while remaining thoroughly mixed; the lower volume, maintaining the thermal state it had in Key Point \#3, shrinks.

At Key Point \#7, the vertical progression of the mixing front has reached the lower levels in the pool ( 8 inches above bottom), shifting considerable inventory from the lower volume to the upper. The peak mid-lower thermal separation in this model can
be taken to be just prior to this point. In the data, the peak separation is defined by Key Point \#6, which typically occurs shortly before the temperature reading at the lower vertical level quickly rises to that of the middle and upper pool regions.

At Key Point \#10, the advancing mixing front has reached the very bottom of the vessel; peak lower-outlet temperature differences are shortly prior to this (Key Point \#8 in the data). After this point, the lower volume ceases to exist, and the upper water volume defined in this model encompasses the entirety of the pool. It continues to be well-mixed through the end of the test.

This model has several limitations. The instantaneous flattening of the lowervolume temperatures after Key Point \#3 is a gross simplification of the data, and misses the continued temperature rise seen especially in the lower-level (not bottom/outlet) readings; this rise can continue PAST Key Point \#5 before flattening out (as it appears to do even in Test \#4). Whether this is residual circulation from prior steam injection or active mixing from concurrent steam injection is unclear. Additional water volumes, or thermal profiles within the volumes, may be useful. Furthermore, some profiles never flatten out; many of the two-phase injection tests show some intermixing between the upper and lower volumes for the entirety of the test. As a result, the peak temperature differences between the lower and outlet reading will be overstated by this model; those of the middle to lower level readings will be overstated even more. Due to the overstatements, this model should be considered to provide bounding values for the thermal stratification of the lower levels of the pool.

With regard to the upper levels, this model overstates the heat dumped into the upper volume. However, as it assumes complete mixture of the upper volume, there is no considered potential for the development of a thermal profile. The thermal separation between the top and the middle of the pool is ignored completely. The pressurization condition of the chamber, then, is not guaranteed to be overstated as a possible hot spot on the top of the volume is not considered.

### 5.6 SCALING DISCUSSION

While scaling from this experiment to full size in operating BWR systems cannot be completely established solely from the data gathered in testing, there is some basis for scalability. It was determined during the design phase that the full range of applicable Reynolds numbers in the sparger would be irreproducible with the equipment in the NHTS Laboratory. Even approaching them with the current steam supply would require sonic flows; this would drastically affect the condensation and steam jet profile at the sparger outlet. Instead, the Mach number was chosen as a scaling parameter for preservation. The facility can produce a peak sparger Mach number near 0.18 ; the full scale system was estimated to produce Mach numbers in the range of 0.1 , which is easily attainable with less than full power operation of the steam generator. Preserving the Mach number has the added benefit of, in many of these tests, preserving the flow velocity and mass flux (Suppression Chamber conditions are comparable).

If a Fukushima-scale RCIC system consumes approximately $2.1 \mathrm{~kg} / \mathrm{s}$ of steam, it would produce a mass flux at the sparger of $33 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$. At $2.51 \mathrm{~kg} / \mathrm{s}$ [40], the mass flux is $39.7 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$. With enough subcooling in the Suppression Pool, this would land
squarely in the chugging regime for DCC according to the traditional maps. The midpower $(107 \mathrm{~kW})$ tests produce similar mass fluxes $\left(\sim 34 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}\right)$, and were originally thought to provide phenomenological similarity. However, given the multitude of regime maps (as well as the correlation developed here), the similarity becomes less clear.

An additional distortion affecting the utility of the correlation developed here is the aspect ratio between the Suppression Chamber and the sparger outlet. While the vessel used in these tests has a volume that scales from roughly 1:750 for a small BWR pool of 70,000 cubic feet to $1: 1300$ for a larger one of 125,000 cubic feet, the nontoroidal shape results in a much different diameter scale than expected - 1:5.9 in the case of Fukushima Daiichi Unit 2 [61]. The sparger diameter, however, scales to 1:6.9 - at least for Unit 2 [6], and the effect of position (closer to wall vs. near pool center) is unclear. Further testing with additional varied parameters can provide insight into some of these unknowns.

Beyond the previous distortions, the depth of the sparger outlet in the pool is not matched; here, it is roughly at half depth, while in Unit 2, it appears to be much closer to the pool's surface [6]. Furthermore, full-scale systems tend to operate with Suppression Pool levels below the center of the Torus (this will be affected by injection from the Condensate Storage Tank before RCIC System realignment to draw suction from the Suppression Pool). The depth term in the $\mathrm{Fr}_{\mathrm{s}}$ component of the new correlation should account for this, but more tests at more varied pool depths are needed for confirmation.

The end result is that scaling to full-size systems is best thought of as a work-in-progress that would greatly benefit from experimental data with additional varied parameters.

## 6. CONCLUSIONS

In this work, an experiment has been performed to investigate the conditions a RCIC System may be exposed to in long-term operations, especially in a prolonged SBO scenario. Of major interest was the thermal behavior of the Suppression Pool, which in the long term serves as both the heat sink for steam from the reactor (through SRV as well as RCIC System operations) as well as the source of makeup water for the reactor. This work has shown a demonstrable capacity for thermal stratification in the Suppression Pool resulting from RCIC System operations.

Thermal stratification can contribute to extended RCIC Pump operability by limiting the pump's exposure to elevated temperatures. This has the trade-off of exposing the Suppression Chamber to increased pressure loading driven by warmer water at the surface of the pool. However, in these tests, the extra pressure was limited, as the warmer upper regions of the pool tended to have larger volumes of water than the cooler lower regions by virtue of pool and sparger geometry. The pressurization concern would be greater in cases where the cooler water volume is larger than the warmer water volume. Therefore, in a full-scale BWR Suppression Pool with similarity in design to the system here (which differs on a plant-by-plant basis), thermal stratification in the Suppression Pool is likely to act in an overall beneficial manner; the RCIC Pump would be protected (so long as its thermal limit is above the temperatures at which stratification forms), while the extra burden placed on the containment would be limited. Depending
on the scenario, the pool may fully destratify before containment pressure limits are reached.

The thermal conditions for pump suction (when the RCIC System is aligned to the Suppression Pool) are key determinants of the operating envelope for the pump, but are not the only important conditions. Net positive suction head requirements and temperature/pressure/speed/flow curves for the RCIC Turbine and Pump are also very important. While no cavitation in the pump in these tests during data operations, this cannot be guaranteed to be the case in full-scale systems without better piping details, loss terms, and TDP response curves.

The thermal behavior of the Suppression Pool can be modeled in manners developed in this work. A notable inadequacy of the traditional DCC regime maps was seen in these tests, and corrections to the chugging correlations were necessary to describe the data. While this was not a strict DCC study, parameters explored here have not been addressed in previous DCC experiments; the effects of pressure conditions are limited in the literature, while the effect of steam quality (saturated two-phase through the superheated region) appear to be completely absent from previous experiments. Characteristic thermal profiles were observed, and it was seen that sparger design and location are key in the thermal profile development.

In these tests, steam injection through an SRV analog was very effective at circulating and mixing the water in the Suppression Chamber. Injection through the RCIC Sparger analog, however, produced a characteristic thermal stratification profile. While variation of the test parameters resulted in sometimes significant distortions to the
characteristic profile, every RCIC-Alignment test produced thermal stratification. In most tests, the stratified profile eventually disappeared as mixing increased with decreasing pool subcooling. However, not every test (largely due to equipment limitations) proceeded all the way through to full destratification. The peak thermal stratification found in these tests ranged from weak to severe; one test saw a difference of $65.1^{\circ} \mathrm{C}$ between the mixed and unmixed regions.

The characteristic thermal profiles from the RCIC-Alignment tests had a number of common features that were expressed in the tests. Identification and examination of those features, expressed as "Key Points" here, allowed the development of an empirical correlation that expresses the aggregate pool mixing state developed in this testing program. As chugging at the steam-water interface in the RCIC Sparger played a very prominent role in pool mixing conditions, the correlation development began with Liang and Griffith's [29] expression for the boundary of the chugging; corrections were then applied to adapt it to the data gathered here.

Further testing would allow full scalability to be established. Specifically, further work remains for determining the effects of the aspect ratio between the sparger outlet size and pool dimensions as well as the effect of pool and sparger depth (the variations here are very limited in range); these are key for defining the scalability of these tests and the correlation developed from them. Without such work, the model developed here cannot be guaranteed to reflect full-scale conditions in a BWR.

In addition, a more complete exploration of the two-phase steam/water injection conditions should be performed. Although two-phase steam/water exploration has been
performed here, the limited number of tests that could be performed in a timely manner prevented a complete, thorough exploration of the two-phase steam-water regime as motivated by scenarios depicting reactor overfill from an uncontrolled RCIC System.

### 6.1 KEY FINDINGS

Of the results presented, there are several findings of broad substance:

- Thermal stratification can form in large pools where heat is injected through DCC of very pure steam; BWR Suppression Pools are not immune
- Thermal stratification can limit the high-temperature exposure to pumps drawing suction from the bottom of thermally stratified pools
- Chugging (at high pool subcooling) and bubbling (at low pool subcooling) can cause significant bulk mixing currents, but at intermediate levels of subcooling mixing currents are limited, permitting thermal stratification
- Vent tube/sparger design and placement are significant factors in the ability of stratification to form
- While steam injection rate, quality, and Suppression Chamber pressure conditions all affect the development of thermal profiles, pressure conditions are the most significant
- With the correlation developed in this effort, key events and phenomena in the development of thermal profiles in similar pools can be predicted


### 6.2 RELEVANCE TO THE EVENTS AT FUKUSHIMA DAIICHI

In the progression of events in the accidents at Fukushima Daiichi, the RCIC Systems continued operation into essentially uncharted territory. The data gathered here may be able to provide insight into the operational details for the Fukushima RCIC Systems.

The thermal stratification developed here would tend to limit exposure of the RCIC Pump to hot water, and could act to protect it. However, for the thermal stratification to develop, SRV operations would need to be limited, as injection through an SRV analog in these tests tended to mix the entire pool. It would also be affected by the specific design of the vent line - which was different between Unit 2 and Unit 3. Check valves and vacuum breakers are used in plant systems, but were not installed in this experimental facility. They would tend to limit the backpropagation of some phenomena to the RCIC Turbine, weaken chugging, and prevent the damaging mechanical loading of structures. This dampening of chugging oscillations could encourage thermal stratification to begin earlier, but the degree to which this is the case is uncertain.

At Fukushima, SRV actuation was contemporaneous with RCIC System operation. While this places the Suppression Pool in the role of primary heat sink, the large masses of other material in containment can act as additional thermal reservoirs. Further, flooding in the Torus room can seriously affect thermal distributions, and act to remove heat from containment. None of these conditions were explored in this work.

As a result, while these tests have demonstrated the potential for thermal stratification, they are not proof of its occurrence at Fukushima. More phenomena and specific operational details need to be considered to draw such conclusions. In addition, to apply the correlation developed herein, scalability to such systems needs to be established.

### 6.3 FUTURE WORK

Even the most exhaustive studies leave room for future development, and this is no different. Three categories of future efforts are identified here based on the necessary level of anticipated effort to perform the work.

Can be done quickly with limited system modification:

- Further analysis of existing data
- Two-phase regime fill-in
- Additional power levels
- Additional pressurization/venting conditions
- More/less water in the pool (varied depth)
- Closer adherence to plant operating procedures

Can be done with system overhaul:

- Other sparger sizes and designs
- Better vertical thermal resolution and additional plume details
- More instruments in/on/around sparger
- Ability to run pool/pump much hotter and explore bubbling
- Exploration of the effects of RCIC Pump suction aligned to the Condensate Storage Tank (no water extraction from the Suppression Pool)

Can be done only with major changes:

- Video recording of important locations
- Alternate Suppression Chambers
- Strict DCC investigation to produce new regime maps with additional variables (pressure, steam quality, vent tube design)
- Installation and investigation of Terry turbine-driven pump
- Effect of external cooling of the Suppression Chamber vessel (i.e., flooding of the Torus room in a BWR with the Mk. I containment)


## REFERENCES

[1] National Police Agency of Japan, Emergency Disaster Countermeasures Headquarters. Damage Situation and Police Countermeasures associated with 2011 Tohoku district - off the Pacific Ocean Earthquake. October 10, 2014. http://www.npa.go.jp/archive/keibi/biki/higaijokyo_e.pdf. Retrieved 03Nov2014.
[2] Ishiguro, Rie and Kitamura, Shinji. WRAPUP 2-Japan quake's economic impact worse than first feared. Reuters, April 12, 2011.
http://www.reuters.com/article/2011/04/12/japan-economyidUSL3E7FC09220110412. Retrieved 03Nov2014.
[3] Institute of Nuclear Power Operators. Special Report on the Nuclear Accident at the Fukushima Daiichi Nuclear Power Station. INPO 11-005, November 2011.
[4] The American Nuclear Society Special Committee on Fukushima. Fukushima Daiichi: ANS Committee Report. American Nuclear Society, March 2012, revised June 2012. http://fukushima.ans.org/report/Fukushima report.pdf. Retrieved 03Nov2014.
[5] Peach Bottom Atomic Power Station. Updated Final Safety Analysis Report, Revision 21. April 2007.
[6] Tokyo Electric Power Company. Schematic Drawing of Unit 2 RCIC Turbine Exhaust Pipe. Information Portal for the Fukushima Daiichi Accident Analysis and Decommissioning Activities, updated 30 October 2013. https://fdada.info/docdata/accident analysis/Unit2_RCIC-quencher.pdf. Retrieved 25Feb2016.
[7] Tokyo Electric Power Company. Schematic Drawing of Unit 3 RCIC Turbine Exhaust Pipe. Information Portal for the Fukushima Daiichi Accident Analysis and Decommissioning Activities, updated 30 October 2013. https://fdada.info/docdata/accident analysis/Unit3 RCIC-quencher.pdf. Retrieved 25Feb2016.
[8] Patterson, B. J. Mark I Containment Program, Monticello T-Quencher Thermal Mixing Test, Final Report, Task Number 7.5.2. NEDO-24542, General Electric, 1979.
[9] Exelon Generation. Peach Bottom, Units 2 \& 3 - Supplemental Information \& Corrections Supporting Request for License Amendment Request - Extended Power Uprate - Supplement No. 1. NRC Accession Number ML13051A032. February 2013.
[10] Electric Power Research Institute. Terry Turbine Maintenance Guide, RCIC Application: Replaces TR-105874 and TR-016909-R1. EPRI, Palo Alto, CA: 2002. 1007460.
[11] USNRC Technical Training Center. Reactor Concepts Manual, Boiling Water Reactor (BWR) Systems. NRC Accession Number ML120970422, dated March 16, 2012. http://www.nrc.gov/reading-rm/basic-ref/teachers/03.pdf.
[12] USNRC HRTD. General Electric Systems Technology Manual, Chapter 2.7, Reactor Core Isolation Cooling System. NRC Accession Number ML11258A311. Rev 09/11.
[13] Leland, Walter S., S.B. Steam Turbines, Part II, Instruction Paper. 1917.
[14] Terrell Croft, ed. Steam-Turbine Principles and Practice. McGraw-Hill, New York: 1923.
[15] Houghton, J. R. and H. G. Hamzehee. Component Performance Study -Turbine-Driven Pumps, 1987-1998. United States Nuclear Regulatory Commission, NUREG-1715, Vol. 1. April 2000.
[16] Barrett, K. E. Sales Aid Memo \#12, Terry Wheel Water Slug Test. The Terry Steam Turbine Company, 1973.
[17] Colarossi, Michael, Nathaniel Trask, David P. Schmidt, and Mark J. Bergander. Multidimensional Modeling of Condensing Two-Phase Ejector Flow. International Journal of Refrigeration 35 (2012): 290-299.
[18] Celata, G. P., M. Cumo, G. E. Farello, and G. Focardi. Direct Contact Condensation of Steam on Slowly Moving Water. Nuclear Engineering and Design 96 (1986): 21-31.
[19] Hughes, E. D. and R. B. Duffey. Direct Contact Condensation and Momentum Transfer in Turbulent Separated Flows. International Journal of Multiphase Flow, Volume 17, Number 5 (1991): 599-619.
[20] Song, Chul-Hwa, Seok Cho, and Hyung-Seok Kang. Steam Jet Condensation in a Pool: From Fundamental Understanding to Engineering Scale Analysis. Journal of Heat Transfer 134 (2012).
[21] Block, James A. Condensation-Driven Fluid Motions. International Journal of Multiphase Flow 6 (1980): 113-129.
[22] Youn, Deok Hyun, Kyung Bo Ko, Young Yeon Lee, Moo Hwan Kim, Youn Young Bae, and Jong Kyun Park. The Direct Contact Condensation of Steam in a Pool at Low Mass Flux. Journal of Nuclear Science and Technology, Volume 40, Number 10 (2003): 881-885.
[23] Gulawani, Sagar S., Sachin K. Dahikar, Channamallikarjun S. Mathpati, Jyeshtharaj B. Joshi, Manish S. Shah, Chaganti S. RamaPrasad, and Daya S. Shukla. Analysis of Flow Pattern and Heat Transfer in Direct Contact Condensation. Chemical Engineering Science 64 (2009): 1719-1738.
[24] Chun, Moon-Hyun, Yeon-Sik Kim, and Jee-Won Park. An Investigation of Direct Condensation of Steam Jet in Subcooled Water. International Communications in Heat and Mass Transfer, Volume 23, Number 7 (1996): 947-958.
[25] Petrovic de With, A., R. K. Calay, and G. de With. Three-Dimensional Condensation Regime Diagram for Direct Contact Condensation of Steam Injected into Water. International Journal of Heat and Mass Transfer 50 (2007): 1762-1770.
[26] Chan, C. K. and C. K. B. Lee. A Regime Map for Direct Contact Condensation. International Journal of Multiphase Flow, Vol. 8 No. 1 (1982): 11-20.
[27] Lahey, Richard T., Jr. and Frederick J. Moody. The Thermal Hydraulics of a Boiling Water Nuclear Reactor. $2^{\text {nd }}$ ed. La Grange Park, IL: American Nuclear Society, 1993.
[28] Aya, I. and H. Nariai. Boundaries between Regimes of Pressure Oscillation Induced by Steam Condensation in Pressure Suppression Containment. Nuclear Engineering and Design 99 (1987): 31-40.
[29] Liang, Kuo-Shing and Peter Griffith. Experimental and Analytical Study of Direct Contact Condensation of Steam in Water. Nuclear Engineering and Design 147 (1994): 425-435.
[30] General Electric. Mark I Containment Program, Final Report, Monticello TQuencher Test, Task Number 5.1.2. NEDO-21864, 1979.
[31] Su, T. M. Generic Technical Activity A-39, Suppression Pool Temperature Limits for BWR Containments. NUREG-0783, U.S. Nuclear Regulatory Commission, 1981.
[32] United States Nuclear Regulatory Commission. Monticello Nuclear Generating Plant, Unit 1. http://www.nrc.gov/info-finder/reactor/mont.html. Retrieved 03Nov2014.
[33] Tokyo Electric Power Company, Inc. (TEPCO). Evaluation of the Situation of Cores and Containment Vessels of Fukushima Daiichi Nuclear Power Station Units 1-3 and Examination into Unsolved Issues in the Accident Progression, Progress Report No. 3, Attachment 3-5, The Cause of RCIC Shutdown in Unit 3. May 20, 2015. Available at http://www.tepco.co.jp/en/press/corpcom/release/betu14_e/images/140806e0124.pdf.
[34] Laine, J. and M. Puustinen. Condensation Pool Experiments with Steam Using DN200 Blowdown Pipe. Lappeenranta University of Technology. 2004. Research Report POOLEX 4/2004.
[35] Laine, Jani and Markku Puustinen. Thermal Stratification Experiments with the Condensation Pool Test Rig. Lappeenranta University of Technology. 2005. Research Report POOLEX 1/2005.
[36] Patel, G., V. Tanskanen, and R. Kyrki-Rajamäki. Numerical Modeling of LowReynolds Number Direct Contact Condensation in a Suppression Pool Test Facility. Annals of Nuclear Energy 71 (2014): 376-387.
[37] Laine, Jani, Markku Puustinen, Antti Räsänen, and Vesa Tanskanen. PPOOLEX Experiments on Stratification and Mixing in the Wet Well Pool. Lappeenranta University of Technology. 2010. Research Report CONDEX 1/2010.
[38] Song, Daehun, Nejdet Erkan, Koji Okamoto. Experimental and Numerical Study of Thermal Stratification and Natural Circulation in Suppression Pool. PSFVIP7: The $9^{\text {th }}$ Pacific Symposium on Flow Visualization and Image Processing, Busan, Korea, August $25^{\text {th }}-28^{\text {th }}, 2013$.
[39] Takahashi, Shinji, Daehun Song, Byeongnam Jo, Wataru Sagawa, Koji Okamoto. Study on the Thermal Stratification at the Suppression Chamber. PSFVIP-7: The $9^{\text {th }}$ Pacific Symposium on Flow Visualization and Image Processing, Busan, Korea, August $25^{\text {th }}-28^{\text {th }}, 2013$.
[40] Pellegrini, Marco et al. Suppression Pool Testing at the SIET Labs (3): Experiments on Steam Direct Contact Condensation in a Vertical Multi-Holes Sparger. The $10^{\text {th }}$ International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-10), Okinawa, Japan, December 14-18, 2014.
[41] Araneo, Lucio et al. Suppression Pool Testing at the SIET Labs (2): Steam Chugging Investigation under the Presence of Non-Condensible Gas in a Vertical Opened Pipe. The $10^{\text {th }}$ International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-10), Okinawa, Japan, December 14-18, 2014.
[42] Foxboro. Instruction Book 3477, 83F-A and 83W-A Vortex Flowmeters Analog/Pulse. January 26, 2000. Contains MI 019-189 (March 1998), MI 019191 (March 1995), MI 019-175 (October 2000), PL 008-708 (July 2000), PL 008-709 (July 2000), DP 019-150 (April 2000), DP 019-151 (April 2000), DP 019-152 (April 2000).
[43] Yamatake Corporation. MagneW 3000 PLUS Smart Electromagnetic Flowmeter Detector Model MGG18/19, MGS18, User's Manual. CM2-MGG200-2001 (Rev. 4). 2004.
[44] Badger Meter. M-Series M2000 Electromagnetic Flow Meter, Product Data Sheet. MAG-DS-01047-EN-04 (August 2014).
[45] National Instruments, SCXI-1303 32-Channel Isothermal Terminal Block. Installation Guide. March 2000.
[46] Dayton. Operating Instructions \& Parts Manual, Dayton ${ }^{\circledR}$ Horizontal Multistage Pressure Booster Pumps. August 2010. Available at https://www.grainger.com/ec/pdf/Dayton-Horz-Multistage-Booster-PumpOIPM.pdf. Retrieved 24Mar2016.
[47] National Instruments, SCXI. SCXI-1102/B/C User Manual. April 2006.
[48] National Instruments, DAQ X Series. X Series User Manual, NI 632x/634x/635x/636x/637x Devices. August 2014.
[49] Omega. Revised Thermocouple Reference Tables, TYPE T Reference Tables N.I.S.T. Monograph 175 Revised to ITS-90. http://www.omega.com/temperature/Z/pdf/z207.pdf. Retrieved 03Nov2014.
[50] Solom, M., K. Vierow, and A. Nosek. Experimental Investigation of the Thermal Hydraulic Limits of BWR RCIC System Operation under Long-Term Operation. The $16^{\text {th }}$ International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), Chicago, IL, August 30 - September 4, 2015.
[51] Solom, Matthew and Karen Vierow. Experimental Investigation of BWR Suppression Pool Stratification during RCIC System Operation. Japan-US Seminar on Two-Phase Flow Dynamics, West Lafayette, IN, May 10-15, 2015.
[52] Morton, B. R., Sir Geoffrey Taylor F.R.S., and J. S. Turner. Turbulent Gravitational Convection from Maintained and Instantaneous Sources. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. Volume 234, Number 1196 (1956): 1-23.
[53] Hunt, T. R. and T. S. van den Bremer. Classical Plume Theory: 1937-2010 and Beyond. IMA Journal of Applied Mathematics 76 (2011): 424-448.
[54] University of Tokyo. Fiscal Year Heisei 24 Project for the Advancement of Safety Measures for Nuclear Power Plant Generator Stations - Advancement of Modeling and Simulation Technologies. Research Report submitted Feb. 2013 (Obtained from Prof. K. Okamoto, in Japanese).
[55] Todreas, Neil E. and Mujid S. Kazimi. Nuclear Systems I: Thermal Hydraulic Fundamentals. $1^{\text {st }}$ ed. New York: Taylor \& Francis Group, LLC., 1990.
[56] Oztop, Hakan F. and Ihsan Dagtekin. Mixed Convection in Two-Sided LidDriven Differentially Heated Square Cavity. International Journal of Heat and Mass Transfer 47 (2004): 1761-1769.
[57] Munson, Bruce R., Donald F. Young, and Ted H. Okiishi. Fundamentals of Fluid Mechanics. $5^{\text {th }}$ ed. Hoboken, NJ: John Wiley \& Sons, Inc., 2006.
[58] Incropera, Frank P., David P. Dewitt, Theodore L. Bergman, and Adrienne S. Lavine. Fundamentals of Heat and Mass Transfer. $6^{\text {th }}$ ed. Hoboken, NJ: John Wiley \& Sons, Inc., 2007.
[59] Collier, John G. and John R. Thome. Convective Boiling and Condensation. $3^{\text {rd }}$ ed. New York: Oxford University Press, 1994.
[60] Knoll, Glenn F. Radiation Detection and Measurement. $3^{\text {rd }}$ ed. Hoboken, NJ: John Wiley \& Sons, Inc., 2000.
[61] Tokyo Electric Power Company. Plant Specifications of Unit 2. Information Portal for the Fukushima Daiichi Accident Analysis and Decommissioning Activities, updated 20 December 2012.
https://fdada.info/docdata/accident analysis/PS-Unit2-01.pdf. Retrieved 26Feb2016.

## APPENDIX A

SYSTEM P\&ID COLLECTION

This Appendix contains the P\&IDs for the complete system and in more detail than those given in the main text. The analog to the RCIC Turbine is given in Figure 83 and the system overview is in Figure 84. The four subsequent P\&IDs contain the more detailed drawings of the system, starting with the water deionization system and hot water tank in Figure 85. The bulk of the experiment in operating mode is then split into two parts along the physical separation imposed by the loading bay; the Steam Generator and connected equipment is given in Figure 86, and the Suppression Chamber side is diagrammed in Figure 87. After a test is finished, the system is realigned to Cooldown Mode; this is given in Figure 88.


Figure 83: Turbine Analog Design


Figure 84: Enhanced System P\&ID Overview


Figure 85: DI System and Hot Water Tank


Figure 86: Steam Generator System P\&ID


Figure 87: Suppression Chamber System


Figure 88: Cooldown Setup

## APPENDIX B

## MEASUREMENT ERROR ANALYSIS

This Appendix contains the details on the error analysis performed to propagate instrument error through to its resulting measurement error in the Mixing Number.

## B. 1 MAIN STEAM LINE MASSFLOW

To determine mass flows in the main steam line prior to water injection, the vortex flowmeter (I-6) is collocated with the main steam line pressure transmitter (I-7) and a main steam line temperature reading (T-41). The vortex flowmeter, when flow is in its accurate range, has an associated error of $1 \%$. The pressure transmitter has an error of $0.1 \%$ of its Upper Range Value ( 130 psia , resulting in an error of 0.13 psi ), and the Type T thermocouple with Special Limits of Error has an error of $0.5^{\circ} \mathrm{C}$. An ideal gas treatment for steam around 1 atm and $100^{\circ} \mathrm{C}$ will lead to the greatest fractional error in computed density for the range of interest; the contribution of the pressure transmitter (proportional to P ) translates to $0.884 \%$, and the temperature error contribution (proportional to $1 / \mathrm{T}$ ) is $0.134 \%$. Application of the temperature error to the K-factor correction term (translates to a $0.0026 \%$ error) becomes vanishingly small when propagated through.

$$
\begin{gather*}
\left(\frac{\sigma_{u}}{u}\right)^{2}=\left(\frac{\sigma_{x}}{x}\right)^{2}+\left(\frac{\sigma_{y}}{y}\right)^{2}  \tag{25}\\
\sigma_{u}^{2}=\sigma_{x}^{2}+\sigma_{y}^{2} \tag{26}
\end{gather*}
$$

Application of Eq. (24) to multiplication or division ( $u=x y$ or $x / y$ ) results in Eq. (25), while addition and subtraction ( $u=x \pm y$ ) results in Eq. (26) [60]. Utilizing these formulae, respecting the vortex flowmeter's outputs defined by Eqs. (4) - (7), yields an error in the mass flowrate measurement of $1.342 \%$ (contributions of $1 \%$ from the meter
itself, $0.884 \%$ from the pressure measurement, and $0.134 \%$ from the temperature measurement).

In two-phase injection tests, the Badger M2000 magnetic flowmeter (I-12) monitors a secondary flow of material into the main steam line. The density difference of water across the $0.5^{\circ} \mathrm{C}$ error of the thermocouples is not great, especially when the two measurement points are taken in conjunction. As a result, the $0.25 \%$ volumetric flow error of the flowmeter translates to $0.252 \%$ error in the mass flowrate. This includes the contribution of thermal expansion error from temperature measurement error, where the thermal expansion of water near $100^{\circ} \mathrm{C}$ was estimated from steam table data to be $\sim 0.00071 /{ }^{\circ} \mathrm{C}$. In two-phase tests, the flowrates and therefore the variances are additive by Eq. (26). The relative error, therefore, will improve under addition. To account for single-phase testing, the vortex flowmeter's mass flowrate relative error of $1.34 \%$ will be taken as a bounding value for the relative error of total massflow in single and two-phase tests.

## B. 2 POOL PRESSURE AND LEVEL

As with the Main Steam Line pressure transmitter, the Suppression Chamber's absolute pressure transmitter (I-4) has an error of $0.1 \%$ of its Upper Range Value (100 psia); this results in an error of 0.1 psi . The relative error, most limiting under atmospheric conditions, would be $0.68 \%$. The pressure in the RCIC Sparger analog's outlet was assumed to be that of the steam line as it enters the vessel en route to the outlet; this is determined by summing the Suppression Chamber's airspace pressure with the differential pressure between it and the steam line (using I-8). The DP transmitter
has an error of $0.075 \%$ URV, which at $400 \mathrm{inH}_{2} \mathrm{O}$ translates to 0.011 psi. Combined with the AP transmitter's error under atmospheric conditions, the relative error of the steam injection pressure is $0.684 \%$. It should be noted that in the processing script, smoothing was used to limit the influence of pressure spikes appearing from chugging oscillations.

The level of the pool is measured with another DP transmitter (I-3), comparing the airspace pressure with the hydraulic head at the pool bottom. Its common-mode pressure issue was assumed to be resolved in data processing with a compensation curve (see Section 3.3.6), and density-based adjustments for hot levels are provided as well. Its URV of $80 \mathrm{inH}_{2} \mathrm{O}$ translates to an error of $0.06 \mathrm{inH}_{2} \mathrm{O}\left(0.166 \mathrm{cmH}_{2} \mathrm{O}\right)$. The densitycorrection for a hot pool is expected to be worst as the pool approaches its hot limits (before relief valve actuation); near $150^{\circ} \mathrm{C}$, use of the X-Steam steam tables revealed a partial derivative of density with respect to temperature of $-0.934 \mathrm{~kg} / \mathrm{m}^{3}-\mathrm{K}$ (with a density of $917 \mathrm{~kg} / \mathrm{m}^{3}$ ). With 4 vertical temperature measurements in the pool to account for local density, a simplification of the processing algorithm for hot pool levels resembles Eq. (27).

$$
\begin{equation*}
z=\frac{\Delta P_{\text {level }}}{\frac{1}{4} g\left(\rho_{\text {outlet }}+\rho_{\text {low }}+\rho_{\text {middle }}+\rho_{\text {upper }}\right)} \tag{27}
\end{equation*}
$$

The $0.467 \mathrm{~kg} / \mathrm{m}^{3}$ error in density at each measurement point propagates through, with the $0.166 \mathrm{cmH}_{2} \mathrm{O}$ error of the DP transmitter, to a final level error of 0.167 cm . With a pool level near 82 cm hot (lower when cold), this is a $0.205 \%$ relative error.

## B. 3 ENTHALPIES

The enthalpies of both injected two-phase steam and nearby pool water are involved in the correlation as well as their saturation conditions. This analysis takes into account heat loss when determining the enthalpy of steam in the RCIC sparger analog.

## B.3.1 Heat Loss

Data recorded during Test \#4 was used to estimate a heat loss coefficient for the Main Steam Line. With a room temperature of $24.9^{\circ} \mathrm{C}$ and a pressure of 51.6 psia in the MSL, the steam temperature dropped from $147.3^{\circ} \mathrm{C}$ at the flowmeter to $141.9^{\circ} \mathrm{C}$ near the turbine analog inlet. Massflow was $46.3 \mathrm{~g} / \mathrm{s}$, and there was assumed to be no significant pressure drop between the temperature measurements. Under these conditions, the heat loss was approximately 560 W . Using a simple heat loss formulation $(\dot{Q}=H \Delta T)$ with the difference between only the room temperature and steam temperature at the vortex flowmeter, H is approximately $4.58 \mathrm{~W} / \mathrm{K}$. The error in H , owing to the limited temperature difference between the upstream and downstream temperatures as well as inclusion of the mass flowrate error, is $12.969 \%$. A $\mathrm{c}_{\mathrm{p}}=2.21$ $\mathrm{kJ} / \mathrm{kg}$ around $144.5^{\circ} \mathrm{C}$ was applied to the temperature errors in the calculation. With this error in the coefficient, its use with uncertain temperatures (room temperature of $25^{\circ} \mathrm{C}$, steam of $100^{\circ} \mathrm{C}$ ) will result in an estimated heat loss error of $13.003 \%$. While the relative error is large, the heat loss itself is not ( 560 W is less than $1 \%$ of the low-power tests' steam generator power of 57 kW$)$.

## B.3.2 Pool Subcooling

The pool subcooling enthalpy $\left(h_{w, s a t}-h_{w}\right)$ depends on local pressure and temperature. The saturation enthalpy of water increases at a rate of $1.179 \times 10^{-3} \mathrm{~kJ} / \mathrm{kg}-$ Pa around 1 bar , and $\mathrm{c}_{\mathrm{p}}$ for water is around $4.18 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$. Temperature error is, as with every other thermocouple used here, $0.5^{\circ} \mathrm{C}$. Combining the temperature and pressure error ( 0.1 psi ), the error in the subcooling enthalpy is $2.244 \mathrm{~kJ} / \mathrm{kg}$. When the pool is on the order of $25^{\circ} \mathrm{C}$ subcooled, this yields a relative error of $2.148 \%$.

## B.3.3 Steam Enthalpy

At the vortex flowmeter, when steam is around 1 bar at $100^{\circ} \mathrm{C}$, the partial derivative of enthalpy with respect to pressure is $-12.7 \mathrm{~kJ} / \mathrm{kg}$-bar (and closer to -7.6 $\mathrm{kJ} / \mathrm{kg}$-bar near 8 bar$)$. With the error in the pressure measurement ( 0.13 psi ), this results in an error in enthalpy of $0.114 \mathrm{~kJ} / \mathrm{kg}$. The $\mathrm{c}_{\mathrm{p}}$ value for saturated steam, in the range of interest here, goes from $2.08 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ at 1 bar to $2.60 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ at 8 bar. Application of the temperature error $\left(0.5^{\circ} \mathrm{C}\right)$ at 8 bar yields an error of $1.30 \mathrm{~kJ} / \mathrm{kg}$. When combined (unrealistically) with the pressure contribution (value from 1 bar ), the overall error in enthalpy at the vortex flowmeter is $1.305 \mathrm{~kJ} / \mathrm{kg}$.

$$
\begin{equation*}
h_{m i x}=\frac{\dot{m}_{s t} h_{s t}+\dot{m}_{w} h_{w}-\dot{Q}_{\text {loss }}}{\dot{m}_{s t}+\dot{m}_{w}} \tag{28}
\end{equation*}
$$

Downstream of the vortex flowmeter, at the inlet to the turbine analog, the enthalpy of the two-phase mixture is estimated by Eq. (28). Application of Eq. (24) to Eq. (28) produces Eq. (29). For this determination, certain reference conditions are helpful. Steam will be initially be referenced to $150^{\circ} \mathrm{C}$ with an enthalpy of $2758 \mathrm{~kJ} / \mathrm{kg}$,
a room temperature of $25^{\circ} \mathrm{C}$, and the flowrate will be $24 \mathrm{~g} / \mathrm{s}$ steam in a single-phase test for analytical simplicity. This reduces Eq. (28) to Eq. (30):

$$
\begin{gather*}
\sigma_{\text {mix }}^{2}=\frac{1}{\left(\dot{m}_{s}+\dot{m}_{w}\right)^{2}} \sigma_{\dot{Q}}^{2}+\left(\frac{\dot{m}_{s}}{\dot{m}_{s}+\dot{m}_{w}}\right)^{2} \sigma_{h_{s}}^{2}+\left(\frac{\dot{m}_{w}}{\dot{m}_{s}+\dot{m}_{w}}\right)^{2} \sigma_{h_{w}}^{2} \\
+\left[\frac{\dot{m}_{w}\left(h_{s}-h_{w}\right)+\dot{Q}}{\left(\dot{m}_{s}+\dot{m}_{w}\right)^{2}}\right]^{2} \sigma_{\dot{m}_{s}}^{2}+\left[\frac{\dot{m}_{s}\left(h_{w}-h_{s}\right)+\dot{Q}}{\left(\dot{m}_{s}+\dot{m}_{w}\right)^{2}}\right]^{2} \sigma_{\dot{m}_{w}}^{2}  \tag{29}\\
h=h_{s t}-\frac{\dot{Q}_{\text {loss }}}{\dot{m}_{s t}} \tag{30}
\end{gather*}
$$

At the vortex flowmeter, the steam enthalpy's error was $1.305 \mathrm{~kJ} / \mathrm{kg}$. The Badger flowmeter's two thermocouples enables registration of water enthalpy to $\pm 1.478$ $\mathrm{kJ} / \mathrm{kg}$. To bound two-phase tests as the main steam line goes near water-solid, the 1.478 $\mathrm{kJ} / \mathrm{kg}$ value will be the value applied. Here, heat loss is estimated at 572 W ; this produces a loss of $23.846 \pm 3.117 \mathrm{~kJ} / \mathrm{kg}$. Propagation of the initial enthalpy error brings the total error in enthalpy to $3.450 \mathrm{~kJ} / \mathrm{kg}$ for Eq. (30). The full treatment from Eq. (29) for a two-phase test (the same steam conditions with $12 \mathrm{~g} / \mathrm{s}$ water at $65^{\circ} \mathrm{C}$ ) results in $\mathrm{h}_{\text {mix }}$ $=1913.559 \pm 10.769 \mathrm{~kJ} / \mathrm{kg}$, a value greater than either saturated steam or saturated water conditions.

Pressure in the Suppression Chamber was always less than 8 bar, which has a latent heat of vaporization of $2047.67 \mathrm{~kJ} / \mathrm{kg}$; it is greater at lower pressures and will therefore be used as a minimum bounding value. Used as such, the steam quality can be determined to $\pm 0.00526$ in the described two-phase case.

The determination of the error in the "Two-Phase Jakob Number" from Eq. (20), $\mathrm{Ja} / \mathrm{x}_{\mathrm{u}}$, proceeds with additional error due to the uncertain saturation enthalpy of water.

Previously in B.3.2, the subcooling enthalpy error was found to be $2.244 \mathrm{~kJ} / \mathrm{kg}$.
Inclusion of the saturation enthalpy error $(0.818 \mathrm{~kJ} / \mathrm{kg}$ due to pressure measurement error) brings the full condensation enthalpy (the enthalpy the two-phase saturated steam-water mixture would need to lose to bring it to fully saturate water at the same pressure) error from 10.769 to $10.800 \mathrm{~kJ} / \mathrm{kg}$. Combining this all for the two-phase case above, with an atmospheric pool, $\mathrm{Ja}_{\text {TP }}$ is $0.09818 \pm 0.00166$ (a $1.692 \%$ relative error). Warming the pool to $25^{\circ} \mathrm{C}$ subcooling brings it to $0.07030 \pm 0.00159$ (a $2.255 \%$ relative error). This will be considered the representative relative error in $\mathrm{Ja}_{\mathrm{TP}}$ moving forward.

## B. 4 PRESSURE BETA PARAMETER

An estimate for the error in $\beta_{p}$ defined in Eq. (17) can be estimated for pressures around 1 bar and water temperatures near $40^{\circ} \mathrm{C}$ by applying a value of $\mathrm{dP}_{\text {sat }} / \mathrm{dT}$, which ranges from $0.128 \mathrm{bar} /{ }^{\circ} \mathrm{C}$ at $150{ }^{\circ} \mathrm{C}$, through $0.036 \mathrm{bar} /{ }^{\circ} \mathrm{C}$ at $100^{\circ} \mathrm{C}$, down to 0.00394 bar $/{ }^{\circ} \mathrm{C}$ at $40^{\circ} \mathrm{C}$. With a vapor pressure of 0.0738 bar, temperature error $\left(0.5^{\circ} \mathrm{C}\right)$ brings the relative error in computed vapor pressure to $2.666 \%$. Bringing in the error in the measured pressure ( $0.684 \%$ ) brings the relative error to $2.752 \%$ for everything under the radical. Including the effects of the radical follows Eq. (31), as it proceeds from Eq. (24).

$$
\begin{align*}
& u=x^{a} \\
& \sigma_{u}^{2}=\left(\frac{\partial u}{\partial x}\right)^{2} \sigma_{x}^{2}=\left(a x^{a-1}\right)^{2} \sigma_{x}^{2}=\left(\frac{a u}{x}\right)^{2} \sigma_{x}^{2}=a^{2}\left(\frac{\sigma_{x}}{x}\right)^{2} \tag{31}
\end{align*}
$$

The effect of the radical is to halve the relative error. Therefore, the relative error for $\beta_{p}$ is $1.376 \%$

## B. 5 DENSITY

Densities appear in the final form of the correlation as two density ratios. One includes two-phase steam and subcooled water, while the other density ratio is between saturated water and saturated steam.

## B.5.1 Saturation Density Ratio

The density ratio of saturated water to saturated steam is a function of saturation pressure, and has its steepest changes at low pressure. Upon steam table inspection at 1 bar, the ratio is decreasing at a rate of $1553 /$ bar from 1624. Applying the pressure measurement error, the error in the density ratio becomes $0.663 \%$.

## B.5.2 Subcooled Water Density

The density of subcooled water in the range of applicable pressures is primarily a function of temperature. At the upper range of temperatures in this experiment $\left(150{ }^{\circ} \mathrm{C}\right)$, water density is $917 \mathrm{~kg} / \mathrm{m}^{3}$ and dropping at a rate of $0.934 \mathrm{~kg} / \mathrm{m}^{3}-\mathrm{K}$. Use of the temperature error gives a relative error in subcooled water density of $0.0509 \%$.

## B.5.3 Two-Phase Steam Density

Steam here is treated homogeneously. Therefore, in the two-phase region, the two-phase steam density can be expressed as a function of liquid and vapor saturation densities along with the quality as shown in Eq. (32):

$$
\begin{equation*}
\rho_{T P}=\frac{\rho_{l, s a t} \rho_{v, s a t}}{x \rho_{l, s a t}+(1-x) \rho_{v, s a t}} \tag{32}
\end{equation*}
$$

Application of Eq. (24) to Eq. (32) yields Eq. (33), which simplifies to Eq. (34):

$$
\begin{align*}
& \sigma_{\rho_{\text {TP }}}^{2}=\left\{\frac{-\rho_{l, s a t} \rho_{v, s a t}\left(\rho_{l, s a t}-\rho_{v, s a t}\right)}{\left(x \rho_{l, s a t}+(1-x) \rho_{v, s a t}\right)^{2}}\right\}^{2} \sigma_{x}^{2} \\
&+\left\{\frac{\rho_{v, s a t}\left(x \rho_{l, s a t}+[1-x] \rho_{v, s a t}\right)+x \rho_{l, s a t} \rho_{v, s a t}}{\left(x \rho_{l, s a t}+[1-x] \rho_{v, s a t}\right)^{2}}\right\}^{2} \sigma_{\rho_{l, s t}}^{2}  \tag{33}\\
&+\left\{\frac{\rho_{l, s a t}\left(x \rho_{l, s a t}+[1-x] \rho_{v, s a t}\right)+[1-x] \rho_{l, s a t} \rho_{v, s a t}}{\left(x \rho_{l, s a t}+[1-x] \rho_{v, s a t}\right)^{2}}\right\}^{2} \sigma_{\rho_{v, s a t}}^{2} \\
&+\left\{\frac{\sigma_{\rho_{\text {TP }}}}{\rho_{T P}}\right\}^{2}=\left\{\frac{\rho_{l, s a t} \rho_{v, s a t}}{x \rho_{l, s a t}+[1-x] \rho_{v, s a t}}\right\}^{2} \sigma_{x}^{2} \\
&+\left\{\frac{1}{\rho_{l, s a t}}+\frac{x}{x \rho_{l, s a t}+[1-x] \rho_{v, s a t}}\right\}^{2} \sigma_{\rho_{l, s a t}}^{2}  \tag{34}\\
&\left.\rho_{v, s a t}+\frac{1}{x \rho_{l, s a t}+[1-x] \rho_{v, s a t}}\right\}^{2} \sigma_{\rho_{v, s a t}}^{2}
\end{align*}
$$

When the steam is superheated (no water injection), ideal gas treatments near $100{ }^{\circ} \mathrm{C}$ and 1 bar produce a relative error from pressure and temperature of $0.706 \%$.

Near 1 bar saturation pressure, the saturation density of water changes at approximately $19.9 \mathrm{~kg} / \mathrm{m}^{3}$-bar. For steam, the rate is $0.552 \mathrm{~kg} / \mathrm{m}^{3}$-bar. These produce water and steam saturation density relative errors of $0.0144 \%$ and $0.642 \%$, respectively. Upon insertion into Eq. (34), at 1 bar, the relative error in wet steam density ranges from $0.526 \%$ near saturated water $(x=0)$ to nearly $1.22 \%$ at dry saturated steam $(x=1)$.

## B. 6 OTHER PROPERTIES

Two of the three properties which constitute the subcooled water's Prandtl number remain in the final correlation; the viscosity term drops out. The remaining ratio, $\mathrm{c}_{\mathrm{p}} / \mathrm{k}$, depends largely on the water's temperature. The largest swings in the temperatures of interest happen at low temperatures. At $40^{\circ} \mathrm{C}$, the ratio has a value of $6647.2861 / \mathrm{Pa}-$
s (as estimated from application of steam tables) and is changing at a rate of -13.473
1/Pa-s-K. Applying the temperature measurement error produces a relative error of $0.101 \%$.

## B. 7 CORRELATION TERMS

The final form of the correlation is expressed in 5 nondimensional groups; two of these, $\mathrm{Ja}_{\mathrm{TP}}$ and the saturation density ratio, have already had their instrumentation-related relative errors derived.

## B.7.1 Steam Froude Number

The Froude number from Eq. (10) can be re-expressed as Eq. (35) to utilize terms with previously defined error.

$$
\begin{equation*}
F r_{s}=\frac{\dot{m}_{T P}}{\rho_{T P} A \sqrt{g \cdot d_{\text {outlet }}}} \tag{35}
\end{equation*}
$$

The depth term is the depth of the sparger's outlet, not that of the entire pool. It takes the pool depth and subtracts 39.4 cm (the height of the outlet above the pool bottom). With a pool depth of 75 cm , the outlet would be at a depth of 35.6 cm . This readily increases the relative error to $0.469 \%$ in the depth term (the level error from B. 2 is 0.167 cm$)$. Propagation of the errors from the depth, mass flowrate $(1.342 \%)$, and density ( $1.22 \%$ ) results in a relative error of $1.828 \%$ in this Froude number.

## B.7.2 Two-Phase Density Ratio

Recalling the subcooled water density relative error of $0.0509 \%$ and the wet steam density relative error of $1.219 \%$ enables quick propagation through to the relative
error of the density ratio. For the wet steam / subcooled water density ratio, this is 1.220\%

## B.7.3 Radical Group

The group $\mathrm{c}_{\mathrm{p}}{ }^{*} \mathrm{G}^{*} \mathrm{~d} / \mathrm{k}$, which is the leading group in Eq. (23) and can be placed under a radical (it is raised to the power of $1 / 2$ ), is ready for its terms to have their errors propagate to the group as a whole. The result is a relative error of $1.345 \%$, recalling the error in $\mathrm{c}_{\mathrm{p}} / \mathrm{k}(0.101 \%)$ and $\mathrm{G}(1.342 \%)$.

## B. 8 INCLUSION OF EXPONENTS

Each of the nondimensional groups is raised to a power that is nonunity, with the exception of the saturation density group at KP10. Some of the exponents are constant, while others vary with $\beta_{p}$.

## B.8. 1 Constant Powers

The radical group, two-phase density ratio, and saturation density ratio at KP10 all have constant exponents. Following from Eq.(31), computing their relative error is straightforward. For the radical group, the relative error becomes $0.673 \%$ (from $1.345 \%$ ). The two-phase density ratio has its relative error drop to $0.610 \%$ from $1.220 \%$. Finally, at KP10, the saturation density ratio, with a power of 1 , remains at $0.663 \%$. The KP10 value was chosen rather than KP5 or KP7 to provide an estimate that would be applicable to all the constant-power Key Points, and would not be an underestimate.

## B.8.2 Variable Powers

The use of exponents with error requires another formulation for error propagation in addition to those defined previously. This formulation is shown in Eq. (32).

$$
\begin{align*}
& u=x^{y} \\
& \sigma_{u}^{2}=\left(y x^{y-1}\right) \sigma_{x}^{2}+[\ln (x)]^{2} \sigma_{y}^{2}  \tag{36}\\
& \left(\frac{\sigma_{u}}{u}\right)^{2}=\left(y \frac{\sigma_{x}}{x}\right)^{2}+\left(\ln (x) \sigma_{y}\right)^{2}
\end{align*}
$$

For the parameters that have exponents with $\beta_{\mathrm{p}}$, two values will be considered for $\beta_{\mathrm{p}}$. One, a bounding value where $\beta_{\mathrm{p}}=1$, and a more realistic value applicable to the Key Points. The realistic, nonbounding value of $\beta_{\mathrm{p}}$ is that of a pressure of 1 bar with a pool temperature of $40^{\circ} \mathrm{C} ; \beta_{\mathrm{p}}$ is then 0.272 and the relative error computed for the parameter in B. 4 is $1.376 \%$.

The value for the Two-Phase Jakob number (which has a relative error of 2.255\% as computed in B.3.3 before consideration of the exponent) is slightly unrealistic for a 1bar pool at $40^{\circ} \mathrm{C}$, being based on a subcooling of $25^{\circ} \mathrm{C}$. Nevertheless, it shall be used as a reference point. A quirk of the value for the exponent ( $\mathrm{Ja}_{\mathrm{TP}}$ is raised to a power of $1+\beta_{\mathrm{p}} / 16$ ) results in the greater $\beta_{\mathrm{p}}$ value slightly reducing the relative error (2.127\%) when compared to the lesser value for $\beta_{\mathrm{p}}$ (producing $2.218 \%$ error), as it brings the exponent closer to zero than it otherwise would be. Therefore, the bounding estimate will be set to $2.218 \%$.

The steam Froude number is estimated from a mass flowrate of $75 \mathrm{~g} / \mathrm{s}$, a pool depth of 75 cm , and a pressure of 1 bar with saturated steam. The resultant value for $\mathrm{Fr}_{\mathrm{s}}$
is then 51.758. Propagation of the error ( $1.828 \%$ in B.7.1) through with the exponents (a power of $-3 / 8-\beta_{\mathrm{p}} / 2$ ) brings its final relative error to $1.190 \%$, which increases to $3.151 \%$ in the bounding estimate.

The final term, the saturated density ratio, uses the previous reference value of 1624 from B.5.1 with a relative error of $0.663 \%$. Its expression for the exponent changes; Key Points 2-4 use $1 / 4+3 \beta_{p} / 16$, while Key Point $\# 10$ uses a value of 1 . The realistic relative error was computed to be $0.555 \%$, while the bounding estimate increased to $1.929 \%$.

## B. 9 OVERALL ESTIMATES

With the completed estimates, bounding and realistic, for each of the terms in the Mixing Number correlation (including exponents), four cases will be considered: a bounding case and a realistic case for early stages (KP2-4) and the same consideration for late stages, using KP10 as the reference formulation.

Due to constant exponents or limiting assumptions, three of the terms in the Mixing Number correlation have relative errors that do not change with stage or case. These are the radical group ( $0.673 \%$ ), the steamflow/pool water density ratio ( $0.610 \%$ ), and the two-phase Jakob Number (2.218\%). The steam injection Froude Number has a realistic error estimate of $1.190 \%$ and a bounding value of $3.151 \%$ for early and late stages. Finally, the saturation density ratio, in late stages, has a $0.663 \%$ error in both realistic and bounding cases; early stages have a realistic estimate of $0.555 \%$ error and a bounding estimate of $1.929 \%$ relative error.

Propagation to the overall measurement error for the Mixing Number in the early stages produces a realistic estimate of $2.733 \%$; the bounding estimate increases it to $4.359 \%$. Late-stage error similarly ranges from a base case of $2.757 \%$ to a bounding estimate of $4.014 \%$. Considering these four cases, in all cases the measurement error for the Mixing number should be better than $5 \%$.

## APPENDIX C

DATA PROCESSING SCRIPT

This Appendix lists the Matlab script used for processing the collected data.

## C. 1 GUIDELINES

In order to run, the saved data file must be loaded into memory in Matlab and stored in the 'data' array; the command

```
data = load('outputfile.dat');
```

will perform the task where outputfile.dat is the filename of the saved data file. From there, a number of parameters need to be specified. These include a name for the run, test beginning detection options (using a smoothed or instantaneous temperature), starting temperature, whether or not to save the generated figures, whether or not to put titles on the figures, whether it was an SRV or RCIC run, and a base output directory. The run's name is set by

```
testname = 'NAME_OF_TEST';
```

where NAME_OF_TEST is the string expressing the name. The start detection conditions are set by

$$
\begin{aligned}
& \text { smooth_sp12 }=1 ; \\
& \text { startingtemp }=40 ;
\end{aligned}
$$

where the 1 tells the script to use a smoothing algorithm to detect the threshold temperature for the test beginning detection (use a value of 0 to use instantaneous temperature readings for this purpose). The value of 40 sets the threshold temperature to $40^{\circ} \mathrm{C}$; this can be set lower as in the cool-start tests. The commands to set the options for the figures are
savefigs = 'y';

```
showtitles = 0;
```

where 'y' tells the script to save the figures (' n ' will instruct it to save nothing), and the 0 instructs the script to NOT place titles on the figures (useful for reports; setting it to 1 will insert titles). The remaining options, set by

```
use_turbine = 1;
outpath = 'C:\OUTPUTDIR';
```

tell the script to process the data as a RCIC test (setting use_turbine to 0 instructs the script to process the data as an SRV run) and to save the output in the C:\OUTPUTDIR directory.

The script was written to be able to take advantage of parallel processing capabilities when available. In older versions of Matlab, the command

```
matlabpool open
```

opens up a parallel computing pool for use by the script; it can be closed after processing is complete. Before running the script, it is important to have the XSteam.m steam table function available to Matlab. Originally written by Magnus Holmgren, it returns water properties according to the IAPWS IF-97 standard, and is available for download from the MathWorks community site. With everything ready, the processing script can be invoked at the Matlab prompt with the command

```
rcic_processor
```

which can then take significant time to complete. Progress indication is given by occasional notices printed to screen as processing steps complete; the charts will appear
once processing has completed. At the termination of the script, the savefigs variable will be reset to ' n '.

Besides the figures, there is a text file generated by the script as output containing the processed results in a somewhat human-readable form. If one wishes to dump the processed numeric data into a spreadsheet, a subsequent script can be called after setting the savefigs variable to ' $y$ '. It is invoked at the Matlab prompt with spreadshout
and will save a more spreadsheet-friendly set of results in a separate text file elsewhere in the output directory; the savefigs option will again be reset to ' $n$ '. Opening the file, copying, and pasting into MS-Excel will put the numbers extracted from the processed output into individual cells.

The data processing script depends on the saved data file having the correct structure. This file is a text file, containing n rows and 136 columns of numbers. Each row is for a specific point in time (set in LabVIEW to be 0.1 s apart for the current data set), and each column contains data from a specific computation. These include mean voltages over the 0.1 -s period, temperatures, derived data, etc. Not every column is used by the data processing script.

The meanings of the columns in the data file recorded by LabVIEW are given in Table 13, Table 14, Table 15, Table 16, and Table 17. Cooldown mode records additional data, which is stored in subsequent additional columns in the output files. These additional columns have data as given by Table 18.

Table 13: Output File Columns 1-28

| Column | $\underline{\text { Datum }}$ |
| :---: | :--- |
| 1 | Time, s |
| 2 | Room Temperature, C (T-1) |
| 3 | RT $\sigma$ |
| 4 | Steam Generator Top Temperature, C (T-2) |
| 5 | SG T $\sigma$ |
| 6 | Steam Generator Upper Temperature, C (T-3) |
| 7 | SG U $\sigma$ |
| 8 | Steam Generator Middle Temperature, C (T-4) |
| 9 | SG M $\sigma$ |
| 10 | Steam Generator Lower Temperature, C (T-5) |
| 11 | SG L $\sigma$ |
| 12 | Steam Generator Water Injection Temperature, C (T-6) |
| 13 | SG WI $\sigma$ |
| 14 | Suppression Chamber Top Flange Temperature, C (T-7) |
| 15 | SP TF $\sigma$ |
| 16 | Suppression Chamber Blowdown Drum Temperature, C (T-8) |
| 17 | SP BD $\sigma$ |
| 18 | SP 24 (T-9) |
| 19 | SP 24 $\sigma$ |
| 20 | SP 23 (T-10) |
| 21 | SP 23 $\sigma$ |
| 22 | SP 22 (T-11) |
| 23 | SP 22 $\sigma$ |
| 24 | SP 21 (T-12) |
| 25 | SP 21 $\sigma$ |
| 26 | SP 20 (T-13) |
| 27 | SP 20 $\sigma$ |
| 28 | SP 19 (T-14) |

Table 14: Output File Columns 29-56

| Column | Datum |
| :---: | :---: |
| 29 | SP 19 \% |
| 30 | SP 18 (T-15) |
| 31 | SP $18 \sigma$ |
| 32 | SP 17 (T-16) |
| 33 | SP 17 \% |
| 34 | SP 16 (T-17) |
| 35 | SP 160 |
| 36 | SP 15 (T-18) |
| 37 | SP $15 \sigma$ |
| 38 | SP 14 (T-19) |
| 39 | SP $14 \sigma$ |
| 40 | SP 13 (T-20) |
| 41 | SP $13 \sigma$ |
| 42 | SP 12 (T-21) |
| 43 | SP $12 \sigma$ |
| 44 | SP 11 (T-22) |
| 45 | SP $11 \sigma$ |
| 46 | SP 10 (T-23) |
| 47 | SP $10 \sigma$ |
| 48 | SP 9 (T-24) |
| 49 | SP 9 \% |
| 50 | SP 8 (T-25) |
| 51 | SP $8 \sigma$ |
| 52 | SP 7 (T-26) |
| 53 | SP 70 |
| 54 | SP 6 (T-27) |
| 55 | SP 60 |
| 56 | SP 5 (T-28) |

Table 15: Output File Columns 57-84

| Column | $\underline{\text { Datum }}$ |
| :---: | :--- |
| 57 | SP 5 $\sigma$ |
| 58 | SP 4 (T-29) |
| 59 | SP 4 $\sigma$ |
| 60 | SP 3 (T-30) |
| 61 | SP 3 $\sigma$ |
| 62 | SP 2 (T-31) |
| 63 | SP 2 $\sigma$ |
| 64 | SP 1 (T-32) |
| 65 | SP 1 $\sigma$ |
| 66 | Turbine Analog Downstream Temperature (T-33) |
| 67 | Turbine DS $\sigma$ |
| 68 | Steam Line Downstream of Water Injection Temperature (T-34) |
| 69 | MSL WI DS $\sigma$ |
| 70 | Pump Inlet Temperature (T-35) |
| 71 | Pump In $\sigma$ |
| 72 | Pump Outlet Temperature (T-36) |
| 73 | Pump Out $\sigma$ |
| 74 | Suppression Pool Outlet Temperature (T-37) |
| 75 | SP Out $\sigma$ |
| 76 | Steam Line Upstream of Water Injection Temperature (T-38) |
| 77 | MSL US WI $\sigma$ |
| 78 | Water Injection Line to MSL Upstream Temperature (T-39) |
| 79 | WIMSL US $\sigma$ |
| 80 | Water Injection Line to MSL Downstream Temperature (T-40) |
| 81 | WIMSL DS $\sigma$ |
| 82 | Main Steam Line Temperature (T-41) |
| 83 | MSL $\sigma$ |
| 84 | Feedwater Temperature at Flowmeter (T-42) |

Table 16: Output File Columns 85-112

| Column | Datum |
| :---: | :--- |
| 85 | FWM $\sigma$ |
| 86 | SG Pressure V (I-1) |
| 87 | SG P $\sigma$ |
| 88 | SG Pressure psia |
| 89 | SG DP V (I-2) |
| 90 | SG DP $\sigma$ |
| 91 | SG Level, inH2O |
| 92 | SP DP V (I-3) |
| 93 | SP DP $\sigma$ |
| 94 | Suppression Pool Level cmH2O |
| 95 | SC Pressure V (I-4) |
| 96 | SC P $\sigma$ |
| 97 | Suppression Chamber Pressure psia |
| 98 | Feedwater to SG V (I-5) |
| 99 | FW SG $\sigma$ |
| 100 | Water Return to SG GPM |
| 101 | Water Return to SG Density kg/m3 |
| 102 | Water Return to SG Mass Flow kg/s |
| 103 | Main Steam Line Vortex Flowmeter V (I-6) |
| 104 | MSL VF $\sigma$ |
| 105 | Steam Density, kg/m3 |
| 106 | Corrected K Factor |
| 107 | Steam Flow Rate, kg/s |
| 108 | Main Steam Line Pressure V (I-7) |
| 109 | MSL P $\sigma$ |
| 110 | MSL Pressure psia |
| 111 | RCIC Turbine Outlet-SP DP V (I-8) |
| 112 | RCIC TO-SP DP $\sigma$ |

Table 17: Output File Columns 113-136

| Column | $\underline{\text { Datum }}$ |
| :---: | :--- |
| 113 | Turbine Outlet-SP DP inH2O |
| 114 | Pump Discharge GP V (I-9) |
| 115 | Pump Out GP $\sigma$ |
| 116 | RCIC Pump Outlet Pressure psig |
| 117 | SC GP V (I-10) |
| 118 | SC GP $\sigma$ |
| 119 | Suppression Chamber Gauge Pressure psig |
| 120 | Turbine Outlet GP V (I-11) |
| 121 | TO GP $\sigma$ |
| 122 | Turbine Outlet Gauge Pressure psig |
| 123 | Water Injection to Steam Line V (I-12) |
| 124 | WISL $\sigma$ |
| 125 | WISL GPM |
| 126 | WISL Water Density kg/m3 |
| 127 | Water Injection to Steam Line Mass Flowrate kg/s |
| 128 | Main Steam Line GP V (I-13) |
| 129 | MSL GP $\sigma$ |
| 130 | Main Steam Line Gauge Pressure, psig |
| 131 | Pump Cavitation Sensor V (not present) |
| 132 | Pump CS $\sigma$ |
| 133 | Pump Cavitation Sensor Placeholder (unused) |
| 134 | Pump Inlet GP V (I-14) |
| 135 | Pump Inlet GP $\sigma$ |
| 136 | Pump Inlet Gauge Pressure, psi |

Table 18: Additional Cooldown Output File Columns

| $\frac{\text { Additional }}{\text { Column }}$ | $\underline{\text { Datum }}$ |
| :---: | :--- |
| 1 | Hot Water Tank Outlet Temperature, C (T-43) |
| 2 | HWTO $\sigma$ |
| 3 | Between Hot Water Pumps Temperature, C (T-44) |
| 4 | BHWP $\sigma$ |
| 5 | Hot Water Tank Magnetic Flowmeter (I-16) |
| 6 | HWTMF $\sigma$ |
| 7 | Hot Water Tank Outlet Flowrate, GPM |
| 8 | Hot Water Tank Level GP (I-15) |
| 9 | HWTL $\sigma$ |
| 10 | Hot Water Tank Flow-Corrected Level, inches |

## C. 2 SOURCE - RCIC_PROCESSOR.M

\% Matlab script rcic_plots_rcicland.m
\% Makes plots for a pre-loaded output data file from the RCIC LabVIEW
\% program. The array to load is 'data', which is $n \mathrm{x} 136$. n is
\% expected to be huge, having recorded a full output set of 136 values 10
\% times per second for hours.
\% Here, a full set of analysis is performed and plots are generated that
\% should be comprehensible in B\&W with the markers applied to the lines
$\%$

```
=========================
```

\% DATA PREPARATION SECTION
$\%======================$
\%
outstring=[];
filehandle=[];
crlf = sprintf('\r\n');
spargeroffset $=-4.0956$; offset, inH20, for Sparger DP transmitter
\% reading as gathered from mean(mar13(1:9000,113))
disp(' ')
disp('Welcome to R C I C - L A N D !')
\% Determine export condition
if (strcmp(testname, '') == 0) \&\& strcmp(savefigs, 'y') \&\& (strcmp (outpath, '') == 0)
\% save the figures to disk
outdir = [outpath '\Export\' testname '\'];
disp(['Saving Text and JPEG Files to ' outdir])
mkdir(outdir);
disp(' ')
save em=1;
filēhandle=fopen([outdir testname '_results_rcicland.txt'], 'w+');
fprintf(filehandle, '\%s\r\n', ['Output Saved to ' outdir]);
mfigoutdir = [outpath '\MFigs\' testname '\'];
disp(['Saving MATLAB Figure Files to ' mfigoutdir])
mkdir(mfigoutdir);

```
else
    save_em=0;
    disp\overline{('Not Saving Figures to Disk')}
end
% Determine the beginning and end times
% Test Begins when SP12 first hits 40 degrees C
% Test Ends one minute before the steam flowrate drops below 10 g/s
foundbeg=0;
foundend=0;
indices=[1201, size(data, 1)-1200];
% Some, esp. SRV, tests make initial noises on SP 12 that can trigger a
% premature test beginning
% If so, a 20-second mean value can be used instead of the instantaneous
% value for SP 12
begintemps=data(:, 42);
if smooth_sp12 == 1
    % use smoothing
    outstring = 'Using 20-second SP 12 averages for beginning detection';
    disp(outstring)
    if save_em == 1
        fprintf(filehandle, '%s\r\n', outstring);
    end
    for index = 101:(size(data,1)-100)
        begintemps(index) =mean(data(index-100:index+100, 42));
    end
else
    % do not use smoothing
    outstring = 'Using instantaneous 0-s SP 12 values for beginning detection';
    disp(outstring)
    if save em == 1
        fprintf(filehandle, '%s\r\n', outstring);
    end
    begintemps=data(:,42);
end
for index=1201:size(data, 1)-1200
    if begintemps(index) >= startingtemp
        if foundbeg == 0
            % found beginning
            foundbeg=1;
            indices(1)=index;
        end
    end
    if (foundbeg == 1) && (foundend == 0)
        % check to see if end has been found
        if data(index, 107) <= 0.01
            % found end
            foundend=1;
                indices(2)=index;
        end
    end
end
trunind = indices(1);
if foundend == 1
    % found end signal
    % step back to end limit one minute before signal
    for index=indices(2): -1: 1
        if data(index,1) <= (data(indices(2),1) - 60)
            % found the correct end
            break
        end
    end
else
```

```
    index = size(data,1)-1200;
end
trunind = [trunind index indices(2)];
% set up trimmed data array
trmdat=data(indices(1):index,:);
trmdat(:,1) = trmdat(:,1) - data(indices(1),1);
% set up expanded trimmed array for regression through both ends
trmreg = data( (indices(1)-1200) : (index+1200), :);
trmreg(:,1) = trmreg(:,1) - data(indices(1),1);
% Time data is in Column 1.
t=trmdat (:,1);
if foundbeg == 0
    outstring='Beginning NOT detected, using t_first';
    disp(outstring)
    if save em == 1
        fprintf(filehandle, '%s\r\n', outstring);
    end
end
if foundend == 0
    outstring='End NOT detected, using t_final';
    disp(outstring)
    if save_em == 1
        fprīntf(filehandle, '%s\r\n', outstring);
    end
end
outstring=['Beginning (KEY POINT #1) detected at t plus ' num2str(data(indices(1),1)) ' s,
            and ending (KEY POINT #11) at t plus ' num2str(data(index,1)) ' s, for a time
            period of ' num2str(t(end)) ' s.'];
disp(outstring)
if save_em == 1
    fprintf(filehandle, '%s\r\n', outstring);
end
outstring=['Original Data Record Time: ' num2str(data(end,1)) ' s'];
disp(outstring)
if save em == 1
    fprīntf(filehandle, '%s\r\n', outstring);
end
%
% ========================
% DATA PROCESSING SECTION
% =========================
%
% initialize the Key Points Vector
ind_end = length(t);
keypoints_ind = [1, ind_end, ind_end, ind_end, ind_end, ind_end, ind_end, ind_end,
    ind end, ind end, ind end, ind end, ind end, ind end];
% Beginning}\mathrm{ Key Point
keypoints ind(1) = 1;
% Ending Key Point
keypoints_ind(11) = ind_end;
% Test Start, Plume Detection, Stratification Onset, Peak Top-Mid, Top-Mid
% Reconverge, Peak Mid-Low, Mid-Low reconverge, Peak Low-Out,
% Stratification End, Test End, Min Mixing Number, Max Mixing Number
```

```
% Initialize the Pool Level Offset Correction Routine
% data gathered in 2015 05 19 test2 pressures.dat
% The following was used to generate the coefficients
% linear extrapolation was used on both the high-pressure and low-pressure
% ends in order to extend the approximate valid range
% The approximate valid range is from ~13 to ~103 psia (gas space pressure)
% in the Suppression Chamber
%
% pressurelevelcurve = load('..\Data\2015_05_19_test2_pressures.dat');
% [n,ind] = min( pressurelevelcurve(1:23670, 97));
% unsortedx = [n; pressurelevelcurve(1240:23670,97)];
% unsortedy = [(pressurelevelcurve(ind,94)- pressurelevelcurve(ind,94));
    (pressurelevelcurve(1240:23670,94) - pressurelevelcurve(ind,94))];
% c3 = polyfit(unsortedx(1:500), unsortedy(1:500), 1);
% c2 = polyfit(unsortedx(5761:11760), unsortedy(5761:11760), 1);
% low_y = polyval(c3, [10; 10.5; 11; 11.5; 12; 12.5; 13; 13.5; 14]);
% high̄_y = polyval(c2, [101; 101.5; 102; 102.5; 103; 103.5; 104; 104.5; 105]);
% coeffs = polyfit([10; 10.5; 11; 11.5; 12; 12.5; 13; 13.5; 14; unsortedx; 101; 101.5;
    102; 102.5; 103; 103.5; 104; 104.5; 105], [low_y; unsortedy; high_y], 21);
%
% The instrument repots 0 cm when the fill is at or below 7.62 cm (to the
% very bottom) -- its bottom pickup is at z = 7.62 cm (the offsets will be
% subtracted from the indication/reading)
pool_levelgauge_offset = -7.62;
pool_level_offset_coeffs = zeros(1,22);
pool_level_offset_coeffs(01) = -4.704607582712959e-33;
pool__level__offset_coeffs(02) = 2.276830460057674e-30;
pool level offset coeffs(03) = 7.536374883715246e-28;
pool_level_offset_coeffs(04) = -1.026160591394114e-24;
pool_level_offset_coeffs(05) = 4.494410880292239e-22;
pool_level_offset_coeffs(06) = -1.196603784791618e-19;
pool_level_offset_coeffs(07) = 2.229530134698593e-17;
pool_level_offset_coeffs(08) = -3.091202409527790e-15;
pool_level__offset_coeffs(09) = 3.296650614743879e-13;
pool_level_offset_coeffs(10) = -2.756730928255758e-11;
pool_level_offset_coeffs(11) = 1.827364042074039e-09;
pool_level_offset_coeffs(12) = -9.651355766825126e-08;
pool_level_offset_coeffs(13) = 4.063655352840353e-06;
pool_level_offset_coeffs(14) = -1.359106037748376e-04;
pool_level_offset_coeffs(15) = 0.003582795870262;
pool_level__offset_coeffs(16) = -0.073514262386104;
pool_level_offset_coeffs(17) = 1.152395400243147;
pool_level_offset_coeffs(18) = -13.428940832825903;
pool_level_offset_coeffs(19) = 1.116385190403100e+02;
pool_level_offset_coeffs(20) = -6.195804714026652e+02;
pool_level_offset_coeffs(21) = 2.032312773917644e+03;
pool_level_offset_coeffs(22) = -2.931852420874044e+03;
% Determine Pool Saturation Temperatures
poolsat=t;
for index=1:size(poolsat,1)
    poolsat(index)=XSteam('Tsat_p', trmdat(index, 97)*0.0689475728);
end
% Then smooth the rear temperatures
stratsmooth 0 = zeros(size(trmreg,1)-2400, 1); % time
stratsmooth_1 = stratsmooth_0; % Upper
```

```
stratsmooth_2 = stratsmooth_0; % Lower
stratsmooth_3 = stratsmooth_0; % Condensing SP8
stratsmooth_4 = stratsmooth_0; % Mid SP9
stratsmooth 5 = stratsmooth 0; % Out
midsmooth_up = stratsmooth_\overline{0}; % SP 11
midsmooth mid = stratsmooth 0; % SP 12
midsmooth_low = stratsmooth_0; % SP 13
smoothwater = stratsmooth_0; % water injection to steam line
smoothedP = stratsmooth_0;
smoothedDP = smoothedP;
smoothedMSLP = stratsmooth 0;
smoothedMSLT = stratsmooth - 0;
smoothedMSLmdot = stratsmooth 0;
smoothedwaterT = stratsmooth_\overline{0};
smoothedRoomT = stratsmooth 0;
steamenthreg = stratsmooth_\overline{0};
smoothedMSLEnth = stratsmooth 0;
MTMDeltaT = stratsmooth_0;
MMLDeltaT = stratsmooth 0;
MLODeltaT = stratsmooth_0;
% Regression analysis
disp('Smoothing 1, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % time
    stratsmooth 0(relind) = trmreg(index, 1);
    % compute and store smoothed temps
    % rear upper SP 3
    p1 = polyfit(x, trmreg( (index-300) : (index+300), 60), 1);
    stratsmooth_1(relind) = pl(2);
end
disp('Smoothing 2, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % rear lower SP 5
    p2 = polyfit(x, trmreg( (index-300) : (index+300), 56), 1);
    stratsmooth_2(relind) = p2(2);
end
disp('Smoothing 3, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % near exhaust/middle SP 8
    p3 = polyfit(x, trmreg( (index-300) : (index+300), 50), 1);
    stratsmooth_3(relind) = p3(2);
end
disp('Smoothing 4, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % further from exhaust/middle SP 9
    p4 = polyfit(x, trmreg( (index-300) : (index+300), 48), 1);
    stratsmooth 4(relind) = p4(2);
end
disp('Smoothing 5, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % pool outlet
    p5 = polyfit(x, trmreg( (index-300) : (index+300), 74), 1);
```

```
    stratsmooth_5(relind) = p5(2);
end
disp('Smoothing 6, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % water injection to steamline kg/s
    p5 = polyfit(x, trmreg( (index-300) : (index+300), 127), 1);
    smoothwater(relind) = p5(2);
end
disp('Smoothing 7, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % Suppression Pool P, psia
    p5 = polyfit(x, trmreg( (index-300) : (index+300), 97), 1);
    smoothedP(relind) = p5(2);
end
disp('Smoothing 8, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % Instead of 1-minute values, 2-minute values are used here to really
    % smooth out the effects of the chugging spikes (+/- 1 minute,
    % shouldn't go further out than that due to the stopping criterion)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-600) : (index+600), 1) - trmreg(index,1);
    % Sparger DP, inH2O (should eliminate chugging oscillations)
    p5 = polyfit(x, trmreg( (index-600) : (index+600), 113) - spargeroffset, 1);
    smoothedDP(relind) = p5(2);
end
% P in the line upstream of the sparger, bar absolute
spargerP = (0.0689475728 * smoothedP) + (0.0024884 * smoothedDP);
disp('Smoothing 9, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % Steam Line P, psia
    p5 = polyfit(x, trmreg( (index-300) : (index+300), 110), 1);
    smoothedMSLP(relind) = p5(2);
end
disp('Smoothing 10, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % Steam Line T, degrees C
    p5 = polyfit(x, trmreg( (index-300) : (index+300), 82), 1);
    smoothedMSLT(relind) = p5(2);
end
disp('Smoothing 11, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % Steam Flowrate, kg/s
    p5 = polyfit(x, trmreg( (index-300) : (index+300), 107), 1);
    smoothedMSLmdot(relind) = p5(2);
end
disp('Smoothing 12, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % Water Injection to Steam Line Temperature, C
```

```
    p5 = polyfit(x, 0.5 * (trmreg( (index-300) : (index+300), 78) + trmreg( (index-
        300) : (index+300), 80)), 1);
    smoothedwaterT(relind) = p5(2);
end
disp('Smoothing 13, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % Lab Temperature, C
    p5 = polyfit(x, (trmreg( (index-300) : (index+300), 2)), 1);
    smoothedRoomT(relind) = p5(2);
end
disp('Smoothing 14, ...')
parfor relind = 1: (size(trmreg,1))
    % get source data and compute immediate MSL enthalpy at the flowmeter
    s enth=XSteam('h pT', trmreg(relind, 110)*0.0689475728, trmreg(relind, 82));
    steamenthreg(relind) = s_enth;
end
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % Steam Flowrate, kg/s
    p5 = polyfit(x, (steamenthreg( (index-300) : (index+300) )), 1);
    smoothedMSLEnth(relind) = p5(2);
end
disp('Smoothing 15, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % Pool Mid-Axis Top-Mid Smoothed Delta T
    p5 = polyfit(x, (trmreg( (index-300) : (index+300), 44) - trmreg( (index-300) :
        (index+300), 42)), 1);
    MTMDeltaT(relind) = p5(2);
end
disp('Smoothing 16, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % Pool Mid-Axis Mid-Low Smoothed Delta T
    p5 = polyfit(x, (trmreg( (index-300) : (index+300), 42) - trmreg( (index-300) :
            (index+300), 40)), 1);
    MMLDeltaT(relind) = p5(2);
end
disp('Smoothing 17, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % Pool Mid-Axis Mid-Low Smoothed Delta T
    p5 = polyfit(x, (trmreg( (index-300) : (index+300), 40) - trmreg( (index-300) :
        (index+300), 74)), 1);
    MLODeltaT(relind) = p5(2);
end
disp('Smoothing 18, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % SP 11 Temperatures
    p5 = polyfit(x, (trmreg( (index-300) : (index+300), 44)), 1);
    midsmooth_up(relind) = p5(2);
end
disp('Smoothing 19, ...')
```

```
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % SP 12 Temperatures
    p5 = polyfit(x, (trmreg( (index-300) : (index+300), 42)), 1);
    midsmooth_mid(relind) = p5(2);
end
disp('Smoothing 20, ...')
parfor relind = 1: (size(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index,1);
    % SP }13\mathrm{ Temperatures
    p5 = polyfit(x, (trmreg( (index-300) : (index+300), 40)), 1);
    midsmooth_low(relind) = p5(2);
end
disp('Correcting Pool Levels...')
% compute the commone-mode pressure reading offset:
leveloffsets = polyval(pool_level_offset_coeffs, trmreg(:, 97));
% remove the offsets from the reading
reglevels = trmreg(:, 94) - leveloffsets - pool_levelgauge_offset;
% smooth it to get cold levels
coldlevels = stratsmooth_0;
hotdepth = stratsmooth 0;
parfor relind = 1: (siz̄e(trmreg,1)-2400)
    % get source data
    index = relind + 1200;
    x = trmreg( (index-300) : (index+300), 1) - trmreg(index, 1);
    % Pool Water Level, cm
    p5 = polyfit(x, (reglevels( (index-300) : (index+300) ) ), 1);
    % find the cold-water level
    coldlevels(relind) = p5(2);
    currentlevel = p5(2);
    % translate to hot (around measured T) levels
    sgref = 999.9720; % peak density at 1 atm, 4 degrees C
    sgref_out = XSteam('rho_pT', (smoothedP(relind)*0.0689475728 + 0.100),
            stratsmooth 5(relind)) / sgref;
    sgref_low = XSteam('rho_pT', (smoothedP(relind)*0.0689475728 + 0.055),
            midsmooth low(relind)) / sgref;
    sgref_mid = XSteam('rho_pT', (smoothedP(relind)*0.0689475728 + 0.037),
            mi्वsmooth_mid(relind)) / sgref;
    sgref_top = XSteam('rho_pT', (smoothedP(relind)*0.0689475728 + 0.020),
        midsmooth_up(relind)) / sgref;
    sgtopmid = 0.5 * (sgref top + sgref mid);
    sgmidlow = 0.5 * (sgref_mid + sgref_low);
    sglowout = 0.5 * (sgref_low + sgref_out);
    % determine the heated level (cm) of the pool
    if 8*2.54*sglowout + 7*2.54*sgmidlow + 7*2.54*sgtopmid <= currentlevel
        % level is above the top thermocouple
        hotdepth(relind) = ((currentlevel - ( (8*2.54*sglowout) + (7*2.54*sgmidlow) +
        (7*2.54*sgtopmid) ) ) / sgref_top) + ( (8*2.54*sglowout) + (7*2.54*sgmidlow) +
        (7*2.54*sgtopmid) );
    elseif 8*2.54*sglowout + 7*2.54*sgmidlow <= currentlevel
        % level is between the top and mid thermocouple
        hotdepth(relind) = ((currentlevel - ( (8*2.54*sglowout) + (7*2.54*sgmidlow) ) ) /
        sgref mid) + ( (8*2.54*sglowout) + (7*2.54*sgmidlow) );
    elseif 8*2.54*sglowout <= currentlevel
        % level is between the mid and low thermocouple
        hotdepth(relind) = ((currentlevel - (8*2.54*sglowout)) / sgref_low) +
        (8*2.54*sglowout);
    else
        % level is between the low thermocouple and outlet
        hotdepth(relind) = currentlevel / sgref_out;
    end
```

end
\% do one more iteration for pre-start readings, unsmoothed readings

```
% find the cold-water level
coldlevelprestart = data(1, 94) - pool levelgauge offset -
    polyval(pool_level_offset_coeffs, data(1, 97));
currentlevel = coldlevelprestart;
hotlevelprestart = coldlevelprestart;
% translate to hot (around measured T) levels
sgref = 999.9720; % peak density at 1 atm, 4 degrees C
sgref_out = XSteam('rho_pT', (data(1,97)*0.0689475728 + 0.100), data(1,74)) / sgref;
sgref_low = XSteam('rho_pT', (data(1,97)*0.0689475728 + 0.055), data(1,40)) / sgref;
sgref_mid = XSteam('rho_pT', (data(1,97)*0.0689475728 + 0.037), data(1,42)) / sgref;
sgref_top = XSteam('rho_pT', (data(1,97)*0.0689475728 + 0.020), data(1,44)) / sgref;
sgtopmid = 0.5 * (sgref_top + sgref_mid);
sgmidlow = 0.5 * (sgref_mid + sgref_low);
sglowout = 0.5 * (sgref_low + sgref_out);
% determine the heated level (cm) of the pool
if 8*2.54*sglowout + 7*2.54*sgmidlow + 7*2.54*sgtopmid <= currentlevel
    % level is above the top thermocouple
    hotlevelprestart = ((currentlevel - ( (8*2.54*sglowout) + (7*2.54*sgmidlow) +
        (7*2.54*sgtopmid) ) ) / sgref_top) + ( (8*2.54*sglowout) + (7*2.54*sgmidlow) +
            (7*2.54*sgtopmid) );
elseif 8*2.54*sglowout + 7*2.54*sgmidlow <= currentlevel
    % level is between the top and mid thermocouple
    hotlevelprestart = ((currentlevel - ( (8*2.54*sglowout) + (7*2.54*sgmidlow) ) ) /
            sgref_mid) + ( (8*2.54*sglowout) + (7*2.54*sgmidlow) );
elseif 8*2.54*
    % level is between the mid and low thermocouple
    hotlevelprestart = ((currentlevel - (8*2.54*sglowout)) / sgref_low) +
                (8*2.54*sglowout);
else
    % level is between the low thermocouple and outlet
    hotlevelprestart = currentlevel / sgref_out;
end
```

```
% Determine Stratification Period
disp('Examinig Pool Stratification...')
stratstart=[-1 -1];
stratend= [-1 -1];
comptemps = [trmreg(:,1), (trmreg(:,44) + trmreg(:,42) + trmreg(:,40))/3, trmreg(:,74)];
pooldt = zeros(size(comptemps,1),1);
poolt=pooldt;
outletdt = poolt;
outlett=outletdt;
% Regression analysis
disp('Processing, 1...')
parfor index = 601: (size(comptemps,1)-600)
    % get source data
    x = comptemps( (index-600) : (index+600), 1) - trmreg(index,1);
    y = comptemps( (index-600) : (index+600), 2:3);
    % compute and store smoothed temps
    p1 = polyfit(x,y(:,1),1);
    p2 = polyfit(x,y(:,2),1);
    % pooldt(index)=p1(1);
    poolt(index)=p1(2);
    % outletdt(index) = p2(1);
```

```
    outlett(index)=p2(2);
end
disp('Processing, 2...')
parfor index = 901: (size(comptemps,1)-900)
    % get source data
    x = comptemps( (index-900) : (index+900), 1) - trmreg(index,1);
    y = [poolt( (index-900) : (index+900) ), outlett( (index-900) : (index+900) )];
    % compute and store dT/dt
    p1 = polyfit(x,y(:,1),1);
    p2 = polyfit(x,y(:,2),1);
    pooldt(index)=p1(1);
    % poolt(index)=p1(2);
    outletdt(index) = p2(1);
    % outlett(index)=p2(2);
end
%average the slopes
m1 = zeros(size(comptemps,1),1);
m2 = zeros(size(comptemps,1),1);
disp('Analyzing...')
parfor index = 901: (size(comptemps,1)-900)
    m1 (index) =mean (pooldt((index-300): (index+300)));
    m2 (index)=mean (outletdt ((index-300): (index+300)));
end
onsets=zeros(size(comptemps,1),1);
endsets=onsets;
unsets=endsets;
checkunsets=0;
unsetind=0;
% determine onset of stratification
for index = 1201: (size(comptemps,1)-1200)
    if (poolt(index) - outlett(index) >= 2) && ( m2(index) <= 0.75 * m1(index) )
        % could be stratifying
        onsets(index)=1;
    end
    % check for high rate of change
    if ( m2(index) >= 0.95 * m1(index) )
            % might not be stratifying
            unsets(index)=1;
    end
end
beg_ind=0;
strätified=0;
destratified=0;
end_ind=0;
for index = 1: size(onsets,1)
    if stratified == 0
        % find the defined onset
        if (onsets(index) == 0)
                % nope
                beg_ind=0;
        elseif \overline{beg ind == 0}
            % start counting
            beg_ind = index;
        else
            % check if duration long enough
            if (comptemps(index,1) - comptemps(beg ind,1) >= 60)
                        %maybe stratified, check unsets
                        % stratified
                        stratified=1;
                        unsetind=index;
                end
        end
    elseif checkunsets == 0
        if unsets(index) == 0
            if (comptemps(index,1) - comptemps(unsetind,1) >= 180)
                % stratified
```

```
                    checkunsets=1;
                end
            else
                % rose too high, not stratified
                stratified = 0;
        end
    elseif destratified == 0
        % find end of stratification
        if (outletdt(index) >= 2 * pooldt(index))
            % maybe destratifying
            endsets(index) = 1;
            if end_ind == 0
                %start counting
                    end_ind = index;
            else
                        %check counter
                    if (comptemps(index,1) - comptemps(end_ind,1) >= 60)
                                % destratifying
                                destratified=1;
                            end
                end
        else
            % not destratifying
            end_ind = 0;
            end\overline{sets(index) = 0;}
        end
    else
        if (outletdt(index) >= 2 * pooldt(index))
            % maybe destratifying
            endsets(index) = 1;
        else
            % not destratifying
            endsets(index) = 0;
        end
    end
end
if stratified == 1
    % translate to the trimmed data
    stratstartind = beg_ind - 1200;
    if destratified == \overline{1}
        stratendind = end_ind - 1200;
    else
        % sort of a dummy value
        stratendind = size(trmdat, 1);
    end
else
    % dummy value
    stratstartind = size(trmdat, 1);
    stratendind = stratstartind;
end
% store indices in the Key Points
keypoints_ind(3) = stratstartind;
keypoints_ind(9) = stratendind;
if stratified == 1
    outstring=['Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT
        #3) at t plus ' num2str(comptemps(beg_ind, 1)) ' s, T bulk = '
        num2str(comptemps(beg_ind, 2)) ' C and T_out = ' num2\overline{s}tr(comptemps(beg_ind, 3)) '
        C'];
    outstring = [outstring crlf 'Stratification Beginning SP12 Temperature = '
        num2str(trmdat(beg_ind - 1200, 42)) ' C'];
    outstring = [outstring crlf 'Stratification Beginning Pressure = '
        num2str(trmdat(beg_ind - 1200, 97)) ' psia'];
else
```

```
    outstring = 'No Bulk Pool to Outlet Thermal Stratification Detected (KEY POINT #3), 0
        0 0 0 0 0. ';
end
disp(outstring)
if save_em == 1
    fprintf(filehandle, '%s\r\n', outstring);
end
if destratified == 1
    outstring = ['Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY
        POINT #9) at t plus ' num2str(comptemps(end_ind, 1)) ' s, T_bulk = '
        num2str(comptemps(end_ind, 2)) ' C and T_ou\overline{t = ' num2str(comptemps(end_ind, 3)) '}
        C'];
    outstring = [outstring crlf 'Stratification Ending SP12 Temperature = '
        num2str(trmdat(end ind - 1200, 42)) ' C'];
    outstring = [outstring crlf 'Stratification Ending Pressure = '
        num2str(trmdat(end ind - 1200, 97)) ' psia'];
else
    outstring = 'No Bulk Pool to Outlet Destratification Detected (KEY POINT #9), 0 0 0 0
        0 0. ';
end
disp(outstring)
if save_em == 1
    fprintf(filehandle, '%s\r\n', outstring);
end
outstring='Detecting Plume Appearance...';
disp(outstring)
plume_ind = length(t);
outstring = ['No Plume detected, setting t_plume (KEY POINT #2) to the end at '
        num2str(t(plume_ind)) ' s. '];
for ind = 1:length(t) - 600
    % using smoothed temps, for each of the current and subsequent 600
    % points, if the hotspot temperature is greater than the upper level
    % temperature by more than one degree AND MORE THAN 2 DEGREES greater
    % than the mid-level temperature, a plume is assumed to be present
    if (sum( (stratsmooth_3(ind:ind+600) - stratsmooth_4(ind:ind+600)) > 2) == 601) &&
                (sum( (stratsmooth_3(ind:ind+600) - stratsmooth_1(ind:ind+600)) > 1) == 601)
            % detected plume formation!
            plume ind = ind;
            outstring = ['Plume detected! Setting t plume (KEY POINT #2) to '
            num2str(t(plume_ind)) ' s. '];
            break
    end
end
keypoints_ind(2) = plume_ind;
avppcrdt = mean(stratsmooth_3(plume_ind:stratendind) -
        stratsmooth_4(plume_ind:stratendind));
avppcrdtsd = std(stratsmooth_3(plume_ind:stratendind) -
            stratsmooth_4(plume_ind:stratendind));
avpptrdt = mean(stratsmooth_3(plume_ind:stratendind) -
            stratsmooth 1(plume ind:stratendind));
avpptrdtsd = std(stratsmooth_3(plume_ind:stratendind) -
            stratsmooth 1(plume ind:stratendind));
if isinf(avppcrdt) || isnan(avppcrdt)
    avppcrdt = 0;
end
if isinf(avppcrdtsd) || isnan(avppcrdtsd)
    avppcrdtsd = 0;
end
if isinf(avpptrdt) || isnan(avpptrdt)
    avpptrdt = 0;
```

```
end
if isinf(avpptrdtsd) || isnan(avpptrdtsd)
    avpptrdtsd = 0;
end
outstring = [outstring crlf 'At t = ' num2str(t(plume_ind)) ' s, the pool pressure is '
            num2str(trmdat(plume ind, 97)) ' psia while the Smoothed Upper, Mid, SP8, Lower,
            and Outlet Temperatures are ' num2str(stratsmooth_1(plume_ind)) ','
            num2str(stratsmooth_4(plume_ind)) ', ' num2str(stratsmooth_3(plume_ind)) ', '
            num2str(stratsmooth_2(plume_ind)) ', and ' num2str(stratsmöoth_5(plume_ind)) ' C,
            respectively. ' ];
outstring = [outstring crlf 'Over the Plume Period (Plume Detected to Destratification),
        the mean Smothed SP8-SP9 temperatures were ' num2str(avppcrdt) ' +/- '
        num2str(avppcrdtsd) ' C.'];
outstring = [outstring crlf 'Over the Plume Period (Plume Detected to Destratification),
            the mean Smoothed SP8-Upper temperatures were ' num2str(avpptrdt) ' +/- '
            num2str(avpptrdtsd) ' C.'];
disp(outstring)
if save_em == 1
    fprīntf(filehandle, '%s\r\n', outstring);
end
outstring='Processing Enthalpies and Steam Quality...';
disp(outstring)
% time, steam_enth, steam_sat_enth, water_enth, water_sat_enth,
% mixture_ent\overline{h}, quality, \overline{turbīne_hg, turbīne_hl, turbīne_q}quality
steamarray=[t t t t t t t t t];
smoothedenth = [t t t];
velocities = 0*[t t t t];
smoothedenthtemp = smoothedenth;
steamarraytemp = steamarray;
hsteam = t;
htop = hsteam;
hmid = hsteam;
hcondensing = hsteam;
hlow = hsteam;
hout = hsteam;
hmidsat = hsteam;
rhomid = hsteam;
rhocond = hsteam;
mdcond = hsteam;
mdcondcool = hsteam;
mdcondvol = mdcond;
mdcondcoolvol = mdcondcool;
mdcondinj = hsteam;
mdcondinjcool = hsteam;
mdcondinjvol = mdcond;
mdcondcoolinjvol = mdcondcool;
smoothwaterh = smoothwater;
hsatL = [t t];
hsatG = [t t];
if mean(smoothwater) > 0.001
    % water-injected test
    twophasetest = 1;
else
    % steam only
    twophasetest = 0;
end
hlcoeff=4.57841; % W/K (MSL T to Room T, from V Flowmeter to DS of W Inj.)
% do the calculations
parfor index=1:size(steamarray,1)
    % enthalpy at water injection
    s_enth=smoothedMSLEnth(index);
    steamarray(index,2) = s_enth - (hlcoeff * (smoothedMSLT(index)-smoothedRoomT(index))
        / (1000*smoothedMSLmdot(index)) );
```

```
    htop(index) = XSteam('h_pT', (smoothedP(index)*0.0689475728 + 0.020),
        stratsmooth_1(index));
    hmid(index) = \overline{XSteam('h_pT', (smoothedP(index)*0.0689475728 + 0.037),}
        stratsmooth 4(index));
    hlow(index) = \overline{XSteam('h_pT', (smoothedP(index)*0.0689475728 + 0.055),}
        stratsmooth 2(index));
    hout(index) = XSteam('h_pT', (smoothedP(index)*0.0689475728 + 0.100),
        stratsmooth_5(index));
    hcondensing(index) = XSteam('h_pT', (smoothedP(index)*0.0689475728 + 0.037),
        stratsmooth_3(index));
    hmidsat(index) = XSteam('hL_p', (smoothedP(index)*0.0689475728 + 0.037));
    rhomid(index) = XSteam('rho_pT', (smoothedP(index)*0.0689475728 + 0.037),
        stratsmooth_4(index));
    rhocond(index) = XSteam('rho_pT', (smoothedP(index)*0.0689475728 + 0.037),
        stratsmooth 3(index));
    % steam pre-injection velocities
    steamrho = XSteam('rho ph', smoothedMSLP(index)*0.0689475728, s enth);
    velocities(index, 1) = (smoothedMSLmdot(index) / steamrho) / (pi\overline{i}() * (0.020447^2));
    % saturation enthalpies, DS of orifice
    hsatL(index, 2) = XSteam('hL_p', spargerP(index));
    hsatG(index, 2) = XSteam('hV_p', spargerP(index));
end
parfor index=1:size(steamarray,1)
    % saturated steam enthalpy (MSL pressure)
    steamarray(index,3) = XSteam('hV_p', smoothedMSLP(index)*0.0689475728);
    hsatG(index, 1) = steamarray(index,3);
end
parfor index=1:size(steamarray,1)
    % estimated liquid enthalpy (DS measurement)
    steamarray(index,4) = XSteam('h_pT', smoothedMSLP(index)*0.0689475728,
        trmdat(index,80));
    smoothwaterh(index) = XSteam('h_pT', smoothedMSLP(index)*0.0689475728,
        smoothedwaterT(index));
    % water pre-injection velocities
    waterrho = XSteam('rho_ph', smoothedMSLP(index)*0.0689475728, smoothwaterh(index));
    velocities(index, 2) =' (smoothwater(index) / waterrho) / (pi() * (0.004625^2));
end
parfor index=1:size(steamarray,1)
    % saturated liquid enthalpy (MSL pressure)
    steamarray(index,5) = XSteam('hL_p', smoothedMSLP(index)*0.0689475728);
    hsatL(index, 1) = steamarray(index,5);
end
parfor index=1:size(steamarray,1)
    % MSL flow enthalpy post-injection
    steamarraytemp(index,6) = (steamarray(index,2)*trmdat(index,107) +
        steamarray(index,4)*trmdat(index,127)) / (trmdat(index,107) + trmdat(index,127));
    smoothedenth(index, 1) = (steamarray(index,2)*smoothedMSLmdot(index) +
        twophasetest*smoothwaterh(index)*smoothwater(index)) / (smoothedMSLmdot(index) +
        twophasetest*smoothwater(index));
end
steamarray(:,6) = steamarraytemp(:,6);
%total flow energy, including velocities
if twophasetest == 1
    % include water E
    TotalEnth = smoothedenth(:, 1) + (0.001*(((velocities(:,1).^2) .* smoothedMSLmdot) +
                ((velocities(:,1).^2) .* smoothwater)) ./ (smoothedMSLmdot + smoothwater));
else
    % steam only
    TotalEnth = smoothedenth(:, 1) + 0.001*(velocities(:,1).^2);
end
% Determine new (including flow energy) enthalpies US&DS of turbine analog
%
sparger_area = (pi() * (0.020447^2));
Adjuste\overline{dEnth_US = 0 * TotalEnth;}
AdjustedEnth_DS = 0 * TotalEnth;
```

```
tempvels1 = t;
tempvels2 = t;
disp('Accounting for Density Changes and Acceleration Energetics ... ');
parfor index = 1:length(TotalEnth)
    % get conditions
    h tot = TotalEnth(index);
    p_curr = smoothedMSLP(index)*0.0689475728;
    mdot tot = smoothedMSLmdot(index) + smoothwater(index);
    % set up loop
    h_new = h_tot;
    looplim = 1000;
    numloops = 0;
    executeloop = 1;
    % find the new flow (subtracting velocity energy) enthalpy for the
    % conditions just upstream of the orifice
    while executeloop == 1
            % loop counter
            numloops = numloops + 1;
            % get new density, velocity, enthalpy
            temprho = XSteam('rho_ph', p_curr, h_new);
            tempvel = mdot_tot / ('temprho * sparg}er_area)
            temph = h_tot - ((tempvel^2)/1000);
            h_old = h_new;
            h_new = (0.382*h_old) + (0.618*temph);
            %- end the loop?
            if (numloops > looplim) || abs(h_old - h_new) < 1e-9
                % end the loop
                    executeloop = 0;
            end
    end
    % store it
    AdjustedEnth_US(index) = h_new;
    tempvelsl(index) = tempvel;
    % set up the next loop
    p_curr = spargerP(index);
    h new = h tot;
    lōoplim =- 1000;
    numloops = 0;
    executeloop = 1;
    % find the new flow (subtracting velocity energy) enthalpy for the
    % conditions just downstream of the orifice
    while executeloop == 1
            % loop counter
            numloops = numloops + 1;
            % get new density, velocity, enthalpy
            temprho = XSteam('rho_ph', p_curr, h_new);
            tempvel = mdot tot / (temprho * sparger area);
            temph = h_tot = ((tempvel^2)/1000);
            h old = h new;
            h_new = (0.382*h_old) + (0.618*temph);
            % end the loop?
            if (numloops > looplim) || abs(h_old - h_new) < 1e-9
                % end the loop
                executeloop = 0;
            end
    end
    % store it
    AdjustedEnth DS(index) = h new;
    tempvels2(in\overline{dex) = tempvel;}
end
disp(' ... Done! Continuing with the Qualities ... ');
velocities(:, 3:4) = [tempvels1, tempvels2];
AdjustedQuality = [t, t];
parfor index=1:size(steamarray,1)
    % quality in MSL
```

```
    steamarraytemp(index,7) = (steamarray(index,6) - steamarray(index,5)) /
        (steamarray(index,3) - steamarray(index,5));
    smoothedenthtemp(index, 2) = (smoothedenth(index, 1) - steamarray(index,5)) /
        (steamarray(index,3) - steamarray(index,5));
    AdjustedQuality(index, 1) = (AdjustedEnth_US(index) - hsatL(index, 1)) / (hsatG(index,
        1) - hsatL(index, 1));
end
steamarray(:,7) = steamarraytemp(:,7);
smoothedenth(:, 2) = smoothedenthtemp(:, 2);
parfor index=1:size(steamarray,1)
    % saturated vapor enthalpy, estimated from post-turbine GP
    steamarray(index,8) = XSteam('hV_p', (trmdat(index, 97) + (0.0361272918274*(4.1 +
        trmdat(index,113))))*0.0689475728);
end
parfor index=1:size(steamarray,1)
    % saturated liquid enthalpy, estimated from post-turbine GP
    steamarray(index,9) = XSteam('hL p', (trmdat(index, 97) + (0.0361272918274*(4.1 +
        trmdat(index,113))))*0.0689475728);
end
parfor index=1:size(steamarray,1)
    % estimated post-turbine quality
    steamarraytemp(index,10)= (steamarray(index,6) - steamarray(index,9)) /
        (steamarray(index,8) - steamarray(index,9));
    smoothedenthtemp(index, 3) = (smoothedenth(index, 1) - steamarray(index,9)) /
        (steamarray(index,8) - steamarray(index,9));
    AdjustedQuality(index, 2) = (AdjustedEnth_DS(index) - hsatL(index, 2)) / (hsatG(index,
        2) - hsatL(index, 2));
end
steamarray(:,10) = steamarraytemp(:,10);
smoothedenth(:, 3) = smoothedenthtemp(:, 3);
hsteam = AdjustedEnth_DS;
% condensation flowra\overline{tes}
parfor index=1:size(steamarray,1)
    % all flowrates are strictly the condensing/cooling side -- they do not
    % include the injected steam flow quantities
    mdcond(index) = ((hsteam(index) - hmidsat(index)) / (hmidsat(index) - hmid(index))) *
        smoothedMSLmdot(index);
    mdcondvol(index) = mdcond(index) / rhomid(index);
    mdcondcool(index) = ((hsteam(index) - hcondensing(index)) / (hcondensing(index) -
        hmid(index))) * smoothedMSLmdot(index);
    mdcondcoolvol(index) = mdcondcool(index) / rhocond(index);
    % water-injection adjusted values
    mdcondinj(index) = mdcond(index);
    mdcondinjvol(index) = mdcondvol(index);
    mdcondinjcool(index) = mdcondcool(index);
    mdcondcoolinjvol(index) = mdcondcoolvol(index);
    if twophasetest == 1
        % water-injection
        mdcondinj(index) = ((smoothedenth(index,1) - hmidsat(index)) / (hmidsat(index) -
        hmid(index))) * (smoothedMSLmdot(index) + smoothwater(index));
        mdcondinjvol(index) = mdcondinj(index) / rhomid(index);
        mdcondinjcool(index) = ((smoothedenth(index,1) - hcondensing(index)) /
        (hcondensing(index) - hmid(index))) * (smoothedMSLmdot(index) +
        smoothwater(index));
        mdcondcoolinjvol(index) = mdcondinjcool(index) / rhocond(index);
    end
end
outstring=' ...done!';
disp(outstring)
qualinfo = [NaN NaN NaN];
[qualinfo(1) qualinfo(2)] = min(steamarray(:,7));
[qualinfo(3) qualinfo(4)] = max(steamarray(:,7));
qualinfo(5) = mean(steamarray(:,7));
```

```
qualinfo(6) = std(steamarray(:,7));
[qualinfo(7) qualinfo(8)] = min(steamarray(:,10));
[qualinfo(9) qualinfo(10)] = max(steamarray(:,10));
qualinfo(11) = mean(steamarray(:,10));
qualinfo(12) = std(steamarray(:,10));
outstring=['Minimum Steam Quality: ' num2str(qualinfo(1)) ' at t plus '
            num2str(t(qualinfo(2))) ' s'];
disp(outstring)
if save em == 1
    fprintf(filehandle, '%s\r\n', outstring);
end
outstring=['Maximum Steam Quality: ' num2str(qualinfo(3)) ' at t plus '
            num2str(t(qualinfo(4))) ' s'];
disp(outstring)
if save em == 1
    fprintf(filehandle, '%s\r\n', outstring);
end
outstring=['Time-Averaged Steam Quality: ' num2str(qualinfo(5)) ' +/- '
            num2str(qualinfo(6)) ];
disp(outstring)
if save em == 1
    fprīntf(filehandle, '%s\r\n', outstring);
end
if use turbine == 1
    outstring=['Minimum Turbine Outlet Steam Quality: ' num2str(qualinfo(7)) ' at t plus
            ' num2str(t(qualinfo(8))) ' s'];
    disp(outstring)
    if save_em == 1
        fprintf(filehandle, '%s\r\n', outstring);
    end
    outstring=['Maximum Turbine Outlet Steam Quality: ' num2str(qualinfo(9)) ' at t plus
            ' num2str(t(qualinfo(10))) ' s'];
    disp(outstring)
    if save em == 1
        fprintf(filehandle, '%s\r\n', outstring);
    end
    outstring=['Time-Averaged Turbine Outlet Steam Quality: ' num2str(qualinfo(11)) '
        +/- ' num2str(qualinfo(12)) ];
    disp(outstring)
    if save em == 1
        fprintf(filehandle, '%s\r\n', outstring);
    end
else
    outstring='SRV Alignment, no RCIC Turbine 0 0 0 0 0 0 ';
    disp(outstring)
    if save_em == 1
        fprintf(filehandle, '%s\r\n', outstring);
    end
end
% Finding min and max T-changerates
inclusionlen = 1500;
sindex = trunind;
if sindex(1) < inclusionlen+1
    sindex(1) = inclusionlen+1;
end
if sindex(3) + inclusionlen > size(data,1)
    sindex(3) = size(data,1) - inclusionlen;
elseif sindex(3) - inclusionlen > sindex(2)
    sindex(3) = sindex(2);
```

```
end
disp('Processing slopes of rear stratification set ...')
vsmooth_top = zeros(size(data,1), 2);
vsmooth mid = vsmooth top;
vsmooth_low = vsmooth_top;
vsmooth_out = vsmooth_top;
vsmooth_hot = vsmooth__top;
parfor ind=sindex(1):sindex(3)
    xvals = data(ind - inclusionlen : ind + inclusionlen, 1) - data(ind, 1);
    yvals_top = data(ind - inclusionlen : ind + inclusionlen, 60);
    yvals_mid = data(ind - inclusionlen : ind + inclusionlen, 48);
    yvals_low = data(ind - inclusionlen : ind + inclusionlen, 56);
    yvals_out = data(ind - inclusionlen : ind + inclusionlen, 74);
    yvals_hot = data(ind - inclusionlen : ind + inclusionlen, 50);
    p1 = polyfit(xvals, yvals_top, 1);
    vsmooth top(ind, :) = p1;
    p2 = polyfit(xvals, yvals_mid, 1);
    vsmooth mid(ind, :) = p2;
    p3 = polyfit(xvals, yvals_low, 1);
    vsmooth_low(ind, :) = p3;
    p4 = polyfit(xvals, yvals_out, 1);
    vsmooth_out(ind, :) = p4;
    p5 = polyfit(xvals, yvals_hot, 1);
    vsmooth_hot(ind, :) = p5;
end
disp('Searching...')
% find max and min slopes
topdt = [0, 0, 0, 0];
[topdt(1) topdt(2)] = max(vsmooth_top(sindex(1):sindex(3)-inclusionlen,1));
[topdt(3) topdt(4)] = min(vsmooth_top(sindex(1):sindex(3)-inclusionlen,1));
middt = [0, 0, 0, 0];
[middt(1) middt(2)] = max(vsmooth mid(sindex(1):sindex(3)-inclusionlen,1));
[middt(3) middt(4)] = min(vsmooth_mid(sindex(1):sindex(3)-inclusionlen,1));
lowdt = [0, 0, 0, 0];
[lowdt(1) lowdt(2)] = max(vsmooth_low(sindex(1):sindex(3)-inclusionlen,1));
[lowdt(3) lowdt(4)] = min(vsmooth low(sindex(1):sindex(3)-inclusionlen,1));
outdt = [0, 0, 0, 0];
[outdt(1) outdt(2)] = max(vsmooth_out(sindex(1):sindex(3)-inclusionlen,1));
[outdt(3) outdt(4)] = min(vsmooth_out(sindex(1):sindex(3)-inclusionlen,1));
hotdt = [0, 0, 0, 0];
[hotdt(1) hotdt(2)] = max(vsmooth_hot(sindex(1):sindex(3)-inclusionlen,1));
[hotdt(3) hotdt(4)] = min(vsmooth_hot(sindex(1):sindex(3)-inclusionlen,1));
% find max and min slope differences
stopmid = vsmooth_top((sindex(1):sindex(3) - inclusionlen), 1) -
    vsmooth mid((sindex(1):sindex(3) - inclusionlen), 1);
smidlow = vsmooth_mid((sindex(1):sindex(3) - inclusionlen), 1) -
        vsmooth_low((sindex(1):sindex(3) - inclusionlen), 1);
slowout = vsmooth_low((sindex(1):sindex(3) - inclusionlen), 1) -
        vsmooth out((sindex(1):sindex(3) - inclusionlen), 1);
shotmid = vsmooth hot((sindex(1):sindex(3) - inclusionlen), 1) -
        vsmooth_mid}((sindex(1):sindex(3) - inclusionlen), 1);
stopmiddt = [lllll}000000];
[stopmiddt(1) stopmiddt(2)] = max(stopmid);
[stopmiddt(3) stopmiddt(4)] = min(stopmid);
[smidlowdt(1) smidlowdt(2)] = max(smidlow);
[smidlowdt(3) smidlowdt(4)] = min(smidlow);
[slowoutdt(1) slowoutdt(2)] = max(slowout);
[slowoutdt(3) slowoutdt(4)] = min(slowout);
[shotmiddt(1) shotmiddt(2)] = max(shotmid);
```

```
[shotmiddt(3) shotmiddt(4)] = min(shotmid);
outstring = ['Smoothed Changerates may not fully include test beginning and end periods,
    analysis ending at t plus ' num2str(data((sindex(3)-inclusionlen),1) -
    data(sindex(1),1)) ' s; using ' num2str(inclusionlen * 2/10) ' s smoothing'];
outstring=[outstring crlf 'Max and min smoothed upper level changerates: '
    num2str(60*topdt(1)) ' degrees/min at t plus ' num2str(t(topdt(2))) ' s and '
    num2str(60*topdt(3)) ' degrees/min at t plus ' num2str(t(topdt(4))) ' s,
    respectively'];
disp(outstring)
if save_em == 1
    fprīntf(filehandle, '%s\r\n', outstring);
end
outstring=['Max and min smoothed mid (SP9) level changerates: ' num2str(60*middt(1)) '
    degrees/min at t plus ' num2str(t(middt(2))) ' s and ' num2str(60*middt(3)) '
    degrees/min at t plus ' num2str(t(middt(4))) ' s, respectively'];
disp(outstring)
if save_em == 1
    fprintf(filehandle, '%s\r\n', outstring);
end
outstring=['Max and min smoothed upper-mid level changerate differences: '
    num2str(60*stopmiddt(1)) ' degrees/min at t plus ' num2str(t(stopmiddt(2))) ' s
    and ' num2str(60*stopmiddt(3)) ' degrees/min at t plus ' num2str(t(stopmiddt(4)))
    ' s, respectively'];
disp(outstring)
if save em == 1
    fprīntf(filehandle, '%s\r\n', outstring);
end
outstring=['Max and min smoothed lower level changerates: ' num2str(60*lowdt(1)) '
        degrees/min at t plus ' num2str(t(lowdt(2))) ' s and ' num2str(60*lowdt(3))
        degrees/min at t plus ' num2str(t(lowdt(4))) ' s, respectively'];
disp(outstring)
if save_em == 1
        fprīntf(filehandle, '%s\r\n', outstring);
end
outstring=['Max and min smoothed mid-lower level changerate differences: '
    num2str(60*smidlowdt(1)) ' degrees/min at t plus ' num2str(t(smidlowdt(2))) ' s
    and ' num2str(60*smidlowdt(3)) ' degrees/min at t plus ' num2str(t(smidlowdt(4)))
        ' s, respectively'];
disp(outstring)
if save em == 1
    fprintf(filehandle, '%s\r\n', outstring);
end
outstring=['Max and min smoothed outlet level changerates: ' num2str(60*outdt(1)) '
        degrees/min at t plus ' num2str(t(outdt(2))) ' s and ' num2str(60*outdt(3)) '
        degrees/min at t plus ' num2str(t(outdt(4))) ' s, respectively'];
disp(outstring)
if save em == 1
    fprintf(filehandle, '%s\r\n', outstring);
end
outstring=['Max and min smoothed lower-outlet level changerate differences:
        num2str(60*slowoutdt(1)) ' degrees/min at t plus ' num2str(t(slowoutdt(2))) ' s
        and ' num2str(60*slowoutdt(3)) ' degrees/min at t plus ' num2str(t(slowoutdt(4)))
        ' s, respectively'];
disp(outstring)
if save_em == 1
    fprintf(filehandle, '%s\r\n', outstring);
end
outstring=['Max and min smoothed hot (SP8) level changerates: ' num2str(60*hotdt(1)) '
        degrees/min at t plus ' num2str(t(hotdt(2))) ' s and ' num2str(60*hotdt(3)) '
        degrees/min at t plus ' num2str(t(hotdt(4))) ' s, respectively'];
disp(outstring)
if save_em == 1
    fprintf(filehandle, '%s\r\n', outstring);
end
outstring=['Max and min smoothed hot-mid (SP8-SP9) level changerate differences: '
        num2str(60*shotmiddt(1)) ' degrees/min at t plus ' num2str(t(shotmiddt(2))) ' s
```

```
        and ' num2str(60*shotmiddt(3)) ' degrees/min at t plus ' num2str(t(shotmiddt(4)))
        ' s, respectively'];
disp(outstring)
if save em == 1
    fprintf(filehandle, '%s\r\n', outstring);
end
% Property Collection
steamprops = zeros(length(t), 60 );
testrelationship = 0*t;
testrelationship2 = testrelationship;
testrelationship3 = testrelationship;
testrelationship4 = testrelationship;
disp('Determining and Collecting Fluid Properties ... ');
parfor index=1:length(t)
    % put the sparger & pool middle steam/water properties together in a
    % table, where the source P/T/h used smoothing algorithms
    e1 = TotalEnth(index); % sparger steam enthalpy + velocity
    e2 = AdjustedEnth_DS(index); % sparger enthalpy
    e3 = hmid(index); % pool mid enthalpy (bulk)
    e4 = hsatL(index, 2); % sparger water saturation enthalpy
    e5 = hsatG(index, 2); % sparger steam saturation enthalpy
    e6 = e4 - e3; % pool mid subcooling enthalpy
    e7 = e1 - e4; % sparger steam full condensation enthalpy
    e8 = XSteam('h_pT', (smoothedP(index)*0.0689475728 + 0.037), stratsmooth_3(index)); %
        smoothed plume hot spot enthalpy
    e9 = htop(index); % pool rear upper smoothed enthalpy
    e10 = hlow(index); % pool rear lower smoothed enthalpy
    e11 = hout(index); % pool outlet smoothed enthalpy
    rho1 = XSteam('rho_ph', spargerP(index), e3); % pool mid (bulk) density
    rho2 = XSteam('rhoL_p', spargerP(index)); % sparger saturated water density
    rho3 = XSteam('rhoV_p', spargerP(index)); % sparger saturated steam density
    rho4 = XSteam('rho_ph', spargerP(index), e2); % sparger steam flow density
    x1 = AdjustedQuality(index, 2); % sparger steam quality - unbounded
    x2 = x1; % sparger steam quality -- within bounds
    if x2 > 1
        % keep x2 within [0,1]
        x2 = 1;
    elseif x2 < 0
        x2 = 0;
    end
    vf1 = x2 / (x2 + ((1 - x2)*rho3/rho2)); % sparger void fraction
    v1 = velocities(index, 4); % sparger velocity
    md1 = smoothedMSLmdot(index); % mdot steam
    md2 = smoothwater(index); % mdot water into steam line
    if twophasetest == 1
        md3 = smoothedMSLmdot(index) + smoothwater(index); % mdot sparger steam total
    else
        md3 = smoothedMSLmdot(index);
    end
    mu1 = XSteam('my_ph', spargerP(index), e3); % sparger subcooled water viscosity
    mu2 = XSteam('my_ph', spargerP(index), e4); % sparger saturated water viscosity
    mu3 = XSteam('my_ph', spargerP(index), e5); % sparger saturated steam viscosity
    mu4 = XSteam('my_ph', spargerP(index), e2); % sparger steam viscosity
    if isnan(mu4)
        % homogeneous two-phase sparger steam viscosity
        mu4 = (x2 * mu3 * rho4 / rho3) + ( (1-x2) * mu2 * rho4 / rho2);
    end
    sig1 = XSteam('st_T', stratsmooth_4(index)); % s/w surface tension for Tsat = Tmid
    sig2 = XSteam('st_p', spargerP(index)); % s/w surface tension for Psat = sparger P
    p1 = spargerP(index); % sparger pressure (bar)
    p2 = smoothedP(index)*0.0689475728; % pool airspace pressure, bar
    p3 = p2 + 0.037; % approx mid-level P, bar
    p4 = XSteam('psat_T', stratsmooth_4(index)); % saturation (vapor) pressure at Tmid
    p5 = XSteam('psat_T', stratsmooth_3(index)); % saturation (vapor) pressure at Tplume
```

```
t1 = stratsmooth 4(index); % mid-level bulk temperature
t2 = XSteam('T_ph', spargerP(index), e2); % sparger steam temperature
t3 = XSteam('Tsat_p', spargerP(index)); % sparger steam saturation temperature
t4 = stratsmooth 3(index); % smoothed plume T
t5 = stratsmooth_1(index); % Upper-Level Pool Rear Smoothed Temperature
t6 = stratsmooth 2(index); % Lower-Level Pool Rear Smoothed Temperature
t7 = stratsmooth_5(index); % Pool Outlet Smoothed Temperature
cp1 = XSteam('Cp ph', p3, e3); % pool mid bulk heat capacity
cp2 = XSteam('CpL_p', p1); % sparger saturated water heat capacity
cp3 = XSteam('CpV_p', p1); % sparger saturated steam heat capacity
k1 = XSteam('tc_ph', p3, e3); % pool bulk mid thermal conductivity
k2 = XSteam('tc\overline{L}p', p1); % sparger saturated water thermal conductivity
k3 = XSteam('tcL p', p1); % sparger saturated steam thermal conductivity
g1 = md3 / sparger_area;
d1 = 2*0.020447; % sparger diameter (m)
d2 = 2*0.004625; % water injection line diameter
d3 = 15.5*0.0254; % sparger outlet elevation
d4 = coldlevels(index)/100;% pool cold level
d5 = hotdepth(index)/100; % pool hot level
re_tp = g1 * d1 / mu4; % two-phase Reynolds number (sparger steam)
pr\overline{1}=1000 * mu1 * cp1 / k1; % pool mid (bulk) water Prandtl number
pr2 = 1000 * mu2 * cp2 / k2; % sparger saturated water Prandtl number
pr3 = 1000 * mu3 * cp3 / k3; % sparger saturated steam Prandtl number
cs1 = XSteam('w_ph', p3, e3); % pool mid bulk sonic velocity
cs2 = XSteam('w\overline{L_p', p1); % sparger saturated water sonic velocity}
cs3 = XSteam('wV p', pl); % sparger saturated steam sonic velocity
cs4 = XSteam('w_ph', p1, e2); % sparger steam sonic velocity
if isnan(cs4)
    % determine a homogeneous 2-phase sonic velicity
    % DOUBLE-CHECK THIS RELATIONSHIP!!!!
    cs4 = 1 / ( ((1-vf1)*sqrt( ((1-vf1)/(cs2^2)) + ((vf1*rho2/rho3)/(cs3^2)) )) +
    ((vf1)*sqrt( ((vf1)/(cs3^2)) + (((1-vf1)*rho3/rho2)/(cs2^2)) )));
end
% additional derived quantities for use in the computation
bp = sqrt(p4./p1);
ja_tp = e6 ./ e7;
ja_w = (e4-e3)./(e5-e4);
gr_s = 9.81 * ((rho2 - rho4)./rho4) .* (d5 - d3).^3 ./ (mu4./rho4).^2;
gr_ss = 9.81 * ((rho1 - rho3)./rho3) .* (d5 - d3).^3 ./ (mu3./rho3).^2;
gr_w = 9.81 * ((rho1 - rho2)./rho2) .* (d5 - d3).^3 ./ (mu2./rho2).^2;
ri_s = 9.81 * ((rho1 - rho4)./rho4) .* (d5 - d3).^1 ./ (v1.^2);
fr_s = v1 ./ sqrt(9.81 * (d5-d3));
we = rho4 .* v1.^2 .* d1 ./ sig2;
% store it all
steamprops(index, :) = [g1, d1, d2, d3, d4, d5, x1, x2, vf1, v1, re_tp, sig1, sig2,
    md1, md2, md3, t1, t2, t3, t4, t5, t6, t7, cp1, cp2, cp3, k1, k2, k3, pr1, pr2,
    pr3, rho1, rho2, rho3, rho4, mu1, mu2, mu3, mu4, cs1, cs2, cs3, cs4, p1, p2, p3,
    p4, p5, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11];
% calculate the Mixing Number
% testrelationship older(index) = ((e6 ./e7) .^(9/8)) .* (e3 ./ e6) .^ (1/4) .*
    (e4 ./ e5) .* (e2 ./ e7) .^ (1/6) .* (re_tp .^(-1/8)) .*
    ( ( (0.5 .*rho4 .*v1 .*v1/100000) + p4) ./(p1) ) .* ((p1 ./ p4) ) .* (rho3 ./
    rho4) .* (rho2 ./ rho3) .^0.5 .* (rho2 ./ rho1) .* (sig1 ./ sig2) .*
    (pr1 .^(1/4)) .* (p1 .* d1 ./ sig2) .^(-3/8) .* x2 .^(1/8) .* (p4 .* d1 ./
    sig1) .^(1/8);
% there's still a weird v1 dependence
% (ja_w.^(-1/8) .* x1.^(-5/8) .* re_tp.^(1/2) .* pr1.^(1/4) .* ( (p4 + (0.5 .*
    rho4 .* v1 .^ 2 ./100000))./p1 ).^(1/2) .* (gr w ./ (re tp.^2)).^(1/2) .*
    (rho3./rho2).^(1/4) .* (v1./cs2).^(3/8) .* (cs\overline{3./cs2).^(1/2) .* (sig2./sig1).^(-}
    1/4) .* ((t3+273.15)./(t1+273.15)) .^ (-1/4)) .* ((d5-d3)./1.5).^(-1/2) .*
    gr_w.^(1/16) .* ( (1 - (p4./p1).^4) + (p4./p1).^4 .* gr_s ./ gr_w .*
    pr1 .^(1)) .^ (8/16) .* (pr1.*pr2./(pr1 + pr2)).^(1/4) ;
```

```
% testrelationship_old(index) = (re_tp ).^(10/16) .* pr1 .^(1/8) .* ja_w .^ (-1/2) .*
    (rho2./rho3).^(8/64) .* (gr w./(re tp.^2)) .^(+21/64) .* ((d5-d3)./1.5 ).^(-
    3/4) .* x1.^(-2/16) .* ((1-(p4./p1).^4) + (p4./p1).^4..*gr_s./gr_w.*1) .^ (21/64);
```

\% derived from Key Point \#2 and \#4, but probably won't work for $x<0.5$
\% or for mdot $<20 \mathrm{~g} / \mathrm{s}$
\% set for KP 2, 4, 5, 7, 10
\% there is a common core, and a multiplier
\% the multiplier is common through $K P$ 4, but is unique for $K P$ 5, 7, and
\% 10 (correlation numbers 2, 3, and 4, respectively)
partcrazy = pr1 .^ (8/16) .* (mu4./mu1) .^ ((+8/16) ) .* (rho4./rho1) .^ ((8/16) ) .*

((-8/16).*bp) );
testrelationship(index) $=$ partcrazy.* (rho2./rho3).^((4/16) + ((3/16).*bp)) ;
testrelationship2(index) = partcrazy .* (rho2./rho3).^((13/16) ) ;
testrelationship3(index) = partcrazy .* (rho2./rho3).^((15/16) ) ;
testrelationship4 (index) = partcrazy .* (rho2./rho3).^((16/16) ) ;
\% testrelationship(index) = pr1.^(1/2) .* (mu4./mul) .^(1/4) .* (rho4./rho1) .^
(1/2) .* (rho4 .* 1000.*e7 ./ (100000.*p1) ) .^(1/2) .* ja_w.^ (-6/8 +
( (8/16).*bp)) .* x1 .^ (12/16-((1/2).*bp)) .* re tp .^ (1/2) .* ri s. .^ ( (1/4)
$+((1 / 2) . * \mathrm{bp}))$.* fr s.^ $((3 / 16)+((3 / 8) . * \mathrm{bp}))$;
\% testrelationship(index) $=$ x2 .^(12/16) .* ((re tp.^0.5)./ja w) .^ (16/16) .*
pr1.^(+16/32).* ( (ri_s) .^(16/16) .*x2 .^(-8/16)) .^( $0.25+$
0.5*(p4./p1).^(32/64) ) .* (mu4./mu1).^(2/8) .*
( (0.5*v1.^2)./(1000*e6)).^(5/32) .* ja_w.^(+8/16) .*
((1000*e7)./(100000*p1./rho4)).^(+1/2).* (rho4./rho1).^(1/2) ;
\% testrelationship(index) $=\quad x 2$.^(12/16) .* ((re_tp.^0.5)./ja_w) .^ (16/16) .*
pr1.^(+16/32).* pr2.^(1/2).* ( (ri_s) .^(16/16) .*x2 .^ (-
8/16)) .^( (p4./p1).^(32/64) ) .* ( $(t 1+273.15) . /(t 2+273.15)) . \wedge(-16 / 8)$.*

((1000*e7)./(100000*p1./rho4)).^(1/1) .* (rho4./rho1).^(1/2).*(sig1./sig2);
\% testrelationship (index) $=x 1 . \wedge(1 / 16) . *\left(\left(r e \_t p . \wedge 0.5\right) . / j a \_w\right) . \wedge(12 / 16) . *$
pr1.^(-0/32).* pr2.^(1/2).* (pr1.^(-8/16).*(pr2./pr1) .^ (-32/16) .*
ri_s .^0.5 .*x1.^(-4/16)) .^( (p4./p1).^(32/64)) .* ((d5-d3)./1.5).^(+2/4) .*
$\exp (-1 *(16 / 16) . *(p 4 . / p 1) . \wedge(2 / 4)) . *((t 1+273.15) . /(t 3+273.15)) . \wedge(-16 / 8)$.*
(rho2./rho3).^(-4/16) .* (mu3./mu2).^(1/2) .* ja_w.^(-4/16) .*
((1000*e7)./(100000*p1./rho4)).^(1/1) .* (rho3./rho4).^0.25 .*
((rho1)./rho2).^(2);
\% testrelationship (index) $=$ x1 .^(32/32) .* jaww.^(-8/16) .* re tp .^ (28/16) .*
pr1.^(4/32).* pr2.^(6/4).* ri_s .^((t1+273.15)./(t3+273.15)) .* ((d5-
$\mathrm{d} 3) . / 1.5) . \wedge(-3 / 4)$.* $\exp \left(-(\mathrm{p} 4 . / \mathrm{p} 1) .^{\wedge}(2 / 4)\right)$.*
((t1+273.15)./(t3+273.15)).^(4/8) .* (rho2./rho3).^(1/16);
\% testrelationship2 (index $)=($ re tp $) .^{\wedge}(8 / 16) . * \operatorname{pr1} .^{\wedge}(2 / 16)$.* pr2 .^ (1/16) .*
ja w .^ (-8/16) .* ri s.^(+4/16) .* ((d5-d3)./1.5 ).^(-1/4) .* x1.^(+4/16) .*
$\exp (-((\mathrm{p} 4) . / \mathrm{p} 1) \cdot \wedge 0.5)^{-} . *(\mathrm{p} 4 . / \mathrm{p} 1) .^{\wedge}(1 / 16) ;$
end
steampropsdesc = 'Sparger Massflux (kg/m2-s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity ( $\mathrm{m} / \mathrm{s}$ ) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam T t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, Lower-Level Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity ( $W / m-K$ ) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity
cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T mid Vapor Pressure p4, T Plume Vapor Pressure p5, Sparger Total Stagnation $h(k J / k g)$ e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta h e6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy e11';
disp(' ... Done! ');

```
To decompose the steam properties table:
```

g1 = steamprops(:, 01 );
d1 = steamprops(:, 02 );
d2 = steamprops(:, 03);
d3 = steamprops(:, 04 );
d4 = steamprops(:, 05 );
d5 = steamprops (:, 06 );
$\mathrm{x} 1=$ steamprops (:, 07 );
x2 = steamprops(:, 08);
vf1 = steamprops(:, 09 );
v1 = steamprops(:, 10 );
re_tp = steamprops (:, 11 );
sig $1=$ steamprops (:, 12 );
sig2 = steamprops(:, 13 );
md1 = steamprops(:, 14 );
md2 = steamprops(:, 15 );
md3 = steamprops (:, 16 );
t1 $=$ steamprops (:, 17 );
t2 $=$ steamprops (:, 18 );
t3 $=$ steamprops (:, 19);
t4 = steamprops(:, 20 );
t5 $=$ steamprops (:, 21);
t6 = steamprops (:, 22 );
t7 $=$ steamprops (:, 23);
cp1 = steamprops(:, 24 );
cp2 = steamprops (:, 25 );
cp3 = steamprops(:, 26 );
k1 = steamprops(:, 27 );
k2 = steamprops(:, 28 );
k3 = steamprops(:, 29);
pr1 = steamprops(:, 30);
pr2 = steamprops(:, 31 );
pr3 = steamprops (:, 32 );
rho1 = steamprops(:, 33 );
rho2 $=$ steamprops (: 34 );
rho3 = steamprops (:, 35 );
rho4 $=$ steamprops (:, 36 );
mul $=$ steamprops (:, 37 );
mu2 = steamprops(:, 38);
mu3 $=$ steamprops (:, 39);
mu4 = steamprops(:, 40 );
cs1 = steamprops(:, 41);
cs2 = steamprops(:, 42 );
cs3 $=$ steamprops (: 43 );
cs4 = steamprops(:, 44 );
p1 $=$ steamprops (:, 45);
p2 = steamprops (:, 46 );
p3 $=$ steamprops $(:, 47)$;
p4 = steamprops(:, 48);
p5 = steamprops (:, 49);
e1 = steamprops(:, 50 );
e2 = steamprops(:, 51 );
e3 = steamprops (:, 52 );
e4 = steamprops(:, 53 );
e5 $=$ steamprops(:, 54);

```
% e6 = steamprops(:, 55 );
% e7 = steamprops(:, 56 );
e8 = steamprops(:, 57);
e9 = steamprops(:, 58 );
e10 = steamprops(:, 59);
e11 = steamprops(:, 60 );
%
% ======================
% DATA ANALYSIS SECTION
% ======================
%
% present some run details
meansteam = mean(1000*trmdat (:,107));
sigsteam = std(1000*trmdat(:,107));
meanfeedwater = mean(1000*trmdat (:,102));
sigfeed = std(1000*trmdat(:,102));
meaninject = mean(1000*trmdat(:,127));
siginject = std(1000*trmdat(:,127));
outstring=['The mean steam flow rate was ' num2str(meansteam) ' +/- ' num2str(sigsteam) '
        g/s'];
disp(outstring)
if save em == 1
    fprīntf(filehandle, '%s\r\n', outstring);
end
outstring=['The mean feedwater flow rate was ' num2str(meanfeedwater) ' +/- '
    num2str(sigfeed) ' g/s'];
disp(outstring)
if save em == 1
    fprīntf(filehandle, '%s\r\n', outstring);
end
outstring=['The mean water injection to steam flow rate was ' num2str(meaninject) ' +/- '
    num2str(siginject) ' g/s'];
disp(outstring)
if save_em == 1
    fpríntf(filehandle, '%s\r\n', outstring);
end
% condensing region data
if stratified == 1
    % condensing SP8-SP9 average DT
    avcrdt = mean(stratsmooth_3(stratstartind:stratendind) -
        stratsmooth_4(stratstartind:stratendind));
    avcrdtsd = std(stratsmooth_3(stratstartind:stratendind) -
        stratsmooth_4(stratstartind:stratendind));
    % upper-SP8 average DT
    avtcdt = mean(stratsmooth_3(stratstartind:stratendind) -
        stratsmooth_1(stratstartind:stratendind));
    avtcdtsd = std(stratsmooth_3(stratstartind:stratendind) -
        stratsmooth_1(stratstartind:stratendind));
    outstring=['Mean Smoothed Condensing Region SP8-SP9 delta T is ' num2str(avcrdt) '
        +/- ' num2str(avcrdtsd) ' C over the Stratification Period, beginning at '
        num2str(stratsmooth_3(stratstartind) -stratsmooth_4(stratstartind)) ' C and ending
        at ' num2str(stratsmooth_3(stratendind)-stratsmooth_4(stratendind)) ' C'];
```

```
    outstring=[outstring crlf 'Mean Smoothed SP8-Upper Pool delta T is ' num2str(avtcdt)
        ' +/- ' num2str(avtcdtsd) ' C over the Stratification Period, beginning at '
        num2str(stratsmooth_3(stratstartind)-stratsmooth_1(stratstartind)) ' C and ending
        at ' num2str(stratsmooth 3(stratendind)-stratsmooth 1(stratendind)) ' C'];
    outstring = [outstring crlf ''The stratification period \overline{begins and ends with Smoothed}
        SP8 readings of ' num2str(stratsmooth 3(stratstartind)) ' and '
        num2str(stratsmooth_3(stratendind)) ' C, respectively' ];
    outstring = [outstring crlf 'The stratification period begins and ends with
        condensing flows of ' num2str(mdcondinj(stratstartind)) ' and '
        num2str(mdcondinj(stratendind)) ' kg/s, respectively.'];
    outstring = [outstring crlf 'The stratification period begins and ends with
        condensing+cooling flows of ' num2str(mdcondinjcool(stratstartind)) ' and '
        num2str(mdcondinjcool(stratendind)) ' kg/s, respectively.'];
    outstring = [outstring crlf 'The stratification period had a mean sparger steam
        enthalpy of ' num2str(mean(AdjustedEnth DS(stratstartind:stratendind))) ' +/- '
        num2str(std(AdjustedEnth_DS(stratstartind:stratendind))) ' kJ/kg.'];
    disp(outstring)
    if save_em == 1
        fprintf(filehandle, '%s\r\n', outstring);
    end
else
    outstring = 'No stratification; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.'';
    disp(outstring)
    if save_em == 1
        fprintf(filehandle, '%s\r\n', outstring);
    end
end
outstring = ['At plume detection, the condensing and condensing+cooling flows are '
    num2str(mdcondinj(plume_ind)) ' and ' num2str(mdcondinjcool(plume_ind)) ' kg/s,
    respectively'];
plumepse = [NaN, NaN];
plumepse(1) = mean(smoothedenth(plume_ind:stratendind));
plumepse(2) = std(smoothedenth(plume_ind:stratendind));
if isnan(plumepse(1)) || isinf(plumepse(1))
    plumepse(1) = 0;
end
if isnan(plumepse(2)) || isinf(plumepse(2))
    plumepse(2) = 0;
end
outstring = [outstring crlf 'The plume period had a mean steam enthalpy of '
        num2str(plumepse(1)) ' +/- ' num2str(plumepse(2)) ' kJ/kg.'];
disp(outstring)
if save_em == 1
    fprintf(filehandle, '%s\r\n', outstring);
end
% stratification data
% Top-Mid temps
topmidsm = stratsmooth_1 - stratsmooth_4;
% Top-Lower temps
toplowsm = stratsmooth_1 - stratsmooth_2;
% Mid-Lower temps
midlowsm = stratsmooth_4 - stratsmooth_2;
% Upper-Outlet temps
upoutsm = stratsmooth_1 - stratsmooth_5;
% Mid-outlet temps
midoutsm = stratsmooth_4 - stratsmooth_5;
```

```
% Lower-outlet temps
lowoutsm = stratsmooth_2 - stratsmooth_5;
% Find Max Smoothed Top-Mid stratification
[y, ind] = max(topmidsm);
outstring=['Maximum Smoothed Top-Mid delta T is ' num2str(y) ' degrees C at t plus '
        num2str(t(ind)) ' s with T_upper = ' num2str(stratsmooth_1(ind)) ' C and T_mid =
        ' num2str(stratsmooth 4(ind)) ' C'];
outstring = [outstring crlf 'At t plus ' num2str(t(ind)) ' s, Smoothed SP8-SP9 is ''
        num2str(stratsmooth 3(ind) - stratsmooth 4(ind)) ' C and Smoothed SP8-Top is '
        num2str(stratsmooth_3(ind) - stratsmooth_1(ind)) ' C, where Smoothed SP8 is '
        num2str(stratsmooth_3(ind)) ' C and Pool - P = ' num2str(trmdat(ind, 97)) ' psia'];
disp(outstring)
if save_em == 1
        fprintf(filehandle, '%s\r\n', outstring);
end
% Find Max Smoothed Top-Lower stratification
[y, ind] = max(toplowsm);
outstring=['Maximum Smoothed Top-Lower delta T is ' num2str(y) ' degrees C at t plus '
    num2str(t(ind)) ' s with T_upper = ' num2str(stratsmooth_1(ind)) ' C and T_low =
    ' num2str(stratsmooth 2(in\overline{d})) ' C'];
outstring = [outstring crlf 'At t plus ' num2str(t(ind)) ' s, Smoothed SP8-SP9 is '
        num2str(stratsmooth_3(ind) - stratsmooth_4(ind)) ' C and Smoothed SP8-Top is '
        num2str(stratsmooth_3(ind) - stratsmooth_1(ind)) ' C, where Smoothed SP8 is '
        num2str(stratsmooth_3(ind)) ' C and Pool_P = ' num2str(trmdat(ind, 97)) ' psia'];
disp(outstring)
if save_em == 1
        fprīntf(filehandle, '%s\r\n', outstring);
end
```

```
% Find Max Smoothed Mid-lower stratification
```

% Find Max Smoothed Mid-lower stratification
[y, ind] = max(midlowsm);
[y, ind] = max(midlowsm);
outstring=['Maximum Smoothed Mid-Lower delta T is ' num2str(y) ' degrees C at t plus '
outstring=['Maximum Smoothed Mid-Lower delta T is ' num2str(y) ' degrees C at t plus '
num2str(t(ind)) ' s with T_mid = ' num2str(stratsmooth_4(ind)) ' C and T_low = '
num2str(t(ind)) ' s with T_mid = ' num2str(stratsmooth_4(ind)) ' C and T_low = '
num2str(stratsmooth 2(ind)) ' C'];
num2str(stratsmooth 2(ind)) ' C'];
outstring = [outstring crlf
outstring = [outstring crlf
num2str(stratsmooth_3(ind) - stratsmooth_4(ind)) ' C and Smoothed SP8-Top is '
num2str(stratsmooth_3(ind) - stratsmooth_4(ind)) ' C and Smoothed SP8-Top is '
num2str(stratsmooth_3(ind) - stratsmooth_1(ind)) ' C, where Smoothed SP8 is '
num2str(stratsmooth_3(ind) - stratsmooth_1(ind)) ' C, where Smoothed SP8 is '
num2str(stratsmooth_3(ind)) ' C and Pool P = ' num2str(trmdat(ind, 97)) ' psia'];
num2str(stratsmooth_3(ind)) ' C and Pool P = ' num2str(trmdat(ind, 97)) ' psia'];
disp(outstring)
disp(outstring)
if save_em == 1
if save_em == 1
fprintf(filehandle, '%s\r\n', outstring);
fprintf(filehandle, '%s\r\n', outstring);
end
end
% Find Max Smoothed Top-Outlet stratification
[y, ind] = max(upoutsm);
outstring=['Maximum Smoothed Top-Outlet delta T is ' num2str(y) ' degrees C at t plus '
num2str(t(ind)) ' s with T_upper = ' num2str(stratsmooth_1(ind)) ' C and T_out =
' num2str(stratsmooth_5(in\overline{d})) ' C'];
outstring = [outstring crlf 'At t plus ' num2str(t(ind)) ' s, Smoothed SP8-SP9 is '
num2str(stratsmooth_3(ind) - stratsmooth_4(ind)) ' C and Smoothed SP8-Top is '
num2str(stratsmooth_3(ind) - stratsmooth_1(ind)) ' C, where Smoothed SP8 is '
num2str(stratsmooth_3(ind)) ' C and Pool P = ' num2str(trmdat(ind, 97)) ' psia'];
disp(outstring)
if save_em == 1
fprintf(filehandle, '%s\r\n', outstring);
end
% Find Max Smoothed Mid-Outlet stratification
[y, ind] = max(midoutsm);
outstring=['Maximum Smoothed Mid-Outlet delta T is ' num2str(y) ' degrees C at t plus '
num2str(t(ind)) ' s with T_mid = ' num2str(stratsmooth_4(ind)) ' C and T_out = '
num2str(stratsmooth_5(ind)) ' C'];

```
```

outstring = [outstring crlf 'At t plus ' num2str(t(ind)) ' s, Smoothed SP8-SP9 is '
num2str(stratsmooth_3(ind) - stratsmooth_4(ind)) ' C and Smoothed SP8-Top is '
num2str(stratsmooth_3(ind) - stratsmooth_1(ind)) ' C, where Smoothed SP8 is '
num2str(stratsmooth 3(ind)) ' C and Pool P = ' num2str(trmdat(ind, 97)) ' psia'];
disp(outstring)
if save em == 1
fprintf(filehandle, '%s\r\n', outstring);
end

```
\% Find Max Smoothed Lower-Outlet stratification
[y, ind] \(=\max (\) lowoutsm);
outstring=['Maximum Smoothed Lower-Outlet delta \(T\) is ' num2str(y) ' degrees \(C\) at t plus '
        num2str (t(ind)) ' \(s\) with \(T_{\_}\)low \(=\)' num2str (stratsmooth_2(ind)) ' \(C\) and \(T\) out \(=\) '
        num2str(stratsmooth 5 (ind)) ' C'];
outstring \(=\) [outstring crlf 'At \(t\) plus ' num2str(t(ind))' s, Smoothed SP8-SP9 is '
        num2str (stratsmooth_3(ind) - stratsmooth_4(ind))' C and Smoothed SP8-Top is '
        num2str (stratsmooth_3(ind) - stratsmooth_1 (ind)) ' C, where Smoothed SP8 is
        num2str (stratsmooth_3(ind)) ' \(C\) and Pool \(P=\) ' num2str(trmdat(ind, 97)) ' psia'];
disp (outstring)
if save em == 1
        fprintf(filehandle, '\%s\r\n', outstring);
end
\% Find Max Sparger Local Relative Temperature
[y, ind] = max (stratsmooth_3 - stratsmooth_4);
\% Store the Key Point
keypoints ind(14) = ind;
outstring=['Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is ' num2str(y) ' degrees
        C at (KEY POINT \#14) t plus ' num2str(t(ind)) ' s with T_SP8 = '
        num2str(stratsmooth_3(ind)) ' C and T_SP9 = ' num2str(stratsmooth_4(ind)) ' C and
        Pool \(\mathrm{P}=\) ' num2str(Ērmdat(ind, 97)) '-psia'];
disp (outstring)
if save_em == 1
    fprintf(filehandle, '\%s\r\n', outstring);
end
\% Find Max Sparger Local Relative Temperature (top)
[y, ind] = max (stratsmooth 3 - stratsmooth 1);
outstring=['Maximum Smoothēd Condensing Reḡion SP8-Upper delta \(T\) is ' num2str(y) '
    degrees \(C\) at \(t\) plus ' num2str(t(ind)) ' \(s\) with T_SP8 = '
        num2str(stratsmooth_3(ind)) ' C and T_upper = ' num2str(stratsmooth_1(ind)) ' C
        and Pool \(\mathrm{P}=\) ' num2 \(\bar{s}\) tr (trmdat (ind, 97)) ' psia'];
disp(outstring)
if save_em == 1
    fprintf(filehandle, '\%s\r\n', outstring);
end
```

% unsmoothed basic stratification data
% Top-Mid temps
topmid = [ (trmdat(:,60)-trmdat(:,58)), (trmdat(:,44)-trmdat(:,42)), (trmdat(:,28)-
trmdat(:,26))];
topmidno4 = [ t*0, (trmdat(:,44)-trmdat(:,42)), (trmdat(:,28)-trmdat(:,26))];
% Top-Lower temps
toplow = [ (trmdat(:,60)-trmdat(:,56)), (trmdat(:,44)-trmdat(:,40)), (trmdat(:,28)-
trmdat(:,24))];
% Mid-Lower temps
midlow = [ (trmdat(:,58)-trmdat(:,56)), (trmdat(:,42)-trmdat(:,40)), (trmdat(:,26)-
trmdat(:,24))];
midlowno4 = [ t*0, (trmdat(:,42)-trmdat(:,40)), (trmdat(:,26)-trmdat(:,24))];

```
```

% Upper-Outlet temps
upout = [ (trmdat(:,60)-trmdat(:,74)), (trmdat(:,44)-trmdat(:,74)), (trmdat(:,28)-
trmdat(:,74))];
% Mid-outlet temps
midout = [ (trmdat(:,58)-trmdat(:,74)), (trmdat(:,42)-trmdat(:,74)), (trmdat(:,26)-
trmdat(:,74))];
midoutno4 = [ t*0, (trmdat(:,42)-trmdat(:,74)), (trmdat(:,26)-trmdat(:,74))];
% Lower-outlet temps
lowout = [ (trmdat(:,56)-trmdat(:,74)), (trmdat(:,40)-trmdat(:,74)), (trmdat(:,24)-
trmdat(:,74))];
% Find Max Top-Mid stratification
[temps, inds] = max(topmidno4);
[y, ind] = max(temps);
% get T values
if ind == 1
% rear set
tempsc = [trmdat(inds(ind), 60), trmdat(inds(ind), 58)];
elseif ind == 2
% middle set
tempsc = [trmdat(inds(ind), 44), trmdat(inds(ind), 42)];
elseif ind == 3
% front set
tempsc = [trmdat(inds(ind), 28), trmdat(inds(ind), 26)];
else
% oops
tempsc = [0, 0];
end
% Store the Key Point
keypoints_ind(4) = inds(ind);
outstring=['Maximum Top-Mid delta T is ' num2str(temps(ind)) ' degrees C at (KEY POINT \#4)
t plus ' num2str(t(inds(ind))) ' s ignoring SP 4, with temperatures of '
num2str(tempsc(1)) ' and ' num2str(tempsc(2)) ' C, respectively, at Set \# '
num2str(ind) ', where Pool P = ' num2str(trmdat(inds(ind), 97)) ' psia and
T_outlet = ' num2str(trmdat(inds(ind), 74)) ' C'];
disp(outstring)
if save_em == 1
fprintf(filehandle, '%s\r\n', outstring);
end
% Find the Top-Mid Reconvergence Point
RP = length(t);
PV = temps(ind);
foundreconverge = 0;
for n = inds(ind):(RP-600)
dtvals = MTMDeltaT(n:n+600);
% look at t throug t plus 1 minute, and check for reconvergence for the
% entire minute in the smoothed mid-axis data
% reconvergence is delta T less than 1 degree OR less than 1/3 of the
% Peak Difference
if (sum(dtvals > (PV/3)) == 0) || (sum(dtvals > (1)) == 0)
% found it!
foundreconverge = 1;
break
end
end
if foundreconverge == 0
% if the standard method did not find reconvergence, check the tail end
for n = RP-600 : RP
dtvals = MTMDeltaT(n:RP);
% look at t through the end, and check for reconvergence for the
% entire period (< 1 min) in the smoothed mid-axis data
% reconvergence is delta T less than 1 degree OR less than 1/3 of the
% Peak Difference
if (sum(dtvals > (PV/3)) == 0) || (sum(dtvals > (1)) == 0)

```
```

                % found it!
                foundreconverge = 1;
                break
            end
    end
    end
if foundreconverge == 1
outstring = ['Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus ' num2str(t(n))
' s with a Smoothed Mid-Axis Top-Mid Delta T of ' num2str(MTMDeltaT(n)) ' C and a
raw SP12 Reading of ' num2str(trmdat(n,42)) ' C. '];
else
n = RP;
outstring = ['Top-Mid Reconvergence NOT Detected, setting t to (KEY POINT \#5) t plus
' num2str(t(n)) ' s with a Smoothed Mid-Axis Top-Mid Delta T of '
num2str(MTMDeltaT(n)) ' C and a raw SP12 Reading of ' num2str(trmdat(n,42)) ' C.
'];
end
disp(outstring)
if save em == 1
fprintf(filehandle, '%s\r\n', outstring);
end
keypoints_ind(5) = n;
% Find Max Top-Lower stratification
[temps, inds] = max(toplow);
[y, ind] = max(temps);
% get T values
if ind == 1
% rear set
tempsc = [trmdat(inds(ind), 60), trmdat(inds(ind), 56)];
elseif ind == 2
% middle set
tempsc = [trmdat(inds(ind), 44), trmdat(inds(ind), 40)];
elseif ind == 3
% front set
tempsc = [trmdat(inds(ind), 28), trmdat(inds(ind), 24)];
else
% oops
tempsc = [0, 0];
end
outstring=['Maximum Top-Lower delta T is ' num2str(temps(ind)) ' degrees C at t plus '
num2str(t(inds(ind))) ' s, with temperatures of ' num2str(tempsc(1)) ' and '
num2str(tempsc(2)) ' C, respectively, at Set \# ' num2str(ind) ', where Pool P =
' num2str(trmdat(inds(ind), 97)) ' psia and T outlet = ' num2str(trmdat(inds(ind),
74)) ' C'];
disp(outstring)
if save_em == 1
fprintf(filehandle, '%s\r\n', outstring);
end
% Find Max Mid-Lower stratification
[temps, inds] = max(midlowno4);
[y, ind] = max(temps);
% get T values
if ind == 1
% rear set
tempsc = [trmdat(inds(ind), 58), trmdat(inds(ind), 56)];
elseif ind == 2
% middle set
tempsc = [trmdat(inds(ind), 42), trmdat(inds(ind), 40)];
elseif ind == 3
% front set
tempsc = [trmdat(inds(ind), 26), trmdat(inds(ind), 24)];
else
% oops
tempsc = [0, 0];
end

```
```

% Store the Key Point
keypoints_ind(6) = inds(ind);
outstring=['Maximum Mid-Low delta T is ' num2str(temps(ind)) ' degrees C at (KEY POINT \#6)
t plus ' num2str(t(inds(ind))) ' s ignoring SP 4, with temperatures of '
num2str(tempsc(1)) ' and ' num2str(tempsc(2)) ' C, respectively, at Set \# '
num2str(ind) ', where Pool P = ' num2str(trmdat(inds(ind), 97)) ' psia and
T_outlet = ' num2str(trmdat(inds(ind), 74)) ' C'];
disp(outstring)
if save_em == 1
fprīntf(filehandle, '%s\r\n', outstring);
end
% Find the Mid-Low Reconvergence Point
RP = length(t);
PV = temps(ind);
foundreconverge = 0;
for n = inds(ind):(RP-600)
dtvals = MMLDeltaT(n:n+600);
% look at t through t plus 1 minute, and check for reconvergence for the
% entire minute in the smoothed mid-axis data
% reconvergence is delta T less than 1 degree OR less than 1/3 of the
% Peak Difference
if (sum(dtvals > (PV/3)) == 0) || (sum(dtvals > (1)) == 0)
% found it!
foundreconverge = 1;
break
end
end
if foundreconverge == 0
% if the standard method did not find reconvergence, check the tail end
for n = RP-600 : RP
dtvals = MMLDeltaT(n:RP);
% look at t through the end, and check for reconvergence for the
% entire period (< 1 min) in the smoothed mid-axis data
% reconvergence is delta T less than 1 degree OR less than 1/3 of the
% Peak Difference
if (sum(dtvals > (PV/3)) == 0) || (sum(dtvals > (1)) == 0)
% found it!
foundreconverge = 1;
break
end
end
end
if foundreconverge == 1
outstring = ['Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus ' num2str(t(n))
' s with a Smoothed Mid-Axis Mid-Low Delta T of ' num2str(MMLDeltaT(n)) ' C and a
raw SP12 Reading of ' num2str(trmdat(n,42)) ' C. '];
else
n = RP;
outstring = ['Mid-Low Reconvergence NOT Detected, setting t to (KEY POINT \#7) t plus
' num2str(t(n)) ' s with a Smoothed Mid-Axis Mid-Low Delta T of '
num2str(MMLDeltaT(n)) ' C and a raw SP12 Reading of ' num2str(trmdat(n,42)) ' C.
'];
end
disp(outstring)
if save_em == 1
fprintf(filehandle, '%s\r\n', outstring);
end
keypoints_ind(7) = n;
% Find Max Top-Outlet stratification
[temps, inds] = max(upout);
[y, ind] = max(temps);
% get T values
if ind == 1
% rear set
tempsc = [trmdat(inds(ind), 60), trmdat(inds(ind), 74)];

```
```

elseif ind == 2
% middle set
tempsc = [trmdat(inds(ind), 44), trmdat(inds(ind), 74)];
elseif ind == 3
% front set
tempsc = [trmdat(inds(ind), 28), trmdat(inds(ind), 74)];
else
% oops
tempsc = [0, 0];
end
outstring=['Maximum Top-Outlet delta T is ' num2str(temps(ind)) ' degrees C at t plus '
num2str(t(inds(ind))) ' s, with temperatures of ' num2str(tempsc(1)) ' and '
num2str(tempsc(2)) ' C, respectively, at Set \# ' num2str(ind) ', where Pool P =
' num2str(trmdat(inds(ind), 97)) ' psia'];
disp(outstring)
if save_em == 1
fprintf(filehandle, '%s\r\n', outstring);
end
% Find Max Mid-Outlet stratification
[temps, inds] = max(midoutno4);
[y, ind] = max(temps);
% get T values
if ind == 1
% rear set
tempsc = [trmdat(inds(ind), 58), trmdat(inds(ind), 74)];
elseif ind == 2
% middle set
tempsc = [trmdat(inds(ind), 42), trmdat(inds(ind), 74)];
elseif ind == 3
% front set
tempsc = [trmdat(inds(ind), 26), trmdat(inds(ind), 74)];
else
% oops
tempsc = [0, 0];
end
outstring=['Maximum Mid-Outlet delta T is ' num2str(temps(ind)) ' degrees C at t plus '
num2str(t(inds(ind))) ' s ignoring SP 4, with temperatures of ' num2str(tempsc(1))
' and ' num2str(tempsc(2)) ' C, respectively, at Set \# ' num2str(ind) ', where
Pool P = ' num2str(trmdat(inds(ind), 97)) ' psia'];
disp(outstring)
if save_em == 1
fprīntf(filehandle, '%s\r\n', outstring);
end
% Find Max Lower-Outlet stratification
[temps, inds] = max(lowout);
[y, ind] = max(temps);
% get T values
if ind == 1
% rear set
tempsc = [trmdat(inds(ind), 56), trmdat(inds(ind), 74)];
elseif ind == 2
% middle set
tempsc = [trmdat(inds(ind), 40), trmdat(inds(ind), 74)];
elseif ind == 3
% front set
tempsc = [trmdat(inds(ind), 24), trmdat(inds(ind), 74)];
else
% oops
tempsc = [0 0 0];
end
% Store the Key Point
keypoints_ind(8) = inds(ind);
outstring=['Maximum Lower-Outlet delta T is ' num2str(temps(ind)) ' degrees C at (KEY
POINT \#8) t plus ' num2str(t(inds(ind))) ' s, with temperatures of '

```
```

        num2str(tempsc(1)) ' and ' num2str(tempsc(2)) ' C, respectively, at Set # '
        num2str(ind) ', where Pool P = ' num2str(trmdat(inds(ind), 97)) ' psia'];
    disp(outstring)
if save em == 1
fprintf(filehandle, '%s\r\n', outstring);
end
% Find the Lower-Outlet Reconvergence Point
RP = length(t);
PV = temps(ind);
foundreconverge = 0;
for n = inds(ind):(RP-600)
dtvals = MLODeltaT(n:n+600);
% look at t through t plus 1 minute, and check for reconvergence for the
% entire minute in the smoothed mid-axis data
% reconvergence is delta T less than 1 degree OR less than 1/3 of the
% Peak Difference
if (sum(dtvals > (PV/3)) == 0) || (sum(dtvals > (1)) == 0)
% found it!
foundreconverge = 1;
break
end
end
if foundreconverge == 0
% if the standard method did not find reconvergence, check the tail end
for n = RP-600 : RP
dtvals = MLODeltaT(n:RP);
% look at t through the end, and check for reconvergence for the
% entire period (< 1 min) in the smoothed mid-axis data
% reconvergence is delta T less than 1 degree OR less than 1/3 of the
% Peak Difference
if (sum(dtvals > (PV/3)) == 0) || (sum(dtvals > (1)) == 0)
% found it!
foundreconverge = 1;
break
end
end
end
if foundreconverge == 1
outstring = ['Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus '
num2str(t(n)) ' s with a Smoothed Mid-Axis Low-Outlet Delta T of '
num2str(MLODeltaT(n)) ' C and a raw SP12 Reading of ' num2str(trmdat(n,42)) ' C.
'];
else
n = RP;
outstring = ['Low-Outlet Reconvergence NOT Detected, setting t to (KEY POINT \#10) t
plus ' num2str(t(n)) ' s with a Smoothed Mid-Axis Low-Outlet Delta T of '
num2str(MLODeltaT(n)) ' C and a raw SP12 Reading of ' num2str(trmdat(n,42)) ' C.
'];
end
disp(outstring)
if save em == 1
fprintf(filehandle, '%s\r\n', outstring);
end
keypoints_ind(10) = n;
% SP Pressures
% Min
[y, ind] = min(trmdat(:,97));
outstring=['Minimum SP Pressure is ' num2str(y) ' psia at t plus ' num2str(t(ind)) ' s'];
disp(outstring)
if save em == 1
fprintf(filehandle, '%s\r\n', outstring);
end
% Max
[y, ind] = max(trmdat(:,97));
outstring=['Maximum SP Pressure is ' num2str(y) ' psia at t plus ' num2str(t(ind)) ' s'];

```
```

disp(outstring)
if save_em == 1
fprīntf(filehandle, '%s\r\n', outstring);
end
% Beginning
outstring=['Beginning SP Pressure is ' num2str(trmdat(1,97)) ' psia'];
disp(outstring)
if save em == 1
fprintf(filehandle, '%s\r\n', outstring);
end
% End
outstring=['Ending SP Pressure is ' num2str(trmdat(end,97)) ' psia'];
disp(outstring)
if save_em == 1
fprintf(filehandle, '%s\r\n', outstring);
end
% Mean
y = mean(trmdat(:,97));
ind = std(trmdat(:,97));
outstring=['Time-Average SP Pressure is ' num2str(y) ' +/- ' num2str(ind) ' psia'];
disp(outstring)
if save_em == 1
fprintf(filehandle, '%s\r\n', outstring);
end

```
```

% SP Levels

```
% SP Levels
outstring='SP Levels are fully corrected and compensated';
outstring='SP Levels are fully corrected and compensated';
disp(outstring)
disp(outstring)
if save_em == 1
if save_em == 1
    fprintf(filehandle, '%s\r\n', outstring);
    fprintf(filehandle, '%s\r\n', outstring);
end
end
% Initial, Pre-start
% Initial, Pre-start
outstring=['Pre-Start SP Level is ' num2str(coldlevelprestart) ' cm (cold) / '
outstring=['Pre-Start SP Level is ' num2str(coldlevelprestart) ' cm (cold) / '
            num2str(hotlevelprestart) ' cm (hot) at ' num2str(data(1,97)) ' psia'];
            num2str(hotlevelprestart) ' cm (hot) at ' num2str(data(1,97)) ' psia'];
disp(outstring)
disp(outstring)
if save_em == 1
if save_em == 1
    fprīntf(filehandle, '%s\r\n', outstring);
    fprīntf(filehandle, '%s\r\n', outstring);
end
end
% Beginning
% Beginning
outstring=['Beginning Smoothed SP Level is ' num2str(coldlevels(1)) ' cm (cold) / '
outstring=['Beginning Smoothed SP Level is ' num2str(coldlevels(1)) ' cm (cold) / '
        num2str(hotdepth(1)) ' cm (hot) at ' num2str(smoothedP(1)) ' psia'];
        num2str(hotdepth(1)) ' cm (hot) at ' num2str(smoothedP(1)) ' psia'];
disp(outstring)
disp(outstring)
if save_em == 1
if save_em == 1
    fprīntf(filehandle, '%s\r\n', outstring);
    fprīntf(filehandle, '%s\r\n', outstring);
end
end
% Ending
% Ending
outstring=['Ending Smoothed SP Level is ' num2str(coldlevels(end)) ' cm (cold) / '
outstring=['Ending Smoothed SP Level is ' num2str(coldlevels(end)) ' cm (cold) / '
            num2str(hotdepth(end)) ' cm (hot) at ' num2str(smoothedP(end)) ' psia'];
            num2str(hotdepth(end)) ' cm (hot) at ' num2str(smoothedP(end)) ' psia'];
disp(outstring)
disp(outstring)
if save_em == 1
if save_em == 1
    fprīntf(filehandle, '%s\r\n', outstring);
    fprīntf(filehandle, '%s\r\n', outstring);
end
end
% Min
% Min
[y, ind] = min(coldlevels);
[y, ind] = min(coldlevels);
outstring=['Minimum Smoothed Cold SP Level is ' num2str(y) ' cm at t plus '
outstring=['Minimum Smoothed Cold SP Level is ' num2str(y) ' cm at t plus '
        num2str(t(ind)) ' s and ' num2str(smoothedP(ind)) ' psia'];
        num2str(t(ind)) ' s and ' num2str(smoothedP(ind)) ' psia'];
disp(outstring)
disp(outstring)
if save_em == 1
if save_em == 1
    fprintf(filehandle, '%s\r\n', outstring);
    fprintf(filehandle, '%s\r\n', outstring);
end
end
[y, ind] = min(hotdepth);
[y, ind] = min(hotdepth);
outstring=['Minimum Smoothed Hot SP Level is ' num2str(y) ' cm at t plus ' num2str(t(ind))
outstring=['Minimum Smoothed Hot SP Level is ' num2str(y) ' cm at t plus ' num2str(t(ind))
            ' s and ' num2str(smoothedP(ind)) ' psia'];
            ' s and ' num2str(smoothedP(ind)) ' psia'];
disp(outstring)
```

disp(outstring)

```
```

if save em == 1
fprintf(filehandle, '%s\r\n', outstring);
end
% Max
[y, ind] = max(coldlevels);
outstring=['Maximum Smoothed Cold SP Level is ' num2str(y) ' cm at t plus '
num2str(t(ind)) ' s and ' num2str(smoothedP(ind)) ' psia'];
disp(outstring)
if save_em == 1
fprīntf(filehandle, '%s\r\n', outstring);
end
[y, ind] = max(hotdepth);
outstring=['Maximum Smoothed Hot SP Level is ' num2str(y) ' cm at t plus ' num2str(t(ind))
' s and ' num2str(smoothedP(ind)) ' psia'];
disp(outstring)
if save_em == 1
fprintf(filehandle, '%s\r\n', outstring);
end
% Temperatures
outstring=['SP 12 Temperature at the beginning is ' num2str(trmdat(1,42)) ' C, and at the
end is ' num2str(trmdat(end,42)) ' C' ];
disp(outstring)
if save_em == 1
fprīntf(filehandle, '%s\r\n', outstring);
end
% Mixing Number
outstring=['At plume detection, the Mixing Number is '
num2str(testrelationship(plume_ind)) ' ' ];
disp(outstring)
if save em == 1
fprintf(filehandle, '%s\r\n', outstring);
end
[y1, indl] = min(testrelationship);
[y2, ind2] = max(testrelationship);
outstring = ['The Mixing Number ranges from a minimum of ' num2str(y1) ' at (KEY POINT
\#12) t plus ' num2str(t(ind1)) ' s to a maximum of ' num2str(y2) ' at (KEY POINT
\#13) t plus ' num2str(t(ind2)) ' s; it had a mean value of '
num2str(mean(testrelationship)) ' +/- ' num2str(std(testrelationship)) ' over the
test period. '];
disp(outstring)
if save em == 1
fprīntf(filehandle, '%s\r\n', outstring);
end
keypoints_ind(12) = ind1;
keypoints_ind(13) = ind2;
% Key Point Data Dumps
outstring=['Key Points have Data Dumps of the following for each Key Point: '
steampropsdesc];
disp(outstring)
if save_em == 1
fprintf(filehandle, '%s\r\n', outstring);
end
for n=1:1 length(keypoints, ind)
outstring=['KEY POINT \#' num2str(n) ' (t plus ' num2str(t(keypoints_ind(n))) ' s with
a Mixing Number of ' num2str(testrelationship(keypoints_ind(n)))''): '
num2str(steamprops(keypoints_ind(n), :)) ' '];
disp(outstring)
if save_em == 1
fprīntf(filehandle, '%s\r\n', outstring);
end
end

```
```

%
% =======================
% PLOT GENERATION SECTION
%=======================
%
disp(' ')
disp('Generating Plots for the Loaded \& Computed Data')
% Smoothed Pool Temperatures
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' has the smoothed rear pool temperatures.'];
disp(text)
% set up plot
x1 = stratsmooth_0;
y1 = stratsmooth_1;
x2 = stratsmooth_0;
y2 = stratsmooth_3;
x3 = stratsmooth_0;
y3 = stratsmooth_4;
x4 = stratsmooth_0;
y4 = stratsmooth_2;
x5 = stratsmooth_0;
y5 = stratsmooth_5;
x6 = t;
y6 = poolsat;
xlpdist = floor(x1 (end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x5pdist = floor(x5(end)/11);
x6pdist = floor(x6(end)/3);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if x1p(end) + x1pdist <= x1(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
x4p = x4(1);
y4p = y4(1);

```
```

for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4(ind)];
end
end
x5p = x5(1);
y5p = y5(1);
for ind = 2:length(x5)
if x5p(end) + x5pdist <= x5(ind)
% append the point to the array
x5p = [x5p x5(ind)];
y5p = [y5p y5(ind)];
end
end
x6p = x6(1);
y6p = y6(1);
for ind = 2:length(x6)
if x6p(end) + x6pdist <= x6(ind)
% append the point to the array
x6p = [x6p x6(ind)];
y6p = [y6p y6(ind)];
end
end
ploth1 = plot(x1(1), y1(1), 'b-s', x2(1), y2(1), 'c-^', x3(1), y3(1), 'r-d', x4(1), y4(1),
'g-p', x5(1), y5(1), 'k-o', x6(1), y6(1), 'k-.*');
% add data lines
hold on
ploth2 = plot(x1, y1, 'b-', x2, y2, 'c-', x3, y3, 'r-', x4, y4, 'g-', x5, y5, 'k-', x6,
y6, 'k-.');
ploth3 = plot(x1p, y1p, 'bs', x2p, y2p, 'c^', x3p, y3p, 'rd', x4p, y4p, 'gp', x5p, y5p,
'ko', x6p, y6p, 'k*');
set(ploth1(1), 'MarkerFaceColor', 'b');
set(ploth1(1), 'MarkerEdgeColor', 'k');
set(ploth3(1), 'MarkerFaceColor', 'b');
set(ploth3(1), 'MarkerEdgeColor', 'k');
set(ploth1(2), 'MarkerFaceColor', 'c');
set(ploth1(2), 'MarkerEdgeColor', 'k');
set(ploth3(2), 'MarkerFaceColor', 'c');
set(ploth3(2), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerFaceColor', 'r');
set(ploth1(3), 'MarkerEdgeColor', 'k');
set(ploth3(3), 'MarkerFaceColor', 'r');
set(ploth3(3), 'MarkerEdgeColor', 'k');
set(ploth1(4), 'MarkerFaceColor', 'g');
set(ploth1(4), 'MarkerEdgeColor', 'k');
set(ploth1(4), 'MarkerSize', 10);
set(ploth3(4), 'MarkerFaceColor', 'g');
set(ploth3(4), 'MarkerEdgeColor', 'k');
set(ploth3(4), 'MarkerSize', 10);
set(ploth1(5), 'MarkerFaceColor', 'k');
set(ploth1(5), 'MarkerEdgeColor', 'k');
set(ploth1(5), 'MarkerSize', 5);
set(ploth3(5), 'MarkerFaceColor', 'k');
set(ploth3(5), 'MarkerEdgeColor', 'w');
set(ploth3(5), 'MarkerSize', 5);
set(ploth1(6), 'MarkerSize', 10);
set(ploth3(6), 'MarkerSize', 10);
xlabel('Time, s');
ylabel('Temperature, C');
if showtitles == 1
title('Smoothed Near-Sparger-End Pool Temperatures');
end
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);

```
```

line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold off
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
figname = [testname '_pool_back_smoothed_temps'];
set(fighandle, 'Name', figñame);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
legendhandle = legend('A - Upper', 'B - Near Sparger (Middle)', 'C - Further from Sparger
(Middle)', 'D - Lower', 'E - Outlet', 'F - Saturation', 'Location', 'NorthWest');
set(legendhandle, 'Color', 'none');
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
print(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Enthalpies
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' has the smoothed rear pool enthalpies.'];
disp(text)
% set up plot
x1 = t;
y1 = htop;
x2 = t;
y2 = hcondensing;
x3 = t;
y3 = hmid;
x4 = t;
y4 = hlow;
x5 = t;
y5 = hout;
x6 = t;
y6 = AdjustedEnth_DS;
x1pdist = floor(x1 (end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x5pdist = floor(x5 (end)/11);
x6pdist = floor(x6(end)/3);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if x1p(end) + x1pdist <= x1(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];

```
end
end
\(x 3 p=x 3(1) ;\)
y3p = y3(1);
for ind \(=2:\) length \((x 3)\)
if \(x 3 p(e n d)+x 3 p d i s t<=x 3(i n d)\)
\% append the point to the array
\(x 3 p=[x 3 p\) x3(ind)];
y3p \(=[y 3 p\) y3(ind)];
end
end
\(x 4 p=x 4(1) ;\)
\(y^{4} p=y^{4}(1) ;\)
for ind \(=2:\) length \((x 4)\)
if \(x 4 p(e n d)+x 4 p d i s t<=x 4(i n d)\) \% append the point to the array \(x 4 p=[x 4 p\) x4(ind)]; \(y^{4} p=\left[y 4 p y^{4}(i n d)\right] ;\)
end
end
\(x 5 p=x 5(1) ;\)
\(\mathrm{y} 5 \mathrm{p}=\mathrm{y} 5(1)\);
for ind \(=2:\) length \((x 5)\)
if \(x 5 p(e n d)+x 5 p d i s t<=x 5(i n d)\)
\% append the point to the array \(x 5 p=[x 5 p\) x5(ind)];
\(y 5 p=[y 5 p y 5(i n d)] ;\)
end
end
\(\mathrm{x} 6 \mathrm{p}=\mathrm{x} 6(1)\);
y6p = y6(1);
for ind \(=2\) :length \((x 6)\)
if x 6 p (end) +x 6 pdist \(<=\mathrm{x} 6\) (ind)
\% append the point to the array x6p \(=[x 6 p\) x6(ind)];
\(y 6 p=[y 6 p y 6(i n d)] ;\)
end
end
ploth1 = plot(x1(1), y1(1), 'b-s', x2(1), y2(1), 'c-^', x3(1), y3(1), 'r-d', x4(1), y4(1),
'g-p', x5(1), y5(1), 'k-o', x6(1), y6(1), 'k:*');
hold on
ploth2 = plot(x1, y1, 'b-', x2, y2, 'c-', x3, y3, 'r-', x4, y4, 'g-', x5, y5, 'k-', x6, y6, 'k:');
ploth3 = plot(x1p, y1p, 'bs', x2p, y2p, 'c^', x3p, y3p, 'rd', x4p, y4p, 'gp', x5p, y5p, 'ko', x6p, y6p, 'k*');
set(ploth1(1), 'MarkerFaceColor', 'b'); set(ploth1(1), 'MarkerEdgeColor', 'k'); set(ploth3(1), 'MarkerFaceColor', 'b'); set(ploth3(1), 'MarkerEdgeColor', 'k'); set(ploth1(2), 'MarkerFaceColor', 'c'); set(ploth1 (2), 'MarkerEdgeColor', 'k'); set(ploth3(2), 'MarkerFaceColor', 'c'); set(ploth3(2), 'MarkerEdgeColor', 'k'); set(ploth1 (3), 'MarkerFaceColor', 'r'); set(ploth1(3), 'MarkerEdgeColor', 'k'); set(ploth3(3), 'MarkerFaceColor', 'r'); set(ploth3(3), 'MarkerEdgeColor', 'k'); set(ploth1(4), 'MarkerFaceColor', 'g'); set(ploth1(4), 'MarkerEdgeColor', 'k'); set(ploth1(4), 'MarkerSize', 10); set(ploth3(4), 'MarkerFaceColor', 'g'); set(ploth3(4), 'MarkerEdgeColor', 'k'); set(ploth3(4), 'MarkerSize', 10);
set(ploth1(5), 'MarkerFaceColor', 'k'); set(ploth1(5), 'MarkerEdgeColor', 'k'); set(ploth1(5), 'MarkerSize', 5);
set(ploth3(5), 'MarkerFaceColor', 'k');
```

set(ploth3(5), 'MarkerEdgeColor', 'w');
set(ploth3(5), 'MarkerSize', 5);
set(ploth1(6), 'MarkerSize', 10);
set(ploth3(6), 'MarkerSize', 10);
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold off
if showtitles == 1
title('Smoothed Near-Sparger End Pool Enthalpies');
end
xlabel('Time, s');
ylabel('Enthalpy, kJ/kg');
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
figname = [testname '_pool_back_smoothed_enthalpies'];
set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
legendhandle = legend('A - Upper', 'B - Near Sparger (Middle)', 'C - Further from Sparger
(Middle)', 'D - Lower', 'E - Outlet', 'F - Steam In', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
print(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Delta T
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' is the Local Delta T'];
disp(text)
% set up plot
x1 = t;
y1 = stratsmooth_3-stratsmooth_4;
x2 = t;
y2 = stratsmooth_3-stratsmooth_1;
x3 = t;
y3 = poolsat-stratsmooth_3;
xlpdist = floor(x1(end)/\overline{5});
x2pdist = floor(x2(end)/6);
x3pdist = floor(x3(end)/7);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if x1p(end) + x1pdist <= x1(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];

```
```

        y2p = [y2p y2(ind)];
    end
    end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
[ax,h1,h2] = plotyy(x1, [y1, y2], x3, y3);
hold(ax(1), 'on');
hold(ax(2), 'on');
ploth2a = plot(ax(1), x1(1), y1(1), 'b-s', x2(1), y2(1), 'g-p');
ploth2b = plot(ax(1), x1p, y1p, 'bs', x2p, y2p, 'gp');
ploth3a = plot(ax(2), x3(1), y3(1), 'r-d');
ploth3b = plot(ax(2), x3p, y3p, 'rd');
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold(ax(1), 'off');
hold(ax(2), 'off');
set(ax(2), 'YColor', 'r')
set(h1(1), 'Color', 'b');
set(h1(2), 'Color', 'g');
set(h2, 'Color', 'r');
set(ploth2a(1), 'MarkerEdgeColor', 'k');
set(ploth2a(2), 'MarkerEdgeColor', 'k');
set(ploth2b(1), 'MarkerEdgeColor', 'k');
set(ploth2b(2), 'MarkerEdgeColor', 'k');
set(ploth3a, 'MarkerEdgeColor', 'k');
set(ploth3b, 'MarkerEdgeColor', 'k');
set(ploth2a(1), 'MarkerFaceColor', 'b');
set(ploth2a(2), 'MarkerFaceColor', 'g');
set(ploth2a(2), 'MarkerSize', 10);
set(ploth2b(1), 'MarkerFaceColor', 'b');
set(ploth2b(2), 'MarkerFaceColor', 'g');
set(ploth2b(2), 'MarkerSize', 10);
set(ploth3a, 'MarkerFaceColor', 'r');
set(ploth3b, 'MarkerFaceColor', 'r');
xlabel('Time, s');
if showtitles == 1
title('Condensing Region Delta T');
end
set(get(ax(1),'Ylabel'),'String','Delta T, C');
set(get(ax(2),'Ylabel'),'String','Saturation - Pool Condensing Delta T, C');
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
set(ax(1), 'YTickMode', 'auto');
set(ax(2), 'YTickMode', 'auto');
set(ax(1), 'YLimMode', 'auto');
set(ax(2), 'YLimMode', 'auto');
figname = [testname '_delta_T'];
set(fighandle, 'Name', fignäme);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
legendhandle = legend([ploth2a', ploth3a], 'A - Condensing - SP9', 'B - Condensing -
Upper', 'C - Saturation - Condensing', 'Location', 'Best');
set(legendhandle, 'Color', 'none');

```
```

% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
print(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Delta h, cooling
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' is the Local Condensing Enthalpy'];
disp(text)
% set up plot
x1 = t;
y1 = AdjustedEnth_DS - hsatL(:,2);
x2 = t;
y2 = AdjustedEnth_DS - hcondensing;
x3 = t;
y3 = mdcondinj;
x4 = t;
if use_turbine == 1
y4 = mdcondinjcool;
else
y4 = 0*mdcondinjcool;
end
x1pdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if x1p(end) + x1pdist <= x1(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
x4p = x4(1);
y4p = y4(1);
for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4(ind)];

```
```

        end
    end
[ax, h1, h2] = plotyy(x1, [y1, y2], x3, [y3, y4]);
hold(ax(1), 'on');
hold(ax(2), 'on');
ploth2a = plot(ax(1), x1(1), y1(1), 'b-s', x2(1), y2(1), 'g-p');
ploth2b = plot(ax(1), x1p, y1p, 'bs', x2p, y2p, 'gp');
ploth3a = plot(ax(2), x3(1), y3(1), 'r-d', x4(1), y4(1), 'm-v');
ploth3b = plot(ax(2), x3p, y3p, 'rd', x4p, y4p, 'mv');
set(h1(1), 'Color', 'b');
set(h1(2), 'Color', 'g');
set(h2(1), 'Color', 'r');
set(h2(2), 'Color', 'm');
set(ploth2a(1), 'MarkerEdgeColor', 'k');
set(ploth2a(2), 'MarkerEdgeColor', 'k');
set(ploth2b(1), 'MarkerEdgeColor', 'k');
set(ploth2b(2), 'MarkerEdgeColor', 'k');
set(ploth3a(1), 'MarkerEdgeColor', 'k');
set(ploth3a(2), 'MarkerEdgeColor', 'k');
set(ploth3b(1), 'MarkerEdgeColor', 'k');
set(ploth3b(2), 'MarkerEdgeColor', 'k');
set(ploth2a(1), 'MarkerFaceColor', 'b');
set(ploth2a(2), 'MarkerFaceColor', 'g');
set(ploth2a(2), 'MarkerSize', 10);
set(ploth2b(1), 'MarkerFaceColor', 'b');
set(ploth2b(2), 'MarkerFaceColor', 'g');
set(ploth2b(2), 'MarkerSize', 10);
set(ploth3a(1), 'MarkerFaceColor', 'r');
set(ploth3a(2), 'MarkerFaceColor', 'm');
set(ploth3b(1), 'MarkerFaceColor', 'r');
set(ploth3b(2), 'MarkerFaceColor', 'm');
xlabel('Time, s');
set(get(ax(1),'Ylabel'),'String','Steam Delta h, kJ/kg');
set(get(ax(2),'Ylabel'),'String','Water mdot, kg/s');
if showtitles == 1
title('Condensing Region Enthalpy and Massflows');
end
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
set(ax(1), 'YTickMode', 'auto');
set(ax(2), 'YTickMode', 'auto');
set(ax(1), 'YLimMode', 'auto');
set(ax(2), 'YLimMode', 'auto');
rtlims = get(ax(2), 'YLim');
if rtlims(1) < 0
rtlims(1) = 0;
% keep chart above zero
end
if use_turbine == 1
if rtlims(2) > 1.25 * max(mdcondinjcool(stratstartind:stratendind))
% too high
rtlims(2) = ceil(1.25 * max(mdcondinjcool(stratstartind:stratendind)));
end
if rtlims(2) > 10 * max(mdcondinj)
rtlims(2) = 10 * max(mdcondinj);
end
else
if rtlims(2) > 1.25 * max(mdcondinj)
% too high
rtlims(2) = ceil(1.25 * max(mdcondinj));
end
end
set(ax(2), 'YLim', rtlims);

```
```

line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold(ax(1), 'off');
hold(ax(2), 'off');
figname = [testname '_delta_h'];
set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
legendhandle = legend([ploth2a', ploth3a'], 'A - Condensing', 'B - Condensing \& Cooling',
'C - mdot - Condensing', 'D - mdot - Condensing \& Cooling', 'Location',
'NorthWest');
set(legendhandle, 'Color', 'none');
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
print(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Pool Temperatures - Outlet End
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' is the Outlet End Pool Temperature.'];
disp(text)
% SP 18 is in Column 30
% SP 19 is in Column 28
% SP 20 is in Column 26
% SP 21 is in Column 24
% SP 22 is in Column 22
% SP 23 is in Column 20
% SP Top Flange is in Column 14
% SP Outlet is in Column 74
% set up plot
x1 = t;
y1 = trmdat (:,28);
x2 = t;
y2 = trmdat (:,26);
x3 = t;
y3 = trmdat (:,24);
x4 = t;
y4 = trmdat(:,22);
x5 = t;
y5 = trmdat(:,20);
x6 = t;
y6 = trmdat(:,74);
x7 = t;
y7 = poolsat;
xlpdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x5pdist = floor(x5(end)/11);
x6pdist = floor(x6(end)/13);
x7pdist = floor(x6(end)/3);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if xlp(end) + xlpdist <= xl(ind)
% append the point to the array

```
```

            x1p = [x1p x1(ind)];
            y1p = [y1p y1(ind)];
    end
    end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
x4p = x4(1);
y4p = y4(1);
for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4(ind)];
end
end
x5p = x5(1);
y5p = y5(1);
for ind = 2:length(x5)
if x5p(end) + x5pdist <= x5(ind)
% append the point to the array
x5p = [x5p x5(ind)];
y5p = [y5p y5(ind)];
end
end
x6p = x6(1);
y6p = y6(1);
for ind = 2:length(x6)
if x6p(end) + x6pdist <= x6(ind)
% append the point to the array
x6p = [x6p x6(ind)];
y6p = [y6p y6(ind)];
end
end
x7p = x7(1);
y7p = y7(1);
for ind = 2:length(x7)
if x7p(end) + x7pdist <= x7(ind)
% append the point to the array
x7p = [x7p x7(ind)];
y7p = [y7p y7(ind)];
end
end
ploth1 = plot(x1(1), y1(1), 'b-s', x2(1), y2(1), 'r-d', x3(1), y3(1), 'g-p', x4(1), y4(1),
'c-^', x5(1), y5(1), 'm-v', x6(1), y6(1), 'k-o', x7(1), y7(1), 'k-.*');
% add data lines
hold on
ploth2 = plot(x1, y1, 'b-', x2, y2, 'r-', x3, y3, 'g-', x4, y4, 'c-', x5, y5, 'm-', x6,
y6, 'k-', x7, y7, 'k-.');
ploth3 = plot(x1p, y1p, 'bs', x2p, y2p, 'rd', x3p, y3p, 'gp', x4p, y4p, 'c^', x5p, y5p,
'mv', x6p, y6p, 'ko', x7p, y7p, 'k*');
set(ploth1(1), 'MarkerFaceColor', 'b');

```
```

set(ploth1(1), 'MarkerEdgeColor', 'k');
set(ploth3(1), 'MarkerFaceColor', 'b');
set(ploth3(1), 'MarkerEdgeColor', 'k');
set(ploth1(2), 'MarkerFaceColor', 'r');
set(ploth1(2), 'MarkerEdgeColor', 'k');
set(ploth3(2), 'MarkerFaceColor', 'r');
set(ploth3(2), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerFaceColor', 'g');
set(ploth1(3), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerSize', 10);
set(ploth3(3), 'MarkerFaceColor', 'g');
set(ploth3(3), 'MarkerEdgeColor', 'k');
set(ploth3(3), 'MarkerSize', 10);
set(ploth1(4), 'MarkerFaceColor', 'c');
set(ploth1(4), 'MarkerEdgeColor', 'k');
set(ploth3(4), 'MarkerFaceColor', 'c');
set(ploth3(4), 'MarkerEdgeColor', 'k');
set(ploth1(5), 'MarkerFaceColor', 'm');
set(ploth1(5), 'MarkerEdgeColor', 'k');
set(ploth3(5), 'MarkerFaceColor', 'm');
set(ploth3(5), 'MarkerEdgeColor', 'k');
set(ploth1(6), 'MarkerFaceColor', 'k');
set(ploth1(6), 'MarkerEdgeColor', 'k');
set(ploth1(6), 'MarkerSize', 5);
set(ploth3(6), 'MarkerFaceColor', 'k');
set(ploth3(6), 'MarkerEdgeColor', 'w');
set(ploth3(6), 'MarkerSize', 5);
set(ploth1(7), 'MarkerSize', 10);
set(ploth3(7), 'MarkerSize', 10);
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold off
if showtitles == 1
title('Outlet End Pool Temperatures, Facing Away from the Sparger End');
end
xlabel('Time, s');
ylabel('Temperature, C');
legendhandle = legend('A - Upper', 'B - Middle', 'C - Lower', 'D - Left', 'E - Right', 'F
- Bottom Outlet', 'G - Saturation', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname ' pool front temps'];
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
pri\overline{n}t(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% T \& x
% create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' is the steam temperature and quality.'];
disp(text)

```
```

% set up plot
x1 = t;
y1 = AdjustedQuality(:,1);
x2 = t;
if use turbine == 1
y2 = AdjustedQuality(:,2);
else
y2 = 0*AdjustedQuality(:,2);
end
x3 = t;
y3 = trmdat (:,76);
x4 = t;
y4 = trmdat (:,68);
x5 = t;
y5 = trmdat(:, 66);
x1pdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x5pdist = floor(x5 (end)/11);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if x1p(end) + x1pdist <= x1(ind)
% append the point to the array
x1p = [x1p x1 (ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
x4p = x4(1);
y4p = y4(1);
for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4(ind)];
end
end
x5p = x5(1);
y5p = y5(1);
for ind = 2:length(x5)
if x5p(end) + x5pdist <= x5(ind)
% append the point to the array
x5p = [x5p x5(ind)];
y5p = [y5p y5(ind)];
end
end
[ax, h1, h2] = plotyy(x1, [y1, y2], x3, [y3, y4, y5]);

```
```

hold(ax(1), 'on');
hold(ax(2), 'on');
ploth2a = plot(ax(1), x1(1), y1(1), 'b-s', x2(1), y2(1), 'g-p');
ploth2b = plot(ax(1), x1p, y1p, 'bs', x2p, y2p, 'gp');
ploth3a = plot(ax(2), x3(1), y3(1), 'r-d', x4(1), y4(1), 'm-v', x5(1), y5(1), 'c-^');
ploth3b = plot(ax(2), x3p, y3p, 'rd', x4p, y4p, 'mv', x5p, y5p, 'c^');
set(ax(1), 'YLimMode', 'auto');
set(ax(2), 'YLimMode', 'auto');
ylvals = get(ax(1), 'YLim');
ylvals(2) = 0.1 * ceil(10*ylvals(2));
if ylvals(1) > 0
ylvals(1) = 0;
end
set(ax(1), 'YLim', ylvals);
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold(ax(1), 'off');
hold(ax(2), 'off');
set(h1(1), 'Color', 'b');
set(h1(2), 'Color', 'g');
set(h2(1), 'Color', 'r');
set(h2(2), 'Color', 'm');
set(h2(3), 'Color', 'c');
set(ploth2a(1), 'MarkerEdgeColor', 'k');
set(ploth2a(2), 'MarkerEdgeColor', 'k');
set(ploth2b(1), 'MarkerEdgeColor', 'k');
set(ploth2b(2), 'MarkerEdgeColor', 'k');
set(ploth3a(1), 'MarkerEdgeColor', 'k');
set(ploth3a(2), 'MarkerEdgeColor', 'k');
set(ploth3a(3), 'MarkerEdgeColor', 'k');
set(ploth3b(1), 'MarkerEdgeColor', 'k');
set(ploth3b(2), 'MarkerEdgeColor', 'k');
set(ploth3b(3), 'MarkerEdgeColor', 'k');
set(ploth2a(1), 'MarkerFaceColor', 'b');
set(ploth2a(2), 'MarkerFaceColor', 'g');
set(ploth2a(2), 'MarkerSize', 10);
set(ploth2b(1), 'MarkerFaceColor', 'b');
set(ploth2b(2), 'MarkerFaceColor', 'g');
set(ploth2b(2), 'MarkerSize', 10);
set(ploth3a(1), 'MarkerFaceColor', 'r');
set(ploth3a(2), 'MarkerFaceColor', 'm');
set(ploth3a(3), 'MarkerFaceColor', 'c');
set(ploth3b(1), 'MarkerFaceColor', 'r');
set(ploth3b(2), 'MarkerFaceColor', 'm');
set(ploth3b(3), 'MarkerFaceColor', 'c');
xlabel('Time, s');
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
set(get(ax(1),'Ylabel'),'String','Quality');
set(get(ax(2),'Ylabel'),'String','Temperature, C');
set(ax(1), 'YTickMode', 'auto');
set(ax(2), 'YTickMode', 'auto');
xlabel('Time, s');
if showtitles == 1
title('Steam Quality');
end
legendhandle = legend([ploth2a', ploth3a'], 'Estimated Smoothed Steam Quality', 'Turbine
Outlet Smoothed Quality', 'Pre-Injection T', 'Post-Injection T', 'Turbine Outlet
T', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname '_steam_quality'];

```
```

set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save em == 1
print(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' is the steam flowpath temperature.'];
disp(text)
% Steam Path Temperature Plot
% Steam Generator void temperature is in Column 4
% Vortex Flowmeter Steam Temperature is in Column }8
% Steam Line upstream of Water Injection Temperature is in Column 76
% Steam Line Downstream of Water Injection Temperature in in Column 68
% RCIC Turbine Outlet Temperature is in Column 66
% SP 1 Temperature is in Column 64
% set up plot
x1 = t;
y1 = trmdat(:, 4);
x2 = t;
y2 = trmdat(:, 82);
x3 = t;
y3 = trmdat(:, 76);
x4 = t;
y4 = trmdat(:, 68);
x5 = t;
y5 = trmdat(:, 66);
x6 = t;
y6 = trmdat(:, 64);
x1pdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x5pdist = floor(x5(end)/11);
x6pdist = floor(x6(end)/13);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if x1p(end) + x1pdist <= x1(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)

```
```

        % append the point to the array
        x3p = [x3p x3(ind)];
        y3p = [y3p y3(ind)];
    end
    end
x4p = x4(1);
y4p = y4(1);
for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4 (ind)];
end
end
x5p = x5(1);
y5p = y5(1);
for ind = 2:length(x5)
if x5p(end) + x5pdist <= x5(ind)
% append the point to the array
x5p = [x5p x5 (ind)];
y5p = [y5p y5(ind)];
end
end
x6p = x6(1);
y6p = y6(1);
for ind = 2:length(x6)
if x6p(end) + x6pdist <= x6(ind)
% append the point to the array
x6p = [x6p x6(ind)];
y6p = [y6p y6(ind)];
end
end
ploth1 = plot(x1(1), y1(1), 'b-s', x2(1), y2(1), 'r-d', x3(1), y3(1), 'g-p', x4(1), y4(1),
'c-^', x5(1), y5(1), 'm-v', x6(1), y6(1), 'k-o');
% add data lines
hold on
ploth2 = plot(x1, y1, 'b-', x2, y2, 'r-', x3, y3, 'g-', x4, y4, 'c-', x5, y5, 'm-', x6,
y6, 'k-');
ploth3 = plot(x1p, y1p, 'bs', x2p, y2p, 'rd', x3p, y3p, 'gp', x4p, y4p, 'c^', x5p, y5p,
'mv', x6p, y6p, 'ko');
set(ploth1(1), 'MarkerFaceColor', 'b');
set(ploth1(1), 'MarkerEdgeColor', 'k');
set(ploth3(1), 'MarkerFaceColor', 'b');
set(ploth3(1), 'MarkerEdgeColor', 'k');
set(ploth1(2), 'MarkerFaceColor', 'r');
set(ploth1(2), 'MarkerEdgeColor', 'k');
set(ploth3(2), 'MarkerFaceColor', 'r');
set(ploth3(2), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerFaceColor', 'g');
set(ploth1(3), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerSize', 10);
set(ploth3(3), 'MarkerFaceColor', 'g');
set(ploth3(3), 'MarkerEdgeColor', 'k');
set(ploth3(3), 'MarkerSize', 10);
set(ploth1(4), 'MarkerFaceColor', 'c');
set(ploth1(4), 'MarkerEdgeColor', 'k');
set(ploth3(4), 'MarkerFaceColor', 'c');
set(ploth3(4), 'MarkerEdgeColor', 'k');
set(ploth1(5), 'MarkerFaceColor', 'm');
set(ploth1(5), 'MarkerEdgeColor', 'k');
set(ploth3(5), 'MarkerFaceColor', 'm');
set(ploth3(5), 'MarkerEdgeColor', 'k');
set(ploth1(6), 'MarkerFaceColor', 'k');
set(ploth1(6), 'MarkerEdgeColor', 'k');
set(ploth1(6), 'MarkerSize', 5);
set(ploth3(6), 'MarkerFaceColor', 'k');

```
```

set(ploth3(6), 'MarkerEdgeColor', 'w');
set(ploth3(6), 'MarkerSize', 5);
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold off
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
if showtitles == 1
title('Steam Path Temperatures');
end
xlabel('Time, s');
ylabel('Temperature, C');
legendhandle = legend('Steam Generator Outlet', 'Main Steam Line at Flowmeter', 'Main
Steam Line Upstream of Water Injection', 'Main Steam Line Downstream of Water
Injection', 'Turbine Outlet', 'SP1 - RCIC Sparger Outlet', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname '_steam_temps'];
set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
pri\overline{n}t(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end

```
\% Water Flowpath Temperature Plot
\% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' is the water flowpath temperature.'];
disp(text)
\% SP Outlet Temperature is in Column 74
\% RCIC Pump Inlet Temperature is in Column 70
\% RCIC Pump Outlet Temperature in in Column 72
\% Return Water Flowmeter Temperature is in Column 84
\% Steam Generator Water Injection Temperature is in Column 12
\% Water Injection to Steam Line is the average of two temperatures
    Upstream is in Column 78
    Downstream is in Column 80
\% set up plot
\(\mathrm{x} 1=\mathrm{t}\);
y1 = trmdat(:, 74);
\(\mathrm{x} 2=\mathrm{t}\);
y2 = trmdat (:, 70);
\(\mathrm{x} 3=t\);
y3 \(=\) trmdat (:, 72);
\(\mathrm{x} 4=\mathrm{t}\);
y4 = trmdat (: , 84);
\(\mathrm{x} 5=t\);
y5 = trmdat (: , 12);
\(\mathrm{x} 6=\mathrm{t}\);
y6 \(=\left(0.5^{*}(\operatorname{trmdat}(:, 78)+\operatorname{trmdat}(:, 80))\right)\);
x1pdist \(=\) floor (x1 (end)/4);
x2pdist \(=\) floor (x2(end)/5);
```

x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x5pdist = floor(x5(end)/11);
x6pdist = floor(x6(end)/13);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if x1p(end) + x1pdist <= x1(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
x4p = x4(1);
y4p = y4(1);
for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4(ind)];
end
end
x5p = x5(1);
y5p = y5(1);
for ind = 2:length(x5)
if x5p(end) + x5pdist <= x5(ind)
% append the point to the array
x5p = [x5p x5(ind)];
y5p = [y5p y5(ind)];
end
end
x6p = x6(1);
y6p = y6(1);
for ind = 2:length(x6)
if x6p(end) + x6pdist <= x6(ind)
% append the point to the array
x6p = [x6p x6(ind)];
y6p = [y6p y6(ind)];
end
end
ploth1 = plot(x1(1), y1(1), 'b-s', x2(1), y2(1), 'r-d', x3(1), y3(1), 'g-p', x4(1), y4(1),
'c-^', x5(1), y5(1), 'm-v', x6(1), y6(1), 'k-o');
% add data lines
hold on
ploth2 = plot(x1, y1, 'b-', x2, y2, 'r-', x3, y3, 'g-', x4, y4, 'c-', x5, y5, 'm-', x6,
y6, 'k-');
ploth3 = plot(x1p, y1p, 'bs', x2p, y2p, 'rd', x3p, y3p, 'gp', x4p, y4p, 'c^', x5p, y5p,
'mv', x6p, y6p, 'ko');

```
```

set(ploth1(1), 'MarkerFaceColor', 'b');
set(ploth1(1), 'MarkerEdgeColor', 'k');
set(ploth3(1), 'MarkerFaceColor', 'b');
set(ploth3(1), 'MarkerEdgeColor', 'k');
set(ploth1(2), 'MarkerFaceColor', 'r');
set(ploth1(2), 'MarkerEdgeColor', 'k');
set(ploth3(2), 'MarkerFaceColor', 'r');
set(ploth3(2), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerFaceColor', 'g');
set(ploth1(3), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerSize', 10);
set(ploth3(3), 'MarkerFaceColor', 'g');
set(ploth3(3), 'MarkerEdgeColor', 'k');
set(ploth3(3), 'MarkerSize', 10);
set(ploth1(4), 'MarkerFaceColor', 'c');
set(ploth1(4), 'MarkerEdgeColor', 'k');
set(ploth3(4), 'MarkerFaceColor', 'c');
set(ploth3(4), 'MarkerEdgeColor', 'k');
set(ploth1(5), 'MarkerFaceColor', 'm');
set(ploth1(5), 'MarkerEdgeColor', 'k');
set(ploth3(5), 'MarkerFaceColor', 'm');
set(ploth3(5), 'MarkerEdgeColor', 'k');
set(ploth1(6), 'MarkerFaceColor', 'k');
set(ploth1(6), 'MarkerEdgeColor', 'k');
set(ploth1(6), 'MarkerSize', 5);
set(ploth3(6), 'MarkerFaceColor', 'k');
set(ploth3(6), 'MarkerEdgeColor', 'w');
set(ploth3(6), 'MarkerSize', 5);
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--',' 'Color', [0.75, 0.75, 0.0]);
line([t(strats\overline{tartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,}
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold off
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
if showtitles == 1
title('Water Flowath Temperatures');
end
xlabel('Time, s');
ylabel('Temperature, C');
legendhandle = legend('Suppression Pool Outlet', 'RCIC Pump Inlet', 'RCIC Pump Outlet',
'Water to Steam Generator Flowmeter', 'Steam Generator Injection Point', 'Avg.
Water Injection to Steam Line (US \& DS)', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname '_water_flow_temps'];
set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
prin̄t(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Pool Temperatures - Upper Horizontal
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' is the axial upper-level pool temperature.'];
disp(text)

```
```

% SP 19 is in Column 28
% SP 11 is in Column 44
% SP 3 is in Column 60
% set up plot
x1 = t;
y1 = trmdat(:,28);
x2 = t;
y2 = trmdat(:,44);
x3 = t;
y3 = trmdat (:,60);
x4 = t;
y4 = poolsat;
x1pdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if x1p(end) + x1pdist <= x1(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
x4p = x4(1);
y4p = y4(1);
for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4(ind)];
end
end
ploth1 = plot(x1(1), y1(1), 'b-s', x2(1), y2(1), 'r-d', x3(1), y3(1), 'g-p', x4(1), y4(1),
'k-.*');
% add data lines
hold on
ploth2 = plot(x1, y1, 'b-', x2, y2, 'r-', x3, y3, 'g-', x4, y4, 'k-.');
ploth3 = plot(x1p, y1p, 'bs', x2p, y2p, 'rd', x3p, y3p, 'gp', x4p, y4p, 'k*');
set(ploth1(1), 'MarkerFaceColor', 'b');
set(ploth1(1), 'MarkerEdgeColor', 'k');
set(ploth3(1), 'MarkerFaceColor', 'b');
set(ploth3(1), 'MarkerEdgeColor', 'k');
set(ploth1(2), 'MarkerFaceColor', 'r');
set(ploth1(2), 'MarkerEdgeColor', 'k');
set(ploth3(2), 'MarkerFaceColor', 'r');

```
```

set(ploth3(2), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerFaceColor', 'g');
set(ploth1(3), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerSize', 10);
set(ploth3(3), 'MarkerFaceColor', 'g');
set(ploth3(3), 'MarkerEdgeColor', 'k');
set(ploth3(3), 'MarkerSize', 10);
set(ploth1(4), 'MarkerSize', 10);
set(ploth3(4), 'MarkerSize', 10);
line([t(plume ind), t(plume ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold off
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
if showtitles == 1
title('Suppression Pool Upper-Level Axial Temperatures');
end
xlabel('Time, s');
ylabel('Temperature, C');
legendhandle = legend('Upper Front', 'Upper Middle', 'Upper Rear', 'Saturation',
'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname '_pool_upper_horiz_temps'];
set(fighandle, 'Name', figñame);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
prin̄t(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Pool Temperatures - Middle Horizontal
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' is the axial mid-level pool temperature.'];
disp(text)
% SP 4 is in Column 58
% SP 8 is in Column 50
% SP 9 is in Column 48
% SP 10 is in Column 46
% SP 12 is in Column 42
% SP 16 is in Column 34
% SP 17 is in Column 32
% SP 20 is in Column 26
% SP 24 is in Column 18
% set up plot
x1 = t;
y1 = trmdat(:,50);
x2 = t;
y2 = trmdat(:,48);
x3 = t;
y3 = trmdat(:,46);
x4 = t;

```
```

y4 = trmdat(:,42);
x5 = t;
y5 = trmdat (:,34);
x6 = t;
y6 = trmdat (:, 32);
x7 = t;
y7 = trmdat (:,26);
x8 = t;
y8 = trmdat(:,18);
x9 = t;
y9 = poolsat;
xlpdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x5pdist = floor(x5(end)/11);
x6pdist = floor(x6(end)/13);
x7pdist = floor(x7(end)/(17/2));
x8pdist = floor(x8(end)/(19/2));
x9pdist = floor(x9(end)/3);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if x1p(end) + x1pdist <= x1(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
x4p = x4(1);
y4p = y4(1);
for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4(ind)];
end
end
x5p = x5(1);
y5p = y5(1);
for ind = 2:length(x5)
if x5p(end) + x5pdist <= x5(ind)
% append the point to the array
x5p = [x5p x5(ind)];
y5p = [y5p y5(ind)];
end
end
x6p = x6(1);
y6p = y6(1);

```
```

for ind = 2:length(x6)
if x6p(end) + x6pdist <= x6(ind)
% append the point to the array
x6p = [x6p x6(ind)];
y6p = [y6p y6(ind)];
end
end
x7p = x7(1);
y7p = y7(1);
for ind = 2:length(x7)
if x7p(end) + x7pdist <= x7(ind)
% append the point to the array
x7p = [x7p x7(ind)];
y7p = [y7p y7(ind)];
end
end
x8p = x8(1);
y8p = y8(1);
for ind = 2:length(x8)
if x8p(end) + x8pdist <= x8(ind)
% append the point to the array
x8p = [x8p x8(ind)];
y8p = [y8p y8(ind)];
end
end
x9p = x9(1);
y9p = y9(1);
for ind = 2:length(x9)
if x9p(end) + x9pdist <= x9(ind)
% append the point to the array
x9p = [x9p x9(ind)];
y9p = [y9p y9(ind)];
end
end
ploth1 = plot(x1(1), y1(1), 'b-s', x2(1), y2(1), 'r-d', x3(1), y3(1), 'g-p', x4(1), y4(1),
'c-^', x5(1), y5(1), 'm-v', x6(1), y6(1), 'k-o', x7(1), y7(1), 'y->', x8(1),
y8(1), 'y-<', x9(1), y9(1), 'k-.*');
% add data lines
hold on
ploth2 = plot(x1, y1, 'b-', x2, y2, 'r-', x3, y3, 'g-', x4, y4, 'c-', x5, y5, 'm-', x6,
y6, 'k-', x7, y7, 'y-', x8, y8, 'y-', x9, y9, 'k-.');
ploth3 = plot(x1p, y1p, 'bs', x2p, y2p, 'rd', x3p, y3p, 'gp', x4p, y4p, 'c^', x5p, y5p,
'mv', x6p, y6p, 'ko', x7p, y7p, 'y>', x8p, y8p, 'y<', x9p, y9p, 'k*');
set(ploth1(7) , 'Color', [1, 155/255, 0]);
set(ploth2(7) , 'Color', [1, 155/255, 0]);
set(ploth3(7) , 'Color', [1, 155/255, 0]);
set(ploth1(8) , 'Color', [139/255, 115/255, 85/255]);
set(ploth2(8) , 'Color', [139/255, 115/255, 85/255]);
set(ploth3(8) , 'Color', [139/255, 115/255, 85/255]);
set(ploth1(1), 'MarkerFaceColor', 'b');
set(ploth1(1), 'MarkerEdgeColor', 'w');
set(ploth3(1), 'MarkerFaceColor', 'b');
set(ploth3(1), 'MarkerEdgeColor', 'w');
set(ploth1(2), 'MarkerFaceColor', 'r');
set(ploth1(2), 'MarkerEdgeColor', 'k');
set(ploth3(2), 'MarkerFaceColor', 'r');
set(ploth3(2), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerFaceColor', 'g');
set(ploth1(3), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerSize', 10);
set(ploth3(3), 'MarkerFaceColor', 'g');
set(ploth3(3), 'MarkerEdgeColor', 'k');
set(ploth3(3), 'MarkerSize', 10);
set(ploth1(4), 'MarkerFaceColor', 'c');
set(ploth1(4), 'MarkerEdgeColor', 'k');
set(ploth3(4), 'MarkerFaceColor', 'c');
set(ploth3(4), 'MarkerEdgeColor', 'k');

```
```

set(ploth1(5), 'MarkerFaceColor', 'm');
set(ploth1(5), 'MarkerEdgeColor', 'k');
set(ploth3(5), 'MarkerFaceColor', 'm');
set(ploth3(5), 'MarkerEdgeColor', 'k');
set(ploth1(6), 'MarkerFaceColor', 'k');
set(ploth1(6), 'MarkerEdgeColor', 'k');
set(ploth1(6), 'MarkerSize', 5);
set(ploth3(6), 'MarkerFaceColor', 'k');
set(ploth3(6), 'MarkerEdgeColor', 'w');
set(ploth3(6), 'MarkerSize', 5);
set(ploth1(7), 'MarkerFaceColor', [1, 155/255, 0]);
set(ploth1(7), 'MarkerEdgeColor', 'k');
set(ploth3(7), 'MarkerFaceColor', [1, 155/255, 0]);
set(ploth3(7), 'MarkerEdgeColor', 'k');
set(ploth1(8), 'MarkerFaceColor', [139/255, 115/255, 85/255]);
set(ploth1(8), 'MarkerEdgeColor', 'k');
set(ploth3(8), 'MarkerFaceColor', [139/255, 115/255, 85/255]);
set(ploth3(8), 'MarkerEdgeColor', 'k');
set(ploth1(9), 'MarkerSize', 10);
set(ploth3(9), 'MarkerSize', 10);
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold off
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
if showtitles == 1
title('Suppression Pool Mid-Level Axial Temperatures');
end
xlabel('Time, s');
ylabel('Temperature, C');
legendhandle = legend('A - Near-Sparger (0.63 m)', 'B - 0.94 m', 'C - 1.24 m', 'D - 1.55
m', 'E - 1.85 m', 'F - 2.16 m', 'G - 2.46 m', 'H - Front (2.77 m)', 'J -
Saturation', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname '_pool_mid_horiz_temps'];
set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
prin̄t(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Pool Temperatures - Lower Horizontal
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' is the axial lower-level pool temperature.'];
disp(text)
% SP 21 is in Column 24
% SP 13 is in Column 40
% SP 5 is in Column 56
% set up plot
x1 = t;

```
```

y1 = trmdat(:,24);
x2 = t;
y2 = trmdat(:,40);
x3 = t;
y3 = trmdat (:,56);
x4 = t;
y4 = poolsat;
x1pdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if xlp(end) + xlpdist <= xl(ind)
% append the point to the array
xlp = [x1p xl(ind)];
y1p = [y1p yl(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
x4p = x4(1);
y4p = y4(1);
for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4 (ind)];
end
end
ploth1 = plot(x1(1), y1(1), 'b-s', x2(1), y2(1), 'r-d', x3(1), y3(1), 'g-p', x4(1), y4(1),
'k-.*');
% add data lines
hold on
ploth2 = plot(x1, y1, 'b-', x2, y2, 'r-', x3, y3, 'g-', x4, y4, 'k-.');
ploth3 = plot(x1p, y1p, 'bs', x2p, y2p, 'rd', x3p, y3p, 'gp', x4p, y4p, 'k*');
set(ploth1(1), 'MarkerFaceColor', 'b');
set(ploth1(1), 'MarkerEdgeColor', 'k');
set(ploth3(1), 'MarkerFaceColor', 'b');
set(ploth3(1), 'MarkerEdgeColor', 'k');
set(ploth1(2), 'MarkerFaceColor', 'r');
set(ploth1(2), 'MarkerEdgeColor', 'k');
set(ploth3(2), 'MarkerFaceColor', 'r');
set(ploth3(2), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerFaceColor', 'g');
set(ploth1(3), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerSize', 10);
set(ploth3(3), 'MarkerFaceColor', 'g');
set(ploth3(3), 'MarkerEdgeColor', 'k');
set(ploth3(3), 'MarkerSize', 10);

```
```

set(ploth1(4), 'MarkerSize', 10);
set(ploth3(4), 'MarkerSize', 10);
line([t(plume ind), t(plume ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold off
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
if showtitles == 1
title('Suppression Pool Lower-Level Axial Temperatures');
end
xlabel('Time, s');
ylabel('Temperature, C');
legendhandle = legend('Lower Front', 'Lower Middle', 'Lower Rear', 'Saturation',
'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname '_pool_lower_horiz_temps'];
set(fighandle, 'Name', figñame);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
prin̄t(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Pool Temperatures - Sparger End
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' is the Sparger End Pool Temperature.'];
disp(text)
% SP 2 is in Column 62
% SP 3 is in Column }6
% SP 4 is in Column 58
% SP 5 is in Column 56
% SP 6 is in Column }5
% SP 7 is in Column }5
% set up plot
x1 = t;
y1 = trmdat(:, 60);
x2 = t;
y2 = trmdat(:, 58);
x3 = t;
y3 = trmdat(:, 56);
x4 = t;
y4 = trmdat(:, 54);
x5 = t;
y5 = trmdat(:, 52);
x6 = t;
y6 = poolsat;
xlpdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x5pdist = floor(x5 (end)/11);

```
```

x6pdist = floor(x6(end)/3);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if x1p(end) + x1pdist <= x1(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
x4p = x4(1);
y4p = y4(1);
for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4(ind)];
end
end
x5p = x5(1);
y5p = y5(1);
for ind = 2:length(x5)
if x5p(end) + x5pdist <= x5(ind)
% append the point to the array
x5p = [x5p x5 (ind)];
y5p = [y5p y5(ind)];
end
end
x6p = x6(1);
y6p = y6(1);
for ind = 2:length(x6)
if x6p(end) + x6pdist <= x6(ind)
% append the point to the array
x6p = [x6p x6(ind)];
y6p = [y6p y6(ind)];
end
end
ploth1 = plot(x1(1), y1(1), 'b-s', x2(1), y2(1), 'c-^', x3(1), y3(1), 'r-d', x4(1), y4(1),
'g-p', x5(1), y5(1), 'k-o', x6(1), y6(1), 'k-.*');
% add data lines
hold on
ploth2 = plot(x1, y1, 'b-', x2, y2, 'c-', x3, y3, 'r-', x4, y4, 'g-', x5, y5, 'k-', x6,
y6, 'k-.');
ploth3 = plot(x1p, y1p, 'bs', x2p, y2p, 'c^', x3p, y3p, 'rd', x4p, y4p, 'gp', x5p, y5p,
'ko', x6p, y6p, 'k*');
set(ploth1(1), 'MarkerFaceColor', 'b');
set(ploth1(1), 'MarkerEdgeColor', 'k');
set(ploth3(1), 'MarkerFaceColor', 'b');
set(ploth3(1), 'MarkerEdgeColor', 'k');

```
```

set(ploth1(2), 'MarkerFaceColor', 'c');
set(ploth1(2), 'MarkerEdgeColor', 'k');
set(ploth3(2), 'MarkerFaceColor', 'c');
set(ploth3(2), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerFaceColor', 'r');
set(ploth1(3), 'MarkerEdgeColor', 'k');
set(ploth3(3), 'MarkerFaceColor', 'r');
set(ploth3(3), 'MarkerEdgeColor', 'k');
set(ploth1(4), 'MarkerFaceColor', 'g');
set(ploth1(4), 'MarkerEdgeColor', 'k');
set(ploth1(4), 'MarkerSize', 10);
set(ploth3(4), 'MarkerFaceColor', 'g');
set(ploth3(4), 'MarkerEdgeColor', 'k');
set(ploth3(4), 'MarkerSize', 10);
set(ploth1(5), 'MarkerFaceColor', 'k');
set(ploth1(5), 'MarkerEdgeColor', 'k');
set(ploth1(5), 'MarkerSize', 5);
set(ploth3(5), 'MarkerFaceColor', 'k');
set(ploth3(5), 'MarkerEdgeColor', 'w');
set(ploth3(5), 'MarkerSize', 5);
set(ploth1(6), 'MarkerSize', 10);
set(ploth3(6), 'MarkerSize', 10);
rtlims = get(get(fighandle, 'CurrentAxes'), 'YLim');
if rtlims(2) > 1.2 * max(poolsat)
rtlims(2) = 10 * ceil(1.2*max(poolsat/10));
end
set(get(fighandle, 'CurrentAxes'), 'YLim', rtlims);
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold off
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
if showtitles == 1
title('Sparger End Pool Temperatures, Facing Outlet End');
end
xlabel('Time, s');
ylabel('Temperature, C');
legendhandle = legend('A - Upper', 'B - Middle (bad)', 'C - Lower', 'D - Left', 'E -
Right', 'F - Saturation', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname '_pool_back_temps'];
set(fighandle, 'Name',' figñame);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
prin̄t(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Pool Temperatures - Middle
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' is the Mid-Axis Pool Temperature.'];
disp(text)

```
```

% SP 11 is in Column 44
% SP 12 is in Column 42
% SP 13 is in Column 40
% SP 14 is in Column 38
% SP 15 is in Column 36
% set up plot
x1 = t;
y1 = trmdat(:, 44);
x2 = t;
y2 = trmdat(:, 42);
x3 = t;
y3 = trmdat(:, 40);
x4 = t;
y4 = trmdat(:, 38);
x5 = t;
y5 = trmdat(:, 36);
x6 = t;
y6 = poolsat;
xlpdist = floor (x1 (end)/4);
x2pdist = floor (x2 (end)/5);
x3pdist = floor (x3(end)/7);
x4pdist = floor (x4(end)/9);
x5pdist = floor(x5 (end)/11);
x6pdist = floor (x6(end)/3);
x1p = x1(1);
y1p = y1 (1);
for ind = 2:length(x1)
if xlp(end) + xlpdist <= xl(ind)
% append the point to the array
x1p = [x1p x1 (ind)];
y1p = [y1p y1 (ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
x4p = x4(1);
y4p = y4(1);
for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4(ind)];
end
end
x5p = x5(1);
y5p = y5(1);
for ind = 2:length(x5)
if x5p(end) + x5pdist <= x5(ind)
% append the point to the array
x5p = [x5p x5(ind)];

```
```

        y5p = [y5p y5(ind)];
    end
    end
x6p = x6(1);
y6p = y6(1);
for ind = 2:length(x6)
if x6p(end) + x6pdist <= x6(ind)
% append the point to the array
x6p = [x6p x6(ind)];
y6p = [y6p y6(ind)];
end
end
ploth1 = plot(x1(1), y1(1), 'b-s', x2(1), y2(1), 'c-^', x3(1), y3(1), 'r-d', x4(1), y4(1),
'g-p', x5(1), y5(1), 'k-o', x6(1), y6(1), 'k-.*');
% add data lines
hold on
ploth2 = plot(x1, y1, 'b-', x2, y2, 'c-', x3, y3, 'r-', x4, y4, 'g-', x5, y5, 'k-', x6,
y6, 'k-.');
ploth3 = plot(x1p, y1p, 'bs', x2p, y2p, 'c^', x3p, y3p, 'rd', x4p, y4p, 'gp', x5p, y5p,
'ko', x6p, y6p, 'k*');
set(ploth1(1), 'MarkerFaceColor', 'b');
set(ploth1(1), 'MarkerEdgeColor', 'k');
set(ploth3(1), 'MarkerFaceColor', 'b');
set(ploth3(1), 'MarkerEdgeColor', 'k');
set(ploth1(2), 'MarkerFaceColor', 'c');
set(ploth1(2), 'MarkerEdgeColor', 'k');
set(ploth3(2), 'MarkerFaceColor', 'c');
set(ploth3(2), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerFaceColor', 'r');
set(ploth1(3), 'MarkerEdgeColor', 'k');
set(ploth3(3), 'MarkerFaceColor', 'r');
set(ploth3(3), 'MarkerEdgeColor', 'k');
set(ploth1(4), 'MarkerFaceColor', 'g');
set(ploth1(4), 'MarkerEdgeColor', 'k');
set(ploth1(4), 'MarkerSize', 10);
set(ploth3(4), 'MarkerFaceColor', 'g');
set(ploth3(4), 'MarkerEdgeColor', 'k');
set(ploth3(4), 'MarkerSize', 10);
set(ploth1(5), 'MarkerFaceColor', 'k');
set(ploth1(5), 'MarkerEdgeColor', 'k');
set(ploth1(5), 'MarkerSize', 5);
set(ploth3(5), 'MarkerFaceColor', 'k');
set(ploth3(5), 'MarkerEdgeColor', 'w');
set(ploth3(5), 'MarkerSize', 5);
set(ploth1(6), 'MarkerSize', 10);
set(ploth3(6), 'MarkerSize', 10);
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold off
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
if showtitles == 1
title('Mid-Axis Pool Temperatures, Facing Outlet End');
end
xlabel('Time, s');
ylabel('Temperature, C');
legendhandle = legend('A - Upper', 'B - Middle', 'C - Lower', 'D - Left', 'E - Right', 'F
- Saturation', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname '_pool_mid_temps'];
set(fighandle, 'Name', figname);

```
```

set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
print(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Flowrates
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' is the Flowrate.'];
disp(text)
% Steam Flowrate (kg/s) is in Column 107
% Water Return Flowrate (kg/s) is in Column 102
% Water Injection to Steam Line (kg/s) is in Column 127
% set up plot
x1 = t;
y1 = 1000*trmdat(:,107);
x2 = t;
y2 = 1000*trmdat(:,102);
x3 = t;
y3 = 1000*trmdat(:,127);
x1pdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if x1p(end) + x1pdist <= x1(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
ploth1 = plot(x1(1), y1(1), 'b-s', x2(1), y2(1), 'c-^', x3(1), y3(1), 'r-d');
% add data lines
hold on
ploth2 = plot(x1, y1, 'b-', x2, y2, 'c-', x3, y3, 'r-');
ploth3 = plot(x1p, y1p, 'bs', x2p, y2p, 'c^', x3p, y3p, 'rd');
set(ploth1(1), 'MarkerFaceColor', 'b');
set(ploth1(1), 'MarkerEdgeColor', 'k');

```
```

set(ploth3(1), 'MarkerFaceColor', 'b');
set(ploth3(1), 'MarkerEdgeColor', 'k');
set(ploth1(2), 'MarkerFaceColor', 'c');
set(ploth1(2), 'MarkerEdgeColor', 'k');
set(ploth3(2), 'MarkerFaceColor', 'c');
set(ploth3(2), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerFaceColor', 'r');
set(ploth1(3), 'MarkerEdgeColor', 'k');
set(ploth3(3), 'MarkerFaceColor', 'r');
set(ploth3(3), 'MarkerEdgeColor', 'k');
set(get(fighandle, 'CurrentAxes'), 'YLim', [0 25*ceil(mean(1000*trmdat(:,102))/18.75)]);
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold off
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
if showtitles == 1
title('Mass Flow Rates');
end
xlabel('Time, s');
ylabel('Flowrate, g/s');
legendhandle = legend('Steam Flowrate', 'Water Return to Steam Generator', 'Water
Injection to Steam Line', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname '_flowrates'];
set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save em == 1
prin̄t(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Pressures
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' is the Gas Pressure.'];
disp(text)
% SG Pressure is in Column 88
% MSL Pressure is in Column 110
% SP Pressure is in Column }9
% set up plot
x1 = t;
y1 = trmdat (:,88);
x2 = t;
y2 = trmdat(:,110);
x3 = t;
y3 = trmdat(:,97);
x1pdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x1p = x1(1);
y1p = y1(1);

```
```

for ind = 2:length(x1)
if x1p(end) + x1pdist <= x1(ind)
% append the point to the array
x1p = [x1p xl(ind)];
y1p = [y1p yl(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
ploth1 = plot(x1(1), y1(1), 'b-s', x2(1), y2(1), 'c-^', x3(1), y3(1), 'r-d');
% add data lines
hold on
ploth2 = plot(x1, y1, 'b-', x2, y2, 'c-', x3, y3, 'r-');
ploth3 = plot(x1p, y1p, 'bs', x2p, y2p, 'c^', x3p, y3p, 'rd');
set(ploth1(1), 'MarkerFaceColor', 'b');
set(ploth1(1), 'MarkerEdgeColor', 'k');
set(ploth3(1), 'MarkerFaceColor', 'b');
set(ploth3(1), 'MarkerEdgeColor', 'k');
set(ploth1(2), 'MarkerFaceColor', 'c');
set(ploth1(2), 'MarkerEdgeColor', 'k');
set(ploth3(2), 'MarkerFaceColor', 'c');
set(ploth3(2), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerFaceColor', 'r');
set(ploth1(3), 'MarkerEdgeColor', 'k');
set(ploth3(3), 'MarkerFaceColor', 'r');
set(ploth3(3), 'MarkerEdgeColor', 'k');
line([t(plume ind), t(plume ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold off
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
if showtitles == 1
title('System Vapor Space Pressures');
end
xlabel('Time, s');
ylabel('Pressure, psia');
legendhandle = legend('Steam Generator', 'Main Steam Line', 'Suppression Chamber',
'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname '_pressures'];
set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];

```
```

if save_em == 1
prin̄t(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end

```
\% Turbine
\% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' is the Turbine/Sparger Performance.'];
disp (text)
\% Turbine Inlet Temperature is in Column 68
\% Turbine Outlet Temperature is in Column 66
\% Sparger Outlet Temperature in Column 64
\% Sparger Delta \(P\) is in Column 113
\% set up plot
\(\mathrm{x} 1 \mathrm{=}\) t;
y1 \(=\operatorname{trmdat}(:, 68)\);
\(\mathrm{x} 2=t\);
\(y^{2}=\operatorname{trmdat}(:, 66)\);
x3 = t;
y3 \(=\operatorname{trmdat}(:, 64)\);
x4 = t;
y4 = trmdat (:,113) - spargeroffset;
x1pdist \(=\) floor \((x 1(\) end \() / 4)\);
\(x 2\) pdist \(=\) floor (x2 (end)/5);
\(x 3 p d i s t=\) floor (x3 (end)/7);
x 4 pdist \(=\) floor (x4 (end)/9);
\(\mathrm{xlp}=\mathrm{x} 1(1)\);
\(y 1 p=y 1(1) ;\)
for ind \(=2:\) length (x1)
    if \(x 1 p(e n d)+x 1 p d i s t<=x 1(i n d)\)
            \% append the point to the array
            \(x 1 p=[x 1 p\) x1(ind)];
            \(y 1 p=[y 1 p y 1(i n d)] ;\)
        end
end
\(x 2 p=x 2(1) ;\)
\(y^{2} \mathrm{p}=\mathrm{y}^{2}(1) ;\)
for ind \(=2\) : length (x2)
        if \(x 2 p\) (end) \(+x 2 p d i s t<=x 2\) (ind)
            \% append the point to the array
            \(x 2 p=[x 2 p x 2(i n d)] ;\)
            \(y 2 p=[y 2 p y 2(i n d)] ;\)
        end
end
\(x 3 p=x 3(1)\);
\(y 3 p=y 3(1) ;\)
for ind \(=2:\) length ( \(x 3\) )
        if \(x 3 p(e n d)+x 3 p d i s t<=x 3\) (ind)
            \% append the point to the array
            \(x 3 p=[x 3 p\) x3(ind)];
            \(y 3 p=[y 3 p y 3(i n d)] ;\)
        end
end
\(x 4 p=x 4(1) ;\)
\(y 4 p=y 4(1) ;\)
for ind \(=2\) : length ( \(x 4\) )
        if \(x 4 p(e n d)+x 4 p d i s t<=x 4\) (ind)
            \% append the point to the array
            \(x 4 p=[x 4 p x 4(i n d)] ;\)
            \(y 4 p=[y 4 p\) y \((\) ind \()]\);
```

        end
    end
[ax, h1, h2] = plotyy(x1, [y1, y2, y3], x4, [y4]);
hold(ax(1), 'on');
hold(ax(2), 'on');
ploth2a = plot(ax(1), x1(1), y1(1), 'b-s', x2(1), y2(1), 'g-p', x3(1), y3(1), 'r-d');
ploth2b = plot(ax(1), x1p, y1p, 'bs', x2p, y2p, 'gp', x3p, y3p, 'rd');
ploth3a = plot(ax(2), x4(1), y4(1), 'm-v');
ploth3b = plot(ax(2), x4p, y4p, 'mv');
line([t(plume ind), t(plume ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold(ax(1), 'off');
hold(ax(2), 'off');
set(ax(2), 'YColor', 'm')
set(h1(1), 'Color', 'b');
set(h1(2), 'Color', 'g');
set(h1(3), 'Color', 'r');
set(h2(1), 'Color', 'm');
set(ploth2a(1), 'MarkerEdgeColor', 'k');
set(ploth2a(2), 'MarkerEdgeColor', 'k');
set(ploth2a(3), 'MarkerEdgeColor', 'k');
set(ploth2b(1), 'MarkerEdgeColor', 'k');
set(ploth2b(2), 'MarkerEdgeColor', 'k');
set(ploth2b(3), 'MarkerEdgeColor', 'k');
set(ploth3a(1), 'MarkerEdgeColor', 'k');
set(ploth3b(1), 'MarkerEdgeColor', 'k');
set(ploth2a(1), 'MarkerFaceColor', 'b');
set(ploth2a(2), 'MarkerFaceColor', 'g');
set(ploth2a(2), 'MarkerSize', 10);
set(ploth2a(3), 'MarkerFaceColor', 'r');
set(ploth2b(1), 'MarkerFaceColor', 'b');
set(ploth2b(2), 'MarkerFaceColor', 'g');
set(ploth2b(2), 'MarkerSize', 10);
set(ploth2b(3), 'MarkerFaceColor', 'r');
set(ploth3a(1), 'MarkerFaceColor', 'm');
set(ploth3b(1), 'MarkerFaceColor', 'm');
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
set(get(ax(1),'Ylabel'),'String','Temperature, C');
set(get(ax(2),'Ylabel'),'String','Sparger DP, inH2O');
set(ax(1), 'YTickMode', 'auto');
set(ax(2), 'YTickMode', 'auto');
set(ax(1), 'YLimMode', 'auto');
set(ax(2), 'YLimMode', 'auto');
xlabel('Time, s');
if showtitles == 1
title('RCIC Turbine Analog/Sparger Performance');
end
legendhandle = legend([ploth2a', ploth3a'], 'A - Turbine Analog Inlet T', 'B - Turbine
Analog Outlet T', 'C - Sparger Outlet T', 'D - Sparger DP', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname '_turbine'];
set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
prin̄t(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end

```
```

% Vertical-Horizontal Pool Thermal Profile NO SP 4
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' is the Vert-Horiz Center Thermal Profile.'];
disp(text)
% SP 3 is in Column 60
% SP 4 is in Column 58 -- bad, don't use
% SP 5 is in Column 56
% SP 11 is in Column 44
% SP 12 is in Column 42
% SP 13 is in Column 40
% SP 19 is in Column 28
% SP 20 is in Column 26
% SP 21 is in Column 24
% SP Outlet is in Column 74
% set up plot
x1 = t;
y1 = trmdat(:, 60);
x2 = t;
y2 = trmdat(:, 56);
x3 = t;
y3 = trmdat(:, 44);
x4 = t;
y4 = trmdat(:, 42);
x5 = t;
y5 = trmdat(:, 40);
x6 = t;
y6 = trmdat(:, 28);
x7 = t;
y7 = trmdat(:, 26);
x8 = t;
y8 = trmdat(:, 24);
x9 = t;
y9 = trmdat(:, 74);
x10 = t;
y10 = poolsat;
x1pdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x5pdist = floor(x5(end)/11);
x6pdist = floor(x6(end)/13);
x7pdist = floor(x7(end)/(17/2));
x8pdist = floor(x8(end)/(19/2));
x9pdist = floor(x9(end)/(23/2));
x10pdist = floor(x10(end)/3);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if xlp(end) + xlpdist <= xl(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array

```
```

            x2p = [x2p x2(ind)];
            y2p = [y2p y2(ind)];
    end
    end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
x4p = x4(1);
y4p = y4(1);
for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4(ind)];
end
end
x5p = x5(1);
y5p = y5(1);
for ind = 2:length(x5)
if x5p(end) + x5pdist <= x5(ind)
% append the point to the array
x5p = [x5p x5(ind)];
y5p = [y5p y5(ind)];
end
end
x6p = x6(1);
y6p = y6(1);
for ind = 2:length(x6)
if x6p(end) + x6pdist <= x6(ind)
% append the point to the array
x6p = [x6p x6(ind)];
y6p = [y6p y6(ind)];
end
end
x7p = x7(1);
y7p = y7(1);
for ind = 2:length(x7)
if x7p(end) + x7pdist <= x7(ind)
% append the point to the array
x7p = [x7p x7(ind)];
y7p = [y7p y7(ind)];
end
end
x8p = x8(1);
y8p = y8(1);
for ind = 2:length(x8)
if x8p(end) + x8pdist <= x8(ind)
% append the point to the array
x8p = [x8p x8(ind)];
y8p = [y8p y8(ind)];
end
end
x9p = x9(1);
y9p = y9(1);
for ind = 2:length(x9)
if x9p(end) + x9pdist <= x9(ind)
% append the point to the array
x9p = [x9p x9(ind)];
y9p = [y9p y9(ind)];
end
end

```
```

x10p = x10(1);
y10p = y10(1);
for ind = 2:length(x10)
if x10p(end) + x10pdist <= x10(ind)
% append the point to the array
x10p = [x10p x10(ind)];
y10p = [y10p y10(ind)];
end
end
ploth1 = plot(x1(1), y1(1), 'b-s', x2(1), y2(1), 'r-d', x3(1), y3(1), 'g-p', x4(1), y4(1),
'c-^', x5(1), y5(1), 'm-v', x6(1), y6(1), 'k-o', x7(1), y7(1), 'y->', x8(1),
y8(1), 'y-<', x9(1), y9(1), 'y-h', x10(1), y10(1), 'k-.*');
% add data lines
hold on
ploth2 = plot(x1, y1, 'b-', x2, y2, 'r-', x3, y3, 'g-', x4, y4, 'c-', x5, y5, 'm-', x6,
y6, 'k-', x7, y7, 'y-', x8, y8, 'y-', x9, y9, 'y-', x10, y10, 'k-.');
ploth3 = plot(x1p, y1p, 'bs', x2p, y2p, 'rd', x3p, y3p, 'gp', x4p, y4p, 'c^', x5p, y5p,
'mv', x6p, y6p, 'ko', x7p, y7p, 'y>', x8p, y8p, 'y<', x9p, y9p, 'yh', x10p, y10p,
'k*');
set(ploth1(7) , 'Color', [1, 155/255, 0]);
set(ploth2(7) , 'Color', [1, 155/255, 0]);
set(ploth3(7) , 'Color', [1, 155/255, 0]);
set(ploth1(8) , 'Color', [139/255, 115/255, 85/255]);
set(ploth2(8) , 'Color', [139/255, 115/255, 85/255]);
set(ploth3(8) , 'Color', [139/255, 115/255, 85/255]);
set(ploth1(9) , 'Color', [0/255, 0.4, 0/255]);
set(ploth2(9) , 'Color', [0/255, 0.4, 0/255]);
set(ploth3(9) , 'Color', [0/255, 0.4, 0/255]);
set(ploth1(1), 'MarkerFaceColor', 'b');
set(ploth1(1), 'MarkerEdgeColor', 'w');
set(ploth3(1), 'MarkerFaceColor', 'b');
set(ploth3(1), 'MarkerEdgeColor', 'w');
set(ploth1(2), 'MarkerFaceColor', 'r');
set(ploth1(2), 'MarkerEdgeColor', 'k');
set(ploth3(2), 'MarkerFaceColor', 'r');
set(ploth3(2), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerFaceColor', 'g');
set(ploth1(3), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerSize', 10);
set(ploth3(3), 'MarkerFaceColor', 'g');
set(ploth3(3), 'MarkerEdgeColor', 'k');
set(ploth3(3), 'MarkerSize', 10);
set(ploth1(4), 'MarkerFaceColor', 'c');
set(ploth1(4), 'MarkerEdgeColor', 'k');
set(ploth3(4), 'MarkerFaceColor', 'c');
set(ploth3(4), 'MarkerEdgeColor', 'k');
set(ploth1(5), 'MarkerFaceColor', 'm');
set(ploth1(5), 'MarkerEdgeColor', 'k');
set(ploth3(5), 'MarkerFaceColor', 'm');
set(ploth3(5), 'MarkerEdgeColor', 'k');
set(ploth1(6), 'MarkerFaceColor', 'k');
set(ploth1(6), 'MarkerEdgeColor', 'k');
set(ploth1(6), 'MarkerSize', 5);
set(ploth3(6), 'MarkerFaceColor', 'k');
set(ploth3(6), 'MarkerEdgeColor', 'w');
set(ploth3(6), 'MarkerSize', 5);
set(ploth1(7), 'MarkerFaceColor', [1, 155/255, 0]);
set(ploth1(7), 'MarkerEdgeColor', 'k');
set(ploth3(7), 'MarkerFaceColor', [1, 155/255, 0]);
set(ploth3(7), 'MarkerEdgeColor', 'k');
set(ploth1(8), 'MarkerFaceColor', [139/255, 115/255, 85/255]);
set(ploth1(8), 'MarkerEdgeColor', 'k');
set(ploth3(8), 'MarkerFaceColor', [139/255, 115/255, 85/255]);
set(ploth3(8), 'MarkerEdgeColor', 'k');
set(ploth1(9), 'MarkerFaceColor', [0/255, 0.4, 0/255]);
set(ploth1(9), 'MarkerEdgeColor', 'k');
set(ploth1(9), 'MarkerSize', 10);

```
```

set(ploth3(9), 'MarkerFaceColor', [0/255, 0.4, 0/255]);
set(ploth3(9), 'MarkerEdgeColor', 'k');
set(ploth3(9), 'MarkerSize', 10);
set(ploth1(10), 'MarkerSize', 10);
set(ploth3(10), 'MarkerSize', 10);
line([t(plume ind), t(plume ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold off
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
if showtitles == 1
title('Horizontal \& Vertical Pool Thermal Profile');
end
xlabel('Time, s');
ylabel('Temperature, C');
legendhandle = legend('Rear Upper', 'Rear Lower', 'Mid Upper', 'Mid Middle', 'Mid Lower',
'Front Upper', 'Front Middle', 'Front Lower', 'Bottom Outlet', 'Saturation',
'Location', 'NorthWest');
set(legendhandle, 'Color', 'none');
figname = [testname '_pool_vert_horiz_temps_noSP4'];
set(fighandle, 'Name', figñame);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
prin̄t(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Air-Vertical Middle Profile
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' is the Air-Water VertHoriz Thermal Profile.'];
disp(text)
% SP 2 is in Column 62 (rear air)
% SP 3 is in Column 60 (rear top)
% SP 11 is in Column 44 (mid-top)
% SP 12 is in Column 42 (mid-mid)
% SP 13 is in Column 40 (mid-low)
% SP }18\mathrm{ is in Column 30 (front air)
% SP 19 is in Column 28 (front upper)
% SP Outlet is in Column 74
% set up plot
x1 = t;
y1 = trmdat(:, 60);
x2 = t;
y2 = trmdat(:, 44);
x3 = t;
y3 = trmdat(:, 28);
x4 = t;
y4 = trmdat(:, 42);
x5 = t;
y5 = trmdat(:, 40);
x6 = t;

```
```

y6 = trmdat(:, 74);
x7 = t;
y7 = trmdat(:, 62);
x8 = t;
y8 = trmdat (:, 30);
x9 = t;
y9 = poolsat;
x1pdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x5pdist = floor(x5(end)/11);
x6pdist = floor(x6(end)/13);
x7pdist = floor(x7(end)/(17/2));
x8pdist = floor(x8(end)/(19/2));
x9pdist = floor(x9(end)/3);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if xlp(end) + x1pdist <= x1(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
x4p = x4(1);
y4p = y4(1);
for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4(ind)];
end
end
x5p = x5(1);
y5p = y5(1);
for ind = 2:length(x5)
if x5p(end) + x5pdist <= x5(ind)
% append the point to the array
x5p = [x5p x5(ind)];
y5p = [y5p y5(ind)];
end
end
x6p = x6(1);
y6p = y6(1);
for ind = 2:length(x6)
if x6p(end) + x6pdist <= x6(ind)
% append the point to the array
x6p = [x6p x6(ind)];

```
```

        y6p = [y6p y6(ind)];
    end
    end
x7p = x7(1);
y7p = y7(1);
for ind = 2:length(x7)
if x7p(end) + x7pdist <= x7(ind)
% append the point to the array
x7p = [x7p x7(ind)];
y7p = [y7p y7(ind)];
end
end
x8p = x8(1);
y8p = y8(1);
for ind = 2:length(x8)
if x8p(end) + x8pdist <= x8(ind)
% append the point to the array
x8p = [x8p x8(ind)];
y8p = [y8p y8(ind)];
end
end
x9p = x9(1);
y9p = y9(1);
for ind = 2:length(x9)
if x9p(end) + x9pdist <= x9(ind)
% append the point to the array
x9p = [x9p x9(ind)];
y9p = [y9p y9(ind)];
end
end
ploth1 = plot(x1(1), y1(1), 'b-s', x2(1), y2(1), 'r-d', x3(1), y3(1), 'g-p', x4(1), y4(1),
'c-^', x5(1), y5(1), 'm-v', x6(1), y6(1), 'k-o', x7(1), y7(1), 'y->', x8(1),
y8(1), 'y-<', x9(1), y9(1), 'k-.*');
% add data lines
hold on
ploth2 = plot(x1, y1, 'b-', x2, y2, 'r-', x3, y3, 'g-', x4, y4, 'c-', x5, y5, 'm-', x6,
y6, 'k-', x7, y7, 'y-', x8, y8, 'y-', x9, y9, 'k-.');
ploth3 = plot(x1p, y1p, 'bs', x2p, y2p, 'rd', x3p, y3p, 'gp', x4p, y4p, 'c^', x5p, y5p,
'mv', x6p, y6p, 'ko', x7p, y7p, 'y>', x8p, y8p, 'y<', x9p, y9p, 'k*');
set(ploth1(7) , 'Color', [1, 155/255, 0]);
set(ploth2(7) , 'Color', [1, 155/255, 0]);
set(ploth3(7) , 'Color', [1, 155/255, 0]);
set(ploth1(8) , 'Color', [139/255, 115/255, 85/255]);
set(ploth2(8) , 'Color', [139/255, 115/255, 85/255]);
set(ploth3(8) , 'Color', [139/255, 115/255, 85/255]);
set(ploth1(1), 'MarkerFaceColor', 'b');
set(ploth1(1), 'MarkerEdgeColor', 'w');
set(ploth3(1), 'MarkerFaceColor', 'b');
set(ploth3(1), 'MarkerEdgeColor', 'w');
set(ploth1(2), 'MarkerFaceColor', 'r');
set(ploth1(2), 'MarkerEdgeColor', 'k');
set(ploth3(2), 'MarkerFaceColor', 'r');
set(ploth3(2), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerFaceColor', 'g');
set(ploth1(3), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerSize', 10);
set(ploth3(3), 'MarkerFaceColor', 'g');
set(ploth3(3), 'MarkerEdgeColor', 'k');
set(ploth3(3), 'MarkerSize', 10);
set(ploth1(4), 'MarkerFaceColor', 'c');
set(ploth1(4), 'MarkerEdgeColor', 'k');
set(ploth3(4), 'MarkerFaceColor', 'c');
set(ploth3(4), 'MarkerEdgeColor', 'k');
set(ploth1(5), 'MarkerFaceColor', 'm');
set(ploth1(5), 'MarkerEdgeColor', 'k');
set(ploth3(5), 'MarkerFaceColor', 'm');
set(ploth3(5), 'MarkerEdgeColor', 'k');

```
```

set(ploth1(6), 'MarkerFaceColor', 'k');
set(ploth1(6), 'MarkerEdgeColor', 'k');
set(ploth1(6), 'MarkerSize', 5);
set(ploth3(6), 'MarkerFaceColor', 'k');
set(ploth3(6), 'MarkerEdgeColor', 'w');
set(ploth3(6), 'MarkerSize', 5);
set(ploth1(7), 'MarkerFaceColor', [1, 155/255, 0]);
set(ploth1(7), 'MarkerEdgeColor', 'k');
set(ploth3(7), 'MarkerFaceColor', [1, 155/255, 0]);
set(ploth3(7), 'MarkerEdgeColor', 'k');
set(ploth1(8), 'MarkerFaceColor', [139/255, 115/255, 85/255]);
set(ploth1(8), 'MarkerEdgeColor', 'k');
set(ploth3(8), 'MarkerFaceColor', [139/255, 115/255, 85/255]);
set(ploth3(8), 'MarkerEdgeColor', 'k');
set(ploth1(9), 'MarkerSize', 10);
set(ploth3(9), 'MarkerSize', 10);
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold off
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
if showtitles == 1
title('Suppression Pool Axial Air \& Water Temperatures');
end
xlabel('Time, s');
ylabel('Temperature, C');
legendhandle = legend('A - Rear Upper', 'B - Mid Upper', 'C - Front Upper', 'D - Mid
Middle', 'E - Mid Lower', 'F - Outlet', 'G - Rear Airspace', 'H - Front Airspace',
'J - Saturation', 'Location', 'NorthWest');
set(legendhandle, 'Color', 'none');
figname = [testname ' pool axial air water temps'];
set(fighandle, 'Name', figñame);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
print(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Slopes (Temperature changerates)
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' has the 5-minute Rear Temperature
Changerates.'];
disp(text)
% set up plot
x1 = data(sindex(1):sindex(3)-inclusionlen, 1) - data(sindex(1), 1);
y1 = 60*vsmooth_top(sindex(1):sindex(3)-inclusionlen, 1);
x2 = data(sindex(1):sindex(3)-inclusionlen, 1) - data(sindex(1), 1);
y2 = 60*vsmooth_hot(sindex(1):sindex(3)-inclusionlen, 1);
x3 = data(sindex(1):sindex(3)-inclusionlen, 1) - data(sindex(1), 1);
y3 = 60*vsmooth_mid(sindex(1):sindex(3)-inclusionlen, 1);
x4 = data(sindex(1):sindex(3)-inclusionlen, 1) - data(sindex(1), 1);
y4 = 60*vsmooth_low(sindex(1):sindex(3)-inclusionlen, 1);

```
```

x5 = data(sindex(1):sindex(3)-inclusionlen, 1) - data(sindex(1), 1);
y5 = 60*vsmooth_out(sindex(1):sindex(3)-inclusionlen, 1);
x1pdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x5pdist = floor(x5 (end)/11);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if xlp(end) + xlpdist <= xl(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
x4p = x4(1);
y4p = y4(1);
for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4(ind)];
end
end
x5p = x5(1);
y5p = y5(1);
for ind = 2:length(x5)
if x5p(end) + x5pdist <= x5(ind)
% append the point to the array
x5p = [x5p x5 (ind)];
y5p = [y5p y5(ind)];
end
end
ploth1 = plot(x1(1), y1(1), 'b-s', x3(1), y3(1), 'r-d', x4(1), y4(1), 'g-p', x5(1), y5(1),
'k-o');
hold on
ploth2 = plot(x1, y1, 'b-', x3, y3, 'r-', x4, y4, 'g-', x5, y5, 'k-');
ploth3 = plot(x1p, y1p, 'bs', x3p, y3p, 'rd', x4p, y4p, 'gp', x5p, y5p, 'ko');
set(ploth1(1), 'MarkerFaceColor', 'b');
set(ploth1(1), 'MarkerEdgeColor', 'k');
set(ploth3(1), 'MarkerFaceColor', 'b');
set(ploth3(1), 'MarkerEdgeColor', 'k');
set(ploth1(2), 'MarkerFaceColor', 'r');
set(ploth1(2), 'MarkerEdgeColor', 'k');
set(ploth3(2), 'MarkerFaceColor', 'r');
set(ploth3(2), 'MarkerEdgeColor', 'k');
set(ploth1(3), 'MarkerFaceColor', 'g');
set(ploth1(3), 'MarkerEdgeColor', 'k');

```
```

set(ploth1(3), 'MarkerSize', 10);
set(ploth3(3), 'MarkerFaceColor', 'g');
set(ploth3(3), 'MarkerEdgeColor', 'k');
set(ploth3(3), 'MarkerSize', 10);
set(ploth1(4), 'MarkerFaceColor', 'k');
set(ploth1(4), 'MarkerEdgeColor', 'k');
set(ploth1(4), 'MarkerSize', 5);
set(ploth3(4), 'MarkerFaceColor', 'k');
set(ploth3(4), 'MarkerEdgeColor', 'w');
set(ploth3(4), 'MarkerSize', 5);
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(strats̄tartind), t(sťratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold off
if showtitles == 1
title('Smoothed Rear Temperature Changerates');
end
xlabel('Time, s');
ylabel('Smoothed Changerate, degrees/min');
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
figname = [testname '_pool_back_smoothed_changerates'];
set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
legendhandle = legend('A - Upper', 'C - 12 in. from Sparger (Middle)', 'D - Lower', 'E -
Outlet', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
prin̄t(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Slope Differences: Top-Middle (Temperature changerates)
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' has the 5-minute Top-Mid Rear Temperature
Changerate Differences.'];
disp(text)
% set up plot
x1 = data(sindex(1):sindex(3)-inclusionlen, 1) - data(sindex(1), 1);
y1 = (vsmooth_top(sindex(1):sindex(3)-inclusionlen, 2) - vsmooth_mid(sindex(1):sindex(3) -
inclusionlen,2));
x2 = data(sindex(1):sindex(3)-inclusionlen, 1) - data(sindex(1), 1);
y2 = 60*stopmid;
x1pdist = floor(x1 (end)/9);
x2pdist = floor(x1(end)/11);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if xlp(end) + xlpdist <= xl(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end

```
```

end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
[ax, h1, h2] = plotyy(x1, [y1], x2, [y2]);
hold(ax(1), 'on');
hold(ax(2), 'on');
ploth2a = plot(ax(1), x1(1), y1(1), 'b-s');
ploth2b = plot(ax(1), x1p, y1p, 'bs');
ploth3a = plot(ax(2), x2(1), y2(1), 'r-d');
ploth3b = plot(ax(2), x2p, y2p, 'rd');
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold(ax(1), 'off');
hold(ax(2), 'off');
set(ax(1), 'YColor', 'b')
set(ax(2), 'YColor', 'r')
set(h1(1), 'Color', 'b');
set(h2(1), 'Color', 'r');
set(ploth2a(1), 'MarkerEdgeColor', 'k');
set(ploth2b(1), 'MarkerEdgeColor', 'k');
set(ploth3a(1), 'MarkerEdgeColor', 'k');
set(ploth3b(1), 'MarkerEdgeColor', 'k');
set(ploth2a(1), 'MarkerFaceColor', 'b');
set(ploth2b(1), 'MarkerFaceColor', 'b');
set(ploth3a(1), 'MarkerFaceColor', 'r');
set(ploth3b(1), 'MarkerFaceColor', 'r');
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
set(get(ax(1),'Ylabel'),'String','Smoothed Temperature Difference, C');
set(get(ax(2),'Ylabel'),'String','Smoothed dT/dt Difference, Degrees/min');
set(ax(1), 'YTickMode', 'auto');
set(ax(2), 'YTickMode', 'auto');
set(ax(1), 'YLimMode', 'auto');
set(ax(2), 'YLimMode', 'auto');
xlabel('Time, s');
if showtitles == 1
title('5-Minute Smoothed Rear Temperature \& Changerate Differences');
end
legendhandle = legend([ploth2a', ploth3a'], 'A - Rear Top-Middle T(t) Difference', 'B -
Rear Top-Middle dT/dt Difference', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname ' pool back smoothed changerate difference topmid'];
set(fighandle, 'Name', figñame);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save em == 1
print(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end

```
```

% Slope Differences: Mid-Low (Temperature changerates)
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' has the 5-minute Mid-Low Rear Temperature
Changerate Differences.'];
disp(text)
% set up plot
x1 = data(sindex(1):sindex(3)-inclusionlen, 1) - data(sindex(1), 1);
y1 = (vsmooth_mid(sindex(1):sindex(3)-inclusionlen, 2) - vsmooth_low(sindex(1):sindex(3) -
inclusionlen,2));
x2 = data(sindex(1):sindex(3)-inclusionlen, 1) - data(sindex(1), 1);
y2 = 60*smidlow;
xlpdist = floor(x1(end)/9);
x2pdist = floor(x1(end)/11);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if x1p(end) + x1pdist <= x1(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
[ax, h1, h2] = plotyy(x1, [y1], x2, [y2]);
hold(ax(1), 'on');
hold(ax(2), 'on');
ploth2a = plot(ax(1), x1(1), y1(1), 'b-s');
ploth2b = plot(ax(1), x1p, y1p, 'bs');
ploth3a = plot(ax(2), x2(1), y2(1), 'r-d');
ploth3b = plot(ax(2), x2p, y2p, 'rd');
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold(ax(1), 'off');
hold(ax(2), 'off');
set(ax(1), 'YColor', 'b')
set(ax(2), 'YColor', 'r')
set(h1(1), 'Color', 'b');
set(h2(1), 'Color', 'r');
set(ploth2a(1), 'MarkerEdgeColor', 'k');
set(ploth2b(1), 'MarkerEdgeColor', 'k');
set(ploth3a(1), 'MarkerEdgeColor', 'k');
set(ploth3b(1), 'MarkerEdgeColor', 'k');
set(ploth2a(1), 'MarkerFaceColor', 'b');
set(ploth2b(1), 'MarkerFaceColor', 'b');
set(ploth3a(1), 'MarkerFaceColor', 'r');
set(ploth3b(1), 'MarkerFaceColor', 'r');
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
set(get(ax(1),'Ylabel'),'String','Smoothed Temperature Difference, C');

```
```

set(get(ax(2),'Ylabel'),'String','Smoothed dT/dt Difference, Degrees/min');
set(ax(1), 'YTickMode', 'auto');
set(ax(2), 'YTickMode', 'auto');
set(ax(1), 'YLimMode', 'auto');
set(ax(2), 'YLimMode', 'auto');
xlabel('Time, s');
if showtitles == 1
title('5-Minute Smoothed Rear Temperature \& Changerate Differences');
end
legendhandle = legend([ploth2a', ploth3a'], 'A - Rear Middle-Low T(t) Difference', 'B -
Rear Middle-Low dT/dt Difference', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname ' pool back smoothed changerate difference midlow'];
set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save em == 1
print(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Slope Differences: Low-Out (Temperature changerates)
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' has the 5-minute Low-Out Rear Temperature
Changerate Differences.'];
disp(text)
% set up plot
x1 = data(sindex(1):sindex(3)-inclusionlen, 1) - data(sindex(1), 1);
y1 = (vsmooth low(sindex(1):sindex(3)-inclusionlen, 2) - vsmooth out(sindex(1):sindex(3) -
inclusionlen,2));
x2 = data(sindex(1):sindex(3)-inclusionlen, 1) - data(sindex(1), 1);
y2 = 60*slowout;
x1pdist = floor(x1(end)/9);
x2pdist = floor(x1(end)/11);
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if xlp(end) + xlpdist <= xl(ind)
% append the point to the array
x1p = [x1p xl(ind)];
y1p = [y1p yl(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
[ax, h1, h2] = plotyy(x1, [y1], x2, [y2]);
hold(ax(1), 'on');
hold(ax(2), 'on');
ploth2a = plot(ax(1), x1(1), y1(1), 'b-s');
ploth2b = plot(ax(1), x1p, y1p, 'bs');
ploth3a = plot(ax(2), x2(1), y2(1), 'r-d');
ploth3b = plot(ax(2), x2p, y2p, 'rd');

```
```

line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold(ax(1), 'off');
hold(ax(2), 'off');
set(ax(1), 'YColor', 'b')
set(ax(2), 'YColor', 'r')
set(h1(1), 'Color', 'b');
set(h2(1), 'Color', 'r');
set(ploth2a(1), 'MarkerEdgeColor', 'k');
set(ploth2b(1), 'MarkerEdgeColor', 'k');
set(ploth3a(1), 'MarkerEdgeColor', 'k');
set(ploth3b(1), 'MarkerEdgeColor', 'k');
set(ploth2a(1), 'MarkerFaceColor', 'b');
set(ploth2b(1), 'MarkerFaceColor', 'b');
set(ploth3a(1), 'MarkerFaceColor', 'r');
set(ploth3b(1), 'MarkerFaceColor', 'r');
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
set(get(ax(1),'Ylabel'),'String','Smoothed Temperature Difference, C');
set(get(ax(2),'Ylabel'),'String','Smoothed dT/dt Difference, Degrees/min');
set(ax(1), 'YTickMode', 'auto');
set(ax(2), 'YTickMode', 'auto');
set(ax(1), 'YLimMode', 'auto');
set(ax(2), 'YLimMode', 'auto');
xlabel('Time, s');
if showtitles == 1
title('5-Minute Smoothed Rear Temperature \& Changerate Differences');
end
legendhandle = legend([ploth2a', ploth3a'], 'A - Rear Lower-Outlet T(t) Difference', 'B -
Rear Lower-Outlet dT/dt Difference', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname '_pool_back_smoothed_changerate_difference_lowout'];
set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
pri\overline{n}t(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end

```
\% Mixing Number
\% Smoothed Pool Temperatures
\% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' has the smoothed rear pool temperatures and
    the Mixing Number (Type 1).'];
disp(text)
\% set up plot
x1 = stratsmooth 0;
y1 = stratsmooth_1;
x2 = stratsmooth_0;
\(y^{2}=\) stratsmooth_3;
x3 = stratsmooth_0;
y3 \(=\) stratsmooth_4;
```

x4 = stratsmooth_0;
y4 = stratsmooth_2;
x5 = stratsmooth_0;
y5 = stratsmooth_5;
x6 = t;
y6 = poolsat;
x7 = t;
y7 = testrelationship;
xlpdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x5pdist = floor(x5(end)/11);
x6pdist = floor(x6(end)/3);
x7pdist = floor(x7(end)/(13));
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if xlp(end) + xlpdist <= x1(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
x4p=x4(1);
y4p = y4(1);
for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4(ind)];
end
end
x5p = x5(1);
y5p = y5(1);
for ind = 2:length(x5)
if x5p(end) + x5pdist <= x5(ind)
% append the point to the array
x5p = [x5p x5(ind)];
y5p = [y5p y5(ind)];
end
end
x6p = x6(1);
y6p = y6(1);
for ind = 2:length(x6)
if x6p(end) + x6pdist <= x6(ind)
% append the point to the array
x6p = [x6p x6(ind)];
y6p = [y6p y6(ind)];

```
```

        end
    end
x7p = x7(1);
y7p = y7(1);
for ind = 2:length(x7)
if x7p(end) + x7pdist <= x7(ind)
% append the point to the array
x7p = [x7p x7(ind)];
y7p = [y7p y7(ind)];
end
end
[ax, h1, h2] = plotyy(x1, [y1, y2, y3, y4, y5, y6], x7, [y7]);
hold(ax(1), 'on');
hold(ax(2), 'on');
ploth2a = plot(ax(1), x1(1), y1(1), 'b-s', x2(1), y2(1), 'c-^', x3(1), y3(1), 'r-d',
x4(1), y4(1), 'g-p', x5(1), y5(1), 'k-o', x6(1), y6(1), 'k-.*');
ploth2b = plot(ax(1), x1p, y1p, 'bs', x2p, y2p, 'c^', x3p, y3p, 'rd', x4p, y4p, 'gp', x5p,
y5p, 'ko', x6p, y6p, 'k*');
ploth3a = plot(ax(2), x7(1), y7(1), 'm-v');
ploth3b = plot(ax(2), x7p, y7p, 'mv');
set(ax(1), 'YLimMode', 'auto');
set(ax(2), 'YLimMode', 'auto');
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold(ax(1), 'off');
hold(ax(2), 'off');
set(ax(2), 'YColor', 'm')
set(h1(1), 'Color', 'b');
set(h1(2), 'Color', 'c');
set(h1(3), 'Color', 'r');
set(h1(4), 'Color', 'g');
set(h1(5), 'Color', 'k');
set(h1(6), 'Color', 'k');
set(h1(6), 'LineStyle', '-.');
set(h2(1), 'Color', 'm');
set(ploth2a(1), 'MarkerEdgeColor', 'k');
set(ploth2a(2), 'MarkerEdgeColor', 'k');
set(ploth2a(3), 'MarkerEdgeColor', 'k');
set(ploth2a(4), 'MarkerEdgeColor', 'k');
set(ploth2a(5), 'MarkerEdgeColor', 'k');
set(ploth2a(6), 'MarkerEdgeColor', 'k');
set(ploth2b(1), 'MarkerEdgeColor', 'k');
set(ploth2b(2), 'MarkerEdgeColor', 'k');
set(ploth2b(3), 'MarkerEdgeColor', 'k');
set(ploth2b(4), 'MarkerEdgeColor', 'k');
set(ploth2b(5), 'MarkerEdgeColor', 'w');
set(ploth2b(6), 'MarkerEdgeColor', 'k');
set(ploth3a(1), 'MarkerEdgeColor', 'k');
set(ploth3b(1), 'MarkerEdgeColor', 'k');
set(ploth2a(1), 'MarkerFaceColor', 'b');
set(ploth2a(2), 'MarkerFaceColor', 'c');
set(ploth2a(3), 'MarkerFaceColor', 'r');
set(ploth2a(4), 'MarkerFaceColor', 'g');
set(ploth2a(4), 'MarkerSize', 10);
set(ploth2a(5), 'MarkerFaceColor', 'k');
set(ploth2a(5), 'MarkerSize', 5);
set(ploth2a(6), 'MarkerFaceColor', 'k');
set(ploth2b(1), 'MarkerFaceColor', 'b');
set(ploth2b(2), 'MarkerFaceColor', 'c');
set(ploth2b(3), 'MarkerFaceColor', 'r');
set(ploth2b(4), 'MarkerFaceColor', 'g');
set(ploth2b(4), 'MarkerSize', 10);
set(ploth2b(5), 'MarkerFaceColor', 'k');
set(ploth2b(5), 'MarkerSize', 5);
set(ploth2b(6), 'MarkerFaceColor', 'k');

```
```

set(ploth3a(1), 'MarkerFaceColor', 'm');
set(ploth3b(1), 'MarkerFaceColor', 'm');
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
set(get(ax(1),'Ylabel'),'String','Temperature, C');
set(get(ax(2),'Ylabel'),'String','Mixing Number (nondimensional)');
set(ax(1), 'YTickMode', 'auto');
set(ax(2), 'YTickMode', 'auto');
xlabel('Time, s');
if showtitles == 1
title('Smoothed Rear Pool Temperatures and the Mixing Number (Type 1)');
end
legendhandle = legend([ploth2a', ploth3a'], 'A - Upper', 'B - Near Sparger (Middle)', 'C
- Further from Sparger (Middle)', 'D - Lower', 'E - Outlet', 'F - Saturation', 'G
- Mixing Number 1', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname '_crazynumber_t1'];
set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
print(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Smoothed Pool Temperatures
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' has the smoothed rear pool temperatures and
the Mixing Number (Type 2).'];
disp(text)
% set up plot
x1 = stratsmooth_0;
y1 = stratsmooth_1;
x2 = stratsmooth_0;
y2 = stratsmooth_3;
x3 = stratsmooth_0;
y3 = stratsmooth_4;
x4 = stratsmooth_0;
y4 = stratsmooth - 2;
x5 = stratsmooth_0;
y5 = stratsmooth_5;
x6 = t;
y6 = poolsat;
x7 = t;
y7 = testrelationship2;
x1pdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x5pdist = floor(x5(end)/11);
x6pdist = floor(x6(end)/3);
x7pdist = floor(x7(end)/(13));
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if xlp(end) + xlpdist <= x1(ind)
% append the point to the array
x1p = [x1p x1(ind)];

```
```

        y1p = [y1p y1(ind)];
    end
    end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
x4p = x4(1);
y4p = y4(1);
for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4(ind)];
end
end
x5p = x5(1);
y5p = y5(1);
for ind = 2:length(x5)
if x5p(end) + x5pdist <= x5(ind)
% append the point to the array
x5p = [x5p x5(ind)];
y5p = [y5p y5(ind)];
end
end
x6p = x6(1);
y6p = y6(1);
for ind = 2:length(x6)
if x6p(end) + x6pdist <= x6(ind)
% append the point to the array
x6p = [x6p x6(ind)];
y6p = [y6p y6(ind)];
end
end
x7p = x7(1);
y7p = y7(1);
for ind = 2:length(x7)
if x7p(end) + x7pdist <= x7(ind)
% append the point to the array
x7p = [x7p x7(ind)];
y7p = [y7p y7(ind)];
end
end
[ax, h1, h2] = plotyy(x1, [y1, y2, y3, y4, y5, y6], x7, [y7]);
hold(ax(1), 'on');
hold(ax(2), 'on');
ploth2a = plot(ax(1), x1(1), y1(1), 'b-s', x2(1), y2(1), 'c-^', x3(1), y3(1), 'r-d',
x4(1), y4(1), 'g-p', x5(1), y5(1), 'k-o', x6(1), y6(1), 'k-.*');
ploth2b = plot(ax(1), x1p, y1p, 'bs', x2p, y2p, 'c^', x3p, y3p, 'rd', x4p, y4p, 'gp', x5p,
y5p, 'ko', x6p, y6p, 'k*');
ploth3a = plot(ax(2), x7(1), y7(1), 'm-v');
ploth3b = plot(ax(2), x7p, y7p, 'mv');
set(ax(1), 'YLimMode', 'auto');

```
```

set(ax(2), 'YLimMode', 'auto');
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratştartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold(ax(1), 'off');
hold(ax(2), 'off');
set(ax(2), 'YColor', 'm')
set(h1(1), 'Color', 'b');
set(h1(2), 'Color', 'c');
set(h1(3), 'Color', 'r');
set(h1(4), 'Color', 'g');
set(h1(5), 'Color', 'k');
set(h1(6), 'Color', 'k');
set(h1(6), 'LineStyle', '-.');
set(h2(1), 'Color', 'm');
set(ploth2a(1), 'MarkerEdgeColor', 'k');
set(ploth2a(2), 'MarkerEdgeColor', 'k');
set(ploth2a(3), 'MarkerEdgeColor', 'k');
set(ploth2a(4), 'MarkerEdgeColor', 'k');
set(ploth2a(5), 'MarkerEdgeColor', 'k');
set(ploth2a(6), 'MarkerEdgeColor', 'k');
set(ploth2b(1), 'MarkerEdgeColor', 'k');
set(ploth2b(2), 'MarkerEdgeColor', 'k');
set(ploth2b(3), 'MarkerEdgeColor', 'k');
set(ploth2b(4), 'MarkerEdgeColor', 'k');
set(ploth2b(5), 'MarkerEdgeColor', 'w');
set(ploth2b(6), 'MarkerEdgeColor', 'k');
set(ploth3a(1), 'MarkerEdgeColor', 'k');
set(ploth3b(1), 'MarkerEdgeColor', 'k');
set(ploth2a(1), 'MarkerFaceColor', 'b');
set(ploth2a(2), 'MarkerFaceColor', 'c');
set(ploth2a(3), 'MarkerFaceColor', 'r');
set(ploth2a(4), 'MarkerFaceColor', 'g');
set(ploth2a(4), 'MarkerSize', 10);
set(ploth2a(5), 'MarkerFaceColor', 'k');
set(ploth2a(5), 'MarkerSize', 5);
set(ploth2a(6), 'MarkerFaceColor', 'k');
set(ploth2b(1), 'MarkerFaceColor', 'b');
set(ploth2b(2), 'MarkerFaceColor', 'c');
set(ploth2b(3), 'MarkerFaceColor', 'r');
set(ploth2b(4), 'MarkerFaceColor', 'g');
set(ploth2b(4), 'MarkerSize', 10);
set(ploth2b(5), 'MarkerFaceColor', 'k');
set(ploth2b(5), 'MarkerSize', 5);
set(ploth2b(6), 'MarkerFaceColor', 'k');
set(ploth3a(1), 'MarkerFaceColor', 'm');
set(ploth3b(1), 'MarkerFaceColor', 'm');
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
set(get(ax(1),'Ylabel'),'String','Temperature, C');
set(get(ax(2),'Ylabel'),'String','Mixing Number (nondimensional)');
set(ax(1), 'YTickMode', 'auto');
set(ax(2), 'YTickMode', 'auto');
xlabel('Time, s');
if showtitles == 1
title('Smoothed Rear Pool Temperatures and the Mixing Number (Type 2)');
end
legendhandle = legend([ploth2a', ploth3a'], 'A - Upper', 'B - Near Sparger (Middle)', 'C
- Further from Sparger (Middle)', 'D - Lower', 'E - Outlet', 'F - Saturation', 'G
- Mixing Number 2', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname '_crazynumber_t2'];

```
```

set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save em == 1
print(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Smoothed Pool Temperatures
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' has the smoothed rear pool temperatures and
the Mixing Number (Type 3).'];
disp(text)
% set up plot
x1 = stratsmooth 0;
y1 = stratsmooth_1;
x2 = stratsmooth 0;
y2 = stratsmooth_3;
x3 = stratsmooth 0;
y3 = stratsmooth_4;
x4 = stratsmooth_0;
y4 = stratsmooth_-2;
x5 = stratsmooth_0;
y5 = stratsmooth_5;
x6 = t;
y6 = poolsat;
x7 = t;
y7 = testrelationship3;
x1pdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x5pdist = floor(x5(end)/11);
x6pdist = floor(x6(end)/3);
x7pdist = floor(x7(end)/(13));
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if xlp(end) + xlpdist <= xl(ind)
% append the point to the array
x1p = [x1p xl(ind)];
ylp = [y1p yl(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];

```
end
end
\(x 4 p=x 4(1) ;\)
\(y^{4} \mathrm{p}=\mathrm{y}^{4}(1)\);
for ind \(=2:\) length ( x 4 )
if \(x 4 p(e n d)+x 4 p d i s t<=x 4(i n d)\)
\% append the point to the array \(x 4 p=[x 4 p x 4(i n d)] ;\)
\(y^{4} p=\left[y^{4} p y^{4}(i n d)\right] ;\)
end
end
\(x 5 p=x 5(1) ;\)
\(\mathrm{y} 5 \mathrm{p}=\mathrm{y} 5(1)\);
for ind \(=2\) :length ( \(x 5\) )
if \(x 5 p(e n d)+x 5 p d i s t<=x 5(i n d)\)
\% append the point to the array x5p \(=[x 5 p\) x5(ind)];
\(y 5 p=[y 5 p y 5(i n d)] ;\)
end
end
\(x 6 p=x 6(1)\);
\(y 6 p=y 6(1) ;\)
for ind \(=2:\) length ( x 6 )
if x6p(end) + x6pdist <= x6(ind)
\% append the point to the array
\(x 6 p=[x 6 p\) x6(ind)];
\(y 6 p=[y 6 p y 6(i n d)] ;\)
end
end
\(x 7 p=x 7(1) ;\)
\(\mathrm{y} 7 \mathrm{p}=\mathrm{y} 7(1)\);
for ind \(=2:\) length \((x 7)\)
if \(x 7 p(e n d)+x 7 p d i s t<=x 7\) (ind)
\% append the point to the array
\(x 7 p=[x 7 p\) x7(ind)];
\(y 7 p=[y 7 p y 7(i n d)] ;\)
end
end
[ax, h1, h2] = plotyy(x1, [y1, y2, y3, y4, y5, y6], x7, [y7]);
hold(ax(1), 'on');
hold(ax(2), 'on');
ploth2a = plot(ax(1), x1(1), y1(1), 'b-s', x2(1), y2(1), 'c-^', x3(1), y3(1), 'r-d', x4(1), y4(1), 'g-p', x5(1), y5(1), 'k-o', x6(1), y6(1), 'k-.*');
ploth2b = plot(ax(1), x1p, y1p, 'bs', x2p, y2p, 'c^', x3p, y3p, 'rd', x4p, y4p, 'gp', x5p, y5p, 'ko', x6p, y6p, 'k*');
ploth3a = plot(ax(2), x7(1), y7(1), 'm-v');
ploth3b = plot(ax(2), x7p, y7p, 'mv');
set(ax(1), 'YLimMode', 'auto');
set (ax(2), 'YLimMode', 'auto');
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratstartind), t(stratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold(ax(1), 'off');
hold(ax(2), 'off');
set(ax(2), 'YColor', 'm')
set(h1(1), 'Color', 'b');
set(h1 (2), 'Color', 'c');
set(h1 (3), 'Color', 'r');
set(h1(4), 'Color', 'g');
set (h1 (5), 'Color', 'k');
set (h1 (6), 'Color', 'k');
set (h1 (6), 'LineStyle', '-.');
set(h2(1), 'Color', 'm');
set(ploth2a(1), 'MarkerEdgeColor', 'k');
set(ploth2a(2), 'MarkerEdgeColor', 'k');
set(ploth2a(3), 'MarkerEdgeColor', 'k');
```

set(ploth2a(4), 'MarkerEdgeColor', 'k');
set(ploth2a(5), 'MarkerEdgeColor', 'k');
set(ploth2a(6), 'MarkerEdgeColor', 'k');
set(ploth2b(1), 'MarkerEdgeColor', 'k');
set(ploth2b(2), 'MarkerEdgeColor', 'k');
set(ploth2b(3), 'MarkerEdgeColor', 'k');
set(ploth2b(4), 'MarkerEdgeColor', 'k');
set(ploth2b(5), 'MarkerEdgeColor', 'w');
set(ploth2b(6), 'MarkerEdgeColor', 'k');
set(ploth3a(1), 'MarkerEdgeColor', 'k');
set(ploth3b(1), 'MarkerEdgeColor', 'k');
set(ploth2a(1), 'MarkerFaceColor', 'b');
set(ploth2a(2), 'MarkerFaceColor', 'c');
set(ploth2a(3), 'MarkerFaceColor', 'r');
set(ploth2a(4), 'MarkerFaceColor', 'g');
set(ploth2a(4), 'MarkerSize', 10);
set(ploth2a(5), 'MarkerFaceColor', 'k');
set(ploth2a(5), 'MarkerSize', 5);
set(ploth2a(6), 'MarkerFaceColor', 'k');
set(ploth2b(1), 'MarkerFaceColor', 'b');
set(ploth2b(2), 'MarkerFaceColor', 'c');
set(ploth2b(3), 'MarkerFaceColor', 'r');
set(ploth2b(4), 'MarkerFaceColor', 'g');
set(ploth2b(4), 'MarkerSize', 10);
set(ploth2b(5), 'MarkerFaceColor', 'k');
set(ploth2b(5), 'MarkerSize', 5);
set(ploth2b(6), 'MarkerFaceColor', 'k');
set(ploth3a(1), 'MarkerFaceColor', 'm');
set(ploth3b(1), 'MarkerFaceColor', 'm');
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
set(get(ax(1),'Ylabel'),'String','Temperature, C');
set(get(ax(2),'Ylabel'),'String','Mixing Number (nondimensional)');
set(ax(1), 'YTickMode', 'auto');
set(ax(2), 'YTickMode', 'auto');
xlabel('Time, s');
if showtitles == 1
title('Smoothed Rear Pool Temperatures and the Mixing Number (Type 3)');
end
legendhandle = legend([ploth2a', ploth3a'], 'A - Upper', 'B - Near Sparger (Middle)', 'C
- Further from Sparger (Middle)', 'D - Lower', 'E - Outlet', 'F - Saturation', 'G
- Mixing Number 3', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname '_crazynumber_t3'];
set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save_em == 1
prin̄t(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end
% Smoothed Pool Temperatures
% Create a new figure
fighandle=figure;
text=['Figure', ' ', num2str(fighandle), ' has the smoothed rear pool temperatures and
the Mixing Number (Type 4).'];
disp(text)

```
```

% set up plot
x1 = stratsmooth_0;
y1 = stratsmooth_1;
x2 = stratsmooth_0;
y2 = stratsmooth_3;
x3 = stratsmooth_0;
y3 = stratsmooth - 4;
x4 = stratsmooth_0;
y4 = stratsmooth_2;
x5 = stratsmooth_0;
y5 = stratsmooth_5;
x6 = t;
y6 = poolsat;
x7 = t;
y7 = testrelationship4;
x1pdist = floor(x1(end)/4);
x2pdist = floor(x2(end)/5);
x3pdist = floor(x3(end)/7);
x4pdist = floor(x4(end)/9);
x5pdist = floor(x5 (end)/11);
x6pdist = floor(x6(end)/3);
x7pdist = floor(x7(end)/(13));
x1p = x1(1);
y1p = y1(1);
for ind = 2:length(x1)
if xlp(end) + x1pdist <= x1(ind)
% append the point to the array
x1p = [x1p x1(ind)];
y1p = [y1p y1(ind)];
end
end
x2p = x2(1);
y2p = y2(1);
for ind = 2:length(x2)
if x2p(end) + x2pdist <= x2(ind)
% append the point to the array
x2p = [x2p x2(ind)];
y2p = [y2p y2(ind)];
end
end
x3p = x3(1);
y3p = y3(1);
for ind = 2:length(x3)
if x3p(end) + x3pdist <= x3(ind)
% append the point to the array
x3p = [x3p x3(ind)];
y3p = [y3p y3(ind)];
end
end
x4p = x4(1);
y4p = y4(1);
for ind = 2:length(x4)
if x4p(end) + x4pdist <= x4(ind)
% append the point to the array
x4p = [x4p x4(ind)];
y4p = [y4p y4(ind)];
end
end
x5p = x5(1);
y5p = y5(1);
for ind = 2:length(x5)
if x5p(end) + x5pdist <= x5(ind)
% append the point to the array
x5p = [x5p x5(ind)];
y5p = [y5p y5(ind)];
end

```
```

end
x6p = x6(1);
y6p = y6(1);
for ind = 2:length(x6)
if x6p(end) + x6pdist <= x6(ind)
% append the point to the array
x6p = [x6p x6(ind)];
y6p = [y6p y6(ind)];
end
end
x7p = x7(1);
y7p = y7(1);
for ind = 2:length(x7)
if x7p(end) + x7pdist <= x7(ind)
% append the point to the array
x7p = [x7p x7(ind)];
y7p = [y7p y7(ind)];
end
end
[ax, h1, h2] = plotyy(x1, [y1, y2, y3, y4, y5, y6], x7, [y7]);
hold(ax(1), 'on');
hold(ax(2), 'on');
ploth2a = plot(ax(1), x1(1), y1(1), 'b-s', x2(1), y2(1), 'c-^'', x3(1), y3(1), 'r-d',
x4(1), y4(1), 'g-p', x5(1), y5(1), 'k-o', x6(1), y6(1), 'k-.*');
ploth2b = plot(ax(1), x1p, y1p, 'bs', x2p, y2p, 'c^', x3p, y3p, 'rd', x4p, y4p, 'gp', x5p,
y5p, 'ko', x6p, y6p, 'k*');
ploth3a = plot(ax(2), x7(1), y7(1), 'm-v');
ploth3b = plot(ax(2), x7p, y7p, 'mv');
set(ax(1), 'YLimMode', 'auto');
set(ax(2), 'YLimMode', 'auto');
line([t(plume_ind), t(plume_ind)], ylim, 'LineStyle', '--', 'Color', [0.75, 0.75, 0.0]);
line([t(stratș\artind), t(strratstartind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7,
0.7]);
line([t(stratendind), t(stratendind)], ylim, 'LineStyle', '-', 'Color', [0.7, 0.7, 0.7]);
hold(ax(1), 'off');
hold(ax(2), 'off');
set(ax(2), 'YColor', 'm')
set(h1(1), 'Color', 'b');
set(h1(2), 'Color', 'c');
set(h1(3), 'Color', 'r');
set(h1(4), 'Color', 'g');
set(h1(5), 'Color', 'k');
set(h1(6), 'Color', 'k');
set(h1(6), 'LineStyle', '-.');
set(h2(1), 'Color', 'm');
set(ploth2a(1), 'MarkerEdgeColor', 'k');
set(ploth2a(2), 'MarkerEdgeColor', 'k');
set(ploth2a(3), 'MarkerEdgeColor', 'k');
set(ploth2a(4), 'MarkerEdgeColor', 'k');
set(ploth2a(5), 'MarkerEdgeColor', 'k');
set(ploth2a(6), 'MarkerEdgeColor', 'k');
set(ploth2b(1), 'MarkerEdgeColor', 'k');
set(ploth2b(2), 'MarkerEdgeColor', 'k');
set(ploth2b(3), 'MarkerEdgeColor', 'k');
set(ploth2b(4), 'MarkerEdgeColor', 'k');
set(ploth2b(5), 'MarkerEdgeColor', 'w');
set(ploth2b(6), 'MarkerEdgeColor', 'k');
set(ploth3a(1), 'MarkerEdgeColor', 'k');
set(ploth3b(1), 'MarkerEdgeColor', 'k');
set(ploth2a(1), 'MarkerFaceColor', 'b');
set(ploth2a(2), 'MarkerFaceColor', 'c');
set(ploth2a(3), 'MarkerFaceColor', 'r');
set(ploth2a(4), 'MarkerFaceColor', 'g');
set(ploth2a(4), 'MarkerSize', 10);
set(ploth2a(5), 'MarkerFaceColor', 'k');
set(ploth2a(5), 'MarkerSize', 5);
set(ploth2a(6), 'MarkerFaceColor', 'k');

```
```

set(ploth2b(1), 'MarkerFaceColor', 'b');
set(ploth2b(2), 'MarkerFaceColor', 'c');
set(ploth2b(3), 'MarkerFaceColor', 'r');
set(ploth2b(4), 'MarkerFaceColor', 'g');
set(ploth2b(4), 'MarkerSize', 10);
set(ploth2b(5), 'MarkerFaceColor', 'k');
set(ploth2b(5), 'MarkerSize', 5);
set(ploth2b(6), 'MarkerFaceColor', 'k');
set(ploth3a(1), 'MarkerFaceColor', 'm');
set(ploth3b(1), 'MarkerFaceColor', 'm');
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
set(fighandle, 'Position', [48 48 960 624]);
set(fighandle, 'PaperOrientation', 'portrait');
set(fighandle, 'PaperSize', [10 6.5]);
set(fighandle, 'PaperPosition', [0 0 10 6.5]);
set(get(ax(1),'Ylabel'),'String','Temperature, C');
set(get(ax(2),'Ylabel'),'String','Mixing Number (nondimensional)');
set(ax(1), 'YTickMode', 'auto');
set(ax(2), 'YTickMode', 'auto');
xlabel('Time, s');
if showtitles == 1
title('Smoothed Rear Pool Temperatures and the Mixing Number (Type 4)');
end
legendhandle = legend([ploth2a', ploth3a'], 'A - Upper', 'B - Near Sparger (Middle)', 'C
- Further from Sparger (Middle)', 'D - Lower', 'E - Outlet', 'F - Saturation', 'G
- Mixing Number 4', 'Location', 'Best');
set(legendhandle, 'Color', 'none');
figname = [testname '_crazynumber_t4'];
set(fighandle, 'Name', figname);
set(findall(fighandle,'type','axes'),'fontsize',16)
set(findall(fighandle,'type','text'),'fontSize',16)
% save to jpeg file
fileoutname = [figname '.jpg'];
if save em == 1
priñt(fighandle, '-djpeg90', '-r300', [outdir fileoutname]);
saveas(fighandle, [mfigoutdir figname], 'fig')
end

```
\% Close the log file
if save_em == 1
    fprintf(filehandle, '\%s\r\n', 'End');
    fclose(filehandle);
    disp('Closing Output Text File')
end
save_em = 0;
clear startingtemp;
savefigs='n';

\section*{C. 3 SOURCE - SPREADSHOUT.M}
```

%spreadshout.m
tabchar = sprintf('\t');
tabchar = [' ' tabchar];
filehandle = [];
fileh2 = [];
crlf = sprintf('\r\n');
outdir = [outpath '\Export\' testname '\'];
disp(['Loading ' outdir testname '_results_rcicland.txt' ' ...']);

```
```

filehandle = fopen([outdir testname '_results_rcicland.txt'], 'r');
filetext = fscanf(filehandle,'%c',inf);
fclose(filehandle);
textdat = filetext;
disp('Removing non-numeric data ...');
for ind = 1:length(textdat)
if isempty(str2num(textdat(ind)))
% either decimal, -, +, e, or non-numeric, check for decimal
if ind < length(textdat)
if textdat(ind) == '.'
% decimal or period, check for decimal (numbers right and
% left)
if ind == 1
% period?
textdat(ind) = ' ';
elseif isempty(str2num(textdat(ind-1)))
% period
textdat(ind) = ' ';
elseif isempty(str2num(textdat(ind+1)))
% period
textdat(ind) = ' ';
end
elseif textdat(ind) == '-'
if isempty(str2num(textdat(ind+1))) \&\& (textdat(ind+1) ~= '.')
% not a negative number leader
textdat(ind) = ' ';
end
elseif textdat(ind) == '+'
if isempty(str2num(textdat(ind+1))) \&\& (textdat(ind+1) ~= '.')
% not a number leader
textdat(ind) = ' ';
end
elseif (textdat(ind) == 'e') || (textdat(ind) == 'E')
% Power indicator?
if ind > 1
if isempty(str2num(textdat(ind-1)))
% no preceding numeric
textdat(ind) = ' ';
elseif (~isempty(str2num(textdat(ind+1)))) \&\& (textdat(ind+1) ~= '+')
\&\& (textdat(ind+1) ~= '-')
% no succeeding numeric/+/-
textdat(ind) = ' ';
end
else
% too early
textdat(ind) = ' ';
end
else
% non-numeric
textdat(ind) = ' ';
end
else
% last character, not a decimal or -
textdat(ind) = ' ';
end
elseif str2num(textdat(ind)) == 1i
% no imaginaries
textdat(ind) = ' ';
end
end
disp('Converting ...')
numericdata = str2num(textdat);
outstring = '';
for ind=1:length(numericdata)
outstring = [outstring num2str(numericdata(ind)) tabchar];
end
disp('Data: ');

```
```

disp(outstring);
if savefigs == 'y'
mkdir([outpath '\extracted numerics\'] );
fileh2 = fopen([outpath '\extracted_numerics\extracted.txt'], 'a+');
fprintf(fileh2, '%s\r\n', ' ');
fprintf(fileh2, '%s\r\n', date);
fprintf(fileh2, '%s\r\n', ['Currently: ' num2str(clock) ' ' tabchar ' in Y M D H M
S' ]);
fprintf(fileh2, '%s\r\n', ['Test name: ' testname]);
fprintf(fileh2, '%s\r\n', ['Read from: ' outdir testname '_results_localextra.txt']);
fprintf(fileh2, '%s\r\n', 'Reported numeric data: ');
fprintf(fileh2, '%s\r\n', outstring);
fprintf(fileh2, '%s\r\n', ' ');
fclose(fileh2);
savefigs = 'n';
end
disp('Done!')

```

\section*{APPENDIX D}

\section*{PROCESSED RESULTS}

\section*{This Appendix contains the processed results produced by the Matlab data}
processing script for each test.

\section*{D. 1 TEST \#1 -}

\section*{T01_RCIC_STD_57KW_OLD_ORIFICE_FORCED_END_RESULTS_RCIC}

\section*{LAND.TXT}

Output Saved to C: \Local
Files \(\backslash\) RCICLAND_NOTITLES \(\backslash\) Export \(\backslash T 01\) _RCIC_STD_57kW_old_orifice_forced_end \(\backslash\)
Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 4894.684 s , and ending (KEY POINT \#11) at t plus 15262.944 s , for a time period of 10368.26 s.
Original Data Record Time: 18000.2876 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(3366.7506 \mathrm{~s}, \mathrm{~T}\) bulk \(=57.9366 \mathrm{C}\) and T out \(=55.3123 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=57.8114 \mathrm{C}\)
Stratification Beginning Pressure \(=18.2573\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(10338.6603 \mathrm{~s}, \mathrm{~T}\) bulk \(=95.2465 \mathrm{C}\) and T _out \(=75.2305 \mathrm{C}\)
Stratification Ending SP12 Temperature \(=95.0466 \mathrm{C}\)
Stratification Ending Pressure \(=29.6467\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 3437.0516 s .
At \(t=3437.0516 \mathrm{~s}\), the pool pressure is 18.3156 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 58.6463, 58.3923, 60.3963, 58.5985, and 55.3555 C, respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 9.9536 +/- 3.7452 C.
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 9.3379 +/- 3.709 C.
Minimum Steam Quality: 0.99206 at \(t\) plus 10341.7605 s
Maximum Steam Quality: 1.0067 at \(t\) plus 4320.9661 s
Time-Averaged Steam Quality: 0.99984 +/- 0.0018699
Minimum Turbine Outlet Steam Quality: 0.99912 at t plus 10341.7605 s
Maximum Turbine Outlet Steam Quality: 1.0211 at t plus 1361.7219 s
Time-Averaged Turbine Outlet Steam Quality: 1.012 +/- 0.0034148
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 10278.2598 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.51474 degrees \(/ \mathrm{min}\) at t plus 6986.8076 s and 0.14389 degrees \(/ \mathrm{min}\) at t plus 6458.0983 s , respectively
Max and min smoothed mid (SP9) level changerates: 0.42858 degrees/min at \(t\) plus 7873.7213 s and 0.22665 degrees/min at \(t\) plus 10163.6563 s, respectively

Max and min smoothed upper-mid level changerate differences: 0.1729 degrees/min at \(t\) plus 6986.8076 s and -0.17509 degrees/min at \(t\) plus 6095.0926 s, respectively
Max and min smoothed lower level changerates: 1.6104 degrees/min at t plus 9630.8498 s and -0.02954 degrees/min at \(t\) plus 9178.0409 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.38396 degrees/min at \(t\) plus 9173.4417 s and -1.3687 degrees/min at t plus 9630.8498 s , respectively
Max and min smoothed outlet level changerates: 0.42114 degrees \(/ \mathrm{min}\) at t plus 2760.2659 s and -0.035359 degrees \(/ \mathrm{min}\) at t plus 9570.6484 s , respectively
Max and min smoothed lower-outlet level changerate differences: 1.608 degrees/min at \(t\) plus 9630.7498 s and -0.26317 degrees/min at \(t\) plus 7352.7135 s , respectively
Max and min smoothed hot (SP8) level changerates: 0.8365 degrees/min at t plus 5010.7006 s and 0.097639 degrees/min at t plus 7472.9144 s , respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.53428 degrees/min at \(t\) plus 5050.9779 s and -0.28931 degrees/min at \(t\) plus 7472.9144 s , respectively
The mean steam flow rate was 23.4779 +/- \(0.51075 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was \(22.2345+/-0.93409 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.0037187+/-0.035541 \mathrm{~g} / \mathrm{s}\)

Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is \(9.8722+/-3.8126\) C over the Stratification Period, beginning at 2.0096 C and ending at 15.2092 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(9.2603+/-3.7694\) C over the Stratification Period, beginning at 1.6629 C and ending at 14.6871 C
The stratification period begins and ends with Smoothed SP8 readings of 60.0785 and 110.3675 C, respectively

The stratification period begins and ends with condensing flows of 0.25584 and 0.48511 kg/s, respectively.
The stratification period begins and ends with condensing+cooling flows of 6.8018 and \(0.85851 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of 2720.1958 +/- 0.96719 \(\mathrm{kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.25584 and 6.7861 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of \(2720.4826+/-0.87007 \mathrm{~kJ} / \mathrm{kg}\)
Maximum Smoothed Top-Mid delta \(T\) is 1.4115 degrees \(C\) at \(t\) plus 5966.8922 s with \(T\) _upper \(=\) 72.5743 C and T mid \(=71.1628 \mathrm{C}\)

At \(t\) plus 5966.8922 s, Smoothed SP8-SP9 is 9.8021 C and Smoothed SP8-Top is 8.3906 C, where Smoothed SP8 is 80.9649 C and Pool \(\mathrm{P}=21.0255\) psia
Maximum Smoothed Top-Lower delta \(T\) is 10.2558 degrees \(C\) at \(t\) plus 9492.1469 s with T_upper \(=91.9391 \mathrm{C}\) and \(T\) _low \(=81.6833 \mathrm{C}\)
At t plus 9492.1469 s, Smoothed SP8-SP9 is 13.8539 C and Smoothed SP8-Top is 13.5498 C, where Smoothed SP8 is 105.4889 C and Pool \(\mathrm{P}=27.7777\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 9.9801 degrees C at \(t\) plus 9475.8459 s with T_mid \(=\) 91.5156 C and T_low \(=81.5355 \mathrm{C}\)

At \(t\) plus 9475.8459 s , Smoothed SP8-SP9 is 14.0551 C and Smoothed SP8-Top is 13.7811 C, where Smoothed SP8 is 105.5707 C and Pool \(\mathrm{P}=27.7365 \mathrm{psia}\)
Maximum Smoothed Top-Outlet delta \(T\) is 20.6577 degrees \(C\) at \(t\) plus 10368.26 s with T_upper \(=95.8454 \mathrm{C}\) and \(T\) _out \(=75.1878 \mathrm{C}\)
At t plus 10368.26 s , Smoothed SP8-SP9 is 14.29 C and Smoothed SP8-Top is 13.7245 C , where Smoothed SP8 is 109.5699 C and Pool \(\mathrm{P}=29.6855\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 20.0922 degrees \(C\) at \(t\) plus 10368.26 s with T_mid \(=95.2799 \mathrm{C}\) and T out \(=75.1878 \mathrm{C}\)
At \(t\) plus 10368.26 s , Smoothed SP8-SP9 is 14.29 C and Smoothed SP8-Top is 13.7245 C , where Smoothed SP8 is 109.5699 C and Pool \(\mathrm{P}=29.6855\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 19.2737 degrees C at t plus 10368.26 s with T low \(=94.4615 \mathrm{C}\) and T out \(=75.1878 \mathrm{C}\)
At t plus 10368.26 s, Smoothed SP8-SP9 is 14.29 C and Smoothed SP8-Top is 13.7245 C , where Smoothed SP8 is 109.5699 C and Pool \(\mathrm{P}=29.6855\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 15.3759 degrees \(C\) at (KEY POINT \#14) t plus 10244.7579 s with \(\mathrm{T}_{-} \mathrm{SP} 8=110.1343 \mathrm{C}\) and T _SP9 \(=94.7584 \mathrm{C}\) and Pool \(\mathrm{P}=\) 29.447 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 14.8121 degrees \(C\) at \(t\) plus 10335.5601 s with \(\mathrm{T}_{-} \mathrm{SP} 8=110.4903 \mathrm{C}\) and \(\mathrm{T}_{-}\)upper \(=95.6782 \mathrm{C}\) and Pool \(\mathrm{P}=29.6334\) psia
Maximum Top-Mid delta \(T\) is 2.0598 degrees \(C\) at (KEY POINT \#4) t plus 7452.6142 s ignoring SP 4, with temperatures of 80.862 and 78.8022 C, respectively, at Set \# 2, where Pool \(P=23.3349\) psia and \(T\) outlet \(=72.3473 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 8339.1279 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.99965 C and a raw SP12 Reading of 84.6904 C .
Maximum Top-Lower delta \(T\) is 11.5433 degrees \(C\) at \(t\) plus 9566.3481 s, with temperatures of 92.6406 and 81.0973 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=27.9386\) psia and T_outlet \(=75.1664 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 10.7936 degrees \(C\) at (KEY POINT \#6) t plus 9554.6695 s ignoring SP 4, with temperatures of 91.8716 and 81.0779 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=27.9107 \mathrm{psia}\) and T _outlet \(=75.1204 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 9806.8519 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 3.5957 C and a raw SP12 Reading of 92.8709 C.
Maximum Top-Outlet delta \(T\) is 20.8945 degrees \(C\) at \(t\) plus 10362.0596 s, with temperatures of 96.1019 and 75.2074 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=29.6753\) psia
Maximum Mid-Outlet delta \(T\) is 20.0585 degrees \(C\) at \(t\) plus 10361.7596 s ignoring SP 4, with temperatures of 95.2658 and 75.2073 C , respectively, at Set \# 2, where Pool \(P=29.677\) psia
Maximum Lower-Outlet delta \(T\) is 20.7106 degrees \(C\) at (KEY POINT \#8) t plus 10327.2596 s, with temperatures of 95.9922 and 75.2816 C, respectively, at Set \# 1, where Pool P = 29.6197 psia

Low-Outlet Reconvergence NOT Detected, setting t to (KEY POINT \#10) t plus 10368.26 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 19.8329 C and a raw SP12 Reading of 95.203 C .
Minimum SP Pressure is 16.1529 psia at t plus 1.5001 s
Maximum SP Pressure is 29.6911 psia at \(t\) plus 10366.3599 s
Beginning SP Pressure is 16.153 psia
Ending SP Pressure is 29.6855 psia
Time-Average SP Pressure is 21.0553 +/- 3.9107 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 70.9431 cm (cold) / 70.9765 cm (hot) at 14.7305 psia
Beginning Smoothed SP Level is 71.0841 cm (cold) / 71.2098 cm (hot) at 16.1582 psia Ending Smoothed SP Level is 72.4754 cm (cold) / 73.2211 cm (hot) at 29.6949 psia Minimum Smoothed Cold SP Level is 70.7834 cm at \(t\) plus 7792.5197 s and 23.9641 psia Minimum Smoothed Hot SP Level is 71.1946 cm at \(t\) plus 232.5043 s and 16.2625 psia Maximum Smoothed Cold SP Level is 72.4754 cm at \(t\) plus 10368.26 s and 29.6949 psia Maximum Smoothed Hot SP Level is 73.2211 cm at \(t\) plus 10368.26 s and 29.6949 psia
SP 12 Temperature at the beginning is 39.964 C , and at the end is 95.203 C
At plume detection, the Mixing Number is 43.6834
The Mixing Number ranges from a minimum of 32.1718 at (KEY POINT \#12) \(t\) plus 0 s to a maximum of 109.8003 at (KEY POINT \#13) \(t\) plus 10368.26 s; it had a mean value of \(58.7259+/-22.0058\) over the test period.
Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam T t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed \(T\) t6, Pool Outlet Smoothed \(T\) t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta he6, Steam Condensation delta he7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy el0, Pool Outlet Smoothed Enthalpy ell
KEY POINT \#1 (t plus 0 s with a Mixing Number of 32.1718): 17.2558211 0.040894 \(0.00925 \quad 0.3937 \quad 0.710840769 \quad 0.712097661 \quad 1.01519585\)
\begin{tabular}{lllllll}
1 & 1 & 26.5357604 & 54155.8597 & 0.0695263055 & 0.0581485075
\end{tabular}
\begin{tabular}{llllll}
0.0226644245 & \(3.40124572 e-006\) & 0.0226644245 & 40.4304101 & 120.47864
\end{tabular}
\begin{tabular}{lllll}
103.942449 & 40.595914 & 40.5527487 & 40.8388362 & 37.3958216
\end{tabular}
\begin{tabular}{lllll}
4.17851387 & 4.22178976 & 2.09371415 & 0.629184762 & 0.6792901
\end{tabular}
\begin{tabular}{lllll}
0.6792901 & 4.30050184 & 1.68103157 & 0.0382322272 & 992.059931
\end{tabular} \(\begin{array}{llllll}955.488355 & 0.681179479 & 0.650383122 & 0.000647553248 & 0.000270479623\end{array}\)
\begin{tabular}{lllll}
\(1.24041639 e-005\) & \(1.30301606 e-005\) & 1532.07587 & 1541.23736 & 474.246369
\end{tabular}
\begin{tabular}{llllll}
485.564903 & 1.16542603 & 1.11406685 & 1.15106685 & 0.0755556799
\end{tabular}
\begin{tabular}{llllr}
0.0762228145 & 2716.58504 & 2715.88089 & 169.435004 & 435.744383 \\
2681.75091 & 266.309379 & 2280.84065 & 170.126564 & 169.944693
\end{tabular}
\begin{tabular}{lllll}
2681.75091 & 266.309379 & 2280.84065 & 170.126564 & 169.944693
\end{tabular}

KEY POINT \#2 (t plus 3437.0516 s with a Mixing Number of 43.6834): 17.5665799
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.710374428 & 0.712998794
\end{tabular}
\begin{tabular}{lllll}
1.01382146 & 1 & 1 & 24.0141531 & 54877.4594
\end{tabular}
\begin{tabular}{llllll}
0.0665160113 & 0.057463508 & 0.0230725865 & \(4.83070945 e-006\) & 0.0230725865
\end{tabular}
\begin{tabular}{lllll}
58.3923137 & 122.311476 & 107.449788 & 60.3963003 & 58.6463089
\end{tabular}
\begin{tabular}{llllll}
58.5985271 & 55.3554831 & 4.18204086 & 4.22665414 & 2.10922984
\end{tabular}
\begin{tabular}{llllll}
0.649274175 & 0.680494719 & 0.680494719 & 3.07843157 & 1.62188928
\end{tabular} \(\begin{array}{llllll}0.0388199629 & 984.04051 & 952.880255 & 0.762727525 & 0.731662607\end{array}\) \(\begin{array}{llllll}0.000477935578 & 0.000261125479 & 1.25243723 e-005 & 1.30903968 e-005 & 1552.88038\end{array}\)
\begin{tabular}{lcccc}
1537.4255 & 475.972813 & 486.199643 & 1.31519342 & 1.26312409 \\
1.30012409 & 0.18507901 & 0.203145122 & 2718.66215 & 2718.08547 \\
244.522899 & 450.571129 & 2687.17238 & 206.04823 & 2268.09102
\end{tabular}

KEY POINT \#3 (t plus 3366.7506 s with a Mixing Number of 43.3505): 17.6386555
\begin{tabular}{|c|c|c|c|c|}
\hline 0.040894 & 0.00925 & 0.39370 & 0.7103794050 & 0.712990993 \\
\hline 1.0143673 & 1 & 1 & 24.2148881 & 55017.9869 \\
\hline 0.0665717272 & 0.0574791375 & 0.02316725326 & \(6.22327102 e-006\) & 0.0231672532 \\
\hline 58.0688746 & 122.829746 & 107.370074 & 60.0784843 & 58.4155729 \\
\hline 58.1582666 & 55.203572 & 4.18191547 & 4.22654054 & 2.1088654 \\
\hline 0.648957099 & 0.680468986 & 0.680468986 & 3.09519397 & 1.62318692 \\
\hline 0.0388062484 & 984.203223 & 952.940138 & 0.760789947 & 0.728617603 \\
\hline 0.000480317719 & 0.000261331543 & \(1.25216377 \mathrm{e}-005\) & \(51.31105338 \mathrm{e}-005\) & \(5 \quad 1552.65708\) \\
\hline 1537.51605 & 475.934048 & 486.556989 & 1.31162174 & 1.25916445 \\
\hline 1.29616445 & 0.182295614 & 0.200183662 & 2719.77334 & 2719.18698 \\
\hline 243.169951 & 450.233948 & 2687.04998 & 207.063997 & 2269.53939 \\
\hline 251.574775 & 244.618403 & 243.545301 & & \\
\hline
\end{tabular}

KEY POINT \#4 (t plus 7452.6142 s with a Mixing Number of 69.173): 18.1319328
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.707936929 \\
1.0102738 & 1 & 19.7776738 & 0.71274093 \\
0.0628312045 & 0.0561087689 & 0.0238151416 & \(3.06885185 e-006\) & 0.0238151416 \\
79.1349402 & 125.069778 & 114.305865 & 90.6036668 & 80.2241776 \\
77.3846683 & 72.3573978 & 4.19465181 & 4.23696678 & 2.14273739 \\
0.666437906 & 0.682425312 & 0.682425312 & 2.25483791 & 1.51771554 \\
0.0400647576 & 972.369776 & 947.625364 & 0.945040919 & 0.91690608 \\
0.000358244147 & 0.000244450229 & \(1.27599419 e-005\) & \(1.31746584 e-005\) & 1557.3837 \\
1528.97781 & 479.222442 & 486.751393 & 1.65383151 & 1.60864466 \\
1.64564466 & 0.457781062 & 0.718068767 & 2720.72883 & 2720.33768 \\
331.41299 & 479.608684 & 2697.55098 & 148.195694 & 2241.12015 \\
379.58001 & 335.981106 & 324.0739 & 303.006611 &
\end{tabular}

KEY POINT \#5 (t plus 8339.1279 s with a Mixing Number of 80.5104): 18.3093169
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.708762907 & 0.71422025 \\
1.00887905 & & 1 & 18.6384739 & 56766.7416 \\
0.0617746777 & 0.0556834012 & 0.0240481243 & \(5.88887413 e-006\) & 0.0240481243 \\
84.8695651 & 125.657033 & 116.437483 & 97.3228528 & 85.5268849 \\
79.916849 & 74.7938285 & 4.1997156 & 4.24039598 & 2.15406253 \\
0.670130489 & 0.682912903 & 0.682912903 & 2.09251742 & 1.48811062 \\
0.0404791787 & 968.74203 & 945.949806 & 1.00840711 & 0.982580472 \\
0.000333893971 & 0.000239659208 & \(1.28333106 e-005\) & \(1.31897866 e-005\) & 1555.56445 \\
1526.09206 & 480.197977 & 486.693789 & 1.77260774 & 1.72896679 \\
1.76596679 & 0.575721569 & 0.921043594 & 2720.70377 & 2720.35638 \\
355.491465 & 488.652396 & 2700.71537 & 133.16093 & 2232.05138 \\
407.871983 & 358.250896 & 334.704092 & 313.225851 &
\end{tabular}

KEY POINT \#6 (t plus 9554.6695 s with a Mixing Number of 99.3881): 18.3895432
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.718371455 & 0.725035608 \\
1.00701982 & & 1 & 16.890259 & 56866.2239 \\
0.0604458649 & 0.0550331683 & 0.0241534965 & \(3.72002901 e-006\) & 0.0241534965 \\
91.9633418 & 126.865082 & 119.677305 & 106.124497 & 92.3536258 \\
83.3681791 & 75.1373421 & 4.20692153 & 4.24581678 & 2.17214005 \\
0.674101689 & 0.683553123 & 0.683553123 & 1.91911998 & 1.44540672
\end{tabular}
\(0.041135305 \quad 964.032568 \quad 943.365551 \quad 1.11125998 \quad 1.0889339\)
\(0.000307512753 \quad 0.000232702522 \quad 1.2944914 \mathrm{e}-0051.32244051 \mathrm{e}-005 \quad 1551.70731\)
\begin{tabular}{lllll}
1521.47813 & 481.648204 & 486.772365 & 1.96643602 & 1.92452031
\end{tabular}
\begin{tabular}{lllll}
1.96152031 & 0.755809157 & 1.25684188 & 2721.21549 & 2720.93021
\end{tabular}
\begin{tabular}{lllll}
385.323449 & 502.412953 & 2705.46519 & 117.089504 & 2218.80254
\end{tabular}
\(445.018453 \quad 386.964121 \quad 349.203963 \quad 314.681405\)
KEY POINT \#7 (t plus 9806.8519 s with a Mixing Number of 102.572): 18.407053
\begin{tabular}{|c|c|c|c|c|}
\hline 0.040894 & 0.00925 & 0.3937 & 0.720701084 & 0.72763533 \\
\hline 1.00635676 & 1 & 1 & 16.5674133 & 56943.5922 \\
\hline 0.0602536952 & 0.0549071003 & 0.0241764945 & \(9.66189958 \mathrm{e}-006\) & 0.0241764945 \\
\hline 92.9788172 & 126.790955 & 120.302892 & 106.517533 & 93.5908866 \\
\hline 89.0284098 & 75.1883188 & 4.20803739 & 4.246893 & 2.17575328 \\
\hline 0.674617652 & 0.683662825 & 0.683662825 & 1.89646538 & 1.43746483 \\
\hline 0.041265737 & 963.339163 & 942.861345 & 1.13206278 & 1.11148367 \\
\hline 0.000304034613 & 0.000231402408 & \(1.29664749 \mathrm{e}-005\) & \(51.3219012 \mathrm{e}-005\) & 1551.01828 \\
\hline 1520.55602 & 481.923665 & 486.565893 & 2.00578542 & 1.9639646 \\
\hline 2.0009646 & 0.785060525 & 1.27391976 & 2720.64147 & 2720.36699 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 389.59907 & 505.072181 & 2706.37385 & 115.473111 & 2215.56929 \\
\hline & 446.681888 & 392.17359 & 372.98551 & 314.898252 & \\
\hline \multirow[t]{13}{*}{} & POINT \#8 (t plus & 10327.2596 s with & a Mixing Number & \(r\) of 109.2173): & 18.58154 \\
\hline & 0.040894 & 0.00925 & 0.39370. & 0.724506992 & 0.73192618 \\
\hline & 1.00623696 & 1 & 1 & 16.1290073 & 57325.8322 \\
\hline & 0.0598498501 & 0.0546630386 & 0.024405672 & 5.4998842e-006 & 0.024405672 \\
\hline & 95.1045834 & 127.847475 & 121.511683 & 110.105122 & 95.6966334 \\
\hline & 94.4333493 & 75.2535103 & 4.21044538 & 4.24899995 & 2.18284911 \\
\hline & 0.675655022 & 0.683862103 & 0.683862103 & 1.85063812 & 1.42238708 \\
\hline & 0.0415212623 & 961.871625 & 941.882333 & 1.17314987 & 1.15231688 \\
\hline & 0.000296974031 & 10.000228928367 & \(1.3008145 e-005\) & 1.32553417e-005 & 1549.4661 \\
\hline & 1518.74605 & 482.451697 & 486.997925 & 2.08364016 & 2.04194878 \\
\hline & 2.07894878 & 0.849351508 & 1.43882957 & 2722.09007 & 2721.82992 \\
\hline & 398.552879 & 510.212511 & 2708.12165 & 111.659632 & 2211.87756 \\
\hline & & & & & \\
\hline
\end{tabular}

KEY POINT \#9 (t plus 10338.6603 s with a Mixing Number of 109.4056): 18.5721544
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.724568522 & 0.732003484 \\
1.00627554 & 1 & 1 & 16.1114471 & 57286.8215 \\
0.0598396197 & 0.0546583968 & 0.0243933447 & \(5.06130544 \mathrm{e}-006\) & 0.0243933447 \\
95.1582909 & 127.909408 & 121.534644 & 110.36749 & 95.6804195 \\
94.4714337 & 75.2521771 & 4.21050758 & 4.24904033 & 2.18298536 \\
0.675680464 & 0.683865727 & 0.683865727 & 1.84950751 & 1.42210405 \\
0.0415261608 & 961.834251 & 941.863676 & 1.1739418 & 1.15296955 \\
0.000296799393 & 0.000228881853 & \(1.30089366 e-005\) & \(1.32576684 \mathrm{e}-005\) & 1549.4249 \\
1518.71131 & 482.461672 & 487.035396 & 2.0851425 & 2.04345378 \\
2.08045378 & 0.851030785 & 1.45154757 & 2722.20699 & 2721.94741 \\
398.779128 & 510.310176 & 2708.15475 & 111.531048 & 2211.89681
\end{tabular}

KEY POINT \#10 (t plus 10368.26 s with a Mixing Number of 109.8003): 18.5700451
\begin{tabular}{|c|c|c|c|c|}
\hline 0.040894 & 0.00925 & 0.3937 & 0.72475433 0 & 0.732210997 \\
\hline 1.00632765 & 1 & 1 & 16.0858766 & 57262.5274 \\
\hline 0.0598164465 & 0.0546463309 & 0.02439057428 & 8.33388687e-006 & 0.0243905742 \\
\hline 95.2799187 & 128.021027 & 121.594322 & 109.569922 & 95.8454466 \\
\hline 94.4614741 & 75.1877502 & 4.21064853 & 4.24914532 & 2.18333974 \\
\hline 0.675737975 & 0.683875117 & 0.683875117 & 1.8469519 & 1.421369 \\
\hline 0.0415389009 & 961.749585 & 941.815174 & 1.17600216 & 1.1548261 \\
\hline 0.000296404587 & 0.000228761037 & \(1.30109942 \mathrm{e}-005\) & 1.32617867e-005 & 51549.3313 \\
\hline 1518.62095 & 482.487591 & 487.098213 & 2.08905148 & 2.04739441 \\
\hline 2.08439441 & 0.854843934 & 1.41317028 & 2722.40565 & 2722.14689 \\
\hline 399.291552 & 510.564029 & 2708.24075 & 111.272477 & 2211.84162 \\
\hline 459.591503 & 401.671685 & 395.847133 & 314.902596 & \\
\hline
\end{tabular}

KEY POINT \#11 (t plus 10368.26 s with a Mixing Number of 109.8003): 18.5700451
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.72475433 & 0.732210997 \\
1.00632765 & & 1 & 16.0858766 & 57262.5274 \\
0.0598164465 & 0.0546463309 & 0.0243905742 & \(8.33388687 e-006\) & 0.0243905742 \\
95.2799187 & 128.021027 & 121.594322 & 109.569922 & 95.8454466 \\
94.4614741 & 75.1877502 & 4.21064853 & 4.24914532 & 2.18333974 \\
0.675737975 & 0.683875117 & 0.683875117 & 1.8469519 & 1.421369 \\
0.0415389009 & 961.749585 & 941.815174 & 1.17600216 & 1.1548261 \\
0.000296404587 & 0.000228761037 & \(1.30109942 e-005\) & \(1.32617867 e-005\) & 1549.33137 \\
1518.62095 & 482.487591 & 487.098213 & 2.08905148 & 2.04739441 \\
2.08439441 & 0.854843934 & 1.41317028 & 2722.40565 & 2722.14689 \\
399.291552 & 510.564029 & 2708.24075 & 111.272477 & 2211.84162 \\
459.591503 & 401.671685 & 395.847133 & 314.902596 &
\end{tabular}

KEY POINT \#12 (t plus 0 s with a Mixing Number of 32.1718): 17.2558211 0.040894
\begin{tabular}{lllllll}
0.00925 & 0.3937 & 0.710840769 & 0.712097661 & 1.01519585 \\
1 & 1 & 26.5357604 & 54155.8597 & 0.0695263055 & 0.0581485075
\end{tabular}
\begin{tabular}{lllllll}
0.0226644245 & \(3.40124572 e-006\) & 0.0226644245 & 40.4304101 & 120.47864
\end{tabular}
\begin{tabular}{lllll}
103.942449 & 40.595914 & 40.5527487 & 40.8388362 & 37.3958216
\end{tabular}
\begin{tabular}{lllll}
4.17851387 & 4.22178976 & 2.09371415 & 0.629184762 & 0.6792901
\end{tabular}
\begin{tabular}{lllll}
0.6792901 & 4.30050184 & 1.68103157 & 0.0382322272 & 992.059931
\end{tabular}
\(955.488355 \quad 0.681179479 \quad 0.650383122 \quad 0.000647553248 \quad 0.000270479623\)
\(1.24041639 \mathrm{e}-0051.30301606 \mathrm{e}-005 \quad 1532.07587 \quad 1541.23736 \quad 474.246369\)
\begin{tabular}{llllr}
485.564903 & 1.16542603 & 1.11406685 & 1.15106685 & 0.0755556799 \\
0.0762228145 & 2716.58504 & 2715.88089 & 169.435004 & 435.744383
\end{tabular}
\(2681.75091 \quad 266.309379 \quad 2280.84065 \quad 170.126564 \quad 169.944693\)

KEY POINT \#13 (t plus 10368.26 s with a Mixing Number of 109.8003): 18.5700451
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.72475433 & 0.732210997 \\
1.00632765 & & 1 & 1 & 16.0858766 & 57262.5274 \\
0.0598164465 & 0.0546463309 & 0.0243905742 & \(8.33388687 e-006\) & 0.0243905742 \\
95.2799187 & 128.021027 & 121.594322 & 109.569922 & 95.8454466 \\
94.4614741 & 75.1877502 & 4.21064853 & 4.24914532 & 2.18333974 \\
0.675737975 & 0.683875117 & 0.683875117 & 1.8469519 & 1.421369 \\
0.0415389009 & 961.749585 & 941.815174 & 1.17600216 & 1.1548261 \\
0.000296404587 & 0.000228761037 & \(1.30109942 e-005\) & \(1.32617867 e-005\) & 1549.33137 \\
1518.62095 & 482.487591 & 487.098213 & 2.08905148 & 2.04739441 \\
2.08439441 & 0.854843934 & 1.41317028 & 2722.40565 & 2722.14689 \\
399.291552 & 510.564029 & 2708.24075 & 111.272477 & 2211.84162 \\
459.591503 & 40.671685 & 395.847133 & 314.902596 &
\end{tabular}

KEY POINT \#14 (t plus 10244.7579 s with a Mixing Number of 108.1998): 18.5266147
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.72401168 & 0.731375443
\end{tabular}
1.00596487 -
\(0.0599157545 \quad 0.0546999129 \quad 0.0243335312 \quad 6.68839932 \mathrm{e}-006 \quad 0.0243335312\)
\begin{tabular}{lllll}
94.7584316 & 127.390561 & 121.329246 & 110.134312 & 95.4699985 \\
93.2670483 & 75.2146423 & 4.21004651 & 4.24867963 & 2.18176849
\end{tabular}
. 2100465
\begin{tabular}{lllll}
0.67549005 & 0.683833097 & 0.683833097 & 1.85795679 & 1.42464035
\end{tabular}
\begin{tabular}{lllll}
0.0414823999 & 962.112078 & 942.030492 & 1.16687283 & 1.14702864
\end{tabular}
\(0.0002981039090 .0002292985841 .30018552 \mathrm{e}-0051.32382359 \mathrm{e}-005 \quad 1549.72897\)
\begin{tabular}{llllll}
1519.02159 & 482.372361 & 486.724635 & 2.07173444 & 2.03006904
\end{tabular}

\begin{tabular}{lllll}
397.094589 & 509.436532 & 2707.85854 & 112.341944 & 2211.79634
\end{tabular}
\(\begin{array}{llll}461.977606 & 400.089318 & 390.818449 & 315.013916\end{array}\)
End

\section*{D. 2 TEST \#2-T02_RCIC_STD_57KW_RESULTS_RCICLAND.TXT}

Output Saved to C: \Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash E x p o r t \backslash T 02 \_R C I C \_S T D \_57 k W \backslash\)
Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 2098.241 s , and ending (KEY POINT \#11) at \(t\) plus 14976.2446 s , for a time period of 12878.0036 s.
Original Data Record Time: 17235.4818 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at t plus \(3929.9628 \mathrm{~s}, \mathrm{~T}\) bulk \(=59.101 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=56.673 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=-58.8905 \mathrm{C}\)
Stratification Beginning Pressure \(=17.1325\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at t plus \(12176.6925 \mathrm{~S}, \mathrm{~T}\) bulk \(=96.9752 \mathrm{C}\) and T out \(=75.692 \mathrm{C}\)
Stratification Ending \(\overline{S P} 12\) Temperature \(=96.8 \overline{511} \mathrm{C}\)
Stratification Ending Pressure \(=29.2965\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 3545.8568 s .
At \(t=3545.8568\) s, the pool pressure is 16.8474 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 57.6073, 57.5885, 59.5907, 57.7115, and 55.3163 C , respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 10.3245 +/- 3.9134 C .
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 9.8447 +/- 3.796 C .
Minimum Steam Quality: 0.99468 at t plus 12849.403 s
Maximum Steam Quality: 1.0128 at \(t\) plus 1017.4172 s
Time-Averaged Steam Quality: 1.005 +/- 0.0022442
Minimum Turbine Outlet Steam Quality: 0.99783 at \(t\) plus 12849.403 s
Maximum Turbine Outlet Steam Quality: 1.0229 at t plus 623.0106 s
Time-Averaged Turbine Outlet Steam Quality: 1.0118 +/- 0.0039172
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 12788.0044 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.40631 degrees \(/ \mathrm{min}\) at t plus 8035.0266 s and 0.16646 degrees/min at \(t\) plus 11923.091 s, respectively
Max and min smoothed mid (SP9) level changerates: 0.37305 degrees/min at \(t\) plus 320.1063 s and 0.17868 degrees/min at t plus 11868.3888 s , respectively

Max and min smoothed upper-mid level changerate differences: 0.12699 degrees/min at \(t\) plus 5053.08 s and -0.12147 degrees/min at \(t\) plus 5259.9839 s , respectively
Max and min smoothed lower level changerates: 1.2298 degrees/min at t plus 10380.1647 s and 0.017432 degrees/min at \(t\) plus 9885.4564 s, respectively
Max and min smoothed mid-lower level changerate differences: 0.30459 degrees/min at \(t\) plus 9885.1564 s and -0.99422 degrees/min at \(t\) plus 10380.1647 s , respectively
Max and min smoothed outlet level changerates: 2.9767 degrees \(/ \mathrm{min}\) at \(t\) plus 12566.1988 s and -0.036845 degrees/min at \(t\) plus 10665.47 s, respectively
Max and min smoothed lower-outlet level changerate differences: 1.2078 degrees/min at \(t\) plus 10380.0647 s and -2.7451 degrees/min at \(t\) plus 12566.0988 s , respectively
Max and min smoothed hot (SP8) level changerates: 0.75677 degrees/min at \(t\) plus 5506.2869 s and -0.6814 degrees/min at \(t\) plus 12788.0044 s, respectively

Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.46131 degrees/min at \(t\) plus 5506.2869 s and -0.97449 degrees \(/ \mathrm{min}\) at t plus 12788.0044 s , respectively
The mean steam flow rate was \(23.4613+/-1.079 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 25.0392 +/- \(2.212 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.003927+/-0.035595 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is 10.6969 +/- 3.5926 C over the Stratification Period, beginning at 2.278 C and ending at 15.3024 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(10.1997+/-3.4994\) C over the Stratification Period, beginning at 2.0959 C and ending at 14.5742 C
The stratification period begins and ends with Smoothed SP8 readings of 61.5964 and 112.478 C , respectively

The stratification period begins and ends with condensing flows of 0.26707 and 0.52925 kg/s, respectively.
The stratification period begins and ends with condensing+cooling flows of 5.8361 and \(0.84231 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(2718.9485+/-1.3255 \mathrm{~kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.25821 and 6.6148 kg/s, respectively
The plume period had a mean steam enthalpy of \(2719.0269+/-1.3145 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 1.1552 degrees C at \(t\) plus 12463.8209 s with T_upper \(=99.3145 \mathrm{C}\) and T mid \(=98.1594 \mathrm{C}\)
At t plus 12463.8209 s, Smoothed SP8-SP9 is 14.0873 C and Smoothed SP8-Top is 12.9321 C, where Smoothed SP8 is 112.2467 C and Pool \(\mathrm{P}=29.8925\) psia
Maximum Smoothed Top-Lower delta \(T\) is 8.5506 degrees \(C\) at \(t\) plus 10131.7605 s with T_upper \(=89.665 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=81.1145 \mathrm{C}\)
At \(t\) plus 10131.7605 s , Smoothed SP8-SP9 is 14.2503 C and Smoothed SP8-Top is 13.8028 C , where Smoothed SP8 is 103.4678 C and Pool \(\mathrm{P}=25.3731\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 8.1068 degrees C at t plus 10129.9604 s with T_mid \(=89.2103 \mathrm{C}\) and T low \(=81.1035 \mathrm{C}\)
At \(t\) plus 10129.9604 s , Smoothed SP8-SP9 is 14.2595 C and Smoothed SP8-Top is 13.819 C , where Smoothed SP8 is 103.4699 C and Pool \(\mathrm{P}=25.3717\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 22.158 degrees \(C\) at \(t\) plus 12166.1939 s with \(T\) upper \(=97.8491 \mathrm{C}\) and T out \(=75.6912 \mathrm{C}\)
At t plus 12166.1939 s , Smoothed SP8-SP9 is 15.1393 C and Smoothed SP8-Top is 14.4672 C , where Smoothed SP8 is 112.3164 C and Pool \(\mathrm{P}=29.2696\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 21.5082 degrees \(C\) at \(t\) plus 12157.9924 s with T_mid \(=97.1573 \mathrm{C}\) and \(T\) _out \(=75.6491 \mathrm{C}\)
At t plus 12157.9924 s, Smoothed SP8-SP9 is 14.8815 C and Smoothed SP8-Top is 14.2554 C, where Smoothed SP8 is 112.0388 C and Pool \(\mathrm{P}=29.2534\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 21.7369 degrees C at \(t\) plus 12062.891 s with T_low \(=97.2259 \mathrm{C}\) and T _out \(=75.489 \mathrm{C}\)
At \(t\) plus 12062.891 s, Smoothed SP8-SP9 is 14.4427 C and Smoothed SP8-Top is 13.7744 C, where Smoothed SP8 is 111.0992 C and Pool \(\mathrm{P}=29.0656\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 15.3957 degrees \(C\) at (KEY POINT \#14) t plus 12173.3923 s with \(\mathrm{T}_{-} \mathrm{SP} 8=112.5654 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{SP9}=97.1696 \mathrm{C}\) and Pool \(\mathrm{P}=\) 29.2841 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 14.6746 degrees \(C\) at \(t\) plus 12173.3923 s with \(\mathrm{T}_{-} \mathrm{SP} 8=112.5654 \mathrm{C}\) and \(\mathrm{T}_{-}\)upper \(=97.8907 \mathrm{C}\) and Pool \(\mathrm{P}=29.2841\) psia
Maximum Top-Mid delta \(T\) is 1.4105 degrees \(C\) at (KEY POINT \#4) \(t\) plus 6366.4011 s ignoring SP 4, with temperatures of 71.0791 and 69.6686 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=19.4128\) psia and T_outlet \(=65.9976 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 6366.4011 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.99578 C and a raw SP12 Reading of 69.6686 C .

Maximum Top-Lower delta \(T\) is 9.8872 degrees \(C\) at \(t\) plus 10389.4643 s , with temperatures of 90.814 and 80.9268 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=25.8877\) psia and T_outlet \(=75.1347 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 9.2559 degrees \(C\) at (KEY POINT \#6) t plus 10389.5643 s ignoring SP 4, with temperatures of 90.1813 and 80.9254 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=25.8871\) psia and \(T\) outlet \(=75.1374 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 10476.3662 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 3.0829 C and a raw SP12 Reading of 90.5594 C .
Maximum Top-Outlet delta \(T\) is 22.4053 degrees \(C\) at \(t\) plus 12180.4927 s, with temperatures of 98.0775 and 75.6723 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=29.2976\) psia
Maximum Mid-Outlet delta \(T\) is 21.3857 degrees \(C\) at \(t\) plus 12172.8923 s ignoring SP 4, with temperatures of 97.0182 and 75.6325 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=29.283\) psia
Maximum Lower-Outlet delta \(T\) is 22.5979 degrees \(C\) at (KEY POINT \#8) t plus 12150.792 s , with temperatures of 98.1573 and 75.5594 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=29.2292\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 12655.0008 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 7.5317 C and a raw SP12 Reading of 98.9045 C .
Minimum SP Pressure is 15.021 psia at \(t\) plus 14.6008 s
Maximum SP Pressure is 30.8387 psia at t plus 12878.0036 s
Beginning SP Pressure is 15.028 psia
Ending SP Pressure is 30.8387 psia
Time-Average SP Pressure is 20.7374 +/- 4.6514 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 78.062 cm (cold) / 78.2033 cm (hot) at 14.6198 psia
Beginning Smoothed SP Level is 77.9323 cm (cold) / 78.1145 cm (hot) at 15.0245 psia Ending Smoothed SP Level is 77.8519 cm (cold) / 78.9101 cm (hot) at 30.8374 psia Minimum Smoothed Cold SP Level is 76.6822 cm at t plus 9807.555 s and 24.7146 psia Minimum Smoothed Hot SP Level is 77.4352 cm at \(t\) plus 9285.7471 s and 23.679 psia Maximum Smoothed Cold SP Level is 77.9323 cm at t plus 1.9001 s and 15.0252 psia
Maximum Smoothed Hot SP Level is 78.9101 cm at \(t\) plus 12878.0036 s and 30.8374 psia SP 12 Temperature at the beginning is 40.0277 C , and at the end is 99.8193 C
At plume detection, the Mixing Number is 45.0613
The Mixing Number ranges from a minimum of 33.3326 at (KEY POINT \#12) \(t\) plus 0 s to a maximum of 138.0096 at (KEY POINT \#13) t plus 12878.0036 s; it had a mean value of 68.9277 +/- 29.4538 over the test period.
Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality \(x 2\), Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid \(T\) (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity ( \(W / m-K\) ) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steàm Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta h e6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy ell
KEY POINT \#1 (t plus 0 s with a Mixing Number of 33.3326): 20.4407065 0.040894
\begin{tabular}{lcccccc}
0.00925 & 0.3937 & 0.0 .779323037 & 0.78114485 & 1.01583551 \\
1 & 1 & \multicolumn{2}{c}{33.4106111} & 64315.6065 & 0.0695239701 & 0.0584969002 \\
0.0268475692 & \(2.89403617 e-006\) & 0.0268475692 & 40.4447578 & 119.481328 \\
102.147658 & 40.4779476 & 40.3956775 & 40.3300343 & 38.0154017 \\
4.17853301 & 4.21940564 & 2.08617393 & 0.629198854 & 0.678615984 \\
0.678615984 & 4.29928124 & 1.71298998 & 0.0379435701 & 992.051354
\end{tabular}
\begin{tabular}{lllcccc}
956.80174 & 0.642282317 & 0.611868784 & 0.000647380988 & 0.000275503822 \\
\(1.23427452 \mathrm{e}-005\) & \(1.29968805 \mathrm{e}-005\) & 1532.08722 & 1543.04963 & 473.346672 \\
485.184939 & 1.09441404 & 1.03590518 & 1.07290518 & 0.0756133143 \\
0.0757467822 & 2715.70744 & 2714.59117 & 169.488037 & 428.164019 \\
2678.94885 & 258.675982 & 2287.54342 & 169.626721 & 169.281448
\end{tabular}

KEY POINT \#2 (t plus 3545.8568 s with a Mixing Number of 45.0613): 17.0980732
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.774251536 & 0.77782142 \\
1.01437511 & & 1 & 1 & 25.1543862 & 53625.4588 \\
0.0666543777 & 0.0578988016 & 0.0224572327 & \(3.30255128 \mathrm{e}-006\) & 0.0224572327 \\
57.5884917 & 120.796019 & 105.224264 & 59.5907247 & 57.6073494 \\
57.7115322 & 55.3163089 & 4.18175389 & 4.22353585 & 2.09926281 \\
0.64847851 & 0.679747572 & 0.679747572 & 3.12040063 & 1.65892247 \\
0.0384433414 & 984.439928 & 954.541528 & 0.710116 & 0.679825282 \\
0.000483890924 & 0.000266991582 & \(1.24480689 e-005\) & \(1.30387436 e-005\) & 1552.30037 \\
1539.88533 & 474.882234 & 485.568719 & 1.21843599 & 1.1617673 \\
1.1987673 & 0.178227526 & 0.195710166 & 2716.61079 & 2715.97805 \\
241.152843 & 441.160976 & 2683.74072 & 200.008133 & 2275.44982
\end{tabular}

KEY POINT \#3 (t plus 3929.9628 s with a Mixing Number of 46.6199): 17.2182201
\begin{tabular}{lccccc}
0.040894 & 0.00925 & & 0.3937 & 0.773909323 & 0.777684851 \\
1.01448632 & & 1 & 24.9655168 & 53919.1583 \\
0.0663561845 & 0.0578091447 & 0.022615038 & \(4.16771383 e-006\) & 0.022615038 \\
59.3183846 & 121.355029 & 105.683579 & 61.5963731 & 59.5004877 \\
59.6213177 & 56.7012398 & 4.18243309 & 4.22417038 & 2.10128489 \\
0.650168455 & 0.679906659 & 0.679906659 & 3.03129404 & 1.65114079 \\
0.0385200139 & 983.567396 & 954.200467 & 0.720724989 & 0.6898072 \\
0.000471221349 & 0.000265761443 & \(1.24638092 e-005\) & \(1.30588443 e-005\) & 1553.47546 \\
1539.38928 & 475.108716 & 485.863188 & 1.23790854 & 1.18084268 \\
1.21784268 & 0.193249648 & 0.214666293 & 2717.54356 & 2716.92028 \\
248.389013 & 443.102493 & 2684.45138 & 194.713479 & 2274.44107
\end{tabular}
\(257.917658 \quad 249.149224\) 249.657542 237.249675
KEY POINT \#4 (t plus 6366.4011 s with a Mixing Number of 59.5309): 17.6517064
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.771597097 & 0.776836182 \\
1.01265051 & & 1 & 1 & 22.7900364 & 55110.1103 \\
0.0644064815 & 0.057132581 & 0.0231843947 & \(5.53168716 e-006\) & 0.0231843947 \\
70.4163904 & 122.649972 & 109.134231 & 79.1966002 & 71.0299707 \\
70.5403739 & 65.9699288 & 4.18828341 & 4.22908818 & 2.11706265 \\
0.659962259 & 0.681020711 & 0.681020711 & 2.54874932 & 1.59495301 \\
0.0391137419 & 977.557622 & 951.608309 & 0.804617413 & 0.774720923
\end{tabular}
\(0.000401615219 \quad 0.0002568392971 .25821823 \mathrm{e}-0051.30983023 \mathrm{e}-005 \quad 1557.70958\)
\begin{tabular}{lllll}
1535.47034 & 476.786755 & 486.127572 & 1.3925608 & 1.33857323
\end{tabular}
\begin{tabular}{lllll}
1.37557323 & 0.317668188 & 0.458931685 & 2718.50573 & 2717.98634
\end{tabular}
\(294.848815 \quad 457.698387 \quad 2689.74975 \quad 162.849572 \quad 2260.80734\)
\(331.650093 \quad 297.417399 \quad 295.369567\) 276.237069
2260.80734

NT \#5 (t plus 6366.4011 s with a
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.771597097 & 0.776836182 \\
1.01265051 & & 1 & 22.7900364 & 55110.1103 \\
0.0644064815 & 0.057132581 & 0.0231843947 & \(5.53168716 e-006\) & 0.0231843947 \\
70.4163904 & 122.649972 & 109.134231 & 79.1966002 & 71.0299707 \\
70.5403739 & 65.9699288 & 4.18828341 & 4.22908818 & 2.11706265 \\
0.659962259 & 0.681020711 & 0.681020711 & 2.54874932 & 1.59495301 \\
0.0391137419 & 977.557622 & 951.608309 & 0.804617413 & 0.774720923 \\
0.000401615219 & 0.000256839297 & \(1.25821823 e-005\) & \(1.30983023 e-005\) & 1557.70958 \\
1535.47034 & 476.786755 & 486.127572 & 1.3925608 & 1.33857323 \\
1.37557323 & 0.317668188 & 0.458931685 & 2718.50573 & 2717.98634 \\
294.848815 & 457.698387 & 2689.74975 & 162.849572 & 2260.80734 \\
331.650093 & 297.417399 & 295.369567 & 276.237069 & &
\end{tabular}

KEY POINT \#6 (t plus 10389.5643 s with a Mixing Number of 101.2825): 18.1662026
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.766980885 & 0.775200659 \\
1.00781491 & & 1 & 1 & 17.8698105 & 56358.6549 \\
0.0607506161 & 0.0554773728 & 0.0238601528 & \(4.62477143 \mathrm{e}-006\) & 0.0238601528 \\
90.3476697 & 125.541221 & 117.466444 & 104.312626 & 90.9430938 \\
85.1550588 & 75.0186114 & 4.20520845 & 4.24209009 & 2.15968964 \\
0.673249347 & 0.683129374 & 0.683129374 & 1.95623718 & 1.47425568 \\
0.0406840861 & 965.122498 & 945.133956 & 1.04020118 & 1.01678324 \\
0.000313191468 & 0.000237408291 & \(1.28687445 e-005\) & \(1.31814482 e-005\) & 1552.71808
\end{tabular}
\begin{tabular}{lrrrr}
1524.65623 & 480.662839 & 486.381443 & 1.8323919 & 1.78456563 \\
1.82156563 & 0.711141829 & 1.18053541 & 2719.81591 & 2719.49658 \\
378.517041 & 493.020714 & 2702.2318 & 114.503673 & 2226.7952 \\
437.355907 & 381.019801 & 356.696271 & 314.172469 &
\end{tabular}

KEY POINT \#7 (t plus 10476.3662 s with a Mixing Number of 102.1378): 18.2451682
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.767048816 & 0.775341886 \\
1.00800428 & 1 & 1 & 17.8537151 & 56543.0263 \\
0.0606872241 & 0.0554392316 & 0.0239638691 & \(3.46070345 e-006\) & 0.0239638691 \\
90.6842878 & 125.92333 & 117.656684 & 104.964976 & 91.1503275 \\
87.199227 & 75.0508422 & 4.20556484 & 4.24240609 & 2.16074159 \\
0.673428715 & 0.683168053 & 0.683168053 & 1.94839641 & 1.47172436 \\
0.0407223221 & 964.895693 & 944.982617 & 1.04616726 & 1.02207316 \\
0.000311992833 & 0.000236996423 & \(1.28752969 e-005\) & \(1.31955779 e-005\) & 1552.51115 \\
1524.38774 & 480.748352 & 486.600797 & 1.84362374 & 1.79577757 \\
1.83277757 & 0.720261872 & 1.20755557 & 2720.50904 & 2720.19028 \\
379.933517 & 493.828557 & 2702.51137 & 113.89504 & 2226.68048 \\
440.111337 & 381.892283 & 365.284616 & 314.308464 &
\end{tabular}

KEY POINT \#8 (t plus 12150.792 s with a Mixing Number of 124.9287): 18.3967156
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.774506634 & 0.784257862 \\
1.00595646 & & 1 & 16.1029805 & 56849.8624 \\
0.0594655753 & 0.0547267846 & 0.024162917 & \(2.60579392 e-006\) & 0.024162917 \\
97.1171366 & 127.252007 & 121.196254 & 112.099614 & 97.7386992 \\
97.0049835 & 75.6274089 & 4.21283709 & 4.24844665 & 2.18098291 \\
0.676578993 & 0.683811712 & 0.683811712 & 1.80916264 & 1.42628789 \\
0.041454137 & 960.458396 & 942.138406 & 1.16231414 & 1.14256485 \\
0.000290550384 & 0.000229569169 & \(1.29972703 e-005\) & \(1.32333704 e-005\) & 1547.84291 \\
1519.22193 & 482.314448 & 486.661696 & 2.06309051 & 2.01590208 \\
2.05290208 & 0.914190784 & 1.53784957 & 2721.02293 & 2720.76362 \\
407.027036 & 508.870904 & 2707.66659 & 101.843868 & 2212.15202 \\
470.293543 & 409.644526 & 406.555925 & 316.742934 &
\end{tabular}

KEY POINT \#9 (t plus 12176.6925 s with a Mixing Number of 125.0643): 18.4266372
\begin{tabular}{|c|c|c|c|c|}
\hline 0.040894 & 0.00925 & 0.3937 & 0.774688595 & 0.784459429 \\
\hline 1.00600526 & 1 & 1 & 16.1033029 & 56925.3987 \\
\hline 0.059454396 & 0.0547150309 & 0.024202217 & .92789535e-006 & 0.024202217 \\
\hline 97.1755392 & 127.358866 & 121.25443 & 112.477966 & 97.9037866 \\
\hline 97.1450586 & 75.7681241 & 4.21290677 & 4.24854851 & 2.18132633 \\
\hline 0.676605296 & 0.683821092 & 0.683821092 & 1.80798517 & 1.42556668 \\
\hline 0.0414664932 & 960.417304 & 942.09121 & 1.1643065 & 1.14436802 \\
\hline 0.00029036777 & 0.000229450732 & \(1.29992759 \mathrm{e}-005\) & \(51.32373056 \mathrm{e}-005\) & 1547.79481 \\
\hline 1519.13435 & 482.33979 & 486.721667 & 2.06686804 & 2.01967949 \\
\hline 2.05667949 & 0.916131977 & 1.55725035 & 2721.21325 & 2720.95394 \\
\hline 407.273365 & 509.118326 & 2707.75057 & 101.844961 & 2212.09493 \\
\hline 471.895644 & 410.340439 & 407.146317 & 317.333092 & \\
\hline
\end{tabular}

KEY POINT \#10 (t plus 12655.0008 s with a Mixing Number of 133.4362): 18.3302025 \(0.040894 \quad 0.00925 \quad 0.3937 \quad 0.7774897830 .787815423\)
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.777489783 & 0.787815423 \\
1.00497512 & & 1 & 15.4795526 & 56647.8362 \\
0.0590909045 & 0.0544990916 & 0.0240755563 & \(3.85227378 \mathrm{e}-006\) & 0.0240755563 \\
99.0700238 & 127.35117 & 122.321983 & 112.031872 & 100.022111 \\
99.8606177 & 91.2361347 & 4.21521885 & 4.25043273 & 2.18769058 \\
0.677432515 & 0.683986349 & 0.683986349 & 1.77057858 & 1.41247365 \\
0.0416951577 & 959.073343 & 941.222556 & 1.2013598 & 1.18434531 \\
0.000284551655 & 0.000227297492 & \(1.30360843 e-005\) & \(1.32325496 e-005\) & 1546.16608 \\
1517.51205 & 482.802522 & 486.435734 & 2.13719639 & 2.09022054 \\
2.12722054 & 0.980981298 & 1.53439702 & 2720.45046 & 2720.21085 \\
415.262156 & 513.65979 & 2709.28734 & 98.3976337 & 2206.79067 \\
470.012139 & 419.274702 & 418.596425 & 382.282066 &
\end{tabular}

KEY POINT \#11 (t plus 12878.0036 s with a Mixing Number of 138.0096): 18.3550464
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.778519357 & 0.789100504 \\
1.00510617 & & 1 & 15.3131202 & 56639.7123 \\
0.0589014853 & 0.0544122981 & 0.0241081871 & \(3.98772412 \mathrm{e}-006\) & 0.0241081871 \\
100.053871 & 127.904521 & 122.750407 & 113.305965 & 101.032183 \\
100.851041 & 96.3918084 & 4.21645048 & 4.25119695 & 2.19027808 \\
0.677844433 & 0.68404902 & 0.68404902 & 1.75173411 & 1.40729389 \\
0.0417879538 & 958.368397 & 940.872581 & 1.21649476 & 1.19884663 \\
0.000281612039 & 0.000226443991 & \(1.30508583 e-005\) & \(1.32523849 e-005\) & 1545.2763 \\
1516.85292 & 482.986991 & 486.711946 & 2.1659633 & 2.12616504 \\
2.16316504 & 1.01613104 & 1.60040925 & 2721.3413 & 2721.10681
\end{tabular}


End

\section*{D. 3 TEST \#3 - T03_RCIC_STD_157KW_RESULTS_RCICLAND.TXT}

Output Saved to C:\Local Files \RCICLAND_NOTITLES \(\backslash E x p o r t \backslash T 03 \_R C I C \_S T D \_157 \mathrm{~kW} \backslash\)
Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1869.6379 s, and ending (KEY POINT \#11) at \(t\) plus 8547.2479 s , for a time period of 6677.6099 s.
Original Data Record Time: 10624.0827 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(2445.4389 \mathrm{~s}, \mathrm{~T}\) bulk \(=72.3374 \mathrm{C}\) and T out \(=69.2204 \mathrm{C}\)
Stratification Beginnīng SP12 Temperature \(=\overline{71} .8924 \mathrm{C}\)
Stratification Beginning Pressure \(=19.2092\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(6176.2003 \mathrm{~s}, \mathrm{~T}\) bulk \(=122.185 \mathrm{C}\) and T out \(=80.2982 \mathrm{C}\)
Stratification Ending \(\overline{\text { SP1 }}\) Temperature \(=121.8844 \mathrm{C}\)
Stratification Ending Pressure \(=48.0791\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 1087.8182 s .
At \(t=1087.8182 \mathrm{~s}\), the pool pressure is 16.2342 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 54.6606, 54.7606, 56.7615, 54.3952, and 51.9724 C , respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were \(9.5434+/-2.5003\) C.

Over the Plume Period (Plume Detected to Destratification), the mean Smoothed Sp8-Upper temperatures were 8.7138 +/- 2.0978 C.
Minimum Steam Quality: 0.99337 at \(t\) plus 176.1021 s
Maximum Steam Quality: 1.0011 at \(t\) plus 2569.341 s
Time-Averaged Steam Quality: \(0.99782+/-0.0010239\)
Minimum Turbine Outlet Steam Quality: 1.003 at t plus 6615.9084 s
Maximum Turbine Outlet Steam Quality: 1.0276 at \(t\) plus 2379.1381 s
Time-Averaged Turbine Outlet Steam Quality: 1.019 +/- 0.0066167
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 6587.6078 s; using 300 s smoothing
Max and min smoothed upper level changerates: 1.0663 degrees \(/ \mathrm{min}\) at t plus 3189.1514 s and 0.50493 degrees/min at \(t\) plus 2875.2465 s, respectively
Max and min smoothed mid (SP9) level changerates: 1.0573 degrees/min at t plus 3237.3522 s and 0.62261 degrees/min at \(t\) plus 6283.4024 s , respectively
Max and min smoothed upper-mid level changerate differences: 0.19443 degrees/min at \(t\) plus 1985.7866 s and -0.241 degrees/min at \(t\) plus 2875.5455 s , respectively
Max and min smoothed lower level changerates: 1.4786 degrees/min at \(t\) plus 3815.9613 s and 0.094281 degrees/min at \(t\) plus 3327.9543 s, respectively
Max and min smoothed mid-lower level changerate differences: 0.86976 degrees/min at \(t\) plus 3327.4533 s and -0.60293 degrees/min at \(t\) plus 3815.7623 s , respectively
Max and min smoothed outlet level changerates: 7.0042 degrees/min at \(t\) plus 6468.1059 s and -0.17395 degrees/min at \(t\) plus 3795.5621 s, respectively
Max and min smoothed lower-outlet level changerate differences: 1.6313 degrees/min at \(t\) plus 3815.3622 s and -6.3115 degrees/min at \(t\) plus 6468.705 s, respectively
Max and min smoothed hot (SP8) level changerates: 1.553 degrees/min at t plus 1559.0252 \(s\) and 0.13839 degrees/min at \(t\) plus 2936.648 s, respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.82583 degrees/min at \(t\) plus 1648.1263 s and -0.59259 degrees/min at \(t\) plus 2936.648 s , respectively
The mean steam flow rate was \(65.8486+/-3.0439 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 65.8823 +/- \(9.1956 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.0031783+/-0.036458 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta T is \(10.6358+/-0.8358\) C over the Stratification Period, beginning at 11.8855 C and ending at 11.4474 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(9.6111+/-0.73211 \mathrm{C}\) over the Stratification Period, beginning at 10.6821 C and ending at 10.2441 C
The stratification period begins and ends with Smoothed SP8 readings of 84.4036 and 133.5181 C , respectively

The stratification period begins and ends with condensing flows of 1.035 and \(2.1936 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of 3.2797 and \(2.9542 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of 2744.5577 +/- \(1.5748 \mathrm{~kJ} / \mathrm{kg}\). At plume detection, the condensing and condensing+cooling flows are 0.6876 and 18.3343 kg/s, respectively
The plume period had a mean steam enthalpy of \(2745.8367+/-1.6447 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 1.6781 degrees C at t plus 2725.6439 s with \(T\) _upper \(=\) 77.9279 C and T mid \(=76.2498 \mathrm{C}\)

At t plus \(2725.6439 \mathrm{~s}, \mathrm{Smoothed} \mathrm{SP} 8-\mathrm{SP9}\) is 12.7747 C and Smoothed SP8-Top is 11.0966 C, where Smoothed SP8 is 89.0245 C and Pool \(\mathrm{P}=20.1329\) psia
Maximum Smoothed Top-Lower delta \(T\) is 6.7008 degrees \(C\) at \(t\) plus 3678.7604 s with T_upper \(=90.9028 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=84.202 \mathrm{C}\)
At \(t\) plus 3678.7604 s , Smoothed SP8-SP9 is 10.1671 C and Smoothed SP8-Top is 9.1887 C , where Smoothed SP8 is 100.0914 C and Pool \(\mathrm{P}=24.992\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 5.7477 degrees \(C\) at \(t\) plus 3694.3553 s with T_mid = 90.1508 C and T low \(=84.4031 \mathrm{C}\)
 where Smoothed SP8 is 100.3543 C and Pool \(\mathrm{P}=25.0879\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 43.0534 degrees \(C\) at \(t\) plus 6052.1992 s with T_upper \(=122.2823 \mathrm{C}\) and \(T\) _out \(=79.2289 \mathrm{C}\)
At t plus 6052.1992 s , Smoothed SP8-SP9 is 11.3286 C and Smoothed SP8-Top is 9.7474 C , where Smoothed SP8 is 132.0297 C and Pool \(\mathrm{P}=46.6739\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 41.9165 degrees \(C\) at \(t\) plus 6135.4999 s with T_mid \(=121.6639 \mathrm{C}\) and T_out \(=79.7474 \mathrm{C}\)
At t plus 6135.4999 s , Smoothed SP8-SP9 is 10.9465 C and Smoothed SP8-Top is 9.9234 C , where Smoothed SP8 is 132.6104 C and Pool \(\mathrm{P}=47.6132\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 41.9804 degrees C at \(t\) plus 6154.501 s with T_low \(=121.9601 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=79.9796 \mathrm{C}\)

At t plus 6154.501 s, Smoothed SP8-SP9 is 11.1521 C and Smoothed SP8-Top is 10.0929 C, where Smoothed SP8 is 133.0235 C and Pool \(\mathrm{P}=47.8228\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 12.9716 degrees \(C\) at (KEY POINT \#14) t plus 2669.2437 s with \(\mathrm{T}_{-} \mathrm{SP} 8=88.4751 \mathrm{C}\) and \(\mathrm{T}_{\text {_ }} \mathrm{SP9}=75.5035 \mathrm{C}\) and Pool \(\mathrm{P}=\) 19.9292 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 11.8308 degrees \(C\) at \(t\) plus 2641.4711 s with \(T_{-} S P 8=87.9551 \mathrm{C}\) and \(T_{\text {_ }}\) upper \(=76.1242 \mathrm{C}\) and Pool \(\mathrm{P}=19.8345\) psia
Maximum Top-Mid delta \(T\) is 2.1445 degrees \(C\) at (KEY POINT \#4) t plus 3106.8497 s ignoring SP 4, with temperatures of 82.8674 and 80.7229 C, respectively, at Set \# 2, where Pool \(P=21.7754\) psia and T_outlet \(=75.3324 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 3449.5553 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.99976 C and a raw SP12 Reading of 86.4684 C .
Maximum Top-Lower delta \(T\) is 8.9259 degrees \(C\) at \(t\) plus 5260.3849 s , with temperatures of 113.4904 and 104.5645 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=38.2723\) psia and T_outlet \(=78.1327 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 5.4803 degrees \(C\) at (KEY POINT \#6) t plus 3805.0606 s ignoring SP 4, with temperatures of 91.8564 and 86.3762 C , respectively, at Set \# 2, where Pool \(P=25.7943\) psia and T_outlet \(=77.0472 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 5005.9813 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 1.8263 C and a raw SP12 Reading of 108.6931 C .
Maximum Top-Outlet delta \(T\) is 43.7645 degrees \(C\) at \(t\) plus 6121.9001 s, with temperatures of 123.3603 and 79.5958 C, respectively, at Set \# 1, where Pool \(P=47.4626\) psia
Maximum Mid-Outlet delta \(T\) is 41.9691 degrees \(C\) at \(t\) plus 6141.7003 s ignoring SP 4, with temperatures of 121.7249 and 79.7558 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=\) 47.6681 psia

Maximum Lower-Outlet delta \(T\) is 43.1039 degrees \(C\) at (KEY POINT \#8) t plus 6128.2005 s, with temperatures of 122.7634 and 79.6595 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=47.5188\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 6541.2061 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 14.3615 C and a raw SP12 Reading of 125.7854 C .
Minimum SP Pressure is 15.1197 psia at \(t\) plus 3.0012 s
Maximum SP Pressure is 54.3209 psia at \(t\) plus 6677.6099 s
Beginning SP Pressure is 15.1236 psia
Ending SP Pressure is 54.3209 psia
Time-Average SP Pressure is 27.2369 +/- 11.5335 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 76.4803 cm (cold) / 76.6011 cm (hot) at 14.6614 psia
Beginning Smoothed SP Level is 76.4544 cm (cold) / 76.6249 cm (hot) at 15.1256 psia
Ending Smoothed SP Level is 75.3066 cm (cold) / 76.8603 cm (hot) at 54.2807 psia
Minimum Smoothed Cold SP Level is 75.23 cm at t plus 6461.2076 s and 51.4663 psia
Minimum Smoothed Hot SP Level is 76.3754 cm at \(t\) plus 1119.518 s and 16.2771 psia
Maximum Smoothed Cold SP Level is 76.4544 cm at t plus 0 s and 15.1256 psia
Maximum Smoothed Hot SP Level is 76.8603 cm at t plus 6677.6099 s and 54.2807 psia
SP 12 Temperature at the beginning is 40.3721 C , and at the end is 127.344 C
At plume detection, the Mixing Number is 39.3712
The Mixing Number ranges from a minimum of 32.8326 at (KEY POINT \#12) \(t\) plus 0 to a maximum of 244.6429 at (KEY POINT \#13) t plus 6677.6099 s; it had a mean value of \(94.5084+/-60.4538\) over the test period.
Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) 91, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity ( \(W / m-K\) ) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mu1, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool

Airspace P p2, Approx Pool Mid P p3, T mid Vapor Pressure p4, T Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta h e6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy e11
KEY POINT \#1 (t plus 0 s with a Mixing Number of 32.8326): 44.45715697 0.040894
\begin{tabular}{lcccccc}
0.00925 & 0.3937 & 0.7645444334 & 0.7662493128 & 1.021496738 \\
1 & 1 & 71.42501977 & 136985.6705 & 0.06949097261 & \\
0.05829777189 & 0.05839165072 & \(-3.35227866 e-007\) & 0.05839165072 & 40.64740562 \\
126.727252 & 103.1744119 & 41.27567523 & 40.56635291 & 40.4214568 \\
37.64528885 & 4.178530783 & 4.220760891 & 2.090455176 & 0.629455079 \\
0.6790064352 & 0.6790064352 & 4.281386266 & 1.694561878 & 0.03810772194 \\
991.975184 & 956.0521556 & 0.6643062258 & 0.6224275734 & 0.0006449492585 \\
0.0002726092404 & \(1.237787288 e-005\) & \(1.327168726 e-005\) & 1532.426014 & \\
1542.024491 & 473.8626944 & 489.753328 & 1.134586311 & 1.042875723 \\
1.079875723 & 0.0764314079 & 0.07901649333 & 2733.981454 & 2728.87992 \\
170.3354241 & 432.4999959 & 2680.554091 & 262.1645718 & 2301.481458 \\
172.9606689 & 169.9952384 & 169.3928835 & 157.7964957 &
\end{tabular}

KEY POINT \#2 (t plus 1087.8182 s with a Mixing Number of 39.3712): 46.74300179
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.7610310003 & 0.7640678527 \\
1.023245013 & & 1 & 70.28150504 & 142449.6568 \\
0.06713847375 & 0.05787353564 & 0.06139396264 & \(2.001334565 e-006\) & 0.06139396264 \\
54.7605962 & 130.6875257 & 105.3537514 & 56.76149746 & 54.66055371 \\
54.39519899 & 51.97239649 & 4.180783563 & 4.223714257 & 2.09983104 \\
0.6456174127 & 0.6797926789 & 0.6797926789 & 3.275806228 & 1.656721278 \\
0.03846490139 & 985.8291053 & 954.4454734 & 0.7130938784 & 0.6651042191 \\
0.0005058663071 & 0.000266643747 & \(1.245250587 e-005\) & \(1.341883412 e-005\) & \\
1550.057317 & 1539.746104 & 474.9461558 & 491.9930651 & 1.223899817 \\
1.119360808 & 1.156360808 & 0.1558150762 & 0.1714054988 & 2741.001413 \\
2736.061923 & 229.3251009 & 441.7082851 & 2683.94119 & 212.3831841 \\
2299.293128 & 237.6910933 & 228.9053987 & 227.7990104 & 217.6748042
\end{tabular}

KEY POINT \#3 (t plus 2445.4389 s with a Mixing Number of 53.0731): 52.09388404
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7616601133 & 0.7669129859 \\
1.023440139 & & 1 & 67.98616653 & 156945.1232 \\
0.06403021805 & 0.0570059269 & 0.06842200646 & \(4.754216195 e-006\) & 0.06842200646 \\
72.51803594 & 134.9852449 & 109.7772262 & 84.40355148 & 73.72149447 \\
72.83068442 & 69.28191302 & 4.189691092 & 4.230034258 & 2.12011983 \\
0.6616155537 & 0.6812125693 & 0.6812125693 & 2.47205555 & 1.584909902 \\
0.03922791118 & 976.342914 & 951.1194777 & 0.8210921042 & 0.7662956507 \\
0.0003903749382 & 0.0002552368328 & \(1.260426217 e-005\) & \(1.357370813 e-005\) & \\
1557.897218 & 1534.703064 & 477.0948152 & 494.0944985 & 1.42306412 \\
1.324876319 & 1.361876319 & 0.3475885813 & 0.5652740411 & 2747.62984 \\
2743.007721 & 303.6514488 & 460.4201973 & 2690.728973 & 156.7687485 \\
2287.209643 & 353.5026752 & 308.692698 & 304.962844 & 290.1017527
\end{tabular}

KEY POINT \#4 (t plus 3106.8497 s with a Mixing Number of 63.688): 50.68421931
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.757742679 & 0.7643108011 \\
1.021069599 & & 1 & 59.34988308 & 152621.8533 \\
0.06253380263 & 0.0563658121 & 0.06657050141 & \(2.881790241 e-006\) & 0.06657050141 \\
80.75799554 & 135.4007651 & 113.0129727 & 90.95896909 & 81.89980702 \\
80.70057296 & 75.2567058 & 4.196046508 & 4.23493907 & 2.13608295 \\
0.6675201431 & 0.6821037115 & 0.6821037115 & 2.206703835 & 1.536286421 \\
0.03981988967 & 971.3556753 & 948.6320332 & 0.9082054852 & 0.8540271818 \\
0.0003510493169 & 0.0002474431515 & \(1.271546807 e-005\) & \(1.358049597 e-005\) & \\
1556.965813 & 1530.669102 & 478.6226023 & 493.8360496 & 1.585026419 \\
1.501499681 & 1.538499681 & 0.4888888945 & 0.7277758718 & 2745.945225 \\
2742.422817 & 338.2137397 & 474.1271125 & 2695.616917 & 135.9133729 \\
2271.818113 & 381.0660413 & 343.004056 & 337.9742229 & 315.1476092
\end{tabular}

KEY POINT \#5 (t plus 3449.5553 s with a Mixing Number of 72.8553): 51.26459703
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7566944695 & 0.764012636 \\
1.019897568 & & 1 & 55.73736589 & 154064.7752 \\
0.0614855568 & 0.05590914161 & 0.06733279067 & \(3.494004896 e-006\) & 0.06733279067 \\
86.42398186 & 136.2711778 & 115.3074648 & 96.56036014 & 87.3247286 \\
81.85379728 & 76.34362366 & 4.201236062 & 4.238564662 & 2.148003469 \\
0.6710489928 & 0.6826610134 & 0.6826610134 & 2.052149185 & 1.503650593 \\
0.04025780879 & 967.7266249 & 946.8405085 & 0.9744009555 & 0.9198005039
\end{tabular}
\(0.0003277827342 \quad 0.0002421771801 \quad 1.279440976 \mathrm{e}-005 \quad 1.360735722 \mathrm{e}-005\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1554.840513 & 1527.636849 & 479.6829172 & 493.9993607 & 1.70880165 \\
\hline & 1.627899042 & 1.664899042 & 0.6117455533 & 0.8958553255 & 2746.225107 \\
\hline & 2743.118453 & 362.0128331 & 483.857161 & 2699.04167 & 121.8443279 \\
\hline & 2262.367946 & 404.6521669 & 365.7961584 & 342.8237309 & 319.7141489 \\
\hline \multirow[t]{12}{*}{} & \multicolumn{2}{|l|}{POINT \#6 (t plus 3805.0606s w} & \multicolumn{3}{|l|}{Mixing Number of 83.6055): 51.74712805} \\
\hline & 1.018613016 & 1 & 1 & 51.83232013 & 155151.5716 \\
\hline & 0.0604770775 & 0.05539388775 & 0.0679665645 & . \(350520548 \mathrm{e}-006\) & 0.0679665645 \\
\hline & 91.79816411 & 137.3012319 & 117.882749 & 102.1521825 & 92.71302772 \\
\hline & 86.63746248 & 77.09783897 & 4.206773389 & 4.242782747 & 2.161996349 \\
\hline & 0.6740089052 & 0.6832134732 & 0.6832134732 & 1.922886109 & 1.468728513 \\
\hline & 0.040767902 & 964.1406186 & 944.8025745 & 1.05329277 & 0.9984202952 \\
\hline & 0.0003080846628 & \(8 \quad 0.000236508718\) & \(1.28830837 \mathrm{e}-005\) & \(51.36392241 \mathrm{e}-005\) & \\
\hline & 1551.788744 & 1524.067462 & 480.8497907 & 494.1923263 & 1.857043868 \\
\hline & 1.778706343 & 1.815706343 & 0.7511380511 & 1.094588445 & 2746.628407 \\
\hline & 2743.941818 & 384.6173511 & 494.7886103 & 2702.843262 & 110.1712592 \\
\hline & 2251.839797 & 428.2369226 & 388.4651306 & 362.9229256 & 322.8884428 \\
\hline \multirow[t]{13}{*}{} & POINT \#7 (t plus 500 & 5005.9813 s with a & \multicolumn{3}{|l|}{Mixing Number of 135.5389) : 52.18186199} \\
\hline & 0.040894 & 0.00925 & 0.3937 & 0.75621858 0. & 0.7675074262 \\
\hline & 1.013265484 & 1 & 1 & 38.44184736 & 155173.285 \\
\hline & 0.05723678458 & 0.05337413688 & 0.06853755991 & \(4.893649213 e-006\) & 0.06853755991 \\
\hline & 108.6045161 & 141.1156567 & 127.8461739 & 118.5916717 & 109.6351462 \\
\hline & 107.1182444 & 78.05024085 & 4.22805103 & 4.260647399 & 2.222545719 \\
\hline & 0.6809253282 & 0.6846352846 & 0.6846352846 & 1.603271374 & 1.348806503 \\
\hline & 0.04293800339 & 952.0625002 & 936.6497795 & 1.408606361 & 1.357520291 \\
\hline & 0.0002582059864 & 40.0002167371381 & \(1.322666703 e-005\) & \(51.375188432 \mathrm{e}-005\) & \\
\hline & 1536.330998 & 1508.664187 & 485.126383 & 494.5436371 & 2.532994133 \\
\hline & 2.464610446 & 2.501610446 & 1.367837446 & 1.89964743 & 2747.499215 \\
\hline & 2746.02144 & 455.5394377 & 537.1951244 & 2717.103894 & 81.65568671 \\
\hline & 2210.304091 & 497.8423634 & 459.8965295 & 449.2583392 & 326.9370637 \\
\hline \multirow[t]{13}{*}{} & POINT \#8 (t plus 61 & 6128.2005 s with a & \multirow[t]{2}{*}{Mixing Number of} & \multicolumn{2}{|l|}{f 203.6331): 50.39769459} \\
\hline & 0.040894 & 0.00925 & & 75401706050.7 & 0.7679887075 \\
\hline & 1.007481314 & 1 & 1 & 28.1878444 & 148946.7363 \\
\hline & 0.0546520603 & 0.05144079316 & 0.06619416945. & .168097216e-006 & 0.0661941694 \\
\hline & 121.5659852 & 144.3413081 & 137.2018108 & 132.5030047 & 122.592497 \\
\hline & 121.4549084 & 79.69085632 & 4.248797605 & 4.279819496 & 2.289129878 \\
\hline & 0.6839457009 & 0.6849587875 & 0.6849587875 & 1.421672689 & 1.254896261 \\
\hline & 0.04528298518 & 941.8926339 & 928.6091816 & 1.824580727 & 1.788062566 \\
\hline & 0.0002288522575 & 50.0002008384284 & \(1.354968057 e-005\) & \(51.383691495 \mathrm{e}-005\) & \\
\hline & 1518.929367 & 1492.0062 & 488.7861368 & 494.1055377 & 3.337826103 \\
\hline & 3.277281869 & 3.314281869 & 2.087194627 & 2.911151264 & 2746.69063 \\
\hline & 2745.896076 & 510.5292251 & 577.1977965 & 2729.791845 & 66.66857145 \\
\hline & 2169.492834 & 557.1100532 & 514.8904025 & 510.0585537 & 333.8829227 \\
\hline \multirow[t]{13}{*}{} & POINT \#9 (t plus 617 & 6176.2003 s with a & \multicolumn{2}{|l|}{Mixing Number} & 12624 \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.75376745720. & 0.7678566839 \\
\hline & 1.007014383 & 1 & 1 & 27.75994153 & 148499.7704 \\
\hline & 0.05454996775 & 0.05135835995 & 0.06597276558 & \(4.081462731 \mathrm{e}-006\) & 0.06597276558 \\
\hline & 122.0706752 & 144.2738438 & 137.5970359 & 133.5180795 & 123.2739319 \\
\hline & 122.2137843 & 80.42524476 & 4.249686933 & 4.28068411 & 2.292155225 \\
\hline & 0.6840240722 & 0.6849513055 & 0.6849513055 & 1.415486782 & 1.251274108 \\
\hline & 0.04538900002 & 941.482039 & 928.2613227 & 1.844110315 & 1.809522317 \\
\hline & 0.0002278349083 & 30.0002002160896 & \(1.356332873 \mathrm{e}-005\) & \(51.383214184 \mathrm{e}-005\) & \\
\hline & 1518.163507 & 1491.257558 & 488.932975 & 493.9253971 & 3.375900397 \\
\hline & 3.315763064 & 3.352763064 & 2.120467653 & 2.999359788 & 2746.173291 \\
\hline & 2745.402677 & 512.6764514 & 578.8919549 & 2730.311794 & 66.21550345 \\
\hline & 2167.281337 & 561.4478286 & 517.7900127 & 513.2858903 & 336.9667753 \\
\hline KEY & POINT \#10 (t plus 65 & 6541.2061 s with & a Mixing Number o & of 232.705): 50.01 & 22673 \\
\hline & 0.040894 & 0.00925 & 0.39370 .7 & . 7525180501 & 767565761 \\
\hline & 1.005101376 & 1 & 1 & 25.36292152 & 147551.3269 \\
\hline & 0.05377488114 & 0.05072604026 & 0.06568793515 & \(4.399974615 e-006\) & 0.06568793515 \\
\hline & 125.8853462 & 145.3914209 & 140.6191354 & 136.2002259 & 127.3316562 \\
\hline & 126.4962125 & 111.2730171 & 4.256617391 & 4.28744909 & 2.315861033 \\
\hline & 0.6845228969 & 0.684838091 & 0.684838091 & 1.370605422 & 1.224422746 \\
\hline & 0.04621890652 & 938.3434337 & 925.5794557 & 1.999059671 & 1.971997478 \\
\hline & 0.0002204122916 & \(6 \quad 0.000195578144\) & \(1.366768871 \mathrm{e}-005\) & \(51.386095064 \mathrm{e}-005\) & \\
\hline & 1512.169001 & 1485.4154 & 490.0347414 & 493.6782601 & 3.678778217 \\
\hline & 3.620489487 & 3.657489487 & 2.386209555 & 3.242888959 & 2745.815148 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 2745.17187 & 528.9217242 & 591.8584595 & 2734.242761 & 62.93673532 \\
\hline & 2153.956689 & 572.9333599 & 535.0789017 & 531.523521 & 466.9155592 \\
\hline \multirow[t]{12}{*}{} & POINT \#11 (t plus
\[
0.040894
\] & \[
\begin{gathered}
6677.6099 \mathrm{~s} \text { with } \\
0.00925
\end{gathered}
\] & a Mixing Number 0.3937 & \begin{tabular}{l}
of 244.6429\(): 50\) \\
0.7530662534
\end{tabular} & \[
\begin{aligned}
& 50.67704985 \\
& 0.7686028714
\end{aligned}
\] \\
\hline & 1.004590928 & 1 & 1 & 24.89705353 & 149301.2138 \\
\hline & 0.05345042976 & 0.05048464587 & 0.06656108479 & \(5.784484202 \mathrm{e}-006\) & \(6 \quad 0.06656108479\) \\
\hline & 127.4734669 & 146.035546 & 141.7684685 & 137.6157713 & 128.8423165 \\
\hline & 128.093888 & 122.3372651 & 4.2596166 & 4.290094498 & 2.325142272 \\
\hline & 0.6846814085 & 0.6847691413 & 0.6847691413 & 1.352854629 & 1.214591517 \\
\hline & 0.04654356902 & 937.0178074 & 924.5493162 & 2.060659443 & \(3 \quad 2.035640638\) \\
\hline & 0.0002174548792 & 20.000193868641 & \(11.370737618 \mathrm{e}-00\) & \(051.388057889 \mathrm{e}-0\) & 005 \\
\hline & 1509.564724 & 1483.139371 & 490.4439584 & 493.7257911 & 3.799557658 \\
\hline & 3.742524598 & 3.779524598 & 2.504543433 & 3.377713952 & 2746.156124 \\
\hline & 2745.53626 & 535.6924421 & 596.7954643 & 2735.716628 & 61.10302216 \\
\hline & 2149.360659 & 578.9985853 & 541.5238442 & 538.3367807 & 513.8435572 \\
\hline \multirow[t]{13}{*}{} & POINT \#12 (t plus 0 & 0 s with a Mixing & Number of 32.832 & 326): 44.4571569 & 7 0.040894 \\
\hline & 0.00925 & \(0.3937 \quad 0.7\) & 76454443340. & . 7662493128 & 1.021496738 \\
\hline & 1 & 171.42501 & 1977 136985. & .67050 .069490 & 097261 \\
\hline & 0.05829777189 & 0.05839165072 & -3.35227866e-007 & 0.05839165072 & 240.64740562 \\
\hline & 126.727252 & 103.1744119 & 41.27567523 & 40.56635291 & 40.4214568 \\
\hline & 37.64528885 & 4.178530783 & 4.220760891 & 2.090455176 & 0.629455079 \\
\hline & 0.6790064352 & 0.6790064352 & 4.281386266 & 1.694561878 & 0.03810772194 \\
\hline & 991.975184 & 956.0521556 & 0.6643062258 & 0.62242757340 & 0.0006449492585 \\
\hline & 0.0002726092404 & \(41.237787288 \mathrm{e}-00\) & \(51.327168726 \mathrm{e}-00\) & 051532.4260 & 014 \\
\hline & 1542.024491 & 473.8626944 & 489.753328 & 1.134586311 & 1.042875723 \\
\hline & 1.079875723 & 0.0764314079 & 0.07901649333 & 2733.981454 & 2728.87992 \\
\hline & 170.3354241 & 432.4999959 & 2680.554091 & 262.1645718 & 2301.481458 \\
\hline & 172.9606689 & 169.9952384 & 169.3928835 & 157.7964957 & \\
\hline \multirow[t]{13}{*}{} & POINT \#13 (t plus 6 & 6677.6099 s with & Mixing Number & of 244.6429): 50. & 50.67704985 \\
\hline & 0.040894 & 0.00925 & 0.3937 & . 7530662534 & 0.7686028714 \\
\hline & 1.004590928 & 1 & 1 & 24.89705353 & 149301.2138 \\
\hline & 0.05345042976 & 0.05048464587 & 0.06656108479 & \(5.784484202 \mathrm{e}-006\) & \(6 \quad 0.06656108479\) \\
\hline & 127.4734669 & 146.035546 & 141.7684685 & 137.6157713 & 128.8423165 \\
\hline & 128.093888 & 122.3372651 & 4.2596166 & 4.290094498 & 2.325142272 \\
\hline & 0.6846814085 & 0.6847691413 & 0.6847691413 & 1.352854629 & 1.214591517 \\
\hline & 0.04654356902 & 937.0178074 & 924.5493162 & 2.060659443 & \(3 \quad 2.035640638\) \\
\hline & 0.0002174548792 & 20.000193868641 & 1 1.370737618e-00 & \(051.388057889 \mathrm{e}-0\) & 005 \\
\hline & 1509.564724 & 1483.139371 & 490.4439584 & 493.7257911 & 3.799557658 \\
\hline & 3.742524598 & 3.779524598 & 2.504543433 & 3.377713952 & 2746.156124 \\
\hline & 2745.53626 & 535.6924421 & 596.7954643 & 2735.716628 & 61.10302216 \\
\hline & 2149.360659 & 578.9985853 & 541.5238442 & 538.3367807 & 513.8435572 \\
\hline \multirow[t]{13}{*}{KEY} & POINT \#14 (t plus 2 & 2669.2437 s with & a Mixing Number & of 56.6651): 50 & . 57188974 \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.7600253188 & 0.7656385249 \\
\hline & 1.022610007 & 1 & 1 & 64.03448581 & 152428.8767 \\
\hline & 0.0634919205 & 0.0568324002 & 0.066422963672 & \(2.277784566 \mathrm{e}-006\) & 0.06642296367 \\
\hline & 75.50352556 & 134.8908344 & 110.6566877 & 88.47510171 & 76.81459209 \\
\hline & 75.64341276 & 70.99070421 & 4.191833765 & 4.231343531 & 2.124362354 \\
\hline & 0.6638617744 & 0.681467031 & 0.681467031 & 2.369719358 & 1.571381752 \\
\hline & 0.03938590761 & 974.5760457 & 950.4479358 & 0.8440676863 & 30.7897873048 \\
\hline & 0.0003752930546 & 60.0002530744311 & \(11.26344724 \mathrm{e}-00\) & \(051.356755297 e-0\) & 005 \\
\hline & 1557.865356 & 1533.635061 & 477.5137842 & 493.8951837 & 1.465673045 \\
\hline & 1.374448755 & 1.411448755 & 0.3941569399 & 0.6621467603 & 2746.537814 \\
\hline & 2742.437399 & 316.1668913 & 464.1440213 & 2692.064109 & 147.97713 \\
\hline & 2282.393793 & 370.6124693 & 321.6619546 & 316.7547323 & 297.2623747 \\
\hline
\end{tabular}

End

\section*{D. 4 TEST \#4 - T04_RCIC_STD_107KW_RESULTS_RCICLAND.TXT}

Output Saved to C: \Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash\) Export \(\backslash T 04\) _RCIC_STD_107kW Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1721.1344 s, and ending (KEY POINT \#11) at \(t\) plus 10637.7904 s , for a time period of 8916.656 s .
Original Data Record Time: 11590.724 s

Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(2678.6462 \mathrm{~s}, \mathrm{~T}\) bulk \(=65.2079 \mathrm{C}\) and T out \(=62.5368 \mathrm{C}\)
Stratification Beginnīng SP12 Temperature \(=\overline{65} .1796 \mathrm{C}\)
Stratification Beginning Pressure = 17.4645 psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(8051.2415 \mathrm{~s}, \mathrm{~T}\) bulk \(=115.4315 \mathrm{C}\) and T out \(=73.8345 \mathrm{C}\)
Stratification Ending \(\overline{\text { SP12 }}\) Temperature \(=115 . \overline{3675} \mathrm{C}\)
Stratification Ending Pressure \(=41.4152\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 2016.8354 s .
At \(t=2016.8354 \mathrm{~s}\), the pool pressure is 16.4355 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 59.297, 59.4284, 61.4291, 59.2957, and 56.321 C, respectively.
Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were \(10.7153+/-2.4439 \mathrm{C}\).
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were \(9.846+/-2.2417 \mathrm{C}\).
Minimum Steam Quality: 0.99488 at \(t\) plus 6.3004 s
Maximum Steam Quality: 1.0059 at \(t\) plus 1243.5221 s
Time-Averaged Steam Quality: 1.0015 +/- 0.0014775
Minimum Turbine Outlet Steam Quality: 1.0003 at \(t\) plus 8888.9555 s
Maximum Turbine Outlet Steam Quality: 1.0269 at t plus 1243.5221 s
Time-Averaged Turbine Outlet Steam Quality: 1.0166 +/- 0.0065728
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 8826.6569 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.82359 degrees/min at \(t\) plus 3634.1629 s and 0.33562 degrees/min at \(t\) plus 7201.9259 s , respectively
Max and min smoothed mid (SP9) level changerates: 0.8436 degrees \(/ \mathrm{min}\) at t plus 3856.9686 s and 0.39538 degrees/min at t plus 7744.1359 s , respectively
Max and min smoothed upper-mid level changerate differences: 0.39545 degrees/min at \(t\) plus 3586.0621 s and -0.21489 degrees/min at \(t\) plus 3849.6672 s , respectively
Max and min smoothed lower level changerates: 3.3758 degrees/min at t plus 6273.3088 s and -0.010467 degrees/min at \(t\) plus 5121.79 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.69735 degrees/min at t plus 5121.3899 s and -2.8874 degrees/min at \(t\) plus 6284.5115 s , respectively
Max and min smoothed outlet level changerates: 8.0358 degrees/min at \(t\) plus 8357.8461 s and -0.024187 degrees/min at \(t\) plus 5361.5937 s , respectively
Max and min smoothed lower-outlet level changerate differences: 3.3129 degrees/min at t plus 6273.3088 s and -7.5257 degrees/min at \(t\) plus 8355.1469 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.2931 degrees/min at t plus 2402.0414 \(s\) and 0.071089 degrees \(/ \mathrm{min}\) at t plus 8268.3439 s , respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.76384 degrees/min at \(t\) plus 2402.5414 s and -0.4205 degrees/min at \(t\) plus 3756.0658 s , respectively
The mean steam flow rate was \(45.3195+/-1.2552 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 45.1489 +/- \(3.8097 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.0092897+/-0.036998 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is 11.4647 +/- 1.1155 C over the Stratification Period, beginning at 7.5605 C and ending at 12.0327 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(10.5088+/-1.1639 \mathrm{C}\) over the Stratification Period, beginning at 7.2295 C and ending at 10.8785 C
The stratification period begins and ends with Smoothed SP8 readings of 73.2543 and 127.6498 C, respectively

The stratification period begins and ends with condensing flows of 0.62296 and 1.4225 kg/s, respectively.
The stratification period begins and ends with condensing+cooling flows of 3.5097 and \(1.9911 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(2736.939+/-0.89115 \mathrm{~kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.56225 and 13.574 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of \(2737.8397+/-0.44888 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 2.4105 degrees C at t plus 3711.2643 s with T _upper \(=\) 76.8628 C and T mid \(=74.4523 \mathrm{C}\)

At t plus 3711.2643 s, Smoothed SP8-SP9 is 11.1711 C and Smoothed SP8-Top is 8.7606 C, where Smoothed SP8 is 85.6234 C and Pool \(\mathrm{P}=19.9646\) psia
Maximum Smoothed Top-Lower delta \(T\) is 19.6247 degrees \(C\) at \(t\) plus 6010.7408 s with T_upper \(=101.2917 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=81.667 \mathrm{C}\)
At \(t\) plus 6010.7408 s, Smoothed SP8-SP9 is 12.2069 C and Smoothed SP8-Top is 11.3904 C, where Smoothed SP8 is 112.6821 C and Pool \(\mathrm{P}=29.9824\) psia

Maximum Smoothed Mid-Lower delta \(T\) is 18.9971 degrees \(C\) at \(t\) plus 6044.5067 s with T_mid \(=100.8166 \mathrm{C}\) and T low \(=81.8195 \mathrm{C}\)
At \(t\) plus 6044.5067 s, Smōothed SP8-SP9 is 11.9788 C and Smoothed SP8-Top is 11.3634 C , where Smoothed SP8 is 112.7954 C and Pool \(\mathrm{P}=30.1686\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 43.1262 degrees \(C\) at \(t\) plus 7969.5398 s with T upper \(=116.1395 \mathrm{C}\) and T out \(=73.0133 \mathrm{C}\)
At \(t\) plus 7969.5398 s, Smoothed SP8-SP9 is 12.1539 C and Smoothed SP8-Top is 11.0212 C, where Smoothed SP8 is 127.1607 C and Pool P \(=40.9125\) psia
Maximum Smoothed Mid-Outlet delta T is 42.061 degrees C at t plus 8017.2396 s with T_mid \(=115.4865 \mathrm{C}\) and T out \(=73.4255 \mathrm{C}\)
At t plus 8017.2396 s, Smoothed SP8-SP9 is 11.9442 C and Smoothed SP8-Top is 10.9914 C, where Smoothed SP8 is 127.4307 C and Pool \(\mathrm{P}=41.1992\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 42.2788 degrees \(C\) at \(t\) plus 8003.6398 s with T_low \(=115.5709 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=73.2921 \mathrm{C}\)
At t plus 8003.6398 s, Smoothed SP8-SP9 is 12.0048 C and Smoothed SP8-Top is 10.9919 C , where Smoothed SP8 is 127.3376 C and Pool \(\mathrm{P}=41.1173\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 13.5417 degrees C at (KEY POINT \#14) t plus 7113.6249 s with \(\mathrm{T}_{-} \mathrm{SP} 8=122.4688 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{SP9}=108.9271 \mathrm{C}\) and Pool \(\mathrm{P}=\) 35.9401 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 12.5963 degrees \(C\) at \(t\) plus 7113.6249 s with \(\mathrm{T}_{-} \mathrm{SP} 8=122.4688 \mathrm{C}\) and \(\mathrm{T}_{-}\)upper \(=109.8725 \mathrm{C}\) and Pool \(\mathrm{P}=35.9401\) psia
Maximum Top-Mid delta \(T\) is 3.0644 degrees \(C\) at (KEY POINT \#4) t plus 3624.5643 s ignoring SP 4, with temperatures of 76.5882 and 73.5238 C, respectively, at Set \# 2, where Pool \(P=19.7049\) psia and T_outlet \(=67.3603 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 4645.2817 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 1.0212 C and a raw SP12 Reading of 85.7181 C .
Maximum Top-Lower delta \(T\) is 22.445 degrees \(C\) at \(t\) plus 6218.5097 s, with temperatures of 102.8387 and 80.3937 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=31.1223\) psia and T outlet \(=71.9789 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 20.9285 degrees \(C\) at (KEY POINT \#6) t plus 6229.0083 s ignoring SP 4, with temperatures of 102.3057 and 81.3772 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=31.1883\) psia and \(T\) outlet \(=71.8474 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 6370.8124 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 6.9655 C and a raw SP12 Reading of 103.5519 C .
Maximum Top-Outlet delta \(T\) is 43.5091 degrees \(C\) at \(t\) plus 7968.3398 s, with temperatures of 116.4668 and 72.9576 C , respectively, at Set \# 1, where Pool P \(=40.8988\) psia
Maximum Mid-Outlet delta \(T\) is 41.9109 degrees \(C\) at \(t\) plus 7975.5402 s ignoring SP 4, with temperatures of 114.86 and 72.9491 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=\) 40.951 psia

Maximum Lower-Outlet delta \(T\) is 43.2682 degrees \(C\) at (KEY POINT \#8) t plus 7991.5401 s, with temperatures of 116.4709 and 73.2027 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=41.0478 \mathrm{psia}\)
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 8405.2458 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 14.4199 C and a raw SP12 Reading of 117.9138 C .
Minimum SP Pressure is 14.7156 psia at t plus 15.7999 s
Maximum SP Pressure is 47.7972 psia at t plus 8916.656 s
Beginning SP Pressure is 14.7258 psia
Ending SP Pressure is 47.7972 psia
Time-Average SP Pressure is 25.6377 +/- 9.8652 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 75.149 cm (cold) / 75.2718 cm (hot) at 14.5991 psia
Beginning Smoothed SP Level is 75.2222 cm (cold) / 75.3836 cm (hot) at 14.7188 psia
Ending Smoothed SP Level is 84.1863 cm (cold) / 86.1615 cm (hot) at 47.7888 psia
Minimum Smoothed Cold SP Level is 75.1096 cm at \(t\) plus 629.01 s and 15.0644 psia
Minimum Smoothed Hot SP Level is 75.3114 cm at \(t\) plus 442.3073 s and 14.9476 psia
Maximum Smoothed Cold SP Level is 85.8062 cm at t plus 7085.2243 s and 35.7837 psia
Maximum Smoothed Hot SP Level is 87.4819 cm at t plus 7264.1275 s and 36.7636 psia
SP 12 Temperature at the beginning is 40.2491 C , and at the end is 122.0172 C
At plume detection, the Mixing Number is 43.1669
The Mixing Number ranges from a minimum of 32.2572 at (KEY POINT \#12) \(t\) plus 0 to a maximum of 255.7515 at (KEY POINT \#13) \(t\) plus 8916.656 s; it had a mean value of 101.7014 +/- 65.3588 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1,

Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid \(T\) (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity ( \(W / m-K\) ) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta h e6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy e11
KEY POINT \#1 (t plus 0 s with a Mixing Number of 32.2572): 34.40181538 0.040894 \(0.00925 \quad 0.3937 \quad 0.7522216526 \quad 0.7538356888 \quad 1.020556529\) \(\begin{array}{llllll}1 & 1 & 57.27315231 & 106633.2441 & 0.06952701765\end{array}\) \(\begin{array}{lllll}0.05852122721 & 0.04518459849 & 1.063212153 e-005 & 0.04518459849 & 40.4260351\end{array}\) \(\begin{array}{llllll}124.6067033 & 102.0220533 & 41.00954586 & 40.42534979 & 40.22789524\end{array}\) \(\begin{array}{llllll}37.81728715 & 4.178538293 & 4.219241431 & 2.085656058 & 0.6291740867\end{array}\) 0.6785673353 \(\begin{array}{lrrr}0.6785673353 & 4.3009858 & 1.715271477 & 0.03792366743\end{array}\) 992.0584844 \(956.8931131 \quad 0.6396294303\) \(0.6008034983 \quad 0\). \(0.00027586171931 .23384495 e-0051.319314487 e-005\) \(\begin{array}{llrrrr}1543.172896 & 473.2833033 & 488.5448809 & 1.089581454 & 1.014824369\end{array}\) \(\begin{array}{lllll}1.051824369 & 0.07553811317 & 0.07791241071 & 2728.307459 & 2725.027245\end{array}\)
\begin{tabular}{lllll}
169.4079371 & 427.6336913 & 2678.752065 & 258.2257542 & 2300.673768
\end{tabular} \(171.846159 \quad 169.4035685 \quad 168.5815964 \quad 158.5127097\)
KEY POINT \#2 (t plus 2016.8354 s with a Mixing Number of 43.1669): 34.92123307 \(\begin{array}{llllll}0.040894 & 0.00925 & 0.3937 & 0.7637198724 & 0.7673177211\end{array}\) \(\begin{array}{lllll}1.022370601 & 1 & 1 & 52.60794133 & 106754.6615\end{array}\) \(0.06633717182 \quad 0.05789917199 \quad 0.045866820621 .036059291 \mathrm{e}-005 \quad 0.04586682062\) \(\begin{array}{lrrrr}59.4283765 & 129.5986662 & 105.2223657 & 61.42908483 & 59.29701925 \\ 59.29567379 & 56.32095298 & 4.182489254 & 4.223533235 & 2.099254486\end{array}\) \(\begin{array}{lllcc}59.29567379 & 56.32095298 & 4.182489254 & 4.223533235 & 2.099254486 \\ 0.6502718707 & 0.6797469092 & 0.6797469092 & 3.025813938 & 1.658954783\end{array}\) \(\begin{array}{lllll}0.03844302561 & 983.5106873 & 954.5429359 & 0.710072415 & 0.6639514938\end{array}\) 0.0004704379545 \(0.00026699668821 .244800381 \mathrm{e}-0051.337711052 \mathrm{e}-005\) \(\begin{array}{lllll}1553.536947 & 1539.88737 & 474.8812965 & 491.3118292 & 1.218356035\end{array}\) \(\begin{array}{lllll}1.133565949 & 1.170565949 & 0.1942402031 & 0.2130276744 & 2736.673344\end{array}\) \(\begin{array}{lllll}2733.905748 & 248.8450726 & 441.1529516 & 2683.737778 & 192.307879\end{array}\) \(\begin{array}{lllll}2295.520392 & 257.2138703 & 248.2942457 & 248.2915633 & 235.8555574\end{array}\)
KEY POINT \#3 (t plus 2678.6462 s with a Mixing Number of 48.9515) : 34.83387524
\begin{tabular}{llcccc}
0.040894 & 0.00925 & & 0.3937 & 0.7746214971 & 0.779223643 \\
1.022198815 & & 1 & 50.21642406 & 106192.7673 \\
0.06524385091 & 0.05763756962 & 0.04575208167 & \(7.243594906 e-006\) & 0.04575208167 \\
65.69376493 & 130.6504106 & 106.5612187 & 73.25431464 & 66.02483043 \\
65.63601417 & 62.49393146 & 4.185492826 & 4.225395863 & 2.105198932 \\
0.6560097956 & 0.6802035598 & 0.6802035598 & 2.736992128 & 1.636473814 \\
0.03866803798 & 980.1983043 & 953.5461753 & 0.7413546004 & 0.6937847703 \\
0.0004289802231 & 0.0002634392965 & \(1.249389627 e-005\) & \(1.341425156 e-005\) & \\
1556.572572 & 1538.424595 & 475.5394436 & 491.7930094 & 1.275829729 \\
1.203945501 & 1.240945501 & 0.2582847625 & 0.3586180176 & 2738.030475 \\
2735.508786 & 275.0648305 & 446.8131219 & 2685.8058 & 171.7482914 \\
2291.217353 & 306.7266148 & 276.4491276 & 274.8246053 & 261.6799004
\end{tabular}

KEY POINT \#4 (t plus 3624.5643 s with a Mixing Number of 59.493): 34.93264592
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7953994066 & 0.8020127387 \\
1.020257726 & & 1 & 45.2137879 & 106306.2565 \\
0.06378198893 & 0.05701084426 & 0.04588181068 & \(6.512104765 \mathrm{e}-006\) & 0.04588181068 \\
73.89781827 & 131.489335 & 109.7522791 & 85.99930331 & 75.47625293 \\
72.97017505 & 67.4294238 & 4.190655797 & 4.229997376 & 2.120000517 \\
0.6626696478 & 0.6812052172 & 0.6812052172 & 2.423793664 & 1.58529714 \\
0.03922346051 & 975.5308972 & 951.1384773 & 0.8204478518 & 0.7727201283
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 0.0003832752131 & 0.0002552986649 & \(1.260340539 \mathrm{e}-005\) & \(51.343792614 \mathrm{e}-005\) & \\
\hline & 1557.929276 & 1534.733048 & 477.0828903 & 491.8396249 & 1.421870485 \\
\hline & 1.359230226 & 1.396230226 & 0.3684980549 & 0.6017214731 & 2737.917671 \\
\hline & 2735.873384 & 309.4357568 & 460.3145838 & 2690.691029 & 150.8788269 \\
\hline & 2277.603087 & 360.2077192 & 316.0499732 & 305.5500901 & 282.3482331 \\
\hline \multicolumn{6}{|l|}{KEY POINT \#5 (t plus 4645.2817 s with a Mixing Number of 81.2408): 34.92112247} \\
\hline & 0.040894 & 0.00925 & 0.39370. & . 81901192110 & 0.828250966 \\
\hline & 1.017594645 & 1 & 1 & 38.90008026 & 105956.2387 \\
\hline & 0.06163749197 & 0.05610772163 & 0.045866675369 & 9.802100608e-006 & 0.04586667536 \\
\hline & 85.60790257 & 132.8739297 & 114.3111256 & 96.74004667 & 86.472661 \\
\hline & 78.17109105 & 70.81145043 & 4.200450543 & 4.236975112 & 2.142764793 \\
\hline & 0.6705661017 & 0.6824265802 & 0.6824265802 & 2.073171896 & 1.517640948 \\
\hline & 0.04006576376 & 968.2571846 & 947.621253 & 0.9451932205 & 0.8979052274 \\
\hline & 0.0003309642103 & 0.0002444381887 & \(1.276012292 \mathrm{e}-005\) & \(51.347786974 \mathrm{e}-005\) & \\
\hline & 1555.214835 & 1528.970836 & 479.2248698 & 491.9560525 & 1.65411637 \\
\hline & 1.594827843 & 1.631827843 & 0.5926048434 & 0.9017390056 & 2738.0957 \\
\hline & 2736.582484 & 358.5820237 & 479.6309925 & 2697.558831 & 121.0489688 \\
\hline & 2258.464708 & 405.4065633 & 362.2134334 & 327.3706936 & 296.5295385 \\
\hline \multicolumn{3}{|l|}{KEY POINT \#6 (t plus 6229.0083 s with a} & \multicolumn{3}{|l|}{Mixing Number of 137.9235): 34.75329138} \\
\hline & 0.040894 & 0.00925 & 0.3937 0 & 0.85452708160. & 0.8689713752 \\
\hline & 1.012140227 & 1 & 1 & 29.08765306 & 104850.0376 \\
\hline & 0.05842805582 & 0.05429689137 & 0.045646239887 & \(7.521363545 e-006\) & 0.04564623988 \\
\hline & 102.5029149 & 135.6590304 & 123.3194877 & 115.0044135 & 103.133534 \\
\hline & 89.09535659 & 71.88475847 & 4.219623583 & 4.252219229 & 2.19374485 \\
\hline & 0.678814136 & 0.6841290414 & 0.6841290414 & 1.706503443 & 1.400478648 \\
\hline & 0.04191213469 & 956.5931569 & 940.4064904 & 1.236836165 & 1.194974987 \\
\hline & 0.0002745265394 & 0.0002253195482 & \(1.307048472 \mathrm{e}-005\) & \(51.355460741 \mathrm{e}-005\) & \\
\hline & 1542.920027 & 1515.970295 & 483.2309269 & 491.9364943 & 2.204662026 \\
\hline & 2.150553579 & 2.187553579 & 1.108178404 & 1.692013842 & 2738.183049 \\
\hline & 2737.336957 & 429.7445418 & 517.9051974 & 2710.715739 & 88.16065558 \\
\hline & 2220.277851 & 482.6069751 & 432.4045148 & 373.2814169 & 301.0706533 \\
\hline \multirow[t]{13}{*}{} & POINT \#7 (t plus & 0.8124 s with a & \multicolumn{3}{|l|}{Mixing Number of 142.763): 34.55550981} \\
\hline & 0.040894 & 0.00925 & 0.39370 & . 85557369820. & 0.8704090631 \\
\hline & 1.01163804 & 1 & 1 & 28.25422642 & 104215.0657 \\
\hline & 0.05822015396 & 0.05414374541 & 0.045386466368 & 8.958663403e-006 & 0.04538646636 \\
\hline & 103.5739645 & 135.8623059 & 124.0736408 & 116.1709322 & 104.367005 \\
\hline & 97.51265443 & 72.0393395 & 4.2210432 & 4.253586647 & 2.198391619 \\
\hline & 0.6792173666 & 0.6842294283 & 0.6842294283 & 1.68743126 & 1.391559939 \\
\hline & 0.04207832679 & 955.8097495 & 939.7866875 & 1.264214688 & 1.223262321 \\
\hline & 0.0002715282839 & 0.0002238455075 & \(1.309649711 \mathrm{e}-005\) & \(51.355958477 e-005\) & \\
\hline & 1541.8416 & 514.788173 & 483.5522627 & 491.8948769 & 2.256812451 \\
\hline & 2.203031053 & 2.240031053 & 1.150544667 & 1.75738407 & 2738.08423 \\
\hline & 2737.285928 & 434.2686266 & 521.1161509 & 2711.790771 & 86.84752438 \\
\hline & 2216.968079 & 487.5554721 & 437.6152482 & 408.7089062 & 301.722479 \\
\hline \multirow[t]{13}{*}{KEY} & POINT \#8 (t plus & 1.5401 s with a & \multicolumn{3}{|l|}{Mixing Number of 205.3155) : 35.25266162} \\
\hline & 0.040894 & 0.00925 & 0.39370 & . 85454916910. & 0.8726889905 \\
\hline & 1.00686591 & 1 & 1 & 22.60800895 & 105675.7284 \\
\hline & 0.05592699423 & 0.0524881249 & 0.046302130961 & \(1.068039694 \mathrm{e}-005\) & 0.04630213096 \\
\hline & 115.2179803 & 138.8443543 & 132.1546108 & 127.3980117 & 116.2705098 \\
\hline & 115.3695778 & 73.19203933 & 4.238144568 & 4.269173936 & 2.252014138 \\
\hline & 0.6827102144 & 0.6849042168 & 0.6849042168 & 1.504842452 & 1.303536968 \\
\hline & 0.04397926731 & 946.9628101 & 932.9931443 & 1.589453642 & 1.559659382 \\
\hline & 0.0002424106344 & 0.000209126632 & \(1.33753981 \mathrm{e}-005\) & \(51.364194377 e-005\) & \\
\hline & 1528.005266 & 1501.249046 & 486.8553624 & 491.7737341 & 2.881365416 \\
\hline & 2.829725527 & 2.866725527 & 1.703830436 & 2.498815276 & 2738.428411 \\
\hline & 2737.917289 & 483.5606425 & 555.5935966 & 2723.035826 & 72.03295414 \\
\hline & 2182.834815 & 535.3086623 & 488.0210915 & 484.2044374 & 306.6025861 \\
\hline \multirow[t]{10}{*}{} & POINT \#9 (t plus 80 & 51.2415 s with a & \multicolumn{3}{|l|}{Mixing Number of 207.827): 35.20540065} \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.8540015799 0. & 0.8721979013 \\
\hline & 1.00671896 & 1 & 1 & 22.37746022 & 105498.2817 \\
\hline & 0.05584735139 & 0.05242481555 & 0.04624005668 & \(1.0692646 \mathrm{e}-005\) & 0.04624005668 \\
\hline & 115.6170491 & 138.9976133 & 132.4610877 & 127.6497742 & 116.771276 \\
\hline & 115.8657729 & 73.75350182 & 4.238785684 & 4.269799808 & 2.254187739 \\
\hline & 0.6828016163 & 0.6849155093 & 0.6849155093 & 1.499305715 & 1.300452701 \\
\hline & 0.0440558161 & 946.6491522 & 932.7300266 & 1.602996852 & 1.573616544 \\
\hline & 0.0002415145379 & 0.0002086046804 & \(1.338597988 \mathrm{e}-005\) & \(51.364656969 \mathrm{e}-005\) & \\
\hline & 1527.465631 & 1500.704762 & 486.9755299 & 491.7888471 & 2.907554438 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 2.85602991 & 2.89302991 & 1.726092028 & 2.517969354 & 2738.5098 \\
\hline & 2738.00905 & 485.2539555 & 556.90385 & 2723.4521 & 71.6498945 \\
\hline & 2181.60595 & 536.3829494 & 490.1463423 & 486.3095733 & 308.9572528 \\
\hline \multirow[t]{13}{*}{} & POINT \#10 (t plus & 8405.2458 s with a & Mixing Number & of 225.698): 34. & 08821 \\
\hline & 0.040894 & 0.00925 & 0.3937 & 0.849664637 0 & 685311569 \\
\hline & 1.005289487 & 1 & 1 & 21.01984588 & 104657.0783 \\
\hline & 0.05533662492 & 0.05204083332 & 0.04589552596 & 9.229719687e-006 & 0.04589552596 \\
\hline & 118.1680825 & 139.4084348 & 134.3160722 & 129.2548024 & 119.3937725 \\
\hline & 118.7195412 & 103.3680065 & 4.242976403 & 4.273644077 & 2.267564464 \\
\hline & 0.6833415888 & 0.6849617792 & 0.6849617792 & 1.464914922 & 1.282152795 \\
\hline & 0.04452629745 & 944.6273076 & 931.1289622 & 1.686962751 & 1.662719868 \\
\hline & 0.0002359280832 & 20.0002054980818 & \(1.345003082 \mathrm{e}-00\) & \(51.365376019 \mathrm{e}-005\) & \\
\hline & 1523.914819 & 1497.363362 & 487.694802 & 491.4921922 & 3.070212789 \\
\hline & 3.019526207 & 3.056526207 & 1.874096352 & 2.642904076 & 2737.828183 \\
\hline & 2737.386349 & 496.0841327 & 564.8386593 & 2725.955152 & 68.7545266 \\
\hline & 2172.989524 & 543.2342437 & 501.2847667 & 498.4254787 & 433.4646691 \\
\hline
\end{tabular}

KEY POINT \#11 (t plus 8916.656 s with a Mixing Number of 255.7515): 35.04922075
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.8418626439 & 0.8616154854 \\
1.003650211 & & 1 & 19.37441085 & 104691.1598 \\
0.05452979159 & 0.05142895909 & 0.04603492431 & \(9.012404901 e-006\) & 0.04603492431 \\
122.1703529 & 140.7152566 & 137.258567 & 132.6789999 & 123.6338255 \\
123.2272372 & 118.978596 & 4.249870726 & 4.279943377 & 2.289563268 \\
0.6840375006 & 0.6849578175 & 0.6849578175 & 1.414269088 & 1.254374494 \\
0.04529817388 & 941.3986284 & 928.5592682 & 1.827375008 & 1.80940121 \\
0.000227633534 & 0.0002007488277 & \(1.355164051 e-005\) & \(1.369077233 e-005\) & \\
1518.004914 & 1491.898912 & 488.8072625 & 491.4340818 & 3.343272323 \\
3.29491943 & 3.33191943 & 2.127090052 & 2.926292478 & 2738.09877 \\
2737.723402 & 513.0986043 & 577.4410635 & 2729.866594 & 64.34245921 \\
2160.657707 & 557.8627244 & 519.3188957 & 517.5924596 & 499.5475351
\end{tabular}

KEY POINT \#12 (t plus 0 s with a Mixing Number of 32.2572): 34.40181538 0.040894
\begin{tabular}{|c|c|c|c|c|}
\hline 0.00925 & 0.39370. & 5222165260 & 888 & 1.020556529 \\
\hline 1 & 157.273152 & 5231 106633. & \multicolumn{2}{|l|}{10.06952701765} \\
\hline 0.05852122721 & 0.04518459849 & . \(063212153 \mathrm{e}-005\) & 0.04518459849 & 40.4260351 \\
\hline 124.6067033 & 102.0220533 & 41.00954586 & 40.42534979 & 40.22789524 \\
\hline 37.81728715 & 4.178538293 & 4.219241431 & 2.085656058 & 0.6291740867 \\
\hline 0.6785673353 & 0.6785673353 & 4.3009858 & 1.715271477 & 0.03792366743 \\
\hline 992.0584844 & 956.8931131 & 0.6396294303 & 0.6008034983 & 0.000647611347 \\
\hline 0.0002758617193 & \(1.23384495 \mathrm{e}-005\) & \(51.319314487 \mathrm{e}-005\) & 1532.052 & \\
\hline 1543.172896 & 473.2833033 & 488.5448809 & 1.089581454 & 1.014824369 \\
\hline 1.051824369 & 0.07553811317 & 0.07791241071 & 2728.307459 & 2725.027245 \\
\hline 169.4079371 & 427.6336913 & 2678.752065 & 258.2257542 & 2300.673768 \\
\hline
\end{tabular}

KEY POINT \#13 (t plus 8916.656 s with a Mixing Number of 255.7515): 35.04922075
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.8418626439 & 0.8616154854 \\
1.003650211 & & 1 & 19.37441085 & 104691.1598 \\
0.05452979159 & 0.05142895909 & 0.04603492431 & \(9.012404901 e-006\) & 0.04603492431 \\
122.1703529 & 140.7152566 & 137.258567 & 132.6789999 & 123.6338255 \\
123.2272372 & 118.978596 & 4.249870726 & 4.279943377 & 2.289563268 \\
0.6840375006 & 0.6849578175 & 0.6849578175 & 1.414269088 & 1.254374494 \\
0.04529817388 & 941.3986284 & 928.5592682 & 1.827375008 & 1.80940121 \\
0.000227633534 & 0.0002007488277 & \(1.355164051 e-005\) & \(1.369077233 e-005\) & \\
1518.004914 & 1491.898912 & 488.8072625 & 491.4340818 & 3.343272323 \\
3.29491943 & 3.33191943 & 2.127090052 & 2.926292478 & 2738.09877 \\
2737.723402 & 513.0986043 & 577.4410635 & 2729.866594 & 64.34245921 \\
2160.657707 & 557.8627244 & 519.3188957 & 517.5924596 & 499.5475351
\end{tabular}

KEY POINT \#14 (t plus 7113.6249 s with a Mixing Number of 168.4359): 34.79428343
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.8580402853 & 0.8745200367
\end{tabular}
1.009412978 1 1 25.38457855
0.05717334687
108.9270743
107.4931699
0.6810242178
0.04293110763
0.0002573910139
\(2.477954732-1.382848779 \quad 2.147018096 \quad 2738.227453\)
\begin{tabular}{rrrrr}
2737.583076 & 456.9042782 & 537.0695117 & 2717.062847 & 80.16523352 \\
2201.157941 & 514.310077 & 460.9014351 & 450.8438134 & 302.6573393
\end{tabular}

End

\section*{D. 5 TEST \#5 - T05_SRV_STD_157KW_RESULTS_RCICLAND.TXT}

Output Saved to C: \Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash\) Export \(\backslash T 05\) _SRV_STD_157kW
Using 20 -second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 2283.0426 s , and ending (KEY POINT \#11) at \(t\) plus 6993.515 s , for a time period of 4710.4724 s.
Original Data Record Time: 9615.556 s
No Bulk Pool to Outlet Thermal Stratification Detected (KEY POINT \#3), 000000.
No Bulk Pool to Outlet Destratification Detected (KEY POINT \#9), 000000.
No Plume detected, setting t_plume (KEY POINT \#2) to the end at 4710.4724 s .
At \(t=4710.4724 \mathrm{~s}\), the pool pressure is 32.5391 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 105.7249, 106.8742, 106.4698, 105.2811, and 102.8122 C , respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were -0.40439 +/- 0 C.
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 0.74496 +/- 0 C.
Minimum Steam Quality: 1.0089 at t plus 4709.8724 s
Maximum Steam Quality: 1.0217 at t plus 664.11 s
Time-Averaged Steam Quality: 1.017 +/- 0.0028703
SRV Alignment, no RCIC Turbine 000000
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 4620.4713 s; using 300 s smoothing
Max and min smoothed upper level changerates: 1.1176 degrees/min at \(t\) plus 3715.9565 s and 0.69649 degrees/min at \(t\) plus 4138.4627 s, respectively
Max and min smoothed mid (SP9) level changerates: 1.3449 degrees/min at t plus 3650.9568 \(s\) and 0.53674 degrees \(/ \mathrm{min}\) at \(t\) plus 4342.9674 s , respectively
Max and min smoothed upper-mid level changerate differences: 0.25342 degrees/min at \(t\) plus 4343.6675 s and -0.30281 degrees/min at \(t\) plus 3565.5539 s , respectively
Max and min smoothed lower level changerates: 1.0132 degrees/min at \(t\) plus 384.807 s and 0.58094 degrees \(/ \mathrm{min}\) at t plus 552.9086 s , respectively

Max and min smoothed mid-lower level changerate differences: 0.63315 degrees/min at t plus 3650.9568 s and -0.38044 degrees/min at \(t\) plus 4505.9687 s , respectively
Max and min smoothed outlet level changerates: 1.0635 degrees/min at \(t\) plus 1267.9205 s and 0.7041 degrees/min at \(t\) plus 213.8042 s , respectively
Max and min smoothed lower-outlet level changerate differences: 0.2568 degrees/min at \(t\) plus 2236.8339 s and -0.22594 degrees/min at \(t\) plus 1358.9207 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.1427 degrees/min at \(t\) plus 3712.9564 s and 0.663 degrees/min at t plus 4102.6637 s , respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.45887 degrees/min at \(t\) plus 4342.9674 s and -0.33179 degrees/min at t plus 3945.0606 s , respectively
The mean steam flow rate was 66.4143 +/- \(2.0659 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 65.5882 +/- \(3.517 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.0027372+/-0.03749 \mathrm{~g} / \mathrm{s}\)
No stratification; 0000000000000000000000.
At plume detection, the condensing and condensing+cooling flows are 2.0687 and -93.0779 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of \(2740.5797+/-0 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 0.78185 degrees C at \(t\) plus 3541.8546 s with T_upper \(=89.7499 \mathrm{C}\) and T mid \(=88.9681 \mathrm{C}\)
At t plus 3541.8546 s, Smoothed SP8-SP9 is 0.83515 C and Smoothed SP8-Top is 0.053292 C, where Smoothed SP8 is 89.8032 C and Pool \(\mathrm{P}=24.2712\) psia
Maximum Smoothed Top-Lower delta \(T\) is 1.6622 degrees \(C\) at \(t\) plus 4130.3633 s with T_upper \(=98.4533 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=96.7911 \mathrm{C}\)
At t plus 4130.3633 s , Smoothed SP8-SP9 is -1.7152 C and Smoothed SP8-Top is -0.20891 C , where Smoothed SP8 is 98.2444 C and Pool \(\mathrm{P}=28.0202\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 3.1906 degrees \(C\) at \(t\) plus 4222.5665 s with T_mid = 101.2668 C and \(\mathrm{T}_{\text {_low }}=98.0762 \mathrm{C}\)

At t plus 4222.5665 s, Smoothed SP8-SP9 is -2.2607 C and Smoothed SP8-Top is -0.32095 C , where Smoothed SP8 is 99.0062 C and Pool \(\mathrm{P}=28.6706\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 3.6183 degrees \(C\) at \(t\) plus 3791.1588 s with T upper \(=94.1787 \mathrm{C}\) and T out \(=90.5604 \mathrm{C}\)
At t plus 3791.1588 s , Smoothed \(\overline{\text { SP8-SP9 is }}-0.5268 \mathrm{C}\) and Smoothed SP8-Top is -0.21835 C , where Smoothed SP8 is 93.9603 C and Pool \(\mathrm{P}=25.7636\) psia
Maximum Smoothed Mid-Outlet delta T is 4.9228 degrees C at t plus 4128.0641 s with T_mid \(=99.9653 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=95.0425 \mathrm{C}\)
At t plus 4128.0641 s , Smoothed SP8-SP9 is -1.7364 C and Smoothed SP8-Top is -0.19411 C , where Smoothed SP8 is 98.2288 C and Pool \(\mathrm{P}=27.9945\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 3.7321 degrees \(C\) at \(t\) plus 2357.2368 s with T_low \(=74.0511 \mathrm{C}\) and T _out \(=70.319 \mathrm{C}\)
At t plus 2357.2368 s, Smoothed SP8-SP9 is -0.19088 C and Smoothed SP8-Top is -0.072027 C, where Smoothed SP8 is 72.8295 C and Pool \(\mathrm{P}=19.1811\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta T is 0.83709 degrees \(C\) at (KEY POINT \#14) t plus 3541.4546 s with \(\mathrm{T}_{-} \mathrm{SP} 8=89.8009 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{SP9}=88.9638 \mathrm{C}\) and Pool \(\mathrm{P}=\) 24.2743 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 0.84595 degrees \(C\) at \(t\) plus 4681.9728 s with T SP8 \(=106.0622 \mathrm{C}\) and T _upper \(=105.2162 \mathrm{C}\) and Pool \(\mathrm{P}=32.2835\) psia
Maximum Top-Mid delta \(T\) is 2.5727 degrees \(C\) at (KEY POINT \#4) t plus 4140.8628 s ignoring SP 4, with temperatures of 98.4093 and 95.8366 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=28.086\) psia and \(T\) outlet \(=95.0966 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 4631.3719 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.99936 C and a raw SP12 Reading of 102.7251 C .
Maximum Top-Lower delta \(T\) is 2.7721 degrees \(C\) at \(t\) plus 3907.5615 s, with temperatures of 96.4098 and 93.6377 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=26.4991\) psia and T_outlet \(=92.3452 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 2.3395 degrees \(C\) at (KEY POINT \#6) t plus 3943.0615 s ignoring SP 4, with temperatures of 95.6497 and 93.3102 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=26.7444\) psia and T_outlet \(=92.5376 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 3943.0615 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 0.79846 C and a raw SP12 Reading of 95.6497 C .
Maximum Top-Outlet delta \(T\) is 4.5212 degrees \(C\) at \(t\) plus 3799.0583 s , with temperatures of 95.0318 and 90.5106 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=25.818\) psia
Maximum Mid-Outlet delta \(T\) is 3.4159 degrees \(C\) at \(t\) plus 3206.2514 s ignoring SP 4, with temperatures of 85.5874 and 82.1715 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=\) 22.5307 psia

Maximum Lower-Outlet delta \(T\) is 5.0378 degrees \(C\) at (KEY POINT \#8) t plus 2533.0399 s, with temperatures of 77.6333 and 72.5955 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=19.7508\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 3342.0522 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 1.6785 C and a raw SP12 Reading of 86.378 C .
Minimum SP Pressure is 15.0498 psia at t plus 6.0014 s
Maximum SP Pressure is 32.5412 psia at t plus 4710.3724 s
Beginning SP Pressure is 15.053 psia
Ending SP Pressure is 32.5391 psia
Time-Average SP Pressure is 20.7278 +/- 4.9594 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is \(74.671 \mathrm{~cm}(c o l d) / 74.7459 \mathrm{~cm}\) (hot) at 14.7681 psia
Beginning Smoothed SP Level is 75.0613 cm (cold) / 75.2106 cm (hot) at 15.056 psia
Ending Smoothed SP Level is 82.5067 cm (cold) / 83.8763 cm (hot) at 32.5357 psia
Minimum Smoothed Cold SP Level is 75.0613 cm at \(t\) plus 0 s and 15.056 psia
Minimum Smoothed Hot SP Level is 75.2106 cm at t plus 0 s and 15.056 psia
Maximum Smoothed Cold SP Level is 82.5067 cm at \(t\) plus 4710.4724 s and 32.5357 psia
Maximum Smoothed Hot SP Level is 83.8763 cm at \(t\) plus 4710.4724 s and 32.5357 psia
SP 12 Temperature at the beginning is 40.3181 C , and at the end is 103.7826 C
At plume detection, the Mixing Number is 149.4012
The Mixing Number ranges from a minimum of 31.1574 at (KEY POINT \#12) t plus 0 s to a maximum of 149.4012 at (KEY POINT \#13) t plus 4710.4724 s; it had a mean value of 65.8746 +/- 32.9617 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2,

Sparger mdot md3, Pool Mid \(T\) (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta he6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy elo, Pool Outlet Smoothed Enthalpy ell
KEY POINT \#1 (t plus 0 s with a Mixing Number of 31.1574): 47.54424134 0.040894
\begin{tabular}{lcccccc}
0.00925 & 0.3937 & 0.7506133521 & 0.7521064616 & 1.024438211 \\
1 & 1 & 83.92839407 & 146048.7934 & 0.06968941165 & \\
0.05879519799 & 0.06244633988 & \(3.044993839 e-006\) & 0.06244633988 & 39.42664906 \\
127.628845 & 100.6049258 & 39.17344169 & 39.28004953 & 40.50803044 \\
38.04103763 & 4.178550113 & 4.217412545 & 2.079900522 & 0.6279028921 \\
0.6780050525 & 0.6780050525 & 4.391199227 & 1.741431674 & 0.03770177697 \\
992.4365854 & 957.9190884 & 0.6103121585 & 0.5665133976 & 0.0006598572759 \\
0.0002799582589 & \(1.229000858 e-005\) & \(1.331249756 e-005\) & 1530.352222 & \\
1544.530942 & 472.5647139 & 490.677592 & 1.036269744 & 1.038071277 \\
1.075071277 & 0.0716165664 & 0.07065138186 & 2738.674818 & 2731.630843 \\
165.234021 & 421.6518015 & 2676.525757 & 256.4177805 & 2317.023017 \\
164.1759801 & 164.6199373 & 169.7542085 & 159.4497483 &
\end{tabular}

KEY POINT \#2 (t plus 4710.4724 s with a Mixing Number of 149.4012): 52.79278682
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.8250667473 & 0.8387634285
\end{tabular}
\begin{tabular}{llcccc}
1.013521767 & & \multicolumn{1}{c}{1} & & 44.59055455 & 158688.6305 \\
0.05757629867 & 0.05433400504 & 0.06933997085 & \(4.075365052 e-006\) & 0.06933997085 \\
106.8742062 & 136.9111331 & 123.1365496 & 106.4698188 & 105.7248547 \\
105.2810707 & 102.8122458 & 4.225607371 & 4.251889708 & 2.1926267 \\
0.6803649513 & 0.6841037185 & 0.6841037185 & 1.631205396 & 1.402661442 \\
0.04187210046 & 953.3509838 & 940.5564721 & 1.230267464 & 1.184015094 \\
0.0002626403455 & 0.0002256798681 & \(1.306417533 e-005\) & \(1.360468117 e-005\) & \\
1538.28092 & 1516.25491 & 483.1526471 & 492.826399 & 2.192160864 \\
2.243256817 & 2.280256817 & 1.28958277 & 1.27183639 & 2742.100312 \\
2740.111995 & 448.2095102 & 517.1264666 & 2710.454327 & 68.91695641 \\
2224.973846 & 446.500846 & 443.3524884 & 441.4806741 & 431.0614571
\end{tabular}

KEY POINT \#3 (t plus 4710.4724 s with a Mixing Number of 149.4012): 52.79278682 \(0.040894 \quad 0.00925 \quad 0.3937 \quad 0.8250667473 \quad 0.8387634285\)
1.013521767 1 44.59055455
\(0.05757629867 \quad 0.05433400504 \quad 0.069339970854 .075365052 \mathrm{e}-006 \quad 0.06933997085\)
\begin{tabular}{lllll}
106.8742062 & 136.9111331 & 123.1365496 & 106.4698188 & 105.7248547
\end{tabular}
\begin{tabular}{lllll}
105.2810707 & 102.8122458 & 4.225607371 & 4.251889708 & 2.1926267
\end{tabular}
\begin{tabular}{lllll}
0.6803649513 & 0.6841037185 & 0.6841037185 & 1.631205396 & 1.402661442
\end{tabular}
\begin{tabular}{llllll}
0.04187210046 & 953.3509838 & 940.5564721 & 1.230267464 & 1.184015094
\end{tabular}
0.0002626403455 \(0.00022567986811 .306417533 e-0051.360468117 e-005\)
\begin{tabular}{llllll}
1538.28092 & 1516.25491 & 483.1526471 & 492.826399 & 2.192160864
\end{tabular}
\begin{tabular}{lllll}
2.243256817 & 2.280256817 & 1.28958277 & 1.27183639 & 2742.100312
\end{tabular}
\(2740.111995 \quad 448.2095102 \quad 517.1264666 \quad 2710.454327 \quad 68.91695641\)
\(2224.973846 \quad 446.500846 \quad 443.3524884 \quad 441.4806741 \quad 431.0614571\)

KEY POINT \#4 (t plus 4140.8628 s with a Mixing Number of 118.4471): 52.11513321
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.8144559701 & 0.8260306021 \\
1.016158952 & & 1 & 1 & 51.00796889 & 157222.63 \\
0.05892830093 & 0.0552861249 & 0.0684499159 & \(3.205348664 \mathrm{e}-006\) & 0.0684499159 \\
99.91473021 & 135.2083189 & 118.4195748 & 98.27768585 & 98.57437509 \\
96.9716582 & 95.26911076 & 4.216317618 & 4.243682128 & 2.164996565 \\
0.677776608 & 0.6833189652 & 0.6833189652 & 1.754345042 & 1.461666867 \\
0.0408767653 & 958.4544402 & 944.3741549 & 1.070370661 & 1.021753557 \\
0.0002820124429 & 0.000235358036 & \(1.290157657 e-005\) & \(1.355527673 e-005\) & \\
1545.366108 & 1523.301601 & 481.0899033 & 492.7048239 & 1.889232339
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1.936399458 & 1.973399458 & 1.011097587 & 0.9534113086 & 2741.887487 \\
\hline & 2739.285674 & 418.8116685 & 497.0687634 & 2703.629957 & 78.25709482 \\
\hline & 2244.818724 & 411.9110555 & 413.1601559 & 406.40951 & 399.2423864 \\
\hline \multirow[t]{13}{*}{} & POINT \#5 (t plus & 631.3719 s with & Mixing Number & \multicolumn{2}{|r|}{52.58302094} \\
\hline & 0.040894 & 0.00925 & 0.3937 0. & . 8242110077 & 8376323304 \\
\hline & 1.013894763 & 1 & 1 & 45.32355922 & 158136.6166 \\
\hline & 0.05786229243 & 0.05446704956 & 0.06906445673 & \(3.787425311 \mathrm{e}-006\) & 0.0690644567 \\
\hline & 105.4113601 & 136.6749286 & 122.4801908 & 105.350684 & 104.6201209 \\
\hline & 104.1289876 & 101.9570451 & 4.223560409 & 4.250714402 & 2.188643847 \\
\hline & 0.6798710961 & 0.6840097352 & 0.6840097352 & 1.655638935 & 1.410555943 \\
\hline & 0.04172935634 & 954.4428619 & 941.0934094 & 1.206931014 & 1.160233341 \\
\hline & 0.0002665099936 & 60.0002269816097 & \(1.304153986 \mathrm{e}-005\) & \(51.35979263 \mathrm{e}-005\) & \\
\hline & 1539.892751 & 1517.269182 & 482.870725 & 492.816656 & 2.147782884 \\
\hline & 2.198324342 & 2.235324342 & 1.226337153 & 1.223770151 & 2742.070133 \\
\hline & 2740.015908 & 442.0262975 & 514.3330018 & 2709.514382 & 72.30670434 \\
\hline & 2227.737131 & 441.7700309 & 438.6836294 & 436.612595 & 427.4496449 \\
\hline KE & POINT \#6 (t plus 39 & 3943.0615 s with a & Mixing Number of & f 106.6984): 51.89 & 67419 \\
\hline & 0.040894 & 0.00925 & 0.39370. & . 80874945570 & 194334824 \\
\hline & 1.017022921 & 1 & 1 & 53.37752382 & 156742.6625 \\
\hline & 0.05950351797 & 0.05559916443 & 0.068159043545 & \(5.128113214 \mathrm{e}-006\) & 0.06815904354 \\
\hline & 96.9188568 & 134.6550634 & 116.8584568 & 95.85216243 & 95.87126545 \\
\hline & 94.48388725 & 92.53087467 & 4.212637394 & 4.241086008 & 2.15635199 \\
\hline & 0.6764805712 & 0.6830029498 & 0.6830029498 & 1.813134486 & 1.482408596 \\
\hline & 0.04056262489 & 960.5847953 & 945.6165739 & 1.021318454 & 0.9722739989 \\
\hline & 0.000291159703 & 0.0002387335324 & \(1.284780619 \mathrm{e}-005\) & \(1.353900641 \mathrm{e}-005\) & \\
\hline & 1547.973324 & 1525.507972 & 480.3886419 & 492.6481364 & 1.796870921 \\
\hline & 1.843925686 & 1.880925686 & 0.9076257829 & 0.8729753024 & 2741.82175 \\
\hline & 2738.97259 & 406.1787011 & 490.4393639 & 2701.336659 & 84.26066277 \\
\hline
\end{tabular}
\begin{tabular}{llllll}
2251.382386 & 401.6857853 & 401.7649424 & 395.9259475 & 387.7098416
\end{tabular}

KEY POINT \#7 (t plus 3943.0615 s with a Mixing Number of 106.6984): 51.89367419
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.8087494557 & 0.8194334824 \\
1.017022921 & & 1 & 53.37752382 & 156742.6625 \\
0.05950351797 & 0.05559916443 & 0.06815904354 & \(5.128113214 \mathrm{e}-006\) & 0.06815904354 \\
96.9188568 & 134.6550634 & 116.8584568 & 95.85216243 & 95.87126545 \\
94.48388725 & 92.53087467 & 4.212637394 & 4.241086008 & 2.15635199 \\
0.6764805712 & 0.6830029498 & 0.6830029498 & 1.813134486 & 1.482408596 \\
0.04056262489 & 960.5847953 & 945.6165739 & 1.021318454 & 0.9722739989 \\
0.000291159703 & 0.0002387335324 & \(1.284780619 e-005\) & \(1.353900641 e-005\) & \\
1547.973324 & 1525.507972 & 480.3886419 & 492.6481364 & 1.796870921 \\
1.843925686 & 1.880925686 & 0.9076257829 & 0.8729753024 & 2741.82175 \\
2738.97259 & 406.1787011 & 490.4393639 & 2701.336659 & 84.26066277 \\
2251.382386 & 401.6857853 & 401.7649424 & 395.9259475 & 387.7098416
\end{tabular}

KEY POINT \#8 (t plus 2533.0399 s with a Mixing Number of 56.4897): 50.86911311
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7670491235 & 0.7727829526 \\
1.022596251 & & 1 & 71.29258427 & 154535.4238 \\
0.06354688101 & 0.05746005749 & 0.06681334768 & \(3.472584229 \mathrm{e}-007\) & 0.06681334768 \\
75.1998292 & 131.9270975 & 107.4673844 & 75.37922743 & 75.26905303 \\
76.56243922 & 72.88556452 & 4.191609008 & 4.226679237 & 2.109310365 \\
0.6636385136 & 0.6805003893 & 0.6805003893 & 2.379685076 & 1.621603114 \\
0.03882299255 & 974.7498859 & 952.8670327 & 0.76315577 & 0.7135297173 \\
0.000376764785 & 0.000261080032 & \(1.252497593 e-005\) & \(1.346125995 e-005\) & \\
1557.883552 & 1537.405492 & 475.9813672 & 492.4799376 & 1.315982919 \\
1.361739251 & 1.398739251 & 0.3891918089 & 0.3921183795 & 2742.819756 \\
2737.737123 & 314.8928563 & 450.6455605 & 2687.19939 & 135.7527042 \\
2292.174195 & 315.6448356 & 315.1816468 & 320.6065329 & 305.19943
\end{tabular}

KEY POINT \#9 (t plus 4710.4724 s with a Mixing Number of 149.4012): 52.79278682
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.8250667473 & 0.8387634285
\end{tabular}
1.013521767 1 158688.6305
0.05757629867
106.8742062
105.2810707
0.6803649513
0.04187210046
0.0002626403455
1538.28092
\(\begin{array}{lllll}2.243256817 & 2.280256817 & 1.28958277 & 1.27183639 & 2742.100312\end{array}\)
\begin{tabular}{lrrrr}
2740.111995 & 448.2095102 & 517.1264666 & 2710.454327 & 68.9169564 \\
2224.973846 & 446.500846 & 443.3524884 & 441.4806741 & 431.061457
\end{tabular}

KEY POINT \#10 (t plus 3342.0522 s with a Mixing Number of 77.2018): 51.91286615
\begin{tabular}{llllll}
0.040894 & 0.00925 & 0.3937 & 0.7900475777 & 0.7983412379
\end{tabular}
\begin{tabular}{lccccc}
1.019641495 & & 1 & 61.74788683 & 157261.1676 \\
0.06140255559 & 0.05649129865 & 0.06818425096 & \(4.929869221 e-006\) & 0.06818425096 \\
86.86907812 & 133.2701251 & 112.3804627 & 86.8016403 & 86.75533771 \\
86.8464076 & 84.34237182 & 4.201680752 & 4.233961286 & 2.132885535 \\
0.6713061609 & 0.6819392307 & 0.6819392307 & 2.040765808 & 1.545546272 \\
0.03970184905 & 967.4257134 & 949.1218659 & 0.8906134961 & 0.8407837455 \\
0.0003260549149 & 0.0002489320436 & \(1.269371842 e-005\) & \(1.349935766 e-005\) & \\
1554.617513 & 1531.480109 & 478.3269277 & 492.5587395 & 1.552231557 \\
1.599130461 & 1.636130461 & 0.6224009815 & 0.6207766505 & 2742.14691 \\
2738.334109 & 363.8806394 & 471.4464167 & 2694.666738 & 107.5657773 \\
2270.700494 & 363.5972894 & 363.4014172 & 363.7867907 & 353.272279
\end{tabular}

KEY POINT \#11 (t plus 4710.4724 s with a Mixing Number of 149.4012): 52.79278682 \(\begin{array}{lcccccc}0.040894 & 0.00925 & & 0.3937 & & 0.8250667473 & 0.8387634285 \\ 1.013521767 & & 1 & 1 & 44.59055455 & 158688.6305 \\ 0.05757629867 & 0.05433400504 & 0.06933997085 & 4.075365052 e-006 & 0.06933997085\end{array}\)
\begin{tabular}{lllll}
106.8742062 & 136.9111331 & 123.1365496 & 106.4698188 & 105.7248547
\end{tabular}
\begin{tabular}{llllr}
105.2810707 & 102.8122458 & 4.225607371 & 4.251889708 & 2.1926267
\end{tabular}
\begin{tabular}{llllll}
0.6803649513 & 0.6841037185 & 0.6841037185 & 1.631205396 & 1.402661442
\end{tabular}
\begin{tabular}{lllll}
0.04187210046 & 953.3509838 & 940.5564721 & 1.230267464 & 1.184015094
\end{tabular} \(0.00026264034550 .00022567986811 .306417533 e-0051.360468117 e-005\)
\begin{tabular}{lllll}
1538.28092 & 1516.25491 & 483.1526471 & 492.826399 & 2.192160864
\end{tabular} \(\begin{array}{lllll}2.243256817 & 2.280256817 & 1.28958277 & 1.27183639 & 2742.100312\end{array}\) \(2740.111995 \quad 448.2095102 \quad 517.1264666 \quad 2710.454327 \quad 68.91695641\) \(2224.973846 \quad 446.500846 \quad 443.3524884 \quad 441.4806741 \quad 431.0614571\)
KEY POINT \#12 (t plus 0 s with a Mixing Number of 31.1574): 47.54424134 0.040894
\(0.00925 \quad 0.3937 \quad 0.7506133521 \quad 0.7521064616 \quad 1.024438211\)
\begin{tabular}{llccccc}
1 & 1 & 83.92839407 & 146048.7934 & 0.06968941165 & \\
0.05879519799 & 0.06244633988 & \(3.044993839 e^{2}-006\) & 0.06244633988 & 39.42664906
\end{tabular}
\begin{tabular}{llllll}
127.628845 & 100.6049258 & 39.17344169 & 39.28004953 & 40.50803044
\end{tabular}
\begin{tabular}{lllll}
38.04103763 & 4.178550113 & 4.217412545 & 2.079900522 & 0.6279028921
\end{tabular}
\begin{tabular}{llllll}
0.6780050525 & 0.6780050525 & 4.391199227 & 1.741431674 & 0.03770177697
\end{tabular}
\begin{tabular}{llllll}
992.4365854 & 957.9190884 & 0.6103121585 & 0.5665133976 & 0.0006598572759
\end{tabular}
\begin{tabular}{lccccc}
0.0002799582589 & \(1.229000858 \mathrm{e}-005\) & \(1.331249756 \mathrm{e}-005\) & 1530.352222 & \\
1544.530942 & 472.5647139 & 490.677592 & 1.036269744 & 1.038071277 \\
1.075071277 & 0.0716165664 & 0.07065138186 & 2738.674818 & 2731.630843 \\
165.234021 & 421.6518015 & 2676.525757 & 256.4177805 & 2317.023017
\end{tabular}

KEY POINT \#13 (t plus 4710.4724 s with a Mixing Number of 149.4012): 52.79278682
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.8250667473 & 0.8387634285 \\
1.013521767 & & 1 & 44.59055455 & 158688.6305 \\
0.05757629867 & 0.05433400504 & 0.06933997085 & \(4.075365052 e-006\) & 0.06933997085 \\
106.8742062 & 136.9111331 & 123.1365496 & 106.4698188 & 105.7248547 \\
105.2810707 & 102.8122458 & 4.225607371 & 4.251889708 & 2.1926267 \\
0.6803649513 & 0.6841037185 & 0.6841037185 & 1.631205396 & 1.402661442 \\
0.04187210046 & 953.3509838 & 940.5564721 & 1.230267464 & 1.184015094 \\
0.0002626403455 & 0.0002256798681 & \(1.306417533 e-005\) & \(1.360468117 e-005\) & \\
1538.28092 & 1516.25491 & 483.1526471 & 492.826399 & 2.192160864 \\
2.243256817 & 2.280256817 & 1.28958277 & 1.27183639 & 2742.100312 \\
2740.111995 & 448.2095102 & 517.1264666 & 2710.454327 & 68.91695641 \\
2224.973846 & 446.500846 & 443.3524884 & 441.4806741 & 431.0614571
\end{tabular}

KEY POINT \#14 (t plus 3541.4546 s with a Mixing Number of 82.059): 51.94271667
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.796075022 & 0.8050500203
\end{tabular}
\begin{tabular}{lllll}
1.018812688 & 1 & 1 & 58.98946833 & 157209.2581
\end{tabular}
\(0.06101065933 \quad 0.05621069089 \quad 0.068223457734 .693175845 \mathrm{e}-006 \quad 0.06822345773\)
\begin{tabular}{llllll}
88.96381937 & 133.6961586 & 113.7936472 & 89.80090978 & 89.74437531
\end{tabular}
\begin{tabular}{lllll}
89.59501424 & 87.45537811 & 4.203782956 & 4.23615876 & 2.140081854
\end{tabular}
\begin{tabular}{llllll}
0.6724930684 & 0.682300243 & 0.682300243 & 1.989045894 & 1.525016272
\end{tabular}
\begin{tabular}{llllll}
0.03996716632 & 966.0407231 & 948.0250553 & 0.9303054679 & 0.8806027813
\end{tabular}
\(0.0003181942528 \quad 0.00024562794551 .274231976 \mathrm{e}-0051.351157993 \mathrm{e}-005\)
\begin{tabular}{llllll}
1553.515953 & 1529.653232 & 478.985529 & 492.5890744 & 1.626285214
\end{tabular}
\begin{tabular}{lllll}
1.673286091 & 1.710286091 & 0.6746536415 & 0.6965335951 & 2742.017752
\end{tabular}
\begin{tabular}{lllll}
2738.537994 & 372.6900333 & 477.4366641 & 2696.786065 & 104.7466308
\end{tabular}
\begin{tabular}{lllll}
2264.581088 & 376.2093445 & 375.9703219 & 375.3450412 & 366.3549461
\end{tabular}

\section*{D. 6 TEST \#6 - T06_RCIC_1ATM_107KW_RESULTS_RCICLAND.TXT}

Output Saved to C:\Local Files \RCICLAND_NOTITLES
Using 20-second SP 12 averages for begin̄ning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1599.5375 s, and ending (KEY POINT \#11) at \(t\) plus 8065.6533 s , for a time period of 6466.1158 s.
Original Data Record Time: 9753.6069 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at t plus \(2493.7446 \mathrm{~s}, \mathrm{~T}\) bulk \(=63.412 \mathrm{C}\) and T _out \(=60.8315 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=63.1484 \mathrm{C}\)
Stratification Beginning Pressure \(=15.1555\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at t plus \(5339.3954 \mathrm{~S}, \mathrm{~T}_{2}\) bulk \(=89.5236 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=69.9724 \mathrm{C}\)
Stratification Ending \(\overline{\text { SP12 }}\) Temperature \(=89 . \overline{4619} \mathrm{C}\)
Stratification Ending Pressure \(=15.181\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 1918.9338 s.
At \(t=1918.9338 \mathrm{~s}\), the pool pressure is 15.1571 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 58.6399, 58.5941, 60.5965, 58.3806, and 55.4551 C , respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 7.8818 +/- 2.0516 C.
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 7.2439 +/- 1.7663 C.
Minimum Steam Quality: 0.99162 at t plus 94.3014 s
Maximum Steam Quality: 1.0031 at \(t\) plus 5586.8996 s
Time-Averaged Steam Quality: 0.99951 +/- 0.0015948
Minimum Turbine Outlet Steam Quality: 1.0143 at t plus 94.3014 s
Maximum Turbine Outlet Steam Quality: 1.0263 at \(t\) plus 5586.8996 s
Time-Averaged Turbine Outlet Steam Quality: 1.0222 +/- 0.0018929
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 6376.1137 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.96096 degrees \(/ \mathrm{min}\) at t plus 3451.7614 s and 0.30004 degrees/min at \(t\) plus 3205.6574 s, respectively
Max and min smoothed mid (SP9) level changerates: 0.75056 degrees/min at t plus 3658.5653 s and 0.42427 degrees/min at \(t\) plus 5030.4897 s, respectively

Max and min smoothed upper-mid level changerate differences: 0.39309 degrees/min at \(t\) plus 3403.2597 s and -0.23998 degrees/min at \(t\) plus 3209.1566 s , respectively
Max and min smoothed lower level changerates: 1.4287 degrees \(/ \mathrm{min}\) at t plus 4462.3792 s and 0.060317 degrees/min at \(t\) plus 3534.5632 s, respectively
Max and min smoothed mid-lower level changerate differences: 0.65558 degrees \(/ \mathrm{min}\) at \(t\) plus 3535.8632 s and -0.84751 degrees/min at \(t\) plus 4462.5802 s , respectively
Max and min smoothed outlet level changerates: 4.7683 degrees \(/ \mathrm{min}\) at t plus 5506.398 s and -0.05232 degrees/min at \(t\) plus 4351.1779 s, respectively
Max and min smoothed lower-outlet level changerate differences: 1.4138 degrees/min at \(t\) plus 4461.9792 s and -4.2263 degrees/min at \(t\) plus 5510.7972 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.2455 degrees/min at t plus 2443.2437 \(s\) and 0.066375 degrees/min at \(t\) plus 6093.6085 s, respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.72779 degrees/min at \(t\) plus 2443.2437 s and -0.4286 degrees/min at t plus 6074.4074 s , respectively
The mean steam flow rate was \(44.9518+/-1.3555 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was \(43.7802+/-1.868 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.01029+/-0.039484 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is \(8.7257+/-0.72648 \mathrm{C}\) over the Stratification Period, beginning at 6.0436 C and ending at 9.6791 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(7.9596+/-0.66496\) C over the Stratification Period, beginning at 5.4626 C and ending at 9.0724 C
The stratification period begins and ends with Smoothed SP8 readings of 69.6529 and 99.7966 C, respectively

The stratification period begins and ends with condensing flows of 0.63452 and 2.1519 \(\mathrm{kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of 4.261 and \(2.6272 \mathrm{~kg} / \mathrm{s}\), respectively.

The stratification period had a mean sparger steam enthalpy of \(2729.5634+/-0.65645\) \(\mathrm{kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.55711 and 12.9775 kg/s, respectively
The plume period had a mean steam enthalpy of \(2732.1083+/-1.025 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 1.5269 degrees \(C\) at \(t\) plus 3550.3621 s with \(T\) _upper = 74.565 C and T _mid \(=73.0381 \mathrm{C}\)

At \(t\) plus 3550.3621 s, Smoothed SP8-SP9 is 9.4824 C and Smoothed SP8-Top is 7.9555 C, where Smoothed SP8 is 82.5205 C and Pool \(\mathrm{P}=15.1573\) psia
Maximum Smoothed Top-Lower delta \(T\) is 6.6943 degrees \(C\) at \(t\) plus 4232.5961 s with T_upper \(=81.3674 \mathrm{C}\) and T low \(=74.6731 \mathrm{C}\)
At t plus 4232.5961 s , Smoothed SP8-SP9 is 8.5001 C and Smoothed SP8-Top is 7.7335 C , where Smoothed SP8 is 89.101 C and Pool \(\mathrm{P}=15.1691 \mathrm{psia}\)
Maximum Smoothed Mid-Lower delta \(T\) is 5.9296 degrees \(C\) at \(t\) plus 4232.1781 s with T_mid = 80.5969 C and T low \(=74.6673 \mathrm{C}\)

At t plus 4232.1781 s , Smoothed SP8-SP9 is 8.4809 C and Smoothed SP8-Top is 7.7178 C , where Smoothed SP8 is 89.0778 C and Pool \(\mathrm{P}=15.1673 \mathrm{psia}\)
Maximum Smoothed Top-Outlet delta \(T\) is 20.766 degrees \(C\) at \(t\) plus 5289.9936 s with T_upper \(=90.436 \mathrm{C}\) and \(T\) out \(=69.67 \mathrm{C}\)
At t plus 5289.9936 s, Smoothed SP8-SP9 is 9.8309 C and Smoothed SP8-Top is 9.0926 C, where Smoothed SP8 is 99.5286 C and Pool \(\mathrm{P}=15.1808\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 20.2587 degrees \(C\) at \(t\) plus 5395.0956 s with T_mid \(=90.8427 \mathrm{C}\) and T_out \(=70.5839 \mathrm{C}\)
At \(t\) plus 5395.0956 s, Smoothed SP8-SP9 is 9.375 C and Smoothed SP8-Top is 8.9039 C, where Smoothed SP8 is 100.2176 C and Pool \(\mathrm{P}=15.1956\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 20.6483 degrees \(C\) at \(t\) plus 5395.5956 s with T_low \(=91.2408 \mathrm{C}\) and \(T\) _out \(=70.5926 \mathrm{C}\)
At \(t\) plus 5395.5956 s , Smoothed SP8-SP9 is 9.363 C and Smoothed SP8-Top is 8.893 C, where Smoothed SP8 is 100.2128 C and Pool \(\mathrm{P}=15.195 \mathrm{psia}\)
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 10.4338 degrees \(C\) at (KEY POINT \#14) t plus 3127.2559 s with \(\mathrm{T}_{-} \mathrm{SP} 8=79.4793 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{SP9}=69.0454 \mathrm{C}\) and Pool \(\mathrm{P}=\) 15.1563 psia

Maximum Smoothed Condensing Region SP8-Upper delta T is 9.5321 degrees \(C\) at \(t\) plus 3136.3554 s with T _SP8 \(=79.4261 \mathrm{C}\) and \(\mathrm{T}_{\text {_upper }}=69.8939 \mathrm{C}\) and Pool \(\mathrm{P}=15.1555\) psia
Maximum Top-Mid delta \(T\) is 2.3688 degrees \(C\) at (KEY POINT \#4) \(t\) plus 3569.0641 s ignoring SP 4, with temperatures of 75.3338 and 72.965 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=15.1694\) psia and \(T\) _outlet \(=67.1666 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 3966.5699 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.99998 C and a raw SP12 Reading of 77.8254 C.
Maximum Top-Lower delta \(T\) is 8.9937 degrees \(C\) at \(t\) plus 4514.1802 s, with temperatures of 84.616 and 75.6223 C, respectively, at Set \# 1, where Pool \(P=15.1688\) psia and T_outlet \(=69.1517 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 5.8648 degrees \(C\) at (KEY POINT \#6) t plus 4193.1748 s ignoring SP 4, with temperatures of 80.2104 and 74.3457 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=15.17\) psia and T_outlet \(=69.1945 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 4695.5836 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 1.9542 C and a raw SP12 Reading of 85.2056 C .
Maximum Top-Outlet delta \(T\) is 21.1036 degrees \(C\) at \(t\) plus 5315.694 s , with temperatures of 90.8701 and 69.7665 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=15.1828\) psia
Maximum Mid-Outlet delta \(T\) is 19.7169 degrees \(C\) at \(t\) plus 5322.3954 s ignoring SP 4, with temperatures of 89.557 and 69.84 C, respectively, at Set \# 2, where Pool \(P=\) 15.1831 psia

Maximum Lower-Outlet delta \(T\) is 21.028 degrees \(C\) at (KEY POINT \#8) t plus 5257.9937 s, with temperatures of 90.5616 and 69.5336 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=15.1821\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 5539.1978 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 7.0017 C and a raw SP12 Reading of 90.9571 C .
Minimum SP Pressure is 14.7959 psia at t plus 6.2004 s
Maximum SP Pressure is 15.6309 psia at \(t\) plus 6465.0158 s
Beginning SP Pressure is 14.8049 psia
Ending SP Pressure is 15.6182 psia
Time-Average SP Pressure is 15.1743 +/- 0.10582 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 74.9717 cm (cold) / 75.1028 cm (hot) at 14.5875 psia
Beginning Smoothed SP Level is 75.3484 cm (cold) / 75.5116 cm (hot) at 14.8063 psia
Ending Smoothed SP Level is 75.3997 cm (cold) / 76.3364 cm (hot) at 15.6264 psia

Minimum Smoothed Cold SP Level is 75.1008 cm at \(t\) plus 5040.0893 s and 15.1765 psia Minimum Smoothed Hot SP Level is 75.5034 cm at t plus 70.301 s and 14.8437 psia Maximum Smoothed Cold SP Level is 75.4637 cm at \(t\) plus 602.6105 s and 15.1555 psia Maximum Smoothed Hot SP Level is 76.3364 cm at t plus 6466.1158 s and 15.6264 psia SP 12 Temperature at the beginning is 39.8306 C , and at the end is 99.2528 C
At plume detection, the Mixing Number is 42.0583
The Mixing Number ranges from a minimum of 32.6675 at (KEY POINT \#12) \(t\) plus 0 s to a maximum of 339.06 at (KEY POINT \#13) t plus 6466.1158 s; it had a mean value of 77.987 +/- 59.9332 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid \(T\) (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed \(T\) t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity ( \(W / m-K\) ) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T mid Viscosity (Pa-s) mu1, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steàm Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta he6, Steam Condensation delta he7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy e11
KEY POINT \#1 (t plus 0 s with a Mixing Number of 32.6675): 33.61870469 0.040894
\begin{tabular}{lcccccc}
0.00925 & \multicolumn{2}{c}{0.3937} & \multicolumn{2}{c}{0.7534840865} & 0.7551155468 & 1.016568729 \\
1 & 1 & \multicolumn{2}{c}{55.13415808} & 105535.6918 & 0.06948997517 \\
0.05850248938 & 0.04415603236 & \(1.30037419 e-005\) & 0.04415603236 & 40.65352911 \\
120.2664974 & 102.1188035 & 41.08179104 & 40.5275699 & 40.42258324 \\
38.16358448 & 4.178536186 & 4.219367887 & 2.086054846 & 0.6294616587 \\
0.6786048255 & 0.6786048255 & 4.280823669 & 1.713513567 & 0.0379389945 \\
991.970851 & 956.8227373 & 0.6416720905 & 0.6099413941 & 0.0006448704157 \\
0.000275585966 & \(1.234175832 e-005\) & \(1.302690385 e-005\) & 1532.432611 & \\
1543.077992 & 473.3321193 & 485.7047149 & 1.09330231 & 1.020855477 \\
1.057855477 & 0.07645624698 & 0.07821080753 & 2719.23734 & 2716.197565 \\
170.3590631 & 428.0421877 & 2678.90365 & 257.6831246 & 2291.195152 \\
172.1485713 & 169.8312334 & 169.3956408 & 159.9602884 &
\end{tabular}
\(172.1485713 \quad 169.8312334 \quad 169.3956408 \quad 159.9602884\)
KEY POINT \#2 (t plus 1918.9338 s with a Mixing Number of 42.0583): 33.45125815
\begin{tabular}{lcccccc}
0.040894 & 0.00925 & & 0.3937 & 0.7537078809 & 0.7570505922 \\
1.020980174 & & 1 & 53.8606921 & 103272.4104 \\
0.06648122034 & 0.05831841176 & 0.04393610197 & \(8.724162092 \mathrm{e}-006\) & 0.04393610197 \\
58.59412055 & 126.054289 & 103.0681018 & 60.59654989 & 58.63986414 \\
58.38062962 & 55.4550783 & 4.182169612 & 4.220619497 & 2.090007905 \\
0.6494597851 & 0.678966605 & 0.678966605 & 3.068143935 & 1.696451731 \\
0.03809060441 & 983.93085 & 956.1299873 & 0.6619977253 & 0.6211932874 \\
0.0004764598966 & 0.0002729063999 & \(1.237423471 \mathrm{e}-005\) & \(1.324609104 \mathrm{e}-005\) & \\
1552.979448 & 1542.13208 & 473.8094299 & 489.333797 & 1.130371167 \\
1.04499655 & 1.08199655 & 0.1868339728 & 0.2050301651 & 2730.459643 \\
2727.558669 & 245.3484843 & 432.0509805 & 2680.388163 & 186.7024962 \\
2298.408662 & 253.7238059 & 245.5383592 & 244.4571567 & 232.2276902 \\
INT \#3 (t plus & 2493.7446 s with & aixing Number & of & \(45.9298):\) & 33.68444255 \\
0.040894 & 0.00925 & & 0.3937 & 0.7530948631 & 0.7569987348 \\
1.02141015 & & & 1 & 54.73122245 & 103909.6369 \\
0.06560982779 & 0.05836399032 & 0.04424237487 & \(1.154103052 \mathrm{e}-005\) & 0.04424237487 \\
63.60934281 & 126.313333 & 102.8332465 & 69.65293169 & 64.1903773 \\
63.49384354 & 60.94127534 & 4.184431795 & 4.220308015 & 2.089023095 \\
0.6541578791 & 0.6788781255 & 0.6788781255 & 2.827767606 & 1.700641516 \\
0.03805288878 & 981.3195405 & 956.3017498 & 0.6569210442 & 0.6156125871
\end{tabular}
\begin{tabular}{lccccc}
0.0004420687324 & 0.0002735649437 & \(1.236619828 \mathrm{e}-005\) & \(1.325662984 \mathrm{e}-005\) & \\
1555.740417 & 1542.368578 & 473.6916256 & 489.534141 & 1.121105112 \\
1.044972593 & 1.081972593 & 0.2352397427 & 0.3073525482 & 2731.167499 \\
2728.171993 & 266.3284342 & 431.0590927 & 2680.021373 & 164.7306585 \\
2300.108407 & 291.6273889 & 268.7584065 & 265.8466366 & 255.1710969 \\
INT \# (t plus 3569.0641 s s with & a Mixing Number of & 56.7012): & 34.85513898 \\
0.040894 & 0.00925 & & 0.3937 & 0.7521688828 & 0.7574785317 \\
1.022208004 & & 1 & 1 & 57.09371824 & 107291.888 \\
0.06389554859 & 0.05839787366 & 0.04578001024 & \(1.043834163 e-005\) & 0.04578001024 \\
73.26725229 & 127.0386625 & 102.6585705 & 82.15160653 & 74.69531829 \\
72.01815678 & 67.07823504 & 4.190275291 & 4.22007713 & 2.088293553 \\
0.6621755194 & 0.6788118816 & 0.6788118816 & 2.445683516 & 1.703770991 \\
0.03802492611 & 975.889492 & 956.4293394 & 0.6531658099 & 0.6106291096 \\
0.0003864833787 & 0.0002740566004 & \(1.236022187 e-005\) & \(1.328493775 e-005\) & \\
1557.870333 & 1542.543421 & 473.6038871 & 490.0258855 & 1.114254166 \\
1.045374669 & 1.082374669 & 0.3588144316 & 0.5169964432 & 2732.963342 \\
2729.703649 & 306.7679731 & 430.3214161 & 2679.748366 & 123.553443 \\
2302.641926 & 344.0261592 & 312.7513202 & 301.5359269 & 280.8521765
\end{tabular}

KEY POINT \#5 (t plus 3966.5699 s with a Mixing Number of 64.8484): 34.96515093
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.7519153274 & 0.7577651514 \\
1.022146017 & & 1 & 1 & 57.23322137 & 107647.9383 \\
0.06305193824 & 0.05839493091 & 0.04592450394 & \(9.267380662 e-006\) & 0.04592450394 \\
77.92571556 & 126.9837462 & 102.6737438 & 86.57575871 & 78.77495782 \\
73.44954442 & 68.50865109 & 4.19378925 & 4.22009716 & 2.088356827 \\
0.6655743347 & 0.6788176507 & 0.6788176507 & 2.29205247 & 1.703498696 \\
0.03802735211 & 973.0908454 & 956.4182616 & 0.6534913156 & 0.6110473239 \\
0.0003637596471 & 0.0002740138293 & \(1.236074098 e-005\) & \(1.328278929 \mathrm{e}-005\) & \\
1557.511258 & 1542.528269 & 473.6115126 & 489.9884393 & 1.114847902 \\
1.045904264 & 1.082904264 & 0.4357009338 & 0.6153617654 & 2732.862684 \\
2729.587042 & 326.2962707 & 430.3854931 & 2679.772088 & 104.0892224 \\
2302.477191 & 362.6050211 & 329.8567486 & 307.5333403 & 286.8409587
\end{tabular}

KEY POINT \#6 (t plus 4193.1748 s with a Mixing Number of 70.0039): 34.99259878
\begin{tabular}{lcccccc}
0.040894 & 0.00925 & & 0.3937 & 0.7517180741 & 0.7578512293 \\
1.022360935 & & 1 & 57.3155004 & 107657.5204 \\
0.06263106329 & 0.05839467626 & 0.04596055494 & \(1.215585658 \mathrm{e}-005\) & 0.04596055494 \\
80.22797372 & 127.2242593 & 102.6750568 & 88.67529704 & 80.86306193 \\
74.38103294 & 69.17260048 & 4.195692773 & 4.220098893 & 2.088362303 \\
0.6671445102 & 0.6788181497 & 0.6788181497 & 2.222279991 & 1.703475138 \\
0.03802756206 & 971.6662224 & 956.417303 & 0.6535194885 & 0.6106873975 \\
0.0003533580689 & 0.0002740101288 & \(1.236078591 e-005\) & \(1.329203319 e-005\) & \\
1557.021773 & 1542.526957 & 473.6121725 & 490.1430529 & 1.114899291 \\
1.045870676 & 1.082870676 & 0.478541111 & 0.6672463991 & 2733.357516 \\
2730.07245 & 335.9536255 & 430.3910378 & 2679.77414 & 94.43741239 \\
2302.966478 & 371.4284606 & 338.6170838 & 311.4369582 & 289.6211384
\end{tabular}

KEY POINT \#7 (t plus 4695.5836 s with a Mixing Number of 85.5049) : 35.0999542
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7513841272 & 0.7582466336 \\
1.022493344 & & 1 & 57.49639955 & 107939.7222 \\
0.06171630615 & 0.05839321068 & 0.04610155947 & \(9.817189291 e-006\) & 0.04610155947 \\
85.18389499 & 127.3787229 & 102.6826134 & 93.78764876 & 85.98766825 \\
83.05586048 & 69.38512022 & 4.20016547 & 4.22010887 & 2.088393822 \\
0.6702831646 & 0.6788210217 & 0.6788210217 & 2.08432122 & 1.703339566 \\
0.03802877049 & 968.5087162 & 956.4117857 & 0.6536816508 & 0.6106022099 \\
0.0003326262818 & 0.000273988833 & \(1.236104444 \mathrm{e}-005\) & \(1.329795462 e-005\) & \\
1555.298702 & 1542.519408 & 473.6159698 & 490.241374 & 1.115195091 \\
1.046142706 & 1.083142706 & 0.5828593551 & 0.8090277951 & 2733.687485 \\
2730.381649 & 356.7580465 & 430.4229494 & 2679.785954 & 73.66490296 \\
2303.264536 & 392.932797 & 360.1330076 & 347.8234947 & 290.5111107
\end{tabular}

KEY POINT \#8 (t plus 5257.9937 s with a Mixing Number of 107.9094): 35.2597335
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & & 0.7510906657 & 0.7585561098 \\
1.022469635 & & 1 & 1 & 57.69857671 & 108431.0911 \\
0.06090789267 & 0.05838729727 & 0.04631141943 & \(1.203898719 \mathrm{e}-005\) & 0.04631141943 \\
89.51128175 & 127.3806203 & 102.7131017 & 98.94114857 & 90.24512486 \\
89.57608434 & 69.60450552 & 4.204491708 & 4.220149137 & 2.088521038 \\
0.6727588085 & 0.6788326019 & 0.6788326019 & 1.976055595 & 1.702792796 \\
0.03803364752 & 965.6525158 & 956.3895225 & 0.6543362554 & 0.6112611702 \\
0.0003161877582 & 0.0002739029419 & \(1.236208754 \mathrm{e}-005\) & \(1.32979529 \mathrm{e}-005\) & \\
1553.077594 & 1542.488934 & 473.6312888 & 490.2384031 & 1.116389203
\end{tabular}


KEY POINT \#11 (t plus 6466.1158 s with a Mixing Number of 339.06): 35.97569466
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7539972924 & 0.7633644226 \\
1.022374924 & & 1 & 57.3638417 & 110452.1493 \\
0.05894224473 & 0.05823659944 & 0.04725178892 & \(1.136963162 \mathrm{e}-005\) & 0.04725178892 \\
99.84236027 & 127.9957525 & 103.4893393 & 103.0199205 & 99.91495031 \\
99.92173244 & 96.34699752 & 4.216424056 & 4.221181203 & 2.091785599 \\
0.6776988425 & 0.679123618 & 0.679123618 & 1.755841693 & 1.688987857 \\
0.03815859551 & 958.4731683 & 955.8212934 & 0.6711833089 & 0.6273002295 \\
0.0002822135219 & 0.0002717323632 & \(1.238865181 e-005\) & \(1.331970511 e-005\) & \\
1545.256895 & 1541.703826 & 474.0202583 & 490.5264999 & 1.147149309 \\
1.077405201 & 1.114405201 & 1.008487765 & 1.128465065 & 2734.617122 \\
2731.326512 & 418.441991 & 433.8302292 & 2681.045248 & 15.38823823 \\
2300.786893 & 2680.500638 & 418.7467874 & 418.7780137 & 403.7164348
\end{tabular} KEY POINT \#12 (t plus 0 s with a Mixing Number of 32.6675): 33.61870469 0.040894 \(\begin{array}{lllll}0.00925 & 0.3937 & 0.7534840865 & 0.7551155468 & 1.016568729\end{array}\)
\begin{tabular}{llllll}
1 & 1 & 55.13415808 & 105535.6918 & 0.06948997517
\end{tabular}
\begin{tabular}{llccc}
0.05850248938 & 0.04415603236 & \(1.30037419 e-005\) & 0.04415603236 & 40.65352911 \\
120.2664974 & 102.1188035 & 41.08179104 & 40.5275699 & 40.42258324 \\
38.16358448 & 4.178536186 & 4.219367887 & 2.086054846 & 0.6294616587 \\
0.6786048255 & 0.6786048255 & 4.280823669 & 1.713513567 & 0.0379389945
\end{tabular}
\begin{tabular}{llllll}
991.970851 & 956.8227373 & 0.6416720905 & 0.6099413941 & 0.0006448704157
\end{tabular}
\begin{tabular}{lllcl}
0.000275585966 & \(1.234175832 e-005\) & \(1.302690385 e-005\) & 1532.432611 & \\
1543.077992 & 473.3321193 & 485.7047149 & 1.09330231 & 1.020855477 \\
1.057855477 & 0.07645624698 & 0.07821080753 & 2719.23734 & 2716.197565
\end{tabular}
\begin{tabular}{rrrrr}
1.057855477 & 0.07645624698 & 0.07821080753 & 2719.23734 & 2716.197565 \\
170.3590631 & 428.0421877 & 2678.90365 & 257.6831246 & 2291.195152
\end{tabular}

KEY POINT \#13 (t plus 6466.1158 s with a Mixing Number of 339.06): 35.97569466
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7539972924 & 0.7633644226 \\
1.022374924 & & 1 & 1 & 57.3638417 & 110452.1493 \\
0.05894224473 & 0.05823659944 & 0.04725178892 & \(1.136963162 e-005\) & 0.04725178892 \\
99.84236027 & 127.9957525 & 103.4893393 & 103.0199205 & 99.91495031 \\
99.92173244 & 96.34699752 & 4.216424056 & 4.221181203 & 2.091785599 \\
0.6776988425 & 0.679123618 & 0.679123618 & 1.755841693 & 1.688987857 \\
0.03815859551 & 958.4731683 & 955.8212934 & 0.6711833089 & 0.6273002295 \\
0.0002822135219 & 0.0002717323632 & \(1.238865181 e-005\) & \(1.331970511 e-005\) & \\
1545.256895 & 1541.703826 & 474.0202583 & 490.5264999 & 1.147149309 \\
1.077405201 & 1.114405201 & 1.008487765 & 1.128465065 & 2734.617122
\end{tabular}
\begin{tabular}{cccccc}
2731.326512 & 418.441991 & 433.8302292 & 2681.045248 & 15.38823823 \\
2300.786893 & 2680.500638 & 418.7467874 & 418.7780137 & 403.7164348 \\
KEY POINT \#14 (t plus & 3127.2559 s with & a Mixing Number & of & \(51.324):\) & 34.21651105 \\
0.040894 & 0.00925 & 1 & 0.3937 & 0.7525615571 & 0.7572260426 \\
1.021783813 & & 1 & 55.96267997 & 105468.0082 \\
0.06465073079 & 0.05839631101 & 0.04494121303 & \(1.022471405 e-005\) & 0.04494121303 \\
69.04542817 & 126.5739472 & 102.6666278 & 79.4792623 & 69.96616991 \\
69.900613 & 64.41381573 & 4.187481144 & 4.220087766 & 2.08832715 \\
0.6588343493 & 0.6788149454 & 0.6788149454 & 2.601114413 & 1.703626386 \\
0.03802621429 & 978.3262467 & 956.423457 & 0.6533386437 & 0.611555697 \\
0.0004092444748 & 0.0002740338866 & \(1.236049753 e-005\) & \(1.32670563 e-005\) & \\
1557.433417 & 1542.535375 & 473.6079365 & 489.7254432 & 1.114569419 \\
1.044979033 & 1.081979033 & 0.2993478644 & 0.4642375266 & 2731.893413 \\
2728.761592 & 289.0833655 & 430.3554423 & 2679.760963 & 141.2720768 \\
2301.537971 & 332.8124276 & 292.937828 & 292.6661358 & 269.7000898
\end{tabular}

End

\section*{D. 7 TEST \#7-}

\section*{T07_RCIC_040GPM_1ATM_107KW_RESULTS_RCICLAND.TXT}

Output Saved to C:\Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash\) Export \(\backslash T 07\) _RCIC_040GPM_1ATM_107kW
Using 20-second SP 12 averages for begin̄ning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1060.8267 s, and ending (KEY POINT \#11) at \(t\) plus 6992.932 s , for a time period of 5932.1053 s .
Original Data Record Time: 9933.5122 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(2306.6409 \mathrm{~s}, \mathrm{~T}\) bulk \(=62.4304 \mathrm{C}\) and T out \(=59.8726 \mathrm{C}\)
Stratification Beginnīng SP12 Temperature \(=\overline{62} .3943 \mathrm{C}\)
Stratification Beginning Pressure \(=15.2119\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at t plus \(5115.3906 \mathrm{~s}, \mathrm{~T}\) bulk \(=87.477 \mathrm{C}\) and T _out \(=75.872 \mathrm{C}\)
Stratification Ending \(\overline{\text { SP12 }}\) Temperature \(=87.3474 \mathrm{C}\)
Stratification Ending Pressure \(=15.2371\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 1577.3292 s .
At \(t=1577.3292 \mathrm{~s}\), the pool pressure is 15.2115 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 55.7306, 55.8196, 57.8205, 55.5877, and 53.5748 C , respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 7.5076 +/- 1.9013 C .
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 7.0083 +/- 1.6631 C.
Minimum Steam Quality: 0.51464 at t plus 430.4086 s
Maximum Steam Quality: 0.69599 at \(t\) plus 5886.9037 s
Time-Averaged Steam Quality: 0.5947 +/- 0.028316
Minimum Turbine Outlet Steam Quality: 0.56058 at t plus 430.4086 s
Maximum Turbine Outlet Steam Quality: 0.73594 at t plus 5886.9037 s
Time-Averaged Turbine Outlet Steam Quality: 0.63837 +/- 0.027843
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 5842.1031 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.76703 degrees/min at t plus 2.9012 s and 0.35867 degrees/min at \(t\) plus 5572.4977 s, respectively

Max and min smoothed mid (SP9) level changerates: 0.74181 degrees/min at \(t\) plus 0 s and 0.4422 degrees \(/ \mathrm{min}\) at \(t\) plus 5008.5895 s , respectively

Max and min smoothed upper-mid level changerate differences: 0.1515 degrees/min at \(t\) plus 4918.4873 s and -0.32795 degrees/min at \(t\) plus 5520.8978 s , respectively
Max and min smoothed lower level changerates: 1.0368 degrees/min at t plus 5185.4916 s and 0.21497 degrees \(/ \mathrm{min}\) at t plus 3813.4911 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.41708 degrees/min at \(t\) plus 3813.4911 s and -0.54314 degrees/min at \(t\) plus 5185.4916 s , respectively
Max and min smoothed outlet level changerates: 3.003 degrees \(/ \mathrm{min}\) at t plus 5245.093 s and 0.044062 degrees \(/ \mathrm{min}\) at t plus 4669.0831 s , respectively

Max and min smoothed lower-outlet level changerate differences: 0.79912 degrees/min at \(t\) plus 4664.1818 s and -2.0592 degrees/min at t plus 5238.8166 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.0569 degrees/min at \(t\) plus 2182.5398 \(s\) and 0.19047 degrees/min at \(t\) plus 5801.6018 s, respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.56343 degrees/min at \(t\) plus 2182.5398 s and -0.44703 degrees/min at \(t\) plus 5501.0976 s , respectively
The mean steam flow rate was \(45.4318+/-2.288 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 43.9783 +/- \(6.5187 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(24.4514+/-1.938 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is \(8.398+/-0.5925\) C over the Stratification Period, beginning at 6.4057 C and ending at 9.6157 C
Mean Smoothed SP8-Upper Pool delta T is 7.7858 +/- 0.49303 C over the Stratification Period, beginning at 6.3481 C and ending at 8.6376 C
The stratification period begins and ends with Smoothed SP8 readings of 68.5801 and 97.0486 C, respectively

The stratification period begins and ends with condensing flows of 0.58206 and 1.7117 kg/s, respectively.
The stratification period begins and ends with condensing+cooling flows of 3.9852 and \(2.6253 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(1853.8155+/-31.3013\) \(\mathrm{kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.49165 and 12.8538 kg/s, respectively
The plume period had a mean steam enthalpy of \(1855.171+/-28.7074 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 1.6167 degrees C at t plus 5399.2958 s with T_upper = 91.4565 C and \(\mathrm{T}_{2} \mathrm{mid}=89.8397 \mathrm{C}\)

At t plus 5399.2958 s, Smoothed SP8-SP9 is 9.6572 C and Smoothed SP8-Top is 8.0405 C, where Smoothed SP8 is 99.4969 C and Pool \(\mathrm{P}=15.2537\) psia
Maximum Smoothed Top-Lower delta \(T\) is 3.516 degrees C at \(t\) plus 4330.1777 s with T_upper \(=81.6498 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=78.1338 \mathrm{C}\)
At \(t\) plus 4330.1777 s , Smoothed SP8-SP9 is 8.4271 C and Smoothed SP8-Top is 7.6149 C , where Smoothed SP8 is 89.2647 C and Pool \(\mathrm{P}=15.2228\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 2.8565 degrees \(C\) at \(t\) plus 4493.78 s with T_mid = 82.3186 C and T _low \(=79.4621 \mathrm{C}\)

At \(t\) plus 4493.78 s , Smoothed SP8-SP9 is 8.3456 C and Smoothed SP8-Top is 7.8892 C, where Smoothed SP8 is 90.6643 C and Pool P = 15.2244 psia
Maximum Smoothed Top-Outlet delta \(T\) is 12.7765 degrees \(C\) at \(t\) plus 5041.0883 s with T_upper \(=87.993 \mathrm{C}\) and T _out \(=75.2165 \mathrm{C}\)
At t plus 5041.0883 s , Smoothed \({ }^{-}\)SP8-SP9 is 9.5834 C and Smoothed SP8-Top is 8.5166 C, where Smoothed SP8 is 96.5096 C and Pool \(\mathrm{P}=15.2369\) psia
Maximum Smoothed Mid-Outlet delta T is 11.794 degrees C at t plus 5004.2892 s with T_mid \(=86.5799 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=74.7859 \mathrm{C}\)
At \(t\) plus 5004.2892 s, Smoothed SP8-SP9 is 9.6996 C and Smoothed SP8-Top is 8.8064 C, where Smoothed SP8 is 96.2795 C and Pool \(\mathrm{P}=15.2373\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 11.5539 degrees \(C\) at \(t\) plus 5003.4892 s with T_low \(=86.3334 \mathrm{C}\) and \(T\) _out \(=74.7795 \mathrm{C}\)
At t plus 5003.4892 s , Smoothed \(\mathrm{SP} 8-\mathrm{SP9}\) is 9.7073 C and Smoothed SP8-Top is 8.8108 C , where Smoothed SP8 is 96.2799 C and Pool \(\mathrm{P}=15.2359\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 9.827 degrees \(C\) at (KEY POINT \#14) t plus 5224.0168 s with \(\mathrm{T}_{-} \mathrm{SP} 8=98.1009 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{SP9}=88.2739 \mathrm{C}\) and Pool \(\mathrm{P}=\) 15.2371 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 9.0174 degrees \(C\) at \(t\) plus 4980.2878 s with T_SP8 \(=96.188 \mathrm{C}\) and \(\mathrm{T}_{-}\)upper \(=87.1706 \mathrm{C}\) and Pool \(\mathrm{P}=15.2362\) psia
Maximum Top-Mid delta \(T\) is 1.9252 degrees \(C\) at (KEY POINT \#4) t plus 2874.8504 s ignoring SP 4, with temperatures of 68.4544 and 66.5292 C, respectively, at Set \# 2, where Pool \(P=15.2104\) psia and \(T\) _outlet \(=63.9168 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 2899.0508 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.99986 C and a raw SP12 Reading of 66.8159 C.
Maximum Top-Lower delta \(T\) is 5.4951 degrees \(C\) at \(t\) plus 4646.0817 s, with temperatures of 83.8844 and 78.3893 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=15.2234\) psia and T_outlet \(=73.991 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 3.3858 degrees \(C\) at (KEY POINT \#6) t plus 4256.1744 s ignoring SP 4, with temperatures of 80.0133 and 76.6275 C , respectively, at Set \# 3, where Pool \(\mathrm{P}=15.2232\) psia and T_outlet \(=72.7493 \mathrm{C}\)

Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 4734.0838 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 1.1282 C and a raw SP12 Reading of 84.3611 C .
Maximum Top-Outlet delta \(T\) is 13.3329 degrees \(C\) at \(t\) plus 4994.3887 s , with temperatures of 87.8401 and 74.5072 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=15.2372\) psia
Maximum Mid-Outlet delta \(T\) is 12.0255 degrees \(C\) at \(t\) plus 4994.3887 s ignoring SP 4, with temperatures of 86.5327 and 74.5072 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=\) 15.2372 psia

Maximum Lower-Outlet delta \(T\) is 13.2484 degrees \(C\) at (KEY POINT \#8) t plus 5026.4885 s, with temperatures of 88.1312 and 74.8828 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=15.2383\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 5271.0925 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 4.4094 C and a raw SP12 Reading of 88.5184 C .
Minimum SP Pressure is 14.6906 psia at t plus 6.2004 s
Maximum SP Pressure is 15.3891 psia at \(t\) plus 5929.5041 s
Beginning SP Pressure is 14.697 psia
Ending SP Pressure is 15.386 psia
Time-Average SP Pressure is 15.1885 +/- 0.11567 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 75.9557 cm (cold) / 76.0986 cm (hot) at 14.588 psia
Beginning Smoothed SP Level is 76.2437 cm (cold) / \(76.4121 \mathrm{~cm}(\mathrm{hot})\) at 14.6922 psia Ending Smoothed SP Level is 76.4278 cm (cold) / 77.3165 cm (hot) at 15.3713 psia
Minimum Smoothed Cold SP Level is 76.2437 cm at t plus 0 s and 14.6922 psia
Minimum Smoothed Hot SP Level is 76.4121 cm at \(t\) plus 0 s and 14.6922 psia
Maximum Smoothed Cold SP Level is 76.7899 cm at t plus 818.5158 s and 15.202 psia
Maximum Smoothed Hot SP Level is 77.3177 cm at t plus 5920.2056 s and 15.3701 psia
SP 12 Temperature at the beginning is 39.8405 C , and at the end is 94.0427 C
At plume detection, the Mixing Number is 43.2166
The Mixing Number ranges from a minimum of 34.4199 at (KEY POINT \#12) t plus 0 s to a maximum of 178.8432 at (KEY POINT \#13) \(t\) plus 5932.1053 s; it had a mean value of 66.7905 +/- 32.89 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot ( \(\mathrm{kg} / \mathrm{s}\) ) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam T t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity ( \(W / m-K\) ) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steàm Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta h e6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy ell
KEY POINT \#1 (t plus 0 s with a Mixing Number of 34.4199): 62.76991779 0.040894 \(\begin{array}{lllll}0.00925 & 0.3937 & 0.7624370901 & 0.7641214556 & 0.648764989\end{array}\) \(0.648764989 \quad 0.9996254285 \quad 61.55938181 \quad 205822.7268 \quad 0.06951847535\) 0.05832044601 103.0576225
37.19098989 0.6789626714 0.0555986307
\begin{tabular}{lllll}
0.0555986307 & 0.02684566771 & 0.08244429841 & 40.47851248
\end{tabular}
\(103.0576225 \quad 40.58445142 \quad 40.28685713 \quad 40.1624464\)
992.0403828
. 58445142
\(4.178538489 \quad 4.220605573\)
. 28685713
40.1624464
\(956.1376567 \quad 0.6617705245\)
\(1.696638245 \quad 0.03808891862\) 0.0002729357233
1.0196645250 .0006469887267
\(1.23738761 \mathrm{e}-0051.247147513 \mathrm{e}-005 \quad 1532.139931\)
\begin{tabular}{llllll}
1542.142667 & 473.8041774 & 467.4131047 & 1.129956371 & 1.012991595
\end{tabular}
\begin{tabular}{lllll}
1.049991595 & 0.07574905557 & 0.07617644636 & 1894.456827 & 1890.667269 \\
169.6270536 & 432.0067208 & & 1880.371804 & 262.3796672
\end{tabular}
\(169.6270536 \quad 432.0067208 \quad 2680.371804 \quad 262.3796672 \quad 1462.450106\)
\(\begin{array}{llll}170.0697236 & 168.8247087 & 168.3079537 & 155.8954722\end{array}\)

KEY POINT \#2 (t plus 1577.3292 s with a Mixing Number of 43.2166): 51.10309333
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.766728267 & 0.7699845671 \\
0.6268761988 & 0.6268761988 & 0.9995831832 & 47.85805592 & 167259.007 \\
0.06695767876 & 0.05825010069 & 0.04343259296 & 0.02368807286 & 0.06712066583 \\
55.81959573 & 103.4198521 & 103.4198521 & 57.82050192 & 55.73063612 \\
55.58766588 & 53.57483893 & 4.181146414 & 4.221088276 & 2.091491346 \\
0.6466987074 & 0.679097866 & 0.679097866 & 3.216176 & 1.690214612 \\
0.03814734919 & 985.3113718 & 955.8722703 & 0.6696609527 & 1.067805458 \\
0.0004974465507 & 0.0002719254043 & \(1.238627331 e-005\) & \(1.249445358 e-005\) & \\
1550.929933 & 1541.77483 & 473.9855214 & 466.9259323 & 1.144367513 \\
1.048799342 & 1.085799342 & 0.1639082329 & 0.180182513 & 1844.668807 \\
1842.378413 & 233.7467359 & 433.5367076 & 2680.936926 & 199.7899717 \\
1411.132099 & 242.1135202 & 233.3733403 & 232.7785423 & 224.3672795
\end{tabular}

KEY POINT \#3 (t plus 2306.6409 s with a Mixing Number of 48.3286): 52.74878944
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7657557584 & 0.7697192457 \\
0.620167995 & 0.620167995 & 0.9995717839 & 48.94692571 & 172626.0615 \\
0.06586046953 & 0.05825930359 & 0.0441288739 & 0.02515330919 & 0.06928218309 \\
62.17443278 & 103.3724809 & 103.3724809 & 68.5801356 & 62.23208255 \\
62.2839657 & 59.78796539 & 4.183729505 & 4.221024986 & 2.091290973 \\
0.6528519828 & 0.6790802765 & 0.6790802765 & 2.893244126 & 1.691051936 \\
0.03813968921 & 982.0826811 & 955.9070101 & 0.6686247357 & 1.077673187 \\
0.000451477602 & 0.0002720571473 & \(1.238465189 e-005\) & \(1.249584783 e-005\) & \\
1555.072045 & 1541.823154 & 473.961831 & 466.7066371 & 1.142474287 \\
1.048754655 & 1.085754655 & 0.2204112751 & 0.2933369334 & 1829.576386 \\
1827.180584 & 260.3249775 & 433.3366104 & 2680.863063 & 173.0116328 \\
1396.239776 & 287.1353383 & 260.56475 & 260.7847388 & 250.3472428
\end{tabular}

KEY POINT \#4 (t plus 2874.8504 s with a Mixing Number of 53.5496): 54.16368689
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7654008946 & 0.7700640185 \\
0.6167691088 & 0.6167691088 & 0.9995658142 & 50.01174278 & 177242.2243 \\
0.06496983811 & 0.0582625183 & 0.04490332478 & 0.02623723621 & 0.07114056099 \\
67.24619402 & 103.3559322 & 103.3559322 & 75.81384014 & 67.74017525 \\
67.41812704 & 63.793274 & 4.186402534 & 4.221002888 & 2.091221019 \\
0.657333878 & 0.6790741254 & 0.6790741254 & 2.672622532 & 1.691344641 \\
0.03813701459 & 979.3366184 & 955.9191437 & 0.668263051 & 1.083019385 \\
0.0004196455834 & 0.0002721031975 & \(1.238408547 e-005\) & \(1.249685181 e-005\) & \\
1557.018101 & 1541.84002 & 473.9535532 & 466.5968483 & 1.141813517 \\
1.048756398 & 1.085756398 & 0.2766674432 & 0.39928527 & 1821.999968 \\
1819.498793 & 281.5503986 & 433.266709 & 2680.837257 & 151.7163104 \\
1388.733259 & 317.4414962 & 283.6170751 & 282.27167 & 267.1036424
\end{tabular}

KEY POINT \#5 (t plus 2899.0508 s with a Mixing Number of 53.7305): 54.31838199
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7653804714 & 0.7700664586 \\
0.615162394 & 0.615162394 & 0.9995629045 & 50.02945279 & 177739.2359 \\
0.0649432215 & 0.05826315751 & 0.04491120394 & 0.02643253922 & 0.07134374317 \\
67.39662208 & 103.3526416 & 103.3526416 & 76.085473 & 67.92278376 \\
67.606076 & 63.94730632 & 4.186490049 & 4.220998495 & 2.091207112 \\
0.6574611195 & 0.6790729019 & 0.6790729019 & 2.666517426 & 1.691402855 \\
0.03813648285 & 979.2529463 & 955.9215563 & 0.6681911516 & 1.085728085 \\
0.0004187592736 & 0.000272112356 & \(1.238397284 e-005\) & \(1.249749894 e-005\) & \\
1557.058268 & 1541.843372 & 473.9519071 & 466.5462897 & 1.141682165 \\
1.048761852 & 1.085761852 & 0.2785061563 & 0.4038203416 & 1818.382029 \\
1815.879083 & 282.1801579 & 433.2528097 & 2680.832126 & 151.0726518 \\
1385.129219 & 318.5802477 & 284.3816115 & 283.0585287 & 267.7481985
\end{tabular}

KEY POINT \#6 (t plus 4256.1744 s with a Mixing Number of 76.163): 54.59438101
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.7641417585 & 0.7706478762 \\
0.6339950069 & 0.6339950069 & 0.9995965088 & 51.80618872 & 178762.9746 \\
0.06263583904 & 0.05826142447 & 0.04596260457 & 0.02574364577 & 0.07170625034 \\
80.20192902 & 103.3615631 & 103.3615631 & 88.34557052 & 80.75592984 \\
77.59232976 & 72.76413373 & 4.195669788 & 4.221010407 & 2.091244819 \\
0.6671273502 & 0.6790762188 & 0.6790762188 & 2.223063829 & 1.691245033 \\
0.03813792459 & 971.683982 & 955.9150153 & 0.6683861006 & 1.053819676 \\
0.0003534755489 & 0.0002720875268 & \(1.23842782 e-005\) & \(1.248906616 e-005\) & \\
1557.029141 & 1541.834282 & 473.9563699 & 467.1127497 & 1.142038316 \\
1.04966526 & 1.08666526 & 0.4780374088 & 0.6588645356 & 1860.913368 \\
1858.229487 & 335.844652 & 433.2904937 & 2680.846038 & 97.44584173 \\
1427.622874 & 370.0427642 & 338.167838 & 324.8999085 & 304.6653185
\end{tabular}

KEY POINT \#7 (t plus 4734.0838 s with a Mixing Number of 89.7654): 53.7975338 \(\begin{array}{lllll}0.040894 & 0.00925 & 0.3937 & 0.7638674995 & 0.7710459505\end{array}\)
\begin{tabular}{lllcc}
0.6494145412 & 0.6494145412 & 0.9996226137 & 52.28203177 & 176247.2085 \\
0.06185243901 & 0.05826048824 & 0.04620002663 & 0.02445961554 & 0.07065964217 \\
84.45042306 & 103.3663826 & 103.3663826 & 92.5764095 & 84.92067764 \\
82.7250061 & 74.3376087 & 4.19947018 & 4.221016842 & 2.091265192 \\
0.6698394606 & 0.6790780102 & 0.6790780102 & 2.103766304 & 1.691159787 \\
0.03813870352 & 968.9852408 & 955.9114815 & 0.6684914345 & 1.028987053 \\
0.0003355627319 & 0.0002720741154 & \(1.238444316 e-005\) & \(1.248244648 e-005\) & \\
1555.610807 & 1541.82937 & 473.9587807 & 467.5523541 & 1.142230753 \\
1.050471252 & 1.087471252 & 0.5663176215 & 0.7733582661 & 1895.631175 \\
1892.897764 & 353.6779378 & 433.3108513 & 2680.853554 & 79.63291356 \\
1462.320324 & 387.8356612 & 355.651528 & 346.4349003 & 311.2589737
\end{tabular}

KEY POINT \#8 (t plus 5026.4885 s with a Mixing Number of 99.9306): 53.37147386
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.7638845355 & 0.7714364408 \\
0.6599528996 & 0.6599528996 & 0.9996396549 & 52.68850969 & 174907.925 \\
0.06141837991 & 0.05825820487 & 0.04649273021 & 0.0236073093 & 0.07010003951 \\
86.78425901 & 103.3781367 & 103.3781367 & 96.38139181 & 87.77146406 \\
86.11734418 & 75.0695407 & 4.201718606 & 4.22103254 & 2.091314887 \\
0.6712274496 & 0.6790823781 & 0.6790823781 & 2.043054019 & 1.690951921 \\
0.03814060348 & 967.4645859 & 955.9028629 & 0.6687483861 & 1.012962298 \\
0.0003263792908 & 0.0002720414118 & \(1.238484547 e-005\) & \(1.247841144 \mathrm{e}-005\) & \\
1554.554114 & 1541.817387 & 473.9646599 & 467.8448941 & 1.142700192 \\
1.050576788 & 1.087576788 & 0.6203585733 & 0.8900268658 & 1919.388233 \\
1916.612154 & 363.4814245 & 433.3605008 & 2680.871883 & 69.87907629 \\
1486.027733 & 403.8544871 & 367.6285443 & 360.6808623 & 314.3267263
\end{tabular}

KEY POINT \#9 (t plus 5115.3906 s with a Mixing Number of 103.3045): 53.17275931
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7638683343 & 0.7715189598 \\
0.6637080796 & 0.6637080796 & 0.9996458281 & 52.81687985 & 174286.1283 \\
0.06129727881 & 0.05826115097 & 0.04654049812 & 0.02329854245 & 0.06983904057 \\
87.43289801 & 103.362971 & 103.362971 & 97.0486115 & 88.41103293 \\
87.26862844 & 75.82156107 & 4.202363822 & 4.221012287 & 2.091250771 \\
0.6716005182 & 0.6790767421 & 0.6790767421 & 2.026745392 & 1.691220129 \\
0.03813815213 & 967.037168 & 955.913983 & 0.6684168706 & 1.006737987 \\
0.0003239041914 & 0.0002720836088 & \(1.238432639 e-005\) & \(1.247630457 e-005\) & \\
1554.22638 & 1541.832847 & 473.9570742 & 467.9393254 & 1.14209453 \\
1.050561372 & 1.087561372 & 0.6361208216 & 0.9119174939 & 1927.804348 \\
1925.014725 & 366.2070313 & 433.2964408 & 2680.848234 & 67.08940954 \\
1494.507907 & 406.6651976 & 370.316672 & 365.5181278 & 317.4790803
\end{tabular}

KEY POINT \#10 (t plus 5271.0925 s with a Mixing Number of 111.1609): 52.52276806
\(0.040894 \quad 0.00925 \quad 0.3937 \quad 0.7638635196 \quad 0.7717240823\)
\(0.6745615611 \quad 0.6745615611 \quad 0.9996628164 \quad 53.03099463-172218.5199\)
\(\begin{array}{llllll}0.0610443191 & 0.05826199252 & 0.04660970484 & 0.02237561352 & 0.06898531837\end{array}\)
88.7843407
\(\begin{array}{llll}103.3586388 & 103.3586388 & 98.22514349 & 90.06847388\end{array}\)
\(\begin{array}{lllll}89.73277512 & 83.93812277 & 4.203736501 & 4.221006502 & 2.091232459\end{array}\)
\(\begin{array}{lllll}0.672360206 & 0.6790751317 & 0.6790751317 & 1.993524517 & 1.69129676\end{array}\)
\(\begin{array}{lllll}0.038137452 & 966.1401222 & 955.9171593 & 0.6683221963 & 0.9904164238\end{array}\)
\(0.00031885123020 .00027209566471 .238417811 \mathrm{e}-0051.247174856 \mathrm{e}-005\)
\(1553.496774 \quad 1541.837262 \quad 473.9549071 \quad 468.2218655 \quad 1.141921569\)
\(\begin{array}{lllll}1.050880973 & 1.087880973 & 0.6700378619 & 0.9516060051 & 1952.210261\end{array}\)
\(\begin{array}{rrrrr}1949.397975 & 371.8872345 & 433.2781419 & 2680.841478 & 61.3909074\end{array}\)
\(\begin{array}{lllll}1518.932119 & 411.6227609 & 377.2849346 & 375.8760637 & 351.5316616\end{array}\)
KEY POINT \#11 (t plus 5932.1053 s with a Mixing Number of 178.8432): 46.23888974
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7642777677 & 0.7731653399 \\
0.7887226921 & 0.7887226921 & 0.9998127396 & 54.57513419 & 152087.9996 \\
0.05984736138 & 0.05826154971 & 0.04716247208 & 0.01356937141 & 0.06073184349 \\
95.11764944 & 103.3609184 & 103.3609184 & 101.8728813 & 95.2814624 \\
95.32345981 & 92.24149602 & 4.210683342 & 4.221009546 & 2.091242094 \\
0.6756071181 & 0.6790759791 & 0.6790759791 & 1.850464876 & 1.691256437 \\
0.03813782039 & 961.8194069 & 955.915488 & 0.6683720111 & 0.847251966 \\
0.0002969083971 & 0.0002720893209 & \(1.238425613 e-005\) & \(1.24328886 e-005\) & \\
1549.25959 & 1541.834939 & 473.9560474 & 470.7547676 & 1.142012576 \\
1.05981119 & 1.09681119 & 0.8497597903 & 1.08386506 & 2208.96563 \\
2205.987185 & 398.5330327 & 433.2877705 & 2680.845033 & 34.75473779 \\
1775.67786 & 427.004853 & 399.2215177 & 399.4010307 & 386.4320368
\end{tabular}

KEY POINT \#12 (t plus 0 s with a Mixing Number of 34.4199): 62.76991779 0.040894 \(\begin{array}{llllll}0.00925 & 0.3937 & 0.7624370901 & 0.7641214556 & 0.648764989\end{array}\) \(0.648764989 \quad 0.9996254285 \quad 61.55938181 \quad 205822.7268 \quad 0.06951847535\) \(\begin{array}{llllll}0.05832044601 & 0.0555986307 & 0.02684566771 & 0.08244429841 & 40.47851248\end{array}\)
\begin{tabular}{cccccc}
103.0576225 & 103.0576225 & 40.58445142 & 40.28685713 & 40.1624464 \\
37.19098989 & 4.178538489 & 4.220605573 & 2.089963867 & 0.6292403337 \\
0.6789626714 & 0.6789626714 & 4.296398612 & 1.696638245 & 0.03808891862 \\
992.0403828 & 956.1376567 & 0.6617705245 & 1.019664525 & 0.0006469887267 \\
0.0002729357233 & \(1.23738761 \mathrm{e}-005\) & \(1.247147513 \mathrm{e}-005\) & 1532.139931 & \\
1542.142667 & 473.8041774 & 467.4131047 & 1.129956371 & 1.012991595 \\
1.049991595 & 0.07574905557 & 0.07617644636 & 1894.456827 & 1890.667269 \\
169.6270536 & 432.0067208 & 2680.371804 & 262.3796672 & 1462.450106 \\
170.0697236 & 168.8247087 & 168.3079537 & 155.8954722 & \\
KEY POINT \#13 (t plus & 5932.1053 s with & a Mixing Number & of & \(178.8432):\) & 46.23888974 \\
0.040894 & 0.00925 & 0.3937 & 0.7642777677 & 0.7731653399 \\
0.7887226921 & 0.7887226921 & 0.9998127396 & 54.57513419 & 152087.9996 \\
0.05984736138 & 0.05826154971 & 0.04716247208 & 0.01356937141 & 0.06073184349 \\
95.11764944 & 103.3609184 & 103.3609184 & 101.8728813 & 95.2814624 \\
95.32345981 & 92.24149602 & 4.210683342 & 4.221009546 & 2.091242094 \\
0.6756071181 & 0.6790759791 & 0.6790759791 & 1.850464876 & 1.691256437 \\
0.03813782039 & 961.8194069 & 955.915488 & 0.6683720111 & 0.847251966 \\
0.0002969083971 & 0.0002720893209 & \(1.238425613 e-005\) & \(1.24328886 e-005\) & \\
1549.25959 & 1541.834939 & 473.9560474 & 470.7547676 & 1.142012576 \\
1.05981119 & 1.09681119 & 0.8497597903 & 1.08386506 & 2208.96563 \\
2205.987185 & 398.5330327 & 433.2877705 & 2680.845033 & 34.75473779 \\
1775.67786 & 427.004853 & 399.2215177 & 399.4010307 & 386.4320368
\end{tabular}

End

\section*{D. 8 TEST \#8-T08_RCIC_040GPM_107KW_RESULTS_RCICLAND.TXT}

Output Saved to C: \Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash\) Export \(\backslash T 08\) _RCIC_040GPM_107kW
Using 20-second SP 12 averages for begiñning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 2044.3429 s, and ending (KEY POINT \#11) at \(t\) plus 10480.7805 s , for a time period of 8436.4376 s.
Original Data Record Time: 12198.2097 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(2290.736 \mathrm{~s}, \mathrm{~T}\) _bulk \(=61.5556 \mathrm{C}\) and T _out \(=59.4322 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=-61.2481 \mathrm{C}\)
Stratification Beginning Pressure \(=16.4767\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at t plus \(7496.9238 \mathrm{~s}, \mathrm{~T}\) bulk \(=109.8205 \mathrm{C}\) and T out \(=74.1689 \mathrm{C}\)
Stratification Ending \(\overline{\text { SP1 }} 12\) Temperature \(=109 . \overline{6427} \mathrm{C}\)
Stratification Ending Pressure \(=36.1733\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 1659.7259 s.
At \(t=1659.7259 \mathrm{~s}\), the pool pressure is 15.7153 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 55.9093, 56.0772, 58.0778, 55.7861, and 53.6478 C, respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 10.1925 +/- 2.9825 C.
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 9.4804 +/- 2.8168 C.
Minimum Steam Quality: 0.51672 at \(t\) plus 685.5112 s
Maximum Steam Quality: 0.66112 at t plus 8105.1336 s
Time-Averaged Steam Quality: 0.59234 +/- 0.020428
Minimum Turbine Outlet Steam Quality: 0.56247 at t plus 685.5112 s

Maximum Turbine Outlet Steam Quality: 0.67746 at \(t\) plus 8105.1336 s
Time-Averaged Turbine Outlet Steam Quality: 0.62502 +/- 0.015747
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 8346.4374 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.85108 degrees/min at \(t\) plus 3701.0607 s and 0.3597 degrees/min at \(t\) plus 6995.7151 s , respectively
Max and min smoothed mid (SP9) level changerates: 0.69463 degrees/min at \(t\) plus 3615.5578 s and 0.39895 degrees/min at t plus 7258.2191 s , respectively

Max and min smoothed upper-mid level changerate differences: 0.26167 degrees/min at \(t\) plus 3374.954 s and -0.16867 degrees/min at \(t\) plus 3555.5584 s , respectively
Max and min smoothed lower level changerates: 2.3212 degrees/min at \(t\) plus 5971.3975 s and 0.0072092 degrees \(/ \mathrm{min}\) at t plus 3350.0536 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.61763 degrees/min at \(t\) plus 3605.0002 s and -1.7776 degrees/min at \(t\) plus 5971.4996 s , respectively
Max and min smoothed outlet level changerates: 7.6632 degrees/min at \(t\) plus 7786.1273 s and -0.02798 degrees/min at \(t\) plus 4186.5685 s , respectively
Max and min smoothed lower-outlet level changerate differences: 2.2359 degrees/min at \(t\) plus 5971.3975 s and -7.144 degrees/min at \(t\) plus 7785.6283 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.0759 degrees/min at \(t\) plus 2181.1358 s and 0.22496 degrees/min at \(t\) plus 7665.9485 s , respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.5205 degrees/min at \(t\) plus 2181.1358 s and -0.28715 degrees/min at t plus 3776.562 s , respectively
The mean steam flow rate was \(45.4844+/-1.0202 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was \(44.9409+/-1.271 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(24.8476+/-1.115 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is 10.9507 +/- 2.1231 C over the Stratification Period, beginning at 6.143 C and ending at 13.4693 C
Mean Smoothed SP8-Upper Pool delta T is \(10.1609+/-2.1201\) C over the Stratification Period, beginning at 6.0543 C and ending at 12.3153 C
The stratification period begins and ends with Smoothed SP8 readings of 67.9793 and 123.1198 C, respectively

The stratification period begins and ends with condensing flows of 0.549 and \(1.247 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of 4.2001 and \(1.7081 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of 1872.7689 +/-12.1382 kJ/kg.
At plume detection, the condensing and condensing+cooling flows are 0.49108 and 13.0555 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of \(1869.6989+/-16.6767 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 1.5818 degrees \(C\) at \(t\) plus 8335.7358 s with T_upper \(=\) 117.7687 C and T mid \(=116.1869 \mathrm{C}\)

At \(t\) plus 8335.7358 s, Smoothed SP8-SP9 is 12.2572 C and Smoothed SP8-Top is 10.6754 C, where Smoothed SP8 is 128.4441 C and Pool \(\mathrm{P}=41.4713\) psia
Maximum Smoothed Top-Lower delta \(T\) is 11.438 degrees \(C\) at \(t\) plus 5761.6936 s with T_upper \(=97.0643 \mathrm{C}\) and T low \(=85.6264 \mathrm{C}\)
At \(t\) plus 5761.6936 s, Smoothed SP8-SP9 is 12.8879 C and Smoothed SP8-Top is 12.2202 C, where Smoothed SP8 is 109.2845 C and Pool \(\mathrm{P}=27.3769\) psia
Maximum Smoothed Mid-Lower delta T is 10.7702 degrees C at t plus 5761.6936 s with T_mid \(=96.3966 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=85.6264 \mathrm{C}\)
At \(t\) plus 5761.6936 s , Smoothed SP8-SP9 is 12.8879 C and Smoothed SP8-Top is 12.2202 C , where Smoothed SP8 is 109.2845 C and Pool \(\mathrm{P}=27.3769\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 36.6847 degrees C at \(t\) plus 7425.8217 s with T_upper \(=110.2833 \mathrm{C}\) and \(T\) _out \(=73.5986 \mathrm{C}\)
At t plus 7425.8217 s, Smoothed SP8-SP9 is 13.5258 C and Smoothed SP8-Top is 12.4333 C, where Smoothed SP8 is 122.7166 C and Pool \(\mathrm{P}=35.7827 \mathrm{psia}\)
Maximum Smoothed Mid-Outlet delta \(T\) is 35.5999 degrees \(C\) at \(t\) plus 7418.8493 s with T_mid \(=109.1478 \mathrm{C}\) and \(\mathrm{T}_{-}\)out \(=73.5479 \mathrm{C}\)
At \(t\) plus 7418.8493 s , Smoothed SP8-SP9 is 13.6406 C and Smoothed SP8-Top is 12.5746 C , where Smoothed SP8 is 122.7884 C and Pool \(\mathrm{P}=35.7411 \mathrm{psia}\)
Maximum Smoothed Lower-Outlet delta \(T\) is 35.5758 degrees \(C\) at \(t\) plus 7432.4221 s with T_low \(=109.2327 \mathrm{C}\) and \(T\) _out \(=73.6568 \mathrm{C}\)
At \(t\) plus 7432.4221 s, Smoothed SP8-SP9 is 13.5696 C and Smoothed SP8-Top is 12.4893 C, where Smoothed SP8 is 122.8228 C and Pool \(\mathrm{P}=35.8225\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 14.2505 degrees \(C\) at (KEY POINT \#14) t plus 6969.9137 s with \(\mathrm{T}_{\text {_ }} \mathrm{SP} 8=120.2456 \mathrm{C}\) and T _SP9 \(=105.995 \mathrm{C}\) and Pool \(\mathrm{P}=\) 33.4157 psia

Maximum Smoothed Condensing Region SP8-Upper delta T is 13.363 degrees \(C\) at \(t\) plus 6445.1106 s with \(T_{-} S P 8=116.3356 \mathrm{C}\) and \(T_{-}\)upper \(=102.9726 \mathrm{C}\) and Pool \(\mathrm{P}=30.7583\) psia
Maximum Top-Mid delta \(T\) is 2.2528 degrees \(C\) at (KEY POINT \#4) t plus 3584.158 s ignoring SP 4, with temperatures of 75.2131 and 72.9603 C , respectively, at Set \# 2, where Pool \(P=19.0685\) psia and \(T\) outlet \(=67.756 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 4528.174 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.99985 C and a raw SP12 Reading of 83.6957 C .
Maximum Top-Lower delta \(T\) is 14.3987 degrees \(C\) at \(t\) plus 5941.0208 s, with temperatures of 98.8861 and 84.4874 C , respectively, at Set \# 1, where Pool P = 28.2713 psia and T_outlet \(=70.9469 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 11.7386 degrees \(C\) at (KEY POINT \#6) t plus 5770.8931 s ignoring SP 4, with temperatures of 96.41 and 84.6714 C, respectively, at Set \# 2, where Pool \(P=27.4266\) psia and \(T\) _outlet \(=70.7088 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 6037.4233 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 3.9117 C and a raw SP12 Reading of 98.7858 C .
Maximum Top-Outlet delta \(T\) is 37.2082 degrees \(C\) at \(t\) plus 7431.7221 s, with temperatures of 110.7704 and 73.5622 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=35.8096\) psia
Maximum Mid-Outlet delta \(T\) is 35.6618 degrees \(C\) at \(t\) plus 7396.9201 s ignoring SP 4, with temperatures of 108.9664 and 73.3046 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=\) 35.6445 psia

Maximum Lower-Outlet delta \(T\) is 36.8155 degrees \(C\) at (KEY POINT \#8) t plus 7430.621 s, with temperatures of 110.3773 and 73.5618 C , respectively, at Set \# 1, where Pool P = 35.8104 psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 7818.7272 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 12.2654 C and a raw SP12 Reading of 111.8494 C .
Minimum SP Pressure is 14.6753 psia at \(t\) plus 61.8995 s
Maximum SP Pressure is 42.2321 psia at \(t\) plus 8436.0375 s
Beginning SP Pressure is 14.6832 psia
Ending SP Pressure is 42.2311 psia
Time-Average SP Pressure is 23.6178 +/- 8.2121 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 75.5226 cm (cold) / 75.6601 cm (hot) at 14.6978 psia
Beginning Smoothed SP Level is 75.7776 cm (cold) / 75.9411 cm (hot) at 14.6894 psia
Ending Smoothed SP Level is 83.6256 cm (cold) / 85.4091 cm (hot) at 42.2433 psia
Minimum Smoothed Cold SP Level is 75.7691 cm at \(t\) plus 145.5033 s and 14.6974 psia
Minimum Smoothed Hot SP Level is 75.9392 cm at t plus 33.1999 s and 14.6897 psia
Maximum Smoothed Cold SP Level is 83.6945 cm at \(t\) plus 7358.0208 s and 35.419 psia
Maximum Smoothed Hot SP Level is 85.4091 cm at \(t\) plus 8436.4376 s and 42.2433 psia
SP 12 Temperature at the beginning is 40.0358 C , and at the end is 116.7484 C
At plume detection, the Mixing Number is 43.5377
The Mixing Number ranges from a minimum of 34.185 at (KEY POINT \#12) \(t\) plus 0 s to a maximum of 223.004 at (KEY POINT \#13) \(t\) plus 8433.2384 s; it had a mean value of 94.7469 +/- 55.3088 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality \(x 2\), Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam T t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta he6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8,

Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy ell
KEY POINT \#1 (t plus 0 s with a Mixing Number of 34.185): 53.72431041 0.040894
\begin{tabular}{lccccc}
0.00925 & 0.3937 & 0.7577762961 & 0.7594107385 & 0.6152278213 \\
0.6152278213 & 0.9995760134 & 50.96844979 & 176262.2459 & 0.06952849958 \\
0.05843773759 & 0.04564824051 & 0.02491522739 & 0.07056346789 & 40.41693034 \\
102.452972 & 102.452972 & 40.55870406 & 40.27360842 & 40.00712038 \\
37.61120412 & 4.178538843 & 4.219806227 & 2.087438042 & 0.6291624666 \\
0.6787334333 & 0.6787334333 & 4.301829735 & 1.70746906 & 0.03799210993 \\
992.0628711 & 956.5793401 & 0.6487682168 & 1.054069932 & 0.0006477263726 \\
0.0002746373352 & \(1.235318831 e-005\) & \(1.246439326 e-005\) & 1532.03691 & \\
1542.748058 & 473.5004852 & 466.2084479 & 1.106234776 & 1.012797239 \\
1.049797239 & 0.07550156658 & 0.07607238244 & 1816.297344 & 1813.699562 \\
169.3697131 & 429.4532049 & 2679.426806 & 260.0834918 & 1386.84414
\end{tabular}

KEY POINT \#2 (t plus 1659.7259 s with a Mixing Number of 43.5377): 52.28111092
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7664612406 & 0.7697324921 \\
0.6211750017 & 0.6211750017 & 0.9995606342 & 47.18911133 & 170650.8854 \\
0.06691360516 & 0.05808454857 & 0.04408799687 & 0.0245799202 & 0.06866791707 \\
56.07723374 & 104.271131 & 104.271131 & 58.07779441 & 55.90925758 \\
55.78607262 & 53.64782984 & 4.181226652 & 4.222234033 & 2.095123787 \\
0.6469618358 & 0.679409304 & 0.679409304 & 3.201927145 & 1.675306591 \\
0.03828596276 & 985.1867307 & 955.2462701 & 0.6885061668 & 1.10790624 \\
0.0004954346741 & 0.0002695774029 & \(1.241541883 e-005\) & \(1.252840702 e-005\) & \\
1551.142337 & 1540.895226 & 474.4099509 & 467.0754777 & 1.178833702 \\
1.083257124 & 1.120257124 & 0.165930582 & 0.1823718932 & 1833.977881 \\
1831.751069 & 234.8268931 & 437.1330752 & 2682.262049 & 202.3061822 \\
1396.844806 & 243.192404 & 234.1231086 & 233.6110263 & 224.6753562
\end{tabular}

KEY POINT \#3 (t plus 2290.736 s with a Mixing Number of 48.6299): 52.55772476
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.7752490371 & 0.7793552202 \\
0.6266878639 & 0.6266878639 & 0.9995543761 & 46.13245975 & 171020.2019 \\
0.06591937549 & 0.05786340586 & 0.04449091525 & 0.02454031651 & 0.06903123177 \\
61.83631569 & 105.4056553 & 105.4056553 & 67.97932698 & 61.92498151 \\
61.63627103 & 59.27000849 & 4.183551217 & 4.223785875 & 2.100059212 \\
0.6525443204 & 0.6798107027 & 0.6798107027 & 2.909016881 & 1.65584059 \\
0.03847355566 & 982.2641222 & 954.4069497 & 0.7142903852 & 1.139278613 \\
0.0004537442821 & 0.0002665045502 & \(1.245428451 e-005\) & \(1.256749537 e-005\) & \\
1554.915511 & 1539.69016 & 474.9717621 & 467.6681173 & 1.226095615 \\
1.135761498 & 1.172761498 & 0.2170352809 & 0.285726708 & 1849.148881 \\
1847.020678 & 258.917686 & 441.9276765 & 2684.02152 & 183.0099905 \\
1407.221205 & 284.6268984 & 259.2872053 & 258.0823037 & 248.1881914
\end{tabular}

KEY POINT \#4 (t plus 3584.158 s with a Mixing Number of 62.797): 52.68799233
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7894662381 & 0.7957639283 \\
0.6400902514 & 0.6400902514 & 0.999524489 & 41.90766409 & 169668.7323 \\
0.06384662748 & 0.05712861208 & 0.04533634359 & 0.02386598636 & 0.06920232995 \\
73.53903298 & 109.1543943 & 109.1543943 & 82.61570887 & 74.30705287 \\
72.2578697 & 67.66618872 & 4.190408938 & 4.229117703 & 2.117157954 \\
0.6623962235 & 0.6810268018 & 0.6810268018 & 2.436195686 & 1.594636098 \\
0.03911730497 & 975.7418303 & 951.5930071 & 0.805129927 & 1.257240017 \\
0.000385100081 & 0.0002567887673 & \(1.258287462 e-005\) & \(1.269899721 e-005\) & \\
1557.921933 & 1535.446452 & 476.7964372 & 469.4585556 & 1.393509102 \\
1.314641765 & 1.351641765 & 0.3629615203 & 0.526652352 & 1888.219354 \\
1886.463102 & 307.9286456 & 457.7837289 & 2689.780498 & 149.8550833 \\
1430.435625 & 345.9955389 & 311.1458005 & 302.5620871 & 283.3357794
\end{tabular}

KEY POINT \#5 (t plus 4528.174 s with a Mixing Number of 80.946): 53.6500332
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.7917778743 & 0.7997669357 \\
0.630992654 & 0.630992654 & 0.9994378883 & 37.13089726 & 170708.0342 \\
0.06197993025 & 0.05633737692 & 0.04575401368 & 0.02471189582 & 0.0704659095 \\
83.76224041 & 113.1561774 & 113.1561774 & 93.16928573 & 84.68226876 \\
77.51456894 & 69.36786971 & 4.198725819 & 4.235161741 & 2.136812139 \\
0.6694415377 & 0.6821402982 & 0.6821402982 & 2.122234569 & 1.534205998 \\
0.03984677406 & 969.4486187 & 948.5208896 & 0.9122272578 & 1.444889221 \\
0.0003383674083 & 0.0002471083282 & \(1.272039308 e-005\) & \(1.285214529 e-005\) & \\
1555.973863 & 1530.483983 & 478.6893431 & 470.5592211 & 1.592529782 \\
1.517919296 & 1.554919296 & 0.5511563485 & 0.7906506141 & 1877.609074 \\
1876.23037 & 350.8249702 & 474.7341319 & 2695.831682 & 123.9091617 \\
1402.874942 & 390.3663939 & 354.6869766 & 324.6113402 & 290.4775158
\end{tabular}

KEY POINT \#6 (t plus 5770.8931 s with a Mixing Number of 118.6919): 54.72733836
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.821934091 & 0.833500857 \\
0.6223704691 & 0.6223704691 & 0.9992879696 & 30.76480826 & 170866.641 \\
0.0595855964 & 0.0550535703 & 0.04650052478 & 0.02538035659 & 0.07188088137 \\
96.48960771 & 119.5759872 & 119.5759872 & 109.4204607 & 97.08317546 \\
85.80243676 & 70.76936609 & 4.212112216 & 4.245643388 & 2.171558638 \\
0.6762890265 & 0.6835349339 & 0.6835349339 & 1.821925746 & 1.446701991 \\
0.04111429597 & 960.8962966 & 943.4470521 & 1.107920078 & 1.77889418 \\
0.0002925250624 & 0.0002329143688 & \(1.294142239 e-005\) & \(1.309804981 e-005\) & \\
1548.33611 & 1521.626524 & 481.6034511 & 472.2978806 & 1.96012287 \\
1.891211702 & 1.928211702 & 0.8935473575 & 1.406072249 & 1874.219714 \\
1873.273241 & 404.3741308 & 501.9823402 & 2705.317763 & 97.60820939 \\
1372.237374 & 458.9479807 & 406.8732271 & 359.4237917 & 296.3774566
\end{tabular}

KEY POINT \#7 (t plus 6037.4233 s with a Mixing Number of 128.3454): 54.54818148
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.8272183083 & 0.839618162 \\
0.6208302011 & 0.6208302011 & 0.9992514288 & 29.32208913 & 169594.3486 \\
0.05912013134 & 0.05476530632 & 0.04634022377 & 0.02530534643 & 0.0716455702 \\
98.91801372 & 121.0055404 & 121.0055404 & 112.4051565 & 99.54028795 \\
94.61053138 & 71.10890471 & 4.215053716 & 4.248113313 & 2.17985958 \\
0.677362164 & 0.6837806943 & 0.6837806943 & 1.773542525 & 1.428657865 \\
0.04141370538 & 959.1782718 & 942.2930258 & 1.155801955 & 1.860310199 \\
0.0002850095595 & 0.0002299582413 & \(1.299069559 e-005\) & \(1.315311125 e-005\) & \\
1546.280246 & 1519.50843 & 482.23128 & 472.6630067 & 2.050746277 \\
1.983352398 & 2.020352398 & 0.9756414115 & 1.553501364 & 1874.330888 \\
1873.471103 & 414.6133615 & 508.0598338 & 2707.391096 & 93.44647227 \\
1366.271054 & 471.5847514 & 417.2352433 & 396.4697426 & 297.8071228
\end{tabular}

KEY POINT \#8 (t plus 7430.621 s with a Mixing Number of 177.1392): 54.02916768
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.8369291415 & 0.8524069313 \\
0.6230186294 & 0.6230186294 & 0.9990914903 & 23.93491903 & 164753.3665 \\
0.05711178159 & 0.05337908213 & 0.04642663935 & 0.0245372392 & 0.07096387855 \\
109.2398885 & 127.8220237 & 127.8220237 & 122.7755747 & 110.320628 \\
109.2087661 & 73.6428534 & 4.228983875 & 4.260601013 & 2.222386231 \\
0.6811176741 & 0.6846331946 & 0.6846331946 & 1.593239661 & 1.349070651 \\
0.04293234762 & 951.5792457 & 936.6700536 & 1.407641583 & 2.257336555 \\
0.0002566062498 & 0.000216781282 & \(1.322583352 e-005\) & \(1.341076562 e-005\) & \\
1535.577245 & 1508.704496 & 485.1164839 & 474.6445853 & 2.531142697 \\
2.469033752 & 2.506033752 & 1.397535866 & 2.167662947 & 1895.831968 \\
1895.259088 & 458.2264389 & 537.0921031 & 2717.07023 & 78.86566423 \\
1358.739865 & 515.6135902 & 462.7964923 & 458.0961365 & 308.4622795
\end{tabular}

KEY POINT \#9 (t plus 7496.9238 s with a Mixing Number of 179.4484): 54.12980052
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.8369085534 & 0.8525346678 \\
0.6197716266 & 0.6197716266 & 0.9990703524 & 23.64279262 & 164880.2502 \\
0.0570309056 & 0.05331450834 & 0.04632629647 & 0.02476975691 & 0.07109605339 \\
109.650488 & 128.1372799 & 128.1372799 & 123.1197805 & 110.804489 \\
109.6635286 & 74.27756467 & 4.229586459 & 4.261207751 & 2.224473142 \\
0.6812406383 & 0.6846599641 & 0.6846599641 & 1.586825236 & 1.345631849 \\
0.04300633452 & 951.2672672 & 936.4052007 & 1.420277714 & 2.289484216 \\
0.0002555828677 & 0.0002162063686 & \(1.32367143 e-005\) & \(1.342540455 e-005\) & \\
1535.088732 & 1508.177198 & 485.2455256 & 474.5837894 & 2.555397986 \\
2.49352322 & 2.53052322 & 1.417008656 & 2.19101784 & 1889.523195 \\
1888.964213 & 459.9647629 & 538.4370334 & 2717.509327 & 78.47227056 \\
1351.086162 & 517.0786703 & 464.8454628 & 460.0212303 & 311.1239816
\end{tabular}

KEY POINT \#10 (t plus 7818.7272 s with a Mixing Number of 192.6342): 52.32604733
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.836706884 & 0.8530505304 \\
0.6504355915 & 0.6504355915 & 0.9991471506 & 22.93661151 & 158952.7681 \\
0.05655951107 & 0.05298960091 & 0.04644880316 & 0.02227813503 & 0.06872693819 \\
112.0362717 & 129.7205377 & 129.7205377 & 124.8840163 & 113.1896579 \\
112.3856205 & 99.47162513 & 4.233169009 & 4.264295021 & 2.235116955 \\
0.6819143481 & 0.6847776336 & 0.6847776336 & 1.550582439 & 1.328665042 \\
0.04338306765 & 949.4388671 & 935.0686793 & 1.485126728 & 2.281332938 \\
0.0002497808169 & 0.0002133623726 & \(1.329136461 e-005\) & \(1.346199506 e-005\) & \\
1532.153603 & 1505.492808 & 485.8876409 & 476.3081907 & 2.680083639 \\
2.619498381 & 2.656498381 & 1.534621052 & 2.313966246 & 1960.098142 \\
1959.572054 & 470.069007 & 545.1945269 & 2719.702727 & 75.12551995 \\
1414.903615 & 524.5913384 & 474.9512825 & 471.5492497 & 416.9996506
\end{tabular}

KEY POINT \#11 (t plus 8436.4376 s with a Mixing Number of 222.9409): 54.00500197 \(\begin{array}{lllll}0.040894 & 0.00925 & 0.3937 & 0.83625599 & 0.85409058\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 0.6657485431 & 0.6657485431 & 0.9991195732 & 21.99650688 & 162601.1362 \\
\hline & 0.05556218624 & 0.05227234482 & 0.04793883523 & 0.0229933032 & 0.07093213843 \\
\hline & 117.0431362 & 133.198449 & 133.198449 & 128.7958563 & 118.5570557 \\
\hline & 118.1676518 & 114.8017052 & 4.241117599 & 4.27131634 & 2.259459609 \\
\hline & 0.6831107929 & 0.6849384351 & 0.6849384351 & 1.4798746 & 1.293103368 \\
\hline & 0.04424135742 & 945.521179 & 932.0953496 & 1.635961297 & 2.455162643 \\
\hline & 0.0002383613016 & 60.0002073590732 & \(1.341143962 e-005\) & \(51.35821963 \mathrm{e}-005\) & \\
\hline & 1525.49409 & 1499.3862 & 487.2630998 & 477.8560994 & 2.9713541 \\
\hline & 2.912575501 & 2.949575501 & 1.807600497 & 2.606677198 & 2001.482666 \\
\hline & 2000.998819 & 491.3044963 & 560.0570577 & 2724.450471 & 68.75256133 \\
\hline & 1441.425608 & 541.2705742 & 497.7259029 & 496.0760129 & 481.8069935 \\
\hline \multirow[t]{12}{*}{} & \[
\begin{aligned}
& \text { POINT \#12 (t plus } \\
& 0.00925
\end{aligned}
\] & \[
\begin{array}{cc}
0 \text { s with a Mixin } \\
0.3937 & 0
\end{array}
\] & Number of 34.185) & \[
0.7594107385 \quad 0
\] & \[
\begin{aligned}
& 0.040894 \\
& 152278213
\end{aligned}
\] \\
\hline & 0.6152278213 & 0.9995760134 & 50.96844979 & 176262.2459 & 0.06952849958 \\
\hline & 0.05843773759 & 0.04564824051 & 0.02491522739 & 0.07056346789 & 40.41693034 \\
\hline & 102.452972 & 102.452972 & 40.55870406 & 40.27360842 & 40.00712038 \\
\hline & 37.61120412 & 4.178538843 & 4.219806227 & 2.087438042 & 0.6291624666 \\
\hline & 0.6787334333 & 0.6787334333 & 4.301829735 & 1.70746906 & 0.03799210993 \\
\hline & 992.0628711 & 956.5793401 & 0.6487682168 & 1.0540699320 .00 & . 0006477263726 \\
\hline & 0.0002746373352 & 1.235318831e-005 & \(1.246439326 \mathrm{e}-005\) & 51532.03691 & \\
\hline & 1542.748058 & 473.5004852 & 466.2084479 & 1.106234776 & 1.012797239 \\
\hline & 1.049797239 & 0.07550156658 & 0.07607238244 & 1816.297344 & 1813.699562 \\
\hline & 169.3697131 & 429.4532049 & 2679.426806 & 260.0834918 & 1386.84414 \\
\hline & 169.96212 & 168.7693311 & 167.6589008 & 157.6513844 & \\
\hline \multirow[t]{13}{*}{KEY} & POINT \#13 (t plus & \multicolumn{3}{|l|}{8433.2384 s with a Mixing Number of 223.004): 54.53} & 360289 \\
\hline & 0.040894 & 0.00925 & 0.39370. & 0.8362537688 & 540776755 \\
\hline & 0.6588858279 & 0.6588858279 & 0.9990925676 & 21.99292637 & 164135.6216 \\
\hline & 0.05556530433 & 0.05227558577 & 0.0479378614 & 0.02368856075 & 0.07162642214 \\
\hline & 117.0275663 & 133.1827864 & 133.1827864 & 128.7969579 & 118.5379646 \\
\hline & 118.1624395 & 114.7926244 & 4.241092144 & 4.271283968 & 2.259347005 \\
\hline & 0.6831074821 & 0.6849380103 & 0.6849380103 & 1.480084054 & 1.293258441 \\
\hline & 0.04423739607 & 945.5335147 & 932.1088551 & 1.635255465 & 2.479597393 \\
\hline & 0.0002383953136 & 60.0002073853834 & \(1.341089881 \mathrm{e}-005\) & \(51.358691754 \mathrm{e}-005\) & \\
\hline & 1525.515664 & 1499.414341 & 487.2570141 & 477.5652006 & 2.969987218 \\
\hline & 2.910874258 & 2.947874258 & 1.806693896 & 2.606763663 & 1986.592099 \\
\hline & 1986.10841 & 491.2383425 & 559.9900666 & 2724.429311 & 68.75172411 \\
\hline & 1426.602032 & 541.2751538 & 497.6447669 & 496.0537771 & 481.7683927 \\
\hline \multirow[t]{13}{*}{KEY} & POINT \#14 (t plus & 6969.9137 s with & \multicolumn{3}{|l|}{Mixing Number of 160.6076): 54.82757732} \\
\hline & 0.040894 & 0.00925 & 0.39370. & 0.83617236110 .8 & 8507478675 \\
\hline & 0.6088828619 & 0.6088828619 & 0.9990959047 & 25.27295277 & 168101.9254 \\
\hline & 0.057748293 & 0.05382773325 & 0.04607279185 & 0.02593974703 & 0.07201253888 \\
\hline & 105.9950486 & 125.6261661 & 125.6261661 & 120.2455708 & 106.9515011 \\
\hline & 105.4718306 & 72.66685253 & 4.224350717 & 4.256447563 & 2.208147451 \\
\hline & 0.6800762099 & 0.6844158434 & 0.6844158434 & 1.645848745 & 1.37359626 \\
\hline & 0.04242635029 & 954.0194914 & 938.5030926 & 1.322116246 & 2.169417156 \\
\hline & 0.0002649644055 & 50.0002208675259 & \(1.315005766 \mathrm{e}-005\) & \(51.333785405 \mathrm{e}-005\) & \\
\hline & 1539.275482 & 1512.310231 & 484.2068131 & 473.4494984 & 2.367336754 \\
\hline & 2.303463459 & 2.340463459 & 1.25125868 & 2.002153376 & 1859.545156 \\
\hline & 1858.906434 & 444.4995253 & 527.7297917 & 2713.990442 & 83.23026636 \\
\hline & 1331.815364 & 504.8522431 & 448.5393068 & 442.290792 & 304.3595185 \\
\hline
\end{tabular}

End

\section*{D. 9 TEST \#9 - T09_RCIC_14PSIG_107KW_RESULTS_RCICLAND.TXT}

Output Saved to C: \Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash\) Export \(\backslash\) T09_RCIC_14PSIG_107kW
Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1785.2361 s , and ending (KEY POINT \#11) at \(t\) plus 11121.3801 s , for a time period of 9336.144 s.
Original Data Record Time: 12508.3004 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(1231.6184 \mathrm{~s}, \mathrm{~T}\) _bulk \(=51.446 \mathrm{C}\) and T _out \(=46.6852 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=51.3612 \mathrm{C}\)
Stratification Beginning Pressure = 30.9121 psia

Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(9306.5423 \mathrm{~s}, \mathrm{~T}\) _bulk \(=127.6598 \mathrm{C}\) and T _out \(=65.9489 \mathrm{C}\)
Stratification Ending \(\overline{\text { SP1 }} 12\) Temperature \(=127.5488 \mathrm{C}\)
Stratification Ending Pressure \(=72.0254\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 863.2124 s .
At \(t=863.2124\) s, the pool pressure is 30.4636 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 48.6881, 48.7419, 50.7443, 49.1189, and 43.8525 C , respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 15.0062 +/- 3.9978 C .
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 13.6782 +/- 3.7886 C .
Minimum Steam Quality: 0.98945 at \(t\) plus 8926.3376 s
Maximum Steam Quality: 1.0028 at t plus 1557.1231 s
Time-Averaged Steam Quality: 0.99725 +/- 0.0023927
Minimum Turbine Outlet Steam Quality: 0.99147 at \(t\) plus 8926.3376 s
Maximum Turbine Outlet Steam Quality: 1.0122 at \(t\) plus 1557.1231 s
Time-Averaged Turbine Outlet Steam Quality: 1.0034 +/- 0.0048722
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 9246.2429 s ; using 300 s smoothing
Max and min smoothed upper level changerates: 0.8275 degrees \(/ \mathrm{min}\) at t plus 2863.1438 s and 0.357 degrees/min at \(t\) plus 9239.5435 s , respectively
Max and min smoothed mid (SP9) level changerates: 0.88415 degrees/min at t plus 3745.6562 s and 0.37111 degrees/min at \(t\) plus 2919.885 s, respectively

Max and min smoothed upper-mid level changerate differences: 0.38408 degrees/min at \(t\) plus 2863.9438 s and -0.27744 degrees/min at \(t\) plus 3744.8562 s , respectively
Max and min smoothed lower level changerates: 3.102 degrees \(/ \mathrm{min}\) at t plus 7515.3159 s and -0.19145 degrees/min at \(t\) plus 2218.7339 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.69331 degrees/min at t plus 2218.7339 s and -2.5958 degrees/min at t plus 7515.3159 s , respectively
Max and min smoothed outlet level changerates: 0.70738 degrees/min at t plus 667.6102 s and 0.012087 degrees/min at \(t\) plus 3460.4519 s , respectively
Max and min smoothed lower-outlet level changerate differences: 3.0035 degrees/min at t plus 7515.3159 s and -0.54718 degrees/min at \(t\) plus 2114.0309 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.4205 degrees/min at t plus 1724.7257 s and 0.12903 degrees/min at \(t\) plus 8107.6237 s , respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.90237 degrees/min at \(t\) plus 1724.7257 s and -0.41519 degrees \(/ \mathrm{min}\) at t plus 3557.1535 s , respectively
The mean steam flow rate was 43.4815 +/- \(1.1074 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 43.4205 +/- \(1.6892 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.0027484+/-0.038867 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta T is \(15.5421+/-3.1807\) C over the Stratification Period, beginning at 4.0088 C and ending at 14.8862 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(14.1602+/-3.1092\) C over the Stratification Period, beginning at 3.4709 C and ending at 14.2405 C
The stratification period begins and ends with Smoothed SP8 readings of 55.7904 and 142.5166 C, respectively

The stratification period begins and ends with condensing flows of 0.31847 and 0.8453 \(\mathrm{kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of 6.3985 and \(1.4057 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(2733.0317+/-1.8199 \mathrm{~kJ} / \mathrm{kg}\). At plume detection, the condensing and condensing+cooling flows are 0.30716 and 12.9002 kg/s, respectively
The plume period had a mean steam enthalpy of \(2733.0351+/-1.8789 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 3.7619 degrees C at t plus 3411.8522 s with T_upper \(=\) 74.5053 C and T mid \(=70.7434 \mathrm{C}\)

At \(t\) plus 3411.8522 s, Smoothed SP8-SP9 is 17.2901 C and Smoothed SP8-Top is 13.5282 C , where Smoothed SP8 is 88.0335 C and Pool \(\mathrm{P}=35.7393\) psia
Maximum Smoothed Top-Lower delta \(T\) is 27.7551 degrees \(C\) at \(t\) plus 7050.8083 s with T_upper \(=111.3447 \mathrm{C}\) and \(T\) low \(=83.5895 \mathrm{C}\)
At \(t\) plus 7050.8083 s , Smoothed SP8-SP9 is 17.7157 C and Smoothed SP8-Top is 17.2516 C, where Smoothed SP8 is 128.5963 C and Pool \(\mathrm{P}=54.7955\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 27.2911 degrees \(C\) at \(t\) plus 7050.9083 s with T_mid \(=110.8813 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=83.5902 \mathrm{C}\)

At t plus 7050.9083 s , Smoothed SP8-SP9 is 17.7079 C and Smoothed SP8-Top is 17.244 C , where Smoothed SP8 is 128.5892 C and Pool \(\mathrm{P}=54.7959\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 62.3497 degrees \(C\) at \(t\) plus 9298.3438 s with T upper \(=128.3087 \mathrm{C}\) and T out \(=65.9591 \mathrm{C}\)
At \(t\) plus 9298.3438 s , Smoothed SP8-SP9 is 14.8796 C and Smoothed SP8-Top is 14.135 C , where Smoothed SP8 is 142.4437 C and Pool \(\mathrm{P}=71.9578\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 61.8155 degrees C at \(t\) plus 9336.144 s with T_mid \(=127.8872 \mathrm{C}\) and \(T_{\text {_out }}=66.0718 \mathrm{C}\)
At t plus 9336.144 s , Smoothed SP8-SP9 is 14.656 C and Smoothed SP8-Top is 14.1326 C , where Smoothed SP8 is 142.5433 C and Pool \(\mathrm{P}=72.2619\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 60.9292 degrees C at t plus 9332.5438 s with T_low \(=126.9894 \mathrm{C}\) and \(T\) _out \(=66.0602 \mathrm{C}\)
At t plus 9332.5438 s , Smoothed SP8-SP9 is 14.7466 C and Smoothed SP8-Top is 14.2285 C , where Smoothed SP8 is 142.6 C and Pool \(\mathrm{P}=72.2426\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 18.5497 degrees \(C\) at (KEY POINT \#14) t plus 3487.1534 s with \(\mathrm{T}_{-} \mathrm{SP} 8=89.9851 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{SP9}=71.4354 \mathrm{C}\) and Pool \(\mathrm{P}=\) 35.9873 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 17.9235 degrees \(C\) at \(t\) plus 6529.1004 s with \(\mathrm{T}_{-}\)SP8 \(=124.7097 \mathrm{C}\) and \(\mathrm{T}_{-}\)upper \(=106.7862 \mathrm{C}\) and Pool \(\mathrm{P}=51.1953\) psia
Maximum Top-Mid delta \(T\) is 5.0676 degrees \(C\) at (KEY POINT \#4) t plus 2954.044 s ignoring SP 4, with temperatures of 70.9112 and 65.8436 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=34.4004\) psia and \(T\) _outlet \(=56.6531 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 5793.2884 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 1.6889 C and a raw SP12 Reading of 97.9773 C .
Maximum Top-Lower delta \(T\) is 29.9102 degrees C at t plus 7110.2087 s, with temperatures of 111.8397 and 81.9296 C, respectively, at Set \# 2, where Pool \(P=55.2218\) psia and T_outlet \(=62.6679 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 29.399 degrees \(C\) at (KEY POINT \#6) t plus 7110.3097 s ignoring SP 4, with temperatures of 111.322 and 81.923 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=55.225\) psia and \(T\) outlet \(=62.6726 \mathrm{C}\)
Mid-Low Reconvergence Detected at \({ }^{-}\)(KEY POINT \#7) t plus 7719.7385 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 9.7901 C and a raw SP12 Reading of 116.277 C .
Maximum Top-Outlet delta \(T\) is 62.8564 degrees \(C\) at \(t\) plus 9322.2432 s, with temperatures of 128.7874 and 65.931 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=72.1576\) psia
Maximum Mid-Outlet delta \(T\) is 61.8181 degrees \(C\) at \(t\) plus 9335.944 ignoring \(S P\), with temperatures of 127.9223 and 66.1041 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=\) 72.2539 psia

Maximum Lower-Outlet delta \(T\) is 61.9354 degrees \(C\) at (KEY POINT \#8) \(t\) plus 9198.5651 s, with temperatures of 127.6744 and 65.7391 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=71.1036\) psia
Low-Outlet Reconvergence NOT Detected, setting t to (KEY POINT \#10) t plus 9336.144 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 61.5178 C and a raw SP12 Reading of 127.9371 C .
Minimum SP Pressure is 29.6403 psia at \(t\) plus 2.2341 s
Maximum SP Pressure is 72.2619 psia at \(t\) plus 9336.144 s
Beginning SP Pressure is 29.643 psia
Ending SP Pressure is 72.2619 psia
Time-Average SP Pressure is 44.313 +/- 12.7652 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 84.3452 cm (cold) / 84.5256 cm (hot) at 28.7816 psia
Beginning Smoothed SP Level is 84.8555 cm (cold) / 85.0933 cm (hot) at 29.6403 psia
Ending Smoothed SP Level is 83.0104 cm (cold) / 85.0647 cm (hot) at 72.2683 psia
Minimum Smoothed Cold SP Level is 83.0104 cm at \(t\) plus 9336.144 s and 72.2683 psia
Minimum Smoothed Hot SP Level is 85.0647 cm at \(t\) plus 9336.144 s and 72.2683 psia
Maximum Smoothed Cold SP Level is 85.3284 cm at \(t\) plus 2849.542 s and 34.118 psia
Maximum Smoothed Hot SP Level is 86.3905 cm at \(t\) plus 5309.1817 s and 43.6737 psia
SP 12 Temperature at the beginning is 40.432 C , and at the end is 127.9371 C
At plume detection, the Mixing Number is 44.8139
The Mixing Number ranges from a minimum of 40.6672 at (KEY POINT \#12) \(t\) plus 0 to a maximum of 227.6333 at (KEY POINT \#13) \(t\) plus 9336.144 s; it had a mean value of 101.5207 +/- 55.3862 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat

Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam T t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) csl, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation h (kJ/kg) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid
Subcooling delta h e6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy elo, Pool Outlet Smoothed Enthalpy e11
KEY POINT \#1 (t plus 0 s with a Mixing Number of 40.6672): 33.76693435 0.040894
\(0.00925 \quad 0.3937 \quad 0.8485546192 \quad 0.8509330776 \quad 1.006321913\)
\(1 \quad 1 \quad 29.08978363 \quad 104078.2906 \quad 0.06956789776\)
\begin{tabular}{lllll}
0.05461064697 & 0.04435072261 & \(2.873584963 e-006\) & 0.04435072261 & 40.17477116
\end{tabular}
\begin{tabular}{lllll}
128.1872887 & 121.7707737 & 40.95337758 & 40.39381282 & 40.10855865
\end{tabular}
\begin{tabular}{lllll}
35.78166995 & 4.178287122 & 4.24945629 & 2.184389716 & 0.6289091084
\end{tabular}
\begin{tabular}{lllll}
0.683902644 & 0.683902644 & 4.32283105 & 1.419200572 & 0.04157663592
\end{tabular}
\begin{tabular}{llllll}
992.1991288 & 941.6716776 & 1.182111113 & 1.160858486 & 0.0006506656297
\end{tabular}
\begin{tabular}{lccccc}
0.0002284045199 & \(1.301707796 e-005\) & \(1.326756047 e-005\) & 1531.796404 & \\
1518.353279 & 482.5641462 & 487.1692282 & 2.100644111 & 2.043628264 \\
2.080628264 & 0.07453512326 & 0.07768109615 & 2723.231497 & 2722.385281
\end{tabular}
\begin{tabular}{lllll}
2.080628264 & 0.07453512326 & 0.07768109615 & 2723.231497 & 2722.385281
\end{tabular}
\(168.4491613 \quad 511.3146326 \quad 2708.494898 \quad 342.8654713 \quad 2211.916864\)
\(171.7024015 \quad 169.3628751 \quad 168.1741013 \quad 150.098729\)
KEY POINT \#2 (t plus 863.2124 s with a Mixing Number of 44.8139): 32.6807584
\begin{tabular}{llllll}
0.040894 & 0.00925 & 0.3937 & 0.849949505 & 0.853339833
\end{tabular}
1.00818448 1 1 \(\quad 1 \quad 27.6033057 \quad 1099.3041\)
\(0.06815475260 .0544380914 \quad 0.04292409951 .64553121 \mathrm{e}-006\)
\begin{tabular}{lllll}
48.7418885 & 130.923766 & 122.623128 & 50.7443126 & 48.6880715
\end{tabular}
\begin{tabular}{lllcc}
49.1189473 & 43.8525311 & 4.17904386 & 4.25096942 & 2.18950736 \\
0.639169894 & 0.684030619 & 0.684030619 & 3.65170825 & 1.40882831
\end{tabular}
- \(\quad .684 .65170825\)
\(0.000558515788 \quad 0.000226696926 \quad 1.3046469 \mathrm{e}-005 \quad 1.3371248 \mathrm{e}-005 \quad 1544.07468\)
\begin{tabular}{lllll}
1517.04922 & 482.932261 & 488.858548 & 2.15738425 & 2.10005754
\end{tabular}
\begin{tabular}{lllll}
2.13705754 & 0.116004907 & 0.128147623 & 2728.4444 & 2727.68245
\end{tabular}
\(204.252012 \quad 514.941273 \quad 2709.71935 \quad 310.689261 \quad 2213.50312\)
\(212.620629 \quad 204.025637 \quad 205.829326 \quad 183.826502\)

KEY POINT \#3 (t plus 1231.6184 s with a Mixing Number of 46.6016): 32.716868
\begin{tabular}{llllll}
0.040894 & 0.00925 & 0.3937 & 0.850691483 & 0.854592475
\end{tabular}
\begin{tabular}{lllll}
1.00848238 & 1 & 1 & 27.290695 & 99854.8597
\end{tabular}
\(0.06764389430 .0543455994 \quad 0.04297152722 .25075822 \mathrm{e}-006 \quad 0.0429715272\)
\begin{tabular}{llllll}
51.7815561 & 131.670552 & 123.079385 & 55.7903787 & 52.3194826
\end{tabular}
\begin{tabular}{lllll}
52.67409 & 46.7207198 & 4.17970493 & 4.25178691 & 2.19227802
\end{tabular}
\begin{tabular}{lllll}
0.642524488 & 0.684095728 & 0.684095728 & 3.45331433 & 1.40334508
\end{tabular}
\(0.0418596129 \quad 987.279239 \quad 940.603309 \quad 1.22822066 \quad 1.19889148\)
\begin{tabular}{llllll}
0.000530860207 & 0.000225792683 & \(1.30622038 e-005\) & \(1.33986829 e-005\) & 1547.42652
\end{tabular}
\begin{tabular}{lllll}
1516.34367 & 483.12816 & 489.261057 & 2.18826638 & 2.13094974
\end{tabular}
\begin{tabular}{lllll}
2.16794974 & 0.134854788 & 0.163680226 & 2729.72339 & 2728.97861
\end{tabular}
\begin{tabular}{lllll}
216.958526 & 516.883142 & 2710.37259 & 299.924617 & 2212.84025
\end{tabular}
\(233.716477 \quad 219.205479 \quad 220.690697 \quad 195.813983\)
KEY POINT \#4 (t plus 2954.044 s with a Mixing Number of 57.9211): 33.37585138
\begin{tabular}{lccccc}
0.040894 & 0.00925 & & 0.3937 & 0.8532480159 & 0.8602631332 \\
1.007630461 & & 1 & 25.23634313 & 101276.1001 \\
0.06511002431 & 0.05367185635 & 0.04383705998 & \(4.269703282 e-006\) & 0.04383705998 \\
66.45283314 & 134.0109917 & 126.3901786 & 81.35163822 & 69.31646446 \\
64.25081069 & 56.7564521 & 4.185657708 & 4.257878355 & 2.213042816 \\
0.6567264215 & 0.6844976072 & 0.6844976072 & 2.704917272 & 1.364947777 \\
0.04260056052 & 979.8315702 & 937.8676479 & 1.351384425 & 1.322660023 \\
0.0004243994049 & 0.0002194293518 & \(1.317642005 e-005\) & \(1.347674392 e-005\) &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1557.022434 & 1511.069028 & 484.5254664 & 490.0238924 & 2.423321546 \\
\hline & 2.371756258 & 2.408756258 & 0.2671392587 & 0.5007010359 & 2732.36862 \\
\hline & 2731.731747 & 278.3384693 & 530.9861625 & 2715.06621 & 252.6476932 \\
\hline & 2201.382457 & 340.7738457 & 290.3256494 & 269.1243844 & 237.7814188 \\
\hline \multirow[t]{13}{*}{} & POINT \#5 (t plus & 5793.2884 s with & a Mixing Number & of 107.8478): 34 & 34.11235112 \\
\hline & 0.040894 & 0.00925 & 0.3937 & 0.8497175675 & 0.8630182943 \\
\hline & 1.002367204 & 1 & 1 & 19.30114921 & 102516.8077 \\
\hline & 0.05920094968 & 0.05163672361 & 10.04480440558 & \(58-2.770918988 \mathrm{e}-0\) & 007 \\
\hline & 0.04480440558 & 98.49738588 & 138.5053254 & 54136.261253 & 36115.400373 \\
\hline & 99.55306462 & 79.10375697 & 60.86295201 & 4.214252361 & 4.277780275 \\
\hline & 2.281999753 & 0.6772500231 & 0.6849697532 & 0.6849697532 & 1.781643145 \\
\hline & 1.263622223 & 0.04503300884 & 959.5342859 & 929.4343473 & 1.778771606 \\
\hline & 1.7673631650 & 0.0002863183686 & 0.00020233460971 & \(1.351720083 \mathrm{e}-005\) & \(1.360743198 \mathrm{e}-005\) \\
\hline & 1546.900173 & 1493.773399 & 488.43414 & 490.1455943 & 3.248610425 \\
\hline & 3.200048958 & 3.237048958 & 0.9609907668 & 1.713975674 & 2734.023852 \\
\hline & 2733.651318 & 412.9323082 & 573.1674781 & 2728.54909 & 160.2351699 \\
\hline & 2160.856374 & 484.3601303 & 417.3806177 & 331.4105876 & 255.0240284 \\
\hline \multirow[t]{13}{*}{} & POINT \#6 (t plus & 7110.3097 s with & a Mixing Number & of 147.3186): 33 & 33.3599877 \\
\hline & 0.040894 & 0.00925 & 0.39370. & 0.8387093150. & . 854676993 \\
\hline & 0.998997339 & 0.998997339 & 0.999997731 & 15.9558964 & 99393.1252 \\
\hline & 0.0566826981 & 0.0503765366 & 0.0438162244. & \(4.84494435 e-007\) & 0.043816224 \\
\hline & 111.414024 & 142.282429 & 142.282429 & 129.079417 & 111.831217 \\
\hline & 85.1110821 & 62.6422973 & 4.23192498 & 4.29129066 & 2.32934001 \\
\hline & 0.681815622 & 0.68473371 & 0.68473371 & 1.5597958 & 1.21026093 \\
\hline & 0.0466903822 & 949.976688 & 924.086836 & 2.08869387 & 2.09078548 \\
\hline & 0.000251302457 & 70.000193113569 & 1.37251232e-005 & 1.37255301e-005 & 1533.19981 \\
\hline & 1482.11198 & 490.625201 & 490.603461 & 3.85459128 & 3.80724395 \\
\hline & 3.84424395 & 1.50320024 & 2.62901209 & 2734.48343 & 2734.22884 \\
\hline & 467.521238 & 599.004243 & 2736.37189 & 131.483005 & 2135.47919 \\
\hline & 542.540031 & 469.285669 & 356.670271 & 262.517738 & \\
\hline \multirow[t]{13}{*}{} & POINT \#7 (t plus & 7719.7385 s with & a Mixing Number & of 167.2513): 33 & 33.0524828 \\
\hline & 0.040894 & 0.00925 & 0.3937 0. & 0.8352084790 & 0.85248605 \\
\hline & 0.997012214 & 0.997012214 & 0.999992707 & 14.6936239 & 97799.0762 \\
\hline & 0.0556916471 & 0.0498006115 & 0.04341233588. & 8.39660351e-007 & 0.0434123358 \\
\hline & 116.396253 & 145.012503 & 145.012503 & 133.187222 & 117.031524 \\
\hline & 109.39799 & 63.5500628 & 4.23974749 & 4.29778355 & 2.35212747 \\
\hline & 0.683045332 & 0.684498048 & 0.684498048 & 1.48855648 & 1.18791931 \\
\hline & 0.0474872888 & 946.093939 & 921.611333 & 2.24278278 & 2.24948741 \\
\hline & 0.000239814177 & 70.000189197161 & 1.38193856e-005 & \(51.38206646 \mathrm{e}-005\) & 1526.6686 \\
\hline & 1476.55597 & 491.569745 & 491.502462 & 4.15778018 & 4.11098529 \\
\hline & 4.14798529 & 1.77024594 & 2.97037429 & 2733.66715 & 2733.45125 \\
\hline & 488.646656 & 610.747901 & 2739.81244 & 122.101245 & 2122.91925 \\
\hline & 560.087642 & 491.33916 & 459.016078 & 266.340688 & \\
\hline \multirow[t]{13}{*}{} & POINT \#8 (t plus & 9198.5651 s with & a Mixing Number & of 222.4009): 31 & 31.339967 \\
\hline & 0.040894 & 0.00925 & 0.39370. & 0.8305987940. & . 850836238 \\
\hline & 0.995288335 & 0.995288335 & 0.999986342 & 11.8089978 & 91260.2105 \\
\hline & 0.0535709685 & 0.0484336709 & 0.04116305525. & \(5.13564559 \mathrm{e}-006\) & 0.0411630552 \\
\hline & 126.884045 & 151.440702 & 151.440702 & 141.690248 & 127.602321 \\
\hline & 125.768352 & 65.7619254 & 4.25817273 & 4.3140334 & 2.4090229 \\
\hline & 0.684699365 & 0.683630181 & 0.683630181 & 1.35932459 & 1.13944741 \\
\hline & 0.0494795821 & 937.572284 & 915.656556 & 2.64176705 & 2.65423684 \\
\hline & 0.000218574666 & 60.00018056435 & 1.40412678e-005 & 1.40435421e-005 & 1510.8241 \\
\hline & 1462.82701 & 493.672313 & 493.556926 & 4.94772622 & 4.90229787 \\
\hline & 4.93929787 & 2.46008028 & 3.79123779 & 2737.84075 & 2737.7013 \\
\hline & 533.261502 & 638.475552 & 2747.63897 & 105.214051 & 2099.3652 \\
\hline & 596.533164 & 536.319363 & 528.51314 & 275.661192 & \\
\hline \multirow[t]{11}{*}{KEY} & POINT \#9 (t plus 9 & 9306.5423 s with & a Mixing Number & of 226.0249): 31 & 31.8489377 \\
\hline & 0.040894 & 0.00925 & 0.39370. & 0.8302089970. & . 850672155 \\
\hline & 0.995410686 & 0.995410686 & 0.99998653 & 11.8579833 & 92632.8756 \\
\hline & 0.0534183137 & 0.0483305874 & 0.0418315558 & \(3.960987 e-006\) & 0.0418315558 \\
\hline & 127.630394 & 151.922626 & 151.922626 & 142.516573 & 128.276043 \\
\hline & 126.724289 & 65.9780009 & 4.25959031 & 4.31530828 & 2.41347066 \\
\hline & 0.684769566 & 0.683547546 & 0.683547546 & 1.35107332 & 1.13603328 \\
\hline & 0.0496356447 & 936.947969 & 915.202966 & 2.6738275 & 2.68611893 \\
\hline & 0.000217197858 & 80.000179948386 & 1.40578975e-005 & \(51.4060132 \mathrm{e}-005\) & 1509.59222 \\
\hline & 1461.76163 & 493.823047 & 493.709989 & 5.01147465 & 4.96596092 \\
\hline & 5.00296092 & 2.51649072 & 3.87987471 & 2738.6777 & 2738.53709 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 536.444451 & 640.558792 & 2748.20976 & 104.114341 & 2098.11891 \\
\hline & 600.082623 & 539.193878 & 532.586861 & 276.570678 & \\
\hline \multirow[t]{13}{*}{} & POINT \#10 (t plus & 9336.144 s with & a Mixing Number & f of 227.6333): & 31.930864 \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.830104244 & 0.85064691 \\
\hline & 0.995511991 & 0.995511991 & 0.999986786 & 11.8526515 & 92842.8601 \\
\hline & 0.0533657316 & 0.0483037315 & 0.0419391608 & \(4.6456069 \mathrm{e}-006\) & 0.0419391608 \\
\hline & 127.887219 & 152.048116 & 152.048116 & 142.543257 & 128.410618 \\
\hline & 126.944755 & 66.071764 & 4.26008296 & 4.31564159 & 2.41463298 \\
\hline & 0.68479195 & 0.683525629 & 0.683525629 & 1.34826082 & 1.13514907 \\
\hline & 0.0496764382 & 936.732307 & 915.08469 & 2.68222676 & 2.69428329 \\
\hline & 0.000216727741 & 0.000179788675 & \(1.40622276 \mathrm{e}-005\) & \(51.40644176 e-005\) & \(5 \quad 1509.16392\) \\
\hline & 1461.4834 & 493.862139 & 493.751414 & 5.02818173 & 4.98272056 \\
\hline & 5.01972056 & 2.5361433 & 3.88276448 & 2739.04111 & 2738.90063 \\
\hline & 537.539618 & 641.10136 & 2748.35801 & 103.561742 & 2097.93975 \\
\hline & 600.198208 & 539.768437 & 533.526757 & 276.964446 & \\
\hline \multirow[t]{13}{*}{KEY} & POINT \#11 (t plus & 9336.144 s with & a Mixing Number & f of 227.6333): & 31.930864 \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.830104244 & 0.85064691 \\
\hline & 0.995511991 & 0.995511991 & 0.999986786 & 11.8526515 & 92842.8601 \\
\hline & 0.0533657316 & 0.0483037315 & 0.0419391608 & \(4.6456069 \mathrm{e}-006\) & 0.0419391608 \\
\hline & 127.887219 & 152.048116 & 152.048116 & 142.543257 & 128.410618 \\
\hline & 126.944755 & 66.071764 & 4.26008296 & 4.31564159 & 2.41463298 \\
\hline & 0.68479195 & 0.683525629 & 0.683525629 & 1.34826082 & 1.13514907 \\
\hline & 0.0496764382 & 936.732307 & 915.08469 & 2.68222676 & 2.69428329 \\
\hline & 0.000216727741 & 0.000179788675 & \(1.40622276 \mathrm{e}-005\) & \(51.40644176 e-005\) & 51509.16392 \\
\hline & 1461.4834 & 493.862139 & 493.751414 & 5.02818173 & 4.98272056 \\
\hline & 5.01972056 & 2.5361433 & 3.88276448 & 2739.04111 & 2738.90063 \\
\hline & 537.539618 & 641.10136 & 2748.35801 & 103.561742 & 2097.93975 \\
\hline & 600.198208 & 539.768437 & 533.526757 & 276.964446 & \\
\hline
\end{tabular} KEY POINT \#12 (t plus 0 s with a Mixing Number of 40.6672): 33.76693435 0.040894
\(0.00925 \quad 0.3937 \quad 0.8485546192 \quad 0.8509330776 \quad 1.006321913\)
\begin{tabular}{lcccccr}
1 & 1 & 29.08978363 & 104078.2906 & 0.06956789776 & \\
0.05461064697 & 0.04435072261 & \(2.873584963 e-006\) & 0.04435072261 & 40.17477116 \\
128.1872887 & 121.7707737 & 40.95337758 & 40.39381282 & 40.10855865 \\
35.78166995 & 4.178287122 & 4.24945629 & 2.184389716 & 0.6289091084 \\
0.683902644 & 0.683902644 & 4.32283105 & 1.419200572 & 0.04157663592 \\
992.1991288 & 941.6716776 & 1.182111113 & 1.160858486 & 0.0006506656297 \\
0.0002284045199 & \(1.301707796 e-005\) & \(1.326756047 e-005\) & 1531.796404 & \\
1518.353279 & 482.5641462 & 487.1692282 & 2.100644111 & 2.043628264 \\
2.080628264 & 0.07453512326 & 0.07768109615 & 2723.231497 & 2722.385281 \\
168.4491613 & 511.3146326 & 2708.494898 & 342.8654713 & 2211.916864 \\
171.7024015 & 169.3628751 & 168.1741013 & 150.098729 &
\end{tabular}

KEY POINT \#13 (t plus 9336.144 s with a Mixing Number of 227.6333): 31.930864
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.830104244 & 0.85064691 \\
0.995511991 & 0.995511991 & 0.999986786 & 11.8526515 & 92842.8601 \\
0.0533657316 & 0.0483037315 & 0.0419391608 & \(4.6456069 \mathrm{e}-006\) & 0.0419391608 \\
127.887219 & 152.048116 & 152.048116 & 142.543257 & 128.410618 \\
126.944755 & 66.071764 & 4.26008296 & 4.31564159 & 2.41463298 \\
0.68479195 & 0.683525629 & 0.683525629 & 1.34826082 & 1.13514907 \\
0.0496764382 & 936.732307 & 915.08469 & 2.68222676 & 2.69428329 \\
0.000216727741 & 0.000179788675 & \(1.40622276 e-005\) & \(1.40644176 e-005\) & 1509.16392 \\
1461.4834 & 493.862139 & 493.751414 & 5.02818173 & 4.98272056 \\
5.01972056 & 2.5361433 & 3.88276448 & 2739.04111 & 2738.90063 \\
537.539618 & 641.10136 & 2748.35801 & 103.561742 & 2097.93975 \\
600.198208 & 539.768437 & 533.526757 & 276.964446 &
\end{tabular}

KEY POINT \#14 (t plus 3487.1534 s with a Mixing Number of 62.9271): 33.59573585
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.853087058 & 0.8611924652 \\
1.006902591 & & 1 & 24.32605045 & 101791.6099 \\
0.06422432382 & 0.05337635945 & 0.04412586425 & \(4.462237049 \mathrm{e}-006\) & 0.04412586425 \\
71.43539144 & 134.6822165 & 127.8353201 & 89.98507493 & 75.11532501 \\
67.55597884 & 57.87352082 & 4.188702783 & 4.26062655 & 2.222474032 \\
0.6608319386 & 0.6846343461 & 0.6846343461 & 2.510844745 & 1.348925204 \\
0.04293546128 & 977.0210177 & 936.6588916 & 1.408172695 & 1.381199685 \\
0.0003961241669 & 0.0002167569756 & \(1.322629242 \mathrm{e}-005\) & \(1.349682968 \mathrm{e}-005\) & \\
1558.029679 & 1508.682305 & 485.1219343 & 490.0944751 & 2.532161907 \\
2.481098945 & 2.518098945 & 0.3318913955 & 0.7014258766 & 2732.727755 \\
2732.135999 & 299.2100883 & 537.1488235 & 2717.088765 & 237.9387352 \\
2195.578932 & 377.0462199 & 314.6275604 & 282.9666881 & 242.4615249
\end{tabular}

\section*{D. 10 TEST \#10-T10_RCIC_10PSIG_157KW_RESULTS_RCICLAND.TXT}

Output Saved to C:\Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash\) Export \({ }^{\text {OT10_RCIC_10PSIG_157kW }}\)
Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1972.1408 s, and ending (KEY POINT \#11) at \(t\) plus 8424.3438 s , for a time period of 6452.203 s .
Original Data Record Time: 10330.6779 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at t plus \(1916.9306 \mathrm{~s}, \mathrm{~T}\) bulk \(=66.152 \mathrm{C}\) and T out \(=63.0554 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=65.9766 \mathrm{C}\)
Stratification Beginning Pressure \(=29.2395\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at t plus \(6423.3044 \mathrm{~s}, \mathrm{~T}\) bulk \(=132.5826 \mathrm{C}\) and T out \(=78.5434 \mathrm{C}\)
Stratification Ending \(\overline{\text { SP1 }}\) Temperature \(=133.7023 \mathrm{C}\)
Stratification Ending Pressure \(=74.314\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 1165.6177 s .
At \(t=1165.6177 \mathrm{~s}\), the pool pressure is 27.5849 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 55.863, 55.8709, 57.8771, 55.3824, and 52.4329 C, respectively.
Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 10.9224 +/- 2.9501 C.
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 9.9327 +/- 2.6307 C.
Minimum Steam Quality: 0.98553 at t plus 0.50003 s
Maximum Steam Quality: 1.0025 at t plus 3712.3603 s
Time-Averaged Steam Quality: \(0.99903+/-0.0016174\)
Minimum Turbine Outlet Steam Quality: 0.99869 at t plus 6360.4018 s
Maximum Turbine Outlet Steam Quality: 1.0206 at t plus 1419.2222 s
Time-Averaged Turbine Outlet Steam Quality: 1.0127 +/- 0.005388
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 6362.2019 s; using 300 s smoothing
Max and min smoothed upper level changerates: 1.3845 degrees/min at t plus 3065.2483 s and 0.66302 degrees/min at \(t\) plus 6279.0011 s , respectively
Max and min smoothed mid (SP9) level changerates: 1.2455 degrees/min at t plus 3279.2766 s and 0.64553 degrees/min at \(t\) plus 42.3004 s , respectively
Max and min smoothed upper-mid level changerate differences: 0.57573 degrees/min at \(t\) plus 3021.6488 s and -0.24031 degrees/min at \(t\) plus 3293.5524 s , respectively
Max and min smoothed lower level changerates: 3.9956 degrees \(/ \mathrm{min}\) at t plus 6080.9978 s and 0.10504 degrees/min at \(t\) plus 3136.4504 s , respectively
Max and min smoothed mid-lower level changerate differences: 1.0207 degrees/min at \(t\) plus 3255.2522 s and -3.2352 degrees/min at t plus 6080.9978 s , respectively
Max and min smoothed outlet level changerates: 1.2034 degrees \(/ \mathrm{min}\) at t plus 922.8158 s and -0.055276 degrees/min at \(t\) plus 4047.0655 s, respectively
Max and min smoothed lower-outlet level changerate differences: 3.9659 degrees/min at \(t\) plus 6080.9978 s and -0.34609 degrees/min at \(t\) plus 3136.3504 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.8571 degrees/min at t plus 1997.0322 s and 0.30683 degrees/min at t plus 3022.8479 s , respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 1.0434 degrees/min at \(t\) plus 1996.9562 s and -0.51214 degrees/min at \(t\) plus 3110.5499 s , respectively
The mean steam flow rate was \(65.4446+/-3.2311 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was \(64.2034+/-8.469 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.0020395+/-0.038746 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta T is 12.0158 +/- 1.1432 C over the Stratification Period, beginning at 8.0814 C and ending at 9.9239 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(10.8785+/-1.197\) C over the Stratification Period, beginning at 7.4879 C and ending at 9.3168 C
The stratification period begins and ends with Smoothed SP8 readings of 74.1375 and 143.6922 C, respectively

The stratification period begins and ends with condensing flows of 0.6247 and \(1.7129 \mathrm{~kg} / \mathrm{s}\), respectively.

The stratification period begins and ends with condensing+cooling flows of 4.652 and \(3.3957 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(2749.7712+/-1.412 \mathrm{~kJ} / \mathrm{kg}\). At plume detection, the condensing and condensing+cooling flows are 0.54326 and 19.2421 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of \(2750.1193+/-1.3926 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta T is 2.861 degrees C at \(t\) plus 3209.1506 s with T_upper = 86.2736 C and T mid \(=83.4126 \mathrm{C}\)

At t plus 3209.1506 s, Smoothed SP8-SP9 is 11.7256 C and Smoothed SP8-Top is 8.8646 C , where Smoothed SP8 is 95.1382 C and Pool \(\mathrm{P}=34.6579\) psia
Maximum Smoothed Top-Lower delta \(T\) is 27.5226 degrees \(C\) at \(t\) plus 5602.6905 s with T_upper \(=124.1762 \mathrm{C}\) and T _low \(=96.6537 \mathrm{C}\)
At t plus 5602.6905 s, Smoothed SP8-SP9 is 11.1787 C and Smoothed SP8-Top is 10.0628 C, where Smoothed SP8 is 134.239 C and Pool \(\mathrm{P}=60.8373\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 26.5378 degrees \(C\) at \(t\) plus 5625.3898 s with T_mid \(=123.3843 \mathrm{C}\) and \(\mathrm{T}_{-}\)low \(=96.8465 \mathrm{C}\)
At \(t\) plus 5625.3898 s, Smoothed SP8-SP9 is 10.939 C and Smoothed SP8-Top is 10.0063 C , where Smoothed SP8 is 134.3233 C and Pool \(\mathrm{P}=61.2028\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 56.2813 degrees \(C\) at \(t\) plus 6452.203 s with T_upper \(=134.8783 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=78.597 \mathrm{C}\)
At t plus 6452.203 s , Smoothed SP8-SP9 is 10.0443 C and Smoothed SP8-Top is 9.2832 C , where Smoothed SP8 is 144.1615 C and Pool \(\mathrm{P}=74.7639\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 55.5202 degrees \(C\) at \(t\) plus 6452.203 s with T_mid \(=134.1172 \mathrm{C}\) and T _out \(=78.597 \mathrm{C}\)
At t plus 6452.203 s , Smoōthed SP8-SP9 is 10.0443 C and Smoothed SP8-Top is 9.2832 C , where Smoothed SP8 is 144.1615 C and Pool \(\mathrm{P}=74.7639\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 52.1101 degrees \(C\) at \(t\) plus 6452.203 s with T_low \(=130.707 \mathrm{C}\) and \(T\) _out \(=78.597 \mathrm{C}\)
At t plus 6452.203 s , Smoothed SP8-SP9 is 10.0443 C and Smoothed SP8-Top is 9.2832 C , where Smoothed SP8 is 144.1615 C and Pool \(\mathrm{P}=74.7639\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 15.0367 degrees \(C\) at (KEY POINT \#14) t plus 2719.0435 s with \(\mathrm{T}_{-} \mathrm{SP} 8=91.8245 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{SP9}=76.7878 \mathrm{C}\) and Pool \(\mathrm{P}=\) 32.01 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 14.0666 degrees \(C\) at \(t\) plus 2719.0435 s with \(T\) _SP8 \(=91.8245 \mathrm{C}\) and \(T\) _upper \(=77.7579 \mathrm{C}\) and Pool \(\mathrm{P}=32.01\) psia
Maximum Top-Mid delta \(T\) is 3.9524 degrees \(C\) at (KEY POINT \#4) \(t\) plus 3144.4509 s ignoring SP 4, with temperatures of 85.8823 and 81.9299 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=34.2614\) psia and \(T\) _outlet \(=75.1862 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 3931.4639 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 1.3172 C and a raw SP12 Reading of 96.3293 C .
Maximum Top-Lower delta \(T\) is 32.341 degrees \(C\) at \(t\) plus 5791.0942 s , with temperatures of 126.8237 and 94.4827 C, respectively, at Set \# 1, where Pool \(P=63.8087\) psia and T outlet \(=78.2266 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 28.9671 degrees \(C\) at (KEY POINT \#6) t plus 5714.7929 s ignoring SP 4, with temperatures of 124.5781 and 95.611 C, respectively, at Set \# 2, where Pool \(P=62.5867\) psia and T_outlet \(=78.0357 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 6203.1998 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 9.6535 C and a raw SP12 Reading of 131.1013 C .
Maximum Top-Outlet delta \(T\) is 56.636 degrees \(C\) at \(t\) plus 6434.803 s , with temperatures of 135.1033 and 78.4673 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=74.4924\) psia

Maximum Mid-Outlet delta \(T\) is 55.4838 degrees \(C\) at \(t\) plus 6437.1032 s ignoring SP 4, with temperatures of 133.896 and 78.4122 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=\) 74.525 psia

Maximum Lower-Outlet delta \(T\) is 54.9649 degrees \(C\) at (KEY POINT \#8) t plus 6450.903 s, with temperatures of 133.5889 and 78.624 C , respectively, at Set \# 3, where Pool \(\mathrm{P}=74.7499\) psia
Low-Outlet Reconvergence NOT Detected, setting t to (KEY POINT \#10) t plus 6452.203 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 52.1669 C and a raw SP12 Reading of 134.0296 C .
Minimum SP Pressure is 25.9227 psia at t plus 0 s
Maximum SP Pressure is 74.7675 psia at t plus 6451.904 s
Beginning SP Pressure is 25.9227 psia
Ending SP Pressure is 74.7639 psia
Time-Average SP Pressure is 40.3044 +/- 14.1225 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 80.1156 cm (cold) / 80.2746 cm (hot) at 24.665 psia

Beginning Smoothed SP Level is 81.0583 cm (cold) / 81.2619 cm (hot) at 25.9319 psia Ending Smoothed SP Level is 81.0978 cm (cold) / 83.2189 cm (hot) at 74.7735 psia Minimum Smoothed Cold SP Level is 81.0583 cm at t plus 0 s and 25.9319 psia Minimum Smoothed Hot SP Level is 81.2619 cm at \(t\) plus 0 s and 25.9319 psia Maximum Smoothed Cold SP Level is 83.1427 cm at \(t\) plus 3236.4521 s and 34.8253 psia Maximum Smoothed Hot SP Level is 84.3811 cm at \(t\) plus 4253.4953 s and 43.0168 psia SP 12 Temperature at the beginning is 39.7463 C , and at the end is 134.0296 C At plume detection, the Mixing Number is 46.2584
The Mixing Number ranges from a minimum of 38.6305 at (KEY POINT \#12) t plus 2.5011 s to a maximum of 252.9774 at (KEY POINT \#13) t plus 6452.203 s; it had a mean value of 99.0716 +/- 60.5542 over the test period.
Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid \(T\) (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta he6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy e11
KEY POINT \#1 (t plus 0 s with a Mixing Number of 41.1958): 257.3335301 0.040894 \(0.00925 \quad 0.3937 \quad 0.8105830862 \quad 0.8126194415 \quad 0.9838296021\) \(0.9838296021 \quad 0.999981729 \quad 241.0381455 \quad 816781.0739 \quad 0.0695738875\) \(\begin{array}{llllll}0.05541243958 & 0.3379912399 & 4.038358636 e-006 & 0.3379912399 & 40.1379383\end{array}\) 17.7902705 . 40.7069901 36.43836618 \(\begin{array}{llllr}0.6831949643 & 0.6831949643 & 4.32628639 & 1.469952462 & 0.04074923736 \\ 992.2023808 & 944.8762526 & 1.050373147 & 1.067617759 & 0.000651113729\end{array}\) \(4.178350449 \quad 4.242628517\) 40.11092407 40.05886316 0.628849109 \(0.00023670800211 .287989823 \mathrm{e}-0051.288398779 \mathrm{e}-005\) \(1524.198641 \quad 480.8083173 \quad 480.5581457\) \(\begin{array}{lllll}1.824944945 & 0.07438906537 & 0.0766734004 & 2725.097645 & 2666.998257\end{array}\) \(\begin{array}{lllll}168.2726106 & 494.3958618 & 2702.707536 & 326.1232512 & 2230.701783\end{array}\) 170.6503075 \(168.1582294 \quad 167.943802\) 152.819856

KEY POINT \#2 (t plus 1165.6177 s with a Mixing Number of 46.2584): 49.1132336
\begin{tabular}{llcccc}
0.040894 & 0.00925 & & 0.3937 & 0.8205645728 & 0.824634847 \\
1.017625724 & & 1 & 46.11465092 & 146958.3118 \\
0.06694890457 & 0.05497971799 & 0.0645071115 & \(2.709577341 \mathrm{e}-006\) & 0.0645071115 \\
55.87090261 & 138.1830239 & 119.9426414 & 57.87708811 & 55.86297469 \\
55.38237326 & 52.43291771 & 4.180971248 & 4.24627207 & 2.173667669 \\
0.6467949388 & 0.6836002001 & 0.6836002001 & 3.213067018 & 1.442026556 \\
0.04119047656 & 985.3226842 & 943.1519023 & 1.120045228 & 1.065069248 \\
0.0004970604584 & 0.0002321494304 & \(1.295405844 \mathrm{e}-005\) & \(1.366670963 \mathrm{e}-005\) & \\
1551.115574 & 1521.088247 & 481.7652195 & 494.3649894 & 1.983047923 \\
1.901624553 & 1.938624553 & 0.1643092829 & 0.1806620894 & 2746.794799 \\
2744.668238 & 234.0336685 & 503.5407506 & 2705.850927 & 269.5070821 \\
2243.254048 & 242.4221823 & 233.9990787 & 231.992713 & 219.6668265
\end{tabular}

KEY POINT \#3 (t plus 1916.9306 s with a Mixing Number of 53.4326): 49.20223294 \(\begin{array}{cccccc}0.040894 & 0.00925 & 0.3937 & 0.8253830445 & 0.8311087707\end{array}\)
\begin{tabular}{lllll}
1.017533227 & 1 & 1 & 43.92808279 & 146663.826
\end{tabular} \(\begin{array}{lllll}0.06517999864 & 0.05463916443 & 0.06462400649 & 1.504310264 e-006 & 0.06462400649\end{array}\) \(\begin{array}{lllll}66.05614466 & 139.6641609 & 121.6297645 & 74.13754097 & 66.64960553\end{array}\) \(\begin{array}{lllll}65.81865718 & 63.07675956 & 4.18551385 & 4.249207722 & 2.183550381\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 0.6563662249 & 0.6838806746 & 0.6838806746 & 2.721559526 & 1.420932861 \\
\hline & 0.04154647237 & 980.035506 & 941.7863618 & 1.177227158 & 1.120089363 \\
\hline & 0.0004267910264 & 0.0002286893433 & \(31.301221616 \mathrm{e}-00\) & \(051.371896649 \mathrm{e}-00\) & 05 \\
\hline & 1556.835112 & 1518.567251 & 482.5029778 & 494.9959654 & 2.091375776 \\
\hline & 2.016286841 & 2.053286841 & 0.2624803447 & 0.3722368402 & 2748.752112 \\
\hline & 2746.822436 & 276.6487359 & 510.7147904 & 2708.29182 & 234.0660545 \\
\hline & 2238.037322 & 310.4935079 & 279.13137 & 275.6562331 & 264.1861035 \\
\hline \multirow[t]{12}{*}{} & POINT \#4 (t plus 31
0.040894 & \[
\begin{aligned}
& 44.4509 \mathrm{~s} \text { with a } \\
& 0.00925
\end{aligned}
\] & \multicolumn{3}{|l|}{Mixing Number of 70.9155) : 50.87332857} \\
\hline & 1.01539176 & 1 & 1 & 39.21006123 & 150840.509 \\
\hline & 0.06223235455 & 0.053655728 & 0.06681888441 & -4.914349453e-00 & \\
\hline & 0.06681888441 & 82.39601961 & 141.9854557 & 126.4691629 & 94.07735194 \\
\hline & 85.08668145 & 80.13992228 & 75.09412564 & 4.197296317 & 4.25802714 \\
\hline & 2.213552472 & 0.6686282908 & 0.6845056858 & 0.6845056858 & 2.159805289 \\
\hline & 1.364060771 & 0.04261868221 & 970.3591151 & 937.8018131 & 1.354439727 \\
\hline & 1.2974464410. & . 0003440564616 & 0.0002192816821. & . \(317914559 \mathrm{e}-005\) & 379214319e-005 \\
\hline & 1556.626537 & 1510.939897 & 484.5582786 & 495.4662667 & 2.429170194 \\
\hline & 2.363198391 & 2.400198391 & 0.5220629254 & 0.8177588869 & 2750.327959 \\
\hline & 2748.790531 & 345.156262 & 531.3228751 & 2715.177169 & 186.1666131 \\
\hline & 2219.005084 & 394.2529497 & 356.4517461 & 335.6904219 & 314.5356505 \\
\hline \multirow[t]{13}{*}{} & POINT \#5 (t plu & 1.4639 s with a & \multicolumn{3}{|l|}{Mixing Number of 94.5454): 52.79563695} \\
\hline & 0.040894 & 0.00925 & 0.3937 & 0.8306661632 & 0.8427682819 \\
\hline & 1.012922759 & 1 & 1 & 35.14669514 & 155809.0478 \\
\hline & 0.05959657143 & 0.05264387607 & 0.06934371432 & \(1.094732897 \mathrm{e}-006\) & 0.06934371432 \\
\hline & 96.43217726 & 144.1397939 & 131.3998553 & 108.9569306 & 97.8740747 \\
\hline & 84.57606543 & 77.27605605 & 4.211847223 & 4.267643702 & 2.246705244 \\
\hline & 0.6763105373 & 0.6848719841 & 0.6848719841 & 1.823029717 & 1.311207577 \\
\hline & 0.04379217078 & 960.9764841 & 933.6394181 & 1.556493023 & 1.502174535 \\
\hline & 0.0002927300403 & 0.0002104227526 & \(61.334933942 \mathrm{e}-00\) & \(051.385686395 \mathrm{e}-00\) & 05 \\
\hline & 1548.556602 & 1502.579991 & 486.5578233 & 495.6872556 & 2.817684379 \\
\hline & 2.75408574 & 2.79108574 & 0.8916775873 & 1.384245073 & 2751.280435 \\
\hline & 2750.045145 & 404.1977432 & 552.3677171 & 2722.007414 & 148.1699739 \\
\hline & 2198.912718 & 457.0506856 & 410.2707583 & 354.3408568 & 323.7139194 \\
\hline \multirow[t]{13}{*}{} & POINT \#6 (t plus & 4.7929 s with a & \multicolumn{3}{|l|}{Mixing Number of 195.0669) : 50.64139732} \\
\hline & 0.040894 & 0.00925 & 0.3937 & 0.8143423413 & 0.8327188869 \\
\hline & 1.004119071 & 1 & 1 & 21.78800405 & 147558.2536 \\
\hline & 0.05402257286 & 0.04941850634 & 0.06651425745 & \(2.978211043 e-006\) & 0.06651425745 \\
\hline & 124.6695233 & 150.548969 & 146.8165806 & 135.7664646 & 125.6489051 \\
\hline & 98.83053988 & 78.09219538 & 4.254158455 & 4.302205246 & 2.367637153 \\
\hline & 0.6844298253 & 0.68429867 & 0.68429867 & 1.384521688 & 1.17374697 \\
\hline & 0.04802983535 & 939.390677 & 919.9580091 & 2.349513506 & 2.324382936 \\
\hline & 0.0002227486227 & 0.0001866934385 & \(51.388166781 \mathrm{e}-00\) & \(051.403465582 \mathrm{e}-00\) & 05 \\
\hline & 1514.304701 & 1472.794005 & 492.1770741 & 495.1169771 & 4.368440455 \\
\hline & 4.315326961 & 4.352326961 & 2.298725171 & 3.202457234 & 2751.270067 \\
\hline & 2750.79535 & 523.7958379 & 618.5186749 & 2742.048379 & 94.72283707 \\
\hline & 2132.751392 & 571.1240105 & 527.9619841 & 414.4217996 & 327.2610664 \\
\hline \multirow[t]{13}{*}{KEY} & POINT \#7 (t plus & 03.1998 s with a & \multicolumn{3}{|l|}{Mixing Number of 233.173): 50.56742029} \\
\hline & 0.040894 & 0.00925 & 0.3937 & 0.8123511693 & 0.8326517055 \\
\hline & 1.002155027 & 1 & 1 & 19.36275597 & 146537.7098 \\
\hline & 0.0527093552 & 0.04848393899 & 0.06641709332 & 4.412215866e-006 & 0.06641709332 \\
\hline & 131.0822197 & 153.1033332 & 151.2055536 & 141.5771159 & 131.8442462 \\
\hline & 122.9422286 & 78.30448987 & 4.266452192 & 4.313414281 & 2.406861873 \\
\hline & 0.6849880612 & 0.683669616 & 0.683669616 & 1.314393552 & 1.141123993 \\
\hline & 0.04940377733 & 934.0087767 & 915.8775158 & 2.626235757 & 2.611755251 \\
\hline & 0.0002110287073 & 0.0001808664207 & \(71.403315323 \mathrm{e}-00\) & \(051.411175382 \mathrm{e}-00\) & 05 \\
\hline & 1503.621234 & 1463.345031 & 493.5984149 & 495.143807 & 4.916857548 \\
\hline & 4.865317528 & 4.902317528 & 2.791227949 & 3.779230508 & 2752.281449 \\
\hline & 2751.906532 & 551.1526357 & 637.4592949 & 2747.359641 & 86.3066592 \\
\hline & 2114.822154 & 596.0455124 & 554.4032111 & 516.489923 & 328.1952522 \\
\hline \multirow[t]{8}{*}{KEY} & POINT \#8 (t plus 645 & 50.903 s with a & Mixing Number of & \multicolumn{2}{|l|}{f 252.8339) : 51.14267371} \\
\hline & 0.040894 & 0.00925 & 0.3937 & 0.8109885354 & 0.8321955778 \\
\hline & 1.001374747 & 1 & 1 & 18.52145709 & 147730.5167 \\
\hline & 0.0520856965 & 0.04802346033 & 0.06717265214 & \(2.925668418 \mathrm{e}-006\) & 0.06717265214 \\
\hline & 134.0996809 & 154.5479284 & 153.3561834 & 144.1102798 & 134.8586189 \\
\hline & 130.6840064 & 78.5953019 & 4.272620604 & 4.319148973 & 2.426850764 \\
\hline & 0.6850927627 & 0.6832873392 & 0.6832873392 & 1.284183636 & 1.126049382 \\
\hline & 0.05010550744 & 931.4161109 & 913.8477628 & 2.771043231 & 2.76138648 \\
\hline
\end{tabular}
\begin{tabular}{cccccc}
0.0002059122483 & 0.0001781404835 & \(1.41073606 \mathrm{e}-005\) & \(1.415705126 \mathrm{e}-005\) & \\
1498.255113 & 1458.56305 & 494.2657226 & 495.2520296 & 5.204999524 \\
5.153982016 & 5.190982016 & 3.050867162 & 4.055535615 & 2753.128484 \\
2752.785439 & 564.0549508 & 646.7595487 & 2749.894162 & 82.7045979 \\
2106.368935 & 606.9369943 & 567.297062 & 549.474537 & 329.4377951 \\
KEY POINT \#9 (t plus 6423.3044 s with & a Mixing Number & of & 250.3901 ) : & 51.16210873 \\
0.040894 & 0.00925 & & 0.3937 & 0.8112077353 & 0.8323074586 \\
1.001539273 & & 1 & 1 & 18.64275535 & 147806.5434 \\
0.05215435689 & 0.04807266997 & 0.0671981788 & \(4.572812691 e-006\) & 0.0671981788 \\
133.7683343 & 154.464291 & 153.1267197 & 143.6922164 & 134.3754158 \\
130.0756522 & 78.53382515 & 4.271930547 & 4.318529308 & 2.42469403 \\
0.6850862333 & 0.6833304363 & 0.6833304363 & 1.287419313 & 1.127630339 \\
0.05002972968 & 931.7027597 & 914.065282 & 2.7552949 & 2.744529408 \\
0.0002064624502 & 0.0001784274406 & \(1.409944372 e-005\) & \(1.415514649 e-005\) & \\
1498.855055 & 1459.077992 & 494.1954396 & 495.2998064 & 5.17362747 \\
5.122445185 & 5.159445185 & 3.021435686 & 4.008849231 & 2753.211876 \\
2752.864324 & 562.6372597 & 645.7666301 & 2749.62591 & 83.12937042 \\
2107.445246 & 605.1395057 & 565.2299081 & 546.8778219 & 329.1774789
\end{tabular}

KEY POINT \#10 (t plus 6452.203 s with a Mixing Number of 252.9774): 51.13763826
\begin{tabular}{lccccc}
0.040894 & 0.00925 & & 0.3937 & 0.8109780487 & 0.832189445 \\
1.001377363 & & 1 & 18.51524771 & 147711.4225 \\
0.05208206345 & 0.04802132927 & 0.0671660384 & \(3.141450903 \mathrm{e}-006\) & 0.0671660384 \\
134.1172077 & 154.5600938 & 153.3661185 & 144.1615285 & 134.8782838 \\
130.7070469 & 78.59696661 & 4.272657249 & 4.319175845 & 2.426944274 \\
0.6850930617 & 0.6832854607 & 0.6832854607 & 1.284013007 & 1.125981078 \\
0.05010879331 & 931.4009179 & 913.8383397 & 2.771726713 & 2.762049465 \\
0.000205883213 & 0.0001781280798 & \(1.410770338 \mathrm{e}-005\) & \(1.415748724 \mathrm{e}-005\) & \\
1498.223257 & 1458.540729 & 494.2687607 & 495.256942 & 5.206361271 \\
5.155452495 & 5.192452495 & 3.052430398 & 4.061288672 & 2753.145316 \\
2752.802502 & 564.1299337 & 646.8025425 & 2749.905765 & 82.67260879 \\
2106.342774 & 607.1572176 & 567.3812115 & 549.5729167 & 329.4448934
\end{tabular}

KEY POINT \#11 (t plus 6452.203 s with a Mixing Number of 252.9774): 51.13763826
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.8109780487 & 0.832189445 \\
1.001377363 & & 1 & 18.51524771 & 147711.4225 \\
0.05208206345 & 0.04802132927 & 0.0671660384 & \(3.141450903 e-006\) & 0.0671660384 \\
134.1172077 & 154.5600938 & 153.3661185 & 144.1615285 & 134.8782838 \\
130.7070469 & 78.59696661 & 4.272657249 & 4.319175845 & 2.426944274 \\
0.6850930617 & 0.6832854607 & 0.6832854607 & 1.284013007 & 1.125981078 \\
0.05010879331 & 931.4009179 & 913.8383397 & 2.771726713 & 2.762049465 \\
0.000205883213 & 0.0001781280798 & \(1.410770338 e-005\) & \(1.415748724 e-005\) & \\
1498.223257 & 1458.540729 & 494.2687607 & 495.256942 & 5.206361271 \\
5.155452495 & 5.192452495 & 3.052430398 & 4.061288672 & 2753.145316 \\
2752.802502 & 564.1299337 & 646.8025425 & 2749.905765 & 82.67260879 \\
2106.342774 & 607.1572176 & 567.3812115 & 549.5729167 & 329.4448934
\end{tabular}

KEY POINT \#12 (t plus 2.5011 s with a Mixing Number of 38.6305): 39.40112862
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.8105904393 & 0.8126271725 \\
1.009952704 & & 1 & 38.61207197 & 121336.5071 \\
0.0695674414 & 0.05541210227 & 0.05175087876 & \(3.57555551 e-006\) & 0.05175087876 \\
40.17757731 & 128.0891226 & 117.7919521 & 40.73250617 & 40.13704332 \\
40.10490675 & 36.44859844 & 4.178350003 & 4.24263132 & 2.16149177 \\
0.6288994247 & 0.6831953017 & 0.6831953017 & 4.322730487 & 1.469930186 \\
0.04074957652 & 992.1872013 & 944.8749132 & 1.050426178 & 1.020505995 \\
0.0006506306831 & 0.0002367043755 & \(1.287995615 e-005\) & \(1.327934842 e-005\) & \\
1531.759797 & 1524.196257 & 480.8090717 & 488.053821 & 1.851644238 \\
1.78806451 & 1.82506451 & 0.07454626102 & 0.07677723164 & 2726.179522 \\
2724.68863 & 168.4382468 & 494.4030033 & 2702.710004 & 325.9647565 \\
2231.776518 & 170.756933 & 168.2673755 & 168.1361986 & 152.8626227
\end{tabular}

KEY POINT \#13 (t plus 6452.203 s with a Mixing Number of 252.9774): 51.13763826
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.8109780487 & 0.832189445 \\
1.001377363 & & 1 & 1 & 18.51524771 & 147711.4225 \\
0.05208206345 & 0.04802132927 & 0.0671660384 & \(3.141450903 \mathrm{e}-006\) & 0.0671660384 \\
134.1172077 & 154.5600938 & 153.3661185 & 144.1615285 & 134.8782838 \\
130.7070469 & 78.59696661 & 4.272657249 & 4.319175845 & 2.426944274 \\
0.6850930617 & 0.6832854607 & 0.6832854607 & 1.284013007 & 1.125981078 \\
0.05010879331 & 931.4009179 & 913.8383397 & 2.771726713 & 2.762049465 \\
0.000205883213 & 0.0001781280798 & \(1.410770338 \mathrm{e}-005\) & \(1.415748724 \mathrm{e}-005\) & \\
1498.223257 & 1458.540729 & 494.2687607 & 495.256942 & 5.206361271
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 5.155452495 & 5.192452495 & 3.052430398 & 4.061288672 & 2753.145316 \\
\hline & 2752.802502 & 564.1299337 & 646.8025425 & 2749.905765 & 82.67260879 \\
\hline & 2106.342774 & 607.1572176 & 567.3812115 & 549.5729167 & 329.4448934 \\
\hline \multirow[t]{13}{*}{KEY} & POINT \#14 (t plus & 2719.0435 s with & a Mixing Number & \(r\) of 63.8539): 50 & 0.35810645 \\
\hline & 0.040894 & 0.00925 & 0.3937 & 0.8300810069 & 0.837959011 \\
\hline & 1.016525651 & 1 & 1 & 41.39879462 & 149576.2235 \\
\hline & 0.06325900197 & 0.0540880934 & 0.0661421729 & 9-7.132868137e-0 & 08 \\
\hline & 0.0661421729 & 76.78777623 & 141.1606023 & 124.3474068 & 91.82445469 \\
\hline & 77.757858 & 77.16956636 & 71.59102345 & 4.192634712 & 4.254086628 \\
\hline & 2.200093324 & 0.6648331172 & 0.6842642768 & 0.6842642768 & 2.327823526 \\
\hline & 1.388353817 & 0.0421391175 & 973.8366231 & 939.5610909 & 1.274273454 \\
\hline & 1.216413488 & 0.0003691268802 & 0.0002233148978 & \(1.310594076 \mathrm{e}-005\) & \(1.376785933 e-005\) \\
\hline & 1557.891245 & 1514.355551 & 483.6683652 & 495.4015744 & 2.275990406 \\
\hline & 2.207587238 & 2.244587238 & 0.4157471496 & 0.7518799169 & 2750.083318 \\
\hline & 2748.369458 & 321.6177763 & 522.2820334 & 2712.179969 & 200.6642571 \\
\hline & 2227.801285 & 384.760959 & 325.683984 & 323.2199838 & 299.8448517 \\
\hline
\end{tabular}

\section*{D. 11 TEST \#11 -}

\section*{T11_RCIC_040GPM_15PSIG_107KW_RESULTS_RCICLAND.TXT}

Output Saved to C:\Local Files \RCICLAND_NOTITLES \(\backslash \operatorname{Export} \backslash T 11 \_R C I C \_040 \mathrm{GPM}\) _15PSIG_107kW Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1720.5394 s, and ending (KEY POINT \#11) at \(t\) plus 13127.1358 s , for a time period of 11406.5964 s.
Original Data Record Time: 14133.5534 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(474.7432 \mathrm{~s}, \mathrm{~T}\) _bulk \(=44.7957 \mathrm{C}\) and T _out \(=41.8025 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=44.8096 \mathrm{C}\)
Stratification Beginning Pressure \(=30.6351\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(10855.9869 \mathrm{~s}, \mathrm{~T}\) bulk \(=142.6046 \mathrm{C}\) and T out \(=79.3774 \mathrm{C}\)
Stratification Ending \(\overline{\text { SP }} 12\) Temperature \(=142.3 \overline{466} \mathrm{C}\)
Stratification Ending Pressure = 93.9264 psia
Plume detected! Setting t_plume (KEY POINT \#2) to 63.4006 s .
At \(t=63.4006\) s, the pool pressure is 30.255 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 41.9098, 41.9583, 43.9636, 42.6139, and 37.9249 C , respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 14.4716 +/- 3.928 C .
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 13.1285 +/- 3.7928 C .
Minimum Steam Quality: 0.48095 at t plus 173.7019 s
Maximum Steam Quality: 0.64477 at \(t\) plus 10597.7832 s
Time-Averaged Steam Quality: 0.573 +/- 0.018701
Minimum Turbine Outlet Steam Quality: 0.50262 at t plus 173.7019 s
Maximum Turbine Outlet Steam Quality: 0.6546 at t plus 5559.395 s
Time-Averaged Turbine Outlet Steam Quality: 0.58546 +/- 0.017517
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 11316.5953 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.78977 degrees \(/ \mathrm{min}\) at t plus 2178.7366 s and 0.35376 degrees/min at \(t\) plus 10039.4732 s, respectively
Max and min smoothed mid (SP9) level changerates: 0.85454 degrees/min at \(t\) plus 4461.7762 s and 0.37284 degrees/min at \(t\) plus 121.4019 s, respectively

Max and min smoothed upper-mid level changerate differences: 0.31384 degrees/min at \(t\) plus 2313.3383 s and -0.24154 degrees/min at \(t\) plus 4372.2751 s, respectively
Max and min smoothed lower level changerates: 3.2834 degrees \(/ \mathrm{min}\) at t plus 7374.3268 s and -0.465 degrees/min at \(t\) plus 1461.9236 s, respectively
Max and min smoothed mid-lower level changerate differences: 0.98842 degrees/min at \(t\) plus 1461.9236 s and -2.7773 degrees/min at \(t\) plus 7374.3268 s , respectively
Max and min smoothed outlet level changerates: 1.5524 degrees/min at \(t\) plus 11223.794 s and 0.01224 degrees \(/ \mathrm{min}\) at t plus 2811.0468 s , respectively

Max and min smoothed lower-outlet level changerate differences: 3.1244 degrees/min at \(t\) plus 7374.3268 s and -1.1057 degrees/min at t plus 11312.095 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.6029 degrees/min at \(t\) plus 2539.8443 s and 0.064231 degrees/min at \(t\) plus 2336.1386 s, respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 1.0535 degrees/min at \(t\) plus 2539.8443 s and -0.48684 degrees \(/ \mathrm{min}\) at \(t\) plus 4821.6818 s , respectively
The mean steam flow rate was 43.6958 +/- \(1.0217 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 43.0951 +/- \(1.8745 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was 24.8662 +/- \(1.5428 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is \(14.9345+/-3.2237\) C over the Stratification Period, beginning at 4.2025 C and ending at 12.4052 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(13.5533+/-3.193\) C over the Stratification Period, beginning at 4.0696 C and ending at 11.5742 C
The stratification period begins and ends with Smoothed SP8 readings of 50.0135 and 154.9343 C , respectively

The stratification period begins and ends with condensing flows of 0.26462 and 1.0086 \(\mathrm{kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of 6.028 and \(1.6314 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(1842.6926+/-31.658 \mathrm{~kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.25075 and 12.7902 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of \(1839.1216+/-36.3323 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta T is 4.2898 degrees C at t plus 3193.6537 s with T_upper \(=\) 74.4347 C and T mid \(=70.1449 \mathrm{C}\)

At \(t\) plus 3193.6537 s, Smoothed SP8-SP9 is 16.9027 C and Smoothed SP8-Top is 12.6129 C, where Smoothed SP8 is 87.0476 C and Pool \(\mathrm{P}=36.1484\) psia
Maximum Smoothed Top-Lower delta \(T\) is 27.8172 degrees \(C\) at \(t\) plus 6776.0996 with \(T\) upper \(=111.4737 \mathrm{C}\) and T low \(=83.6565 \mathrm{C}\)
At t plus 6776.0996 s , Smoothed SP8-SP9 is 17.4617 C and Smoothed SP8-Top is 16.8828 C, where Smoothed SP8 is 128.3566 C and Pool \(\mathrm{P}=55.1412\) psia
Maximum Smoothed Mid-Lower delta T is 27.2384 degrees C at t plus 6776.0996 s with T_mid \(=110.8949 \mathrm{C}\) and \(\mathrm{T}_{-}\)low \(=83.6565 \mathrm{C}\)
At \(t\) plus 6776.0996 s, Smoothed SP8-SP9 is 17.4617 C and Smoothed SP8-Top is 16.8828 C, where Smoothed SP8 is 128.3566 C and Pool \(\mathrm{P}=55.1412\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 64.9496 degrees \(C\) at \(t\) plus 10477.7813 s with \(T\) _upper \(=140.3277 \mathrm{C}\) and \(T\) _out \(=75.378 \mathrm{C}\)
At \(t\) plus 10477.7813 s , Smoothed SP8-SP9 is 12.4129 C and Smoothed SP8-Top is 11.7965 C , where Smoothed SP8 is 152.1242 C and Pool \(\mathrm{P}=89.2598\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 64.3334 degrees \(C\) at \(t\) plus 10478.5813 s with T_mid \(=139.7161 \mathrm{C}\) and T _out \(=75.3826 \mathrm{C}\)
At t plus 10478.5813 s , Smoothed SP8-SP9 is 12.4223 C and Smoothed SP8-Top is 11.8063 C , where Smoothed SP8 is 152.1383 C and Pool \(\mathrm{P}=89.271\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 63.9533 degrees \(C\) at \(t\) plus 10466.6817 s with T low \(=139.3108 \mathrm{C}\) and T out \(=75.3575 \mathrm{C}\)
At \(t\) plus 10466.6817 s , Smoothed \(\mathrm{SP} 8-\mathrm{SP9}\) is 12.6062 C and Smoothed SP8-Top is 11.9386 C , where Smoothed SP8 is 152.2335 C and Pool \(\mathrm{P}=89.1229\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 19.116 degrees \(C\) at (KEY POINT \#14) t plus 3728.6633 s with \(\mathrm{T}_{-} \mathrm{SP} 8=95.6193 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{SP9}=76.5034 \mathrm{C}\) and Pool \(\mathrm{P}=\) 37.9149 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 18.1473 degrees \(C\) at \(t\) plus 5969.2014 s with T_SP8 \(=121.7678 \mathrm{C}\) and T _upper \(=103.6205 \mathrm{C}\) and Pool \(\mathrm{P}=49.3167\) psia
Maximum Top-Mid delta \(T\) is 5.5814 degrees \(C\) at (KEY POINT \#4) t plus 3224.7534 s ignoring SP 4, with temperatures of 75.834 and 70.2526 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=36.2443\) psia and T_outlet \(=53.0573 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 5152.1887 s with a Smoothed MidAxis Top-Mid Delta T of 1.8604 C and a raw SP12 Reading of 93.3204 C .
Maximum Top-Lower delta \(T\) is 30.3173 degrees \(C\) at \(t\) plus 6783.017 s, with temperatures of 111.5853 and 81.268 C , respectively, at Set \# 1, where Pool P \(=55.1801\) psia and T_outlet \(=62.5785 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 28.9055 degrees \(C\) at (KEY POINT \#6) t plus 7006.5198 s ignoring SP 4, with temperatures of 112.8796 and 83.9741 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=56.878\) psia and \(T\) outlet \(=63.3334 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 7583.1307 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 9.6295 C and a raw SP12 Reading of 117.6405 C .

Maximum Top-Outlet delta \(T\) is 65.3332 degrees \(C\) at \(t\) plus 10472.581 s, with temperatures of 140.7526 and 75.4194 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=89.1915\) psia Maximum Mid-Outlet delta \(T\) is 64.3771 degrees \(C\) at \(t\) plus 10500.7806 s ignoring SP 4, with temperatures of 139.7928 and 75.4157 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=89.5158\) psia
Maximum Lower-Outlet delta \(T\) is 65.1433 degrees \(C\) at (KEY POINT \#8) t plus 10246.2761 s, with temperatures of 139.0592 and 73.9158 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=86.599\) psia
Low-Outlet Reconvergence NOT Detected, setting t to (KEY POINT \#10) t plus 11406.5964 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 54.392 C and a raw SP12 Reading of 146.2414 C .

Minimum SP Pressure is 30.2004 psia at t plus 0.72404 s
Maximum SP Pressure is 100.6833 psia at \(t\) plus 11406.5964 s
Beginning SP Pressure is 30.2119 psia
Ending SP Pressure is 100.6833 psia
Time-Average SP Pressure is 53.757 +/- 20.796 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 82.4117 cm (cold) / 82.5908 cm (hot) at 29.1824 psia
Beginning Smoothed SP Level is 82.9202 cm (cold) / 83.1472 cm (hot) at 30.2062 psia
Ending Smoothed SP Level is 80.5492 cm (cold) / 83.0359 cm (hot) at 100.6793 psia
Minimum Smoothed Cold SP Level is 80.5491 cm at \(t\) plus 11406.0984 s and 100.6731 psia
Minimum Smoothed Hot SP Level is 83.0307 cm at \(t\) plus 11373.0965 s and 100.2564 psia
Maximum Smoothed Cold SP Level is 83.3973 cm at \(t\) plus 2763.147 s and 34.9134 psia
Maximum Smoothed Hot SP Level is 84.4218 cm at \(t\) plus 5168.8306 s and 44.3343 psia
SP 12 Temperature at the beginning is 40.068 C , and at the end is 146.2414 C
At plume detection, the Mixing Number is 41.7762
The Mixing Number ranges from a minimum of 41.5283 at (KEY POINT \#12) \(t\) plus 0 to a maximum of 385.9168 at (KEY POINT \#13) \(t\) plus 11406.5964 s; it had a mean value of \(146.4924+/-98.3745\) over the test period.
Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension ( \(\mathrm{N} / \mathrm{m}\) ) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed \(T\) t6, Pool Outlet Smoothed \(T\) t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity ( \(W / m-K\) ) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steäm Flowing h e2, Pool Mid h e3, Sparger Water Sat \(h\) e4, Sparger Steam Sat \(h\) e5, Pool Mid Subcooling delta h e6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy ell
KEY POINT \#1 (t plus 0 s with a Mixing Number of 41.5283): 51.93560575 0.040894
\begin{tabular}{lccccc}
0.00925 & 0.3937 & 0.8292021165 & 0.8314723941 & 0.5678812083 \\
0.5678812083 & 0.9990263334 & 24.49114808 & 160309.6877 & 0.06936023809 \\
0.05447575745 & 0.04253736055 & 0.02567675743 & 0.06821411798 & 41.44894025 \\
122.4372006 & 122.4372006 & 43.20682017 & 41.18381806 & 42.35866673 \\
37.28460024 & 4.178284794 & 4.250637801 & 2.188384554 & 0.6305141057 \\
0.6840034086 & 0.6840034086 & 4.210964235 & 1.411076474 & 0.04172005549 \\
991.706868 & 941.1285134 & 1.205415076 & 2.120586817 & 0.0006354455189 \\
0.0002270673634 & \(1.304005738 \mathrm{e}-005\) & \(1.324844863 e-005\) & 1533.905345 & \\
1517.335238 & 482.8522016 & 470.7387834 & 2.144901972 & 2.082642456 \\
2.119642456 & 0.07974254461 & 0.08744027887 & 1761.420997 & 1760.821181 \\
173.7764499 & 514.1500638 & 2709.452706 & 340.3736138 & 1247.270934 \\
181.1214253 & 172.6671929 & 177.5791424 & 156.3821675 &
\end{tabular}

KEY POINT \#2 (t plus 63.4006 s with a Mixing Number of 41.7762): 52.61513672
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.8292696849 & 0.8315887113 \\
0.5559115839 & 0.5559115839 & 0.9989765036 & 24.25836821 & 162258.9805 \\
0.06927697149 & 0.05446677636 & 0.04234170292 & 0.02676493581 & 0.06910663873 \\
41.95833511 & 122.4815396 & 122.4815396 & 43.96357087 & 41.90983264 \\
42.61393157 & 37.92485553 & 4.178297667 & 4.250716806 & 2.188651986 \\
0.6311474355 & 0.6840099333 & 0.6840099333 & 4.167536662 & 1.410539619 \\
0.04172964823 & 991.5060769 & 941.0923079 & 1.206978599 & 2.168947897 \\
0.0006295219457 & 0.0002269789203 & \(1.304158637 e-005\) & \(1.326055047 e-005\) & \\
1534.718463 & 1517.267109 & 482.871306 & 470.1628244 & 2.14787332 \\
2.085970308 & 2.122970308 & 0.08191054673 & 0.09094621882 & 1735.251852 \\
1734.663384 & 175.9051431 & 514.3387413 & 2709.516316 & 338.4335981 \\
1220.913111 & 184.2837109 & 175.7009867 & 178.6460119 & 159.0576867
\end{tabular}

KEY POINT \#3 (t plus 474.7432 s with a Mixing Number of 43.7712): 51.33043566
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.830087817 & 0.8328879139 \\
0.5758816793 & 0.5758816793 & 0.9990458803 & 24.2529995 & 158331.561 \\
0.06864265726 & 0.05439235052 & 0.04219816355 & 0.02522110197 & 0.06741926552 \\
45.81099419 & 122.8488183 & 122.8488183 & 50.01345847 & 45.94381784 \\
46.99629622 & 41.78658835 & 4.178589633 & 4.251373143 & 2.190875153 \\
0.6357972284 & 0.6840631211 & 0.6840631211 & 3.861164322 & 1.406110038 \\
0.04180935325 & 989.9275043 & 940.7920789 & 1.219992952 & 2.11645721 \\
0.0005874990823 & 0.0002262487881 & \(1.305425215 \mathrm{e}-005\) & \(1.325766526 \mathrm{e}-005\) & \\
1540.36334 & 1516.70087 & 483.0292642 & 471.2241486 & 2.172615558 \\
2.111791551 & 2.148791551 & 0.1000176194 & 0.1235952177 & 1780.055528 \\
1779.46732 & 192.0054128 & 515.9017811 & 2710.042669 & 323.8963683 \\
1264.153747 & 209.5671263 & 192.5589469 & 196.9599582 & 175.1953679
\end{tabular}

KEY POINT \#4 (t plus 3224.7534 s with a Mixing Number of 63.3311): 52.07016481
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.8336091063 & 0.8411033843 \\
0.586075699 & 0.586075699 & 0.9989302471 & 21.51585712 & 158275.194 \\
0.06435663462 & 0.05331658078 & 0.04315959317 & 0.02523125958 & 0.06839085276 \\
70.69552728 & 128.1271651 & 128.1271651 & 88.00389459 & 74.81594398 \\
66.4096137 & 53.08174763 & 4.188210457 & 4.261188243 & 2.224406018 \\
0.6602463609 & 0.6846591225 & 0.6846591225 & 2.538124355 & 1.345741867 \\
0.04300395541 & 977.4486877 & 936.4137049 & 1.419870877 & 2.420083222 \\
0.0004001201435 & 0.0002162247695 & \(1.323636519 e-005\) & \(1.345351262 e-005\) & \\
1557.952988 & 1508.194154 & 485.2413915 & 473.0124331 & 2.554616845 \\
2.498971444 & 2.535971444 & 0.3215121482 & 0.6502718104 & 1815.975171 \\
1815.512239 & 296.1126575 & 538.3938788 & 2717.495251 & 242.2812213 \\
1277.581292 & 368.7194436 & 313.374239 & 278.1695573 & 222.4300301
\end{tabular}

KEY POINT \#5 (t plus 5152.1887 s with a Mixing Number of 99.533): 52.70975744
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.8326729697 & 0.8442138637 \\
0.5895572808 & 0.5895572808 & 0.9987272322 & 18.26131982 & 157264.6774 \\
0.06005935976 & 0.05196519464 & 0.04414188843 & 0.02508902861 & 0.06923091704 \\
94.00314999 & 134.6807034 & 134.6807034 & 111.2705446 & 95.19391211 \\
77.55693127 & 57.66649982 & 4.208948793 & 4.274411169 & 2.270238551 \\
0.6751822515 & 0.6849664285 & 0.6849664285 & 1.874035833 & 1.278628578 \\
0.04462023499 & 962.6837394 & 930.8125245 & 1.70387594 & 2.886415547 \\
0.0003006251194 & 0.0002048978481 & \(1.34626218 e-005\) & \(1.37062744 \mathrm{e}-005\) & \\
1550.497167 & 1496.697095 & 487.8345582 & 474.6299318 & 3.103035722 \\
3.050342207 & 3.087342207 & 0.8155151569 & 1.496030663 & 1840.20274 \\
1839.869264 & 393.9931732 & 566.3992819 & 2726.443816 & 172.4061087 \\
1273.803458 & 466.8592252 & 399.0045484 & 324.9117587 & 241.6439652
\end{tabular}

KEY POINT \#6 (t plus 7006.5198 s with a Mixing Number of 155.698): 53.15762646
\begin{tabular}{llccc}
0.040894 & 0.00925 & 0.3937 & 0.8206589521 & 0.8360486108 \\
0.5801127467 & 0.5801127467 & 0.9983184452 & 14.37905228 & 154598.1809 \\
0.05637965217 & 0.05015047135 & 0.04431866146 & 0.02550050308 & 0.06981916454 \\
112.9432554 & 143.3556339 & 143.3556339 & 130.0252859 & 113.3300644 \\
86.35842006 & 63.19041769 & 4.234258261 & 4.293814953 & 2.338199593 \\
0.6822254692 & 0.6846505861 & 0.6846505861 & 1.537178842 & 1.201346856 \\
0.04700021231 & 948.7978033 & 923.1174981 & 2.148219385 & 3.696879699 \\
0.0002476709005 & 0.0001915552576 & \(1.376217967 e-005\) & \(1.406114848 e-005\) & \\
1531.271547 & 1479.947654 & 491.0001605 & 475.6336504 & 3.971577048 \\
3.92174186 & 3.95874186 & 1.581384021 & 2.704640547 & 1841.851983 \\
1841.645226 & 474.0028645 & 603.618507 & 2737.73248 & 129.6156425 \\
1238.233476 & 546.5806218 & 475.6396037 & 361.9181448 & 264.8203122
\end{tabular}

KEY POINT \#7 (t plus 7583.1307 s with a Mixing Number of 175.9764): 52.70112555 \(\begin{array}{lllll}0.040894 & 0.00925 & 0.3937 & 0.8181472306 & 0.8348711691\end{array}\)
\begin{tabular}{llllc}
0.5850008498 & 0.5850008498 & 0.9982259704 & 13.39137841 & 152145.4219 \\
0.05541557117 & 0.04957152589 & 0.04433906145 & 0.02488051814 & 0.0692195796 \\
117.7746581 & 146.0947941 & 146.0947941 & 134.3366933 & 118.1825392 \\
108.6498921 & 65.08122911 & 4.242006963 & 4.300423474 & 2.361388916 \\
0.68333638 & 0.684382594 & 0.684382594 & 1.470046117 & 1.179362041 \\
0.04781123481 & 945.0024882 & 920.6211524 & 2.306334208 & 3.935451895 \\
0.0002368067759 & 0.0001876872958 & \(1.385675044 e-005\) & \(1.416513097 e-005\) & \\
1524.752808 & 1474.307707 & 491.9357011 & 476.3344456 & 4.283153498 \\
4.234302588 & 4.271302588 & 1.850617233 & 3.072061513 & 1859.152845 \\
1858.973516 & 494.5010357 & 615.4086878 & 2741.157443 & 120.9076521 \\
1243.744157 & 565.0065684 & 496.2302015 & 455.8619367 & 272.7574635
\end{tabular}

KEY POINT \#8 (t plus 10246.2761 s with a Mixing Number of 302.0953): 55.28498864
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.809506126 & 0.8317681112 \\
0.5709957639 & 0.5709957639 & 0.9973792704 & 9.961627705 & 153674.0249 \\
0.05127119922 & 0.04681982019 & 0.04617651441 & 0.02643680517 & 0.07261331958 \\
138.0146118 & 158.9422389 & 158.9422389 & 151.0355301 & 138.6521086 \\
137.3992973 & 73.99768946 & 4.280887045 & 4.334828344 & 2.481116227 \\
0.6851061293 & 0.682068899 & 0.682068899 & 1.247388765 & 1.089492721 \\
0.05201825679 & 928.0168591 & 908.4819177 & 3.177235941 & 5.5497947 \\
0.0001996300485 & 0.0001714275726 & \(1.430002946 e-005\) & \(1.471181826 e-005\) & \\
1491.082157 & 1445.682276 & 495.9089759 & 476.6845576 & 6.016877622 \\
5.970558302 & 6.007558302 & 3.416508093 & 4.894634273 & 1861.765071 \\
1861.665837 & 580.8517064 & 670.9782099 & 2756.260978 & 90.12650354 \\
1190.786861 & 636.7928755 & 583.580078 & 578.2192406 & 310.2324316
\end{tabular}

KEY POINT \#9 (t plus 10855.9869 s with a Mixing Number of 342.8635): 52.23001898
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.8072732135 & 0.8309211749
\end{tabular}
\begin{tabular}{lllll}
0.5972873996 & 0.5972873996 & 0.9974535251 & 9.12320242 & 144316.8037
\end{tabular}
\begin{tabular}{lllll}
0.05032461126 & 0.04613184635 & 0.04515227767 & 0.02344853338 & 0.06860081105 \\
142.5291179 & 162.1130047 & 162.1130047 & 154.93431 & 143.3601392
\end{tabular}
\begin{tabular}{lllll}
142.3655315 & 79.44118949 & 4.291116817 & 4.344256783 & 2.51342093
\end{tabular}
\begin{tabular}{llllll}
0.6848850461 & 0.681233463 & 0.681233463 & 1.20811269 & 1.070306512
\end{tabular}
\begin{tabular}{lllll}
0.05316346884 & 923.991349 & 905.3754189 & 3.428179521 & 5.724965486
\end{tabular}
0.000192821205
0.0001678373651
1482.259285 1438.078809
\begin{tabular}{lllll}
6.475347192 & 6.512347192 & 3.881233046 & 5.424903593 & 1924.200493
\end{tabular}
\(\begin{array}{lllll}1924.11726 & 600.2331255 & 684.7670515 & 2759.731648 & 84.53392598\end{array}\) \(\begin{array}{lllll}1239.433441 & 653.6576813 & 603.7988324 & 599.5323504 & 333.0905744\end{array}\)
KEY POINT \#10 (t plus 11406.5964 s with a Mixing Number of 385.9168): 50.1687406
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.8054920922 & 0.8303586289
\end{tabular}
\(\begin{array}{llllll}0.5999331189 & 0.5999331189 & 0.9973039573 & 8.247569074 & 137601.7783\end{array}\)
\(\begin{array}{llllll}0.04950970951 & 0.04553063065 & 0.04328649632 & 0.02260695657 & 0.06589345288\end{array}\)
\(146.3864884 \quad 164.8713265 \quad 164.8713265 \quad 157.5307597 \quad 146.9636104\)
\(146.2390726 \quad 91.74867797 \quad 4.30035866 \quad 4.352786477 \quad 2.542409057\)
\(\begin{array}{lllll}0.6845226314 & 0.6804225959 & 0.6804225959 & 1.177001578 & 1.054477431\end{array}\)
\begin{tabular}{llllll}
0.05419589534 & 920.4830717 & 902.636879 & 3.659169545 & 6.082851826
\end{tabular}
0.0001873527957
\(\begin{array}{rrrrr}6.941593621 & 6.978593621 & 497.5100956 & 479.1831393 & 6.985879604 \\ 6.317457839 & 5.802804908 & 1936.24337\end{array}\)
\(\begin{array}{lllll}1936.175347 & 616.8326195 & 696.7881222 & 2762.663777 & 79.95550274\end{array}\)
\(\begin{array}{lllll}1239.455247 & 664.919533 & 619.3137714 & 616.199846 & 384.8115022\end{array}\)
KEY POINT \#11 (t plus 11406.5964 s with a Mixing Number of 385.9168): 50.1687406
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.8054920922 & 0.8303586289 \\
0.5999331189 & 0.5999331189 & 0.9973039573 & 8.247569074 & 137601.7783 \\
0.04950970951 & 0.04553063065 & 0.04328649632 & 0.02260695657 & 0.06589345288 \\
146.3864884 & 164.8713265 & 164.8713265 & 157.5307597 & 146.9636104 \\
146.2390726 & 91.74867797 & 4.30035866 & 4.352786477 & 2.542409057 \\
0.6845226314 & 0.6804225959 & 0.6804225959 & 1.177001578 & 1.054477431 \\
0.05419589534 & 920.4830717 & 902.636879 & 3.659169545 & 6.082851826 \\
0.0001873527957 & 0.0001648347041 & \(1.450439759 \mathrm{e}-005\) & \(1.490969451 e-005\) & \\
1474.359774 & 1431.294321 & 497.5100956 & 479.1831393 & 6.985879604 \\
6.941593621 & 6.978593621 & 4.317457839 & 5.802804908 & 1936.24337 \\
1936.175347 & 616.8326195 & 696.7881222 & 2762.663777 & 79.95550274 \\
1239.455247 & 664.919533 & 619.3137714 & 616.199846 & 384.8115022
\end{tabular}

KEY POINT \#12 (t plus 0 s with a Mixing Number of 41.5283): 51.93560575 0.040894 \(\begin{array}{lllll}0.00925 & 0.3937 & 0.8292021165 & 0.8314723941 & 0.5678812083\end{array}\)
\begin{tabular}{llllll}
0.5678812083 & 0.9990263334 & 24.49114808 & 160309.6877 & 0.06936023809
\end{tabular}
\(\begin{array}{lllll}0.05447575745 & 0.04253736055 & 0.02567675743 & 0.06821411798 & 41.44894025\end{array}\)


\section*{D. 12 TEST \#12-T12_RCIC_5PSIG_107KW_RESULTS_RCICLAND.TXT}

Output Saved to C:\Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash E x p o r t \backslash T 12\) _RCIC_5PSIG_107kW \(\backslash\)
Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1804.8372 s, and ending (KEY POINT \#11) at \(t\) plus 12746.8131 s , for a time period of 10941.9759 s.
Original Data Record Time: 14288.3382 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(2625.7422 \mathrm{~s}, \mathrm{~T}\) _bulk \(=63.4675 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=60.0729 \mathrm{C}\)
Stratification Beginnīng SP12 Temperature \(=\overline{63} .2378 \mathrm{C}\)
Stratification Beginning Pressure \(=23.6034\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(10146.3644 \mathrm{~s}, \mathrm{~T}\) _bulk \(=130.4416 \mathrm{C}\) and T _out \(=76.0545 \mathrm{C}\)
Stratification Ending SP12 Temperature \(=130.314 \mathrm{C}\)
Stratification Ending Pressure \(=64.5798\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 1987.1317 s .
At \(t=1987.1317 \mathrm{~s}\), the pool pressure is 22.6159 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 58.161, 58.0852, 60.0925, 58.0885, and 54.4546 C, respectively.
Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 12.0007 +/- 2.561 C .
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed Sp8-Upper temperatures were 11.0272 +/- 2.3492 C .
Minimum Steam Quality: 0.98998 at t plus 10912.0752 s
Maximum Steam Quality: 1.0061 at \(t\) plus 3455.8547 s
Time-Averaged Steam Quality: 1.0001 +/- 0.0027551
Minimum Turbine Outlet Steam Quality: 0.99215 at t plus 10912.0752 s

Maximum Turbine Outlet Steam Quality: 1.0206 at t plus 2252.4358 s
Time-Averaged Turbine Outlet Steam Quality: 1.0093 +/- 0.0070392
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 10851.9747 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.72556 degrees/min at \(t\) plus 3837.4615 s and 0.34665 degrees/min at \(t\) plus 8694.4393 s, respectively
Max and min smoothed mid (SP9) level changerates: 0.82435 degrees/min at \(t\) plus 5060.2814 s and 0.37529 degrees/min at \(t\) plus 10152.2637 s, respectively

Max and min smoothed upper-mid level changerate differences: 0.288 degrees/min at \(t\) plus 3491.5557 s and -0.22808 degrees/min at \(t\) plus 5059.5804 s , respectively

Max and min smoothed lower level changerates: 3.9973 degrees/min at t plus 7440.4466 s and -0.11894 degrees/min at \(t\) plus 3422.3538 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.68162 degrees/min at \(t\) plus 5509.9901 s and -3.5466 degrees \(/ \mathrm{min}\) at t plus 7440.4466 s , respectively
Max and min smoothed outlet level changerates: 5.706 degrees/min at t plus 10779.9746 s and -0.020841 degrees \(/ \mathrm{min}\) at \(t\) plus 4164.7662 s , respectively
Max and min smoothed lower-outlet level changerate differences: 3.9164 degrees/min at \(t\) plus 7440.4466 s and -5.2007 degrees \(/ \mathrm{min}\) at \(t\) plus 10777.3755 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.37 degrees/min at \(t\) plus 2604.743 s and 0.16669 degrees/min at \(t\) plus 9222.1495 s, respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.83882 degrees/min at \(t\) plus 2534.64 s and -0.31375 degrees/min at \(t\) plus 4438.4719 s , respectively
The mean steam flow rate was \(44.6559+/-0.83056 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 43.7258 +/- \(1.8014 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.0030939+/-0.036284 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta T is 12.6626 +/- 1.1657 C over the Stratification Period, beginning at 7.3739 C and ending at 11.5956 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(11.6236+/-1.1461\) C over the Stratification Period, beginning at 7.0097 C and ending at 10.6215 C
The stratification period begins and ends with Smoothed SP8 readings of 71.0506 and 141.8864 C , respectively

The stratification period begins and ends with condensing flows of 0.46557 and 1.2492 \(\mathrm{kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of 3.4858 and \(1.9138 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(2737.3289+/-1.2347 \mathrm{~kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.42606 and 12.9278 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of \(2737.5098+/-1.129 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 2.3721 degrees \(C\) at \(t\) plus 4318.67 s with \(T\) upper \(=\) 81.1101 C and T mid \(=78.7379 \mathrm{C}\)

At t plus 4318.67 s , Smoothed SP8-SP9 is 13.3206 C and Smoothed SP8-Top is 10.9484 C , where Smoothed SP8 is 92.0585 C and Pool \(\mathrm{P}=28.112\) psia
Maximum Smoothed Top-Lower delta T is 26.12 degrees C at \(t\) plus 7175.8164 s with T_upper \(=109.9648 \mathrm{C}\) and \(\mathrm{T}_{-}\)low \(=83.8448 \mathrm{C}\)
At t plus 7175.8164 s, Smoothed SP8-SP9 is 14.061 C and Smoothed SP8-Top is 13.3846 C, where Smoothed SP8 is 123.3494 C and Pool \(\mathrm{P}=43.0219\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 25.491 degrees \(C\) at \(t\) plus 7108.8356 s with T_mid = 108.8059 C and \(\mathrm{T}_{\text {_low }}=83.3148 \mathrm{C}\)

At \(t\) plus 7108.8356 s , Smoothed SP8-SP9 is 13.5815 C and Smoothed SP8-Top is 13.046 C , where Smoothed SP8 is 122.3873 C and Pool \(\mathrm{P}=42.5877\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 55.7836 degrees \(C\) at \(t\) plus 9916.7602 s with T_upper \(=129.9466 \mathrm{C}\) and \(T\) _out \(=74.163 \mathrm{C}\)
At \(t\) plus 9916.7602 s , Smoothed SP8-SP9 is 12.1269 C and Smoothed SP8-Top is 10.9029 C , where Smoothed SP8 is 140.8495 C and Pool \(\mathrm{P}=62.5965\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 54.6949 degrees \(C\) at \(t\) plus 10002.8262 s with T_mid \(=129.4256 \mathrm{C}\) and T _out \(=74.7307 \mathrm{C}\)
At \(t\) plus 10002.8262 s , Smoothed \(\mathrm{SP} 8-\mathrm{SP9}\) is 11.84 C and Smoothed SP8-Top is 10.9513 C , where Smoothed SP8 is 141.2657 C and Pool \(\mathrm{P}=63.3059\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 54.659 degrees C at \(t\) plus 9979.3608 s with T_low \(=129.1915 \mathrm{C}\) and T _out \(=74.5325 \mathrm{C}\)
At t plus 9979.3608 s , Smoothed SP8-SP9 is 11.8816 C and Smoothed SP8-Top is 10.9366 C , where Smoothed SP8 is 141.0424 C and Pool \(\mathrm{P}=63.0955\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 14.6068 degrees \(C\) at (KEY POINT \#14) t plus 7383.8183 s with \(\mathrm{T}_{\mathrm{L}} \mathrm{SP} 8=125.5408 \mathrm{C}\) and T _SP9 \(=110.934 \mathrm{C}\) and Pool \(\mathrm{P}=\) 44.3567 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 14.0174 degrees \(C\) at \(t\) plus 6976.313 s with T_SP8 \(=122.1298 \mathrm{C}\) and T _upper \(=108.1125 \mathrm{C}\) and Pool \(\mathrm{P}=41.7433\) psia
Maximum Top-Mid delta \(T\) is 4.0962 degrees \(C\) at (KEY POINT \#4) t plus 3860.4618 s ignoring SP 4, with temperatures of 77.2292 and 73.133 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=26.6314\) psia and \(T\) outlet \(=66.5982 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 5546.8143 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 1.365 C and a raw SP12 Reading of 92.5302 C .
Maximum Top-Lower delta \(T\) is 28.2301 degrees \(C\) at \(t\) plus 7267.5177 s, with temperatures of 110.4139 and 82.1838 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=43.6193\) psia and T_outlet \(=70.9363 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 26.9159 degrees \(C\) at (KEY POINT \#6) \(t\) plus 7132.716 s ignoring SP 4, with temperatures of 108.9358 and 82.0198 C, respectively, at Set \# 2, where Pool \(P=42.7502\) psia and T_outlet \(=70.8574 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 7568.5219 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 8.9696 C and a raw SP12 Reading of 112.2591 C.
Maximum Top-Outlet delta \(T\) is 56.0469 degrees \(C\) at \(t\) plus 9937.9614 s , with temperatures of 130.2269 and 74.18 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=62.7758\) psia
Maximum Mid-Outlet delta \(T\) is 54.8058 degrees \(C\) at \(t\) plus 9971.2614 s ignoring SP 4, with temperatures of 129.2698 and 74.464 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=\) 63.0442 psia

Maximum Lower-Outlet delta \(T\) is 55.8925 degrees \(C\) at (KEY POINT \#8) t plus 9958.5596 s, with temperatures of 130.2648 and 74.3723 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=62.9523\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 10826.4753 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 18.6259 C and a raw SP12 Reading of 134.8564 C.
Minimum SP Pressure is 20.7345 psia at \(t\) plus 3.3002 s
Maximum SP Pressure is 72.0881 psia at \(t\) plus 10941.8769 s
Beginning SP Pressure is 20.7411 psia
Ending SP Pressure is 72.0878 psia
Time-Average SP Pressure is 37.6823 +/- 15.285 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 76.8408 cm (cold) / 76.9744 cm (hot) at 19.8052 psia
Beginning Smoothed SP Level is 77.2727 cm (cold) / 77.4443 cm (hot) at 20.7443 psia
Ending Smoothed SP Level is 80.5617 cm (cold) / 82.7283 cm (hot) at 72.0942 psia
Minimum Smoothed Cold SP Level is 77.081 cm at t plus 2589.7431 s and 23.5424 psia
Minimum Smoothed Hot SP Level is 77.432 cm at \(t\) plus 1352.9224 s and 21.8473 psia
Maximum Smoothed Cold SP Level is 80.5617 cm at t plus 10941.9759 s and 72.0942 psia
Maximum Smoothed Hot SP Level is 82.7283 cm at \(t\) plus 10941.9759 s and 72.0942 psia
SP 12 Temperature at the beginning is 40.0548 C , and at the end is 135.7365 C
At plume detection, the Mixing Number is 45.1143
The Mixing Number ranges from a minimum of 35.5449 at (KEY POINT \#12) \(t\) plus 0 s to a maximum of 324.5116 at (KEY POINT \#13) t plus 10941.9759 s; it had a mean value of 121.5718 +/- 82.5853 over the test period.
Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid \(T\) (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) csl, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta h e6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8,

Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy ell
KEY POINT \#1 (t plus 0 s with a Mixing Number of 35.5449): 36.74278043 0.040894 \(\begin{array}{lllll}0.00925 & 0.3937 & 0.7727272112 & 0.7744428647 & 1.013830827\end{array}\)
\begin{tabular}{lcccccc}
1 & 1 & 44.37054148 & 113638.555 & 0.06960802964 & 39.9279 \\
0.05669326994 & 0.04825930734 & \(5.369110399 e-006\) & 0.04825930734 & 39.77263922 \\
126.0464525 & 111.3605831 & 40.254814 & 39.90993725 & 0.6285635417 \\
36.10383451 & 4.178441517 & 4.232404205 & 2.127809291 & 0.03951391151 \\
0.6816640914 & 0.6816640914 & 4.345415173 & 1.560724542 & 0.0006536814121 \\
992.2673163 & 949.9080109 & 0.8628299974 & 0.8281816502 & 0.0 \\
0.0002513677393 & \(1.265866011 e-005\) & \(1.322226654 \mathrm{e}-005\) & 1531.278148 & \\
1532.764912 & 477.8471204 & 487.9843209 & 1.500526546 & 1.430270643 \\
1.467270643 & 0.07356088776 & 0.074853381 & 2725.885401 & 2723.916656 \\
167.363289 & 467.1253442 & 2693.129181 & 299.7620551 & 2258.760057 \\
168.7292794 & 167.2867256 & 166.7161371 & 151.389944 &
\end{tabular}

KEY POINT \#2 (t plus 1987.1317 s with a Mixing Number of 45.1143): 33.29175894
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & & 0.7715302102 & 0.7751237984 \\
1.016584172 & & 1 & & 37.48203207 & 101441.1898 \\
0.06656891855 & 0.05619593154 & 0.04372660989 & \(3.167943558 \mathrm{e}-006\) & 0.04372660989 \\
58.08518687 & 131.3749932 & 113.867857 & 60.09252345 & 58.16104109 \\
58.08848508 & 54.4545953 & 4.181854431 & 4.236275444 & 2.140465022 \\
0.6489886753 & 0.6823185531 & 0.6823185531 & 3.094284458 & 1.523953972 \\
0.03998125798 & 984.2091035 & 947.9672189 & 0.9324287261 & 0.8882701672 \\
0.0004802069524 & 0.0002454566712 & \(1.274487264 \mathrm{e}-005\) & \(1.34209111 \mathrm{e}-005\) & \\
1552.719641 & 1529.555812 & 479.0199123 & 491.0507761 & 1.630252629 \\
1.559633422 & 1.596633422 & 0.1824351316 & 0.2003137005 & 2735.104591 \\
2733.699689 & 243.2635295 & 477.7513178 & 2696.896994 & 234.4877882 \\
2257.353274 & 251.6587243 & 243.5793071 & 243.2788414 & 228.0886855
\end{tabular}

KEY POINT \#3 (t plus 2625.7422 s with a Mixing Number of 49.3637): 33.61592801
\begin{tabular}{lccccc}
0.040894 & 0.00925 & & 0.3937 & 0.7708277044 & 0.7751013837 \\
1.016298871 & & 1 & 36.51856141 & 102231.1524 \\
0.06559803438 & 0.05597040308 & 0.04415238537 & \(1.444633323 e-006\) & 0.04415238537 \\
63.67671048 & 132.136723 & 115.0003254 & 71.05056892 & 64.04086639 \\
63.92397438 & 60.01292945 & 4.184337002 & 4.238072154 & 2.146378258 \\
0.6542487518 & 0.6825899803 & 0.6825899803 & 2.824616495 & 1.507934193 \\
0.04019829595 & 981.3083273 & 947.081646 & 0.965320339 & 0.9205463359 \\
0.0004416474617 & 0.0002428700441 & \(1.278383898 e-005\) & \(1.344687728 e-005\) & \\
1555.870825 & 1528.050889 & 479.5421062 & 491.3414066 & 1.69178831 \\
1.627515465 & 1.664515465 & 0.2359562517 & 0.3264581152 & 2736.037677 \\
2734.704072 & 266.658778 & 482.5541904 & 2698.585267 & 215.8954124 \\
2253.483487 & 297.5286262 & 268.1811498 & 267.6949246 & 251.3368011
\end{tabular}

KEY POINT \#4 (t plus 3860.4618 s with a Mixing Number of 60.3683): 34.06822742
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7796344099 & 0.7859375877 \\
1.014495487 & & 1 & 1 & 33.10467625 & 103279.5676 \\
0.06374329296 & 0.0552690297 & 0.0447464519 & \(4.273279688 \mathrm{e}-006\) & 0.0447464519 \\
74.11243538 & 133.536148 & 118.5046793 & 87.11077406 & 76.09323829 \\
71.92660993 & 66.51598939 & 4.190706084 & 4.243825352 & 2.165474868 \\
0.6628561015 & 0.6833353839 & 0.6833353839 & 2.416362139 & 1.460554098 \\
0.04089410502 & 975.4246439 & 944.3061223 & 1.073098502 & 1.029204475 \\
0.0003822029881 & 0.0002351765713 & \(1.290450855 e-005\) & \(1.348946481 e-005\) & \\
1558.01297 & 1523.179502 & 481.1278694 & 491.5744006 & 1.894376909 \\
1.836611955 & 1.873611955 & 0.371843793 & 0.6282517547 & 2736.832152 \\
2735.736232 & 310.3737676 & 497.4302896 & 2703.754489 & 187.0565221 \\
2239.401862 & 364.9147252 & 318.6748099 & 301.2167717 & 278.5638509
\end{tabular}

KEY POINT \#5 (t plus 5546.8143 s with a Mixing Number of 92.0947): 34.43303698
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.7906587965 & 0.8002630366
\end{tabular}
\begin{tabular}{lllll}
1.010668877 & 1 & 27.16584348 & 103852.991
\end{tabular}
\(0.06032226132 \quad 0.05391272745 \quad 0.045225606084 .422981698 \mathrm{e}-006 \quad 0.04522560608\)
\(\begin{array}{lllll}92.61678931 & 135.9567038 & 125.2090808 & 104.5746443 & 93.59585103\end{array}\)
7003
0.6744534338
0.5951031
\(\begin{array}{lll}4.207562137 & 4.255672873 & 2.205501345\end{array}\)

\(\begin{array}{lllll}0.0003052767544 & 0.0002216601867 & 1.313566733 e-005 & 1.355863323 e-005 & \\ 1551.333592 & 1512.981773 & 484.0318918 & 491.6803025 & 2.337220857\end{array}\)
\(\begin{array}{lllll}1551.333592 & 1512.981773 & 484.0318918 & 491.6803025 & 2.337220857 \\ 2.282916234 & 2.319916234 & 0.774525943 & 1.191327526 & 2737.476894\end{array}\)
\(\begin{array}{lllll}2736.738911 & 388.1002074 & 525.9525779 & 2713.401289 & 137.8523705\end{array}\)
\(\begin{array}{lllll}2211.524316 & 438.4991295 & 392.2189047 & 338.5045382 & 291.4917108\end{array}\)

KEY POINT \#6 (t plus 7132.716 s with a Mixing Number of 143.9185): 34.46850236
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7936001899 & 0.8066328841 \\
1.005989782 & & 1 & 21.23532754 & 103235.9045 \\
0.05715875109 & 0.05220730897 & 0.0452721876 & \(2.997454564 e-006\) & 0.0452721876 \\
109.0012555 & 139.3065764 & 133.512651 & 122.9519762 & 109.5888518 \\
83.6218816 & 70.87250423 & 4.228517124 & 4.271967187 & 2.261724238 \\
0.681073495 & 0.6849463852 & 0.6849463852 & 1.596958703 & 1.290001963 \\
0.04432101024 & 951.7833198 & 931.8242013 & 1.650172542 & 1.623275386 \\
0.0002572169424 & 0.0002068326237 & \(1.342228873 \mathrm{e}-005\) & \(1.365372777 \mathrm{e}-005\) & \\
1535.964741 & 1498.820462 & 487.3849742 & 491.6797796 & 2.99888237 \\
2.947339621 & 2.984339621 & 1.386320156 & 2.179606568 & 2738.284207 \\
2737.833268 & 457.2522208 & 561.4010518 & 2724.874534 & 104.1488309 \\
2176.883156 & 516.3967744 & 459.7358935 & 350.3496907 & 296.895603
\end{tabular}

KEY POINT \#7 (t plus 7568.5219 s with a Mixing Number of 158.2462): 34.3890483
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7938815699 & 0.807855654 \\
1.004616318 & & 1 & 19.91050393 & 102853.8601 \\
0.0565048281 & 0.05176533495 & 0.04516782974 & \(3.336132587 e-006\) & 0.04516782974 \\
112.3122155 & 140.0556361 & 135.6429571 & 126.0869207 & 112.9788216 \\
103.5110444 & 71.34661629 & 4.23346829 & 4.27645375 & 2.27736597 \\
0.6820171859 & 0.6849717051 & 0.6849717051 & 1.546469392 & 1.269440818 \\
0.04487045054 & 949.2498497 & 929.9747411 & 1.749164601 & 1.727308783 \\
0.0002491382079 & 0.0002033299301 & \(1.349584978 e-005\) & \(1.367285331 e-005\) & \\
1531.914511 & 1494.924005 & 488.2007929 & 491.5174487 & 3.191019716 \\
3.139932432 & 3.176932432 & 1.548726575 & 2.400972138 & 2738.082828 \\
2737.6864 & 471.2747516 & 570.5191536 & 2727.728037 & 99.24440201 \\
2167.563674 & 529.7467747 & 474.095921 & 434.0739845 & 298.8970521
\end{tabular}

KEY POINT \#8 (t plus 9958.5596 s with a Mixing Number of 261.9274): 33.8784854
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.800058681 & 0.818971741 \\
0.998511898 & 0.998511898 & 0.999996177 & 14.3369466 & 99756.094 \\
0.0531357949 & 0.0493827721 & 0.0444972378 & \(3.20031273 \mathrm{e}-006\) & 0.0444972378 \\
129.008753 & 146.985007 & 146.985007 & 141.201043 & 130.014237 \\
128.781019 & 74.3651954 & 4.26245004 & 4.30262348 & 2.36910341 \\
0.684836973 & 0.68427829 & 0.68427829 & 1.33616756 & 1.17244715 \\
0.0480811409 & 935.750247 & 919.802946 & 2.35968188 & 2.36318952 \\
0.000214678633 & 0.000186463012 & \(1.3887482 \mathrm{e}-005\) & \(1.38881418 \mathrm{e}-005\) & 1507.1028 \\
1472.43914 & 492.233088 & 492.198757 & 4.38853673 & 4.33986951 \\
4.37686951 & 2.62343172 & 3.73953596 & 2739.30187 & 2739.09632 \\
542.274986 & 619.244574 & 2742.25557 & 76.9695882 & 2120.05729
\end{tabular}

KEY POINT \#9 (t plus 10146.3644 s with a Mixing Number of 272.7161): 33.7373221
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.80105839 & 0.820408721 \\
0.99812994 & 0.99812994 & 0.999995074 & 13.9384004 & 99111.0164 \\
0.0528723374 & 0.0491861279 & 0.0443118289 & \(5.00569437 e-006\) & 0.0443118289 \\
130.290749 & 147.910974 & 147.910974 & 141.886355 & 131.264903 \\
130.258845 & 76.0622183 & 4.26496933 & 4.30493956 & 2.37722021 \\
0.684922898 & 0.684160874 & 0.684160874 & 1.32261417 & 1.16537081 \\
0.0483652152 & 934.664461 & 918.948275 & 2.41621708 & 2.42073209 \\
0.000212402167 & 0.00018520611 & \(1.39194458 \mathrm{e}-005\) & \(1.39202896 e-005\) & 1504.91087 \\
1470.47712 & 492.538947 & 492.495272 & 4.50035097 & 4.45187066 \\
4.48887066 & 2.7261803 & 3.81212433 & 2739.61938 & 2739.4251 \\
547.748586 & 623.236722 & 2743.38992 & 75.488136 & 2116.38266 \\
597.345492 & 551.903108 & 547.613738 & 318.761594 &
\end{tabular}

KEY POINT \#10 (t plus 10826.4753 s with a Mixing Number of 316.6516): 33.7994594
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.805137114 & 0.826409671 \\
0.996083561 & 0.996083561 & 0.999988672 & 12.7629043 & 98437.3687 \\
0.0518835953 & 0.048444757 & 0.0443934421 & \(7.07100109 e-006\) & 0.0443934421 \\
135.073787 & 151.388851 & 151.388851 & 146.045237 & 136.198714 \\
135.540262 & 116.178688 & 4.27476849 & 4.31389672 & 2.40854587 \\
0.685082622 & 0.683638927 & 0.683638927 & 1.27479818 & 1.1398165 \\
0.0494628474 & 930.551659 & 915.705299 & 2.638336 & 2.64867951 \\
0.000204301608 & 0.000180630873 & \(1.40394785 e-005\) & \(1.40413657 e-005\) & 1496.38835 \\
1462.94134 & 493.656038 & 493.56026 & 4.9409062 & 4.89285723 \\
4.92985723 & 3.13873719 & 4.27734725 & 2739.47927 & 2739.31638 \\
568.200615 & 638.251449 & 2747.57742 & 70.0508339 & 2101.22782 \\
615.236284 & 573.009621 & 570.196096 & 487.784473 &
\end{tabular}

KEY POINT \#11 (t plus 10941.9759 s with a Mixing Number of 324.5116): 33.8222319 \(\begin{array}{lllll}0.040894 & 0.00925 & 0.3937 & 0.805616916 & 0.827282965\end{array}\)
\begin{tabular}{lcccc}
0.995951535 & 0.995951535 & 0.999988108 & 12.5829594 & 98361.1404 \\
0.0517192222 & 0.0483191405 & 0.0444233524 & \(5.24397076 e-006\) & 0.0444233524 \\
135.864726 & 151.976117 & 151.976117 & 146.494795 & 137.019546 \\
136.57758 & 126.636173 & 4.27645083 & 4.31545029 & 2.4139659 \\
0.685084829 & 0.683538224 & 0.683538224 & 1.26728929 & 1.13565613 \\
0.0496530254 & 929.862223 & 915.152558 & 2.67740518 & 2.68825666 \\
0.000203018976 & 0.000179880273 & \(1.40597433 e-005\) & \(1.40617153 e-005\) & 1494.92768 \\
1461.64307 & 493.839718 & 493.739969 & 5.01859076 & 4.97072011 \\
5.00772011 & 3.21158048 & 4.33025108 & 2739.89923 & 2739.7409 \\
571.58748 & 640.790061 & 2748.27297 & 69.2025816 & 2099.10917 \\
617.174567 & 576.526302 & 574.637673 & 532.215095 &
\end{tabular}

KEY POINT \#12 (t plus 0 s with a Mixing Number of 35.5449): 36.74278043 0.040894
\(0.00925 \quad 0.3937 \quad 0.7727272112 \quad 0.7744428647 \quad 1.013830827\)
\begin{tabular}{llllll}
1 & 1 & 44.37054148 & 113638.555 & 0.06960802964
\end{tabular}
\(\begin{array}{lllll}0.05669326994 & 0.04825930734 & 5.369110399 e-006 & 0.04825930734 & 39.9279\end{array}\)
\(\begin{array}{llllll}126.0464525 & 111.3605831 & 40.254814 & 39.90993725 & 39.77263922\end{array}\)
\begin{tabular}{llllll}
36.10383451 & 4.178441517 & 4.232404205 & 2.127809291 & 0.6285635417
\end{tabular}
\(0.6816640914 \quad 0.6816640914 \quad 4.345415173 \quad 1.560724542 \quad 0.03951391151\)
\begin{tabular}{llllll}
992.2673163 & 949.9080109 & 0.8628299974 & 0.8281816502 & 0.0006536814121
\end{tabular}
\(0.00025136773931 .265866011 \mathrm{e}-0051.32226654 \mathrm{e}-005 \quad 1531.278148\)
\begin{tabular}{lcccc}
1532.764912 & 477.8471204 & 487.9843209 & 1.500526546 & 1.430270643 \\
1.467270643 & 0.07356088776 & 0.074853381 & 2725.885401 & 2723.916656 \\
167.363289 & 467.1253442 & 2693.129181 & 299.7620551 & 2258.760057
\end{tabular}
\(168.7292794 \quad 167.2867256 \quad 166.7161371 \quad 151.389944\)
KEY POINT \#13 (t plus 10941.9759 s with a Mixing Number of 324.5116): 33.8222319
\(0.040894 \quad 0.00925 \quad 0.3937 \quad 0.805616916 \quad 0.827282965\)
\(0.995951535 \quad 0.995951535 \quad 0.999988108 \quad 12.5829594 \quad 98361.1404\)
\begin{tabular}{llcccc}
0.0517192222 & 0.0483191405 & 0.0444233524 & \(5.24397076 e-006\) & 0.0444233524 \\
135.864726 & 151.976117 & 151.976117 & 146.494795 & 137.019546
\end{tabular}
\(136.57758 \quad 126.636173 \quad 4.27645083 \quad 4.31545029 \quad 2.4139659\)
\(\begin{array}{lllll}0.685084829 & 0.683538224 & 0.683538224 & 1.26728929 & 1.13565613\end{array}\)
\begin{tabular}{lllll}
0.0496530254 & 929.862223 & 915.152558 & 2.67740518 & 2.68825666
\end{tabular}
\(0.0002030189760 .0001798802731 .40597433 \mathrm{e}-0051.40617153 \mathrm{e}-005 \quad 1494.92768\)
\(1461.64307 \quad 493.839718 \quad 493.739969 \quad 5.01859076 \quad 4.97072011\)
\begin{tabular}{lllll}
5.00772011 & 3.21158048 & 4.33025108 & 2739.89923 & 2739.7409
\end{tabular}
\begin{tabular}{lllll}
571.58748 & 640.790061 & 2748.27297 & 69.2025816 & 2099.10917
\end{tabular}
\(617.174567 \quad 576.526302 \quad 574.637673 \quad 532.215095\)
KEY POINT \#14 (t plus 7383.8183 s with a Mixing Number of 152.1046): 34.41087195
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7938741069 & 0.8074155397 \\
1.005154846 & & 1 & 20.44412048 & 102990.2414 \\
0.05677762086 & 0.05195012748 & 0.04519649372 & \(5.799062777 e-006\) & 0.04519649372 \\
110.9339614 & 139.7053262 & 134.7533076 & 125.5407513 & 111.6783634 \\
91.50775207 & 71.15887068 & 4.231376691 & 4.274564362 & 2.270772759 \\
0.6816401499 & 0.6849671802 & 0.6849671802 & 1.567080965 & 1.277929664 \\
0.04463899697 & 950.310315 & 930.7494492 & 1.707259845 & 1.683383111 \\
0.0002524439164 & 0.000204778734 & \(1.346512889 e-005\) & \(1.366341294 \mathrm{e}-005\) & \\
1533.637215 & 1496.564061 & 487.862322 & 491.56291 & 3.109605074 \\
3.058322128 & 3.095322128 & 1.479321997 & 2.361143755 & 2738.092542 \\
2737.67458 & 465.4355102 & 566.710063 & 2726.540985 & 101.2745527 \\
2171.382479 & 527.4163405 & 468.5845405 & 383.4956641 & 298.1040412
\end{tabular}

End

\section*{D. 13 TEST \#13 - T13_RCIC_060GPM_157KW_RESULTS_RCICLAND.TXT}

Output Saved to C: \Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash\) Export \(\backslash\) T13_RCIC_060GPM_157kW
Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#l) detected at \(t\) plus 1153.361 s , and ending (KEY POINT \#11) at \(t\) plus 7513.9608 s , for a time period of 6360.5998 s.
Original Data Record Time: 8911.3997 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus
\(3199.024 \mathrm{~s}, \mathrm{~T}\) _bulk \(=81.1327 \mathrm{C}\) and T _out \(=77.3373 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=\overline{8} 0.8037 \mathrm{C}\)
Stratification Beginning Pressure \(=21.7017\) psia

Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(5571.0937 \mathrm{~s}, \mathrm{~T}\) _bulk \(=111.7117 \mathrm{C}\) and T _out \(=97.7167 \mathrm{C}\)
Stratification Ending \(\overline{\text { SP1 }} 12\) Temperature \(=111.5393 \mathrm{C}\)
Stratification Ending Pressure \(=38.1043\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 1018.6153 s .
At \(t=1018.6153\) s, the pool pressure is 16.1023 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 53.4058, 53.5204, 55.521, 53.463, and 50.9301 C, respectively.
Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were \(8.6421+/-2.3538 \mathrm{C}\).
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 8.0558 +/- 1.9998 C .
Minimum Steam Quality: 0.4776 at t plus 975.4158 s
Maximum Steam Quality: 0.65776 at \(t\) plus 6062.2557 s
Time-Averaged Steam Quality: 0.57917 +/- 0.026335
Minimum Turbine Outlet Steam Quality: 0.53952 at t plus 8.7985 s
Maximum Turbine Outlet Steam Quality: 0.69331 at \(t\) plus 3889.8615 s
Time-Averaged Turbine Outlet Steam Quality: 0.62617 +/- 0.020513
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 6270.6127 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.95174 degrees \(/ \mathrm{min}\) at t plus 2358.5369 s and 0.48002 degrees \(/ \mathrm{min}\) at t plus 3233.0499 s , respectively
Max and min smoothed mid (SP9) level changerates: 0.84057 degrees \(/ \mathrm{min}\) at t plus 1042.8176 s and 0.65574 degrees/min at t plus 3114.5481 s , respectively

Max and min smoothed upper-mid level changerate differences: 0.20087 degrees/min at \(t\) plus 3010.8492 s and -0.28873 degrees/min at \(t\) plus 3236.3511 s , respectively
Max and min smoothed lower level changerates: 0.96347 degrees/min at \(t\) plus 5036.1781 s and 0.46431 degrees/min at \(t\) plus 3532.9571 s, respectively
Max and min smoothed mid-lower level changerate differences: 0.33485 degrees/min at \(t\) plus 3504.9555 s and -0.23404 degrees/min at \(t\) plus 5851.4937 s , respectively
Max and min smoothed outlet level changerates: 2.52 degrees/min at \(t\) plus 5775.9884 s and 0.14181 degrees/min at \(t\) plus 5182.7804 s , respectively
Max and min smoothed lower-outlet level changerate differences: 0.79635 degrees/min at \(t\) plus 5036.1781 s and -1.7096 degrees \(/ \mathrm{min}\) at \(t\) plus 5772.3892 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.5381 degrees/min at t plus 1293.323 s and 0.12144 degrees/min at \(t\) plus 3350.1496 s , respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.7968 degrees/min at \(t\) plus 1293.323 s and -0.68511 degrees \(/ \mathrm{min}\) at t plus 3350.1496 s , respectively
The mean steam flow rate was \(66.3496+/-2.8728 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 65.9029 +/- \(5.1252 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(37.2206+/-2.5764 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is \(9.7609+/-0.60457\) C over the Stratification Period, beginning at 11.2459 C and ending at 11.3529 C
Mean Smoothed SP8-Upper Pool delta T is 9.0995 +/- 0.50194 C over the Stratification Period, beginning at 10.0585 C and ending at 10.3437 C
The stratification period begins and ends with Smoothed SP8 readings of 92.6317 and 122.9118 C , respectively

The stratification period begins and ends with condensing flows of 1.1417 and \(1.9366 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of 3.2953 and \(3.1314 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of 1894.2557 +/-19.3759 \(\mathrm{kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.67833 and 19.5277 kg/s, respectively
The plume period had a mean steam enthalpy of \(1875.6918+/-34.8119 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 2.0194 degrees C at t plus 3122.0476 s with T_upper \(=\) 82.4213 C and T mid \(=80.4018 \mathrm{C}\)

At t plus 3122.0476 s, Smoothed SP8-SP9 is 11.2371 C and Smoothed SP8-Top is 9.2177 C , where Smoothed SP8 is 91.639 C and Pool \(\mathrm{P}=21.3521\) psia
Maximum Smoothed Top-Lower delta \(T\) is 1.9689 degrees \(C\) at \(t\) plus 4804.5198 s with T_upper \(=102.7278 \mathrm{C}\) and T _low \(=100.759 \mathrm{C}\)
At t plus 4804.5198 s, Smoothed SP8-SP9 is 9.3617 C and Smoothed SP8-Top is 8.7014 C , where Smoothed SP8 is 111.4292 C and Pool \(\mathrm{P}=31.4083\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 1.3277 degrees \(C\) at \(t\) plus 4906.0786 s with T_mid = 103.3844 C and \(\mathrm{T}_{\text {_low }}=102.0567 \mathrm{C}\)

At t plus 4906.0786 s , Smoothed SP8-SP9 is 9.4573 C and Smoothed SP8-Top is 9.0328 C , where Smoothed SP8 is 112.8417 C and Pool \(\mathrm{P}=32.1988\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 14.7353 degrees \(C\) at \(t\) plus 5564.1933 s with T_upper \(=112.4328 \mathrm{C}\) and \(T\) _out \(=97.6974 \mathrm{C}\)
At t plus 5564.1933 s , Smoothed SP8-SP9 is 11.1986 C and Smoothed SP8-Top is 10.2377 C , where Smoothed SP8 is 122.6705 C and Pool \(\mathrm{P}=38.0501 \mathrm{psia}\)
Maximum Smoothed Mid-Outlet delta \(T\) is 13.9066 degrees \(C\) at \(t\) plus 5545.6872 s with T_mid \(=111.266 \mathrm{C}\) and T _out \(=97.3594 \mathrm{C}\)
At t plus 5545.6872 s , Smoothed SP8-SP9 is 11.0086 C and Smoothed SP8-Top is 10.2369 C , where Smoothed SP8 is 122.2745 C and Pool \(\mathrm{P}=37.875\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 13.8156 degrees C at \(t\) plus 5550.0124 s with T_low \(=111.235 \mathrm{C}\) and T _out \(=97.4193 \mathrm{C}\)
At t plus 5550.0124 s, Smoothed SP8-SP9 is 11.0193 C and Smoothed SP8-Top is 10.2016 C, where Smoothed SP8 is 122.3374 C and Pool \(\mathrm{P}=37.9125\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 12.063 degrees \(C\) at (KEY POINT \#14) t plus 5602.2614 s with T _SP8 \(=123.9847 \mathrm{C}\) and T _SP9 \(=111.9217 \mathrm{C}\) and Pool \(\mathrm{P}=\) 38.3914 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 10.8268 degrees \(C\) at \(t\) plus 5602.2614 s with \(\mathrm{T}_{-} \mathrm{SP} 8=123.9847 \mathrm{C}\) and \(\mathrm{T}_{-}\)upper \(=113.1578 \mathrm{C}\) and Pool \(\mathrm{P}=38.3914\) psia
Maximum Top-Mid delta \(T\) is 2.1806 degrees \(C\) at (KEY POINT \#4) t plus 3055.3448 s ignoring SP 4, with temperatures of 81.0088 and 78.8282 C, respectively, at Set \# 2, where Pool \(P=21.0859\) psia and T_outlet \(=75.8334 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 3562.9558 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.99986 C and a raw SP12 Reading of 85.8618 C .
Maximum Top-Lower delta \(T\) is 4.1874 degrees \(C\) at \(t\) plus 4900.5763 s, with temperatures of 104.0672 and 99.8798 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=32.1562\) psia and T_outlet \(=94.7165 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 1.8741 degrees \(C\) at (KEY POINT \#6) t plus 4154.1666 s ignoring SP 4, with temperatures of 93.7463 and 91.8721 C , respectively, at Set \# 3, where Pool \(P=26.8627\) psia and T_outlet \(=87.6395 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 4866.9784 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 0.99958 C and a raw SP12 Reading of 102.8403 C .
Maximum Top-Outlet delta \(T\) is 15.804 degrees \(C\) at \(t\) plus 5504.6899 s, with temperatures of 112.6879 and 96.8839 C , respectively, at Set \# 2, where Pool P \(=37.4688\) psia
Maximum Mid-Outlet delta \(T\) is 14.133 degrees \(C\) at \(t\) plus 5525.187 s ignoring SP 4, with temperatures of 111.0699 and 96.9369 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=\) 37.6593 psia

Maximum Lower-Outlet delta \(T\) is 15.4438 degrees \(C\) at (KEY POINT \#8) t plus 5577.996 s, with temperatures of 113.2595 and 97.8157 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=38.1593\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 5858.3221 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 5.1477 C and a raw SP12 Reading of 114.7856 C .
Minimum SP Pressure is 15.1175 psia at \(t\) plus 8.2015 s
Maximum SP Pressure is 46.8384 psia at \(t\) plus 6360.4188 s
Beginning SP Pressure is 15.1202 psia
Ending SP Pressure is 46.8359 psia
Time-Average SP Pressure is 24.7967 +/- 9.0597 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 77.5341 cm (cold) / 77.6896 cm (hot) at 14.6846 psia
Beginning Smoothed SP Level is 78.083 cm (cold) / 78.2655 cm (hot) at 15.1217 psia
Ending Smoothed SP Level is 87.1692 cm (cold) / 89.2987 cm (hot) at 46.854 psia
Minimum Smoothed Cold SP Level is 77.9959 cm at \(t\) plus 152.1007 s and 15.2129 psia
Minimum Smoothed Hot SP Level is 78.1933 cm at \(t\) plus 152.0007 s and 15.2128 psia
Maximum Smoothed Cold SP Level is 87.9222 cm at \(t\) plus 5655.5895 s and 38.943 psia
Maximum Smoothed Hot SP Level is 89.8589 cm at t plus 5809.3203 s and 40.4835 psia
SP 12 Temperature at the beginning is 39.8824 C , and at the end is 121.0224 C
At plume detection, the Mixing Number is 42.0839
The Mixing Number ranges from a minimum of 35.1057 at (KEY POINT \#12) \(t\) plus 0 s to a maximum of 228.3876 at (KEY POINT \#13) t plus 6360.4188 s; it had a mean value of 92.8401 +/- 54.1879 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2,

Sparger mdot md3, Pool Mid \(T\) (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steäm Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta he6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy ell
KEY POINT \#1 (t plus 0 s with a Mixing Number of 35.1057): 72.33733181 0.040894
\begin{tabular}{lccccc}
0.00925 & 0.3937 & 0.7808298517 & 0.7826553004 & 0.5701635263 \\
0.5701635263 & 0.9994595563 & 60.22142642 & 235717.3073 & 0.06956065388 \\
0.05811295749 & 0.05759980793 & 0.03741068084 & 0.09501048877 & 40.21931012 \\
104.1251698 & 104.1251698 & 40.29314309 & 40.24535798 & 40.34995192 \\
37.7428711 & 4.178533104 & 4.222036447 & 2.094496684 & 0.6289137279 \\
0.6793565299 & 0.6793565299 & 4.319516323 & 1.677844149 & 0.03826206615 \\
992.142015 & 955.353835 & 0.6852446514 & 1.201189279 & 0.0006501332037 \\
0.0002699773897 & \(1.241042046 e-005\) & \(1.25496209 \mathrm{e}-005\) & 1531.709635 & \\
1541.047548 & 474.3373526 & 465.3270028 & 1.172863986 & 1.04260398 \\
1.07960398 & 0.07471206981 & 0.07500619594 & 1720.455888 & 1716.829268 \\
168.5465894 & 436.516365 & 2682.03514 & 267.9697755 & 1283.939523
\end{tabular} \(\begin{array}{ccccc} & 168.8551029 & 168.6539255 & 169.0940743 & 158.2042309 \\ \text { KEY POINT \#2 (t plus } & 1018.6153 \mathrm{~s} \text { with a Mixing Number of 42.0839) : 79.73348519 }\end{array}\)
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7841918275 & 0.7874161421 \\
0.5993320933 & 0.5993320933 & 0.9994839835 & 64.91581663 & 258437.5035 \\
0.06734944812 & 0.0576774946 & 0.06539776017 & 0.03932710609 & 0.1047248663 \\
53.52042977 & 106.3571517 & 106.3571517 & 55.5210319 & 53.40577199 \\
53.46302034 & 50.93012117 & 4.180410009 & 4.225109384 & 2.104282914 \\
0.6443243916 & 0.6801353528 & 0.6801353528 & 3.348067497 & 1.639860718 \\
0.03863344048 & 986.4247146 & 953.6986151 & 0.7365155459 & 1.228259758 \\
0.0005160358788 & 0.0002639759464 & \(1.248689922 e-005\) & \(1.261667173 e-005\) & \\
1548.946681 & 1538.650869 & 475.4395294 & 467.1293617 & 1.266928058 \\
1.110210017 & 1.147210017 & 0.1467738362 & 0.1615909999 & 1792.393122 \\
1788.179059 & 224.1396908 & 445.950232 & 2685.491284 & 221.8105412 \\
1346.44289 & 232.5036316 & 223.6589235 & 223.9012346 & 213.3174734
\end{tabular}

KEY POINT \#3 (t plus 3199.024 s with a Mixing Number of 73.1378) : 78.60036489
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.827088748 & 0.835738498 \\
0.6383092986 & 0.6383092986 & 0.9994460014 & 54.12500339 & 249787.9652 \\
0.06241841506 & 0.05623046085 & 0.06703009744 & 0.03620648731 & 0.1032365847 \\
81.38583335 & 113.6942253 & 113.6942253 & 92.63173457 & 82.5732364 \\
81.9187923 & 77.45346932 & 4.19659286 & 4.236002636 & 2.139569338 \\
0.667931174 & 0.6822756111 & 0.6822756111 & 2.188587463 & 1.526441921 \\
0.03994831218 & 970.9629382 & 948.1025036 & 0.9274669913 & 1.452200646 \\
0.0003483363391 & 0.0002458577541 & \(1.273889966 e-005\) & \(1.286804718 e-005\) & \\
1556.784316 & 1529.783517 & 478.9394326 & 470.9905107 & 1.620982322 \\
1.495943036 & 1.532943036 & 0.5013886686 & 0.7749584921 & 1896.750174 \\
1893.820658 & 340.8479071 & 477.0151241 & 2696.637393 & 136.167217 \\
1419.73505 & 388.1026639 & 345.8302348 & 343.0860691 & 324.3569745
\end{tabular}

KEY POINT \#4 (t plus 3055.3448 s with a Mixing Number of 70.3489): 78.31319136
\begin{tabular}{llccc}
0.040894 & 0.00925 & 0.3937 & 0.830282147 & 0.838630428 \\
0.6404936914 & 0.6404936914 & 0.9994639652 & 55.36415909 & 249433.7438 \\
0.06274486318 & 0.05637810396 & 0.06701230836 & 0.03584709221 & 0.1028594006 \\
79.60686911 & 112.9510548 & 112.9510548 & 90.82335278 & 81.16977481 \\
80.12884689 & 75.81162161 & 4.195078804 & 4.234842942 & 2.135768272 \\
0.6667496782 & 0.6820878177 & 0.6820878177 & 2.240716742 & 1.53718777 \\
0.03980828383 & 972.07481 & 948.6800611 & 0.9064710328 & 1.414510627 \\
0.0003561308945 & 0.0002475881788 & \(1.271333871 e-005\) & \(1.283923979 e-005\) & \\
\hline 1557.2495 & 1530.748971
\end{tabular}
\begin{tabular}{llllll}
1557.2495 & 1530.748971 & 478.5937223 & 470.810054 & 1.581791161
\end{tabular}
\begin{tabular}{cccccc}
1.453882874 & 1.490882874 & 0.4666496546 & 0.7240579203 & 1899.888654 \\
1896.823464 & 333.3803305 & 473.864664 & 2695.524017 & 140.4843335 \\
1426.02399 & 380.4919836 & 339.9365324 & 335.5716155 & 317.4698809
\end{tabular}

KEY POINT \#5 (t plus 3562.9558 s with a Mixing Number of 82.2947): 78.6808018
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.8369041543 & 0.8468643326 \\
0.6399888069 & 0.6399888069 & 0.9994126283 & 50.952975 & 248554.3777 \\
0.06156371278 & 0.05581258119 & 0.06726035263 & 0.03608188089 & 0.1033422335 \\
86.00440224 & 115.7911657 & 115.7911657 & 94.89718631 & 86.7138773 \\
86.03850496 & 80.68099041 & 4.200828978 & 4.23934483 & 2.150581658 \\
0.6708021692 & 0.6827706522 & 0.6827706522 & 2.06293852 & 1.496956642 \\
0.04035209967 & 968.0029062 & 946.4599225 & 0.9888417085 & 1.544184649 \\
0.0003294167989 & 0.0002410934009 & \(1.281105942 e-005\) & \(1.2945146 e-005\) & \\
1555.03717 & 1526.979729 & 479.903967 & 471.7494561 & 1.735879289 \\
1.617559047 & 1.654559047 & 0.6018410082 & 0.8428926143 & 1905.344695 \\
1902.748489 & 360.2493563 & 485.9094801 & 2699.759151 & 125.6601237 \\
1419.435215 & 397.6473007 & 363.2286584 & 360.3940252 & 337.9048486
\end{tabular}

KEY POINT \#6 (t plus 4154.1666 s with a Mixing Number of 102.5386): 81.38557064
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.8570880547 & 0.869576376 \\
0.617949194 & 0.617949194 & 0.9992732327 & 45.34992461 & 253998.4652 \\
0.06009328646 & 0.05504216478 & 0.06733431293 & 0.03956046259 & 0.1068947755 \\
93.82451021 & 119.6326305 & 119.6326305 & 103.3755337 & 94.38922368 \\
93.152287 & 87.68911109 & 4.209016036 & 4.245740296 & 2.171883558 \\
0.6750293888 & 0.6835451175 & 0.6835451175 & 1.878029586 & 1.445977536 \\
0.04112603744 & 962.755382 & 943.401493 & 1.1097863 & 1.794613141 \\
0.0003011927617 & 0.0002327958885 & \(1.294337442 e-005\) & \(1.310315605 e-005\) & \\
1550.389964 & 1521.543592 & 481.6284755 & 472.1421713 & 1.963650286 \\
1.852303519 & 1.889303519 & 0.8101344051 & 1.142596219 & 1865.731216 \\
1863.6746 & 393.1496361 & 502.2230786 & 2705.400192 & 109.0734426 \\
1363.508137 & 433.4050019 & 395.5254074 & 390.3218734 & 367.3511177
\end{tabular}

KEY POINT \#7 (t plus 4866.9784 s with a Mixing Number of 133.2825): 81.41000556
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.8748354816 & 0.8905243483 \\
0.6326333563 & 0.6326333563 & 0.9992049156 & 40.04711567 & 250607.0048 \\
0.05835931681 & 0.05401772865 & 0.06884128129 & 0.03808558794 & 0.1069268692 \\
102.8573339 & 124.6933303 & 124.6933303 & 112.2008102 & 103.1502648 \\
101.7613684 & 94.49103047 & 4.220083409 & 4.254721139 & 2.202254919 \\
0.6789508406 & 0.6843070989 & 0.6843070989 & 1.700166089 & 1.384326371 \\
0.04221628403 & 956.3388347 & 939.2755753 & 1.28707563 & 2.032855655 \\
0.0002735323175 & 0.0002226478145 & \(1.311787414 e-005\) & \(1.328446813 e-005\) & \\
1542.573287 & 1513.806246 & 483.8146524 & 474.198935 & 2.300412767 \\
2.198430767 & 2.235430767 & 1.122052566 & 1.543019073 & 1910.140167 \\
1908.536396 & 431.243703 & 523.7554192 & 2712.670947 & 92.5117162 \\
1386.384748 & 470.7351373 & 432.4786879 & 426.6207806 & 395.986527
\end{tabular}

KEY POINT \#8 (t plus 5577.996 s with a Mixing Number of 173.6301): 81.43315424
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.8790444598 & 0.8976660309
\end{tabular}
\begin{tabular}{lllll}
0.6341731268 & 0.6341731268 & 0.9990698 & 34.26702072 & 246753.8989
\end{tabular}
\(0.05663957862 \quad 0.05287519518 \quad 0.06936528182 \quad 0.03759199173 \quad 0.1069572736\)
\begin{tabular}{rrrrrr}
111.6319282 & 130.2768597 & 130.2768597 & 123.184551 & 112.673121 \\
111.5669097 & 98.05870354 & 4.232544309 & 4.265395855 & 2.238921757
\end{tabular}
\(111.5669097 \quad 98.05870354 \quad 4.232544309 \quad 4.265395855 \quad 2.238921757\)
\begin{tabular}{lllll}
0.681806881 & 0.6848123556 & 0.6848123556 & 1.556615732 & 1.322821267
\end{tabular}
\begin{tabular}{lllll}
0.04351750298 & 949.7541727 & 934.5965236 & 1.50847082 & 2.376429364
\end{tabular}
\(0.00025075019660 .00021237990071 .331056953 e-0051.349574383 e-005\)
\begin{tabular}{llrrr}
1532.669484 & 1504.535297 & 486.1109031 & 475.7639829 & 2.725049909 \\
2.631772927 & 2.668772927 & 1.51414276 & 2.195435462 & 1926.738278 \\
1925.564049 & 468.3583703 & 547.5701947 & 2720.468724 & 79.21182438 \\
1379.168083 & 517.3636645 & 472.7648646 & 468.0844833 & 411.0455327
\end{tabular}

KEY POINT \#9 (t plus 5571.0937 s with a Mixing Number of 173.2918): 81.62358086
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.879026001 & 0.897628266 \\
0.6325232183 & 0.6325232183 & 0.9990646122 & 34.3090466 & 247344.0243 \\
0.05665404493 & 0.05288614415 & 0.06936228922 & 0.0378450976 & 0.1072073868 \\
111.5588343 & 130.2236443 & 130.2236443 & 122.9117699 & 112.5680864 \\
111.4395269 & 97.8642083 & 4.232433409 & 4.265290191 & 2.238556344 \\
0.6817868628 & 0.6848091829 & 0.6848091829 & 1.557709495 & 1.323377645 \\
0.04350459683 & 949.8104096 & 934.6417449 & 1.506225132 & 2.379068758 \\
0.0002509255946 & 0.0002124735066 & \(1.330873243 e-005\) & \(1.349502874 e-005\) & \\
1532.760811 & 1504.627208 & 486.0896 & 475.6783574 & 2.720722327 \\
2.627355227 & 2.664355227 & 1.510464933 & 2.176879609 & 1923.026279
\end{tabular}
\begin{tabular}{lllll}
1921.849169 & 468.0486825 & 547.3429201 & 2720.395559 & 79.29423764
\end{tabular}

KEY POINT \#10 (t plus 5858.3221 s with a Mixing Number of 191.7071): 81.02958849
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.8788693232 & 0.8985765194 \\
0.6401204972 & 0.6401204972 & 0.9990311987 & 32.27462076 & 244020.2349 \\
0.05597880371 & 0.05239844336 & 0.06932533138 & 0.03710188421 & 0.1064272156 \\
114.9581923 & 132.5887006 & 132.5887006 & 126.431655 & 116.1818927 \\
115.1252293 & 109.4955955 & 4.237725288 & 4.270061184 & 2.255095843 \\
0.6826506447 & 0.6849199057 & 0.6849199057 & 1.508484717 & 1.2991736 \\
0.04408778845 & 947.1697943 & 932.6203503 & 1.608663353 & 2.510628679 \\
0.0002430001935 & 0.0002083880818 & \(1.339038605 e-005\) & \(1.357930007 e-005\) & \\
1528.357819 & 1500.477477 & 487.025455 & 476.6055677 & 2.918515906 \\
2.828636144 & 2.865636144 & 1.689465301 & 2.426391369 & 1945.104613 \\
1944.062962 & 482.4596034 & 557.4494818 & 2723.625204 & 74.98987835 \\
1387.655132 & 531.1931038 & 487.645297 & 483.1687679 & 459.3386632
\end{tabular}

KEY POINT \#11 (t plus 6360.5998 s with a Mixing Number of 228.3854): 81.73966194
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.8716921446 & 0.8929866852 & 243239.0575 \\
0.6442137836 & 0.6442137836 & 0.9989241853 & 29.1031679 & 0.1073598519 \\
0.05476938413 & 0.05149722685 & 0.07000986484 & 0.0373499871 & 122.5583428 \\
120.9853475 & 136.9310723 & 136.9310723 & 131.7821795 & 2.287067434 \\
121.8122331 & 118.482985 & 4.24778309 & 4.279229861 & 1.257392657 \\
0.6838517573 & 0.6849629318 & 0.6849629318 & 1.428871627 & 2.808617337 \\
0.04521069572 & 942.3648163 & 928.84709 & 1.811298623 & \\
0.0002300344327 & 0.0002012669076 & \(1.354033127 e-005\) & \(1.374229028 e-005\) & \\
1519.801814 & 1492.516971 & 488.6851829 & 477.8215237 & 3.311945067 \\
3.230471351 & 3.267471351 & 2.049442799 & 2.849798079 & 1964.132765 \\
1963.28577 & 508.0592448 & 576.0374656 & 2729.434893 & 67.97822077 & 497.4396923
\end{tabular}

KEY POINT \#12 (t plus 0 s with a Mixing Number of 35.1057): 72.33733181 0.040894
\begin{tabular}{lccccc}
0.00925 & 0.3937 & 0.7808298517 & 0.7826553004 & 0.5701635263 \\
0.5701635263 & 0.9994595563 & 60.22142642 & 235717.3073 & 0.06956065388 \\
0.05811295749 & 0.05759980793 & 0.03741068084 & 0.09501048877 & 40.21931012 \\
104.1251698 & 104.1251698 & 40.29314309 & 40.24535798 & 40.34995192 \\
37.7428711 & 4.178533104 & 4.222036447 & 2.094496684 & 0.6289137279 \\
0.6793565299 & 0.6793565299 & 4.319516323 & 1.677844149 & 0.03826206615 \\
992.142015 & 955.353835 & 0.6852446514 & 1.201189279 & 0.0006501332037 \\
0.0002699773897 & \(1.241042046 e-005\) & \(1.25496209 e-005\) & 1531.709635 & \\
1541.047548 & 474.3373526 & 465.3270028 & 1.172863986 & 1.04260398 \\
1.07960398 & 0.07471206981 & 0.07500619594 & 1720.455888 & 1716.829268 \\
168.5465894 & 436.516365 & 2682.03514 & 267.9697755 & 1283.939523 \\
168.8551029 & 168.6539255 & 169.0940743 & 158.2042309 &
\end{tabular}

KEY POINT \#13 (t plus 6360.4188 s with a Mixing Number of 228.3876): 81.79855667
\begin{tabular}{llllrl}
0.040894 & 0.00925 & 0.3937 & 0.8716961393 & 0.8929901776 \\
0.6436696067 & 0.6436696067 & 0.9989216584 & 29.10030622 & 243406.428 \\
0.05476972671 & 0.05149741168 & 0.07000448238 & 0.03743272404 & 0.1074372064 \\
120.9836511 & 136.9301854 & 136.9301854 & 131.7799441 & 122.5574967 \\
121.8084465 & 118.4774826 & 4.247780142 & 4.279227933 & 2.287060691 \\
0.6838514763 & 0.6849629441 & 0.6849629441 & 1.428892781 & 1.257400856 \\
0.04521045935 & 942.3661933 & 928.8478689 & 1.81125524 & 2.810917385 \\
0.0002300379033 & 0.0002012683142 & \(1.354030064 e-005\) & \(1.374273557 e-005\) & \\
1519.804347 & 1492.518641 & 488.6848517 & 477.7961241 & 3.311860549 \\
3.230320229 & 3.267320229 & 2.049333322 & 2.849609453 & 1962.958661 \\
1962.111833 & 508.0520281 & 576.0336647 & 2729.433723 & 67.98163656 \\
1386.924996 & 554.0201351 & 514.7383612 & 511.55742 & 497.4163327
\end{tabular}

KEY POINT \#14 (t plus 5602.2614 s with a Mixing Number of 175.1179): 80.96252231
\begin{tabular}{llllll}
0.040894 & 0.00925 & 0.3937 & 0.87912557 & 0.8978501224 \\
0.6382605065 & 0.6382605065 & 0.9990809962 & 34.10470173 & 245253.7431 \\
0.05658221369 & 0.05283572866 & 0.06937591034 & 0.03696321809 & 0.1063391284 \\
111.9216594 & 130.4686336 & 130.4686336 & 123.984668 & 113.1578182 \\
111.7512014 & 98.73915934 & 4.232985513 & 4.26577728 & 2.240241172 \\
0.6818855132 & 0.6848235283 & 0.6848235283 & 1.552296009 & 1.3208208 \\
0.0435640952 & 949.5309532 & 934.4334583 & 1.516586021 & 2.373940196 \\
0.0002500571187 & 0.0002120432223 & \(1.331719002 e-005\) & \(1.349982 e-005\) & \\
1532.305682 & 1504.203514 & 486.1875799 & 475.990379 & 2.740691674 \\
2.647693843 & 2.684693843 & 1.528793465 & 2.250608116 & 1936.073105 \\
1934.909974 & 469.5858831 & 548.389279 & 2720.732203 & 78.80339593 \\
1387.683826 & 520.7673299 & 474.8184728 & 468.8656627 & 413.9143411
\end{tabular}

\section*{D. 14 TEST \#14-T14_RCIC_1ATM_157KW_RESULTS_RCICLAND.TXT}

Output Saved to C:\Local Files \RCICLAND_NOTITLES \(\backslash\) Export \(\backslash\) T14_RCIC_1ATM_157kW
Using 20 -second SP 12 averages for begin̄ning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1430.7658 s, and ending (KEY POINT \#11) at \(t\) plus 5973.2456 s , for a time period of 4542.4798 s .
Original Data Record Time: 7605.868 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at t plus \(2385.5384 \mathrm{~s}, \mathrm{~T}\) bulk \(=72.2546 \mathrm{C}\) and T out \(=69.8949 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=72.1899 \mathrm{C}\)
Stratification Beginning Pressure \(=15.2821\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at t plus \(3512.8539 \mathrm{~s}, \mathrm{~T}_{\mathrm{B}} \mathrm{bulk}=87.3483 \mathrm{C}\) and \(\mathrm{T}_{\mathrm{C}}\) out \(=79.9994 \mathrm{C}\)
Stratification Ending \(\overline{\text { SP1 }}\) Temperature \(=87 . \overline{269} \mathrm{C}\)
Stratification Ending Pressure \(=15.3239\) psia
Plume detected! Setting t plume (KEY POINT \#2) to 939.7137 s .
At \(t=939.7137 \mathrm{~s}\), the pool pressure is 15.2785 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 53.6278, 53.6193, 55.6206, 53.5167, and 50.472 C, respectively.
Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 7.7273 +/- 2.8802 C .
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 7.0634 +/- 2.3856 C.
Minimum Steam Quality: 0.99376 at \(t\) plus 214.2033 s
Maximum Steam Quality: 1.0011 at t plus 2078.8349 s
Time-Averaged Steam Quality: 0.99814 +/- 0.0011321
Minimum Turbine Outlet Steam Quality: 1.0231 at t plus 301.6032 s
Maximum Turbine Outlet Steam Quality: 1.0314 at \(t\) plus 2843.8467 s
Time-Averaged Turbine Outlet Steam Quality: 1.0283 +/- 0.0013266
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 4452.4727 s; using 300 s smoothing
Max and min smoothed upper level changerates: 1.0549 degrees/min at \(t\) plus 2431.7411 s and 0.52368 degrees \(/ \mathrm{min}\) at t plus 3902.7412 s , respectively
Max and min smoothed mid (SP9) level changerates: 1.0083 degrees/min at t plus 3780.3622 s and 0.69765 degrees \(/ \mathrm{min}\) at \(t\) plus 2892.1464 s , respectively
Max and min smoothed upper-mid level changerate differences: 0.27929 degrees/min at \(t\) plus 2430.14 s and -0.41692 degrees \(/ \mathrm{min}\) at \(t\) plus 3819.5625 s, respectively
Max and min smoothed lower level changerates: 1.237 degrees/min at \(t\) plus 3544.1847 s and 0.13441 degrees/min at \(t\) plus 2964.9506 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.5982 degrees/min at \(t\) plus 2964.9506 s and -0.4986 degrees/min at t plus 3544.3577 s, respectively
Max and min smoothed outlet level changerates: 2.048 degrees/min at t plus 3586.2571 s and 0.16499 degrees/min at \(t\) plus 3041.1499 s, respectively
Max and min smoothed lower-outlet level changerate differences: 0.47951 degrees/min at \(t\) plus 3326.8523 s and -0.91416 degrees/min at \(t\) plus 3645.9575 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.5337 degrees/min at t plus 1436.8222 \(s\) and -0.1319 degrees/min at \(t\) plus 2779.445 s, respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.66698 degrees/min at \(t\) plus 1473.7233 s and -0.94887 degrees \(/ \mathrm{min}\) at t plus 2779.445 s , respectively
The mean steam flow rate was \(66.7509+/-1.9931 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 65.2437 +/- \(10.6112 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.0044022+/-0.036477 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is \(9.3352+/-1.4951\) C over the Stratification Period, beginning at 11.7322 C and ending at 8.8525 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(8.1288+/-1.2972\) C over the Stratification Period, beginning at 10.5514 C and ending at 7.3814 C
The stratification period begins and ends with Smoothed SP8 readings of 84.2197 and 96.0967 C, respectively

The stratification period begins and ends with condensing flows of 1.2354 and \(2.5113 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of 3.2204 and \(4.2691 \mathrm{~kg} / \mathrm{s}\), respectively.

The stratification period had a mean sparger steam enthalpy of 2740.7147 +/- 0.47705 \(\mathrm{kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.74581 and 19.6402 kg/s, respectively
The plume period had a mean steam enthalpy of \(2746.5465+/-0.90679 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 2.1669 degrees \(C\) at \(t\) plus 3673.2361 s with T_upper = 91.3566 C and T mid \(=89.1897 \mathrm{C}\)

At t plus 3673.2361 s, Smoothed SP8-SP9 is 9.1197 C and Smoothed SP8-Top is 6.9529 C, where Smoothed SP8 is 98.3095 C and Pool \(\mathrm{P}=15.3386\) psia
Maximum Smoothed Top-Lower delta \(T\) is 2.3477 degrees \(C\) at \(t\) plus 3194.5517 s with T_upper \(=84.2374 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=81.8897 \mathrm{C}\)
At t plus 3194.5517 s , Smoothed SP8-SP9 is 7.9919 C and Smoothed SP8-Top is 6.8497 C , where Smoothed SP8 is 91.0871 C and Pool \(\mathrm{P}=15.295\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 1.2055 degrees \(C\) at \(t\) plus 3194.4507 s with T_mid = 83.094 C and T _low \(=81.8885 \mathrm{C}\)

At t plus 3194.4507 s, Smoothed SP8-SP9 is 7.9967 C and Smoothed SP8-Top is 6.8546 C, where Smoothed SP8 is 91.0908 C and Pool \(\mathrm{P}=15.2951\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 8.6602 degrees \(C\) at \(t\) plus 3485.9544 s with T_upper \(=88.4181 \mathrm{C}\) and \(T\) _out \(=79.7579 \mathrm{C}\)
At t plus 3485.9544 s , Smoothed \(\overline{\mathrm{SP}} 8-\mathrm{SP9}\) is 8.5905 C and Smoothed SP8-Top is 7.0794 C , where Smoothed SP8 is 95.4975 C and Pool \(\mathrm{P}=15.3088\) psia
Maximum Smoothed Mid-Outlet delta T is 7.1662 degrees C at \(t\) plus 3498.4611 s with T_mid \(=87.0714 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=79.9052 \mathrm{C}\)
At \(t\) plus 3498.4611 s, Smoothed SP8-SP9 is 8.6779 C and Smoothed SP8-Top is 7.2166 C, where Smoothed SP8 is 95.7493 C and Pool \(\mathrm{P}=15.3232\) psia
Maximum Smoothed Lower-Outlet delta T is 8.0647 degrees C at \(t\) plus 3550.5561 s with T_low \(=88.908 \mathrm{C}\) and \(T\) _out \(=80.8432 \mathrm{C}\)
At \(t\) plus 3550.5561 s , Smoothed SP8-SP9 is 8.8533 C and Smoothed SP8-Top is 7.155 C , where Smoothed SP8 is 96.4661 C and Pool \(\mathrm{P}=15.317\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 11.7926 degrees \(C\) at (KEY POINT \#14) t plus 2395.237 s with \(\mathrm{T}_{-}\)SP8 \(=84.4204 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{SP9}=72.6278 \mathrm{C}\) and Pool \(\mathrm{P}=\) 15.2815 psia

Maximum Smoothed Condensing Region SP8-Upper delta T is 10.7336 degrees \(C\) at \(t\) plus 2338.3387 s with \(T_{-} S P 8=83.3316 \mathrm{C}\) and \(\mathrm{T}_{-}\)upper \(=72.598 \mathrm{C}\) and Pool \(\mathrm{P}=15.282\) psia
Maximum Top-Mid delta \(T\) is 2.1893 degrees \(C\) at (KEY POINT \#4) \(t\) plus 2815.9571 s ignoring SP 4, with temperatures of 79.5373 and 77.348 C , respectively, at Set \# 2, where Pool \(P=15.2813\) psia and T_outlet \(=73.9644 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 3033.9485 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.99909 C and a raw SP12 Reading of 81.057 C .
Maximum Top-Lower delta \(T\) is 3.6819 degrees \(C\) at \(t\) plus 3204.9513 s, with temperatures of 84.7409 and 81.059 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=15.2932\) psia and T_outlet \(=76.6853 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 1.5494 degrees \(C\) at (KEY POINT \#6) t plus 2869.2461 s ignoring SP 4, with temperatures of 79.4408 and 77.8913 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=15.2926\) psia and T_outlet \(=74.8448 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 2869.2461 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 0.87727 C and a raw SP12 Reading of 79.4408 C .
Maximum Top-Outlet delta \(T\) is 9.2384 degrees \(C\) at \(t\) plus 3509.7677 s, with temperatures of 89.2142 and 79.9758 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=15.3219\) psia
Maximum Mid-Outlet delta \(T\) is 7.3478 degrees \(C\) at \(t\) plus 3482.1562 s ignoring SP 4, with temperatures of 86.9776 and 79.6297 C, respectively, at Set \# 2, where Pool \(P=\) 15.3095 psia

Maximum Lower-Outlet delta \(T\) is 9.1259 degrees \(C\) at (KEY POINT \#8) t plus 3468.7574 s, with temperatures of 88.6267 and 79.5008 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=15.3093\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 3622.2572 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 3.0404 C and a raw SP12 Reading of 88.3963 C .
Minimum SP Pressure is 14.8214 psia at \(t\) plus 0 s
Maximum SP Pressure is 16.1784 psia at \(t\) plus 4540.0857 s
Beginning SP Pressure is 14.8214 psia
Ending SP Pressure is 16.1773 psia
Time-Average SP Pressure is 15.3248 +/- 0.19934 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 76.5369 cm (cold) / 76.679 cm (hot) at 14.6967 psia
Beginning Smoothed SP Level is 77.0125 cm (cold) / 77.189 cm (hot) at 14.8271 psia
Ending Smoothed SP Level is 76.5917 cm (cold) / 77.5982 cm (hot) at 16.1809 psia

Minimum Smoothed Cold SP Level is 76.5896 cm at t plus 4506.6758 s and 16.0872 psia Minimum Smoothed Hot SP Level is 77.189 cm at t plus 0 s and 14.8271 psia
Maximum Smoothed Cold SP Level is 77.2669 cm at \(t\) plus 253.9025 s and 15.039 psia
Maximum Smoothed Hot SP Level is 77.7039 cm at t plus 4414.0685 s and 15.9325 psia SP 12 Temperature at the beginning is 40.3354 C , and at the end is 99.9414 C
At plume detection, the Mixing Number is 38.4286
The Mixing Number ranges from a minimum of 32.7622 at (KEY POINT \#12) \(t\) plus 0 s to a maximum of 269.8203 at (KEY POINT \#13) \(t\) plus 4542.4798 s; it had a mean value of 71.0913 +/- 48.8964 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed \(T\) t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T mid Vapor Pressure p4, T Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta he6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy el1
KEY POINT \#1 (t plus 0 s with a Mixing Number of 32.7622): 51.68433553 0.040894
\begin{tabular}{lllll}
0.00925 & 0.3937 & 0.7701249014 & 0.7718899222 & 1.024235576
\end{tabular}
\(1 \quad 1 \quad 83.92824409 \quad 157890.1249 \quad 0.06947577248\)
\begin{tabular}{llllll}
0.05831310271 & 0.06788409051 & \(2.580138907 e-006\) & 0.06788409051 & 40.74070806
\end{tabular}
\begin{tabular}{llllll}
129.7014415 & 103.0954497 & 41.23768898 & 40.48075873 & 40.53160571
\end{tabular}
\begin{tabular}{lllll}
36.98498522 & 4.178535923 & 4.220655847 & 2.090122876 & 0.6295715819
\end{tabular}
\begin{tabular}{llllll}
0.6789768643 & 0.6789768643 & 4.273203676 & 1.695965174 & 0.03809500515
\end{tabular}
\begin{tabular}{llllll}
991.9390833 & 956.1099702 & 0.6625909544 & 0.6158391672 & 0.0006438349814
\end{tabular}
\(0.00027282990091 .237517059 \mathrm{e}-0051.338639271 \mathrm{e}-005\) 1532.577289
\begin{tabular}{rrrrr}
1542.104435 & 473.8231357 & 491.6751017 & 1.131454261 & 1.022295431 \\
1.059295431 & 0.07681063294 & 0.07885807988 & 2741.962786 & 2734.918836 \\
170.7234708 & 432.1664867 & 2680.430854 & 261.4430159 & 2309.7963
\end{tabular}
\(172.8001242 \quad 169.6357584 \quad 169.8513222 \quad 155.0354764\)
KEY POINT \#2 (t plus 939.7137 s with a Mixing Number of 38.4286): 49.93733229
\begin{tabular}{|c|c|c|c|c|}
\hline 0.040894 & 0.00925 & 0.39370 & 0.7719410612 & 0.7749879592 \\
\hline 1.025120957 & 1 & 1 & 78.85692072 & 151773.4879 \\
\hline 0.06733265553 & 0.05813285873 & 0.06558951278 & \(4.40988611 \mathrm{e}-006\) & \(6 \quad 0.06558951278\) \\
\hline 53.61931614 & 131.5413858 & 104.0228906 & 55.6205902 & 53.6278319 \\
\hline 53.51666926 & 50.47203371 & 4.180451639 & 4.221898273 & 2.094058314 \\
\hline 0.6444254045 & 0.6793193955 & 0.6793193955 & 3.34218182 & 1.67962685 \\
\hline 0.03824535321 & 986.3730864 & 955.429152 & 0.6829667152 & 20.6333076331 \\
\hline 0.0005152043504 & 0.000270258311 & \(1.240691821 \mathrm{e}-00\) & \(051.345516463 \mathrm{e}-0\) & \\
\hline 1549.028541 & 1541.153915 & 474.2864376 & 492.7253399 & 1.168695724 \\
\hline 1.053611392 & 1.090611392 & 0.1474778971 & 0.1623605684 & 2744.510918 \\
\hline 2738.292504 & 224.548243 & 436.0842365 & 2681.876064 & 211.5359935 \\
\hline 2308.426681 & 232.9150807 & 224.5823906 & 224.1206724 & 211.3979466 \\
\hline INT \#3 (t plus 2 & . 5384 s with & \multicolumn{3}{|l|}{ing Number of 52.7606): 50.52048095} \\
\hline 0.040894 & 0.00925 & 0.39370 & 0.7694142275 & 0.7748411098 \\
\hline 1.026400347 & 1 & 1 & 80.54056473 & 152986.0769 \\
\hline 0.06403569433 & 0.05816718617 & 0.06635544149 & \(4.539657237 e-006\) & \(6 \quad 0.06635544149\) \\
\hline 72.48753625 & 132.8034539 & 103.8464134 & 84.21972121 & 73.66834724 \\
\hline 72.87503887 & 69.73709809 & 4.18972946 & 4.221660402 & 2.093303978 \\
\hline 0.6615777318 & 0.6792550232 & 0.6792550232 & 2.47319225 & 1.682711672 \\
\hline 0.038216578 & 976.3492833 & 955.5589976 & 0.679050752 & 0.6273104422 \\
\hline
\end{tabular}
\begin{tabular}{llcccc}
0.0003905285376 & 0.0002707442682 & \(1.240087577 e-005\) & \(1.350439589 \mathrm{e}-005\) & \\
1557.846882 & 1541.336725 & 474.1985031 & 493.5531724 & 1.16153237 \\
1.0535973 & 1.0905973 & 0.3471379438 & 0.5611966416 & 2747.390345 \\
2740.903563 & 303.501629 & 435.338657 & 2681.601446 & 131.8370279 \\
2312.051688 & 352.7093828 & 308.4480177 & 305.1266727 & 291.9857295
\end{tabular}

KEY POINT \#4 (t plus 2815.9571 s with a Mixing Number of 60.755): 52.97387942
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.76962915 & 0.7760553945 \\
1.026688415 & & 1 & 84.315753 & 160238.9813 \\
0.06296802301 & 0.05815273214 & 0.06957782448 & \(4.625619141 e-006\) & 0.06957782448 \\
78.38588448 & 133.1923778 & 103.9207302 & 87.29106089 & 79.76984434 \\
79.61901279 & 73.96807416 & 4.194159106 & 4.221760489 & 2.093621323 \\
0.665894357 & 0.6792821773 & 0.6792821773 & 2.277826759 & 1.681411242 \\
0.03822868605 & 972.8109713 & 955.5043349 & 0.6806975815 & 0.6283215094 \\
0.000361643883 & 0.0002705394332 & \(1.240342024 \mathrm{e}-005\) & \(1.351926858 \mathrm{e}-005\) & \\
1557.431108 & 1541.259852 & 474.2355464 & 493.7905376 & 1.16454452 \\
1.054047631 & 1.091047631 & 0.4439955205 & 0.6326458435 & 2748.770161 \\
2741.661015 & 328.2268588 & 435.6526248 & 2681.717113 & 107.425766 \\
2313.117536 & 365.6112619 & 334.0308412 & 333.4008543 & 309.710583
\end{tabular}

KEY POINT \#5 (t plus 3033.9485 s with a Mixing Number of 66.0511): 51.08709283
\begin{tabular}{lccccc}
0.040894 & 0.00925 & & 0.3937 & 0.7685845317 & 0.7754151755 \\
1.026475613 & & 1 & 81.7122398 & 154700.2051 \\
0.0625113863 & 0.0581854147 & 0.06709965018 & \(3.682968269 \mathrm{e}-006\) & 0.06709965018 \\
80.8800474 & 132.8014496 & 103.7526712 & 88.14028669 & 81.72731111 \\
80.39914744 & 75.78873963 & 4.196250079 & 4.221534327 & 2.092904338 \\
0.6675766847 & 0.6792206757 & 0.6792206757 & 2.203224108 & 1.684354866 \\
0.03820132493 & 971.2601439 & 955.627913 & 0.6769780938 & 0.6252416655 \\
0.0003505084343 & 0.0002710030433 & \(1.239766638 \mathrm{e}-005\) & \(1.350454302 \mathrm{e}-005\) & \\
1556.848326 & 1541.433461 & 474.1517506 & 493.5643481 & 1.157742069 \\
1.054519486 & 1.091519486 & 0.4912981595 & 0.6536906142 & 2747.610195 \\
2740.933305 & 338.6903954 & 434.942634 & 2681.455499 & 96.25223858 \\
2312.667561 & 369.1802963 & 342.2446925 & 336.6739489 & 317.3418075
\end{tabular}

KEY POINT \#6 (t plus 2869.2461 s with a Mixing Number of 62.0954): 51.65704772
\begin{tabular}{|c|c|c|c|c|}
\hline 0.040894 & 0.00925 & 0.3937 0.7 & 0.76908676320 & 0.7756043304 \\
\hline 1.026787801 & 1 & 1 & 82.54453613 & 156248.5741 \\
\hline 0.06285894018 & 0.05817432249 & 0.06784824972 & \(4.603241341 \mathrm{e}-006\) & 0.06784824972 \\
\hline 78.98321447 & 133.2015352 & 103.8097165 & 86.98020428 & 79.93021694 \\
\hline 80.19684936 & 74.74341286 & 4.194648064 & 4.221611025 & 2.093147445 \\
\hline 0.6663049238 & 0.6792415901 & 0.6792415901 & 2.259552713 & 1.683354547 \\
\hline 0.03821060431 & 972.4422902 & 955.5859803 & 0.6782387624 & 0.6258506604 \\
\hline 0.0003589219108 & 0.0002708455167 & \(1.239961938 \mathrm{e}-005\) & \(051.351988856 \mathrm{e}-00\) & \\
\hline 1557.313033 & 1541.374625 & 474.1802046 & 493.8110579 & 1.160047378 \\
\hline 1.054203789 & 1.091203789 & 0.454960054 & 0.6250853515 & 2748.532983 \\
\hline 2741.719383 & 330.7323144 & 435.1836259 & 2681.544319 & 104.4513115 \\
\hline 2313.349357 & 364.3050337 & 334.703677 & 335.8251321 & 312.9600719 \\
\hline
\end{tabular}

KEY POINT \#7 (t plus 2869.2461 s with a Mixing Number of 62.0954): 51.65704772
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7690867632 & 0.7756043304 \\
1.026787801 & & 1 & 82.54453613 & 156248.5741 \\
0.06285894018 & 0.05817432249 & 0.06784824972 & \(4.603241341 \mathrm{e}-006\) & 0.06784824972 \\
78.98321447 & 133.2015352 & 103.8097165 & 86.98020428 & 79.93021694 \\
80.19684936 & 74.74341286 & 4.194648064 & 4.221611025 & 2.093147445 \\
0.6663049238 & 0.6792415901 & 0.6792415901 & 2.259552713 & 1.683354547 \\
0.03821060431 & 972.4422902 & 955.5859803 & 0.6782387624 & 0.6258506604 \\
0.0003589219108 & 0.0002708455167 & \(1.239961938 e-005\) & \(1.351988856 e-005\) & \\
1557.313033 & 1541.374625 & 474.1802046 & 493.8110579 & 1.160047378 \\
1.054203789 & 1.091203789 & 0.454960054 & 0.6250853515 & 2748.532983 \\
2741.719383 & 330.7323144 & 435.1836259 & 2681.544319 & 104.4513115 \\
2313.349357 & 364.3050337 & 334.703677 & 335.8251321 & 312.9600719
\end{tabular}

KEY POINT \#8 (t plus 3468.7574 s with a Mixing Number of 82.0868): 51.70324864
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.768460622 & 0.7761826512 \\
1.026211766 & & 1 & 1 & 82.46212694 & 156673.4035 \\
0.06144618975 & 0.05817296579 & 0.06790893168 & \(4.98967612 \mathrm{e}-006\) & 0.06790893168 \\
86.63515218 & 132.5661697 & 103.8166933 & 95.08371201 & 88.11956258 \\
87.04263599 & 79.53904283 & 4.201570342 & 4.22162041 & 2.093177196 \\
0.6711412026 & 0.6792441452 & 0.6792441452 & 2.046843941 & 1.683232287 \\
0.03821173976 & 967.5634903 & 955.5808509 & 0.6783930763 & 0.6270399455 \\
0.0003269542558 & 0.0002708262622 & \(1.239985824 \mathrm{e}-005\) & \(1.349528766 e-005\) & \\
1554.628409 & 1541.367422 & 474.1836839 & 493.406188 & 1.160329582
\end{tabular}


KEY POINT \#10 (t plus 3622.2572 s with a Mixing Number of 89.853): 51.94588295
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7684206672 & 0.7764638653 \\
1.026259025 & & 1 & 82.75674152 & 157370.1901 \\
0.0610878574 & 0.0581655426 & 0.06822761643 & \(5.246619366 \mathrm{e}-006\) & 0.06822761643 \\
88.55206712 & 132.6537889 & 103.8548646 & 97.34215296 & 90.45933632 \\
90.10421011 & 85.1801 & 4.203496462 & 4.221671778 & 2.093340043 \\
0.6722316632 & 0.6792581145 & 0.6792581145 & 1.999170155 & 1.682563688 \\
0.03821795422 & 966.2960061 & 955.5527827 & 0.6792378644 & 0.6277419406 \\
0.0003197113381 & 0.0002707209604 & \(1.240116512 e-005\) & \(1.349858532 e-005\) & \\
1553.627846 & 1541.327991 & 474.2027166 & 493.4568481 & 1.161874585 \\
1.057005945 & 1.094005945 & 0.664103462 & 0.9216886986 & 2747.447358 \\
2740.59868 & 370.911321 & 435.3743607 & 2681.614601 & 64.46303974 \\
2312.072997 & 407.9024201 & 378.9290971 & 377.4383901 & 356.7479009
\end{tabular}

KEY POINT \#11 (t plus 4542.4798 s with a Mixing Number of 269.8203): 53.67577785
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7659172293 & 0.775981586 \\
1.026140655 & & 1 & 1 & 81.67941967 & 162121.0012 \\
0.0587272918 & 0.05789498517 & 0.07049972346 & \(4.164687906 \mathrm{e}-006\) & 0.07049972346 \\
100.9566149 & 133.7946936 & 105.2438258 & 103.9708686 & 101.2145594 \\
101.1894986 & 97.89145848 & 4.217840967 & 4.223562777 & 2.099348558 \\
0.6781534697 & 0.6797543993 & 0.6797543993 & 1.734891258 & 1.658589558 \\
0.03844659569 & 957.6727382 & 954.5270219 & 0.7105652181 & 0.6571906228 \\
0.000278939518 & 0.0002669389822 & \(1.244873914 \mathrm{e}-005\) & \(1.353937641 \mathrm{e}-005\) & \\
1544.218921 & 1539.86433 & 474.8918945 & 493.9951316 & 1.21926012 \\
1.115631999 & 1.152631999 & 1.049294316 & 1.166580326 & 2749.063671 \\
2742.392143 & 423.1438127 & 441.2436562 & 2683.771009 & 18.09984352 \\
2307.820015 & 2681.979561 & 424.230552 & 424.1274607 & 410.2262012
\end{tabular} KEY POINT \#12 (t plus 0 s with a Mixing Number of 32.7622): 51.68433553 0.040894 \(\begin{array}{lllll}0.00925 & 0.3937 & 0.7701249014 & 0.7718899222 & 1.024235576\end{array}\)
\begin{tabular}{lllll}
1 & 1 & 83.92824409 & 157890.1249 & 0.06947577248
\end{tabular}
\(\begin{array}{llllll}0.05831310271 & 0.06788409051 & 2.580138907 e-006 & 0.06788409051 & 40.74070806\end{array}\)
\(\begin{array}{lllll}129.7014415 & 103.0954497 & 41.23768898 & 40.48075873 & 40.53160571\end{array}\) \(\begin{array}{llllll}36.98498522 & 4.178535923 & 4.220655847 & 2.090122876 & 0.6295715819\end{array}\) \(\begin{array}{llllll}0.6789768643 & 0.6789768643 & 4.273203676 & 1.695965174 & 0.03809500515\end{array}\)
\begin{tabular}{llllll}
991.9390833 & 956.1099702 & 0.6625909544 & 0.6158391672 & 0.0006438349814
\end{tabular}
\(0.00027282990091 .237517059 \mathrm{e}-0051.338639271 \mathrm{e}-005 \quad 1532.577289\)
\begin{tabular}{lrrrr}
1542.104435 & 473.8231357 & 491.6751017 & 1.131454261 & 1.022295431 \\
1.059295431 & 0.07681063294 & 0.07885807988 & 2741.962786 & 2734.918836 \\
170.7234708 & 432.1664867 & 2680.430854 & 261.4430159 & 2309.7963
\end{tabular}
\(172.8001242 \quad 169.6357584 \quad 169.8513222 \quad 155.0354764\)
KEY POINT \#13 (t plus 4542.4798 s with a Mixing Number of 269.8203): 53.67577785
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.7659172293 & 0.775981586 \\
1.026140655 & & 1 & 81.67941967 & 162121.0012 \\
0.0587272918 & 0.05789498517 & 0.07049972346 & \(4.164687906 e-006\) & 0.07049972346 \\
100.9566149 & 133.7946936 & 105.2438258 & 103.9708686 & 101.2145594 \\
101.1894986 & 97.89145848 & 4.217840967 & 4.223562777 & 2.099348558 \\
0.6781534697 & 0.6797543993 & 0.6797543993 & 1.734891258 & 1.658589558 \\
0.03844659569 & 957.6727382 & 954.5270219 & 0.7105652181 & 0.6571906228 \\
0.000278939518 & 0.0002669389822 & \(1.244873914 \mathrm{e}-005\) & \(1.353937641 \mathrm{e}-005\) & \\
1544.218921 & 1539.86433 & 474.8918945 & 493.9951316 & 1.21926012 \\
1.115631999 & 1.152631999 & 1.049294316 & 1.166580326 & 2749.063671
\end{tabular}
\begin{tabular}{cccccc}
2742.392143 & 423.1438127 & 441.2436562 & 2683.771009 & 18.09984352 \\
2307.820015 & 2681.979561 & 424.230552 & 424.1274607 & 410.2262012 \\
KEY POINT \#14 (t plus & 2395.237 s with & a Mixing Number of & 52.9243): & 50.57137136 \\
0.040894 & 0.00925 & & 0.3937 & 0.7694394345 & 0.774889854 \\
1.026380278 & & 1 & 1 & 80.61290731 & 153149.2242 \\
0.06401050738 & 0.05816678764 & 0.0664222828 & \(5.645138864 \mathrm{e}-006\) & 0.0664222828 \\
72.62779138 & 132.782976 & 103.8484626 & 84.42041609 & 73.88128596 \\
73.01216781 & 69.73578283 & 4.189826386 & 4.22166316 & 2.093312722 \\
0.6616859656 & 0.6792557729 & 0.6792557729 & 2.468209944 & 1.682675786 \\
0.03821691169 & 976.2672766 & 955.5574906 & 0.6790961194 & 0.6273892238 \\
0.0003897965523 & 0.0002707386161 & \(1.240094593 e-005\) & \(1.350359867 e-005\) & \\
1557.853204 & 1541.334608 & 474.1995248 & 493.5398765 & 1.161615343 \\
1.053597868 & 1.090597868 & 0.3492143222 & 0.5656493406 & 2747.359968 \\
2740.861527 & 304.0892669 & 435.3473144 & 2681.604636 & 131.2580476 \\
2312.012654 & 353.5521705 & 309.3403669 & 305.7012489 & 291.9802213
\end{tabular}

End

\section*{D. 15 TEST \#15-T15_SRV_STD_107KW_RESULTS_RCICLAND.TXT}

Output Saved to C: \Local Files \RCICLAND_NOTITLES \(\backslash\) Export \(\backslash T 15\) _SRV_STD_107kW
Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1538.266 s , and ending (KEY POINT \#11) at \(t\) plus 9618.7952 s , for a time period of 8080.5292 s.
Original Data Record Time: 10602.6104 s
No Bulk Pool to Outlet Thermal Stratification Detected (KEY POINT \#3), 000000.
No Bulk Pool to Outlet Destratification Detected (KEY POINT \#9), 000000.
No Plume detected, setting t plume (KEY POINT \#2) to the end at 8080.5292 s.
At \(t=8080.5292 \mathrm{~s}\), the pool pressure is 38.995 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 113.9352, 113.6785, 113.6174, 113.7767, and 111.2981 C , respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were -0.06107 +/- 0 C.
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were -0.31777 +/- 0 C .
Minimum Steam Quality: 1.0008 at t plus 8031.3254 s
Maximum Steam Quality: 1.0186 at \(t\) plus 2039.1306 s
Time-Averaged Steam Quality: 1.0121 +/- 0.003617
SRV Alignment, no RCIC Turbine 000000
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 7990.525 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.67294 degrees/min at \(t\) plus 3934.67 s and 0.40502 degrees/min at \(t\) plus 5918.7955 s , respectively
Max and min smoothed mid (SP9) level changerates: 0.85564 degrees/min at \(t\) plus 4650.683 \(s\) and 0.30064 degrees/min at \(t\) plus 6144.3034 s , respectively
Max and min smoothed upper-mid level changerate differences: 0.20593 degrees/min at \(t\) plus 6144.3034 s and -0.28496 degrees/min at \(t\) plus 4650.683 s , respectively
Max and min smoothed lower level changerates: 0.73554 degrees/min at \(t\) plus 5980.7921 s and 0.41167 degrees \(/ \mathrm{min}\) at t plus 3522.9535 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.33374 degrees/min at \(t\) plus 4650.576 s and -0.40538 degrees/min at t plus 6006.2955 s , respectively
Max and min smoothed outlet level changerates: 0.68425 degrees/min at \(t\) plus 2884.259 s and 0.33409 degrees/min at \(t\) plus 3384.5526 s, respectively
Max and min smoothed lower-outlet level changerate differences: 0.17619 degrees/min at \(t\) plus 5981.0961 s and -0.20986 degrees/min at \(t\) plus 3580.0628 s , respectively
Max and min smoothed hot (SP8) level changerates: 0.71209 degrees/min at \(t\) plus 3518.9583 s and 0.33654 degrees/min at t plus 6098.3988 s , respectively

Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.20466 degrees/min at \(t\) plus 3757.6609 s and -0.31041 degrees/min at \(t\) plus 4680.6757 s , respectively
The mean steam flow rate was 45.6995 +/- \(1.6437 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was \(45.557+/-1.6933 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.0051655+/-0.036299 \mathrm{~g} / \mathrm{s}\)


At plume detection, the condensing and condensing+cooling flows are 1.4959 and -421.5113 kg/s, respectively
The plume period had a mean steam enthalpy of \(2730.9264+/-0 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 0.75278 degrees C at \(t\) plus 3958.9644 s with T_upper \(=77.3937 \mathrm{C}\) and T mid \(=76.641 \mathrm{C}\)
At \(t\) plus 3958.9644 s , Smoothed SP8-SP9 is 0.67974 C and Smoothed SP8-Top is -0.073033 C , where Smoothed SP8 is 77.3207 C and Pool \(\mathrm{P}=20.4281\) psia
Maximum Smoothed Top-Lower delta \(T\) is 1.5446 degrees \(C\) at \(t\) plus 5365.3899 s with T_upper \(=90.2976 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=88.753 \mathrm{C}\)
At t plus 5365.3899 s , Smoothed SP8-SP9 is -1.831 C and Smoothed SP8-Top is -0.31464 C , where Smoothed SP8 is 89.9829 C and Pool \(\mathrm{P}=24.807\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 3.1441 degrees \(C\) at \(t\) plus 5400.9889 s with T_mid = 92.2263 C and T low \(=89.0821 \mathrm{C}\)

At t plus 5400.9889 s, Smoothed SP8-SP9 is -1.8159 C and Smoothed SP8-Top is -0.19133 C , where Smoothed SP8 is 90.4104 C and Pool \(\mathrm{P}=24.9471\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 3.3265 degrees \(C\) at \(t\) plus 4961.4818 s with T_upper \(=86.6919 \mathrm{C}\) and \(T\) _out \(=83.3655 \mathrm{C}\)
At \(t\) plus 4961.4818 s , Smoothed \(\overline{S P} 8-S P 9\) is -1.145 C and Smoothed SP8-Top is -0.34236 C , where Smoothed SP8 is 86.3496 C and Pool \(\mathrm{P}=23.3866\) psia
Maximum Smoothed Mid-Outlet delta T is 4.7304 degrees C at t plus 5401.0859 s with T_mid \(=92.2267 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=87.4963 \mathrm{C}\)
At t plus 5401.0859 s , Smoothed SP8-SP9 is -1.8152 C and Smoothed SP8-Top is -0.19126 C , where Smoothed SP8 is 90.4115 C and Pool \(\mathrm{P}=24.9469\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 3.0461 degrees \(C\) at \(t\) plus 1714.6251 s with T_low \(=57.1912 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=54.1451 \mathrm{C}\)
At \(t\) plus 1714.6251 s , Smoothed SP8-SP9 is -0.47117 C and Smoothed SP8-Top is -0.078093 C, where Smoothed SP8 is 56.0294 C and Pool \(\mathrm{P}=16.4601\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 0.68119 degrees \(C\) at (KEY POINT \#14) t plus 3958.6604 s with \(\mathrm{T}_{-} \mathrm{SP} 8=77.3176 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{SP9}=76.6364 \mathrm{C}\) and Pool \(\mathrm{P}=\) 20.427 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 0.55772 degrees \(C\) at \(t\) plus 6036.9973 s with \(T\) _SP8 \(=96.0226 \mathrm{C}\) and \(T\) _upper \(=95.4649 \mathrm{C}\) and Pool \(\mathrm{P}=27.5682\) psia
Maximum Top-Mid delta \(T\) is 2.2723 degrees \(C\) at (KEY POINT \#4) t plus 5678.2898 s ignoring SP 4, with temperatures of 93.496 and 91.2238 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=26.0339\) psia and T_outlet \(=89.8876 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 6044.7987 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.99938 C and a raw SP12 Reading of 94.4687 C .
Maximum Top-Lower delta \(T\) is 2.4311 degrees \(C\) at \(t\) plus 5753.7931 s, with temperatures of 94.0925 and 91.6614 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=26.3566\) psia and T_outlet \(=90.6283 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 2.149 degrees \(C\) at (KEY POINT \#6) t plus 180.9034 s ignoring SP 4, with temperatures of 43.6847 and 41.5356 C, respectively, at Set \# 2, where Pool P \(=15.2104\) psia and T_outlet \(=40.409 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 180.9034 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 0.14214 C and a raw SP12 Reading of 43.6847 C .
Maximum Top-Outlet delta \(T\) is 3.8744 degrees \(C\) at \(t\) plus 4976.6807 s , with temperatures of 87.3875 and 83.5131 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=23.4261\) psia
Maximum Mid-Outlet delta \(T\) is 3.887 degrees \(C\) at \(t\) plus 3502.3553 s ignoring SP 4, with temperatures of 73.7224 and 69.8355 C, respectively, at Set \# 2, where Pool \(P=\) 19.3279 psia

Maximum Lower-Outlet delta \(T\) is 4.0989 degrees \(C\) at (KEY POINT \#8) t plus 3541.4566 s, with temperatures of 74.6185 and 70.5196 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=19.4227\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 3831.5592 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 1.3659 C and a raw SP12 Reading of 74.9839 C .
Minimum SP Pressure is 15.1088 psia at t plus 1.0001 s
Maximum SP Pressure is 38.9981 psia at \(t\) plus 8080.2302 s
Beginning SP Pressure is 15.1193 psia
Ending SP Pressure is 38.995 psia
Time-Average SP Pressure is 22.7706 +/- 6.8216 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 76.0129 cm (cold) / 76.146 cm (hot) at 14.6981 psia
Beginning Smoothed SP Level is 76.5224 cm (cold) / 76.69 cm (hot) at 15.113 psia
Ending Smoothed SP Level is 79.3506 cm (cold) / 80.7706 cm (hot) at 39.0016 psia
Minimum Smoothed Cold SP Level is 76.2505 cm at \(t\) plus 4578.9729 s and 22.1529 psia
Minimum Smoothed Hot SP Level is 76.6787 cm at t plus 198.2033 s and 15.219 psia

Maximum Smoothed Cold SP Level is 80.6387 cm at \(t\) plus 6970.5107 s and 32.1146 psia Maximum Smoothed Hot SP Level is 81.8884 cm at t plus 6985.9156 s and 32.2023 psia SP 12 Temperature at the beginning is 40.2622 C , and at the end is 112.9122 C At plume detection, the Mixing Number is 195.3685
The Mixing Number ranges from a minimum of 32.4148 at (KEY POINT \#12) \(t\) plus 0 to a maximum of 195.3685 at (KEY POINT \#13) t plus 8080.5292 s; it had a mean value of 81.9616 +/- 46.0899 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid \(T\) (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity ( \(W / m-K\) ) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta he6, Steam Condensation delta he7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy ell
KEY POINT \#1 (t plus 0 s with a Mixing Number of 32.4148): 33.55182244 0.040894


KEY POINT \#2 (t plus 8080.5292 s with a Mixing Number of 195.3685): 36.82799728
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.7935061475 & 0.8077063997
\end{tabular}
1.005470095 1 1
0.05623358903
0.05310204147
\(0.048371234258 .544358399 e-006\)
111676.9483
0.04837123425
113.9351938
\(\begin{array}{lllll}113.776728 & 111.2981221 & 4.235716719 & 4.263220091 & 2.231406392\end{array}\)
0.6847401125
\(0.6847401125 \quad 1.52657253\)
1.334474092
\(935.5319428 \quad 1.462443396 \quad 1.440287214\)
\(1.32724701 e-0051.348572058 e-005\)
\(485.6667753 \quad 489.6155469 \quad 2.636431467\) \(1.620144448 \quad 1.616895565 \quad 2731.504134\) \(\begin{array}{lrr}542.8577658 & 2718.94667 & 65.82988358\end{array}\) \(478.1140272 \quad 477.4452816 \quad 466.9543239\)
KEY POINT \#3 (t plus 8080.5292 s with a Mixing Number of 195.3685): 36.82799728 \(\begin{array}{lllll}0.040894 & 0.00925 & 0.3937 & 0.7935061475 & 0.8077063997\end{array}\)
1.005470095 1 111676.9483 0.05623358903 0.05310204147 \(0.048371234258 .544358399 \mathrm{e}-006\)
111676.9483 134.5574126
111.2981221
\(129.1731795 \quad 113.6174221 \quad 113.9351938\)
113.776728
0.6823377877
0.6847401125
2.231406392 \(\begin{array}{llllll}0.04325184706 & 948.1577854 & 935.5319428 & 1.462443396 & 1.440287214\end{array}\) 0.0002459177967 0.0002143375009 \(\begin{array}{lllll}1530.038224 & 1506.427662 & 485.6667753 & 489.6155469 & 2.636431467\end{array}\)
\begin{tabular}{cccccc}
2.689068211 & 2.726068211 & 1.620144448 & 1.616895565 & 2731.504134 \\
2730.850083 & 477.0278822 & 542.8577658 & 2718.94667 & 65.82988358 \\
2188.646368 & 476.7692114 & 478.1140272 & 477.4452816 & 466.9543239 \\
KEY POINT \#4 (t plus & 5678.2898 s with & a Mixing Number of & 103.4476 ): & 35.761256 \\
0.040894 & 0.00925 & 1 & 0.3937 & 0.7821444864 & 0.7913360181 \\
1.013120626 & & 1 & 37.29900747 & 109544.1864 \\
0.06004540175 & 0.05576334802 & 0.04697013736 & \(6.585544827 e-006\) & 0.04697013736 \\
94.07662257 & 129.7422211 & 116.0375963 & 92.98676881 & 92.90841221 \\
91.56097603 & 89.99737093 & 4.209316204 & 4.239744441 & 2.151904 \\
0.6751490465 & 0.6828254629 & 0.6828254629 & 1.872504458 & 1.493570594 \\
0.04040040562 & 962.5691675 & 946.2656363 & 0.9962651249 & 0.9589067486 \\
0.0003003384726 & 0.0002405446947 & \(1.281954291 e-005\) & \(1.3350054 e-005\) & \\
1550.193323 & 1526.642571 & 480.0162515 & 489.5441399 & 1.749809034 \\
1.794954505 & 1.831954505 & 0.817736807 & 0.7852932384 & 2730.553453 \\
2729.162237 & 394.2064324 & 486.9552264 & 2700.124076 & 92.74879398 \\
2243.598227 & 389.6195667 & 389.2885347 & 383.6222231 & 377.049705
\end{tabular}

KEY POINT \#5 (t plus 6044.7987 s with a Mixing Number of 115.1503): 35.92716371
\begin{tabular}{llcccc}
0.040894 & 0.00925 & & 0.3937 & & 0.7915825059 \\
1.012014591 & & 1 & 35.30662708 & 0.8017350244 \\
0.05944053984 & 0.05539098731 & 0.0471880466 & \(6.604680018 e-006\) & 0.0471880466 \\
97.24791458 & 130.3509709 & 117.8972057 & 96.07147321 & 95.55059515 \\
95.11499599 & 93.44987066 & 4.213020881 & 4.242806876 & 2.162076764 \\
0.6766311273 & 0.6832163576 & 0.6832163576 & 1.806489448 & 1.468537378 \\
0.04077082211 & 960.3552305 & 944.7910535 & 1.053749771 & 1.017718067 \\
0.0002901307698 & 0.0002364775931 & \(1.288358167 e-005\) & \(1.336715137 e-005\) & \\
1547.710565 & 1524.046935 & 480.8562711 & 489.5646117 & 1.857904784 \\
1.903239769 & 1.940239769 & 0.918542338 & 0.8800081974 & 2730.639422 \\
2729.392864 & 407.5694596 & 494.8500079 & 2702.864473 & 87.28054836 \\
2235.789414 & 402.6139199 & 400.4190498 & 398.5875199 & 391.5815792
\end{tabular}

KEY POINT \#6 (t plus 180.9034 s with a Mixing Number of 33.148): 33.23039871
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & & 0.7649774413 & 0.7667936222 \\
1.017320634 & & 1 & 57.15347246 & 104428.6649 \\
0.06923962653 & 0.05876693718 & 0.04364601714 & \(4.768104543 \mathrm{e}-006\) & 0.04364601714 \\
42.18651832 & 119.8091053 & 100.7513252 & 41.82716732 & 41.70396736 \\
42.96699292 & 40.40062134 & 4.178557388 & 4.217599462 & 2.080487747 \\
0.6313759588 & 0.678064283 & 0.678064283 & 4.148720663 & 1.738693019 \\
0.03772447515 & 991.3665264 & 957.8135181 & 0.6132891097 & 0.5814874851 \\
0.0006268676586 & 0.0002795300137 & \(1.229501074 \mathrm{e}-005\) & \(1.301293975 e-005\) & \\
1534.908721 & 1544.393438 & 472.6392575 & 485.6049565 & 1.041675199 \\
1.048727235 & 1.085727235 & 0.0828980668 & 0.0813474899 & 2719.071926 \\
2715.805406 & 176.7671833 & 422.2696472 & 2676.756268 & 245.5024639 \\
2296.802279 & 175.2656169 & 174.7493208 & 180.0300361 & 169.3103241
\end{tabular}

KEY POINT \#7 (t plus 180.9034 s with a Mixing Number of 33.148): 33.23039871
\begin{tabular}{lcccccc}
0.040894 & 0.00925 & & 0.3937 & 0.7649774413 & 0.7667936222 \\
1.017320634 & & 1 & 57.15347246 & 104428.6649 \\
0.06923962653 & 0.05876693718 & 0.04364601714 & \(4.768104543 \mathrm{e}-006\) & 0.04364601714 \\
42.18651832 & 119.8091053 & 100.7513252 & 41.82716732 & 41.70396736 \\
42.96699292 & 40.40062134 & 4.178557388 & 4.217599462 & 2.080487747 \\
0.6313759588 & 0.678064283 & 0.678064283 & 4.148720663 & 1.738693019 \\
0.03772447515 & 991.3665264 & 957.8135181 & 0.6132891097 & 0.5814874851 \\
0.0006268676586 & 0.0002795300137 & \(1.229501074 e-005\) & \(1.301293975 e-005\) & \\
1534.908721 & 1544.393438 & 472.6392575 & 485.6049565 & 1.041675199 \\
1.048727235 & 1.085727235 & 0.0828980668 & 0.0813474899 & 2719.071926 \\
2715.805406 & 176.7671833 & 422.2696472 & 2676.756268 & 245.5024639 \\
2296.802279 & 175.2656169 & 174.7493208 & 180.0300361 & 169.3103241
\end{tabular}

KEY POINT \#8 (t plus 3541.4566 s with a Mixing Number of 57.3728): 34.50061791
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7635368906 & 0.7688516703 \\
1.017902958 & & 1 & 48.42890934 & 106507.6921 \\
0.06392259955 & 0.05755200661 & 0.04531436933 & \(7.081764497 e-006\) & 0.04531436933 \\
73.11688288 & 126.3396472 & 106.9982346 & 72.95975306 & 72.88947597 \\
73.3049675 & 70.59705352 & 4.190105063 & 4.226012498 & 2.107172788 \\
0.6620762699 & 0.6803479425 & 0.6803479425 & 2.450804953 & 1.629267886 \\
0.03874249727 & 975.9846459 & 953.2190997 & 0.7518045389 & 0.7125085028 \\
0.0003872503856 & 0.0002622966815 & \(1.250888321 \mathrm{e}-005\) & \(1.324663262 e-005\) & \\
1557.920538 & 1537.936026 & 475.7529268 & 488.9278303 & 1.29506641 \\
1.339138946 & 1.376138946 & 0.3565371776 & 0.3541705808 & 2728.887412
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 2726.542053 & 306.1617137 & 448.6612356 & 2686.478505 & 142.499522 \\
\hline & 2280.226176 & 305.5033318 & 305.2074935 & 306.9512793 & 295.6106832 \\
\hline \multirow[t]{13}{*}{} & \multicolumn{2}{|l|}{POINT \#9 (t plus} & \multicolumn{3}{|l|}{Mixing Number of 195.3685) : 36.82799728} \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.7935061475 0. & 0.8077063997 \\
\hline & 1.005470095 & 1 & 1 & 25.57441478 & 111676.9483 \\
\hline & 0.05623358903 & 0.05310204147 & 0.04837123425 & 8.544358399e-006 & 0.04837123425 \\
\hline & 113.678492 & 134.5574126 & 129.1731795 & 113.6174221 & 113.9351938 \\
\hline & 113.776728 & 111.2981221 & 4.235716719 & 4.263220091 & 2.231406392 \\
\hline & 0.6823377877 & 0.6847401125 & 0.6847401125 & 1.52657253 & 1.334474092 \\
\hline & 0.04325184706 & 948.1577854 & 935.5319428 & 1.462443396 & 1.440287214 \\
\hline & 0.0002459177967 & 70.0002143375009 & \(1.32724701 \mathrm{e}-005\) & \(051.348572058 \mathrm{e}-005\) & \\
\hline & 1530.038224 & 1506.427662 & 485.6667753 & 489.6155469 & 2.636431467 \\
\hline & 2.689068211 & 2.726068211 & 1.620144448 & 1.616895565 & 2731.504134 \\
\hline & 2730.850083 & 477.0278822 & 542.8577658 & 2718.94667 & 65.82988358 \\
\hline & 2188.646368 & 476.7692114 & 478.1140272 & 477.4452816 & 466.9543239 \\
\hline \multirow[t]{13}{*}{} & POINT \#10 (t plus 38 & 3831.5592 s with a & \multicolumn{3}{|l|}{Mixing Number of 60.8046): 34.70579838} \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.7634351623 0. & 0.7691326628 \\
\hline & 1.017520698 & 1 & 1 & 47.06630177 & 106991.2331 \\
\hline & 0.06347681424 & 0.05734861253 & 0.04558386085 & 4.053825826e-006 & 0.04558386085 \\
\hline & 75.58695426 & 126.8972779 & 108.0353399 & 75.91332896 & 75.77629346 \\
\hline & 75.8695081 & 73.63971545 & 4.191894021 & 4.22749301 & 2.111924069 \\
\hline & 0.6639233239 & 0.6806814122 & 0.6806814122 & 2.366861963 & 1.612421284 \\
\hline & 0.03892122342 & 974.5188688 & 952.4395163 & 0.7770835446 & 0.7374466126 \\
\hline & 0.0003748698926 & 60.0002596208188 & \(1.254446299 \mathrm{e}-005\) & \(051.326518891 \mathrm{e}-005\) & \\
\hline & 1557.861238 & 1536.75489 & 476.2568891 & 489.1248792 & 1.341676101 \\
\hline & 1.386264217 & 1.423264217 & 0.3955302184 & 0.4009412916 & 2729.444691 \\
\hline & 2727.229454 & 316.517565 & 453.0482398 & 2688.070308 & 136.5306748 \\
\hline & 2276.396451 & 317.8857336 & 317.3098998 & 317.7034799 & 308.3614513 \\
\hline \multirow[t]{13}{*}{KEY} & POINT \#11 (t plus 80 & 8080.5292 s with a & \multicolumn{3}{|l|}{Mixing Number of 195.3685) : 36.82799728} \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.79350614750. & 0.8077063997 \\
\hline & 1.005470095 & 1 & 1 & 25.57441478 & 111676.9483 \\
\hline & 0.05623358903 & 0.05310204147 & 0.04837123425 & 8.544358399e-006 & 0.04837123425 \\
\hline & 113.678492 & 134.5574126 & 129.1731795 & 113.6174221 & 113.9351938 \\
\hline & 113.776728 & 111.2981221 & 4.235716719 & 4.263220091 & 2.231406392 \\
\hline & 0.6823377877 & 0.6847401125 & 0.6847401125 & 1.52657253 & 1.334474092 \\
\hline & 0.04325184706 & 948.1577854 & 935.5319428 & 1.462443396 & 1.440287214 \\
\hline & 0.0002459177967 & \(7 \quad 0.0002143375009\) & \(1.32724701 \mathrm{e}-005\) & \(051.348572058 \mathrm{e}-005\) & \\
\hline & 1530.038224 & 1506.427662 & 485.6667753 & 489.6155469 & 2.636431467 \\
\hline & 2.689068211 & 2.726068211 & 1.620144448 & 1.616895565 & 2731.504134 \\
\hline & 2730.850083 & 477.0278822 & 542.8577658 & 2718.94667 & 65.82988358 \\
\hline & 2188.646368 & 476.7692114 & 478.1140272 & 477.4452816 & 466.9543239 \\
\hline
\end{tabular} KEY POINT \#12 (t plus 0 s with a Mixing Number of 32.4148): 33.55182244 0.040894
\begin{tabular}{lllll}
0.00925 & 0.3937 & 0.7652243623 & 0.7668997726 & 1.015870168
\end{tabular}
\begin{tabular}{lccccc}
1 & 1 & 57.74794494 & 105981.3929 & 0.06955889984 & \\
0.05879671561 & 0.04406818678 & \(1.839331257 e-006\) & 0.04406818678 & 40.2300938 \\
118.0485361 & 100.5970626 & 39.9570382 & 40.11766023 & 41.23101032 \\
38.87105828 & 4.178533141 & 4.217402518 & 2.07986903 & 0.6289273713 \\
0.6780018637 & 0.6780018637 & 4.318308822 & 1.741579006 & 0.03770055929 \\
992.1307755 & 957.9247558 & 0.6101525993 & 0.5810288639 & 0.0006499655559 \\
0.0002799812934 & \(1.228973993 e-005\) & \(1.294631246 e-005\) & 1531.727723 & \\
1544.538309 & 472.5607081 & 484.4735547 & 1.035980073 & 1.042002762 \\
1.079002762 & 0.07475496621 & 0.07367530141 & 2715.633756 & 2712.298931 \\
168.5915961 & 421.6186176 & 2676.513373 & 253.0270215 & 2294.015138 \\
167.4506237 & 168.1202823 & 172.7755478 & 162.9184026 &
\end{tabular}

KEY POINT \#13 (t plus 8080.5292 s with a Mixing Number of 195.3685): 36.82799728
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7935061475 & 0.8077063997 \\
1.005470095 & & 1 & 25.57441478 & 111676.9483 \\
0.05623358903 & 0.05310204147 & 0.04837123425 & \(8.544358399 e-006\) & 0.04837123425 \\
113.678492 & 134.5574126 & 129.1731795 & 113.6174221 & 113.9351938 \\
113.776728 & 111.2981221 & 4.235716719 & 4.263220091 & 2.231406392 \\
0.6823377877 & 0.6847401125 & 0.6847401125 & 1.52657253 & 1.334474092 \\
0.04325184706 & 948.1577854 & 935.5319428 & 1.462443396 & 1.440287214 \\
0.0002459177967 & 0.0002143375009 & \(1.32724701 e-005\) & \(1.348572058 \mathrm{e}-005\) & \\
1530.038224 & 1506.427662 & 485.6667753 & 489.6155469 & 2.636431467 \\
2.689068211 & 2.726068211 & 1.620144448 & 1.616895565 & 2731.504134 \\
2730.850083 & 477.0278822 & 542.8577658 & 2718.94667 & 65.82988358 \\
2188.646368 & 476.7692114 & 478.1140272 & 477.4452816 & 466.9543239
\end{tabular}

KEY POINT \#14 (t plus 3958.6604 s with a Mixing Number of 62.3619): 34.80153111
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7633234248 & 0.7691920613 \\
1.017264298 & 1 & 1 & 46.43733665 & 107243.0228 \\
0.06328649215 & 0.05725372688 & 0.0457095997 & \(2.663509935 e-006\) & 0.0457095997 \\
76.63643658 & 127.0723494 & 108.518331 & 77.3176262 & 77.38820582 \\
76.76706078 & 74.67350222 & 4.192692033 & 4.228190764 & 2.114169298 \\
0.6646827353 & 0.6808323184 & 0.6808323184 & 2.332705774 & 1.604695727 \\
0.03900543883 & 973.8865081 & 952.0748345 & 0.7890895551 & 0.7494736244 \\
0.0003698123407 & 0.0002583915374 & \(1.256103916 e-005\) & \(1.327054923 e-005\) & \\
1557.762919 & 1536.194466 & 476.490303 & 489.159937 & 1.363849315 \\
1.408566135 & 1.445566135 & 0.4131522933 & 0.424940232 & 2729.529375 \\
2727.372949 & 320.9190948 & 455.0918716 & 2688.809384 & 134.1727767 \\
2274.437504 & 323.7752947 & 324.0698903 & 321.4682139 & 312.6956707
\end{tabular}

End

\section*{D. 16 TEST \#16-T16_SRV_15PSIG_107KW_RESULTS_RCICLAND.TXT}

Output Saved to C:\Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash E x p o r t \backslash T 16 \_S R V \_15 P S I G \_107 \mathrm{~kW} \backslash\)
Using 20-second SP 12 averages for begiñing detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1804.5682 s , and ending (KEY POINT \#11) at \(t\) plus 9924.8937 s , for a time period of 8120.3254 s.
Original Data Record Time: 13185.4462 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(4231.266 \mathrm{~s}, \mathrm{~T}\) _bulk \(=79.2303 \mathrm{C}\) and T _out \(=76.3907 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=80.0208 \mathrm{C}\)
Stratification Beginning Pressure \(=37.4766\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(8090.7348 \mathrm{~s}, \mathrm{~T}\) _bulk \(=112.3248 \mathrm{C}\) and T _out \(=110.841 \mathrm{C}\)
Stratification Ending \(\overline{\text { SP12 }}\) Temperature \(=112 . \overline{169} \mathrm{C}\)
Stratification Ending Pressure \(=56.6525\) psia
No Plume detected, setting t_plume (KEY POINT \#2) to the end at 8120.3254 s.
At \(t=8120.3254 \mathrm{~s}\), the pool pressure is 56.8624 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 113.3683, 114.6837, 112.8655, 112.7627, and 111.0746 C , respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 0 +/- 0 C.
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were \(0+/-0 \mathrm{C}\).
Minimum Steam Quality: 0.99716 at \(t\) plus 7987.1248 s
Maximum Steam Quality: 1.0095 at t plus 1713.328 s
Time-Averaged Steam Quality: 1.0045 +/- 0.0025327
SRV Alignment, no RCIC Turbine 000000
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 8030.3263 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.72163 degrees/min at \(t\) plus 53.8991 s and 0.45607 degrees/min at \(t\) plus 6218.6987 s, respectively
Max and min smoothed mid (SP9) level changerates: 0.83863 degrees/min at \(t\) plus 4348.8677 s and 0.34817 degrees \(/ \mathrm{min}\) at \(t\) plus 5146.4804 s , respectively

Max and min smoothed upper-mid level changerate differences: 0.21007 degrees/min at \(t\) plus 4507.9698 s and -0.27599 degrees/min at \(t\) plus 4348.7697 s , respectively
Max and min smoothed lower level changerates: 0.83297 degrees/min at \(t\) plus 4.2992 s and 0.36669 degrees/min at \(t\) plus 3169.2613 s, respectively

Max and min smoothed mid-lower level changerate differences: 0.43272 degrees/min at \(t\) plus 4374.4682 s and -0.24998 degrees/min at \(t\) plus 5146.4804 s , respectively
Max and min smoothed outlet level changerates: 1.1122 degrees \(/ \mathrm{min}\) at t plus 57.8013 s and 0.3044 degrees/min at \(t\) plus 4362.5705 s , respectively
Max and min smoothed lower-outlet level changerate differences: 0.22513 degrees/min at \(t\) plus 4273.5674 s and -0.39386 degrees/min at \(t\) plus 64.8997 s, respectively
Max and min smoothed hot (SP8) level changerates: 0.75423 degrees/min at t plus 19.1991 \(s\) and 0.38328 degrees/min at \(t\) plus 7257.4121 s, respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.233 degrees \(/ \mathrm{min}\) at \(t\) plus 4508.1699 s and -0.25396 degrees/min at \(t\) plus 4348.7697 s, respectively
The mean steam flow rate was 45.4994 +/- \(1.2376 \mathrm{~g} / \mathrm{s}\)

The mean feedwater flow rate was 45.4051 +/- \(1.7748 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.0060864+/-0.028913 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is \(-0.87944+/-0.46871 \mathrm{C}\) over the Stratification Period, beginning at -0.056923 C and ending at -1.8143 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(-0.0098849+/-0.30891 \mathrm{C}\) over the Stratification Period, beginning at -0.50933 C and ending at -0.57295 C
The stratification period begins and ends with Smoothed SP8 readings of 78.8443 and 112.5171 C , respectively

The stratification period begins and ends with condensing flows of 0.4716 and 0.82366 \(\mathrm{kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of -458.1989 and \(-13.948 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(2734.6286+/-1.1606 \mathrm{~kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.83007 and -13.9142 kg/s, respectively
The plume period had a mean steam enthalpy of \(0+/-0 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 0.63772 degrees \(C\) at \(t\) plus 4590.3736 s with \(T\) upper \(=82.7355 \mathrm{C}\) and \(T\) mid \(=82.0978 \mathrm{C}\)
At t plus \(4590.3736 \mathrm{~s}, \mathrm{Smoothed} \mathrm{SP8}-\mathrm{SP9}\) is 0.27001 C and Smoothed SP8-Top is -0.36771 C , where Smoothed SP8 is 82.3678 C and Pool \(\mathrm{P}=38.6346\) psia
Maximum Smoothed Top-Lower delta \(T\) is 2.0334 degrees \(C\) at \(t\) plus 5081.2796 s with T_upper \(=87.2368 \mathrm{C}\) and T low \(=85.2035 \mathrm{C}\)
At t plus 5081.2796 s , Smoothed SP8-SP9 is -0.8101 C and Smoothed SP8-Top is -0.23583 C , where Smoothed SP8 is 87.001 C and Pool P \(=40.3947\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 3.2759 degrees \(C\) at \(t\) plus 5752.889 s with T_mid \(=\) 94.6954 C and T low \(=91.4195 \mathrm{C}\)

At \(t\) plus 5752.889 s , Smoothed SP8-SP9 is -1.2971 C and Smoothed SP8-Top is 0.35431 C , where Smoothed SP8 is 93.3984 C and Pool \(\mathrm{P}=43.1819\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 4.3631 degrees \(C\) at \(t\) plus 4529.7711 s with T_upper \(=82.323 \mathrm{C}\) and \(T\) _out \(=77.9599 \mathrm{C}\)
At \(t\) plus 4529.7711 s , Smoothed SP8-SP9 is -0.24088 C and Smoothed SP8-Top is -0.32871 C, where Smoothed SP8 is 81.9943 C and Pool \(\mathrm{P}=38.4438\) psia
Maximum Smoothed Mid-Outlet delta T is 4.6953 degrees C at t plus 4433.2716 s with T_mid \(=82.0683 \mathrm{C}\) and \(\mathrm{T}_{-}\)out \(=77.373 \mathrm{C}\)
At t plus 4433.2716 s, Smoothed SP8-SP9 is -1.1271 C and Smoothed SP8-Top is -0.357 C, where Smoothed SP8 is 80.9412 C and Pool \(\mathrm{P}=38.1157 \mathrm{psia}\)
Maximum Smoothed Lower-Outlet delta \(T\) is 3.715 degrees \(C\) at \(t\) plus 0.49802 s with T_low = 39.8273 C and \(\mathrm{T}_{\text {_out }}=36.1124 \mathrm{C}\)

At \(t\) plus 0.49802 s , Smoothed SP8-SP9 is 0.047538 C and Smoothed SP8-Top is 0.026447 C, where Smoothed SP8 is 39.0603 C and Pool \(\mathrm{P}=30.2156\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 0.31735 degrees \(C\) at (KEY POINT \#14) t plus 5592.4859 s with T_SP8 = 91.9144 C and T_SP9 = 91.5971 C and Pool \(\mathrm{P}=\) 42.4639 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 0.64225 degrees \(C\) at \(t\) plus 6470.1021 s with T _SP8 \(=99.5712 \mathrm{C}\) and \(\mathrm{T}_{\text {_upper }}=98.929 \mathrm{C}\) and Pool \(\mathrm{P}=46.6315\) psia
Maximum Top-Mid delta \(T\) is 2.3661 degrees \(C\) at (KEY POINT \#4) t plus 4645.7487 s ignoring SP 4, with temperatures of 84.038 and 81.6718 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=38.8241\) psia and T_outlet \(=79.2743 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 4645.7487 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.57623 C and a raw SP12 Reading of 81.6718 C .
Maximum Top-Lower delta \(T\) is 3.0432 degrees \(C\) at \(t\) plus 4739.1611 s, with temperatures of 85.4137 and 82.3706 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=39.1513\) psia and T_outlet \(=80.4038 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 2.9603 degrees \(C\) at (KEY POINT \#6) t plus 3673.2651 s ignoring SP 4, with temperatures of 75.8089 and 72.8486 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=35.8901\) psia and T_outlet \(=70.8769 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 3704.1579 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 0.99877 C and a raw SP12 Reading of 74.7418 C .
Maximum Top-Outlet delta \(T\) is 5.2852 degrees \(C\) at \(t\) plus 4532.0722 s, with temperatures of 83.2471 and 77.9619 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=38.4589\) psia
Maximum Mid-Outlet delta \(T\) is 5.151 degrees \(C\) at \(t\) plus 4566.0692 s ignoring SP 4, with temperatures of 83.4165 and 78.2655 C , respectively, at Set \# 2 , where Pool \(\mathrm{P}=\) 38.5583 psia

Maximum Lower-Outlet delta \(T\) is 5.5323 degrees \(C\) at (KEY POINT \#8) t plus 75.4013 s , with temperatures of 43.0812 and 37.5489 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=\) 30.2572 psia

Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 2134.6321 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 1.8435 C and a raw SP12 Reading of 58.9462 C .
Minimum SP Pressure is 30.2003 psia at \(t\) plus 0 s
Maximum SP Pressure is 56.8624 psia at t plus 8120.3254 s
Beginning SP Pressure is 30.2003 psia
Ending SP Pressure is 56.8624 psia
Time-Average SP Pressure is 39.143 +/- 7.6325 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 75.864 cm (cold) / 76.0054 cm (hot) at 14.8335 psia
Beginning Smoothed SP Level is 76.1925 cm (cold) / 76.3493 cm (hot) at 30.2028 psia Ending Smoothed SP Level is 75.4925 cm (cold) / 76.703 cm (hot) at 56.8681 psia Minimum Smoothed Cold SP Level is 75.4925 cm at t plus 8120.3254 s and 56.8681 psia Minimum Smoothed Hot SP Level is 76.3412 cm at t plus 619.4104 s and 30.6902 psia Maximum Smoothed Cold SP Level is 76.1962 cm at t plus 18.402 s and 30.22 psia Maximum Smoothed Hot SP Level is 76.8705 cm at t plus 6885.0088 s and 48.9007 psia SP 12 Temperature at the beginning is 40.8347 C , and at the end is 112.3775 C
At plume detection, the Mixing Number is 149.394
The Mixing Number ranges from a minimum of 38.282 at (KEY POINT \#12) t plus 22.3013 s to a maximum of 149.394 at (KEY POINT \#13) \(t\) plus 8120.3254 s; it had a mean value of 74.5955 +/- 30.9504 over the test period.
Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension ( \(\mathrm{N} / \mathrm{m}\) ) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed \(T\) t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity ( \(W / m-K\) ) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(h(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat he5, Pool Mid Subcooling delta he6, Steam Condensation delta he7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy el0, Pool Outlet Smoothed Enthalpy e11
KEY POINT \#1 (t plus 0 s with a Mixing Number of 38.319): 44.3605796 0.040894 \(\begin{array}{llllll}0.00925 & 0.3937 & 0.7619251712 & 0.7634931761 & 1.008895731\end{array}\) \(1 \begin{array}{lllll}1 & 1 & 38.89162781 & 135791.2244 & 0.06975803883\end{array}\)
\begin{tabular}{llcccc}
0.05468051817 & 0.05826480248 & \(4.655889213 e-006\) & 0.05826480248 & 39.00329936 \\
130.4961371 & 121.4252109 & 39.05288599 & 39.02386558 & 39.80849208 \\
36.09512009 & 4.178305368 & 4.248848022 & 2.182336481 & 0.6274129077 \\
0.6838484018 & 0.6838484018 & 4.429792284 & 1.423454114 & 0.04150282888 \\
992.6414177 & 941.9525758 & 1.170171265 & 1.140711431 & 0.0006651760972 \\
0.0002291037043 & \(1.30051637 e-005\) & \(1.3359343 e-005\) & 1529.779916 & \\
1518.876755 & 482.414109 & 488.8587796 & 2.077990093 & 2.082409074 \\
2.119409074 & 0.07000915884 & 0.0701958067 & 2729.063701 & 2727.551142 \\
163.557849 & 509.8447015 & 2707.99697 & 346.2868525 & 2219.218999 \\
163.7650371 & 163.6422701 & 166.9237764 & 151.4119666 &
\end{tabular} \(163.7650371 \quad 163.6422701 \quad 166.9237764 \quad 151.4119666\)
KEY POINT \#2 (t plus 8120.3254 s with a Mixing Number of 149.394): 36.05060298
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7549249485 & 0.7670296859 \\
1.000077362 & & 1 & 1 & 17.19319712 & 107347.7353 \\
0.05603351208 & 0.05034345021 & 0.04735017623 & \(3.520047177 \mathrm{e}-006\) & 0.04735017623 \\
114.68371 & 142.5019146 & 142.4396297 & 112.8654742 & 113.3683238 \\
112.7627435 & 111.0745672 & 4.237013257 & 4.291658164 & 2.330629777 \\
0.682650637 & 0.6847223067 & 0.6847223067 & 1.512223791 & 1.208944387 \\
0.04673548864 & 947.430694 & 923.9451567 & 2.097329326 & 2.096950483 \\
0.0002436434516 & 0.000192883766 & \(1.373055124 \mathrm{e}-005\) & \(1.373343698 \mathrm{e}-005\) & \\
1528.970363 & 1481.796563 & 490.68042 & 490.7298621 & 3.871551464
\end{tabular}
\begin{tabular}{rrrrr}
3.920919676 & 3.957919676 & 1.674395619 & 1.577328432 & 2737.032759 \\
2736.737153 & 481.3747075 & 599.6799517 & 2736.571839 & 118.3052442 \\
2137.352807 & 473.6734652 & 475.8015689 & 473.2397961 & 466.0975831
\end{tabular}

KEY POINT \#3 (t plus 4231.266 s with a Mixing Number of 66.7237): 34.66401947
\begin{tabular}{lccccc}
0.040894 & 0.00925 & & 0.3937 & 0.7607574256 & 0.7669364495 \\
1.007213958 & & 1 & 25.02758509 & 104896.7706 \\
0.06287391566 & 0.05334869101 & 0.0455289869 & \(9.280096401 e-006\) & 0.0455289869 \\
78.90126658 & 135.1255766 & 127.970421 & 78.84434366 & 79.35367094 \\
78.26095509 & 76.32027532 & 4.194245032 & 4.260886288 & 2.223367241 \\
0.6663301568 & 0.6846459339 & 0.6846459339 & 2.261737997 & 1.347449409 \\
0.04296713243 & 972.5529778 & 936.5454348 & 1.413578331 & 1.385314838 \\
0.000359317165 & 0.0002165102978 & \(1.323095527 e-005\) & \(1.3513766 e-005\) & \\
1557.613485 & 1508.456586 & 485.1772753 & 490.3688854 & 2.542536727 \\
2.584100982 & 2.621100982 & 0.4534424971 & 0.4523908719 & 2733.626594 \\
2733.000214 & 330.510699 & 537.7251631 & 2717.277018 & 207.2144641 \\
2195.901431 & 330.2719516 & 332.4069234 & 327.8266823 & 319.693133
\end{tabular}

KEY POINT \#4 (t plus 4645.7487 s with a Mixing Number of 72.9754): 34.70463831
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & & 0.7602938458 & 0.7670203497 \\
1.006531353 & & 1 & 24.21679677 & 104930.7215 \\
0.06200605114 & 0.05311620872 & 0.04558233716 & \(5.506747764 \mathrm{e}-006\) & 0.04558233716 \\
83.62109029 & 135.5458062 & 129.1041718 & 82.773193 & 83.24570834 \\
81.77420787 & 79.31345218 & 4.198339977 & 4.263085143 & 2.230940902 \\
0.6694161291 & 0.6847351453 & 0.6847351453 & 2.125861818 & 1.335210683 \\
0.04323537711 & 969.5846057 & 935.5902579 & 1.459603524 & 1.433254417 \\
0.0003389640184 & 0.0002144610418 & \(1.327008806 \mathrm{e}-005\) & \(1.352522367 \mathrm{e}-005\) & \\
1556.247371 & 1506.545012 & 485.6388454 & 490.3402974 & 2.630969279 \\
2.676991766 & 2.713991766 & 0.5480890733 & 0.5299630445 & 2733.651741 \\
2733.065287 & 350.32365 & 542.5632049 & 2718.851182 & 192.2395549 \\
2191.088536 & 346.7642168 & 348.7463923 & 342.5727819 & 332.2520069
\end{tabular}

KEY POINT \#5 (t plus 4645.7487 s with a Mixing Number of 72.9754): 34.70463831
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.7602938458 & 0.7670203497 \\
1.006531353 & & 1 & 1 & 24.21679677 & 104930.7215 \\
0.06200605114 & 0.05311620872 & 0.04558233716 & \(5.506747764 \mathrm{e}-006\) & 0.04558233716 \\
83.62109029 & 135.5458062 & 129.1041718 & 82.773193 & 83.24570834 \\
81.77420787 & 79.31345218 & 4.198339977 & 4.263085143 & 2.230940902 \\
0.6694161291 & 0.6847351453 & 0.6847351453 & 2.125861818 & 1.335210683 \\
0.04323537711 & 969.5846057 & 935.5902579 & 1.459603524 & 1.433254417 \\
0.0003389640184 & 0.0002144610418 & \(1.327008806 e-005\) & \(1.352522367 e-005\) & \\
1556.247371 & 1506.545012 & 485.6388454 & 490.3402974 & 2.630969279 \\
2.676991766 & 2.713991766 & 0.5480890733 & 0.5299630445 & 2733.651741 \\
2733.065287 & 350.32365 & 542.5632049 & 2718.851182 & 192.2395549 \\
2191.088536 & 346.7642168 & 348.7463923 & 342.5727819 & 332.2520069
\end{tabular}

KEY POINT \#6 (t plus 3673.2651 s with a Mixing Number of 60.9434): 34.61197423
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7613488802 & 0.7667555898 \\
1.007876458 & & 1 & 25.99946616 & 104883.3109 \\
0.06379776266 & 0.0536196849 & 0.04546062879 & \(7.070678646 e-006\) & 0.04546062879 \\
73.81029683 & 134.5068858 & 126.6456292 & 73.4131548 & 73.79269719 \\
73.37367683 & 70.8173745 & 4.190348755 & 4.258360145 & 2.214693565 \\
0.662662452 & 0.6845234818 & 0.6845234818 & 2.426556342 & 1.362083784 \\
0.04265924547 & 975.6267938 & 937.6546293 & 1.361285975 & 1.331464168 \\
0.0003837360252 & 0.0002189524378 & \(1.318523506 e-005\) & \(1.349520779 e-005\) & \\
1558.132115 & 1510.65084 & 484.6314988 & 490.301495 & 2.442278696 \\
2.474988281 & 2.511988281 & 0.3671409591 & 0.3610357534 & 2733.297935 \\
2732.621962 & 309.1592966 & 532.0752014 & 2715.4249 & 222.9159049 \\
2201.222733 & 307.4951892 & 309.084172 & 307.3312331 & 296.6261677
\end{tabular}

KEY POINT \#7 (t plus 3704.1579 s with a Mixing Number of 61.1823): 34.61104682
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7613384345 & 0.7667932694 \\
1.007903245 & & 1 & 25.94696822 & 104854.2599 \\
0.06375703166 & 0.05360575853 & 0.04545941069 & \(1.746221588 \mathrm{e}-006\) & 0.04545941069 \\
74.03625184 & 134.5999512 & 126.7137957 & 73.67496524 & 74.12457573 \\
73.6263206 & 71.06364561 & 4.190510126 & 4.258488999 & 2.21513525 \\
0.6628328385 & 0.6845302626 & 0.6845302626 & 2.418798119 & 1.361321858 \\
0.0426749426 & 975.4932672 & 937.5977387 & 1.36393804 & 1.333966113 \\
0.0003825927571 & 0.0002188255057 & \(1.318758738 e-005\) & \(1.349858508 e-005\) & \\
1558.130979 & 1510.538978 & 484.6597501 & 490.3480588 & 2.447357707 \\
2.480508184 & 2.517508184 & 0.3706532225 & 0.3650508229 & 2733.447783
\end{tabular}
\begin{tabular}{cccccc}
2732.774538 & 310.1065918 & 532.3658314 & 2715.520531 & 222.2592397 \\
2201.081951 & 308.5926634 & 310.475342 & 308.3902887 & 297.6580904 \\
KEY POINT \#8 (t plus 75.4013 s with & a Mixing Number of & \(38.5306):\) & 35.84753478 \\
0.040894 & 0.00925 & 1 & 0.3937 & 0.7619300031 & 0.7635534098 \\
1.006665033 & & 1 & 31.18277905 & 110459.3638 \\
0.06962218757 & 0.05466964447 & 0.04708345906 & \(8.512448644 e-006\) & 0.04708345906 \\
39.84075866 & 128.2544348 & 121.4790054 & 39.88009177 & 40.05476643 \\
41.13794352 & 37.62064287 & 4.178281142 & 4.248942516 & 2.182655297 \\
0.6284865432 & 0.6838569353 & 0.6838569353 & 4.352806436 & 1.422790105 \\
0.0415142935 & 992.3253655 & 941.9088815 & 1.172023539 & 1.149801811 \\
0.0006547381991 & 0.0002289945975 & \(1.300701836 e-005\) & \(1.327138811 e-005\) & \\
1531.235389 & 1518.795463 & 482.4374957 & 487.2908765 & 2.081503528 \\
2.086313022 & 2.123313022 & 0.07321963494 & 0.07337349706 & 2723.696655 \\
2722.724289 & 167.0573453 & 510.073514 & 2708.074541 & 343.0161687 \\
2213.623141 & 167.2216901 & 167.9500231 & 172.4789326 & 157.7866087
\end{tabular}

KEY POINT \#9 (t plus 8090.7348 s with a Mixing Number of 147.9155): 36.02949803
\begin{tabular}{llcccc}
0.040894 & 0.00925 & & 0.3937 & 0.7550560711 & 0.7671243342 \\
1.000214567 & & \multicolumn{1}{c}{1} & 17.25080472 & 107281.7565 \\
0.05610369207 & 0.05037223553 & 0.04732245622 & \(2.324124466 e-006\) & 0.04732245622 \\
114.3313645 & 142.4916385 & 142.3028669 & 112.5170855 & 113.0900366 \\
112.5507349 & 110.8058416 & 4.236453363 & 4.291338399 & 2.329507541 \\
0.6825665827 & 0.6847322427 & 0.6847322427 & 1.517199454 & 1.210089552 \\
0.04669624114 & 947.7065634 & 924.0684223 & 2.089814952 & 2.088671694 \\
0.0002444473143 & 0.0001930836619 & \(1.37258289 e-005\) & \(1.373383827 e-005\) & \\
1529.439585 & 1482.071005 & 490.632386 & 490.7819983 & 3.856792884 \\
3.906146188 & 3.943146188 & 1.65521275 & 1.559267689 & 2737.154086 \\
2736.856495 & 479.8808592 & 599.0920887 & 2736.397901 & 119.2112295 \\
2138.061997 & 472.1973717 & 474.6220424 & 472.341129 & 464.9594918
\end{tabular}

KEY POINT \#10 (t plus 2134.6321 s with a Mixing Number of 48.8233): 33.81595212
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7611930161 & 0.7647329173 \\
1.008730144 & & 1 & 27.68407982 & 102958.5529 \\
0.06630684574 & 0.05420962155 & 0.04441510433 & \(7.477659779 \mathrm{e}-006\) & 0.04441510433 \\
59.60374331 & 132.5717101 & 123.7493822 & 59.26162889 & 59.4047838 \\
60.25577366 & 57.45699693 & 4.182313381 & 4.252996931 & 2.196386318 \\
0.6504981401 & 0.6841870551 & 0.6841870551 & 3.016653988 & 1.395379004 \\
0.04200664226 & 983.4643334 & 940.0534782 & 1.252383649 & 1.221700181 \\
0.0004691967411 & 0.000224477061 & \(1.308531229 e-005\) & \(1.343132268 e-005\) & \\
1553.837945 & 1515.298177 & 483.4143702 & 489.7155489 & 2.234267875 \\
2.249921914 & 2.286921914 & 0.1958284513 & 0.1927402068 & 2731.228402 \\
2730.461994 & 249.672399 & 519.7354234 & 2711.329065 & 270.0630244 \\
2211.492978 & 248.2415944 & 248.8388668 & 252.400994 & 240.700297
\end{tabular}

KEY POINT \#11 (t plus 8120.3254 s with a Mixing Number of 149.394): 36.05060298
\begin{tabular}{lccccc}
0.040894 & 0.00925 & & 0.3937 & 0.7549249485 & 0.7670296859 \\
1.000077362 & & 1 & 17.19319712 & 107347.7353 \\
0.05603351208 & 0.05034345021 & 0.04735017623 & \(3.520047177 \mathrm{e}-006\) & 0.04735017623 \\
114.68371 & 142.5019146 & 142.4396297 & 112.8654742 & 113.3683238 \\
112.7627435 & 111.0745672 & 4.237013257 & 4.291658164 & 2.330629777 \\
0.682650637 & 0.6847223067 & 0.6847223067 & 1.512223791 & 1.208944387 \\
0.04673548864 & 947.430694 & 923.9451567 & 2.097329326 & 2.096950483 \\
0.0002436434516 & 0.000192883766 & \(1.373055124 \mathrm{e}-005\) & \(1.373343698 \mathrm{e}-005\) & \\
1528.970363 & 1481.796563 & 490.68042 & 490.7298621 & 3.871551464 \\
3.920919676 & 3.957919676 & 1.674395619 & 1.577328432 & 2737.032759 \\
2736.737153 & 481.3747075 & 599.6799517 & 2736.571839 & 118.3052442 \\
2137.352807 & 473.6734652 & 475.8015689 & 473.2397961 & 466.0975831
\end{tabular}

KEY POINT \#12 (t plus 22.3013 s with a Mixing Number of 38.282): 36.6914694
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7619590862 & 0.7635292677 \\
1.007897604 & & 1 & 32.05781871 & 112649.4464 \\
0.06970160672 & 0.05467669584 & 0.04819191356 & \(2.16703663 e-006\) & 0.04819191356 \\
39.35146379 & 129.4865925 & 121.4441215 & 39.40436703 & 39.37962795 \\
40.26817108 & 36.79941125 & 4.17829328 & 4.248881232 & 2.182448522 \\
0.6278607088 & 0.6838514054 & 0.6838514054 & 4.397524187 & 1.423220614 \\
0.04150685803 & 992.5106521 & 941.9372172 & 1.170822132 & 1.14459189 \\
0.0006608039379 & 0.0002290653385 & \(1.300581568 e-005\) & \(1.331973656 e-005\) & \\
1530.39036 & 1518.848187 & 482.4223314 & 488.1566911 & 2.079224632 \\
2.083779135 & 2.120779135 & 0.07132879089 & 0.07153117641 & 2726.411661 \\
2725.383957 & 165.012706 & 509.9251362 & 2708.024241 & 344.9124302 \\
2216.486525 & 165.2337512 & 165.1288748 & 168.844563 & 154.3549489
\end{tabular}

KEY POINT \#13 (t plus 8120.3254 s with a Mixing Number of 149.394): 36.05060298
\begin{tabular}{|c|c|c|c|c|}
\hline 0.040894 & 0.00925 & 0.39370 & 0.75492494850 .7 & 0.7670296859 \\
\hline 1.000077362 & 1 & 1 & 17.19319712 & 107347.7353 \\
\hline 0.05603351208 & 0.05034345021 & 0.04735017623 & \(3.520047177 \mathrm{e}-006\) & 0.04735017623 \\
\hline 114.68371 & 142.5019146 & 142.4396297 & 112.8654742 & 113.3683238 \\
\hline 112.7627435 & 111.0745672 & 4.237013257 & 4.291658164 & 2.330629777 \\
\hline 0.682650637 & 0.6847223067 & 0.6847223067 & 1.512223791 & 1.208944387 \\
\hline 0.04673548864 & 947.430694 & 923.9451567 & 2.097329326 & 2.096950483 \\
\hline 0.0002436434516 & 0.000192883766 & \(1.373055124 \mathrm{e}-00\) & \(051.373343698 \mathrm{e}-005\) & \\
\hline 1528.970363 & 1481.796563 & 490.68042 & 490.7298621 & 3.871551464 \\
\hline 3.920919676 & 3.957919676 & 1.674395619 & 1.577328432 & 2737.032759 \\
\hline 2736.737153 & 481.3747075 & 599.6799517 & 2736.571839 & 118.3052442 \\
\hline 2137.352807 & 473.6734652 & 475.8015689 & 473.2397961 & 66.0975 \\
\hline
\end{tabular}

KEY POINT \#14 (t plus 5592.4859 s with a Mixing Number of 85.9426): 35.04969306
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.7597075376 & 0.7678458401
\end{tabular}
\begin{tabular}{lllll}
1.004927473 & 1 & 1 & 22.36067903 & 105656.9768
\end{tabular}
\(0.06051505711 \quad 0.05248947684 \quad 0.04603554465 \quad 6.715335324 \mathrm{e}-006 \quad 0.04603554465\)
91.5970835
\(0.046035544656 .715335324 \mathrm{e}-006\)
0.04603554465
90.01722745
136.9333324
\(\begin{array}{ccr}132.1480642 & 91.91443568 & 91.78281763 \\ 4.206296146 & 4.269160595 & 2.25196782\end{array}\)
0.6739678965
. 206296146
.269160595
2.25196782
\(\begin{array}{llrrr}0.04397763579 & 964.322973 & 932.9987604 & 1.589165351 & 1.567698629\end{array}\)
0.0003088039103
\(0.00020913780871 .337517207 e-0051.356580693 e-005\)
\(\begin{array}{lllll}1552.147511 & 1501.260648 & 486.8527913 & 490.4025514 & 2.880808083\end{array}\)
\(\begin{array}{lllll}2.928103659 & 2.965103659 & 0.7454841034 & 0.7544236136 & 2734.207032\end{array}\)
\(\begin{array}{lllll}2733.707032 & 383.8599958 & 555.5656104 & 2723.026925 & 171.7056147 \\ 2178.641422 & 385.1949282 & 384.6399588 & 377.2173891 & 372.0115948\end{array}\)
End

\section*{D. 17 TEST \#17-T17_SRV_040GPM_107KW_RESULTS_RCICLAND}

Output Saved to C:\Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash E x p o r t \backslash T 17 \_S R V \_040 G P M \_107 \mathrm{~kW} \backslash\)
Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1293.96 s, and ending (KEY POINT \#11) at \(t\) plus 9270.4892 s , for a time period of 7976.5292 s .
Original Data Record Time: 10608.8688 s
No Bulk Pool to Outlet Thermal Stratification Detected (KEY POINT \#3), 000000.
No Bulk Pool to Outlet Destratification Detected (KEY POINT \#9), 000000.
No Plume detected, setting t_plume (KEY POINT \#2) to the end at 7976.5292 s.
At \(t=7976.5292 \mathrm{~s}\), the pool pressure is 39.2167 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 114.1334, 113.6103, 113.9301, 113.9931, and 111.3755 C, respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 0.31976 +/- 0 C.
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were -0.20334 +/- 0 C.
Minimum Steam Quality: 0.54714 at \(t\) plus 260.4069 s
Maximum Steam Quality: 0.66868 at t plus 7043.8149 s
Time-Averaged Steam Quality: 0.62281 +/- 0.017019
SRV Alignment, no RCIC Turbine 000000
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 7886.5311 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.68281 degrees/min at \(t\) plus 3745.7582 s and 0.4432 degrees/min at \(t\) plus 5974.6967 s , respectively
Max and min smoothed mid (SP9) level changerates: 0.95905 degrees/min at \(t\) plus 4086.4667 s and 0.22503 degrees/min at \(t\) plus 4339.9722 s , respectively

Max and min smoothed upper-mid level changerate differences: 0.3626 degrees/min at \(t\) plus 4339.0702 s and -0.37952 degrees/min at \(t\) plus 4086.5717 s , respectively
Max and min smoothed lower level changerates: 0.69827 degrees \(/ \mathrm{min}\) at t plus 354.9033 s and 0.43452 degrees \(/ \mathrm{min}\) at t plus 1469.6221 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.46939 degrees/min at \(t\) plus 4086.7678 s and -0.33822 degrees/min at \(t\) plus 6067.198 s , respectively Max and min smoothed outlet level changerates: 0.6995 degrees/min at \(t\) plus 140.8331 s and 0.43417 degrees/min at \(t\) plus 7886.5311 s, respectively

Max and min smoothed lower-outlet level changerate differences: 0.18835 degrees/min at \(t\) plus 6795.9107 s and -0.22695 degrees/min at t plus 174.131 s , respectively
Max and min smoothed hot (SP8) level changerates: 0.71818 degrees/min at t plus 3673.8631 s and 0.37784 degrees/min at \(t\) plus 5962.099 s , respectively

Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.39401 degrees/min at \(t\) plus 4352.871 s and -0.45096 degrees/min at \(t\) plus 4086.4667 s , respectively
The mean steam flow rate was \(45.4368+/-1.5584 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 45.4096 +/- \(1.8535 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(25.2988+/-1.393 \mathrm{~g} / \mathrm{s}\)
No stratification; 000000000000000000000.
At plume detection, the condensing and condensing+cooling flows are 1.4353 and 79.7442 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of \(1941.8787 \mathrm{t} /-0 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 0.81069 degrees \(C\) at \(t\) plus 3974.4663 s with \(T\) upper \(=78.2015 \mathrm{C}\) and T mid \(=77.3909 \mathrm{C}\)
At \(t\) plus 3974.4663 s , Smoothed SP8-SP9 is 0.84176 C and Smoothed SP8-Top is 0.031068 C , where Smoothed SP8 is 78.2326 C and Pool \(\mathrm{P}=20.8347\) psia
Maximum Smoothed Top-Lower delta \(T\) is 1.6336 degrees \(C\) at \(t\) plus 5590.9928 s with T_upper \(=92.9533 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=91.3196 \mathrm{C}\)
At t plus 5590.9928 s , Smoothed SP8-SP9 is -1.0293 C and Smoothed SP8-Top is -0.17535 C , where Smoothed SP8 is 92.7779 C and Pool \(\mathrm{P}=26.2245\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 3.3877 degrees \(C\) at \(t\) plus 5450.2627 s with T_mid \(=\) 93.6139 C and \(\mathrm{T}_{\text {_low }}=90.2262 \mathrm{C}\)

At t plus 5450.2627 s, Smoothed SP8-SP9 is -2.1005 C and Smoothed SP8-Top is -0.3024 C, where Smoothed SP8 is 91.5134 C and Pool \(\mathrm{P}=25.6546\) psia
Maximum Smoothed Top-Outlet delta T is 3.0184 degrees C at t plus 7357.3518 s with \(T_{\text {_upper }}=108.7063 \mathrm{C}\) and T _out \(=105.6879 \mathrm{C}\)
At t plus 7357.3518 s, Smoothed SP8-SP9 is 0.11895 C and Smoothed SP8-Top is -0.27525 C, where Smoothed SP8 is 108.4311 C and Pool \(\mathrm{P}=35.1172\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 4.538 degrees \(C\) at \(t\) plus 5233.7844 s with T_mid = 91.7864 C and T out \(=87.2485 \mathrm{C}\)

At \(t\) plus 5233.7844 s , Smoothed SP8-SP9 is -2.2896 C and Smoothed SP8-Top is -0.31589 C , where Smoothed SP8 is 89.4968 C and Pool \(\mathrm{P}=24.8112 \mathrm{psia}\)
Maximum Smoothed Lower-Outlet delta \(T\) is 2.9942 degrees \(C\) at \(t\) plus 37.9032 s with T_low \(=41.8297 \mathrm{C}\) and T out \(=38.8355 \mathrm{C}\)
At t plus 37.9032 s , Smoōthed SP8-SP9 is -0.14483 C and Smoothed SP8-Top is -0.030138 C , where Smoothed SP8 is 40.6916 C and Pool \(\mathrm{P}=15.2966\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 0.97769 degrees \(C\) at (KEY POINT \#14) t plus 3980.4617 s with \(\mathrm{T}_{\text {_ }} \mathrm{SP} 8=78.4417 \mathrm{C}\) and \(\mathrm{T}_{\mathrm{C}} \mathrm{SP9}=77.464 \mathrm{C}\) and Pool \(\mathrm{P}=\) 20.8494 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 0.46431 degrees \(C\) at \(t\) plus 6124.1983 s with \(\mathrm{T}_{-} \mathrm{SP} 8=97.6052 \mathrm{C}\) and \(\mathrm{T}_{\text {_ }}\) upper \(=97.1409 \mathrm{C}\) and Pool \(\mathrm{P}=28.5451\) psia
Maximum Top-Mid delta \(T\) is 2.2389 degrees \(C\) at (KEY POINT \#4) t plus 5334.6861 s ignoring SP 4, with temperatures of 91.0129 and 88.774 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=25.1932\) psia and T_outlet \(=88.1581 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 5404.9902 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.99933 C and a raw SP12 Reading of 89.5265 C .
Maximum Top-Lower delta \(T\) is 2.3759 degrees \(C\) at \(t\) plus 5319.7893 s, with temperatures of 90.9802 and 88.6043 C, respectively, at Set \# 2, where Pool P \(=25.1397\) psia and T_outlet \(=87.9369 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 2.1496 degrees \(C\) at (KEY POINT \#6) \(t\) plus 4358.1713 s ignoring SP 4, with temperatures of 82.1053 and 79.9557 C, respectively, at Set \# 2, where Pool \(P=21.8926\) psia and T_outlet \(=79.1919 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 4433.0736 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 0.99946 C and a raw SP12 Reading of 80.7469 C .
Maximum Top-Outlet delta \(T\) is 3.665 degrees \(C\) at \(t\) plus 4479.0722 s , with temperatures of 83.781 and 80.1159 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=22.2457\) psia

Maximum Mid-Outlet delta \(T\) is 3.0686 degrees \(C\) at \(t\) plus 66.2048 s ignoring SP 4, with temperatures of 42.296 and 39.2273 C, respectively, at Set \# 2 , where Pool \(P=\) 15.3084 psia

Maximum Lower-Outlet delta \(T\) is 4.2403 degrees \(C\) at (KEY POINT \#8) t plus 35.1 s, with temperatures of 42.9654 and 38.7251 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=\) 15.2961 psia

Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 2193.2344 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 1.4128 C and a raw SP12 Reading of 60.5726 C .
Minimum SP Pressure is 15.2692 psia at t plus 1.4001 s

Maximum SP Pressure is 39.2167 psia at \(t\) plus 7976.5292 s
Beginning SP Pressure is 15.2811 psia
Ending SP Pressure is 39.2167 psia
Time-Average SP Pressure is 22.9872 +/- 6.8327 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is \(74.814 \mathrm{~cm}(c o l d) / 74.9452 \mathrm{~cm}\) (hot) at 14.9175 psia
Beginning Smoothed SP Level is 75.2856 cm (cold) / 75.443 cm (hot) at 15.2779 psia Ending Smoothed SP Level is 75.0084 cm (cold) / 76.1964 cm (hot) at 39.2105 psia Minimum Smoothed Cold SP Level is 74.904 cm at t plus 6507.4032 s and 30.3669 psia Minimum Smoothed Hot SP Level is 75.443 cm at t plus 0 s and 15.2779 psia
Maximum Smoothed Cold SP Level is 75.4621 cm at \(t\) plus 1367.2252 s and 16.3113 psia Maximum Smoothed Hot SP Level is 76.1964 cm at \(t\) plus 7976.5292 s and 39.2105 psia SP 12 Temperature at the beginning is 39.9796 C , and at the end is 112.8916 C At plume detection, the Mixing Number is 192.4433
The Mixing Number ranges from a minimum of 33.8083 at (KEY POINT \#12) t plus 0 s to a maximum of 192.4433 at (KEY POINT \#13) t plus 7976.5292 s; it had a mean value of 83.5955 +/- 44.2463 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality \(x 2\), Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid \(T\) (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation \(T\) t3, Smoothed Plume \(T\) t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T mid Viscosity (Pa-s) mu1, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation h (kJ/kg) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat he4, Sparger Steam Sat h e5, Pool Mid Subcooling delta he6, Steam Condensation delta he7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy ell
KEY POINT \#1 (t plus 0 s with a Mixing Number of 33.8083): 50.12938618 0.040894
\(0.00925 \quad 0.3937 \quad 0.7528563591 \quad 0.754430460400 .6339620523\)
\begin{tabular}{llllll}
0.6339620523 & 0.9996286857 & 51.59902969 & 165337.2121 & 0.0694713448
\end{tabular}
\begin{tabular}{lllll}
0.05874002223 & 0.04350587777 & 0.02233588559 & 0.06584176336 & 40.76788089
\end{tabular} 100.8907057 100.8907057
4.178528368 \(40.37117962 \quad 40.34389474\) 41.23095727
38.5208094 \(0.6781204287 \quad 4.270594197 \quad 1.736093478 \quad 0.03774613291\)
\(0.6781204287 \quad 0.6781204287\)
\(\begin{array}{cc}\begin{array}{cc}0.971518001 & 0.0006434795916 \\ 1532.627249\end{array} \\ 1.046843153 & 1.053375998\end{array}\)
\(991.9239027 \quad 957.7129192 \quad 0.616134325\)
\begin{tabular}{rrrrr}
1544.261926 & 472.7101615 & 466.1469446 & 1.046843153 & 1.053375998 \\
1.090375998 & 0.07692138097 & 0.07531815379 & 1854.545453 & 1851.882993
\end{tabular}
\begin{tabular}{llllll}
170.8397624 & 422.8578976 & 2676.975617 & 252.0181353 & 1431.687556
\end{tabular}
169.1821349
169.0666188
172.7763308
161.4558779

KEY POINT \#2 (t plus 7976.5292 s with a Mixing Number of 192.4433): 56.17967301 \(\begin{array}{lllll}0.040894 & 0.00925 & 0.3937 & 0.7500839052 & 0.7619635972\end{array}\)
0.05624714134
113.6103235
113.9931474
0.682321851
0.05306480774
\(\begin{array}{lll}0.04797946276 & 0.02580896789 & 0.07378843065 \\ 129.3544977 & 113.9300846 & 114.1334239\end{array}\)
129.3544977
129.354497
\(\begin{array}{llll}111.3754945 & 4.235605435 & 4.263575278 & 2.232631942\end{array}\)
0.0432952004
\(\begin{array}{lllll}0.6847529111 & 0.6847529111 & 1.527550863 & 1.332543209\end{array}\)
0.0002460761155 \(\begin{array}{ccc}948.2117565 & 935.378623 & 1.469926382 \\ 0.0002140135407 & 1.3278729 \mathrm{e}-005 & 1.345395981 \mathrm{e}-005\end{array}\) \(\begin{array}{lllll}1530.131305 & 1506.118777 & 485.7400711 & 475.8881603 & 2.650827298\end{array}\) \(\begin{array}{rrrrr}2.703469061 & 2.740469061 & 1.616518267 & 1.633585566 & 1942.432848 \\ 1941.828457 & 476.7401793 & 543.631774 & 2719.197385 & 66.89159473\end{array}\) \(\begin{array}{rrrrr}1941.828457 & 476.7401793 & 543.631774 & 2719.197385 & 66.89159473 \\ 1398.801074 & 478.0946386 & 478.9548174 & 478.363074 & 467.2828109\end{array}\)

KEY POINT \#3 (t plus 7976.5292 s with a Mixing Number of 192.4433): 56.17967301
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.7500839052 & 0.7619635972 \\
0.6426819198 & 0.6426819198 & 0.9991270532 & 24.5843645 & 170760.9938 \\
0.05624714134 & 0.05306480774 & 0.04797946276 & 0.02580896789 & 0.07378843065 \\
113.6103235 & 129.3544977 & 129.3544977 & 113.9300846 & 114.1334239 \\
113.9931474 & 111.3754945 & 4.235605435 & 4.263575278 & 2.232631942 \\
0.682321851 & 0.6847529111 & 0.6847529111 & 1.527550863 & 1.332543209 \\
0.0432952004 & 948.2117565 & 935.378623 & 1.469926382 & 2.285178981 \\
0.0002460761155 & 0.0002140135407 & \(1.3278729 e-005\) & \(1.345395981 e-005\) & \\
1530.131305 & 1506.118777 & 485.7400711 & 475.8881603 & 2.650827298 \\
2.703469061 & 2.740469061 & 1.616518267 & 1.633585566 & 1942.432848 \\
1941.828457 & 476.7401793 & 543.631774 & 2719.197385 & 66.89159473 \\
1398.801074 & 478.0946386 & 478.9548174 & 478.363074 & 467.2828109
\end{tabular}

KEY POINT \#4 (t plus 5334.6861 s with a Mixing Number of 99.7083): 54.25240425
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7507975347 & 0.7584153876 \\
0.6452652591 & 0.6452652591 & 0.999440258 & 36.30292687 & 171823.21 \\
0.06043452311 & 0.05597360292 & 0.04652234197 & 0.02473474363 & 0.0712570856 \\
92.02334606 & 114.9842772 & 114.9842772 & 90.29023173 & 90.78299163 \\
89.27643107 & 88.22256387 & 4.207029458 & 4.238046482 & 2.146293592 \\
0.674122184 & 0.6825862385 & 0.6825862385 & 1.917734372 & 1.508158726 \\
0.04019519401 & 963.9778607 & 947.0942344 & 0.9648477596 & 1.494436095 \\
0.000307292187 & 0.0002429063475 & \(1.278328668 e-005\) & \(1.291209621 e-005\) & \\
1551.630185 & 1528.072454 & 479.5347391 & 471.6614755 & 1.69090318 \\
1.737216603 & 1.774216603 & 0.7575120101 & 0.7095953074 & 1913.760411 \\
1912.442509 & 385.561477 & 482.4861135 & 2698.561402 & 96.92463656 \\
1431.274298 & 378.2718437 & 380.3427943 & 374.0105883 & 369.5841092
\end{tabular}

KEY POINT \#5 (t plus 5404.9902 s with a Mixing Number of 102.7697): 53.82059697
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7507997433 & 0.7585299234 \\
0.652501607 & 0.652501607 & 0.9994519882 & 36.0445655 & 170343.5445 \\
0.06025336381 & 0.05590626541 & 0.04661718436 & 0.02407274982 & 0.07068993418 \\
92.98056635 & 115.3218799 & 115.3218799 & 90.99839499 & 91.46546546 \\
89.9795097 & 88.84690616 & 4.20808621 & 4.238587832 & 2.148079972 \\
0.6746071326 & 0.6826643202 & 0.6826643202 & 1.896395927 & 1.503450183 \\
0.04026060878 & 963.3232131 & 946.8291811 & 0.9748288314 & 1.493168144 \\
0.0003040152113 & 0.0002421447515 & \(1.279490591 e-005\) & \(1.292059232 e-005\) & \\
1550.975875 & 1527.617355 & 479.6895173 & 472.0180874 & 1.709603574 \\
1.75589938 & 1.79289938 & 0.7851117111 & 0.7288597209 & 1930.603042 \\
1929.303831 & 389.5904706 & 483.9183177 & 2699.063075 & 94.3278471 \\
1446.684724 & 381.2514915 & 383.2147565 & 376.9680979 & 372.2098665
\end{tabular}

KEY POINT \#6 (t plus 4358.1713 s with a Mixing Number of 75.3645): 54.67402517
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7514032021 & 0.7575945704 \\
0.6246071155 & 0.6246071155 & 0.9994672338 & 40.53106705 & 175205.4572 \\
0.06229657407 & 0.05684033085 & 0.04557932702 & 0.02623153086 & 0.07181085789 \\
82.0476541 & 110.6165314 & 110.6165314 & 81.83229453 & 82.00810886 \\
81.00692813 & 79.26028285 & 4.197173367 & 4.231283364 & 2.124167092 \\
0.6683597806 & 0.6814556121 & 0.6814556121 & 2.169631025 & 1.571994267 \\
0.03937864681 & 970.535461 & 950.4786724 & 0.8430073815 & 1.348941174 \\
0.0003454930233 & 0.0002531724357 & \(1.263309274 \mathrm{e}-005\) & \(1.276124397 e-005\) & \\
1556.580845 & 1533.684292 & 477.4947143 & 469.4735401 & 1.463704935 \\
1.509691768 & 1.546691768 & 0.514854123 & 0.5104395239 & 1857.259679 \\
1855.616912 & 343.6265806 & 463.9739644 & 2692.003253 & 120.3473838 \\
1393.285715 & 342.7226995 & 343.4592576 & 339.2603781 & 331.9358983
\end{tabular}

KEY POINT \#7 (t plus 4433.0736 s with a Mixing Number of 75.6308): 54.29467976
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7512428689 & 0.7575495421 \\
0.6299302753 & 0.6299302753 & 0.9994740156 & 40.20075329 & 173872.3543 \\
0.0622580703 & 0.05677906285 & 0.04561064281 & 0.02570196899 & 0.0713126118 \\
82.25656023 & 110.9266647 & 110.9266647 & 82.32744863 & 82.52847342 \\
81.59878823 & 79.88303086 & 4.197356093 & 4.231749004 & 2.125678991 \\
0.6684944412 & 0.681543306 & 0.681543306 & 2.163743021 & 1.567276474 \\
0.03943483953 & 970.4036267 & 950.2411056 & 0.8512243898 & 1.350588617 \\
0.0003446098329 & 0.0002524173311 & \(1.264374867 e-005\) & \(1.276986582 e-005\) & \\
1556.515325 & 1533.302927 & 477.6418446 & 469.7590943 & 1.47896148 \\
1.524973374 & 1.561973374 & 0.5191669743 & 0.5206373239 & 1869.875133 \\
1868.259032 & 344.5046241 & 465.2874057 & 2692.472987 & 120.7827816 \\
1404.587727 & 344.8021703 & 345.6446305 & 341.7453385 & 334.549558
\end{tabular}

KEY POINT \#8 (t plus 35.1 s with a Mixing Number of 33.8362): 50.0357969
0.040894
0.00925
\(0.3937 \quad 0.7529085841\)
0.754511668

\begin{tabular}{|c|c|c|c|c|c|}
\hline & 113.6103235 & 129.3544977 & 129.3544977 & 113.9300846 & 114.1334239 \\
\hline & 113.9931474 & 111.3754945 & 4.235605435 & 4.263575278 & 2.232631942 \\
\hline & 0.682321851 & 0.6847529111 & 0.6847529111 & 1.527550863 & 1.332543209 \\
\hline & 0.0432952004 & 948.2117565 & 935.378623 & 1.469926382 & 2.285178981 \\
\hline & 0.0002460761155 & 50.0002140135407 & \(1.3278729 \mathrm{e}-005\) & \(1.345395981 \mathrm{e}-005\) & \\
\hline & 1530.131305 & 1506.118777 & 485.7400711 & 475.8881603 & 2.650827298 \\
\hline & 2.703469061 & 2.740469061 & 1.616518267 & 1.633585566 & 1942.432848 \\
\hline & 1941.828457 & 476.7401793 & 543.631774 & 2719.197385 & 66.89159473 \\
\hline & 1398.801074 & 478.0946386 & 478.9548174 & 478.363074 & 467.2828109 \\
\hline \multirow[t]{12}{*}{KEY} & POINT \#14 (t plus 0.040894 & 3980.4617 s with a 0.00925 & Mixing Number of 0.3937 0.7 & \[
\text { E 67.0049): } 54.6
\] & \[
\begin{aligned}
& 55574 \\
& 575617031
\end{aligned}
\] \\
\hline & 0.6202431615 & 0.6202431615 & 0.9994828597 & 42.16615786 & 175839.2358 \\
\hline & 0.06313603771 & 0.05713596494 & 0.04530919487 & 0.02646032993 & 0.0717695248 \\
\hline & 77.46396161 & 109.1170387 & 109.1170387 & 78.44165054 & 78.24171987 \\
\hline & 77.61427918 & 75.86111253 & 4.193334941 & 4.229063011 & 2.116981426 \\
\hline & 0.6652714964 & 0.6810155132 & 0.6810155132 & 2.306377689 & 1.595223333 \\
\hline & 0.03911070479 & 973.3843067 & 951.6213538 & 0.804180629 & 1.295886524 \\
\hline & 0.0003659062197 & 70.0002568823954 & \(1.258159206 \mathrm{e}-005\) & \(1.270792985 \mathrm{e}-005\) & \\
\hline & 1557.657078 & 1535.490695 & 476.7784976 & 468.804458 & 1.391752657 \\
\hline & 1.437490787 & 1.474490787 & 0.4275091251 & 0.4450096653 & 1843.847072 \\
\hline & 1842.069087 & 324.3912386 & 457.6256205 & 2689.723534 & 133.2343819 \\
\hline & 1386.221452 & 328.4913988 & 327.6515221 & 325.0230215 & 317.6760301 \\
\hline
\end{tabular}

\section*{D. 18 TEST \#18-}

\section*{T18_RCIC_040GPM_5PSIG_107KW_RESULTS_RCICLAND.TXT}

Output Saved to C: \Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash E x p o r t \backslash T 18 \_R C I C \_040 G P M \_5 P S I G \_107 \mathrm{~kW} \backslash\)
Using 20 -second SP 12 averages for begin̄ning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 2293.3752 s , and ending (KEY POINT \#11) at \(t\) plus 12088.8404 s , for a time period of 9795.4652 s .
Original Data Record Time: 12302.8907 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(1982.3314 \mathrm{~s}, \mathrm{~T}\) _bulk \(=58.5026 \mathrm{C}\) and T _out \(=55.4772 \mathrm{C}\)
Stratification Beginnīng SP12 Temperature \(=\overline{58} .2541 \mathrm{C}\)
Stratification Beginning Pressure \(=22.3129\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(9093.7441 \mathrm{~s}, \mathrm{~T}\) _bulk \(=124.2146 \mathrm{C}\) and T _out \(=74.0387 \mathrm{C}\)
Stratification Ending \(\overline{\text { SP1 }}\) Temperature \(=124.0978 \mathrm{C}\)
Stratification Ending Pressure \(=56.6903\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 1230.3204 s .
At \(t=1230.3204 \mathrm{~s}\), the poō pressure is 21.3758 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 51.8606, 51.9174, 53.9194, 51.4822, and 49.1627 C, respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 11.73 +/- 3.3179 C .
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 10.8065 +/- 3.3094 C .
Minimum Steam Quality: 0.5303 at \(t\) plus 496.5104 s
Maximum Steam Quality: 0.62165 at t plus 9735.4608 s
Time-Averaged Steam Quality: 0.57748 +/- 0.013594
Minimum Turbine Outlet Steam Quality: 0.55749 at \(t\) plus 8845.6419 s
Maximum Turbine Outlet Steam Quality: 0.64313 at \(t\) plus 3092.2499 s
Time-Averaged Turbine Outlet Steam Quality: 0.59945 +/- 0.015505
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 9705.5561 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.75388 degrees \(/ \mathrm{min}\) at t plus 3086.1495 s and 0.31817 degrees/min at \(t\) plus 7940.7272 s , respectively
Max and min smoothed mid (SP9) level changerates: 0.8232 degrees \(/ \mathrm{min}\) at t plus 3997.0676 \(s\) and 0.38956 degrees/min at \(t\) plus 8838.7445 s, respectively
Max and min smoothed upper-mid level changerate differences: 0.30759 degrees/min at \(t\) plus 3074.5479 s and -0.1367 degrees/min at t plus 3988.6651 s , respectively

Max and min smoothed lower level changerates: 3.8238 degrees \(/ \mathrm{min}\) at t plus 6689.0096 s and -0.18939 degrees/min at \(t\) plus 2754.7436 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.74664 degrees/min at \(t\) plus 2754.7436 s and -3.3495 degrees/min at \(t\) plus 6689.1076 s , respectively
Max and min smoothed outlet level changerates: 8.4472 degrees/min at \(t\) plus 9544.2519 s and -0.0095086 degrees/min at \(t\) plus 4174.2698 s, respectively
Max and min smoothed lower-outlet level changerate differences: 3.771 degrees/min at \(t\) plus 6689.0096 s and -8.0785 degrees/min at \(t\) plus 9544.3519 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.2169 degrees/min at \(t\) plus 2102.3343 \(s\) and 0.14263 degrees/min at \(t\) plus 7715.9323 s , respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.64281 degrees/min at \(t\) plus 2102.2332 s and -0.46345 degrees \(/ \mathrm{min}\) at t plus 3952.0621 s , respectively
The mean steam flow rate was \(44.354+/-0.79696 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 44.7858 +/- \(1.5546 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was 25.2901 +/- \(0.98695 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is \(12.5745+/-2.1425\) C over the Stratification Period, beginning at 5.9419 C and ending at 12.8045 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(11.577+/-2.4081\) C over the Stratification Period, beginning at 5.3039 C and ending at 11.9126 C
The stratification period begins and ends with Smoothed SP8 readings of 64.6552 and 137.1192 C, respectively

The stratification period begins and ends with condensing flows of 0.40796 and 1.0804 kg/s, respectively.
The stratification period begins and ends with condensing+cooling flows of 4.2936 and \(1.6224 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of 1845.7967 +/-14.0432 \(\mathrm{kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.36153 and 12.8033 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of \(1842.4117+/-18.0727 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 2.3152 degrees \(C\) at \(t\) plus 3859.4738 s with \(T\) upper \(=\) 78.877 C and T mid \(=76.5617 \mathrm{C}\)

At t plus 3859.4738 s, Smoothed SP8-SP9 is 11.2703 C and Smoothed SP8-Top is 8.955 C , where Smoothed SP8 is 87.832 C and Pool \(\mathrm{P}=26.7631\) psia
Maximum Smoothed Top-Lower delta \(T\) is 23.601 degrees \(C\) at \(t\) plus 6321.6076 s with T_upper \(=104.6449 \mathrm{C}\) and T low \(=81.0439 \mathrm{C}\)
At t plus 6321.6076 s, Smoothed SP8-SP9 is 15.589 C and Smoothed SP8-Top is 14.9928 C , where Smoothed SP8 is 119.6377 C and Pool \(\mathrm{P}=38.7688\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 23.2666 degrees \(C\) at \(t\) plus 6419.1012 s with T_mid \(=105.0506 \mathrm{C}\) and \(\mathrm{T}_{-}\)low \(=81.7839 \mathrm{C}\)
At \(t\) plus 6419.1012 s, Smoothed SP8-SP9 is 15.0117 C and Smoothed SP8-Top is 14.689 C, where Smoothed SP8 is 120.0623 C and Pool \(\mathrm{P}=39.349\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 52.1601 degrees C at \(t\) plus 8870.0403 s with T_upper \(=123.6082 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=71.4482 \mathrm{C}\)
At t plus 8870.0403 s , Smoothed SP8-SP9 is 12.9399 C and Smoothed SP8-Top is 12.064 C, where Smoothed SP8 is 135.6722 C and Pool \(\mathrm{P}=55.0355 \mathrm{psia}\)
Maximum Smoothed Mid-Outlet delta \(T\) is 51.3068 degrees \(C\) at \(t\) plus 8854.8674 s with \(T\) mid \(=122.695 \mathrm{C}\) and T_out \(=71.3882 \mathrm{C}\)
At \(t\) plus 8854.8674 s, Smoothed SP8-SP9 is 12.9333 C and Smoothed SP8-Top is 12.1744 C, where Smoothed SP8 is 135.6283 C and Pool \(\mathrm{P}=54.9258\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 51.3038 degrees \(C\) at \(t\) plus 8880.6419 s with T_low \(=122.8081 \mathrm{C}\) and \(T\) _out \(=71.5042 \mathrm{C}\)
At t plus 8880.6419 s , Smoothed SP8-SP9 is 12.8885 C and Smoothed SP8-Top is 12.0253 C , where Smoothed SP8 is 135.6816 C and Pool \(\mathrm{P}=55.1138\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 15.8154 degrees \(C\) at (KEY POINT \#14) t plus 6158.7983 s with T_SP8 = 118.4086 C and T_SP9 \(=102.5932 \mathrm{C}\) and Pool \(\mathrm{P}=\) 37.777 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 15.2997 degrees C at t plus 6160.8984 s with \(T_{-} S P 8=118.4286 \mathrm{C}\) and \(\mathrm{T}_{-}\)upper \(=103.1289 \mathrm{C}\) and Pool \(\mathrm{P}=37.7912\) psia
Maximum Top-Mid delta \(T\) is 3.686 degrees \(C\) at (KEY POINT \#4) t plus 3171.4504 s ignoring SP 4, with temperatures of 72.4749 and 68.7889 C, respectively, at Set \# 2, where Pool P = 24.7844 psia and T_outlet \(=61.4629 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 5155.9869 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 1.2287 C and a raw SP12 Reading of 91.7815 C .

Maximum Top-Lower delta \(T\) is 26.4864 degrees \(C\) at \(t\) plus 6562.0293 s , with temperatures of 107.4192 and 80.9328 C, respectively, at Set \# 1, where Pool \(P=40.2082\) psia and T_outlet \(=67.8515 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 25.5094 degrees C at (KEY POINT \#6) t plus 6461.5086 s ignoring SP 4, with temperatures of 105.4071 and 79.8977 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=39.5973\) psia and T outlet \(=67.7397 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 6842.5854 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 8.5 C and a raw SP12 Reading of 108.3202 C .
Maximum Top-Outlet delta \(T\) is 52.6892 degrees \(C\) at \(t\) plus 8851.6463 s, with temperatures of 124.0125 and 71.3233 C, respectively, at Set \# 1, where Pool P = 54.9046 psia
Maximum Mid-Outlet delta \(T\) is 51.3416 degrees \(C\) at \(t\) plus 8933.5669 ignoring SP 4, with temperatures of 123.208 and 71.8663 C, respectively, at Set \# 2 , where Pool \(\mathrm{P}=\) 55.5032 psia

Maximum Lower-Outlet delta \(T\) is 52.5639 degrees \(C\) at (KEY POINT \#8) \(t\) plus 8855.2395 s, with temperatures of 123.9 and 71.336 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=\) 54.9214 psia

Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 9598.482 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 17.5024 C and a raw SP12 Reading of 127.6277 C .
Minimum SP Pressure is 20.3417 psia at t plus 2.9012 s
Maximum SP Pressure is 62.4423 psia at \(t\) plus 9795.4652 s
Beginning SP Pressure is 20.3467 psia
Ending SP Pressure is 62.4423 psia
Time-Average SP Pressure is 34.691 +/- 12.6508 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 74.2544 cm (cold) / 74.3712 cm (hot) at 14.5332 psia
Beginning Smoothed SP Level is 75.1509 cm (cold) / 75.3115 cm (hot) at 20.3517 psia
Ending Smoothed SP Level is 74.1134 cm (cold) / 75.6196 cm (hot) at 62.4487 psia
Minimum Smoothed Cold SP Level is 74.1134 cm at t plus 9795.4652 s and 62.4487 psia
Minimum Smoothed Hot SP Level is 75.2763 cm at t plus 1118.417 s and 21.2624 psia
Maximum Smoothed Cold SP Level is 75.1509 cm at t plus 0 s and 20.3517 psia
Maximum Smoothed Hot SP Level is 76.148 cm at \(t\) plus 7518.321 s and 46.0056 psia
SP 12 Temperature at the beginning is 40.213 C , and at the end is 129.2164 C
At plume detection, the Mixing Number is 42.2698
The Mixing Number ranges from a minimum of 36.222 at (KEY POINT \#12) \(t\) plus 0 s to a maximum of 260.3999 at (KEY POINT \#13) t plus 9785.1607 s; it had a mean value of 108.8314 +/- 66.2355 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam T t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity ( \(W / m-K\) ) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T mid Vapor Pressure p4, T Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steàm Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta h e6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy ell
KEY POINT \#1 (t plus 0 s with a Mixing Number of 36.222): 52.76468011 0.040894
\begin{tabular}{lccccc}
0.00925 & 0.3937 & 0.7515091528 & 0.7531146312 & 0.6050730556 \\
0.6050730556 & 0.999415092 & 37.49292817 & 168772.7785 & 0.06954332551 \\
0.05677306544 & 0.04476071544 & 0.02454233904 & 0.06930305448 & 40.32582647 \\
110.9570116 & 110.9570116 & 40.76744926 & 40.33593478 & 40.09774496 \\
37.83389418 & 4.17844343 & 4.231794686 & 2.12582741 & 0.6290673997 \\
0.6815518258 & 0.6815518258 & 4.309705995 & 1.566816402 & 0.03944035246
\end{tabular}
\begin{tabular}{lccccc}
992.1141674 & 950.2178368 & 0.8520319101 & 1.407323532 & 0.0006488290651 \\
0.0002523436648 & \(1.264479144 \mathrm{e}-005\) & \(1.278499322 \mathrm{e}-005\) & 1531.947297 & \\
1533.265467 & 477.6562229 & 468.9109494 & 1.480461343 & 1.403200816 \\
1.440200816 & 0.07513671459 & 0.07691962071 & 1814.381662 & 1812.975943 \\
169.0236034 & 465.4159357 & 2692.518919 & 296.3923323 & 1348.965727 \\
170.8688989 & 169.0643351 & 168.0721724 & 158.6167365 &
\end{tabular}

KEY POINT \#2 (t plus 1230.3204 s with a Mixing Number of 42.2698): 52.0906176
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.7502096506 & 0.7528176804 \\
0.5935700442 & 0.5935700442 & 0.9993587929 & 34.78639476 & 165854.3753 \\
0.06762094672 & 0.05649997055 & 0.04302077204 & 0.02539694416 & 0.0684177162 \\
51.91741515 & 112.3367199 & 112.3367199 & 53.91938496 & 51.86059758 \\
51.48217706 & 49.16265223 & 4.1798902 & 4.233894008 & 2.132665808 \\
0.6426370069 & 0.6819276816 & 0.6819276816 & 3.445107128 & 1.546190968 \\
0.03969372788 & 987.1886184 & 949.1556771 & 0.8894071631 & 1.497442261 \\
0.0005296678208 & 0.0002490356207 & \(1.269221447 e-005\) & \(1.284375955 e-005\) & \\
1547.454741 & 1531.535796 & 478.3064259 & 468.9377934 & 1.5499843 \\
1.47394635 & 1.51094635 & 0.135755174 & 0.1496320673 & 1792.179094 \\
1790.969001 & 217.4700042 & 471.2610506 & 2694.60093 & 253.7910464 \\
1320.918044 & 225.8385542 & 217.2310547 & 215.6523279 & 205.9617419
\end{tabular}

KEY POINT \#3 (t plus 1982.3314 s with a Mixing Number of 46.8624): 52.3264424
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.7496183736 & 0.7529292316 \\
0.6064813184 & 0.6064813184 & 0.9993688239 & 34.40522607 & 166125.6246 \\
0.0664606698 & 0.05626186163 & 0.04377747781 & 0.02494997928 & 0.06872745709 \\
58.71326721 & 113.5362686 & 113.5362686 & 64.65515013 & 59.35124136 \\
58.60858789 & 55.56461088 & 4.182106714 & 4.235755069 & 2.138757025 \\
0.6496013232 & 0.6822362389 & 0.6822362389 & 3.06189967 & 1.528712691 \\
0.03991841652 & 983.8914697 & 948.2254614 & 0.9229717817 & 1.520886458 \\
0.000475600986 & 0.0002462236791 & \(1.273346623 e-005\) & \(1.288083967 e-005\) & \\
1553.143295 & 1529.989963 & 478.8661225 & 469.80924 & 1.612586508 \\
1.538681686 & 1.575681686 & 0.1878767461 & 0.2465735571 & 1823.951414 \\
1822.767694 & 245.8883805 & 476.3454349 & 2696.401055 & 230.4570544 \\
1347.605979 & 270.7457745 & 248.5551076 & 245.4521201 & 232.7276004
\end{tabular}

KEY POINT \#4 (t plus 3171.4504 s with a Mixing Number of 56.2566): 51.69709649
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7490999287 & 0.753929576 \\
0.6294760704 & 0.6294760704 & 0.999371713 & 32.23134998 & 162900.8037 \\
0.06461201551 & 0.05567116217 & 0.04453307062 & 0.02336778061 & 0.06790085123 \\
69.26309121 & 116.4986708 & 116.4986708 & 80.53164729 & 71.27458867 \\
66.9994323 & 61.56002695 & 4.187470534 & 4.24049601 & 2.154394207 \\
0.6590474917 & 0.6829261193 & 0.6829261193 & 2.592566571 & 1.487278919 \\
0.04049127446 & 978.2320887 & 945.9014187 & 1.010275517 & 1.603938294 \\
0.0004080326015 & 0.0002395242485 & \(1.283541742 e-005\) & \(1.297784305 e-005\) & \\
1557.592277 & 1526.007448 & 480.2257309 & 471.6064267 & 1.776117619 \\
1.708591182 & 1.745591182 & 0.3021953466 & 0.4844470892 & 1882.285085 \\
1881.246225 & 290.0492135 & 488.9121113 & 2700.805746 & 198.8628979 \\
1393.372973 & 337.2804507 & 298.4722013 & 280.5732484 & 257.815013
\end{tabular}

KEY POINT \#5 (t plus 5155.9869 s with a Mixing Number of 92.5799): 53.71804838
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.749398725 & 0.7573067173 \\
0.6056770497 & 0.6056770497 & 0.9991176132 & 25.55000728 & 165272.4517 \\
0.06042067269 & 0.05408661936 & 0.04512834816 & 0.02542689497 & 0.07055524312 \\
92.0966101 & 124.3546559 & 124.3546559 & 104.9156401 & 93.07861651 \\
76.058082 & 65.96201707 & 4.207002574 & 4.254099893 & 2.200138491 \\
0.6741857559 & 0.6842651881 & 0.6842651881 & 1.916103521 & 1.388269148 \\
0.04214073054 & 963.9561021 & 939.555113 & 1.274540677 & 2.102467048 \\
0.0003070617805 & 0.0002233008799 & \(1.310619083 e-005\) & \(1.329166384 \mathrm{e}-005\) & \\
1551.675079 & 1514.344071 & 483.6714355 & 472.9710335 & 2.276500021 \\
2.215254601 & 2.252254601 & 0.7595954913 & 1.20549443 & 1849.324169 \\
1848.671366 & 385.9064671 & 522.312907 & 2712.190267 & 136.4064399 \\
1327.011262 & 439.9340188 & 390.0370008 & 318.5607054 & 276.2764204
\end{tabular}

KEY POINT \#6 (t plus 6461.5086 s with a Mixing Number of 131.8983): 53.46216869
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.7503277041 & 0.7604731456 \\
0.5994419734 & 0.5994419734 & 0.9988987337 & 20.82077733 & 161294.5433 \\
0.05787202096 & 0.05271838963 & 0.04491676803 & 0.02530239338 & 0.0702191614 \\
105.3615128 & 131.0383788 & 131.0383788 & 120.288319 & 105.8451777 \\
82.79744937 & 67.63750421 & 4.223365462 & 4.266916384 & 2.244184779 \\
0.6798840588 & 0.6848543155 & 0.6848543155 & 1.656500027 & 1.31491946 \\
0.04370327611 & 954.511881 & 933.948082 & 1.540903065 & 2.567731638 \\
0.0002666659971 & 0.0002110489603 & \(1.333685957 e-005\) & \(1.355459324 e-005\) &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1540.05907 & 1503.212647 & 486.4145154 & 474.3443489 & 2.787592236 \\
\hline & 2.730781236 & 2.767781236 & 1.224227959 & 2.004861527 & 1852.459414 \\
\hline & 1852.025909 & 441.855093 & 550.8231708 & 2721.513239 & 108.9680778 \\
\hline & 1301.636243 & 505.06378 & 443.8966932 & 346.871704 & 283.3322265 \\
\hline \multirow[t]{12}{*}{} & POINT \#7 (t plus 68
0.040894 & \[
\begin{gathered}
5842.5854 \mathrm{~s} \text { with a } \\
0.00925
\end{gathered}
\] & Mixing Number 0 & \(\begin{array}{rlr}\text { f } 143.5885): & 53.44 \\ 0.7499933898 & 0 .\end{array}\) & \[
\begin{aligned}
& 4464421 \\
& .7608223736
\end{aligned}
\] \\
\hline & 0.5967605765 & 0.5967605765 & 0.9988256854 & 19.68338381 & 160358.2795 \\
\hline & 0.05727347934 & 0.05233553777 & 0.04485873077 & 0.02533741335 & 0.07019614412 \\
\hline & 108.4178295 & 132.8929693 & 132.8929693 & 123.1415126 & 108.944909 \\
\hline & 101.788765 & 68.08001361 & 4.227676722 & 4.270686216 & 2.257268275 \\
\hline & 0.6808922353 & 0.6849296639 & 0.6849296639 & 1.60621196 & 1.296135968 \\
\hline & 0.04416425453 & 952.2237576 & 932.3585687 & 1.622239053 & 2.715216282 \\
\hline & 0.000258689896 & 0.0002078733786 & \(1.340089184 \mathrm{e}-005\) & \(51.362926371 \mathrm{e}-005\) & \\
\hline & 1536.641433 & 1499.934013 & 487.1442281 & 474.625866 & 2.944786551 \\
\hline & 2.889093773 & 2.926093773 & 1.359210804 & 2.192499249 & 1851.295826 \\
\hline & 1850.908391 & 454.7811876 & 558.7505793 & 2724.0374 & 103.9693917 \\
\hline & 1292.545247 & 517.1985464 & 457.008468 & 426.7879466 & 285.1977505 \\
\hline \multirow[t]{12}{*}{} & POINT \#8 (t plus 88
0.040894 & \[
\begin{aligned}
& 3855.2395 \mathrm{~s} \text { with a } \\
& 0.00925
\end{aligned}
\] & \multicolumn{3}{|l|}{Mixing Number of 217.4416): 53.59732816} \\
\hline & 0.5783710604 & 0.5783710604 & 0.9983618045 & 14.92555043 & 156400.3352 \\
\hline & 0.05442332735 & 0.05040869386 & 0.04435257002 & 0.02604411476 & 0.07039668478 \\
\hline & 122.6959867 & 142.1296004 & 142.1296004 & 135.6014957 & 123.4574126 \\
\hline & 122.5108574 & 71.38917344 & 4.250687486 & 4.290934121 & 2.328088738 \\
\hline & 0.6841425449 & 0.6847445423 & 0.6847445423 & 1.407882248 & 1.211544447 \\
\hline & 0.04664662094 & 940.9926621 & 924.2244745 & 2.080325925 & 3.590978331 \\
\hline & 0.0002265967911 & 10.0001933374935 & \(1.371984606 \mathrm{e}-00\) & \(051.401409489 \mathrm{e}-005\) & \\
\hline & 1517.303636 & 1482.418098 & 490.571421 & 475.3391738 & 3.838160135 \\
\hline & 3.787193691 & 3.824193691 & 2.162291771 & 3.187187558 & 1835.029108 \\
\hline & 1834.806336 & 515.3669704 & 598.3473839 & 2736.177295 & 82.98041348 \\
\hline & 1236.681724 & 570.3836764 & 518.6028835 & 514.5813315 & 299.1280342 \\
\hline \multirow[t]{13}{*}{} & POINT \#9 (t plus & 93.7441 s with a & \multicolumn{3}{|l|}{Mixing Number of 227.8435) : 52.95697315} \\
\hline & 0.040894 & 0.00925 & 0.3937 & 7433211508 & 571459813 \\
\hline & 0.584638398 & 0.584638398 & 0.9983541436 & 14.47622164 & 154121.6572 \\
\hline & 0.05409475097 & 0.05017292378 & 0.0442225693 & 0.02533304986 & 0.06955561916 \\
\hline & 124.3146646 & 143.2491369 & 143.2491369 & 137.1192057 & 125.2065683 \\
\hline & 124.3554662 & 73.99019627 & 4.253608969 & 4.293562846 & 2.33731474 \\
\hline & 0.6843626487 & 0.6846593865 & 0.6846593865 & 1.388670886 & 1.202223723 \\
\hline & 0.04696926883 & 939.6639775 & 923.2139076 & 2.142252416 & 3.658204086 \\
\hline & 0.0002234230962 & 20.0001917087943 & \(1.375850254 \mathrm{e}-00\) & \(051.405138316 \mathrm{e}-005\) & \\
\hline & 1514.778405 & 1480.163573 & 490.9631637 & 475.8910314 & 3.959842132 \\
\hline & 3.909265563 & 3.946265563 & 2.273689775 & 3.329912274 & 1851.244139 \\
\hline & 1851.034578 & 522.2582534 & 603.1604938 & 2737.597932 & 80.90224045 \\
\hline & 1248.083645 & 576.8841985 & 526.0516081 & 522.4330527 & 310.0342795 \\
\hline \multirow[t]{13}{*}{} & POINT \#10 (t plus & 9598.482 s with a & \multicolumn{3}{|l|}{Mixing Number of 252.117): 52.92000917} \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.7416060474 & 562838915 \\
\hline & 0.5830641499 & 0.5830641499 & 0.9982295185 & 13.53180363 & 152912.7757 \\
\hline & 0.05339200594 & 0.04965047897 & 0.04345591392 & 0.02605115541 & 0.06950706933 \\
\hline & 127.7589045 & 145.7220203 & 145.7220203 & 140.0380176 & 128.7217117 \\
\hline & 127.5223088 & 109.9905303 & 4.260048079 & 4.299509921 & 2.358184416 \\
\hline & 0.6847328886 & 0.6844237681 & 0.6844237681 & 1.349699366 & 1.18229064 \\
\hline & 0.04769913948 & 936.799885 & 920.9627663 & 2.284284302 & 3.910787551 \\
\hline & 0.0002169420458 & 80.0001882046628 & \(1.384388115 \mathrm{e}-00\) & \(051.415258368 \mathrm{e}-005\) & \\
\hline & 1509.191338 & 1475.084991 & 491.8101999 & 476.161607 & 4.239632945 \\
\hline & 4.189879246 & 4.226879246 & 2.526308966 & 3.618899425 & 1854.100837 \\
\hline & 1853.917727 & 536.9388971 & 613.8030318 & 2740.695408 & 76.86413462 \\
\hline & 1240.297805 & 589.4028385 & 541.040222 & 535.9322779 & 461.5310928 \\
\hline \multirow[t]{11}{*}{KEY} & POINT \#11 (t plus 97 & 9795.4652 s with & \multicolumn{3}{|l|}{a Mixing Number of 259.8183): 51.72469055} \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.7411337341 & . 756196195 \\
\hline & 0.6159925389 & 0.6159925389 & 0.9984151184 & 13.62148318 & 149465.4793 \\
\hline & 0.05311087228 & 0.04944211224 & 0.04361402283 & 0.02432307145 & 0.06793709428 \\
\hline & 129.1301663 & 146.7052917 & 146.7052917 & 140.6548324 & 130.1935858 \\
\hline & 129.3593922 & 122.1926531 & 4.262698901 & 4.301929409 & 2.366670028 \\
\hline & 0.6848431493 & 0.6843119708 & 0.6843119708 & 1.334872212 & 1.174607993 \\
\hline & 0.04799599633 & 935.6454547 & 920.0604015 & 2.342813974 & 3.797287701 \\
\hline & 0.0002144599257 & 70.0001868460018 & \(1.387782599 \mathrm{e}-00\) & \(051.415196008 \mathrm{e}-005\) & \\
\hline & 1506.886177 & 1473.028141 & 492.1399982 & 478.2670724 & 4.355202288 \\
\hline & 4.305684537 & 4.342684537 & 2.633025755 & 3.68248233 & 1926.51408 \\
\hline
\end{tabular}


End

\section*{D. 19 TEST \#19-}

\section*{T19_RCIC_060GPM_10PSIG_157KW_RESULTS_RCICLAND.TXT}

Output Saved to C:\Local Files\RCICLAND_NOTITLES
Using 20-second SP 12 averages for begiñing detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1562.9654 s, and ending (KEY POINT \#11) at \(t\) plus 9930.279 s, for a time period of 8367.3136 s.
Original Data Record Time: 12570.196 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(1817.726 \mathrm{~s}, \mathrm{~T}\) _bulk \(=63.5184 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=61.0907 \mathrm{C}\)
Stratification Beginning SP12 Temperature = 63.0883 C
Stratification Beginning Pressure \(=27.9113\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at t plus \(8052.6366 \mathrm{~s}, \mathrm{~T}\) _bulk \(=143.7795 \mathrm{C}\) and T _out \(=100.9486 \mathrm{C}\)
Stratification Ending SP12 Temperature \(=143.6292 \mathrm{C}\)
Stratification Ending Pressure \(=90.0382\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 977.4179 s.

At \(t=977.4179 \mathrm{~s}\), the pool pressure is 26.2677 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 52.5632, 52.5913, 54.5922, 52.1931, and 50.1472 C, respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were \(10.3152+/-2.4872 \mathrm{C}\).
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were \(9.5672+/-2.2434 \mathrm{C}\).
Minimum Steam Quality: 0.46159 at t plus 24.6014 s
Maximum Steam Quality: 0.62296 at \(t\) plus 8312.4384 s
Time-Averaged Steam Quality: 0.57724 +/- 0.024579
Minimum Turbine Outlet Steam Quality: 0.50224 at t plus 24.6014 s
Maximum Turbine Outlet Steam Quality: 0.64181 at \(t\) plus 5723.5894 s
Time-Averaged Turbine Outlet Steam Quality: 0.6064 +/- 0.017981
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 8277.4324 s; using 300 s smoothing
Max and min smoothed upper level changerates: 1.0485 degrees \(/ \mathrm{min}\) at t plus 3744.2612 s and 0.57296 degrees/min at \(t\) plus 8071.8257 s, respectively
Max and min smoothed mid (SP9) level changerates: 0.89356 degrees/min at \(t\) plus 3566.455 \(s\) and 0.6142 degrees/min at \(t\) plus 8277.4324 s , respectively
Max and min smoothed upper-mid level changerate differences: 0.18101 degrees/min at \(t\) plus 3742.358 s and -0.14213 degrees/min at \(t\) plus 4372.6661 s , respectively
Max and min smoothed lower level changerates: 2.1414 degrees \(/ \mathrm{min}\) at t plus 6183.7447 s and 0.36535 degrees/min at \(t\) plus 3723.1569 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.51078 degrees/min at \(t\) plus 3584.654 s and -1.3795 degrees/min at \(t\) plus 6183.7447 s , respectively
Max and min smoothed outlet level changerates: 3.9767 degrees/min at t plus 8277.4324 s and 0.095299 degrees \(/ \mathrm{min}\) at \(t\) plus 4771.5739 s , respectively
Max and min smoothed lower-outlet level changerate differences: 1.9678 degrees/min at \(t\) plus 6183.7447 s and -3.2617 degrees/min at t plus 8277.4324 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.5222 degrees/min at \(t\) plus 1188.518 s and 0.34887 degrees/min at \(t\) plus 3078.3591 s, respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.71814 degrees/min at \(t\) plus 1188.416 s and -0.49016 degrees/min at \(t\) plus 3078.3591 s , respectively
The mean steam flow rate was \(66.4463+/-2.7975 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 65.7438 +/- \(3.2557 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was 37.4107 +/-1.2069 g/s
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is \(11.0932+/-1.3118\) C over the Stratification Period, beginning at 6.6113 C and ending at 9.6765 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(10.2638+/-1.2045\) C over the Stratification Period, beginning at 6.3678 C and ending at 8.7407 C
The stratification period begins and ends with Smoothed SP8 readings of 70.2703 and 153.4088 C, respectively

The stratification period begins and ends with condensing flows of 0.57821 and 1.8257 kg/s, respectively.
The stratification period begins and ends with condensing+cooling flows of 5.7013 and \(3.228 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(1895.6166+/-37.4531\) \(\mathrm{kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.4916 and 19.3001 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of \(1886.6736+/-43.499 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 1.6842 degrees \(C\) at \(t\) plus 3878.1568 s with \(T\) _upper \(=\) 92.3293 C and T mid \(=90.645 \mathrm{C}\)

At t plus 3878.1568 s, Smoothed SP8-SP9 is 11.4917 C and Smoothed SP8-Top is 9.8075 C , where Smoothed SP8 is 102.1368 C and Pool \(\mathrm{P}=36.7666\) psia
Maximum Smoothed Top-Lower delta \(T\) is 11.4166 degrees \(C\) at \(t\) plus 5839.994 s with T_upper \(=119.3305 \mathrm{C}\) and T low \(=107.9139 \mathrm{C}\)
At \(t\) plus 5839.994 s , Smoothed SP8-SP9 is 12.188 C and Smoothed SP8-Top is 11.3573 C , where Smoothed SP8 is 130.6878 C and Pool \(\mathrm{P}=55.7996\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 10.5867 degrees C at \(t\) plus 5840.189 s with T_mid \(=\) 118.5027 C and \(\mathrm{T}_{\text {_low }}=107.9161 \mathrm{C}\)

At t plus 5840.189 s , Smoothed SP8-SP9 is 12.1911 C and Smoothed SP8-Top is 11.362 C , where Smoothed SP8 is 130.6939 C and Pool \(\mathrm{P}=55.7988\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 44.1627 degrees \(C\) at \(t\) plus 7965.3256 s with T_upper \(=143.6504 \mathrm{C}\) and \(T\) out \(=99.4877 \mathrm{C}\)
At t plus 7965.3256 s, Smoothed SP8-SP9 is 9.9502 C and Smoothed SP8-Top is 9.1254 C, where Smoothed SP8 is 152.7758 C and Pool \(\mathrm{P}=88.4678\) psia

Maximum Smoothed Mid-Outlet delta \(T\) is 43.3991 degrees \(C\) at \(t\) plus 7946.2255 s with T_mid \(=142.6606 \mathrm{C}\) and T out \(=99.2615 \mathrm{C}\)
At \(t\) plus 7946.2255 s , Smoothed SP8-SP9 is 9.9636 C and Smoothed SP8-Top is 9.2904 C , where Smoothed SP8 is 152.6242 C and Pool \(\mathrm{P}=88.0969\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 43.1981 degrees \(C\) at \(t\) plus 7902.172 s with T low \(=142.1085 \mathrm{C}\) and T out \(=98.9104 \mathrm{C}\)
At \(t\) plus 7902.172 s , Smoothed \(\overline{S P} 8-\mathrm{SP9}\) is 9.8854 C and Smoothed SP8-Top is 9.1188 C , where Smoothed SP8 is 152.0529 C and Pool \(\mathrm{P}=87.3107\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 12.8996 degrees \(C\) at (KEY POINT \#14) t plus 5771.8891 s with \(T_{\_}\)SP8 \(=130.4885 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{SP9}=117.589 \mathrm{C}\) and Pool \(\mathrm{P}=\) 54.9304 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 12.2537 degrees \(C\) at \(t\) plus 5776.9894 s with \(\mathrm{T}_{-} \mathrm{SP} 8=130.5475 \mathrm{C}\) and \(\mathrm{T}_{-}\)upper \(=118.2938 \mathrm{C}\) and Pool \(\mathrm{P}=54.992\) psia
Maximum Top-Mid delta \(T\) is 2.6964 degrees \(C\) at (KEY POINT \#4) t plus 3722.1679 s ignoring SP 4, with temperatures of 90.0487 and 87.3522 C , respectively, at Set \# 2, where Pool \(P=35.745\) psia and T_outlet \(=81.1528 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 4471.4658 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.99976 C and a raw SP12 Reading of 99.3178 C .
Maximum Top-Lower delta \(T\) is 14.3408 degrees \(C\) at \(t\) plus 5914.5933 s, with temperatures of 120.7682 and 106.4274 C, respectively, at Set \# 1, where Pool \(P=56.7833\) psia and T_outlet \(=90.951 \mathrm{C}\)
Maximum Mid-L̄w delta \(T\) is 11.9707 degrees \(C\) at (KEY POINT \#6) t plus 5914.9903 s ignoring SP 4, with temperatures of 119.5086 and 107.5379 C, respectively, at Set \# 2, where Pool \(P=56.7908\) psia and \(T\) _outlet \(=90.9463 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 6331.0191 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 3.9892 C and a raw SP12 Reading of 124.8209 C .
Maximum Top-Outlet delta \(T\) is 44.8581 degrees \(C\) at \(t\) plus 7986.8248 s , with temperatures of 144.6075 and 99.7494 C , respectively, at Set \# 1, where Pool P \(=88.8269\) psia
Maximum Mid-Outlet delta \(T\) is 43.7058 degrees \(C\) at \(t\) plus 7963.6295 ignoring SP 4, with temperatures of 142.9239 and 99.2181 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=\) 88.44 psia

Maximum Lower-Outlet delta \(T\) is 44.398 degrees \(C\) at (KEY POINT \#8) t plus 7839.3234 s, with temperatures of 142.6222 and 98.2242 C , respectively, at Set \# 1, where Pool P = 86.1685 psia
Low-Outlet Reconvergence NOT Detected, setting t to (KEY POINT \#10) t plus 8367.3136 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 30.2375 C and a raw SP12 Reading of 146.9219 C .
Minimum SP Pressure is 25.1354 psia at \(t\) plus 2.4041 s
Maximum SP Pressure is 95.8621 psia at \(t\) plus 8367.3136 s
Beginning SP Pressure is 25.1386 psia
Ending SP Pressure is 95.8621 psia
Time-Average SP Pressure is 46.6136 +/- 20.7647 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 77.4768 cm (cold) / 77.6285 cm (hot) at 24.7303 psia
Beginning Smoothed SP Level is 77.6315 cm (cold) / 77.805 cm (hot) at 25.1392 psia
Ending Smoothed SP Level is 76.7495 cm (cold) / 78.9524 cm (hot) at 95.881 psia
Minimum Smoothed Cold SP Level is 76.7495 cm at \(t\) plus 8367.3136 s and 95.881 psia
Minimum Smoothed Hot SP Level is 77.8038 cm at \(t\) plus 7.6994 s and 25.1443 psia
Maximum Smoothed Cold SP Level is 79.3754 cm at \(t\) plus 3681.4596 s and 35.4827 psia
Maximum Smoothed Hot SP Level is 80.3559 cm at \(t\) plus 4141.9669 s and 38.6242 psia
SP 12 Temperature at the beginning is 39.7868 C , and at the end is 146.9219 C
At plume detection, the Mixing Number is 44.8991
The Mixing Number ranges from a minimum of 38.5793 at (KEY POINT \#12) \(t\) plus 0 s to a maximum of 364.5022 at (KEY POINT \#13) t plus 8367.3136 s; it had a mean value of 130.9166 +/- 91.5009 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sigl, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid \(T\) (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal

Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T mid Viscosity (Pa-s) mu1, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) csl, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steäm Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta h e6, Steam Condensation delta he7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy e11
KEY POINT \#1 (t plus 0 s with a Mixing Number of 38.5793): 72.81053655 0.040894
\begin{tabular}{lccccc}
0.00925 & 0.3937 & 0.7763149194 & 0.7780497256 & 0.5049946991 \\
0.5049946991 & 0.9989265291 & 35.52012539 & 227191.511 & 0.06959656899 \\
0.0555025919 & 0.05389813965 & 0.04173387349 & 0.09563201313 & 39.99842105 \\
117.3406139 & 117.3406139 & 40.14561299 & 40.0124062 & 39.45363492 \\
37.77736682 & 4.178365689 & 4.241881551 & 2.15899585 & 0.6286689885 \\
0.68310356 & 0.68310356 & 4.338919393 & 1.475935104 & 0.04065885631 \\
992.2547945 & 945.2339703 & 1.03627021 & 2.049838951 & 0.0006528255947 \\
0.000237681442 & \(1.286441078 e-005\) & \(1.310574532 e-005\) & 1531.44724 & \\
1524.8333 & 480.6062045 & 466.2487016 & 1.82499369 & 1.733286485 \\
1.770286485 & 0.07383805876 & 0.07441947837 & 1609.564356 & 1608.302676 \\
167.684814 & 492.486422 & 2702.046753 & 324.801608 & 1117.077934 \\
168.2998356 & 167.7417424 & 165.4100932 & 158.409974 &
\end{tabular}

KEY POINT \#2 (t plus 977.4179 s with a Mixing Number of 44.8991): 76.95510896
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.7775474692 & 0.7805787059 \\
0.6009053106 & 0.6009053106 & 0.9992360427 & 42.58789869 & 240447.618 \\
0.06750697625 & 0.05518458277 & 0.06445752253 & 0.03661812309 & 0.1010756456 \\
52.59131065 & 118.9248547 & 118.9248547 & 54.59221236 & 52.56317261 \\
52.19306303 & 50.14715086 & 4.179990087 & 4.244535058 & 2.167847073 \\
0.6433765599 & 0.6834152229 & 0.6834152229 & 3.403595254 & 1.455086969 \\
0.04098004163 & 986.8907583 & 943.9697768 & 1.08664878 & 1.80697126 \\
0.0005238752629 & 0.0002342844556 & \(1.291898521 e-005\) & \(1.308809899 e-005\) & \\
1548.180464 & 1522.573935 & 481.3149136 & 471.2479437 & 1.919944658 \\
1.810692277 & 1.847692277 & 0.1402978144 & 0.1545602529 & 1826.117384 \\
1824.303655 & 220.3157138 & 499.2153945 & 2704.368581 & 278.8996807 \\
1326.90199 & 228.6800282 & 220.1966411 & 218.6526081 & 210.105341
\end{tabular}

KEY POINT \#3 (t plus 1817.726 s with a Mixing Number of 52.4256): 79.29764602
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7820357705 & 0.7864915692 \\
0.5913236611 & 0.5913236611 & 0.999160226 & 40.94359691 & 246344.7843 \\
0.06560113769 & 0.05482233464 & 0.06496938297 & 0.03918303623 & 0.1041524192 \\
63.6589847 & 120.7230649 & 120.7230649 & 70.27026837 & 63.90242294 \\
63.287292 & 61.12937194 & 4.184262426 & 4.247621256 & 2.178202665 \\
0.6542482559 & 0.6837339879 & 0.6837339879 & 2.825385952 & 1.432184117 \\
0.04135403222 & 981.3332029 & 942.5217535 & 1.146210604 & 1.93675329 \\
0.0004417753103 & 0.0002305367873 & \(1.298095803 e-005\) & \(1.316365575 e-005\) & \\
1555.914819 & 1519.931088 & 482.1078405 & 471.3554594 & 2.032573468 \\
1.924378055 & 1.961378055 & 0.2357675444 & 0.3156714975 & 1809.520358 \\
1807.84398 & 266.609297 & 506.8586423 & 2706.982572 & 240.2493453 \\
1302.661715 & 294.28469 & 267.6265082 & 265.055571 & 256.0315725
\end{tabular}

KEY POINT \#4 (t plus 3722.1679 s with a Mixing Number of 81.5971): 79.32857287
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.7937336583 & 0.8027849379 \\
0.6215741868 & 0.6215741868 & 0.9990771039 & 34.73750021 & 241653.4996 \\
0.06111335493 & 0.05331198012 & 0.06720166946 & 0.0369913702 & 0.1041930397 \\
88.41597612 & 128.1496189 & 128.1496189 & 100.2171246 & 89.5115766 \\
85.86422604 & 81.15772623 & 4.203043862 & 4.261231552 & 2.224555042 \\
0.672232069 & 0.6846609893 & 0.6846609893 & 2.002340813 & 1.345497669 \\
0.04300923724 & 966.4499608 & 936.3948258 & 1.420774138 & 2.283658076 \\
0.0003202530717 & 0.0002161839256 & \(1.323714018 e-005\) & \(1.342443898 e-005\) & \\
1553.97554 & 1508.156511 & 485.2505683 & 474.6664091 & 2.556351154 \\
2.464478344 & 2.501478344 & 0.6606468727 & 1.022063181 & 1894.129411 \\
1892.922717 & 370.4486701 & 538.4896775 & 2717.526497 & 168.0410075 \\
1355.639733 & 420.1263531 & 375.0528285 & 359.7282265 & 339.9724888
\end{tabular}

KEY POINT \#5 (t plus 4471.4658 s with a Mixing Number of 103.1226): 81.43349434 \(\begin{array}{lllll}0.040894 & 0.00925 & 0.3937 & 0.791611241 & 0.8026756863\end{array}\)
\begin{tabular}{lcccc}
0.6142517558 & 0.6142517558 & 0.9989142903 & 31.02671626 & 244756.0522 \\
0.05904902476 & 0.05237398043 & 0.06839565118 & 0.03856206907 & 0.1069577202 \\
99.2877467 & 132.7070468 & 132.7070468 & 110.3717995 & 100.2375781 \\
93.18814251 & 86.30720838 & 4.215318663 & 4.270303985 & 2.255939606 \\
0.6775660644 & 0.6849238225 & 0.6849238225 & 1.766341343 & 1.297990074 \\
0.04411749092 & 958.9550425 & 932.5185764 & 1.613932761 & 2.624624973 \\
0.0002839199235 & 0.0002081875966 & \(1.339447228 e-005\) & \(1.360596107 e-005\) & \\
1546.123433 & 1500.266354 & 487.0716963 & 475.4445297 & 2.928711291 \\
2.841160886 & 2.878160886 & 0.9886717321 & 1.451757244 & 1889.283119 \\
1888.320462 & 416.2364599 & 557.9555234 & 2723.785619 & 141.7190635 \\
1331.327596 & 463.0412552 & 420.239593 & 390.5485686 & 361.6220441
\end{tabular}

KEY POINT \#6 (t plus 5914.9903 s with a Mixing Number of 168.7475): 79.68681832
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7737611506 & 0.7884311874 \\
0.6238189869 & 0.6238189869 & 0.998592485 & 23.07503558 & 232471.5817 \\
0.05507184902 & 0.05011631875 & 0.06861987713 & 0.03604369515 & 0.1046635723 \\
119.4851953 & 143.5175886 & 143.5175886 & 131.591717 & 120.4794908 \\
109.6339443 & 90.82062783 & 4.24499573 & 4.294199029 & 2.339547633 \\
0.6836388345 & 0.6846369702 & 0.6846369702 & 1.447785354 & 1.200016591 \\
0.04704735345 & 943.6143225 & 922.970791 & 2.157319173 & 3.453377918 \\
0.000233159785 & 0.0001913222274 & \(1.376777162 e-005\) & \(1.401768218 \mathrm{e}-005\) & \\
1522.198802 & 1479.618812 & 491.0563338 & 478.1545984 & 3.989476493 \\
3.915371094 & 3.952371094 & 1.954479689 & 2.833763118 & 1935.841339 \\
1935.308881 & 501.7371396 & 604.315083 & 2737.936897 & 102.5779434 \\
1331.526255 & 553.2627931 & 505.957565 & 459.9996739 & 380.6753925
\end{tabular}

KEY POINT \#7 (t plus 6331.0191 s with a Mixing Number of 195.5917): 80.0313916
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7723095843 & 0.788290749 \\
0.6148827979 & 0.6148827979 & 0.9983994061 & 20.93343065 & 231114.4682 \\
0.05398526425 & 0.0494007913 & 0.06833378054 & 0.03678236686 & 0.1051161474 \\
124.8528483 & 146.9000832 & 146.9000832 & 136.9128705 & 125.3684585 \\
122.4921146 & 92.35819441 & 4.254500969 & 4.30241248 & 2.368363704 \\
0.684450813 & 0.6842886038 & 0.6842886038 & 1.382404707 & 1.173102054 \\
0.04805525768 & 939.2392543 & 919.8811469 & 2.354550393 & 3.823137876 \\
0.0002223969469 & 0.0001865791275 & \(1.388455039 e-005\) & \(1.416096427 e-005\) & \\
1514.007854 & 1472.618149 & 492.2048595 & 478.2347559 & 4.378394552 \\
4.307237868 & 4.344237868 & 2.311746471 & 3.310210917 & 1924.880548 \\
1924.44234 & 524.5752002 & 618.8785529 & 2742.151136 & 94.30335264 \\
1306.001995 & 576.0273854 & 526.7679289 & 514.5378835 & 387.1725976
\end{tabular}

KEY POINT \#8 (t plus 7839.3234 s with a Mixing Number of 310.7128): 80.08352496
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7694573951 & 0.7898622627 \\
0.599910522 & 0.599910522 & 0.9976780292 & 15.18754201 & 223359.6711 \\
0.05053929282 & 0.0468383351 & 0.06775733249 & 0.03742728876 & 0.1051846213 \\
141.5084911 & 158.856689 & 158.856689 & 151.6803286 & 142.3138903 \\
141.1922651 & 98.26690132 & 4.288874988 & 4.33457939 & 2.480259683 \\
0.6849273456 & 0.6820900019 & 0.6820900019 & 1.21673436 & 1.090025568 \\
0.05198796368 & 924.8873871 & 908.5651216 & 3.170675228 & 5.272974713 \\
0.0001943107779 & 0.0001715265715 & \(1.429707965 e-005\) & \(1.466216194 \mathrm{e}-005\) & \\
1484.186655 & 1445.88451 & 495.8847928 & 478.7549843 & 6.003726082 \\
5.941201364 & 5.978201364 & 3.771961959 & 4.979342109 & 1921.986218 \\
1921.755557 & 595.8203968 & 670.6066048 & 2756.165877 & 74.78620792 \\
1251.379613 & 639.572395 & 599.2742874 & 594.4654343 & 412.1727711
\end{tabular}

KEY POINT \#9 (t plus 8052.6366 s with a Mixing Number of 330.0555): 78.80713126
\begin{tabular}{lllccc}
0.040894 & 0.00925 & 0.3937 & 0.7688517644 & 0.7898626279 \\
0.6098309328 & 0.6098309328 & 0.9976751016 & 14.58319735 & 218986.5199 \\
0.05007103976 & 0.04646971078 & 0.06761386833 & 0.03589429091 & 0.1035081592 \\
143.7322339 & 160.5577931 & 160.5577931 & 153.4087757 & 144.668108 \\
143.4586956 & 101.2222109 & 4.294074004 & 4.339582912 & 2.497440094 \\
0.6847623832 & 0.6816561858 & 0.6816561858 & 1.198196806 & 1.079581421 \\
0.05259627153 & 922.8824404 & 906.9046366 & 3.303186397 & 5.403967964 \\
0.0001910726503 & 0.0001695792818 & \(1.435572926 e-005\) & \(1.471660825 e-005\) & \\
1479.723847 & 1441.834425 & 496.3598993 & 479.5779191 & 6.269577405 \\
6.208367333 & 6.245367333 & 4.013299298 & 5.212211277 & 1946.686941 \\
1946.474271 & 605.3805013 & 677.9999394 & 2758.042561 & 72.61943808 \\
1268.687002 & 647.0497258 & 609.3991501 & 604.2071589 & 424.649904
\end{tabular}

KEY POINT \#10 (t plus 8367.3136 s with a Mixing Number of 364.5022): 79.72467577
\begin{tabular}{llllll}
0.040894 & 0.00925 & 0.3937 & 0.7674952806 & 0.7895238661
\end{tabular}
\(0.59314993 \quad 0.59314993 \quad 0.9973513239 \quad 13.53927026 \quad 219635.8454\)
\(\begin{array}{llllll}0.04937725751 & 0.04593659539 & 0.06631105697 & 0.03840223868 & 0.1047132956\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 147.0109947 & 163.0100651 & 163.0100651 & 155.7523384 & 147.9401601 \\
\hline & 146.9383346 & 116.460199 & 4.302029248 & 4.346996735 & 2.522757896 \\
\hline & 0.6844218955 & 0.6809783186 & 0.6809783186 & 1.172184666 & 1.065072664 \\
\hline & 0.05349549556 & 919.8871402 & 904.4884942 & 3.501981274 & 5.888402718 \\
\hline & 0.0001864861453 & 30.0001668488467 & \(1.44402571 \mathrm{e}-00\) & \(051.484393809 \mathrm{e}-005\) & \\
\hline & 1472.940711 & 1435.889656 & 497.0234113 & 478.578568 & 6.669232043 \\
\hline & 6.610764292 & 6.647764292 & 4.391644125 & 5.541777215 & 1917.875904 \\
\hline & 1917.692592 & 619.4979421 & 688.6738562 & 2760.694224 & 69.17591412 \\
\hline & 1229.202048 & 657.2031318 & 623.4952203 & 619.1864955 & 489.1001965 \\
\hline \multirow[t]{12}{*}{} & POINT \#11 (t plus 8 & \[
8367.3136 \text { s with }
\]
\[
0.00925
\] & \multicolumn{3}{|l|}{a Mixing Number of 364.5022): 79.72467577} \\
\hline & 0.59314993 & 0.59314993 & 0.9973513239 & 13.53927026 & 219635.8454 \\
\hline & 0.04937725751 & 0.04593659539 & 0.06631105697 & 0.03840223868 & 0.1047132956 \\
\hline & 147.0109947 & 163.0100651 & 163.0100651 & 155.7523384 & 147.9401601 \\
\hline & 146.9383346 & 116.460199 & 4.302029248 & 4.346996735 & 2.522757896 \\
\hline & 0.6844218955 & 0.6809783186 & 0.6809783186 & 1.172184666 & 1.065072664 \\
\hline & 0.05349549556 & 919.8871402 & 904.4884942 & 3.501981274 & 5.888402718 \\
\hline & 0.0001864861453 & 30.0001668488467 & \(1.44402571 \mathrm{e}-00\) & \(051.484393809 \mathrm{e}-005\) & \\
\hline & 1472.940711 & 1435.889656 & 497.0234113 & 478.578568 & 6.669232043 \\
\hline & 6.610764292 & 6.647764292 & 4.391644125 & 5.541777215 & 1917.875904 \\
\hline & 1917.692592 & 619.4979421 & 688.6738562 & 2760.694224 & 69.17591412 \\
\hline & 1229.202048 & 657.2031318 & 623.4952203 & 619.1864955 & 489.1001965 \\
\hline \multicolumn{2}{|l|}{KEY POINT \#12 (t plus 0} & 0 s with a Mixing & \multicolumn{2}{|l|}{g Number of 38.5793): 72.81053655} & 0.040894 \\
\hline & 0.00925 & \(0.3937 \quad 0.7\) & 77631491940. & .7780497256 0.50 & 0.5049946991 \\
\hline & 0.5049946991 & 0.9989265291 & 35.52012539 & 227191.511 & 0.06959656899 \\
\hline & 0.0555025919 & 0.05389813965 & 0.04173387349 & 0.09563201313 & 39.99842105 \\
\hline & 117.3406139 & 117.3406139 & 40.14561299 & 40.0124062 & 39.45363492 \\
\hline & 37.77736682 & 4.178365689 & 4.241881551 & 2.15899585 & 0.6286689885 \\
\hline & 0.68310356 & 0.68310356 & 4.338919393 & 1.4759351040 & . 04065885631 \\
\hline & 992.2547945 & 945.2339703 & 1.03627021 & 2.0498389510 .0 & . 0006528255947 \\
\hline & 0.000237681442 & \(1.286441078 \mathrm{e}-005\) & 1.310574532e-005 & \(5 \quad 1531.44724\) & \\
\hline & 1524.8333 & 480.6062045 & 466.2487016 & 1.82499369 & 1.733286485 \\
\hline & 1.770286485 & 0.07383805876 & 0.07441947837 & 1609.564356 & 1608.302676 \\
\hline & 167.684814 & 492.486422 & 2702.046753 & 324.801608 & 1117.077934 \\
\hline & 168.2998356 & 167.7417424 & 165.4100932 & 158.409974 & \\
\hline \multirow[t]{13}{*}{} & POINT \#13 (t plus & 8367.3136 s with a & \multicolumn{3}{|l|}{a Mixing Number of 364.5022) : 79.72467577} \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.76749528060 & 895238661 \\
\hline & 0.59314993 & 0.59314993 & 0.9973513239 & 13.53927026 & 219635.8454 \\
\hline & 0.04937725751 & 0.04593659539 & 0.06631105697 & 0.03840223868 & 0.1047132956 \\
\hline & 147.0109947 & 163.0100651 & 163.0100651 & 155.7523384 & 147.9401601 \\
\hline & 146.9383346 & 116.460199 & 4.302029248 & 4.346996735 & 2.522757896 \\
\hline & 0.6844218955 & 0.6809783186 & 0.6809783186 & 1.172184666 & 1.065072664 \\
\hline & 0.05349549556 & 919.8871402 & 904.4884942 & 3.501981274 & 5.888402718 \\
\hline & 0.0001864861453 & 30.0001668488467 & \(1.44402571 \mathrm{e}-00\) & \(051.484393809 \mathrm{e}-005\) & \\
\hline & 1472.940711 & 1435.889656 & 497.0234113 & 478.578568 & 6.669232043 \\
\hline & 6.610764292 & 6.647764292 & 4.391644125 & 5.541777215 & 1917.875904 \\
\hline & 1917.692592 & 619.4979421 & 688.6738562 & 2760.694224 & 69.17591412 \\
\hline & 1229.202048 & 657.2031318 & 623.4952203 & 619.1864955 & 489.1001965 \\
\hline \multirow[t]{13}{*}{} & POINT \#14 (t plus 5 & 5771.8891 s with a & \multicolumn{3}{|l|}{a Mixing Number of 160.3724): 79.14939848} \\
\hline & 0.040894 & 0.00925 & \multicolumn{2}{|l|}{3937 0.7747234185 0.78} & . 7889714186 \\
\hline & 0.6307992806 & 0.6307992806 & 0.9986762411 & 23.89015418 & 231775.9558 \\
\hline & 0.05545280872 & 0.05036139336 & 0.06871958306 & 0.03523812243 & 0.1039577055 \\
\hline & 117.5889727 & 142.3543834 & 142.3543834 & 130.4885297 & 118.2786811 \\
\hline & 108.1468163 & 90.26843581 & 4.241808375 & 4.291458782 & 2.329930027 \\
\hline & 0.6832730897 & 0.6847285235 & 0.6847285235 & 1.472542469 & 1.209657853 \\
\hline & 0.04671101666 & 945.1303017 & 924.0219993 & 2.092642964 & 3.313055156 \\
\hline & 0.0002371980423 & 30.0001930083167 & \(1.372760774 \mathrm{e}-00\) & \(051.396493217 e-005\) & \\
\hline & 1524.916967 & 1481.967676 & 490.6504887 & 478.3039009 & 3.862346893 \\
\hline & 3.787023739 & 3.824023739 & 1.839619628 & 2.742318628 & 1947.996893 \\
\hline & 1947.426154 & 493.6816808 & 599.3135225 & 2736.463441 & 105.6318417 \\
\hline & 1348.68337 & 548.5472712 & 496.6064785 & 453.702534 & 378.3435409 \\
\hline
\end{tabular}

End

\section*{D. 20 TEST \#20-T20_RCIC_1ATM_57KW_RESULTS_RCICLAND.TXT}

Output Saved to C:\Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash \operatorname{Export} \backslash T 20 \_R C I C \_1 A T M \_57 \mathrm{~kW} \backslash\)
Using 20-second SP 12 averages for begiñning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 2078.8719 s, and ending (KEY POINT \#11) at \(t\) plus 15071.183 s , for a time period of 12992.3111 s .
Original Data Record Time: 16478.1055 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at t plus \(3224.9565 \mathrm{~s}, \mathrm{~T}\) bulk \(=55.6078 \mathrm{C}\) and T _out \(=53.3852 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=\overline{55} .1982 \mathrm{C}\)
Stratification Beginning Pressure \(=15.2659\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(9485.4535 \mathrm{~s}, \mathrm{~T}\) bulk \(=84.6456 \mathrm{C}\) and T _out \(=72.0563 \mathrm{C}\)
Stratification Ending SP12 Temperature \(=84 . \overline{473} \mathrm{C}\)
Stratification Ending Pressure \(=15.2377\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 3609.5595 s .
At \(t=3609.5595 \mathrm{~s}\), the pool pressure is 15.2627 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 57.7168, 57.5261, 59.5267, 57.8725, and 54.7286 C , respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were \(8.806+/-3.1575 \mathrm{C}\).
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 8.3013 +/- 3.0427 C.
Minimum Steam Quality: 0.97248 at t plus 9593.6557 s
Maximum Steam Quality: 1.0121 at \(t\) plus 3353.8528 s
Time-Averaged Steam Quality: 1.0071 +/- 0.0016623
Minimum Turbine Outlet Steam Quality: 0.98382 at \(t\) plus 9593.6557 s
Maximum Turbine Outlet Steam Quality: 1.0223 at t plus 7911.0285 s
Time-Averaged Turbine Outlet Steam Quality: 1.0174 +/- 0.001815
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 12902.313 s ; using 300 s smoothing
Max and min smoothed upper level changerates: 0.43333 degrees/min at \(t\) plus 6973.0108 s and 0.17699 degrees \(/ \mathrm{min}\) at \(t\) plus 10060.8655 s , respectively
Max and min smoothed mid (SP9) level changerates: 0.41556 degrees/min at \(t\) plus 7391.1157 s and 0.19428 degrees/min at \(t\) plus 9587.5544 s , respectively

Max and min smoothed upper-mid level changerate differences: 0.17726 degrees/min at \(t\) plus 6984.6155 s and -0.14667 degrees/min at \(t\) plus 10060.2654 s , respectively
Max and min smoothed lower level changerates: 0.97015 degrees/min at \(t\) plus 8625.0393 s and 0.015747 degrees/min at \(t\) plus 6981.0123 s, respectively
Max and min smoothed mid-lower level changerate differences: 0.32911 degrees/min at \(t\) plus 7505.4203 s and -0.74234 degrees/min at \(t\) plus 8625.0393 s, respectively
Max and min smoothed outlet level changerates: 2.3129 degrees \(/ \mathrm{min}\) at \(t\) plus 9708.6583 s and 0.0086426 degrees/min at \(t\) plus 8791.7409 s, respectively
Max and min smoothed lower-outlet level changerate differences: 0.86828 degrees \(/ \mathrm{min}\) at \(t\) plus 8625.0393 s and -2.015 degrees/min at \(t\) plus 9712.8585 s , respectively
Max and min smoothed hot (SP8) level changerates: 0.91653 degrees/min at \(t\) plus 4862.8791 s and 0.01821 degrees/min at \(t\) plus 10660.5738 s, respectively

Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.67911 degrees/min at \(t\) plus 4862.8791 s and -0.33511 degrees/min at \(t\) plus 7275.6182 s , respectively
The mean steam flow rate was \(23.8957+/-0.78305 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was \(23.4546+/-1.129 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.0061292+/-0.028436 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta T is \(8.3634+/-3.5149 \mathrm{C}\) over the Stratification Period, beginning at 1.4895 C and ending at 11.8254 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(7.8799+/-3.3771\) C over the Stratification Period, beginning at 1.3073 C and ending at 11.237 C
The stratification period begins and ends with Smoothed SP8 readings of 57.1592 and 97.016 C, respectively

The stratification period begins and ends with condensing flows of 0.27341 and 0.79128 \(\mathrm{kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of 9.2413 and \(1.1347 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(2719.8569+/-1.0362 \mathrm{~kJ} / \mathrm{kg}\). At plume detection, the condensing and condensing+cooling flows are 0.28485 and 6.8534 \(\mathrm{kg} / \mathrm{s}\), respectively

The plume period had a mean steam enthalpy of \(2720.5284+/-0.99922 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 1.2573 degrees C at t plus 9710.4554 s with T_upper \(=\) 86.967 C and T _mid \(=85.7096 \mathrm{C}\)

At \(t\) plus 9710.4554 s, Smoothed SP8-SP9 is 12.0289 C and Smoothed SP8-Top is 10.7715 C, where Smoothed SP8 is 97.7385 C and Pool \(\mathrm{P}=15.2362\) psia
Maximum Smoothed Top-Lower delta \(T\) is 5.8466 degrees \(C\) at \(t\) plus 8446.8371 s with T_upper \(=81.5142 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=75.6676 \mathrm{C}\)
At \(t\) plus 8446.8371 s, Smoothed SP8-SP9 is 10.7535 C and Smoothed SP8-Top is 10.2588 C, where Smoothed SP8 is 91.7731 C and Pool \(\mathrm{P}=15.2527\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 5.5273 degrees \(C\) at \(t\) plus 8413.5322 s with T_mid = 80.9039 C and T _low \(=75.3766 \mathrm{C}\)

At t plus 8413.5322 s, Smoothed SP8-SP9 is 10.9349 C and Smoothed SP8-Top is 10.6334 C , where Smoothed SP8 is 91.8389 C and Pool \(\mathrm{P}=15.2511\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 13.7148 degrees \(C\) at \(t\) plus 9344.5995 s with T_upper \(=85.2301 \mathrm{C}\) and \(T\) _out \(=71.5153 \mathrm{C}\)
At \(t\) plus 9344.5995 s , Smoothed \(\overline{\mathrm{SP}} 8-\mathrm{SP9}\) is 11.7886 C and Smoothed SP8-Top is 11.0087 C , where Smoothed SP8 is 96.2388 C and Pool \(\mathrm{P}=15.2535\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 13.0456 degrees C at \(t\) plus 9490.0518 s with T_mid \(=85.2391 \mathrm{C}\) and T_out \(=72.1936 \mathrm{C}\)
At \(t\) plus 9490.0518 s , Smoothed SP8-SP9 is 11.8117 C and Smoothed SP8-Top is 11.243 C , where Smoothed SP8 is 97.0508 C and Pool \(\mathrm{P}=15.2373\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 13.4754 degrees C at \(t\) plus 9517.4554 s with T_low \(=85.9246 \mathrm{C}\) and \(T\) _out \(=72.4492 \mathrm{C}\)
At \(t\) plus 9517.4554 s , Smoothed SP8-SP9 is 11.778 C and Smoothed SP8-Top is 10.9618 C , where Smoothed SP8 is 96.9436 C and Pool \(\mathrm{P}=15.2513\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 12.523 degrees \(C\) at (KEY POINT \#14) t plus 9195.649 s with \(\mathrm{T}_{-} \mathrm{SP} 8=96.2987 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{SP9}=83.7756 \mathrm{C}\) and Pool \(\mathrm{P}=\) 15.252 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 11.8167 degrees \(C\) at \(t\) plus 9195.649 s with T _SP8 \(=96.2987 \mathrm{C}\) and T _upper \(=84.4819 \mathrm{C}\) and Pool \(\mathrm{P}=15.252\) psia
Maximum Top-Mid delta \(T\) is 1.6034 degrees \(C\) at (KEY POINT \#4) t plus 7125.1135 s ignoring SP 4, with temperatures of 74.8059 and 73.2025 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=15.2521\) psia and \(T\) _outlet \(=67.3946 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 7477.7207 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.99983 C and a raw SP12 Reading of 75.609 C .
Maximum Top-Lower delta \(T\) is 7.1289 degrees \(C\) at \(t\) plus 8778.7421 s, with temperatures of 82.7181 and 75.5892 C , respectively, at Set \# 1, where Pool P = 15.2497 psia and T_outlet \(=70.9883 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 5.7523 degrees \(C\) at (KEY POINT \#6) t plus 8537.5383 s ignoring SP 4, with temperatures of 81.3109 and 75.5585 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=15.2508\) psia and T_outlet \(=70.5233 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 8712.5413 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 1.9158 C and a raw SP12 Reading of 81.9018 C .
Maximum Top-Outlet delta \(T\) is 14.0029 degrees \(C\) at \(t\) plus 9366.9518 s , with temperatures of 85.5923 and 71.5894 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=15.2516\) psia
Maximum Mid-Outlet delta \(T\) is 12.7364 degrees \(C\) at \(t\) plus 9408.5561 s ignoring SP 4, with temperatures of 84.3102 and 71.5738 C, respectively, at Set \# 2, where Pool \(P=\) 15.2498 psia

Maximum Lower-Outlet delta \(T\) is 13.9535 degrees \(C\) at (KEY POINT \#8) t plus 9344.9515 s, with temperatures of 85.3905 and 71.437 C, respectively, at Set \# 1, where Pool P \(=15.2459\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 9780.3604 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 4.65 C and a raw SP12 Reading of 85.7542 C .
Minimum SP Pressure is 14.783 psia at t plus 0.30002 s
Maximum SP Pressure is 15.4698 psia at t plus 12978.0143 s
Beginning SP Pressure is 14.7935 psia
Ending SP Pressure is 15.4565 psia
Time-Average SP Pressure is \(15.2425+/-0.089631\) psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 78.0448 cm (cold) / 78.2002 cm (hot) at 14.562 psia
Beginning Smoothed SP Level is 78.4526 cm (cold) / 78.6366 cm (hot) at 14.7971 psia Ending Smoothed SP Level is 77.9517 cm (cold) / 79.0159 cm (hot) at 15.4623 psia Minimum Smoothed Cold SP Level is 77.8984 cm at t plus 12557.7043 s and 15.3311 psia Minimum Smoothed Hot SP Level is 78.6231 cm at \(t\) plus 2607.2411 s and 15.2673 psia
Maximum Smoothed Cold SP Level is 78.4575 cm at t plus 552.1106 s and 14.9821 psia
Maximum Smoothed Hot SP Level is 79.0175 cm at t plus 12983.6136 s and 15.4577 psia

SP 12 Temperature at the beginning is 40.0183 C , and at the end is 99.9748 C
At plume detection, the Mixing Number is 44.626
The Mixing Number ranges from a minimum of 33.6287 at (KEY POINT \#12) \(t\) plus 0 s to a maximum of 648.6732 at (KEY POINT \#13) t plus 12992.3111 s; it had a mean value of 102.0038 +/- 103.016 over the test period.
Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality \(x 2\), Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid \(T\) (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity ( \(W / m-K\) ) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta h e6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy e11
KEY POINT \#1 (t plus 0 s with a Mixing Number of 33.6287): 17.2933 0.040894
\begin{tabular}{lllll}
0.00925 & 0.3937 & 0.784525937 & 0.786366053 & 1.01229275
\end{tabular}
\begin{tabular}{llllll}
1 & 1 & 28.3878995 & 55108.5536 & 0.0695240922 & 0.0585842657
\end{tabular}
0.0227136507 3.16566909e-006 \(0.0227136507 \quad 40.444008 \quad 115.132806\)
\begin{tabular}{lllll}
101.696401 & 40.4559645 & 40.5916857 & 40.741424 & 38.0774187
\end{tabular} \(\begin{array}{llllll}4.17853687 & 4.21881729 & 2.0843193 & 0.629197093 & 0.678440305\end{array}\) \(\begin{array}{lllrrr}0.678440305 & 4.29935352 & 1.72121457 & 0.0378722462 & 992.050873\end{array}\) \(\begin{array}{llllll}957.129682 & 0.632792924 & 0.609263471 & 0.000647389461 & 0.000276793532\end{array}\) \(1.23273139 \mathrm{e}-0051.28327122 \mathrm{e}-005 \quad 1532.08343 \quad 1543.49029 \quad 473.118764\) \(\begin{array}{llllll}482.37706 & 1.07713425 & 1.02022112 & 1.05722112 & 0.0756103015\end{array}\) \(\begin{array}{llrrr}0.0756583575 & 2706.73038 & 2705.92451 & 169.483515 & 426.258826\end{array}\) \(\begin{array}{lllll}2678.24146 & 256.775311 & 2280.47156 & 169.533476 & 170.099088\end{array}\)
KEY POINT \#2 (t plus 3609.5595 s with a Mixing Number of 44.626): 17.6877954
\begin{tabular}{|c|c|c|c|c|}
\hline 0.040894 & \[
0.00925
\] & \[
0.3937
\] & \[
0.782805323
\] & \[
0.78647775
\] \\
\hline 1.01680787 & 1 & 1 & 28.5614993 & 55413.2951 \\
\hline 0.0666651005 & 0.058408531 & 0.0232317954 & \(2.82251833 e-006\) & 0.0232317954 \\
\hline 57.5261171 & 120.990061 & 102.603615 & 59.5267408 & 57.7167549 \\
\hline 57.8724946 & 54.7286332 & 4.18175496 & 4.22000463 & 2.08806454 \\
\hline 0.648411116 & 0.678790963 & 0.678790963 & 3.1237276 & 1.70475793 \\
\hline 0.0380161442 & 984.466475 & 956.469453 & 0.651987975 & 0.619363298 \\
\hline 0.000484356381 & 0.000274211613 & \(1.23583417 \mathrm{e}-005\) & \(51.30532701 \mathrm{e}-005\) & 1552.2368 \\
\hline 1542.59824 & 473.576262 & 486.106589 & 1.11210592 & 1.05259368 \\
\hline 1.08959368 & 0.177705036 & 0.195129704 & 2718.28873 & 2717.47297 \\
\hline 240.88278 & 430.08934 & 2679.66244 & 189.20656 & 2288.19939 \\
\hline & & & & \\
\hline
\end{tabular}

KEY POINT \#3 (t plus 3224.9565 s with a Mixing Number of 43.0069) : 17.6790675
\begin{tabular}{lccccc}
0.040894 & 0.00925 & & 0.3937 & 0.782900198 & 0.786370198 \\
1.01706937 & & 1 & 28.5780136 & 55338.9464 \\
0.0669833021 & 0.0584084091 & 0.0232203318 & \(1.00468258 e-005\) & 0.0232203318 \\
55.6697176 & 121.280299 & 102.604243 & 57.1592349 & 55.8518934 \\
56.1314889 & 53.3122207 & 4.181095 & 4.22000546 & 2.08806716 \\
0.646546402 & 0.678791203 & 0.678791203 & 3.22446412 & 1.70474663 \\
0.0380162447 & 985.382803 & 956.468994 & 0.652001442 & 0.618892448 \\
0.000498617151 & 0.000274209838 & \(1.23583632 e-005\) & \(1.30643576 e-005\) & 1550.80887 \\
1542.59762 & 473.576578 & 486.296562 & 1.11213048 & 1.05263245 \\
1.08963245 & 0.162741467 & 0.174658158 & 2718.87889 & 2718.06219
\end{tabular}
\begin{tabular}{llll}
239.348597 & 233.880659 & 235.052675 & 223.269762
\end{tabular}

KEY POINT \#4 (t plus 7125.1135 s with a Mixing Number of 65.4321):
\begin{tabular}{|c|c|c|c|c|}
\hline NT \#4 (t plus 0.040894 & \[
\begin{gathered}
25.1135 \mathrm{~s} \text { wi } \\
0.00925
\end{gathered}
\] & \[
\begin{gathered}
\text { a Mixing Number } \\
0.3937 \quad 0
\end{gathered}
\] & \[
\begin{array}{lc}
\text { © of 65.4321): } & 19 \\
0.781215775 & 0
\end{array}
\] & \[
\begin{aligned}
& 19.3663978 \\
& 0.787245886
\end{aligned}
\] \\
\hline 1.0188561 & 1 & 1 & 31.6163766 & 60292.8642 \\
\hline 0.0638095721 & 0.0584360899 & 0.0254365336 & \(6.74370361 e-006\) & 0.025436533 \\
\hline 73.7447575 & 123.127464 & 102.461472 & 85.8643987 & 74.5248556 \\
\hline 72.7134464 & 67.4676162 & 4.19061334 & 4.21981741 & 2.08747334 \\
\hline 0.662538022 & 0.678736687 & 0.678736687 & 2.42910434 & 1.70731586 \\
\hline 0.0379934646 & 975.607366 & 956.573142 & 0.648949546 & 0.61270564 \\
\hline 0.000384042586 & 0.000274613282 & \(1.23534791 \mathrm{e}-005\) & 1.31353765e-005 & 51557.8 \\
\hline 1542.73962 & 473.504763 & 487.522866 & 1.10656537 & 1.05163231 \\
\hline 1.08863231 & 0.366127476 & 0.598566082 & 2722.86501 & 2721.86541 \\
\hline 308.769439 & 429.489098 & 2679.44011 & 120.719659 & 2293.37591 \\
\hline
\end{tabular}

KEY POINT \#5 (t plus 7477.7207 s with a Mixing Number of 70.4269): 19.1265364
\begin{tabular}{lccccc}
0.040894 & 0.00925 & & 0.3937 & 0.780976524 & 0.787300683 \\
1.01891859 & & 1 & 31.2414957 & 59535.2177 \\
0.0634069343 & 0.058437558 & 0.0251214902 & \(9.1296261 e-006\) & 0.0251214902 \\
75.9726387 & 123.189733 & 102.453898 & 87.0332637 & 76.6520416 \\
73.3854076 & 68.6203986 & 4.19225972 & 4.21980745 & 2.08744189 \\
0.664186042 & 0.678733788 & 0.678733788 & 2.35433221 & 1.70745236 \\
0.0379922575 & 974.277464 & 956.578665 & 0.648787974 & 0.612438262 \\
0.00037300041 & 0.000274634714 & \(1.235322 e-005\) & \(1.31377798 \mathrm{e}-005\) & 1557.76743 \\
1542.74714 & 473.500951 & 487.564465 & 1.1062708 & 1.05160254 \\
1.08860254 & 0.401931268 & 0.626370466 & 2722.97056 & 2721.99453 \\
318.10744 & 429.457116 & 2679.42826 & 111.349676 & 2293.51344 \\
364.527783 & 32.9548
\end{tabular} \(364.527783 \quad 320.954486 \quad 307.265045 \quad 287.309332\)
KEY POINT \#6 (t plus 8537.5383 s with a Mixing Number of 87.2294): 18.6051333
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.780760613 & 0.787901895 \\
1.01787411 & & 1 & 30.315501 & 58112.162 \\
0.062415268 & 0.0584424294 & 0.0244366603 & \(4.71361171 e-006\) & 0.0244366603 \\
81.4029424 & 122.006838 & 102.428768 & 92.4599335 & 81.7418222 \\
76.6387626 & 70.4925607 & 4.19670556 & 4.2197744 & 2.08733755 \\
0.667918589 & 0.678724164 & 0.678724164 & 2.18810242 & 1.70790546 \\
0.0379882535 & 970.92815 & 956.596987 & 0.648252095 & 0.613835214 \\
0.000348243226 & 0.000274705849 & \(1.23523603 e-005\) & \(1.30925833 e-005\) & 1556.69593 \\
1542.77207 & 473.488303 & 486.797388 & 1.10529383 & 1.05157211 \\
1.08857211 & 0.501733013 & 0.769998294 & 2720.52538 & 2719.60635 \\
340.884479 & 429.350997 & 2679.38893 & 88.4665185 & 2291.17438
\end{tabular}
\(387.345646 \quad 342.305362 \quad 320.901619 \quad 295.149546\)
KEY POINT \#7 (t plus 8712.5413 s with a Mixing Number of 89.7922): 18.5629217
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.780630368 & 0.787907184 \\
1.01809908 & & 1 & 30.2751849 & 57939.9854 \\
0.0622932817 & 0.0584449325 & 0.0243812181 & \(8.62616823 e-007\) & 0.0243812181 \\
82.0655217 & 122.244278 & 102.415854 & 93.6351462 & 82.4988418 \\
79.5532496 & 70.834157 & 4.19729009 & 4.21975742 & 2.08728396 \\
0.668346764 & 0.678719215 & 0.678719215 & 2.16924751 & 1.70813839 \\
0.0379861965 & 970.509187 & 956.606401 & 0.647976864 & 0.613161521 \\
0.000345415619 & 0.000274742415 & \(1.23519186 e-005\) & \(1.31016968 e-005\) & 1556.48895 \\
1542.78487 & 473.481802 & 486.954198 & 1.10479207 & 1.05154839 \\
1.08854839 & 0.51522182 & 0.804462895 & 2721.00956 & 2720.09297 \\
343.665321 & 429.296467 & 2679.36873 & 85.6311452 & 2291.71309 \\
392.291317 & 345.482832 & 333.124769 & 296.580317 & &
\end{tabular}

KEY POINT \#8 (t plus 9344.9515 s with a Mixing Number of 100.3919): 18.573379
\begin{tabular}{lccccc}
0.040894 & 0.00925 & & 0.3937 & 0.780318136 & 0.787922475 \\
1.01813072 & & 1 & 30.3079737 & 57967.396 \\
0.0618527943 & 0.0584458625 & 0.0243949531 & \(7.35712596 e-006\) & 0.0243949531 \\
84.448507 & 122.27486 & 102.411055 & 96.2452032 & 85.2300862 \\
84.4433639 & 71.5157276 & 4.19946818 & 4.21975111 & 2.08726404 \\
0.669838341 & 0.678717376 & 0.678717376 & 2.10379267 & 1.70822495 \\
0.0379854323 & 968.984313 & 956.609898 & 0.647874622 & 0.613006352 \\
0.000335566536 & 0.000274756005 & \(1.23517545 e-005\) & \(1.31028787 e-005\) & 1555.61177 \\
1542.78963 & 473.479387 & 486.974844 & 1.10460569 & 1.05138714 \\
1.08838714 & 0.566274928 & 0.88561273 & 2721.07544 & 2720.15687 \\
353.669963 & 429.276205 & 2679.36122 & 75.606242 & 2291.79924 \\
403.28091 & 356.951136 & 353.64978 & 299.435287 &
\end{tabular}

KEY POINT \#9 (t plus 9485.4535 s with a Mixing Number of 104.401): 18.5788676
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.780300808 & 0.788004844 \\
1.01781875 & & 1 & 30.2874864 & 58044.076 \\
0.0617150586 & 0.0584470602 & 0.024402162 & \(1.35312424 \mathrm{e}-006\) & 0.024402162 \\
85.1906103 & 121.92292 & 102.404876 & 97.0159744 & 85.7789556 \\
85.5858067 & 72.1604192 & 4.20017079 & 4.21974299 & 2.08723841 \\
0.670287462 & 0.678715007 & 0.678715007 & 2.08413431 & 1.70833644 \\
0.0379844483 & 968.503674 & 956.614402 & 0.647742973 & 0.613451296 \\
0.000332598165 & 0.000274773507 & \(1.23515431 e-005\) & \(1.30894359 e-005\) & 1555.2967 \\
1542.79575 & 473.476276 & 486.746112 & 1.10436569 & 1.05107641 \\
1.08807641 & 0.58301265 & 0.910836422 & 2720.36288 & 2719.44555 \\
356.786639 & 429.250112 & 2679.35155 & 72.463473 & 2291.11277 \\
406.527738 & 359.256625 & 358.448017 & 302.136051 &
\end{tabular}

KEY POINT \#10 (t plus 9780.3604 s with a Mixing Number of 109.4082): 18.5535139
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.779941628 & 0.787862869 \\
1.01797714 & & 1 & 1 & 30.2505769 & 57932.4189 \\
0.0615494428 & 0.0584435145 & 0.0243688616 & \(8.15937577 e-006\) & 0.0243688616 \\
86.0810442 & 122.115872 & 102.423169 & 97.9722354 & 87.2109983 \\
87.1534187 & 80.9387371 & 4.20102893 & 4.21976703 & 2.08731431 \\
0.670816809 & 0.678722019 & 0.678722019 & 2.06098395 & 1.70800643 \\
0.0379873617 & 967.923432 & 956.601068 & 0.648132763 & 0.613532967 \\
0.000329096205 & 0.0002747217 & \(1.23521688 e-005\) & \(1.30967671 e-005\) & 1554.89293 \\
1542.77762 & 473.485485 & 486.869363 & 1.10507628 & 1.05131834 \\
1.08831834 & 0.603640133 & 0.94295593 & 2720.7448 & 2719.8297 \\
360.527014 & 429.327357 & 2679.38017 & 68.8003426 & 2291.41744 \\
410 & 556976 & 365.273286 & 365.034059 & 338.94142 &
\end{tabular}

KEY POINT \#11 (t plus 12992.3111 s with a Mixing Number of 648.6732): 19.095888
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.77951688 & 0.790158943 \\
1.01832792 & 1 & 1 & 30.7697635 & 59499.5336 \\
0.0588219367 & 0.0583684855 & 0.0250812354 & \(7.14251177 \mathrm{e}-006\) & 0.0250812354 \\
100.466365 & 122.869102 & 102.810077 & 102.69256 & 100.657177 \\
100.547054 & 98.6217698 & 4.21722177 & 4.22027735 & 2.08892618 \\
0.677953508 & 0.67886936 & 0.67886936 & 1.74403385 & 1.70105597 \\
0.0380491754 & 958.022003 & 956.318682 & 0.656421927 & 0.620782346 \\
0.000280367961 & 0.000273630067 & \(1.23654055 e-005\) & \(1.31245943 e-005\) & 1544.67355 \\
1542.39182 & 473.679994 & 487.303887 & 1.12019438 & 1.06608652 \\
1.10308652 & 1.0311751 & 1.11558454 & 2722.15188 & 2721.2051 \\
421.072455 & 430.961242 & 2679.98517 & 9.88878657 & 2291.19063 \\
2679.96893 & 421.875903 & 421.414094 & 413.300301 &
\end{tabular}

KEY POINT \#12 (t plus 0 s with a Mixing Number of 33.6287): 17.2933 0.040894
\(0.00925 \quad 0.3937 \quad 0.784525937 \quad 0.786366053 \quad 1.01229275\)
\begin{tabular}{llllll}
1 & 1 & 28.3878995 & 55108.5536 & 0.0695240922 & 0.0585842657
\end{tabular}
\begin{tabular}{llllll}
0.0227136507 & \(3.16566909 e-006\) & 0.0227136507 & 40.444008 & 115.132806
\end{tabular}
\begin{tabular}{lllll}
101.696401 & 40.4559645 & 40.5916857 & 40.741424 & 38.0774187
\end{tabular}
\begin{tabular}{lllll}
4.17853687 & 4.21881729 & 2.0843193 & 0.629197093 & 0.678440305 \\
0.678440305 & 4.29935352 & 1.72121457 & 0.0378722462 & 992.050873
\end{tabular}
\(957.129682 \quad 0.632792924 \quad 0.609263471 \quad 0.000647389461 \quad 0.000276793532\)
\(1.23273139 \mathrm{e}-0051.28327122 \mathrm{e}-005 \quad 1532.08343 \quad 1543.49029 \quad 473.118764\)
\(\begin{array}{lllll}482.37706 & 1.07713425 & 1.02022112 & 1.05722112 & 0.0756103015\end{array}\)
\begin{tabular}{lllll}
0.0756583575 & 2706.73038 & 2705.92451 & 169.483515 & 426.258826
\end{tabular}
\begin{tabular}{lllll}
2678.24146 & 256.775311 & 2280.47156 & 169.533476 & 170.099088
\end{tabular}

KEY POINT \#13 (t plus 12992.3111 s with a Mixing Number of 648.6732): 19.095888
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.77951688 & 0.790158943 \\
1.01832792 & & 1 & 30.7697635 & 59499.5336 \\
0.0588219367 & 0.0583684855 & 0.0250812354 & \(7.14251177 e-006\) & 0.0250812354 \\
100.466365 & 122.869102 & 102.810077 & 102.69256 & 100.657177 \\
100.547054 & 98.6217698 & 4.21722177 & 4.22027735 & 2.08892618 \\
0.677953508 & 0.67886936 & 0.67886936 & 1.74403385 & 1.70105597 \\
0.0380491754 & 958.022003 & 956.318682 & 0.656421927 & 0.620782346 \\
0.000280367961 & 0.000273630067 & \(1.23654055 e-005\) & \(1.31245943 e-005\) & 1544.67355 \\
1542.39182 & 473.679994 & 487.303887 & 1.12019438 & 1.06608652 \\
1.10308652 & 1.0311751 & 1.11558454 & 2722.15188 & 2721.2051 \\
421.072455 & 430.961242 & 2679.98517 & 9.88878657 & 2291.19063 \\
2679.96893 & 421.875903 & 421.414094 & 413.300301 &
\end{tabular}

KEY POINT \#14 (t plus 9195.649 s with a Mixing Number of 97.207): 18.5672789
\(\begin{array}{lllll}0.040894 & 0.00925 & 0.3937 & 0.780290647 & 0.787829249\end{array}\)
\begin{tabular}{lcccc}
1.01785897 & 1 & 1 & 30.2737279 & 57999.6893 \\
0.0619774507 & 0.0584462455 & 0.024386941 & \(5.95636522 e-006\) & 0.024386941 \\
83.7756365 & 121.971492 & 102.409079 & 96.2986751 & 84.4819381 \\
83.3669485 & 71.2169212 & 4.19884112 & 4.21974851 & 2.08725585 \\
0.669424818 & 0.678716619 & 0.678716619 & 2.12190976 & 1.7082606 \\
0.0379851176 & 969.41774 & 956.611339 & 0.64783252 & 0.613463062 \\
0.00033829788 & 0.000274761601 & \(1.23516869 e-005\) & \(1.30912822 e-005\) & 1555.88034 \\
1542.79158 & 473.478392 & 486.777203 & 1.10452894 & 1.05150639 \\
1.08850639 & 0.5514482 & 0.887343686 & 2720.45891 & 2719.54241 \\
350.844485 & 429.267861 & 2679.35813 & 78.4233755 & 2291.19105 \\
403.506145 & 353.80903 & 349.129965 & 298.18361 &
\end{tabular}

End

\section*{D. 21 TEST \#21-T21_RCIC_020GPM_57KW_RESULTS_RCICLAND.TXT}

Output Saved to C:\Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash E x p o r t \backslash T 21 \_R C I C \_020 G P M \_57 \mathrm{~kW} \backslash\)
Using 20-second SP 12 averages for begiñing detection
Beginning (KEY POINT \#1) detected at \(t\) plus 2225.0753 s, and ending (KEY POINT \#11) at \(t\) plus 18140.1606 s , for a time period of 15915.0853 s.
Original Data Record Time: 19780.1504 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at t plus \(2412.944 \mathrm{~s}, \mathrm{~T}\) bulk \(=51.7363 \mathrm{C}\) and T _out \(=49.2512 \mathrm{C}\)
Stratification Beginn̄̄ng SP12 Temperature \(=\overline{5} 1.6947 \mathrm{C}\)
Stratification Beginning Pressure \(=16.284\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(11365.199 \mathrm{~s}, \mathrm{~T}_{2}\) bulk \(=93.9202 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=71.0933 \mathrm{C}\)
Stratification Ending SP12 Temperature \(=93 . \overline{81} 52 \mathrm{C}\)
Stratification Ending Pressure \(=28.0762\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 1776.5286 s .
At \(t=1776.5286 \mathrm{~s}\), the pool pressure is 15.9188 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 49.0328, 48.884, 50.8941, 49.1077, and 46.584 C, respectively.
Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 10.9113 +/- 3.8881 C .
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 10.372 +/- 3.7803 C .
Minimum Steam Quality: 0.57084 at \(t\) plus 2299.3415 s
Maximum Steam Quality: 0.68061 at \(t\) plus 13275.3323 s
Time-Averaged Steam Quality: 0.62229 +/- 0.018351
Minimum Turbine Outlet Steam Quality: 0.58905 at \(t\) plus 2299.5735 s
Maximum Turbine Outlet Steam Quality: 0.68737 at \(t\) plus 13275.3323 s
Time-Averaged Turbine Outlet Steam Quality: 0.6345 +/- 0.014589
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 15825.1091 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.456 degrees/min at \(t\) plus 6332.7162 s and 0.17192 degrees \(/ \mathrm{min}\) at t plus 11080.3947 s , respectively
Max and min smoothed mid (SP9) level changerates: 0.35745 degrees/min at \(t\) plus 8053.8426 s and 0.19229 degrees \(/ \mathrm{min}\) at t plus 11605.7048 s , respectively

Max and min smoothed upper-mid level changerate differences: 0.15261 degrees/min at \(t\) plus 6326.8109 s and -0.11865 degrees/min at \(t\) plus 5353.4952 s , respectively
Max and min smoothed lower level changerates: 1.4088 degrees \(/ \mathrm{min}\) at t plus 9535.6684 s and 0.027255 degrees/min at \(t\) plus 8778.16 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.29941 degrees/min at \(t\) plus 8778.064 s and -1.1796 degrees/min at \(t\) plus 9535.6684 s , respectively
Max and min smoothed outlet level changerates: 2.9442 degrees \(/ \mathrm{min}\) at t plus 11681.2091 s and -0.0019412 degrees/min at \(t\) plus 9423.464 s, respectively
Max and min smoothed lower-outlet level changerate differences: 1.39 degrees/min at \(t\) plus 9535.6684 s and -2.5921 degrees/min at \(t\) plus 11654.5026 s , respectively
Max and min smoothed hot (SP8) level changerates: 0.81927 degrees/min at \(t\) plus 6579.8123 s and -0.14543 degrees/min at \(t\) plus 10524.784 s , respectively

Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.4953 degrees/min at \(t\) plus 6621.5137 s and -0.36276 degrees \(/ \mathrm{min}\) at t plus 10524.784 s , respectively
The mean steam flow rate was 23.811 +/- \(0.75462 \mathrm{~g} / \mathrm{s}\)

The mean feedwater flow rate was 23.2469 +/- \(0.85061 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(12.4674+/-0.36292 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is \(11.4856+/-3.348 \mathrm{C}\) over the Stratification Period, beginning at 3.5174 C and ending at 14.8787 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(10.9199+/-3.282\) C over the Stratification Period, beginning at 3.2995 C and ending at 14.1912 C
The stratification period begins and ends with Smoothed SP8 readings of 55.4119 and 108.9393 C , respectively

The stratification period begins and ends with condensing flows of 0.22806 and 0.46943 \(\mathrm{kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of 3.8644 and \(0.83918 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of 1873.5353 +/-22.9931 \(\mathrm{kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.21668 and 6.7977 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of \(1870.4632+/-25.6547 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 1.2792 degrees C at \(t\) plus 15536.0736 s with T_upper \(=113.3442 \mathrm{C}\) and T mid \(=112.065 \mathrm{C}\)
At \(t\) plus 15536.0736 s , Smoothed SP8-SP9 is 12.2296 C and Smoothed SP8-Top is 10.9504 C , where Smoothed SP8 is 124.2946 C and Pool \(\mathrm{P}=39.3564 \mathrm{psia}\)
Maximum Smoothed Top-Lower delta \(T\) is 9.8992 degrees C at \(t\) plus 9253.1612 s with T_upper \(=86.5543 \mathrm{C}\) and T low \(=76.6552 \mathrm{C}\)
At t plus 9253.1612 s, Smoothed SP8-SP9 is 13.7849 C and Smoothed SP8-Top is 13.2754 C, where Smoothed SP8 is 99.8297 C and Pool \(\mathrm{P}=24.425\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 9.3944 degrees C at t plus 9254.7623 s with T_mid = 86.0525 C and \(\mathrm{T}_{\text {_low }}=76.6581 \mathrm{C}\)

At t plus 9254.7623 s, Smoothed SP8-SP9 is 13.8327 C and Smoothed SP8-Top is 13.3337 C, where Smoothed SP8 is 99.8852 C and Pool \(\mathrm{P}=24.4266\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 23.7673 degrees \(C\) at \(t\) plus 11258.9969 sith T_upper \(=94.4223 \mathrm{C}\) and T _out \(=70.655 \mathrm{C}\)
At \(t\) plus 11258.9969 s , Smoothed SP8-SP9 is 14.6701 C and Smoothed SP8-Top is 13.8416 C , where Smoothed SP8 is 108.2639 C and Pool \(\mathrm{P}=27.8734\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 23.0068 degrees \(C\) at \(t\) plus 11336.3014 s with T_mid \(=93.9499 \mathrm{C}\) and \(T\) _out \(=70.9432 \mathrm{C}\)
At \(t\) plus 11336.3014 s , Smoothed SP8-SP9 is 15.2702 C and Smoothed SP8-Top is 14.5995 C , where Smoothed SP8 is 109.2202 C and Pool \(\mathrm{P}=28.0234\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 23.1475 degrees C at \(t\) plus 11234.7956 s with T_low \(=93.7436 \mathrm{C}\) and T _out \(=70.5961 \mathrm{C}\)
At t plus 11234.7956 s , Smoothed SP8-SP9 is 14.9113 C and Smoothed SP8-Top is 14.1792 C , where Smoothed SP8 is 108.4789 C and Pool \(\mathrm{P}=27.8321\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 16.0051 degrees \(C\) at (KEY POINT \#14) \(t\) plus 11156.0001 s with \(\mathrm{T}_{2}\) SP8 \(=109.282 \mathrm{C}\) and \(T\) SP9 \(=93.2768 \mathrm{C}\) and Pool \(\mathrm{P}=\) 27.6943 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 15.3167 degrees \(C\) at \(t\) plus 11156.0001 s with \(\mathrm{T}_{-} \mathrm{SP} 8=109.282 \mathrm{C}\) and T _upper \(=93.9653 \mathrm{C}\) and Pool \(\mathrm{P}=27.6943\) psia
Maximum Top-Mid delta \(T\) is 1.5038 degrees \(C\) at (KEY POINT \#4) t plus 6632.7164 s ignoring SP 4, with temperatures of 73.1159 and 71.612 C , respectively, at Set \# 2, where Pool \(P=20.148\) psia and T_outlet \(=66.1422 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 7235.2268 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.99935 C and a raw SP12 Reading of 74.899 C .
Maximum Top-Lower delta \(T\) is 11.7104 degrees \(C\) at \(t\) plus 9445.2662 s, with temperatures of 87.7114 and 76.001 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=24.7752\) psia and T_outlet \(=69.3374 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 10.6345 degrees \(C\) at (KEY POINT \#6) t plus 9368.7628 s ignoring SP 4, with temperatures of 86.3071 and 75.6726 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=24.6282\) psia and \(T\) _outlet \(=69.3547 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 9607.7795 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 3.5446 C and a raw SP12 Reading of 87.4097 C .
Maximum Top-Outlet delta \(T\) is 24.0903 degrees \(C\) at \(t\) plus 11265.2973 s , with temperatures of 94.635 and 70.5447 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=27.8862\) psia
Maximum Mid-Outlet delta \(T\) is 23.0215 degrees \(C\) at \(t\) plus 11323.7977 s ignoring SP 4, with temperatures of 93.8984 and 70.8768 C , respectively, at Set \# 2, where Pool \(P=27.9945\) psia

Maximum Lower-Outlet delta \(T\) is 23.9096 degrees \(C\) at (KEY POINT \#8) t plus 11293.5979 s, with temperatures of 94.6902 and 70.7806 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=27.9383\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 11859.1083 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 7.9685 C and a raw SP12 Reading of 95.9483 C .
Minimum SP Pressure is 15.1517 psia at t plus 0.39802 s
Maximum SP Pressure is 40.7132 psia at t plus 15915.0853 s
Beginning SP Pressure is 15.1583 psia
Ending SP Pressure is 40.7132 psia
Time-Average SP Pressure is 23.9081 +/- 7.2782 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 77.49 cm (cold) / 77.6269 cm (hot) at 14.6959 psia
Beginning Smoothed SP Level is 77.8778 cm (cold) / 78.059 cm (hot) at 15.1586 psia Ending Smoothed SP Level is 79.1329 cm (cold) / 80.5747 cm (hot) at 40.7106 psia
Minimum Smoothed Cold SP Level is 77.7337 cm at \(t\) plus 2118.6352 s and 16.1046 psia
Minimum Smoothed Hot SP Level is 78.0136 cm at \(t\) plus 2118.6352 s and 16.1046 psia
Maximum Smoothed Cold SP Level is 79.1379 cm at t plus 15742.6794 s and 40.0887 psia
Maximum Smoothed Hot SP Level is 80.5749 cm at \(t\) plus 15909.6929 s and 40.6906 psia
SP 12 Temperature at the beginning is 39.8595 C , and at the end is 113.5954 C
At plume detection, the Mixing Number is 40.0775
The Mixing Number ranges from a minimum of 34.7871 at (KEY POINT \#12) \(t\) plus 0 s to a maximum of 220.3551 at (KEY POINT \#13) t plus 15866.6805 s; it had a mean value of \(93.0894+/-51.2867\) over the test period.
Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam T t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mu1, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steàm Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta h e6, Steam Condensation delta he7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy ell
KEY POINT \#1 (t plus 0 s with a Mixing Number of 34.7871): 26.4827517 0.040894
\(0.00925 \quad 0.3937 \quad 0.778778348 \quad 0.780589535 \quad 0.609059596\)
\begin{tabular}{llllll}
0.609059596 & 0.999566626 & 24.9717928 & 86896.9888 & 0.0695312694
\end{tabular}
0.0584611863
0.0223482762
0.0124351353
0.0347834115
40.3999124
\(\begin{array}{lllll}102.331989 & 102.331989 & 40.7913522 & 40.5759864 & 40.8351669\end{array}\)
0.67868703
4.21964725
0.629142616
\(9920.67868703 \quad 4.30326097\)
\(1.70965257 \quad 0.0379728482\) \(0.00027498011 .23490499 \mathrm{e}-0051.24628674 \mathrm{e}-005\) \(473.439573 \quad 465.974067 \quad 1.10153816\) \(0.0754332975 \quad 0.0770171539\) 1800.12978
1.060506630 .000647922649
\(1532.01364 \quad 1542.86789\)
\(1.04514773 \quad 1.08214773\)
\(1799.50619 \quad 169.301467\) \(\begin{array}{lllll}428.94234 & 2679.23747 & 259.640873 & 1371.18744 & 170.93711\end{array}\) \(170.035693 \quad 171.121783 \quad 161.947289\)
KEY POINT \#2 (t plus 1776.5286 s with a Mixing Number of 40.0775):
\begin{tabular}{lllcc}
0.040894 & 0.00925 & 0.3937 & 0.778670054 & 0.781309486 \\
0.619600034 & 0.619600034 & 0.999566804 & 24.7562002 & 88102.3008 \\
0.0681309808 & 0.0582060829 & 0.0228819152 & 0.0125065306 & 0.0353884458 \\
48.8839859 & 103.646358 & 103.646358 & 50.8940905 & 49.0328377 \\
49.1076931 & 46.584048 & 4.17930397 & 4.22139158 & 2.09245199 \\
0.639278148 & 0.679181593 & 0.679181593 & 3.64240454 & 1.68622227
\end{tabular}
\begin{tabular}{lccccc}
0.0381840531 & 988.549362 & 955.706023 & 0.674633723 & 1.08834964 \\
0.000557152493 & 0.000271297061 & \(1.23940268 \mathrm{e}-005\) & \(1.25061826 \mathrm{e}-005\) & 1544.07656 \\
1541.54286 & 474.098692 & 466.792707 & 1.15345585 & 1.09760116 \\
1.13460116 & 0.116832758 & 0.129098105 & 1827.22151 & 1826.60865 \\
204.759125 & 434.493519 & 2681.28992 & 229.734393 & 1392.728 \\
213.16037 & 205.379754 & 205.695627 & 195.152927 &
\end{tabular}

KEY POINT \#3 (t plus 2412.944 s with a Mixing Number of 42.2955): 26.8372733
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.777631587 & 0.780578502 \\
0.62656261 & 0.62656261 & 0.999570963 & 24.4533188 & 87624.0133 \\
0.0676248291 & 0.058089461 & 0.0229767688 & 0.0122722844 & 0.0352490532 \\
51.8944337 & 104.245895 & 104.245895 & 55.4118696 & 52.1123465 \\
52.0415152 & 49.2560554 & 4.17996501 & 4.22219984 & 2.09501524 \\
0.642594095 & 0.679400198 & 0.679400198 & 3.44662761 & 1.67574478
\end{tabular}
\begin{tabular}{lllll}
0.0382818273 & 987.182882 & 955.264874 & 0.687941363 & 1.09749002
\end{tabular}
\begin{tabular}{llcccc}
0.000529856721 & 0.000269646482 & \(1.24145546 e-005\) & \(1.25249166 e-005\) & 1547.3728 \\
1540.92161 & 474.397404 & 467.229816 & 1.17779977 & 1.12239987
\end{tabular}
\begin{tabular}{lrrrr}
1540.92161 & 474.397404 & 467.229816 & 1.17779977 & 1.12239987 \\
1.15939987 & 0.135602507 & 0.160750778 & 1844.38051 & 1843.78255 \\
217.343777 & 437.026446 & 2682.22283 & 219.682669 & 1407.35407
\end{tabular}
\(232.048259 \quad 218.253193 \quad 217.960119 \quad 206.321717\)
KEY POINT \#4 (t plus 6632.7164 s with a Mixing Number of 64.9032): 27.4071564
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.777912327 & 0.78357501 \\
0.638681217 & 0.638681217 & 0.999505536 & 21.0631899 & 87991.576 \\
0.064121093 & 0.0569272199 & 0.0236968303 & 0.0123007281 & 0.0359975584 \\
72.0115794 & 110.17634 & 110.17634 & 84.3882082 & 72.7905912 \\
70.2594315 & 66.1290259 & 4.18933005 & 4.23062624 & 2.12203637 \\
0.661226027 & 0.681329186 & 0.681329186 & 2.49013068 & 1.57874103 \\
0.0392993476 & 976.63859 & 950.815142 & 0.831455047 & 1.30118735 \\
0.000393031629 & 0.000254251329 & \(1.26179706 e-005\) & \(1.27374495 e-005\) & 1557.87978 \\
1534.22104 & 477.285292 & 469.780404 & 1.44227267 & 1.38935771 \\
1.42635771 & 0.340169241 & 0.564932779 & 1886.31809 & 1885.87443 \\
301.534885 & 462.109976 & 2691.33548 & 160.575091 & 1424.20812 \\
353.443313 & 304.797251 & 294.197055 & 276.907189 &
\end{tabular}

KEY POINT \#5 (t plus 7235.2268 s with a Mixing Number of 70.2271): 27.5752125 \(\begin{array}{lllll}0.040894 & 0.00925 & 0.3937 & 0.777615173 & 0.783720388\end{array}\) \(\begin{array}{lllll}0.635955664 & 0.635955664 & 0.999481136 & 20.3666961 & 88230.3714\end{array}\) \(\begin{array}{llllll}0.0635446115 & 0.0567031278 & 0.0237596986 & 0.0124585907 & 0.0362182894\end{array}\)
\begin{tabular}{lllll}
75.2123747 & 111.310746 & 111.310746 & 87.5969215 & 75.9157907
\end{tabular}
\begin{tabular}{lllll}
72.178864 & 67.9803421 & 4.19159994 & 4.23232873 & 2.12756373
\end{tabular}
\begin{tabular}{lllll}
0.663652178 & 0.681650332 & 0.681650332 & 2.3793299 & 1.56147418
\end{tabular}
\begin{tabular}{lllll}
0.0395048029 & 974.751586 & 949.94631 & 0.861490556 & 1.35393646
\end{tabular}
\(0.000376717122 \quad 0.0002514878831 .26569473 \mathrm{e}-0051.27808681 \mathrm{e}-005 \quad 1557.89812\)
\begin{tabular}{lllll}
1532.82697 & 477.823578 & 470.091948 & 1.49803665 & 1.44592208
\end{tabular}
\begin{tabular}{lllrr}
1.48292208 & 0.389395866 & 0.640159224 & 1883.05515 & 1882.64035 \\
314.95223 & 466.914233 & 2693.05388 & 151.962004 & 1416.14092
\end{tabular}
\begin{tabular}{lllll}
314.95223 & 466.914233 & 2693.05388 & 151.962004 & 1416.14092
\end{tabular}

KEY POINT \#6 (t plus 9368.7628 s with a Mixing Number of 94.9988): 27.9124289
\begin{tabular}{llllll}
0.040894 & 0.00925 & 0.3937 & 0.777456253 & 0.785345737
\end{tabular}
\begin{tabular}{lllll}
0.632885231 & 0.632885231 & 0.999390374 & 17.7627248 & 88094.4702
\end{tabular}
\begin{tabular}{llllll}
0.0614693817 & 0.0557708888 & 0.0240701947 & 0.012591007 & 0.0366612017
\end{tabular}
\begin{tabular}{lllcc}
86.510761 & 115.99986 & 115.99986 & 100.585062 & 87.0197293 \\
78.0469384 & 69.3844276 & 4.20130561 & 4.23968316 & 2.15170112 \\
0.671103429 & 0.682817116 & 0.682817116 & 2.0499088 & 1.49408804
\end{tabular}
\begin{tabular}{llccc}
0.671103429 & 0.682817116 & 0.682817116 & 2.0499088 & 1.49408804 \\
0.0403929968 & 967.671104 & 946.295404 & 0.995125465 & 1.57140468
\end{tabular}
\begin{tabular}{llllll}
0.000327446026 & 0.000240628568 & \(1.28182438 e-005\) & \(1.29571228 e-005\) & 1554.81214
\end{tabular}
\begin{tabular}{lllll}
1526.6943 & 479.999072 & 471.567851 & 1.74767006 & 1.69817822
\end{tabular}
\begin{tabular}{lrrrr}
1.73517822 & 0.613810958 & 1.0355381 & 1887.85848 & 1887.54296 \\
362.382909 & 486.795085 & 2700.06822 & 124.412176 & 1401.06339
\end{tabular}
\begin{tabular}{lllll}
362.382909 & 486.795085 & 2700.06822 & 124.412176 & 1401.06339
\end{tabular}

KEY POINT \#7 (t plus 9607.7795 s with a Mixing Number of 97.6445): 27.7532201
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.777494646 & 0.785585314 \\
0.635277543 & 0.635277543 & 0.999387068 & 17.4590139 & 87474.1852 \\
0.061287831 & 0.0556698888 & 0.0240199669 & 0.0124321242 & 0.0364520911 \\
87.4834569 & 116.505036 & 116.505036 & 102.474516 & 87.9529185 \\
83.5912579 & 69.4794092 & 4.20226417 & 4.24050642 & 2.15442873 \\
0.671665942 & 0.682927492 & 0.682927492 & 2.02539011 & 1.48719245 \\
0.0404925334 & 967.032098 & 945.896384 & 1.01047005 & 1.58962128 \\
0.000323726805 & 0.000239510217 & \(1.28356366 e-005\) & \(1.29745728 e-005\) & 1554.33062
\end{tabular}
\begin{tabular}{lrrrr}
1525.99864 & 480.228617 & 471.817012 & 1.77648309 & 1.72713635 \\
1.76413635 & 0.637363351 & 1.10707286 & 1894.39911 & 1894.09429 \\
366.472227 & 488.93913 & 2700.81515 & 122.466903 & 1405.45998 \\
429.593152 & 368.443817 & 350.124978 & 290.961731 &
\end{tabular}

KEY POINT \#8 (t plus 11293.5979 s with a Mixing Number of 117.1848): 27.6653481
\begin{tabular}{llccc}
0.040894 & 0.00925 & 0.3937 & 0.779783255 & 0.789110918 \\
0.635875829 & 0.635875829 & 0.999323241 & 15.780444 & 86376.1375 \\
0.0601155694 & 0.0550071191 & 0.0240715373 & 0.0122651395 & 0.0363366768 \\
93.7071374 & 119.806636 & 119.806636 & 108.611433 & 94.4817792 \\
93.7166695 & 70.7545309 & 4.20886611 & 4.24603848 & 2.17288375 \\
0.674975991 & 0.683576171 & 0.683576171 & 1.88053383 & 1.44375699 \\
0.0411621693 & 962.836169 & 943.261451 & 1.11553513 & 1.7531413 \\
0.000301581269 & 0.000232432626 & \(1.29493711 e-005\) & \(1.30979085 e-005\) & 1550.49016 \\
1521.28832 & 481.705273 & 472.882388 & 1.97451877 & 1.92616152 \\
1.96316152 & 0.80661515 & 1.36815793 & 1903.8494 & 1903.60037 \\
392.661273 & 502.962651 & 2705.65327 & 110.301378 & 1400.88674 \\
455.52933 & 395.92068 & 392.70277 & 296.318174 &
\end{tabular}

KEY POINT \#9 (t plus 11365.199 s with a Mixing Number of 118.434): 27.4182218
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.780102124 & 0.789486854 \\
0.642920035 & 0.642920035 & 0.99934058 & 15.7422282 & 85597.0077 \\
0.0600484451 & 0.0549768866 & 0.0240875912 & 0.0119245009 & 0.0360120921 \\
94.0606042 & 119.956693 & 119.956693 & 108.939324 & 94.7481172 \\
94.1833218 & 71.1110333 & 4.20926613 & 4.24629623 & 2.17374877 \\
0.67514899 & 0.683602671 & 0.683602671 & 1.87288862 & 1.44184804 \\
0.0411934044 & 962.592246 & 943.14058 & 1.12051202 & 1.74169892 \\
0.000300403639 & 0.000232120209 & \(1.29545427 e-005\) & \(1.30990649 e-005\) & 1550.23313 \\
1521.06755 & 481.771409 & 473.189661 & 1.98393081 & 1.93558648 \\
1.97258648 & 0.817252017 & 1.38342153 & 1919.73236 & 1919.48454 \\
394.149759 & 503.600478 & 2705.87134 & 109.450719 & 1416.13188 \\
456.916481 & 397.042658 & 394.667695 & 297.812144 &
\end{tabular}

KEY POINT \#10 (t plus 11859.1083 s with a Mixing Number of 125.579): 28.037825
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.782297829 & 0.792197956 \\
0.633299975 & 0.633299975 & 0.999290598 & 15.3805249 & 87231.3345 \\
0.059686006 & 0.0547683443 & 0.0241895515 & 0.0126363499 & 0.0368259015 \\
95.9638834 & 120.990497 & 120.990497 & 110.651357 & 96.7582503 \\
96.4640592 & 87.6915344 & 4.21146255 & 4.24808706 & 2.17977113 \\
0.676054156 & 0.68377823 & 0.68377823 & 1.83271396 & 1.42884518 \\
0.041410521 & 961.269427 & 942.305216 & 1.15528952 & 1.82294331 \\
0.000294200382 & 0.000229988984 & \(1.2990177 e-005\) & \(1.31441164 e-005\) & 1548.78294 \\
1519.53099 & 482.224714 & 473.145476 & 2.04977511 & 2.0015063 \\
2.0385063 & 0.876552136 & 1.46541167 & 1901.0956 & 1900.85904 \\
402.168272 & 507.995858 & 2707.36935 & 105.827587 & 1393.09974 \\
464.163049 & 405.512803 & 404.276258 & 367.372923 &
\end{tabular}

KEY POINT \#11 (t plus 15915.0853 s with a Mixing Number of 220.2694): 28.616288
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.791329086 & 0.805746971 \\
0.659350564 & 0.659350564 & 0.999128604 & 11.986706 & 86456.9869 \\
0.0562174046 & 0.0525539395 & 0.0253003969 & 0.0122852791 & 0.037585676 \\
113.759887 & 131.835814 & 131.835814 & 124.97161 & 115.032522 \\
114.711983 & 111.916605 & 4.23581647 & 4.26852567 & 2.24976412 \\
0.682364599 & 0.68489137 & 0.68489137 & 1.52543991 & 1.30676383 \\
0.043899995 & 948.106165 & 933.266415 & 1.57546381 & 2.38733543 \\
0.00024573921 & 0.000209672225 & \(1.33643912 e-005\) & \(1.3535453 e-005\) & 1529.95666 \\
1501.81286 & 486.729965 & 477.23643 & 2.8543268 & 2.80689515 \\
2.84389515 & 1.62448293 & 2.32021395 & 1984.09129 & 1983.94761 \\
477.381116 & 554.230888 & 2722.60201 & 76.8497716 & 1429.8604 \\
524.976982 & 482.771826 & 481.416019 & 469.580552 &
\end{tabular}

KEY POINT \#12 (t plus 0 s with a Mixing Number of 34.7871): 26.4827517 0.040894
\begin{tabular}{lccccc}
0.00925 & 0.3937 & 0.778778348 & 0.780589535 & 0.609059596 \\
0.609059596 & 0.999566626 & 24.9717928 & 86896.9888 & 0.0695312694 \\
0.0584611863 & 0.0223482762 & 0.0124351353 & 0.0347834115 & 40.3999124 \\
102.331989 & 102.331989 & 40.7913522 & 40.5759864 & 40.8351669 \\
38.6385874 & 4.17853099 & 4.21964725 & 2.08693622 & 0.629142616 \\
0.67868703 & 0.67868703 & 4.30326097 & 1.70965257 & 0.0379728482 \\
992.068913 & 956.667518 & 0.64619178 & 1.06050663 & 0.000647922649 \\
0.0002749801 & \(1.23490499 e-005\) & \(1.24628674 e-005\) & 1532.01364 & 1542.86789 \\
473.439573 & 465.974067 & 1.10153816 & 1.04514773 & 1.08214773 \\
0.0754332975 & 0.0770171539 & 1800.12978 & 1799.50619 & 169.301467
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 428.94234 & 2679.23747 & 259.640873 & 1371.18744 & 170.93711 \\
\hline & 170.035693 & 171.121783 & 161.947289 & & \\
\hline \multirow[t]{13}{*}{} & POINT \#13 (t plus & \multicolumn{2}{|l|}{15866.6805 s with a Mixing Numbe} & er of 220.3551): & 28.7336427 \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.7913514510 & 0.805683184 \\
\hline & 0.657412587 & 0.657412587 & 0.999124669 & 12.0483431 & 86836.8985 \\
\hline & 0.0562319699 & 0.0525834885 & 0.025341838 & 0.0123979759 & 0.0377398139 \\
\hline & 113.686636 & 131.692619 & 131.692619 & 125.446765 & 114.772686 \\
\hline & 114.47919 & 111.72551 & 4.23570356 & 4.2682354 & 2.2487571 \\
\hline & 0.682345934 & 0.684885234 & 0.684885234 & 1.52649108 & 1.30821947 \\
\hline & 0.0438645049 & 948.162834 & 933.389021 & 1.56921226 & 2.38486258 \\
\hline & 0.000245908375 & 0.000209918178 & \(1.33594472 \mathrm{e}-005\) & \(51.35315011 \mathrm{e}-005\) & \(5 \quad 1530.05074\) \\
\hline & 1502.06533 & 486.673507 & 477.118592 & 2.84224886 & 2.79474413 \\
\hline & 2.83174413 & 1.62057809 & 2.35434451 & 1979.55256 & 1979.4074 \\
\hline & 477.06997 & 553.618864 & 2722.40688 & 76.5488948 & 1425.9337 \\
\hline & 526.998185 & 481.669864 & 480.428774 & 468.770812 & \\
\hline KEY & POINT \#14 (t plus & 11156.0001 s wit & h a Mixing Numbe & er of 115.6884): & 27.5105095 \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.7793117240 & 0.788527461 \\
\hline & 0.639358884 & 0.639358884 & 0.999338829 & 15.9047866 & 85973.7114 \\
\hline & 0.060197204 & 0.0550614585 & 0.0240423803 & 0.0120909258 & 0.0361333061 \\
\hline & 93.2768468 & 119.536808 & 119.536808 & 109.281956 & 93.9652996 \\
\hline & 93.0248698 & 70.3410475 & 4.20838397 & 4.24557641 & 2.17133409 \\
\hline & 0.674762954 & 0.683527869 & 0.683527869 & 1.88992103 & 1.44720354 \\
\hline & 0.0411061805 & 963.132062 & 943.478556 & 1.10663073 & 1.7297 \\
\hline & 0.000303025748 & 0.000232996385 & \(1.29400722 \mathrm{e}-005\) & \(51.30855671 \mathrm{e}-005\) & 51550.79651 \\
\hline & 1521.68384 & 481.586135 & 472.928026 & 1.95768606 & 1.90929413 \\
\hline & 1.94629413 & 0.793822043 & 1.39952075 & 1910.86087 & 1910.6079 \\
\hline & 390.84905 & 501.81583 & 2705.26073 & 110.96678 & 1409.04504 \\
\hline & 458.363524 & 393.745291 & 389.79005 & 294.585033 & \\
\hline
\end{tabular}

End

\section*{D. 22 TEST \#22-T22_RCIC_5PSIG_57KW_RESULTS_RCICLAND.TXT}

Output Saved to C:\Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash E x p o r t \backslash T 22\) _RCIC_5PSIG_57kW
Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1765.272 s , and ending (KEY POINT \#11) at \(t\) plus 18019.0696 s, for a time period of 16253.7976 s.
Original Data Record Time: 20227.2079 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(3089.9657 \mathrm{~s}, \mathrm{~T}\) _bulk \(=55.3946 \mathrm{C}\) and T _out \(=53.443 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=\overline{55} .0453 \mathrm{C}\)
Stratification Beginning Pressure \(=21.9324\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(13171.8404 \mathrm{~s}, \mathrm{~T}\) bulk \(=103.3419 \mathrm{C}\) and T out \(=74.1528 \mathrm{C}\)
Stratification Ending \(\overline{\text { SP }} 12\) Temperature \(=103.2 \overline{469} \mathrm{C}\)
Stratification Ending Pressure \(=39.1479\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 3062.4552 s .
At \(t=3062.4552\) s, the pool pressure is 21.9116 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 55.6055, 55.3391, 57.3462, 55.7947, and 53.0737 C , respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 11.7856 +/- 4.2743 C .
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 11.1821 +/- 4.1572 C.
Minimum Steam Quality: 0.98863 at t plus 16097.0927 s
Maximum Steam Quality: 1.0091 at t plus 3508.3577 s
Time-Averaged Steam Quality: 1.0007 +/- 0.0037667
Minimum Turbine Outlet Steam Quality: 0.9904 at t plus 16097.0927 s
Maximum Turbine Outlet Steam Quality: 1.0154 at t plus 1602.0286 s
Time-Averaged Turbine Outlet Steam Quality: 1.0045 +/- 0.0050629
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 16163.7965 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.4574 degrees \(/ \mathrm{min}\) at t plus 7092.8267 s and 0.16889 degrees/min at \(t\) plus 10312.8888 s, respectively

Max and min smoothed mid (SP9) level changerates: 0.40467 degrees/min at t plus 8256.4482 s and 0.2058 degrees/min at \(t\) plus 10363.2367 s, respectively

Max and min smoothed upper-mid level changerate differences: 0.19153 degrees/min at \(t\) plus 7090.4266 s and -0.11469 degrees/min at \(t\) plus 6859.2223 s , respectively
Max and min smoothed lower level changerates: 1.8499 degrees/min at t plus 10345.5887 s and -0.021777 degrees \(/ \mathrm{min}\) at \(t\) plus 9934.6002 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.35861 degrees/min at \(t\) plus 9676.3754 s and -1.6425 degrees/min at \(t\) plus 10345.5887 s , respectively
Max and min smoothed outlet level changerates: 2.0683 degrees \(/ \mathrm{min}\) at t plus 13892.6576 s and -0.040146 degrees/min at \(t\) plus 8599.7548 s , respectively
Max and min smoothed lower-outlet level changerate differences: 1.8526 degrees/min at \(t\) plus 10345.5887 s and -1.7796 degrees \(/ \mathrm{min}\) at t plus 13922.5533 s , respectively
Max and min smoothed hot (SP8) level changerates: 0.70033 degrees/min at t plus 9287.0652 s and -0.29324 degrees/min at \(t\) plus 10671.0953 s , respectively

Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.47559 degrees/min at \(t\) plus 5101.5888 s and -0.50703 degrees \(/ \mathrm{min}\) at t plus 10671.0953 s , respectively
The mean steam flow rate was \(23.7392+/-0.56134 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 23.4865 +/- \(0.8817 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.017675+/-0.029716 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is \(11.8119+/-4.2502\) C over the Stratification Period, beginning at 2.2106 C and ending at 15.0497 C
Mean Smoothed SP8-Upper Pool delta T is \(11.2075+/-4.1344\) C over the Stratification Period, beginning at 2.0026 C and ending at 14.2081 C
The stratification period begins and ends with Smoothed SP8 readings of 57.686 and 118.4363 C, respectively

The stratification period begins and ends with condensing flows of 0.21873 and 0.45742 \(\mathrm{kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of 6.2292 and \(0.84267 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(2720.0668+/-1.0376 \mathrm{~kJ} / \mathrm{kg}\). At plume detection, the condensing and condensing+cooling flows are 0.21792 and 6.852 kg/s, respectively
The plume period had a mean steam enthalpy of \(2720.1395+/-1.0015 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 1.0545 degrees C at t plus 8131.5431 s with \(T\) _upper \(=\) 80.9894 C and \(\mathrm{T}_{-} \mathrm{mid}=79.9349 \mathrm{C}\)

At \(t\) plus 8131.5431 s, Smoothed SP8-SP9 is 12.8938 C and Smoothed SP8-Top is 11.8393 C , where Smoothed SP8 is 92.8286 C and Pool \(\mathrm{P}=28.0467\) psia
Maximum Smoothed Top-Lower delta \(T\) is 12.9009 degrees \(C\) at \(t\) plus 10102.8818 s with \(T\) _upper \(=92.0631 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=79.1622 \mathrm{C}\)
At t plus 10102.8818 s , Smoothed SP8-SP9 is 16.2686 C and Smoothed SP8-Top is 15.4549 C , where Smoothed SP8 is 107.518 C and Pool \(\mathrm{P}=32.3078\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 12.0973 degrees \(C\) at \(t\) plus 10063.6826 s with T_mid \(=91.1066 \mathrm{C}\) and T low \(=79.0092 \mathrm{C}\)
At \(t\) plus 10063.6826 s , Smoothed SP8-SP9 is 15.5925 C and Smoothed SP8-Top is 15.0003 C , where Smoothed SP8 is 106.6991 C and Pool \(\mathrm{P}=32.2268\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 30.2653 degrees \(C\) at \(t\) plus 12949.5336 sith T upper \(=103.2358 \mathrm{C}\) and T out \(=72.9705 \mathrm{C}\)
At t plus 12949.5336 s , Smoothed \(\overline{\mathrm{SP}} 8-\mathrm{SP9}\) is 15.2852 C and Smoothed SP8-Top is 14.4968 C , where Smoothed SP8 is 117.7326 C and Pool \(\mathrm{P}=38.565 \mathrm{psia}\)
Maximum Smoothed Mid-Outlet delta \(T\) is 29.5206 degrees \(C\) at \(t\) plus 12997.1364 sith T mid \(=102.6842 \mathrm{C}\) and T out \(=73.1637 \mathrm{C}\)
At t plus 12997.1364 s , Smoothed SP8-SP9 is 15.1479 C and Smoothed SP8-Top is 14.4663 C , where Smoothed SP8 is 117.8321 C and Pool \(\mathrm{P}=38.6917\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 29.8239 degrees \(C\) at \(t\) plus 12898.1377 s with T_low \(=102.6611 \mathrm{C}\) and T_out \(=72.8372 \mathrm{C}\)
At t plus 12898.1377 s , Smoothed SP8-SP9 is 15.0114 C and Smoothed SP8-Top is 14.3193 C , where Smoothed SP8 is 117.3048 C and Pool \(\mathrm{P}=38.43 \mathrm{psia}\)
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 18.1021 degrees \(C\) at (KEY POINT \#14) t plus 10550.2944 s with \(T_{-} \mathrm{SP} 8=111.0549 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{SP9}=92.9529 \mathrm{C}\) and Pool \(\mathrm{P}=\) 33.2167 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 17.5044 degrees \(C\) at \(t\) plus 10550.2944 s with T _SP8 \(=111.0549 \mathrm{C}\) and \(\mathrm{T}_{-}\)upper \(=93.5506 \mathrm{C}\) and Pool \(\mathrm{P}=33.2167\) psia
Maximum Top-Mid delta \(T\) is 1.6915 degrees \(C\) at (KEY POINT \#4) \(t\) plus 6732.6231 s ignoring SP 4, with temperatures of 74.0878 and 72.3963 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=25.7782\) psia and T_outlet \(=66.8951 \mathrm{C}\)

Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 8868.2572 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.9994 C and a raw SP12 Reading of 83.9331 C .
Maximum Top-Lower delta \(T\) is 14.4675 degrees \(C\) at \(t\) plus 10301.3862 s , with temperatures of 92.6994 and 78.2319 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=32.7151\) psia and T_outlet \(=71.6388 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 13.2481 degrees \(C\) at (KEY POINT \#6) t plus 10258.7397 s ignoring SP 4, with temperatures of 91.7788 and 78.5307 C, respectively, at Set \# 2, where Pool \(P=32.6305\) psia and \(T\) outlet \(=71.6201 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 10458.3922 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 4.4123 C and a raw SP12 Reading of 92.4085 C .
Maximum Top-Outlet delta \(T\) is 30.6625 degrees \(C\) at \(t\) plus 12924.6352 s, with temperatures of 103.3544 and 72.6918 C, respectively, at Set \# 1, where Pool \(P=38.4974\) psia
Maximum Mid-Outlet delta \(T\) is 29.5836 degrees \(C\) at \(t\) plus 12924.7342 s ignoring SP 4, with temperatures of 102.2785 and 72.6949 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=38.4975\) psia
Maximum Lower-Outlet delta \(T\) is 30.6689 degrees \(C\) at (KEY POINT \#8) t plus 12910.5334 s , with temperatures of 103.5366 and 72.8677 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=38.4705\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 14089.9559 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 10.2204 C and a raw SP12 Reading of 107.0718 C .
Minimum SP Pressure is 20.1853 psia at \(t\) plus 0.30001 s
Maximum SP Pressure is 49.2923 psia at t plus 16253.0976 s
Beginning SP Pressure is 20.1914 psia
Ending SP Pressure is 49.2886 psia
Time-Average SP Pressure is 30.2835 +/- 8.4019 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 77.3645 cm (cold) / 77.5128 cm (hot) at 19.7982 psia
Beginning Smoothed SP Level is 77.3546 cm (cold) / 77.5321 cm (hot) at 20.1957 psia
Ending Smoothed SP Level is 77.8339 cm (cold) / 79.2667 cm (hot) at 49.2959 psia
Minimum Smoothed Cold SP Level is 77.2367 cm at \(t\) plus 5942.5379 s and 24.7324 psia
Minimum Smoothed Hot SP Level is 77.5311 cm at t plus 1.1981 s and 20.196 psia
Maximum Smoothed Cold SP Level is 78.6466 cm at t plus 13729.0512 s and 40.6809 psia
Maximum Smoothed Hot SP Level is 79.887 cm at \(t\) plus 14137.4596 s and 41.8904 psia
SP 12 Temperature at the beginning is 40.0468 C , and at the end is 116.5126 C
At plume detection, the Mixing Number is 44.594
The Mixing Number ranges from a minimum of 35.5649 at (KEY POINT \#12) \(t\) plus 0 to a maximum of 206.2654 at (KEY POINT \#13) t plus 16253.7976 s; it had a mean value of 90.5371 +/- 48.283 over the test period.
Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sigl, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid \(T\) (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed \(T\) t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mu1, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steäm Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta h e6, Steam Condensation delta he7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy e11
KEY POINT \#1 (t plus 0 s with a Mixing Number of 35.5649): 15.5362169 0.040894
\begin{tabular}{lccccccc}
0.00925 & 0.3937 & 0.773545542 & 0.775321363 & 1.00673936 \\
1 & 1 & 19.1096756 & 49296.4793 & 0.0695306602 & 0.0569384095 \\
0.0204058336 & \(8.80188471 e^{2}-006\) & 0.0204058336 & 40.403655 & 117.254516
\end{tabular}
\begin{tabular}{lccccc}
4.17844559 & 4.23054189 & 2.12176312 & 0.629165348 & 0.681312728 \\
0.681312728 & 4.30272383 & 1.5796147 & 0.0392891688 & 992.082199 \\
950.858435 & 0.8299759 & 0.813353331 & 0.000647878423 & 0.000254390958 \\
\(1.26160223 e-005\) & \(1.2888102 \mathrm{e}-005\) & 1532.07613 & 1534.28981 & 477.258257 \\
482.282767 & 1.43952996 & 1.39244581 & 1.42944581 & 0.0754483068 \\
0.0769398152 & 2706.63913 & 2706.27395 & 169.347854 & 461.869821 \\
2691.24935 & 292.521967 & 2244.76931 & 170.888637 & 170.022227 \\
170.755882 & 160.541145 & & &
\end{tabular}

KEY POINT \#2 (t plus 3062.4552 s with a Mixing Number of 44.594): 17.6611485
\begin{tabular}{lccccc}
0.040894 & 0.00925 & & 0.3937 & 0.773118119 & 0.776409939 \\
1.01082763 & & 1 & 20.3620499 & 54966.5105 \\
0.0670397749 & 0.0564491676 & 0.0231967963 & \(2.30876977 e-005\) & 0.0231967963 \\
55.3391484 & 124.009982 & 112.592921 & 57.3462098 & 55.6054959 \\
55.7946696 & 53.0737003 & 4.18088158 & 4.23428868 & 2.13395531 \\
0.646232504 & 0.681995004 & 0.681995004 & 3.24282184 & 1.54242295 \\
0.0397413709 & 985.56333 & 948.957527 & 0.896491504 & 0.868219394 \\
0.000501238037 & 0.000248430097 & \(1.27010235 e-005\) & \(1.31395463 e-005\) & 1550.6137 \\
1531.2089 & 478.426406 & 486.383132 & 1.56318451 & 1.51059265 \\
1.54759265 & 0.160193116 & 0.176205327 & 2719.46673 & 2719.05212 \\
231.77722 & 472.34678 & 2694.98619 & 240.56956 & 2247.11995 \\
240.169193 & 232.889354 & 233.683263 & 222.311847 &
\end{tabular}

KEY POINT \#3 (t plus 3089.9657 s with a Mixing Number of 44.731): 17.6993602
\begin{tabular}{|c|c|c|c|c|}
\hline 0.040894 & 0.00925 & 0.39370 & 0.773122234 0 & 0.776436812 \\
\hline 1.01051895 & 1 & 1 & 20.3666005 & 55135.3135 \\
\hline 0.0670165095 & 0.056444374 & 0.02324698491 & \(1.65191312 \mathrm{e}-005\) & 0.0232469849 \\
\hline 55.4753755 & 123.704287 & 112.617087 & 57.6859916 & 55.6834218 \\
\hline 55.9112573 & 53.22141 & 4.18092627 & 4.23432599 & 2.13407726 \\
\hline 0.646371899 & 0.682001314 & 0.682001314 & 3.23517605 & 1.54206851 \\
\hline 0.0397458746 & 985.49714 & 948.938822 & 0.897162103 & 0.869656045 \\
\hline 0.000500158757 & 0.000248373119 & \(1.27018544 \mathrm{e}-005\) & \(51.31276597 e-005\) & \(5 \quad 1550.72694\) \\
\hline 1531.17798 & 478.437711 & 486.17181 & 1.5644344 & 1.51203613 \\
\hline 1.54903613 & 0.161239127 & 0.179046874 & 2718.81644 & 2718.40164 \\
\hline 232.346895 & 472.449199 & 2695.02251 & 240.102305 & 2246.36724 \\
\hline 241.590163 & 233.215284 & 234.170844 & 222.929426 & \\
\hline
\end{tabular}

KEY POINT \#4 (t plus 6732.6231 s with a Mixing Number of 62.667): 18.0632776
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.772841749 & 0.77849456 \\
1.00792273 & & 1 & 17.8264043 & 56032.101 \\
0.0640150299 & 0.0554931262 & 0.0237249673 & \(1.80473687 e-005\) & 0.0237249673 \\
72.6026116 & 125.577408 & 117.387846 & 84.2000122 & 73.1515219 \\
72.951167 & 66.9041623 & 4.18965035 & 4.24195978 & 2.15925609 \\
0.661704639 & 0.683113271 & 0.683113271 & 2.46893949 & 1.47530422 \\
0.0406683211 & 976.310811 & 945.196436 & 1.03774437 & 1.01405858 \\
0.000389939154 & 0.000237578841 & \(1.28660375 e-005\) & \(1.31831515 e-005\) & 1557.98272 \\
1524.76688 & 480.62747 & 486.424488 & 1.82776788 & 1.77793401 \\
1.81493401 & 0.348840784 & 0.560760955 & 2719.93873 & 2719.62095 \\
304.042587 & 492.686976 & 2702.11623 & 188.644388 & 2227.25175 \\
352.683596 & 306.341056 & 305.504415 & 280.183868 &
\end{tabular}

KEY POINT \#5 (t plus 8868.2572 s with a Mixing Number of 83.1324): 18.2265247
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.779113634 & 0.786778312 \\
1.00567192 & & 1 & 15.8171761 & 56330.683 \\
0.0618522359 & 0.0546686425 & 0.0239393821 & \(1.89491579 \mathrm{e}-005\) & 0.0239393821 \\
84.4515185 & 127.241835 & 121.483962 & 98.3758947 & 85.1441977 \\
78.0630957 & 71.2041901 & 4.1992538 & 4.24895123 & 2.18268469 \\
0.669892993 & 0.68385772 & 0.68385772 & 2.10359929 & 1.42272896 \\
0.0415153503 & 969.026433 & 941.904855 & 1.17219432 & 1.15323694 \\
0.000335580198 & 0.000228984549 & \(1.30071892 e-005\) & \(1.32317853 e-005\) & 1555.79739 \\
1518.78797 & 482.43965 & 486.580137 & 2.08182749 & 2.03482506 \\
2.07182506 & 0.56634203 & 0.956793281 & 2720.79868 & 2720.54849 \\
353.759913 & 510.094597 & 2708.08169 & 156.334684 & 2210.70408 \\
412.332369 & 356.667542 & 326.952984 & 298.210432 &
\end{tabular}

KEY POINT \#6 (t plus 10258.7397 s with a Mixing Number of 101.5478): 18.4068117
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.78491513 & 0.794050909 \\
1.00333299 & 1 & 1 & 14.4770728 & 56825.7555 \\
0.060451645 & 0.0540311824 & 0.0241761776 & \(2.00072339 \mathrm{e}-005\) & 0.0241761776 \\
91.9327585 & 127.956862 & 124.627208 & 108.807427 & 92.5452571 \\
81.2441369 & 71.6275595 & 4.20681493 & 4.25459962 & 2.20184076 \\
0.674103782 & 0.684299018 & 0.684299018 & 1.91978327 & 1.38509416
\end{tabular}
\begin{tabular}{lccccc}
0.0422015034 & 964.068608 & 939.33019 & 1.28462056 & 1.27249789 \\
0.000307627785 & 0.000222775034 & \(1.31155931 e-005\) & \(1.32462499 e-005\) & 1551.79183 \\
1513.91147 & 483.786726 & 486.222718 & 2.29572811 & 2.24991264 \\
2.28691264 & 0.754942464 & 1.37726484 & 2720.08301 & 2719.87342 \\
385.219824 & 523.47377 & 2712.57717 & 138.253945 & 2196.60924
\end{tabular}

KEY POINT \#7 (t plus 10458.3922 s with a Mixing Number of 103.1962): 18.4547648
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.785215657 & 0.794520335 \\
1.00390168 & & 1 & 14.3720279 & 56820.3784 \\
0.0603225561 & 0.0539519417 & 0.0242391609 & \(1.40079163 e-005\) & 0.0242391609 \\
92.6152321 & 128.912195 & 125.016529 & 108.557704 & 93.1373029 \\
87.7114832 & 71.6298906 & 4.2075616 & 4.25531675 & 2.204286 \\
0.67445236 & 0.684345887 & 0.684345887 & 1.9044923 & 1.38058727 \\
0.0422887386 & 963.60331 & 939.008354 & 1.29913031 & 1.28481729 \\
0.00030528117 & 0.000222027941 & \(1.31290242 e-005\) & \(1.32820156 e-005\) & 1551.33362 \\
1513.29035 & 483.950908 & 486.796373 & 2.32342317 & 2.27763689 \\
2.31463689 & 0.774480885 & 1.36567007 & 2721.87227 & 2721.66572 \\
388.09325 & 525.132225 & 2713.12886 & 137.038975 & 2196.74005 \\
455.327848 & 390.288744 & 367.474757 & 300.013364 &
\end{tabular}

KEY POINT \#8 (t plus 12910.5334 s with a Mixing Number of 135.8328): 18.3937277
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.78587739 & 0.797201171 \\
1.00065312 & & 1 & 12.3393039 & 56454.32 \\
0.0584675691 & 0.0529457052 & 0.0241589926 & \(1.11574052 \mathrm{e}-005\) & 0.0241589926 \\
102.299051 & 130.56458 & 129.934062 & 117.343098 & 103.048675 \\
102.670969 & 72.8630667 & 4.21923713 & 4.26471654 & 2.2365733 \\
0.678764507 & 0.684791367 & 0.684791367 & 1.71014295 & 1.32641496 \\
0.0434345384 & 956.76531 & 934.887615 & 1.49405187 & 1.49135014 \\
0.000275117113 & 0.000212984264 & \(1.32987356 e-005\) & \(1.33239246 e-005\) & 1543.22748 \\
1505.12618 & 485.973478 & 486.448438 & 2.69727054 & 2.65207695 \\
2.68907695 & 1.10026235 & 1.8251395 & 2721.56908 & 2721.41683 \\
428.921742 & 546.106264 & 2719.99702 & 117.184521 & 2175.46282 \\
492.558259 & 432.083691 & 430.492383 & 305.209873 &
\end{tabular}

KEY POINT \#9 (t plus 13171.8404 s with a Mixing Number of 140.4129): 18.378512
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.786234044 & 0.797803544
\end{tabular}
\begin{tabular}{lllll}
0.999808366 & 0.999808366 & 0.999999689 & 12.1099615 & 56429.6636
\end{tabular}
\begin{tabular}{llllll}
0.0582565672 & 0.0528269771 & 0.0241390076 & \(1.66145248 \mathrm{e}-005\) & 0.0241390076
\end{tabular}
\begin{tabular}{lllll}
103.386567 & 130.511149 & 130.511149 & 118.436298 & 104.22818
\end{tabular}
\begin{tabular}{lllll}
103.292591 & 74.0833013 & 4.22067478 & 4.26586198 & 2.24053423 \\
0.67917628 & 0.68482595 & 0.68482595 & 1.69070022 & 1.32037827
\end{tabular}
.0435744419 . 955.970619 . 93497286
\begin{tabular}{lccccc}
0.000272061588 & 0.00021196872 & \(1.33186578 \mathrm{e}-005\) & \(1.33187196 \mathrm{e}-005\) & 1542.13808 \\
1504.12984 & 486.204559 & 486.201029 & 2.74416924 & 2.69904811
\end{tabular}
\begin{tabular}{rrrrr}
1504.12984 & 486.204559 & 486.201029 & 2.74416924 & 2.69904811 \\
2.73604811 & 1.14303696 & 1.89024234 & 2720.52096 & 2720.3743
\end{tabular}
\begin{tabular}{lllll}
433.514501 & 548.570878 & 2720.79058 & 115.056376 & 2171.95008
\end{tabular}
\(497.199572 \quad 437.065892 \quad 433.119204 \quad 310.326525\)
KEY POINT \#10 (t plus 14089.9559 s with a Mixing Number of 156.9678): 18.3808507

\(0.0575094243 \quad 0.0523857964 \quad 0.02414207942 .51625127 \mathrm{e}-005 \quad 0.0241420794\)
\begin{tabular}{lllll}
107.215564 & 132.649887 & 132.649887 & 121.168013 & 107.815474
\end{tabular}
\(107.358053 \quad 96.7357501 \quad 4.22594317 \quad 4.27018667 \quad 2.25553189\)
\begin{tabular}{lllll}
0.68051207 & 0.68492195 & 0.68492195 & 1.62561317 & 1.29856138
\end{tabular}
\begin{tabular}{lllll}
0.0441031388 & 953.13066 & 932.567739 & 1.61138597 & 1.61429708
\end{tabular}
\(0.000261775736 \quad 0.0002082843821 .33924987 e-0051.33931081 \mathrm{e}-005 \quad 1538.02886\)
\begin{tabular}{lllll}
1500.36836 & 487.049369 & 487.015017 & 2.92378344 & 2.87878023
\end{tabular}
\begin{tabular}{lllll}
2.91578023 & 1.30472146 & 2.06125872 & 2719.9253 & 2719.79538
\end{tabular}
\(449.698693 \quad 557.711108 \quad 2723.70815 \quad 108.012414 \quad 2162.21419\)
\(508.810584 \quad 452.23289 \quad 450.30218 \quad 405.490639\)

KEY POINT \#11 (t plus 16253.7976 s with a Mixing Number of 206.2654): 18.9328689
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.778339103 & 0.79266675 \\
0.995718401 & 0.995718401 & 0.999991291 & 10.0417966 & 56975.9509 \\
0.0556325613 & 0.0512135006 & 0.0248671203 & \(1.92110075 \mathrm{e}-005\) & 0.0248671203 \\
116.691601 & 138.290861 & 138.290861 & 128.603318 & 117.591941 \\
117.095469 & 112.761731 & 4.2404128 & 4.2822131 & 2.29750815 \\
0.683066177 & 0.684934065 & 0.684934065 & 1.48458437 & 1.24497819 \\
0.0455765122 & 945.824058 & 927.649044 & 1.87880066 & 1.88686309 \\
0.000239144021 & 0.000199132541 & \(1.35872884 e-005\) & \(1.35889042 e-005\) & 1526.09707
\end{tabular}


End

\section*{D. 23 TEST \#23-}

\section*{T23_RCIC_020GPM_5PSIG_57KW_RESULTS_RCICLAND.TXT}

Output Saved to C: \Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash E x p o r t \backslash T 23 \_R C I C \_020 G P M \_5 P S I G \_57 k W \backslash\)
Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 2193.2825 s , and ending (KEY POINT \#11) at \(t\) plus 18315.3556 s , for a time period of 16122.0731 s.
Original Data Record Time: 20155.7398 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at t plus \(2371.0316 \mathrm{~s}, \mathrm{~T}\) bulk \(=51.6511 \mathrm{C}\) and \(\mathrm{T}_{-}\)out \(=49.4885 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=51.4379 \mathrm{C}\)
Stratification Beginning Pressure \(=21.5501\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at t plus \(13104.5215 \mathrm{~s}, \mathrm{~T}\) _bulk \(=102.7497 \mathrm{C}\) and T _out \(=70.8931 \mathrm{C}\)
Stratification Ending \(\overline{\text { SP }} 12\) Temperature \(=102.6 \overline{447} \mathrm{C}\)
Stratification Ending Pressure \(=38.8963\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 1871.525 s .

At \(t=1871.525 \mathrm{~s}\), the pool pressure is 21.2267 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are \(49.7758,49.5888,51.59,49.8948\), and 47.4724 C, respectively.
Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 12.087 +/- 4.246 C .
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 11.4914 +/- 4.1702 C .
Minimum Steam Quality: 0.54962 at t plus 1669.0205 s
Maximum Steam Quality: 0.6619 at \(t\) plus 15438.4621 s
Time-Averaged Steam Quality: 0.60989 +/- 0.014907
Minimum Turbine Outlet Steam Quality: 0.56166 at \(t\) plus 1669.2245 s
Maximum Turbine Outlet Steam Quality: 0.66577 at t plus 15438.4621 s
Time-Averaged Turbine Outlet Steam Quality: 0.61822 +/- 0.013391
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 16032.073 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.43635 degrees/min at \(t\) plus 6218.6017 s and 0.1574 degrees/min at \(t\) plus 12511.9107 s , respectively
Max and min smoothed mid (SP9) level changerates: 0.41786 degrees/min at \(t\) plus 7380.2201 s and 0.21319 degrees/min at \(t\) plus 10301.5732 s, respectively

Max and min smoothed upper-mid level changerate differences: 0.1456 degrees/min at \(t\) plus 6106.5993 s and -0.13983 degrees/min at \(t\) plus 5732.4919 s , respectively
Max and min smoothed lower level changerates: 1.8459 degrees/min at \(t\) plus 10064.7767 s and -0.048452 degrees \(/ \mathrm{min}\) at \(t\) plus 6238.9168 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.35597 degrees/min at \(t\) plus 6218.6017 s and -1.6097 degrees \(/ \mathrm{min}\) at t plus 10123.071 s , respectively
Max and min smoothed outlet level changerates: 2.5215 degrees/min at \(t\) plus 13883.235 s and -0.041776 degrees \(/ \mathrm{min}\) at \(t\) plus 7842.2296 s , respectively
Max and min smoothed lower-outlet level changerate differences: 1.844 degrees/min at \(t\) plus 10122.983 s and -2.3407 degrees/min at \(t\) plus 13883.3361 s , respectively
Max and min smoothed hot (SP8) level changerates: 0.83671 degrees/min at t plus 3905.9584 s and -0.16118 degrees/min at t plus 11941.3181 s , respectively

Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.56439 degrees/min at \(t\) plus 3905.9584 s and -0.39221 degrees/min at t plus 11941.3181 s , respectively
The mean steam flow rate was 23.2608 +/- \(0.52474 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was \(22.9218+/-1.2274 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(12.4637+/-0.42445 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is \(12.5343+/-3.7904\) C over the Stratification Period, beginning at 3.2487 C and ending at 14.7817 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(11.9227+/-3.7434\) C over the Stratification Period, beginning at 3.0067 C and ending at 14.1501 C
The stratification period begins and ends with Smoothed SP8 readings of 55.2347 and 117.5495 C, respectively

The stratification period begins and ends with condensing flows of 0.18985 and 0.41195 \(\mathrm{kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of 4.1263 and \(0.79736 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(1868.491+/-22.527 \mathrm{~kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.18285 and 6.7411 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of \(1866.0177+/-25.0028 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 1.2445 degrees \(C\) at \(t\) plus 7231.6206 s with \(T\) upper \(=\) 76.5145 C and T mid \(=75.27 \mathrm{C}\)
 where Smoothed SP8 is 88.1752 C and Pool \(\mathrm{P}=26.7746\) psia
Maximum Smoothed Top-Lower delta \(T\) is 13.901 degrees \(C\) at \(t\) plus 9722.6611 s with T_upper \(=90.0903 \mathrm{C}\) and T _low \(=76.1893 \mathrm{C}\)
At \(t\) plus 9722.6611 s , Smoothed SP8-SP9 is 16.1154 C and Smoothed SP8-Top is 15.6275 C, where Smoothed SP8 is 105.7178 C and Pool \(\mathrm{P}=31.6763\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 13.4151 degrees C at t plus 9723.4621 s with T_mid \(=89.6059 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=76.1908 \mathrm{C}\)
At \(t\) plus 9723.4621 s , Smoothed SP8-SP9 is 16.1626 C and Smoothed SP8-Top is 15.6772 C, where Smoothed SP8 is 105.7685 C and Pool \(\mathrm{P}=31.6772\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 32.7578 degrees \(C\) at \(t\) plus 12986.4187 s with T_upper \(=103.0909 \mathrm{C}\) and \(T\) _out \(=70.3331 \mathrm{C}\)
At t plus 12986.4187 s , Smoothed SP8-SP9 is 14.8252 C and Smoothed SP8-Top is 14.0135 C , where Smoothed SP8 is 117.1044 C and Pool \(\mathrm{P}=38.5985\) psia

Maximum Smoothed Mid-Outlet delta \(T\) is 31.9519 degrees \(C\) at \(t\) plus 12989.422 s with \(T\) mid \(=102.2956 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=70.3437 \mathrm{C}\)
At \(t\) plus 12989.422 s , Smōothed SP8-SP9 is 14.8039 C and Smoothed SP8-Top is 14.0135 C , where Smoothed SP8 is 117.0995 C and Pool \(\mathrm{P}=38.6139\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 32.0958 degrees \(C\) at \(t\) plus 13080.8431 s with T low \(=102.8859 \mathrm{C}\) and T out \(=70.7902 \mathrm{C}\)
At \(t\) plus 13080.8431 s , Smoothed SP8-SP9 is 14.9258 C and Smoothed SP8-Top is 14.2353 C , where Smoothed SP8 is 117.5729 C and Pool \(\mathrm{P}=38.8444\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 17.1342 degrees \(C\) at (KEY POINT \#14) \(t\) plus 10412.3736 s with \(\mathrm{T}_{2} \mathrm{SP8}=109.337 \mathrm{C}\) and T _SP9 \(=92.2028 \mathrm{C}\) and Pool \(\mathrm{P}=\) 33.0453 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 16.6294 degrees \(C\) at \(t\) plus 10412.3736 s with \(\mathrm{T}_{\text {_ }} \mathrm{SP8}=109.337 \mathrm{C}\) and \(\mathrm{T}_{\text {_upper }}=92.7076 \mathrm{C}\) and Pool \(\mathrm{P}=33.0453\) psia
Maximum Top-Mid delta \(T\) is 1.7768 degrees \(C\) at (KEY POINT \#4) t plus 6703.2074 s ignoring SP 4, with temperatures of 73.8722 and 72.0954 C , respectively, at Set \# 2, where Pool \(P=25.9467\) psia and \(T\) outlet \(=66.2571 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 8262.9376 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.99937 C and a raw SP12 Reading of 81.2771 C .
Maximum Top-Lower delta \(T\) is 15.7337 degrees \(C\) at \(t\) plus 9958.4655 s, with temperatures of 91.2724 and 75.5386 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=32.1355\) psia and T_outlet \(=68.0813 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 14.4379 degrees \(C\) at (KEY POINT \#6) t plus 9889.5637 s ignoring SP 4, with temperatures of 90.1271 and 75.6893 C, respectively, at Set \# 2, where Pool \(P=32.0156\) psia and \(T\) _outlet \(=68.0212 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 10134.2677 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 4.8114 C and a raw SP12 Reading of 91.0473 C .
Maximum Top-Outlet delta \(T\) is 33.0979 degrees \(C\) at \(t\) plus 13052.2216 s, with temperatures of 103.6805 and 70.5826 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=38.7598\) psia
Maximum Mid-Outlet delta \(T\) is 31.9227 degrees \(C\) at \(t\) plus 12992.4212 s ignoring SP 4, with temperatures of 102.1219 and 70.1992 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=38.6142 \mathrm{psia}\)
Maximum Lower-Outlet delta \(T\) is 32.906 degrees \(C\) at (KEY POINT \#8) t plus 13093.5229 s, with temperatures of 103.8949 and 70.9889 C , respectively, at Set \# 1, where Pool P = 38.8707 psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 14154.1406 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 10.9677 C and a raw SP12 Reading of 106.7449 C .
Minimum SP Pressure is 20.3078 psia at \(t\) plus 3.4932 s
Maximum SP Pressure is 48.1581 psia at t plus 16121.9701 s
Beginning SP Pressure is 20.3167 psia
Ending SP Pressure is 48.1577 psia
Time-Average SP Pressure is 30.1934 +/- 8.0838 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 76.5669 cm (cold) / 76.7094 cm (hot) at 14.6231 psia
Beginning Smoothed SP Level is 77.01 cm (cold) / 77.184 cm (hot) at 20.3101 psia
Ending Smoothed SP Level is 77.6691 cm (cold) / 79.0604 cm (hot) at 48.1646 psia
Minimum Smoothed Cold SP Level is 76.9818 cm at \(t\) plus 4118.7736 s and 22.9369 psia
Minimum Smoothed Hot SP Level is 77.1784 cm at t plus 151.6947 s and 20.3688 psia
Maximum Smoothed Cold SP Level is 78.5494 cm at \(t\) plus 13221.9253 s and 39.1895 psia
Maximum Smoothed Hot SP Level is 79.7381 cm at \(t\) plus 13896.6348 s and 40.9547 psia
SP 12 Temperature at the beginning is 39.9661 C , and at the end is 115.0955 C
At plume detection, the Mixing Number is 41.8031
The Mixing Number ranges from a minimum of 36.3202 at (KEY POINT \#12) t plus 0 s to a maximum of 202.1715 at (KEY POINT \#13) t plus 16122.0061 s; it had a mean value of \(91.9771+/-47.5729\) over the test period.
Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam T t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1,

Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled \(T\) mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta h e6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy ell
KEY POINT \#1 (t plus 0 s with a Mixing Number of 36.3202): 26.308562 0.040894
\begin{tabular}{lccccc}
0.00925 & 0.3937 & 0.770100391 & 0.771839768 & 0.58851607 \\
0.58851607 & 0.999385637 & 18.5347816 & 84236.325 & 0.0695141745 \\
0.0568939649 & 0.0218860127 & 0.0126686117 & 0.0345546245 & 40.5049298 \\
110.344865 & 110.344865 & 41.0017771 & 40.5985197 & 40.6665476 \\
38.4391222 & 4.17844323 & 4.23087729 & 2.12285 & 0.629293784 \\
0.681377859 & 0.681377859 & 4.29372813 & 1.57615103 & 0.0393296436 \\
992.043687 & 950.686426 & 0.835862537 & 1.41941581 & 0.000646656247 \\
0.000253837287 & \(1.26237597 \mathrm{e}-005\) & \(1.27719524 \mathrm{e}-005\) & 1532.24675 & 1534.01618 \\
477.36555 & 468.10107 & 1.45044723 & 1.40033402 & 1.43733402 \\
0.0758554371 & 0.0778803816 & 1774.83272 & 1774.48918 & 169.771723 \\
462.82356 & 2691.59128 & 293.051837 & 1312.00916 & 171.847771 \\
170.161278 & 170.448626 & 161.145428 & & & \\
\(1 N T \# 2\) & (t plus & 1871.525 s & with & Mixing Number & \(0 f\)
\end{tabular}

KEY POINT \#3 (t plus 2371.0316 s with a Mixing Number of 43.4983): 26.7220172
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.770151872 & 0.773014512 \\
0.610444997 & 0.610444997 & 0.999407085 & 18.4935624 & 85211.864 \\
0.0676093521 & 0.0565492324 & 0.0226362192 & 0.0124614523 & 0.0350976715 \\
51.9860382 & 112.088153 & 112.088153 & 55.2347363 & 52.2280338 \\
52.1420255 & 49.610811 & 4.17990506 & 4.23351255 & 2.13142065 \\
0.642711479 & 0.681861626 & 0.681861626 & 3.44081378 & 1.54986509 \\
0.039647683 & 987.15596 & 949.347649 & 0.882577345 & 1.44493616 \\
0.000529067164 & 0.000249625699 & \(1.26836688 e-005\) & \(1.28241552 e-005\) & 1547.52598 \\
1531.85124 & 478.189794 & 469.48049 & 1.53726501 & 1.48574045 \\
1.52274045 & 0.136211917 & 0.159395324 & 1828.19104 & 1827.84903 \\
217.757853 & 470.207774 & 2694.22674 & 252.449921 & 1357.98326
\end{tabular}

KEY POINT \#4 (t plus 6703.2074 s with a Mixing Number of 64.6401): 27.1378071
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.770505684 & 0.776107994
\end{tabular}
\begin{tabular}{lllrr}
0.627708353 & 0.627708353 & 0.999345678 & 16.3383899 & 85243.0875
\end{tabular}
\begin{tabular}{llllll}
0.0640351105 & 0.0554575656 & 0.0233722763 & 0.0122715088 & 0.0356437851
\end{tabular}
\begin{tabular}{lllll}
72.4907882 & 117.565247 & 117.565247 & 85.2877958 & 73.4560268
\end{tabular}
\begin{tabular}{lllll}
70.2326117 & 66.2139635 & 4.18957071 & 4.2422541 & 2.16023553
\end{tabular}
\begin{tabular}{lllll}
0.661618894 & 0.683149515 & 0.683149515 & 2.4729103 & 1.47293984 \\
0.0407039306 & 976.376644 & 945.055376 & 1.04329629 & 1.66098417
\end{tabular}
\(0.000390523109 \quad 0.0002371942171 .28721475 \mathrm{e}-0051.30189264 \mathrm{e}-005 \quad 1557.97953\)
\begin{tabular}{llrrr}
1524.5169 & 480.707268 & 471.88052 & 1.83821828 & 1.78881647 \\
1.82581647 & 0.347185968 & 0.585234945 & 1880.27527 & 1880.00833 \\
303.574975 & 493.440269 & 2702.37703 & 189.865294 & 1386.835
\end{tabular}

KEY POINT \#5 (t plus 8262.9376 s with a Mixing Number of 80.1941): 27.2012958 \(\begin{array}{lllll}0.040894 & 0.00925 & 0.3937 & 0.775465444 & 0.782526682\end{array}\) \(\begin{array}{lllll}0.630125646 & 0.630125646 & 0.999290566 & 15.044343 & 84723.8867\end{array}\)
\begin{tabular}{llllc}
0.0623645951 & 0.0548587126 & 0.0235810452 & 0.0121461284 & 0.0357271736 \\
81.6783177 & 120.542789 & 120.542789 & 95.5214502 & 82.3982641 \\
74.5341802 & 67.5277581 & 4.19674462 & 4.24730826 & 2.17714953 \\
0.668146483 & 0.683703703 & 0.683703703 & 2.18011548 & 1.43444459 \\
0.0413160808 & 970.795364 & 942.667549 & 1.14012307 & 1.80807469 \\
0.000347087236 & 0.000230907441 & \(1.29747438 \mathrm{e}-005\) & \(1.31293527 e-005\) & 1556.78481 \\
1520.19977 & 482.028902 & 472.888835 & 2.02104446 & 1.97333119 \\
2.01033119 & 0.507302689 & 0.862458255 & 1892.99149 & 1892.76516 \\
342.113199 & 506.092119 & 2706.72155 & 163.978919 & 1386.89938 \\
400.302951 & 345.133517 & 312.153739 & 282.810456 &
\end{tabular}

KEY POINT \#6 (t plus 9889.5637 s with a Mixing Number of 100.4121): 27.2093551
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.783588296 & 0.792348312 \\
0.626777498 & 0.626777498 & 0.999200842 & 13.5208762 & 83893.5631 \\
0.0607716186 & 0.0541541911 & 0.0235987737 & 0.0121389852 & 0.0357377589 \\
90.2360814 & 124.022239 & 124.022239 & 106.504567 & 90.6450922 \\
78.2107943 & 67.978147 & 4.20499559 & 4.25349299 & 2.198073 \\
0.673212741 & 0.684222791 & 0.684222791 & 1.95880867 & 1.39216377 \\
0.0420669403 & 965.216971 & 939.829009 & 1.26233323 & 2.01239584 \\
0.000313601983 & 0.000223945399 & \(1.3094724 e-005\) & \(1.32632269 e-005\) & 1552.86903 \\
1514.86919 & 483.530431 & 473.771435 & 2.25322636 & 2.20691149 \\
2.24391149 & 0.708139875 & 1.27335335 & 1894.23699 & 1894.05417 \\
378.080452 & 520.897263 & 2711.71763 & 142.816811 & 1373.33972
\end{tabular}
\(446.644984 \quad 379.79917 \quad 327.586157 \quad 284.715205\)
KEY POINT \#7 (t plus 10134.2677 s with a Mixing Number of 102.99): 27.289104
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.784186906 & 0.793161704 \\
0.623505332 & 0.623505332 & 0.999178087 & 13.3061976 & 84010.3377 \\
0.0605955329 & 0.0540578086 & 0.023569421 & 0.012273083 & 0.035842504 \\
91.1706759 & 124.496321 & 124.496321 & 107.98639 & 91.7109154 \\
84.8440833 & 68.160269 & 4.20598806 & 4.2543594 & 2.2010223 \\
0.67370866 & 0.684282877 & 0.684282877 & 1.93713008 & 1.38661683 \\
0.042172288 & 964.586563 & 939.438244 & 1.27977193 & 2.05085666 \\
0.000310286498 & 0.000223027269 & \(1.31110778 e-005\) & \(1.32836107 e-005\) & 1552.28944 \\
1514.11945 & 483.731396 & 473.769478 & 2.2864778 & 2.24024666 \\
2.27724666 & 0.733611649 & 1.33944558 & 1888.24277 & 1888.06571 \\
382.013455 & 522.916272 & 2712.39144 & 140.902818 & 1365.32649 \\
452.909822 & 384.284545 & 355.426008 & 285.48042 &
\end{tabular}

KEY POINT \#8 (t plus 13093.5229 s with a Mixing Number of 142.4475): 27.3611726
\begin{tabular}{llccc}
0.040894 & 0.00925 & 0.3937 & 0.785443237 & 0.796820066 \\
0.613151408 & 0.613151408 & 0.998982543 & 11.1310965 & 82800.4767 \\
0.0583881361 & 0.0528740159 & 0.0234650109 & 0.0124721507 & 0.0359371616 \\
102.708777 & 130.282591 & 130.282591 & 117.7352 & 103.377356 \\
102.878931 & 70.8944166 & 4.21977327 & 4.26540724 & 2.23896113 \\
0.678921934 & 0.684812695 & 0.684812695 & 1.70276555 & 1.32276138 \\
0.0435188936 & 956.467041 & 934.591652 & 1.50871285 & 2.45808422 \\
0.000273959004 & 0.000212369824 & \(1.33107674 e-005\) & \(1.35133013 e-005\) & 1542.82335 \\
1504.52539 & 486.113197 & 474.819662 & 2.72551634 & 2.68021009 \\
2.71721009 & 1.11621977 & 1.84827575 & 1880.02419 & 1879.90029 \\
430.65268 & 547.594674 & 2720.4766 & 116.941994 & 1332.42952
\end{tabular}

KEY POINT \#9 (t plus 13104.5215 s with a Mixing Number of 142.6853): 27.3421464
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.785439459 & 0.796825277 \\
0.614035668 & 0.614035668 & 0.998985703 & 11.1327212 & 82742.4841 \\
0.0583766752 & 0.0528696315 & 0.0234768931 & 0.0124352787 & 0.0359121718 \\
102.767861 & 130.303899 & 130.303899 & 117.549536 & 103.39944 \\
102.806357 & 70.9907438 & 4.21985142 & 4.26544957 & 2.23910754 \\
0.678944335 & 0.684813956 & 0.684813956 & 1.70170703 & 1.32253878 \\
0.0435240645 & 956.423855 & 934.573542 & 1.5096129 & 2.45601645 \\
0.00027379266 & 0.000212332369 & \(1.3311503 e-005\) & \(1.35133692 e-005\) & 1542.76418 \\
1504.48857 & 486.121723 & 474.865838 & 2.72725092 & 2.68195375 \\
2.71895375 & 1.11853658 & 1.83729082 & 1881.99873 & 1881.87479 \\
430.902133 & 547.685677 & 2720.50589 & 116.783543 & 1334.31305
\end{tabular}

KEY POINT \#10 (t plus 14154.1406 s with a Mixing Number of 160.884): 27.4499979
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.78488748 & 0.797235013
\end{tabular}
\begin{tabular}{llccc}
0.616147102 & 0.616147102 & 0.99892701 & 10.5293299 & 82544.9048 \\
0.0575678844 & 0.0524014205 & 0.0234012083 & 0.0126526197 & 0.036053828
\end{tabular}
\begin{tabular}{llllll}
106.917171 & 132.574296 & 132.574296 & 120.85804 & 107.676545
\end{tabular}
\begin{tabular}{llccc}
107.174391 & 95.6703989 & 4.22551902 & 4.27003166 & 2.25499325 \\
0.680414777 & 0.684919418 & 0.684919418 & 1.63050374 & 1.29931783 \\
0.0440841766 & 953.354715 & 932.632734 & 1.60802293 & 2.60700331 \\
0.000262552087 & 0.000208412509 & \(1.33898887 \mathrm{e}-005\) & \(1.3599146 \mathrm{e}-005\) & 1538.36591 \\
1500.50315 & 487.019823 & 475.504102 & 2.91727693 & 2.87207067 \\
2.90907067 & 1.29148018 & 2.04124047 & 1892.20756 & 1892.0967 \\
448.437275 & 557.38789 & 2723.60567 & 108.950616 & 1334.81967 \\
507.493378 & 451.645187 & 449.525533 & 401.003367 &
\end{tabular}

KEY POINT \#11 (t plus 16122.0731 s with a Mixing Number of 202.1714): 28.0703691
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.776690973 & 0.790604041 \\
0.645069705 & 0.645069705 & 0.998911171 & 9.85643487 & 83403.9352 \\
0.0559186614 & 0.0513793987 & 0.0245396181 & 0.012329028 & 0.0368686461 \\
115.25975 & 137.496193 & 137.496193 & 128.050623 & 116.103226 \\
115.674719 & 112.926921 & 4.23809011 & 4.28046307 & 2.29138166 \\
0.682748419 & 0.684953376 & 0.684953376 & 1.50423324 & 1.25219582 \\
0.0453618952 & 946.953678 & 928.350143 & 1.83911143 & 2.84792315 \\
0.000242329171 & 0.000200374526 & \(1.35598464 \mathrm{e}-005\) & \(1.37632555 \mathrm{e}-005\) & 1528.05743 \\
1491.44892 & 488.895569 & 477.989244 & 3.36615251 & 3.32083419 \\
3.35783419 & 1.70614942 & 2.548712 & 1966.56593 & 1966.46878 \\
483.772767 & 578.459653 & 2730.17926 & 94.6868854 & 1388.10628 \\
538.122469 & 487.346849 & 485.532864 & 473.894945 &
\end{tabular}

KEY POINT \#12 (t plus 0 s with a Mixing Number of 36.3202): 26.308562 0.040894
\begin{tabular}{lllll}
0.00925 & 0.3937 & 0.770100391 & 0.771839768 & 0.58851607
\end{tabular}
\begin{tabular}{llllr}
0.58851607 & 0.999385637 & 18.5347816 & 84236.325 & 0.0695141745 \\
0.0568939649 & 0.0218860127 & 0.0126686117 & 0.0345546245 & 40.5049298
\end{tabular}
\begin{tabular}{lllll}
110.344865 & 110.344865 & 41.0017771 & 40.5985197 & 40.6665476
\end{tabular}
\begin{tabular}{lllll}
38.4391222 & 4.17844323 & 4.23087729 & 2.12285 & 0.629293784
\end{tabular}
\begin{tabular}{llllll}
0.681377859 & 0.681377859 & 4.29372813 & 1.57615103 & 0.0393296436
\end{tabular}
\(992.043687 \quad 950.686426 \quad 0.835862537 \quad 1.41941581 \quad 0.000646656247\)
\(0.0002538372871 .26237597 \mathrm{e}-0051.27719524 \mathrm{e}-005 \quad 1532.24675 \quad 1534.01618\)
\begin{tabular}{lllcc}
477.36555 & 468.10107 & 1.45044723 & 1.40033402 & 1.43733402 \\
0.0758554371 & 0.0778803816 & 1774.83272 & 1774.48918 & 169.771723
\end{tabular}
\begin{tabular}{lllll}
462.82356 & 2691.59128 & 293.051837 & 1312.00916 & 171.847771
\end{tabular}
\(170.161278 \quad 170.448626 \quad 161.145428\)
KEY POINT \#13 (t plus 16122.0061 s with a Mixing Number of 202.1715): 28.0701445
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.776691788 & 0.79060484
\end{tabular}
\begin{tabular}{lllll}
0.645050733 & 0.645050733 & 0.998911086 & 9.85610597 & 83403.2001
\end{tabular}
\begin{tabular}{llllll}
0.0559187195 & 0.0513794294 & 0.0245387461 & 0.012329605 & 0.0368683511
\end{tabular}
\(115.259459 \quad 137.496047 \quad 137.496047 \quad 128.052906 \quad 116.102927\)
\(115.673957 \quad 112.927195 \quad 4.23808965 \quad 4.28046274 \quad 2.29138053\)
\begin{tabular}{lllll}
0.682748352 & 0.684953379 & 0.684953379 & 1.50423729 & 1.25219717
\end{tabular}
\(0.0453618557 \quad 946.953907 \quad 928.350272 \quad 1.83910415 \quad 2.8479954\)
\begin{tabular}{llllll}
0.000242329828 & 0.000200374757 & \(1.35598413 e-005\) & \(1.37632667 e-005\) & 1528.05783
\end{tabular}
\begin{tabular}{lllll}
1491.44919 & 488.895515 & 477.988328 & 3.36613832 & 3.32081751
\end{tabular}
\begin{tabular}{lllll}
3.35781751 & 1.70613324 & 2.54888797 & 1966.52475 & 1966.42761
\end{tabular}
\begin{tabular}{lllll}
483.771531 & 578.459023 & 2730.17906 & 94.6874913 & 1388.06573
\end{tabular}
\(538.132196 \quad 487.345582 \quad 485.529631 \quad 473.896105\)
KEY POINT \#14 (t plus 10412.3736 s with a Mixing Number of 105.859) : 27.2675288
\(0.040894 \quad 0.00925 \quad 0.784663069 \quad 0.793880175\)
\begin{tabular}{lllll}
0.623803718 & 0.623803718 & 0.999166092 & 13.1001514 & 83818.0369
\end{tabular}
\(\begin{array}{llllll}0.060400598 & 0.0539498751 & 0.0235749046 & 0.0122392618 & 0.0358141664\end{array}\)
\(\begin{array}{lllll}92.2027747 & 125.026679 & 125.026679 & 109.337009 & 92.7075816\end{array}\)
\(\begin{array}{lllll}90.0583152 & 68.1777648 & 4.20710531 & 4.2553355 & 2.20434997\end{array}\)
\(\begin{array}{llllll}0.674243343 & 0.684347086 & 0.684347086 & 1.91370471 & 1.38047022\end{array}\)
\(0.0422910195 \quad 963.885587 \quad 938.999955 \quad 1.29951033 \quad 2.08146669\) \(\begin{array}{llllll}0.000306696069 & 0.000222008528 & 1.31293744 e-005 & 1.33035605 e-005 & 1551.61576\end{array}\)
\begin{tabular}{llllll}
1513.27411 & 483.955181 & 473.928617 & 2.3241488 & 2.27803068
\end{tabular}
\(\begin{array}{lllll}2.31503068 & 0.762623062 & 1.40212185 & 1890.2095 & 1890.03789\end{array}\)
\begin{tabular}{lllll}
386.357935 & 525.175464 & 2713.14322 & 138.81753 & 1365.03404
\end{tabular}

End

\section*{D. 24 TEST \#24 -}

\section*{T24_RCIC_15PSIG_VENT86C_107KW_RESULTS_RCICLAND.TXT}

Output Saved to C: \Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash \operatorname{Export} \backslash T 24\) _RCIC_15PSIG_VENT86C_107kW Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 3038.2918 s , and ending (KEY POINT \#11) at \(t\) plus 11246.9323 s , for a time period of 8208.6405 s.
Original Data Record Time: 12983.6576 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(540.1059 \mathrm{~s}, \mathrm{~T}\) _bulk \(=45.2374 \mathrm{C}\) and T _out \(=41.1117 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=-44.8367 \mathrm{C}\)
Stratification Beginning Pressure \(=31.0244\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(6115.5028 \mathrm{~s}, \mathrm{~T}\) _bulk \(=96.2799 \mathrm{C}\) and T _out \(=61.2771 \mathrm{C}\)
Stratification Ending SP12 Temperature \(=95 . \overline{9282} \mathrm{C}\)
Stratification Ending Pressure \(=20.8446\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 530.2053 s .
At \(t=530.2053\) s, the pool pressure is 31.0141 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 45.9483, 46.0653, 48.0662, 45.8911, and 40.9845 C , respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 11.4238 +/- 4.6645 C .
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were \(9.8795+/-3.7847 \mathrm{C}\).
Minimum Steam Quality: 0.99474 at \(t\) plus 120.5009 s
Maximum Steam Quality: 1.0027 at \(t\) plus 4592.0817 s
Time-Averaged Steam Quality: 0.99919 +/- 0.0012281
Minimum Turbine Outlet Steam Quality: 1.0021 at \(t\) plus 4413.6845 s
Maximum Turbine Outlet Steam Quality: 1.0252 at \(t\) plus 4845.4821 s
Time-Averaged Turbine Outlet Steam Quality: 1.0111 +/- 0.0054923
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 8118.6343 s ; using 300 s smoothing
Max and min smoothed upper level changerates: 0.86495 degrees \(/ \mathrm{min}\) at \(t\) plus 2631.9425 s and 0.2698 degrees/min at \(t\) plus 5749.4029 s , respectively
Max and min smoothed mid (SP9) level changerates: 1.0301 degrees \(/ \mathrm{min}\) at t plus 4668.48 s and 0.31509 degrees/min at \(t\) plus 5424.6943 s , respectively
Max and min smoothed upper-mid level changerate differences: 0.38676 degrees/min at t plus 2735.3424 s and -0.63035 degrees/min at \(t\) plus 4697.9357 s, respectively
Max and min smoothed lower level changerates: 2.643 degrees/min at t plus 5064.7837 s and -0.11384 degrees/min at \(t\) plus 1988.6327 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.74034 degrees/min at \(t\) plus 4702.377 s and -2.1252 degrees/min at \(t\) plus 5064.7837 s , respectively
Max and min smoothed outlet level changerates: 5.9618 degrees/min at \(t\) plus 6372.4075 s and -0.027165 degrees \(/ \mathrm{min}\) at \(t\) plus 2850.047 s , respectively
Max and min smoothed lower-outlet level changerate differences: 2.5547 degrees/min at \(t\) plus 5076.3834 s and -5.3039 degrees/min at t plus 6378.8049 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.4102 degrees/min at t plus 1680.3261 \(s\) and -1.7822 degrees/min at \(t\) plus 4564.1741 s , respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.91742 degrees/min at \(t\) plus 1680.3261 s and -2.5409 degrees \(/ \mathrm{min}\) at t plus 4564.2731 s , respectively
The mean steam flow rate was \(44.7852+/-1.2886 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was \(44.0008+/-1.8175 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.0098182+/-0.026025 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta T is 11.4402 +/- 4.6524 C over the Stratification Period, beginning at 2.3276 C and ending at 11.2607 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(9.8928+/-3.7748\) C over the Stratification Period, beginning at 2.5375 C and ending at 10.8079 C
The stratification period begins and ends with Smoothed SP8 readings of 48.5645 and 108.3207 C , respectively

The stratification period begins and ends with condensing flows of 0.29505 and 1.7593 \(\mathrm{kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of 11.1616 and \(2.1617 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(2730.6608+/-1.4045 \mathrm{~kJ} / \mathrm{kg}\).

At plume detection, the condensing and condensing+cooling flows are 0.29447 and 12.9958 kg/s, respectively
The plume period had a mean steam enthalpy of \(2731.4411+/-1.6834 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 3.6719 degrees \(C\) at \(t\) plus 3174.9596 s with \(T\) _upper \(=\) 72.2899 C and T _mid \(=68.618 \mathrm{C}\)

At t plus 3174.9596 s, Smoothed SP8-SP9 is 16.2705 C and Smoothed SP8-Top is 12.5986 C, where Smoothed SP8 is 84.8885 C and Pool \(\mathrm{P}=36.1724\) psia
Maximum Smoothed Top-Lower delta \(T\) is 14.0896 degrees \(C\) at \(t\) plus 4619.2752 s with T_upper \(=87.6787 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=73.5891 \mathrm{C}\)
At t plus 4619.2752 s , Smoothed \(\overline{\mathrm{SP}} 8-\mathrm{SP9}\) is 9.1824 C and Smoothed SP8-Top is 6.4506 C , where Smoothed SP8 is 94.1294 C and Pool \(\mathrm{P}=20.6372 \mathrm{psia}\)
Maximum Smoothed Mid-Lower delta \(T\) is 13.4675 degrees \(C\) at \(t\) plus 4836.9777 s with T_mid \(=88.2075 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=74.74 \mathrm{C}\)
At \(t\) plus 4836.9777 s , Smoothed SP8-SP9 is 7.2291 C and Smoothed SP8-Top is 6.7113 C, where Smoothed SP8 is 95.4366 C and Pool \(\mathrm{P}=15.3434\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 36.3436 degrees C at \(t\) plus 6088.1052 s with \(T\) upper \(=97.3828 \mathrm{C}\) and \(T\) out \(=61.0392 \mathrm{C}\)
At t plus 6088.1052 s , Smoothed \(\overline{\mathrm{SP}} 8-\mathrm{SP9}\) is 11.5878 C and Smoothed SP8-Top is 11.0456 C , where Smoothed SP8 is 108.4284 C and Pool \(\mathrm{P}=20.7639\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 35.8449 degrees \(C\) at \(t\) plus 6109.7005 s with T_mid \(=97.0338 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=61.1889 \mathrm{C}\)
At t plus 6109.7005 s , Smoothed SP8-SP9 is 11.1972 C and Smoothed SP8-Top is 10.7631 C , where Smoothed SP8 is 108.231 C and Pool \(\mathrm{P}=20.821\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 35.6495 degrees \(C\) at \(t\) plus 6080.8028 s with T_low \(=96.6377 \mathrm{C}\) and T_out \(=60.9881 \mathrm{C}\)
At t plus 6080.8028 s, Smoothed SP8-SP9 is 11.4958 C and Smoothed SP8-Top is 10.961 C, where Smoothed SP8 is 108.281 C and Pool \(\mathrm{P}=20.7348\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 19.0892 degrees \(C\) at (KEY POINT \#14) t plus 3737.2608 s with \(\mathrm{T}_{-} \mathrm{SP} 8=94.2638 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{SP9}=75.1746 \mathrm{C}\) and Pool \(\mathrm{P}=\) 37.9781 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 16.1741 degrees \(C\) at \(t\) plus 3737.2608 s with T _SP8 \(=94.2638 \mathrm{C}\) and \(\mathrm{T}_{\text {_upper }}=78.0896 \mathrm{C}\) and Pool \(\mathrm{P}=37.9781\) psia
Maximum Top-Mid delta \(T\) is 5.0724 degrees \(C\) at (KEY POINT \#4) \(t\) plus 3187.2523 s ignoring SP 4, with temperatures of 73.6726 and 68.6002 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=36.1998\) psia and T_outlet \(=56.1338 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 4654.2762 s with a Smoothed MidAxis Top-Mid Delta T of 1.6885 C and a raw SP12 Reading of 86.1157 C .
Maximum Top-Lower delta \(T\) is 18.8355 degrees \(C\) at \(t\) plus 4613.1759 s, with temperatures of 87.7763 and 68.9407 C, respectively, at Set \# 1, where Pool \(P=21.0516\) psia and T_outlet \(=58.5542 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 14.5565 degrees \(C\) at (KEY POINT \#6) t plus 4990.9805 s ignoring SP 4, with temperatures of 89.3747 and 74.8182 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=16.4433\) psia and \(T\) _outlet \(=59.0766 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 5241.1868 s with a Smoothed MidAxis Mid-Low Delta T of 4.8447 C and a raw SP12 Reading of 91.5377 C .
Maximum Top-Outlet delta \(T\) is 36.7412 degrees \(C\) at \(t\) plus 6096.0037 s , with temperatures of 97.7389 and 60.9977 C, respectively, at Set \# 1, where Pool P = 20.7742 psia
Maximum Mid-Outlet delta \(T\) is 35.4601 degrees \(C\) at \(t\) plus 6105.5022 s ignoring SP 4, with temperatures of 96.6135 and 61.1534 C, respectively, at Set \# 2, where Pool \(P=\) 20.8038 psia

Maximum Lower-Outlet delta \(T\) is 36.5721 degrees \(C\) at (KEY POINT \#8) t plus 6103.0011 s, with temperatures of 97.6688 and 61.0967 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=20.8016\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 6459.1074 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 12.188 C and a raw SP12 Reading of 98.6875 C .
Minimum SP Pressure is 15.343 psia at \(t\) plus 4836.1856 s
Maximum SP Pressure is 40.8567 psia at t plus 4470.4747 s
Beginning SP Pressure is 30.5239 psia
Ending SP Pressure is 32.3111 psia
Time-Average SP Pressure is 29.1865 +/- 6.9157 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 76.363 cm (cold) / 76.4948 cm (hot) at 14.6281 psia
Beginning Smoothed SP Level is 78.3622 cm (cold) / 78.5503 cm (hot) at 30.5234 psia Ending Smoothed SP Level is 77.938 cm (cold) / 79.3065 cm (hot) at 32.3224 psia
Minimum Smoothed Cold SP Level is 76.3791 cm at \(t\) plus 6840.6193 s and 23.9818 psia
Minimum Smoothed Hot SP Level is 77.1817 cm at t plus 4814.1794 s and 15.4067 psia

Maximum Smoothed Cold SP Level is 78.7871 cm at t plus 3281.6527 s and 36.482 psia Maximum Smoothed Hot SP Level is 79.5186 cm at t plus 4420.0748 s and 40.6367 psia SP 12 Temperature at the beginning is 39.9438 C , and at the end is 113.4903 C At plume detection, the Mixing Number is 42.0753
The Mixing Number ranges from a minimum of 39.6359 at (KEY POINT \#12) \(t\) plus 0 to a maximum of 254.8528 at (KEY POINT \#13) t plus 8208.6405 s; it had a mean value of 97.4678 +/- 58.8632 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid \(T\) (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity ( \(W / m-K\) ) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid
Subcooling delta h e6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy ell
KEY POINT \#1 (t plus 0 s with a Mixing Number of 39.6359): 33.08521587 0.040894 \(0.00925 \quad 0.3937 \quad 0.7836220492 \quad 0.7855031549 \quad 1.006313715\) \(\begin{array}{lllll}1 & 1 & 27.75982624 & 101743.5513 & 0.06948876859\end{array}\) \(0.05442750174 \quad 0.04345532871 .006187186 \mathrm{e}-005 \quad 0.0434553287 \quad 40.66093633\)
\begin{tabular}{llllll}
129.0613714 & 122.6753877 & 41.66791232 & 40.71885552 & 40.23158929
\end{tabular} \(\begin{array}{lllll}36.87472868 & 4.17827036 & 4.251062793 & 2.189823602 & 0.6295271393\end{array}\) 0.6840381966 \(0.6840381966 \quad 4.279562952\) \(940.9339203 \quad 1.213833482\)
\(1.40819784 \quad 0.04177166183\)
992.0145929 \(1.30482712 e-0051.329801054 \mathrm{e}-005\)
1.1921139670 .0006447885825 1532.620416 0.0002265930092
\begin{tabular}{llllll}
1516.968672 & 482.9547405 & 487.5467971 & 2.160903368 & 2.1045156
\end{tabular}
\(\begin{array}{lllll}2.1415156 & 0.07648630269 & 0.08066835385 & 2724.421126 & 2723.650518\end{array}\)
\begin{tabular}{lllll}
170.4858849 & 515.163675 & 2709.794247 & 344.6777901 & 2209.257451
\end{tabular}
\(174.6933078 \quad 170.7263833 \quad 168.6935511 \quad 154.6715116\)

KEY POINT \#2 (t plus 530.2053 s with a Mixing Number of 42.0753): 32.76904188
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.784424842 & 0.7867699226
\end{tabular}
1.00710534 1 10.14747972 . 100399.87
0.06860051293
46.0652565
45.89105069
0.6360967796
0.04188395326
0.0005848876148
1540.709288
2.138609516
2726.115074
2209.494823
\(0.043040054261 .491588007 e-0050.04304005426\)
\(123.1907633 \quad 48.06618006 \quad 45.94829043\)
\(4.178614866 \quad 4.251987273 \quad 2.192957696\) \(0.6841112625 \quad 3.842214204 \quad 1.402013778\)
\(940.5120399 \quad 1.232211157 \quad 1.2074932\)
\(989.8205754 \quad 940.5120399 \quad 1.232211157\) \(0.00022557297431 .306604509 \mathrm{e}-0051.334720227 \mathrm{e}-005\) \(\begin{array}{lllll}1516.170651 & 483.1758588 & 488.3290108 & 2.195859544\end{array}\) \(2.175609516 \quad 0.1013250578 \quad 0.1121368043 \quad 2726.85206\) \(193.0702119 \quad 517.3572369 \quad 2710.531822 \quad 324.287025\) \(201.4315817 \quad 192.5799745 \quad 192.3438448 \quad 171.8463477\) 201.4315817 192.5799745 of 192.3438448
.1059 s with a Mixing Number of 42.16 ): 32.76622413
\(\begin{array}{cccccc}\text { KEY POINT \#3 (t plus } 540.1059 \mathrm{~s} \text { with a Mixing Number of } 42.16): 32.76622413 \\ 0.040894 & 0.00925 & 0.3937 & 0.7844483409 & 0.7868052427\end{array}\)
1
130.3703826 \(\begin{array}{llcccc}1.007095247 & 1 & 1 & 27.1353368 & 100391.7342 \\ 0.0685720452 & 0.05432099934 & 0.04303635331 & 1.302954618 \mathrm{e}-005 & 0.04303635331\end{array}\) \(\begin{array}{lcccc}1.007095247 & 1 & 1 & 27.1353368 & 100391.7342 \\ 0.0685720452 & 0.05432099934 & 0.04303635331 & 1.302954618 \mathrm{e}-005 & 0.04303635331\end{array}\)
\begin{tabular}{lllll}
46.23688756 & 130.3703826 & 123.2006642 & 48.56446787 & 46.02692685
\end{tabular}
\(46.31460925 \quad 41.06472298 \quad 4.178636836 \quad 4.252005099 \quad 2.193018179\)
\begin{tabular}{lllll}
0.6362974863 & 0.6841126367 & 0.6841126367 & 3.82951838 & 1.40189557
\end{tabular}
\begin{tabular}{lllll}
0.04188611893 & 989.7475114 & 940.5039241 & 1.232566395 & 1.20787682
\end{tabular}
\(0.0005831358442 \quad 0.0002255534631 .306638656 \mathrm{e}-0051.334713441 \mathrm{e}-005\)
\(\begin{array}{llllll}1540.937848 & 1516.155256 & 483.1800966 & 488.3259703 & 2.196535571\end{array}\)
\begin{tabular}{lcccl}
2.139328415 & 2.176328415 & 0.1022158838 & 0.1149783375 & 2726.843217 \\
2726.10689 & 193.7874563 & 517.3993823 & 2710.545973 & 323.611926 \\
2209.443834 & 203.5139666 & 192.9086279 & 194.1137952 & 172.1816586
\end{tabular}

KEY POINT \#4 (t plus 3187.2523 s with a Mixing Number of 57.8576): 33.83776389
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.787796125 & 0.7937242272 \\
1.006595513 & & 1 & 24.34436369 & 102565.825 \\
0.06471000507 & 0.05333542332 & 0.0444437527 & \(9.437640397 e-006\) & 0.0444437527 \\
68.71191805 & 134.5691723 & 128.0351923 & 85.59562172 & 72.37365253 \\
65.33644069 & 56.29154615 & 4.186957893 & 4.261010985 & 2.223796172 \\
0.6586355417 & 0.6846514171 & 0.6846514171 & 2.613834399 & 1.346743194 \\
0.0429823386 & 978.577462 & 936.4910128 & 1.416175869 & 1.390258122 \\
0.0004111730472 & 0.0002163922223 & \(1.323319079 e-005\) & \(1.349144821 e-005\) & \\
1557.624262 & 1508.348213 & 485.2037818 & 489.9576215 & 2.547522951 \\
2.495793287 & 2.532793287 & 0.2950289164 & 0.5923206736 & 2732.333904 \\
2731.741256 & 287.8058811 & 538.0014902 & 2717.367222 & 250.1956091 \\
2194.332414 & 358.6010315 & 303.1402947 & 273.6777407 & 235.848131
\end{tabular}

KEY POINT \#5 (t plus 4654.2762 s with a Mixing Number of 82.0582): 35.04082734
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7655041431 & 0.7731254214 \\
1.019482522 & & 1 & 1 & 47.41772052 & 107287.276 \\
0.06159698407 & 0.05729966426 & 0.0460239001 & \(7.921878714 \mathrm{e}-006\) & 0.0460239001 \\
85.8256479 & 129.2738055 & 108.2845642 & 93.68446909 & 87.84261223 \\
74.42372091 & 58.50612623 & 4.200728703 & 4.227852395 & 2.113080015 \\
0.6706787897 & 0.6807596282 & 0.6807596282 & 2.067558 & 1.608425454 \\
0.03896460042 & 968.1016437 & 952.2514683 & 0.7832600012 & 0.7391088895 \\
0.0003301016073 & 0.0002589851802 & \(1.255301584 \mathrm{e}-005\) & \(1.335628647 e-005\) & \\
1555.056855 & 1536.466528 & 476.3774335 & 490.6359105 & 1.353080157 \\
1.287819746 & 1.324819746 & 0.5976622715 & 0.8059369408 & 2734.231049 \\
2731.982608 & 359.4726364 & 454.1027132 & 2688.451851 & 94.63007678 \\
2280.128335 & 392.5170029 & 367.946032 & 311.635418 & 245.0062643
\end{tabular}

KEY POINT \#6 (t plus 4990.9805 s with a Mixing Number of 102.5165): 34.77070922
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & & 0.7650457809 & 0.7729939096 \\
1.021298947 & & 1 & 52.9192652 & 106768.8167 \\
0.06092460601 & 0.05797959147 & 0.04566911711 & \(5.655252398 \mathrm{e}-006\) & 0.04566911711 \\
89.42229738 & 128.0303828 & 104.80996 & 97.78135382 & 89.8340324 \\
76.83265374 & 59.16034487 & 4.204379328 & 4.222967512 & 2.097454261 \\
0.6727150874 & 0.6796018868 & 0.6796018868 & 1.978167456 & 1.666004793 \\
0.03837464772 & 965.7160045 & 954.8483604 & 0.7006559393 & 0.6571333667 \\
0.0003165135658 & 0.0002681100429 & \(1.243387447 e-005\) & \(1.331768419 e-005\) & \\
1553.146725 & 1540.327546 & 474.6773256 & 490.3603293 & 1.201089095 \\
1.134076085 & 1.171076085 & 0.6865652219 & 0.9364705679 & 2733.687284 \\
2730.886835 & 374.575695 & 439.4099829 & 2683.098629 & 64.83428788 \\
2294.277301 & 409.758862 & 376.3055583 & 321.7211974 & 247.7293941
\end{tabular}

KEY POINT \#7 (t plus 5241.1868 s with a Mixing Number of 109.1277): 34.57936056
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7653078691 & 0.7736505596 \\
1.01997673 & & 1 & 49.11594585 & 106095.456 \\
0.06052835661 & 0.05758663741 & 0.0454177928 & \(9.113729752 \mathrm{e}-006\) & 0.0454177928 \\
91.52664635 & 128.4483202 & 106.821409 & 100.8075141 & 92.34479714 \\
85.82742646 & 59.49387495 & 4.206602115 & 4.22576248 & 2.106372121 \\
0.6738383643 & 0.6802897987 & 0.6802897987 & 1.929093819 & 1.632175826 \\
0.03871230899 & 964.2991395 & 953.3515431 & 0.7475619559 & 0.7041765929 \\
0.0003090136381 & 0.0002627579211 & \(1.250281877 e-005\) & \(1.332845368 \mathrm{e}-005\) & \\
1551.858524 & 1538.134366 & 475.6666271 & 490.3292666 & 1.287254269 \\
1.222421777 & 1.259421777 & 0.7435119656 & 1.043756028 & 2733.332604 \\
2730.920228 & 383.4323262 & 447.9134164 & 2686.206454 & 64.48109024 \\
2285.419188 & 422.5229446 & 386.873021 & 359.4763964 & 249.1317901
\end{tabular}

KEY POINT \#8 (t plus 6103.0011 s with a Mixing Number of 130.4794): 34.33773188
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7646154523 & 0.7738265626 \\
1.017219329 & & 1 & 1 & 41.99244426 & 105098.8921 \\
0.05949665081 & 0.05671017522 & 0.04510042889 & \(9.251259416 e-006\) & 0.04510042889 \\
96.95475008 & 129.6181101 & 111.2751135 & 108.2586808 & 97.41882553 \\
96.67845021 & 61.13211779 & 4.21277406 & 4.232274806 & 2.127388299 \\
0.676474041 & 0.6816404762 & 0.6816404762 & 1.812496353 & 1.5620106 \\
0.03949829487 & 960.5468563 & 949.9736863 & 0.860533935 & 0.8178798839 \\
0.0002910449777 & 0.0002515738457 & \(1.265572276 e-005\) & \(1.336081837 e-005\) & \\
1547.860852 & 1532.871294 & 477.8067404 & 490.3609109 & 1.496258537 \\
1.434330227 & 1.471330227 & 0.9088112939 & 1.351892081 & 2733.097692
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 2731.334326 & 406.2988582 & 466.7632988 & 2693.000025 & 60.46444059 \\
\hline & 2266.334393 & 454.0019345 & 408.2527459 & 405.136281 & 256.0020276 \\
\hline \multirow[t]{13}{*}{} & \multirow[t]{2}{*}{POINT \#9 (t plus
0.040894} & 15.5028 s with a & \multicolumn{3}{|l|}{Mixing Number of 131.0746): 34.34906302} \\
\hline & & 0.00925 & 0.3937 & 0.76461026110. & 738309495 \\
\hline & 1.017172925 & 1 & 1 & 41.92851755 & 105134.8677 \\
\hline & 0.0594765048 & 0.05669964055 & 0.04511531162 & \(7.077462995 e-006\) & 0.04511531162 \\
\hline & 97.06003132 & 129.6180808 & 111.3283765 & 108.3207045 & 97.5128098 \\
\hline & 96.80048694 & 61.24096777 & 4.212900338 & 4.232355425 & 2.127650573 \\
\hline & 0.6765214033 & 0.6816552029 & 0.6816552029 & 1.810367608 & 1.561208896 \\
\hline & 0.03950802445 & 960.472648 & 949.9327624 & 0.8619642141 & 0.819357648 \\
\hline & 0.0002907147894 & 40.0002514453678 & \(1.265755325 \mathrm{e}-00\) & \(051.336065393 e-005\) & \\
\hline & 1547.773699 & 1532.805022 & 477.8319075 & 490.3515712 & 1.498917105 \\
\hline & 1.437020204 & 1.474020204 & 0.9122960158 & 1.354740478 & 2733.067023 \\
\hline & 2731.309022 & 406.7425947 & 466.9889171 & 2693.080518 & 60.2463224 \\
\hline & 2266.078106 & 454.2643569 & 408.6489423 & 405.650566 & 256.4575907 \\
\hline \multirow[t]{13}{*}{} & POINT \#10 (t plus 6 & 6459.1074 s with a & \multicolumn{3}{|l|}{Mixing Number of 145.302): 34.38755972} \\
\hline & 0.040894 & 0.00925 & 0.3937 & 0.76436981950. & 7741047966 \\
\hline & 1.016127401 & 1 & 1 & 39.64067204 & 105137.3033 \\
\hline & 0.05896793912 & 0.05635372949 & 0.04516587459 & \(1.829882892 \mathrm{e}-005\) & 0.0451658745 \\
\hline & 99.70897084 & 130.1368523 & 113.0738284 & 110.4497117 & 100.4649535 \\
\hline & 100.4437162 & 86.40375151 & 4.216151427 & 4.235033637 & 2.136392584 \\
\hline & 0.6776687292 & 0.6821192887 & 0.6821192887 & 1.758347409 & 1.535401612 \\
\hline & 0.03983130715 & 958.5896413 & 948.5848129 & 0.9099128031 & 0.8678332121 \\
\hline & 0.0002826219776 & 76.0002473007643 & \(1.271756095 \mathrm{e}-00\) & \(051.337531801 \mathrm{e}-005\) & \\
\hline & 1545.471657 & 1530.590502 & 478.6509734 & 490.3800875 & 1.588211466 \\
\hline & 1.527441608 & 1.564441608 & 1.003692059 & 1.45555215 & 2733.103752 \\
\hline & 2731.532369 & 417.9134062 & 474.385065 & 2695.7082 & 56.47165879 \\
\hline & 2258.718687 & 463.2754417 & 421.0998296 & 421.012895 & 361.9249126 \\
\hline \multirow[t]{13}{*}{KEY} & POINT \#11 (t plus 8 & 8208.6405 s with & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ccc} 
Mixing Number of 254.8528): & 36.53177854 \\
0.3937 & 0.7793797652 & 0.7930647225
\end{tabular}}} \\
\hline & 0.040894 & 0.00925 & & & \\
\hline & 1.010234481 & 1 & 1 & 29.40895034 & 110527.8788 \\
\hline & 0.0560604913 & 0.05406252905 & 0.04798216976 & 8.245342853e-006 & 0.04798216976 \\
\hline & 114.5482901 & 134.8067154 & 124.473113 & 123.0968613 & 114.6922455 \\
\hline & 114.8406192 & 111.4767501 & 4.237215211 & 4.25431685 & 2.200877364 \\
\hline & 0.6825201329 & 0.6842799945 & 0.6842799945 & 1.514262784 & 1.386887216 \\
\hline & 0.04216711365 & 947.4604905 & 939.4573956 & 1.278913746 & 1.24241279 \\
\hline & 0.0002439136993 & 330.0002230720489 & \(1.311027719 \mathrm{e}-00\) & \(051.351632338 \mathrm{e}-005\) & \\
\hline & 1528.777987 & 1514.15628 & 483.7215788 & 491.0746608 & 2.28484078 \\
\hline & 2.228547864 & 2.265547864 & 1.667001461 & 2.189456391 & 2735.632193 \\
\hline & 2734.767306 & 480.6796993 & 522.817425 & 2712.358491 & 42.13772569 \\
\hline & 2212.814768 & 516.9628161 & 481.2884671 & 481.9197139 & 467.676962 \\
\hline
\end{tabular} KEY POINT \#12 (t plus 0 s with a Mixing Number of 39.6359): 33.08521587 0.040894
\begin{tabular}{lllll}
0.00925 & 0.3937 & 0.7836220492 & 0.7855031549 & 1.006313715
\end{tabular}
\begin{tabular}{lccccc}
1 & 1 & \multicolumn{2}{c}{27.75982624} & 101743.5513 & 0.06948876859 \\
0.05442750174 & 0.0434553287 & \(1.006187186 e-005\) & 0.0434553287 & 40.66093633 \\
129.0613714 & 122.6753877 & 41.66791232 & 40.71885552 & 40.23158929 \\
36.87472868 & 4.17827036 & 4.251062793 & 2.189823602 & 0.6295271393 \\
0.6840381966 & 0.6840381966 & 4.279562952 & 1.40819784 & 0.04177166183 \\
992.0145929 & 940.9339203 & 1.213833482 & 1.192113967 & 0.0006447885825 \\
0.0002265930092 & \(1.30482712 e-005\) & \(1.329801054 \mathrm{e}-005\) & 1532.620416 & \\
1516.968672 & 482.9547405 & 487.5467971 & 2.160903368 & 2.1045156 \\
2.1415156 & 0.07648630269 & 0.08066835385 & 2724.421126 & 2723.650518 \\
170.4858849 & 515.163675 & 2709.794247 & 344.6777901 & 2209.257451 \\
174.6933078 & 170.7263833 & 168.6935511 & 154.6715116 &
\end{tabular}
\(174.6933078 \quad 170.7263833 \quad 168.6935511 \quad 154.6715116\)
KEY POINT \#13 (t plus 8208.6405 s with a Mixing Number of 254.8528): 36.53177854
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.7793797652 & 0.7930647225 \\
1.010234481 & & 1 & 29.40895034 & 110527.8788 \\
0.0560604913 & 0.05406252905 & 0.04798216976 & \(8.245342853 e-006\) & 0.04798216976 \\
114.5482901 & 134.8067154 & 124.473113 & 123.0968613 & 114.6922455 \\
114.8406192 & 111.4767501 & 4.237215211 & 4.25431685 & 2.200877364 \\
0.6825201329 & 0.6842799945 & 0.6842799945 & 1.514262784 & 1.386887216 \\
0.04216711365 & 947.4604905 & 939.4573956 & 1.278913746 & 1.242412796 \\
0.0002439136993 & 0.0002230720489 & \(1.311027719 e-005\) & \(1.351632338 e-005\) & \\
1528.777987 & 1514.15628 & 483.7215788 & 491.0746608 & 2.28484078 \\
2.228547864 & 2.265547864 & 1.667001461 & 2.189456391 & 2735.632193 \\
2734.767306 & 480.6796993 & 522.817425 & 2712.358491 & 42.13772569 \\
2212.814768 & 516.9628161 & 481.2884671 & 481.9197139 & 467.676962
\end{tabular}

KEY POINT \#14 (t plus 3737.2608 s with a Mixing Number of 64.4178): 33.83158113
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7877283078 & 0.7945388724 \\
1.005722397 & & 1 & 23.234677 & 102407.731 \\
0.06355144889 & 0.05301664135 & 0.04443563204 & \(5.065536873 \mathrm{e}-006\) & 0.04443563204 \\
75.17457701 & 135.2141941 & 129.5889592 & 94.26377105 & 78.0896482 \\
68.42178886 & 57.00288861 & 4.191315097 & 4.264035882 & 2.234222 \\
0.6636862837 & 0.6847689184 & 0.6847689184 & 2.380413198 & 1.33005606 \\
0.043351429 & 974.8262096 & 935.1801587 & 1.479648245 & 1.456247394 \\
0.000376933624 & 0.0002135960097 & \(1.32868225 e-005\) & \(1.350980698 e-005\) & \\
1558.114163 & 1505.718191 & 485.8346561 & 489.9603839 & 2.669536997 \\
2.618538282 & 2.655538282 & 0.3887813445 & 0.8234185076 & 2732.506623 \\
2731.966773 & 314.8883591 & 544.6327402 & 2719.521197 & 229.7443811 \\
2187.873883 & 395.0571551 & 327.1082361 & 286.6027061 & 238.8327099
\end{tabular}

End

\section*{D. 25 TEST \#25-T25_SRV_STD_57KW_RESULTS_RCICLAND.TXT}

Output Saved to C:\Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash E x p o r t \backslash T 25\) _SRV_STD_57kW
Using 20-second SP 12 averages for begiñing detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1691.7668 s , and ending (KEY POINT \#11) at \(t\) plus 18621.6661 s , for a time period of 16929.8993 s.
Original Data Record Time: 20030.7427 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at t plus \(6603.4197 \mathrm{~s}, \mathrm{~T}\) _bulk \(=70.0701 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=67.761 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=69.956 \mathrm{C}\)
Stratification Beginning Pressure \(=19.2421\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at t plus \(16900.1006 \mathrm{~s}, \mathrm{~T}\) _bulk \(=116.2053 \mathrm{C}\) and T _out \(=114.0093 \mathrm{C}\)
Stratification Ending SP12 Temperature \(=116.1249 \mathrm{C}\)
Stratification Ending Pressure \(=42.1972\) psia
No Plume detected, setting t_plume (KEY POINT \#2) to the end at 16929.8993 s .
At \(t=16929.8993\) s, the pool pressure is 42.3063 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 117.3251, 116.9493, 116.9278, 117.224, and 114.4262 C, respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 0 +/- 0 C.
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were \(0+/-0 \mathrm{C}\).
Minimum Steam Quality: 0.9936 at t plus 16855.603 s
Maximum Steam Quality: 1.0174 at \(t\) plus 2627.9463 s
Time-Averaged Steam Quality: 1.0076 +/- 0.0049616
SRV Alignment, no RCIC Turbine 000000
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 16839.8972 s ; using 300 s smoothing
Max and min smoothed upper level changerates: 0.33739 degrees \(/ \mathrm{min}\) at t plus 10745.4896 s and 0.22283 degrees/min at \(t\) plus 8309.9443 s, respectively
Max and min smoothed mid (SP9) level changerates: 0.3961 degrees/min at t plus 7018.6475 \(s\) and 0.14012 degrees/min at \(t\) plus 339.4064 s , respectively
Max and min smoothed upper-mid level changerate differences: 0.13307 degrees/min at \(t\) plus 10333.789 s and -0.14591 degrees/min at \(t\) plus 8349.6475 s , respectively
Max and min smoothed lower level changerates: 0.41737 degrees \(/ \mathrm{min}\) at t plus 10729.8977 s and 0.15482 degrees/min at \(t\) plus 10143.6781 s, respectively
Max and min smoothed mid-lower level changerate differences: 0.20819 degrees/min at \(t\) plus 10145.8783 s and -0.19929 degrees/min at \(t\) plus 10731.4878 s , respectively
Max and min smoothed outlet level changerates: 0.49568 degrees \(/ \mathrm{min}\) at t plus 7996.9414 s and 0.061126 degrees/min at t plus 12571.92 s, respectively
Max and min smoothed lower-outlet level changerate differences: 0.21599 degrees/min at \(t\) plus 10730.6387 s and -0.18239 degrees/min at \(t\) plus 8076.743 s , respectively
Max and min smoothed hot (SP8) level changerates: 0.37154 degrees/min at \(t\) plus 5909.405 s and 0.17485 degrees/min at t plus 10163.4803 s , respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.16484 degrees/min at \(t\) plus 10333.883 s and -0.18319 degrees \(/ \mathrm{min}\) at t plus 7069.7224 s , respectively
The mean steam flow rate was 23.9164 +/- \(0.92242 \mathrm{~g} / \mathrm{s}\)

The mean feedwater flow rate was 23.7145 +/- \(1.0977 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.0096928+/-0.026798 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is \(-0.14091+/-0.205 \mathrm{C}\) over the Stratification Period, beginning at 0.3469 C and ending at -0.11539 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(-0.22317+/-0.19547\) C over the Stratification Period, beginning at 0.10825 C and ending at -0.35347 C
The stratification period begins and ends with Smoothed SP8 readings of 70.9899 and 116.798 C , respectively

The stratification period begins and ends with condensing flows of 0.33727 and 0.80483 \(\mathrm{kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of 39.5461 and \(115.5447 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(2718.4167+/-1.0752 \mathrm{~kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.80306 and -620.5149 kg/s, respectively
The plume period had a mean steam enthalpy of \(0+/-0 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 0.64757 degrees C at \(t\) plus 6368.9103 s with T_upper \(=69.8538 \mathrm{C}\) and T_mid \(=69.2063 \mathrm{C}\)
At \(t\) plus 6368.9103 s , Smoothed SP8-SP9 is 0.55351 C and Smoothed SP8-Top is -0.094059 C , where Smoothed SP8 is 69.7598 C and Pool \(\mathrm{P}=18.9846\) psia
Maximum Smoothed Top-Lower delta \(T\) is 1.2709 degrees \(C\) at \(t\) plus 6509.7133 s with T_upper \(=70.4505 \mathrm{C}\) and T low \(=69.1796 \mathrm{C}\)
At \(t\) plus 6509.7133 s , Smoothed SP8-SP9 is 0.076161 C and Smoothed SP8-Top is -0.097364 C , where Smoothed SP8 is 70.3531 C and Pool \(\mathrm{P}=19.133\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 1.4952 degrees C at t plus 7482.133 s with T_mid = 75.3094 C and T low \(=73.8142 \mathrm{C}\)

At \(t\) plus 7482.133 s , Smoothed SP8-SP9 is -0.30494 C and Smoothed SP8-Top is 0.11512 C, where Smoothed SP8 is 75.0045 C and Pool \(\mathrm{P}=20.2598\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 4.1028 degrees \(C\) at \(t\) plus 7659.7361 s with T_upper \(=75.7184 \mathrm{C}\) and \(T\) _out \(=71.6156 \mathrm{C}\)
At \(t\) plus 7659.7361 s , Smoothed SP8-SP9 is -0.21127 C and Smoothed SP8-Top is 0.092383 C, where Smoothed SP8 is 75.8108 C and Pool \(\mathrm{P}=20.4894\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 4.4689 degrees \(C\) at \(t\) plus 7482.332 s with T_mid \(=\) 75.3099 C and T_out \(=70.8411 \mathrm{C}\)

At \(t\) plus 7482.332 s, Smoothed SP8-SP9 is -0.30353 C and Smoothed SP8-Top is 0.11678 C, where Smoothed SP8 is 75.0064 C and Pool \(\mathrm{P}=20.2601\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 3.9891 degrees \(C\) at \(t\) plus 13684.4407 s with T_low \(=102.9397 \mathrm{C}\) and T _out \(=98.9506 \mathrm{C}\)
At t plus 13684.4407 s , Smoothed SP8-SP9 is -0.18986 C and Smoothed SP8-Top is -0.31091 C , where Smoothed SP8 is 102.6498 C and Pool \(\mathrm{P}=31.8778\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 0.56935 degrees \(C\) at (KEY POINT \#14) t plus 6386.6133 s with T_SP8 \(=69.8783 \mathrm{C}\) and \(\mathrm{T}_{-}\)SP9 \(=69.309 \mathrm{C}\) and Pool \(\mathrm{P}=\) 19.0114 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 0.41262 degrees \(C\) at \(t\) plus 8325.5472 s with \(\mathrm{T}_{-} \mathrm{SP} 8=78.855 \mathrm{C}\) and \(\mathrm{T}_{\text {_upper }}=78.4424 \mathrm{C}\) and Pool \(\mathrm{P}=21.3724\) psia
Maximum Top-Mid delta \(T\) is 1.8778 degrees \(C\) at (KEY POINT \#4) t plus 5238.1636 s ignoring SP 4, with temperatures of 65.3151 and 63.4373 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=17.884\) psia and \(T\) outlet \(=61.3759 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 5238.1636 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.50499 C and a raw SP12 Reading of 63.4373 C.
Maximum Top-Lower delta \(T\) is 1.994 degrees \(C\) at \(t\) plus 5428.5975 s , with temperatures of 66.1962 and 64.2022 C, respectively, at Set \# 2, where Pool \(P=18.0618\) psia and T_outlet \(=62.3223 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 2.2984 degrees \(C\) at (KEY POINT \#6) t plus 4913.6861 s ignoring SP 4, with temperatures of 64.107 and 61.8087 C, respectively, at Set \# 2, where Pool P = 17.5857 psia and T_outlet \(=59.9851 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 4913.6861 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 0.77012 C and a raw SP12 Reading of 64.107 C .
Maximum Top-Outlet delta \(T\) is 4.8176 degrees \(C\) at \(t\) plus 7684.8366 s , with temperatures of 76.3598 and 71.5422 C, respectively, at Set \# 1, where Pool P \(=20.5177\) psia
Maximum Mid-Outlet delta \(T\) is 4.1598 degrees \(C\) at \(t\) plus 5667.8462 s ignoring SP 4, with temperatures of 67.141 and 62.9812 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=\) 18.2755 psia

Maximum Lower-Outlet delta \(T\) is 4.4134 degrees \(C\) at (KEY POINT \#8) t plus 312.9049 s, with temperatures of 42.7376 and 38.3242 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=14.9519\) psia

Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 9730.9715 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 1.4708 C and a raw SP12 Reading of 84.2147 C .
Minimum SP Pressure is 14.8651 psia at \(t\) plus 53.035 s
Maximum SP Pressure is 42.3064 psia at t plus 16929.1423 s
Beginning SP Pressure is 14.8724 psia
Ending SP Pressure is 42.3063 psia
Time-Average SP Pressure is 23.8366 +/- 7.793 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 77.5315 cm (cold) / 77.6764 cm (hot) at 14.5453 psia
Beginning Smoothed SP Level is 77.8835 cm (cold) / 78.0552 cm (hot) at 14.8659 psia Ending Smoothed SP Level is 78.8656 cm (cold) / 80.3502 cm (hot) at 42.312 psia Minimum Smoothed Cold SP Level is 77.6424 cm at t plus 10599.3842 s and 25.0142 psia Minimum Smoothed Hot SP Level is 78.0535 cm at \(t\) plus 32.1008 s and 14.8741 psia Maximum Smoothed Cold SP Level is 78.8909 cm at \(t\) plus 16654.6976 s and 41.2695 psia Maximum Smoothed Hot SP Level is 80.3533 cm at t plus 16823.9192 s and 41.9066 psia SP 12 Temperature at the beginning is 39.7858 C , and at the end is 116.2199 C
At plume detection, the Mixing Number is 257.6212
The Mixing Number ranges from a minimum of 32.9355 at (KEY POINT \#12) \(t\) plus 0 to a maximum of 258.5348 at (KEY POINT \#13) t plus 16885.1507 s; it had a mean value of 97.5297 +/- 61.7823 over the test period.
Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension ( \(\mathrm{N} / \mathrm{m}\) ) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid \(T\) (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed \(T\) t6, Pool Outlet Smoothed \(T\) t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steàm Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat he5, Pool Mid Subcooling delta he6, Steam Condensation delta he7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy el0, Pool Outlet Smoothed Enthalpy e11
KEY POINT \#1 (t plus 0 s with a Mixing Number of 32.9355): 15.7813689 0.040894 \(0.00925 \quad 0.3937 \quad 0.778835164 \quad 0.780551912 \quad 1.00830913\)
\begin{tabular}{lllllll}
1 & 1 & 26.9054711 & 51154.2295 & 0.0697067273 & 0.0588738685
\end{tabular}
\begin{tabular}{lllll}
0.0207278253 & \(5.08205061 e-006\) & 0.0207278253 & 39.3198886 & 109.289089
\end{tabular}
\begin{tabular}{lllll}
100.197122 & 39.1941363 & 39.4943748 & 40.0334569 & 37.1190151
\end{tabular}
\begin{tabular}{lcccc}
4.17855667 & 4.21689432 & 2.07827362 & 0.627765276 & 0.677838671 \\
0.677838671 & 4.40103552 & 1.74910493 & 0.0376388204 & 992.476182
\end{tabular}
\begin{tabular}{llcccc}
0.677838671 & 4.40103552 & 1.74910493 & 0.0376388204 & 992.476182 \\
958.212648 & 0.602081769 & 0.586692503 & 0.000661189375 & 0.00028115738
\end{tabular}
\begin{tabular}{llllll}
\(1.22760775 e-005\) & \(1.26160301 e-005\) & 1530.16435 & 1544.91056 & 472.356696
\end{tabular}
\begin{tabular}{lllll}
478.692918 & 1.02133481 & 1.02496454 & 1.06196454 & 0.0712082334 \\
0.0707298422 & 2695.35193 & 2694.62802 & 164.786753 & 419.93091 \\
2675.88303 & 255.144157 & 2275.42102 & 164.261289 & 165.514344
\end{tabular}

KEY POINT \#2 (t plus 16929.8993 s with a Mixing Number of 257.6212): 19.3316694
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.788656314 & 0.803502014
\end{tabular}
0.0555809724 116.949322 131.959277 \(117.224021 \quad 114.426164\) 0.683091683 0.0439306527 0.0002385596 1501.59479
0.684896479
945.589105 .000209460606 486.778577
0.999997695
\(.999997695 \quad 12.2208543\)
\(0.0253909194 \quad 1.85852259 \mathrm{e}-005 \quad 0.0253909194\)
\(131.959277 \quad 116.927815 \quad 117.325128\)
\(4.24096055 \quad 4.26877639 \quad 2.25063417\)
\(0.684896479 \quad 1.48109233 \quad 1.30551188\)
\(\begin{array}{rrr}.633 .160635 & 1.58086996 & 1.58301694\end{array}\)
1.58301694
1525.62735
2.91730979
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 2.95430979 & 1.8021435 & 1.80089439 & 2719.97409 & 2719.82474 \\
\hline & 490.906964 & 554.758609 & 2722.77011 & 63.8516447 & 2165.21548 \\
\hline & 490.815755 & 492.499647 & 492.07329 & 480.216118 & \\
\hline & POINT \#3 (t plus & 6603.4197 s with & Mixing Number & r of 60.1263): 18. & 0812751 \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.778250598 & 783628121 \\
\hline & 1.01368497 & 1 & 1 & 25.2296215 & 56603.6886 \\
\hline & 0.0643660181 & 0.0575897134 & 0.02374860589 & \(9.98159096 e-006\) & 0.0237486058 \\
\hline & 70.6429975 & 121.548735 & 106.8057 & 70.9899009 & 70.8816522 \\
\hline & 69.7482559 & 67.8179327 & 4.1884331 & 4.2257403 & 2.10630112 \\
\hline & 0.660142955 & 0.680284615 & 0.680284615 & 2.54020261 & 1.63243468 \\
\hline & 0.038709631 & 977.421869 & 953.363303 & 0.747185981 & 0.716969719 \\
\hline & 0.000400363767 & \(7 \quad 0.00026279897\) & \(1.250228 \mathrm{e}-005\) & \(51.30630296 e-005\) & 1557.73678 \\
\hline & 1538.15194 & 475.658955 & 485.803537 & 1.28656211 & 1.32644324 \\
\hline & 1.36344324 & 0.32078578 & 0.325608445 & 2717.45035 & 2716.81382 \\
\hline & 295.796936 & 447.846981 & 2686.18227 & 152.050045 & 2269.60337 \\
\hline & 297.249957 & 296.795157 & 292.051102 & 283.972044 & \\
\hline KEY & POINT \#4 (t plus & 5238.1636 s with & a Mixing Number & ( of 51.4485) : & 032882 \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.778592206 & 783063068 \\
\hline & 1.01453689 & 1 & 1 & 26.6200308 & 56165.8949 \\
\hline & 0.0655320051 & 0.0579583981 & 0.02351483147 & \(7.93220637 e-006\) & 0.0235148314 \\
\hline & 64.0536452 & 120.682541 & 104.918682 & 64.0574091 & 64.4201702 \\
\hline & 63.6102757 & 61.3060709 & 4.18461626 & 4.22311629 & 2.09792745 \\
\hline & 0.654565944 & 0.679640319 & 0.679640319 & 2.80786308 & 1.66414041 \\
\hline & 0.0383926318 & 981.083783 & 954.767916 & 0.703128465 & 0.672776362 \\
\hline & 0.000439211492 & 20.000267815717 & \(1.2437599 \mathrm{e}-005\) & \(51.30352605 e-005\) & 1555.9611 \\
\hline & 1540.21198 & 474.731155 & 485.543444 & 1.20562142 & 1.23286355 \\
\hline & 1.26986355 & 0.239999544 & 0.240040213 & 2716.58788 & 2715.87925 \\
\hline & 268.203247 & 439.869454 & 2683.26722 & 7 & 2276.71842 \\
\hline
\end{tabular}
\begin{tabular}{lllll}
268.203247 & 439.869454 & 2683.26722 & 171.666207 & 2276.71842
\end{tabular}

KEY POINT \#5 (t plus 5238.1636 s with a Mixing Number of 51.4485): 17.9032882
\begin{tabular}{llccc}
0.040894 & 0.00925 & 0.3937 & 0.778592206 & 0.783063068 \\
1.01453689 & & 1 & 26.6200308 & 56165.8949 \\
0.0655320051 & 0.0579583981 & 0.0235148314 & \(7.93220637 e-006\) & 0.0235148314 \\
64.0536452 & 120.682541 & 104.918682 & 64.0574091 & 64.4201702 \\
63.6102757 & 61.3060709 & 4.18461626 & 4.22311629 & 2.09792745 \\
0.654565944 & 0.679640319 & 0.679640319 & 2.80786308 & 1.66414041 \\
0.0383926318 & 981.083783 & 954.767916 & 0.703128465 & 0.672776362 \\
0.000439211492 & 0.000267815717 & \(1.2437599 e-005\) & \(1.30352605 e-005\) & 1555.9611 \\
1540.21198 & 474.731155 & 485.543444 & 1.20562142 & 1.23286355 \\
1.26986355 & 0.239999544 & 0.240040213 & 2716.58788 & 2715.87925 \\
268.203247 & 439.869454 & 2683.26722 & 171.666207 & 2276.71842
\end{tabular}

KEY POINT \#6 (t plus 4913.6861 s with a Mixing Number of 50.0134): 17.8426597
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.778365421 & 0.782600182 \\
1.01463723 & & 1 & 1 & 26.9070903 & 56017.5468 \\
0.0657516725 & 0.0580393034 & 0.0234351997 & \(1.45265227 e-005\) & 0.0234351997 \\
62.7980351 & 120.397607 & 104.503493 & 62.377167 & 62.8564792 \\
62.3033172 & 59.9430052 & 4.18399269 & 4.22254955 & 2.09612578 \\
0.653431848 & 0.679492784 & 0.679492784 & 2.86433109 & 1.67128267 \\
0.0383241162 & 981.753735 & 955.074836 & 0.693724372 & 0.663532157 \\
0.000447334711 & 0.00026894285 & \(1.24233768 e-005\) & \(1.30255209 e-005\) & 1555.40294 \\
1540.65146 & 474.525374 & 485.422134 & 1.18838889 & 1.21280922 \\
1.24980922 & 0.226754935 & 0.222456844 & 2716.20038 & 2715.47639 \\
262.947729 & 438.114906 & 2682.62302 & 175.167178 & 2278.08548
\end{tabular}

KEY POINT \#7 (t plus 4913.6861 s with a Mixing Number of 50.0134): 17.8426597
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.778365421 & 0.782600182 \\
1.01463723 & & 1 & 26.9070903 & 56017.5468 \\
0.0657516725 & 0.0580393034 & 0.0234351997 & \(1.45265227 e-005\) & 0.0234351997 \\
62.7980351 & 120.397607 & 104.503493 & 62.377167 & 62.8564792 \\
62.3033172 & 59.9430052 & 4.18399269 & 4.22254955 & 2.09612578 \\
0.653431848 & 0.679492784 & 0.679492784 & 2.86433109 & 1.67128267 \\
0.0383241162 & 981.753735 & 955.074836 & 0.693724372 & 0.663532157 \\
0.000447334711 & 0.00026894285 & \(1.24233768 e-005\) & \(1.30255209 e-005\) & 1555.40294 \\
1540.65146 & 474.525374 & 485.422134 & 1.18838889 & 1.21280922 \\
1.24980922 & 0.226754935 & 0.222456844 & 2716.20038 & 2715.47639
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 261.186863 & 263.190842 & \multicolumn{3}{|l|}{.879395 251.009504} \\
\hline \multirow[t]{12}{*}{} & POINT \#8 (t plus & 312.9049 s with a & a Mixing Number & of 33.4559): 16 & 225646 \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.779006603 & 780860017 \\
\hline & 1.01154193 & 1 & 1 & 27.641193 & 51687.3966 \\
\hline & 0.0694673549 & 0.05884461 & 0.02117596412 & \(2.07576937 e-005\) & 0.0211759641 \\
\hline & 40.7923652 & 113.007466 & 100.348835 & 40.6359698 & 40.8312894 \\
\hline & 41.3021971 & 38.3490232 & 4.17853395 & 4.21708669 & 2.07887735 \\
\hline & 0.629637057 & 0.677900808 & 0.677900808 & 4.26845857 & 1.7462426 \\
\hline & 0.0376621953 & 991.913558 & 958.103525 & 0.605133029 & 0.583852102 \\
\hline & 0.000643187234 & 0.000280710205 & \(1.22812597 \mathrm{e}-005\) & \(51.27558399 \mathrm{e}-005\) & 1532.66405 \\
\hline & 1544.76992 & 472.434148 & 481.171726 & 1.02687001 & 1.03091571 \\
\hline & 1.06791571 & 0.0770212894 & 0.0763850388 & 2702.91969 & 2702.15566 \\
\hline & 170.940084 & 420.571097 & 2676.12225 & 249.631012 & 2282.3486 \\
\hline
\end{tabular}

KEY POINT \#9 (t plus 16900.1006s with a Mixing Number of 258.1257): 19.3104902
\begin{tabular}{llccc}
0.040894 & 0.00925 & 0.3937 & 0.788707239 & 0.803514088 \\
0.99853481 & 0.99853481 & 0.999997521 & 12.2345044 & 59081.3989 \\
0.0555881629 & 0.0525471085 & 0.0253631019 & \(1.37946999 e-005\) & 0.0253631019 \\
116.913409 & 131.868911 & 131.868911 & 116.798022 & 117.151494 \\
117.099644 & 114.244856 & 4.24090286 & 4.26859284 & 2.24999719 \\
0.683083783 & 0.684892756 & 0.684892756 & 1.4815763 & 1.30642794 \\
0.0439082082 & 945.617309 & 933.238065 & 1.5769116 & 1.57922155 \\
0.000238638039 & 0.000209615455 & \(1.33655339 e-005\) & \(1.33660205 e-005\) & 1525.67618 \\
1501.75444 & 486.743002 & 486.715455 & 2.85712432 & 2.90965992 \\
2.94665992 & 1.80005809 & 1.79337112 & 2719.61983 & 2719.47015 \\
490.754117 & 554.372353 & 2722.64708 & 63.6182361 & 2165.24748 \\
490.264786 & 491.762648 & 491.545224 & 479.447425 &
\end{tabular}

KEY POINT \#10 (t plus 9730.9715 s with a Mixing Number of 88.3552): 18.4067834
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.776704849 & 0.784245298 \\
1.01002367 & & 1 & 20.9736149 & 57390.3415 \\
0.0617740682 & 0.0563938154 & 0.0241761404 & \(5.92674364 \mathrm{e}-006\) & 0.0241761404 \\
84.8728485 & 123.422585 & 112.871899 & 84.5621553 & 84.8870366 \\
84.5566344 & 82.645315 & 4.19974253 & 4.23472018 & 2.13536652 \\
0.670126681 & 0.682067434 & 0.682067434 & 2.09238684 & 1.53834166 \\
0.039793463 & 968.730034 & 948.741435 & 0.904257622 & 0.877831307 \\
0.000333869098 & 0.000247773809 & \(1.27106166 e-005\) & \(1.31159178 \mathrm{e}-005\) & 1555.54254 \\
1530.85092 & 478.556782 & 485.929674 & 1.57766311 & 1.62118796 \\
1.65818796 & 0.575795749 & 0.568811807 & 2718.11646 & 2717.67657 \\
355.496793 & 473.52916 & 2695.40522 & 118.032367 & 2244.5873 \\
354.192007 & 355.555045 & 354.170236 & 346.149013 &
\end{tabular}

KEY POINT \#11 (t plus 16929.8993 s with a Mixing Number of 257.6212): 19.3316694
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.788656314 & 0.803502014 \\
0.99864144 & 0.99864144 & 0.999997695 & 12.2208543 & 59132.5479 \\
0.0555809724 & 0.0525284558 & 0.0253909194 & \(1.85852259 e-005\) & 0.0253909194 \\
116.949322 & 131.959277 & 131.959277 & 116.927815 & 117.325128 \\
117.224021 & 114.426164 & 4.24096055 & 4.26877639 & 2.25063417 \\
0.683091683 & 0.684896479 & 0.684896479 & 1.48109233 & 1.30551188 \\
0.0439306527 & 945.589105 & 933.160635 & 1.58086996 & 1.58301694 \\
0.0002385596 & 0.000209460606 & \(1.33686539 e-005\) & \(1.33691058 e-005\) & 1525.62735 \\
1501.59479 & 486.778577 & 486.753004 & 2.86477374 & 2.91730979 \\
2.95430979 & 1.8021435 & 1.80089439 & 2719.97409 & 2719.82474 \\
490.906964 & 554.758609 & 2722.77011 & 63.8516447 & 2165.21548 \\
490.815755 & 492.499647 & 492.07329 & 480.216118 &
\end{tabular}

KEY POINT \#12 (t plus 0 s with a Mixing Number of 32.9355): 15.7813689 0.040894
\begin{tabular}{lllccccc}
0.00925 & 0.3937 & 0.778835164 & 0.780551912 & 1.00830913 \\
1 & 1 & 26.9054711 & 51154.2295 & 0.0697067273 & 0.0588738685
\end{tabular}
\begin{tabular}{lllllll}
1 & 1 & 26.905471 & 51154.2295 & 0.0697067273 & 0.0588738 \\
0.0207278253 & \(5.08205061 e-006\) & 0.0207278253 & 39.3198886 & 109.289089
\end{tabular}
\begin{tabular}{lllll}
100.197122 & 39.1941363 & 39.4943748 & 40.0334569 & 37.1190151
\end{tabular}
\begin{tabular}{llllll}
4.17855667 & 4.21689432 & 2.07827362 & 0.627765276 & 0.677838671
\end{tabular}
\begin{tabular}{llllll}
0.677838671 & 4.40103552 & 1.74910493 & 0.0376388204 & 992.476182
\end{tabular}
\(\begin{array}{llllll}958.212648 & 0.602081769 & 0.586692503 & 0.000661189375 & 0.00028115738\end{array}\) \(1.22760775 \mathrm{e}-0051.26160301 \mathrm{e}-005 \quad 1530.16435 \quad 1544.91056 \quad 472.356696\)
\begin{tabular}{llccc}
478.692918 & 1.02133481 & 1.02496454 & 1.06196454 & 0.0712082334 \\
0.0707298422 & 2695.35193 & 2694.62802 & 164.786753 & 419.93091
\end{tabular}
\begin{tabular}{lllll}
2675.88303 & 255.144157 & 2275.42102 & 164.261289 & 165.514344
\end{tabular}
\(167.770027 \quad 155.595783\)

KEY POINT \#13 (t plus 16885.1507 s with a Mixing Number of 258.5348): 19.338571
\(0.040894 \quad 0.00925 \quad 0.3937 \quad 0.788707509 \quad 0.803498179\)
\(0.998435983 \quad 0.998435983 \quad 0.999997357 \quad 12.2645023 \quad 59174.25\)
\begin{tabular}{lllccc}
0.0555885827 & 0.0525566683 & 0.0253999841 & \(8.96296035 e-006\) & 0.0253999841 \\
116.911312 & 131.822592 & 131.822592 & 116.727251 & 117.072935
\end{tabular}
\(117.038411 \quad 414.131704 \quad 4.24090037 \quad 2.24967104\)
\(\begin{array}{lllll}0.683083118 & 0.684890813 & 0.684890813 & 1.48160473 & 1.30689808\end{array}\)
\(0.0438967149 \quad 0.618784\).
\(0.000238642527 \quad 0.0002096949121 .33639347 e-0051.33644536 e-005 \quad 1525.67825\)
\begin{tabular}{llllll}
1501.83619 & 486.724755 & 486.695367 & 2.85320982 & 2.90574654
\end{tabular}
\begin{tabular}{lllll}
2.94274654 & 1.7999364 & 1.7892798 & 2719.34298 & 2719.19257
\end{tabular}
\begin{tabular}{lllll}
490.744947 & 554.174374 & 2722.58399 & 63.4294267 & 2165.16861
\end{tabular}
\(489.964392 \quad 491.429186 \quad 491.285252-478.967782\)
KEY POINT \#14 (t plus 6386.6133 s with a Mixing Number of 58.1547): 18.0654861
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.77835866 & 0.783585897
\end{tabular}
\(\begin{array}{lllll}1.01390526 & 1 & 1 & 25.4922163 & 56560.4796\end{array}\)
\(\begin{array}{rrrrr}69.3089606 & 121.487187 & 106.489185 & 69.8783126 & 69.9241998 \\ 68.7114288 & 66.700166 & 4.18758647 & 4.22529463 & 2.10487518\end{array}\)
\(\begin{array}{llllll}0.659064162 & 0.680179541 & 0.680179541 & 2.59077834 & 1.63766774\end{array}\)
\(\begin{array}{lllll}0.038655813 & 978.182746 & 953.600006 & 0.739643527 & 0.709232245\end{array}\)
\(0.0004077501850 .0002636285021 .24914263 \mathrm{e}-0051.30615934 \mathrm{e}-005 \quad 1557.52982\)
\(\begin{array}{llllll}1538.5046 & 475.504192 & 485.816388 & 1.27268167 & 1.31033905\end{array}\)
\(1.34733905 \quad 0.302798327 \quad 0.310367925 \quad 2717.48112 \quad 2716.83127\)
\(\begin{array}{lllll}290.208664 & 446.508524 & 2685.69481 & 156.299861 & 2270.9726\end{array}\)
\(292.592976292 .783759 \quad 279.29137\)
End

\section*{D. 26 TEST \#26 -}

\section*{T26_RCIC_1ATM_VENT82C_107KW_RESULTS_RCICLAND.TXT}

Output Saved to C:\Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash \operatorname{Export} \backslash T 26 \_R C I C \_1 A T M \_V E N T 82 C \_107 \mathrm{~kW} \backslash\)
Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1509.1673 s, and ending (KEY POINT \#11) at \(t\) plus 10111.6164 s , for a time period of 8602.4491 s.
Original Data Record Time: 11495.6395 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(2640.345 \mathrm{~s}, \mathrm{~T}\) _bulk \(=63.6021 \mathrm{C}\) and T _out \(=61.4211 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=63.4172 \mathrm{C}\)
Stratification Beginning Pressure \(=15.2914\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at t plus \(6323.8097 \mathrm{~s}, \mathrm{~T}\) bulk \(=97.0206 \mathrm{C}\) and T _out \(=70.8237 \mathrm{C}\)
Stratification Ending SP12 Temperature \(=96.9722 \mathrm{C}\)
Stratification Ending Pressure \(=22.0599\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 2082.5331 s .
At \(t=2082.5331 \mathrm{~s}\), the pool pressure is 15.2922 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 59.1194, 59.1647, 61.1649, 58.9958, and 56.2378 C , respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 8.5801 +/- 2.1794 C.
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 7.9115 +/- 1.9317 C.
Minimum Steam Quality: 0.99202 at t plus 25.8015 s
Maximum Steam Quality: 1.0028 at t plus 2775.4548 s
Time-Averaged Steam Quality: \(0.99993+/-0.0012993\)
Minimum Turbine Outlet Steam Quality: 1.0072 at \(t\) plus 8593.6485 s
Maximum Turbine Outlet Steam Quality: 1.0254 at \(t\) plus 4198.5711 s
Time-Averaged Turbine Outlet Steam Quality: 1.0191 +/- 0.0043041
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 8512.4489 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.84043 degrees/min at \(t\) plus 3772.8678 s and 0.41471 degrees/min at \(t\) plus 3417.2585 s , respectively

Max and min smoothed mid (SP9) level changerates: 0.7516 degrees/min at \(t\) plus 3835.6664 \(s\) and 0.36488 degrees/min at \(t\) plus 6562.7144 s, respectively
Max and min smoothed upper-mid level changerate differences: 0.20378 degrees/min at \(t\) plus 6562.7144 s and -0.27064 degrees/min at \(t\) plus 7050.6223 s , respectively
Max and min smoothed lower level changerates: 1.2781 degrees/min at t plus 4573.3776 s and 0.044961 degrees \(/ \mathrm{min}\) at t plus 3701.0637 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.59245 degrees/min at t plus 3701.0637 s and -0.70995 degrees/min at \(t\) plus 4573.3776 s, respectively
Max and min smoothed outlet level changerates: 5.7403 degrees/min at \(t\) plus 6529.0134 s and -0.048199 degrees/min at \(t\) plus 5084.6958 s , respectively
Max and min smoothed lower-outlet level changerate differences: 1.2426 degrees/min at \(t\) plus 4573.3776 s and -5.0585 degrees/min at \(t\) plus 6532.9357 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.2131 degrees/min at \(t\) plus 2512.6417 s and 0.24144 degrees/min at \(t\) plus 3461.656 s , respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.6746 degrees/min at \(t\) plus 2516.873 s and -0.32688 degrees/min at \(t\) plus 3843.8649 s , respectively
The mean steam flow rate was 45.565 +/- \(1.3016 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was \(44.6838+/-1.5754 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.0097884+/-0.028318 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta T is \(9.2768+/-1.2571\) C over the Stratification Period, beginning at 6.465 C and ending at 11.7715 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(8.5209+/-1.1511\) C over the Stratification Period, beginning at 5.8939 C and ending at 10.8756 C
The stratification period begins and ends with Smoothed SP8 readings of 70.6423 and 109.2254 C, respectively

The stratification period begins and ends with condensing flows of 0.64802 and 1.6396 kg/s, respectively.
The stratification period begins and ends with condensing+cooling flows of 4.0282 and \(2.1077 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(2730.8514+/-1.1326 \mathrm{~kJ} / \mathrm{kg}\). At plume detection, the condensing and condensing+cooling flows are 0.56834 and 13.146 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of \(2732.9937+/-0.91994 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 1.7985 degrees C at \(t\) plus 6653.4135 s with \(T\) upper \(=\) 101.3939 C and T _mid \(=99.5954 \mathrm{C}\)
 where Smoothed SP8 is 111.5354 C and Pool \(\mathrm{P}=23.4219\) psia
Maximum Smoothed Top-Lower delta \(T\) is 6.5168 degrees \(C\) at \(t\) plus 4451.0766 s with T_upper \(=82.1349 \mathrm{C}\) and T _low \(=75.6181 \mathrm{C}\)
At \(t\) plus 4451.0766 s, Smoothed SP8-SP9 is 8.1524 C and Smoothed SP8-Top is 7.2914 C, where Smoothed SP8 is 89.4263 C and Pool \(\mathrm{P}=15.2931\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 5.6576 degrees \(C\) at \(t\) plus 4451.8766 s with T_mid \(=\) 81.2811 C and T _low \(=75.6236 \mathrm{C}\)

At \(t\) plus 4451.8766 s, Smoothed SP8-SP9 is 8.2045 C and Smoothed SP8-Top is 7.3481 C, where Smoothed SP8 is 89.4856 C and Pool \(\mathrm{P}=15.2923\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 27.4555 degrees C at t plus 6341.9107 s with \(T\) _upper \(=98.5772 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=71.1217 \mathrm{C}\)
At t plus 6341.9107 s, Smoothed \(\overline{S P} 8-S P 9\) is 11.6858 C and Smoothed SP8-Top is 10.6089 C, where Smoothed SP8 is 109.1861 C and Pool \(\mathrm{P}=22.1177\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 26.5262 degrees \(C\) at \(t\) plus 6324.6097 s with T_mid \(=97.4617 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=70.9355 \mathrm{C}\)
At t plus 6324.6097 s , Smoothed SP8-SP9 is 11.7431 C and Smoothed SP8-Top is 10.8452 C , where Smoothed SP8 is 109.2048 C and Pool P \(=22.062\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 26.8493 degrees C at \(t\) plus 6326.0088 s with T_low \(=97.797 \mathrm{C}\) and \(T\) _out \(=70.9477 \mathrm{C}\)
At \(t\) plus 6326.0088 s , Smoothed SP8-SP9 is 11.7032 C and Smoothed SP8-Top is 10.7966 C , where Smoothed SP8 is 109.1745 C and Pool \(\mathrm{P}=22.0628\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 12.5882 degrees \(C\) at (KEY POINT \#14) t plus 6199.7076 s with \(\mathrm{T}_{\text {_ }} \mathrm{SP} 8=108.848 \mathrm{C}\) and \(\mathrm{T}_{\mathrm{C}} \mathrm{SP9}=96.2597 \mathrm{C}\) and Pool \(\mathrm{P}=\) 21.5888 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 11.351 degrees \(C\) at \(t\) plus 6199.6096 s with \(T_{-}\)SP8 \(=108.8474 \mathrm{C}\) and \(T_{-}\)upper \(=97.4964 \mathrm{C}\) and Pool \(\mathrm{P}=21.5897\) psia
Maximum Top-Mid delta \(T\) is 2.2039 degrees \(C\) at (KEY POINT \#4) t plus 3775.2629 s ignoring SP 4, with temperatures of 75.7427 and 73.5389 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=15.2903\) psia and T_outlet \(=67.2342 \mathrm{C}\)

Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 3996.1786 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.99997 C and a raw SP12 Reading of 76.7294 C .
Maximum Top-Lower delta \(T\) is 8.9909 degrees \(C\) at \(t\) plus 4725.7823 s , with temperatures of 85.4287 and 76.4379 C , respectively, at Set \# 1, where Pool P = 16.0928 psia and T_outlet \(=69.7055 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 5.8443 degrees \(C\) at (KEY POINT \#6) t plus 4453.9778 s ignoring SP 4, with temperatures of 81.2265 and 75.3822 C, respectively, at Set \# 2, where Pool \(P=15.2906\) psia and T_outlet \(=69.5136 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 4729.3845 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 1.9481 C and a raw SP12 Reading of 83.9083 C .
Maximum Top-Outlet delta \(T\) is 27.769 degrees \(C\) at \(t\) plus 6317.5123 s, with temperatures of 98.5289 and 70.7599 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=22.0199\) psia
Maximum Mid-Outlet delta \(T\) is 26.4062 degrees \(C\) at \(t\) plus 6338.6125 s ignoring SP 4, with temperatures of 97.4816 and 71.0754 C, respectively, at Set \# 2, where Pool \(P=\) 22.1052 psia

Maximum Lower-Outlet delta \(T\) is 27.6752 degrees \(C\) at (KEY POINT \#8) t plus 6300.4094 s, with temperatures of 98.4029 and 70.7277 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=21.9649\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 6569.4147 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 9.222 C and a raw SP12 Reading of 98.8064 C .
Minimum SP Pressure is 15.0019 psia at \(t\) plus 5.8023 s
Maximum SP Pressure is 35.42 psia at t plus 8602.4491 s
Beginning SP Pressure is 15.0056 psia
Ending SP Pressure is 35.42 psia
Time-Average SP Pressure is 19.3841 +/- 5.807 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 77.0053 cm (cold) / 77.1471 cm (hot) at 14.6275 psia
Beginning Smoothed SP Level is 77.5295 cm (cold) / 77.7042 cm (hot) at 15.0073 psia
Ending Smoothed SP Level is 78.3837 cm (cold) / 79.8394 cm (hot) at 35.4126 psia
Minimum Smoothed Cold SP Level is 77.0556 cm at \(t\) plus 6859.8234 s and 24.4406 psia
Minimum Smoothed Hot SP Level is 77.667 cm at \(t\) plus 1136.419 s and 15.2928 psia
Maximum Smoothed Cold SP Level is 78.3881 cm at t plus 8563.2508 s and 35.1228 psia
Maximum Smoothed Hot SP Level is 79.8402 cm at t plus 8601.45 s and 35.4055 psia
SP 12 Temperature at the beginning is 40.0993 C , and at the end is 116.1783 C
At plume detection, the Mixing Number is 43.1113
The Mixing Number ranges from a minimum of 33.092 at (KEY POINT \#12) \(t\) plus 0 s to a maximum of 265.6553 at (KEY POINT \#13) t plus 8594.2756 s; it had a mean value of 95.099 +/- 63.2521 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension ( \(N / m\) ) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid \(T\) (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed \(T\) t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steäm Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta h e6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy e11
KEY POINT \#1 (t plus 0 s with a Mixing Number of 33.092): 32.12299817 0.040894
\begin{tabular}{llrcccc}
0.00925 & 0.3937 & 0.7752947668 & 0.7770417406 & 1.01508366 \\
1 & 1 & 51.98562368 & 101259.0949 & 0.0695913551 & \\
0.05845146077 & 0.04219151689 & \(7.518137368 e^{2}-006\) & 0.04219151689 & 40.03049824 \\
118.8719371 & 102.3821718 & 40.38905902 & 39.99034888 & 40.14875671
\end{tabular}
\begin{tabular}{lcccc}
37.10384371 & 4.178537448 & 4.219713153 & 2.08714423 & 0.6286735691 \\
0.6787062992 & 0.6787062992 & 4.336370381 & 1.708746198 & 0.03798083344 \\
992.2107477 & 956.6309505 & 0.6472594501 & 0.6180309077 & 0.0006524200102 \\
0.0002748378306 & \(1.235076643 \mathrm{e}-005\) & \(1.297303603 \mathrm{e}-005\) & 1531.388781 & \\
1542.818238 & 473.4648448 & 484.7481391 & 1.103484274 & 1.034718392 \\
1.071718392 & 0.07396443077 & 0.07538978576 & 2715.959198 & 2713.256693 \\
167.7569336 & 429.15424 & 2679.316018 & 261.3973065 & 2286.804958 \\
169.2551925 & 167.5876612 & 168.2526757 & 155.5332582 &
\end{tabular}

KEY POINT \#2 (t plus 2082.5331 s with a Mixing Number of 43.1113): 33.86741642
\begin{tabular}{lccccc}
0.040894 & 0.00925 & & 0.3937 & 0.7732251275 & 0.776964192 \\
1.021292233 & & 1 & 54.11118369 & 104383.2621 \\
0.06638273419 & 0.0582673855 & 0.04448269941 & \(9.781019026 e-006\) & 0.04448269941 \\
59.16472889 & 126.645787 & 103.3308756 & 61.16492946 & 59.11940016 \\
58.99575949 & 56.23781761 & 4.182398101 & 4.220969441 & 2.091115143 \\
0.6500137008 & 0.6790648055 & 0.6790648055 & 3.039100596 & 1.69178802 \\
0.03813296622 & 983.641766 & 955.9375131 & 0.6677157224 & 0.6260233283 \\
0.0004723263968 & 0.0002721729496 & \(1.238322786 e-005\) & \(1.326816291 e-005\) & \\
1553.355625 & 1541.865541 & 473.9410179 & 489.6786587 & 1.140813636 \\
1.05426262 & 1.09126262 & 0.1918730746 & 0.2104618939 & 2731.583419 \\
2728.655399 & 247.7357094 & 433.1608712 & 2680.798181 & 185.4251618 \\
2298.422548 & 256.1021893 & 247.5446961 & 247.0305339 & 235.5012192
\end{tabular}

KEY POINT \#3 (t plus 2640.345 s with a Mixing Number of 47.136): 34.10870152
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7725502866 & 0.7769150951 \\
1.021774835 & & 1 & 54.95701958 & 105019.9145 \\
0.06551032867 & 0.05830878328 & 0.04479961206 & \(8.118896114 \mathrm{e}-006\) & 0.04479961206 \\
64.17729651 & 126.9835477 & 103.1176986 & 70.64231007 & 64.74842759 \\
64.01254673 & 61.45689986 & 4.184719343 & 4.220685431 & 2.090216455 \\
0.6546669858 & 0.6789852041 & 0.6789852041 & 2.802544188 & 1.69556954 \\
0.03809858674 & 981.0151614 & 956.0936828 & 0.6630738951 & 0.620755696 \\
0.0004384363695 & 0.0002727676936 & \(1.237593199 e-005\) & \(1.328168326 e-005\) & \\
1555.9807 & 1542.081928 & 473.8342841 & 489.926578 & 1.132336044 \\
1.054293348 & 1.091293348 & 0.2413386716 & 0.3207762832 & 2732.440151 \\
2729.419877 & 268.705853 & 432.2604575 & 2680.465582 & 163.5546045 \\
2300.179693 & 295.7718399 & 271.0945505 & 268.0179243 & 257.3288695
\end{tabular}

KEY POINT \#4 (t plus 3775.2629 s with a Mixing Number of 58.9357): 34.62123231
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & & 0.7719950154 & 0.777907966 \\
1.022266776 & & 1 & 56.24754711 & 106484.2289 \\
0.06375767287 & 0.05834876664 & 0.04547278869 & \(1.037108454 \mathrm{e}-005\) & 0.04547278869 \\
74.03269581 & 127.3392114 & 102.9117047 & 83.19025321 & 75.25512996 \\
72.54072764 & 67.10429218 & 4.190819732 & 4.220411938 & 2.08935159 \\
0.6627550209 & 0.6789077587 & 0.6789077587 & 2.419219798 & 1.699239559 \\
0.03806547323 & 975.4379115 & 956.2443966 & 0.6586134746 & 0.6156557972 \\
0.0003825862649 & 0.0002733446255 & \(1.236888288 \mathrm{e}-005\) & \(1.329587196 \mathrm{e}-005\) & \\
1557.872338 & 1542.289752 & 473.7310012 & 490.1843528 & 1.124193621 \\
1.054267396 & 1.091267396 & 0.3705977286 & 0.5388149937 & 2733.380219 \\
2730.216432 & 309.9763199 & 431.3904446 & 2680.143942 & 121.4141247 \\
2301.989774 & 348.3869287 & 315.0984965 & 303.7260039 & 280.9619924
\end{tabular}

KEY POINT \#5 (t plus 3996.1786 s with a Mixing Number of 63.5247): 34.72902357
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.7718946322 & 0.7781193432 \\
1.022348221 & & 1 & 56.44152672 & 106787.3312 \\
0.06327717839 & 0.05834845266 & 0.04561436565 & \(1.716074362 \mathrm{e}-005\) & 0.04561436565 \\
76.68771792 & 127.4313434 & 102.9133227 & 85.38951066 & 77.38768641 \\
73.29709537 & 68.44577368 & 4.192809473 & 4.220414082 & 2.089358369 \\
0.6647006467 & 0.6789083691 & 0.6789083691 & 2.331194218 & 1.699210671 \\
0.03806573291 & 973.8460813 & 956.2432135 & 0.6586484141 & 0.6155412711 \\
0.0003695723152 & 0.0002733400853 & \(1.236893825 \mathrm{e}-005\) & \(1.329941177 e-005\) & \\
1557.691797 & 1542.288125 & 473.731813 & 490.243419 & 1.124257388 \\
1.054253106 & 1.091253106 & 0.4140300275 & 0.5875683949 & 2733.58766 \\
2730.402014 & 321.1056478 & 431.397278 & 2680.146469 & 110.2916302 \\
2302.190382 & 357.6223225 & 324.0393117 & 306.8952027 & 286.5783691
\end{tabular}

KEY POINT \#6 (t plus 4453.9778 s with a Mixing Number of 74.0127): 34.94783353
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7717118507 & 0.7786073981 \\
1.022516618 & & 1 & 56.80404153 & 107400.9865 \\
0.06243399257 & 0.05834777565 & 0.04590175864 & \(5.415621659 e-006\) & 0.04590175864 \\
81.30113521 & 127.6219873 & 102.9168115 & 89.49232223 & 82.14475012 \\
75.66373279 & 69.55944445 & 4.196615969 & 4.220418707 & 2.089372989 \\
0.66785242 & 0.6789096849 & 0.6789096849 & 2.191036383 & 1.699148386
\end{tabular}



End

\section*{D. 27 TEST \#27-T27_RCIC_080GPM_107KW_RESULTS_RCICLAND.TXT}

Output Saved to C: \Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash \operatorname{Export} \backslash T 27\) _RCIC_080GPM_107kW
Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1819.4701 s, and ending (KEY POINT \#11) at \(t\) plus 10524.1239 s , for a time period of 8704.6538 s.
Original Data Record Time: 11618.0575 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(2592.5453 \mathrm{~s}, \mathrm{~T}\) bulk \(=63.7245 \mathrm{C}\) and T out \(=61.6323 \mathrm{C}\)
Stratification Beginnīng SP12 Temperature \(=\overline{63} .8034 \mathrm{C}\)
Stratification Beginning Pressure \(=17.5567\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(7301.1276 \mathrm{~s}, \mathrm{~T}\) bulk \(=105.037 \mathrm{C}\) and T out \(=90.9014 \mathrm{C}\)
Stratification Ending SP12 Temperature \(=104.899 \mathrm{C}\)
Stratification Ending Pressure \(=33.7117\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 1694.1349 s .
At \(t=1694.1349 \mathrm{~s}\), the poōl pressure is 16.3486 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 55.6644, 55.6855, 57.6886, 55.4453, and 53.8309 C, respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 9.9742 +/- 3.4134 C.
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 9.5579 +/- 3.2697 C.
Minimum Steam Quality: 0.319 at \(t\) plus 2.0721 s
Maximum Steam Quality: 0.47964 at t plus 8520.6813 s
Time-Averaged Steam Quality: 0.3986 +/- 0.029085
Minimum Turbine Outlet Steam Quality: 0.37276 at t plus 2.1151 s
Maximum Turbine Outlet Steam Quality: 0.50272 at \(t\) plus 8520.6813 s
Time-Averaged Turbine Outlet Steam Quality: 0.44072 +/- 0.020375
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 8614.6517 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.7136 degrees/min at t plus 3219.3091 s and 0.37045 degrees \(/ \mathrm{min}\) at \(t\) plus 3891.0695 s , respectively
Max and min smoothed mid (SP9) level changerates: 0.62455 degrees/min at t plus 3016.7535 s and 0.45099 degrees/min at t plus 3865.8691 s , respectively

Max and min smoothed upper-mid level changerate differences: 0.20347 degrees/min at \(t\) plus 3217.355 s and -0.13313 degrees/min at t plus 3587.9652 s , respectively
Max and min smoothed lower level changerates: 1.0469 degrees \(/ \mathrm{min}\) at t plus 6386.6133 s and 0.28042 degrees/min at \(t\) plus 5700.421 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.2666 degrees/min at \(t\) plus 5700.421 s and -0.52418 degrees/min at t plus 6408.5185 s , respectively
Max and min smoothed outlet level changerates: 3.7081 degrees \(/ \mathrm{min}\) at t plus 7448.234 s and 0.061381 degrees/min at \(t\) plus 6443.3145 s, respectively
Max and min smoothed lower-outlet level changerate differences: 0.92768 degrees/min at \(t\) plus 6386.6133 s and -3.2257 degrees/min at \(t\) plus 7447.733 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.0327 degrees/min at t plus 5829.7994 s and 0.23054 degrees/min at \(t\) plus 4652.9801 s , respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.5005 degrees/min at \(t\) plus 5829.7994 s and -0.32327 degrees/min at \(t\) plus 4671.8802 s , respectively
The mean steam flow rate was \(44.8416+/-1.4812 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 44.3968 +/- \(1.5511 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was 49.8607 +/- \(1.5562 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is 11.081 +/- 2.43 C over the Stratification Period, beginning at 6.5808 C and ending at 14.712 C
Mean Smoothed SP8-Upper Pool delta \(T\) is 10.6101 +/- 2.3551 C over the Stratification Period, beginning at 6.2803 C and ending at 13.6607 C
The stratification period begins and ends with Smoothed SP8 readings of 70.0916 and 119.7275 C , respectively

The stratification period begins and ends with condensing flows of 0.51407 and 1.0994 kg/s, respectively.
The stratification period begins and ends with condensing+cooling flows of 3.8337 and \(1.5724 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of 1469.3177 +/-34.6479 \(\mathrm{kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.44817 and 13.0125 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of \(1460.0121+/-39.3415 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 1.5147 degrees \(C\) at \(t\) plus 8555.1483 s with \(T\) _upper \(=\) 116.7845 C and T _mid \(=115.2699 \mathrm{C}\)

At \(t\) plus 8555.1483 s , Smoothed SP8-SP9 is 13.0526 C and Smoothed SP8-Top is 11.5379 C, where Smoothed SP8 is 128.3224 C and Pool \(\mathrm{P}=41.5899\) psia
Maximum Smoothed Top-Lower delta \(T\) is 3.8845 degrees \(C\) at \(t\) plus 5991.2167 s with T_upper \(=94.7735 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=90.889 \mathrm{C}\)
At t plus 5991.2167 s, Smoothed SP8-SP9 is 13.5854 C and Smoothed SP8-Top is 13.0411 C, where Smoothed SP8 is 107.8146 C and Pool \(\mathrm{P}=27.4142\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 3.3669 degrees \(C\) at \(t\) plus 5975.4048 s with T_mid = 94.0911 C and T _low \(=90.7241 \mathrm{C}\)

At \(t\) plus 5975.4048 s, Smoothed SP8-SP9 is 13.83 C and Smoothed SP8-Top is 13.3543 C , where Smoothed SP8 is 107.9211 C and Pool \(\mathrm{P}=27.3317\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 15.1842 degrees C at \(t\) plus 7156.2453 s with T_upper \(=104.8889 \mathrm{C}\) and \(T\) _out \(=89.7047 \mathrm{C}\)
At t plus 7156.2453 s , Smoothed SP8-SP9 is 14.1991 C and Smoothed SP8-Top is 13.2767 C, where Smoothed SP8 is 118.1656 C and Pool \(\mathrm{P}=32.9107\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 14.3678 degrees \(C\) at \(t\) plus 7138.5253 s with T_mid \(=103.8074 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=89.4397 \mathrm{C}\)

At t plus 7138.5253 s , Smoothed SP8-SP9 is 14.2212 C and Smoothed SP8-Top is 13.4111 C , where Smoothed SP8 is 118.0287 C and Pool \(\mathrm{P}=32.8437\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 14.5683 degrees \(C\) at \(t\) plus 7140.7544 s with T_low \(=104.0319 \mathrm{C}\) and T _out \(=89.4637 \mathrm{C}\)
At \(t\) plus 7140.7544 s , Smoothed \(\overline{\mathrm{SP}}\)-SP9 is 14.1817 C and Smoothed SP8-Top is 13.3771 C , where Smoothed SP8 is 118.0102 C and Pool \(\mathrm{P}=32.8588\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 15.0499 degrees \(C\) at (KEY POINT \#14) t plus 7229.9255 s with \(\mathrm{T}_{\text {_ }} \mathrm{SP} 8=119.5729 \mathrm{C}\) and \(\mathrm{T}_{\text {_ }} \mathrm{SP9}=104.5229 \mathrm{C}\) and Pool \(\mathrm{P}=\) 33.3209 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 14.5503 degrees \(C\) at \(t\) plus 6525.0152 s with \(\mathrm{T}_{2}\) SP8 \(=113.8269 \mathrm{C}\) and \(\mathrm{T}_{\text {_upper }}=99.2767 \mathrm{C}\) and Pool \(\mathrm{P}=29.7621\) psia
Maximum Top-Mid delta \(T\) is 1.6971 degrees \(C\) at (KEY POINT \#4) t plus 1010.5198 s ignoring SP 4, with temperatures of 50.2184 and 48.5213 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=15.6983\) psia and T_outlet \(=47.4385 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 1010.5198 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.72402 C and a raw SP12 Reading of 48.5213 C .
Maximum Top-Lower delta \(T\) is 6.0919 degrees \(C\) at \(t\) plus 6212.7203 s , with temperatures of 96.5204 and 90.4285 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=28.3515\) psia and T_outlet \(=87.2296 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 3.6553 degrees \(C\) at (KEY POINT \#6) \(t\) plus 5973.1176 s ignoring SP 4, with temperatures of 94.0895 and 90.4342 C , respectively, at Set \# 2, where Pool \(P=27.3214\) psia and T_outlet \(=86.3097 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 6452.215 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 1.2177 C and a raw SP12 Reading of 98.202 C .
Maximum Top-Outlet delta \(T\) is 15.7868 degrees \(C\) at \(t\) plus 7307.925 s, with temperatures of 106.7238 and 90.937 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=33.7402\) psia
Maximum Mid-Outlet delta \(T\) is 14.5652 degrees \(C\) at \(t\) plus 7128.0227 s ignoring SP 4, with temperatures of 103.7279 and 89.1627 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=\) 32.7853 psia

Maximum Lower-Outlet delta \(T\) is 15.6986 degrees \(C\) at (KEY POINT \#8) t plus 7170.0251 s , with temperatures of 105.5135 and 89.8148 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=32.9939\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 7477.3327 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 5.2281 C and a raw SP12 Reading of 106.5597 C.
Minimum SP Pressure is 15.0115 psia at t plus 11.1976 s
Maximum SP Pressure is 42.7139 psia at \(t\) plus 8704.6538 s
Beginning SP Pressure is 15.0199 psia
Ending SP Pressure is 42.7139 psia
Time-Average SP Pressure is 23.9627 +/- 7.9515 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 76.7617 cm (cold) / 76.9032 cm (hot) at 14.6411 psia
Beginning Smoothed SP Level is 77.1506 cm (cold) / 77.3257 cm (hot) at 15.0134 psia
Ending Smoothed SP Level is 78.1684 cm (cold) / 79.6268 cm (hot) at 42.7224 psia
Minimum Smoothed Cold SP Level is 76.8548 cm at \(t\) plus 5354.4412 s and 24.852 psia
Minimum Smoothed Hot SP Level is 77.324 cm at t plus 12.4987 s and 15.02 psia
Maximum Smoothed Cold SP Level is 78.2187 cm at \(t\) plus 8375.149 s and 40.3156 psia
Maximum Smoothed Hot SP Level is 79.6415 cm at t plus 8596.4497 s and 41.8829 psia
SP 12 Temperature at the beginning is 39.8782 C , and at the end is 116.5265 C
At plume detection, the Mixing Number is 44.2139
The Mixing Number ranges from a minimum of 34.9051 at (KEY POINT \#12) \(t\) plus 0 s to a maximum of 207.4643 at (KEY POINT \#13) t plus 8704.6538 s; it had a mean value of 88.3259 +/- 48.1948 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sigl, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam T t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed \(T\) t6, Pool Outlet Smoothed \(T\) t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam

Density rho4, Sparger Subcooled T mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta he6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy ell
KEY POINT \#1 (t plus 0 s with a Mixing Number of 34.9051): 72.38472375 0.040894
\begin{tabular}{lccccc}
0.00925 & 0.3937 & 0.7715058191 & 0.7732573834 & 0.3789396626 \\
0.3789396626 & 0.9988639358 & 41.38887283 & 233587.7032 & 0.06954819604 \\
0.05830516357 & 0.04175272278 & 0.05332001229 & 0.09507273507 & 40.29589145 \\
103.1363424 & 103.1363424 & 40.3976587 & 40.25619674 & 40.47728475 \\
38.25276641 & 4.178534214 & 4.22071023 & 2.090294903 & 0.6290104092 \\
0.6789921879 & 0.6789921879 & 4.312614423 & 1.695238152 & 0.03810158895 \\
992.1106211 & 956.0800328 & 0.6634788041 & 1.748893333 & 0.0006491940053 \\
0.0002727155856 & \(1.237657003 e-005\) & \(1.267233186 e-005\) & 1531.837411 & \\
1542.063057 & 473.8436248 & 455.0073867 & 1.133075386 & 1.035136769 \\
1.072136769 & 0.07501716378 & 0.07542426039 & 1285.967519 & 1284.254481 \\
168.8659257 & 432.3392025 & 2680.49468 & 263.4732768 & 853.6283169 \\
169.2911636 & 168.6985543 & 169.625477 & 160.3342155 &
\end{tabular}

KEY POINT \#2 (t plus 1694.1349 s with a Mixing Number of 44.2139): 71.5942382
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7716700471 & 0.7749681899 \\
0.4265937528 & 0.4265937528 & 0.9989876732 & 42.49725249 & 230199.3467 \\
0.0669805974 & 0.05782027244 & 0.04406775194 & 0.04996673059 & 0.09403448253 \\
55.68554134 & 105.6265975 & 105.6265975 & 57.68863303 & 55.66440626 \\
55.44527848 & 53.83091602 & 4.181083372 & 4.224091406 & 2.101033055 \\
0.646566396 & 0.6798870617 & 0.6798870617 & 3.223617539 & 1.652102188 \\
0.03851047249 & 985.3809365 & 954.2428296 & 0.7194019006 & 1.68467922 \\
0.0004985030407 & 0.0002659134934 & \(1.246185629 e-005\) & \(1.271843217 e-005\) & \\
1550.834439 & 1539.451151 & 475.0806583 & 458.8677045 & 1.235478968 \\
1.127587454 & 1.164587454 & 0.1628643149 & 0.1790691158 & 1400.878241 \\
1399.072225 & 233.1929313 & 442.8616153 & 2684.363286 & 209.668684 \\
958.0166258 & 241.5687231 & 233.1031196 & 232.1899124 & 225.4445258
\end{tabular}

KEY POINT \#3 (t plus 2592.5453 s with a Mixing Number of 50.9955): 70.96032712
\begin{tabular}{llllll}
0.040894 & 0.00925 & 0.3937 & 0.7702322694 & 0.7744926058
\end{tabular}
\begin{tabular}{lllll}
0.4358556812 & 0.4358556812 & 0.9989671539 & 40.67338695 & 227077.0639
\end{tabular}
\begin{tabular}{llllll}
0.06562707942 & 0.05747585568 & 0.04397430294 & 0.04922757767 & 0.09320188061
\end{tabular}
\begin{tabular}{llllll}
63.51077206 & 107.3868132 & 107.3868132 & 70.09155791 & 63.81125299
\end{tabular}
\begin{tabular}{lllll}
63.47939345 & 61.56438452 & 4.184345574 & 4.22656438 & 2.108941886
\end{tabular}
\begin{tabular}{rrrrr}
0.6540777413 & 0.6804743961 & 0.6804743961 & 2.832172626 & 1.62291426 \\
0.0388091269 & 981.3809107 & 952.9275656 & 0.7611964825 & 1.74463777
\end{tabular}
\(0.0388091269 \quad 981.3809107 \quad 952.9275656 \quad 0.7611964825 \quad 1.74463777\)
\(0.00044271225730 .00026128824771 .252221191 e-0051.277914893 e-005\)
\begin{tabular}{llllll}
1555.726299 & 1537.497049 & 475.9421898 & 459.8580185 & 1.312371085
\end{tabular}
\begin{tabular}{rrrrr}
1.210671457 & 1.247671457 & 0.2341946949 & 0.313243933 & 1426.868393 \\
1425.214069 & 265.9297608 & 450.3047513 & 2687.075681 & 184.3749905
\end{tabular}
\begin{tabular}{lllll}
976.5636418 & 293.4779016 & 267.1856858 & 265.7999599 & 257.7915996
\end{tabular}

KEY POINT \#4 (t plus 1010.5198 s with a Mixing Number of 39.9014): 69.80558008
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7718682175 & 0.7744954294 \\
0.4177346517 & 0.4177346517 & 0.9989913034 & 42.1877068 & 225136.0388 \\
0.06804508629 & 0.05805509738 & 0.04265658399 & 0.04902860976 & 0.09168519375 \\
49.39689047 & 104.4223952 & 104.4223952 & 49.95159124 & 49.38424214 \\
49.15637218 & 47.46783232 & 4.179407167 & 4.222439293 & 2.095775555 \\
0.639852255 & 0.6794637227 & 0.6794637227 & 3.6078582 & 1.672684886 \\
0.03831078455 & 988.3223913 & 955.1346967 & 0.6918994986 & 1.654642676 \\
0.000552350157 & 0.0002691640117 & \(1.242059925 e-005\) & \(1.267957545 e-005\) & \\
1544.669849 & 1540.736715 & 474.4851104 & 458.0210714 & 1.185046753 \\
1.081916249 & 1.118916249 & 0.1198632253 & 0.1232163025 & 1377.251379 \\
1375.471576 & 206.9013789 & 437.7722241 & 2682.497071 & 230.8708452 \\
939.4791546 & 209.2197295 & 206.8470477 & 205.8977172 & 198.8448792
\end{tabular}

KEY POINT \#5 (t plus 1010.5198 s with a Mixing Number of 39.9014): 69.80558008
\begin{tabular}{lllcc}
0.040894 & 0.00925 & 0.3937 & 0.7718682175 & 0.7744954294 \\
0.4177346517 & 0.4177346517 & 0.9989913034 & 42.1877068 & 225136.0388 \\
0.06804508629 & 0.05805509738 & 0.04265658399 & 0.04902860976 & 0.09168519375 \\
49.39689047 & 104.4223952 & 104.4223952 & 49.95159124 & 49.38424214
\end{tabular}
\begin{tabular}{lcccc}
49.15637218 & 47.46783232 & 4.179407167 & 4.222439293 & 2.095775555 \\
0.639852255 & 0.6794637227 & 0.6794637227 & 3.6078582 & 1.672684886 \\
0.03831078455 & 988.3223913 & 955.1346967 & 0.6918994986 & 1.654642676 \\
0.000552350157 & 0.0002691640117 & \(1.242059925 e-005\) & \(1.267957545 e-005\) & \\
1544.669849 & 1540.736715 & 474.4851104 & 458.0210714 & 1.185046753 \\
1.081916249 & 1.118916249 & 0.1198632253 & 0.1232163025 & 1377.251379 \\
1375.471576 & 206.9013789 & 437.7722241 & 2682.497071 & 230.8708452 \\
939.4791546 & 209.2197295 & 206.8470477 & 205.8977172 & 198.8448792 \\
INT \#6 (t plus 5973.1176 s with & a Mixing Number of & 105.5813 ): & 73.72536939 \\
0.040894 & 0.00925 & 0.3937 & 0.7698469542 & 0.7789155884 \\
0.4477116739 & 0.4477116739 & 0.9985495911 & 29.75824235 & 227314.7072 \\
0.06004652938 & 0.05503593498 & 0.04597649723 & 0.0508570907 & 0.09683358793 \\
94.07068739 & 119.6635668 & 119.6635668 & 107.91297 & 94.55546099 \\
90.77406136 & 86.33890701 & 4.209289256 & 4.245793256 & 2.172061155 \\
0.6751510653 & 0.6835506638 & 0.6835506638 & 1.872693729 & 1.445582203 \\
0.04113245438 & 962.5848346 & 943.3766046 & 1.110806625 & 2.477477282 \\
0.0003003716516 & 0.0002327312271 & \(1.294444055 e-005\) & \(1.326322125 e-005\) & \\
1550.215464 & 1521.498264 & 481.6421377 & 463.0894759 & 1.965579002 \\
1.884203827 & 1.921203827 & 0.8175571537 & 1.336105712 & 1489.589513 \\
1488.70396 & 394.1882734 & 502.3545624 & 2705.445202 & 108.166289 \\
987.2349509 & 452.5733829 & 396.2276623 & 380.3192859 & 361.6803826
\end{tabular}

KEY POINT \#7 (t plus 6452.215 s with a Mixing Number of 119.6125): 73.8167486
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7744297915 & 0.7844841279 \\
0.4470140955 & 0.4470140955 & 0.9984441407 & 27.86390108 & 226019.5536 \\
0.0592538884 & 0.05458759277 & 0.04607451586 & 0.05087909286 & 0.09695360872 \\
98.2216309 & 121.8847389 & 121.8847389 & 112.6878802 & 98.5711825 \\
97.10985614 & 87.82559232 & 4.214180534 & 4.24965755 & 2.185069588 \\
0.6770659849 & 0.6839202343 & 0.6839202343 & 1.787162136 & 1.417803929 \\
0.04160106093 & 959.6777734 & 941.5789263 & 1.186070317 & 2.6491893 \\
0.0002871321439 & 0.000228174808 & \(1.302100743 e-005\) & \(1.335575648 e-005\) & \\
1546.903326 & 1518.179978 & 482.6135274 & 463.3963093 & 2.108159343 \\
2.029390781 & 2.066390781 & 0.9514854172 & 1.56810049 & 1494.603002 \\
1493.826605 & 411.6818491 & 511.7994588 & 2708.658922 & 100.1176098 \\
982.8035429 & 472.7851524 & 413.1537151 & 406.9987504 & 367.9384676
\end{tabular}

KEY POINT \#8 (t plus 7170.0251 s with a Mixing Number of 143.3749): 73.1003084
\(0.040894 \quad 0.00925 \quad 0.3937 \quad 0.7810004279 \quad 0.7925446119\)
\(\begin{array}{lllll}0.451705466 & 0.451705466 & 0.9983056439 & 25.19972088 & 221530.9732\end{array}\)
\(\begin{array}{lllll}0.0581163177 & 0.05387924063 & 0.04630769415 & 0.04970491588 & 0.09601261003\end{array}\)
\(104.1079022 \quad 125.37345 \quad 125.37345 \quad 118.4393628 \quad 105.0399639\)
\(104.1668174 \quad 89.89440916 \quad 4.221749743 \quad 4.255977633 \quad 2.206541932\)
\(\begin{array}{llllll}0.6794157073 & 0.6843873521 & 0.6843873521 & 1.678087095 & 1.37648451\end{array}\)
\begin{tabular}{llllll}
0.04236915531 & 955.4206761 & 938.7127339 & 1.312548313 & 2.900838019
\end{tabular}
\(0.0002700583407 \quad 0.0002213471664 \quad 1.31413383 \mathrm{e}-0051.349411312 \mathrm{e}-005\)
\(1541.300812 \quad 1512.717636 \quad 484.1009077 \quad 464.2614903 \quad 2.349051777\)
\(\begin{array}{llllll}2.274671655 & 2.311671655 & 1.172159407 & 1.890427505 & 1515.159085\end{array}\)
\(\begin{array}{lllll}1514.524059 & 436.5279041 & 526.6529194 & 2713.633626 & 90.12501536\end{array}\)
\(\begin{array}{lllll}988.5061652 & 497.1825892 & 440.4621683 & 436.7779657 & 376.6539036\end{array}\)
KEY POINT \#9 (t plus 7301.1276 s with a Mixing Number of 146.7069): 70.99360254
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7815013969 & 0.7933019822 \\
0.4682405445 & 0.4682405445 & 0.9983831791 & 24.88829082 & 215071.6004 \\
0.0579395155 & 0.05374381516 & 0.04639272971 & 0.04685285605 & 0.09324558576 \\
105.0155258 & 126.0376268 & 126.0376268 & 119.7274862 & 106.0667649 \\
105.1617552 & 90.974623 & 4.222982344 & 4.25721623 & 2.210776092 \\
0.6797407924 & 0.6844606932 & 0.6844606932 & 1.662425605 & 1.368923122 \\
0.04251992864 & 954.7507266 & 938.1611817 & 1.337814512 & 2.852490075 \\
0.0002675877866 & 0.0002200907867 & \(1.316425483 e-005\) & \(1.349881796 e-005\) & \\
1540.347182 & 1511.643556 & 484.3787087 & 465.5889764 & 2.397355188 \\
2.32391979 & 2.36091979 & 1.209670473 & 1.96956895 & 1553.249118 \\
1552.629691 & 440.3638642 & 529.4833741 & 2714.570353 & 89.11950989 \\
1023.765744 & 502.6537616 & 444.802738 & 440.982733 & 381.2001959
\end{tabular}

KEY POINT \#10 (t plus 7477.3327 s with a Mixing Number of 152.8768): 70.9261623
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7819201686 & 0.7940763129 \\
0.4706506009 & 0.4706506009 & 0.9983566177 & 24.3710017 & 214340.5018 \\
0.05766904282 & 0.05356367987 & 0.0463375885 & 0.04681941878 & 0.09315700729 \\
106.4003588 & 126.919705 & 126.919705 & 120.9964548 & 107.6135128 \\
106.7186523 & 100.9416601 & 4.224900692 & 4.258878965 & 2.216472473 \\
0.6802170017 & 0.6845504285 & 0.6845504285 & 1.63908597 & 1.359026244
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 0.04272245385 & 953.7209695 & 937.4257701 & 1.371974369 & 2.910268654 \\
\hline & 0.0002638959411 & 10.0002184429295 & 1.319469312e-005 & \(1.353199445 \mathrm{e}-005\) & \\
\hline & 1538.844026 & 1510.20039 & 484.7449771 & 465.8958699 & 2.462751961 \\
\hline & 2.390255593 & 2.427255593 & 1.268808525 & 2.050159706 & 1561.063449 \\
\hline & 1560.469503 & 446.2182002 & 533.2437883 & 2715.809184 & 87.02558815 \\
\hline & 1027.819661 & 508.0475975 & 451.3434476 & 447.564352 & 423.1809089 \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
KEY POINT \#11 (t plus 8704.6538 s with a Mixing Number of 207.4643): 73.0539754 \\
\(0.040894 \quad 0.00925 \quad 0.3937 \quad 0.7816843232 \quad 0.796268037\)
\end{tabular}} \\
\hline & 0.4755433619 & 0.4755433619 & 0.9980418077 & 21.00047377 & 216388.3025 \\
\hline & 0.05566649909 & 0.05217389107 & 0.0471746867 & 0.0487770679 & 0.09595175459 \\
\hline & 116.5219815 & 133.6740265 & 133.6740265 & 129.1851853 & 117.6855719 \\
\hline & 117.1014808 & 115.33043 & 4.24024623 & 4.272302544 & 2.262891593 \\
\hline & 0.6830037205 & 0.6849500464 & 0.6849500464 & 1.486914672 & 1.288416039 \\
\hline & 0.04436205792 & 945.9378004 & 931.6847753 & 1.657509977 & 3.478682252 \\
\hline & 0.0002395069055 & 50.0002065632329 & 1.342786094e-005 & \(1.380605715 \mathrm{e}-005\) & \\
\hline & 1526.232874 & 1498.528999 & 487.447415 & 467.1520328 & 3.013101056 \\
\hline & 2.945602819 & 2.982602819 & 1.77745626 & 2.637382709 & 1591.133014 \\
\hline & 1590.691994 & 489.0968006 & 562.0914171 & 2725.092017 & 72.99461641 \\
\hline & 1029.041597 & 542.9324366 & 494.0306125 & 491.555568 & 484.0500103 \\
\hline \multirow[t]{13}{*}{} & POINT \#12 (t plus & \multicolumn{2}{|l|}{s with a Mixing Number of 34.9051)} & \(): 72.38472375\) & 0.040894 \\
\hline & 0.00925 & \(0.3937 \quad 0.7\) & 77150581910.77 & \multicolumn{2}{|l|}{0.77325738340 .3789396626} \\
\hline & 0.3789396626 & 0.9988639358 & 41.38887283 & 233587.7032 & 0.06954819604 \\
\hline & 0.05830516357 & 0.04175272278 & 0.05332001229 & 0.09507273507 & 40.29589145 \\
\hline & 103.1363424 & 103.1363424 & 40.3976587 & 40.25619674 & 40.47728475 \\
\hline & 38.25276641 & 4.178534214 & 4.22071023 & 2.090294903 & 0.6290104092 \\
\hline & 0.6789921879 & 0.6789921879 & 4.312614423 & 1.695238152 & 0.03810158895 \\
\hline & 992.1106211 & 956.0800328 & 0.6634788041 & 1.7488933330. & . 0006491940053 \\
\hline & 0.0002727155856 & \(61.237657003 \mathrm{e}-005\) & 1.267233186e-005 & 1531.837411 & \\
\hline & 1542.063057 & 473.8436248 & 455.0073867 & 1.133075386 & 1.035136769 \\
\hline & 1.072136769 & 0.07501716378 & 0.07542426039 & 1285.967519 & 1284.254481 \\
\hline & 168.8659257 & 432.3392025 & 2680.49468 & 263.4732768 & 853.6283169 \\
\hline & 169.2911636 & 168.6985543 & 169.625477 & 160.3342155 & \\
\hline \multirow[t]{13}{*}{KEY} & POINT \#13 (t plus 8 & 8704.6538 s with a & \multicolumn{3}{|l|}{Mixing Number of 207.4643): 73.0539754} \\
\hline & 0.040894 & 0.00925 & 0.39370. & 0.78168432320 & . 796268037 \\
\hline & 0.4755433619 & 0.4755433619 & 0.9980418077 & 21.00047377 & 216388.3025 \\
\hline & 0.05566649909 & 0.05217389107 & 0.0471746867 & 0.0487770679 & 0.09595175459 \\
\hline & 116.5219815 & 133.6740265 & 133.6740265 & 129.1851853 & 117.6855719 \\
\hline & 117.1014808 & 115.33043 & 4.24024623 & 4.272302544 & 2.262891593 \\
\hline & 0.6830037205 & 0.6849500464 & 0.6849500464 & 1.486914672 & 1.288416039 \\
\hline & 0.04436205792 & 945.9378004 & 931.6847753 & 1.657509977 & 3.478682252 \\
\hline & 0.0002395069055 & 50.0002065632329 & 1.342786094e-005 & \(1.380605715 \mathrm{e}-005\) & \\
\hline & 1526.232874 & 1498.528999 & 487.447415 & 467.1520328 & 3.013101056 \\
\hline & 2.945602819 & 2.982602819 & 1.77745626 & 2.637382709 & 1591.133014 \\
\hline & 1590.691994 & 489.0968006 & 562.0914171 & 2725.092017 & 72.99461641 \\
\hline & 1029.041597 & 542.9324366 & 494.0306125 & 491.555568 & 484.0500103 \\
\hline \multirow[t]{13}{*}{KEY} & POINT \#14 (t plus 7 & 7229.9255 s with & \multicolumn{3}{|l|}{a Mixing Number of 145.0114): 72.63314203} \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.7812921340. & . 7929693141 \\
\hline & 0.455251165 & 0.455251165 & 0.998314732 & 25.01756564 & 219992.6711 \\
\hline & 0.05803552189 & 0.05381786368 & 0.04632705556 & 0.04907196115 & 0.0953990167 \\
\hline & 104.5229076 & 125.6745755 & 125.6745755 & 119.5728558 & 105.4731304 \\
\hline & 104.8336481 & 90.52956651 & 4.222311133 & 4.256537771 & 2.208455778 \\
\hline & 0.6795655785 & 0.684421219 & 0.684421219 & 1.670889656 & 1.373044568 \\
\hline & 0.04243733066 & 955.1147952 & 938.4629034 & 1.323955443 & 2.903285758 \\
\hline & 0.0002689235966 & 60.0002207758717 & \(1.315172795 \mathrm{e}-005\) & \(1.350163028 \mathrm{e}-005\) & \\
\hline & 1540.867701 & 1512.232011 & 484.2270714 & 464.5737906 & 2.370852541 \\
\hline & 2.296880224 & 2.333880224 & 1.189190144 & 1.95992802 & 1523.796849 \\
\hline & 1523.170971 & 438.2817134 & 527.9360878 & 2714.058737 & 89.65437445 \\
\hline & 995.8607615 & 501.9953494 & 442.2932117 & 439.5951529 & 379.3264192 \\
\hline
\end{tabular}

End

\section*{D. 28 TEST \#28 -}

\section*{T28_RCIC_2ATM_107KW_COOLSTART_RESULTS_RCICLAND.TXT}
 Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 3597.7018 s, and ending (KEY POINT \#11) at \(t\) plus 13818.2734 s, for a time period of 10220.5716 s.
Original Data Record Time: 14771.3649 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at t plus \(988.9186 \mathrm{~s}, \mathrm{~T}\) bulk \(=39.3671 \mathrm{C}\) and T _out \(=36.6186 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=\overline{3} 3.2288 \mathrm{C}\)
Stratification Beginning Pressure \(=30.2005\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(8556.5464 \mathrm{~s}, \mathrm{~T}\) bulk \(=107.5201 \mathrm{C}\) and T out \(=69.4124 \mathrm{C}\)
Stratification Ending \(\overline{\text { SP1 }}\) Temperature \(=107 . \overline{4768} \mathrm{C}\)
Stratification Ending Pressure \(=30.1989\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 2149.3419 s .
At \(t=2149.3419 \mathrm{~s}\), the pool pressure is 30.292 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 50.3658 , \(50.2292,52.237,50.1444\), and 45.916 C, respectively.
Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 11.2061 +/- 3.3388 C.
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 9.949 +/- 2.8621 C.
Minimum Steam Quality: 0.99388 at t plus 9.7956 s
Maximum Steam Quality: 1.0039 at \(t\) plus 8015.8345 s
Time-Averaged Steam Quality: 1.0008 +/- 0.0011507
Minimum Turbine Outlet Steam Quality: 1.0031 at \(t\) plus 9.7956 s
Maximum Turbine Outlet Steam Quality: 1.0144 at t plus 8015.8345 s
Time-Averaged Turbine Outlet Steam Quality: 1.011 +/- 0.0014241
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 10130.5724 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.84304 degrees/min at \(t\) plus 4342.7714 s and 0.25094 degrees/min at \(t\) plus 8229.4657 s, respectively
Max and min smoothed mid (SP9) level changerates: 0.83866 degrees \(/ \mathrm{min}\) at \(t\) plus 6041.0035 s and 0.28984 degrees/min at \(t\) plus 7939.6361 s , respectively

Max and min smoothed upper-mid level changerate differences: 0.30693 degrees/min at \(t\) plus 4342.7714 s and -0.21965 degrees/min at \(t\) plus 6041.1985 s , respectively
Max and min smoothed lower level changerates: 3.5154 degrees \(/ \mathrm{min}\) at t plus 7620.0298 s and -0.1275 degrees/min at \(t\) plus 3923.8674 s, respectively
Max and min smoothed mid-lower level changerate differences: 0.7054 degrees/min at \(t\) plus 6677.1169 s and -3.1628 degrees/min at \(t\) plus 7620.0298 s , respectively
Max and min smoothed outlet level changerates: 6.6312 degrees/min at \(t\) plus 8815.8502 s and -0.035251 degrees \(/ \mathrm{min}\) at \(t\) plus 4640.2784 s , respectively
Max and min smoothed lower-outlet level changerate differences: 3.4684 degrees/min at t plus 7620.1308 s and -6.0936 degrees/min at \(t\) plus 8822.5106 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.4076 degrees/min at t plus 3198.852 s and 0.038434 degrees \(/ \mathrm{min}\) at t plus 9621.9683 s , respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.90167 degrees/min at \(t\) plus 3198.852 s and -0.42404 degrees/min at \(t\) plus 9049.9566 s , respectively
The mean steam flow rate was 44.5795 +/- \(1.549 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 43.8989 +/- \(1.5794 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.0074086+/-0.030317 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta T is \(9.6494+/-4.7812\) C over the Stratification Period, beginning at 0.41912 C and ending at 11.3544 C
Mean Smoothed SP8-Upper Pool delta \(T\) is 8.5702 +/- 4.1794 C over the Stratification Period, beginning at 0.27803 C and ending at 11.0314 C
The stratification period begins and ends with Smoothed SP8 readings of 40.0335 and 119.7256 C, respectively

The stratification period begins and ends with condensing flows of 0.27037 and 1.7594 kg/s, respectively.
The stratification period begins and ends with condensing+cooling flows of 61.7957 and \(2.1312 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(2733.7677+/-1.3241 \mathrm{~kJ} / \mathrm{kg}\).

At plume detection, the condensing and condensing+cooling flows are 0.31515 and 12.8641 kg/s, respectively
The plume period had a mean steam enthalpy of \(2734.7211+/-0.88685 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 3.3234 degrees \(C\) at \(t\) plus 4804.1788 s with \(T\) _upper \(=\) 76.155 C and T mid \(=72.8316 \mathrm{C}\)

At t plus 4804.1788 s , Smoothed SP8-SP9 is 15.2149 C and Smoothed SP8-Top is 11.8915 C , where Smoothed SP8 is 88.0465 C and Pool \(\mathrm{P}=30.1878\) psia
Maximum Smoothed Top-Lower delta \(T\) is 20.5266 degrees \(C\) at \(t\) plus 7369.7245 s with T_upper \(=102.1131 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=81.5864 \mathrm{C}\)
At \(t\) plus 7369.7245 s, Smoothed SP8-SP9 is 12.1172 C and Smoothed SP8-Top is 11.1705 C , where Smoothed SP8 is 113.2836 C and Pool \(\mathrm{P}=30.0455\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 19.58 degrees \(C\) at \(t\) plus 7369.6245 s with T_mid = 101.1654 C and T _low \(=81.5855 \mathrm{C}\)

At t plus 7369.6245 s , Smoothed SP8-SP9 is 12.1169 C and Smoothed SP8-Top is 11.1703 C , where Smoothed SP8 is 113.2823 C and Pool \(\mathrm{P}=30.0437\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 39.4123 degrees \(C\) at \(t\) plus 8521.0434 s with T_upper \(=108.5898 \mathrm{C}\) and \(T\) _out \(=69.1775 \mathrm{C}\)
At t plus 8521.0434 s , Smoothed SP8-SP9 is 11.4161 C and Smoothed SP8-Top is 11.0152 C , where Smoothed SP8 is 119.605 C and Pool \(\mathrm{P}=30.1743\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 39.0214 degrees \(C\) at \(t\) plus 8530.3459 s with T_mid \(=108.2429 \mathrm{C}\) and T_out \(=69.2215 \mathrm{C}\)
At t plus 8530.3459 s , Smoothed SP8-SP9 is 11.2503 C and Smoothed SP8-Top is 10.8761 C , where Smoothed SP8 is 119.4932 C and Pool \(\mathrm{P}=30.1718\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 39.1379 degrees \(C\) at \(t\) plus 8582.3509 s with T_low \(=108.7916 \mathrm{C}\) and T _out \(=69.6537 \mathrm{C}\)
At t plus 8582.3509 s , Smoothed SP8-SP9 is 11.4031 C and Smoothed SP8-Top is 11.0166 C, where Smoothed SP8 is 119.8361 C and Pool \(\mathrm{P}=30.2269\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 15.5863 degrees \(C\) at (KEY POINT \#14) t plus 4761.7814 s with \(\mathrm{T}_{-} \mathrm{SP} 8=88.0391 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{SP9}=72.4528 \mathrm{C}\) and Pool \(\mathrm{P}=\) 30.1852 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 13.3846 degrees \(C\) at \(t\) plus 4176.5719 s with T _SP8 \(=81.9147 \mathrm{C}\) and \(\mathrm{T}_{\text {_upper }}=68.5301 \mathrm{C}\) and Pool \(\mathrm{P}=30.2939\) psia
Maximum Top-Mid delta \(T\) is 4.5201 degrees \(C\) at (KEY POINT \#4) \(t\) plus 4741.3802 s ignoring SP 4, with temperatures of 76.1137 and 71.5936 C, respectively, at Set \# 2, where Pool \(P=30.1821\) psia and T_outlet \(=61.8557 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 6331.4071 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 1.5067 C and a raw SP12 Reading of 89.78 C .
Maximum Top-Lower delta \(T\) is 23.2917 degrees \(C\) at \(t\) plus 7481.1269 s, with temperatures of 103.5597 and 80.2679 C, respectively, at Set \# 1, where Pool \(P=30.089\) psia and T_outlet \(=67.3451 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 20.963 degrees \(C\) at (KEY POINT \#6) t plus 7512.7287 s ignoring SP 4, with temperatures of 101.9496 and 80.9867 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=30.0895\) psia and T_outlet \(=67.4549 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 7622.491 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 6.9675 C and a raw SP12 Reading of 102.8631 C.
Maximum Top-Outlet delta \(T\) is 39.8142 degrees \(C\) at \(t\) plus 8521.9444 s , with temperatures of 108.9019 and 69.0877 C, respectively, at Set \# 1, where Pool P = 30.1697 psia
Maximum Mid-Outlet delta \(T\) is 38.3183 degrees \(C\) at \(t\) plus 8550.145 ignoring SP 4, with temperatures of 107.5931 and 69.2748 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=\) 30.2107 psia

Maximum Lower-Outlet delta \(T\) is 39.5557 degrees \(C\) at (KEY POINT \#8) t plus 8459.9459 s , with temperatures of 108.4633 and 68.9076 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=30.1467\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 8906.7504 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 13.1801 C and a raw SP12 Reading of 109.8526 C .
Minimum SP Pressure is 30.0287 psia at \(t\) plus 7405.8236 s
Maximum SP Pressure is 30.7579 psia at \(t\) plus 3677.8614 s
Beginning SP Pressure is 30.1169 psia
Ending SP Pressure is 30.6733 psia
Time-Average SP Pressure is 30.2926 +/- 0.14944 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 76.9272 cm (cold) / 76.9919 cm (hot) at 14.5072 psia
Beginning Smoothed SP Level is 78.7456 cm (cold) / 78.8526 cm (hot) at 30.1167 psia
Ending Smoothed SP Level is 78.0288 cm (cold) / 79.5634 cm (hot) at 30.655 psia
Minimum Smoothed Cold SP Level is 77.9996 cm at t plus 9856.5667 s and 30.3833 psia
Minimum Smoothed Hot SP Level is 78.85 cm at t plus 72.3011 s and 30.117 psia

Maximum Smoothed Cold SP Level is 78.7458 cm at t plus 6.4984 s and 30.1169 psia Maximum Smoothed Hot SP Level is 79.5638 cm at t plus 10220.0725 s and 30.6541 psia SP 12 Temperature at the beginning is 29.8523 C , and at the end is 120.1484 C At plume detection, the Mixing Number is 43.7322
The Mixing Number ranges from a minimum of 35.9845 at (KEY POINT \#12) \(t\) plus 0 to a maximum of 1007.9707 at (KEY POINT \#13) t plus 10220.5716 s; it had a mean value of 121.5386 +/- 143.845 over the test period.
Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam T t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity ( \(W / m-K\) ) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mu1, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid
Subcooling delta he6, Steam Condensation delta he7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy ell
KEY POINT \#1 (t plus 0 s with a Mixing Number of 35.9845): 31.6446924 0.040894
\begin{tabular}{lcccccc}
0.00925 & 0.3937 & 0.787455978 & 0.788526287 & 1.00542564 \\
1 & 1 & 26.769384 & 97664.8441 & 0.0710780916 & 0.0545009661
\end{tabular}
\(0.04156329261 .33689853 \mathrm{e}-005 \quad 0.0415632926 \quad 30.7382055 \quad 127.801173\)
\begin{tabular}{llllll}
122.312726 & 30.8779137 & 30.7843063 & 31.2783873 & 27.991711
\end{tabular}
\begin{tabular}{lllll}
4.17951364 & 4.25041627 & 2.18763488 & 0.616157246 & 0.683984972
\end{tabular}
\begin{tabular}{llllll}
0.683984972 & 5.32235029 & 1.41258604 & 0.0416931593 & 995.470697
\end{tabular}
\begin{tabular}{llllll}
941.23011 & 1.20103447 & 1.18250278 & 0.000784637875 & 0.000227315999
\end{tabular}
\(1.30357651 e-0051.32501932 e-005 \quad 1512.94113 \quad 1517.52624 \quad 482.798529\)
\begin{tabular}{lllll}
486.75611 & 2.1365783 & 2.07647465 & 2.11347465 & 0.0442998975
\end{tabular}
\begin{tabular}{llllll}
0.0446544322 & 2721.90347 & 2721.18687 & 129.019485 & 513.620401
\end{tabular}
\begin{tabular}{lllll}
2709.27405 & 384.600916 & 2208.28307 & 129.603396 & 129.210617
\end{tabular}

KEY POINT \#2 (t plus 2149.3419 s with a Mixing Number of 43.7322): 32.697841
\begin{tabular}{|c|c|c|c|c|}
\hline 0.040894 & 0.00925 & 0.39370 & 0.7868297620 & 0.789722033 \\
\hline 1.0105031 & 1 & 1 & 27.9118811 & 99339.4162 \\
\hline 0.0679054099 & 0.054464681 & 0.04294653649 & \(9.99824197 e-006\) & 0.0429465364 \\
\hline 50.2291624 & 133.18003 & 122.491884 & 52.2370218 & 50.365793 \\
\hline 50.1444409 & 45.9159789 & 4.17934812 & 4.25073524 & 2.18871441 \\
\hline 0.640828231 & 0.684011452 & 0.684011452 & 3.55238967 & 1.41041444 \\
\hline 0.0417318871 & 987.989004 & 941.08386 & 1.2073436 & 1.17173949 \\
\hline 0.000544695374 & 40.000226958296 & \(1.30419431 \mathrm{e}-005\) & \(51.34603721 e-005\) & 51545.77325 \\
\hline 1517.25121 & 482.875762 & 490.443865 & 2.14856701 & 2.08904351 \\
\hline 2.12604351 & 0.124924155 & 0.137893645 & 2733.36608 & 2732.58701 \\
\hline 210.466661 & 514.38276 & 2709.53115 & 303.916099 & 2218.98332 \\
\hline 218.858671 & 211.036224 & 210.114133 & 192.447611 & \\
\hline INT \#3 (t plus & 988.9186 s with a & Mixing Number & of 38.9776): 32. & . 1591952 \\
\hline 0.040894 & 0.00925 & 0.39370 & 0.7871506060 & 0.788961015 \\
\hline 1.00932002 & 1 & 1 & 27.4402661 & 98076.4858 \\
\hline 0.0696589419 & 0.0544853078 & 0.04223905936 & \(6.51506704 \mathrm{e}-006\) & 0.0422390593 \\
\hline 39.6144184 & 131.864271 & 122.390047 & 40.0335347 & 39.7555084 \\
\hline 39.6102922 & 36.5769755 & 4.17828673 & 4.25055384 & 2.18810037 \\
\hline 0.628197406 & 0.683996445 & 0.683996445 & 4.37351909 & 1.41164791 \\
\hline 0.0417098608 & 992.414501 & 941.167008 & 1.2037541 & 1.17215173 \\
\hline 0.000657550216 & 60.000227161492 & \(1.30384314 \mathrm{e}-005\) & \(51.34091073 \mathrm{e}-005\) & 51530.84591 \\
\hline 1517.40764 & 482.831876 & 489.565843 & 2.14174569 & 2.08231864 \\
\hline
\end{tabular}
\begin{tabular}{lccccr}
2.11931864 & 0.0723396474 & 0.0739764028 & 2730.59951 & 2729.84654 \\
166.111277 & 513.949413 & 2709.38504 & 347.838136 & 2216.6501 \\
167.862463 & 166.699284 & 166.095634 & 153.425382 & \\
INT \# (t plus & 4741.3802 s s with & a Mixing Number & of 59.7026\():\) & 34.0677977 \\
0.040894 & 0.00925 & & 0.3937 & 0.7844888949 & 0.7907880513 \\
1.011197812 & & 1 & 1 & 29.28787036 & 103331.4765 \\
0.06403625486 & 0.05450082459 & 0.04474588749 & \(5.042827596 e-006\) & 0.04474588749 \\
72.48441432 & 133.725464 & 122.3134248 & 87.21517734 & 75.45274308 \\
70.20394924 & 61.75105165 & 4.189502271 & 4.250417515 & 2.187639084 \\
0.6616293469 & 0.6839850759 & 0.6839850759 & 2.473094419 & 1.412577556 \\
0.0416933101 & 976.3936286 & 941.2295394 & 1.201059021 & 1.163336108 \\
0.0003905647352 & 0.0002273146022 & \(1.303578916 e-005\) & \(1.348251826 e-005\) & \\
1558.031936 & 1517.525164 & 482.7988302 & 490.8585728 & 2.136624945 \\
2.081380299 & 2.118380299 & 0.3470918445 & 0.6307932334 & 2734.719332 \\
2733.861553 & 303.5720358 & 513.6233745 & 2709.275058 & 210.0513387 \\
2221.095958 & 365.3725099 & 316.0096155 & 294.0212456 & 258.6452929
\end{tabular}

KEY POINT \#5 (t plus 6331.4071 s with a Mixing Number of 87.404): 34.52540051
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7844225027 & 0.793362633 \\
1.011488945 & 1 & 1 & 29.40302914 & 104537.845 \\
0.06073591251 & 0.05443097573 & 0.04534691971 & \(-1.481818066 \mathrm{e}-007\) & \\
0.04534691971 & 90.42577265 & 134.3559044 & 122.6582442 & 102.4743314 \\
91.5162474 & 80.21679446 & 65.62081656 & 4.20521993 & 4.251032157 \\
2.189719828 & 0.6733083686 & 0.6840357143 & 0.6840357143 & 1.954387456 \\
1.408404592 & 0.04176794135 & 965.0848794 & 940.9479342 & 1.213225989 \\
1.174208532 & 0.0003129219046 & 0.0002266270886 & \(1.304767999 e-005\) & \(1.350593873 e-005\) \\
1552.732443 & 1516.995103 & 482.9473676 & 491.2065657 & 2.159748429 \\
2.104593662 & 2.141593662 & 0.7132492597 & 1.107065677 & 2735.848762 \\
2734.984224 & 378.870215 & 515.0907169 & 2709.769678 & 136.2205019 \\
2220.758046 & 429.6205055 & 383.4552295 & 335.9923596 & 274.8392354
\end{tabular}

KEY POINT \#6 (t plus 7512.7287 s with a Mixing Number of 130.6208): 34.71641681
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.782159809 & 0.793207967 \\
1.01153386 & 1 & 1 & 29.95024108 & 105215.0321 \\
0.0584952498 & 0.05451831595 & 0.04559780748 & \(5.989831328 e-006\) & 0.04559780748 \\
102.1561782 & 133.9899081 & 122.2270377 & 115.0341724 & 103.1690178 \\
85.7987784 & 67.38697037 & 4.219183083 & 4.250263998 & 2.187119746 \\
0.6786772919 & 0.6839721776 & 0.6839721776 & 1.712774124 & 1.413627312 \\
0.04167467288 & 956.8429876 & 941.3000098 & 1.198026326 & 1.15928874 \\
0.0002755085241 & 0.0002274874576 & \(1.30328103 e-005\) & \(1.349325397 e-005\) & \\
1543.249686 & 1517.657492 & 482.7615456 & 491.0588545 & 2.130863595 \\
2.074962834 & 2.111962834 & 1.094742489 & 1.693656357 & 2735.375169 \\
2734.478152 & 428.2758845 & 513.2557984 & 2709.151005 & 84.97991388 \\
2222.119371 & 482.7276868 & 432.5486522 & 359.4228136 & 282.2294441
\end{tabular}

KEY POINT \#7 (t plus 7622.491 s with a Mixing Number of 134.3487): 34.75361592
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7821283567 & 0.7933971144 \\
1.011872606 & & 1 & 29.99053981 & 105213.5812 \\
0.05836577579 & 0.0545130284 & 0.04564666615 & \(1.002202388 \mathrm{e}-005\) & 0.04564666615 \\
102.8240438 & 134.3650243 & 122.2531537 & 115.3671382 & 104.0084493 \\
93.23483558 & 67.53569708 & 4.22006749 & 4.250310388 & 2.187276667 \\
0.6789314683 & 0.6839760859 & 0.6839760859 & 1.700747476 & 1.413309774 \\
0.04168030464 & 956.3546938 & 941.278709 & 1.1989425 & 1.159073712 \\
0.0002736190793 & 0.000227435175 & \(1.303371085 e-005\) & \(1.350789844 \mathrm{e}-005\) & \\
1542.581619 & 1517.617507 & 482.7728202 & 491.3076518 & 2.132603993 \\
2.076603265 & 2.113603265 & 1.120743308 & 1.712123342 & 2736.158071 \\
2735.258639 & 431.0941466 & 513.3669203 & 2709.188513 & 82.27277372 \\
2222.791151 & 484.1390103 & 436.092093 & 390.6864547 & 282.8521919
\end{tabular}

KEY POINT \#8 (t plus 8459.9459 s with a Mixing Number of 173.1395): 34.94934702
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7811717748 & 0.7933878768 \\
1.01181609 & & 1 & 1 & 30.11763294 & 105814.2055 \\
0.05741096395 & 0.05450539346 & 0.04590374652 & \(4.569947347 e-006\) & 0.04590374652 \\
107.7176691 & 134.342612 & 122.2908613 & 119.3003745 & 108.262016 \\
107.5028049 & 68.97373807 & 4.22685524 & 4.2503774 & 2.187503363 \\
0.6806270464 & 0.6839817152 & 0.6839817152 & 1.617504459 & 1.412851575 \\
0.04168843992 & 952.7144802 & 941.2479487 & 1.200266314 & 1.160543608 \\
0.0002604577682 & 0.0002273597266 & \(1.303501111 e-005\) & \(1.350686885 e-005\) & \\
1537.282823 & 1517.559745 & 482.7890946 & 491.2836549 & 2.135118914 \\
2.078380619 & 2.115380619 & 1.327254893 & 1.943033128 & 2736.094502
\end{tabular}
\begin{tabular}{cccccc}
2735.18743 & 451.7620714 & 513.5273659 & 2709.242662 & 61.76529452 \\
2222.567136 & 500.8231895 & 454.061914 & 450.8552264 & 288.8730701 \\
KEY POINT \#9 (t plus & 8556.5464 s with & a Mixing Number of & 179.8752 ) : & 34.95865339 \\
0.040894 & 0.00925 & & 0.3937 & 0.7813213283 & 0.7936178006 \\
1.011862028 & & 1 & 1 & 30.07500685 & 105810.8909 \\
0.05728264852 & 0.05449242955 & 0.04591596984 & \(7.763053386 e-006\) & 0.04591596984 \\
108.3711685 & 134.4512468 & 122.3548811 & 119.7256084 & 108.6941654 \\
108.3229453 & 69.40459768 & 4.227801883 & 4.250491252 & 2.187888587 \\
0.6808317192 & 0.6839912355 & 0.6839912355 & 1.607004433 & 1.412074402 \\
0.04170226245 & 952.2203593 & 941.19571 & 1.202516581 & 1.16257875 \\
0.000258786864 & 0.0002272317381 & \(1.303721871 e-005\) & \(1.351088872 e-005\) & \\
1536.523527 & 1517.461595 & 482.8167125 & 491.3425124 & 2.139394269 \\
2.082592361 & 2.119592361 & 1.357061646 & 1.969451644 & 2736.282572 \\
2735.378066 & 454.5249315 & 513.7997757 & 2709.33457 & 59.2748442 \\
2222.482797 & 502.6288145 & 455.8893302 & 454.3223724 & 290.6775661
\end{tabular}

KEY POINT \#10 (t plus 8906.7504 s with a Mixing Number of 211.9435): 34.86332991
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.7815464539 & 0.7944454065
\end{tabular}
\begin{tabular}{lcccc}
1.011737016 & 1 & 1 & 29.76698776 & 105498.6852 \\
0.0567922359 & 0.05444355647 & 0.04579076851 & \(1.844107905 e-006\) & 0.04579076851 \\
110.8600019 & 134.5525896 & 122.5961555 & 120.7099794 & 111.1966996 \\
111.2520209 & 96.50463179 & 4.231497357 & 4.250921262 & 2.189344248 \\
0.6815642509 & 0.6840266961 & 0.6840266961 & 1.56825889 & 1.409153956 \\
0.04175447481 & 950.320957 & 940.998678 & 1.211027879 & 1.171255024 \\
0.000252598337 & 0.0002267505949 & \(1.304553885 e-005\) & \(1.35139221 e-005\) & \\
1533.521071 & 1517.090767 & 482.9206555 & 491.3549496 & 2.15556979 \\
2.099010519 & 2.136010519 & 1.475671127 & 2.031734819 & 2736.327794 \\
2735.44172 & 465.0529716 & 514.8264887 & 2709.680681 & 49.77351704 \\
2221.501305 & 506.8103095 & 466.4765584 & 466.7132163 & 404.4579698
\end{tabular}

KEY POINT \#11 (t plus 10220.5716 s with a Mixing Number of 1007.9707): 36.75326781
\begin{tabular}{llcccc}
0.040894 & 0.00925 & & 0.3937 & 0.7802883115 & 0.7956340204 \\
1.012138596 & & 1 & 31.20530889 & 111019.5717 \\
0.05482057778 & 0.05439647514 & 0.04827308184 & \(5.863811308 \mathrm{e}-006\) & 0.04827308184 \\
120.7317695 & 135.1889862 & 122.8284713 & 122.8370324 & 120.917936 \\
120.8604594 & 116.7488664 & 4.247624677 & 4.251336693 & 2.190751621 \\
0.6837441611 & 0.6840602146 & 0.6840602146 & 1.432080027 & 1.406354623 \\
0.04180492623 & 942.5133635 & 940.8087265 & 1.219269016 & 1.177932012 \\
0.0002305232762 & 0.0002262891214 & \(1.305355045 e-005\) & \(1.353804659 \mathrm{e}-005\) & \\
1519.929093 & 1516.732328 & 483.020527 & 491.7327475 & 2.171238803 \\
2.113586827 & 2.150586827 & 2.033131503 & 2.171817992 & 2737.621795 \\
2736.648023 & 506.9038867 & 515.8151831 & 2710.013536 & 8.911296413 \\
2221.806612 & 2710.26356 & 507.6934884 & 507.4517858 & 490.0042161
\end{tabular}

KEY POINT \#12 (t plus 0 s with a Mixing Number of 35.9845): 31.6446924 0.040894
\begin{tabular}{lllllll}
0.00925 & 0.3937 & 0.787455978 & 0.788526287 & 1.00542564 \\
1 & 1 & 26.769384 & 97664.8441 & 0.0710780916 & 0.0545009661
\end{tabular}
\(\begin{array}{llllll}0.0415632926 & 1.33689853 e-005 & 0.0415632926 & 30.7382055 & 127.801173\end{array}\)
\begin{tabular}{lllll}
122.312726 & 30.8779137 & 30.7843063 & 31.2783873 & 27.991711
\end{tabular}
\begin{tabular}{lllll}
4.17951364 & 4.25041627 & 2.18763488 & 0.616157246 & 0.683984972
\end{tabular}
\begin{tabular}{lllll}
0.683984972 & 5.32235029 & 1.41258604 & 0.0416931593 & 995.470697
\end{tabular}
\(941.23011 \quad 1.20103447 \quad 1.18250278 \quad 0.000784637875 \quad 0.000227315999\)
\(1.30357651 e-0051.32501932 e-005 \quad 1512.94113 \quad 1517.52624 \quad 482.798529\)
\(486.75611 \quad 2.1365783 \quad 2.07647465 \quad 2.11347465 \quad 0.0442998975\)
\(\begin{array}{lllll}0.0446544322 & 2721.90347 & 2721.18687 & 129.019485 & 513.620401\end{array}\)
\(2709.27405 \quad 384.600916 \quad 12208.28307 \quad 129.210617\)
131.278784
117.545138

KEY POINT \#13 (t plus 10220.5716 s with a Mixing Number of 1007.9707): 36.75326781
\begin{tabular}{lllcccc}
0.040894 & 0.00925 & & 0.3937 & 0.7802883115 & 0.7956340204 \\
1.012138596 & & 1 & 31.20530889 & 111019.5717 \\
0.05482057778 & 0.05439647514 & 0.04827308184 & \(5.863811308 \mathrm{e}-006\) & 0.04827308184 \\
120.7317695 & 135.1889862 & 122.8284713 & 122.8370324 & 120.917936 \\
120.8604594 & 116.7488664 & 4.247624677 & 4.251336693 & 2.190751621 \\
0.6837441611 & 0.6840602146 & 0.6840602146 & 1.432080027 & 1.406354623 \\
0.04180492623 & 942.5133635 & 940.8087265 & 1.219269016 & 1.177932012 \\
0.0002305232762 & 0.0002262891214 & \(1.305355045 e-005\) & \(1.353804659 e-005\) & \\
1519.929093 & 1516.732328 & 483.020527 & 491.7327475 & 2.171238803 \\
2.113586827 & 2.150586827 & 2.033131503 & 2.171817992 & 2737.621795 \\
2736.648023 & 506.9038867 & 515.8151831 & 2710.013536 & 8.911296413 \\
2221.806612 & 2710.26356 & 507.6934884 & 507.4517858 & 490.0042161
\end{tabular}

KEY POINT \#14 (t plus 4761.7814 s with a Mixing Number of 59.6698): 34.07064259
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7844765921 & 0.7908128175 \\
1.011203794 & & 1 & 29.29222799 & 103338.5904 \\
0.0640419317 & 0.05450109571 & 0.04474962407 & \(5.449893174 \mathrm{e}-006\) & 0.04474962407 \\
72.45279463 & 133.7303582 & 122.3120859 & 88.03908103 & 75.72519598 \\
70.34500822 & 61.88135511 & 4.189480506 & 4.250415134 & 2.187631029 \\
0.6616048973 & 0.6839848766 & 0.6839848766 & 2.474220019 & 1.412593812 \\
0.04169302106 & 976.4120973 & 941.2306319 & 1.201011972 & 1.163270747 \\
0.0003907300868 & 0.0002273172794 & \(1.303574299 \mathrm{e}-005\) & \(1.348271592 \mathrm{e}-005\) & \\
1558.030346 & 1517.527217 & 482.7982525 & 490.8622226 & 2.136535556 \\
2.081245916 & 2.118245916 & 0.3466252317 & 0.6511523615 & 2734.730842 \\
2733.872807 & 303.4395545 & 513.6176775 & 2709.273136 & 210.178123 \\
2221.113165 & 368.8348157 & 317.1516585 & 294.6119932 & 259.1903823
\end{tabular}

End

\section*{D. 29 TEST \#29-}

\section*{T29_RCIC_040GPM_2ATM_107KW_COOLSTART_RESULTS_RCICLAND}

\section*{.TXT}

Output Saved to C:\Local
Files \(\backslash\) RCICLAND_NOTITLES \(\backslash\) Export \(\backslash T 29\) _RCIC_040GPM_2ATM_107kW_coolstart
Using 20-second SP 12 āverages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 2421.3895 s, and ending (KEY POINT \#11) at \(t\) plus 11903.9429 s , for a time period of 9482.5534 s.
Original Data Record Time: 12783.2642 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(686.2982 \mathrm{~s}, \mathrm{~T}\) _bulk \(=41.237 \mathrm{C}\) and T _out \(=38.2616 \mathrm{C}\)
Stratification Beginnīng SP12 Temperature = 41.1185 C
Stratification Beginning Pressure \(=30.4162\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(7919.0259 \mathrm{~s}, \mathrm{~T}\) bulk \(=106.5178 \mathrm{C}\) and T _out \(=67.3287 \mathrm{C}\)
Stratification Ending SP12 Temperature \(=106.3929 \mathrm{C}\)
Stratification Ending Pressure \(=30.1945\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 542.398 s .
At \(t=542.398 \mathrm{~s}\), the pool pressure is 30.47 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 40.594, 40.7242, 42.7248, 40.7346, and 37.0169 C, respectively.
Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 11.1358 +/- 3.1852 C .
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 9.7558 +/- 2.9322 C .
Minimum Steam Quality: 0.5427 at t plus 1266.8364 s
Maximum Steam Quality: 0.69186 at \(t\) plus 9342.5534 s
Time-Averaged Steam Quality: 0.58277 +/- 0.024407
Minimum Turbine Outlet Steam Quality: 0.56487 at \(t\) plus 1266.8364 s
Maximum Turbine Outlet Steam Quality: 0.71497 at t plus 9342.5534 s
Time-Averaged Turbine Outlet Steam Quality: 0.60572 +/- 0.025005
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 9392.5532 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.71102 degrees \(/ \mathrm{min}\) at t plus 3165.8401 s and 0.23849 degrees/min at \(t\) plus 7474.5195 s , respectively
Max and min smoothed mid (SP9) level changerates: 0.8017 degrees/min at t plus 4929.674 s and 0.30623 degrees \(/ \mathrm{min}\) at \(t\) plus 7376.5179 s , respectively
Max and min smoothed upper-mid level changerate differences: 0.30098 degrees/min at \(t\) plus 3331.3465 s and -0.24691 degrees/min at \(t\) plus 4698.7737 s , respectively
Max and min smoothed lower level changerates: 3.6305 degrees/min at \(t\) plus 6834.4069 s and -0.22265 degrees/min at \(t\) plus 2371.5286 s, respectively
Max and min smoothed mid-lower level changerate differences: 0.73399 degrees/min at \(t\) plus 2371.5286 s and -3.2396 degrees/min at t plus 6834.5029 s , respectively

Max and min smoothed outlet level changerates: 7.3879 degrees \(/ \mathrm{min}\) at t plus 8150.8062 s and 0.062581 degrees/min at \(t\) plus 3286.646 s, respectively
Max and min smoothed lower-outlet level changerate differences: 3.4692 degrees/min at \(t\) plus 6834.5029 s and -6.7515 degrees/min at \(t\) plus 8148.7341 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.2922 degrees/min at t plus 1628.7421 \(s\) and 0.031968 degrees/min at \(t\) plus 8797.9542 s, respectively
Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.74072 degrees/min at \(t\) plus 1628.7421 s and -0.49716 degrees/min at \(t\) plus 4584.9672 s , respectively
The mean steam flow rate was \(44.4372+/-1.3231 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 43.8014 +/- \(1.3563 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(24.967+/-0.98627 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is 11.3136 +/- 2.9542 C over the Stratification Period, beginning at 2.0677 C and ending at 12.0317 C
Mean Smoothed SP8-Upper Pool delta \(T\) is 9.9079 +/- 2.7536 C over the Stratification Period, beginning at 2.043 C and ending at 11.5869 C
The stratification period begins and ends with Smoothed SP8 readings of 44.0852 and 119.1462 C, respectively

The stratification period begins and ends with condensing flows of 0.25209 and 1.4972 \(\mathrm{kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of 12.3975 and \(1.8759 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of 1832.8194 +/-29.4297 kJ/kg.
At plume detection, the condensing and condensing+cooling flows are 0.24798 and 12.8708 kg/s, respectively
The plume period had a mean steam enthalpy of \(1832.1684+/-30.1413 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 3.475 degrees \(C\) at \(t\) plus 3790.0518 s with \(T\) upper \(=\) 72.0414 C and T mid \(=68.5664 \mathrm{C}\)

At t plus 3790.0518 s, Smoothed SP8-SP9 is 13.1252 C and Smoothed SP8-Top is 9.6502 C , where Smoothed SP8 is 81.6916 C and Pool \(\mathrm{P}=30.0906\) psia
Maximum Smoothed Top-Lower delta \(T\) is 20.9753 degrees \(C\) at \(t\) plus 6689.3046 s with T_upper \(=100.4795 \mathrm{C}\) and \(T\) low \(=79.5042 \mathrm{C}\)
At t plus 6689.3046 s , Smoothed SP8-SP9 is 13.5815 C and Smoothed SP8-Top is 12.8731 C, where Smoothed SP8 is 113.3527 C and Pool \(\mathrm{P}=30.3847\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 20.2768 degrees C at t plus 6649.2033 s with T_mid \(=99.471 \mathrm{C}\) and T low \(=79.1943 \mathrm{C}\)
 where Smoothed SP8 is 113.2444 C and Pool \(\mathrm{P}=30.3735\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 40.2664 degrees \(C\) at \(t\) plus 7868.225 s with \(T\) upper \(=107.3852 \mathrm{C}\) and \(T\) out \(=67.1188 \mathrm{C}\)
At \(t\) plus 7868.225 s , Smoothed SP8-SP9 is 12.1177 C and Smoothed SP8-Top is 11.624 C , where Smoothed SP8 is 119.0091 C and Pool \(\mathrm{P}=30.158\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 39.8618 degrees C at \(t\) plus 7890.5253 s with T_mid \(=107.0386 \mathrm{C}\) and \(\mathrm{T}_{-}\)out \(=67.1769 \mathrm{C}\)
At t plus 7890.5253 s, Smoothed SP8-SP9 is 12.023 C and Smoothed SP8-Top is 11.646 C, where Smoothed SP8 is 119.0616 C and Pool \(\mathrm{P}=30.1835 \mathrm{psia}\)
Maximum Smoothed Lower-Outlet delta \(T\) is 39.7363 degrees \(C\) at \(t\) plus 7876.3265 s with T_low \(=106.8678 \mathrm{C}\) and T_out \(=67.1315 \mathrm{C}\)
At t plus 7876.3265 s , Smoothed SP8-SP9 is 12.1113 C and Smoothed SP8-Top is 11.6469 C , where Smoothed SP8 is 119.0276 C and Pool \(\mathrm{P}=30.1566\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 15.2782 degrees \(C\) at (KEY POINT \#14) t plus 3452.1455 s with \(\mathrm{T}_{2} \mathrm{SP} 8=80.6975 \mathrm{C}\) and T _SP9 \(=65.4193 \mathrm{C}\) and Pool \(\mathrm{P}=\) 30.144 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 13.6966 degrees \(C\) at \(t\) plus 6438.9993 s with T_SP8 \(=112.007 \mathrm{C}\) and T_upper \(=98.3103 \mathrm{C}\) and Pool \(\mathrm{P}=30.3471\) psia
Maximum Top-Mid delta \(T\) is 4.5032 degrees \(C\) at (KEY POINT \#4) t plus 3779.2502 s ignoring SP 4, with temperatures of 72.887 and 68.3839 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=30.0883\) psia and \(T\) _outlet \(=55.1907 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 5512.7823 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 1.5009 C and a raw SP12 Reading of 88.1274 C .
Maximum Top-Lower delta \(T\) is 24.6725 degrees \(C\) at \(t\) plus 6864.2076 s, with temperatures of 101.6049 and 76.9323 C, respectively, at Set \# 1, where Pool \(P=30.2516\) psia and T_outlet \(=64.4505 \mathrm{C}\)

Maximum Mid-Low delta \(T\) is 22.9288 degrees \(C\) at (KEY POINT \#6) t plus 6779.0087 s ignoring SP 4, with temperatures of 100.3888 and 77.46 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=30.2924\) psia and \(T\) outlet \(=64.306 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 6907.4091 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 7.6348 C and a raw SP12 Reading of 101.2453 C .
Maximum Top-Outlet delta \(T\) is 40.589 degrees \(C\) at \(t\) plus 7885.227 s, with temperatures of 107.6631 and 67.0741 C , respectively, at Set \# 1, where Pool P = 30.1835 psia

Maximum Mid-Outlet delta \(T\) is 39.2762 degrees \(C\) at \(t\) plus 7879.6287 s ignoring SP 4, with temperatures of 106.3925 and 67.1163 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=\) 30.171 psia

Maximum Lower-Outlet delta \(T\) is 40.5239 degrees \(C\) at (KEY POINT \#8) t plus 7897.6257 s, with temperatures of 107.66 and 67.1361 C, respectively, at Set \# 1, where Pool P = 30.1844 psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 8227.6366 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 13.5078 C and a raw SP12 Reading of 108.2521 C .
Minimum SP Pressure is 30.0661 psia at \(t\) plus 3906.3534 s
Maximum SP Pressure is 30.7716 psia at \(t\) plus 0.095 s
Beginning SP Pressure is 30.7714 psia
Ending SP Pressure is 30.6327 psia
Time-Average SP Pressure is 30.3084 +/- 0.1357 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 77.6254 cm (cold) / 77.7354 cm (hot) at 14.9529 psia
Beginning Smoothed SP Level is 79.3256 cm (cold) / 79.4734 cm (hot) at 30.7753 psia Ending Smoothed SP Level is 78.4509 cm (cold) / 79.9593 cm (hot) at 30.6398 psia Minimum Smoothed Cold SP Level is 78.4361 cm at t plus 8964.7437 s and 30.2278 psia Minimum Smoothed Hot SP Level is 79.3541 cm at \(t\) plus 1164.0076 s and 30.2738 psia Maximum Smoothed Cold SP Level is 79.3261 cm at t plus 1.5891 s and 30.7742 psia
Maximum Smoothed Hot SP Level is 79.963 cm at t plus 9422.855 s and 30.6347 psia
SP 12 Temperature at the beginning is 34.8532 C , and at the end is 118.5262 C
At plume detection, the Mixing Number is 40.4185
The Mixing Number ranges from a minimum of 38.3773 at (KEY POINT \#12) \(t\) plus 0 to a maximum of 583.4237 at (KEY POINT \#13) t plus 9482.5534 s; it had a mean value of 113.3299 +/- 99.1442 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam T t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed \(T\) t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T mid Viscosity (Pa-s) mu1, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T mid Vapor Pressure p4, T Plume Vapor Pressure p5, Sparger Total Stagnation h (kJ/kg) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta h e6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy e11
KEY POINT \#1 (t plus 0 s with a Mixing Number of 38.3773): 51.61938384 0.040894 \(0.00925 \quad 0.3937 \quad 0.7932564766 \quad 0.7947342414 \quad 0.5868551578\)
\(0.5868551578 \quad 0.9990816679 \quad 24.68923522 \quad 159225.3684\)

434626122
123.0761222
33.33701237
0.6840952704
993.9621641
0.0002257991256
\(1516.348739 \quad 483.1267616 \quad 471.7915116\)
159225.3684
0.07034558419
35.35368584
35.58442203
\(\begin{array}{ll}2.19225813 & 0.6225949036 \\ 1.403384126 & 0.04185890043\end{array}\)
\(\begin{array}{ll}2.19225813 & 0.6225949036 \\ 1.403384126 & 0.04185890043\end{array}\)
\(2.090764796 \quad 0.0007140175541\)
1522.918193
\(2.188044249 \quad 2.121881199\)
\begin{tabular}{lcccc}
2.158881199 & 0.0573965824 & 0.0602000977 & 1804.74482 & 1804.135262 \\
148.3117326 & 516.8692535 & 2710.367924 & 368.5575209 & 1287.875567 \\
151.935807 & 148.4721994 & 149.2774996 & 139.8902388 & \\
NT \#2 (t plus & 542.398 s with & a Mixing Number of & \(40.4185):\) & 51.28695416 \\
0.040894 & 0.00925 & 0.3937 & 0.7920800712 & 0.793987005 \\
0.5744083845 & 0.5744083845 & 0.9990430608 & 24.24283087 & 158230.0388 \\
0.06947846325 & 0.05441309924 & 0.04238613268 & 0.02497602266 & 0.06736215534 \\
40.72419355 & 122.7464548 & 122.7464548 & 42.7248134 & 40.59399978 \\
40.73459913 & 37.01691815 & 4.178271373 & 4.251189874 & 2.190254118 \\
0.6296066732 & 0.6840484513 & 0.6840484513 & 4.274004634 & 1.40734148 \\
0.04178709498 & 991.9903877 & 940.8758131 & 1.216354424 & 2.115551374 \\
0.0006440323279 & 0.0002264518378 & \(1.3050722 e-005\) & \(1.325493389 e-005\) & \\
1532.724721 & 1516.859025 & 482.9852923 & 471.128454 & 2.165696465 \\
2.101140773 & 2.138140773 & 0.07674339216 & 0.08526843347 & 1776.552799 \\
1775.965084 & 170.7498922 & 515.466124 & 2709.89607 & 344.7162318 \\
1261.086675 & 179.109063 & 170.2044031 & 170.7949616 & 155.2653368
\end{tabular}

KEY POINT \#3 (t plus 686.2982 s with a Mixing Number of 40.9697): 51.14460326
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7917913134 & 0.7938306137 \\
0.575828478 & 0.575828478 & 0.9990501853 & 24.27443902 & 157830.4865 \\
0.06926728228 & 0.05442434812 & 0.04229689891 & 0.02487828756 & 0.06717518648 \\
42.01755417 & 122.6909496 & 122.6909496 & 44.0852386 & 42.04225952 \\
42.42583275 & 38.276308 & 4.178296981 & 4.25109061 & 2.189917829 \\
0.6312213286 & 0.6840404471 & 0.6840404471 & 4.162534591 & 1.408010218 \\
0.04177503992 & 991.4832383 & 940.9211981 & 1.214385146 & 2.106932449 \\
0.0006288400817 & 0.000226562082 & \(1.304880786 e-005\) & \(1.32516059 e-005\) & \\
1534.813687 & 1516.944673 & 482.9614322 & 471.181127 & 2.1619522 \\
2.096978914 & 2.133978914 & 0.08216585225 & 0.09152103728 & 1779.524638 \\
1778.93539 & 176.1535483 & 515.2299031 & 2709.816547 & 339.0763548 \\
1264.294735 & 184.7930538 & 176.2552764 & 177.861045 & 160.527153
\end{tabular}

KEY POINT \#4 (t plus 3779.2502 s with a Mixing Number of 58.2357): 52.91184064
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.7891938375 & 0.7950549434 \\
0.601095449 & 0.601095449 & 0.9991528273 & 26.47098274 & 163690.7537 \\
0.06475212379 & 0.05449237775 & 0.04443841982 & 0.02505792066 & 0.06949634049 \\
68.47474203 & 122.3551369 & 122.3551369 & 82.18995367 & 71.87441763 \\
65.13728686 & 54.93148523 & 4.186905951 & 4.250491707 & 2.187890127 \\
0.6584171999 & 0.6839912734 & 0.6839912734 & 2.623236294 & 1.412071299 \\
0.04170231771 & 978.6932233 & 941.1955012 & 1.202525579 & 1.998861968 \\
0.0004125203468 & 0.000227231227 & \(1.303722753 e-005\) & \(1.321868684 \mathrm{e}-005\) & \\
1557.499127 & 1517.461203 & 482.8168228 & 472.2292458 & 2.139411366 \\
2.074579069 & 2.111579069 & 0.2919896802 & 0.5177886107 & 1834.227117 \\
1833.526404 & 286.7782673 & 513.8008642 & 2709.334937 & 227.0225968 \\
1320.426253 & 344.2685301 & 301.0146443 & 272.8093969 & 230.1262248
\end{tabular}

KEY POINT \#5 (t plus 5512.7823 s with a Mixing Number of 87.4956): 53.07010672
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.7883994802 & 0.7970683337 \\
0.606009545 & 0.606009545 & 0.9991649094 & 26.60721043 & 164129.1807 \\
0.06114123039 & 0.05445092153 & 0.04464206782 & 0.0250621451 & 0.06970421293 \\
88.26713918 & 122.5598037 & 122.5598037 & 100.1653134 & 89.3271145 \\
74.93662202 & 60.84324562 & 4.202975751 & 4.250856381 & 2.18912454 \\
0.6721284592 & 0.6840213958 & 0.6840213958 & 2.006000555 & 1.409593108 \\
0.04174659617 & 966.5302044 & 941.02838 & 1.209742416 & 1.994576127 \\
0.0003207941568 & 0.0002268229643 & \(1.304428527 e-005\) & \(1.322280983 e-005\) & \\
1553.984128 & 1517.146732 & 482.9050092 & 472.4963984 & 2.15312633 \\
2.088224968 & 2.125224968 & 0.6568837521 & 1.020177418 & 1845.544488 \\
1844.836544 & 369.7938555 & 514.671791 & 2709.628561 & 144.8779355 \\
1330.872697 & 419.8796437 & 374.2481655 & 313.8496954 & 254.8484434
\end{tabular}

KEY POINT \#6 (t plus 6779.0087 s with a Mixing Number of 129.16): 52.80108413
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.7872182389 & 0.7981209898 \\
0.6173351977 & 0.6173351977 & 0.9992032713 & 26.94982351 & 163390.1536 \\
0.05882997271 & 0.05444675092 & 0.04495793161 & 0.02439293723 & 0.06935086884 \\
100.4247128 & 122.580389 & 122.580389 & 114.1007998 & 101.3567555 \\
84.06056191 & 64.32434071 & 4.216932083 & 4.250893118 & 2.189248939 \\
0.6779937123 & 0.6840243991 & 0.6840243991 & 1.744749959 & 1.409344388 \\
0.04175105716 & 958.1008501 & 941.0115611 & 1.210470211 & 1.959236731 \\
0.0002805189836 & 0.0002267819777 & \(1.304499515 e-005\) & \(1.321528554 \mathrm{e}-005\) & \\
1544.922675 & 1517.115044 & 482.91387 & 472.9763724 & 2.154509733 \\
2.08833131 & 2.12533131 & 1.029647699 & 1.642757849 & 1870.473899
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1869.747606 & 420.9734778 & 514.7593928 & 2709.658077 & 93.78591498 \\
\hline & 1355.714506 & 478.7736918 & 424.9031234 & 352.1238848 & 269.4122751 \\
\hline \multirow[t]{13}{*}{} & POINT \#7 (t plus 69 & 6907.4091 s with a & Mixing Number o & of 133.6578): 52. & 87329607 \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.7869133958 & 0.79804722 \\
\hline & 0.6163495364 & 0.6163495364 & 0.9992008082 & 26.97196513 & 163621.7151 \\
\hline & 0.05867343587 & 0.05445403177 & 0.04494099579 & 0.02450471884 & 0.06944571463 \\
\hline & 101.2353299 & 122.5444516 & 122.5444516 & 114.8876533 & 101.9853803 \\
\hline & 92.31076105 & 64.55557651 & 4.217976827 & 4.25082899 & 2.189031794 \\
\hline & 0.678318562 & 0.6840191528 & 0.6840191528 & 1.72963767 & 1.409778661 \\
\hline & 0.04174327015 & 957.5141445 & 941.040922 & 1.209199871 & 1.960305666 \\
\hline & 0.0002781535758 & 580.0002268535403 & \(1.304375586 \mathrm{e}-00\) & \(051.321463088 \mathrm{e}-0\) & \\
\hline & 1544.151519 & 1517.170357 & 482.8984 & 472.9255679 & 2.15209509 \\
\hline & 2.085808582 & 2.122808582 & 1.05971228 & 1.685581983 & 1868.221233 \\
\hline & 1867.493746 & 424.3920264 & 514.60646 & 2709.606547 & 90.2144336 \\
\hline & 1353.614773 & 482.107529 & 427.5548171 & 386.7988607 & 270.3796979 \\
\hline \multirow[t]{12}{*}{} & POINT \#8 (t plus 789
0.040894 & 7897.6257 s with a 0.00925 & \multicolumn{3}{|l|}{Mixing Number of 177.7726): 53.48734038} \\
\hline & 0.613797252 & 0.613797252 & 0.9991935521 & 27.21822585 & 165526.2206 \\
\hline & 0.05754835964 & 0.05446570826 & 0.04518883044 & 0.02506339237 & 0.07025222281 \\
\hline & 107.0168519 & 122.4868124 & 122.4868124 & 119.1186582 & 107.4672096 \\
\hline & 106.8028952 & 67.20661634 & 4.225849245 & 4.250726205 & 2.188683802 \\
\hline & 0.6804022275 & 0.6840107077 & 0.6840107077 & 1.628924908 & 1.410475806 \\
\hline & 0.04173078943 & 953.2432305 & 941.0880018 & 1.207164643 & 1.965129567 \\
\hline & 0.0002622725212 & 20.0002269684068 & \(1.30417682 \mathrm{e}-00\) & 051.321428889 e & \\
\hline & 1538.085003 & 1517.259004 & 482.8735774 & 472.8036064 & 2.148226898 \\
\hline & 2.080895024 & 2.117895024 & 1.29589119 & 1.93183231 & 1862.486845 \\
\hline & 1861.746013 & 448.8003606 & 514.3611792 & 2709.52388 & 65.56081866 \\
\hline & 1348.125665 & 500.0519859 & 450.7023997 & 447.8975688 & 281.4749362 \\
\hline \multirow[t]{13}{*}{} & POINT \#9 (t plus 79 & 7919.0259 s with a & \multicolumn{3}{|l|}{Mixing Number of 178.8376): 53.82352507} \\
\hline & 0.040894 & 0.00925 & 0.3937 & 0.7855951359 & 0.7978771977 \\
\hline & 0.6092714002 & 0.6092714002 & 0.9991777497 & 27.17801401 & 166518.9246 \\
\hline & 0.05752923197 & 0.05446321964 & 0.04518751595 & 0.0255062641 & 0.07069378005 \\
\hline & 107.1144836 & 122.4990977 & 122.4990977 & 119.1462322 & 107.5593338 \\
\hline & 107.0005947 & 67.36716224 & 4.225988454 & 4.250748105 & 2.188757945 \\
\hline & 0.6804339666 & 0.6840125109 & 0.6840125109 & 1.627324759 & 1.410327152 \\
\hline & 0.04173344868 & 953.1698498 & 941.0779683 & 1.207598201 & 1.980406848 \\
\hline & 0.0002620184728 & 80.000226943915 & \(1.304219185 \mathrm{e}-00\) & \(051.321807259 \mathrm{e}-0\) & 05 \\
\hline & 1537.974334 & 1517.240116 & 482.8788692 & 472.6177024 & 2.149050892 \\
\hline & 2.081656951 & 2.118656951 & 1.300223534 & 1.93352854 & 1852.580839 \\
\hline & 1851.842195 & 449.2129997 & 514.413458 & 2709.541502 & 65.20045832 \\
\hline & 1338.167381 & 500.1690868 & 451.0918235 & 448.7330389 & 282.1470738 \\
\hline \multirow[t]{13}{*}{} & POINT \#10 (t plus & 8227.6366 s with a & \multicolumn{3}{|l|}{a Mixing Number of 203.3194): 54.69693197} \\
\hline & 0.040894 & 0.00925 & \multicolumn{2}{|l|}{\(0.3937 \quad 0.78582987\)} & 0.7986176845 \\
\hline & 0.606751811 & 0.606751811 & 0.9991642209 & 27.35173209 & 169103.6924 \\
\hline & 0.05709810698 & 0.05442441375 & 0.04520691391 & 0.02663403061 & 0.07184094452 \\
\hline & 109.3093397 & 122.6906258 & 122.6906258 & 120.2053698 & 109.6702226 \\
\hline & 109.6687926 & 94.6569311 & 4.229176821 & 4.251090031 & 2.189915868 \\
\hline & 0.6811168625 & 0.6840404003 & 0.6840404003 & 1.592175534 & 1.408014122 \\
\hline & 0.04177496962 & 951.5085784 & 940.9214629 & 1.214373664 & 1.999761178 \\
\hline & 0.0002564228573 & 30.0002265627255 & \(1.304879669 \mathrm{e}-00\) & \(051.322724716 \mathrm{e}-0\) & \\
\hline & 1535.413353 & 1516.945172 & 482.961293 & 472.5642494 & 2.16193037 \\
\hline & 2.093847077 & 2.130847077 & 1.400814048 & 1.999609326 & 1847.546617 \\
\hline & 1846.7985 & 458.4927922 & 515.2285249 & 2709.816083 & 56.73573275 \\
\hline & 1332.318092 & 504.6668045 & 460.0178852 & 460.014386 & 396.6769497 \\
\hline \multirow[t]{13}{*}{KEY} & POINT \#11 (t plus 9 & 9482.5534 s with a & \multicolumn{3}{|l|}{Mixing Number of 583.4237) : 53.7204065} \\
\hline & 0.040894 & 0.00925 & 0.39370 & 0.7845087997 & 0.7995926354 \\
\hline & 0.6947403698 & 0.6947403698 & 0.9994281523 & 30.48507654 & 166669.6897 \\
\hline & 0.0551810531 & 0.05436408253 & 0.04874604206 & 0.0218122983 & 0.07055834036 \\
\hline & 118.9424089 & 122.9882434 & 122.9882434 & 122.4884303 & 119.176448 \\
\hline & 119.1291505 & 116.2077451 & 4.244523212 & 4.251623192 & 2.191722809 \\
\hline & 0.6834338266 & 0.6840829106 & 0.6840829106 & 1.454862826 & 1.404436601 \\
\hline & 0.04183972494 & 943.9614 & 940.6779558 & 1.224962961 & 1.76218703 \\
\hline & 0.0002342553966 & 60.000225972772 & \(1.305906052 \mathrm{e}-00\) & \(051.318081475 \mathrm{e}-0\) & \\
\hline & 1522.586218 & 1516.485031 & 483.0890914 & 475.9570751 & 2.182068751 \\
\hline & 2.112538085 & 2.149538085 & 1.92101894 & 2.148335395 & 2041.509158 \\
\hline & 2040.579818 & 499.3060988 & 516.4952038 & 2710.242221 & 17.18910502 \\
\hline & 1525.013954 & 514.3681475 & 500.2983279 & 500.1000233 & 487.7095958 \\
\hline
\end{tabular}

KEY POINT \#12 (t plus 0 s with a Mixing Number of 38.3773): 51.61938384 0.040894
\(0.00925 \quad 0.3937 \quad 0.7932564766 \quad 0.7947342414 \quad 0.5868551578\)
\(\begin{array}{lllll}0.5868551578 & 0.9990816679 & 24.68923522 & 159225.3684 & 0.07034558419\end{array}\)
\begin{tabular}{llllll}
0.05434626122 & 0.04366747656 & 0.02413130405 & 0.06779878061 & 35.35368584
\end{tabular}
123.0761222 33.33701237 0.6840952704 993.9621641 \(0.00022579912561 .306209128 e-0051.325745453 e-005\)
 \(2.1588811990 .0573965824 \quad 0.0602000977\) \(\begin{array}{lllll}148.3117326 & 516.8692535 & 2710.367924 & 368.5575209 & 1287.875567\end{array}\) \(151.935807 \quad 148.4721994149 .2774996139 .8902388\)
KEY POINT \#13 (t plus 9482.5534 s with a Mixing Number of 583.4237): 53.7204065
\begin{tabular}{llllll}
0.040894 & 0.00925 & 0.3937 & 0.7845087997 & 0.7995926354
\end{tabular}
\begin{tabular}{llllll}
0.6947403698 & 0.6947403698 & 0.9994281523 & 30.48507654 & 166669.6897
\end{tabular}
\begin{tabular}{llllll}
0.0551810531 & 0.05436408253 & 0.04874604206 & 0.0218122983 & 0.07055834036
\end{tabular}
\(118.9424089 \quad 122.9882434 \quad 122.9882434 \quad 122.4884303 \quad 119.176448\)
\(119.1291505 \quad 116.2077451 \quad 4.244523212 \quad 4.251623192 \quad 2.191722809\)
\begin{tabular}{lllll}
0.6834338266 & 0.6840829106 & 0.6840829106 & 1.454862826 & 1.404436601
\end{tabular}
\begin{tabular}{llllll}
0.04183972494 & 943.9614 & 940.6779558 & 1.224962961 & 1.76218703
\end{tabular}
\(0.00023425539660 .0002259727721 .305906052 \mathrm{e}-0051.318081475 \mathrm{e}-005\)
\begin{tabular}{rrrrr}
1522.586218 & 1516.485031 & 483.0890914 & 475.9570751 & 2.182068751
\end{tabular}
\begin{tabular}{lllll}
2.112538085 & 2.149538085 & 1.92101894 & 2.148335395 & 2041.509158
\end{tabular}
\begin{tabular}{lllll}
2040.579818 & 499.3060988 & 516.4952038 & 2710.242221 & 17.18910502
\end{tabular}
\(1525.013954 \quad 514.3681475 \quad 500.2983279 \quad 500.1000233 \quad 487.7095958\)

KEY POINT \#14 (t plus 3452.1455 s with a Mixing Number of 55.4679): 52.91740319
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.7894573864 & 0.7948432033
\end{tabular}
\begin{tabular}{llllll}
0.5992279607 & 0.5992279607 & 0.9991446419 & 26.34457172 & 163661.4614
\end{tabular}
\begin{tabular}{llllll}
0.06529216246 & 0.05447999258 & 0.04437189128 & 0.02513175526 & 0.06950364654
\end{tabular}
\begin{tabular}{llllll}
65.41933003 & 122.4162908 & 122.4162908 & 80.6975432 & 68.65102938
\end{tabular}
\begin{tabular}{lllll}
63.48493482 & 53.77164539 & 4.18515054 & 4.25060056 & 2.188258507
\end{tabular}
\[
0.6558162391
\]
0.6840003238
0.6840003238
\(2.748467845 \quad 1.411329808\) \(\begin{array}{lllll}0.04171553383 & 980.3861871 & 941.1455847 & 1.2046783 & 2.008664394\end{array}\) 0.0004306869796
\(0.00022710909481 .303933633 \mathrm{e}-0051.322244264 \mathrm{e}-005\)
\begin{tabular}{llllll}
1556.631008 & 1517.36735 & 482.8431896 & 472.1652043 & 2.143501874
\end{tabular}
\begin{tabular}{lllll}
2.078614769 & 2.115614769 & 0.2551453655 & 0.4876992607 & 1830.277188
\end{tabular}
\begin{tabular}{rrrrr}
1829.583151 & 273.9886114 & 514.0610864 & 2709.422704 & 240.072475 \\
1316.216101 & 338.0059213 & 287.5153112 & 265.8953657 & 225.2779473
\end{tabular}

End

\section*{D. 30 TEST \#30 -}

\section*{T30_RCIC_080GPM_57KW_COOLSTART_RESULTS_RCICLAND.TXT}

Output Saved to C: \Local Files RCICLAND_NOTITLES Using 20-second SP 12 averages for begiñing detection
Beginning (KEY POINT \#1) detected at \(t\) plus 2203.474 s, and ending (KEY POINT \#11) at \(t\) plus 20182.1884 s , for a time period of 17978.7144 s.
Original Data Record Time: 22790.5595 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(5335.5922 \mathrm{~s}, \mathrm{~T}\) bulk \(=55.5341 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=53.0125 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=55.3239 \mathrm{C}\)
Stratification Beginning Pressure \(=17.4069\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(13152.6443 \mathrm{~s}, \mathrm{~T}\) _bulk \(=92.4014 \mathrm{C}\) and T _out \(=69.3727 \mathrm{C}\)
Stratification Ending SP12 Temperature = 92.3024 C
Stratification Ending Pressure \(=27.9687\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 3516.9612 s .
At \(t=3516.9612 \mathrm{~s}\), the pool pressure is 16.2641 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 47.5369, 47.2643, 49.2782, 47.5057, and 45.3062 C, respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 11.3906 +/- 4.409 C.
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 10.8656 +/- 4.3628 C .
Minimum Steam Quality: 0.17554 at t plus 45.5286 s
Maximum Steam Quality: 0.30659 at \(t\) plus 17511.5326 s
Time-Averaged Steam Quality: 0.2401 +/- 0.029898
Minimum Turbine Outlet Steam Quality: 0.20004 at t plus 46.4067 s
Maximum Turbine Outlet Steam Quality: 0.31816 at t plus 17511.5326 s
Time-Averaged Turbine Outlet Steam Quality: 0.26127 +/- 0.025091
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 17888.8122 s ; using 300 s smoothing
Max and min smoothed upper level changerates: 0.41347 degrees/min at t plus 7413.231 s and 0.15204 degrees/min at \(t\) plus 12456.6285 s, respectively
Max and min smoothed mid (SP9) level changerates: 0.35502 degrees/min at t plus 7484.4301 s and 0.20614 degrees \(/ \mathrm{min}\) at \(t\) plus 12964.3235 s , respectively

Max and min smoothed upper-mid level changerate differences: 0.1197 degrees/min at \(t\) plus 5012.1877 s and -0.10849 degrees/min at \(t\) plus 6272.4088 s , respectively
Max and min smoothed lower level changerates: 1.5163 degrees/min at \(t\) plus 10824.8982 s and -0.0086167 degrees/min at \(t\) plus 7619.7588 s , respectively
Max and min smoothed mid-lower level changerate differences: 0.31882 degrees/min at \(t\) plus 7541.0333 s and -1.2499 degrees/min at \(t\) plus 10824.8982 s, respectively
Max and min smoothed outlet level changerates: 2.3593 degrees/min at \(t\) plus 13515.3351 s and -0.071645 degrees/min at \(t\) plus 8405.6438 s, respectively
Max and min smoothed lower-outlet level changerate differences: 1.4504 degrees/min at \(t\) plus 10824.9892 s and -2.084 degrees/min at \(t\) plus 13518.0372 s , respectively
Max and min smoothed hot (SP8) level changerates: 0.93189 degrees/min at \(t\) plus 7355.6277 s and -0.10359 degrees/min at \(t\) plus 14853.6576 s, respectively

Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.61636 degrees/min at \(t\) plus 7355.6277 s and -0.40199 degrees/min at \(t\) plus 8603.5471 s , respectively
The mean steam flow rate was \(23.2712+/-0.79276 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 23.0286 +/- \(0.8109 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(49.8132+/-0.91985 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta T is 13.1511 +/- 2.6857 C over the Stratification Period, beginning at 5.6683 C and ending at 15.1888 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(12.5868+/-2.7378\) C over the Stratification Period, beginning at 5.078 C and ending at 14.6728 C
The stratification period begins and ends with Smoothed SP8 readings of 61.4696 and 107.6154 C, respectively

The stratification period begins and ends with condensing flows of 0.19641 and 0.36325 kg/s, respectively.
The stratification period begins and ends with condensing+cooling flows of 2.2983 and \(0.71181 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of 1049.0672 +/-15.0896 \(\mathrm{kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.16529 and 6.6239 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of \(1037.8013+/-27.4779 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 1.1354 degrees \(C\) at \(t\) plus 16775.2245 s with T_upper \(=108.9385 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{mid}=107.8032 \mathrm{C}\)
At t plus 16775.2245 s , Smoothed SP8-SP9 is 13.1269 C and Smoothed SP8-Top is 11.9916 C , where Smoothed SP8 is 120.9301 C and Pool \(\mathrm{P}=36.8361\) psia
Maximum Smoothed Top-Lower delta \(T\) is 9.4607 degrees \(C\) at \(t\) plus 10442.7803 s with T_upper \(=81.9627 \mathrm{C}\) and T low \(=72.502 \mathrm{C}\)
At t plus 10442.7803 s , Smoothed SP8-SP9 is 15.0273 C and Smoothed SP8-Top is 14.6305 C , where Smoothed SP8 is 96.5932 C and Pool \(\mathrm{P}=23.4475\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 9.0729 degrees C at \(t\) plus 10444.2864 s with T_mid \(=81.5728 \mathrm{C}\) and T low \(=72.4999 \mathrm{C}\)
At t plus 10444.2864 s , Smoothed SP8-SP9 is 15.0588 C and Smoothed SP8-Top is 14.6842 C , where Smoothed SP8 is 96.6316 C and Pool \(\mathrm{P}=23.4519\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 24.0711 degrees \(C\) at \(t\) plus 12943.7224 s with T_upper \(=92.1655 \mathrm{C}\) and \(T\) _out \(=68.0944 \mathrm{C}\)
At t plus 12943.7224 s, Smoothed SP8-SP9 is 15.3027 C and Smoothed SP8-Top is 14.7665 C, where Smoothed SP8 is 106.932 C and Pool \(\mathrm{P}=27.6062\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 23.5371 degrees \(C\) at \(t\) plus 12941.9273 s with T_mid \(=91.6242 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=68.0871 \mathrm{C}\)

At t plus 12941.9273 s , Smoothed SP8-SP9 is 15.2672 C and Smoothed SP8-Top is 14.7385 C , where Smoothed SP8 is 106.8914 C and Pool \(\mathrm{P}=27.605\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 23.2967 degrees \(C\) at \(t\) plus 12950.1247 s with T_low \(=91.4378 \mathrm{C}\) and \(T\) _out \(=68.1412 \mathrm{C}\)
At t plus 12950.1247 s , Smoothed SP8-SP9 is 15.2654 C and Smoothed SP8-Top is 14.7128 C , where Smoothed SP8 is 106.9165 C and Pool P \(=27.618\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 16.1228 degrees \(C\) at (KEY POINT \#14) \(t\) plus 12191.4123 s with \(\mathrm{T}_{-} \mathrm{SP} 8=104.892 \mathrm{C}\) and T _SP9 \(=88.7692 \mathrm{C}\) and Pool \(\mathrm{P}=\) 26.3161 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 15.6608 degrees \(C\) at \(t\) plus 12191.4123 s with T _SP8 \(=104.892 \mathrm{C}\) and T _upper \(=89.2312 \mathrm{C}\) and Pool \(\mathrm{P}=26.3161\) psia
Maximum Top-Mid delta \(T\) is 1.3333 degrees \(C\) at (KEY POINT \#4) t plus 2083.2402 s ignoring SP 4, with temperatures of 41.2251 and 39.8918 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=15.5929\) psia and T outlet \(=38.845 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 2083.2402 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.87451 C and a raw SP12 Reading of 39.8918 C .
Maximum Top-Lower delta \(T\) is 11.2421 degrees \(C\) at \(t\) plus 10759.8935 s, with temperatures of 83.766 and 72.5239 C , respectively, at Set \# 1, where Pool P = 23.967 psia and T_outlet \(=65.4585 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 10.1362 degrees \(C\) at (KEY POINT \#6) t plus 10686.0862 s ignoring SP 4, with temperatures of 82.4498 and 72.3136 C, respectively, at Set \# 2, where Pool \(P=23.8429\) psia and \(T\) _outlet \(=65.4195 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 11029.4949 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 3.377 C and a raw SP12 Reading of 84.01 C .
Maximum Top-Outlet delta \(T\) is 24.4647 degrees C at \(t\) plus 12881.3238 s, with temperatures of 92.3755 and 67.9109 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=27.4961\) psia
Maximum Mid-Outlet delta \(T\) is 23.5644 degrees \(C\) at \(t\) plus 12922.2261 s ignoring SP 4, with temperatures of 91.4505 and 67.8861 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=27.5643\) psia
Maximum Lower-Outlet delta \(T\) is 24.1744 degrees \(C\) at (KEY POINT \#8) t plus 12900.1239 s, with temperatures of 92.2558 and 68.0814 C, respectively, at Set \# 1, where Pool \(\mathrm{P}=27.5365\) psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 13699.6426 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 8.0547 C and a raw SP12 Reading of 94.352 C .
Minimum SP Pressure is 14.925 psia at t plus 10.7026 s
Maximum SP Pressure is 40.8153 psia at t plus 17976.9253 s
Beginning SP Pressure is 14.9295 psia
Ending SP Pressure is 40.8146 psia
Time-Average SP Pressure is 23.3253 +/- 7.3439 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 77.1382 cm (cold) / 77.2197 cm (hot) at 14.6029 psia
Beginning Smoothed SP Level is 77.6995 cm (cold) / 77.8002 cm (hot) at 14.9309 psia
Ending Smoothed SP Level is 78.9924 cm (cold) / 80.4052 cm (hot) at 40.8193 psia
Minimum Smoothed Cold SP Level is 77.3953 cm at \(t\) plus 10615.4882 s and 23.729 psia
Minimum Smoothed Hot SP Level is 77.7365 cm at t plus 3076.854 s and 16.0403 psia
Maximum Smoothed Cold SP Level is 79.0062 cm at \(t\) plus 17225.5983 s and 38.2605 psia
Maximum Smoothed Hot SP Level is 80.4069 cm at \(t\) plus 17949.9147 s and 40.7204 psia
SP 12 Temperature at the beginning is 29.8168 C , and at the end is 112.9885 C
At plume detection, the Mixing Number is 39.8935
The Mixing Number ranges from a minimum of 30.2892 at (KEY POINT \#12) \(t\) plus 0 to a maximum of 222.6332 at (KEY POINT \#13) t plus 17978.7144 s ; it had a mean value of \(88.3793+/-52.6148\) over the test period.
Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension ( \(N / m\) ) sigl, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid \(T\) (C) t1, Estimated Sparger Steam \(T\) t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed \(T\) t6, Pool Outlet Smoothed \(T\) t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity ( \(W / m-K\) ) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam

Density rho4, Sparger Subcooled T mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta he6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy e11
KEY POINT \#1 (t plus 0 s with a Mixing Number of 30.2892): 56.95591238 0.040894
\begin{tabular}{lccccc}
0.00925 & 0.3937 & 0.7769951224 & 0.7780023228 & 0.2049962995 \\
0.2049962995 & 0.9974288322 & 18.40175324 & 179006.6465 & 0.07112475445 \\
0.05855346127 & 0.02215293418 & 0.05265503756 & 0.07480797173 & 30.44163519 \\
101.8555658 & 101.8555658 & 30.73900902 & 30.60077491 & 30.78287799 \\
28.69206289 & 4.179875241 & 4.219024305 & 2.084971587 & 0.6156755065 \\
0.678502554 & 0.678502554 & 5.360423464 & 1.7183048 & 0.03789734629 \\
995.5148047 & 957.014117 & 0.6361268311 & 3.095135101 & 0.000789564578 \\
0.0002763373973 & \(1.233275619 e-005\) & \(1.301155642 e-005\) & 1512.082966 & \\
1543.335556 & 473.1992278 & 431.8513333 & 1.083203125 & 1.029447646 \\
1.066447646 & 0.04355539483 & 0.04430192944 & 888.8309391 & 888.4923146 \\
127.6845771 & 426.9307822 & 2678.491096 & 299.2462051 & 461.9001569 \\
128.9275523 & 128.3482109 & 129.1125536 & 120.3768921 &
\end{tabular}

KEY POINT \#2 (t plus 3516.9612 s with a Mixing Number of 39.8935): 55.19298357
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7752555653 & 0.7776907489 \\
0.2397336965 & 0.2397336965 & 0.9977206111 & 19.27128767 & 173604.5635 \\
0.06840129971 & 0.05808750599 & 0.0224592477 & 0.05003322907 & 0.07249247677 \\
47.26431198 & 104.2559384 & 104.2559384 & 49.27821725 & 47.53692459 \\
47.50572445 & 45.3062175 & 4.17902222 & 4.222213445 & 2.095058431 \\
0.6374361397 & 0.679403823 & 0.679403823 & 3.755333451 & 1.67557036 \\
0.03828347294 & 989.2613594 & 955.2574705 & 0.6881661001 & 2.864000814 \\
0.0005728098901 & 0.0002696189861 & \(1.241489855 e-005\) & \(1.30011667 e-005\) & \\
1542.102424 & 1540.91111 & 474.4023978 & 438.6885783 & 1.178211169 \\
1.121453697 & 1.158453697 & 0.1076906648 & 0.119156121 & 975.6830616 \\
975.3116791 & 197.9923229 & 437.0688828 & 2682.238436 & 239.0765599 \\
538.6141789 & 206.4088135 & 199.1301063 & 199.0027579 & 189.815173
\end{tabular}

KEY POINT \#3 (t plus 5335.5922 s with a Mixing Number of 46.9918): 54.82921649
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7754163643 & 0.7788044915 \\
0.2539324454 & 0.2539324454 & 0.9977537515 & 19.09152109 & 171879.7106 \\
0.06696079705 & 0.05772395357 & 0.02279875002 & 0.0492159418 & 0.07201469182 \\
55.80135967 & 106.119568 & 106.119568 & 61.46963658 & 56.39164762 \\
55.87077062 & 53.00367442 & 4.181106078 & 4.224777023 & 2.103220986 \\
0.6466879905 & 0.6800553118 & 0.6800553118 & 3.217098108 & 1.643821721 \\
0.03859329769 & 985.3247898 & 953.8758594 & 0.7309140899 & 2.871914513 \\
0.0004975857277 & 0.000264603241 & \(1.247875391 e-005\) & \(1.304508817 e-005\) & \\
1550.940752 & 1538.912808 & 475.3230232 & 441.0580751 & 1.25662891 \\
1.200006437 & 1.237006437 & 0.1637658888 & 0.2134239057 & 1014.164339 \\
1013.799853 & 233.6833294 & 444.9456959 & 2685.124796 & 211.2623665 \\
569.2186433 & 257.3890714 & 236.150003 & 233.975073 & 221.9925539
\end{tabular}

KEY POINT \#4 (t plus 2083.2402 s with a Mixing Number of 35.4803): 55.86745454
\(0.040894 \quad 0.00925 \quad 0.7766152805 \quad 0.7784227918\)
\(\begin{array}{lllll}0.2266843735 & 0.2266843735 & 0.9976414423 & 19.15849104 & 175884.3354\end{array}\)
\(\begin{array}{llllll}0.06951492442 & 0.05831311387 & 0.02231691075 & 0.05106144077 & 0.07337835152\end{array}\)
\(\begin{array}{lllll}40.50032392 & 103.0953923 & 103.0953923 & 41.20744002 & 40.95573348\end{array}\)
\(40.88005788 \quad 38.80015699 \quad 4.178523081 \quad 4.22065577 \quad 2.090122634\)
\(\begin{array}{lllll}0.6292711254 & 0.6789768428 & 0.6789768428 & 4.294322014 & 1.695966196\end{array}\)
\(\begin{array}{lllll}0.0380949959 & 992.0315436 & 956.1100123 & 0.6625897077 & 2.916067577\end{array}\)
\(0.00064671004430 .00027283006151 .237516863 \mathrm{e}-0051.298946652 \mathrm{e}-005\)
\(\begin{array}{lllll}1532.186448 & 1542.104493 & 473.8231069 & 436.3203098 & 1.131451985\end{array}\)
\(\begin{array}{lllll}1.075352216 & 1.112352216 & 0.07583688012 & 0.07873212918 & 942.179726\end{array}\)
\begin{tabular}{lllll}
941.8126782 & 169.7237132 & 432.1662441 & 2680.430764 & 262.4425309
\end{tabular}
\(\begin{array}{lllll}510.0134819 & 172.6784146 & 171.6251497 & 171.3120318 & 162.6251034\end{array}\)
KEY POINT \#5 (t plus 2083.2402 s with a Mixing Number of 35.4803): 55.86745454
\begin{tabular}{lllccc}
0.040894 & 0.00925 & 0.3937 & 0.7766152805 & 0.7784227918 \\
0.2266843735 & 0.2266843735 & 0.9976414423 & 19.15849104 & 175884.3354 \\
0.06951492442 & 0.05831311387 & 0.02231691075 & 0.05106144077 & 0.07337835152 \\
40.50032392 & 103.0953923 & 103.0953923 & 41.20744002 & 40.95573348
\end{tabular}
\begin{tabular}{lcccr}
40.88005788 & 38.80015699 & 4.178523081 & 4.22065577 & 2.090122634 \\
0.6292711254 & 0.6789768428 & 0.6789768428 & 4.294322014 & 1.695966196 \\
0.0380949959 & 992.0315436 & 956.1100123 & 0.6625897077 & 2.916067577 \\
0.0006467100443 & 0.0002728300615 & \(1.237516863 \mathrm{e}-005\) & \(1.298946652 \mathrm{e}-005\) & \\
1532.186448 & 1542.104493 & 473.8231069 & 436.3203098 & 1.131451985 \\
1.075352216 & 1.112352216 & 0.07583688012 & 0.07873212918 & 942.179726 \\
941.8126782 & 169.7237132 & 432.1662441 & 2680.430764 & 262.4425309 \\
510.0134819 & 172.6784146 & 171.6251497 & 171.3120318 & 162.6251034
\end{tabular}

KEY POINT \#6 (t plus 10686.0862 s with a Mixing Number of 89.7776): 55.9626866
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7739801112 & 0.7811046688 \\
0.2585312297 & 0.2585312297 & 0.9970789935 & 15.00017441 & 170052.4764 \\
0.06218037776 & 0.0559566424 & 0.02341527953 & 0.05008815326 & 0.07350343279 \\
82.67773936 & 115.0693335 & 115.0693335 & 98.10316741 & 83.09160971 \\
74.96262041 & 65.38045016 & 4.197707797 & 4.238182616 & 2.146742609 \\
0.6687688906 & 0.6826060358 & 0.6826060358 & 2.152013393 & 1.506969503 \\
0.04021164302 & 970.1467049 & 947.0275029 & 0.96735458 & 3.730802395 \\
0.0003428536904 & 0.0002427140526 & \(1.278621392 e-005\) & \(1.345783463 e-005\) & \\
1556.395022 & 1527.95808 & 479.5737739 & 441.2377324 & 1.695598722 \\
1.644117303 & 1.681117303 & 0.527954306 & 0.9474259494 & 1055.936016 \\
1055.711011 & 346.2819547 & 482.8469277 & 2698.687867 & 136.564973 \\
573.0890881 & 411.1535268 & 348.0179981 & 313.9228275 & 273.7951381
\end{tabular}

KEY POINT \#7 (t plus 11029.4949 s with a Mixing Number of 93.5363): 56.30264141
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.7740220113 & 0.7814137458 \\
0.2577510938 & 0.2577510938 & 0.9970022245 & 14.72888212 & 170616.2536 \\
0.06190561403 & 0.05581656944 & 0.02355366766 & 0.05039627417 & 0.07394994183 \\
84.16354061 & 115.7711973 & 115.7711973 & 99.25793142 & 84.53114482 \\
81.54718217 & 65.81600161 & 4.199061894 & 4.239312513 & 2.150474769 \\
0.6696978711 & 0.6827661799 & 0.6827661799 & 2.111359169 & 1.497231732 \\
0.04034819334 & 969.1965722 & 946.4756541 & 0.9882421502 & 3.822601129 \\
0.000336735389 & 0.0002411379645 & \(1.281037203 e-005\) & \(1.349484688 e-005\) & \\
1555.847455 & 1527.006979 & 479.8948587 & 441.022747 & 1.734754543 \\
1.683571141 & 1.720571141 & 0.5599554652 & 0.9876156513 & 1056.678075 \\
1056.461135 & 352.5230264 & 485.8247471 & 2699.729562 & 133.3017208 \\
570.8533277 & 416.0236377 & 354.0653468 & 341.5413288 & 275.6213266
\end{tabular}

KEY POINT \#8 (t plus 12900.1239 s with a Mixing Number of 115.7613): 55.65684625
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7766321077 & 0.7854125707 \\
0.2600221681 & 0.2600221681 & 0.9966893073 & 13.18339808 & 166568.4601 \\
0.06054310975 & 0.05509358056 & 0.02362844675 & 0.04947328418 & 0.07310173093 \\
91.44849588 & 119.3772306 & 119.3772306 & 105.986528 & 92.01565467 \\
91.2333894 & 67.98508439 & 4.206365626 & 4.245303972 & 2.170421112 \\
0.6738346996 & 0.6834989092 & 0.6834989092 & 1.930805773 & 1.449250314 \\
0.04107317533 & 964.3824116 & 943.6068059 & 1.101391712 & 4.221737516 \\
0.0003093035755 & 0.000233330997 & \(1.29345731 e-005\) & \(1.366423793 e-005\) & \\
1552.042347 & 1521.916875 & 481.515546 & 441.03629 & 1.947786407 \\
1.897931794 & 1.934931794 & 0.7413289525 & 1.250891899 & 1074.371893 \\
1074.198091 & 383.1556288 & 501.1376558 & 2705.028345 & 117.982027 \\
573.2342374 & 444.4336399 & 385.540174 & 382.252225 & 284.7188458
\end{tabular}

KEY POINT \#9 (t plus 13152.6443 s with a Mixing Number of 119.494): 56.54583692
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.7776949126 & 0.7866962506
\end{tabular}
\begin{tabular}{llllll}
0.2551285464 & 0.2551285464 & 0.996552995 & 12.95476221 & 168694.8508
\end{tabular}
\begin{tabular}{lllll}
0.06035825522 & 0.05499544804 & 0.02363321724 & 0.05063614644 & 0.07426936368
\end{tabular}
\begin{tabular}{lllll}
92.42661194 & 119.8645701 & 119.8645701 & 107.6153837 & 92.9425614
\end{tabular}
\begin{tabular}{lllll}
92.5187384 & 69.38536616 & 4.207431052 & 4.246137928 & 2.173217443
\end{tabular}
\begin{tabular}{llllll}
0.6743379389 & 0.6835864323 & 0.6835864323 & 1.908727674 & 1.443019324
\end{tabular}
\begin{tabular}{lllll}
0.04117422027 & 963.7166478 & 943.2147966 & 1.117454495 & 4.364868766
\end{tabular}
\(0.00030591766560 .00023231191451 .295136777 \mathrm{e}-0051.370750467 \mathrm{e}-005\)
\begin{tabular}{llllll}
1551.39439 & 1521.20315 & 481.7308172 & 440.014325 & 1.978148258
\end{tabular}
\begin{tabular}{lllrr}
1.92841095 & 1.96541095 & 0.7690393072 & 1.322638735 & 1065.304641 \\
1065.136815 & 387.2728075 & 503.2088997 & 2705.737481 & 115.9360921
\end{tabular}
\begin{tabular}{lllll}
1065.136815 & 387.2728075 & 503.2088997 & 2705.737481 & 115.9360921
\end{tabular}

KEY POINT \#10 (t plus 13699.6426 s with a Mixing Number of 125.9496): 56.2006634
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.780510294 & 0.7900521412 \\
0.2722201049 & 0.2722201049 & 0.9967357761 & 13.29716992 & 167784.9397 \\
0.0599607914 & 0.05477415557 & 0.02367830071 & 0.05013769948 & 0.07381600019 \\
94.52171363 & 120.9617188 & 120.9617188 & 109.1611881 & 95.25928609 \\
94.60524108 & 86.16711783 & 4.209780703 & 4.248036848 & 2.179601995 \\
0.6753750274 & 0.6837735083 & 0.6837735083 & 1.863000053 & 1.429203655
\end{tabular}


End

\section*{D. 31 TEST \#31 -}

\section*{T31_RCIC_STD_32KW_COOLSTART_RESULTS_RCICLAND.TXT}

Output Saved to C: \Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash E x p o r t \backslash T 31 \_R C I C \_S T D \_32 k W \_c o o l s t a r t \backslash ~\) Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 2098.074 s, and ending (KEY POINT \#11) at t plus 33496.2229 s, for a time period of 31398.1489 s.
Original Data Record Time: 33936.8281 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at \(t\) plus \(1785.2331 \mathrm{~s}, \mathrm{~T}\) _bulk \(=39.6457 \mathrm{C}\) and T _out \(=37.5095 \mathrm{C}\)
Stratification Beginnīng SP12 Temperature \(=39.4586 \mathrm{C}\)
Stratification Beginning Pressure \(=14.8741\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at \(t\) plus \(24369.6199 \mathrm{~s}, \mathrm{~T}\) bulk \(=96.8123 \mathrm{C}\) and T out \(=70.2051 \mathrm{C}\)
Stratification Ending SP12 Temperature \(=96.6826 \mathrm{C}\)
Stratification Ending Pressure \(=29.3707\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 8700.9447 s .
At \(t=8700.9447\) s, the pool pressure is 17.0445 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 57.8431, 57.647, 59.6496, 57.826, and 54.8411 C, respectively.
Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were \(9.1649+/-3.2151 \mathrm{C}\).
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were \(8.7328+/-3.1822 \mathrm{C}\).
Minimum Steam Quality: 0.97819 at \(t\) plus 30952.3414 s
Maximum Steam Quality: 1.0121 at \(t\) plus 4513.2741 s
Time-Averaged Steam Quality: 0.9978 +/- 0.0052489
Minimum Turbine Outlet Steam Quality: 0.97902 at t plus 30952.3414 s
Maximum Turbine Outlet Steam Quality: 1.0149 at t plus 4896.7931 s
Time-Averaged Turbine Outlet Steam Quality: 0.99981 +/- 0.005897
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 31308.1447 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.25507 degrees \(/ \mathrm{min}\) at t plus 20567.4534 s and 0.045959 degrees/min at \(t\) plus 20785.0578 s, respectively
Max and min smoothed mid (SP9) level changerates: 0.19846 degrees/min at \(t\) plus 11272.1907 s and 0.096896 degrees/min at \(t\) plus 11455.6932 s , respectively

Max and min smoothed upper-mid level changerate differences: 0.11527 degrees/min at \(t\) plus 20568.5555 s and -0.082531 degrees/min at t plus 20807.3551 s , respectively
Max and min smoothed lower level changerates: 0.77139 degrees/min at \(t\) plus 18260.1144 s and -0.10524 degrees/min at \(t\) plus 14062.8384 s, respectively
Max and min smoothed mid-lower level changerate differences: 0.26889 degrees/min at \(t\) plus 14062.9404 s and -0.62679 degrees/min at \(t\) plus 18260.1144 s , respectively
Max and min smoothed outlet level changerates: 1.0021 degrees/min at t plus 26303.4505 s and -0.051996 degrees \(/ \mathrm{min}\) at t plus 16183.2856 s , respectively
Max and min smoothed lower-outlet level changerate differences: 0.76157 degrees/min at \(t\) plus 18260.0134 s and -0.82459 degrees/min at \(t\) plus 26309.7528 s , respectively
Max and min smoothed hot (SP8) level changerates: 0.71492 degrees/min at \(t\) plus 14038.342 s and -0.18381 degrees \(/ \mathrm{min}\) at t plus 20538.3537 s , respectively

Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.55299 degrees/min at \(t\) plus 14038.342 s and -0.35225 degrees/min at \(t\) plus 14272.1433 s , respectively
The mean steam flow rate was 13.0481 +/- \(1.678 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 12.9251 +/- \(1.0638 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.0080696+/-0.028074 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is \(6.5608+/-4.7612 \mathrm{C}\) over the Stratification Period, beginning at -0.17248 C and ending at 10.5221 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(6.2063+/-4.6492\) C over the Stratification Period, beginning at -0.39035 C and ending at 9.9383 C
The stratification period begins and ends with Smoothed SP8 readings of 39.6888 and 107.4244 C, respectively

The stratification period begins and ends with condensing flows of 0.10439 and 0.28054 \(\mathrm{kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of -41.56 and \(0.66621 \mathrm{~kg} / \mathrm{s}\), respectively.

The stratification period had a mean sparger steam enthalpy of \(2696.2221+/-1.5699 \mathrm{~kJ} / \mathrm{kg}\). At plume detection, the condensing and condensing+cooling flows are 0.14268 and 3.6798 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of 2696.8901 +/- \(0.87338 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 0.75585 degrees \(C\) at \(t\) plus 29905.9155 s with T_upper \(=110.0453 \mathrm{C}\) and T mid \(=109.2894 \mathrm{C}\)
At \(t\) plus 29905.9155 s , Smoothed SP8-SP9 is 8.8729 C and Smoothed SP8-Top is 8.117 C , where Smoothed SP8 is 118.1623 C and Pool \(\mathrm{P}=36.9998\) psia
Maximum Smoothed Top-Lower delta \(T\) is 7.9672 degrees \(C\) at \(t\) plus 17544.2995 s with T_upper \(=81.594 \mathrm{C}\) and T _low \(=73.6268 \mathrm{C}\)
At t plus 17544.2995 s , Smoothed SP8-SP9 is 11.7292 C and Smoothed SP8-Top is 11.2546 C, where Smoothed SP8 is 92.8486 C and Pool \(\mathrm{P}=22.6633\) psia
Maximum Smoothed Mid-Lower delta T is 7.4926 degrees C at t plus 17544.2005 s with T_mid \(=81.1191 \mathrm{C}\) and \(\mathrm{T}_{\text {_low }}=73.6265 \mathrm{C}\)
At t plus 17544.2005 s , Smoothed SP8-SP9 is 11.7328 C and Smoothed SP8-Top is 11.2582 C , where Smoothed SP8 is 92.8519 C and Pool \(\mathrm{P}=22.6623\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 27.7072 degrees \(C\) at \(t\) plus 23726.3071 s with T_upper \(=96.1003 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=68.3931 \mathrm{C}\)
At t plus 23726.3071 s , Smoothed \(\overline{\text { SP8-SP9 }}\) is 10.212 C and Smoothed SP8-Top is 9.5637 C , where Smoothed SP8 is 105.664 C and Pool \(\mathrm{P}=28.6505\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 27.0832 degrees \(C\) at \(t\) plus 23893.1126 s with T_mid \(=95.7958 \mathrm{C}\) and T _out \(=68.7126 \mathrm{C}\)
At t plus 23893.1126 s , Smoothed SP8-SP9 is 10.9947 C and Smoothed SP8-Top is 10.4773 C , where Smoothed SP8 is 106.7905 C and Pool \(\mathrm{P}=28.8354\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 27.2708 degrees C at plus 24069.6127 s with T_low \(=96.5325 \mathrm{C}\) and \(T\) _out \(=69.2617 \mathrm{C}\)
At t plus 24069.6127 s, Smoothed SP8-SP9 is 10.2955 C and Smoothed SP8-Top is 9.7132 C , where Smoothed SP8 is 106.48 C and Pool \(\mathrm{P}=29.0298\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 12.9435 degrees \(C\) at (KEY POINT \#14) t plus 20075.5453 s with \(T_{-} S P 8=100.2562 \mathrm{C}\) and \(T\) _SP9 \(=87.3127 \mathrm{C}\) and Pool \(\mathrm{P}=\) 24.9855 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 12.51 degrees \(C\) at \(t\) plus 20075.5453 s with T_SP8 \(=100.2562 \mathrm{C}\) and T_upper \(=87.7462 \mathrm{C}\) and Pool \(\mathrm{P}=24.9855\) psia
Maximum Top-Mid delta \(T\) is 1.0492 degrees \(C\) at (KEY POINT \#4) t plus 4918.4833 s ignoring SP 4, with temperatures of 48.2987 and 47.2495 C , respectively, at Set \# 2, where Pool P = 15.686 psia and T_outlet \(=45.5399 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 4918.4833 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.62768 C and a raw SP12 Reading of 47.2495 C .
Maximum Top-Lower delta \(T\) is 9.2105 degrees \(C\) at \(t\) plus 18013.7083 s, with temperatures of 82.4772 and 73.2667 C, respectively, at Set \# 1, where Pool \(P=23.0954\) psia and T_outlet \(=67.6531 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 8.3812 degrees \(C\) at (KEY POINT \#6) \(t\) plus 17588.201 s ignoring SP 4, with temperatures of 81.0458 and 72.6646 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=22.7017\) psia and T_outlet \(=67.6774 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 18411.8171 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 2.7924 C and a raw SP12 Reading of 83.1785 C .
Maximum Top-Outlet delta \(T\) is 28.0253 degrees \(C\) at \(t\) plus 23966.8098 s, with temperatures of 96.672 and 68.6467 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=28.9211\) psia
Maximum Mid-Outlet delta \(T\) is 27.1363 degrees \(C\) at \(t\) plus 23561.7057 s ignoring SP 4, with temperatures of 94.9386 and 67.8023 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=28.4729\) psia
Maximum Lower-Outlet delta \(T\) is 27.9004 degrees \(C\) at (KEY POINT \#8) t plus 23750.5085 s, with temperatures of 96.2528 and 68.3524 C, respectively, at Set \# 1, where Pool P = 28.6776 psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 26532.8566 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 9.2992 C and a raw SP12 Reading of 101.4608 C .
Minimum SP Pressure is 14.5772 psia at t plus 23.4023 s
Maximum SP Pressure is 39.5948 psia at t plus 31397.6508 s
Beginning SP Pressure is 14.6026 psia
Ending SP Pressure is 39.5933 psia
Time-Average SP Pressure is 23.0621 +/- 7.1829 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 77.3013 cm (cold) / 77.4171 cm (hot) at 14.5352 psia
Beginning Smoothed SP Level is 77.4816 cm (cold) / 77.6167 cm (hot) at 14.5987 psia
Ending Smoothed SP Level is 78.8823 cm (cold) / 80.2758 cm (hot) at 39.5891 psia
Minimum Smoothed Cold SP Level is 77.4169 cm at t plus 19138.8277 s and 24.1219 psia

Minimum Smoothed Hot SP Level is 77.6122 cm at t plus 42.1054 s and 14.5954 psia Maximum Smoothed Cold SP Level is 78.9679 cm at t plus 29185.9113 s and 35.8581 psia Maximum Smoothed Hot SP Level is 80.2794 cm at \(t\) plus 30826.2392 s and 38.567 psia SP 12 Temperature at the beginning is 35.0053 C , and at the end is 112.4948 C At plume detection, the Mixing Number is 47.8841
The Mixing Number ranges from a minimum of 31.346 at (KEY POINT \#12) t plus 16.6109 s to a maximum of 245.9829 at (KEY POINT \#13) \(t\) plus 31373.4515 s; it had a mean value of 95.1452 +/- 58.2319 over the test period.
Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam T t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T_mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid Subcooling delta h e6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy e11
KEY POINT \#1 (t plus 0 s with a Mixing Number of 31.3518): 8.85144695 0.040894 \(0.00925 \quad 0.3937 \quad 0.774815585 \quad 0.776167201 \quad 1.00379484\)
\begin{tabular}{llllll}
1 & 1 & 14.6478339 & 29084.7682 & 0.0703301793 & 0.0587874192
\end{tabular}
\begin{tabular}{llllll}
0.0116258131 & \(-7.01938007 e-006\) & 0.0116258131 & 35.4499599 & 104.774786
\end{tabular}
\begin{tabular}{lllll}
100.645227 & 35.2669174 & 35.5482218 & 35.7910568 & 33.1457519
\end{tabular}
\begin{tabular}{llllll}
4.17887484 & 4.21746395 & 2.08006201 & 0.622666977 & 0.678021384
\end{tabular}
\begin{tabular}{llllll}
0.678021384 & 4.78271276 & 1.74067693 & 0.0377080203 & 993.877852
\end{tabular}
\begin{tabular}{llllll}
957.890036 & 0.611130484 & 0.603918825 & 0.00071264094 & 0.000279840253
\end{tabular}
\begin{tabular}{lllll}
\(1.22913855 e-005\) & \(1.24453827 e-005\) & 1522.93188 & 1544.49315 & 472.585242
\end{tabular}
\(\begin{array}{lllll}475.509961 & 1.03775545 & 1.00654739 & 1.04354739 & 0.0577020963\end{array}\)
\begin{tabular}{llllll}
0.0571224349 & 2685.36027 & 2685.14571 & 148.613894 & 421.821881
\end{tabular}
\begin{tabular}{lllll}
2676.58922 & 273.207987 & 2263.53839 & 147.84898 & 149.022992
\end{tabular}
\(150.040903 \quad 138.990181\)
KEY POINT \#2 (t plus 8700.9447 s with a Mixing Number of 47.8841): 9.59622503
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.774903865 & 0.778467507
\end{tabular}
\begin{tabular}{lllll}
1.00502958 & 1 & 1 & 13.75486 & 31022.2345
\end{tabular}
\(0.0666443233 \quad 0.0579091928 \quad 0.0126040318 \quad 6.88554843 \mathrm{e}-006 \quad 0.0126040318\)
\begin{tabular}{lllll}
57.6469674 & 110.573179 & 105.170999 & 59.6495713 & 57.8431002
\end{tabular}
\begin{tabular}{lllll}
57.8259622 & 54.8411216 & 4.18177292 & 4.22346257 & 2.09902947
\end{tabular}
\begin{tabular}{lllll}
0.64853704 & 0.679728958 & 0.679728958 & 3.11729659 & 1.65982964
\end{tabular}
\begin{tabular}{lllll}
0.038434485 & 984.410443 & 954.581019 & 0.708893967 & 0.698041811
\end{tabular}
\(0.000483451002 \quad 0.0002671349051 .24462437 \mathrm{e}-0051.26498955 \mathrm{e}-005 \quad 1552.34468\)
\begin{tabular}{llllll}
1539.94246 & 474.855923 & 478.669415 & 1.21619426 & 1.17529091
\end{tabular}
\begin{tabular}{lllll}
1.21229091 & 0.178718546 & 0.196245321 & 2695.12737 & 2694.93817
\end{tabular}
\(241.398518 \quad 440.935843 \quad 2683.65822 \quad 199.537325 \quad 2254.19153\)

KEY POINT \#3 (t plus 1785.2331 s with a Mixing Number of 33.6881): 9.03814845
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.776756462 & 0.778486913 \\
1.0053576 & 1 & 1 & 14.7706352 & 29500.3238 \\
0.0696188514 & 0.0586767087 & 0.0118710337 & \(1.27706999 e-005\) & 0.0118710337 \\
39.8612946 & 107.046741 & 101.218398 & 39.6888117 & 40.0791628 \\
40.2118187 & 37.4793476 & 4.17854265 & 4.21819891 & 2.08237251 \\
0.628457714 & 0.67825149 & 0.67825149 & 4.35160121 & 1.73001164 \\
0.037797236 & 992.273059 & 957.476059 & 0.622866015 & 0.612558056 \\
0.000654485924 & 0.000278171561 & \(1.23109729 e-005\) & \(1.25288809 e-005\) & 1531.09898
\end{tabular}
\begin{tabular}{lcccc}
1543.95043 & 472.876608 & 476.98027 & 1.05907695 & 1.0253472 \\
1.0623472 & 0.0732999321 & 0.0726278674 & 2689.78109 & 2689.56292 \\
167.049079 & 424.241014 & 2677.4909 & 257.191936 & 2265.54007 \\
166.328351 & 167.957943 & 168.515352 & 157.101524 & \\
INT \#4 (t plus & 4918.4833 s sith & a Mixing Number & of 38.9251 ) : & 9.57763488 \\
0.040894 & 0.00925 & 0.3937 & 0.776088908 & 0.778586356 \\
1.00698612 & & 1 & 1 & 14.9255859
\end{tabular}

KEY POINT \#5 (t plus 4918.4833 s with a Mixing Number of 38.9251): 9.57763488
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.776088908 & 0.778586356 \\
1.00698612 & & 1 & 14.9255859 & 30963.942 \\
0.068297711 & 0.0583728038 & 0.0125796148 & \(4.81467796 e-006\) & 0.0125796148 \\
47.8859808 & 110.362779 & 102.787818 & 48.1407893 & 48.1827555 \\
48.1938079 & 45.4779868 & 4.17913074 & 4.2202479 & 2.08883312 \\
0.638146545 & 0.678860933 & 0.678860933 & 3.71131102 & 1.70145432 \\
0.0380456092 & 988.987846 & 956.334946 & 0.65594272 & 0.641937987 \\
0.000566711225 & 0.000273692658 & \(1.23646439 e-005\) & \(1.26491582 e-005\) & 1542.87246 \\
1542.41414 & 473.668817 & 478.974057 & 1.11932002 & 1.08131913 \\
1.11831913 & 0.111124156 & 0.112558392 & 2695.88552 & 2695.66274 \\
200.586839 & 430.867239 & 2679.95039 & 230.2804 & 2265.01828
\end{tabular}
\(201.651721 \quad 201.825632 \quad 201.874856 \quad 190.529451\)
KEY POINT \#6 (t plus 17588.201 s with a Mixing Number of 88.2999): 9.80910747
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.774361468 & 0.781256269 \\
1.0002555 & 0.0562755357 & 0.0128836394 & \(1.46232866 e-005\) & 31483.0714 \\
0.0624428489 & 0.05 .0128836394 \\
81.2529731 & 113.732155 & 113.467466 & 93.4469246 & 81.7136946 \\
74.0897712 & 67.6714783 & 4.19646154 & 4.23564742 & 2.13840395 \\
0.667848281 & 0.682218998 & 0.682218998 & 2.19234108 & 1.52970401 \\
0.0399054172 & 971.045148 & 948.278985 & 0.921019291 & 0.92031909 \\
0.000348901381 & 0.000246383382 & \(1.27310996 e-005\) & \(1.27412487 e-005\) & 1556.83674 \\
1530.07968 & 478.834162 & 479.02629 & 1.60894064 & 1.56544897 \\
1.60244897 & 0.498721403 & 0.798858357 & 2696.97918 & 2696.86532 \\
340.295867 & 476.053746 & 2696.29806 & 135.757879 & 2220.92544 \\
391.53848 & 342.228014 & 310.258313 & 283.378562 &
\end{tabular}

KEY POINT \#7 (t plus 18411.8171 s with a Mixing Number of 93.7839): 9.85101667
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.774224989 & 0.78147161 \\
0.999702767 & 0.999702767 & 0.999999702 & 10.3894415 & 31560.0854 \\
0.0620585625 & 0.0560830159 & 0.0129386844 & \(1.22453158 \mathrm{e}-005\) & 0.0129386844 \\
83.3371755 & 114.435199 & 114.435199 & 95.6063229 & 83.7503854 \\
80.283618 & 67.5503733 & 4.19831284 & 4.23717178 & 2.14341191 \\
0.669182445 & 0.682456406 & 0.682456406 & 2.13379688 & 1.51588375 \\
0.0400895202 & 969.723923 & 947.524262 & 0.948791317 & 0.949073131 \\
0.000340112675 & 0.000244154504 & \(1.2764392 e-005\) & \(1.27644609 e-005\) & 1556.15352 \\
1528.80616 & 479.28211 & 479.277814 & 1.66084705 & 1.61744429 \\
1.65444429 & 0.541962716 & 0.86514722 & 2697.19265 & 2697.08471 \\
349.048169 & 480.157185 & 2697.74385 & 131.109016 & 2217.03546 \\
400.633263 & 350.781694 & 336.233977 & 282.875838 &
\end{tabular}

KEY POINT \#8 (t plus 23750.5085 s with a Mixing Number of 137.1581): 9.88862396
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.780535556 & 0.790204112 \\
0.995491771 & 0.995491771 & 0.999994525 & 8.64212589 & 31165.4502 \\
0.0597760795 & 0.05486163 & 0.0129880792 & \(6.30573355 \mathrm{e}-006\) & 0.0129880792 \\
95.491705 & 120.528329 & 120.528329 & 106.119915 & 96.1288229 \\
95.4756223 & 68.4405822 & 4.21091225 & 4.24728319 & 2.1770652 \\
0.675833418 & 0.683701257 & 0.683701257 & 1.84252492 & 1.43462625 \\
0.041313041 & 961.598501 & 942.679237 & 1.13963591 & 1.14479065 \\
0.000295717375 & 0.00023093722 & \(1.29742454 \mathrm{e}-005\) & \(1.29754387 e-005\) & 1549.15191 \\
1520.22128 & 482.022565 & 481.950635 & 2.02012201 & 1.97705753 \\
2.01405753 & 0.861517503 & 1.25664388 & 2696.85417 & 2696.77948
\end{tabular}
\(400.17798 \quad 506.030636 \quad 2706.70061 \quad 105.852656 \quad 2190.82353\)
\(445.002964 \quad 402.859774 \quad 400.111628 \quad 286.632409\)
KEY POINT \#9 (t plus 24369.6199 s with a Mixing Number of 143.538) : 10.0217448
\begin{tabular}{lllll}
0.040894 & 0.00925 & 0.3937 & 0.782676899 & 0.792717471
\end{tabular}
\begin{tabular}{lcccc}
0.995317388 & 0.995317388 & 0.999994182 & 8.56444696 & 31522.1769 \\
0.059506685 & 0.054710556 & 0.0131629249 & \(4.31311638 \mathrm{e}-006\) & 0.0131629249 \\
96.9023023 & 121.276576 & 121.276576 & 107.42436 & 97.4860728 \\
96.7486498 & 70.2603898 & 4.21257612 & 4.24858731 & 2.18145715 \\
0.676483155 & 0.683824652 & 0.683824652 & 1.81350268 & 1.42529234 \\
0.0414712 & 960.610253 & 942.073239 & 1.1650657 & 1.1705401 \\
0.000291224177 & 0.000229405674 & \(1.30000394 \mathrm{e}-005\) & \(1.30012985 e-005\) & 1548.02364 \\
1519.10099 & 482.349434 & 482.273852 & 2.06830759 & 2.02523753 \\
2.06223753 & 0.907079439 & 1.31405322 & 2697.56083 & 2697.48748 \\
406.12271 & 509.212518 & 2707.78253 & 103.089809 & 2188.34832
\end{tabular}

KEY POINT \#10 (t plus 26532.8566 s with a Mixing Number of 164.0653): 11.3174859
\begin{tabular}{llcccc}
0.040894 & 0.00925 & 0.3937 & 0.787617306 & 0.798917043 \\
0.995103175 & 0.995103175 & 0.9999934 & 8.93464731 & 35344.4563 \\
0.0585965787 & 0.0541638315 & 0.0148647986 & \(1.14019925 e-006\) & 0.0148647986 \\
101.632764 & 123.974795 & 123.974795 & 111.248308 & 102.177157 \\
101.796277 & 92.0614742 & 4.21846589 & 4.2534066 & 2.19777915 \\
0.678481729 & 0.684216638 & 0.684216638 & 1.72230173 & 1.39272164 \\
0.0420564382 & 957.229755 & 939.868063 & 1.26059865 & 1.2667936 \\
0.000277008346 & 0.000224037673 & \(1.30930875 e-005\) & \(1.30944798 e-005\) & 1543.79146 \\
1514.94392 & 483.510271 & 483.427935 & 2.2499205 & 2.20708224 \\
2.24408224 & 1.07471568 & 1.49492206 & 2701.00121 & 2700.92139 \\
426.07756 & 520.695234 & 2711.65011 & 94.6176736 & 2180.30598 \\
466.70403 & 428.372987 & 426.768694 & 385.762868 &
\end{tabular}

KEY POINT \#11 (t plus 31398.1489 s with a Mixing Number of 245.9767): 10.1130884
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.788822594 & 0.80275799 \\
0.988658526 & 0.988658526 & 0.999981175 & 6.52592889 & 31015.4346 \\
0.0564340074 & 0.0527567729 & 0.013282899 & \(6.81528223 \mathrm{e}-006\) & 0.013282899 \\
112.669346 & 130.852077 & 130.852077 & 120.548441 & 113.33915 \\
113.010355 & 108.970263 & 4.2341232 & 4.26654293 & 2.24289134 \\
0.682086194 & 0.684844644 & 0.684844644 & 1.54124 & 1.31684228 \\
0.0436576399 & 948.952096 & 934.106948 & 1.53291733 & 1.55047312 \\
0.00024828246 & 0.000211373095 & \(1.33304277 e-005\) & \(1.33341559 e-005\) & 1531.36511 \\
1503.5375 & 486.340452 & 486.128275 & 2.77218507 & 2.72957406 \\
2.76657406 & 1.56713998 & 2.0214051 & 2696.67576 & 2696.63318 \\
472.757157 & 550.027232 & 2721.25813 & 77.2700752 & 2146.64853 \\
506.168407 & 475.592312 & 474.202416 & 457.109873 &
\end{tabular}

KEY POINT \#12 (t plus 16.6109 s with a Mixing Number of 31.346): 8.85705877
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 1 & 0.3937 & 0.774783855 & 0.776135639 \\
1.00388439 & & 1 & 14.6722676 & 29095.3093 \\
0.0703270624 & 0.0587890113 & 0.0116331839 & \(-1.44666333 e-006\) & 0.0116331839 \\
35.4694354 & 104.864429 & 100.636979 & 35.3818169 & 35.5988143 \\
35.8139952 & 33.1663456 & 4.17887235 & 4.21745343 & 2.08002895 \\
0.622693276 & 0.678018043 & 0.678018043 & 4.78066194 & 1.74083134 \\
0.0377067422 & 993.871082 & 957.895983 & 0.610962934 & 0.603584776 \\
0.000712365873 & 0.000279864397 & \(1.22911037 e-005\) & \(1.24487613 e-005\) & 1522.9707 \\
1544.50089 & 472.581041 & 475.574022 & 1.03745125 & 1.00634236 \\
1.04334236 & 0.0577640704 & 0.0574857076 & 2685.54998 & 2685.33471 \\
148.695262 & 421.787072 & 2676.57624 & 273.091811 & 2263.76291 \\
148.329114 & 149.234393 & 150.13674 & 139.076228 & &
\end{tabular}

KEY POINT \#13 (t plus 31373.4515 s with a Mixing Number of 245.9829): 10.1333046
\begin{tabular}{llllll}
0.040894 & 0.00925 & 0.3937 & 0.788850767 & 0.802776094
\end{tabular}
\begin{tabular}{lcccc}
0.988721298 & 0.988721298 & 0.999981302 & 6.55052237 & 31080.7767 \\
0.0564356283 & 0.0527651844 & 0.0133094517 & \(1.43077903 e-005\) & 0.0133094517 \\
112.661175 & 130.81124 & 130.81124 & 120.541022 & 113.285114 \\
112.887068 & 108.908946 & 4.23411131 & 4.2664612 & 2.24260834 \\
0.682083893 & 0.684842473 & 0.684842473 & 1.54135984 & 1.31726464 \\
0.0436476529 & 948.958281 & 934.141751 & 1.53117135 & 1.54860902 \\
0.000248301625 & 0.000211444271 & \(1.33290179 e-005\) & \(1.33327222 e-005\) & 1531.37493 \\
1503.6086 & 486.324199 & 486.113332 & 2.76881715 & 2.72620253 \\
2.76320253 & 1.56671671 & 2.02093174 & 2696.75508 & 2696.71218 \\
472.722319 & 549.852777 & 2721.20218 & 77.1304579 & 2146.90231 \\
506.136662 & 475.363218 & 473.680107 & 456.850348 &
\end{tabular}

KEY POINT \#14 (t plus 20075.5453 s with a Mixing Number of 105.3569): 9.98248593
\begin{tabular}{lcccc}
0.040894 & 0.00925 & 0.3937 & 0.774331328 & 0.782263829 \\
0.999100848 & 0.999100848 & 0.999999044 & 9.92930058 & 31818.5801 \\
0.0613197362 & 0.055705462 & 0.013111361 & \(7.73225155 \mathrm{e}-006\) & 0.013111361 \\
87.3126934 & 116.327171 & 116.327171 & 100.256207 & 87.746219 \\
86.6714653 & 67.2133022 & 4.20209428 & 4.24021587 & 2.1534655 \\
0.671568125 & 0.682888968 & 0.682888968 & 2.02965183 & 1.48961253 \\
0.0404574007 & 967.144308 & 946.036999 & 1.00504576 & 1.0059493 \\
0.000324373844 & 0.000239902872 & \(1.28295125 e-005\) & \(1.28297296 e-005\) & 1554.41768 \\
1526.24434 & 480.147906 & 480.134511 & 1.76629439 & 1.72282587 \\
1.75982587 & 0.633174809 & 1.02348758 & 2698.6617 & 2698.56311 \\
365.754312 & 488.184192 & 2700.55236 & 122.429879 & 2210.47751 \\
420.23549 & 367.574798 & 363.061421 & 281.473425 &
\end{tabular}

End

\section*{D. 32 TEST \#32-T32_RCIC_STD_107KW_A_RESULTS_RCICLAND.TXT}

Output Saved to C: \Local Files \(\backslash\) RCICLAND_NOTITLES \(\backslash E x p o r t \backslash T 32 \_R C I C \_S T D \_107 k W \_A \backslash\)
Using 20-second SP 12 averages for beginning detection
Beginning (KEY POINT \#1) detected at \(t\) plus 1954.1718 s, and ending (KEY POINT \#11) at \(t\) plus 11629.1311 s , for a time period of 9674.9593 s.
Original Data Record Time: 12941.0732 s
Bulk Pool to Outlet Thermal Stratification Detected beginning (KEY POINT \#3) at t plus \(2701.3515 \mathrm{~s}, \mathrm{~T}\) _bulk \(=63.6862 \mathrm{C}\) and \(\mathrm{T}_{\text {_out }}=61.262 \mathrm{C}\)
Stratification Beginning SP12 Temperature \(=63.4018 \mathrm{C}\)
Stratification Beginning Pressure \(=17.8864\) psia
Bulk Pool to Outlet Thermal Destratification Detected beginning (KEY POINT \#9) at t plus \(8695.3573 \mathrm{~s}, \mathrm{~T}\) _bulk \(=116.0703 \mathrm{C}\) and T _out \(=73.9835 \mathrm{C}\)
Stratification Ending \(\overline{\text { SP1 }}\) Temperature \(=115 . \overline{8425} \mathrm{C}\)
Stratification Ending Pressure \(=42.6547\) psia
Plume detected! Setting t_plume (KEY POINT \#2) to 2213.4416 s .
At \(t=2213.4416 \mathrm{~s}\), the pool pressure is 17.1663 psia while the Smoothed Upper, Mid, SP8, Lower, and Outlet Temperatures are 59.8221, 59.8394, 61.8401, 59.7449, and 57.0339 C , respectively.

Over the Plume Period (Plume Detected to Destratification), the mean Smothed SP8-SP9 temperatures were 10.9686 +/- 2.5661 C.
Over the Plume Period (Plume Detected to Destratification), the mean Smoothed SP8-Upper temperatures were 10.07 +/- 2.3683 C .
Minimum Steam Quality: 0.99525 at t plus 9513.5751 s
Maximum Steam Quality: 1.0039 at \(t\) plus 5638.2005 s
Time-Averaged Steam Quality: 1.0004 +/- 0.0013441
Minimum Turbine Outlet Steam Quality: 1.0001 at t plus 9513.5751 s
Maximum Turbine Outlet Steam Quality: 1.024 at t plus 934.4185 s
Time-Averaged Turbine Outlet Steam Quality: \(1.0145+/-0.0066662\)
Smoothed Changerates may not fully include test beginning and end periods, analysis ending at \(t\) plus 9584.9852 s; using 300 s smoothing
Max and min smoothed upper level changerates: 0.77924 degrees/min at \(t\) plus 3928.0687 s and 0.3485 degrees \(/ \mathrm{min}\) at t plus 7716.6404 s , respectively
Max and min smoothed mid (SP9) level changerates: 0.71413 degrees/min at \(t\) plus 4253.5753 s and 0.34052 degrees \(/ \mathrm{min}\) at t plus 8787.1576 s , respectively

Max and min smoothed upper-mid level changerate differences: 0.32523 degrees/min at \(t\) plus 3885.8693 s and -0.13587 degrees/min at \(t\) plus 4478.0831 s , respectively
Max and min smoothed lower level changerates: 3.0133 degrees \(/ \mathrm{min}\) at t plus 6822.2252 s and 0.036062 degrees/min at \(t\) plus 3830.1681 s, respectively
Max and min smoothed mid-lower level changerate differences: 0.58748 degrees/min at \(t\) plus 5868.4057 s and -2.5671 degrees/min at \(t\) plus 6822.2252 s , respectively
Max and min smoothed outlet level changerates: 7.1719 degrees/min at \(t\) plus 9023.0791 s and -0.023147 degrees/min at \(t\) plus 5083.9898 s, respectively
Max and min smoothed lower-outlet level changerate differences: 2.979 degrees/min at \(t\) plus 6822.1242 s and -6.6032 degrees/min at t plus 9019.0658 s , respectively
Max and min smoothed hot (SP8) level changerates: 1.206 degrees/min at t plus 2633.9497 \(s\) and 0.17506 degrees/min at \(t\) plus 8093.2499 s, respectively

Max and min smoothed hot-mid (SP8-SP9) level changerate differences: 0.70373 degrees/min at \(t\) plus 2635.3487 s and -0.27746 degrees/min at \(t\) plus 4438.0849 s , respectively
The mean steam flow rate was 44.6769 +/- \(0.96462 \mathrm{~g} / \mathrm{s}\)
The mean feedwater flow rate was 44.2747 +/- \(1.3646 \mathrm{~g} / \mathrm{s}\)
The mean water injection to steam flow rate was \(0.012706+/-0.026273 \mathrm{~g} / \mathrm{s}\)
Mean Smoothed Condensing Region SP8-SP9 delta \(T\) is \(11.5424+/-1.6214\) C over the Stratification Period, beginning at 5.8519 C and ending at 12.4361 C
Mean Smoothed SP8-Upper Pool delta \(T\) is \(10.5838+/-1.5711\) C over the Stratification Period, beginning at 5.7071 C and ending at 11.3279 C
The stratification period begins and ends with Smoothed SP8 readings of 69.8175 and 128.4867 C, respectively

The stratification period begins and ends with condensing flows of 0.56653 and 1.3444 \(\mathrm{kg} / \mathrm{s}\), respectively.
The stratification period begins and ends with condensing+cooling flows of 4.4037 and \(1.8817 \mathrm{~kg} / \mathrm{s}\), respectively.
The stratification period had a mean sparger steam enthalpy of \(2734.0399+/-0.84684\) \(\mathrm{kJ} / \mathrm{kg}\).
At plume detection, the condensing and condensing+cooling flows are 0.53105 and 13.0722 \(\mathrm{kg} / \mathrm{s}\), respectively
The plume period had a mean steam enthalpy of \(2734.8343+/-0.5093 \mathrm{~kJ} / \mathrm{kg}\).
Maximum Smoothed Top-Mid delta \(T\) is 2.1961 degrees C at t plus 4011.4715 s with \(T\) _upper \(=\) 76.7591 C and T _mid \(=74.563 \mathrm{C}\)

At t plus 4011.4715 s, Smoothed SP8-SP9 is 10.9754 C and Smoothed SP8-Top is 8.7793 C, where Smoothed SP8 is 85.5384 C and Pool \(\mathrm{P}=20.8173\) psia
Maximum Smoothed Top-Lower delta \(T\) is 20.1396 degrees \(C\) at \(t\) plus 6540.0151 s with T_upper \(=101.9118 \mathrm{C}\) and \(T\) _low \(=81.7722 \mathrm{C}\)
At \(t\) plus 6540.0151 s , Smoothed SP8-SP9 is 12.6153 C and Smoothed SP8-Top is 11.8422 C, where Smoothed SP8 is 113.754 C and Pool \(\mathrm{P}=31.2785\) psia
Maximum Smoothed Mid-Lower delta \(T\) is 19.3683 degrees C at \(t\) plus 6540.3181 s with T_mid \(=101.141 \mathrm{C}\) and T low \(=81.7728 \mathrm{C}\)
At \(t\) plus 6540.3181 s , Smoothed SP8-SP9 is 12.6263 C and Smoothed SP8-Top is 11.8574 C , where Smoothed SP8 is 113.7673 C and Pool \(\mathrm{P}=31.2788\) psia
Maximum Smoothed Top-Outlet delta \(T\) is 43.1546 degrees \(C\) at \(t\) plus 8676.7573 s with T_upper \(=117.0273 \mathrm{C}\) and \(T\) _out \(=73.8726 \mathrm{C}\)
At \(t\) plus 8676.7573 s , Smoothed SP8-SP9 is 12.5786 C and Smoothed SP8-Top is 11.4574 C , where Smoothed SP8 is 128.4847 C and Pool \(\mathrm{P}=42.5499\) psia
Maximum Smoothed Mid-Outlet delta \(T\) is 42.1452 degrees \(C\) at \(t\) plus 8667.1607 s with T_mid \(=115.9591 \mathrm{C}\) and T out \(=73.8139 \mathrm{C}\)
At \(t\) plus 8667.1607 s , Smōothed SP8-SP9 is 12.4101 C and Smoothed SP8-Top is 11.4321 C , where Smoothed SP8 is 128.3692 C and Pool \(\mathrm{P}=42.5049\) psia
Maximum Smoothed Lower-Outlet delta \(T\) is 42.103 degrees \(C\) at \(t\) plus 8699.7596 s with T _low \(=116.1975 \mathrm{C}\) and T _out \(=74.0945 \mathrm{C}\)
At \(t\) plus 8699.7596 s, Smoothed SP8-SP9 is 12.4388 C and Smoothed SP8-Top is 11.3697 C, where Smoothed SP8 is 128.5735 C and Pool \(\mathrm{P}=42.6806\) psia
Maximum Smoothed Condensing Region SP8-SP9 delta \(T\) is 13.8692 degrees \(C\) at (KEY POINT \#14) \(t\) plus 7691.6389 s with \(\mathrm{T}_{-} S P 8=123.2067 \mathrm{C}\) and \(\mathrm{T}_{-} \mathrm{SP9}=109.3375 \mathrm{C}\) and Pool \(\mathrm{P}=\) 37.1837 psia

Maximum Smoothed Condensing Region SP8-Upper delta \(T\) is 12.9936 degrees \(C\) at \(t\) plus 7315.9625 s with \(\mathrm{T}_{-} \mathrm{SP} 8=120.711 \mathrm{C}\) and \(\mathrm{T}_{\text {_ }}\) upper \(=107.7175 \mathrm{C}\) and Pool \(\mathrm{P}=35.2766\) psia
Maximum Top-Mid delta \(T\) is 2.8241 degrees \(C\) at (KEY POINT \#4) \(t\) plus 4013.1715 s ignoring SP 4, with temperatures of 76.9067 and 74.0826 C, respectively, at Set \# 2, where Pool \(P=20.8168\) psia and T_outlet \(=67.9043 \mathrm{C}\)
Top-Mid Reconvergence Detected at (KEY POINT \#5) t plus 5122.393 s with a Smoothed MidAxis Top-Mid Delta \(T\) of 0.9996 C and a raw SP12 Reading of 86.5765 C .
Maximum Top-Lower delta \(T\) is 22.5262 degrees \(C\) at t plus 6644.6211 s, with temperatures of 103.088 and 80.5618 C , respectively, at Set \# 1, where Pool \(\mathrm{P}=31.8519\) psia and T_outlet \(=71.947 \mathrm{C}\)
Maximum Mid-Low delta \(T\) is 20.6545 degrees \(C\) at (KEY POINT \#6) t plus 6616.0364 s ignoring SP 4, with temperatures of 101.7052 and 81.0507 C, respectively, at Set \# 2, where Pool \(\mathrm{P}=31.6993\) psia and \(T\) outlet \(=71.8616 \mathrm{C}\)
Mid-Low Reconvergence Detected at (KEY POINT \#7) t plus 6961.3292 s with a Smoothed MidAxis Mid-Low Delta \(T\) of 6.8836 C and a raw SP12 Reading of 104.308 C .
Maximum Top-Outlet delta \(T\) is 43.5673 degrees \(C\) at \(t\) plus 8683.4596 s, with temperatures of 117.4591 and 73.8918 C , respectively, at Set \# 1, where Pool P \(=42.5899\) psia

Maximum Mid-Outlet delta \(T\) is 42.0022 degrees \(C\) at \(t\) plus 8686.1768 s ignoring \(S P 4\), with temperatures of 115.9094 and 73.9072 C , respectively, at Set \# 2, where Pool \(\mathrm{P}=\) 42.6129 psia

Maximum Lower-Outlet delta \(T\) is 43.4992 degrees \(C\) at (KEY POINT \#8) t plus 8670.9689 s, with temperatures of 117.3156 and 73.8164 C , respectively, at Set \# 1, where Pool P = 42.5111 psia
Low-Outlet Reconvergence Detected at (KEY POINT \#10) t plus 9079.9673 s with a Smoothed Mid-Axis Low-Outlet Delta \(T\) of 14.4908 C and a raw SP12 Reading of 118.3743 C .
Minimum SP Pressure is 15.1382 psia at t plus 6.4004 s
Maximum SP Pressure is 49.5608 psia at \(t\) plus 9674.9593 s
Beginning SP Pressure is 15.142 psia
Ending SP Pressure is 49.5608 psia
Time-Average SP Pressure is 26.6507 +/- 10.201 psia
SP Levels are fully corrected and compensated
Pre-Start SP Level is 78.6067 cm (cold) / 78.7386 cm (hot) at 14.5982 psia
Beginning Smoothed SP Level is 78.806 cm (cold) / 78.9919 cm (hot) at 15.1426 psia
Ending Smoothed SP Level is 77.9987 cm (cold) / 79.6061 cm (hot) at 49.5514 psia
Minimum Smoothed Cold SP Level is 77.9987 cm at t plus 9674.9593 s and 49.5514 psia
Minimum Smoothed Hot SP Level is 78.9359 cm at \(t\) plus 264.1111 s and 15.2993 psia
Maximum Smoothed Cold SP Level is 78.8063 cm at \(t\) plus 3.1012 s and 15.1442 psia
Maximum Smoothed Hot SP Level is 79.6803 cm at \(t\) plus 7491.5355 s and 36.1836 psia
SP 12 Temperature at the beginning is 40.8764 C , and at the end is 122.8031 C
At plume detection, the Mixing Number is 44.7729
The Mixing Number ranges from a minimum of 33.1644 at (KEY POINT \#12) \(t\) plus 0 s to a maximum of 243.5675 at (KEY POINT \#13) \(t\) plus 9674.9593 s; it had a mean value of 98.2305 +/- 60.6178 over the test period.

Key Points have Data Dumps of the following for each Key Point: Sparger Massflux (kg/m2s) g1, Sparger Diameter (m) d1, Water Injection Pipe Diameter d2, Sparger Outlet Elevation d3, Pool Cold Level d4, Pool Hot Level d5, Sparger Steam Quality x1, Bounded Quality x2, Sparger Void Fraction vf1, Sparger fluid velocity (m/s) v1, Two phase Re re_tp, Pool Mid T Tsat Surface Tension (N/m) sig1, Sparger P Psat Surface Tension sig2, Steam at Flowmeter mdot (kg/s) md1, Water mdot to Steam md2, Sparger mdot md3, Pool Mid T (C) t1, Estimated Sparger Steam T t2, Sparger Saturation T t3, Smoothed Plume T t4, Upper-Level Pool Rear Smoothed T t5, LowerLevel Pool Rear Smoothed T t6, Pool Outlet Smoothed T t7, Pool Mid Heat Capacity (kJ/kg-K) cp1, Sparger Sat Water Heat Capacity cp2, Sparger Sat Steam Heat Capacity cp3, Pool Mid Thermal Conductivity (W/m-K) k1, Sparger Sat Water Thermal Conductivity k2, Sparger Sat Steam Thermal Conductivity k3, Pool Mid Water Pr pr1, Sparger Sat Water Pr pr2, Sparger Sat Steam Pr pr3, Pool Mid Density (kg/m3) rho1, Sparger Sat Water Density rho2, Sparger Sat Steam Density rho3, Sparger Steam Density rho4, Sparger Subcooled T mid Viscosity (Pa-s) mul, Sparger Sat Water Viscosity mu2, Sparger Sat Steam Viscosity mu3, Sparger Steam Viscosity mu4, Pool Mid Sonic Velocity (m/s) cs1, Sparger Sat Water Sonic Velocity cs2, Sparger Sat Steam Sonic Velocity cs3, Sparger Sonic Velocity cs4, Sparger P (bar) p1, Pool Airspace P p2, Approx Pool Mid P p3, T_mid Vapor Pressure p4, T_Plume Vapor Pressure p5, Sparger Total Stagnation \(\bar{h}(k J / k g)\) e1, Sparger Steam Flowing h e2, Pool Mid h e3, Sparger Water Sat h e4, Sparger Steam Sat h e5, Pool Mid
Subcooling delta h e6, Steam Condensation delta h e7, Smooth Plume Enthalpy e8, Pool Rear Upper Smoothed Enthalpy e9, Pool Rear Lower Smoothed Enthalpy e10, Pool Outlet Smoothed Enthalpy e11
KEY POINT \#1 (t plus 0 s with a Mixing Number of 33.1644): 32.80995373 0.040894
\begin{tabular}{lllll}
0.00925 & 0.3937 & 0.7880599336 & 0.7899191954 & 1.020410194
\end{tabular}
\begin{tabular}{lcccccc}
1 & 1 & 53.24343762 & 101551.1707 & 0.06956965481 \\
0.0583732639 & 0.04309378937 & \(1.63106753 e-005\) & 0.04309378937 & 40.16396699 \\
125.1571847 & 102.7854462 & 40.43445979 & 40.11370202 & 39.89608901 \\
37.65113799 & 4.178533363 & 4.220244767 & 2.088823208 & 0.6288435919 \\
0.6788600348 & 0.6788600348 & 4.324377485 & 1.701496771 & 0.03804522926 \\
992.160429 & 956.3366785 & 0.6558916774 & 0.6164585443 & 0.0006507922358 \\
0.0002736993281 & \(1.236456276 e-005\) & \(1.321235628 e-005\) & 1531.616427 &
\end{tabular}
\begin{tabular}{lcccc}
0.0002736993281 & \(1.236456276 e-005\) & \(1.321235628 \mathrm{e}-005\) & 1531.616427 & \\
1542.416514 & 473.6676261 & 488.7936379 & 1.119226894 & 1.04404443
\end{tabular}
\begin{tabular}{lllll}
1.08104443 & 0.07449225453 & 0.07557194351 & 2728.685897 & 2725.851033
\end{tabular}
\begin{tabular}{lllll}
168.3154639 & 430.8572225 & 2679.946682 & 262.5417586 & 2297.828674
\end{tabular}
169.
168.1039237
\(167.1977222 \quad 157.8210413\)
KEY POINT \#2 (t plus 2213.4416 s with a Mixing Number of 44.7729): 33.68821498 \(\begin{array}{lllll}0.040894 & 0.00925 & 0.3937 & 0.7868786938 & 0.7909158031\end{array}\) \(\begin{array}{lllll}1.020487821 & 1 & 1 & 48.63508038 & 103311.2465\end{array}\)
\(\begin{array}{lllll}0.0662660613 & 0.05767614921 & 0.0442473297 & 9.184716526 e-006 & 0.0442473297\end{array}\)
\begin{tabular}{lcccc}
59.83944234 & 128.5833492 & 106.3640298 & 61.84008672 & 59.82205134 \\
59.74490196 & 57.03394964 & 4.1826508 & 4.225119024 & 2.10431373 \\
0.6506685008 & 0.6801376599 & 0.6801376599 & 3.005310885 & 1.639746332 \\
0.03863460483 & 983.3023639 & 953.6934801 & 0.7366782287 & 0.6928169461 \\
0.000467517185 & 0.0002639578262 & \(1.248713504 e-005\) & \(1.333490699 \mathrm{e}-005\) & \\
1553.800379 & 1538.643262 & 475.4428994 & 490.4868707 & 1.267227256 \\
1.183545357 & 1.220545357 & 0.197980526 & 0.2170726895 & 2733.750197 \\
2731.384826 & 250.5685847 & 445.979315 & 2685.501889 & 195.4107302 \\
2287.770882 & 258.9374557 & 250.494416 & 250.1746701 & 238.8411193
\end{tabular}

KEY POINT \#3 (t plus 2701.3515 s with a Mixing Number of 48.3268) : 33.66537618
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7868468087 & 0.7914691163 \\
1.020176924 & 1 & 1 & 47.15887766 & 103108.0879 \\
0.06554744288 & 0.05749735234 & 0.0442173324 & \(1.862756065 e-005\) & 0.0442173324 \\
63.96555427 & 129.0934705 & 107.277156 & 69.81747139 & 64.11033093 \\
63.70506808 & 61.29138746 & 4.184571106 & 4.226408296 & 2.108441303 \\
0.6544872075 & 0.6804388942 & 0.6804388942 & 2.811861085 & 1.624702177 \\
0.03879028348 & 981.1366769 & 953.0099044 & 0.7585364665 & 0.7141721805 \\
0.0004397887055 & 0.000261572114 & \(1.251845027 e-005\) & \(1.33521232 e-005\) & \\
1555.924549 & 1537.621363 & 475.8888329 & 490.6774283 & 1.307468513 \\
1.232918172 & 1.269918172 & 0.2390493838 & 0.3095514747 & 2734.268327 \\
2732.044367 & 267.834627 & 449.8409267 & 2686.90725 & 182.0062997 \\
2284.4274 & 292.3318434 & 268.4390482 & 266.7461185 & 256.6514246
\end{tabular}

KEY POINT \#4 (t plus 4013.1715 s with a Mixing Number of 60.4446): 34.13431466
\(\begin{array}{llllll}0.040894 & 0.00925 & 0.3937 & 0.7858982686 & 0.7923887331\end{array}\)
\begin{tabular}{lllll}
1.017928652 & 1 & 1 & 41.74750414 & 104229.5827
\end{tabular}
\(\begin{array}{lllll}74.58409468 & 130.4377023 & 111.3313816 & 85.47440632 & 76.77608419\end{array}\)
\(\begin{array}{lllll}73.02341779 & 67.94185115 & 4.191137404 & 4.232359976 & 2.127665379\end{array}\)
\(\begin{array}{llllll}0.6631872073 & 0.6816560328 & 0.6816560328 & 2.400401725 & 1.561163688\end{array}\)
\(\begin{array}{llllll}0.03950857364 & 975.126918 & 949.9304531 & 0.862044969 & 0.8176483758\end{array}\)
0.0003798290447
\(0.00025143812261 .265765653 \mathrm{e}-0051.339244222 \mathrm{e}-005\)
\(\begin{array}{llrrr}1557.927289 & 1532.801281 & 477.8333272 & 490.8888218 & 1.499067219\end{array}\)
\(\begin{array}{lllll}1.435576879 & 1.472576879 & 0.3792867226 & 0.5895219472 & 2734.738588\end{array}\)
\(\begin{array}{lllll}2732.995733 & 312.3180423 & 467.0016468 & 2693.085059 & 154.6836045\end{array}\)
\(\begin{array}{llllll}2267.736941 & 358.0088059 & 321.5054057 & 305.7793705 & 284.4998272\end{array}\)
KEY POINT \#5 (t plus 5122.393 s with a Mixing Number of 80.9034): 34.91678199
\begin{tabular}{llcccc}
0.040894 & 0.00925 & & 0.3937 & 0.7855352791 & 0.7938135772 \\
1.015598562 & & 1 & 36.73264136 & 106157.2549 \\
0.06144810532 & 0.05577411016 & 0.04586097442 & \(1.738503914 \mathrm{e}-007\) & 0.04586097442 \\
86.62487943 & 132.3186498 & 115.9837388 & 97.21876077 & 87.60747789 \\
79.25172467 & 70.74187287 & 4.201420567 & 4.239656983 & 2.151614491 \\
0.6711692073 & 0.6828135443 & 0.6828135443 & 2.047012932 & 1.494309221 \\
0.04038983287 & 967.5963203 & 946.30812 & 0.9946388987 & 0.9505691142 \\
0.0003270065504 & 0.0002406644169 & \(1.281768879 e-005\) & \(1.34506764 \mathrm{e}-005\) & \\
1554.754306 & 1526.716394 & 479.9917309 & 491.2724657 & 1.746756897 \\
1.68568188 & 1.72268188 & 0.6165359273 & 0.9175707788 & 2735.918217 \\
2734.56893 & 362.8613854 & 486.7266695 & 2700.044357 & 123.8652841 \\
2249.191547 & 407.4301557 & 366.9888499 & 331.910445 & 296.2455313
\end{tabular}

KEY POINT \#6 (t plus 6616.0364 s with a Mixing Number of 125.1763): 34.42187643
\begin{tabular}{lccccc}
0.040894 & 0.00925 & & 0.3937 & 0.7847472083 & 0.7958652135 \\
1.010628369 & & 1 & 28.24675616 & 104182.5689 \\
0.05857940942 & 0.05418832042 & 0.0452109474 & \(1.124056638 \mathrm{e}-005\) & 0.0452109474 \\
101.7214975 & 134.6161052 & 123.854255 & 114.419825 & 102.5485956 \\
83.00310555 & 71.92953599 & 4.21858694 & 4.253187365 & 2.197033663 \\
0.6785151447 & 0.6842008899 & 0.6842008899 & 1.720684699 & 1.394141255 \\
0.04202978903 & 957.1649804 & 939.967241 & 1.256200273 & 1.218916408 \\
0.0002767539567 & 0.000224272435 & \(1.308892965 \mathrm{e}-005\) & \(1.35113602 \mathrm{e}-005\) & \\
1543.700292 & 1515.133516 & 483.4590125 & 491.0968078 & 2.241539153 \\
2.185092089 & 2.222092089 & 1.078089283 & 1.660011809 & 2735.566264 \\
2734.768385 & 426.4502399 & 520.181961 & 2711.478477 & 93.73172113 \\
2215.384303 & 480.1322652 & 429.9386055 & 347.6919118 & 301.2610395
\end{tabular}

KEY POINT \#7 (t plus 6961.3292 s with a Mixing Number of 136.1769): 34.1864965
\begin{tabular}{llllll}
0.040894 & 0.00925 & & 0.3937 & 0.7846293809 & 0.7963934631 \\
1.009318937 & & 1 & 1 & 26.58783071 & 103426.6198 \\
0.05805226366 & 0.05383598476 & 0.04490179083 & \(1.869802967 e-005\) & 0.04490179083 \\
104.4369467 & 134.9436638 & 125.5856895 & 117.8535403 & 105.3776217 \\
96.24332838 & 72.14233982 & 4.222190709 & 4.256372185 & 2.207889843
\end{tabular}
\begin{tabular}{lcccc}
0.6795356273 & 0.6844113284 & 0.6844113284 & 1.672365901 & 1.374057933 \\
0.04241717527 & 955.1778884 & 938.5366884 & 1.320580017 & 1.286330308 \\
0.0002691570064 & 0.000220944216 & \(1.314866109 \mathrm{e}-005\) & \(1.351704803 \mathrm{e}-005\) & \\
1540.96124 & 1512.375589 & 484.1898674 & 490.8864131 & 2.364400354 \\
2.308555994 & 2.345555994 & 1.185645866 & 1.855305442 & 2735.014937 \\
2734.308024 & 437.9196299 & 527.5573047 & 2713.933325 & 89.63767478 \\
2207.457632 & 494.6992776 & 441.8906875 & 403.369883 & 302.1625467
\end{tabular}

KEY POINT \#8 (t plus 8670.9689 s with a Mixing Number of 194.3171): 34.47857482
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7818464342 & 0.7960722388 \\
1.004994035 & & 1 & 21.28030361 & 103599.9227 \\
0.05578340656 & 0.05223875871 & 0.04528541714 & \(1.922033254 e-005\) & 0.04528541714 \\
115.9372115 & 138.1859942 & 133.3607342 & 128.4682863 & 116.9645074 \\
115.892045 & 73.83548443 & 4.239289146 & 4.271652155 & 2.26062793 \\
0.6828768032 & 0.6849426769 & 0.6849426769 & 1.494893055 & 1.29149925 \\
0.04428245389 & 946.3998493 & 931.955354 & 1.64328906 & 1.620898323 \\
0.0002408016428 & 0.0002070868416 & \(1.341704316 e-005\) & \(1.360972868 \mathrm{e}-005\) & \\
1527.041818 & 1499.094285 & 487.3260974 & 490.9182626 & 2.985546773 \\
2.93187807 & 2.96887807 & 1.74412367 & 2.581067935 & 2735.929137 \\
2735.476285 & 486.6165423 & 560.7512031 & 2724.669601 & 74.13466078 \\
2175.177933 & 539.8757616 & 490.9711924 & 486.4263543 & 309.3069184
\end{tabular}

KEY POINT \#9 (t plus 8695.3573 s with a Mixing Number of 194.861): 34.48959795
\begin{tabular}{llllll}
0.040894 & 0.00925 & 0.3937 & 0.7818262266 & 0.7960988348
\end{tabular}
\begin{tabular}{lllll}
1.004971116 & & \multicolumn{1}{c}{1} & \multicolumn{1}{c}{1} & 21.22203964 \\
0.05576075138 & 0.05221690525 & 0.04529989533 & \(1.52418031 e-005\) & 0.04529989533 \\
116.0505898 & 138.2670156 & 133.4663012 & 128.4866616 & 117.1587208 \\
116.0673718 & 74.04391359 & 4.239472405 & 4.271871002 & 2.261389485 \\
0.6829021125 & 0.6849452807 & 0.6849452807 & 1.493337614 & 1.290458341 \\
0.04430923793 & 946.3105402 & 931.8642264 & 1.648069941 & 1.625725098 \\
0.0002405496048 & 0.0002069101221 & \(1.34206883 e-005\) & \(1.361243341 e-005\) & \\
1526.887169 & 1498.904063 & 487.3670207 & 490.9425437 & 2.994808579 \\
2.941167329 & 2.978167329 & 1.750546039 & 2.582499072 & 2736.017957 \\
2735.567582 & 487.0978568 & 561.2027777 & 2724.812029 & 74.10492091 \\
2174.815179 & 539.9547046 & 491.7955367 & 487.1702864 & 310.1810564
\end{tabular}

KEY POINT \#10 (t plus 9079.9673 s with a Mixing Number of 212.7324): 34.27586652
\(0.040894 \quad 0.00925 \quad 0.3937 \quad 0.7813015169 \quad 0.7963316473\)
\begin{tabular}{lllll}
1.003753362 & 1 & 1 & 19.98253608 & 102850.5202
\end{tabular}
\(0.05523229313 \quad 0.05183365248 \quad 0.045019172671 .661252027 \mathrm{e}-005 \quad 0.04501917267\)
\(\begin{array}{rrrrr}118.6875121 & 138.9007005 & 135.3142291 & 130.3924866 & 120.0039415 \\ 119.2420592 & 103.8079016 & 4.243835314 & 4.27575297 & 2.274919564\end{array}\)
\begin{tabular}{lllll}
0.6834454802 & 0.684971042 & 0.684971042 & 1.458117496 & 1.272561335
\end{tabular}
\begin{tabular}{llllll}
0.0447845923 & 944.2150227 & 930.2613895 & 1.733585511 & 1.715924071
\end{tabular}
\(0.00023482150910 .00020386296161 .348449824 \mathrm{e}-0051.362829553 \mathrm{e}-005\)
\begin{tabular}{llrrr}
1523.183172 & 1495.532147 & 488.0760997 & 490.780938 & 3.160738423 \\
3.107642131 & 3.144642131 & 1.905467888 & 2.734472158 & 2735.78992 \\
2735.390619 & 498.2945023 & 569.1114772 & 2727.290193 & 70.81697492
\end{tabular}

KEY POINT \#11 (t plus 9674.9593 s with a Mixing Number of 243.5675) : 35.05771019
\begin{tabular}{lccccc}
0.040894 & 0.00925 & 0.3937 & 0.7799869868 & 0.7960607647 \\
1.002134922 & & 1 & 18.64131533 & 104821.6095 \\
0.05434288241 & 0.05115963256 & 0.04604607465 & \(8.060347328 \mathrm{e}-006\) & 0.04604607465 \\
123.0927817 & 140.5495616 & 138.5486426 & 134.2357791 & 124.7627974 \\
124.4340637 & 119.1459569 & 4.251501994 & 4.282784812 & 2.299510559 \\
0.684175195 & 0.6849263276 & 0.6849263276 & 1.403136772 & 1.242659245 \\
0.04564663633 & 940.6478101 & 927.4210386 & 1.891822092 & 1.880974943 \\
0.0002258005232 & 0.0001987328503 & \(1.359619023 e-005\) & \(1.367704624 \mathrm{e}-005\) & \\
1516.597833 & 1489.440358 & 489.2839192 & 490.8255199 & 3.469014281 \\
3.416445369 & 3.453445369 & 2.189178547 & 3.063022949 & 2736.492739 \\
2736.14524 & 517.027997 & 582.9725646 & 2731.558178 & 65.94456754 \\
2153.520175 & 564.5209875 & 524.1294122 & 522.733318 & 500.2664478
\end{tabular}

KEY POINT \#12 (t plus 0 s with a Mixing Number of 33.1644): 32.80995373 0.040894
\(0.00925 \quad 0.3937 \quad 0.7880599336 \quad 0.7899191954 \quad 1.020410194\)
\begin{tabular}{lccccc}
1 & 1 & \multicolumn{2}{c}{53.24343762} & 101551.1707 & 0.06956965481 \\
0.0583732639 & 0.04309378937 & \(1.63106753 e^{2}-005\) & 0.04309378937 & 40.16396699 \\
125.1571847 & 102.7854462 & 40.43445979 & 40.11370202 & 39.89608901 \\
37.65113799 & 4.178533363 & 4.220244767 & 2.088823208 & 0.6288435919 \\
0.6788600348 & 0.6788600348 & 4.324377485 & 1.701496771 & 0.03804522926 \\
992.160429 & 956.3366785 & 0.6558916774 & 0.6164585443 & 0.0006507922358
\end{tabular}
```

