
 

 

 

 

GIANT RESONANCES IN 
44

CA, 
54

FE, 
64

ZN, 
68

ZN, AND 
94

MO 

 

 

A Dissertation 

by 

JONATHAN THOMAS BUTTON  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

 

Chair of Committee,  Dave H. Youngblood 

Committee Members, Sherry J. Yennello 

 Shalom Shlomo  

 Che Ming Ko 

Head of Department, George Welch 

 

May 2016 

 

 

Major Subject: Physics 

 

 

Copyright 2016 Jonathan Thomas Button



  

ii 

 

ABSTRACT 

 

The centroids of the Giant Monopole Resonance (GMR) exhibit significant 

scattering about an expected A-1/3 mass dependence. Also, the GMR strength 

distribution had been observed to transition in shape from symmetric (Gaussian-like) in 

heavier nuclei to asymmetric over the 40<A<90 region. The origin of this is not clear 

and may be the result of nuclear structure or some other effect. This suggested a study of 

the GMR in 
44

Ca, 
54

Fe, 
64

Zn, and 
68

Zn. In the A~90 region for Zr and Mo, a second 

unexplained peak can be seen in the strength distribution for the GMR. Analysis of the 

GMR in 
94

Mo may help to explain this characteristic. 

 

Isoscalar giant resonances in 
44

Ca, 
54

Fe, 
64

Zn, 
68

Zn, and 
94

Mo have been studied with 

inelastic scattering of 240 MeV α particles at small angles including 0°. In 
44

Ca, a 

majority of the Energy Weighted Sum Rule (EWSR) was identified for E0 and E2 

(≈70%), and nearly half was identified for E1. Between 70 and 105% of the expected 

isoscalar E0 strength has been identified below Ex = 40 MeV for 
54

Fe, 
64

Zn, and 
68

Zn. 

Between 70 and 104% of the E1 strength has been identified while 60% of E2 strength 

in 
54

Fe and 
68

Zn and 120% of the strength in 
64

Zn has been identified. For 
94

Mo all of the 

expected EWSR for the isoscalar E0 resonance was found (104%). A significant portion 

of the EWSR was found for the isoscalar E1 (75%), E2 (61%), and the high energy 

octupole E3 (46%) resonances. 
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1 INTRODUCTION 

1.1  Giant Resonances 

Giant Resonances are the broad resonances that occur at excitation energies between 10 

and 30 MeV. The first Giant Resonance was discovered by Baldwin and Klaiber  [1] in 

1947 when they observed a strong resonance behavior in photon-induced reactions. This 

strong resonance was later identified to be a collective vibration by Goldhaber and Teller 

[2] and was named the Giant Dipole Resonance, now referred to as the electric Isovector 

Giant Dipole Resonance [3].  The Isovector Giant Quadrupole Resonance (IVGQR) was 

first reported in 1972 and was excited by inelastic electron scattering in 
90

Zr. The 

Isoscalar Giant Quadrupole Resonance (ISGQR) was first observed in electron scattering 

[4] and in proton inelastic scattering [5] in spherical nuclei. It was then confirmed by α 

inelastic scattering which was then used to investigate ISGQR in the heavy to light 

nuclei  [6--9]. In 1977, Youngblood et al. reported the discovery of the Isoscalar Giant 

Monopole Resonance (ISGMR) in 
144

Sm and 
208

Pb with α inelastic scattering [10]. The

Isoscalar Giant Dipole Resonance (ISGDR) was observed in 
208

Pb in 1980 with 172

MeV α inelastic scattering [11]. 

In a macroscopic description, the giant resonances can be understood to be caused by the 

collective motion of nucleons within the nucleus, induced by static or dynamic 

deformations of the nuclear density. The resonances are classified by spin as electric 

oscillations (ΔS=0) or magnetic oscillations (ΔS=1). They are also classified by isospin, 



2 

where ΔT=0 is the isoscalar mode and ΔT=1 is the isovector mode. In the isoscalar mode 

the protons and neutrons move in phase, while in the isovector mode the protons and 

neutrons move out of phase. The multipolarity is determined by the angular momentum 

L. 

In a microscopic description, the giant resonance modes are due to collective particle-

hole excitations and are characterized by their parity, angular momentum, spin, and 

isospin. Here the resonances are the result of a coherent superposition of the particle-

hole excitations caused by the action of an electromagnetic operator on the ground state 

of the nucleus. 

Alpha inelastic scattering is a useful tool for studying isoscalar giant resonances because 

it is a strong isoscalar (N=Z) selective probe. The IVGDR is very near the ISGMR in 

excitation energy, thus a probe that excites both isoscalar and isovector modes (such as 

electron inelastic scattering) would make separating the strengths of the two excitations 

very difficult. 

1.2 Incompressibility of Nuclear Matter 

Nuclear matter is defined as an infinite system of nucleons with a fixed ratio of neutrons 

to protons and no Coulomb interaction. The main goal of the study of nuclear matter is 

to determine the Equation of State (EOS) E=E(ρ). The EOS is characterized by the 
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saturation density ρ0, the binding energy E(ρ0), and the nuclear matter incompressibility 

KNM. The incompressibility of nuclear matter can be related to the curvature of the 

nuclear matter EOS by the relation  [12] 

𝐾𝑁𝑀 = 𝑘𝑓
2
𝑑2 (

𝐸
𝐴)

𝑑𝑘𝑓
2 |

𝑘𝑓0

= 9𝜌0
2
𝑑2 (

𝐸
𝐴)

𝑑𝜌2
|

𝜌0

(1) 

Where E/A is the binding energy per nucleon of nuclear matter and kf0 is the Fermi 

momentum. 

The ISGMR is interesting because its excitation energy is directly related to the 

incompressibility of the nucleus KA, 

𝐸𝐺𝑀𝑅 = √(
ℏ2𝐾𝐴

𝑚〈𝑟2〉
) (2) 

where 〈𝑟2〉 is the mean square radius and m is the mass of the nucleon  [13,14]. 

The ISGDR can be related to KA by 

𝐸𝐺𝐷𝑅 = √
7

3
ℏ2(𝐾𝐴+

27

25
𝜖𝐹)

𝑚〈𝑟2〉
, (3) 

where 𝜖𝐹 =
𝑘𝑓0

2

2𝑚
, is the Fermi energy.

KA can be used to obtain the incompressibility of nuclear matter KNM, but this 

extrapolation from the data for real nuclei is not straightforward due to contributions 

from surface, Coulomb and asymmetry effects. 
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Knm can be obtained by extrapolating from KA obtained for many nuclei with an 𝐴−
1

3

Leptodermous expansion  [14,15],  

𝐾𝐴 = 𝐾𝑁𝑀 + 𝐾𝑆𝐴
−
1
3 + 𝐾𝜏𝛿

2 +
𝐾𝐶𝑜𝑢𝑙𝑍

2

𝐴
4
3

+ ⋯ (4) 

which is a parameterization similar to that of the nuclear mass formula; with volume 

(KNM), surface (KS), symmetry (Kτ, δ = (N-Z)/A) and Coulomb (KCoul) terms. This 

macroscopic approach is straightforward, but it has been shown that these parameters, 

when obtained by fitting to the ISGMR data, are unreliable [16,17]. 

EGMR can also be related to Knm by calculations using mean fields. These include the 

fluid dynamics approach [18], the Hartree-Fock – Random Phase Approximation (HF-

RPA) with effective interactions [19], the RPA based on separable Hamiltonians [20], 

linear response within a stochastic one-body transport theory which incorporates 

coherent and collisional damping [21], the relativistic transport approach  [22], and the 

relativistic RPA [23]. In the RPA approach, non-relativistic (Skyrme, Gogny) or 

relativistic (NL1, NL3) effective interactions are used [24], and the values of KNM and 

the density dependence of Esym are deduced from the interaction that best reproduces the 

experimental data on the strength functions of the giant resonance [12,25]. At present, 

the best value for Knm is 220-240 MeV [24]. 
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1.3  Nuclei to Study 

The centroids of the GMR as a function of atomic number A are plotted in Figure 1 

and show a lot of variation, and the behavior is not fit very well with the A-1/5 or A-

1/6 lines which are shown for reference [26]. Some examples of local deviations 

include EGMR for 
48

Ca, which is higher than for 
40

Ca. Also, EGMR for 
58

Ni is higher than

would be expected from the systematics and the Mo and Zr isotopes show large 

deviations from the general trend. 

Figure 1. Centroid energies (m1/m0) for the ISGMR are plotted as a function of A. 

Lines representing 36/A
1/6

 and 40/A
1/5

  are shown for reference.  

The GMR strength distribution had been observed to transition in shape from symmetric 

(Gaussian-like) in heavier nuclei to asymmetric over the 40<A<90 region  [27]. The 

origin of this is not clear and may be the result of nuclear structure or some other effect. 

This suggested a study of the GMR in 
44

Ca, 
54

Fe, 
64

Zn, and 
68

Zn. In the A~90 region for
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Zr and Mo, a second unexplained peak can be seen in the strength distribution for the 

GMR  [28]. Analysis of the GMR in 
94

Mo may help to explain this characteristic. Each

mass region is discussed separately below. 

1.3.1 A=40-48 

The isoscalar E0-E3 giant resonances for 40Ca and 48Ca were investigated by Lui et 

al. [29]. Figure 2 shows from a plot from Ref. [29] of 40Ca and 48Ca ISGMR energies 

from various calculations compared to experimental energies as well as the energy 

difference between 48Ca – 40Ca. By studying 44Ca we may be able to learn more 

about this issue. From the plot of the systematics of GMR energy with mass number 

A in Figure 1. 48Ca is a little high, yet 40Ca is in general agreement. 
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Figure 2. Centroid energies (ECEN) for 
40

Ca and 
48

Ca and the energy difference

(ΔECEN) obtained with HF-RPA calculations are plotted for different Skyrme 

interactions having different values of KNM. (a) and (b) compare the calculated and 

experimental values for the centroid energy in 
40

Ca and 
48

Ca, respectively. The

dashed lines represent the experimental value and its error. (c) and (d) compare the 

calculated with the experimental difference in centroid energy. In (d), the RPA 

calculations are done without the Coulomb and spin-orbit interactions. From Ref. 

[29]. 

In contrast, HF-RPA calculations of the centroid energy for different Skyrme 

interactions were higher than the experimental data for 
40

Ca and were also higher but

closer to agreement with the data for 
48

Ca (Figure 2) [29].  Because the ratio of
 𝑁−𝑍

𝐴
 is 

0.166 in 
48

Ca, zero in 
40

Ca and 0.091 in 
44

Ca, this study also presents a good test for how

strongly correlated Knm and symmetry energy are with the centroid energy of the GMR 

[30]. 
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1.3.2 
54

Fe, 
64

Zn, and 
68

Zn

One consideration in the choice to look at these particular targets, is that it is difficult to 

find suitable targets in the mass region 60<A<90. For example, targets of selenium and 

strontium are hard to maintain because of oxidation. In the case of germanium, it is 

difficult to get a target of suitable thickness. 

The E0 strength distributions have shapes which have been found to vary with A, and 

further measurements in the mid-mass range 40≤A≤90 are necessary to help explain the 

observed trends. Measurement of the GMR in 
64,68

Zn is particularly useful because of the

gap in measurements in the region 60≤A≤90. Measurement of 
54

Fe could be useful to

study because it is between 
48

Ca and 
58

Ni in mass, and these nuclei have been found to

have similarly high values for m1/m0 relative to the systematic behavior of the 

experimental data. In heavy nuclei (A≥110), the strength distribution of the GMR has a 

symmetric, Gaussian shape [31]. In the A≈90 region, the strength distribution consists of 

a high and low-energy component separated by 7-9 MeV [28]. The observed high-

energy component remains unexplained. In nuclei with A≤28, the GMR becomes 

fragmented [27]. A number of nuclei have already been studied in the mass range A = 40 

to 90 and the m1/m0 centroid energies for these nuclei are shown in Figure 3 [27,29,32]. 

In this mass region, the shape of the strength distribution generally has a tail on the high-

excitation side of the GMR  [27,29,32]. This tailing has been predicted by microscopic 
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calculations for 
58

Ni using a microscopic nuclear structure model that includes known

mechanisms of giant resonance damping (such as the spreading width caused by more 

complex 1p1h couple to phonon configurations and the escape width because of 

inclusion of the single-particle continuum)  [33]. Also, this tailing has been observed in 

the E0 strength distributions for 
46,48

Ti, 
56

Fe, 
58

Ni, 
60

Ni, and 
48

Ca. 
48

Ca shows large

tailing on the high excitation side which extends to 40 MeV, whereas the other nuclei 

have strength which extends to 35 MeV. Microscopic calculations of the E0 strength 

distribution by Kamerdzhiev [33,34] were in very good agreement with the experimental 

distribution for 
40

Ca and 
58

Ni but not for 
48

Ca. A similar calculation by Hamamoto

[35]for 
40

Ca was in poor agreement with the experimental distribution [29].
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Figure 3. Centroid energies (m1/m0) for the ISGMR are plotted as a function of A. 

Lines representing 36/A
1/6

 and 40/A
1/5

 show the approximate systematic trend. The

nuclei shown are 
40,48

Ca [29]; 
46,48

Ti [32]; 
56

Fe and 
58,60

Ni [27]. The values from this

work for 
54

Fe and 
68

Zn are included as well.

1.3.3 
94

Mo

For the nuclei 
90, 92, 94

Zr and 
92, 96, 98, 100

Mo, the monopole strength is separated into two

parts (Figure 4) [28]. 
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Figure 4. The black histograms show the fraction of the r
2
Y00 sum rule obtained for

Mo and Zr isotopes plotted as a function of excitation energy. Superimposed are 

Guassian fits to the two components of the distributions as well as the sum of the 

fits. From Ref.  [28]. 

For the nuclei with A ≠ 92, 80-90% of the strength is in the lower energy peak located at 

15.7 to 17.2 MeV. In the A = 92 nuclei, there is considerably more strength in the higher 

energy peak than in the higher energy peak of the A ≠ 92 nuclei.  The higher energy 

second peak is not predicted by the HF-RPA calculations that reproduce the ISGMR 

energies in the other isotopes that are generally used to relate KNM to KA. 
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In the HF-RPA calculations used to relate ISGMR energies to KNM, it has been widely 

assumed that the energy of the ISGMR is not affected by the details of the nuclear 

structure. Scaling model values from KA are obtained from the √
𝑚3

𝑚1
 scaling energies and 

are compared to HF-RPA calculations in Figure 5. These calculations for KA fail to 

predict the stiffness seen at A=92 for both Zr and Mo isotopes. One possibility 

considered in Ref.  [28] is that the higher energy peak is the overtone. The ISGMR 

corresponds to 2ℏω transitions, whereas the overtone of the ISGMR, from a microscopic 

point of view, corresponds to 4ℏω particle-hole transitions. This possibility was 

investigated for the 
92

Mo case  [28] and produces a reasonable result, assuming that

100% of the overtone strength is located at twice the energy of E0. This approach yields 

a KA for 
92

Mo of 179 MeV, which is still 27 MeV greater than with what is expected

from HF-RPA calculation. Yet, there is no obvious reason why the overtone would be 

present in the A = 92 nuclei only, so this observed stiffness must be to the ISGMR alone. 

Neither Cd, nor Sn isotopes have the extra peak found in the ISGMR strengths for Mo 

and Zr. Analysis of the GMR in 94Mo may help to resolve these anomalies. 
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Figure 5. The scaling model KA values obtained from measured scaling energies 

(m3/m1)
1/2

 are shown for Zr and Mo isotopes by squares and triangles respectively 

and plotted versus A. The lines indicate the HF-based RPA values of KA calculated 

within HF-RPA using the KDE0v1 interaction for Zr (green dashed line) and Mo 

(black solid line) isotopes. From Ref. [17]. 

 

1.4 Dissertation Outline 

 

The dissertation consists of seven sections. Section 1 presents an introduction on Giant 

Resonances, nuclear compressibility, and nuclear matter compressibility. The 

motivations for studying the isoscalar giant resonances in 
44

Ca, 
54

Fe, 
64

Zn, 
68

Zn, and 

94
Mo are also given in this section. In Section 2, the experimental setup of the multipole-

dipole-multipole (MDM) spectrometer, the focal plane detector, and electronics are 

introduced. The methods for detector calibration and data processing to extract the 

differential cross-sections are in this section as well. The details of the data analysis, 

including a description of the Distorted Wave Born Approximation (DWBA) calculation 

of the inelastic scattering cross-sections are given in Section 3. The results for the 
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isoscalar resonances in these nuclei are in Sections 4-6 and are presented in three papers 

that are to be published. A description of the E0, E1, and E2 strengths and energies for 

44
Ca is in Section 4. The strengths and energies are compared with prior results for 

40
Ca 

and 
48

Ca. They are also compared with the predictions of the strength distributions from 

HF-RPA calculations with KDE0v1 interaction. In a similar fashion, the results for 
54

Fe, 

64
Zn, and 

68
Zn are in Section 5. These results are compared with prior results from other 

nuclei in the A=40-90 region and with results from HF-RPA calculations of the strength 

distributions. Section 6 has the results for 
94

Mo, which are compared with the results 

from the other Mo isotopes and with the HF-RPA calculations. A summary of the results 

from the nuclei studied and conclusions are in Section 7. 
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2 EXPERIMENTAL PROCEDURE 

2.1 Overview 

 

Giant Resonances are studied using 240 MeV α particle inelastic scattering, which has 

been shown to provide a very good ratio of peak-to-continuum suitable for the 

identification of the isoscalar E0-E4 resonances [36,37]. Figure 6 shows the layout of the 

beam line components used for providing the 240 MeV α particle beam for Giant 

Resonance experiments. The Electron Cyclotron Resonance (ECR) source makes an 

ionized plasma of He
2+

 gas for injection into the Texas A&M K500 superconducting 

cyclotron which then accelerates α particles to 240 MeV. The beam is extracted and 

passed through the Beam Analysis System (BAS) [38] which improves beam energy 

resolution and reduces beam halo by dispersing the beam with a magnetic bend in an 88° 

segment and then by selecting a part of the beam with slits. In an intermediate segment, 

the beam is focused. A second magnetic bend, in an 87° segment in the opposite 

direction as the first, is used to remove slit scattered particles so that a clean beam can be 

transported to the Multipole-Dipole-Multipole (MDM) spectrometer for 0° inelastic 

scattering measurements. 
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Figure 6. Diagram of the beam line for the MDM experiments is illustrated. The α 

particle beam begins at the ECR ion sources, is injected into the K500 Cyclotron 

for acceleration to 240 MeV, is passed through the Beam Analysis System, and then 

is transported to the MDM Spectrometer. 

 

Figure 7 shows the layout of the target chamber, MDM spectrometer, and Focal Plane 

Detector. The beam enters the target chamber and bombards a thin, self-supporting 

target. The MDM spectrometer is used to separate particles by momentum and is 

described in Section 2.2. The Focal Plane Detector (described in Section 2.3) is an 

ionization chamber with 4 proportional counter wires for measuring position and angle. 

Cathode plates are for measuring energy loss. Mounted to the exit window on the outside 

of the ionization chamber is a plastic scintillator. It provides a fast timing signal for 

event trigger and measures the total energy of the analyzed α particle. The energy signals 

from the scintillator and the ΔE energy loss information from the ionization chamber are 
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combined to provide particle identification. The Gas System (described in Section 2.3.1) 

is used to provide a constant flow of a mixture of isobutane and alcohol through the 

ionization chamber and to maintain a constant pressure in the detector.   

 

Figure 7. Diagram of the Experiment Layout is illustrated. The α particle beam 

bombards the target in the target chamber, goes through a 4°x4° slit in the slit box 

(not pictured, between target chamber and multipole magnet) and the MDM 

spectrometer, and is analyzed in the Focal Plane Detector. 

 

The electronic components used for signal processing and data collection are described 

in Section 2.5, and the methods for calibrating the detector and processing data are 

described in Section 2.6. 
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2.2 MDM Spectrometer 

 

The MDM spectrometer was constructed at Oxford University [39] in 1982 and moved 

to Texas A&M Cyclotron Institute to be used with the K500 cyclotron for a variety of 

experiments including giant resonance studies, nuclear spectroscopy, and mass 

measurements of exotic nuclei. The details of the MDM spectrometer design and 

operation can be found in Ref. [39]. It consists of a multipole magnet, a field clamp, a 

dipole magnet, another field clamp, and another multipole magnet. The dipole magnet 

has a linear gradient field and 100° of total bend with a 1.5 m central radius. It produces 

large dispersion with low magnification. The horizontal linear magnification is Mx=0.4, 

and the vertical linear magnification is My=5.0. The focal plane is essentially normal to 

the incident rays [40].  

 

2.3 Focal Plane Detector 

 

The Focal Plane Detector [41,42] has a length of 60 cm, vertical acceptance of 9 cm, and 

measures, for our purposes, α particles with an energy range of approximately 185 to 

232 MeV (8≤ Ex ≤ 55 MeV depending on scattering angle). Its design and operation are 

detailed in Refs. [42,43]. The internal components are illustrated in a cross-section view 

of the Focal Plane Detector in Figure 8. It is comprised of a gas ionization chamber with 

cathode and anode plates, 4 resistive wire proportional counters, and a plastic scintillator 

detector that is coupled to a photomultiplier tube. A 25.4 μm thick Poly-Aramid foil is 
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used for the front window separating the detector from the spectrometer, and a 0.25 mm 

thick Mylar foil is used for the back window, separating the detector from the plastic 

scintillator.  

 

 
Figure 8. A cross-section view of the focal plane detector is shown. The beam enters 

the front window from the left and loses energy to the isobutane gas. Electrons 

from the beam path are measured by the position sensitive wires (W1-W4), and 

energy loss by the beam particle in the gas is measured by the 3 ΔE plates. The 

beam goes through the exit window on the right side and is stopped in the plastic 

scintillator. 

 

2.3.1 Gas Ionization Chamber 

 

The most basic design of a gas ionization chamber [44] consists of 2 plane parallel 

electrodes in a gaseous medium with an electrostatic field between the electrodes. 

Electrons freed by ionization are collected on the positive plate. In this simple design, 

the signal from the anode will have a nonlinear response to energy loss in the gas 

chamber because the positive ions, which have a mobility which is 1000 times slower 
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than electrons, induce a charge on the anode. A Frisch grid [45] is used to screen the 

effects of positive ions from the anode. It is a grid fixed at a lower voltage than the 

anode and is placed near the anode between it and the cathode. 

 

The ionization chamber is filled with a mixture of 97% isobutane gas and 3% 

Dimethoxymethane alcohol with a gas pressure at 150 Torr. The alcohol is used to clean 

the wires. The flow of gas is continuous through the detector in order to avoid 

contamination from impurities in the gas which are caused by ionization. The control 

components and lines of gas flow for the system are shown in Figure 9. 

 

Figure 9. Schematic drawing of the Gas System is shown. Gas flow through the 

system is indicated by the lines with arrows. Valves are indicated by circles with 

diagonal arrows. Gas is mixed with alcohol from the refrigerator in the Gas Mixer 

before flowing through the ionization chamber (detector). The constant gas flow is 

maintained by 2 MKS controllers. Gas is pumped from the detector by the 

Roughing Pump. 
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The isobutane goes from the gas bottle to the 247C MFC gas flow controller and is split 

into two flows. Ninety-four percent of the gas goes directly to the gas mixer, and the 

remainder bubbles through the alcohol bottle before flowing to the gas mixer. The 

alcohol bottle is kept at a temperature of ≈20°F in a refrigerator (indicated in Figure 9 by 

the dashed blue line). The isobutane-alcohol mix goes through the electric valve and into 

the ionization chamber. The pressure in the gas mixer is maintained at 600 Torr by the 

MKS 250B controller using the electric valve and from measurement of the internal 

pressure of the detector from the MKS Baratron. The gas flows through the detector and 

is then pumped out by the roughing pump. The pressure in the detector is maintained by 

another electric valve and MKS 250B controller. 

 

2.3.2 Resistive Wire Proportional Counters 

 

Resistive wire counters [46] measure position by charge division. The charge is collected 

at each end of the wire and is proportional to the distance between the point where the 

charge is injected and the other end. There are four 60 cm long wires spaced at 13.55 cm 

intervals in the Focal Plane Detector. The wires (California Wire Company 

STABLOHM 675) have a diameter of 0.0007 in and resistance R=1678 Ω/ft. Horizontal 

x positions measured in coincidence from multiple wires are combined to give the θ 

angle measurement of the α particle ray. Ray tracing is used to calculate the angle and 

the position where the particle intercepts the focal plane. 

 



 

22 

 

The spectrometer angle is checked by determining the kinematic cross-over from the 

elastic scattering off hydrogen (in the 
12

C target) and 
12

C inelastic-scattering peaks.  

 

2.3.3 Plastic Scintillator 

 

An 81 cm long, 11 cm wide, and 3.7 cm thick BC400 plastic scintillator is mounted 

outside the exit window of the ionization chamber. A scintillator is a material which has 

a fluorescent response when exposed to ionizing radiation. Generally, the light response 

is linearly proportional to the incident ion energy  [47]. It gives a fast timing signal and 

total energy signal of the α particle. A conical, Lucite light guide was glued to the 

scintillator and coupled to a Hamamatsu H1949 photo-multiplier tube (PMT), where the 

light response is converted into a current.  

 

2.4 Experiment Details 

 

Cross-sections are obtained from the charge collected, the target thickness, the dead 

time, and the known solid angle. The energy calibration for Giant Monopole Resonance 

experiments at 0°  is checked by measurement of the 13.85 ± .005 MeV (L=0) state in 

24
Mg. 

When operating the MDM spectrometer at 0°, the beam is passed through a beam pipe 

on the high ρ (rigidity,  �⃗⃗� /𝑞) side of the detector and is stopped in a Faraday cup inside 

the wall (see Figure 7). Shielding (consisting of lead bricks, plastic blocks, and paraffin 
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blocks) is placed between the beam pipe and detector to reduce the flux of neutrons and 

gamma rays to the detector. The beam pipe is inside the Focal Plane Detector and 

distorts the field in the ionization chamber, and a voltage is applied to the pipe to correct 

the field. With the MDM spectrometer at 4°, the beam is collected in a Faraday cup 

located in the slit box behind the target chamber.  

 

2.5 Electronics and Data Acquisition 

 

Two types of power supplies are used. The Tennelec TC 952 is used in applications 

which require several mA of current. It is used for the monitor detector inside the target 

chamber and to power the PMT connected to the scintillator of the focal plane detector. 

The BERTAN 375P(N) is used for applications that draw no or very little current. It is 

used to provide power to the resistive wire counters, the cathode, the beam pipe 

correction field, and the shell. The voltages applied to the components of the Focal Plane 

Detector are listed in Table I. 
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Table I. The voltages and currents used for a typical giant resonance experiment 

are listed.  

  

 Wire 1 Wire 2 Wire 3 Wire 4 Cathode 

HV (V) 1750 1750 1750 1750 -3000 

Typical current 0 μA 0μA 0μA 0μA 16.1 μA 

 Beam Pipe Shell Monitor PMT 

HV (V) -2233 199 -726 -1570 

Typical current 43.1 μA 20 μA Several mA Several mA 

 

 

The electronic components used for processing the signals from the components of the 

Focal Plane Detector are illustrated in Figure 10. The PMT dynode provides the energy 

loss signal, and the PMT anode is used to provide the fast timing trigger. The 

TENNELEC TC 455 constant-fraction discriminator (CFD) converts the anode signal 

into a logic signal. The CFD and the logic signal from a random time pulse generator 

and veto signal from the CBD 8210 (Branch Highway) are added by a coincident logic 

unit (PHILLIPS SCIENTIFIC 755). The logic signal is sent to the GG8000 to produce 

the gate signal for the ADC’s. The 8 charge signals (consisting of the right and left side 

from each of the 4 resistive wire counters), the ΔE signal from the 3 collector plates, and 

the cathode signal are each sent to the CANBERRA 2004 preamplifiers. The output of 

the preamplifiers is a negative unipolar voltage pulse with a peak amplitude that is 

linearly proportional to the input charge. The preamp signal goes to the ORTEC 571 or 

671 spectroscopy amplifiers to be shaped into a Gaussian pulse. These signals are then 
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converted into a digital signal by an AD413 or AD811. The PMT dynode signal is sent 

to the ORTEC 113 preamp, then to the ORTEC 571 spectroscopy amplifier to be shaped 

into a Gaussian pulse and is then converted into a digital signal by the AD811. 

 

The digitized signals are passed by a branch highway cable from the CAMAC to the 

VME front end, which consists of a VME crate with CBD8210 module and a Motorola 

MVME 712/M Ethernet interface. A Dell PowerEdge 1650 computer is used as the front 

end host server and is connected to the electronics by an optical fiber. The Dell 

PowerEdge 2950 is used to analyze the data on-line and to store the data on disk for off-

line analysis. 
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Figure 10. Schematic of the electronic components used for processing signals from 

the Focal Plane Detector is shown. 

 

2.6 Detector Calibration 

 

2.6.1 Position Calibration 

Position calibration of the focal plane is done by doing a sweep over sixteen dipole field 

settings that span the useful length of the detector measuring the elastic scattering of α 

particles from 
12

C. A slit with five 0.1° openings (shown in Figure 11) which correspond 

to -2°, -1°, 0°, 1°, and 2° relative to the central ray is placed at the entrance of the MDM 

spectrometer. Centroids of peaks corresponding to the five openings on the angle mask 

are obtained at each field setting. These positions are then compared to predictions of the 

horizontal x wire position corresponding to the incident α particle ray in centimeters 
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calculated with RAYTRACE  [48] to obtain a relationship between the channel number 

and position along the focal plane for each of the four position wires. 

 

 

Figure 11. The five narrow opening slit used at the entrance of the spectrometer for 

position and angle calibration is illustrated.  

 

2.6.2 Angle Calibration 

 

Figure 12 shows the α particle passing through the Focal Plane Detector as a ray (labeled 

c). The horizontal positions of the ray are measured by Wire 1 (distance from one end 

labeled as y1c) and Wire 4 (distance from one end labeled as y4c). Wires 1 and 4 typically 

give the highest resolution angle measurement because of the distance between the wires 

(x14).  

 



 

28 

 

 

Figure 12.  A ray (light blue solid line) in the detector is illustrated. The horizontal 

positions of the ray are measured from wire 1 and wire 4 in order to calculate the 

angle of the ray in the detector. 

 

The angle of the ray in the detector (θDC) is calculated using the relationship tan 𝜃𝐷𝐶 =

𝑦4−𝑦1

𝑥14
 and can then be related to the angle of the α particle relative to the beam as it 

leaves the target. The angle calibration is done by measuring α particle inelastic 

scattering from 
12

C and using the five narrow opening slit described above. In the 

spectrum of the angle of the α particle leaving the target relative to the beam direction, 

the channel numbers for the centroids of the five peaks are obtained and then fit with the 

linear relationship 𝜃𝑖 = 𝑎 + 𝑏𝑁, where 𝜃𝑖is the angle corresponding to the slit opening , 

𝑁𝑖 is the peak position channel number, and 𝑎 and 𝑏 are fit parameters. The data set is 

then divided into ten angle bins with a width of Δθ =  0.4°. The average angle of each 

bin is obtained by integrating over the height of the  solid angle defining slit (4° x 4° for 

Giant Resonance data collection) and the width of the angle bin.  
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2.6.3 Energy Calibration 

 

RAYTRACE [48] calculations are also used to give the relationship between the 

momentum of the α particles and their position on the focal plane. After the position 

calibration, the position spectrum can be converted into a momentum spectrum. Using 

relativistic kinematics, the momentum spectrum is converted into an energy spectrum. 

The energy calibration for inelastic scattering to the giant resonance region is done by 

measuring inelastic scattering from 
12

C, 
24

Mg, and 
28

Si. In 
12

C, the 3
-
 states are measured 

(Ex=9.641±0.005 and 18.35±0.05 MeV). In 
24

Mg, the 2
+
 states are measured 

(Ex=12.86±0.05 and 17.36±0.05 MeV). And in 
28

Si, the 2
+ 

states are measured 

(Ex=18.67±0.05, 20.43±0.05 MeV). 

 

2.6.4 Data Processing 

 

The raw data files for each run are sorted into 10 position spectra which correspond to 

the 10 angle bins described in the Angle Calibration section (Section 2.6.2). These 

spectra are then converted into excitation energy spectra. The experimental differential 

cross section for a given excitation energy and angle bin is given by  

 
𝑑𝜎

𝑑Ω
=

𝑁′

𝐼𝑁𝑇
=

𝑌×𝐷𝑇
𝑄

𝑍𝑃
×𝑇×ΔΩ

 , where N’ is the reaction number per second, I is the incident flux, 

and NT is the number of target nuclei per unit area. Y is the number of events in an angle 

bin and excitation energy range, Q is the total charge collected in the Faraday cup during 

the run, ZP is the charge of the incident particle, and ΔΩ is the solid angle. The overall 
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(DT) dead time of the electronics and data acquisition is measured by passing pulses 

from a random (in time) pulser into the preamplifiers, through the electronics, and into 

the computer. The number of pulses sent to the computer is compared with the number 

in the spectra. Target thickness (T) is measured by weighing and is checked by 

measuring the energy loss of the 240 MeV α beam.  
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3 DATA ANALYSIS 

 

3.1 Overview 

 

Inelastic α scattering is used to study the isoscalar giant resonances because it is a strong 

isoscalar (N=Z) selective probe [3]. It has been shown to yield low background at high 

excitation energy in isoscalar giant resonance scattering experiments with most nuclei  

[36,43,49,50]. The GR excitations can be described macroscopically via the Collective 

Model  [12] or microscopically using some approach such as Hartree-Fock Random 

Phase Approximation (HF- RPA)  [12,51,52]. In the analysis described here, the method 

for calculating the isoscalar giant resonances for the different multipoles is a hybrid of 

macroscopic and microscopic approaches. Due to the angular range of the data taken, it 

is not possible to distinguish L≥ 4 multipoles so the analysis is limited to L=0-4 

multipoles.  

 

Isoscalar giant resonances of all multipoles are excited by the isoscalar nuclear probe. To 

extract the strength distribution for a particular multipole, the differential cross 

section 
𝑑𝜎

𝑑Ω
 for inelastic scattering must be calculated. The scattering is calculated in 

Distorted Wave Born Approximation (DWBA) using an Optical Model Potential as 

described by Satchler and Khoa  [53]. For the Schrodinger Equation (5) written with an 

Optical Potential 𝑈𝑂𝑃, 
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(∇2 + 𝑘2)𝜓 =

2𝑚

ℏ2
𝑈𝑂𝑃𝜓 (5) 

 the DWBA outgoing distorted wave 𝜓𝑘
(+)

  

 
𝜓𝒌

(+)
≈ 𝑁(𝑒𝑖𝒌⋅𝒓 +

𝑒𝑖𝑘𝑟

𝑟
𝑓𝒌(𝒓)) (6) 

in the asymptotic solution has the form in Eqn. (6). The cross-section  

 𝑑𝜎

𝑑Ω
= |𝑓𝑘(�̂�)|

2 (7) 

can then be related to the form-factor 𝑓𝒌(𝒓) by using Eqn. (7). 

 

The Optical Potential (𝑈𝑜𝑝 = 𝑈𝐹 + Δ𝑈) is composed of real (𝑈𝐹) and imaginary (Δ𝑈) 

components, The real part of the Optical Potential 𝑈𝐹 = ∫ 𝜌(𝑟′)𝑣(𝑟, 𝑟′)𝑟′2𝑑𝑟′
∞

0
  is 

calculated by single-folding of an effective interaction 𝑣(𝑟, 𝑟′) over the density of the 

target nucleus 𝜌(𝑟′), where 𝑟 is the distance between the projectile and target nucleus 

and 𝑟′ indicates the internal coordinates of the nucleons in the target nucleus. The 

imaginary part is represented by a Woods-Saxon shape, Δ𝑈(𝑟) =  −
𝑊

𝑒𝑥+1
,  𝑥 =

𝑟−𝑅𝑊

𝑎𝑤
. 

The potential parameters are obtained by fits to elastic scattering data. The nucleus 

studied is assumed to have a ground-state density of a Fermi shape, and the transition 

densities (Section 3.2) to the different multipoles are obtained by deformation of the 

ground-state density. The transition potential is dependent on the transition density. The 

transition potentials (Section 3.3) for the different multipoles are obtained by single-

folding of an effective α-nucleon interaction (Section 3.4) over the target nucleus 

density. The optical potential used to calculate the incoming and outgoing wavefunctions 

is obtained using the ground-state density, and for the transition potentials, the transition 
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densities are used. The DWBA approximation is used to calculate the differential cross-

section of the transition to each multipole (L=0-4). PTOLEMY [54] is used for obtaining 

the optical potential parameters and for calculating the differential cross-section of the 

isoscalar multipole transitions. SDOLFIN and DOLFIN  [55] are used for calculating the 

incoming and outgoing transition potentials respectively. 

 

The Energy Weighted Sum Rule (EWSR) is a sum of the transition possibilities from the 

ground state to excited states, multiplied by excitation energy [12]: 

 

 
𝑆(𝑄) ≡ ∑(𝐸𝑛 − 𝐸0)|〈𝑛|𝑄|0〉|

𝑛

2

=
1

2
〈0[𝑄, [𝐻, 𝑄]]0〉 (8) 

 

where n is the complete set of excited states due to operator Q on the ground state |0⟩. 

Only a small fraction of the strength is found in low-lying excited states, with the bulk of 

the strength in the high-lying collective excitations (Giant Resonances).  

 

3.2 Transition Densities 

 

The transition densities can be obtained by a deformation of the phenomenological 

ground-state density which is assumed to have a Fermi shape, with parameters c and a 

obtained from scattering experiments: 

 𝜌(𝑟) =
𝜌0

1 + 𝑒
𝑟−𝑐
𝑎

 (9) 



 

34 

 

 

The Bohr-Mottleson form (10) for the density deformation  

 
𝑔𝑙

𝐵𝑀(𝑟) =
𝛿𝑙

𝑚𝑑𝜌(𝑟)

𝑑𝑟
 (10) 

is used in the calculation for the excitation of low-lying vibrational states and has been 

found to be in agreement with microscopic transition densities when used for GR with ℓ 

≥ 2  [56]. 

 

For the GMR, the transition density used is: 

 

 
𝑔0(𝑟) = −𝛼0

𝑚 [3 + 𝜌(𝑟) + 𝑟
𝑑𝜌(𝑟)

𝑑𝑟
] (11) 

 

where α is a deformation parameter. RPA calculations tend to give a result for the GMR 

transition density which is similar in form to this [53]. 

 

The transition density for the isoscalar dipole is less straightforward. When using the 

above forms with ℓ = 1, these forms of the transition density correspond to a small 

displacement of the center of mass without a change of shape, which is a spurious result. 

The form adopted here is derived by Harakeh and Dieperink [57]: 

 

 
𝜌(𝑟) = −

𝛽1

𝑅
[3𝑟2

𝑑

𝑑𝑟
+ 10𝑟 −

5

3
〈𝑟2〉

𝑑

𝑑𝑟
+ 𝜖 (𝑟

𝑑2

𝑑𝑟2
+ 4

𝑑

𝑑𝑟
)  ] 𝜌0(𝑟) (12) 
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𝛽1

2 =
6𝜋ℏ2

𝑚𝐴𝐸𝑥
𝑅2(11〈𝑟4〉 −

25

3
〈𝑟2〉2 − 10𝜖〈𝑟2〉) 

𝜖 =
1

3𝑚𝐴
(
4

𝐸2
+

5

𝐸0
) ℏ2 

(13) 

where R is the half-density radius of the Fermi mass distribution, and β1 is the coupling 

collective parameter. This form of the isoscalar dipole excitation is for one magnetic 

substate only, and the cross-section should be multiplied by a factor of 3. 

 

 

3.3 Transition Potentials 

 

The assumption used when calculating scattering is that the elastic part is the main 

component and the inelastic scattering is a perturbation. The interaction is described as a 

direct reaction defined by a single event. The relative motion of the nuclei is described 

by distorted waves, which are the elastic scattering wave functions and would have the 

form of a plane-plus-scattered wave but are ‘distorted’ by the  Coulomb field.  

For incident particles with average momentum ℏk on a scatterer represented by an 

effective interaction V(r), the Schrodinger equation is written as: 

 

 
(𝛻2 + 𝑘2) 𝜓 =

2𝑚

ℏ2
𝑉𝜓 (14) 

 

The distorted wave 𝜓𝒌
(+)

, where (+) is used to designate this as the outgoing wave, in the 

asymptotic solution of (12) is: 
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 𝜓𝒌
(+)

≈ 𝑁(𝑒𝑖𝒌⋅𝒓 +
𝑒𝑖𝑘𝑟

𝑟
𝑓𝒌(𝒓))  (15) 

 

The differential cross-section is related to the coefficient 𝑓𝑘(�̂�): 

 

 𝑑𝜎

𝑑𝛺
= |𝑓𝑘(�̂�)|

2 (16) 

 

Then, the scattering amplitude for elastic scattering in the direction of  �̂�′ is given by: 

 

 𝑓𝒌(𝒌′̂) =  −
𝑚

2𝜋ℏ2𝑁
 ∫ 𝑒−𝑖𝒌⋅𝒓𝑉(𝒓′)𝜓𝒌

(+)(𝒓′)𝑑3𝑟 (17) 

 

The first-order Born Approximation is to replace the exact solution for the outgoing 

wave 𝜓𝒌
(+)(𝒓′) with the normalized plane wave term from the Green’s Functions 

solution to the scattering problem: 

 

 𝑓𝒌(𝒌′̂) =  −
𝑚

2𝜋ℏ2𝑁
 ∫ 𝑒−𝑖𝒌′⋅𝒓′

𝑉(𝒓′)𝑒−𝒌′⋅𝒓′
𝑑3𝑟′ (18) 

 

In the Optical Model for elastic and inelastic scattering, for the 2-body scattering of 

nuclei 𝒂 + 𝑨, the interaction is averaged and made into radial form to produce a 1-body 

Schrodinger equation (19),  

 [−
ℏ2

2𝜇𝛼
𝛻2 + 𝑈(𝑹)] 𝜒(𝑹) = 𝐸𝜒(𝑹)  (19) 
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with reduced mass μα, separation of centers of mass R, and center of mass energy of 

relative motion E. 

 

The wave function 𝜒(𝑹) can be expanded in terms of its internal eigenstates, for 

example: 

 

 𝛹𝛼 = ∑𝜓𝑎𝑖𝜓𝐴𝑗𝜒𝑖𝑗(𝑹)

𝑖𝑗

 (20) 

 

where 𝜒𝑖𝑗(𝑹) describes the relative motion of a and A and 𝜒00 would give the elastic 

scattering. 

 

 The Optical Model of nuclear reactions from Feshbach’s theory  [58,59] uses a complex 

potential (21)  

to describe an effective nucleon-nucleon interaction. 

 

V is the real interaction between two nuclei, and the index α refers to pairs of internal 

states in each nucleus where the prime is used to designate pairs of excited states. The 

real part is mostly in the V00 term and produces elastic scattering.   

 
𝑈𝑜𝑝 = 𝑉00 + lim

𝜖→0
∑𝑉0𝛼(

1

𝐸 − 𝐻 + 𝑖𝜖
 )𝛼𝛼′  𝑉𝛼′0 = 𝑈𝐹 + 𝛥𝑈

𝛼𝛼′

 (21) 
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In the folding approach, the potential V00 is obtained by averaging the nucleon-nucleon 

interaction vij where i denotes nucleons in one nucleus and j denotes nucleons in other 

nucleus. This gives the effective interaction, 𝑉 = ∑ 𝑣𝑖𝑗𝑖,𝑗 . The folded potential 𝑈𝐹 is 

used to calculate the real potential 𝑉00 using Eq. (22). 

 

 𝑈𝐹(𝑅) = 𝑉00 ≡ (𝜓𝑎0𝜓𝐴0|𝑉|𝜓𝑎0𝜓𝐴0) (22) 

 

In the approach used here, the effective interaction 𝑣(𝑟, 𝑟′) (where 𝑟′ describes the 

internal coordinates of the target nucleus) for the inelastic scattering has real and 

imaginary parts and is folded with the transition densities 𝜌(𝑟′) described above for the 

different multipoles in order to obtain the transition potentials, 𝑈𝐹. 

 

 
𝑈𝐹(𝑟) = ∫ 𝜌(𝑟′)𝑣(𝑟, 𝑟′)𝑟′2𝑑𝑟′

∞

0

 (23) 

 

The ΔU term in Eq. (21) is complex and arises from couplings to the non-elastic 

channels α and α’ and is used for describing transitions to open non-elastic channels. 

 

3.4 Effective Interaction 

 

Satchler and Khoa described the hybrid potential model and the effective interaction 

used here in Ref.  [53]. Initially, the effective interaction used to represent the nucleon-
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nucleon interaction averaged over the density distribution of the α particles was given by 

a Gaussian (24) with complex strength (G194, with 𝑡 = 1.94 fm). 

 
𝑣𝐺̅̅ ̅(𝑠) =  − (𝑣 + 𝑖𝑤)𝑒

−
𝑠2

𝑡2  (24) 

 

The strengths (v and w) are optimized to fit the elastic data. It is an effective interaction 

used primarily for <100 MeV α particles but has been found to reproduce the measured 

forward angle scattering at 240 MeV. The imaginary part was found to be too strong 

though, with too much absorption in the interior. Also, the strength v required to fit the 

diffractive scattering was found to be too large in the interior to reproduce the rainbow at 

large angles. 

 

A hybrid approach was adopted where the real and complex parts have different radial 

shapes [53]. The imaginary part of the effective interaction is replaced with a 

phenomenological Woods-Saxon shape, with parameters 𝑅𝑊 and 𝑎𝑤. 

 

 
𝐼𝑚𝑈(𝑟) =  −

𝑊

𝑒𝑥 + 1
,  𝑥 =

𝑟 − 𝑅𝑊

𝑎𝑤
 (25) 

 

A correction to the strength v is made by making the interaction density dependent. 

 

 𝑣𝐷𝐷𝐺̅̅ ̅̅ ̅̅ (𝑠, 𝜌) = 𝑣𝐺̅̅ ̅(𝑠)𝑓(𝜌) 

𝑓(𝜌) = 1 − 𝛼𝜌(𝑟′)𝛽 ,   𝛽 =
2

3
 

(26) 
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Lastly, a dynamic correction to the density dependence is applied to account for the 

change to the interaction (𝑣(𝜌) → 𝑣(𝜌 + 𝛿𝜌)) as a result of the density deformation 

(𝜌 → 𝜌 + 𝛿𝜌)  

 
𝑣′(𝜌) = 𝑣(𝜌) +

𝜌𝜕𝑣(𝜌)

𝜕𝜌
 

𝛼′ = 𝛼(1 + 𝛽) = (
5

3
)𝛼 

𝑓′(𝜌) = 1 − 𝛼(1 + 𝛽)𝜌(𝑟′)𝛽 

(27) 

of the multipole transition. This correction reduces the strength in the interior as well. 

 

To prove the validity of this approach, Satchler & Khoa  [53] compared the results for 

elastic and inelastic scattering of 240 MeV α and 
58

Ni with calculations using a single-

folded potential with a density-dependent Gaussian (DDG) effective interaction, a 

double folded real potential with an M3Y-type N-N interaction, and a deformed potential 

model with a phenomenological Woods-Saxon potential. They found that the deformed 

potential approach was unreliable and that the single-folded DDG potential produced 

results in agreement with the double-folded N-N potential. 

 

3.5 Fit to Experimental Data 

 

A continuum of events consisting of various reactions such as multipole excitation, 

multistep excitation, pickup-breakup, and knock-out reactions as well as possibly some 

background from slit scattering is present in the data. In the analysis of the data, this 

continuum is represented by a straight line at high excitation joined to a Fermi shape at 



 

41 

 

low-excitation to model the particle decay threshold. The inelastic α spectra obtained at 

several angles are each divided into a peak and continuum. The peak and continuum 

cross-sections are then divided into bins by excitation energy in a manner similar to the 

illustration in Figure 13, which shows a slicing of the GR peak into 300 keV bins for 

further analysis. 

 

 
Figure 13. The Giant Resonance peak is “sliced” into 300 keV bins for identifying 

strength of the multipole excitations by comparison with PTOLEMY DWBA 

calculation of the multipole cross-sections. 

 

Generally, the E0 (ISGMR) and E2 (ISGQR) strength distributions obtained have been 

found to be relatively insensitive to the continuum choice whereas the E1 (ISGDR) and 

E3 (ISGOR) strength distributions are sensitive to the choice of continuum. Thus several 

analyses are carried out using several different continuum choices. For example, the 

linear slope at high excitation may not quite match the data, the amplitude of the 

continua may be lowered so that it is always below the data, the low energy cutoff and 

54
Fe(α,α’) 

E
α
=240 MeV 

θ
c.m.

=1.1°  
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slope may be varied, or the continuum slope and/or amplitude could be altered at 

selected angles. A typical range of continuum choices is illustrated in Figure 14. The 

strength distributions obtained from these separate analyses are combined into a 

weighted average. 

 

 
Figure 14. Example inelastic α spectra for 

54
Fe are shown. The lines are examples of 

continua chosen for analyses. 

 

The experimental angular distributions are then compared to the DWBA calculations,  

and the strengths of the isoscalar L=0-4 contributions are varied to minimize χ
2
. The 

IVGDR contributions are calculated from the known distributions obtained from 

photoabsorption data [60] and held fixed in the fits. Uncertainty in the strength of a 

multipole is determined for each multipole fit by incrementing or decrementing the 

strength of that multipole and then adjusting the strengths of the other multipoles by 
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fitting to the data. This is continued iteratively until the new χ
2
 is one unit larger than the 

original, best-fit total χ
2
. 
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4 ISOSCALAR E0, E1, AND E2 STRENGTH IN 
44

CA

4.1 Overview 

Isoscalar giant resonances in 
44

Ca have been studied with inelastic scattering of 240

MeV α particles at small angles including 0°. A majority of the Energy Weighted Sum 

Rule was identified for E0 and E2 (≈70%), and nearly half was identified for E1. The 

strength distributions are compared with the predictions from HF-RPA calculations with 

the KDE0v1 interaction. 

4.2 Introduction 

Giant Resonances (GR) are the broad resonances that occur at excitation energies 

between 10 and 30 MeV. They correspond to the collective motion of nucleons within 

the nucleus and have modes classified according to their multipolarity L, spin S, and 

isospin T quantum numbers. The Isoscalar Giant Monopole Resonance (ISGMR) is 

interesting because its excitation energy is directly related to the incompressibility of the 

nucleus KA (28), where 〈𝑟2〉 is the mean square radius and m is the mass of the nucleus

[13,14]. 

𝐸𝐺𝑀𝑅 = √(
ℏ2𝐾𝐴

𝑚〈𝑟2〉
) (28) 
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KA can be used to obtain the incompressibility of nuclear matter KNM by comparison to 

calculations using mean fields, where the value for KNM is deduced from the interaction 

that best reproduces the experimental data on the strength functions of the giant 

resonance. At present, the best value for KNM is 220-240 MeV  [24]. 

The isoscalar E0-E3 giant resonances for 
48

Ca were investigated by Lui et al.  [29], and

the isoscalar E0-E3 giant resonances in 
40

Ca were investigated by Youngblood et al.

[37]. E0 strength for both Ca isotopes were compared with Hartree-Fock Random Phase 

Approximation (HF-RPA) calculations in Ref. [29]. In the mass region 20≤A≤65, the 

centroid energy (𝑚1/𝑚0) follows a systematic trend ≈36A
-1/6

. 
40

Ca is in agreement with

this systematic trend, and 
48

Ca has an energy higher than the systematic trend by 

approximately 1 MeV. By studying 
44

Ca we may be able to learn more about this issue.

In contrast, HF-RPA calculations of the centroid energy for different Skyrme 

interactions were higher than the experimental data for 
40

Ca and were also higher but

closer to agreement with the data for 
48

Ca [29].

In this paper we report E0, E1, and E2 multipole strength distributions obtained for 
44

Ca

and compare the experimental distributions with those obtained for 
40

Ca and 
48

Ca and

with theoretical predictions from the results of HF-RPA calculations with the KDE0v1 

interaction. 
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4.3 Experimental Procedure 

 

The experimental technique has been described thoroughly in Refs.  [37,61] and is 

summarized briefly below. Beams of 240 MeV α particles from the Texas A&M K500 

super-conducting cyclotron bombarded a self-supporting 
44

Ca foil of 5.0 mg/cm
2
 

enriched to more than 95% in the desired isotope, located in the target chamber of the 

multipole-dipole-multipole spectrometer. The horizontal and vertical acceptance of the 

spectrometer was 4°. Ray tracing was used to reconstruct the scattering angle. The 

vertical acceptance was ±2°. The focal plane detector measured position and angle in the 

scattering plane, covering Ex≈ 8 MeV to Ex > 55 MeV (depending on scattering angle). 

The out-of-plane scattering angle was not measured. Position resolution of 

approximately 0.9 mm and scattering angle resolution of about 0.09° were obtained. 

Cross sections were obtained from the charge collected, target thickness, dead time, and 

known solid angle. The target thicknesses were measured by weighing and checked by 

measuring the energy loss of the 240 MeV α beam in each target. The cumulative 

uncertainties in target thickness, solid angle, etc, result in about a ±10% uncertainty in 

absolute cross sections. 
24

Mg spectra were taken before and after each run and the 

13.85±.02 MeV L=0 state  [62] was used as a check on the calibration in the giant 

resonance region. 

 

Data were taken with the spectrometer at 0.0° (0.0° < θ < 2.0°) and at 4.0° (2.0° < θ < 

6.0°). Sample spectra obtained for 
44

Ca are shown in Figure 15. 
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Figure 15. Inelastic α spectra obtained for 
44

Ca are shown. The lines are examples 

of continua chosen for analyses. 

 

4.4 Multipole Analysis 

 

Single-folding DWBA calculations with optical model potentials (as described in Refs. 

[37,53,61]) were carried out with PTOLEMY [54]. Optical model parameters obtained 

for 240 MeV α scattering on 
48

Ca  [29] were used and are shown in Table II.  

 

Table II. Optical Model and Fermi parameters used in DWBA calculations are 

listed, 𝐫𝐜𝟎 is the Coulomb radius parameter. 

 

V (MeV) W (MeV) ri (fm) ai (fm) 𝑟𝑐0 c a 

47.392 31.495 0.959 0.677 .960 5.0264 .523 
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 Calculations were performed with the Fermi form for the mass distribution, 𝜌(𝑟) =

𝜌0 [1 + 𝑒
𝑟−𝑐

𝑎 ]
−1

, with c and a shown in Table II [63]. This choice for the ground state 

density was guided by analysis of high-energy proton scattering and the results of 

Hartree-Fock calculations and shell-model calculations [64,65]. The calculations for the 

transition densities, sum rules, and DWBA calculations were discussed thoroughly in 

Refs. [37,53,61,66]. 

 

The peak and continuum cross-sections are then divided into bins by excitation energy. 

To obtain the multipole components for each experimental bin, the experimental angular 

distributions of the peak and continuum cross-sections are compared to the single-

folding DWBA calculations done with PTOLEMY, and then the strengths of the 

isoscalar L=0-4 contributions are varied in order to minimize χ
2
. The IVGDR 

contributions are calculated and held fixed in the fits. The experimental and calculated 

angular distributions are illustrated in Figure 16 for selected energy bins in the GR peak. 

The uncertainty for each multipole is determined by incrementing or decrementing the 

strength of that multipole, adjusting the strengths of other multipoles by fitting to the 

data, and continuing until the new χ
2
 is 1 unit larger than the χ

2
 from the best fit.  
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Figure 16. The angular distributions of the 
44

Ca cross sections for three excitation 

ranges of the GR peak and the continuum are plotted vs. center-of-mass scattering 

angle. Each bin is 480 keV wide and the average energies for each bin are shown. 

The lines through the data points indicate the multipole fits. The contributions of 

each multipole are shown. The statistical errors are smaller than the data points. 

 

Analyses are done several times using different assumptions about the continuum in 

order to estimate the uncertainties due to the choice of continuum. Typical choices for 
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the continuum can be seen in Figure 15. For purposes of estimating the uncertainties, the 

continuum could have a linear slope at high excitation that does not quite match the 

experimental data, could be lowered so that it is always below the data, could have a 

different low energy cutoff and slope, or could have slope and or amplitude which is 

altered at selected angles. 

 

These separate analyses are then combined into an average distribution. Errors were 

calculated by adding the errors from the multipole fits in quadrature with the standard 

deviations between the different fits.  

 

4.5 Description of Microscopic Calculations 

 

Microscopic mean-field based Random Phase Approximation (RPA) theory provides a 

description of collective states in nuclei  [12,24]. A description of the spherical HF-

based RPA calculations of the strength functions and centroid energies of the isoscalar 

(T=0) giant resonances in nuclei can be found in Ref. [67] and is summarized below. 

 

The strength or response function can be obtained from the RPA states |𝑛⟩ with 

corresponding energy 𝐸𝑛: 

 𝑆(𝐸) = ∑|〈0|𝐹|𝑛〉2|𝛿(𝐸 − 𝐸𝑛)

𝑛

 (29) 

where F is the single particle scattering operator 𝐹 = ∑𝑓(𝑖). The ISGMR energies 

(𝑚𝑘 = ∫ 𝐸𝑘𝑆(𝐸)𝑑𝐸) are given by:  
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𝐸𝑐𝑜𝑛 = √

𝑚1

𝑚−1
  𝐸𝑐𝑒𝑛 =

𝑚1

𝑚0
 𝐸𝑠𝑐𝑎𝑙 = √

𝑚3

𝑚1
 (30) 

where, Econ is the constrained energy, Ecen is the centroid energy, and Escal is the scaling 

model energy. The Energy Weighted Sum Rule (EWSR), m1, is calculated using the 

Hartree-Fock ground state wave function. 

 

The fully self-consistent mean field calculation of the response function uses an effective 

two-nucleon interaction V which is obtained from a fit to the ground states properties of 

nuclei. The effective interaction determines the HF mean-field. The RPA calculation 

includes all of the components of the two-body interaction using a large configuration 

space and was done using the numerical approach of Refs.  [68,69]. The calculations of 

the strength functions and centroid energies of the isoscalar (T=0) giant resonances in 

the nuclei were done using an occupation number approximation for the single particle 

orbits of open shell nuclei. For the single-particle scattering operator 𝐹 = ∑ 𝑓(𝑟𝑖)𝑌𝐿0𝑖  we 

used 𝑓(𝑟) = 𝑟2 for the monopole (L=0) and 𝑓(𝑟) = 𝑟3 −
5

3
〈𝑟2〉𝑟 was used for the dipole 

(L=1). The form of the dipole scattering operator takes into account the contribution 

from spurious states  [70,71]. The KDE0v1 Skyrme-type effective interaction was used. 

The appropriate experimental excitation energy ranges were used: 9-40 MeV for the 

ISGMR and ISGQR, 9-20 MeV for the low-component of the ISGDR, 20-36 MeV for 

the high-component of the ISGDR. The calculated distributions are shown superimposed 

on the experimental results in Figure 17 . The smearing widths for the calculated 

distributions for the E0-E2 multipoles are shown in Table III. The energy moments are 
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included in Tables IV and VI. The theoretical strengths are calculated over a range of 0 

to 100 MeV and contain 100% of the EWSR for E0, E1, and E2.  

 

Table III. Smearing widths for the calculated distributions are shown. 

 E0 E1 E2 

Γ (MeV) 6.5 13.0 10.0 

 

 

4.6 Discussion 

 

The E0-E2 multipole distributions obtained for 
44

Ca are shown in Figure 17. Two peak 

fits are shown for the E1 distribution, and a single Gaussian fit is shown for E2. The 

strength distributions obtained with the HF-RPA calculations described in the section 

above are superimposed on the E0, E1, and E2 experimental distributions.  The 

parameters for the experimental distributions are shown in Table IV. The parameters for 

the Gaussian fits and for the moments of the calculated distributions are shown in Table 

V and Table VI respectively. Due to the limited angular range of the data, E3 and E4 

strength could not be distinguished unambiguously.  The highest multipole included in 

the fits is E4, and the E3 distribution shown in Figure 17 is the sum of all the multipoles 

L≥3. The theoretical energy moments and strengths in Table IV and Table VI are for the 

experimental energy ranges (E0: 9≤Ex≤40 MeV , E1 low range: 9≤Ex≤20 MeV, E1 high 

range: 20≤Ex≤40 MeV, and E2: 9≤Ex≤40 MeV)  

 



 

53 

 

 

Figure 17. Strength distributions obtained for 
44

Ca are shown by the histograms. 

Error bars represent the uncertainty based on the fitting of the angular 

distributions and different choices for the continuum, as described in the text. 

Gaussian fits to the E1 distributions for the individual peaks (blue and purple) and 

their sum (red) are shown. The green lines are the strength distributions obtained 

with the HF-RPA calculations using the KDE0v1 interaction, smeared to more 

closely represent the data as discussed in the text. 
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Table IV. Parameters for energy moments obtained for isoscalar multipoles in 
44

Ca 

are listed. The moments from the KDE0v1 calculation results are over the 

experimental energy range 9≤Ex≤40 MeV. 

 

 Moments 

𝐸0 𝐸1 𝐸2  

Exp. KDE0v1 

𝑚1 (Frac. EWSR) 0.75 ± .11  0.94 0. 48±.18
.19 0.77± .14   

𝑚1 𝑚0⁄ (MeV) 19.50±.33
.35 19.55 25.97±1.59

1.71 17.21 ± .48 

rms width (MeV) 5.84±.73
.86 5.01 8.55±.84

1.03 5.06±1.15
1.28 

√𝑚3 𝑚1⁄  (MeV) 21.78±.72
.84 21.28 30.11±1.84

2.09 19.01±.95
1.02 

√𝑚1 𝑚−1⁄  (MeV) 18.73 ± .29 18.97 24.05±1.45
1.49 16.71±.41 

 

 

 

Table V. Parameters obtained for Gaussian fits for isoscalar multipoles in 
44

Ca are 

listed. 

 

 Gaussian fits 

𝐸1 peak 1 𝐸1 peak 2 𝐸2 

Centroids (MeV) 16.46±1.55
1.39    34.92±1.34

1.57 17.13±.11 

FWHM (MeV) 4.86±2.39
2.12  16.34±2.31

2.26 9.40±.14 

Frac. EWSR 0.07 0.53 0.68 
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Table VI. Parameters obtained for energy moments from the KDE0v1 calculation 

are listed. The results are over the experimental energy ranges (E1 low range: 

9≤Ex≤20 MeV, E1 high range: 20≤Ex≤40 MeV, and E2: 9≤Ex≤40 MeV) 

 

 KDE0v1 

 𝐸1 low range 𝐸1 high range E2 

𝑚1 𝑚0⁄  (MeV) 14.37 29.16 16.71 

rms width (MeV) 3.42 5.01 4.89 

𝑚1 (Frac. EWSR) 0.15 0.58 0.92 

 

 

4.6.1 E0 Strength 

 

In 
44

Ca, 75% of the E0 EWSR was identified. The strength distribution is similar to 

those observed in the other nuclei of this mass region (40≤A≤90) [27,32]. The shape is 

asymmetric with a large tailing on the high energy side which extends to 35 MeV. The 

shape is similar to the E0 strength in 
48

Ca. The tailing in other nuclei of this region 

typically extends to 30 MeV. The theoretical prediction for the strength distribution  
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 appears to fit the rise of the peak on the low-energy side of the experimental distribution 

 well and has two narrow components separated by about 4 MeV. There is some tailing 

to the higher energy theoretical component, and it is similar to the tailing seen in the 

experimental peak.   The observed mass dependence and the theoretical predictions from 

the fully self-consistent calculations with KDE0v1 are shown in Figure 18. The 

theoretical predictions for the scaling energy (√
𝑚3

𝑚1
), centroid energy (

𝑚1

𝑚0
), and 

constrained energy (√
𝑚1

𝑚−1
) are all in good agreement with the experimental energies for 

44
Ca.  
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Figure 18. Experimental results for ISGMR energies in 
40

Ca [37], 
44

Ca (present 

work), and 
48

Ca [29] (blue diamonds) are compared with theoretical predictions. 

The results of fully self-consistent HF-RPA calculations [30] with KDE0v1 [72] are 

shown using the experimental excitation energy range (E=9.5-40 MeV) (red 

squares).  
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4.6.2 E1 Strength 

 

In 
44

Ca 48±18
19% of the E1 strength was identified. This is much less than the E1 strength 

(137 ± 20%) identified for 
48

Ca  [29] but is similar to the amount identified in 
40

Ca 

(62±20
10%) [37]. The strength is distributed in low and high energy components. The E1 

strength is particularly sensitive to the choice of continuum because of the low ratio of 

peak-to-continuum at the higher end of the energy range where the majority of the E1 

strength is found. This sensitivity has been observed in 
48

Ca, 
40

Ca and in other nuclei. 

[27,32]. For 
40

Ca, changes in the continuum choice resulted in shifts of 𝑚1/𝑚0 of up to 

2.5 MeV and sum-rule variation from 28-94%. The centroid energy 𝑚1/𝑚0 for 
40

Ca is 

23.36±0.70 MeV, which is about 3 MeV less than the energy observed in 
44

Ca. The low 

peak component observed in 
44

Ca is narrow and is fit with a Gaussian with centroid 

energy of 16.51±.74
.78 MeV. It contains about 6% of the E1 strength. The high peak is 

much broader, has a centroid energy of 35.37±.56
.67 MeV, and contains 53% of the 

strength. Much more strength was identified in 
48

Ca, but it has a similar ≈1:8 ratio in the 

strength found in the low peak to that found in the high peak. The energy of the low 

component is in agreement with that found for 
48

Ca (16.69±.33
.39 MeV). The energy of the 

high components of the E1 strength in both nuclei (37.28±1.98
.71  MeV for 

48
Ca) are also in 

agreement within experimental error. The E1 strength that results from the HF-RPA 

calculation with KDE0v1 interaction does not fit the experimental distribution well, and 

it has several components. The majority of the strength is in a peak located at 29.16 

MeV, which is lower than the experimental high energy component by ≈7 MeV. The 
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majority of the strength in the low energy range (9≤Ex≤20 MeV) appears in a broad peak 

located at ≈13 MeV, and the centroid was calculated to be a bit higher in energy at 14.37 

MeV which is ≈2 MeV less than the experimental centroid. 

 

4.6.3 E2 Strength 

 

A majority of the E2 strength (71 ± 4%) was identified in the experimental data. The 

theoretical prediction of the E2 strength over the range 9 to 40 MeV shows 

approximately 20% more strength than the experimental distribution. The predicted 

strength is in a single peak with a centroid of 16.71 MeV, which is in near agreement of 

the experimental centroid (17.21 ± .48 MeV). The E2 strength in 
48

Ca was roughly 

Gaussian with the exception of some strength found in a tail extending to 35 MeV. The 

44
Ca centroid is also nearly in agreement with that for 

40
Ca (17.84±0.43 MeV). 

 

4.7 Summary 

 

Close to 70% of the E0 and E2 strength was identified, and nearly half of the E1 strength 

have been located between 9 and 40 MeV in 
44

Ca. The E1 strength distribution obtained 

for the GR peak was sensitive to the continuum choice. The E0 distribution is 

asymmetric with a tail at higher excitation that is similar to that found in 
48

Ca. Yet, the 

centroid energy (𝑚1/𝑚0) in 
44

Ca was found to be in agreement with the 36/A
1/6

 trend 

observed for most nuclei between 
24

Mg and 
60

Ni. The microscopic calculation with 
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KDE0v1 interaction does not reproduce the experimental strength distributions, but 

predicts energies for E0 that are in good agreement with the experimental values. It may 

be interesting to extend the calculations beyond RPA to include coupling to more 

complex configurations. The analysis done with collective-model based transition 

densities in the DWBA calculation may result in overestimation of the EWSR and shifts 

of the centroid energy [73], so it may be interesting to do the analysis with microscopic 

transition densities instead. 
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5 ISOSCALAR GIANT RESONANCES IN 54FE, 64ZN, AND 68ZN 

5.1 Overview 

The giant resonance region from 10 MeV < Ex < 62 MeV in 
54

Fe, 
64

Zn, and 
68

Zn has

been studied with inelastic scattering of 240 MeV α particles at small angles, including 

0°. Between 70 and 105% of the expected isoscalar E0 strength has been identified 

below Ex = 40 MeV for each of the nuclei. Between 70 and 104% of the E1 strength has 

been identified while 60% of E2 strength in 
54

Fe and 
68

Zn and 120% of the strength in

64
Zn have been identified. The strength distributions for 

54
Fe and 

68
Zn are compared with

the predictions from HF-RPA calculations with the KDE0v1 interaction. 

5.2 Introduction 

Giant Resonances (GR) are the broad resonances that occur at excitation energies 

between 10 and 30 MeV. They correspond to the collective motion of nucleons within 

the nucleus and have modes classified according to their multipolarity L, spin S, and 

isospin T quantum numbers. The Isoscalar Giant Monopole Resonance (ISGMR) is 

interesting because its excitation energy is directly related to the incompressibility of the 

nucleus KA (28), where 〈𝑟2〉 is the mean square radius and m is the mass of the nucleon

[13,14]. 
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𝐸𝐺𝑀𝑅 = √(
ℏ2𝐾𝐴

𝑚〈𝑟2〉
) (31) 

The value of KNM, the incompressibility of nuclear matter, is deduced from the 

interaction used in mean field calculations which best reproduces the experimental 

values of EGMR or KA or best reproduces the E0 strength functions. At present, the best 

value for KNM is 220-240 MeV  [24]. 

The E0 strength distributions have shapes which have been found to vary with A, and 

further measurements in the mid-mass range 40≤A≤90 are necessary to help explain the 

observed trends. Measurement of the GMR in 
64,68

Zn is particularly useful because of the

gap in measurements in the region 60≤A≤90. Measurement of 
54

Fe could be useful to

study because it is between 
48

Ca and 
58

Ni in mass, and these nuclei have been found to

have values for m1/m0 above the systematic trend (36/A
1/6

) of the experimental data. In

heavy nuclei (A≥110), the strength distribution of the GMR has a symmetric, Gaussian 

shape [31]. In the A≈90 region, the strength distribution consists of a high and low-

energy component separated by 7-9 MeV [28]. The observed high-energy component 

remains unexplained. In nuclei with A ≤28, the GMR becomes fragmented [27]. A 

number of nuclei have already been studied in the mass range A = 40 to 90, and the 

m1/m0 centroid energies for these nuclei are shown in Figure 19 [27,29,32]. In this mass 

region, the shape of the strength distribution changes to mostly Gaussian on the low-

excitation side with a tail on the high-excitation side of the GMR  [27,29,32,74]. This 

tailing has been predicted by microscopic calculations for 
58

Ni  [33,34], and has been
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observed in the E0 strength distributions shown in Figure 20 for 
46,48

Ti  [32], 
56

Fe, 
58

Ni,

60
Ni  [27], and 

48
Ca  [29]. 

48
Ca shows large tailing on the high excitation side which

extends to 40 MeV, whereas the other nuclei in Figure 20 have strength which extends to 

35 MeV. Microscopic calculations of the E0 strength distribution by Kamerdzhiev 

[33,34] were in very good agreement with the experimental distribution for 
40

Ca but not

for 
48

Ca. A similar calculation by Hamamoto [35] for 
40

Ca was in poor agreement with

the experimental distribution [29]. 

Measurement of the isoscalar E0, E1, and E2 strength distributions and moments for 

54
Fe, 

64
Zn, and 

68
Zn were obtained. The E0, E1, and E2 distributions and moments for

54
Fe and 

68
Zn were compared with results calculated by Hartree-Fock Random Phase

Approximation (HF-RPA) with KDE0v1 interaction. The experimentally obtained 

moments for 
54

Fe, 
64

Zn, and 
68

Zn were compared to calculations of the monopole energy

based on Leptodermous expansion parameterizations by Chossy and Stocker  [75] and 

by Nayak  [15] of the results from HF-RPA and RMF calculations using Skyrme and 

Skyrme-like interactions. 
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Figure 19. Centroid energies (m1/m0) for the ISGMR are plotted as a function of A. 

Lines representing 36/A
1/6

 and 40/A
1/5

 show the approximate systematic trend. The 

nuclei studied are 
40,48

Ca [29]; 
46,48

Ti [32]; 
56

Fe and 
58,60

Ni [27]. 

 

40Ca  

46Ti  

48Ti  

48Ca  

54Fe  

56Fe  

58Ni  

60Ni  

68Zn  

64Zn  

16

17

18

19

20

21

30 35 40 45 50 55 60 65 70

m
1/

m
0
 (

M
e

V
) 

A 

36/A1/6 

40/A1/5 



 

65 

 

 

Figure 20. GMR strength distributions for 
46,48

Ti, 
48

Ca, 
56

Fe, 
58

Ni, and 
60

Ni are 

shown by the histograms. Each shows an asymmetric distribution, with a tail on the 

high side of the excitation energy, compared to a Gaussian shape (smooth, solid line 

in each except for the case of 
48

Ca) [29]. In the 
58

Ni E0 strength distribution, the 

open circles indicate the strength distribution from Ref. [76] and dark blue 

histogram indicates the strength distribution from Ref. [27] 

 

 

 

48

Ca 
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5.3 Experimental Procedure 

 

The experimental technique has been described thoroughly in Refs.  [37,61] and is 

summarized briefly below. Beams of 240 MeV α particles from the Texas A&M K500 

super-conducting cyclotron bombarded self-supporting foils of 
54

Fe (5.0 mg/cm
2
), 

64
Zn 

(6.4 mg/cm
2
), and 

68
Zn (4.9 mg/cm

2
), enriched to more than 95% in the desired isotope, 

located in the target chamber of the multipole-dipole-multipole spectrometer. The 

horizontal and vertical acceptance of the spectrometer was 4°. Ray tracing was used to 

reconstruct the scattering angle. The focal plane detector measured position and angle in 

the scattering plane, covering Ex≈ 8 MeV to Ex > 55 MeV (depending on scattering 

angle). The out-of-plane scattering angle was not measured. Position resolution of 

approximately 0.9 mm and scattering angle resolution of about 0.09° were obtained. 

Cross sections were obtained from the charge collected, target thickness, dead time, and 

known solid angle. The target thicknesses were measured by weighing and checked by 

measuring the energy loss of the 240 MeV α beam in each target. The cumulative 

uncertainties in target thickness, solid angle, etc, result in about a ±10% uncertainty in 

absolute cross sections. 
24

Mg spectra were taken before and after each run with each 

target and the 13.85±.02 MeV L=0 state  [62] was used as a check on the calibration in 

the giant resonance region. 

 

Data were taken with the spectrometer at 0.0° (0.0° < θ < 2.0°) and at 4.0° (2.0° < θ < 

6.0°). Sample spectra obtained for 
54

Fe, 
64

Zn, and 
68

Zn are shown in Figures 21-23. The 
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cross-section is divided into peak and continuum, where the continuum is modeled as a 

straight line at high excitation joined to a Fermi shape at low-excitation (a representation 

of particle threshold) (Figure 23).  

 

 

Figure 21. Inelastic α spectra obtained for 
54

Fe are plotted vs. excitation energy. 

The lines are examples of continua chosen for analyses. 
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Figure 22. Inelastic α spectra obtained for 
64

Zn are plotted vs. excitation energy. 

The lines are examples of continua chosen for analyses. 

 

 
Figure 23. Inelastic α spectra obtained for 

68
Zn are plotted vs. excitation energies. 

The lines are examples of continua chosen for analyses. 
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5.4 Multipole Analysis 

 

Single-folding DWBA calculations (as described in Refs. [37,53,61]) are carried out 

with PTOLEMY [54]. Generally the Optical Model Potential parameters are obtained by 

PTOLEMY fits to elastic scattering data. Elastic scattering data were not taken for the 

nuclei studied here, and instead the parameters obtained for 
58

Ni were used (Table VII) 

[27].  

 

Table VII. Optical parameters used in the DWBA calculations are shown. rp and rt 

are the Coulomb radius parameters for the projectile and target, respectively. 

 

V (MeV) W (MeV) ri (fm) ai (fm) rp rt 

41.19 40.39 0.821 0.974 1.336 1.256 

 

 

Calculations were performed with Fermi mass distributions, 𝜌(𝑟) = 𝜌0 [1 + 𝑒
𝑟−𝑐

𝑎 ]
−1

, 

with c = 4.0546 fm for 
54

Fe, c = 4.405 fm for 
64

Zn, and c = 4.4597 fm for 
68

Zn and with 

a = .523 fm for all three nuclei  [63]. The calculations for the transition densities, sum 

rules, and DWBA calculations were discussed thoroughly in Refs. [37,53,61,66]. 

The peak and continuum cross-sections are then divided into bins by excitation energy in 

a manner similar to the illustration in Figure 24. To obtain the multipole components for 

each experimental bin, the experimental angular distributions of the peak and continuum 

cross-sections are compared to the single-folding DWBA calculations done with 
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PTOLEMY, and then the strengths of the isoscalar L=0-4 contributions are varied in 

order to minimize χ
2
. The IVGDR contributions are calculated and held fixed in the fits. 

This procedure is illustrated in Figures 25 and 26 for the 
54

Fe and 
68

Zn nuclei 

respectively for selected energy bins in the GR peak. The uncertainty for each multipole 

is determined by incrementing or decrementing the strength of that multipole, adjusting 

the strengths of other multipoles by fitting to the data, and continuing until the new χ
2
 is 

1 unit larger than the χ
2
 from the best fit. 

 

 
Figure 24. The Giant Resonance peak is “sliced” into 300 keV bins for multipole 

decomposition analysis. 

 

 

54
Fe(α,α’) 

E
α
=240 MeV 

θ
c.m.

=1.1°  

E
x
 (MeV) 



 

71 

 

 

 

Figure 25. The angular distributions of the 
54

Fe cross sections for three excitation 

ranges of the GR peak and the continuum are plotted vs. center-of-mass scattering 

angle. Each bin is 472 keV wide and the average energies for each bin are shown. 

The lines through the data points indicate the multipole fits. The contributions of 

each multipole are shown. The statistical errors are smaller than the data points. 
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Figure 26. The angular distributions of the 
68

Zn cross sections for three excitation 

ranges of the GR peak and the continuum are plotted vs. center-of-mass scattering 

angle. Each bin is 316 keV wide and the average energies for each bin are shown. 

The lines through the data points indicate the multipole fits. The contributions of 

each multipole are shown. The statistical errors are smaller than the data points. 
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Analyses are done several times using different assumptions about the continuum in 

order to estimate the uncertainties due to the choice of continuum. Typical choices for 

the continuum can be seen in Figure 23. For purposes of estimating the uncertainties, the 

continuum could have a linear slope at high excitation that does not quite match the 

experimental data, could be lowered so that it is always below the data, could have a 

different low energy cutoff and slope, or can have slope and or amplitude which is 

altered at selected angles. These separate analyses are then combined into an average 

distribution. Errors were calculated by adding the errors from the multipole fits in 

quadrature with the standard deviations between the different fits.  

 

5.5 Description of Microscopic Calculations 

 

Microscopic mean-field based Random Phase Approximation (RPA) theory provides a 

description of collective states in nuclei  [12,24]. A description of the spherical HF-

based RPA calculations of the strength functions and centroid energies of the isoscalar 

(T=0) giant resonances in nuclei can be found in Ref. [67] and is summarized below. 

 

The strength or response function can be obtained from the RPA states |𝑛⟩ with 

corresponding energy 𝐸𝑛: 

 𝑆(𝐸) = ∑|〈0|𝐹|𝑛〉2|𝛿(𝐸 − 𝐸𝑛)

𝑛

 (32) 

where F is the single particle scattering operator 𝐹 = ∑𝑓(𝑖). The ISGMR energies 

(𝑚𝑘 = ∫ 𝐸𝑘𝑆(𝐸)𝑑𝐸) are given by:  
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𝐸𝑐𝑜𝑛 = √

𝑚1

𝑚−1
  𝐸𝑐𝑒𝑛 =

𝑚1

𝑚0
 𝐸𝑠𝑐𝑎𝑙 = √

𝑚3

𝑚1
 (33) 

where, Econ is the constrained energy, Ecen is the centroid energy, and Escal is the scaling 

model energy. The Energy Weighted Sum Rule (EWSR), m1, is calculated using the 

Hartree-Fock ground state wave function. 

 

The fully self-consistent mean field calculation of the response function uses an effective 

two-nucleon interaction V which is obtained from a fit to the ground states properties of 

nuclei. The effective interaction determines the HF mean-field. The RPA calculation 

includes all of the components of the two-body interaction using a large configuration 

space and was done using the numerical approach of Refs.  [68,69]. The calculations of 

the strength functions and centroid energies of the isoscalar (T=0) giant resonances in 

the nuclei were done using an occupation number approximation for the single particle 

orbits of open shell nuclei. For the single-particle scattering operator 𝐹 = ∑ 𝑓(𝑟𝑖)𝑌𝐿0𝑖  we 

used 𝑓(𝑟) = 𝑟2 for the monopole (L=0) and 𝑓(𝑟) = 𝑟3 −
5

3
〈𝑟2〉𝑟 was used for the dipole 

(L=1). The form of the dipole scattering operator takes into account the contribution 

from spurious states  [70,71]. The KDE0v1 Skyrme-type effective interaction was used. 

The appropriate experimental excitation energy ranges were used: 9-40 MeV for the 

ISGMR and ISGQR, 9-20 MeV for the low-component of the ISGDR, 20-40 MeV for 

the high-component of the ISGDR. The calculated distributions are shown superimposed 

on the experimental results in the Figures 27-29 for 
54

Fe, 
64

Zn, and 
68

Zn respectively. 

The smearing widths Γ for the calculated distributions for the E0-E2 multipoles are 
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shown in Table VIII. The energy moments are included in Tables IX and XI for 
54

Fe, in 

Tables XII and XIV for 
64

Zn, and in Tables XV and XVII for 
68

Zn. The theoretical 

strengths are calculated over a range of 0 to 100 MeV and contain 100% of the EWSR 

for E0, E1, and E2.  

 

Table VIII. Smearing widths for the calculated distributions are shown for 
54

Fe, 
64

Zn, and 
68

Zn. 

 

 E0 E1 E2 

54
Fe, 

68
Zn: Γ (MeV) 6.5 5.0 10.0 

64
Zn: Γ (MeV)

 
6.5 13.0 10.0 

 

 

5.6 Discussion 

 

The E0-E2 multipole distributions obtained for 
54

Fe, 
64

Zn, and 
68

Zn are shown in Figures 

27, 28, and 29 respectively. Two peak fits are shown for the E1 distributions, and a 

single Gaussian fit is shown for E0 and E2. The parameters for these fits and the 

moments are shown in Tables X, XIII, and XVI for 
54

Fe, 
64

Zn, and 
68

Zn respectively. E3 

strength could not be reliably separated from E4 and higher because of the limited 

angular range of the data. The highest multipole included in the fits is E4, and the E3 

distributions shown in Figures 27 - 29 are the sum of all the multipoles L≥3. 
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Figure 27. Strength distributions obtained for 
54

Fe are shown by the histograms. 

Error bars represent the uncertainty based on the fitting of the angular 

distributions and different choices for the continuum, as described in the text. 

Parameters for moments of the strength distributions are in Table IX. For E1, two 

Gaussian fits for the low component (purple, smooth line) and high component 

(blue line) are shown as a sum (red line). A single Gaussian fit is shown for E2. The 

green lines are the strength distributions obtained with the HF-RPA calculations 

using the KDE0v1 interaction, smeared to more closely represent the data as 

discussed in the text. The Gaussian fit parameters and moments obtained from the 

calculations are shown in Table X. 
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Table IX. Parameters obtained for the moments of isoscalar multipoles in 
54

Fe are 

shown. The KDE0v1 results are over the experimental energy range (9≤Ex≤40 

MeV). 

 

 Moments 

𝐸0 𝐸1 𝐸2 

Exp. KDE0v1 

𝑚1 (Frac. EWSR) 0.91±.11  0.95 0.78 ±.13   0.69±.14  

𝑚1 𝑚0⁄ (MeV) 19.64±.35
.39 19.70 29.39±.82

.84  18.05 ± .87 

rms width (MeV) 5.48±.73
.89 4.73 5.47±.49

.54  4.81±1.76
1.80 

√𝑚3 𝑚1⁄ (MeV) 21.60±.68
.79 21.16 30.98±.75

.80 19.69±1.76
1.78 

√𝑚1 𝑚−1⁄  (MeV) 19.02±.29
.31 19.22 28.69±.85

.86  17.63± .68  

 

Table X. Parameters obtained for Gaussian fits for isoscalar multipoles in 
54

Fe are 

shown. 

 

 Gaussian fits 

 E1 peak 1 E1 peak 2 E2 

Centroids (MeV) 22.35±1.57
1.69 32.22±.97

1.00 17.31±.13  

FWHM (MeV) 5.42±1.12
.80  10.73±1.25

1.17 6.70±.40  

Frac. EWSR 0.08 0.69 0.60 
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Table XI. Parameters obtained for energy moments of 
54

Fe from the KDE0v1 

calculation are shown. The results are over the experimental energy ranges (E1 low 

range: 9≤Ex≤20 MeV, E1 high range: 20≤Ex≤40 MeV, and E2: 9≤Ex≤40 MeV). 

 

 KDE0v1 

 E1 peak 1 E1 peak 2 E2 

𝑚1 𝑚0⁄ (MeV) 14.87 30.27 17.78 

rms width (MeV) 2.87 5.21 5.10 

𝑚1 (Frac. EWSR) 0.14 0.66 .87 

 

 
Figure 28. Strength distributions obtained for 

64
Zn are shown by the histograms. 

Error bars represent the uncertainty based on the fitting of the angular 

distributions and different choices for the continuum, as described in the text. The 

green lines are the strength distributions obtained with the HF-RPA calculations 

using the KDE0v1 interaction, smeared to more closely represent the data as 

discussed in the text. The smooth red lines show Gaussian fits, the parameters of 

which are in Table XIII 
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Table XII. Parameters obtained for the moments of the isoscalar multipoles in 
64

Zn 

are shown. The KDE0v1 results are over the experimental energy range (9≤Ex≤ 40 

MeV) 

 

 Moments 

𝐸0 𝐸1 𝐸2 

Exp. KDE0v1 

𝑚1 (Frac. EWSR) 0.70±.11
.14 0.93 1.08±.20

.27 1.20±.13 

𝑚1 𝑚0⁄ (MeV) 18.51±.42
1.16 18.43 23.28±1.04

1.74 15.81±.27
.35 

rms width (MeV) 5.79±1.12
2.54 5.21 8.72±1.89

2.94 4.66 ±
2.20
1.74

 

√𝑚3 𝑚1⁄ (MeV) 20.69±1.01
1.88 20.27 27.34±1.61

2.58 17.40±.98
1.26 

√𝑚1 𝑚−1⁄  (MeV) 17.90±.32
.84 17.84 21.68±.75

1.32 15.45±.23
.26 

 

 

Table XIII. Parameters obtained for Gaussian fits for isoscalar multipoles in 
64

Zn 

are shown. 

 

 Gaussian fits 

 𝐸0 𝐸1 peak 1 𝐸1 peak 2 𝐸2 

Centroids (MeV) 18.34 ± .70  15.42±.90
.97 25.64±1.19

1.23  15.71±.45 

FWHM (MeV) 9.21 ± 1.14 4.59±1.45
1.63  12.58±3.16

3.17 6.43±.65   

Frac. EWSR 0.64 0.19 0.68 1.13 
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Table XIV. Parameters obtained for energy moments of 
64

Zn from the KDE0v1 

calculation are shown. The results are over the experimental energy ranges (E1 low 

range: 9≤Ex≤20 MeV, E1 high range: 20≤Ex≤40 MeV, and E2: 9≤Ex≤40 MeV). 

 

 KDE0v1 

 E1 peak 1 E1 peak 2 E2 

𝑚1 𝑚0⁄ (MeV) 14.24 28.83 17.55 

rms width (MeV) 3.36 5.55 5.29 

𝑚1 (Frac. EWSR) 0.23 0.57 .88 
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Figure 29. Strength distributions obtained for 

68
Zn are shown by the histograms. 

Error bars represent the uncertainty based on the fitting of the angular 

distributions and different choices for the continuum, as described in the text. The 

smooth lines show Gaussian fits, the parameters of which are in Table XV. The 

green lines are the strength distributions obtained with the HF-RPA calculations 

using the KDE0v1 interaction, smeared to more closely represent the data as 

discussed in the text. 
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Table XV. Parameters obtained for isoscalar multipoles in 
68

Zn are shown. The 

KDE0v1 results are over the experimental energy range (9≤Ex≤40 MeV). 

 

 Moments 

𝐸0 

𝐸1 𝐸2 

Exp. KDE0v1 

𝑚1 (Frac. EWSR) 1.05±.10
.11 0.95 0.71±.12 0.60±.10 

𝑚1 𝑚0⁄ (MeV) 16.57±.14
.20 18.19 22.38±.33

.42 15.54±.32  

rms width (MeV) 4.81±.74
1.08 5.02 7.18±.30

.50 3.16±1.13 

√𝑚3 𝑚1⁄ (MeV) 18.30±.46
.69 19.91 25.60±.38

.60 16.42±.80
.84   

√𝑚1 𝑚−1⁄  (MeV) 16.06±.11
.14 17.65 21.09±.30

.36 15.28±.25  

 

Table XVI. Parameters obtained for Gaussian fits for isoscalar multipoles in 
68

Zn 

are shown.  

 

 Gaussian fits 

 𝐸0 E1 peak 1 E1 peak 2 𝐸2 

Centroids (MeV) 16.23±.12  14.85±.19  27.65±.39 15.71±.10  

FWHM (MeV) 8.61±.20  5.12±.42
.45  10.92±.64

.61  6.10±.12  

Frac. EWSR 0.93 0.15 0.54 0.59 
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Table XVII. Parameters obtained for energy moments of 
68

Zn from the KDE0v1 

calculation are shown. The results are over the experimental energy ranges (E1 low 

range: 9≤Ex≤20 MeV, E1 high range: 20≤Ex≤40 MeV, and E2: 9≤Ex≤40 MeV) 

 

 KDE0v1 

 E1 peak 1 E1 peak 2 E2 

𝑚1 𝑚0⁄ (MeV) 14.24 29.84 16.32 

rms width (MeV) 3.06 4.61 5.02 

𝑚1 (Frac. EWSR) 0.19 0.67 0.89 

 

 

5.6.1 E0 Strength 

 

Most of the E0 strength was identified in the excitation energy range of 10-35 MeV for 

54
Fe (91±11%), 

64
Zn (70±11

14%), and 
68

Zn (105±10
11%). The shape of the strength 

distribution in 
54

Fe is typical of the mass region. It is fit well by a Gaussian on the low-

excitation side, but the strength distribution has a tail on the high-excitation side (Figure 

27). This tailing causes the calculated moments for 
54

Fe to have much larger positive 

errors than negative errors. The strength distribution obtained with the HF-RPA 

calculation is symmetric, does not show the tailing seen in the experimental distribution, 

and is apparently at a higher energy. Despite these differences in the shape, the 

calculated and experimental peaks have centroid, scaling, and constrained energy 
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moments which are in good agreement.  The calculated strength seen over the energy 

range (9-40 MeV) is in agreement with the experimental strength identified (≈90%). 

 

The distributions for 
64

Zn and 
68

Zn do not show the tailing seen in 
54

Fe and in the nuclei 

shown in Figure 20. The 
64

Zn E0 strength distribution (Figure 28) is fit very well by the 

Gaussian. The distribution obtained with the HF-RPA calculation for 
64

Zn shows a 

component at low excitation but is otherwise in good agreement with the experimental 

distribution. Only 70±11
14% of the EWSR was identified in the experiment, whereas the 

calculation shows 93% of the E0 EWSR in this region. The energy moments of the 

experimental and theoretical distributions are in very good agreement. The E0 strength 

distribution for 
68

Zn (Figure 29) has two components similar to that seen in the E0 

strength distributions for the nuclei in the A≈90 region [28]. The distribution obtained 

with the HF-RPA calculation does not show a second component. The calculated peak is 

shifted to the right of the experimental one by ≈1.5 MeV. The amount of strength 

predicted by the calculation is in agreement with the experimental strength. 

 

Nayak et al. did HF-RPA calculations for a number of nuclei using Skyrme or Skyrme-

like interactions, then fit these results with the Leptodermous expansion to obtain 

Leptodermous parameters that could be used to predict KA for other nuclei  [15]. 

 

𝐾(𝐴, 𝐼) = 〈𝑟2〉
𝑀

ℏ2
𝐸𝐵𝑅

2   

 



 

85 

 

 
𝐾(𝐴, 𝐼) = 𝐾𝑉 + 𝐾𝑆𝐹𝐴

−
1
3 + 𝐾𝑉𝑆𝐼

2 + 𝐾𝐶𝑜𝑢𝑙𝑍
2𝐴−

4
3 + 𝐾4𝐼

4 + 𝐾𝑆𝑆𝐼
2𝐴−

1
3

+ 𝐾𝐶𝑉𝐴
−
2
3 

 

 

K(A,I) is the incompressibility of the finite nucleus with mass A and asymmetry term 

𝐼 =
𝑁−𝑍

𝐴
. The mean squared radius 〈𝑟2〉 of the nucleus is taken from experimental data. 

In the Leptodermous expansion, Kv, is the incompressibility of infinite nuclear matter (or 

KNM). KVS and K4 are volume symmetry terms. KCoul is the Coulomb term. KSF is the 

surface term, and KSS is the surface-symmetry term. Chossy and Stocker did a similar 

parameterization using Relativistic Mean-Field (RMF) parameter sets [75]. This 

approach starts with a microscopic Lagrangian with parameter sets that give a good 

reproduction of nuclear ground state properties.  

 

A comparison of the experimental values of the scaling model energy for EGMR (√
𝑚3

𝑚1
) 

with the values calculated from Nayak’s [15] calculation based on the SkM*(KNM=216.6 

MeV), and Chossy and Stocker’s  [75] calculations based on NLC (KNM=224.5 MeV) 

and NL1 (KNM=211.1 MeV) non-relativistic and relativistic parameter sets are included 

in Figure 30. The 
54

Fe and 
64

Zn experimental values agree within the uncertainty with 

the NLC and NL1 values. The experimental value for 
68

Zn agrees within uncertainty 

with the SkM* value and is ~ 1.5 MeV below those calculated with the NLC and NL1 

parameter sets. Interestingly, the energies of the GMR in four nuclei (
40

Ca, 
56

Fe, 
60

Ni, 
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and 
68

Zn) agree with the SkM* value, while those in four other nuclei (
54

Fe, 
58

Ni, 
64

Zn, 

and 
90

Zr) agree with the NLC and NL1 values.   

 

 

 

Figure 30. Experimental GMR energies (represented by solid circles) are compared 

with values calculated by RMF parameterizations [75] (red squares and green 

triangles) and Skyrme non-relativistic parameterization [15] (blue diamonds). The 

error bars on the data include systematic errors. The light blue squares are the 

values obtained from the KDE0v1 interaction. The experimental energies for 
40

Ca 

from Ref.  [49]; 
56

Fe, 
58

Ni, and 
60

Ni from Ref.  [27]; and 
90

Zr from Ref.  [74] are 

included. 
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5.6.2 E1 Strength 

 

The E1 strength distributions for 
54

Fe, 
64

Zn, and 
68

Zn are separated into two components, 

which is a characteristic consistent with the measured and calculated E1 strength 

distributions in heavier nuclei  [77--79]. The observed E1 strength is quite sensitive to 

the continuum because the high excitation component dominates in the distribution with 

strength extended to and maybe above 40 MeV. Above 30 MeV, the ISGDR cross 

sections and the peak-to-continuum ratio are small. The larger uncertainty seen in the E1 

strength distributions compared to those of E0 and E2 in Figures 27-29 are due to this 

dependence on continuum choice. 

 

A majority of the E1 strength in 
54

Fe was identified (78±13%) (Table IX). The observed 

components in the strength distribution for 
54

Fe are fit by two Gaussians with centroids 

of 22.35±1.57
1.69 MeV and 32.22±.97

1.00 MeV. The higher energy component appears to 

extend beyond the measured 45 MeV range, which possibly accounts for the missing E1 

strength. The experimental energies of the high and low components are compared in 

Figure 31 with the energies obtained from the HF-RPA calculations.  In the theoretical 

distribution, the low energy component (measured in the range 9≤Ex≤20 MeV) is lower 

in energy than the experimental one by ≈ 7 MeV. The energy of the high component 

(20≤Ex≤45 MeV) is in agreement within uncertainty with experiment. The energies of 

both components are higher than the energies observed in the Zn isotopes by ≈4-6 MeV. 
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In the case of 
64

Zn, the observed E1 strength is 108±20
27% of the EWSR. The strength 

distribution has two components which are fit very well by two Gaussians with centroids 

of 15.42±.90
.97 MeV and 25.64±1.19

1.23 MeV. More strength appears (17%) in the lower 

energy component than has been typical in the other mid-mass nuclei studied. In 
56

Fe, 

58
Ni, and 

60
Ni, the amount of E1 strength identified in the lower energy component was 

less than 10% in each case [27]. 

 

A majority of the E1 strength (71±12%) for 
68

Zn is observed in the region below 40 

MeV. The two components are fit very well with Gaussians separated by about 12 MeV. 

The centroid for the low component is 14.84±.17 MeV and for the high component is 

27.63±.33 MeV. As in 
64

Zn, the low energy component has more strength (15%) than 

has been found in the other mid-mass nuclei. Generally, the distribution from the HF-

RPA calculation is in good agreement with the data, with the exception of extra strength 

seen below the low component peak and above the high component peak. In the low 

energy range (9≤Ex≤20 MeV), the calculated and experimental centroids are in near 

agreement. In the high energy range (20≤Ex≤36 MeV) the calculated centroid is greater 

than the experimental one by ≈1 MeV. Similar amounts of the calculated and 

experimental strength were identified in the respective energy ranges. 
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Figure 31. The centroid of the Gaussian fit (blue diamonds) to the low and high 

energy peak in the ISGDR distributions for 
54

Fe, 
64

Zn, and 
68

Zn are plotted vs. A. 

The error bars indicate the uncertainty obtained using the errors shown in Tables 

X, XIII, and XVI. The red squares show m1/m0 in the range 9≤Ex≤20 MeV for the 

low peak and the range 20≤Ex≤36 MeV for the high peak calculated with HF-RPA 

using the KDE0v1 interaction. 

 

5.6.3 E2 Strength 

 

Two-thirds of the E2 strength (~65%) was identified in 
54

Fe and 
68

Zn, while 120± 13% 

of the strength was identified for 
64

Zn. In the other nuclei studied in this region, typically 

between 60-80% of the EWSR was identified. In Ref. [76], 113 ± 15% of the strength 

for 
58

Ni was identified, but in that work, the authors concluded that the E2 strength was 

sensitive to the choice of continuum but were unable to assign an uncertainty associated 
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with the continuum choice. The development of the multipole analysis program allowed 

for a more precise determination of the multipole strength distributions and for the 

comparison of the strength distributions obtained from many analyses using different 

continuum choices. In Ref.  [27], a re- analysis of the 
58

Ni data using this improved 

technique located 82 ± 10% of the strength. The strength lies between 10 and 25 MeV 

for 
54

Fe, 
64

Zn, and 
68

Zn and is well fit in each case by a Gaussian shape. This 

characteristic is common among all the other nuclei that have been studied in the A=40-

68 region. The theoretical (m1/m0) centroid energies for the 9-40 MeV range for 
54

Fe and 

68
Zn are in agreement within the uncertainty with the experimental values. The predicted 

peak for 
64

Zn is located 2 MeV higher in energy than the experimental one. 

 

 

5.7 Summary 

 

We have obtained distributions for isoscalar E0, E1, and E2 strength in 
54

Fe, 
64

Fe, and 

68
Zn and compared these to spherical Hartree-Fock-RPA calculations using the KDE0v1 

Skyrme type interaction. In 
54

Fe, the shape of the calculated strength distribution did not 

agree with the experimental one, but the energy moments were in agreement. In 
64

Zn, the 

calculated strength distribution was in good agreement with the experimental one, but in 

68
Zn it was not. The GMR scaling energies (√(m3/m1)) for these nuclei were compared 

with the energies of nuclei in the A=40-90 region and with calculated energies obtained 

from Leptodermous expansion parameterizations of HF-RPA and RMF calculations. The 
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predicted energies associated with the RMF calculations were in agreement with the 

experimental E0 energies obtained for 
54

Fe and 
64

Zn. The experimental E0 energy for 

68
Zn was in agreement with the value predicted from the parameterization of the HF-

RPA calculations. As in other nuclei in the mass region, the E0 strength for 
54

Fe is 

asymmetric with tailing on the high energy side. This tailing is not seen in 
64

Zn, and in 

68
Zn, the shape may be in two components similar to the E0 distributions in the A≈90 

region  [28,67].  
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6 ISOSCALAR E0, E1, E2, AND E3 STRENGTH IN 
94

MO 

 

6.1 Overview 

 

Isoscalar giant resonances in 
94

Mo have been studied with inelastic scattering of 240 

MeV α particles at small angles including 0°. All of the expected EWSR for the isoscalar 

E0 resonance was found (104%). A significant portion of the EWSR was found for the 

isoscalar E1 (75%), E2 (61%), and the high energy octupole E3 (46%) resonances. The 

strength distributions are compared with the predictions from HF-RPA calculations with 

the KDE0v1 interaction. 

 

6.2 Introduction 

 

Giant Resonances (GR) are the broad resonances that occur at excitation energies 

between 10 and 30 MeV. They correspond to the collective motion of nucleons within 

the nucleus and have modes classified according to their multipolarity L, spin S, and 

isospin T quantum numbers. The Isoscalar Giant Monopole Resonance (ISGMR) is 

interesting because its excitation energy is directly related to the incompressibility of the 

nucleus KA (28), where 〈𝑟2〉 is the mean square radius and m is the mass of the nucleus  

[13,14]. 

 
𝐸𝐺𝑀𝑅 = √(

ℏ2𝐾𝐴

𝑚〈𝑟2〉
) (34) 



 

93 

 

 

KA can be used to obtain the incompressibility of nuclear matter KNM by comparison to 

calculations using mean fields, where the value for KNM is deduced from the interaction 

that best reproduces the experimental data on the strength functions of the giant 

resonance. At present, the best value for KNM is 220-240 MeV  [24]. 

 

Isoscalar giant resonances in the Mo isotopes were first observed by Moalem et al. who 

identified the Giant Quadrupole Resonance (GQR) in all stable Mo isotopes using 

inelastic scattering of 110 MeV 
3
He [80]. Duhamel et al.  [81] investigated the GQR and 

GMR in 
92

Mo using inelastic scattering of 152 MeV α particles. Youngblood et al. 

studied the isoscalar giant resonances in 
90,92,94

Zr and 
92,96,98,100

Mo [28,67,82] using 

inelastic scattering of 240 MeV α particles at small angles including 0°. Ref.  [28] 

focused on the E0 strength distribution, which showed high and low-energy components 

separated by 7-9 MeV in these Zr and Mo isotopes. The higher energy second peak is 

not predicted by the HF-RPA calculations that reproduce the ISGMR energies in the 

other nuclei. For the nuclei with A ≠ 92, 80-90% of the strength is in the lower energy 

peak located at 15.7 to 17.2 MeV. In the A = 92 nuclei, there is considerably more 

strength in the higher energy peak than in the higher energy peak of the A ≠ 92 nuclei. 

This enhancement of the strength in the higher energy region for 
92

Zr and 
92

Mo results in 

KA values for these two nuclei that are 8σ and 4σ above those obtained with interactions 

that predict KA values in agreement with those for the other Zr and Mo isotopes [28]. 

The excellent peak-to-continuum ratio  [37,43,50,61] of data obtained with 240 MeV α 



 

94 

 

particles allows identification of the GDR, GQR, and HEOR strength distributions in the 

range 9≤Ex≤36 MeV. The strength distributions for these resonances in the Zr  [82] and 

Mo [67] isotopes were investigated and compared to the results of spherical Hartree-

Fock – based random-phase-approximation (HF-RPA) calculations [68] with KDE0v1 

Skyrme-type effective interaction [72]. 

 

In this paper we report E0, E1, E2, and E3 multipole strength distributions obtained 

for
94

Mo and compared them to HF-RPA calculations with the KDE0v1 interaction. 

 

6.3 Experimental Procedure 

 

The experimental technique has been described thoroughly in Refs.  [37,61] and is 

summarized briefly below. Beams of 240 MeV α particles from the Texas A&M K500 

super-conducting cyclotron bombarded a self-supporting 
94

Mo foil of 4.8 mg/cm
2
 

enriched to more than 95% in the desired isotope, located in the target chamber of the 

multipole-dipole-multipole spectrometer. The horizontal and vertical acceptance of the 

spectrometer was 4°. Ray tracing was used to reconstruct the scattering angle. The 

vertical acceptance was ±2°. The focal plane detector measured position and angle in the 

scattering plane, covering Ex≈ 8 MeV to Ex > 55 MeV (depending on scattering angle). 

The out-of-plane scattering angle was not measured. Position resolution of 

approximately 0.9 mm and scattering angle resolution of about 0.09° were obtained. 

Cross sections were obtained from the charge collected, target thickness, dead time, and 
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known solid angle. The target thicknesses were measured by weighing and checked by 

measuring the energy loss of the 240 MeV α beam in each target. The cumulative 

uncertainties in target thickness, solid angle, etc., result in about a ±10% uncertainty in 

absolute cross sections. 
24

Mg spectra were taken before and after each run, and the 

13.85±.02 MeV L=0 state  [62] was used as a check on the calibration in the giant 

resonance region. 

 

Data were taken with the spectrometer at 0.0° (0.0° < θ < 2.0°) and at 4.0° (2.0° < θ < 

6.0°). Sample spectra obtained for 
94

Mo are shown in Figure 32. 

 

 

 

Figure 32. Inelastic α spectra obtained for 
94

Mo are plotted vs. excitation energy. 

The lines are examples of continua chosen for analyses. 
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6.4 Multipole Analysis 

 

Single-folding DWBA calculations (as described in Refs. [37,53,61]) were carried out 

with PTOLEMY [54]. Optical model parameters obtained for 240 MeV α scattering on 

90
Zr [18] were used and are shown in Table XVIII.  

  

Table XVIII. Optical Model and Fermi parameters used in DWBA calculations for 
94

Mo are shown, rc0 is the Coulomb radius parameter. 

 

V (MeV) W (MeV) ri (fm) ai (fm) rc0 c a 

40.2 40.9 0.786 1.242 .960 5.0264 .515 

 

Calculations were performed with a Fermi mass distribution, 𝜌(𝑟) = 𝜌0 [1 + 𝑒
𝑟−𝑐

𝑎 ]
−1

, 

with c and a shown in Table XVIII  [63]. The calculations for the transition densities, 

sum rules, and DWBA calculations were discussed thoroughly in Refs. [37,53,61,66]. 

 

The peak and continuum cross-sections are then divided into bins by excitation energy. 

To obtain the multipole components for each experimental bin, the experimental angular 

distributions of the peak and continuum cross-sections are compared to the single-  
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folding DWBA calculations done with PTOLEMY, and then the strengths of the 

isoscalar L=0-4 contributions are varied in order to minimize χ
2
. The IVGDR 

contributions are calculated and held fixed in the fits. The experimental and calculated 

angular distributions are illustrated in Figure 33 for selected energy bins in the GR peak. 

The uncertainty for each multipole is determined by incrementing or decrementing the 

strength of that multipole, adjusting the strengths of other multipoles by fitting to the 

data, and continuing until the new χ
2
 is 1 unit larger than the χ

2
 from the best fit. 
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Figure 33. The angular distributions of the 
94

Mo cross sections for three excitation 

ranges of the GR peak and the continuum are plotted vs. center-of-mass scattering 

angle. Each bin is 480 keV wide and the average energies for each bin are shown. 

The lines through the data points indicate the multipole fits. The contributions of 

each multipole are shown. The statistical errors are smaller than the data points. 
 

Analyses are done several times using different assumptions about the continuum in 

order to estimate the uncertainties due to the choice of continuum. Typical choices for 

the continuum can be seen in Figure 32. For purposes of estimating the uncertainties, the 
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continuum could have a linear slope at high excitation that does not quite match the 

experimental data, could be lowered so that it is always below the data, could have a 

different low energy cutoff and slope, or can have slope and or amplitude which is 

altered at selected angles. 

 

These separate analyses are then combined into an average distribution. Errors were 

calculated by adding the errors from the multipole fits in quadrature with the standard 

deviations between the different fits.  

 

6.5 Description of Microscopic Calculations 

 

Microscopic mean-field based Random Phase Approximation (RPA) theory provides a 

description of collective states in nuclei  [12,24]. A description of the spherical HF-

based RPA calculations of the strength functions and centroid energies of the isoscalar 

(T=0) giant resonances in nuclei can be found in Ref. [67] and is summarized below. 

 

The strength or response function can be obtained from the RPA states |𝑛⟩ with 

corresponding energy 𝐸𝑛: 

 𝑆(𝐸) = ∑|〈0|𝐹|𝑛〉2|𝛿(𝐸 − 𝐸𝑛)

𝑛

 (35) 

where F is the single particle scattering operator 𝐹 = ∑𝑓(𝑖). The ISGMR energies 

(𝑚𝑘 = ∫ 𝐸𝑘𝑆(𝐸)𝑑𝐸) are given by:  
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𝐸𝑐𝑜𝑛 = √

𝑚1

𝑚−1
  𝐸𝑐𝑒𝑛 =

𝑚1

𝑚0
 𝐸𝑠𝑐𝑎𝑙 = √

𝑚3

𝑚1
 (36) 

where, Econ is the constrained energy, Ecen is the centroid energy, and Escal is the scaling 

model energy. The Energy Weighted Sum Rule (EWSR), m1, is calculated using the 

Hartree-Fock ground state wave function. 

 

The fully self-consistent mean field calculation of the response function uses an effective 

two-nucleon interaction V which is obtained from a fit to the ground states properties of 

nuclei. The effective interaction determines the HF mean-field. The RPA calculation 

includes all of the components of the two-body interaction using a large configuration 

space and was done using the numerical approach of Refs.  [68,69]. The calculations of 

the strength functions and centroid energies of the isoscalar (T=0) giant resonances in 

the nuclei were done using an occupation number approximation for the single particle 

orbits of open shell nuclei. For the single-particle scattering operator 𝐹 = ∑ 𝑓(𝑟𝑖)𝑌𝐿0𝑖  we 

used 𝑓(𝑟) = 𝑟2 for the monopole (L=0) and 𝑓(𝑟) = 𝑟3 −
5

3
〈𝑟2〉𝑟 was used for the dipole 

(L=1). The form of the dipole scattering operator takes into account the contribution 

from spurious states  [70,71]. The KDE0v1 Skyrme-type effective interaction was used. 

The appropriate experimental excitation energy ranges were used: 9-40 MeV for the 

ISGMR and ISGQR, 9-20 MeV for the low-component of the ISGDR, 20-36 MeV for 

the high-component of the ISGDR, and 14-40 MeV for the HEOR. The calculated 

distributions are shown superimposed on the experimental results in Figure 34. The 

smearing widths for the calculated distributions for the E0-E3 multipoles are shown in 
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Table XIX. The energy moments are included in Tables XX and XXII. The theoretical 

strengths are calculated over a range of 0 to 100 MeV and contain 100% of the EWSR 

for E0-E3.  

 

Table XIX. Smearing widths for the calculated distributions are shown. 

 

 E0 E1 E2 E3 

Γ (MeV) 6.5 5.0 10.0 13.0 

 

 

6.6 Discussion 

 

The E0-E3 multipole distributions obtained for 
94

Mo are shown in Figure 34. Two peak 

fits are shown for the E0 and E1 distributions, and a single Gaussian fit is shown for E2 

and E3. The parameters for these fits and for the moment ratios (m1/m0 and √(m3/m1)) 

are shown in Table XX. 
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Figure 34. Strength distributions obtained for 
94

Mo are shown by the histograms. 

Error bars represent the uncertainty based on the fitting of the angular 

distributions and different choices for the continuum, as described in the text. 

Gaussian fits to the E0 and E1 distributions for the individual peaks (blue and 

purple) and their sum (red) are shown. The green lines are the strength 

distributions obtained with the HF-RPA calculations using the KDE0v1 interaction, 

smeared to more closely represent the data as discussed in the text. 
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Table XX. Parameters for energy moments obtained for isoscalar multipoles in 
94

Mo are shown. The moments from the KDE0v1 calculation results are over the 

experimental energy range 9≤Ex≤40 MeV. 

 

 Moments 

𝐸0 𝐸1 𝐸2  E3 

Exp. KDE0v1 

𝑚1 (Frac. EWSR) 1.12 ±.12
.19 .95 0.83±.20

.35 0.77±.10
.11 . 45 ± .10 

𝑚1 𝑚0⁄ (MeV) 17.57±.30
1.14 18.06 24.57±1.59

3.41 16.12±.39
.66 21.10±.17

.31 

rms width (MeV) 5.68±1.93
5.53 4.40 8.02±1.81

3.89 7.61±1.04
1.74 6.64±.30

.53 

√𝑚3 𝑚1⁄  (MeV) 19.62±1.15
3.54 19.39 28.20±2.11

4.61 19.56±1.12
1.92 24.03±.28

.73 

√𝑚1 𝑚−1⁄  (MeV) 17.06±.19
.75 17.67 23.09±1.31

2.84 15.48±.26
.44 19.84±.17

.23 

 

Table XXI. Parameters obtained for Gaussian fits for isoscalar multipoles in 
94

Mo 

are shown. 

 

 Gaussian fits 

𝐸0 peak 1 E0 peak 2 𝐸2 

Centroids (MeV) 16.51±.21
.19   23.59±.76

.78 14.55 ± .13 

FWHM (MeV) 5.73±.36
.39 5.87±1.14

1.06 5.28 ± .17  

Frac. EWSR 0.82 0.21 0.59 

 Gaussian fits 

𝐸1 Low Peak  𝐸1 High Peak  E3 

Centroids (MeV) 15.07±.19
.22 26.50±.42

.44  24.60±.46 

FWHM (MeV) 3.19±.22
.36 5.99±.49

.45 9.24±.50
.53 

Frac. EWSR 0.12 0.45 0.39 
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Table XXII. Parameters obtained for energy moments from the KDE0v1 

calculation are shown. The results are over the experimental energy ranges (E1 low 

range: 9≤Ex≤20 MeV, E1 high range: 20≤Ex≤40 MeV, E2: 9≤Ex≤40 MeV, and E3: 

14≤Ex≤40 MeV ) 

 

 

KDE0v1 

𝐸1 Low Range 𝐸1 High Range E2 E3 

𝑚1 𝑚0⁄  (MeV) 14.29 29.05 16.54 25.98 

rms width (MeV) 3.31 4.49 5.05 5.63 

𝑚1 (Frac. EWSR) 0.13 0.77 0.86 0.64 

 

 

6.6.1 E0 Strength 

 

In the E0 strength distribution,  112±12
19% of the sum rule was identified in the energy 

range analyzed, 9≤Ex≤40 MeV. As in other A≈90 nuclei  [28,67,82], the strength is 

separated into high and low energy components. The low-energy component is fit well 

with a Gaussian centered at 16.51 MeV. This peak contains about 82% of the EWSR. 

The high-energy component is at 23.59 MeV and contains approximately 21% of the 

EWSR. The energies and strengths of the components follow the general trend seen for 

the other Mo isotopes studied in Refs.  [28,67]. The energies obtained for the 4 Mo 

isotopes from Refs.  [28,67] and for 
94

Mo from the two peak fits are plotted versus A in 

Figure 35. Lines representing 74 𝐴
1

3⁄  and 109 𝐴
1

3⁄  are shown as a reference on the low 
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and high plots. The low energy peak is possibly moving faster than A
-1/3

, while the high 

energy peak shows no systematic change in energy. As was observed in the other Mo 

isotopes [28,67], the results of the HF-RPA calculation for the E0 strength calculation 

show a single, slightly asymmetrical peak concentrated in a narrow band just above the 

narrow peak in the data. Although the distributions are not in agreement, the centroid, 

scaled, and constrained energy moments are in agreement within the errors. 

 

 

Figure 35. The centroids of the Gaussians obtained from the fits to the E0 

distributions for the Mo isotopes are plotted vs. A. The (red) lines show 74A
-1/3

 and 

109A
-1/3 in

 the upper and lower plots respectively. The error bars represent the 

uncertainty in energy for 
94

Mo, but Ref.  [67] did not report the uncertainties for 

the other isotopes. 
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 6.6.2 E1 Strength 

 

Much of the expected E1 EWSR (83±20
35%) was identified in the range 9-40 MeV. The 

strength is divided into 1ℏω and 3ℏω [77--79] components. The high energy component 

is the compression mode, and its energy is related to KA. The low energy component is 

mostly in the range 9≤Ex≤20 MeV, and the high energy component is mostly in the 

range 20≤Ex≤36 MeV [67].  The high and low peaks are fit well with Gaussians. The 

low energy component is at 15.07±.19
.22  MeV and contains 12% of the EWSR, and the 

high energy component is at 26.50±.42
.44 MeV and contains 45% of the EWSR. The results 

of the HF-RPA calculations for the E1 strength (broadened with a Lorentzian shape with 

≈ 10 MeV width) are shown superimposed on the data in Figure 34. The calculated 

strength is in a broad peak with some strength at low excitation and indications of 

several components and structure at ≈27 and 32 MeV. The strength rises to a maximum 

near 30 MeV, roughly 4 MeV greater than the high peak from the experimental strength; 

and then tails past 40 MeV. In the low energy range (9≤Ex≤20 MeV) there is a weak 

peak near the experimental one and also another one below it. The calculation and the  
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data do not agree, but the amount of strength predicted in the low energy range is nearly 

the same as the experimental value obtained from the Gaussian fit of the low peak.  In  

the high energy range (20≤Ex≤40 MeV), the calculation for the peak position is greater 

than the experimental one by ≈2 MeV and predicts more strength than identified in the 

experimental data. In Figure 36, the centroids of the Gaussian fit to the low and high 

energy peaks and the strength in the low and high peaks for the isotopes from Ref.  [67] 

and for 
94

Mo is plotted vs A. For the Mo isotopes, the calculated positions of the low and 

high energy peaks tend to not be in agreement with the experimental position.  
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Figure 36. The centroids of the Gaussian fits to the low and high energy peaks in 

the ISGDR distributions for each of the Mo isotopes from Ref.  [67] and 
94

Mo from 

this work are plotted vs. A in the top panels. The strength in the low and high peak 

is plotted in the lower panels. The error bars indicate the uncertainty obtained 

using the errors shown in Table XX. The squares (red) show m1/m0 and the 

strength in the range 9≤Ex≤20 MeV for the low peak and the range 20≤Ex≤36 MeV 

for the high peak calculated with HF-RPA using the KDE0v1 interaction. 
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6.6.3 E2 Strength 

 

The E2 peak is located at (𝑚1/𝑚0) 14.56±.09 MeV and 61±9% of the E2 EWSR 

was identified. The peak was fitted with a Gaussian and m1/m0, RMS width, and the 

Gaussian parameters are given in Table XXI. The Gaussian energy is approximately 1.5 

MeV less than m1/m0 because of the inclusion of the apparently random strength at high 

excitation in the calculation of the energy moments. In the Mo isotopes studied in Ref.  

[67], the E2 strength distribution was slightly asymmetric on the low energy side. 

Moalem et al. [80] measured the GQR in 
94

Mo with inelastic scattering of 110 MeV 
3
He. 

Our result for %EWSR, energy, and width agree within the errors with their work. 

Figure 37 compares the Gaussian centroid energy of the GQR in the Mo isotopes 

obtained from the four experiments  [67,80,81], the GQR measurement of 
92

Mo with 

inelastic scattering of 120 MeV α particles by Duhamel et al. [81], and the m1/m0 

obtained from the calculation with the KDE0v1 interaction. The calculated distribution 

shows a peak that is located at a higher energy by approximately 1 MeV, but it does 

show a similar amount of tailing on the high excitation side. 
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Figure 37. The m1/m0 energy of the E2 strength in each of the Mo isotopes from 

Ref.  [67] (blue diamonds) and 
94

Mo from this work (light blue circle) is plotted vs. 

A. The error bars indicate the uncertainty obtained using the errors shown in 

Table XX. Also shown with error bars are centroids reported in Ref.  [80] (green 

triangles) and a measurement for 
92

Mo  [81] (purple X). The red squares show the 

centroid of the E2 strength obtained from HF-RPA calculations with the KDE0v1 

interaction. 
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approximately 35% of the EWSR and HEOR with 65% EWSR [83]. The low-energy 

cutoff for the measured data lies in the middle of the higher region of the LEOR. The 

HF-RPA calculation with KDE0v1 interaction puts the LEOR at about 8 MeV, which is 

below the 9 MeV cutoff. The HEOR is predicted to be located at about 29 MeV. The 

experimental strength for the HEOR is in a broad peak centered at 24.6 MeV and 

contains 39% of the E3 EWSR. The calculated energy is 25.98 MeV. As was noted in 

Ref [67] , the calculated energies for the HEOR are sensitive to the effective mass. Using 

a larger effective mass would lower the predicted energy. 

 

6.7 Summary 

 

We have obtained distributions for isoscalar E0, E1, E2, and E3 strength in 
94

Mo and 

compared these to spherical Hartree-Fock-RPA calculations using the KDE0v1 Skyrme 

type interaction. The E0 strength has a high energy tail similar to that in the A≠92 Mo 

nuclei which is not present in heavier nuclei. The source of this tail is not understood. 

The position of the high energy part of the isoscalar dipole does not agree with HF-RPA 

calculation. Position, strength and width of the E2 distributions agree within errors with 

those obtained by Moalem et al., but are ≈1 MeV below those obtained with the HF-

RPA calculations. The HEOR strength lies in a broad peak centered at 24.6 MeV, 

approximately 2 MeV below that obtained with the HF-RPA calculations. 
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7 CONCLUSIONS 

 

The energies and strengths of the E0, E1, and E2 giant resonances have been measured 

in 
44

Ca, 
54

Fe, 
64

Zn, 
68

Zn, and 
94

Mo. Additionally, the High Energy Octupole Resonance 

was measured in 
94

Mo. The energies and strength distributions were compared with the 

results from HF-RPA calculations with the KDE0v1 interaction. The theoretical 

predictions agreed fairly well with the experimental results in a number of cases. 

However, in 
94

Mo the theoretical predictions for E0-E3 did not agree with the 

experimental results. The  predicted strength for E0 disagreed with the experimental 

strength in 
68

Zn. In 
44

Ca, 
54

Fe, and 
68

Zn the predicted strengths for E1 did not agree with 

the experimental ones. Theoretical and experimental E2 strengths were not in agreement 

in 
44

Ca and 
64

Zn.  Microscopic calculations which include nuclear structure effects may 

be necessary to obtain the correct energies and strength distributions. Additionally, 

inlcuding microscopic transition dnesities in analyses of the experimental data may 

improve agreement between experiment and theory.  

 

Kamerdzhiev, et al.  [34] calculated double-differential cross sections at θ = 1.08° and 

4.08°  and strength distributions for the isoscalar E0-E3 resonances for 
58

Ni and E0 and 

E2 for 
40

Ca using a microscopic many-body theory which includes configurations 

beyond the 1p-1h level. The calculated E0 strength distribution for 
58

Ni was in good 

agreement with the experimental data, but the calculated results for E1, E2, and E3 were 

not. For both nuclei, the calculated cross sections were able to reproduce the 
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experimental data reasonably well but with differences at low and high energies. The 

strength distributions calculated for 
40

Ca were very successful at reproducing the E0 and 

E2 experimental data, though the predicted E2 strength is distributed more broadly than 

the experimental result.  

 

There have been a number of attemtps to deduce Kτ, the symmetry term from the 

Leptodermous expansion (4), from calculation of KA from the measured monopole 

energy in different nuclei within an isotopic chain, such as Cd (Kτ = -555±75 MeV) [84] 

and Sn (Kτ = -550±100 MeV) [85,86]. In Ref. [RW.ERROR - Unable to find 

reference:161], analysis of GMR data for Sn and Sm nuclei from 120 MeV inelastic α-

scattering, along with data for 
208

Pb and 
24

Mg, resulted in a value for the symmetry term, 

Kτ = -320±184 MeV. Within an isotopic chain, the nuclear charge is fixed, and therefore 

the neutron-proton asymmetry (N-Z)/A increases when A increases. Although the 

surface and Coulomb contributions become a little less negative with increasing A, the 

negative increase of the symmetry contribution dominates. This is in general agreement 

with results from theory. The variations of Kτ from Skyrme interactions are Kτ = -

400±100 MeV  and effective relativistic mean field Lagrangians are Kτ = -620±180 MeV  

[87]. The result for the E0 energy in 
44

Ca from this work was shown with the results for 

40
Ca and 

48
Ca and plotted against A in Figure 18, and this showed a monopole energy, 

and by extension KA, that was rising instead of falling with A.  This behavior is shown in 

Figure 38 with a calculation of KA from Leptodermous expansion requiring KNM = 200 

MeV and Kτ = 582 MeV. This suggests that in the Ca isotopes it is unlikely that 
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calculations with common effective interactions will reproduce the mass dependence of 

the GMR energies without the addition of nuclear structure effects. 

 

Figure 38. Values of KA from the scaling energy √(m3/m1) for the Ca isotopes are 

plotted against A. A fit to the data (red line) using the Leptodermous expansion 

with the parameters indicated is shown. The green line is shown as a reference and 

is also from the Leptodermous expansion but with a large, negative value for Kτ.  
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