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ABSTRACT

Variation and variability of gene expression are central concepts in biology.
Variation refers to differences among individuals, whereas variability refers to the
potential of a population to vary. The advent of next-generation sequencing technology
has lead to the accumulation of an ever-increasing number of population level, large-
scale genotype and gene expression data sets, which provide excellent opportunities to
identify the genetic loci that potentially affect gene expression variation and variability.

Over the last several years, much effort has been made to identify genetic loci
that affect the mean differences in phenotypic expression between genotypes, but these
studies have largely ignored loci that affect the variance of phenotypic expression within
individual genotypes. Although studies of expression quantitative trait loci (eQTL) have
established a convincing relationship between genotype and levels of gene expression,
the impact of genetic variants on gene expression variance remains unclear. In addition,
the analytical frameworks adopted by most eQTL studies have been based on
population-level test statistics, which are powerful for assessing the effects of common
genetic variants, but not rare or private genetic variants. Few frameworks or statistics are
available for assessing the impacts of rare genetic mutations on gene expression. Thus, a
new statistical method is required to address this issue.

In this dissertation, | aim to address these questions in humans using publically
available large-scale, Next-generation RNA sequencing datasets and new experimental

data from my own work. | first adopted a new statistical method called double



generalized linear model (DGLM) to study the effect of common genetic variants on
gene expression variability, which | define as expression variability QTL (evQTL), using
data from the TwinsUK study. | searched the whole genome to identify common genetic
variants associated with variable expression at cis-acting genes and showed the
contribution of both genetic and nongenetic factors to variable gene expression. | next
examined two distinct modes of action of evQTLs: GXG interaction (the interaction
between genotypes at different loci) and GXE interaction (the interaction between
genotype and environment), which showed that common genetic variants work
interactively or independently to influence gene expression variance. Lastly, |
established a novel analytical framework to evaluate the effects of rare or private
variants on gene expression variability. This method starts from the identification of
outlier individuals that show markedly different gene expression from the majority of a
population, and then reveals the contributions of private SNPs to the aberrant gene

expression in these outliers.
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CHAPTER |

INTRODUCTION

1.1 Human genetic variation

Human genetic variation comprises all of the differences in the genetic sequence
both within and among populations. A larger amount of genetic variation is found
associated with alter levels of gene expression and increased or decreased risk of disease
through distinct mechanisms. Elucidating the contribution of genetic variation to human
health and disease has become a major challenge for biology in the 21% century and
promises significant benefits to human welfare [1]. Human genetic variation can be
divided into two broad categories: single-nucleotide polymorphisms (SNP) and
structural variations. Structural variations, in turn, include indels (insertions and
deletions), copy number variants, inversions, and translocations. Among these genetic
variations, SNP is the most common category of genetic variants in the human genome,
accounting for more than 90% of known polymorphisms. Based on the minor allele
frequency (MAF), SNPs can be classified into three groups: common (MAF> 5%), low-
frequency (0.5% < MAF < 5%) and rare SNPs (MAF < 0.5%). In this dissertation, | am
primarily focused on the contribution of SNPs to gene expression variance.

In 2001, the Human Genome Sequencing Consortium [2] and Celera [3]
published their first haploid human genome sequence in succession based on a very
limited number of individuals. Despite the achievement of annotation of the human

genome sequence, genetic variation was not noted in either of the human genome



references. One year later, the International HapMap Project was initiated to understand
the common patterns of human genetic variation that may associate with disease risk.
The first haplotype map (HapMap) of the human genome was released in 2005 [4]. More
than one million SNPs were obtained using 269 human samples from four
geographically diverse populations: ‘Yoruba’, ‘Northern and Western European’, ‘Han
Chinese’ and ‘Japanese’. Two Yyears later (2007), a second generation human haplotype
map was published with over 3.1 million SNPs reported [5]. In 2008, scientists expanded
the number of samples to more than one thousand people, and the 1000 Genomes Project
was launched with the objective of providing the most detailed catalog of human genetic
variation available to study the relationship between genotypes and phenotypes. The
pilot phase of the project was published in 2010 [6], with a description of approximately
15 million SNPs, 1 million short insertions and deletions, and 20,000 structural variants
1.2 The contribution of genetic variants to disease risk

An increasing number of studies are focused on genome variability due to its
relevance to complex traits. Understanding the effects of genetic variants on disease risk
has become a fundamental requirement for medical genetics. Genome-wide association
(GWA) [7] is a powerful strategy for studying associations between common genetic
variants and common complex traits, and is typically focused on the impact of common
SNPs on complex human diseases, especially those related to major health conditions.
Risch [8], who first proposed the idea of GWA in 1996, believed that there was no need
to predict candidate genes in future complex human disease studies, and it would be

possible to detect genome-wide genetic variants that linked to the disease through large-



scale (population based) genetic testing. In 2005, Klein et al. [9] published the first
successful GWA study (GWAS), in which they found two SNPs to be strongly
associated with age-related macular degeneration. A typical GWAS may involve the
following four steps [10] : (1) selection of a large sample of individuals with a disease of
interest and an equally large appropriate control group, (2) genotyping and quality
control to ensure the high quality genotype data, (3) statistical analysis to identify
significant associations between phenotypes and identifiable genetic variants, and (4)
replication of identified associations using an independent sample group. Since 2006,
with the completion of the Human Genome Project (HGP) and the HapMap, and
especially the rapid development of next-generation sequencing (NGS) technology in the
past few years, GWAS has resulted in an explosion of knowledge concerning
associations between common SNPs and diseases. As of 2013, more than 1,900 human
GWA studies had examined more than 300 common traits and diseases, including
digestive system disease, cardiovascular disease, metabolic disease, immune system
disease, nervous system disease, liver enzyme disease, lipid or lipoprotein disease, and
cancers, and more [11]. One of the best known GWAS successes was the discovery of
the FTO locus (fat mass and obesity-associated protein) located on chromosome 16. SNP
rs9939609, located within this gene, is strongly associated with type 2 diabetes, where
adults homozygous for the risk allele had 1.6-fold increased odds of obesity compared
those without the risk allele [12].

Despite the success of GWA studies in identifying a large number of SNPs

associated with distinct diseases, there are still several key limitations of the GWA



strategy. Firstly, although a limited number of SNPs that increase or decrease gene
transcription activity are located in regulatory elements such as promoters, or that
change the amino acid sequence by altering the base sequence in coding exons, the
majority of SNPs associated with disease are located in noncoding regions, or are
located in coding regions but do not change the translated amino acid sequence
(synonymous base substitutions). Therefore, they are not informative for explaining how
genetic variants contribute to the disease risk. To address this issue, much effort has
been put into discovering the regulatory roles of noncoding sequences in the genome, as
exemplified by the Encyclopedia of DNA Elements (ENCODE) project [13] and
Roadmap epigenomics mapping consortium project [14]. Also, by the necessity of their
experimental design, GWA studies focus on the impact of common SNPs on health
conditions and ignore the effects of rare SNPs. However, a long-established idea
believed that rare genetic variants may be the primary drivers of common diseases
[15,16]. Increasing evidence support this idea with the identification of rare genetic
variants associated with diseases, such as inflammatory bowel disease [17], prostate
cancer [18] and Alzheimer’s disease [19]. Lastly, and most importantly, the biggest
challenge we are facing is that GWA studies provide no information to help us
understand the underlying molecular mechanisms of the identified relationships between
SNPs and the associated diseases condition(s). To overcome these drawbacks in GWA
studies, the level of gene expression is introduced as an intermediate phenotype, which

provides a link between genetic variants and disease processes.



1.3 Gene expression and regulation

Regulated gene expression in time and space is the most important process to
determine and maintain the characteristics of cells. Dysregulation of gene expression
may influence the cellular state and function of cells, resulting in abnormal development
and diseases conditions [20,21]. Thus, understanding how the expression levels of
different genes are determined in different cell types between and within species is the
central goal of biology. Gene expression from DNA to mRNA is a multistep process that
is regulated at different stages including, but not limited to, transcription and various
post-transcriptional mechanisms, which collectively produce mature mRNA and
regulated their concentration within the cell. In eukaryotes, transcription process can be
divided into three different stages, initiation, elongation and termination [22,23]. The
initial transcript generated from this process called pre-mRNA, which is then matured in
the process of 5° capping, 3’ polyadenylation and splicing [24]. The expression level of
an mRNA is determined by rates of mRNA synthesis and degradation[25], which
determine the steady-state level of mRNA. In this dissertation, unless otherwise
specified, gene expression refers to the abundance of steady-state mRNA, which is
influenced by both trans-factors and cis-elements.

A cis-regulatory element is a specific sequence in DNA that can regulate the
expression of a gene to which it is physically linked to the same chromosome strand.
Cis-regulatory elements can be subdivided into three general classes: promotor elements
lie near the transcription starting site of the affected gene, at or near the binding site for

RNA polymerase Il: enhancer elements may be found upstream or downstream of the



coding region and work with the promoter to greatly enhance the efficiency of
transcription: silencer elements can also be upstream or downstream of coding sequences
and play a contrary role relative to enhancers by inhibiting the activation of transcription
factors and decreasing the efficiency of transcription. Although different regulatory
elements play different roles, they are all involved in the binding of trans-acting factors,
which are described in the next paragraph.

Trans-acting factors, are molecules, usually proteins, produced at sites anywhere
in the genome that can bind to cis-acting sequences (as defined above) to regulate gene
expression. These can be classified into four general groups: (1) transcription factors:
RNA polymerases produce primary RNA transcripts, but cannot bind directly with the
promoter. RNA polymerases can enter the promoter region to start the transcription only
after the combination of transcription factor and promoter to form a specific complex, (2)
activatora are special regulatory proteins that can identify specific sequence elements,
binding to the promoter or enhancer sequences in order to enhance the effectiveness of
the promoter and increase the frequency of transcription, (3) coactivators provide a
connection between activators and basic transcription elements by protein and protein
interaction to promote gene transcription, (4) repressors bind to the upstream promoter
or even at distant silencer locations where they inhibit transcription initiation through a
variety of physical effects including changes in DNA conformation.

Thanks to the rapid development of DNA sequencing technology over the past
two decades, we can now measure the global mRNA abundance quickly, efficiently, and

accurately, making it possible to study the contribution of trans-factors and cis-elements



to the mRNA expression on a genome-wide scale. For example, the NGS technology has
become an indispensable tool as it is the basis for all large-scale sequencing strategies
including RNA-seq [26,27]. In addition, ChlIP-seq [28], which is the combination of
chromatin immunoprecipitation (ChIP) and the NGS technology provides an efficient
means to study relationships between transcription factors and their binding cis-elements.
1.4 The influence of genetic variants on gene expression variation

Treating gene expression as a heritable, quantitative trait, and understanding how
genetic variants influence gene expression variation and variability is the central topic of
my dissertation research. Both genetic and nongenetic (e.g., environmental) factors
contribute to gene expression. The most obvious example of the effect of a nongenetic
factor is that there is a remarkable variation of gene expression between individuals with
the identical genetic makeup, such as identical twins. In addition to nongenetic factors,
genetic variants can also influence gene expression in distinct ways, either in cis or trans
depending on the physical distance from the target gene they regulate. Usually, variants
with 1 megabase (Mb) on either side of their target gene’s translation start site (TSS) are
considered cis elements , while those located on different chromosomes or more than 5
Mb up- or down-stream of the TSS are regarded as trans elements [29].

A relationship between genetic variation and gene expression has been
recognized at least since Haldane [30] noted that a gene’s activity could be the result of
genetic variation in the gene itself. Since then many studies of associations between
genetic variation and gene expression on a scale of a few loci at a time have made

considerable achievements using approaches introduced by Jacob [31] and Damerval [32]



et al. For example, using Drosophila as a research model, Abraham [33] and Powell [34]
et al. showed that cis-acting genetic variation affects gene expression in space. Despite
such successes, many basic questions about the genetic variation and gene expression
remain unknown. For example, how many loci underlie variation in gene expression?
What is the magnitude of effects of these loci? Is there any genetic interaction between
these loci to influence gene expression? To answer these kinds of questions, there is a
critical need to study the contribution of genetic variation to gene expression in a much
larger scale by mapping genetic variation to genome-wide gene expression. This need
has been met to some degree by the emergence of DNA microarray technology [35], and
more recently by the enormous power of NGS technology.

Since Jansen and Nap [36] introduced the concept “genetical genomics”, also
called “expression genetics”, which is based on the genetic mapping of global gene
expression through the use of high-throughput gene expression profiling technology. As
a result, expression quantitative trait loci (eQTL) studies has been widely applied in
different species. Brem et al. [37] published the first genome-wide study of gene
expression in yeast Saccharomyces cerevisiae in 2002, which demonstrated the
feasibility of this strategy. Subsequently, a number of eQTL studies were reported in
other species such as Arabidopsis, Saccharomyces cerevisiae, C. elegans, and mouse
[38-41]. Recently, more and more eQTL studies have focused on human populations
[42-45], successfully mapping eQTL loci to many different characteristics showing cell-
specific [46], tissue-specific [47], age-specific [48], and development-specific effects

[49].



To identify the gene whose abundance is directly modified by a genetic variant,
two types of data are required. First, genotypic data of multiple individuals. Second, the
expression data of thousands of gene transcripts for the corresponding genotyped
individuals. A statistical test is then applied to test if a given genetic variant is
responsible for the expression of a given gene. Most available statistical methods for
eQTL study are based on comparing the genotypes with gene expression levels using
either linkage or association-based mapping [50,51]. The principle of a linkage mapping
is to identify genetic variantswhose transmission patterns are associated with gene
expression through families. The linkage mapping is an effective approach to do a
genome-wide scan for a small number of SNPs; however, the limitation of this method is
the low resolution. In contrast, the principle of an association mapping is that apply a
correlation analysis on the expression of a gene across different individuals with
different alleles of a genetic variant. For example, suppose we have two vectors, vector
G contains genotypes for n individuals and vector E contains values of gene expression
for the same individuals as in vector G. And then, commonly used correlation analysis
methods (e.g., Person correlation and Spearman rank correlation) or linear regression
analysis can be performed for the two vectors to calculate a p-value to determine if the
correlation is significant. Association mapping is far more powerful for detecting
common genetic variants that contribute to the gene expression variation, and is more
suitable for identifying eQTL with medium or small effect size. Unlike the traditional
QTL mapping, eQTL mapping usually performed using thousands of genes and millions

of SNPs simultaneously. Therefore, eQTL mapping required multiple tests not only for



millions of SNPs, but also for thousands of expression traits, by which the type I error
will be greatly increased. To eliminate the effects of multiple tests, several commonly
used statistical methods are used to control the type I error: (1) Bonferroni correction,
the well-known method to correct for multiple-testing derived by observing Boole's
inequality [52], permutation tests, for each linkage between expression trait and marker,
we can assess the significance of the association by shuffling the phenotypes [53,54], (3)
false discovery rate (FDR), which is the expected proportion of false positives in all
claimed significant results. FDR is more powerful than Bonferroni correction as FDR-
controlling procedures provide less stringent control of Type | errors. Over the last few
years, a number of tools are designed and published for eQTL analysis, such as R/qtl
[55], Plink [56], and Matrix eQTL. In addition, several new frameworks are designed for
specific eQTL mapping. For example, a statistical framework was introduced by Flutre
et al. [57] to take advantage of the richness of the data across multiple tissues by joint
analysis of among tissues. Although each of these tools with distinct technical details
and has their own drawbacks, they have the general trend to provide a genome-wide, fast
and efficient tool for eQTL detection.
1.5 The influence of genetic variants on gene expression variance

Notwithstanding these considerable achievements, eQTL studies focuse
primarily on the contribution of genetic variants to the mean differences in gene
expression between genotypes, largely ignoring the differences in gene expression
variance. The reason for this is that quantitative genetics is based on the assumption that

phenotypic mean difference is explained by differences in mean phenotypes among
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different genotypes, while genotypic variability is the result of environmental
(nongenetic) perturbations, and thus is not genetically controlled. However, recent
studies have shown that the variance of phenotypic expression is also genetically
controlled. For example, Yang’s study [58] showed the SNP rs7202116 at the FTO gene
locus is associated with variability of body mass index in the human population, and
Shen’s study [59] explored genetic effects on the variance heterogeneity in Arabidopsis.
In addition, a recent study by Ayroles and colleagues [60] showed that several genes
affect variability in handedness without affecting the mean, which indicated that
different genotypes differ dramatically for phenotypic variability. Recently, a number of
studies have focused on the associations between genetic variants and variances of the
phenotypic trait (vQTL) [58,61,62]. To study the influence of genetic variants on the
variances of phenotypic traits, robust statistical methods are required. The most
commonly used methods for vQTL identification include: (1) Levene’s test [63], (2)
Brown-Forysthe test [64], and (3) the correlation least squares (CLS) test [62]. Both
Levene’s and Brown-Forysthe tests use ANOVA-based statistics, the difference between
the two tests is that the Levene’s test uses the mean in computing the spread within each
group while Brown-Forysthe test uses the median instead of the mean and therefor
overcomes the assumption of symmetric noise [64]. The CLS test first apply a liner
regression test to the genotypes and traits and residuals are calculated, then a spearman
rank correction test between the squared residuals and genotypes is used to detect the
evidence of variance effects. However, despite the capability for vQTL detection, each

method mentioned above has their own drawbacks. For Levene’s and Brown-Forysthe
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tests, both of them not allowing continuous and additional possibly confounding
covariates. Although CLS test addresses this problem, it has the problem of easy
overfitting.

When gene expression variance is considered as a heritable, quantitative trait, the
variance should be genetically controlled as shown in biological systems. However,
despite a few initial efforts focus on the quantification of the variance of gene expression
[65-67], the influence of genetic variants on gene expression variability remains largely
unknown. A recent study in our laboratory introduced the concept of expression
variability QTL (evQTL) [68], which are genetic loci linked to or associated with
expression variance of genotypes at another locus. To identify evQTL, we adopted a full
parametric approach called the double generalized linear model (DGLM) method [69]
with several advantages. For example, it accounts for the uncertainty of fitted parameters
for both the mean and the variance aspects of the model, and also allows fitting of
covariates [70]; it is also highly flexible, allowing for any response distribution from the
exponential family [71] (such as binomial, Poisson, or gamma) to be modeled. Despite
those advantages, DGLM method is computationally expensive and not suitable for
genome-wide trans-evQTL detection for considerable costs in terms of computing time.
To solve this problem, a fast scanning approach called Squared residual Value Linear
Modeling (SVLM) was applied for the genome-wide trans-evQTL detection. The SVLM
method consists of two steps. First, a regression analysis is applied where the trait value
is adjusted for a possible SNP effect and other covariates. Second, regression analysis is

applied to the squared residuals obtained from the first stage, using the SNP as the
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predictor. Using genotype and gene expression data from 210 HapMap individuals, we
showed that the gene expression variances, as opposed to mean, also have a strong
association with genotypes, both in cis and trans. Although it is just an initial step to
understand the effect of genetic factors on gene expression variances, the conclusion
from this study is that gene expression variance is likely to be genetically controlled. The
method we adopted in this study allows us to explore the relationship between genetic
variants and gene expression variance from one tissue type and infer them to the other
tissue types. It is, therefore, fair to ask several key questions to expand our
understanding of the extent to which, and in what ways, genotypes influence gene
expression variability. (1) our previously evQTL detection was based on the DGLM
using a single data set, the results need to be further validated using additional data sets
and multiple tissue types to validate whether gene expression variance is really under
genetic control or evQTLSs are just a statistical phenomenon, (2) it remains unclear what
genetic and/or environmental conditions contribute to the creation of an evQTL, which is
essential information for understanding the mechanisms that underlie the existence of
evQTL, (3) In our previous study, we focus on the identification of single locus effect,
which is the association between the expression of a single gene and a single locus.
However, increasing evidence shows that a lot of gene expression traits are associated
with multiple loci [72,73], which could also explain the variability of gene expression. In
addition, epistasis has emerged as an important factor to understand the multiple loci
effect [72,74] and the phenotypic variability of a population can be increased by

epistasis [61,75]. Epistasis was initially defined by Bateson [76] to describe one
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phenotype is determined by the interaction effects of two genes. The definition of
epistasis varies a lot since its introduction. Currently, epistasis is mostly defined as a
masking effect whereby the effect of a genotype on a phenotype is prevented by anther
genotype [77]. An example of the epistatic effect is shown in Table 1.1, which are the
possible outcomes of hair color in mice for two genetic loci, A (alleles A and a) and B
(alleles B and b). The effect of genotype at locus A is masked by the genotype at locus B,
where individuals with any copy of the B allele have a grey color. In our evQTL study,
gene expression is emerged as an “intermediate” phenotype, epistasis is defined as the

interaction between genetic loci that control the expression of a single gene.

Table 1.1 Example of the epistatic interaction between two genetic loci

Genotype at locus B
Genotype at locus A | B/B B/b b/b
A/A Grey Grey Black
Ala Grey Grey Black
ala Grey Grey White

1.6 The influence of rare genetic variants on disease and gene expression
Over the past several years, the rapid advance of NGS technology has made
population level sequence or genotype data sets broadly available, and has revealed the

existence of a huge store of previously unknown rare variants (MAF < 1%) in human
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populations [78-81]. The 1000 genome project showed that there around 30,000 to
150,000 low-frequency and rare genetic variants per individual. Compare to common
variants, rare variants are relatively new mutations and usually have a weaker correlation
with other variants [82]. The impact of rare genetic variants on diseases has obtained
much attention as an increasing number of disease associated variants are reported by
different studies. Although NGS technology provides a great opportunity to study the
contribution of rare genetic variants to diseases, detecting rare genetic variants is still a
challenge due to the huge cost of sequencing a large number of individuals. To address
this shortcoming, several strategies are applied to decrease the cost. For example, exome
sequencing [83], this strategy based on two considerations, on one hand, exomes only
count for 1%-2% of the genome, which will decrease the sequence cost significantly, on
the other hand, many identified causal genetic variants for diseases are located in exome
regions. Moreover, classical association tests used for the study of common genetic
variants have limited statistical power when applied to the rare genetic variants study
unless samples or effect sizes are very large. In light of those limitations, several
statistical methods are developed, (1) burden tests [84-87], which assess the cumulative
effects by summarizing rare genetic variants information in a region. All burden tests are
based on the assumption that all rare variants are associated with phenotype with same
effect size and direction and, therefore, is powerful for such rare variant set. However,
oftentimes, it is not surprise that the influence of rare variants with distinct effect sizes
and directions, (2) variance-component tests, including the sum of squared score (SSU)

test [88], C-alpha test [89], and SKAT test [90]. These methods are more powerful than
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burden tests for variants with different effects sizes and directions by evaluating the
distribution of the aggregated score test statistics for a variant set using distinct test
model [91], (3) integrative test [92], which combine the advantages of Burden tests and
variance-component tests. Despite those achievements, few frameworks or statistics are
available for assessing the impacts of rare genetic variants to gene expression. The only
exception is the study by Li et al. [93], in which they found that rare variants were
enriched in larger effect eQTLs and splicing quantitative trait loci (sQTLs) which
indicated that rare variants are likely associated with gene expression. However, the
method used in Li’s study based on the full genome sequencing data within a family
with limited power for unrelated individuals. Therefore, we need a new analytical
approach for studying the possible effects of rare or private mutations on gene
expression at the n=1 level.
1.7 Project rationale

Identifying the influence of genetic variants on gene expression variation is the
primary focus of the field of quantitative genetics. Mot available methods are limited to
identify mean differences of gene expression. However, increasing evidence shows that
genetic variants may also contribute to the variances of gene expression. Moreover, the
potential impact of rare genetic variants (or private SNP) on gene expression is difficult
to study as most available methods are powerful for the common genetic variants study.

| attempt to answer these questions based on the recently accumulated data.
Chapter 11 describes the study on the genetic influence on variable gene expression by

using expression data from a large twin cohort. Firstly, | performed a global evQTL
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mapping with three different tissues (lymphoblastoid cell lines, skin, and fat) to identify
genetic loci that contribute to gene expression variance. To show the influence of genetic
background on expression variability, | measured the relative difference between pairs of
dizygotic twins and pairs of monozygotic twins. Moreover, | investigated the genetic
interactions in the formation of evQTL through additive effects.

Chapter 111 is an extended discussion of how evQTLs are created. In this chapter,
| demonstrate two distinct modes of action (epistasis and decanalization) that create the
instances of evQTLs in humans. To validate the decanalization mode, | then measured
discordant expression between monozygotic twins, as well as the level of transcriptional
noise in individual clonal cell lines.

In complementary to Chapters Il and 111, which center on the impact of common
genetic variants on gene expression, Chapter IV focuses on the impact of rare or private
genetic variants on gene expression. Specifically, | used a multivariate approach to first
identify outlier individuals that show markedly different gene expression from the
majority of a population and then quantified the contributions of private SNPs to

aberrant gene expression in these outliers.
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CHAPTER II
ADDITIVE, EPISTATIC, AND ENVIRONMENTAL EFFECTS THROUGH THE

LENS OF EXPRESSION VARIABILITY QTLS IN A TWIN COHORT"

2.1 Introduction

Variation and variability are central concepts in biology [94]. Although often
used interchangeably in the scientific literature, the two are not synonymous. Variation
refers to the differences among individuals, whereas variability refers to the potential of
a population to vary [95,96]. In many cases, greater phenotypic variability (e.g.,
transcriptional noise) is disadvantageous [97-99] unless it gives rise to greater
organismal plasticity—first at the level of an individual organism and eventually at the
population level. Genetic factors resulting in more variable phenotypes become favored
when they enable a population to more effectively respond to environmental changes
[100-103]. Thus, understanding to what extent and in what ways genotypes influence
phenotypic variability is of fundamental importance.

Much effort has been focused on identifying genetic loci such as eQTL [104-
109], that affect the average value of a phenotype, while ignoring those that affect the
variance of a phenotype. However, there is increasing evidence across species for
genetic loci that affect the variance of phenotype [69,110-114]. Recently we introduced

the concept of expression variability QTL, or evQTL [68]. By definition, an evQTL is a

* This chapter has been reprinted from: Wang G, Yang E, Brinkmeyer-Langford CL, Cai JJ* (2014)
Additive, epistatic, and environmental effects through the lens of expression variability QTLs in a twin
cohort. Genetics, 196:413-25, with permission from GENETICS. It is available online at
http://genetics.org/content/196/2/413
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genetic locus linked to or associated with genetic variation influencing the variance of
gene expression in a population. To identify evQTLs, we adapted the method developed
by Ronnegard and Valdar [69], based on the DGLM model [115]. The DGLM method
tests for expression variances and measures the contribution of genetic variants to the
expression heteroscedasticity. The DGLM method compares the fit of a full model,
which takes into account the contribution of genotype to both the mean and the variance
of gene expression simultaneously, and a mean model, which only takes into account the
contribution of genotype to the mean, ignoring the contribution to the variance. A
significant result of DGLM shows the nonrandom association between genotypes and
gene expression variances. Using this method, we have conducted a genome-wide scan
for evQTLs in the human genome [68].

How an evQTL is created in the first place is not clear. One possibility is that
specific genetic variants disrupt the stabilizing genetic architecture that buffers
stochastic variation in phenotype. As a result of such an effect of decanalization, along
with the sensitizing change in the stabilizer (e.g., heat-shock protein 90), the phenotype
becomes more sensitive to the external environment and varies more greatly between
individuals [68,69]. Another possibility concerns the role of genetic interactions via
epistatic and non-epistatic (such as additive or dominance) effects in the formation of
evQTLs. It has been suggested that the variance of a quantitative trait is likely to differ
based on genetic interactions [70,116]. Without extra information, however, it is
extremely difficult to distinguish the contributions of genetic and nongenetic factors to

variable expression of genes.
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Here we investigated the roles and development of evQTLs, taking advantage of
an existing dataset [117] derived from a population-based cohort of twin studies [118].
We interrogated this dataset for evQTLs, and investigated the roles of genetic and
nongenetic factors in the formation of the evQTLs we identified. The twin cohort offered
a unique advantage for studying the relative contributions of factors that influence
expression variability. Importantly, comparing expression data of monozygotic (MZ)
and dizygotic (DZ) twins allowed us to distinguish between genetic and nongenetic
effects. In the following sections, we first present the descriptive statistics for expression
variability in the twin cohort, subsequently describe the detection of evQTLs, and finally
estimate the relative contributions of genetic and nongenetic factors to the creation of
these evQTLs.
2.2 Materials & methods
2.2.1 The TwinsUK dataset

We obtained the TwinsUK dataset, including both genotype and expression data,
as used in the eQTL study of [119]. Here we briefly describe the cohort and data
processing performed in that study [119]. The TwinsUK cohort includes 856 female
individuals of European descent recruited from the TwinsUK Adult twin registry
[120,121]. Subcutaneous adipose tissue, skin tissue, and lymphoblastoid cell line (LCLS)
were collected from each individual. Genotyping was performed with a combination of
[llumina HumanHap300, HumanHap610Q, 1M-Duo and 1.2MDuo 1M chips. Genotypes
were called with the Illuminus calling algorithm [122], and SNPs were filtered for MAF

of >5%. Gene expression levels were measured in LCLs, skin, and adipose [119].
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Expression profiling of the samples, each with either two or three technical replicates,
was performed using Illumina Human HT-12 V3 BeadChips (lllumina). All samples
were randomized before array hybridization, and replicates were hybridized on different
BeadChips. Raw data were imported to Illumina BeadStudio software, and probes with
less than three beads present were excluded. Log.-transformed expression signals were
normalized separately per tissue, with quantile normalization of the replicates of each
individual followed by quantile normalization across all individuals [123].

In this study, we used available gene expression data for both individuals of a
twin pair. All 48,804 probe sequences were mapped by BLAST to the reference genome
(hg18), and probes found to map to more than one location were not used.
Polymorphisms in the target mMRNA sequence can greatly affect the binding affinity of
microarray probe sequences, leading to false-positive and false-negative signals with any
other polymorphisms in linkage disequilibrium (LD) [124]. In order to control for this,
we used a comprehensive compendium of SNPs in European ancestry (CEU) of the
1,000 Genomes Project [125] to remove an additional 13,600 probes found to anneal in
regions with SNPs present at an MAF of 5% or greater. Similarly, probes mapping to
non-autosomal locations were excluded from further analysis. Finally, 35,078 probes
were left for our analysis.

The coefficient of variation (CV) is used as a normalized measure of the

dispersion of expression distribution [69,126,127]. The CV was computed as

CV =

9
U
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where 0 and ¢ are the standard deviation and the mean of gene expression levels,

respectively. LD block plots were obtained by using HaploView [128].
2.2.2 ldentification of evQTLs using the DGLM method

First we used the Fligner-Killeen (F-K) test filter to greatly reduce the number of
SNPs for computationally intensive model fitting. We then adapted the DGLM method
[115] to test for inequality in expression variances and measure the contribution of

genetic variants to the expression heteroscedasticity. We considered the following model:

Yi=u+x%f+ga+s,5~N0 o ep(g o),
where yi indicates a gene expression trait of individual i, gi is the genotype at the given
SNP (encoded as 0, 1, or 2 for homozygous rare, heterozygous and homozygous
common alleles, respectively), &i is the residual with variance o?, and 0 is the
corresponding vector of coefficients of genotype gi on the residual variance. Age of
subjects and the batch of data collection were modeled as covariates x;. With this full
model, both mean and variance of expression yi were controlled by SNP genotype gi. We
coded the fitting procedure using the DGLM package in R. A snippet of R code for the
DGLM analysis can be obtained from the Supporting Theory of ref [69]. We assumed
that the input gene expression data were approximately normally distributed, conditional
on the evQTL and covariates, and set family Gaussian in the DGLM R code to specify
the error distribution and link function used. We tested for each input probe-SNP pair
and obtained two P-values: Pdispersion and Pmean, for the effects of genotypes on the

variance and the mean of expression levels, respectively [69]. Probe-gene pairs that did

not make the algorithm converge during computation were discarded. To control for the
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effect of outlier expression data points, permutation tests [107] were conducted for all
Paispersion Significant pairs. Specifically, for each probe-SNP pair, we performed 10,000
permutations of expression phenotype relative to SNP genotypes. An association was
considered significant if the P-value from the analysis of the observed Pdispersion Was
lower than the threshold of the 0.001 tail of the distribution of the Pgispersion from the
10,000 permutations (Ppermutation < 0.001).
2.2.3 Single-cell expression and mRNA decay rate

The expression level of 96 genes was measured in 1,440 single lymphoblastoid
single cells by gPCR assays in another study [129]. We used these data to compute the
CV of expression of the same gene in different cells. The mRNA decay rates of 16,823
genes were estimated in 70 human LCLs [130]. We obtained the mRNA decay rate data
to compute the average mRNA decay rate for each gene among these LCL samples.
2.2.4 Estimation of the fraction of isoform transcription using MISO

We obtained genotype data for 43 samples of CEU from the phase 1 release of
the 1,000 Genomes Project [125]. Short sequence data produced for RNA-seq studies of
the LCLs from the same 43 individuals were accessed through GEO (Gene Expression
Omnibus) accession number GSE19480 [108]. The Sequence Read Archives (SRA) files
were downloaded and subsequently converted into FASTQ files using the NCBI SRA
toolkit program, fastg-dump (v 2.1.16). To estimate FPKM (fragments per kilobase of
exon per million fragments), RNA-seq short reads were mapped to reference genome
(hg19) using Tophat2 (v 2.0.1) [131]. We then used the mixture-of-isoforms (MISO)

[132] isoform-centric model (which estimates expression level of whole transcripts) to
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assess expression levels of different isoforms by quantifying the presence of
alternatively spliced exons. Mapped data were analyzed with the default parameters
using the compute-genes-psi function and summarized using the summarize-samples
function.
2.2.5 ldentification of interacting SNPs

We used a two-step procedure to identify SNPs that may “interact” with evSNPs.
Assuming the interaction between the SNP to be identified and an evSNP is additive, we
first partitioned individuals into L and S groups according to genotypes of the evSNP,
which were associated with large (L) and small (S) variances of gene expression. Next
we scanned genome-wide SNPs. For each SNP, we computed genotype heterozygosity

among individuals in L and S groups using
Het, = P+ Paa L+ Pha L
and
Het; = piA_S + pf\a_s + p:a_S
, respectively, where p,, , P.. and P, are frequencies of three possible genotypes

defined by the scanned SNP. All SNPs were then ranked by Het, —Hets and top 100

SNPs with the largest value were taken to next step. In the next step, a typical eQTL (not
evQTL) analysis was conducted among individuals of the L group. For each top SNP
with high genotype heterozygosity difference, a simple linear regression [107] was
performed between the SNP’s genotypes and gene expression. The most significant

SNPs were retained after applying an arbitrary P-value cutoff = 0.0005 and were
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reported as candidate interacting SNPs. To maintain sample independence, we used only
one individual from each twin pair for this analysis.
2.3 Results
2.3.1 Expression and genotype data

To investigate the genetic influences underlying variable gene expression, we
revisited the published expression data [117] of the MUTHER (Multiple Tissue Human
Expression Resource) project [133]. In that study, gene expression was measured for
LCL, adipose tissue (subcutaneous fat), and skin (tissue biopsies) using lHlumina Human
HT-12 V3 BeadChips. These tissues were sampled from a cohort of 856 female twins
from the TwinsUK adult registry, including 154 MZ twin pairs, 232 DZ twin pairs and
84 singletons [118]. After quality control, expression data for 825 (adipose and LCL)
and 705 (skin) individuals were retained [117]. For each tissue, we downloaded the
processed MUTHER expression data files deposited at ArrayExpression
(http://www.ebi.ac.uk/arrayexpress/) using accession E-TABM-1140. The data were the
quantile-normalized logz-transformed expression signals. Quantile normalization was
performed first across the replicates of a single individual and then across all individuals
as described in [117]. Along with the expression data, we also obtained the genotype
data of this cohort [117]. In our analysis, all available twin pairs with complete
expression and genotype information were included, corresponding to 134 MZ and 195
DZ pairs with LCL profiles, 139 MZ and 188 DZ pairs with adipose profiles, and 105
MZ and 148 DZ pairs with skin profiles. Members of the TwinsUK cohort have health

and lifestyle characteristics that are comparable to those of population singletons [134].
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Because of this, we were able to use this cohort as a representative general population to
investigate both genetic and nongenetic factors behind expression variability in this
study.

2.3.2 Expression variability in the twin cohort

Here we present basic, descriptive statistics for expression data (independent of
genotype information), with particular attention to disparities in gene expression among
individuals. We chose to focus on the LCL data for this analysis, due to the availability
of additional expression-related statistics (such as single-cell expression data and mMRNA
decay data).

We used the quantile-normalized log.-transformed expression data in all analysis
throughout the paper unless otherwise stated. From these data, we first determined that
expression values for most probes (n = 35,078) approximately fit the normal distribution:
97% of probes were with a skewness between -0.80 and 0.80 and a kurtosis of ~3.0
(Figure 2.1A); less than 7% of probes were rejected by Shapiro-Wilk test of normality
with Bonferroni adjustment to the level of o = 0.01. These justified the use of the
Gaussian error distribution and link function in our DGLM model (Materials and
Methods). Retrospectively, we showed that the profile distributions for evQTL probes
are approximately normal before and after Box-Cox transformation (Figure 2.1B).

To measure the level of dispersion of gene expression values, we computed the
CV for each probe. The CVs ranged from 0.0024 [for ILMN_1765043 (RPL38)] to
0.2115 [for ILMN_1715169 (HLA-DRB1)], with a median of 0.0154. The distributions

of CVs measured in sub-cohorts are indistinguishable from one another such as when
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comparing one set of MZ twins with the other set (i.e., MZ 1 vs. MZ 2) or comparing a
set of MZ twins with a set of DZ twins (e.g., MZ 1 vs. DZ 1)(Figure 2.2A). Probe data
points are located along or close to the 1-1 diagonal line in the CV-CV scatter plot for
the majority of probes, regardless of the CVV-CV comparison between MZ 1 and MZ 2 or
between MZ 1 and DZ 1 (Figure 2.2B). These results indicate that the extent and overall
distribution of expression variability measured between individuals across different MZ

and DZ cohorts are highly similar when all genes are taken into account.
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Figure 2.1 Normality of expression data measured in LCLs. (A) Distributions of skewness and kurtosis.
Red dashed lines indicate -0.8 and +0.8 skewness; red solid line indicates kurtosis = 3. (B) Profile
distributions of expression data for selected probes (i.e., probes involved in evQTLs). (Left) Quantile-
normalized expression data; (Right) Box-Cox normalized expression data.
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Next, we measured expression differences between each pair of twins. For each
probe, we computed the relative mean difference (RMD) in expression between MZ twin
pairs and between DZ twin pairs, separately. For a pair of MZ twin, for example, the
RMD was computed using

1

2 |YM21 - yMZZ|
RMD =

y

where § is the arithmetic mean the levels of gene expression for that MZ twin
pair (designated as vy,,., and y,,). For most probes, the median RMD of expression
between DZ pairs is larger than it is between MZ pairs, as indicated by the fact that most
genes are located above the 1-1 diagonal line in the scatter plot (Figure 2.2C). That is to
say, the normalized difference in gene expression between DZ pairs (DZ 1 and DZ 2)
tends to be larger than that between MZ pairs (MZ 1 and MZ 2), suggesting that genetic
factors influence expression variability for most of these genes.

To determine the influence of single-cell expression variability on population-
level expression variability, we computed the CVs of expression for a selection of genes,
whose expression levels have been measured in single LCL cells [129]. No correlation
between the single-cell CVs and the between-individual CVs measured was detected for
MZ 1 (Spearman’s correlation test, P = 0.21, n = 59; Figure 2.2D). This suggests a
limited contribution of single-cell expression variability (or transcriptional noise at the
single-cell level) to the variability between individuals (or transcriptional noise at the

population level).
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Figure 2.2 Distributions of expression variability in LCLs. (A) Distribution of CVs of gene expression
(probe n = 35,078) measured in MZ and DZ twins. MZ 1 is the set of first pairs of all MZ twins and MZ 2
is the set of second pairs of all MZ twins. Similarly, DZ 1 is the set of first pairs of all DZ twins and DZ 2
is the set of second pairs of all DZ twins. (B) Scatter plot of CVs of gene expression (probe n = 35,078) in
MZ 1 against those in MZ 2 (blue) or DZ 1 (red) cohorts. (C) Scatter plot of median RMD between pairs
of MZ twins against median RMD between pairs of DZ twins. Each blue dot indicates a single expression
probe (or a gene) and the position of the blue dot indicates the median value of RMD of expression
between all MZ pairs (MZ 1 — MZ 2) on the x-axis and that between all DZ pairs (DZ 1 — DZ 2) on the y-
axis. The red line is based on quadratic regression to show a more pronounced difference between MZ and
DZ with greater RMD. (D) Scatter plot of CVs of gene expression (n = 59) in single cells against CVs of
gene expression in MZ 1. (E) Scatter plot of mean mRNA decay rate against CVs of gene expression in
the MZ 1 cohort. The red line is based on the linear regression

Finally, we hypothesized that variable gene expression may be due to different
MRNA decay rates for different genes. To test this, we used the mRNA decay rate data
from the study of Pai et al. [130] et al. The correlation between mean mRNA decay rate
and CV of expression among genes is not specific as shown by the opposite signs of two
correlation coefficients: Spearman’s p = -0.027 (P = 0.00498) and Pearson’s r = 0.044 (P
= 4e-6, n = 11,083; Figure 2.2E). Thus, gene expression variability showed no signs of

correlation with the mMRNA decay rate of genes.
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2.3.3 Genetic variants underlying expression variability

To systematically assess the genetic influence on expression variability, we
identified genome-wide evQTLs using the method we previously established [68]. We
focused on cis-acting evQTLs by limiting our search to those SNPs that flanked probes
within 1.0 Mb on either side.

After filtering for quality control (Materials and Methods), a total of 35,078
probes were available for analysis. On average, each probe corresponded to 1,212 SNPs
in the 2-Mb cis region (i.e., 6 SNPs per 10 kb). For each SNP-probe pair, we conducted
a three-step test to determine the evQTL relationship as described previously [68].
Briefly, we first tested for the homogeneity of variances in gene expression among
different genotype groups using F-K test [135]. Only those SNPs with a P < 0.01
[following [136]] were carried on to the next step of analysis. We then applied the
DGLM method [69] to each SNP-probe pair, ultimately computing Paispersion for a total of
1,251,611 SNP-probe pairs. To account for multiple tests performed between these
probe-SNP pairs, we used the threshold of Pgispersion < 1 % 108, which is roughly
equivalent to Bonferroni adjusted P < 0.01, to assess the genome-wide significance.
Finally, we conducted permutation tests for each significant SNP-probe pair to control
for the influence of outlier data points on the DGLM results (Materials and Methods).
The detection of evQTLs was performed independently for each of the two sets of twin
data. Assignment of individual twins to each data set was purely random and did not
influence the overall results in any substantial way (data not shown). Each evQTL

detected with one twin data set and was then validated with the other data set to confirm
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its authenticity. For all three tissues, concordance was prevalent (Figure 2.3A) and the
cases of discordance were mostly due to outliers present in one set of twin data but not in
the other set. The direction of effect (association with increased or decreased gene
expression variability) was the same between the two set of twin data for all evaluated
SNPs.

A total of 99, 79, and 56 genes were identified and confirmed to have at least one
validated cis-evQTL SNP (or evSNP for short) in LCLs, fat and skin, respectively. This
corresponded to 8 evQTL genes shared in all three tissues (Figure 2.3B). One of these
shared evQTL genes, SEMAA4G, is given as an example to illustrate the consistent
influence of genotypes on the variance of gene expression across the three tissues
(Figure 2.3C). All evQTLs shared across tissues showed the same directional effect,
defined as on either increased or decreased the variance of gene expression. That is to
say, the directionality of evQTL effects is not tissue- or cell-type specific.

Given that many evQTL genes have more than one cis-evSNP, we examined the
structure of haplotypes of these multiple cis-evSNPs. We found that cis-evSNPs of the
same gene are likely to be located within same LD block and that typically these blocks
contained only few prominent haplotypes (see Figure 2.4 for an example involving gene
ALG11). This suggests that multiple evSNPs are likely to be linked with the same causal
variant. We furthermore found that, compared with ancestral alleles, derived alleles of
evSNPs are more likely to be associated with greater expression variability (Fisher’s

exact test: P = 0.0036, 0.022 and 0.036 for LCLs, skin and fat, respectively).
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Figure 2.3 Numbers of evQTL in LCL, skin, and fat. (A) Venn diagrams of evQTL genes detected in two
groups of twin sets. Each group of the twin sets is composed of one set of unrelated twin individuals.
Overlapping areas of the Venn diagrams contain numbers of validated evQTL genes identified with both

sets of twins. (B) Numbers correspond to evQTL genes within a subset of tissues. (C) One example of
evQTL shared by all three tissues: evQTL at SEMA4G.
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Figure 2.4 LD patterns of the genomic region surrounding evQTL at ALG11. The entire region of the
analysis included 38 SNPs over a ~400 kb span. The cis-evSNPs are indicated with red boxes. The
haplotypes in the LD block accommodating evSNPs are displayed in the insert, with corresponding
haplotype frequencies. Of note, alleles of evSNPs resulting in a larger variance of gene expression are
allocated in one haplotype highlighted with the blue box.

2.3.4 Dissecting the genetic and nongenetic effects of evQTLS

Twin data facilitate the dissection of the contributions of genetic and nongenetic
factors to gene expression. Phenotypic variability measured between pairs of DZ twins is
expected to be larger than that between pairs of MZ twins, as the phenotypic difference
between DZ pairs may result from both genetic and environmental (nongenetic) effects
while differences between genetically identical MZ pairs are attributable to varying
environmental effects on the two twins, assuming that the environments influencing MZ

and DZ twin individuals are essentially identical. Figure 2.5 depicts the difference in
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expression level of evQTL gene AXINZ in three genotypes (GG, AG, and AA) defined
by rs740026. Figure 2.5A and B illustrate genotypes at rs740026 by linking the two data
points for each twin pair by a straight line: Figure 2.5A shows genotype similarities
between MZ twins, while in Figure 2.5B, similarities between DZ twin pairs are shown.
Note that linkers between DZ twin pairs with different genotypes at the SNP site (i.e.,
DZ 1 # DZ 2) are not plotted. The expression difference between a pair of twins can be
visually quantified by the slope of the straight line: a steeper line reflects a more
dissimilar expression level between the twins. In the case of AXINZ2, it is apparent that
expression differences between DZ pairs tend to be larger than between MZ pairs. This
is especially true for the AA genotype group, which shows a larger variance in
expression between individuals.

For each evSNP and its associated genes in LCLs, we computed the RMD in
gene expression between all pairs of MZ or DZ twins, as long as the genotypes of two
individuals of the pair of twin were both identical to each other and homozygous at the
SNP site. By definition, (one of alleles of) evSNP is associated with either larger (L) or
smaller (S) variance in gene expression. Thus, the RMD values (for evSNPs and
associated genes) were separated according to whether homozygous genotypes defined
by evSNPs were associated with larger (L) or smaller (S) variance in gene expression.
The cumulative distribution functions (CDFs) of these RMD values were plotted (Figure
2.5C). The curves were based on the RMD values calculated between all possible twin
pairs for all evSNPs and genes, and classified into four groups: MZ-S, MZ-L, DZ-S, and

DZ-L. The MZ-S and DZ-S groups included pairs whose genotypes showed a small (S)
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amount of variance, while the MZ-L and DZ-L groups included pairs whose genotypes
were associated with large (L) variances. In the end, the four groups, MZ-S, MZ-L, DZ-
S, and DZ-L, contained 3,629, 2,548, 3,825, and 2,520 RMD values, respectively. We
found that CDF curves for the large-variance groups (MZ-L and DZ-L) were shifted
toward the right compared to those for small-variance groups (MZ-S and DZ-S)
[Kolmogorov-Smirnov (K-S) test, all P < 10°]. This indicated that the distribution of
RMD between twin pairs (either MZ or DZ) in the large-variance groups was
significantly different from that of the small-variance groups, with a larger RMD median
for the large-variance group. This difference (in RMD distribution between L and S
groups) remained even when we randomly assigned the identities of MZ and DZ pairs
(see insert of Figure 2.5C). Together, these results suggested that the increased
discrepancy in gene expression between twin pairs (shown as a larger median RMD)
contributed to the elevated variability in expression, which is true for both MZ and DZ
twins. Because MZ twins are genetically identical, the increased RMD between MZ
pairs was likely due to an increased sensitivity of gene expression to environmental
factors.

More importantly, we found that there is a significant discrepancy in distribution
of RMD between MZ and DZ: DZ groups tended to have larger RMD values than MZ
groups. This trend applied to both L and S groups, but was more salient in the L group
(all K-S test, P < 0.01) (Figure 2.5C). These results suggested that the different genetic
backgrounds resulted in a larger difference in gene expression between DZ twin pairs,

which is more pronounced than that observed between MZ twin pairs.
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For comparison, we randomly selected the same number of genes and cis-SNPs
and conducted the same analysis of RMD distribution. There was no difference between
CDFs of RMD in these non-evQTL genes regarding either MZ or DZ twins, larger or
smaller variance groups, as well as before or after shuffling of the twin identities. CDFs
of all groups were more similar to each other (K-S test, all P > 0.025, except between
MZ-S and DZ-L, P = 2.94e-4, Figure 2.5D). That is to say, the influence of genetic
and/or environmental effects on variable expression was not detected at the genomic
level for all genes, but was limited to evQTL regions.

Finally, we repeated the CDF analyses using the RMD values computed from the
Box-Cox normalized logz-transformed expression data, as well as using the absolute
difference (instead of RMD) in gene expression. In both cases, we obtained results
highly similar to those obtained above (Figure 2.6), which supports the robustness of the

results presented above.
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Figure 2.5 Dissection of genetic and nongenetic effects of evQTL using twins data. (A) The evQTL
between AXIN2 and rs740026. The expression data points from pairs of MZ twins are linked. (B) Same as
A except that DZ twins are linked. (C) CDFs of RMD between twins classified into four groups, namely
MZz-S, DZ-S, MZ-L, and DZ-L (see main text for definitions). The double arrow highlights the highly
significant discrepancy in RMD distribution between MZ-L and DZ-L (K-S test, P < 0.01). The insert
shows the same CDFs of RMD recomputed after randomly shuffling identities of corresponding MZ and
DZ pairs. (D) Same as C except that data are randomly sampled from non-evQTL genes.
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Figure 2.6 Comparison between results of the CDF analysis for the expression difference between twin
pairs in evQTL genes. (A) Results obtained using RMD of Box-Cox normalized log2-transformed data
between twin pairs. (B) Results obtained using the absolute difference of log2-transformed data between
twin pairs.

2.3.5 Validation using RNA-seq data and SNPs of the 1,000 Genomes Project

We obtained genotype data for fully-sequenced samples of CEU from the phase
1 release of the 1,000 Genomes Project [125], along with short reads from RNA-seq
experiments in LCLs for these same individuals (n = 43)[108]. After mapping the short
reads, we estimated the expression level in FPKM for all genes. For the same evQTL
gene-SNP pairs detected in LCLs, we plotted the relationships between genotype and
expression for each. Even with as few as 43 data points, many evQTL relationships
could be recognized by visual inspection. To examine expression variability in isoforms,
we used MISO [132] to compute percent-spliced-in (W) values for all known isoforms of
each evQTL gene (Materials and Methods). We could not observe any clear pattern,
perhaps due to the limited size of samples. But, in MYH11, the increased expression

variability seems linked to the higher heterogeneity of isoform expression (Figure 2.7).
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Figure 2.7 An example shows the possible association between gene expression variability and
heterogeneity of isoform expression. Left panel is the evQTL relationship between MYH11 expression
and genotypes of SNP rs3851702 depicted using RNA-seq data [15] and the 1,000 Genomes Project
genotype data [37]. The insert is the evQTL relationship between the same evQTL gene and SNP depicted
using TwinsUK data. Right panel is the fraction of each isoform expression estimated as the percent
spliced in (W) values using MISO [38] to the RNA-seq data.

2.3.6 Partially-linked SNPs contribute to variable gene expression

Recent theoretical work showed that the within-genotype variance of a
quantitative trait varies when a non-additive genetic interaction or epistasis is present
[116,137]. Alternatively, variance of a quantitative trait may result from the interaction
between genetic variants additively associated with the mean of the quantitative trait. To
discriminate between these alternatives, we employed a two-step procedure to identify
SNPs partially associated with (or interacting) with evSNPs through an incomplete
haplotype structure (Materials and Methods). In an ideal scenario (Figure 2.8A), the
genotype heterozygosity of the partially-linked SNP is large among individuals (L-group)
whose the evSNP genotype associated with larger expression variability, while, the

genotype heterozygosity is small or equals zero among individual of S-group. If the
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interacting SNP is associated with the mean level of gene expression, then the
association between the evSNP genotype and greater expression variability is likely due
to the partial association between the evSNP and the interacting SNP.

Given these considerations, we performed a genome-wide search to identify a set
of candidate interacting SNPs for each evQTL SNP, and then used simple linear
regression analysis to evaluate whether the potential interacting SNPs are significantly
associated with gene expression among L-group individuals (Materials and Methods).
For the 99 evQTL in LCLs, we identified 56 with at least one interacting SNP. Among
these interacting SNPs, 54 are located within the cis-region of the evSNPs, with which
they interact. Figure 2.8B presents one such relationship between evSNP rs742090 and
interacting SNP rs3799378, both at BTN3AZ2. Individuals with CC genotype of evSNP
rs742090 were further sorted by rs3799378 genotypes. Clearly, the expression level of
BTN3AZ2 in individuals with the rs742090-CC genotype is significantly influenced by
rs3799378 genotypes. The increased variability in gene expression showed in individuals
with rs742090-CC genotype is caused by the heterogeneity of rs3799378 genotypes.
These results suggest that local haplotype structure between SNPs contributed to the
creation of evQTLs.

2.3.7 Linking evQTLs with complex disease phenotypes

Several studies have utilized eQTL data to interpret discoveries from association
studies of complex traits [138-140]. Along this same vein, we identified evQTLs
associated with complex traits from the catalog of published GWAS studies

(http://lwww.genome.gov/gwastudies/). From the results of these GWA studies, we
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identified 61 reported genes that are evQTL genes. In four cases, the exact same SNP
was found to be both an evSNP and a marker SNP associated with risk or susceptibility
of the complex trait (Table 2.1). Intriguingly, the “T” allele of rs8070463, associated
with smaller expression variability of TBKBPL, is a reported culprit in multiple sclerosis
[141] while the “C” allele for this same SNP, associated with larger expression

variability, is linked with risk for ankylosing spondylitis [142].
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Figure 2.8 Schematic and example of an interacting SNP that helps the creation of an evQTL. (A) L
indicates the group of individuals with evSNP genotype (C/C) associated with large variance in gene
expression, while S indicates that with evSNP genotype (A/A) associated with small variance. The
interacting SNP shows large genotype heterogeneity in the L group and small or no genotype
heterogeneity in the S group. (B) Real example of evSNP rs742090 and interacting SNP rs3799378 at
BTN3A2. Individuals with rs742090-CC genotype are further broken down by rs3799378 into three
subgenotype groups, which are associated with different means of gene expression levels (shadowed
panel).
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Table 2.1 SNPs associated with gene expression variability and human complex trait. L and S indicate that
individuals carrying homozygotic genotype of the risk allele have large and small variance in gene
expression, respectively.

Gene (evSNP) Tissue GWAS complex trait Risk allele Reference

PAX8 (rs11123170)  LCL, Fat, Renal function related traits ~ rs11123170-G- [143]
Skin (BUN)

WDR41 (rs163030) LCL, Fat, Caudate nucleus volume rs163030-At [144]
Skin

HCG22 (rs2517532) LCL Hypothyroidism rs2517532-GS [145]

TBKBP1 LCL Multiple sclerosis rs8070463-TS [141]

(rs8070463) Ankylosing spondylitis rs8070463-C- [142]

2.4 Discussion

There is empirical evidence across several species that the variance among
phenotypes is genotype dependent [111,127,146,147]. Understanding genetic control of
phenotypic variability has become increasingly important in evolutionary biology,
human medicine, the agricultural industry and other branches of biological science
[114,148]. Despite the importance, few research programs focus on genetic variants
associated with trait variance, while studies of trait averages abound. Recently, a
powerful statistical framework based on the DGLM model has been developed for
studying the phenotypic variability of complex traits [69]. Given that gene expression is

a complex trait with highly variable and heritable patterns [104,107,149], we have
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previously adapted the DGLM method to investigate genetic variants controlling
expression variability [68].

In this study, we further investigated the relative contribution of genetic and
nongenetic (environmental) factors to expression variability and the role of these factors
in the formation of evQTLs. We started by exploring basic statistics of gene expression
measured in the TwinsUK cohort. For all genes, expression level dispersions were
highly similar in and between both MZ and DZ twins. No correlations with expression
variability were detected when compared between individuals, between single cells, or
relative to the average mRNA decay rate, highlighting the marked discrepancies in
variability measured at population and molecular levels. Further results showed that the
discordance in expression between each pair of DZ twins was more pronounced than that
between MZ twins, implying that the increased amount of genetic variation between DZ
twins influences expression variability. Next, we systematically identified cis-acting
evQTLs in three tissues of the TwinsUK cohort. Twin data greatly facilitated the
validation of detected evQTLs and revealed overall robust signals that would otherwise
not be appreciable in studies of non-twin design. Focusing on the detected evQTLs, we
showed that the discordance in expression between DZ pairs was larger than that
between MZ pairs, and further showed that the discordance in expression between MZ
pairs whose genotypes were associated with large expression variability was
significantly larger than that between MZ pairs whose genotypes were associated with
small expression variability. It is intriguing to find that the phenotypic discordance

remained even in the absence of genetic variation between MZ twins. This might be
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explained by incomplete penetrance of mutations, which is frequent in isogenic model
organisms in homogeneous environments [150,151]. This might also be epigenetic: for
example, DNA methylation, which can be influenced by environmental factors such as
diet and lifestyle, is also known to affect gene expression [152,153]. Lastly, much to our
surprise, we found that more than half of evQTLs could be explained by a conceptually
simple scenario in which the evSNP was occasionally associated with a nearby SNP that
influenced gene expression both additively and independently. We suspect there should
be many different ways of non-epistatic interaction between two or more genetic
variants, such as the mode of partial association we have described here, giving rise to
genotype-dependent expression variances. That is to say, the majority of phenotypic
variability across individuals might be explained without invoking epistasis [154,155].
In light of our new findings, several related considerations are discussed below.
2.4.1 Methodological considerations for studying phenotypic variability

The procedure we used for identifying evQTLs [Materials and Methods, and [68]]
consisted of three steps. First, the F-K test was applied to test for the heterogeneity of
variances of gene expression between different genotypes and identify corresponding
SNPs. Next, the DGLM method was applied to the selected SNPs. The significant results
of DGLM test were then subjected to permutation tests to reduce the influence of
outliers in the data. This procedure is less likely to be susceptible to issues related to
multiple testing and outliers in input data, though a formal assessment of its statistical

power remains to be done.
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Given the flexibility of the DGLM method, we acknowledge that the results of
our evQTL analysis are likely to be dependent on how the DGLM analysis was set up.
For this study, we adapted the Gaussian error distribution and link function because no
significant departure from normality was found in the expression data. The effect of
different methods of normalization on statistical interpretation of gene expression
remains subject to careful scrutiny [156-158]. For example, normalizations may perturb
the covariance structure of input data or change the scale of the resulting data. Thus, the
impacts of different methods of data transformation and normalization should be
carefully considered in future studies involving evQTL analysis. Finally, we
acknowledge that the DGLM analysis described in this paper may be influenced by the
scale effect (e.g. mean-variance relationship). It is not uncommon for trait variance to
change with trait mean, often causing trait skewness. If this occurs, any SNP associated
with a large increase in mean expression would also be associated with an increase in
variability [69] and that is why we standardized using the CV.. Analyses studying a
specific phenotype and/or with a more narrowly-targeted focus than that of the broad-
based study described in this paper should employ a more conservative approach in
which QTL associated strictly with variance (i.e. those affecting only variability and not
the mean) are identified, using the procedure proposed by Ronnegard and Valdar [69].
2.4.2 Additive vs. epistatic effect of genotypes on phenotypic variation in a
population

Quantitative geneticists partition the genetic effect on phenotypic variation

between individuals into additive, dominance, and epistatic components. The additive
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component describes the variance associated with the independent contributions of
alleles, while dominance describes the variance contributed by interactions between
alleles at the same locus, and epistasis refers to the contribution of interactions between
alleles at different loci. For most complex traits, quantitative genetic theory [154,159]
suggests that epistasis is unlikely to contribute substantially to the between-individual
variation. That is to say, most of the variation in a population will be due to the additive
effects of specific allelic combinations. Yet this assertion is not without controversy. The
results of empirical linkage mapping and association studies suggest that epistasis seems
to explain considerable variation in complex trait characteristics within natural
populations [160,161].

Our results showed that >50% of evQTLs can be explained by a partial
association between haplotypes of the evQTL SNP and another SNP nearby. Our
interacting SNP analysis only considered a simplistic scenario of the association. There
are many other possible ways of partial associations in which SNPs interact. For
example, consider the genotyped SNP “A/a” and the causative eQTL “Q/q”, with only
three haplotypes segregating in the population: AQ, aQ and aq (as would occur if the
novel “q” allele arose on the “a” haplotype). Then the “a” SNP allele would be
associated with a changed trait mean and a higher trait variance as the eQTL segregates
within that genotype. If we could take all possible partial associations into account, we
would anticipate that even more evQTLs could be explained by the effect of partial
association, rather than epistasis. We therefore conclude that much variance in a

quantitative trait may be explained by partial association between locally interacting
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genetic variants, each additively associated with the trait. Our view is supported by the
results of recent studies. Powell et al. [155] conducted a gene expression study using
blood samples from 862 individuals from nuclear families containing MZ or DZ twin
pairs, using both pedigree and genotype information. They found that the genetic
architecture of gene expression is predominantly additive, with a minority of transcripts
displaying non-additive effects. Hill et al. [154] evaluated the evidence from empirical
studies of genetic variance components and found that additive variance typically
accounts for over half and often close to 100% of the total genetic variance.

2.4.3 Detecting evQTL as a shortcut for detecting epistasis?

Detection of the variance of a quantitative trait in genetic association studies is
thought to increase knowledge about the interaction between genetic variants. More
specifically, detecting variability QTL (e.g., evQTL) is considered to be a shortcut for
detecting genetic interactions [69,70]. So far, many methods for detecting genetic
interactions are based on testing for different variances of phenotype between genotypes,
with the underlying assumption that the variance of a quantitative trait is likely to differ
under the influence of epistasis [69,116]. However, our new discovery that evQTLs are
formed due to the partial haplotype association between SNPs refutes this assumption.
As stated above, more than half (and probably much more) evQTLs could be explained
by partial association between SNPs with additive effects. Both additive and epistatic
effects can result in increased phenotypic variation (as schematically illustrated in
Figure 2.9). Merely detecting the variance of a quantitative trait cannot in itself

distinguish between additive and epistatic effects; thus, no specific conclusions can be
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made. The relationship between partially associated SNPs, each additively associated
with phenotypic variation, needs to be integrated more carefully in the study of
phenotypic variability. Thus, the variance of a quantitative trait should not serve as a
hallmark of genetic interaction or epistasis.
2.4.4 Phenotypic variability and implications in complex traits and diseases
High-throughput sequencing and genotyping technologies have spurred an
increasing number of studies detecting genotype-phenotype relationships and mapping in
complex, polygenic traits and human diseases [162]. The remarkable success of GWAS
is accompanied by the issue of the “missing heritability” [163], namely the fact that the
trait-associated SNPs identified through GWAS often account for only a small
proportion of the observed correlations in phenotype between relatives. The reason
behind this issue has been thought to be that additional genetic factors remain to be
found, and that the presence of epistasis is a particular cause for concern [160,164,165].
In reality, if the effect of one locus is altered or masked by effects at another locus,
power to detect the first locus is likely to be reduced, and elucidation of the joint effects
at the two loci will be hindered by their interaction. Consequently, a large amount of
research has been devoted to the detection and investigation of epistatic interactions; a
number of methods for detecting the interaction between SNPs have been proposed
[116,137,166-168], yet there has been much confusion in the literature over definitions

and interpretations of epistasis [169].
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Figure 2.9 Schematic shows that both additive (left) and epistatic (right) effects create similar evQTL
signals.“A” and “a” are two alleles of evSNP, while “B” and “b” are alleles of interacting SNP.

This study, together with previous findings [154,155], clearly shows that a
detailed investigation of local haplotype structure between SNPs at the same locus is
necessary to reveal their combined influences on phenotypes of complex traits. For
example, we have identified a list of evSNPs that are also associated with human
complex trait (see Table 2.1). Further investigations on partial associations between
closely linked SNPs that may influence these traits should be performed. The same
should also be done for FTO whose genotype is associated with phenotypic variability of
body mass index [114].

Finally, we point out that an interaction detected via statistical models is different
from the biological interaction [169-171]. The lack of direct correspondence between
statistical and biological interactions makes it difficult to make strong inferences

concerning biological mechanisms based on interaction terms from a statistical model
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[164]. Therefore, detection of statistical interaction merely provides a good starting point
for a more focused investigation of the joint involvement of the relevant factors, which
can perhaps be better addressed through other types of experimental data. Our findings
suggest that there is a lot that can be done at the statistical level to prioritize those loci
that are most likely to produce significant experimental results.
2.4.5 Conclusions

In conclusion, we used evQTLs as a statistical model system for studying
phenotypic variability and dissected the genetic and nongenetic effects by using twin
data. Our findings concerning evQTLs offer new insights into the relative contributions
of genetic and environmental factors in the formation of evQTLs. Dissecting the genetic
components underlying phenotypic variability into additive and epistatic effects allowed

the dominant role of additive effect to be revealed.
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CHAPTER 111
EPISTASIS AND DECANALIZATION SHAPE GENE
EXPRESSION VARIABILITY IN HUMANS VIA DISTINCT MODES OF

ACTION

3.1 Introduction

Phenotypic variability refers to the likelihood of the phenotypic variation being
observed in a population. Quantitative genetics assumes that phenotypic variation, i.e.,
the difference in phenotypic mean between individuals, is genetically controlled [172].
Under such an assumption, phenotypic variation is explained solely by differences in
phenotypic mean among genotypes. This deterministic view, however, has come under
challenge. New studies show that phenotypic variance is genetically controlled, and the
variance itself is a quantitative trait [68,69,111,112,114,116,127,173-176]. Increasing
evidence of genetic control over the variance calls for a paradigm shift in quantitative
genetics. Understanding the mechanism of how phenotypic variance is controlled is of
great importance for evolutionary biology, agriculture or animal sciences, and medicine
[68,69,148,177]. In evolutionary biology, for example, variability offers an adaptive
solution to environmental changes [110,178,179]. Genetic factors resulting in more
variable phenotypes become favored when they enable a population to respond more
effectively to environmental changes [100-103]. In medicine, disease states emerge
when the relevant phenotype of affected individuals goes beyond a threshold. As such,

high variability genotypes will produce a larger proportion of individuals exceeding that
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threshold than will low variability genotypes, even if these genotypes have the same
mean. By ignoring the effect of genotypes on phenotypic variance, an important axis of
genetic variation contributing to phenotypic differences among individuals has been
overlooked [147,172]. The lack of empirical studies in this regard has hindered the
discovery of variance-associated mutations that modulate disease susceptibility and the
phenotypic variability of other human health-related traits.

Several studies have been conducted to reveal gene expression variability, i.e.,
the differences in variance of gene expression between groups, in various systems [180-
182]. Nevertheless, our understanding of how genetic diversity can control or influence
gene expression variability remains limited. Promising new developments along this line
have come from our findings in complex trait analysis of gene expression. Using
variance-association mapping, we and others identified genetic loci associated with gene
expression variance, called evQTLs [68,176] or v-eQTL [175]. How evQTLs effects
come about is not completely known. While epistasis has been widely accepted as a
mechanism introducing phenotypic variability, here we offer a more straightforward
explanation, that is, evQTL variants disrupt or stabilize the genetic architecture that
buffers stochastic variation in gene expression. As a result of decanalization, phenotypic
expression becomes more sensitive to the external environment and varies more greatly
[68,69]. We reveal evQTLs with epistasis and decanalization, two distinct modes of
action on gene expression variability and lay the foundation for a new analytical
framework that accounts for the genetic contribution to phenotypic variability. We

anticipate that methods derived from the new framework will allow us to identify novel
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causal loci, which would otherwise be missed by traditional mean-focused methods, in
complex disease mapping.
3.2 Materials & methods
3.2.1 Gene expression and genotype data for evQTL analysis

The gene expression data generated by the Geuvadis project RNA-seq study [183]
was downloaded from the website of EBI ArrayExpress using accession E-GEUV-1.
The downloaded data matrix contained the expression values of Gencode (v12)-
annotated genes measured in 462 unique LCL samples. The data were normalized by
using the method of probabilistic estimation of expression residuals (PEER)[184]. From
the data matrix, we extracted the expression values of autosomal protein-coding genes of
345 EUR samples, whose genotype data is available from the website of the 1,000
Genomes Project [185]. Based on the result of a principal component analysis, we
excluded 19 samples whose global expression profile apparently deviated from those of
the rest of samples. The final data matrix used for the evQTL analysis contained gene
expression values of 15,124 protein-coding genes and 326 EUR samples. Also, we
obtained genotype and expression data from a cohort of female twin pairs [117] from the
TwinsUK adult twin registry [118]. The data for gene expression in LCLs of 139 pairs of
MZ twins were extracted and used in this study.
3.2.2 ldentification of evQTLSs

Cis-evQTLs were detected using the DGLM method [115] , trans-evQTLs were
identified using the SVLM procedure [167], these two methods are described in

Chapters I and II.
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3.2.3 ldentification of partial eQTL SNPs that interact with evQTL SNPs

We used a two-step procedure to identify SNPs that interact with evQTLs. We
first partitioned individuals into L and S groups according to whether genotypes of the
evQTL SNP are associated with large (L) and small (S) variances of gene expression.
Then we scanned genome-wide SNPs. For each SNP, the eQTL analysis by linear
regression model was conducted among individuals of the L group. For each top SNP
with high genotype heterozygosity difference, a linear regression [107] was performed
on the SNP genotypes and gene expression. The most significant SNPs were retained
after applying an arbitrary P-value = 0.0005 as cutoff and were reported as candidate
interacting SNPs.
3.2.4 Estimation of gene expression noise using repeated RT-gPCR assay

LCLs were purchased from the Coriell Institute (https://catalog.coriell.org/). The
cells were maintained in Roswell Park Memorial Institute Medium 1640 with 2mM L-
glutamine and 15% FBS (Seradigm) at 37°C in a humidified atmosphere containing 5%
COz (v/v). For the time course experiment, cell lines were seeded at 1 x 10° cells per 10
cm dish and then incubated in culture medium. Cell lines were screened to ensure they
were mycoplasma free by using the MycoFluor mycoplasma detection kit (Invitrogen).
Cells were collected at 24, 36, 48, 60, and 72 h after growth. Total RNA was extracted
using Trizol reagent (Invitrogen). RNase-free DNase (Ambion) was used to remove
potential contaminating DNA from RNA samples. RNA purity and concentration were
determined using Nanodrop ND-100 Spectrophotometer. The concentrations of total

RNA were adjusted to 100 pg/ml. Real-time RT-PCR assays were performed using iTaq
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Universal SYBR Green One-Step Kit (Bio-Rad Laboratories) with primers shown in
Table 3.1. Template total RNA was reverse transcribed and amplified in a Bio-Rad
CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories) in 20-pl reaction
mixtures containing 10 pl of iTaq universal SYBR Green reaction mix (2x), 0.25 pl of
iScript reverse transcriptase, 2 pl of 100 nM forward and reverse primer mix, 1 pl of
total RNA template, and 6.75 pl of nuclease-free water, at 50°C for 10 min, 95°C for 1
min, followed by 30 cycles of 95°C for 10 s and 58°C for 30 s. Melting curves were
measured from 65°C to 95°C with 0.5°C of increment. The average expression of two
housekeeping genes (CHMP2A and Clorf43) was used for normalization. The choice of
using these two genes as reference was based on recent scrutiny of human genes with a

constant level of expression using RNA-seq data [186].

Table 3.1 List of primers used for RT-gPCR.

evQTL Gene Targets Primers

ATMIN 5' AATGCCCTTGTCAGTAGGAAC 3'

5' GGCTCACCAGCAATAGGATTAG 3

BEND4 5' GTCGAATGATCTTGGATGCCTT 3'

5' TCCAGGAGTTTTCCTCCACAAT 3

CHMP2A 5' CGCGAGCGACAGAAACTAGAG 3

5 CCCGCATCAATACAAACTTGC 3

ZNF10 5 TCAGGACAGTTGTGCAAGTAAC 3'

5 GGGTTTCTCTCTATGTATGCCCT 3
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3.2.5 Flow cytometric analysis of cells in different phases of the cell cycle

Cell cycle distribution was evaluated by using flow cytometry. This
determination was based on the measurement of the DNA content of nuclei labeled with
propidium iodide [187]. Cells were harvested at 24, 36, 48, 60, and 72 h after treatment.
The cells were resuspended at a concentration of 1x10%/ml in cold PBS. After 1ml of
ice-cold 100% ethanol had been added dropwise, the cells were fixed at 4°C for at least
16 hours. The fixed cells were pelleted, resuspended in 1ml of propidium iodide (PI)
staining solution (50 mg/ml propidium iodide, 100 units/ml RNase A in PBS) for at least
1 hour at room temperature and analyzed on an FACS flow cytometer (BD). By using
red propidium-DNA fluorescence, 30,000 events were acquired. The percentage of cells
in GO/G1, S and G2/M phases of the cell cycle was calculated using Flowjo software
v10 (Tree Star).
3.3 Results
3.3.1 Widespread evQTLs in the human genome

We obtained the expression data for 15,124 protein-coding genes measured in
462 LCLs by the Geuvadis Project [183]. We also obtained genotype data at 2,885,326
polymorphic sites determined in the same cell lines by the 1,000 Genomes Project [185].
After data processing, 326 LCL samples from unrelated individuals of EUR were
retained for this study (Materials and Methods). To identify evQTLs, we first applied a
method based on the DGLM [115]. The method has been previously adopted by us
[68,176] and others [69]. Owing to computational complexity, we restricted the use of

this method to the identification of cis-acting evQTLs. On average ~1800 SNPs that lay
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within 1-Mb radii of the transcription start site were tested per gene. Using a
conservative Bonferroni correction cutoff P = 1.75x10° (= 0.05 / 28,494,473), we
identified a total of 17,949 cis-evQTLs in 1,304 unique genes, i.e., 8.6% of all genes
tested (Figure 3.1A). Next, to identify both cis- and trans-evQTLs genome-wide, we
adopted the method based on SVLM [167,175]. It is a computationally efficient, two-
stage method. The effect of variants on gene expression mean (i.e., eQLT effect) is
firstly removed by regression, and the residuals are squared to give a measure of
expression dispersion. Then the correlation between squared residuals and genotypes is
tested. We applied SVLM to test all SNPs against all genes, without pre-filtering SNPs
by their locational relationship with tested genes. Such an all-against-all strategy allowed
a systematic survey of cis- and trans-evQTLs across the entire genome. We used the
Benjamini-Hochberg procedure [188] to determine the P-value cutoff of 3x10°° that gave
the FDR of 0.1. At this level, we identified 505 cis-evQTLs in 33 unique genes, and
1,008 trans-evQTLs in 235 unique genes (Figure 3.1B). Two genes AXIN2 and
FAM86B1 were found to have both cis- and trans-evQTLs. Applying the same FDR
cutoff to detect both cis- and trans-evQTL resulted in an unbiased picture of the
distribution of all evQTLs across autosomes (Figure 3.1C). Comparing the positions of
genes and their evQTLs, we did not observe a strong enrichment of data points along the
diagonal of the graph, suggesting cis-evQTLs not be particularly enriched compared to
trans-evQTLs. We noticed a pronounced discrepancy in the number of cis-evQTLS
detected using DGLM and SVLM. This discrepancy may because that SVLM and

DGLM have different detecting power. Computer simulations showed that, when the

57



sample size was set to 300, SVLM had only half of the power of DGLM (Fig 3.2).
Furthermore, the huge multiple testing burden associated with the application of SVLM

in the all-against-all tests may also contribute to the discrepancy.
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Figure 3.1 Overview of evQTL detections and the distribution of cis- and trans-evQTLs in autosomes. (A)
Flowchart of cis-evQTLs identification using DGLM method. (B) Flowchart of cis- and trans-evQTL
identification using SVLM method. (C) Distribution of SVLM-identified cis- and trans-evQTLs in
autosomes, in which cis-evQTLs marked in red and trans-evQTLs marked in black.

3.3.2 Epistatic interactions contribute to increasing gene expression variability
Epistasis, i.e., the interaction between loci, may increase the phenotypic
variability of a population [116,137]. The evQTLs provided source materials for
studying epistatic effects on gene expression variability [176]. More specifically, we
sought to identify “third-party” SNPs that interact with evQTL SNPs. Such interactions
result in more variable gene expression of the evQTL genes. In particular, for each
evQTL SNP identified by using SVLM, we applied a two-step procedure to identify the
third-party SNPs, also known as partial eQTL SNPs (see below). These third-party SNPs
interact or are partially associated with evQTL SNPs, resulting in the increased gene
expression variance [175,176]. The process of partial eQTL SNP identification is

illustrated in Fig 3.3. Briefly, for a given evQTL (for example, the evQTL between gene
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X and SNP Y), we extracted samples with a homozygous genotype associated with large
expression variance. We called these L group samples. Accordingly, those related to
small expression variance was called S group samples. Then, we conducted a genome-
wide scan among the extracted L group samples to identify eQTL SNPs (e.g., SNP 2Z)
that control the expression of the corresponding evQTL gene (i.e., gene X). The
identified eQTL SNPs are called partial because they are detected in the sub-sampled
discovery panel, and their effect on gene expression is restricted to L group samples. The
evQTL SNP Y and its partial eQTL SNP Z may be co-localized proximately on the same
chromosome and partially associated as we showed previously [176]. They may also be
unlinked, for instance, located on different chromosomes, and interact with each other
epistatically [175]. Here, we focused on the 268 evQTLs (33 cis- and 235 trans-acting
ones) identified by using SVLM. In 73 out of 268 evQTL genes, we identified at least
one significant interacting SNP, i.e., partial eQTL SNP with simple linear regression test
P < 10® in the L group samples. These results suggest that more than one-fourth of

evQTLs are attributable to partial eQTL SNPs interacting with evQTL SNPs.
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Figure 3.2 Comparison of statistical power of two evQTL detection methods: DGLM and SVLM, using
computer simulations with different sample sizes. For simulations, a population of 10,000 individuals was
generated, and the MAF of an evQTL SNP was set to 0.4. The genotypes of SNP were encoded to 0, 1, 2
for homozygous minor, heterozygous, and homozygous major alleles, respectively. The gene expression of
each genotype was generated from a normal distribution with the same mean but different variances, 1.0,
2.0, and 4.0, respectively. Before testing a method, the population was subsampled to the designated
sample size, ranging from 300 to 1,000. For each sample size, the tested method was applied to the
subsamples. The whole procedure was repeated 1,000 times, and the power was computed as the ratio of
the times of P-value being smaller than 5x10° (i.e., 0.05/1000).

60



Extract homozygous
individuals whose genotype
associated with large
Identify evQTL expression variance |dentify partial eQTL

Genotype II
Data

Expression II
Data

aa Aa AA bb Bb BB

evQTL SNP Partial eQTL SNP

Figure 3.3 Schematic illustration of the method for identifying partial eQTLs.After the identification of
evQTL, the partial eQTL method involves two steps: (1) extraction of homozygous individuals whose
genotype of the evQTL variant is associated with increased expression variability, and (2) identification of
the eQTL between the gene and third-party variant among extracted individuals.

3.3.3 Decanalization contributes to increasing gene expression variability without
genetic interactions

Here we put forward the decanalization model to explain the formation of
evQTLs. The model emphasizes the interaction between gene (or genotype) and the
environment. Unlike the epistasis model that concerns the epistatic interactions or
associations between variants at different loci [175,176], the decanalization model
concerns a single variant that perturbs stable genetic systems through a decanalizing
effect on the expression of the specific genotype. We hypothesized that some evQTL
SNPs are associated with gene expression variability because one of their two alleles
confers the decanalization function, causing more variable gene expression. In other

words, decanalizing SNPs increase gene expression variability via the single-locus effect,
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without interacting with any other SNPs. Thus, these decanalizing evQTLs have a
different formation mechanism in contrast to that of epistatic evQTLs.

To show the decanalizing effect, by further controlling the diversity of samples’
genetic backgrounds, we re-visited the genotype and expression data from our previous
study [176]. The data were derived from LCLs of a cohort of twin pairs [117]. In the
previous study, we used a single set of the twin pairs, which contains one individual
from each twin pair for evQTL analysis and identified cis-evQTLs in 99 unique genes
[176]. Here, we first classified the 99 evQTLs (between each gene and the most
significant SNP) into 56 epistatic and 43 decanalizing evQTLs. The classification was
based on whether or not an interacting SNP (i.e., partial eQTL SNP) could be identified
using the two-step procedure described above. The idea was that if no interacting SNP
can be detected for an evQTL, then the evQTL cannot be explained