
FAST AND PRECISE ON-THE-FLY DATA RACE DETECTION

A Thesis

by

ARUN KRISHNAKUMAR RAJAGOPALAN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jeff Huang
Committee Members, Jennifer Welch

Jim Ji
Head of Department, Dilma Da Silva

May 2016

Major Subject: Computer Science

Copyright 2016 Arun Krishnakumar Rajagopalan

ABSTRACT

While concurrent programming is quickly gaining popularity lately, developing

bug-free programs is still challenging. Although developers have a wide choice of

race detection tools available, we have found that the majority of these techniques

do not scale well and developers are often forced to balance precision with speed.

Additionally, various practical issues force even precise race detectors to produce

spurious warnings, defeating their purpose and burdening their users. We design and

implement a novel race detection technique that is both fast and precise, even in the

face of missing program source information. Towards this goal, we have developed

two separate tools, TREE and RDIT, that respectively improve performance and

precision over existing techniques.

TREE, implemented in the RoadRunner framework, acts as a filter and sends

through only those events that might add value to race detection while eliminating

those events which are deemed redundant for this purpose. All the while, remov-

ing these redundant events does not affect its race detection capability. We have

evaluated TREE against a whole set of standard benchmarks, including two large

real-world applications. We have found that there exists a significant number of re-

dundant events in all these applications and on an average, TREE saves somewhere

between 15-25% of analysis time as compared to the state-of-the-art techniques.

Meanwhile, our next tool, RDIT, is able to precisely detect races in programs with

incomplete source information, generating no false positives. RDIT is also maximal

in the sense that it detects a maximal set of true races from the observed incomplete

trace. It is underpinned by a sound BarrierPair model that abstracts away the miss-

ing events by capturing the invocation data of their enclosing methods. By making

ii

the least conservative assumption that a missing method introduces synchronization

only when its invocation data overlaps with other missing methods, and by formu-

lating maximal thread causality as a set of logical constraints, RDIT guarantees to

precisely detect races with maximal capability. We tested RDIT against seven real-

world large concurrent systems and have detected dozens of true races with zero false

alarm. Comparatively, existing algorithms such as Happens-Before, Causal-Precede,

and Maximal-Causality, which are all known to be precise, were observed reporting

hundreds of false alarms due to trace incompleteness.

iii

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to Dr. Jeff Huang for his

continued support towards my Master’s study and related research, for his patience,

motivation, and immense knowledge. His guidance during the research and writing

of this thesis was invaluable. It was truly a pleasure working with him.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr.

Jennifer Welch and Dr. Jim Ji for their insightful comments and encouragement.

My sincere thanks also goes to Dr. Dmitri Loguinov, Dr. Lawrence Rauchwerger,

and all my other professors who imparted valuable knowledge and involved me in

exciting project work that greatly helped my research.

I thank my fellow labmate Anirudh and my roommates for the stimulating dis-

cussions, the sleepless nights working before deadlines and all the fun we’ve had over

the past two years. Last but not the least, I would like to thank my family: my

parents, my brother and my grandparents for their love and support throughout my

life.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . ix

1. INTRODUCTION . 1

1.1 Redundancy Elimination . 3
1.2 Missing Trace Events . 5

2. RELATED WORK . 10

3. A FAST RACE DETECTOR . 14

3.1 Examples . 15
3.1.1 Intra-thread Redundancy . 16
3.1.2 Inter-thread Redundancy . 17

3.2 The Trace Model . 19
3.3 Concurrential Equivalence . 20
3.4 The TREE Technique . 25
3.5 A Case Study . 28
3.6 Optimization . 29

4. A PRECISE RACE DETECTOR . 32

4.1 Examples . 32
4.2 The BarrierPair Model . 34
4.3 Technical Challenges . 36
4.4 The RDIT Technique . 41

4.4.1 Maximal Causality Model with Missing Events 41
4.4.2 Data Race Detection Algorithm 43
4.4.3 Computing Reachable Memory Addresses 45

v

4.4.4 Constraint Encoding of MCM (τ) 46
4.5 A Case Study . 50

5. RESULTS AND DISCUSSIONS . 55

5.1 TREE . 55
5.1.1 Evaluation Methodology . 55
5.1.2 Standard Benchmarks . 56
5.1.3 Micro-benchmarks . 58

5.2 RDIT . 61
5.2.1 Evaluation Methodology . 62
5.2.2 Race Detection Results . 63
5.2.3 Runtime Performance . 66

6. CONCLUSIONS AND FUTURE WORK 68

REFERENCES . 70

vi

LIST OF FIGURES

FIGURE Page

3.1 Program snippet exhibiting redundancy. There exists one real race
between À and Á. 14

3.2 Intra-thread event redundancy on Å and Æ. 17

3.3 Inter-thread redundancy between threads. 18

3.4 A program exhibiting both intra-thread and inter-thread event redun-
dancies and a serialized execution trace. 21

3.5 Γt at the time when the locations À-Â are accessed. 27

3.6 Concurrency history Θloc state of the four locations from Figure 3.4b:
(a)→À, (b)→Á, (c)→Â, (d)→Ã. 28

3.7 Program snippet depicting an example of span redundancy in array
accesses. 31

4.1 Ad hoc synchronization in the missing methods results in false alarms
reported by Happens-Before. 32

4.2 A program trace consisting of four threads and six BarrierPairs (a−f),
each denoting a missing method call with its reachable memory ad-
dresses. For example, the BarrierPair a(x) denotes that the corre-
sponding missing method a may access address x. Four HB edges
(a → c, c → b, d → f, f → e) are added between those BarrierPairs
with overlapping reachable addresses. 35

4.3 Overlapping BarrierPairs can incur multiple HB edges. 37

4.4 Events in between BarrierPairs may be observed and can introduce
HB edges. 38

4.5 Multiple BarrierPairs can introduce HB edges transitively. 40

vii

4.6 The Account benchmark. Existing precise dynamic algorithms such
as Happens-Before all report four false alarms due to missing events
caused by the native method call Thread.isAlive() at line 11. 51

4.7 By incorporating BarrierPair events (e18-e21) into the trace and for-
mulating maximal causality constraints, RDIT reports no false alarm
and detects the only true race (5,8). 52

5.1 Sample program snippet that targets redundant event elimination. . . 57

5.2 The number of threads, number of iterations and the number of locks
are the parameters on which the graphs are generated for a Java pro-
gram similar to the sample in Figure 5.1. These graphs depict the
execution time, memory overhead and percentage of skipped events
respectively. Figure (a) - (c) plot the changes in these values as num-
ber of threads is varied, Figure (d) - (f) plots the changes as the
number of iteration is varied, and finally Figure (g) - (i) plots the
changes as the number of locks are varied. 59

5.3 Sample program snippet that targets TREE’s weakness. 60

viii

LIST OF TABLES

TABLE Page

5.1 Experimental results of running FastTrack and FastTrack + TREE
on a bunch of benchmarks and a couple of real-world programs. All
the benchmarks were run on 4 threads. We captured the memory
usage of the entire benchmark and the complete execution time of the
program. We also captured the number of events that are skipped by
using TREE versus the total events generated by RoadRunner. The
columns indicate the percentage of skipped events, the delta memory
increase because of TREE and the percentage improvement in runtime
respectively. 56

5.2 Benchmarks and traces. The total size of all benchmarks is over
1.3M LoC. #Thrd: the number of threads; #Evnt: events; #RW:
reads/writes; #Sync: synchronizations; and #BP: BarrierPairs in the
trace. The BarrierPairs are set to all method calls that contain syn-
chronizations. 62

5.3 For each benchmark, the same incomplete trace after excluding all the
synchronization events is used in all the four techniques: Happens-
Before (HB), Causal-Precede (CP), Maximal-Causality (MC), and
RDIT. For RDIT, the missing methods are set to those containing
the excluded synchronization events. Column 2 reports the number of
true races (those reported by MC based on the full trace). Columns
3-6 report the total number of races and false alarms reported by each
technique on the incomplete trace. For all benchmarks, RDIT de-
tected a total of 85 data races all of which are true races, while the
other three techniques reported hundreds of false alarms. 64

5.4 Runtime performance of RDIT on Xalan when missing methods in
certain packages, with and without capturing BarrierPairs, and with
and without using the reachable address optimization. The naive ex-
ecution of Xalan takes 0.36s. 66

ix

1. INTRODUCTION

Concurrent programming is quickly becoming very popular due to inherent limi-

tations of hardware. It is more economically viable and practical nowadays to have

several moderately performing processor cores instead of a single high performing

core, as in the early days of computing. Such multi-core processors are finding

increasing popularity in a range of devices, from the powerful servers serving the

world’s populace to the ubiquitous smartphones that are carried in people’s pockets

everyday. They are even being employed in critical infrastructure applications such

as health care, public utilities, defense etc. However, as it turns out, developing

bug-free concurrent programs is quite hard due to the non-linear execution patterns

that are typical of these programs. A few notable instances of concurrency bugs that

caused significant damage and monetary loss include the 1985 Therac-25 medical ra-

diation device malfunction [59] that lead to the death of 5 people and injured several

others from overdose, the 2003 Northeast Blackout [41] that cost the government an

estimated $4 billion and more recently, NASDAQ’s Facebook IPO glitch [48] that

resulted in a loss of $13 million to investors. It is evident then, that verifying the

correctness of such concurrency programs is of paramount importance.

Researchers have proposed a wide variety of tools to aid in detection of concur-

rency errors [2, 3, 7, 16–18, 21, 26, 28, 34, 40, 47, 50, 54]. Among the various con-

currency errors, data-races are a particularly challenging category since they appear

non-deterministically and are often triggered by just the right combination of various

conditions [41, 59]. A data race is commonly defined as two unordered, conflicting

accesses without intervening synchronization. Because the two racy accesses may be

executed in different orders, programs with data races are often non-deterministic,

1

making testing and debugging notoriously challenging. Making it worse is fact that

data races make it extremely difficult to reason about program correctness, because

in high-level languages such as Java and C/C++, the semantics of data races are

usually subtle or undefined. Even though a data race may look benign in the source

code, compilers and hardware can transform it into harmful bugs [1, 5, 6].

Tools to detect data races are of two kinds – static analysis based and dynamic

analysis based. Tools that use static analysis form constrains on the data flow and

use a solver to try and find data races hidden in the program. Dynamic data race

tools, on the hand, analyze the program execution trace and report races from the

observed execution. Although we now have a plethora of tools to help in detecting

data-race bugs, eliminating races in real-world programs remains impractical. There

are three primary factors that determine the effectiveness of a race detection tool:

1. number of races detected,

2. performance and

3. number of false alarms

In this thesis, we focus on addressing and improving the last two factors, that of

performance and precision:

• Improved performance: Developers usually have to balance two factors

when hunting for data-race bugs - whether to focus on precision or on perfor-

mance. While precise race detectors reduce developer burden by detecting only

true races, they are usually prohibitively expensive to use for large scale pro-

grams. Thus, developers end up choosing a less precise but faster approach and

then verify the bugs manually. Improving performance and scalability concerns

2

of these precise race detectors would enable developers to avoid false positives

and improve their turnaround time.

• Improved precision: As we shall see in subsequent sections, even precise race

detectors can generate false positives when trace information is incomplete.

Our goal is to focus on elimination of these false positives in all conditions so

that users of our tool are guaranteed that every race detected in a true race.

1.1 Redundancy Elimination

There are, in general, three broad categories of dynamic race tools – a) Lock-

Set [50] based, b) Happens-Before [32] based and c) hybrid approaches [40] based

on the LockSet and HB. LockSet based techniques [37, 53] deem a race to have oc-

curred if two or more threads access a shared memory location without holding a

common lock. As such, LockSet based techniques are very fast and have less over-

head. Unfortunately, they tend to produce a lot of false alarms since perfectly valid

race-free sections of execution can violate the locking principle. HB based tools [21,

53] are precise, typically producing no false positives. However, they run slower

than the LockSet based approaches since they rely on expensive vector clock [42]

computations.

In recent years, the performance of Happens-Before (HB) based race detectors

has greatly improved thanks to techniques such as FastTrack [21]. For many small-

scale programs their performance is now close to that of LockSet based tools [50].

This is primarily due to recent advancements that have greatly cut down the size

of the vector clocks from O(Nthreads) to almost O(1), where Nthreads is the number

of threads. However, we still have difficulties scaling these tools to large software

applications. This is because these tools must still maintain state and check races

3

for each memory access, which is in O(Nevents), i.e., the number of memory accesses.

The O(Nevents) time significantly impacts their scalability.

Previous research has proposed several techniques [7, 17, 22, 28, 34, 44, 60]

to further improve performance of dynamic race detection tools by reducing Nevents.

However, most techniques are either incomplete or unsound, meaning that they either

reduce the race detection capability of the tools or make them report false positives.

For example, sampling-based techniques [7, 34] may lead to missing races, and static

analysis based [17, 22, 44] may lead to false positives.

Our first contribution is a new technique, called TREE (Trace Redundant Event

Elimination), that significantly improves the native performance of dynamic race

detectors, while still maintaining both precision and soundness. The key idea in our

design stems from the fact that certain events in a typical program execution trace

can be removed without affecting the capability and precision of the race detection

tool. We term these events as redundant. Redundant events can be of two types (not

mutually exclusive):

• Memory access events to addresses on which no races will be found.

• Memory access events to addresses on which no new races will be found.

Existing techniques such as [17, 44, 60] target specifically the first type of re-

dundancy. For example, RaceTrack [60] adds more instrumentation to those regions

that are more susceptible to races and lesser instrumentation to regions that are not.

However, precisely analyzing the source code and determining such regions is hard

and these tools may result in loss of precision or soundness.

In this work, we target the second type - detecting only unique races. We have

evaluated the performance of TREE on a collection of benchmarks including two

large real-world applications by running it as a pass before FastTrack [21](a precise

4

race detector). TREE is able to remove more than half of the total events generated

in these benchmarks. On the two real-world server applications, TREE identifies

35-70% redundant events, and improves the runtime performance of FastTrack by

15-25% with only a small memory cost. Memory performance could be further tuned

by adjusting TREE parameters on an application by application basis by the user.

More importantly, enabling TREE did not result in loss of any true data-races over

what FastTrack might have reported.

1.2 Missing Trace Events

In real world usage of dynamic race detection tools, although they advertise

themselves to be precise, we notice that they can generate false alarms in certain sit-

uations1. False alarms are particularly problematic for race detection tools, because

races are surprisingly difficult to diagnose and validate. To correctly determine if a

reported race is a false alarm, the developer would need to analyze all possible order-

ings of computations from different threads in all feasible paths, the space of which

is enormous for real programs. Even if a race looks suspicious, it may still be a false

alarm due to certain subtle synchronizations that are not (yet) understood by the

programmer. Worse, real bugs such as deadlocks could be added while attempting to

fix a spurious race [21]. Consequently, any false alarms could significantly decrease

programmer productivity and make the tool less useful.

The reasons for the false alarms are twofold. First, the general problem of pre-

cisely identifying races is NP-hard [39]. To scale to large programs, existing tech-

niques often overly approximate races. As discussed previously, the LockSet algo-

rithm [50] implemented in state-of-the-art race detectors [37, 52] is known to be

imprecise. Moreover, the challenge is rooted not only in the algorithmic complexity,

1We do not distinguish benign and harmful data races in this work. Any false positive race is
considered as a false alarm. See Section 2 for more discussions on benign and harmful races.

5

but also from various practical issues:

1. Performance slowdown. Many applications or components are performance

sensitive or have resource constraints such that they cannot tolerate too much

runtime slowdown, otherwise they would fail to function properly. We may

even desire to miss certain code in some scenarios for better performance. For

example, when debugging code implementing a new feature, developers may be

interested in detecting races in a specific code region and would want to skip

the others.

2. Unavailability of whole program. Real-world systems often rely on exter-

nal libraries, and/or are composed from layers of frameworks and extended by

third-party plug-ins. These programs may even be loaded on the fly over the

network. Analyzing the whole program to find all synchronizations is difficult

or impossible.

3. Limitation of logging facilities. Many dynamic techniques require captur-

ing a full program execution trace through static or dynamic instrumentation.

The logging facilities may be limited to certain languages or cannot handle

certain language features. For example, built-in libraries (e.g., java.*) and

code written in a lower level language (e.g., Java Native Interface (JNI) [29]).

In all these situations, we may end up missing vital program trace information.

When only partial program information is available or observed, even existing precise

algorithms (i.e., Happens-Before (HB) [32], Causally-Precedes (CP) [54], Maximal-

Causality (MC) [26]) become imprecise. For example, the classical HB algorithm [32]

is precise, given that all critical events in the program execution are captured. How-

ever, this requirement can rarely be satisfied in practice, and HB-based tools [21, 52]

tend to report many false alarms on real-world systems.

6

For our second contribution, we present a new dynamic race detection technique,

called RDIT (Race Detection from Incomplete Traces) that aims to fix this issue.

RDIT is precise even when certain events in the program execution are not tracked

or are missed. At the same time, RDIT is maximal such that it detects a maximal

set of true races that can happen in all possible schedules inferred from the observed

trace. RDIT is underpinned by a novel BarrierPair model of incomplete trace de-

veloped in this work. BarrierPair soundly abstracts the behavior of missing events

through the invocation data of their enclosing methods. The BarrierPair model is

safe since it conservatively assumes that all runtime data at the invocation sites of

a method that is not logged will be accessed inside the method and may introduce

synchronization. Meanwhile, it is the least conservative approach, in that any data

non-reachable from the method’s runtime arguments will not be accessed inside the

method and hence does not introduce synchronization. Moreover, inspired by previ-

ous work [26], BarrierPair allows RDIT to formulate maximal thread causality as a

series of quantifier-free first-order logic formulas. By solving the formulas together

with data race constraints using an off-the-shelf SMT solver, RDIT is able to detect

races precisely with maximal capability. In contrast to previous work [26], RDIT also

allows arbitrary events to be missed in the trace without reporting any false alarm.

We anticipate that RDIT is useful in several practical scenarios. First, RDIT

can be applied in systems (e.g., multi-language programs) where it is difficult to

trace certain computations. Second, RDIT can be used in programs with third party

libraries or user extensions of which the complete code is unavailable. Third, RDIT is

useful in performance sensitive applications that cannot tolerate any instrumentation

slowdown. Users of RDIT can selectively exclude or include code sections/modules

from the instrumentation. Fourth, RDIT can speed up the runtime for localized

debugging where developers are only interested in certain code region (e.g., new

7

features) and can skip logging code that they believe is race-free.

We have implemented RDIT for Java and evaluated it on seven real-world large

multi-threaded applications including Eclipse IDE, Apache Derby Database and Flood-

light SDN controller. RDIT detected a total of 85 true races in these systems but

zero false alarms. In contrast, existing precise algorithms (HB, CP, and MC) report

hundreds of false alarms (149, 149, and 213, respectively) due to missing events in

the trace. Moreover, RDIT improves the overall program performance significantly

when used for capturing the incomplete trace in practice – capturing the BarrierPairs

incurs only 4%-13% runtime overhead when a practically sound optimization is ap-

plied to compute reachable runtime data of missing methods compared to 65%-168%

runtime overhead without the optimization.

In summary, our work in this thesis makes the following contributions:

• We provide a generalized model of a program trace and model the various types

of redundant events that may be present in it.

• We develop a algorithm to remove these redundant events from the trace.

TREE, which is an implementation of this algorithm, filters these redundant

events before passing them on to the underlying race detector.

• We compare the performance of FastTrack + TREE to the performance of

vanilla FastTrack on a variety of benchmarks. We show that for even the worst

cases, TREE exhibits reasonable performance.

• Next, we present a precise and maximal dynamic race detection technique that

detects a maximal set of true races from incomplete traces without any false

alarms.

• RDIT is built on a novel model of an incomplete trace that abstracts away the

8

missing events by capturing the invocation data of their enclosing methods.

This model forms a foundation for capturing maximal thread causality in the

presence of missing events.

• We present an extensive evaluation of RDIT on a range of real-world con-

current systems and demonstrate the race detection effectiveness and runtime

performance.

The rest of the thesis is organized as follows – Section 2 discusses related work

in this domain and how our techniques differ from existing literature. Section 3

introduces the concept of redundant events and shows how TREE is able to filter

them. Section 4 builds on the need for improving the current trace model to account

for missing events and how RDIT is able to precisely detect only true races. Next,

Section 5 evaluates the performance of TREE and RDIT against a standard set of

benchmarks and large real-world applications. Finally, Section 6 discusses plans for

future work and our concluding thoughts.

9

2. RELATED WORK

Data race detection is a hot area of research at the moment. Researchers have

proposed a large number of race detection techniques, both static [37, 57] and dy-

namic [3, 17, 21], targeting different types of software [16, 18, 47], memory models [8,

9, 20], application domains [2, 36], and at various stages of software development [8,

35].

TREE is targeted at addressing scalability problems faced by these tools when

applied to real-world applications. Redundancy elimination by TREE is sound and

generic in a way that makes it possible to apply it to any dynamic race detector in

a plug-and-play approach to transparently improve their performance. In addition

to performance gains through redundancy elimination, researchers have also looked

at enhancements to the underlying race detection algorithms. Improved detection

algorithms such as FastTrack [21], Eraser [50] have both greatly improved runtime

performance from prior work. Building on top of these tools, several hybrid race

detection tools [11, 40, 43] combine the performance of LockSet based techniques

with the precision of HappensBefore based techniques. However, it is still challenging

to develop new algorithms that can scale well. An easier, more practical approach is

through redundancy elimination, which would work across all these tools. There are

three families of techniques that aim to detect these redundancies, detailed below.

1. Static Analysis based tools: These tools [11, 17, 22, 45] reason about

which memory accesses are redundant and mark such accesses statically. They

eliminate those accesses that guaranteed to be race-free or would not result in

generation of any new races. These tools however, struggle to properly analyze

external library features and program constructs such as reflections, making

10

their analysis unsound. For example, RedCard [22] checks for races only on the

first access to each shared address. While this approach does help in pruning

the number of instrumented events, it also results in the loss of several real

races. IFRit [17] on the other hand, identifies interference free regions of the

program and reduces instrumentation in them.

2. Online tools: To improve runtime performance, several online sampling tech-

niques [7, 34, 60] have been proposed to scale dynamic race detection to long

running programs. LiteRace [34], Pacer [7], and RaceTrack [60] all use sampling

to reduce the tracing overhead and may achieve negligible runtime slowdown,

at the cost of reduced race detection ratio. RoadRunner [23] has an inbuilt

thread-local pass that is supposed to speed up dynamic analysis tools by fil-

tering memory addresses that are solely accessed by a single thread. However,

we found that the design of this filter is unsound and results in missing races.

3. Post-processing on trace: TraceFilter [28] takes the generated trace file

as input and performs redundancy elimination for offline predictive race analy-

sis. In comparison to TraceFilter, TREE is able to deal with both intra-thread

redundancy and inter-thread redundancy seamlessly using the same data struc-

ture to represent concurrency context1 across threads. Moreover, TREE re-

sults in much better overall performance since redundancy elimination occurs

at runtime in-contrast to post-processing.

Next, we look at the problem of false positives. Real-world program traces un-

fortunately exhibit plenty of missing trace events. These many be due to inherent

limitations of the framework, or enterprising users who seek to extract maximum

performance by targeting race detection to a small region. Our BarrierPair model,

1Discussed in Section 3.3

11

implemented in RDIT, bridges the gap between existing precise race detection algo-

rithms and the challenges in capturing a full execution trace, enabling dynamic race

detectors to precisely detect races from incomplete traces with maximal detection

capability. Precise race detection has received considerable attention in the past few

years and several approaches have been pursued.

1. Runtime Pruning False Alarms: Researchers have proposed several run-

time validation techniques [28, 51] to improve accuracy of race detection. These

techniques take a set of potential races as input and execute the program again,

attempting to simulate the schedules necessary to induce the race. If the con-

ditions to reproduce the race are not met, the race is considered false and not

reported. While these techniques can prune false alarms, they require multiple

runs of the program, and may suffer from livelocks and hence miss true races.

2. Deterministic Execution: Complementary to race detection, a promising di-

rection is to make the execution deterministic. This is pioneered by techniques

such as DMP [15], DThreads [33], and Parrot [13]. These techniques ensure

race conditions either manifest themselves, or do not, on every execution.

3. Symbolic Constraint Analysis: Researchers have proposed numerous anal-

yses [19, 24–27, 58] based on logical constraint solving to detect and diagnose

concurrency bugs, including a few race detection techniques [26, 49]. Neverthe-

less, none of the previous analysis considered the practical problem of missing

events.

4. Race Detection for Relaxed Memory Models: Races in systems with

memory consistency models can be more difficult to understand. Several ap-

proaches [8, 9, 20] have been proposed to detect races under relaxed memory

12

models, such as TSO, PSO, and Java memory models. In this work we have

focused on sequential consistency only. Nevertheless, the RDIT technique can

be extended to relaxed memory models, by relaxing the program order con-

straints.

5. Harmful and Benign Races: Not all true races may be considered harmful

by developers. A few techniques [8, 30, 38] have been proposed to automat-

ically classify benign and harmful races from true races through replay [38],

symbolic analysis [30], or heuristics [8]. RDIT does not distinguish benign

and harmful races. However, we note that races that look benign may still be

harmful or become harmful, due to subtleties in memory models [1], compiler

transformations, or hardware optimizations [5, 6].

6. Sampling-based Race Detection: Although the sampling based tools men-

tioned previously [7, 34, 60] also allow missing events, their algorithms are not

precise and do not guarantee the absence of false alarms.

13

3. A FAST RACE DETECTOR

Performance is a critical issue in any race detector. However, any performance

improvements to the race detector tool must not come at the cost of precision or loss

of race detection capability. To this end, we propose the concept of trace redundancy

and demonstrate how eliminating it can significantly improve runtime performance

of the race detection tool.

for(i=0; i < 10)
{

lock A
write x
unlock A

}

T0

1

for(i=0; i < 10)
{

lock B
write x
unlock B

}

T1

2

Figure 3.1: Program snippet exhibiting redundancy. There exists one real race
between À and Á.

In real-world program execution traces, we may observe several races between the

same two lexical statements of a program. However, just a single pair is enough to

alert the programmer to a race between these two statements - the other warnings

are superfluous and can be ignored. More pressingly, these additional race checks

negatively impact the runtime performance of the program since additional expensive

vector clock operations must be performed without revealing any additional useful

information to the programmer.

14

3.1 Examples

Consider the example in Figure 3.1. The two threads T0 and T1 both write to a

shared address x. T0 acquires lock A before writing to x, while T1 acquires lock B.

Because T0 and T1 do not share a common lock while writing to x, there exists a data-

race between À and Á. However, since the race exists inside a loop that runs 10 times,

traditional HB-based detectors will check for races each time the event is generated.

By filtering precisely those events that would not lead to any new unique race, the

analysis can track lesser state and perform fewer race checks. This optimization is

tremendous in modern day multi-threaded programs, as this type of redundancy is

prevalent due to the single-process-multiple-data (SPMD) architectural design.

On the surface, this problem seems simple to solve by removing multiple events

from the same program location. However, a treatment as such may remove impor-

tant dependency information and produce incorrect results. Consider the following

two approaches:

• Approach 1: Perform race checks for each lexical location just once.

• Approach 2: Filter events from the same lexical location if no synchronization

event has been observed since the last time.

As we will elaborate below, Approach 1 is unsound and Approach 2 is overly

limiting such that it cannot filter events across synchronization boundaries. We

introduce a new concept – concurrential equivalence – that precisely and optimally

captures redundant events. Specifically, two events are concurrentially equivalent if

they have the same concurrency context – a history of must happens-before within the

thread that performs the event. We show that for dynamic race detection, if there

are two or more lexically-identical concurrentially equivalent events that access the

15

same memory location, it is sufficient to keep only one of them for at most two

threads, and safely drop all the others.

Prior work [28] observes a similar type of equivalency called permutational re-

dundancy over events by the same thread, and develops an offline trace filtering

technique to remove redundant events in the context of predictive concurrency anal-

ysis. However, this work makes two important advancements over prior work. First,

the concept of concurrential equivalence is much more general than permutational

redundancy – it characterizes both intra-thread and inter-thread event redundancy

for race detection. Second, TREE is purely dynamic without any static analysis

and is general enough to be applicable to HB-based, LockSet-based, or hybrid race

detectors.

A redundant event in a trace is considered to be any event whose exclusion from

the trace does not lead to any missed races or false alarms. We can categorize

these redundant events into two types: intra-thread redundancy, and inter-thread

redundancy.

3.1.1 Intra-thread Redundancy

This type of redundancy appears between events from the same program locations

accessed by the same thread. Consider a program in Figure 3.2. Two methods

m read() and m write() are called to read and write to the address x. The main

loop runs 10 times, the first 5 times acquire lock A before writing to x and the next

5 acquire lock B before writing to x.

Assume the code above is executed by the main thread T0. If there exists a second

thread T1 that also writes to x, there are two possible lexical locations where races

might occur: the read at Å, and the write at Æ. One simple strategy for removing

these redundant events would be to check races at each lexical location just once.

16

for(i=0; i<10; i++){
m_read()
m_read()
if(i < 5) {

lock(A)
m_write()
unlock(A)

} else {
lock(B)
m_write()
unlock(B)

}
m_write()

}

1

2

3

4

5

m_read()

read x6

m_write()

write x7

Figure 3.2: Intra-thread event redundancy on Å and Æ.

However, this would result in missed races. To see why, let us imagine that T1 writes

to x after acquiring lock A. It is easy to see that the first write to x from the call at

Â does not introduce a race due to the shared lock A. However, the second call to x

from Ä does indeed race with the write from T1. If we only check the first access and

filter all subsequent events from the same lexical location, we would miss this race.

We also note that in the second iteration of the loop, both the write events from Â

and Ä would be redundant. Similarly, the writes from Ã after the fifth iteration are

also redundant.

3.1.2 Inter-thread Redundancy

We can generalize the redundancy to events across different threads. Figure 3.3

illustrates a simple example. The main thread T0 runs a loop inside which it reads

and writes to a common shared address x, and forks new threads with argument

17

T0

Ti
if(i<5) Lock(A)
write x
if(i<5) Unlock(A)

4

5

6

for(i=1; i<10; i++){
read x
fork(Ti, i)
lock(A)
write x
unlock(A)

}

1

2

3

Figure 3.3: Inter-thread redundancy between threads.

being the iteration index. The shared lock A is used to protect the writes to x at Â.

Thread Ti writes to this shared address protected conditionally through lock A for

the first five threads. The remaining threads write to x without previously acquiring

lock A.

Let us consider the first iteration of the loop. Thread T0 reads x before forking

thread T1. Thus, this read does not result in a race. Then, T0 and T1 write to x

ordered by a lock. Thus, the first iteration has no race. In the second iteration, the

read of x, which previously did not result in a race, now races with the write by T1.

Subsequent iterations all serve to expose the same lexical pair as a race and can be

ignored. However, not all of the threads are identical in their execution - threads T5

to T9 do not acquire the lock before writing to x. In these threads, Â and Ä result

in a race. Among these threads, T6 to T9 are completely redundant to T5.

18

From these examples, we see that identical program location is just a necessary

condition, but not the only condition to determine if the two events are redundant

or not. A key contribution of TREE is a criterion (called concurrential redundancy)

that captures redundant events without any loss of race detection ability, for both

intra-thread and inter-thread redundancies. Before introducing our criterion, we first

introduce necessary preliminaries.

3.2 The Trace Model

To formally define the event redundancies, we need a model of a general program

execution trace. Similar to previous work [28, 51], we consider an event e in a

program trace τ to be one of the following:

• MEM(t, a, v): A memory access event, where t refers to the thread performing

the memory access, a can be one of R(Read)/W(Write) event and v the

memory address being accessed.

• ACQ(t, l): A lock acquire event, where t denotes the thread acquiring the lock

and l is the address of the acquired lock.

• REL(t, l): A lock release event, where t denotes the thread releasing the lock

and l is the address of the released lock.

• SND(t, g): A message sending event, where t denotes the thread sending

message with unique ID g.

• RCV(t, g): A message receiving event, where t denotes the thread receiving

message with unique ID g.

For Java programs, the events SND(t, g) and RCV (t, g) events can be one of the

following:

19

• If Thread T1 starts T2, it corresponds to a SND(T1, g) and RCV (T2, g).

• If Thread T1 calls T2.join(), SND(T2, g) and RCV (T1, g) are generated once

T2 terminates.

• If Thread T1 calls o.notify() signaling a o.wait() on Thread T2, this corresponds

to a SND(T1, g) and RCV (T2, g).

Every event is also associated with a loc attribute denoting the program location

that generates the event.

3.3 Concurrential Equivalence

Having defined a standard model of a program trace, we now formally define a

redundant event for data-race detection.

Definition 3.3.1. An event e is said to be redundant iff A(α) = A(α\e), where A

is the race detection algorithm and α is an input execution trace observed so far.

In our case, A is a dynamic HB, LockSet, or a hybrid algorithm. In order to

determine the conditions for an event to be redundant, we first look the attributes

of an event that HB and LockSet track.

The Happens-Before relationship ≺ for a trace α is the smallest relation such

that

• If a and b are events from the same thread and a occurs before b in the trace,

then a ≺ b.

• If a is a type of SND event and b is the corresponding RCV event, then a ≺ b.

• ≺ is transitively closed.

20

for(i=1; i<4) {
fork(Ti, i)

}
for(i=1; i<4){
lock L[i]
write x
unlock L[i]
read x

}

1

T0

lock L[i]
write x
unlock L[i]
write x

3

Ti

4

2

(a)

e1: SND(t0, g1)
e2: SND(t0, g2)
e3: SND(t0, g3)
e4: ACQ(t0, L1)
e5: MEM(t0, W, x)
e6: REL(t0, L1)
e7: MEM(t0, R, x)
e8: ACQ(t0, L2)
e9: MEM(t0, W, x)
e10: REL(t0, L2)
e11: MEM(t0, R, x)
e12: ACQ(t0, L3)
e13: MEM(t0, W, x)
e14: REL(t0, L3)
e15: MEM(t0, R, x)

e16: ACQ(t1, L1)
e17: MEM(t1, W, x)
e18: REL(t1, L1)
e19: MEM(t1, W, x)
e20: ACQ(t2, L2)
e21: MEM(t2, W, x)
e22: REL(t2, L2)
e23: MEM(t2, W, x)
e24: ACQ(t3, L3)
e25: MEM(t3, W, x)
e26: REL(t3, L3)
e27: MEM(t3, W, x)

1

1

1

2

2

2

3

4

3

4

3

4

(b)

Figure 3.4: A program exhibiting both intra-thread and inter-thread event redun-
dancies and a serialized execution trace.

The HB relationship is usually checked by the use of vector clocks [42]. If a ≺ b,

this implies b ⊀ a, i.e., a must happen before b in all executions of the same program.

Two conflicting accesses (i.e., Read/Write events, at least one is a Write, accessing

the same memory address) are said to be in a race if they do not happen before each

other: ¬(a ≺ b) ∧ ¬(b ≺ a).

In LockSet-based race detectors, the contribution by locks is often ignored in the

HB model. Instead, lock and unlock events are tracked separately using LockSet.

The set of locks currently held by a given thread is referred to as its LockSet. The

LockSet condition states that two conflicting accesses are in a race if the LockSets

of the two threads do not intersect, i.e., Li ∩ Lj = ∅, where Li and Lj refer to the

LockSet of Ti and Tj, respectively, at the time of event generation.

21

We lay the foundation of concurrential equivalence through the example in Fig-

ure 3.4a. This program exhibits both intra-thread and inter-thread redundancies. It

contains two loops - in the first loop, we spawn three threads, T1,2,3 and in the second

loop, we perform a write at location À guarded by a lock L[i], and a read at Á, in

each iteration. Threads T1,2,3 are all identical except in the lock addresses each of

them use to guard the write at Â. The write at Ã is unguarded. Figure 3.4b shows

a serialized execution trace of the program that executes T0 → T1 → T2 → T3. We

note that there are 27 races in total in this trace: (e(7,11,15), e(17,19,21,23,25,27)), (e(5,9,13),

e(19,23,27)), (e5, e(21,25)), (e9, e(17,25)), (e13, e(17,21)), (e17, e(21,25)), (e21, e(17,25)), (e25,

e(17,21)), (e19, e(23,27)4), (e23, e(19,27)) and (e27, e(19,23)). However, only six of them

have unique lexical locations: (À,Â), (À, Ã), (Á, Â), (Á, Ã), (Â, Â) and (Ã, Ã).

The rest 21 races do not bring any additional information for programmers to aid in

fixing the bug. We would like to identify those events that lead to these 21 redundant

races.

The key observation behind concurrential equivalence is that, for two MEM events

ei and ej, the combination of their LockSet and inter-thread Happens-Before relation

can determine their equivalence. Regardless of which thread(s) they are from, ei and

ej are concurrentially equivalent if they satisfy the following five conditions:

1. they share the same program lexical location;

2. they have the same access type (i.e., both are reads, or both are writes);

3. they access the same dynamic memory location;

4. they contain the same LockSet i.e., Li = Lj;

5. they have the same inter-thread HB relations with events from all other threads,

i.e., ∀ ek, tek 6= ti ∨ tek 6= tj, ¬(ek ≺ ei) ∧ ¬(ei ≺ ek) ⇐⇒ ¬(ek ≺ ej) ∧ ¬(ej

22

≺ ek).

For dynamic race detection, since a race involves only two events from two dif-

ferent threads, we can derive the following theorem:

Theorem 3.3.1. An event e is redundant if there already exists one concurrential

equivalent event from the same thread, or two from different threads.

Proof. Let us assume two concurrentially equivalent events ei and ej, and consider

an arbitrary event ek. If ei and ej are from the same thread, and if ek and ei form a

data-race, then ek and ej must be a race too. The reason is that ei and ej have the

same LockSet and inter-thread HB relation, and ek must be from a different thread.

Hence, either ei or ej is redundant. On the other hand, if ei and ej are from different

threads, and if ek and ei form a race, there are two possibilities. One is that ek is

from a third thread different from that of ei and ej. In that case, either ei or ej is

redundant, because ek would race with ej too. The other case is that ek is from the

same thread as ej. In that case, neither ei nor ej is redundant. However, for any

other event ew that is concurrentially equivalent to ei and ej, ew must be redundant.

The reason is that ew would either form a race with ek (if it is from a thread different

from that of ek), or is redundant with ej (if it is from the same thread as ek).

Meanwhile, since a race involves at least and at most two events, it is impossible to

further remove any more event, otherwise a certain race can be missed. Therefore, the

results obtained from Theorem 3.3.1 is also optimal. We can hence use Theorem 3.3.1

to precisely and optimally identify redundant events.

For dynamically generated event streams, checking the first three conditions of

concurrential equivalence is easy – lexical equivalence can simply check the origi-

nating program location of the event, access types can be recognized easily during

23

instrumentation, and dynamic memory location is available at runtime. Checking

the last two conditions however, if done naively, would prove prohibitively expensive,

especially when the algorithm needs to be run online during program execution. To

efficiently check the last two conditions, we introduce a new concept – concurrency

context :

Definition 3.3.2. The concurrency context of a thread t, Γt, encodes the LockSet

and the history of SND, RCV events observed by t.

Definition 3.3.3. The concurrency context of an event e generated by thread t, is

the value of Γt at the time e is observed.

It is easy to see that two events with the same concurrency context must satisfy

the last two conditions of concurrential equivalence, because both the LockSet and

inter-thread Happen-Before of the event are encoded in the concurrency context.

Finally, we introduce the concept of concurrency history for a particular

lexical location.

Definition 3.3.4. The concurrency history at a location loc, Θloc, stores the union

of Γt of all threads t that have accessed this location.

Θloc is constructed as Θloc = Γti ∨ Γtj ∨ Γtk . . ., where Γti , Γtj , Γtk represent the

concurrency contexts of different threads at the time the events (if there is any) were

generated from loc. Since the concurrency contexts of different events from the same

location exhibit strong temporal locality due to stack based computational model of

programs, a prefix sharing data-structure such as trie is ideal for storing Θloc. As we

shall see in the Section 3.4, this results in compact storage and fast retrieval.

24

Algorithm 1 TREE(e)

1: e← input event
2: t = e.getThread
3: loc = e.getLocation
4: Γt // concurrency context of thread t
5: Θloc // concurrency history at location loc
6: switch e do
7: case MEM:
8: if DetectRedundancy(t, Θloc, Γt) then
9: discard e
10: else
11: advance e
12: end if
13: case ACQ:
14: Γt.add(e.lock)
15: advance e
16: case REL:
17: Γt.remove(e.lock)
18: advance e
19: case SND ∨ RCV:
20: Γt.add(e.g)//add the message g
21: advance e

3.4 The TREE Technique

We design TREE as a filter pass over the event stream generated by the program

execution. It is generic by design and can be applied to any Happens-Before or

LockSet based detector. Algorithm 1 provides a high-level overview of how TREE

applies the redundancy filter. It updates Γt as events stream by. The calls discard

and advance indicate when TREE decides that the event is redundant and discard

it or advance it to the race detector, respectively. Each type of event is handled

separately:

1. MEM: Memory access events, both read and write are checked for redundancy

through the DetectRedundancy call. If this call returns true, the event is

25

Algorithm 2 DetectRedundancy(t, Θloc, Γt)

1: Γt // concurrency context of e
2: stack = Θloc.contains(Γt)
3: if stack.size = 0 then
4: Θloc.add(Γt)
5: return False
6: else if stack.contains(t) then
7: return True
8: else if stack.size = 1 then
9: stack.add(t)
10: return False
11: else if stack.size = 2 then
12: return True
13: end if

redundant and it is filtered.

2. ACQ: Lock acquire events add the lock address into Γt. If a lock previously

acquired is acquired again, we ignore the event.

3. REL: Lock release events remove the lock address from Γt. In a well formed

trace, the corresponding lock acquire event of this address must have already

been observed before this event is seen.

4. SND and RCV: These events always append to Γt their unique ID g.

We check redundancy only for events of MEM type in the current design and all

synchronization events are passed through. If it is a MEM event, we call the function

DetectRedundancy to determine its redundancy by passing the corresponding

concurrency history Θloc and concurrency context Γt of the thread.

Algorithm 2 then describes the algorithm to detect redundancy. It receives Γt

as the current concurrency context of the event being checked. As we have seen

26

previously in Theorem 3.3.1, an event is redundant if there already exists one con-

currentially equivalent event from the same thread, or two from different threads.

To check this condition, each node in Θloc contains a bounded stack of size two

that is used to keep track of the number of concurrential equivalent events seen so

far. If the stack is full, new events having the same Γt are filtered out since they are

redundant. The elements of the stack denote the threads that have contributed to

the particular concurrency context. The first step is to check the stack corresponding

to the current thread’s concurrency context from Θloc. Based on the contents of this

stack, there are four cases to consider:

1. Stack is empty: This implies that this particular concurrency context was

not seen in any of the accesses so far, hence the event is not redundant. We

proceed to add Γt into Θloc for future accesses.

2. Stack contains t: This case falls in the category of intra-thread redundancy

and can be eliminated. t is the thread id of the current event e.

3. Stack does not contain t and is of size 1: Add t to the stack.

4. Stack is full: This event is redundant, so filter it out.

[g1, g2, g3, Li]1

[g1, g2, g3]2

[Li]3

[]4

Figure 3.5: Γt at the time when the locations À-Â are accessed.

27

root

g1

g2

g3

L1 L2 L3
T0

T0

T0

(a)

g1

g2

g3 T0

(b)

root L1 L2 L3
T1

T2

T3

T1
T2

(d)

(c)

root

root

Figure 3.6: Concurrency history Θloc state of the four locations from Figure 3.4b:
(a)→À, (b)→Á, (c)→Â, (d)→Ã.

3.5 A Case Study

Let us now see how TREE is able to prune these events for the example in

Figure 3.4. There are four program locations of interests, marked À-Ã. The Γt at

these locations determines what gets put into the respective location Θloc. Γt can be

thought of as a simple set constructed in program order. Figure 3.5 shows the state

of Γt at these locations and Figure 3.6 shows the state of Θloc at the end of the three

iterations.

• Location À: Following Algorithm 1, the three events e1,2,3 first add their

unique message ids into the Γt. The lock acquire by e4 is also appended into

the Γt before the access at À. At the end of three iterations, g3 contains 3

branches formed by the three lock addresses. The stack at each of these loca-

28

tions contains the single thread T0 and thus, none of the accesses are filtered.

• Location Á: The lock release events appearing before the access to this lo-

cation remove the associated lock address from Γt. In the first iteration, the

stack is empty and thus, the event is not filtered and T0 is added into the stack.

For every subsequent iteration, since T0 is already present, it is redundant and

hence filtered out.

• Location Â: Similar to how each T0 acquires a lock before the write at À, the

write at Â is guarded by a lock. Thus, the Θ at this location is similar to that

at À. The only difference is that each thread acquires a different lock, as we

can see from the final state of the Θ.

• Location Â: Finally, this location is similar to the write by T0 at Á. The first

two threads T1 and T2 access this location and get added into the stack. The

third thread T3 is however filtered since the stack is already full, exhibiting

inter-thread redundancy.

3.6 Optimization

We discuss an optimization to TREE, inspired by [22], that is specifically tied to

race detectors such as FastTrack [21], which only guarantee to detect the first race, if

one exists. Making use of this fact, we can define span redundancy to further improve

runtime performance and reduce memory overhead.

Definition 3.6.1. A span refers to the region between two outgoing HB edges of the

same thread.

Theorem 3.6.1. If ei and ej refer to two events originating from the span accessing

the same memory location, and ei appears before ej in the trace, then if ej is in a

29

race with some other conflicting event, ei is also in a race with the same conflicting

event.

Proof. Let us assume ei is not in a race with the other event. Then in that case,

the vector clocks of ei and ej would be different (from the Happens-Before relation).

This would imply that there is a HB edge in between them - but this is not possible

since they both belong to the same span, from Definition 3.6.1. Thus, ei must also

be in a race.

Span redundancy appears within trace events from the same thread that are

in the same span. From Theorem 3.6.1, we determine that if there is a race on an

access to a shared address, a race would also exist with the first access to that shared

address in the current span (and every other access to the shared address in that

span). While we cannot say anything about future accesses if the first access results

in a race, if we determine the first access in a particular span to be race-free, then

we can safely ignore all other accesses in that span. In addition, since FastTrack

guarantees to only detect the first race on a shared address, we may consider just

the first access to each shared address.

Consider the example in Figure 3.7. The outer loop runs five times and the inner

loop runs for each element of the array. Inside the inner loop, we perform a write

on Array[j] and j in each iteration. There exists no synchronization in the program

trace, and hence the all accesses are within the same span. This implies that race

checks on the first access to each unique memory location are sufficient. This reduces

the events that need to be checked for races by four times Array.length().

Span redundancy is explored via static analysis in RedCard [22]. Some of the

benefits of applying span redundancy at runtime instead of statically are

1. Greatly simplified algorithm instead of special cases to deal with various types

30

for(i = 0; i < 5)
{

for(j = 0; j < Array.length)
{

write Array[j]
j = j + 1

}
i = i + 1

}

T0
1

2

3
4

5

Figure 3.7: Program snippet depicting an example of span redundancy in array
accesses.

of operations.

2. Handling aliases automatically without any special instrumentation or analysis.

3. Handling array accesses in the same way as that for object field accesses.

We also observe that this type of redundancy is truly useful only on the first

access of each lexical location, since subsequent accesses will be covered by the con-

currential redundancy. This redundancy is also much less flexible than the techniques

implemented in TREE since it would not work across span boundaries. As such, we

have not evaluated span redundancy since it cannot be generalized for all dynamic

race detectors and still ensure soundness.

31

4. A PRECISE RACE DETECTOR

As noted previously in Section 1.2, several practical issues result in less than ideal

situations where the trace information gathered is incomplete. This is particularly

harmful when the missing region contains synchronization events. We start by il-

lustrating the problem of incomplete trace with an example. We then introduce the

BarrierPair model and discuss the key technical challenges of realizing a precise and

maximal race detection technique based on this model.

Missing1()
y = 1

write x
Missing1(y)

T1 T2

Missing2(y)
write x

Missing2()
while(y==0);

Figure 4.1: Ad hoc synchronization in the missing methods results in false alarms
reported by Happens-Before.

4.1 Examples

Consider the trace in Figure 4.1. We have two threads T1 and T2 performing a

Write and a Read on a common address x. The greyed out region in between the

two events is the region of interest where we would like to check for any synchro-

nization. The synchronization can either be in the form of a Happens-Before (HB)

edge inducing event such as Lock/Unlock, ThreadFork/ThreadJoin, or an ad hoc syn-

32

chronization, which causes an ordering in the program execution. In the absence of

any such synchronization, we will flag the two events as a race. Therefore, when all

computations in this region are missed, existing precise algorithms [26, 32, 54] will

all report a race between the two accesses. However, this is a false alarm when the

two missing methods in the region introduce an ad hoc synchronization on a shared

address y (set to 0 initially). Thread T1, after performing the Write to x, sets y to

1, while Thread T2 waits until y is set before it can perform the Read on x. The

shared address y is used as a barrier in Thread T2 to induce a desired ordering.

A simple approach to avoiding false alarms in the presence of these missing events

would be to consider each, or a sequence of continuous missing events as a barrier,

and add HB edges between barriers in the observed order (Caveat 0). This approach

would guarantee to detect no false alarm, because it strictly serializes the missing

events. However, it is also overly conservative that it would miss many true data

races. For instance, if the two missing methods in Figure 4.1 are empty or access

different data, there will be a true race on the two accesses to x, but this simple

barrier approach will miss it.

Our technique provides the same precision guarantee as the simple barrier ap-

proach, however, at the minimal cost of missing true races. Our key observation is

that although the computations inside the missing methods are unknown, the invo-

cation of those missing methods can usually be captured. The runtime data at the

invocation sites actually provides valuable information to approximate the behavior

of the missing computations. For example, consider Figure 4.1 again. Both of the

two missing methods in threads T1 and T2 have accesses to the same memory address

y. In the absence of this shared address, there is no possibility for these two missing

methods to introduce any synchronization. More generally, if the two missing meth-

ods have addresses A and B, respectively, in their scope, and if A ∧ B = ∅, then

33

we can safely conclude that no ordering can be induced through this pair of missing

methods. Meanwhile, if A ∧ B 6= ∅, without knowing any other information, the

missing methods may use the intersected addresses to synchronize. This observation

leads to our introduction of the BarrierPair, explained next.

4.2 The BarrierPair Model

Building on from [46], we introduce the concept of a BarrierPair. Instead of

abstracting each missing event as a barrier, we introduce two events for each missing

method call - (MethodBegin, MethodEnd), and refer to this pair of events as a

BarrierPair. Specifically, a BarrierPair is associated with the following attributes:

• tid: a thread ID denoting the thread that calls the missing method.

• begin: a MethodBegin event corresponding to the invocation of the missing

method.

• end: a MethodEnd event corresponding to the return of the missing method.

• D: a set of memory addresses that can be reached by the missing method.

• Between: a (possibly empty) set of observed events that occur in-between the

MethodBegin and MethodEnd events from the particular thread.

The two events MethodBegin and MethodEnd are similar to the other types of

events in the trace (we will present a formal model in Section 4.4) and all such events

are globally ordered. We require that for each missing method these two events are

always paired. In the occurrence of uncaught exceptions during a missing method

call, we enclose the method by a try-catch block and re-throw the exceptions. Other

events can also occur in-between a BarrierPair and be recorded in the trace, and

multiple BarrierPairs may be nested.

34

T1 T2 T3 T4

a
(x)

c
(x,y)

b
(y)

d
(z)

f
(z)

e
(z,w)

Figure 4.2: A program trace consisting of four threads and six BarrierPairs (a−f),
each denoting a missing method call with its reachable memory addresses. For
example, the BarrierPair a(x) denotes that the corresponding missing method a
may access address x. Four HB edges (a → c, c → b, d → f, f → e) are added
between those BarrierPairs with overlapping reachable addresses.

The attributes of BarrierPair can be recorded and computed at runtime without

knowing the computation in the missing methods. This information can be used to

determine the synchronization behavior between missing methods. For example, if

the memory addresses that can be reached by two BarrierPairs from different threads

do not overlap, we can safely conclude that no ordering can be induced through this

pair of missing methods. If they do overlap, they may be synchronized and we should

then add HB edges to denote their ordering. Figure 4.2 illustrates six BarrierPairs in

a trace and four added HB edges between them. With this enhancement, the same

HB algorithm [20, 32] or other precise algorithms [26, 54] can be directly applied to

detect races without any change.

35

Moreover, the BarrierPair model matches with real-world usages naturally. The

user can choose to exclude certain methods, classes, or packages from tracing with

command line options such as “--exclude=java.*,sun.*” to instruct the in-

strumentation tool not to trace methods in these packages. This is actually a stan-

dard step used in many existing analysis frameworks [10, 26, 56]. It reduces both

the trace size and runtime overhead, and also avoids the problem of tracing native

code used in those excluded methods. Furthermore, BarrierPair can be used to ap-

proximate the computation inside the missing method. For example, if the method

is deterministic, given the same invocation data, it will always produce the same

return data.

4.3 Technical Challenges

The BarrierPair model provides a foundation for precise race detection from in-

complete traces. However, there are several tough challenges we must tackle to

develop a race detection technique that is both precise and maximal:

1. How to add HB edges that are both sufficient to guarantee precision and min-

imal to guarantee maximality?

2. How to compute (and compute efficiently) the full set of reachable memory

addresses for each BarrierPair?

3. How to perform race detection that can maximize the detection power given

an incomplete trace?

The first two challenges are fundamental to the soundness of our technique. We

describe five related caveats in the rest of this section through Figures 4.3, 4.4 and 4.5.

The threads and BarrierPairs in these examples correspond to that in Figure 4.2 with

minor modification on the reachable addresses (explained below). A false race on

36

the two observed accesses to x would be reported if any of the HB edges (denoted by

the red arrows) are missed. We then present our race detection technique in detail

in Section 4.4 to address all these challenges.

T1 T3

Figure 4.3: Overlapping BarrierPairs can incur multiple HB edges.

• Caveat 1 – Overlapping BarrierPairs: Intuitively, we can enforce orderings

between BarrierPairs with overlapping reachable addresses by adding a HB

edge from one BarrierPair to another in the observed order of the trace. For

example, in Figure 4.2, we add the HB edge a → c from the MethodEnd of a

to MethodBegin of c, because a and c have an overlapping reachable address,

x, and a occurred before c. However, this naive method does not work when

two BarrierPairs overlap in time. For instance, suppose the BarrierPair d in

Figure 4.2 overlaps with a i.e., d also accesses address x. We cannot simply

37

add one HB edge from a to d or from d to a. The reason is that the overlapping

region may incur multiple HB edges between events in the missing methods.

Consider an example in Figure 4.3. Three HB edges must be added between

the MethodBegin and MethodEnd events of the two BarrierPairs, because of

the ad hoc synchronizations incurred by the missing events on x. For instance,

the HB edge d.begin → a.end must be added, because the MethodEnd event

of BarrierPair a cannot happen until x is set to 0 by Thread T3, which is after

the MethodBegin of BarrierPair d. Otherwise, a false alarm would be reported

between the Read to x in Thread T1 and Write to x in Thread T3.

T1 T3

Figure 4.4: Events in between BarrierPairs may be observed and can introduce HB
edges.

• Caveat 2 – Observed Events in-between BarrierPairs: Although com-

putations inside missing methods are opaque, events from a missing method call

38

may still be observed, for example, through callback functions. When events

appear between the MethodBegin and MethodEnd events of a BarrierPair, their

orderings with other BarrierPairs must be correctly enforced. Consider a trace

in Figure 4.4 (slightly modified from Figure 4.3). The Read and Write events

to x in the two missing methods are both observed in the trace. We would

report a race between them if we consider the same HB edges as that in Fig-

ure 4.3. However, this is a false alarm because the Write cannot happen until

x is set to 1 by Thread T1, which is after the Read. Therefore, we must add

HB edges between these observed events and the BarrierPair events.

• Caveat 3 – Orderings Between BarrierPairs and Ordinary Events: A

BarrierPair can introduce HB orderings not only with other BarrierPairs and

events in-between them, but also with those ordinary events outside missing

methods. Consider Figure 4.4 again – suppose the method d in Thread T3 is not

missing, the events at ‘while x!=1’ are ordinary events. We must add a HB

edge from the event Read(x) in Thread T1 to these ordinary events. Otherwise,

similar to Caveat 2, a false alarm would be reported between Read(x) and

Write(x).

• Caveat 4 – Transitive Orderings Over Multiple BarrierPairs: HB or-

derings are transitive. Two BarrierPairs without any common reachable ad-

dress does not mean that they cannot be ordered, because they may be or-

dered transitively through other events or BarrierPairs. False alarms might be

reported if we only consider BarrierPairs pair-wisely. For example, consider

the three BarrierPairs c, e, and f shown in Figure 4.5, and suppose f can also

access address y. Because y is also accessed by c, a HB edge c→f from Barri-

erPair c to f must be added. And also because f→e, we have c→e. That is,

39

T4T3T2

Figure 4.5: Multiple BarrierPairs can introduce HB edges transitively.

the BarrierPair c must happen before e, though they do not have any common

reachable address. Hence, the two accesses to x by threads T2 and T3 are

ordered by HB edges and are not a race.

• Caveat 5 – Global Variables: In the BarrierPair model, we have made the

assumption that the addresses used to perform synchronization are local in

scope, i.e., they are passed in as runtime parameters at the missing method’s

invocation site. For addresses that are global in scope, such as public static

variables in Java, their contribution to synchronization is ignored. However,

if such global variables are directly accessed in missing methods, false alarms

may be introduced1.

One way to address this issue is to use the simple barrier approach described in

Caveat 0, which is ineffective. Instead, we propose a language extension that allows

the users of RDIT to annotate direct global variable accesses at the call sites of

1Note that in the BarrierPair model, global variables are allowed to be accessed in missing
methods as long as their accesses are visible (for example, through callbacks). No false alarm will
be introduced in such cases.

40

missing methods. Specifically, we provide a custom Java annotation @Global(x)

that users can insert before invocations of missing methods to specify that the global

variable x may be directly accessed in a missing method. At runtime, x is added to

the set of reachable memory addresses of the BarrierPair. This method guarantees

soundness, though reduces automation. However, note that directly accessing global

variables in external methods is considered bad programming practice and is rarely

seen in real-world production systems. In all our studied real-world systems, the only

such cases are those to immutable global variables through singleton, which do not

introduce any synchronization at all. In other words, annotations are almost never

needed in practice to use RDIT.

4.4 The RDIT Technique

We first present in Section 4.4.1 a formal model of maximal thread causality with

missing events, following the approach introduced in [26] (there without missing

events). A key advancement of this new model is that it incorporates the notion

of BarrierPair to guarantee both soundness and maximality from incomplete traces.

We then present our RDIT algorithm in Section 4.4.2, including how to compute the

reachable memory addresses of BarrierPairs and how to encode the new model with

constraints. Our constraint encoding shares the same spirit with prior work [26]

to guarantee soundness and maximality. In addition, we must also consider the

additional constraints introduced by the BarrierPairs.

4.4.1 Maximal Causality Model with Missing Events

Consider an arbitrary multi-threaded program P . It can be abstracted as a set

of finite traces that it can produce when completely or partially executed, called

P -feasible traces. A trace is a sequence of events, which are operations performed

by threads on concurrent objects. The following common event types are often

41

considered in previous race detection work [20, 26, 54]:

• Read(t,x,v)/Write(t,x,v): read/write x with value v

• Lock(t,l)/Unlock(t,l): acquire/release a lock l

• ThreadBegin(t): the first event of thread t

• ThreadEnd(t): the last event of thread t

• ThreadFork(t,t′): fork a new thread t ′

• ThreadJoin(t,t′): block until thread t ′ terminates

In this model, in addition to the usual events above, we include two new events:

• MethodBegin(t,m,D): invoking a method m that is missing with a set of

reachable addresses D.

• MethodEnd(t,m): returning from a missing method m.

Similar to Lock and Unlock events, MethodBegin and MethodEnd events can

appear anywhere in the trace and can be nested, but they are always paired for the

same thread t and method m. Each pair of MethodBegin and MethodEnd events

form a BarrierPair, which indicates that certain events in between these two events

from the same thread are missed in the trace, and those events can perform arbitrary

operations on any objects in D.

The sets of P -feasible traces must obey two basic consistency axioms: prefix

closeness and local determinism. The former says that the prefixes of a P -feasible

trace are also P -feasible. The latter says that each thread has deterministic behavior,

that is, only the previous events of a thread (and not other events of other threads)

determine the next event of the thread, although if that event is a read then it is

42

allowed to get its value from the latest write. For any consistent trace τ , these

two axioms allow us to associate it with a maximal causal model, MCM (τ), which

comprises precisely those traces that can be generated by any program that can

generate τ . Specifically, from τ , we can infer a sound and maximal set of traces

MCM (τ) by checking the two axioms, such that (1) any program which can generate

τ can also generate all traces in MCM (τ), and (2) for any trace τ ′ not in MCM (τ)

there exists a program generating τ which cannot generate τ ′. Note that MCM (τ)

here is different from that in prior work [26], because τ is incomplete and contains

BarrierPairs that abstract missing events.

4.4.2 Data Race Detection Algorithm

To perform precise and maximal race detection, intuitively, we can generate

MCM (τ) and detect races in every trace in the set. However, generating MCM (τ)

is challenging. Exhaustively enumerating all re-orderings of τ and checking against

the two axioms is impractical. Moreover, the semantics of BarrierPairs must be cor-

rectly modeled to ensure soundness (recall the caveats in Section 4.3). In RDIT,

following [26], we encode MCM (τ) as a series of quantifier free first-order logic for-

mulas, Φmcm, such that any solution to Φmcm represents a trace in MCM (τ). By

modeling races as additional constraints, we formulate the race detection problem as

a constraint solving problem.

Specifically, given an input trace τ , the goal of RDIT is to find a trace τ ′ in

MCM (τ) with two conflicting events a and b from different threads, such that a and

b are next to each other in τ ′. Algorithm 3 outlines our race detection algorithm.

A key step is to introduce an order variable Oe for each event e in τ , denoting the

order of e in τ ′, and use these order variables to encode Φmcm. We first construct

the formula Φmcm from τ , which involves getting the set of all BarrierPairs from

43

Algorithm 3 The RDIT Algorithm

1: τ ←input trace
2: Oe ←order variable for event e
3: Φmcm = ConstructMCMFormula(τ);
4: for all conflicting events (a, b) in τ do
5: if Φmcm∧ (Oa = Ob) is satisfiable then
6: report race (a, b)
7: end if
8: end for

τ . This step is mostly straightforward except that we need to efficiently compute

the set of reachable memory addresses for each BarrierPair (explained shortly). We

then construct the formula Φmcm from τ and the BarrierPairs. Finally, for each pair

of conflicting events (a, b) from different threads, we invoke an SMT solver to solve

Φmcm conjuncted with the race constraint Oa = Ob. If the solver returns a solution,

it means that there exists a trace in MCM (τ) in which the two events a and b are

unordered, and hence (a, b) is a true race.

Algorithm 4 ConstructMCMFormula(τ)

1: τ ←input trace
2: Φmcm = true
3: Φmcm ∧= ConstructBarrierPairConstrains(τ)
4: Φmcm ∧= ConstructProgramOrderConstrains(τ)
5: Φmcm ∧= ConstructForkJoinConstrains(τ)
6: Φmcm ∧= ConstructLockingConstrains(τ)
7: Φmcm ∧= ConstructReadConsistencyConstrains(τ)
8: return Φmcm

44

4.4.3 Computing Reachable Memory Addresses

The set of reachable memory addresses of a BarrierPair is the union of all reach-

able addresses from runtime parameters passed at the invocation of the corresponding

missing method. For object-oriented programs such as Java, the reachable addresses

of an object can be represented by a tree whose nodes are objects and edges de-

note field references (back edges are removed). To compute a complete set, for each

MethodBegin event, we would need to track every method parameter object and it-

erate through its declared fields and inheritance stack to compute the object tree.

However, this may incur large runtime overhead and produce huge logs when calls

to missing methods are frequent and the object tree is large.

We develop an efficient method that does not compute a complete set of reachable

addresses for every object upon every missing method call, but only once for each

object for all missing method calls. The key observation is that the object tree is

static most of the time. It is only changed when write operations to field references

(i.e., o1.f = o2) are performed. Before such a write operation, the object tree of o1

needs to be computed only once and can be reused, and upon an update operation,

only the subtree from o1.f needs to be updated. Moreover, any such operation is

either recorded in the trace or missed because it is from a missing method. If the

former, we can recover o2 by analyzing the trace. For the latter, we may ignore the

update because o2 might be already included in the set of reachable addresses, D, of

the missing method. The only condition is that if not in D, o2 should not be used for

synchronization. In fact, this condition is never violated in our study of real-world

applications (see Section 5.2). Therefore, in this optimization, for each object at

runtime, we compute and log its object tree only once, and we recover the updates

made by object field Write events in the trace analysis phase, which is offline.

45

Algorithm 5 ConstructBarrierPairConstrains(τ)

1: τ ←input trace
2: Φmcm = true // initialized to true
3: BP = ComputeBarrierPairs(τ)
4: for bp1, bp2 ∈ BP do
5: if bp1.D ∧ bp2.D 6= ∅ then
6: S ← UnionEvents(bp1, bp2)
7: Φmcm ∧ = GetLinearizationConstrains(S)
8: end if
9: end for
10: for bp ∈ BP do
11: for x ∈ bp.D do
12: for e ∈ GetAllReadWritesOnAddress(τ, x) do
13: S ← UnionEvents(bp, e)
14: Φmcm ∧ = GetLinearizationConstrains(S)
15: end for
16: end for
17: end for
18: return Φmcm

4.4.4 Constraint Encoding of MCM(τ)

Algorithm 4 shows our constraint encoding algorithm for MCM (τ). Φmcm is

constructed with three kinds of operators, ‘<’ (less than), ‘∧’ (conjunction), and ‘∨’

(disjunction), over the order variables O, and ‘<’ is transitive. Φmcm conjuncts on

the following five types of constraints:

1. BarrierPair Constraints - Algorithm 5: This type of constraint ad-

dresses the HB edges between the missing events themselves and between the miss-

ing events and the observed events. For each pair of BarrierPairs, if their reachable

addresses intersect, we linearize all of their associated events (including both Method-

Begin/MethodEnd events and the Between events associated with the BarrierPair),

and construct constraints to enforce HB orderings between them. The rationale is

that a missing event may exist anywhere in a BarrierPair and may introduce syn-

46

Algorithm 6 GetLinearizationConstrains(S)

1: S ←an input set of events
2: Φ = true
3: Z = LinearizeByGlobalId(S)
4: for i = 1:|Z| − 1 do
5: Φ ∧ = OZ[i] < OZ[i+1]

6: end for
7: return Φ

chronization with any other event (either observed or not) accessing the intersected

address. Specifically, the function UnionEvents first unions all these events into

a set S. Then we call the GetLineatizationConstrains (Algorithm 6) function

on this set. It linearizes the events in S into an ordered list Z by their order (i.e.,

GlobalId) in the input trace, and returns a formula in terms of ‘OZ[i] < OZ[i+1]’

conjuncted over all events Z[i]. Similarly, for each BarrierPair and any ordinary

Read/Write event accessing an intersected address, we construct constraints to en-

force their HB orderings.

Algorithm 7 ConstructProgramOrderConstrains(τ)

1: τ ←input trace
2: Φmcm = true // initialized to true
3: T = GetAllThreads(τ)
4: for t ∈ T do
5: τt = GetThreadEvents(τ ,t) // events by Thread t
6: for i = 1 : |τt| − 1 do
7: // Ot,i: order variable of the ith event in τt
8: Φmcm ∧ = Ot,i < Ot,i+1

9: end for
10: end for
11: return Φmcm

47

2. Program Order Constraints - Algorithm 7: This type of constraint

ensures sequential consistency, such that events from the same thread cannot be

reordered. Specifically, we construct constraint Oe1 < Oe2 whenever e1 and e2 are

events by the same thread and e1 occurs before e2. Note that because HB is transitive,

it is sufficient to conjunct such constraints between consecutive events from the same

thread. This type of constraints can also be weakened to reflect relaxed memory

models such as TSO and PSO [55]. Nevertheless, we focus on sequential consistency

in this work.

Algorithm 8 ConstructForkJoinConstrains(τ)

1: τ ←input trace
2: Φmcm = true // initialized to true
3: for e ∈ GetThreadForkJoinEvents(τ) do
4: if e = ThreadFork(t, t′) then
5: Φmcm ∧ = Oe < Ot′,begin

6: else if e = ThreadJoin(t, t′) then
7: Φmcm ∧ = Ot′,end < Oe

8: end if
9: end for
10: return Φmcm

3. Fork Join Constraints - Algorithm 8: The semantics of ThreadFork and

ThreadJoin events requires that a ThreadBegin event can happen only after the

thread is forked by ThreadFork from another thread, and that a ThreadJoin event

can happen only after the ThreadEnd event of the joined thread. We hence construct

constraint Oe1 < Oe2 when e1 is an event of the form ThreadFork(t, t′) and e2 of

the form ThreadBegin(t′), or when e1 is an event of the form ThreadEnd(t) and e2

of the form ThreadJoin(t′, t).

48

Algorithm 9 ConstructLockingConstrains(τ)

1: τ ←input trace
2: Φmcm = true // initialized to true
3: L = GetAllLocks(τ)
4: for l ∈ L do
5: // pairs of lock/unlock events on l
6: LPl = GetLockPairs(τ, l)
7: for (ea,eb), (ec,ed) ∈ LPl do
8: Φmcm ∧ = Oeb < Oec ∨ Oed < Oea

9: end for
10: end for
11: return Φmcm

4. Locking Constraints - Algorithm 9: The locking semantics requires that

any two code regions protected by the same lock are mutually exclusive. We first

extract all pairs of Lock/Unlock events for each lock l, following the program order

locking semantics: Unlock is paired with the most recent Lock on the same lock by

the same thread. Then for each two such pairs, (el, eu), (e′l, e
′
u), we construct the

constraint (Oeu < Oe′l
∨ Oe′u < Oel) and conjunct them.

5. Read Consistency Constraints - Algorithm 10: This type of constraint

ensures that the two basic axioms (recall Section 4.4.1) are satisfied by requiring that

every event in the inferred trace τ ′ is feasible.

Due to prefix closeness, τ ′ does not necessarily contain all the events in τ but

may contain a subset of them. Due to local determinism, an event is feasible if every

read it depends on gets the same value as that in τ . Each read, however, may read a

value written by any write on the same address, as long as all the other constraints

are satisfied. We hence construct constraints for each Read(t, x, v) event such that

it is allowed to read the value v on x written by any Write event w, subject to the

condition that w writes to x with v, and there is no other interfering Write to x with

49

Algorithm 10 ConstructReadConsistencyConstrains(τ)

1: τ ←input trace
2: Φmcm = true // initialized to true
3: for e = Read(t, x, v) ∈ τ do
4: W x → GetAllWritesOnAddress(τ, x)
5: W x

v → GetAllWritesOnAddressValue(τ, x, v)
6: Φmcm ∧ =

∨
w∈Wx

v

(Ow < Oe

∧
w 6=w′∈Wx

(Ow′ < Ow ∨Oe < Ow′))

7: end for
8: return Φmcm

a different value. The size of read consistency constraints is cubic in the number of

Read/Write events, and may dominate the size of Φmcm.

It is worth noting that the constructed formula Φmcm encodes all the feasible

traces in MCM (τ). Each solution of the order variables to Φmcm corresponds to

a valid reordering of events in τ . The size of MCM (τ) may be exponential in the

trace size, as the number of unique solutions to Φmcm can be exponential. In RDIT,

however, we do not need to directly solve Φmcm to produce all the traces in MCM (τ).

Instead, it suffices to just find one trace that satisfies the race condition.

4.5 A Case Study

In this section, we present a case study of race detection in a popular multi-

threaded benchmark - Account (Figure 4.6). We show that all existing precise al-

gorithms [20, 26, 54] report several false alarms in this benchmark due to missing

events in the naive library and illustrate how RDIT avoids them.

We first describe the false alarms present in the Account benchmark. This bench-

mark has been used frequently in previous race detection studies [20, 26, 31, 51, 54].

In this program, a number of bank accounts are simulated by concurrent threads to

handle deposits. The sum of deposited amounts by all threads is tracked dynamically.

50

T0

T1

T2

Figure 4.6: The Account benchmark. Existing precise dynamic algorithms such
as Happens-Before all report four false alarms due to missing events caused by the
native method call Thread.isAlive() at line 11.

At the end of the execution, the sum is compared with the total balance of all ac-

counts. If they are not equal, it indicates a concurrency error. Figure 4.6 shows code

snippets of the main thread (T0) and two account threads (T1 and T2). The loop at

lines 10-14 in T0 is important to note here. It behaves as a join for T1 and T2, though

it contains no Thread.join() statement. Specifically, Line 11 calls Thread.isAlive()

to check if T1 and T2 have terminated or not. If not, the loop variable i will be set to

0 at line 12 and the loop will iterate again after Thread.sleep() at line 13. However,

because Thread.isAlive() is a naive method implemented through JNI, it is difficult

51

Figure 4.7: By incorporating BarrierPair events (e18-e21) into the trace and formu-
lating maximal causality constraints, RDIT reports no false alarm and detects the
only true race (5,8).

to trace the computations inside the method. As a result, existing dynamic race

detectors [23, 26, 52] all report false alarms at lines (4,16), (5,17), (5,19), (8,19) due

to missing events in this method, even though the race detection algorithms [20, 26,

54] they use are precise. In fact, the only true race in this benchmark is between lines

(5,8) (because T1 and T2 can execute concurrently and there is no lock protecting

these two statements), and this race may cause the error at line 20 to occur.

Next, we illustrate how RDIT detects the only true race present. Suppose we

observe an execution of the program following an order denoted by the line numbers.

The corresponding trace is shown in Figure 4.7. To avoid clutter, we omit read-only

52

events to accounts[i], and we refer to accounts[i].Balance as xi, BankTotal as y,

and the missing method Thread.isAlive() as m1. To instantiate our event model

presented in Section 4.4.1, variable initialization events, e1:Write(t0,y,0) and e2,3

:Write(t0,xi,0) (i=1, 2), and thread begin/end events e6,12:ThreadBegin(ti)/e11,17:

ThreadEnd(ti) are also included in the trace. For lines 4-5 and 6-7, each line corre-

sponds to two events (a Read and a Write).

The trace has two BarrierPairs (both from line 11): (e18:MethodBegin(t0,m1,t1),

e19:MethodEnd(t0,m1)), and (e20:MethodBegin(t0,m1,t2), e21:MethodEnd(t0,m1)).

From the trace, the constraints formulated by RDIT are shown in Figure 4.7. Let

Oi refer to the order variable of ei. The BarrierPair constraints are written as O11

< O18 ∧ O17 < O20, because the two BarrierPairs have overlapping reachable ad-

dresses, t1 and t2, with the two ThreadEnd events e11 and e17, respectively. The

Program Order constraints and Fork Join constraints are similarly constructed. The

Locking constraints are empty because the trace contains no lock. The Read Consis-

tency constraints are encoded together with the race constraint for each conflicting

event pair from different threads to simplify our presentation (by avoiding redundant

formulas). For instance, for the event pair e9:Read(t1,y,0) and e16:Write(t2,y,300),

the constraints are written as O9 = O16 ∧ O10 < O15, because e16 depends on the

read e15:Read(t2,y,100), which must happen after the write e10:Write(t1,y,100) that

sets y to 100. Similarly, for (e10, e24:Read(t0,y,300)), the constraints are written

as O10 = O24 ∧ O8 < O22 ∧ O14 < O23 ∧ O9 < O16,because e24 depends on two

reads, e22:Write(t0,x1,100) and e23:Write(t1,x2,200), which must happen after the

two writes, e8:Write(t1,x1,100) and e14:Write(t2,x2,200), respectively, to get the

valid value.

Conjuncting all these constraints, we invoke an SMT solver (Z3 [14] in our imple-

mentation) to compute a solution. Because all unknown variables in the constraints

53

are integers, and for the race constraint Oa = Ob we can replace Oa by Ob, the con-

straints can be efficiently solved by Integer Difference Logic (IDL). For (e10,e15), the

solver returns a solution, so lines (5,8) are a true race. However, for all the other six

conflicting event pairs at lines (4,16), (5,17), (5,19), (8,19), the solver reports that

no solution exists. Therefore, all of them are false alarms.

54

5. RESULTS AND DISCUSSIONS

5.1 TREE

We have implemented TREE in the RoadRunner framework [23], which also im-

plements the FastTrack algorithm. Our implementation is open source and publicly

available at https://github.com/parasol-aser/TREE.

Our evaluation focuses on answering the following two research questions:

1. Effectiveness: How effective is TREE in removing redundant events? How

much percentage of redundant events are there in real-world applications?

2. Efficiency: Can TREE improve runtime performance of dynamic race detec-

tors? How much speedup or slowdown can TREE bring?

5.1.1 Evaluation Methodology

We use TREE as a pre-processing step in the FastTrack tool chain, and com-

pare the results and performance between vanilla FastTrack and FastTrack+TREE.

TREE intercepts the event steam generated by RoadRunner and passes them along

to FastTrack when it determines that the specific event is not redundant. We have

evaluated TREE on a set of standard Java benchmarks as well as custom micro-

benchmarks that we design for quantifying the performance characteristics of TREE.

We have also run TREE on two large real-world applications – Jigsaw and Derby.

Table 5.1 summarizes these applications. Each of these applications were tested

running on 4 threads. The hardware used to run these experiments was a Apple

MacBook Pro machine with 2.6 GHz Intel Core i5 processor, 8 GB DDR3 memory

with Java JDK 1.7 installed.

55

Program %Skipped ∆Memory %SpeedUp

atomicity 25.67 0 2.80
chess 0 0 0.63
moldyn 51.85 16 -0.95
montecarlo 58.67 388 27.14
jgfUtilAll 50.60 250 26.46
raytracer 50.74 68 12.73
philo 47.20 90 13.92
tsp 19.93 36 24.52
boundedbuffer 6.97 0 2.79
nestedMonitor 11.11 1 2.65
pipeline 15.84 0 1.81
sor 3.26 0 0.24
stringBuffer 21.87 0 16.56

jigsaw 35.78 35 13.20
derby 69.99 973 15.57

Table 5.1: Experimental results of running FastTrack and FastTrack + TREE on
a bunch of benchmarks and a couple of real-world programs. All the benchmarks
were run on 4 threads. We captured the memory usage of the entire benchmark and
the complete execution time of the program. We also captured the number of events
that are skipped by using TREE versus the total events generated by RoadRunner.
The columns indicate the percentage of skipped events, the delta memory increase
because of TREE and the percentage improvement in runtime respectively.

5.1.2 Standard Benchmarks

Table 5.1 reports our experimental results on the standard Java benchmarks. We

make several observations from these results below.

• Runtime: Overall, TREE improved the runtime speed of FastTrack by 10-

25% on most benchmarks (as large as 27% on MonteCarlo). For some small

benchmarks, TREE did not result in noticeable improvements (less than 3%),

because they do not generate a large number of events. However, we do note

that even in these cases, TREE does not add any noticeable performance de-

terioration to the program execution, in both program runtime and memory

56

T0
for(i=1; i< num_threads){

fork(Ti)
}

Ti
for(j = 1; j < num_iters){
for(k = 1; k < num_locks) lock L[k]
x = x + 1
for(k = 1; k < num_locks)unlock L[k]

}

Figure 5.1: Sample program snippet that targets redundant event elimination.

overhead. For the larger programs (i.e., Jigsaw and Derby), the runtime im-

provements were more modest (13%-15%) since, as the data-structures holding

the meta concurrency context information become larger, their accesses time

increases due to hardware cache misses. We can optimize this further through a

user-configurable limit on the size of the concurrency context, discussed below.

• Redundant events: The percentage of redundant events that TREE is able

to safely skip is pretty large, ranging from 35-70% of the total number of

events for reasonably sized programs. This suggests that TREE is effective

in practice as a pre-processing step in removing redundant events for dynamic

race detectors.

• Memory overhead: We notice that for most benchmarks, there was only

a modest increase in memory overhead from the use of TREE. Memory us-

age was measured across the entire program run. The largest increase came

from running Derby (with 973MB memory increase), but we also saw that this

57

application resulted in the maximum number of skipped events with good im-

provement in runtime. Currently, TREE stores the concurrency context for

all program locations encountered till that point. Nevertheless, for many ap-

plications in practice, keeping track of just the n most recent locations could

be effective enough. An example of such an application are programs where

the loops are small, say around 100 program locations. In this case, keeping

track of k*100 (where k can be configured by the user) locations is sufficient to

get a good performance-memory balance. Additionally, we find that for most

of the benchmarks we have studied, the loop sizes are typically small, making

this a useful user configurable parameter.

• Warnings verbosity: One additional benefit we observed, that wasn’t orig-

inally planned, was that error output verbosity tended to be greatly reduced.

Sometimes, we observed that FastTrack reported races on a particular race

pair several hundreds or thousands of times, even though a single instance is

sufficient to alert the programmer to the concurrency bug. TREE filters all

these other races before sending them to FastTrack, saving the user valuable

time in parsing the tool output. This proved really useful in the evaluation

stage to compare the output with and without our filter.

Finally, we also empirically validated that the number of unique races detected by

FastTrack matches the number of races detected upon using TREE. This confirms

that TREE is both theoretically sound and practically useful.

5.1.3 Micro-benchmarks

In addition to the standard benchmarks, we specifically sought to target both

the strengths and the weaknesses of our algorithm to establish an upper-bound and

58

M
i
l
l
i
s
e
c
o
n
d
s

0

1000

2000

3000

4000

2 3 4 5 6 7 8 9 10

FastTrack FastTrack + TREE

(a) 100 iters; 50 locks

M
e
g
a
b
y
t
e
s

0

225

450

675

900

2 3 4 5 6 7 8 9 10

FastTrack FastTrack + TREE

(b) 100 iters; 50 locks

50

75

100

2 3 4 5 6 7 8 9 10

%Skipped

(c) 100 iters; 50 locks

M
i
l
l
i
s
e
c
o
n
d
s

0

650

1300

1950

2600

10 20 30 40 50 60 70 80 90

(d) 10 threads; 50 locks

M
e
g
a
b
y
t
e
s

0

125

250

375

500

10 20 30 40 50 60 70 80 90

(e) 10 threads; 50 locks

50

75

100

10 20 30 40 50 60 70 80 90

(f) 10 threads; 50 locks

M
i
l
l
i
s
e
c
o
n
d
s

0

1250

2500

3750

5000

10 20 30 40 50 60 70 80 90

(g) 10 threads; 100 iters

M
e
g
a
b
y
t
e
s

0

150

300

450

600

10 20 30 40 50 60 70 80 90

(h) 10 threads; 100 iters

50

75

100

10 20 30 40 50 60 70 80 90

(i) 10 threads; 100 iters

Figure 5.2: The number of threads, number of iterations and the number of locks
are the parameters on which the graphs are generated for a Java program similar to
the sample in Figure 5.1. These graphs depict the execution time, memory overhead
and percentage of skipped events respectively. Figure (a) - (c) plot the changes in
these values as number of threads is varied, Figure (d) - (f) plots the changes as the
number of iteration is varied, and finally Figure (g) - (i) plots the changes as the
number of locks are varied.

lower bound on its performance. Figure 5.1 shows an example that targets at show-

ing TREE in the best light. The program forks a number of threads running in

a loop acquiring/releasing locks and writing to a shared address x. It is evident

that there exists no race. Without TREE, FastTrack has to instrument and check

every single event and track all the lock operations. Figure 5.2 shows the per-

formance comparing FastTrack and FastTrack+TREE with the three parameters,

59

num threads, num locks and num iters varied. We observe a few interesting results.

First, all the programs exhibited significant number of redundant events, which in-

creased and became close to 100% as the value of the parameter increased. Second,

FastTrack+TREE showed significant reduction in memory overhead as much lesser

state needs to be tracked. Lastly, we observed that both the runtime and mem-

ory overhead improvements from running TREE were super-linear in many cases,

indicating that TREE scales well.

T0
for(i=1; i< num_threads){

x = x + 1
fork(Ti)

}

Ti
for(j = 1; j < num_iters){
for(k = 1; k < num_locks) lock Li[k]
x = x + 1
for(k = 1; k < num_locks)unlock Li[k]

}

Figure 5.3: Sample program snippet that targets TREE’s weakness.

Figure 5.3 shows an example that targets the weakness of TREE. There exists

a single race in this program between the write of x in T0 and any Ti. There are two

differences between this program and the one in Figure 5.1: 1) the writes happen

inside the loop that forks the new threads; 2) each thread acquires and releases

a private lock array. This program particularly stresses the data-structures used

in TREE since none of the prefixes matches in the Trie, and we have to create a

60

new branch for each concurrency-context. However, we noticed that the program

still showed reasonable performance, leading to a sub-linear memory increase up to

100MB when there were 100 threads and 100 private locks present. The runtime

overhead was also reasonable ranging from 0 to 500ms. Surprisingly, we noticed that

as the iterations increased, the number of redundant events increased, and very soon

the benefits of filtering them out-weighted the negative effects, leading to overall

reduction in runtime.

5.2 RDIT

We have implemented the RDIT algorithm in RVPredict [26], a recent race de-

tector for multi-threaded Java programs based on ASM [12] and Z3 [14]. RVPredict

allows us to perform a direct comparison between RDIT and three existing pre-

cise algorithms Happens-Before (HB) [32], Causally-Precedes (CP) [54], Maximal-

Causality (MC) [26]), all of which have been implemented in RVPredict. RDIT aims

to be useful for dynamic race detection in real-world programs where missing events

are common due to instrumentation challenges and performance consideration. In

this section, we focus on answering two questions:

1. Race detection effectiveness: How effective is RDIT in preventing false

alarms and in detecting true races in real-world programs? While guaranteeing

no false alarm, would RDIT also seriously limit the race detection ability?

2. Runtime performance: How much performance improvement (or slowdown)

overall does RDIT introduce for handling missing methods? What is the run-

time overhead for capturing BarrierPair events?

61

App LoC #Thrd #Evnt #RW #Sync #BP

ftpserver 32K 12 48K 34K 3K 5K
floodlight 68K 9 58K 33K 3K 11K

jigsaw 101K 9 15.6M 11M 0.6K 2.3M
subflow 109K 9 15.6M 11M 0.6K 2.3M
xalan 180K 9 15M 13M 62K 2M
derby 302K 3 2.2M 1.8M 64K 196K
eclipse 560K 10 16.6M 8.2M 1.4M 3.5M

Table 5.2: Benchmarks and traces. The total size of all benchmarks is over 1.3M
LoC. #Thrd: the number of threads; #Evnt: events; #RW: reads/writes; #Sync:
synchronizations; and #BP: BarrierPairs in the trace. The BarrierPairs are set to
all method calls that contain synchronizations.

5.2.1 Evaluation Methodology

We compare RDIT with HB, CP, and MC on seven real-world large multi-

threaded applications, including Eclipse, Apache Derby, Jigsaw, Sunflow, Xalan,

and Floodlight. Table 5.2 summarizes these benchmarks and metrics of the corre-

sponding traces. To perform a fair comparison, for each benchmark, we collect one

trace and run different techniques on the same trace. Because all these traces are

long (e.g., most containing millions of events), we use the same windowing strategy

developed in RVPredict [26] to cut the traces into smaller chunks (each with 10K

events, default configuration in RVPredict), so that all techniques can finish within

a reasonable time (1h). For each trace, we compare the total number of reported

races and false alarms by each technique. For computing the reachable memory ad-

dresses of missing methods, we also compare the results with and without using the

optimization in Section 4.

One challenge in our evaluation is how to determine if a reported race is a false

alarm. For evaluation purpose, we first collect a set of true races (i.e., ground truth)

for each benchmark by running MC on a full trace (except excluding certain JDK li-

62

braries in java.*,javax.*,com.*,sun.*, due to instrumentation limitations).

In case the excluded JDK libraries introduce synchronization that leads to false

alarms reported by MC, we also cross validate these races by running RDIT (with

those excluded libraries set to missing methods). We ensure that the same set of races

are reported by both MC and RDIT. We then further exclude methods in each trace

that contain synchronization events (i.e., Lock/Unlock and ThreadFork/ThreadJoin)

and consider those method calls as BarrierPairs. Finally, the races reported by each

technique on the remaining trace are compared with the ground truth and those not

in the ground truth are classified as false alarms.

We evaluate the runtime performance of RDIT with the Xalan benchmark. We

choose Xalan because it is CPU intensive. We measure the execution time and mem-

ory consumption of the generated trace by RDIT and compare the performance data

between several different configurations: before and after excluding certain meth-

ods from common JDK libraries and Xalan packages, with and without capturing

BarrierPairs, and with and without using the reachable address optimization.

All experiments were conducted on an 8-processor 32-core 3.6GHz Intel i7 Linux

machine with 8GB memory and JDK 1.8 8GB heap space. All data were averaged

over three runs.

5.2.2 Race Detection Results

Table 5.3 summarizes the results of race detection. For all the seven benchmarks,

RDIT detected a total number of 85 races, all of which are true races. Compar-

atively, the other three techniques (HB, CP, and MC) reported 149, 149, and 213

false alarms, respectively. HB and CP reported the same set of races for all bench-

marks. The reason is that the two algorithms become equivalent when Lock/Unlock

synchronizations are excluded. For the true races detected by each technique, HB

63

App #True HB CP MC RDIT

ftpserver 24 37(17) 37(17) 56(32) 15(0)
floodlight 5 16 (16) 16 (16) 24 (19) 4 (0)
jigsaw 8 41 (36) 41 (36) 55 (47) 2 (0)
sunflow 1 6 (5) 6 (5) 6 (5) 1 (0)
xalan 56 22 (2) 22 (2) 57 (1) 52 (0)
derby 9 13 (5) 13 (5) 37 (28) 7 (0)
eclipse 9 72 (68) 72 (68) 90 (81) 4 (0)

Total: 112 207(149) 207(149) 325(213) 85(0)

Table 5.3: For each benchmark, the same incomplete trace after excluding all the
synchronization events is used in all the four techniques: Happens-Before (HB),
Causal-Precede (CP), Maximal-Causality (MC), and RDIT. For RDIT, the missing
methods are set to those containing the excluded synchronization events. Column
2 reports the number of true races (those reported by MC based on the full trace).
Columns 3-6 report the total number of races and false alarms reported by each
technique on the incomplete trace. For all benchmarks, RDIT detected a total of
85 data races all of which are true races, while the other three techniques reported
hundreds of false alarms.

and CP detected a total number of 58, and MC detected 112. Surprisingly, even

with missing methods, RDIT detected 27 more true races than HB and CP, due to

the power of the maximal causality model. For MC, although it detected more true

races than RDIT (112 vs 85), it also reported an excessive number (213) of false

alarms. Moreover, the results are consistent with and without using the reachable

address computing optimization described in Section 4.4.3, because the optimization

condition always holds in these benchmarks. We next discuss the results of several

interesting benchmarks.

• Floodlight: This benchmark is an open-source software defined networking

(SDN) controller. The trace corresponds to an execution of Floodlight starting

up until it is ready to accept network requests. It contains nine threads and

58K events. There are five true races identified by MC and RDIT without

64

excluding any synchronization. After excluding all synchronizations, HB and

CP report 16 races but none of them is true, and MC reports 24 races but 19 of

them are false alarms. By contrast, RDIT reports 4 races all of which are true

races. RDIT misses only one true race due to the BarrierPair model (because

the two race events are both in a BarrierPair method).

• Jigsaw: This benchmark is a web server application that has been studied

frequently in previous work [24, 26, 54]. There are eight true races detected

on the full trace containing 12 threads and 3.4M events. RDIT only detects

two true races because all the other six races are inside the missing methods

(excluded in our experiment because there are synchronizations contained in

them).

• Xalan: This benchmark (collected from Dacapo [4]) transforms XML docu-

ments into HTML using multiple threads. It contains a large number of true

races (56 detected on the full trace). Interestingly, RDIT is able to detect

almost all (52) of the true races a lot more than that detected by HB and

CP (22), though HB and CP report only two false alarms. For MC on the

other hand, it detects all the true races but also reports one false alarm. The

number of false alarms is small because the majority of synchronizations in this

benchmark are not protecting the race events.

• Eclipse: This benchmark contains JDT tests for the Eclipse IDE, also from

Dacapo. There are nine true races detected on the full trace with ten threads

and 16.6M events. All the three techniques (HB, CP, and MC) report a large

number of false alarms (68, 68, and 81, respectively). RDIT still reports no

false alarm but four out of the nine true races. The reason for the large number

of false alarms, in contrast to that in Xalan, is that most conflicting events in

65

Excluded
Log Size Time

Orig BP BP+Opt Orig BP BP+Opt

a 1.3G 3.2G 1.4G 16.5s 44s(+168%) 18.6s(+13%)
a+b 1.3G 3.1G 1.4G 15.8s 39s(+147%) 16.6s(+5%)
a+b+c 1.1G 2.5G 1.2G 13.6s 31s(+134%) 15.3s(+12%)
a+b+d 652M 1.3G 711M 6.4s 11.3s(+77%) 6.7s(+4%)
a+b+c+d 548M 990M 598M 4.8s 8.6s(+79%) 5.2s(+8%)
a+b+c+d+e 489M 823M 537M 4.3s 7.1s(+65%) 4.5s(+7%)

(a) JDK libraries (java.*,javax.*,com.*,sun.*) (b) org.dacapo.harness.*
(c) org.apache.xpath.* (d) org.apache.xml.* (e) org.apache.xalan.*

Table 5.4: Runtime performance of RDIT on Xalan when missing methods in
certain packages, with and without capturing BarrierPairs, and with and without
using the reachable address optimization. The naive execution of Xalan takes 0.36s.

Eclipse are properly protected by synchronizations.

5.2.3 Runtime Performance

Table 5.4 reports the runtime performance results. Overall, the runtime over-

head of RDIT for capturing BarrierPairs in the Xalan benchmark ranges from 4%-

13% with the reachable address optimization and 65%-168% without, and the space

overhead for trace storage is even less than 100MB with the optimization. With

the optimization, the runtime overhead for capturing BarrierPairs is almost neg-

ligible compared to that of tracing all the other events (e.g., Read/Write). For

instance, the native execution of Xalan without any logging takes only 0.36s, while

the tracing execution excluding only the common JDK libraries takes 16.5s, more

than 45X overhead. Moreover, because capturing BarrierPairs completely avoids

the need to log events inside the missing methods, the overall performance im-

provement of RDIT is significant. For example, when additionally excluding the

packages org.dacapo.harness and org.apache.xml, the execution time is

reduced from 18.6s to 6.7s with the optimization and from 44s to 11.3s without, and

66

the trace size reduced from 1.4GB to 711MB with the optimization and from 3.2GB

to 1.3GB without. When further excluding the package org.apache.xpath, the

execution time is reduced to 4.8s, and trace size reduced to 598M, with the optimiza-

tion. Our results strongly support the application of RDIT where logging certain

methods or libraries is expensive, or the developer is only interested in certain spe-

cific code regions. For instance in Xalan, logging org.apache.xml is expensive but the

developer may only be interested in detecting races in the package org.apache.xalan.

The developer can then instruct RDIT to log only events in org.apache.xalan

and model all method calls to org.apache.xml as BarrierPairs.

67

6. CONCLUSIONS AND FUTURE WORK

We have developed enhancements to two crucial attributes of race detection tools:

1. Performance

2. Precision

The first observations we make it that there exists several redundancies in real-

world program traces. Our online tool, TREE, precisely identifies these redundancies

and filters them. The use of our tool does not result in the loss of any race, unlike

previous approaches. We have also benchmarked TREE and found that in all cases,

the increase in memory overheads are reasonable, making the use of our tool practical.

The design of TREE is not limited just to HB based tools; it can readily be used

with any dynamic analysis tool based on LockSet or even hybrid approaches. We

plan release it into the RoadRunner tool chain. In the future, in addition to the

memory access events, we may also look at removing redundant synchronization

operations, although currently we observe that they make up a very small portion

of the generated program trace.

The second observation we make is that race detection tools that claim to be

precise, are less so in practice. RDIT enhances the existing body of dynamic race

detection by allowing events to be missed in the trace through missing methods.

Powered by a sound BarrierPair model and a constraint encoding of maximal thread

causality, RDIT is both precise and maximal such that it does not report any false

alarms, and it detects a maximal set of true races from the observed incomplete trace.

We have shown empirically that RDIT detects dozens of true races in a variety of

real-world large multi-threaded applications with zero false alarm, whereas existing

68

precise algorithms report many false alarms due to missing events. We believe that

RDIT will be valuable for the development of precise dynamic race detection tools

in practice.

69

REFERENCES

[1] Sarita V. Adve and Hans-J. Boehm. “Memory Models: A Case for Rethink-

ing Parallel Languages and Hardware”. In: Commun. ACM 53.8 (Aug. 2010),

pp. 90–101. issn: 0001-0782.

[2] Pavol Bielik, Veselin Raychev, and Martin Vechev. “Scalable race detection for

Android applications”. In: Proceedings of the 2015 ACM SIGPLAN Interna-

tional Conference on Object-Oriented Programming, Systems, Languages, and

Applications. ACM. 2015, pp. 332–348.

[3] Swarnendu Biswas et al. “Valor: efficient, software-only region conflict ex-

ceptions”. In: Proceedings of the 2015 ACM SIGPLAN International Confer-

ence on Object-Oriented Programming, Systems, Languages, and Applications.

ACM. 2015, pp. 241–259.

[4] Stephen M Blackburn et al. “The DaCapo benchmarks: Java benchmarking

development and analysis”. In: ACM Sigplan Notices. Vol. 41. 10. ACM. 2006,

pp. 169–190.

[5] Hans-J. Boehm. “How to Miscompile Programs with ”Benign” Data Races”.

In: Proceedings of the 3rd USENIX Conference on Hot Topic in Parallelism.

HotPar’11. Berkeley, CA, USA: USENIX Association, 2011, pp. 3–3.

[6] Hans-J Boehm. “Position paper: nondeterminism is unavoidable, but data races

are pure evil”. In: Proceedings of the 2012 ACM workshop on Relaxing synchro-

nization for multicore and manycore scalability. ACM. 2012, pp. 9–14.

70

[7] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. “PACER:

Proportional Detection of Data Races”. In: SIGPLAN Not. 45.6 (June 2010),

pp. 255–268. issn: 0362-1340.

[8] Sebastian Burckhardt and Madanlal Musuvathi. “Effective program verifica-

tion for relaxed memory models”. In: Computer Aided Verification. Springer.

2008, pp. 107–120.

[9] Jacob Burnim, Koushik Sen, and Christos Stergiou. “Testing concurrent pro-

grams on relaxed memory models”. In: Proceedings of the 2011 International

Symposium on Software Testing and Analysis. ACM. 2011, pp. 122–132.

[10] IBM T.J. Watson Research Center. T. J. Watson Libraries for Analysis(WALA).

url: http://wala.sourceforge.net/wiki/index.php/Main_

Page (visited on 03/28/2016).

[11] Jong-Deok Choi et al. “Efficient and Precise Datarace Detection for Multi-

threaded Object-oriented Programs”. In: SIGPLAN Not. 37.5 (May 2002),

pp. 258–269. issn: 0362-1340.

[12] OW2 Consortium. ASM for Java. url: http://asm.ow2.org/ (visited on

03/28/2016).

[13] Heming Cui et al. “Parrot: A practical runtime for deterministic, stable, and

reliable threads”. In: Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles. ACM. 2013, pp. 388–405.

[14] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In:

Proceedings of the Theory and Practice of Software, 14th International Confer-

ence on Tools and Algorithms for the Construction and Analysis of Systems.

71

TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 337–340.

isbn: 3-540-78799-2, 978-3-540-78799-0.

[15] Joseph Devietti et al. “DMP: deterministic shared memory multiprocessing”.

In: ACM SIGARCH Computer Architecture News. Vol. 37. 1. ACM. 2009,

pp. 85–96.

[16] Dimitar Dimitrov et al. “Commutativity Race Detection”. In: SIGPLAN Not.

49.6 (June 2014), pp. 305–315. issn: 0362-1340.

[17] Laura Effinger-Dean et al. “IFRit: Interference-free Regions for Dynamic Data-

race Detection”. In: Proceedings of the ACM International Conference on Ob-

ject Oriented Programming Systems Languages and Applications. OOPSLA ’12.

ACM, 2012, pp. 467–484. isbn: 978-1-4503-1561-6.

[18] T Elmas, S Qadeer, and S Tasiran. “Goldilocks: A Race and Transaction-

aware Java Runtime”. In: Proceedings of the 28th ACM SIGPLAN Conference

on Programming Language Design and Implementation. PLDI ’07. ACM, 2007,

pp. 245–255. isbn: 978-1-59593-633-2.

[19] Azadeh Farzan et al. “Predicting null-pointer dereferences in concurrent pro-

grams”. In: Proceedings of the ACM SIGSOFT 20th International Symposium

on the Foundations of Software Engineering. ACM. 2012, p. 47.

[20] Cormac Flanagan and Stephen N Freund. “Adversarial memory for detecting

destructive races”. In: ACM Sigplan Notices. Vol. 45. 6. ACM. 2010, pp. 244–

254.

[21] Cormac Flanagan and Stephen N. Freund. “FastTrack: Efficient and Precise

Dynamic Race Detection”. In: SIGPLAN Not. 44.6 (June 2009), pp. 121–133.

issn: 0362-1340.

72

[22] Cormac Flanagan and Stephen N Freund. “Redcard: Redundant check elim-

ination for dynamic race detectors”. In: ECOOP 2013–Object-Oriented Pro-

gramming. Springer, 2013, pp. 255–280.

[23] Cormac Flanagan and Stephen N Freund. “The RoadRunner dynamic anal-

ysis framework for concurrent programs”. In: Proceedings of the 9th ACM

SIGPLAN-SIGSOFT workshop on Program analysis for software tools and en-

gineering. ACM. 2010, pp. 1–8.

[24] Jeff Huang. “Stateless model checking concurrent programs with maximal

causality reduction”. In: Proceedings of the 36th ACM SIGPLAN Conference

on Programming Language Design and Implementation. ACM. 2015, pp. 165–

174.

[25] Jeff Huang, Qingzhou Luo, and Grigore Rosu. “Gpredict: Generic predictive

concurrency analysis”. In: Proceedings of the 37th International Conference on

Software Engineering-Volume 1. IEEE Press. 2015, pp. 847–857.

[26] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. “Maximal sound pre-

dictive race detection with control flow abstraction”. In: ACM SIGPLAN No-

tices 49.6 (2014), pp. 337–348.

[27] Jeff Huang, Charles Zhang, and Julian Dolby. “CLAP: recording local execu-

tions to reproduce concurrency failures”. In: ACM SIGPLAN Notices. Vol. 48.

6. ACM. 2013, pp. 141–152.

[28] Jeff Huang, Jinguo Zhou, and Charles Zhang. “Scaling predictive analysis of

concurrent programs by removing trace redundancy”. In: ACM Transactions

on Software Engineering and Methodology (TOSEM) 22.1 (2013), p. 8.

73

[29] Java native interface specification. http://docs.oracle.com/javase/

7/docs/technotes/guides/jni/spec/jniTOC.html/. 2015.

[30] Baris Kasikci, Cristian Zamfir, and George Candea. “Data races vs. data race

bugs: telling the difference with portend”. In: ACM SIGPLAN Notices 47.4

(2012), pp. 185–198.

[31] Zhifeng Lai, S. C. Cheung, and W. K. Chan. “Detecting Atomic-set Serial-

izability Violations in Multithreaded Programs Through Active Randomized

Testing”. In: Proceedings of the 32Nd ACM/IEEE International Conference on

Software Engineering - Volume 1. ICSE ’10. New York, NY, USA: ACM, 2010,

pp. 235–244. isbn: 978-1-60558-719-6.

[32] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed

System”. In: Commun. ACM 21.7 (July 1978), pp. 558–565. issn: 0001-0782.

[33] Tongping Liu, Charlie Curtsinger, and Emery D Berger. “Dthreads: efficient

deterministic multithreading”. In: Proceedings of the Twenty-Third ACM Sym-

posium on Operating Systems Principles. ACM. 2011, pp. 327–336.

[34] Daniel Marino, M Musuvathi, and S Narayanasamy. “LiteRace: Effective Sam-

pling for Lightweight Data-race Detection”. In: SIGPLAN Not. 44.6 (June

2009), pp. 134–143. issn: 0362-1340.

[35] Nicholas D Matsakis and Thomas R Gross. “A time-aware type system for

data-race protection and guaranteed initialization”. In: ACM Sigplan Notices.

Vol. 45. 10. ACM. 2010, pp. 634–651.

[36] Jeremie Miserez et al. “Sdnracer: Detecting concurrency violations in software-

defined networks”. In: Proceedings of the 1st ACM SIGCOMM Symposium on

Software Defined Networking Research. ACM. 2015, p. 22.

74

[37] Mayur Naik, Alex Aiken, and John Whaley. “Effective Static Race Detection

for Java”. In: SIGPLAN Not. 41.6 (June 2006), pp. 308–319. issn: 0362-1340.

[38] Satish Narayanasamy et al. “Automatically classifying benign and harmful

data races using replay analysis”. In: ACM SIGPLAN Notices. Vol. 42. 6.

ACM. 2007, pp. 22–31.

[39] Robert H. B. Netzer and Barton P. Miller. “What Are Race Conditions?: Some

Issues and Formalizations”. In: ACM Lett. Program. Lang. Syst. 1.1 (Mar.

1992), pp. 74–88. issn: 1057-4514.

[40] Robert O’Callahan and Jong-Deok Choi. “Hybrid Dynamic Data Race Detec-

tion”. In: SIGPLAN Not. 38.10 (June 2003), pp. 167–178. issn: 0362-1340.

[41] Kevin Poulsen. Software bug contributed to blackout. url: http://www.

securityfocus.com/news/8016 (visited on 03/28/2016).

[42] Eli Pozniansky and Assaf Schuster. “Efficient on-the-fly data race detection in

multithreaded C++ programs”. In: Parallel and Distributed Processing Sym-

posium, 2003. Proceedings. International. Apr. 2003, 8 pp. doi: 10.1109/

IPDPS.2003.1213513.

[43] Eli Pozniansky and Assaf Schuster. “MultiRace: Efficient On-the-fly Data Race

Detection in Multithreaded C++ Programs: Research Articles”. In: Concurr.

Comput. : Pract. Exper. 19.3 (Mar. 2007), pp. 327–340. issn: 1532-0626.

[44] Christoph von Praun and Thomas R. Gross. “Object Race Detection”. In:

SIGPLAN Not. 36.11 (Oct. 2001), pp. 70–82. issn: 0362-1340.

[45] Christoph von Praun and Thomas R Gross. “Static conflict analysis for multi-

threaded object-oriented programs”. In: ACM Sigplan Notices. Vol. 38. 5.

ACM. 2003, pp. 115–128.

75

[46] Arun K. Rajagopalan and Jeff Huang. “RDIT: Race Detection from Incomplete

Traces”. In: Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering. ESEC/FSE 2015. New York, NY, USA: ACM, 2015,

pp. 914–917. isbn: 978-1-4503-3675-8.

[47] Veselin Raychev, Martin Vechev, and Manu Sridharan. “Effective race detec-

tion for event-driven programs”. In: ACM SIGPLAN Notices. Vol. 48. 10. ACM.

2013, pp. 151–166.

[48] Paul Rubens. Software bug contributed Facebook IPO glitch. url: http://

www.cio.com/article/2378046/net/why-software-testing-

can-t-save-you-from-it-disasters.html (visited on 03/28/2016).

[49] Mahmoud Said et al. “Generating data race witnesses by an SMT-based anal-

ysis”. In: NASA Formal Methods. Springer, 2011, pp. 313–327.

[50] Stefan Savage et al. “Eraser: A Dynamic Data Race Detector for Multithreaded

Programs”. In: ACM Trans. Comput. Syst. 15.4 (Nov. 1997), pp. 391–411. issn:

0734-2071.

[51] Koushik Sen. “Race Directed Random Testing of Concurrent Programs”. In:

SIGPLAN Not. 43.6 (June 2008), pp. 11–21. issn: 0362-1340.

[52] Konstantin Serebryany and Timur Iskhodzhanov. “ThreadSanitizer: data race

detection in practice”. In: Proceedings of the Workshop on Binary Instrumen-

tation and Applications. ACM. 2009, pp. 62–71.

[53] Konstantin Serebryany et al. “Dynamic race detection with llvm compiler”. In:

Runtime Verification. Springer. 2012, pp. 110–114.

[54] Yannis Smaragdakis et al. “Sound predictive race detection in polynomial

time”. In: ACM SIGPLAN Notices 47.1 (2012), pp. 387–400.

76

[55] CORPORATE SPARC International Inc. The SPARC Architecture Manual:

Version 8. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1992. isbn: 0-13-

825001-4.

[56] Raja Vallée-Rai et al. “Soot-a Java bytecode optimization framework”. In:

Proceedings of the 1999 conference of the Centre for Advanced Studies on Col-

laborative research. IBM Press. 1999, p. 13.

[57] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. “RELAY: static race detection

on millions of lines of code”. In: Proceedings of the the 6th joint meeting of the

European software engineering conference and the ACM SIGSOFT symposium

on The foundations of software engineering. ACM. 2007, pp. 205–214.

[58] Chao Wang et al. “Symbolic predictive analysis for concurrent programs”. In:

FM 2009: Formal Methods. Springer, 2009, pp. 256–272.

[59] Wikipedia. An engineering disaster. url: http://en.wikipedia.org/

wiki/Therac-25 (visited on 03/28/2016).

[60] Yuan Yu, Tom Rodeheffer, and Wei Chen. “Racetrack: efficient detection of

data race conditions via adaptive tracking”. In: ACM SIGOPS Operating Sys-

tems Review. Vol. 39. 5. ACM. 2005, pp. 221–234.

77

