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ABSTRACT 

Variation and variability of gene expression are central concepts in biology. 

Variation refers to differences among individuals, whereas variability refers to the 

potential of a population to vary. The advent of next-generation sequencing technology 

has lead to the accumulation of an ever-increasing number of population level, large-

scale genotype and gene expression data sets, which provide excellent opportunities to 

identify the genetic loci that potentially affect gene expression variation and variability. 

Over the last several years, much effort has been made to identify genetic loci 

that affect the mean differences in phenotypic expression between genotypes, but these 

studies have largely ignored loci that affect the variance of phenotypic expression within 

individual genotypes. Although studies of expression quantitative trait loci (eQTL) have 

established a convincing relationship between genotype and levels of gene expression, 

the impact of genetic variants on gene expression variance remains unclear. In addition, 

the analytical frameworks adopted by most eQTL studies have been based on 

population-level test statistics, which are powerful for assessing the effects of common 

genetic variants, but not rare or private genetic variants. Few frameworks or statistics are 

available for assessing the impacts of rare genetic mutations on gene expression. Thus, a 

new statistical method is required to address this issue. 

In this dissertation, I aim to address these questions in humans using publically 

available large-scale, Next-generation RNA sequencing datasets and new experimental 

data from my own work.  I first adopted a new statistical method called double 
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generalized linear model (DGLM) to study the effect of common genetic variants on 

gene expression variability, which I define as expression variability QTL (evQTL), using 

data from the TwinsUK study. I searched the whole genome to identify common genetic 

variants associated with variable expression at cis-acting genes and showed the 

contribution of both genetic and nongenetic factors to variable gene expression. I next 

examined two distinct modes of action of evQTLs: GxG interaction (the interaction 

between genotypes at different loci) and GxE interaction (the interaction between 

genotype and environment), which showed that common genetic variants work 

interactively or independently to influence gene expression variance. Lastly, I 

established a novel analytical framework to evaluate the effects of rare or private 

variants on gene expression variability. This method starts from the identification of 

outlier individuals that show markedly different gene expression from the majority of a 

population, and then reveals the contributions of private SNPs to the aberrant gene 

expression in these outliers. 
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CHAPTER I  

INTRODUCTION 

 

1.1 Human genetic variation 

Human genetic variation comprises all of the differences in the genetic sequence 

both within and among populations. A larger amount of genetic variation is found 

associated with alter levels of gene expression and increased or decreased risk of disease 

through distinct mechanisms. Elucidating the contribution of genetic variation to human 

health and disease has become a major challenge for biology in the 21st century and 

promises significant benefits to human welfare [1]. Human genetic variation can be 

divided into two broad categories: single-nucleotide polymorphisms (SNP) and 

structural variations. Structural variations, in turn, include indels (insertions and 

deletions), copy number variants, inversions, and translocations. Among these genetic 

variations, SNP is the most common category of genetic variants in the human genome, 

accounting for more than 90% of known polymorphisms. Based on the minor allele 

frequency (MAF), SNPs can be classified into three groups: common (MAF> 5%), low-

frequency (0.5% ≤ MAF < 5%) and rare SNPs (MAF < 0.5%). In this dissertation, I am 

primarily focused on the contribution of SNPs to gene expression variance.  

In 2001, the Human Genome Sequencing Consortium [2] and Celera [3] 

published their first haploid human genome sequence in succession based on a very 

limited number of individuals. Despite the achievement of annotation of the human 

genome sequence, genetic variation was not noted in either of the human genome 
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references. One year later, the International HapMap Project was initiated to understand 

the common patterns of human genetic variation that may associate with disease risk. 

The first haplotype map (HapMap) of the human genome was released in 2005 [4]. More 

than one million SNPs were obtained using 269 human samples from four 

geographically diverse populations: ‘Yoruba’, ‘Northern and Western European’, ‘Han 

Chinese’ and ‘Japanese’. Two years later (2007), a second generation human haplotype 

map was published with over 3.1 million SNPs reported [5]. In 2008, scientists expanded 

the number of samples to more than one thousand people, and the 1000 Genomes Project 

was launched with the objective of providing the most detailed catalog of human genetic 

variation available to study the relationship between genotypes and phenotypes. The 

pilot phase of the project was published in 2010 [6], with a description of approximately 

15 million SNPs, 1 million short insertions and deletions, and 20,000 structural variants  

1.2 The contribution of genetic variants to disease risk 

An increasing number of studies are focused on genome variability due to its 

relevance to complex traits. Understanding the effects of genetic variants on disease risk 

has become a fundamental requirement for medical genetics. Genome-wide association 

(GWA) [7] is a powerful strategy for studying associations between common genetic 

variants and common complex traits, and is typically focused on the impact of common 

SNPs on complex human diseases, especially those related to major health conditions. 

Risch [8], who first proposed the idea of GWA in 1996, believed that there was no need 

to predict candidate genes in future complex human disease studies, and it would be 

possible to detect genome-wide genetic variants that linked to the disease through large-
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scale (population based) genetic testing. In 2005, Klein et al. [9] published the first 

successful GWA study (GWAS), in which they found two SNPs to be strongly 

associated with age-related macular degeneration. A typical GWAS may involve the 

following four steps [10] : (1) selection of a large sample of individuals with a disease of 

interest and an equally large appropriate control group, (2) genotyping and quality 

control to ensure the high quality genotype data, (3) statistical analysis to identify 

significant associations between phenotypes and identifiable genetic variants, and (4) 

replication of identified associations using an independent sample group. Since 2006, 

with the completion of the Human Genome Project (HGP) and the HapMap, and 

especially the rapid development of next-generation sequencing (NGS) technology in the 

past few years, GWAS has resulted in an explosion of knowledge concerning 

associations between common SNPs and diseases. As of 2013, more than 1,900 human 

GWA studies had examined more than 300 common traits and diseases, including 

digestive system disease, cardiovascular disease, metabolic disease, immune system 

disease, nervous system disease, liver enzyme disease, lipid or lipoprotein disease, and 

cancers, and more [11]. One of the best known GWAS successes was the discovery of 

the FTO locus (fat mass and obesity-associated protein) located on chromosome 16. SNP 

rs9939609, located within this gene, is strongly associated with type 2 diabetes, where 

adults homozygous for the risk allele had 1.6-fold increased odds of obesity compared 

those without the risk allele [12].  

Despite the success of GWA studies in identifying a large number of SNPs 

associated with distinct diseases, there are still several key limitations of the GWA 
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strategy. Firstly, although a limited number of SNPs that increase or decrease gene 

transcription activity are located in regulatory elements such as promoters, or that 

change the amino acid sequence by altering the base sequence in coding exons, the 

majority of SNPs associated with disease are located in noncoding regions, or are 

located in coding regions but do not change the translated amino acid sequence 

(synonymous base substitutions). Therefore, they are not informative for explaining how 

genetic variants contribute to the disease risk. To address this issue, much effort has 

been put into discovering the regulatory roles of noncoding sequences in the genome, as 

exemplified by the Encyclopedia of DNA Elements (ENCODE) project [13] and 

Roadmap epigenomics mapping consortium project [14]. Also, by the necessity of their 

experimental design, GWA studies focus on the impact of common SNPs on health 

conditions and ignore the effects of rare SNPs. However, a long-established idea 

believed that rare genetic variants may be the primary drivers of common diseases 

[15,16]. Increasing evidence support this idea with the identification of rare genetic 

variants associated with diseases, such as inflammatory bowel disease [17], prostate 

cancer [18] and Alzheimer’s disease [19]. Lastly, and most importantly, the biggest 

challenge we are facing is that GWA studies provide no information to help us 

understand the underlying molecular mechanisms of the identified relationships between 

SNPs and the associated diseases condition(s). To overcome these drawbacks in GWA 

studies, the level of gene expression is introduced as an intermediate phenotype, which 

provides a link between genetic variants and disease processes. 
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1.3 Gene expression and regulation 

Regulated gene expression in time and space is the most important process to 

determine and maintain the characteristics of cells. Dysregulation of gene expression 

may influence the cellular state and function of cells, resulting in abnormal development 

and diseases conditions [20,21]. Thus, understanding how the expression levels of 

different genes are determined in different cell types between and within species is the 

central goal of biology. Gene expression from DNA to mRNA is a multistep process that 

is regulated at different stages including, but not limited to, transcription and various 

post-transcriptional mechanisms, which collectively produce mature mRNA and 

regulated their concentration within the cell. In eukaryotes, transcription process can be 

divided into three different stages, initiation, elongation and termination [22,23]. The 

initial transcript generated from this process called pre-mRNA, which is then matured in 

the process of 5’ capping, 3’ polyadenylation and splicing [24]. The expression level of 

an mRNA is determined by rates of mRNA synthesis and degradation[25], which 

determine the steady-state level of mRNA. In this dissertation, unless otherwise 

specified, gene expression refers to the abundance of steady-state mRNA, which is 

influenced by both trans-factors and cis-elements. 

A cis-regulatory element is a specific sequence in DNA that can regulate the 

expression of a gene to which it is physically linked to the same chromosome strand. 

Cis-regulatory elements can be subdivided into three general classes: promotor elements 

lie near the transcription starting site of the affected gene, at or near the binding site for 

RNA polymerase II: enhancer elements may be found upstream or downstream of the 
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coding region and work with the promoter to greatly enhance the efficiency of 

transcription: silencer elements can also be upstream or downstream of coding sequences 

and play a contrary role relative to enhancers by inhibiting the activation of transcription 

factors and decreasing the efficiency of transcription. Although different regulatory 

elements play different roles, they are all involved in the binding of trans-acting factors, 

which are described in the next paragraph. 

Trans-acting factors, are molecules, usually proteins, produced at sites anywhere 

in the genome that can bind to cis-acting sequences (as defined above) to regulate gene 

expression. These can be classified into four general groups: (1) transcription factors: 

RNA polymerases produce primary RNA transcripts, but cannot bind directly with the 

promoter. RNA polymerases can enter the promoter region to start the transcription only 

after the combination of transcription factor and promoter to form a specific complex, (2) 

activatora are special regulatory proteins that can identify specific sequence elements, 

binding to the promoter or enhancer sequences in order to enhance the effectiveness of 

the promoter and increase the frequency of transcription, (3) coactivators provide a 

connection between activators and basic transcription elements by protein and protein 

interaction to promote gene transcription, (4) repressors bind to the upstream promoter 

or even at distant silencer locations where they inhibit transcription initiation through a 

variety of physical effects including changes in DNA conformation. 

Thanks to the rapid development of DNA sequencing technology over the past 

two decades, we can now measure the global mRNA abundance quickly, efficiently, and 

accurately, making it possible to study the contribution of trans-factors and cis-elements 
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to the mRNA expression on a genome-wide scale. For example, the NGS technology has 

become an indispensable tool as it is the basis for all large-scale sequencing strategies 

including RNA-seq [26,27]. In addition, ChIP-seq [28], which is the combination of 

chromatin immunoprecipitation (ChIP) and the NGS technology provides an efficient 

means to study relationships between transcription factors and their binding cis-elements.  

1.4 The influence of genetic variants on gene expression variation 

Treating gene expression as a heritable, quantitative trait, and understanding how 

genetic variants influence gene expression variation and variability is the central topic of 

my dissertation research. Both genetic and nongenetic (e.g., environmental) factors 

contribute to gene expression. The most obvious example of the effect of a nongenetic 

factor is that there is a remarkable variation of gene expression between individuals with 

the identical genetic makeup, such as identical twins. In addition to nongenetic factors, 

genetic variants can also influence gene expression in distinct ways, either in cis or trans 

depending on the physical distance from the target gene they regulate. Usually, variants 

with 1 megabase (Mb) on either side of their target gene’s translation start site (TSS) are 

considered cis elements , while those located on different chromosomes or more than 5 

Mb up- or down-stream of the TSS are regarded as trans elements [29].  

A relationship between genetic variation and gene expression has been 

recognized at least since Haldane [30] noted that a gene’s activity could be the result of 

genetic variation in the gene itself. Since then many studies of associations between 

genetic variation and gene expression on a scale of a few loci at a time have made 

considerable achievements using approaches introduced by Jacob [31] and Damerval [32] 
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et al. For example, using Drosophila as a research model, Abraham [33] and Powell [34] 

et al. showed that cis-acting genetic variation affects gene expression in space. Despite 

such successes, many basic questions about the genetic variation and gene expression 

remain unknown. For example, how many loci underlie variation in gene expression? 

What is the magnitude of effects of these loci? Is there any genetic interaction between 

these loci to influence gene expression? To answer these kinds of questions, there is a 

critical need to study the contribution of genetic variation to gene expression in a much 

larger scale by mapping genetic variation to genome-wide gene expression. This need 

has been met to some degree by the emergence of DNA microarray technology [35], and 

more recently by the enormous power of NGS technology.  

Since Jansen and Nap [36] introduced the concept “genetical genomics”, also 

called “expression genetics”, which is based on the genetic mapping of global gene 

expression through the use of high-throughput gene expression profiling technology. As 

a result, expression quantitative trait loci (eQTL) studies has been widely applied in 

different species. Brem et al. [37] published the first genome-wide study of gene 

expression in yeast Saccharomyces cerevisiae in 2002, which demonstrated the 

feasibility of this strategy. Subsequently, a number of eQTL studies were reported in 

other species such as Arabidopsis, Saccharomyces cerevisiae, C. elegans, and mouse 

[38-41]. Recently, more and more eQTL studies have focused on human populations 

[42-45], successfully mapping eQTL loci to many different characteristics showing cell-

specific [46], tissue-specific [47], age-specific [48], and development-specific effects 

[49].  
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To identify the gene whose abundance is directly modified by a genetic variant, 

two types of data are required. First, genotypic data of multiple individuals. Second, the 

expression data of thousands of gene transcripts for the corresponding genotyped 

individuals. A statistical test is then applied to test if a given genetic variant is 

responsible for the expression of a given gene. Most available statistical methods for 

eQTL study are based on comparing the genotypes with gene expression levels using 

either linkage or association-based mapping [50,51]. The principle of a linkage mapping 

is to identify genetic variantswhose transmission patterns are associated with gene 

expression through families. The linkage mapping is an effective approach to do a 

genome-wide scan for a small number of SNPs; however, the limitation of this method is 

the low resolution. In contrast, the principle of an association mapping is that apply a 

correlation analysis on the expression of a gene across different individuals with 

different alleles of a genetic variant. For example, suppose we have two vectors, vector 

G contains genotypes for n individuals and vector E contains values of gene expression 

for the same individuals as in vector G. And then, commonly used correlation analysis 

methods (e.g., Person correlation and Spearman rank correlation) or linear regression 

analysis can be performed for the two vectors to calculate a p-value to determine if the 

correlation is significant. Association mapping is far more powerful for detecting 

common genetic variants that contribute to the gene expression variation, and is more 

suitable for identifying eQTL with medium or small effect size. Unlike the traditional 

QTL mapping, eQTL mapping usually performed using thousands of genes and millions 

of SNPs simultaneously. Therefore, eQTL mapping required multiple tests not only for 
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millions of SNPs, but also for thousands of expression traits, by which the type I error 

will be greatly increased. To eliminate the effects of multiple tests, several commonly 

used statistical methods are used to control the type I error: (1) Bonferroni correction, 

the well-known method to correct for multiple-testing derived by observing Boole's 

inequality [52], permutation tests, for each linkage between expression trait and marker, 

we can assess the significance of the association by shuffling the phenotypes [53,54], (3) 

false discovery rate (FDR), which is the expected proportion of false positives in all 

claimed significant results. FDR is more powerful than Bonferroni correction as FDR-

controlling procedures provide less stringent control of Type I errors. Over the last few 

years, a number of tools are designed and published for eQTL analysis, such as R/qtl 

[55], Plink [56], and Matrix eQTL. In addition, several new frameworks are designed for 

specific eQTL mapping. For example, a statistical framework was introduced by Flutre 

et al. [57] to take advantage of the richness of the data across multiple tissues by joint 

analysis of among tissues. Although each of these tools with distinct technical details 

and has their own drawbacks, they have the general trend to provide a genome-wide, fast 

and efficient tool for eQTL detection.  

1.5 The influence of genetic variants on gene expression variance 

Notwithstanding these considerable achievements, eQTL studies focuse 

primarily on the contribution of genetic variants to the mean differences in gene 

expression between genotypes, largely ignoring the differences in gene expression 

variance. The reason for this is that quantitative genetics is based on the assumption that 

phenotypic mean difference is explained by differences in mean phenotypes among 
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different genotypes, while genotypic variability is the result of environmental 

(nongenetic) perturbations, and thus is not genetically controlled. However, recent 

studies have shown that the variance of phenotypic expression is also genetically 

controlled. For example, Yang’s study [58] showed the SNP rs7202116 at the FTO gene 

locus is associated with variability of body mass index in the human population, and 

Shen’s study [59] explored genetic effects on the variance heterogeneity in Arabidopsis. 

In addition, a recent study by Ayroles and colleagues [60] showed that several genes 

affect variability in handedness without affecting the mean, which indicated that 

different genotypes differ dramatically for phenotypic variability. Recently, a number of 

studies have focused on the associations between genetic variants and variances of the 

phenotypic trait (vQTL) [58,61,62]. To study the influence of genetic variants on the 

variances of phenotypic traits, robust statistical methods are required. The most 

commonly used methods for vQTL identification include: (1) Levene’s test [63], (2) 

Brown-Forysthe test [64], and (3) the correlation least squares (CLS) test [62]. Both 

Levene’s and Brown-Forysthe tests use ANOVA-based statistics, the difference between 

the two tests is that the Levene’s test uses the mean in computing the spread within each 

group while Brown-Forysthe test uses the median instead of the mean and therefor 

overcomes the assumption of symmetric noise [64]. The CLS test first apply a liner 

regression test to the genotypes and traits and residuals are calculated, then a spearman 

rank correction test between the squared residuals and genotypes is used to detect the 

evidence of variance effects. However, despite the capability for vQTL detection, each 

method mentioned above has their own drawbacks. For Levene’s and Brown-Forysthe 
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tests, both of them not allowing continuous and additional possibly confounding 

covariates. Although CLS test addresses this problem, it has the problem of easy 

overfitting. 

When gene expression variance is considered as a heritable, quantitative trait, the 

variance should be genetically controlled as shown in biological systems. However, 

despite a few initial efforts focus on the quantification of the variance of gene expression 

[65-67], the influence of genetic variants on gene expression variability remains largely 

unknown. A recent study in our laboratory introduced the concept of expression 

variability QTL (evQTL) [68], which are genetic loci linked to or associated with 

expression variance of genotypes at another locus. To identify evQTL, we adopted a full 

parametric approach called the double generalized linear model (DGLM) method [69] 

with several advantages. For example, it accounts for the uncertainty of fitted parameters 

for both the mean and the variance aspects of the model, and also allows fitting of 

covariates [70]; it is also highly flexible, allowing for any response distribution from the 

exponential family [71] (such as binomial, Poisson, or gamma) to be modeled. Despite 

those advantages, DGLM method is computationally expensive and not suitable for 

genome-wide trans-evQTL detection for considerable costs in terms of computing time. 

To solve this problem, a fast scanning approach called Squared residual Value Linear 

Modeling (SVLM) was applied for the genome-wide trans-evQTL detection. The SVLM 

method consists of two steps. First, a regression analysis is applied where the trait value 

is adjusted for a possible SNP effect and other covariates. Second, regression analysis is 

applied to the squared residuals obtained from the first stage, using the SNP as the 
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predictor. Using genotype and gene expression data from 210 HapMap individuals, we 

showed that the gene expression variances, as opposed to mean, also have a strong 

association with genotypes, both in cis and trans. Although it is just an initial step to 

understand the effect of genetic factors on gene expression variances, the conclusion 

from this study is that gene expression variance is likely to be genetically controlled. The 

method we adopted in this study allows us to explore the relationship between genetic 

variants and gene expression variance from one tissue type and infer them to the other 

tissue types. It is, therefore, fair to ask several key questions to expand our 

understanding of the extent to which, and in what ways, genotypes influence gene 

expression variability. (1) our previously evQTL detection was based on the DGLM 

using a single data set, the results need to be further validated using additional data sets 

and multiple tissue types to validate whether gene expression variance is really under 

genetic control or evQTLs are just a statistical phenomenon, (2) it remains unclear what 

genetic and/or environmental conditions contribute to the creation of an evQTL, which is 

essential information for understanding the mechanisms that underlie the existence of 

evQTL, (3) In our previous study, we focus on the identification of single locus effect, 

which is the association between the expression of a single gene and a single locus. 

However, increasing evidence shows that a lot of gene expression traits are associated 

with multiple loci [72,73], which could also explain the variability of gene expression. In 

addition, epistasis has emerged as an important factor to understand the multiple loci 

effect [72,74] and the phenotypic variability of a population can be increased by 

epistasis [61,75]. Epistasis was initially defined by Bateson [76] to describe one 
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phenotype is determined by the interaction effects of two genes. The definition of 

epistasis varies a lot since its introduction. Currently, epistasis is mostly defined as a 

masking effect whereby the effect of a genotype on a phenotype is prevented by anther 

genotype [77]. An example of the epistatic effect is shown in Table 1.1, which are the 

possible outcomes of hair color in mice for two genetic loci, A (alleles A and a) and B 

(alleles B and b). The effect of genotype at locus A is masked by the genotype at locus B, 

where individuals with any copy of the B allele have a grey color. In our evQTL study, 

gene expression is emerged as an “intermediate” phenotype, epistasis is defined as the 

interaction between genetic loci that control the expression of a single gene.  

 

 
Table 1.1 Example of the epistatic interaction between two genetic loci 

 Genotype at locus B 

Genotype at locus A B/B B/b b/b 

A/A Grey Grey Black 

A/a Grey Grey Black 

a/a Grey Grey White 

 

 

 

1.6 The influence of rare genetic variants on disease and gene expression  

Over the past several years, the rapid advance of NGS technology has made 

population level sequence or genotype data sets broadly available, and has revealed the 

existence of a huge store of previously unknown rare variants (MAF < 1%) in human 
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populations [78-81]. The 1000 genome project showed that there around 30,000 to 

150,000 low-frequency and rare genetic variants per individual. Compare to common 

variants, rare variants are relatively new mutations and usually have a weaker correlation 

with other variants [82]. The impact of rare genetic variants on diseases has obtained 

much attention as an increasing number of disease associated variants are reported by 

different studies. Although NGS technology provides a great opportunity to study the 

contribution of rare genetic variants to diseases, detecting rare genetic variants is still a 

challenge due to the huge cost of sequencing a large number of individuals. To address 

this shortcoming, several strategies are applied to decrease the cost. For example, exome 

sequencing [83], this strategy based on two considerations, on one hand, exomes only 

count for 1%-2% of the genome, which will decrease the sequence cost significantly, on 

the other hand, many identified causal genetic variants for diseases are located in exome 

regions. Moreover, classical association tests used for the study of common genetic 

variants have limited statistical power when applied to the rare genetic variants study 

unless samples or effect sizes are very large. In light of those limitations, several 

statistical methods are developed, (1) burden tests [84-87], which assess the cumulative 

effects by summarizing rare genetic variants information in a region. All burden tests are 

based on the assumption that all rare variants are associated with phenotype with same 

effect size and direction and, therefore, is powerful for such rare variant set. However, 

oftentimes, it is not surprise that the influence of rare variants with distinct effect sizes 

and directions, (2) variance-component tests, including the sum of squared score (SSU) 

test [88], C-alpha test [89], and SKAT test [90]. These methods are more powerful than 
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burden tests for variants with different effects sizes and directions by evaluating the 

distribution of the aggregated score test statistics for a variant set using distinct test 

model [91], (3) integrative test [92], which combine the advantages of Burden tests and 

variance-component tests. Despite those achievements, few frameworks or statistics are 

available for assessing the impacts of rare genetic variants to gene expression. The only 

exception is the study by Li et al. [93], in which they found that rare variants were 

enriched in larger effect eQTLs and splicing quantitative trait loci (sQTLs) which 

indicated that rare variants are likely associated with gene expression. However, the 

method used in Li’s study based on the full genome sequencing data within a family 

with limited power for unrelated individuals. Therefore, we need a new analytical 

approach for studying the possible effects of rare or private mutations on gene 

expression at the n=1 level.  

1.7 Project rationale 

Identifying the influence of genetic variants on gene expression variation is the 

primary focus of the field of quantitative genetics. Mot available methods are limited to 

identify mean differences of gene expression. However, increasing evidence shows that 

genetic variants may also contribute to the variances of gene expression. Moreover, the 

potential impact of rare genetic variants (or private SNP) on gene expression is difficult 

to study as most available methods are powerful for the common genetic variants study.  

I attempt to answer these questions based on the recently accumulated data. 

Chapter II describes the study on the genetic influence on variable gene expression by 

using expression data from a large twin cohort. Firstly, I performed a global evQTL 
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mapping with three different tissues (lymphoblastoid cell lines, skin, and fat) to identify 

genetic loci that contribute to gene expression variance. To show the influence of genetic 

background on expression variability, I measured the relative difference between pairs of 

dizygotic twins and pairs of monozygotic twins. Moreover, I investigated the genetic 

interactions in the formation of evQTL through additive effects.  

Chapter III is an extended discussion of how evQTLs are created. In this chapter, 

I demonstrate two distinct modes of action (epistasis and decanalization) that create the 

instances of evQTLs in humans. To validate the decanalization mode, I then measured 

discordant expression between monozygotic twins, as well as the level of transcriptional 

noise in individual clonal cell lines.  

In complementary to Chapters II and III, which center on the impact of common 

genetic variants on gene expression, Chapter IV focuses on the impact of rare or private 

genetic variants on gene expression. Specifically, I used a multivariate approach to first 

identify outlier individuals that show markedly different gene expression from the 

majority of a population and then quantified the contributions of private SNPs to 

aberrant gene expression in these outliers.  
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CHAPTER II 

ADDITIVE, EPISTATIC, AND ENVIRONMENTAL EFFECTS THROUGH THE 

LENS OF EXPRESSION VARIABILITY QTLS IN A TWIN COHORT* 

2.1 Introduction 

Variation and variability are central concepts in biology [94]. Although often 

used interchangeably in the scientific literature, the two are not synonymous. Variation 

refers to the differences among individuals, whereas variability refers to the potential of 

a population to vary [95,96]. In many cases, greater phenotypic variability (e.g., 

transcriptional noise) is disadvantageous [97-99] unless it gives rise to greater 

organismal plasticity—first at the level of an individual organism and eventually at the 

population level. Genetic factors resulting in more variable phenotypes become favored 

when they enable a population to more effectively respond to environmental changes 

[100-103]. Thus, understanding to what extent and in what ways genotypes influence 

phenotypic variability is of fundamental importance. 

Much effort has been focused on identifying genetic loci such as eQTL [104-

109], that affect the average value of a phenotype, while ignoring those that affect the 

variance of a phenotype. However, there is increasing evidence across species for 

genetic loci that affect the variance of phenotype [69,110-114]. Recently we introduced 

the concept of expression variability QTL, or evQTL [68]. By definition, an evQTL is a 

* This chapter has been reprinted from: Wang G, Yang E, Brinkmeyer-Langford CL, Cai JJ* (2014)

Additive, epistatic, and environmental effects through the lens of expression variability QTLs in a twin 

cohort. Genetics, 196:413-25, with permission from GENETICS. It is available online at 

http://genetics.org/content/196/2/413 
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genetic locus linked to or associated with genetic variation influencing the variance of 

gene expression in a population. To identify evQTLs, we adapted the method developed 

by Ronnegard and Valdar [69], based on the DGLM model [115]. The DGLM method 

tests for expression variances and measures the contribution of genetic variants to the 

expression heteroscedasticity. The DGLM method compares the fit of a full model, 

which takes into account the contribution of genotype to both the mean and the variance 

of gene expression simultaneously, and a mean model, which only takes into account the 

contribution of genotype to the mean, ignoring the contribution to the variance. A 

significant result of DGLM shows the nonrandom association between genotypes and 

gene expression variances. Using this method, we have conducted a genome-wide scan 

for evQTLs in the human genome [68]. 

How an evQTL is created in the first place is not clear. One possibility is that 

specific genetic variants disrupt the stabilizing genetic architecture that buffers 

stochastic variation in phenotype. As a result of such an effect of decanalization, along 

with the sensitizing change in the stabilizer (e.g., heat-shock protein 90), the phenotype 

becomes more sensitive to the external environment and varies more greatly between 

individuals [68,69]. Another possibility concerns the role of genetic interactions via 

epistatic and non-epistatic (such as additive or dominance) effects in the formation of 

evQTLs. It has been suggested that the variance of a quantitative trait is likely to differ 

based on genetic interactions [70,116]. Without extra information, however, it is 

extremely difficult to distinguish the contributions of genetic and nongenetic factors to 

variable expression of genes. 



 

20 
 

Here we investigated the roles and development of evQTLs, taking advantage of 

an existing dataset [117] derived from a population-based cohort of twin studies [118]. 

We interrogated this dataset for evQTLs, and investigated the roles of genetic and 

nongenetic factors in the formation of the evQTLs we identified. The twin cohort offered 

a unique advantage for studying the relative contributions of factors that influence 

expression variability. Importantly, comparing expression data of monozygotic (MZ) 

and dizygotic (DZ) twins allowed us to distinguish between genetic and nongenetic 

effects. In the following sections, we first present the descriptive statistics for expression 

variability in the twin cohort, subsequently describe the detection of evQTLs, and finally 

estimate the relative contributions of genetic and nongenetic factors to the creation of 

these evQTLs. 

2.2 Materials & methods 

2.2.1 The TwinsUK dataset 

We obtained the TwinsUK dataset, including both genotype and expression data, 

as used in the eQTL study of [119]. Here we briefly describe the cohort and data 

processing performed in that study [119]. The TwinsUK cohort includes 856 female 

individuals of European descent recruited from the TwinsUK Adult twin registry 

[120,121]. Subcutaneous adipose tissue, skin tissue, and lymphoblastoid cell line (LCLs) 

were collected from each individual. Genotyping was performed with a combination of 

Illumina HumanHap300, HumanHap610Q, 1M-Duo and 1.2MDuo 1M chips. Genotypes 

were called with the Illuminus calling algorithm [122], and SNPs were filtered for MAF 

of >5%. Gene expression levels were measured in LCLs, skin, and adipose [119].   
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Expression profiling of the samples, each with either two or three technical replicates,   

was performed using Illumina Human HT-12 V3 BeadChips (Illumina). All samples 

were randomized before array hybridization, and replicates were hybridized on different 

BeadChips. Raw data were imported to Illumina BeadStudio software, and probes with 

less than three beads present were excluded. Log2-transformed expression signals were 

normalized separately per tissue, with quantile normalization of the replicates of each 

individual followed by quantile normalization across all individuals [123].  

In this study, we used available gene expression data for both individuals of a 

twin pair. All 48,804 probe sequences were mapped by BLAST to the reference genome 

(hg18), and probes found to map to more than one location were not used. 

Polymorphisms in the target mRNA sequence can greatly affect the binding affinity of 

microarray probe sequences, leading to false-positive and false-negative signals with any 

other polymorphisms in linkage disequilibrium (LD) [124]. In order to control for this, 

we used a comprehensive compendium of SNPs in European ancestry (CEU) of the 

1,000 Genomes Project [125] to remove an additional 13,600 probes found to anneal in 

regions with SNPs present at an MAF of 5% or greater. Similarly, probes mapping to 

non-autosomal locations were excluded from further analysis. Finally, 35,078 probes 

were left for our analysis. 

The coefficient of variation (CV) is used as a normalized measure of the 

dispersion of expression distribution [69,126,127]. The CV was computed as  




CV , 



 

22 
 

 where   and   are the standard deviation and the mean of gene expression levels, 

respectively. LD block plots were obtained by using HaploView [128]. 

2.2.2 Identification of evQTLs using the DGLM method 

First we used the Fligner-Killeen (F-K) test filter to greatly reduce the number of 

SNPs for computationally intensive model fitting. We then adapted the DGLM method 

[115] to test for inequality in expression variances and measure the contribution of 

genetic variants to the expression heteroscedasticity. We considered the following model: 

iiii gxy   , ))exp(,0(~ 2  ii gN , 

where yi indicates a gene expression trait of individual i, gi is the genotype at the given 

SNP (encoded as 0, 1, or 2 for homozygous rare, heterozygous and homozygous 

common alleles, respectively), εi is the residual with variance σ2, and θ is the 

corresponding vector of coefficients of genotype gi on the residual variance. Age of 

subjects and the batch of data collection were modeled as covariates xi. With this full 

model, both mean and variance of expression yi were controlled by SNP genotype gi. We 

coded the fitting procedure using the DGLM package in R. A snippet of R code for the 

DGLM analysis can be obtained from the Supporting Theory of ref [69]. We assumed 

that the input gene expression data were approximately normally distributed, conditional 

on the evQTL and covariates, and set family Gaussian in the DGLM R code to specify 

the error distribution and link function used. We tested for each input probe-SNP pair 

and obtained two P-values: Pdispersion and Pmean, for the effects of genotypes on the 

variance and the mean of expression levels, respectively [69]. Probe-gene pairs that did 

not make the algorithm converge during computation were discarded. To control for the 
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effect of outlier expression data points, permutation tests [107] were conducted for all 

Pdispersion significant pairs. Specifically, for each probe-SNP pair, we performed 10,000 

permutations of expression phenotype relative to SNP genotypes. An association was 

considered significant if the P-value from the analysis of the observed Pdispersion was 

lower than the threshold of the 0.001 tail of the distribution of the Pdispersion from the 

10,000 permutations (Ppermutation < 0.001). 

2.2.3 Single-cell expression and mRNA decay rate 

The expression level of 96 genes was measured in 1,440 single lymphoblastoid 

single cells by qPCR assays in another study [129]. We used these data to compute the 

CV of expression of the same gene in different cells. The mRNA decay rates of 16,823 

genes were estimated in 70 human LCLs [130]. We obtained the mRNA decay rate data 

to compute the average mRNA decay rate for each gene among these LCL samples. 

2.2.4 Estimation of the fraction of isoform transcription using MISO 

We obtained genotype data for 43 samples of CEU from the phase 1 release of 

the 1,000 Genomes Project [125]. Short sequence data produced for RNA-seq studies of 

the LCLs from the same 43 individuals were accessed through GEO (Gene Expression 

Omnibus) accession number GSE19480 [108]. The Sequence Read Archives (SRA) files 

were downloaded and subsequently converted into FASTQ files using the NCBI SRA 

toolkit program, fastq-dump (v 2.1.16). To estimate FPKM (fragments per kilobase of 

exon per million fragments), RNA-seq short reads were mapped to reference genome 

(hg19) using Tophat2 (v 2.0.1) [131]. We then used the mixture-of-isoforms (MISO) 

[132] isoform-centric model (which estimates expression level of whole transcripts) to 
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assess expression levels of different isoforms by quantifying the presence of 

alternatively spliced exons. Mapped data were analyzed with the default parameters 

using the compute-genes-psi function and summarized using the summarize-samples 

function. 

2.2.5 Identification of interacting SNPs 

We used a two-step procedure to identify SNPs that may “interact” with evSNPs. 

Assuming the interaction between the SNP to be identified and an evSNP is additive, we 

first partitioned individuals into L and S groups according to genotypes of the evSNP, 

which were associated with large (L) and small (S) variances of gene expression. Next 

we scanned genome-wide SNPs. For each SNP, we computed genotype heterozygosity 

among individuals in L and S groups using  
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2
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, respectively, where
AAP , AaP  and aaP  are frequencies of three possible genotypes 

defined by the scanned SNP. All SNPs were then ranked by SL HetHet  , and top 100 

SNPs with the largest value were taken to next step. In the next step, a typical eQTL (not 

evQTL) analysis was conducted among individuals of the L group. For each top SNP 

with high genotype heterozygosity difference, a simple linear regression [107] was 

performed between the SNP’s genotypes and gene expression. The most significant 

SNPs were retained after applying an arbitrary P-value cutoff = 0.0005 and were 
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reported as candidate interacting SNPs. To maintain sample independence, we used only 

one individual from each twin pair for this analysis. 

2.3 Results 

2.3.1 Expression and genotype data 

To investigate the genetic influences underlying variable gene expression, we 

revisited the published expression data [117] of the MuTHER (Multiple Tissue Human 

Expression Resource) project [133]. In that study, gene expression was measured for 

LCL, adipose tissue (subcutaneous fat), and skin (tissue biopsies) using Illumina Human 

HT-12 V3 BeadChips. These tissues were sampled from a cohort of 856 female twins 

from the TwinsUK adult registry, including 154 MZ twin pairs, 232 DZ twin pairs and 

84 singletons [118]. After quality control, expression data for 825 (adipose and LCL) 

and 705 (skin) individuals were retained [117]. For each tissue, we downloaded the 

processed MuTHER expression data files deposited at ArrayExpression 

(http://www.ebi.ac.uk/arrayexpress/) using accession E-TABM-1140. The data were the 

quantile-normalized log2-transformed expression signals. Quantile normalization was 

performed first across the replicates of a single individual and then across all individuals 

as described in [117]. Along with the expression data, we also obtained the genotype 

data of this cohort [117]. In our analysis, all available twin pairs with complete 

expression and genotype information were included, corresponding to 134 MZ and 195 

DZ pairs with LCL profiles, 139 MZ and 188 DZ pairs with adipose profiles, and 105 

MZ and 148 DZ pairs with skin profiles. Members of the TwinsUK cohort have health 

and lifestyle characteristics that are comparable to those of population singletons [134]. 
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Because of this, we were able to use this cohort as a representative general population to 

investigate both genetic and nongenetic factors behind expression variability in this 

study. 

2.3.2 Expression variability in the twin cohort 

Here we present basic, descriptive statistics for expression data (independent of 

genotype information), with particular attention to disparities in gene expression among 

individuals. We chose to focus on the LCL data for this analysis, due to the availability 

of additional expression-related statistics (such as single-cell expression data and mRNA 

decay data). 

We used the quantile-normalized log2-transformed expression data in all analysis 

throughout the paper unless otherwise stated. From these data, we first determined that 

expression values for most probes (n = 35,078) approximately fit the normal distribution: 

97% of probes were with a skewness between -0.80 and 0.80 and a kurtosis of ~3.0 

(Figure 2.1A); less than 7% of probes were rejected by Shapiro-Wilk test of normality 

with Bonferroni adjustment to the level of  = 0.01. These justified the use of the 

Gaussian error distribution and link function in our DGLM model (Materials and 

Methods). Retrospectively, we showed that the profile distributions for evQTL probes 

are approximately normal before and after Box-Cox transformation (Figure 2.1B). 

To measure the level of dispersion of gene expression values, we computed the 

CV for each probe. The CVs ranged from 0.0024 [for ILMN_1765043 (RPL38)] to 

0.2115 [for ILMN_1715169 (HLA-DRB1)], with a median of 0.0154. The distributions 

of CVs measured in sub-cohorts are indistinguishable from one another such as when 
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comparing one set of MZ twins with the other set (i.e., MZ 1 vs. MZ 2) or comparing a 

set of MZ twins with a set of DZ twins (e.g., MZ 1 vs. DZ 1)(Figure 2.2A). Probe data 

points are located along or close to the 1-1 diagonal line in the CV-CV scatter plot for 

the majority of probes, regardless of the CV-CV comparison between MZ 1 and MZ 2 or 

between MZ 1 and DZ 1 (Figure 2.2B). These results indicate that the extent and overall 

distribution of expression variability measured between individuals across different MZ 

and DZ cohorts are highly similar when all genes are taken into account. 

 

Figure 2.1 Normality of expression data measured in LCLs. (A) Distributions of skewness and kurtosis. 

Red dashed lines indicate -0.8 and +0.8 skewness; red solid line indicates kurtosis = 3. (B) Profile 

distributions of expression data for selected probes (i.e., probes involved in evQTLs). (Left) Quantile-

normalized expression data; (Right) Box-Cox normalized expression data. 
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Next, we measured expression differences between each pair of twins. For each 

probe, we computed the relative mean difference (RMD) in expression between MZ twin 

pairs and between DZ twin pairs, separately. For a pair of MZ twin, for example, the 

RMD was computed using  

y

yy

RMD
MZMZ 21

2

1


 , 

where y  is the arithmetic mean the levels of gene expression for that MZ twin 

pair (designated as 
1MZy  and 

2MZy ). For most probes, the median RMD of expression 

between DZ pairs is larger than it is between MZ pairs, as indicated by the fact that most 

genes are located above the 1-1 diagonal line in the scatter plot (Figure 2.2C). That is to 

say, the normalized difference in gene expression between DZ pairs (DZ 1 and DZ 2) 

tends to be larger than that between MZ pairs (MZ 1 and MZ 2), suggesting that genetic 

factors influence expression variability for most of these genes. 

To determine the influence of single-cell expression variability on population-

level expression variability, we computed the CVs of expression for a selection of genes, 

whose expression levels have been measured in single LCL cells [129]. No correlation 

between the single-cell CVs and the between-individual CVs measured was detected for 

MZ 1 (Spearman’s correlation test, P = 0.21, n = 59; Figure 2.2D). This suggests a 

limited contribution of single-cell expression variability (or transcriptional noise at the 

single-cell level) to the variability between individuals (or transcriptional noise at the 

population level). 
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Figure 2.2 Distributions of expression variability in LCLs. (A) Distribution of CVs of gene expression 

(probe n = 35,078) measured in MZ and DZ twins. MZ 1 is the set of first pairs of all MZ twins and MZ 2 

is the set of second pairs of all MZ twins. Similarly, DZ 1 is the set of first pairs of all DZ twins and DZ 2 

is the set of second pairs of all DZ twins. (B) Scatter plot of CVs of gene expression (probe n = 35,078) in 

MZ 1 against those in MZ 2 (blue) or DZ 1 (red) cohorts. (C) Scatter plot of median RMD between pairs 

of MZ twins against median RMD between pairs of DZ twins. Each blue dot indicates a single expression 

probe (or a gene) and the position of the blue dot indicates the median value of RMD of expression 

between all MZ pairs (MZ 1 − MZ 2) on the x-axis and that between all DZ pairs (DZ 1 − DZ 2) on the y-

axis. The red line is based on quadratic regression to show a more pronounced difference between MZ and 

DZ with greater RMD. (D) Scatter plot of CVs of gene expression (n = 59) in single cells against CVs of 

gene expression in MZ 1. (E) Scatter plot of mean mRNA decay rate against CVs of gene expression in 

the MZ 1 cohort. The red line is based on the linear regression 

 

Finally, we hypothesized that variable gene expression may be due to different 

mRNA decay rates for different genes. To test this, we used the mRNA decay rate data 

from the study of  Pai et al. [130] et al. The correlation between mean mRNA decay rate 

and CV of expression among genes is not specific as shown by the opposite signs of two 

correlation coefficients: Spearman’s  = -0.027 (P = 0.00498) and Pearson’s r = 0.044 (P 

= 4e-6, n = 11,083; Figure 2.2E). Thus, gene expression variability showed no signs of 

correlation with the mRNA decay rate of genes. 
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2.3.3 Genetic variants underlying expression variability 

To systematically assess the genetic influence on expression variability, we 

identified genome-wide evQTLs using the method we previously established [68]. We 

focused on cis-acting evQTLs by limiting our search to those SNPs that flanked probes 

within 1.0 Mb on either side.  

After filtering for quality control (Materials and Methods), a total of 35,078 

probes were available for analysis. On average, each probe corresponded to 1,212 SNPs 

in the 2-Mb cis region (i.e., 6 SNPs per 10 kb). For each SNP-probe pair, we conducted 

a three-step test to determine the evQTL relationship as described previously [68]. 

Briefly, we first tested for the homogeneity of variances in gene expression among 

different genotype groups using F-K test [135]. Only those SNPs with a P < 0.01 

[following [136]] were carried on to the next step of analysis. We then applied the 

DGLM method [69] to each SNP-probe pair, ultimately computing Pdispersion for a total of 

1,251,611 SNP-probe pairs. To account for multiple tests performed between these 

probe-SNP pairs, we used the threshold of Pdispersion < 1 × 10-8, which is roughly 

equivalent to Bonferroni adjusted P < 0.01, to assess the genome-wide significance. 

Finally, we conducted permutation tests for each significant SNP-probe pair to control 

for the influence of outlier data points on the DGLM results (Materials and Methods). 

The detection of evQTLs was performed independently for each of the two sets of twin 

data. Assignment of individual twins to each data set was purely random and did not 

influence the overall results in any substantial way (data not shown). Each evQTL 

detected with one twin data set and was then validated with the other data set to confirm 
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its authenticity. For all three tissues, concordance was prevalent (Figure 2.3A) and the 

cases of discordance were mostly due to outliers present in one set of twin data but not in 

the other set. The direction of effect (association with increased or decreased gene 

expression variability) was the same between the two set of twin data for all evaluated 

SNPs. 

A total of 99, 79, and 56 genes were identified and confirmed to have at least one 

validated cis-evQTL SNP (or evSNP for short) in LCLs, fat and skin, respectively. This 

corresponded to 8 evQTL genes shared in all three tissues (Figure 2.3B). One of these 

shared evQTL genes, SEMA4G, is given as an example to illustrate the consistent 

influence of genotypes on the variance of gene expression across the three tissues 

(Figure 2.3C). All evQTLs shared across tissues showed the same directional effect, 

defined as on either increased or decreased the variance of gene expression. That is to 

say, the directionality of evQTL effects is not tissue- or cell-type specific.  

Given that many evQTL genes have more than one cis-evSNP, we examined the 

structure of haplotypes of these multiple cis-evSNPs. We found that cis-evSNPs of the 

same gene are likely to be located within same LD block and that typically these blocks 

contained only few prominent haplotypes (see Figure 2.4 for an example involving gene 

ALG11). This suggests that multiple evSNPs are likely to be linked with the same causal 

variant. We furthermore found that, compared with ancestral alleles, derived alleles of 

evSNPs are more likely to be associated with greater expression variability (Fisher’s 

exact test: P = 0.0036, 0.022 and 0.036 for LCLs, skin and fat, respectively). 
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Figure 2.3 Numbers of evQTL in LCL, skin, and fat. (A) Venn diagrams of evQTL genes detected in two 

groups of twin sets. Each group of the twin sets is composed of one set of unrelated twin individuals. 

Overlapping areas of the Venn diagrams contain numbers of validated evQTL genes identified with both 

sets of twins. (B) Numbers correspond to evQTL genes within a subset of tissues. (C) One example of 

evQTL shared by all three tissues: evQTL at SEMA4G. 
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Figure 2.4 LD patterns of the genomic region surrounding evQTL at ALG11. The entire region of the 

analysis included 38 SNPs over a ~400 kb span. The cis-evSNPs are indicated with red boxes. The 

haplotypes in the LD block accommodating evSNPs are displayed in the insert, with corresponding 

haplotype frequencies. Of note, alleles of evSNPs resulting in a larger variance of gene expression are 

allocated in one haplotype highlighted with the blue box. 

 

2.3.4 Dissecting the genetic and nongenetic effects of evQTLs 

Twin data facilitate the dissection of the contributions of genetic and nongenetic 

factors to gene expression. Phenotypic variability measured between pairs of DZ twins is 

expected to be larger than that between pairs of MZ twins, as the phenotypic difference 

between DZ pairs may result from both genetic and environmental (nongenetic) effects 

while differences between genetically identical MZ pairs are attributable to varying 

environmental effects on the two twins, assuming that the environments influencing MZ 

and DZ twin individuals are essentially identical. Figure 2.5 depicts the difference in 
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expression level of evQTL gene AXIN2 in three genotypes (GG, AG, and AA) defined 

by rs740026. Figure 2.5A and B illustrate genotypes at rs740026 by linking the two data 

points for each twin pair by a straight line: Figure 2.5A shows genotype similarities 

between MZ twins, while in Figure 2.5B, similarities between DZ twin pairs are shown. 

Note that linkers between DZ twin pairs with different genotypes at the SNP site (i.e., 

DZ 1  DZ 2) are not plotted. The expression difference between a pair of twins can be 

visually quantified by the slope of the straight line: a steeper line reflects a more 

dissimilar expression level between the twins. In the case of AXIN2, it is apparent that 

expression differences between DZ pairs tend to be larger than between MZ pairs. This 

is especially true for the AA genotype group, which shows a larger variance in 

expression between individuals. 

For each evSNP and its associated genes in LCLs, we computed the RMD in 

gene expression between all pairs of MZ or DZ twins, as long as the genotypes of two 

individuals of the pair of twin were both identical to each other and homozygous at the 

SNP site. By definition, (one of alleles of) evSNP is associated with either larger (L) or 

smaller (S) variance in gene expression. Thus, the RMD values (for evSNPs and 

associated genes) were separated according to whether homozygous genotypes defined 

by evSNPs were associated with larger (L) or smaller (S) variance in gene expression. 

The cumulative distribution functions (CDFs) of these RMD values were plotted (Figure 

2.5C). The curves were based on the RMD values calculated between all possible twin 

pairs for all evSNPs and genes, and classified into four groups: MZ-S, MZ-L, DZ-S, and 

DZ-L. The MZ-S and DZ-S groups included pairs whose genotypes showed a small (S) 
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amount of variance, while the MZ-L and DZ-L groups included pairs whose genotypes 

were associated with large (L) variances. In the end, the four groups, MZ-S, MZ-L, DZ-

S, and DZ-L, contained 3,629, 2,548, 3,825, and 2,520 RMD values, respectively. We 

found that CDF curves for the large-variance groups (MZ-L and DZ-L) were shifted 

toward the right compared to those for small-variance groups (MZ-S and DZ-S) 

[Kolmogorov-Smirnov (K-S) test, all P < 10-5]. This indicated that the distribution of 

RMD between twin pairs (either MZ or DZ) in the large-variance groups was 

significantly different from that of the small-variance groups, with a larger RMD median 

for the large-variance group. This difference (in RMD distribution between L and S 

groups) remained even when we randomly assigned the identities of MZ and DZ pairs 

(see insert of Figure 2.5C). Together, these results suggested that the increased 

discrepancy in gene expression between twin pairs (shown as a larger median RMD) 

contributed to the elevated variability in expression, which is true for both MZ and DZ 

twins. Because MZ twins are genetically identical, the increased RMD between MZ 

pairs was likely due to an increased sensitivity of gene expression to environmental 

factors.  

More importantly, we found that there is a significant discrepancy in distribution 

of RMD between MZ and DZ: DZ groups tended to have larger RMD values than MZ 

groups. This trend applied to both L and S groups, but was more salient in the L group 

(all K-S test, P < 0.01) (Figure 2.5C). These results suggested that the different genetic 

backgrounds resulted in a larger difference in gene expression between DZ twin pairs, 

which is more pronounced than that observed between MZ twin pairs. 
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For comparison, we randomly selected the same number of genes and cis-SNPs 

and conducted the same analysis of RMD distribution. There was no difference between 

CDFs of RMD in these non-evQTL genes regarding either MZ or DZ twins, larger or 

smaller variance groups, as well as before or after shuffling of the twin identities. CDFs 

of all groups were more similar to each other (K-S test, all P > 0.025, except between 

MZ-S and DZ-L, P = 2.94e-4, Figure 2.5D). That is to say, the influence of genetic 

and/or environmental effects on variable expression was not detected at the genomic 

level for all genes, but was limited to evQTL regions. 

Finally, we repeated the CDF analyses using the RMD values computed from the 

Box-Cox normalized log2-transformed expression data, as well as using the absolute 

difference (instead of RMD) in gene expression. In both cases, we obtained results 

highly similar to those obtained above (Figure 2.6), which supports the robustness of the 

results presented above. 
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Figure 2.5 Dissection of genetic and nongenetic effects of evQTL using twins data. (A) The evQTL 

between AXIN2 and rs740026. The expression data points from pairs of MZ twins are linked. (B) Same as 

A except that DZ twins are linked. (C) CDFs of RMD between twins classified into four groups, namely 

MZ-S, DZ-S, MZ-L, and DZ-L (see main text for definitions). The double arrow highlights the highly 

significant discrepancy in RMD distribution between MZ-L and DZ-L (K–S test, P < 0.01). The insert 

shows the same CDFs of RMD recomputed after randomly shuffling identities of corresponding MZ and 

DZ pairs. (D) Same as C except that data are randomly sampled from non-evQTL genes. 
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Figure 2.6 Comparison between results of the CDF analysis for the expression difference between twin 

pairs in evQTL genes. (A) Results obtained using RMD of Box-Cox normalized log2-transformed data 

between twin pairs. (B) Results obtained using the absolute difference of log2-transformed data between 

twin pairs. 

 

2.3.5 Validation using RNA-seq data and SNPs of the 1,000 Genomes Project 

We obtained genotype data for fully-sequenced samples of CEU from the phase 

1 release of the 1,000 Genomes Project [125], along with short reads from RNA-seq 

experiments in LCLs for these same individuals (n = 43)[108]. After mapping the short 

reads, we estimated the expression level in FPKM for all genes. For the same evQTL 

gene-SNP pairs detected in LCLs, we plotted the relationships between genotype and 

expression for each. Even with as few as 43 data points, many evQTL relationships 

could be recognized by visual inspection. To examine expression variability in isoforms, 

we used MISO [132] to compute percent-spliced-in (Ψ) values for all known isoforms of 

each evQTL gene (Materials and Methods). We could not observe any clear pattern, 

perhaps due to the limited size of samples. But, in MYH11, the increased expression 

variability seems linked to the higher heterogeneity of isoform expression (Figure 2.7). 

 

Absolute expression difference, |Y1 – Y2| 

A B
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Figure 2.7 An example shows the possible association between gene expression variability and 

heterogeneity of isoform expression. Left panel is the evQTL relationship between MYH11 expression 

and genotypes of SNP rs3851702 depicted using RNA-seq data [15] and the 1,000 Genomes Project 

genotype data [37]. The insert is the evQTL relationship between the same evQTL gene and SNP depicted 

using TwinsUK data. Right panel is the fraction of each isoform expression estimated as the percent 

spliced in (Ψ) values using MISO [38] to the RNA-seq data. 

 

2.3.6 Partially-linked SNPs contribute to variable gene expression 

Recent theoretical work showed that the within-genotype variance of a 

quantitative trait varies when a non-additive genetic interaction or epistasis is present 

[116,137]. Alternatively, variance of a quantitative trait may result from the interaction 

between genetic variants additively associated with the mean of the quantitative trait. To 

discriminate between these alternatives, we employed a two-step procedure to identify 

SNPs partially associated with (or interacting) with evSNPs through an incomplete 

haplotype structure (Materials and Methods). In an ideal scenario (Figure 2.8A), the 

genotype heterozygosity of the partially-linked SNP is large among individuals (L-group) 

whose the evSNP genotype associated with larger expression variability, while, the 

genotype heterozygosity is small or equals zero among individual of S-group. If the 
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interacting SNP is associated with the mean level of gene expression, then the 

association between the evSNP genotype and greater expression variability is likely due 

to the partial association between the evSNP and the interacting SNP. 

Given these considerations, we performed a genome-wide search to identify a set 

of candidate interacting SNPs for each evQTL SNP, and then used simple linear 

regression analysis to evaluate whether the potential interacting SNPs are significantly 

associated with gene expression among L-group individuals (Materials and Methods). 

For the 99 evQTL in LCLs, we identified 56 with at least one interacting SNP. Among 

these interacting SNPs, 54 are located within the cis-region of the evSNPs, with which 

they interact. Figure 2.8B presents one such relationship between evSNP rs742090 and 

interacting SNP rs3799378, both at BTN3A2. Individuals with CC genotype of evSNP 

rs742090 were further sorted by rs3799378 genotypes. Clearly, the expression level of 

BTN3A2 in individuals with the rs742090-CC genotype is significantly influenced by 

rs3799378 genotypes. The increased variability in gene expression showed in individuals 

with rs742090-CC genotype is caused by the heterogeneity of rs3799378 genotypes. 

These results suggest that local haplotype structure between SNPs contributed to the 

creation of evQTLs. 

2.3.7 Linking evQTLs with complex disease phenotypes 

Several studies have utilized eQTL data to interpret discoveries from association 

studies of complex traits [138-140]. Along this same vein, we identified evQTLs 

associated with complex traits from the catalog of published GWAS studies 

(http://www.genome.gov/gwastudies/). From the results of these GWA studies, we 
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identified 61 reported genes that are evQTL genes. In four cases, the exact same SNP 

was found to be both an evSNP and a marker SNP associated with risk or susceptibility 

of the complex trait (Table 2.1). Intriguingly, the “T” allele of rs8070463, associated 

with smaller expression variability of TBKBP1, is a reported culprit in multiple sclerosis 

[141] while the “C” allele for this same SNP, associated with larger expression 

variability, is linked with risk for ankylosing spondylitis [142]. 

 

 

Figure 2.8 Schematic and example of an interacting SNP that helps the creation of an evQTL. (A) L 

indicates the group of individuals with evSNP genotype (C/C) associated with large variance in gene 

expression, while S indicates that with evSNP genotype (A/A) associated with small variance. The 

interacting SNP shows large genotype heterogeneity in the L group and small or no genotype 

heterogeneity in the S group. (B) Real example of evSNP rs742090 and interacting SNP rs3799378 at 

BTN3A2. Individuals with rs742090-CC genotype are further broken down by rs3799378 into three 

subgenotype groups, which are associated with different means of gene expression levels (shadowed 

panel). 
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Table 2.1 SNPs associated with gene expression variability and human complex trait. L and S indicate that 

individuals carrying homozygotic genotype of the risk allele have large and small variance in gene 

expression, respectively. 

 

Gene (evSNP) Tissue GWAS complex trait  Risk allele Reference 

PAX8 (rs11123170) LCL, Fat, 

Skin 

Renal function related traits 

(BUN)  

rs11123170-GL [143] 

WDR41 (rs163030) LCL, Fat, 

Skin 

Caudate nucleus volume rs163030-AL [144] 

HCG22 (rs2517532) LCL Hypothyroidism rs2517532-GS [145] 

TBKBP1 

(rs8070463) 

LCL Multiple sclerosis 

Ankylosing spondylitis 

rs8070463-TS 

rs8070463-CL 

[141] 

[142] 

 

2.4 Discussion 

There is empirical evidence across several species that the variance among 

phenotypes is genotype dependent [111,127,146,147]. Understanding genetic control of 

phenotypic variability has become increasingly important in evolutionary biology, 

human medicine, the agricultural industry and other branches of biological science 

[114,148]. Despite the importance, few research programs focus on genetic variants 

associated with trait variance, while studies of trait averages abound. Recently, a 

powerful statistical framework based on the DGLM model has been developed for 

studying the phenotypic variability of complex traits [69]. Given that gene expression is 

a complex trait with highly variable and heritable patterns [104,107,149], we have 
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previously adapted the DGLM method to investigate genetic variants controlling 

expression variability [68].  

In this study, we further investigated the relative contribution of genetic and 

nongenetic (environmental) factors to expression variability and the role of these factors 

in the formation of evQTLs. We started by exploring basic statistics of gene expression 

measured in the TwinsUK cohort. For all genes, expression level dispersions were 

highly similar in and between both MZ and DZ twins. No correlations with expression 

variability were detected when compared between individuals, between single cells, or 

relative to the average mRNA decay rate, highlighting the marked discrepancies in 

variability measured at population and molecular levels. Further results showed that the 

discordance in expression between each pair of DZ twins was more pronounced than that 

between MZ twins, implying that the increased amount of genetic variation between DZ 

twins influences expression variability. Next, we systematically identified cis-acting 

evQTLs in three tissues of the TwinsUK cohort. Twin data greatly facilitated the 

validation of detected evQTLs and revealed overall robust signals that would otherwise 

not be appreciable in studies of non-twin design. Focusing on the detected evQTLs, we 

showed that the discordance in expression between DZ pairs was larger than that 

between MZ pairs, and further showed that the discordance in expression between MZ 

pairs whose genotypes were associated with large expression variability was 

significantly larger than that between MZ pairs whose genotypes were associated with 

small expression variability. It is intriguing to find that the phenotypic discordance 

remained even in the absence of genetic variation between MZ twins. This might be 
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explained by incomplete penetrance of mutations, which is frequent in isogenic model 

organisms in homogeneous environments [150,151]. This might also be epigenetic: for 

example, DNA methylation, which can be influenced by environmental factors such as 

diet and lifestyle, is also known to affect gene expression [152,153]. Lastly, much to our 

surprise, we found that more than half of evQTLs could be explained by a conceptually 

simple scenario in which the evSNP was occasionally associated with a nearby SNP that 

influenced gene expression both additively and independently. We suspect there should 

be many different ways of non-epistatic interaction between two or more genetic 

variants, such as the mode of partial association we have described here, giving rise to 

genotype-dependent expression variances. That is to say, the majority of phenotypic 

variability across individuals might be explained without invoking epistasis [154,155]. 

In light of our new findings, several related considerations are discussed below. 

2.4.1 Methodological considerations for studying phenotypic variability 

The procedure we used for identifying evQTLs [Materials and Methods, and [68]] 

consisted of three steps. First, the F-K test was applied to test for the heterogeneity of 

variances of gene expression between different genotypes and identify corresponding 

SNPs. Next, the DGLM method was applied to the selected SNPs. The significant results 

of DGLM test were then subjected to permutation tests to reduce the influence of 

outliers in the data. This procedure is less likely to be susceptible to issues related to 

multiple testing and outliers in input data, though a formal assessment of its statistical 

power remains to be done. 
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Given the flexibility of the DGLM method, we acknowledge that the results of 

our evQTL analysis are likely to be dependent on how the DGLM analysis was set up. 

For this study, we adapted the Gaussian error distribution and link function because no 

significant departure from normality was found in the expression data. The effect of 

different methods of normalization on statistical interpretation of gene expression 

remains subject to careful scrutiny [156-158]. For example, normalizations may perturb 

the covariance structure of input data or change the scale of the resulting data. Thus, the 

impacts of different methods of data transformation and normalization should be 

carefully considered in future studies involving evQTL analysis. Finally, we 

acknowledge that the DGLM analysis described in this paper may be influenced by the 

scale effect (e.g. mean-variance relationship). It is not uncommon for trait variance to 

change with trait mean, often causing trait skewness. If this occurs, any SNP associated 

with a large increase in mean expression would also be associated with an increase in 

variability [69] and that is why we standardized using the CV.. Analyses studying a 

specific phenotype and/or with a more narrowly-targeted focus than that of the broad-

based study described in this paper should employ a more conservative approach in 

which QTL associated strictly with variance (i.e. those affecting only variability and not 

the mean) are identified, using the procedure proposed by Ronnegard and Valdar [69]. 

2.4.2 Additive vs. epistatic effect of genotypes on phenotypic variation in a 

population 

Quantitative geneticists partition the genetic effect on phenotypic variation 

between individuals into additive, dominance, and epistatic components. The additive 
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component describes the variance associated with the independent contributions of 

alleles, while dominance describes the variance contributed by interactions between 

alleles at the same locus, and epistasis refers to the contribution of interactions between 

alleles at different loci. For most complex traits, quantitative genetic theory [154,159] 

suggests that epistasis is unlikely to contribute substantially to the between-individual 

variation. That is to say, most of the variation in a population will be due to the additive 

effects of specific allelic combinations. Yet this assertion is not without controversy. The 

results of empirical linkage mapping and association studies suggest that epistasis seems 

to explain considerable variation in complex trait characteristics within natural 

populations [160,161].  

Our results showed that >50% of evQTLs can be explained by a partial 

association between haplotypes of the evQTL SNP and another SNP nearby. Our 

interacting SNP analysis only considered a simplistic scenario of the association. There 

are many other possible ways of partial associations in which SNPs interact. For 

example, consider the genotyped SNP “A/a” and the causative eQTL “Q/q”, with only 

three haplotypes segregating in the population: AQ, aQ and aq (as would occur if the 

novel “q” allele arose on the “a” haplotype). Then the “a” SNP allele would be 

associated with a changed trait mean and a higher trait variance as the eQTL segregates 

within that genotype. If we could take all possible partial associations into account, we 

would anticipate that even more evQTLs could be explained by the effect of partial 

association, rather than epistasis. We therefore conclude that much variance in a 

quantitative trait may be explained by partial association between locally interacting 
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genetic variants, each additively associated with the trait. Our view is supported by the 

results of recent studies. Powell et al. [155] conducted a gene expression study using 

blood samples from 862 individuals from nuclear families containing MZ or DZ twin 

pairs, using both pedigree and genotype information. They found that the genetic 

architecture of gene expression is predominantly additive, with a minority of transcripts 

displaying non-additive effects. Hill et al. [154] evaluated the evidence from empirical 

studies of genetic variance components and found that additive variance typically 

accounts for over half and often close to 100% of the total genetic variance. 

2.4.3 Detecting evQTL as a shortcut for detecting epistasis? 

Detection of the variance of a quantitative trait in genetic association studies is 

thought to increase knowledge about the interaction between genetic variants. More 

specifically, detecting variability QTL (e.g., evQTL) is considered to be a shortcut for 

detecting genetic interactions [69,70]. So far, many methods for detecting genetic 

interactions are based on testing for different variances of phenotype between genotypes, 

with the underlying assumption that the variance of a quantitative trait is likely to differ 

under the influence of epistasis [69,116]. However, our new discovery that evQTLs are 

formed due to the partial haplotype association between SNPs refutes this assumption. 

As stated above, more than half (and probably much more) evQTLs could be explained 

by partial association between SNPs with additive effects. Both additive and epistatic 

effects can result in increased phenotypic variation (as schematically illustrated in 

Figure 2.9). Merely detecting the variance of a quantitative trait cannot in itself 

distinguish between additive and epistatic effects; thus, no specific conclusions can be 
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made. The relationship between partially associated SNPs, each additively associated 

with phenotypic variation, needs to be integrated more carefully in the study of 

phenotypic variability. Thus, the variance of a quantitative trait should not serve as a 

hallmark of genetic interaction or epistasis. 

2.4.4 Phenotypic variability and implications in complex traits and diseases 

High-throughput sequencing and genotyping technologies have spurred an 

increasing number of studies detecting genotype-phenotype relationships and mapping in 

complex, polygenic traits and human diseases [162]. The remarkable success of GWAS 

is accompanied by the issue of the “missing heritability” [163], namely the fact that the 

trait-associated SNPs identified through GWAS often account for only a small 

proportion of the observed correlations in phenotype between relatives. The reason 

behind this issue has been thought to be that additional genetic factors remain to be 

found, and that the presence of epistasis is a particular cause for concern [160,164,165]. 

In reality, if the effect of one locus is altered or masked by effects at another locus, 

power to detect the first locus is likely to be reduced, and elucidation of the joint effects 

at the two loci will be hindered by their interaction. Consequently, a large amount of 

research has been devoted to the detection and investigation of epistatic interactions; a 

number of methods for detecting the interaction between SNPs have been proposed 

[116,137,166-168], yet there has been much confusion in the literature over definitions 

and interpretations of epistasis [169]. 
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Figure 2.9 Schematic shows that both additive (left) and epistatic (right) effects create similar evQTL 

signals.“A” and “a” are two alleles of evSNP, while “B” and “b” are alleles of interacting SNP. 

 

This study, together with previous findings [154,155], clearly shows that a 

detailed investigation of local haplotype structure between SNPs at the same locus is 

necessary to reveal their combined influences on phenotypes of complex traits. For 

example, we have identified a list of evSNPs that are also associated with human 

complex trait (see Table 2.1). Further investigations on partial associations between 

closely linked SNPs that may influence these traits should be performed. The same 

should also be done for FTO whose genotype is associated with phenotypic variability of 

body mass index [114]. 

Finally, we point out that an interaction detected via statistical models is different 

from the biological interaction [169-171]. The lack of direct correspondence between 

statistical and biological interactions makes it difficult to make strong inferences 

concerning biological mechanisms based on interaction terms from a statistical model 
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[164]. Therefore, detection of statistical interaction merely provides a good starting point 

for a more focused investigation of the joint involvement of the relevant factors, which 

can perhaps be better addressed through other types of experimental data. Our findings 

suggest that there is a lot that can be done at the statistical level to prioritize those loci 

that are most likely to produce significant experimental results. 

2.4.5 Conclusions 

In conclusion, we used evQTLs as a statistical model system for studying 

phenotypic variability and dissected the genetic and nongenetic effects by using twin 

data. Our findings concerning evQTLs offer new insights into the relative contributions 

of genetic and environmental factors in the formation of evQTLs. Dissecting the genetic 

components underlying phenotypic variability into additive and epistatic effects allowed 

the dominant role of additive effect to be revealed.  
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CHAPTER III  

EPISTASIS AND DECANALIZATION SHAPE GENE   

EXPRESSION VARIABILITY IN HUMANS VIA DISTINCT MODES OF 

ACTION 

 

3.1 Introduction  

Phenotypic variability refers to the likelihood of the phenotypic variation being 

observed in a population. Quantitative genetics assumes that phenotypic variation, i.e., 

the difference in phenotypic mean between individuals, is genetically controlled [172]. 

Under such an assumption, phenotypic variation is explained solely by differences in 

phenotypic mean among genotypes. This deterministic view, however, has come under 

challenge. New studies show that phenotypic variance is genetically controlled, and the 

variance itself is a quantitative trait [68,69,111,112,114,116,127,173-176]. Increasing 

evidence of genetic control over the variance calls for a paradigm shift in quantitative 

genetics. Understanding the mechanism of how phenotypic variance is controlled is of 

great importance for evolutionary biology, agriculture or animal sciences, and medicine 

[68,69,148,177]. In evolutionary biology, for example, variability offers an adaptive 

solution to environmental changes [110,178,179]. Genetic factors resulting in more 

variable phenotypes become favored when they enable a population to respond more 

effectively to environmental changes [100-103]. In medicine, disease states emerge 

when the relevant phenotype of affected individuals goes beyond a threshold. As such, 

high variability genotypes will produce a larger proportion of individuals exceeding that 
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threshold than will low variability genotypes, even if these genotypes have the same 

mean. By ignoring the effect of genotypes on phenotypic variance, an important axis of 

genetic variation contributing to phenotypic differences among individuals has been 

overlooked [147,172]. The lack of empirical studies in this regard has hindered the 

discovery of variance-associated mutations that modulate disease susceptibility and the 

phenotypic variability of other human health-related traits. 

Several studies have been conducted to reveal gene expression variability, i.e., 

the differences in variance of gene expression between groups, in various systems [180-

182]. Nevertheless, our understanding of how genetic diversity can control or influence 

gene expression variability remains limited. Promising new developments along this line 

have come from our findings in complex trait analysis of gene expression. Using 

variance-association mapping, we and others identified genetic loci associated with gene 

expression variance, called evQTLs [68,176] or v-eQTL [175]. How evQTLs effects 

come about is not completely known. While epistasis has been widely accepted as a 

mechanism introducing phenotypic variability, here we offer a more straightforward 

explanation, that is, evQTL variants disrupt or stabilize the genetic architecture that 

buffers stochastic variation in gene expression. As a result of decanalization, phenotypic 

expression becomes more sensitive to the external environment and varies more greatly 

[68,69]. We reveal evQTLs with epistasis and decanalization, two distinct modes of 

action on gene expression variability and lay the foundation for a new analytical 

framework that accounts for the genetic contribution to phenotypic variability. We 

anticipate that methods derived from the new framework will allow us to identify novel 
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causal loci, which would otherwise be missed by traditional mean-focused methods, in 

complex disease mapping. 

3.2 Materials & methods 

3.2.1 Gene expression and genotype data for evQTL analysis 

The gene expression data generated by the Geuvadis project RNA-seq study [183] 

was downloaded from the website of EBI ArrayExpress using accession E-GEUV-1. 

The downloaded data matrix contained the expression values of Gencode (v12)-

annotated genes measured in 462 unique LCL samples. The data were normalized by 

using the method of probabilistic estimation of expression residuals (PEER)[184]. From 

the data matrix, we extracted the expression values of autosomal protein-coding genes of 

345 EUR samples, whose genotype data is available from the website of the 1,000 

Genomes Project [185]. Based on the result of a principal component analysis, we 

excluded 19 samples whose global expression profile apparently deviated from those of 

the rest of samples. The final data matrix used for the evQTL analysis contained gene 

expression values of 15,124 protein-coding genes and 326 EUR samples. Also, we 

obtained genotype and expression data from a cohort of female twin pairs [117] from the 

TwinsUK adult twin registry [118]. The data for gene expression in LCLs of 139 pairs of 

MZ twins were extracted and used in this study. 

3.2.2 Identification of evQTLs 

Cis-evQTLs were detected using the DGLM method [115] , trans-evQTLs were 

identified using the SVLM procedure [167], these two methods are described in 

Chapters I and II. 
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3.2.3 Identification of partial eQTL SNPs that interact with evQTL SNPs 

We used a two-step procedure to identify SNPs that interact with evQTLs. We 

first partitioned individuals into L and S groups according to whether genotypes of the 

evQTL SNP are associated with large (L) and small (S) variances of gene expression. 

Then we scanned genome-wide SNPs. For each SNP, the eQTL analysis by linear 

regression model was conducted among individuals of the L group. For each top SNP 

with high genotype heterozygosity difference, a linear regression [107] was performed 

on the SNP genotypes and gene expression. The most significant SNPs were retained 

after applying an arbitrary P-value = 0.0005 as cutoff and were reported as candidate 

interacting SNPs. 

3.2.4 Estimation of gene expression noise using repeated RT-qPCR assay 

LCLs were purchased from the Coriell Institute (https://catalog.coriell.org/). The 

cells were maintained in Roswell Park Memorial Institute Medium 1640 with 2mM L-

glutamine and 15% FBS (Seradigm) at 37°C in a humidified atmosphere containing 5% 

CO2 (v/v). For the time course experiment, cell lines were seeded at 1 × 106 cells per 10 

cm dish and then incubated in culture medium. Cell lines were screened to ensure they 

were mycoplasma free by using the MycoFluor mycoplasma detection kit (Invitrogen). 

Cells were collected at 24, 36, 48, 60, and 72 h after growth. Total RNA was extracted 

using Trizol reagent (Invitrogen). RNase-free DNase (Ambion) was used to remove 

potential contaminating DNA from RNA samples. RNA purity and concentration were 

determined using Nanodrop ND-100 Spectrophotometer. The concentrations of total 

RNA were adjusted to 100 µg/ml. Real-time RT-PCR assays were performed using iTaq 
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Universal SYBR Green One-Step Kit (Bio-Rad Laboratories) with primers shown in 

Table 3.1. Template total RNA was reverse transcribed and amplified in a Bio-Rad 

CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories) in 20-µl reaction 

mixtures containing 10 µl of iTaq universal SYBR Green reaction mix (2×), 0.25 µl of 

iScript reverse transcriptase, 2 µl of 100 nM forward and reverse primer mix, 1 µl of 

total RNA template, and 6.75 µl of nuclease-free water, at 50°C for 10 min, 95°C for 1 

min, followed by 30 cycles of 95°C for 10 s and 58°C for 30 s. Melting curves were 

measured from 65°C to 95°C with 0.5°C of increment. The average expression of two 

housekeeping genes (CHMP2A and C1orf43) was used for normalization. The choice of 

using these two genes as reference was based on recent scrutiny of human genes with a 

constant level of expression using RNA-seq data [186]. 

 

Table 3.1 List of primers used for RT-qPCR. 

 

evQTL Gene Targets Primers 

ATMIN 5' AATGCCCTTGTCAGTAGGAAC 3' 

5' GGCTCACCAGCAATAGGATTAG 3' 

BEND4 5' GTCGAATGATCTTGGATGCCTT 3' 

5' TCCAGGAGTTTTCCTCCACAAT 3' 

CHMP2A 5' CGCGAGCGACAGAAACTAGAG 3' 

5' CCCGCATCAATACAAACTTGC 3' 

ZNF10 5' TCAGGACAGTTGTGCAAGTAAC 3' 

5' GGGTTTCTCTCTATGTATGCCCT 3' 
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3.2.5 Flow cytometric analysis of cells in different phases of the cell cycle 

Cell cycle distribution was evaluated by using flow cytometry. This 

determination was based on the measurement of the DNA content of nuclei labeled with 

propidium iodide [187]. Cells were harvested at 24, 36, 48, 60, and 72 h after treatment. 

The cells were resuspended at a concentration of 1×106/ml in cold PBS. After 1ml of 

ice-cold 100% ethanol had been added dropwise, the cells were fixed at 4°C for at least 

16 hours. The fixed cells were pelleted, resuspended in 1ml of propidium iodide (PI) 

staining solution (50 mg/ml propidium iodide, 100 units/ml RNase A in PBS) for at least 

1 hour at room temperature and analyzed on an FACS flow cytometer (BD). By using 

red propidium-DNA fluorescence, 30,000 events were acquired. The percentage of cells 

in G0/G1, S and G2/M phases of the cell cycle was calculated using Flowjo software 

v10 (Tree Star). 

3.3 Results 

3.3.1 Widespread evQTLs in the human genome 

We obtained the expression data for 15,124 protein-coding genes measured in 

462 LCLs by the Geuvadis Project [183]. We also obtained genotype data at 2,885,326 

polymorphic sites determined in the same cell lines by the 1,000 Genomes Project [185]. 

After data processing, 326 LCL samples from unrelated individuals of EUR were 

retained for this study (Materials and Methods). To identify evQTLs, we first applied a 

method based on the DGLM [115]. The method has been previously adopted by us 

[68,176] and others [69]. Owing to computational complexity, we restricted the use of 

this method to the identification of cis-acting evQTLs. On average ~1800 SNPs that lay 
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within 1-Mb radii of the transcription start site were tested per gene. Using a 

conservative Bonferroni correction cutoff P = 1.75×10-9 (= 0.05 / 28,494,473), we 

identified a total of 17,949 cis-evQTLs in 1,304 unique genes, i.e., 8.6% of all genes 

tested (Figure 3.1A). Next, to identify both cis- and trans-evQTLs genome-wide, we 

adopted the method based on SVLM [167,175]. It is a computationally efficient, two-

stage method. The effect of variants on gene expression mean (i.e., eQLT effect) is 

firstly removed by regression, and the residuals are squared to give a measure of 

expression dispersion. Then the correlation between squared residuals and genotypes is 

tested. We applied SVLM to test all SNPs against all genes, without pre-filtering SNPs 

by their locational relationship with tested genes. Such an all-against-all strategy allowed 

a systematic survey of cis- and trans-evQTLs across the entire genome. We used the 

Benjamini-Hochberg procedure [188] to determine the P-value cutoff of 3×10-9 that gave 

the FDR of 0.1. At this level, we identified 505 cis-evQTLs in 33 unique genes, and 

1,008 trans-evQTLs in 235 unique genes (Figure 3.1B). Two genes AXIN2 and 

FAM86B1 were found to have both cis- and trans-evQTLs. Applying the same FDR 

cutoff to detect both cis- and trans-evQTL resulted in an unbiased picture of the 

distribution of all evQTLs across autosomes (Figure 3.1C). Comparing the positions of 

genes and their evQTLs, we did not observe a strong enrichment of data points along the 

diagonal of the graph, suggesting cis-evQTLs not be particularly enriched compared to 

trans-evQTLs. We noticed a pronounced discrepancy in the number of cis-evQTLs 

detected using DGLM and SVLM. This discrepancy may because that SVLM and 

DGLM have different detecting power. Computer simulations showed that, when the 
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sample size was set to 300, SVLM had only half of the power of DGLM (Fig 3.2). 

Furthermore, the huge multiple testing burden associated with the application of SVLM 

in the all-against-all tests may also contribute to the discrepancy. 

 

 

Figure 3.1 Overview of evQTL detections and the distribution of cis- and trans-evQTLs in autosomes. (A) 

Flowchart of cis-evQTLs identification using DGLM method. (B) Flowchart of cis- and trans-evQTL 

identification using SVLM method. (C) Distribution of SVLM-identified cis- and trans-evQTLs in 

autosomes, in which cis-evQTLs marked in red and trans-evQTLs marked in black.  

 

3.3.2 Epistatic interactions contribute to increasing gene expression variability  

Epistasis, i.e., the interaction between loci, may increase the phenotypic 

variability of a population [116,137]. The evQTLs provided source materials for 

studying epistatic effects on gene expression variability [176]. More specifically, we 

sought to identify “third-party” SNPs that interact with evQTL SNPs. Such interactions 

result in more variable gene expression of the evQTL genes. In particular, for each 

evQTL SNP identified by using SVLM, we applied a two-step procedure to identify the 

third-party SNPs, also known as partial eQTL SNPs (see below). These third-party SNPs 

interact or are partially associated with evQTL SNPs, resulting in the increased gene 

expression variance [175,176]. The process of partial eQTL SNP identification is 

illustrated in Fig 3.3. Briefly, for a given evQTL (for example, the evQTL between gene 
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X and SNP Y), we extracted samples with a homozygous genotype associated with large 

expression variance. We called these L group samples. Accordingly, those related to 

small expression variance was called S group samples. Then, we conducted a genome-

wide scan among the extracted L group samples to identify eQTL SNPs (e.g., SNP Z) 

that control the expression of the corresponding evQTL gene (i.e., gene X). The 

identified eQTL SNPs are called partial because they are detected in the sub-sampled 

discovery panel, and their effect on gene expression is restricted to L group samples. The 

evQTL SNP Y and its partial eQTL SNP Z may be co-localized proximately on the same 

chromosome and partially associated as we showed previously [176]. They may also be 

unlinked, for instance, located on different chromosomes, and interact with each other 

epistatically [175]. Here, we focused on the 268 evQTLs (33 cis- and 235 trans-acting 

ones) identified by using SVLM. In 73 out of 268 evQTL genes, we identified at least 

one significant interacting SNP, i.e., partial eQTL SNP with simple linear regression test 

P < 10-8 in the L group samples. These results suggest that more than one-fourth of 

evQTLs are attributable to partial eQTL SNPs interacting with evQTL SNPs. 
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Figure 3.2 Comparison of statistical power of two evQTL detection methods: DGLM and SVLM, using 

computer simulations with different sample sizes. For simulations, a population of 10,000 individuals was 

generated, and the MAF of an evQTL SNP was set to 0.4. The genotypes of SNP were encoded to 0, 1, 2 

for homozygous minor, heterozygous, and homozygous major alleles, respectively. The gene expression of 

each genotype was generated from a normal distribution with the same mean but different variances, 1.0, 

2.0, and 4.0, respectively. Before testing a method, the population was subsampled to the designated 

sample size, ranging from 300 to 1,000. For each sample size, the tested method was applied to the 

subsamples. The whole procedure was repeated 1,000 times, and the power was computed as the ratio of 

the times of P-value being smaller than 5×10-5 (i.e., 0.05/1000). 
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Figure 3.3 Schematic illustration of the method for identifying partial eQTLs.After the identification of 

evQTL, the partial eQTL method involves two steps: (1) extraction of homozygous individuals whose 

genotype of the evQTL variant is associated with increased expression variability, and (2) identification of 

the eQTL between the gene and third-party variant among extracted individuals. 

 

3.3.3 Decanalization contributes to increasing gene expression variability without 

genetic interactions 

Here we put forward the decanalization model to explain the formation of 

evQTLs. The model emphasizes the interaction between gene (or genotype) and the 

environment. Unlike the epistasis model that concerns the epistatic interactions or 

associations between variants at different loci [175,176], the decanalization model 

concerns a single variant that perturbs stable genetic systems through a decanalizing 

effect on the expression of the specific genotype. We hypothesized that some evQTL 

SNPs are associated with gene expression variability because one of their two alleles 

confers the decanalization function, causing more variable gene expression. In other 

words, decanalizing SNPs increase gene expression variability via the single-locus effect, 
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without interacting with any other SNPs. Thus, these decanalizing evQTLs have a 

different formation mechanism in contrast to that of epistatic evQTLs. 

To show the decanalizing effect, by further controlling the diversity of samples’ 

genetic backgrounds, we re-visited the genotype and expression data from our previous 

study [176]. The data were derived from LCLs of a cohort of twin pairs [117]. In the 

previous study, we used a single set of the twin pairs, which contains one individual 

from each twin pair for evQTL analysis and identified cis-evQTLs in 99 unique genes 

[176]. Here, we first classified the 99 evQTLs (between each gene and the most 

significant SNP) into 56 epistatic and 43 decanalizing evQTLs. The classification was 

based on whether or not an interacting SNP (i.e., partial eQTL SNP) could be identified 

using the two-step procedure described above. The idea was that if no interacting SNP 

can be detected for an evQTL, then the evQTL cannot be explained by the epistasis 

model. Thus, the evQTL is likely to be a decanalizing evQTL, explained by the 

decanalization model, in which increased gene expression variability is driven by the 

allele of evQTL SNPs with decanalizing function. Next, we extracted expression data of 

the 139 pairs of MZ twins. We classified MZ twin pairs whose genotypes were 

homozygous at evQTL SNP sites into MZ-L or MZ-S groups, according to whether their 

evQTL SNPs were associated with large or small variance. For all MZ twin pairs in the 

same group (either MZ-L or MZ-S), we quantified discordant gene expression between 

two individuals of the same pairs. Discordant gene expression was calculated as the 

RMD in gene expression, which is the difference between two individual’s gene 

expression values normalized by the mean (Materials and Methods). 
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To illustrate the difference in discordant gene expression between groups, we use 

two example evQTLs. One is a decanalizing evQTL between TBKBP1 and rs1912483 

(Fig 3.4A, right), and the other is an epistatic evQTL between PTER and rs7913889 (Fig 

3.4B, right). The data points of gene expression levels were grouped by the genotype. 

Within each genotype category, data points from the same twin pairs are displayed side-

by-side. Every two individuals of the same MZ pairs are linked by a line. The slope of 

the lines is an indicator of discordant gene expression between twin pairs. In the 

decanalizing evQTL example, the slopes between MZ twins with genotypes associated 

with large expression variance (i.e., MZ-L group) tend to be steeper than those with 

small expression variance (i.e., MZ-S group)(Fig 3.4 A, left). In contrast, in the epistatic 

evQTL example, the difference in slope skewness between MZ-L and MZ-S groups is 

less pronounced (Fig 3.4 B, left). We pooled RMD values from different twin pairs 

together by MZ-L or MZ-S group and compared the distributions of RMD values 

between the two groups. For decanalizing evQTLs, the distributions of RMD values 

between L and S groups were significantly different (P = 1.3×10-5, Fig 3.4 A, right), 

with larger RMD values for L group. In contrast, for epistatic evQTLs, this difference in 

RMD distribution was not detected between L and S groups (P = 0.052, Fig 3.4 B, right). 
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Figure 3.4 Dissection of decanalizing and epistatic effects of evQTLs using twin data.(A) An example of 

decanalizing evQTL, TBKBP1-rs1912483. The expression data points for each of two individuals from 

the same pairs of MZ twins are linked. Twin pairs are grouped as MZ-L and MZ-S based on whether the 

homozygous genotype at rs1912483 is associated with large or small gene expression variance. The right 

panel shows the CDF of normalized discordant gene expression (measured using RMD) for MZ-S and 

MZ-L groups. (B) Same as (A) but showing an example of epistatic evQTL, PTER-rs7913889. 

 

3.3.4 Decanalizing evQTL SNPs are associated with gene expression noise 

Our decanalization model works by the action of a single genetic variant 

conferring a decanalizing effect on gene expression. One of the underlying sources of 

gene expression variability is stochastic noise in gene expression [189]. We 

hypothesized that different alleles of a decanalizing evQTL SNP might be associated 

with different levels of expression noise of the corresponding evQTL gene. To test this 

hypothesis, we set out to estimate the expression noise using RT-qPCR by repeatedly 
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measuring gene expression level in the same cell line. If our hypothesis is correct, then 

the expression variance of cells from an individual with an evQTL genotype associated 

with larger variance should be more pronounced than the expression variance in cells 

from an individual with genotype with smaller variance. 

We selected two decanalizing evQTLs: ATMIN-rs1018804 and BEND4-

rs7659929, for testing. ATMIN is an essential cofactor for checkpoint kinase ATM, 

which transduces genomic stress signals to halt cell cycle progression and promote DNA 

repair [190]. We picked two LCLs, HG00097 and HG00364, which have the similar 

ATMIN expression levels. Both were derived from female individuals of European 

descent. The difference is that HG00097’s genotype CC at rs1018804 is associated with 

larger variance, while HG00364’s genotype AA at rs1018804 is associated with smaller 

variance. Thus, HG00097 and HG00364 belonged to L- and S-groups, respectively. We 

measured the evQTL gene expression level using RT-qPCR with three technical 

replicates each at five different sampling time points. The same assay was repeated three 

times independently. Our results showed that under the same controlled experimental 

condition, the variance of gene expression (i.e., the variance in ΔCt values) in HG00097 

was greater than HG00364. The same trend was observed from all three biological 

replicates (Fig 3.5 A). In all three replicates, the difference was statistically significant 

(Brown-Forsythe test, P = 0.034, 0.019, and 0.0096, respectively). 

We repeated the experiment with two biological replicates on the same evQTL 

ATMIN-rs1018804 using a different pair of LCLs (NA12144 and NA12736 from L- and 

S-group, respectively) to replace HG00097 and HG00364. We obtained the similar 
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results showing a consistent pattern, that is, the gene expression in the cell line of L-

group is more variable than that of S-group (Fig 3.5A). Furthermore, we repeated the 

experiment on a different decanalizing evQTL (BEND4-rs7659929) with another pair of 

LCLs (NA12889 and NA18858). Again, we obtained the consistent pattern that supports 

the correlation between gene expression variability and stochastic noise (Fig 3.6A). 

 

 

Figure 3.5 The correlation between gene expression variability and noise in the decanalizing evQTL, 

ATMIN-rs1018804, but not in the epistatic evQTL, ZNF10-rs7972363, in the same cell line pair (HG00097 

and HG00364).(A) The leftmost panel shows the distribution of gene expression levels of ATMIN among 

three different genotypes defined by two alleles of rs1018804. Red arrows indicate the genotype and 

expression level of HG00097 and HG00364. Right panels show the results of three biological replicates of 

repeated RT-qPCR analysis for ATMIN at five different time points ranging from 12 to 60 h after 

incubation. At each time point of each biological replicate, three technical replicates were performed to 

obtain ΔCt values. Red circles indicate the average ΔCt values. The difference in variance of ΔCt between 

two cell lines was tested using F-test for equal variances (P = 0.429, 0.012, and 0.049, respectively, for the 

three replicates). (B) Same as (A) but showing the results of evQTL ZNF10-rs7972363. P values of F-test 

for the three replicates are 0.981, 0.195, and 0.066, respectively. 
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Figure 3.6 The correlation between gene expression variability and noise in the GxE evQTLs, ATMIN-

rs1018804 in the cell line pair NA12144 and NA12763, BEND4-rs7659929 in the cell line pair NA12889 

and NA18858.(A) The leftmost panel shows the distribution of gene expression levels of ATMIN among 

three different genotypes defined by two alleles of rs1018804. The genotype and expression level of 

NA12144 and NA12736 are indicated by red arrows. Right panels show the results of two biological 

replicates of repeated RT-qPCR analysis for ATMIN at five different time points ranging from 12 to 60 h 

after incubation. At each time point of each biological replicate, three technical replicates are performed to 

obtain ΔCt values, and the average is presented by the red circle. The difference in variance of ΔCt 

between two cell lines was tested using F-test for equal variances (P = 0.037 and 0.6148, respectively, for 

the two replicates). (B) Same as (A) but showing the results of evQTL BEND4-rs7659929 using cell line 

pair NA12889 and NA18858. P-values of F-test for the two replicates are 0.217 and 0.334, respectively.  

 

We hypothesized that the correlation between gene expression variability and 

noise exists exclusively in decanalizing evQTLs. We did not expect such a correlation 

would be recapitulated in epistatic evQTLs. This is because the two kinds of evQTLs 

work through different modes of action. To test this, we repeated the same RT-qPCR 

experiment with an epistatic evQTL ZNF10-rs7972363 using the same cell lines 

HG00097 and HG00364 (Fig 3.5B). The genotype AA of HG00097 at rs7972363 is 

associated with larger variance while the genotype GG of HG00364 is associated with 

smaller variance. As an epistatic evQTL, the interacting SNP rs1567910, which interacts 
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with rs7972363 and helps the creation of the evQTL, has been identified by using the 

two-step partial eQTL detection method. Samples with AA genotype at rs7972363 can 

be further broken down by rs1567910 into three subgenotype groups associated with 

different levels of gene expression mean. Consistent with our expectation, the gene 

expression variance in ∆Ct values was similar between HG00097 and HG00364 (Fig 

3.5B, Brown-Forsythe test, P = 0.96, 0.83, and 0.73, for the three replicates, 

respectively). Together, our results suggest that the level of gene expression noise—the 

random fluctuation of gene expression—is associated with decanalizing evQTL, but not 

epistatic, SNPs. 

3.3.5 Differences in cell cycle status and alternative splicing do not account for the 

decanalizing function conferred by decanalizing evQTL SNPs 

Finally, we controlled for two additional confounding factors that might account 

for the increased gene expression variability associated with evQTLs. The first is the cell 

cycle status of cell lines. At the same sampling time, cell lines may differ in the 

percentage or number of cells in different cell cycle phases. Could the difference in cell 

cycle status explain the difference in gene expression variability or noise between cell 

lines? To test this, we performed the cell cycle analysis by flow cytometry with 

HG00097 and HG00364 at 36 h after incubation (Materials and Methods). The results 

showed no difference in the percentage of cells in G0/G1, S and G2/M phases between 

the two cell lines (Fig 3.7). The second confounding factor we considered is the 

alternative splicing pattern. Different splicing patterns between cell lines might result in 

different gene-level expression measurements. We used the Integrative Genomics 



 

69 
 

Viewer [191] to visualize the alternatively spliced mRNA of ATMIN and compared the 

pattern of splicing between HG00097 and HG00364, as well as that of BEND4 between 

NA12889 and NA18858. In either case, we observed no difference in splicing patterns 

(Fig 3.8). 

 

 

Figure 3.7 Cell cycle analysis to determine the relative abundance of cells in different phases. (A) 

Representative flow cytometric dot plots. (B) Representative histograms obtained using TUNEL assay. (C) 

Relative frequencies of cells in G1, S, and G2 phases. (D) Principal component analysis (PCA) of cell 

cycle profiles. (E) Relative frequencies of cells in different phases of HG00097 (red) and HG00364 (blue). 
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Figure 3.8 IGV view of RNA-seq read alignments and sashimi plot of mRNA splicing patterns of evQTL 

genes in different cell lines. (A) IGV view of RNA-seq read alignment of ATMIN in HG00097 and 

HG00364. (B) Sashimi plots of ATMIN mRNA in HG00097 and HG00364. (C) IGV view of RNA-seq 

read alignment of BEND4 in NA12889 and NA18858. (D) Sashimi plots of BEND4 mRNA in NA12889 

and NA18858.  
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Figure 3.8 continued 

 

 

3.4 Discussion  

Variability, which refers to the potential of a population to vary, is a central 

concept in biology [94] Emerging experimental and statistical techniques have allowed 

the variability of various phenotypes to be rigorously analyzed [177]. Focusing on 

variability QTLs of gene expression, we found that evQTLs are abundant and 

widespread across the human genome [68,176]. In the light of evQTLs, the present study 

reveals two distinct modes of action: epistasis and decanalization, through which 

common genetic variation controls or influences gene expression variability. The 
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epistasis model concerns two or more variants (at separate loci?), which interact in a 

non-additive fashion [175,192] or link to each other through incomplete LD [176,193]. 

Consistent with this model, a number of methods for identifying epistasis have been 

proposed, based on detecting increased phenotypic variability [116,137,166]. The 

decanalization model is simpler and more direct, concerning single variants that work 

alone to destabilize phenotypic expression and pushing a proportion of individuals away 

from the robust optimum. 

Dissecting the GxG and GxE effects, respectively underlying the epistatic and 

decanalizing modes of action, in the context of variability QTLs is technically 

challenging. Here we have taken advantage of the identical genetic background of MZ 

twins and showed that different genotypes are associated with varying degrees of 

responsiveness to environmental perturbation. We also detected an unexpected link 

between population-level gene expression variability and stochastic gene expression 

noise as measured in single individuals. This suggests that variable gene expression in 

each sample may be synthesized and aggregated together and eventually contribute to 

the gene expression variability of the population as a whole. In other words, the same 

underlying force destabilizing gene expression might be proposed as a unified 

explanation for gene expression variability at different scales (i.e., from the population 

level to the individual level). At the other end of the spectrum, we werte able to examine 

cell-to-cell variability in gene expression, thanks to the rapid development of single-cell 

based technologies [194]. For example, the genetic control of variability in burst size and 
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frequency of single-cell transcription may not be too different from that of the 

population and individual levels. 

We were unable to describe the precise mechanism of a decanalizing function 

conferred by evQTL variants. However, we were able to utilize bioinformatics analysis 

to provide a rationale to substantiate the link between the variants, the possible genetic 

mechanisms, and the phenotype, i.e., expression variability of the corresponding gene. 

By synthesizing different sources of information, we attempted to build working models 

for evQTLs explaining how evQTL variants can influence gene expression variability. 

Here we use GxE evQTL ATMIN-rs1018804 as an example to illustrate one of the 

tentative models.  The intronic rs1018804, which lies 43-bp downstream from the 

nearest exon-intron boundary, may play a role in regulating the splicing of WDR24 

mRNA. WDR24,encodes WD repeat-containing protein 24, a key component of Rag-

interacting complex essential for the activation of mTORC1 [195]. The WDR24 protein 

is predicted [196] to interact with Hsp70 and DNAJ proteins [197]. The latter two 

interact with the dynein light chain DYNLL1 [198]. Finally, DYNLL1 and ATMIN form 

a feedback regulation loop—one of few known examples of negative auto-regulation of 

gene expression where a gene product directly inhibits the main transcriptional activator 

while bound at its own promoter [199]. Taken together, the working model can be 

represented as rs1018804 → WDR24 → Hsp70/DNAJ → DYNLL1 ↔ ATMIN. This 

working model offers a workable blueprint for functional dissection of all components 

involved. This information flow model provides potential insights into the mechanisms 

of evQTL variants influencing gene expression variability. 
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We anticipate that our results have implications for studying human diseases in 

which regulatory variation plays critical roles [200]. Decanalization effect has been 

proposed to influence brain development and contribute to the risk of psychological 

disorders like schizophrenia [201,202] and other complex diseases [148]. Increased gene 

expression variability was found to be associated with the aging in a mouse model [98], 

and the aggressiveness of lymphocytic leukemia [203]. Understanding how genetic 

variation contributes to increasing gene expression variability or variability of other 

phenotypic traits will facilitate the identification of causal variants. This is especially 

true when gene expression heterogeneity characterizes the disease under consideration. 

Indeed, many human diseases are characterized by etiological and phenotypic 

heterogeneity, echoing the so-called “Anna Karenina principle,” that is, each sick person 

is sick in his or her own way.  If even a small fraction of the increased phenotypic 

variability among patients is due to the variability-controlling mutations (such as evQTL 

variants), understanding how these mutations influence the variability is of importance. 

Better understanding of variation control may bring us closer to causal mutations 

underlying an individual’s predisposition to disease. This strategy, if combined with 

other methods for estimating the impact of rare mutations, such as aberrant gene 

expression analysis for private mutations [204], would be provide increased power for 

personalized medicine. Furthermore, we suggest that variability-controlling mutations 

are potential targets for genomic editing or drug development. Drug targeting these 

mutations might bring the dysregulated and dysfunctional gene expression in patients 

back to normal levels of gene exprssion and health. 
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CHAPTER IV 

ABERRANT GENE EXPRESSION IN HUMANS† 

4.1 Introduction 

The advent of high-throughput sequencing and genotyping technologies enables 

a comprehensive characterization of the genomic and transcriptomic landscapes of each 

individual. Deciphering the massive body of data associated with samples from many 

individuals presents a major challenge [205,206]. Over the last few years, eQTL 

analyses have provided in-depth insights into the effect of genetic variation on the 

regulation of gene expression [105,108,183,207]. More recently, research has also 

focused on the contribution of genetic variation to variance of gene expression 

[68,175,176]. 

The analytical frameworks adopted by most eQTL studies have historically been 

based on population-level test statistics, which are powerful for establishing associations 

between commonly occurring genetic variations and gene expression. However, few 

frameworks or statistics are available for assessing the impacts of rare genetic variants 

on gene expression (except, for example, [93]). The problem is exacerbated by the fact 

that individual gene expression is a function of both genetic and nongenetic (such as 

epigenetic and environmental) factors, as well as their combined action. Our failure to 

† This chapter has been reprinted from: Zeng Y*, Wang G*, Yang E, Ji G, Brinkmeyer-Langford CL, Cai 

JJ (2015) Aberrant gene expression in humans. PLoS Genetics, 11(1):e1004942. 

doi:10.1371/journal.pgen.1004942, with permission from PLoS Genetics.  It is available online at 

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004942 
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detect the effects of rare variants with large effects in biological samples, along with the 

inherent difficulty in dissecting the complex factors influencing gene expression, will 

hinder efforts to define and prioritize relevant variants and impede the development of 

improved personalized diagnostic and therapeutic options. 

Here, we envision an alternative approach based on the theory of multivariate 

outliers to address these technical challenges. More specifically, we measure how any 

two individuals differ in their expression profiles and quantify these differences with 

respect to a set of genes between individuals. Based on the expression differences, we 

detect outlier individuals whose expression profiles are so divergent from those of others 

in the population that the divergence cannot be explained by random sampling variation 

alone. Many methods of outlier detection have been developed. The most commonly 

used of these methods, such as those based on the estimation of the location and scatter 

of the data points or the quantiles of the data, are more applicable to univariate than 

multivariate settings. In practice, however, phenotypic traits are associated with changes 

in multiple genes in biological pathways and molecular networks, more often than single 

gene alterations. Reliably identifying outliers in such a multivariate setting is a 

challenging problem—unlike the simpler case of univariate outlier detection, simple 

graphical diagnostic tools like the boxplot often lack statistical power when the analysis 

of more than one dimension is attempted [208]. 

To this end, we adapted a multivariate outlier method that allows simultaneous 

evaluation of expression data with respect to many dimensions derived from multiple 

genes. With this method, even though there is no natural ordering of multivariate data on 
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which “extremeness” of an observation can be ascertained, outliers showing markedly 

different data profiles can be detected. Using a framework based on this approach, we 

specifically address the following research questions: Are there any differences between 

the functional properties of genes tending to (or tending not to) be aberrantly expressed? 

Is aberrant expression population-specific? What are the roles of genetic and nongenetic 

factors in aberrant expression? Do common or rare genetic variants contribute to 

aberrant expression? Our overall results clearly demonstrate that outliers, while often 

considered as error or noise, do carry important biologically-relevant information. Thus, 

the careful characterization of the genetic bases underlying the markedly different 

expression profiles of outlier samples is both worthwhile and necessary. Accurate 

description of inter-individual expression differences requires the incorporation of the 

effects of both common and rare regulatory genetic variants. 

4.2 Materials & methods 

4.2.1 Geuvadis RNA-seq data 

We used gene expression data produced by the Geuvadis project RNA-seq study 

[183] as described in chapter III. We excluded individuals whose genotype information 

was unavailable in the 1000 Genome Project Phase 1, resulting in a total of 402 

remaining samples (326 EUR and 76 AFR). 

4.2.2 Annotated gene sets 

Gene sets were downloaded from Molecular Signatures Database (MSigDB) v4.0 

[209]. The MSigDB gene sets had been divided into seven groups: C1 - positional gene 

sets (n = 326), C2 - curated gene set (n = 4,722), C3 - motif gene sets (n = 836), C4 - 
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computational gene sets (n = 858), C5 - GO gene sets (n = 1,454), C6 - oncogenic 

signatures (n = 189), and C7 - immunologic signatures (n = 1,910). The annotated gene 

sets of the NHGRI GWAS Catalog [11] were obtained from 

http://www.genome.gov/gwastudies (accessed April 2014). 

4.2.3 Robust Mahalanobis distance (MD) calculation 

To calculate MD, the correlation between the expression profiles of individuals 

was captured by the inter-individual expression covariance, Covab. For expression E 

between any two individuals a and b, Covab is computed as: 
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where m is the number of genes in the gene set under study, and µa and µb are the mean 

gene expression values for individuals a and b, respectively. Given all pair-wise 

comparisons of individuals we obtained the inter-individual covariance matrix Cov. We 

employed the minimum covariance determinant (MCD) estimator [210] to compute a 

robust version of Cov, as implemented in the Matlab toolbox LIBRA [211]. We then 

computed the MD for each individual as 

)()( 1 


 



 i

T

ii ECovEMD , 

where 


 is m length vector of the per-gene mean values across all individuals. 

The statistic  
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was calculated for each set. To approximate the empirical null distributions for 

SSMD we applied resampling for gene sets with different numbers of genes, ranging 
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from 2 to 150. For a given number of genes m, we randomly sampled m genes from the 

full expression matrix without replacement, and then computed SSMD for the resampled 

gene set. The procedure was repeated 1,000 times for all gene sets. More permutations 

were performed for significant gene sets until the desired Bonferroni correction level P = 

0.01 was either achieved or rejected. The resampling process breaks correlation structure 

between genes, hence providing a background distribution of expected random 

distribution of SSMD. We compared the SSMD in the observed gene set to equally-sized 

sets drawn at random from all assayed genes. 

A chi-square plot was constructed as the I ranked MD value against the values of 

χ2(p,m), where p = (i-0.5)/I and m is the number of genes in the gene set. The right panel 

of Figure 1 is the chi-square plot that supports the multivariate outliers identified [212]. 

A chi-square plot draws the empirical distribution function of the square of the MD 

against the χ2 distribution with degree of freedom equal to m. A break in the tail of the χ2 

distribution is an indicator for outliers [213], given that the square of the MD is 

approximately distributed as a χ2 distribution [212,214]. 

4.2.4 Power analysis for SSMD test 

To evaluate the sensitivity of SSMD as a statistic for detecting L-SSMD gene 

sets, power analyses were conducted. One selected L-SSMD gene set, 

POTTI_ETOPOSIDE_SENSITIVITY, was used as the test set The impacts of sample 

size (n) and the size of gene set (m) were considered. The selected L-SSMD gene set 

contained 37 genes, that is, m = 37, while the sample size n = 326. The original 

expression data matrix was subsampled by lowering either n or m. For each subsampled 
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n or m value, 100 random replicates of the expression data matrix were constructed. The 

SSMD was computed for each subsampled replicate and the significance of the observed 

SSMD was assessed by permutation tests, as described above for detecting L-SSMD 

gene sets. The more sensitive is SSMD to n or m, the less would subsampled replicates 

remain significant as an L-SSMD. 

4.2.5 Discordant expression, heritability, and single-cell gene expression 

To compute the discordant expression of genes between twin pairs, twinsUK 

gene expression data from the study of [117] were acquired. The discordant expression, 

i.e., the expression differences between each pair of twins, was measured as described 

previously [176]. Briefly, for each gene the RMD in expression between MZ twin pairs 

and between DZ twin pairs was computed. For a pair of MZ twins, i, for example, the 

RMD was computed using  

i
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i
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21 
 , 

where iy is the arithmetic mean of the levels of gene expression for that MZ twin 

pair (designated as 
1MZ

iy  and 
2MZ

iy ). For each gene, the data from all MZ or DZ twin 

pairs were pooled to compute the mean RMD per gene,  iRMD
n

1
, where n is the 

number of twin pairs. The computed mean RMD per gene was normalized by the value 

computed in the same way but with the expression data reconstructed by randomly 

assigning the identities of twin pairs. The values of narrow-sense heritability (h2) of gene 

expression were obtained from the study of [215]. Different estimates of h2 were also 
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obtained from the studies of [117] and [216]. Single-cell gene expression levels 

measured in 42 LCLs were acquired from the study of [217]. 

4.2.6 Effect size of common eSNPs 

The absolute value of the slope coefficient (|β|) of the linear regression model 

was used as the measure of the effect size of each eSNP.  Gene expression levels across 

individuals were normalized using Z-score to make the values of β uncorrelated with 

total gene expression levels. The sign of β was ignored because it is only relative against 

the genotypes of each eSNP, which were denoted by 0 for homozygous major alleles, 1 

for heterozygous alleles, and 2 for homozygous minor alleles. Instead, an eSNP’s effect 

direction was determined by whether the eSNP causes gene expression to shift away 

from or towards the mean gene expression for the majority of individuals in the 

populations. In this sense, the notation of genotypes (0, 1, 2) provided information of 

effect direction for eSNPs. If an individual’s eSNP genotype is 0, then the effect of the 

eSNP is to maintain the same expression level for the eSNP-regulated gene between 

outlier individuals and the majority of individuals in the population; on the other hand, if 

the eSNP’s genotype is 1 or 2, then the effect of the eSNP is to either increase or 

decrease (depending on the sign of the slope) the expression of the gene by one or two 

times of |β| than that of genotype 0. Therefore, the effect size was weighted by the 

genotype: β = |β|*genotype. The genotype-scaled effect size was used in the comparison 

of the combined eSNP effects between outlier and non-outlier individuals. 
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4.2.7 Density of private SNPs in regulatory regions of L-SSMD genes 

Both heterozygous and homozygous private SNPs, with an allele frequency of 

1/(2N) and 1/N, respectively, for each individual (where N is the number of individuals), 

were counted. The cis-regions of tested genes were split into seven subclasses of 

regulatory regions, according to the combined chromatin state segmentation of the 

ENCODE GM12878 sample [218]. The density of private SNPs in each subclass of the 

regions was assessed for enrichment significance by comparing the observed density 

with that of randomly generated control regions. To provide comprehensive controls, 

four different means were used to construct control regions: (1) randomly selected non-

outlier individuals to replace outlier individuals, (2) randomly selected genomic regions 

located 10 Mb away from L-SSMD genes, (3) randomly selected shuffled L-SSMD 

genes in the same amount of original gene set, and (4) shuffled S-SSMD genes in the 

same amount of original gene sets. 

4.3 Results 

4.3.1 Study overview 

The main results of our study comprise three parts. The first part concerns the 

identification of sets of functionally related genes whose expression discrepancies 

among individuals are significantly greater (or smaller) than those of random gene sets. 

The second part concerns the identification of outlier individuals whose expression 

profiles with respect to gene sets are significantly divergent from those of others in the 

population. The third part concerns evidence that private SNPs contribute to aberrant 

expression in outlier individuals. 
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Data analysis in the first two parts relied on a metric of statistical distance that 

can quantify the dissimilarities between individuals in the expression levels of gene sets, 

rather than single genes. For this purpose, we adapted MD, a multivariate metric that can 

be used to measure the dissimilarity between two vectors [219]. Key features of MD are 

illustrated in Figure 4.1, which shows a hypothetical example of MD, compared to 

simple Euclidean distance. Here, the expression levels of two genes are correlated and 

the Euclidean distance is not an appropriate measure of distance between data points (or 

individuals). MD, on the other hand, accounts for the correlation through estimating the 

covariance matrix from the observations, making MD a more appropriate distance 

statistic. With a given gene set (e.g., the two genes of the hypothetical example), we can 

calculate MDi for N individuals under consideration (i = 1 to N). Each MDi is the 

multivariate distance from the individual i to the population mean, with the correlation 

between expression profiles of individuals captured by the inter-individual expression 

covariance. In Figure 4.1A, the top three data points with largest MDi are labeled with 1, 

2, and 3, while the Euclidean distances from these data points to the population mean are 

not the largest. With MDi of each individual, we can calculate the SSMD. SSMD 

summarizes the overall distribution of MDi across individuals for the gene set. The 

squaring operation puts more weight on larger MDi values of outlier individuals. Gene 

sets with larger SSMD are more likely to contain genes that are aberrantly expressed by 

outlier individuals. Thus, comparing SSMD values of gene sets, we can identify sets of 

genes that tend to (or tend not to be) aberrantly expressed (i.e., Part 1 of the main results). 
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The outlier individuals can be identified with ordered MDi. To do so, we used the 

tool for multivariate outlier recognition, chi-square plot [212]. As seen in Figure 4.1B, 

the three data points with the largest MDi are recognized as outliers. These data points, 

as shown in Figure 4.1A, are the most remote observations with the largest MDi to the 

population mean. None of the three data points would be identified as outliers by using 

Euclidean distance. More important, none of them would be identified as outliers if we 

used any univariate approach, when the two genes are considered separately, the 

expression levels of either gene in the three individuals are in the “normal” range. 

Finally the purpose of identifying outlier individuals is to study the genetic basis of 

aberrant expression of genes in outliers. That is to say, once the outlier individuals are 

identified, the genetic variation associated with outlier individuals can be further 

analyzed to see what kinds of genetic variation contribute to aberrant expression (i.e., 

Part 2 of the main results). 

Figure 4.1 MD-based multivariate outlier detection. (A) Scatter plot for the expression levels of two 

hypothetical genes. Three outliers indicated with red stars have the largest MD values to the population 

mean. (B) The chi-square plot showing the relative position and order of the three outlier data points, 

compared to those of non-outlier data points. 
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4.3.2 Gene sets (L-SSMD) that tend to be aberrantly expressed 

We started by identifying gene sets that are more likely to be aberrantly 

expressed. We obtained the expression data matrix of 10,231 protein-coding genes in 

326 LCLs from individuals of European descent (EUR) from the Geuvadis project RNA-

seq study [183]. We used SSMD to measure the total deviation of expression profiles 

from all individuals to the population mean for gene sets. We computed SSMD for all 

gene sets with fewer than 150 expressed genes in the MSigDB [209] and the GWAS 

catalog [11]. 

We identified 31 MSigDB gene sets whose SSMD values were significantly 

larger than those of control gene sets that contain the same number of genes randomly 

selected from all expressed genes (Bonferroni corrected P < 0.01, permutation test) 

(Table 4.1). These 31 gene sets contain 1,855 distinct genes that are more likely to be 

aberrantly expressed in defined outlier individuals. We named these gene sets and genes 

large SSMD (L-SSMD) gene sets and genes.  Figure 4.2 shows one of L-SSMD gene 

sets, G-protein coupled receptor activity, which contains 94 genes. In addition, eight 

GWAS catalog gene sets showed relatively large SSMD (P < 0.001, permutation test), 

though not significant following Bonferroni correction. These sets included genes 

implicated in adverse responses to chemotherapy, conduct disorder, fasting insulin-

related traits, metabolite levels, obesity, retinal vascular caliber, temperament, or thyroid 

hormone levels. 
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4.3.3 Outlier individuals in L-SSMD gene sets 

To identify outlier individuals, we applied chi-square plot to examine MD values 

of all individuals with respect to each of the 31 L-SSMD gene sets. We identified 17 

distinct outliers in total, 11 of which were found in more than one gene set, and almost 

all gene sets had more than one outlier. Figure 4.2 shows that three outliers were 

detected in the L-SSMD gene set, G-protein coupled receptor activity, using chi-square 

plot. The distributions of outliers in 31 gene sets from 17 individuals are given in Figure 

4.3. 

Figure 4.2 Gene expression profiles and outlier detection in the gene set, G-protein coupled receptor 

activity. (A) The expression profiles of 326 EUR samples for 94 genes in the gene set. The expression 

profile of the outlier individual with the largest SSMD is outlined in red. (B) The chi-square plot showing 

three outliers, as highlighted with the star symbol. (C) The null distribution of SSMD established from 

1,000 permutations of 94 randomly selected genes. The red vertical line indicates the observed value of 

SSMD computed for the original gene set. 
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Figure 4.3 Distribution of outliers in corresponding gene sets. The 63 outliers (involving 17 distinct 

individuals) with respect to the 31 L-SSMD gene sets, detected by using chi-square plot, are highlighted 

with shaded box. The indexes of L-SSMD gene sets are given and their names are given in Table 4.1 of 

the main text.  

4.3.4 Gene sets (S-SSMD) that tend not to be aberrantly expressed 

Fourteen gene sets with significantly smaller SSMD (S-SSMD) were identified 

(Bonferroni corrected P < 0.01, Table 4.2). The S-SSMD genes (n = 534) in the 14 S-

SSMD gene sets are involved in homologous recombination repair of replication-

independent double-strand breaks, catalysis of the transfer of a phosphate group to a 

carbohydrate substrate molecule, or cell cycle control. GWAS gene sets implicated in 

alcohol dependence and metabolic syndrome showed significantly smaller SSMD than 

random gene set. 
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4.3.5 Validation of L- and S-SSMD gene sets 

We evaluated the power of SSMD as a statistic describing the propensity of a 

gene set for aberrant expression. We considered the influences of the sample size (n) and 

the size of gene set (m). In cases where the SSMD are insensitive to n or m, the power 

would be maintained when n or m changes. However, we found that the power dropped 

substantially when n dropped from 326 to 300 or when m dropped from 37 to 31, 

suggesting that SSMD is sensitive to both n and m (Figure 4.4 A, B). This might be due 

to only a small number of genes in the gene set tested being aberrantly expressed in a 

few individuals and the power analyses for m and n being based on the sub-sampling of 

genes and individual samples (Materials and Methods). 
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Table 4.1  Gene sets that tend to be aberrantly expressed in LCLs from individuals of European descent. The names of gene sets and MSigDB 

subclasses are given. Number of genes (#) shows the number of genes included in SSMD computation / the number of genes in the original gene set. 

Gene set # of genes 

C2: curated gene sets (Chemical and genetic perturbations, Reactome gene sets) 

1. AIGNER_ZEB1_TARGETS Genes up-regulated in MDA-MB-231 cells (breast cancer) after 

knockdown of ZEB1 [GeneID=6935] by RNAi 

28 / 35 

2. CAFFAREL_RESPONSE_TO_THC_8HR_3_UP Genes up-regulated in EVSA-T cells (breast cancer) treated with 3 

micromolar THC (delta-9-tetrahydrocannabinol) 

[PubChem=6610319] for 8 h. 

5 / 5 

3. GAUSSMANN_MLL_AF4_FUSION_TARGETS_E_UP Up-regulated genes from the set E (Fig. 5a): specific signature 

shared by cells expressing either MLL-AF4 [GeneID=4297;4299] 

or AF4-MLL fusion proteins alone, and those expressing both 

fusion proteins. 

76 / 97 

4. HOFMANN_MYELODYSPLASTIC_SYNDROM_RISK

_UP

Genes up-regulated in bone marrow hematopoietic stem cells 

(HSC, CD34+ [GeneID=947]) from patients with high risk of 

myelodysplastic syndrom (MDS) compared to the low risk 

patients. 

19 / 24 
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Table 4.1 continued 

Gene set # of genes 

5. IWANAGA_CARCINOGENESIS_BY_KRAS_UP Cluster 3: genes up-regulated in lung tissue samples from mice 

with tumor-bearing genotypes (activated KRAS [GeneID=3845] 

alone or together with inactivated PTEN [GeneID=5728]). 

141 / 170 

6. LEIN_CHOROID_PLEXUS_MARKERS Genes enriched in choroid plexus cells in the brain identified 

through correlation-based searches seeded with the choroid plexus 

cell-type specific gene expression patterns. 

79 /103 

7. LIEN_BREAST_CARCINOMA_METAPLASTIC_VS_D

UCTAL_DN

Genes down-regulated between two breast carcinoma subtypes: 

metaplastic (MCB) and ductal (DCB). 

77 / 114 

8. LIU_PROSTATE_CANCER_UP Genes up-regulated in prostate cancer samples. 79 / 96 

9. MASRI_RESISTANCE_TO_TAMOXIFEN_AND_ARO

MATASE_INHIBITORS_UP

Genes up-regulated in derivatives of MCF-7aro cells (breast 

cancer) that developed resistance to tamoxifen [PubChem=5376] 

or inhibitors of aromatase (CYP19A1) [GeneID=1588]. 

11 / 20 

10. MIKKELSEN_MEF_ICP_WITH_H3K27ME3 Genes with intermediate-CpG-density promoters (ICP) bearing the 

tri-methylation mark at H3K27 (H3K27me3) in MEF cells 

(embryonic fibroblasts). 

115 / 206 
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Table 4.1 continued 

Gene set # of genes 

11. PEPPER_CHRONIC_LYMPHOCYTIC_LEUKEMIA_D

N

Genes down-regulated in CD38+ [GeneID=952] CLL (chronic 

lymphocytic leukemia) cells. 

11 / 21 

12. POTTI_ETOPOSIDE_SENSITIVITY Genes predicting sensitivity to etoposide [PubChem=36462]. 37 / 43 

13. QI_PLASMACYTOMA_DN Down-regulated genes that best disciminate plasmablastic 

plasmacytoma from plasmacytic plasmacytoma tumors. 

85 / 100 

14. REACTOME_CGMP_EFFECTS Genes involved in cGMP effects 15 / 19 

15. REACTOME_LIGAND_GATED_ION_CHANNEL_TRA

NSPORT

Genes involved in Ligand-gated ion channel transport 6 / 21 

16. VANHARANTA_UTERINE_FIBROID_UP Genes up-regulated in uterine fibroids vs normal myometrium 

samples. 

39 / 45 

17. WU_CELL_MIGRATION Genes associated with migration rate of 40 human bladder cancer 

cells. 

143 / 184 

C3: motif gene sets (microRNA targets) 

18. TCCAGAG,MIR-518C Targets of MicroRNA TCCAGAG,MIR-518C 132 / 148 

C4: computational gene sets (cancer modules, cancer gene neighborhoods) 
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Table 4.1 continued 

Gene set # of genes 

19. MODULE_122 Genes in the cancer module 122 111 / 141 

20. MODULE_215 Genes in the cancer module 215 3 / 15 

21. MODULE_274 Genes in the cancer module 274 44 / 82 

22. MORF_BCL2L11 Neighborhood of BCL2L11 123 / 188 

23. MORF_MYL3 Neighborhood of MYL3 44 / 71 

C5: GO gene sets (GO biological process, GO molecular function) 

24. EXTRACELLULAR_LIGAND_GATED_ION_CHANNE

L_ACTIVITY

Genes annotated by the GO term GO:0005230. Catalysis of the 

transmembrane transfer of an ion by a channel that opens when a 

specific extracellular ligand has been bound by the channel 

complex or one of its constituent parts. 

14 / 22 

25. G_PROTEIN_COUPLED_RECEPTOR_ACTIVITY Genes annotated by the GO term GO:0004930. A receptor that 

binds an extracellular ligand and transmits the signal to a 

heterotrimeric G-protein complex. These receptors are 

characteristically seven-transmembrane receptors and are made up 

of hetero- or homodimers. 

94 / 191 
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Table 4.1 continued 

Gene set # of genes 

26. TRANSMISSION_OF_NERVE_IMPULSE Genes annotated by the GO term GO:0019226. The sequential 

electrochemical polarization and depolarization that travels across 

the membrane of a nerve cell (neuron) in response to stimulation. 

108 / 189 

C6: oncogenic signatures 

27. MEL18_DN.V1_DN Genes down-regulated in DAOY cells (medulloblastoma) upon 

knockdown of PCGF2 [GeneID=7703] gene by RNAi. 

104 / 148 

C7: immunologic signatures 

28. GSE19825_NAIVE_VS_DAY3_EFF_CD8_TCELL_UP Genes up-regulated in comparison of naive CD8 T cells versus 

effector CD8 T cells. 

128 / 200 

29. GSE19825_NAIVE_VS_IL2RALOW_DAY3_EFF_CD8_

TCELL_UP

Genes up-regulated in comparison of naive CD8 T cells versus 

effector CD8 IL2RA [GeneID=3559] low T cells at. 

133 / 200 

30. GSE3982_NKCELL_VS_TH2_UP Genes up-regulated in comparison of NK cells versus Th2 cells. 136 / 200 
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Table 4.1 continued 

Gene set # of genes 

31. GSE8515_CTRL_VS_IL6_4H_STIM_MAC_DN Genes down-regulated in comparison of untreated macrophages 

versus those treated with IL6 [GeneID=3569]. 

144 / 200 

Table 4.2 Gene sets that tend not to be aberrantly expressed in LCLs from individuals of European descent. 

Gene set # of genes 

C2: curated gene sets (Canonical pathways, KEGG, Reactome, BioCarta, chemical and genetic perturbations) 

1. PID_ATM_PATHWAY ATM pathway 34 / 34 

2. KEGG_HOMOLOGOUS_RECOMBINATION Homologous recombination 28 / 28 

3. MORI_PRE_BI_LYMPHOCYTE_DN Down-regulated genes in the B lymphocyte developmental 

signature, based on expression profiling of lymphomas from the 

Emu-myc transgenic mice: the Pre-BI stage. 

73 / 77 

4. XU_RESPONSE_TO_TRETINOIN_UP Genes up-regulated in NB4 cells (acute promyelocytic leukemia, 

APL) by tretinoinalone. 

14 / 16 
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Table 4.2 continued 

Gene set  # of genes 

5. FLECHNER_PBL_KIDNEY_TRANSPLANT_OK_VS

_DONOR_DN 

Genes downregulated in peripheral blood lymphocytes (PBL) from 

patients with well functioning kidneys more than 1-year post 

transplant compared to those from normal living kidney donors 

40 / 41 

6. GARGALOVIC_RESPONSE_TO_OXIDIZED_PHOS

PHOLIPIDS_LIGHTYELLOW_UP 

Genes from the lightyellow module which are up-regulated in HAEC 

cells (primary aortic endothelium) after exposure to the oxidized 1-

palmitoyl-2-arachidonyl-sn-3-glycerophosphorylcholine (oxPAPC). 

11 / 11 

7. REACTOME_HOMOLOGOUS_RECOMBINATION

_REPAIR_OF_REPLICATION_INDEPENDENT_DO

UBLE_STRAND_BREAKS 

Genes involved in Homologous recombination repair of replication-

independent double-strand breaks 

16 / 17 

8. REACTOME_G1_PHASE Genes involved in G1 Phase. 35 / 38 

9. BIOCARTA_ATRBRCA_PATHWAY Role of BRCA1, BRCA2 and ATR in Cancer Susceptibility . 21 / 21 

C4: computational gene sets (cancer modules, cancer gene neighborhoods)  

10. MODULE_87 Genes in the cancer module 87 44 / 44 
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Table 4.2 continued 

Gene set # of genes 

11. MORF_PRKAR1A Neighborhood of PRKAR1A protein kinase, cAMP-dependent, 

regulatory, type I, alpha (tissue specific extinguisher 1) in the MORF 

expression compendium 

139 / 142 

12. MORF_REV3L Neighborhood of REV3L 55 / 57 

13. GNF2_DDX5 Neighborhood of DDX5 DEAD (Asp-Glu-Ala-Asp) box polypeptide 

5 in the GNF2 expression compendium 

62 / 63 

C5: GO gene sets (GO molecular function) 

14. CARBOHYDRATE_KINASE_ACTIVITY Genes annotated by the GO term GO:0019200. Catalysis of the 

transfer of a phosphate group, usually from ATP, to a carbohydrate 

substrate molecule. 

15 / 15 
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Figure 4.4 Power of SSMD test and validation of significant L- and S-SSMD gene sets. (A) The change of 

power as a function of sample size. (B) The change of power as a function of the size of a gene set. (C) 

Validation of significant L- and S-SSMD gene sets using different expression data. Original: Geuvadis 

LCL expression data normalized using PEER (i.e., data used for the main results); Rep1: first set of 

replication of Geuvadis LCL expression data without PEER normalization; Rep2: second set of replication 

of Geuvadis LCL expression data without PEER normalization; Whole blood: GTEx whole blood 

expression data; and Muscle: GTEx muscle expression data. The boxplot shows the frequency of observed 

SSMD is greater than the control SSMD of 1,000 random replicates.  

Owning to the observed sensitivities, it was necessary to validate our results for 

the L- and S-SSMD gene sets, which were obtained using the Geuvadis LCL expression 

data [183]. This was accomplished by taking into consideration three factors: (1) 

robustness against the influence of data normalization methods, (2) replicability against 

technical variability, and (3) reproducibility against independent expression data of 

different tissues. 

The “original” Geuvadis expression data we used to identify L- and S-SSMD 

gene sets had been normalized by using the algorithm of PEER [220,221]. We first 

showed that the PEER normalization algorithm did not change our results. To do so, we 

downloaded the “raw” Geuvadis expression data quantified in reads per kilobase per 

million (RPKM) without PEER normalization. Two replicate sets of raw RPKM data 

were available for most of the Geuvadis samples. We used each set independently to test 
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the significance of SSMD for L- and S-SSMD gene sets against random control sets. The 

procedure was similar to what we used for establishing the original L- and S-SSMD 

gene sets. Briefly, for each L- or S-SSMD gene set, we tested whether the SSMD 

computed with raw RPKM data tended to be larger or smaller than that of random gene 

sets. The observed SSMD was compared against SSMD values computed from 1,000 

replicates of randomly selected genes and the significance was evaluated by examining 

how many times the observed SSMD was larger or smaller than random SSMD. As 

expected, with the original (PEER normalized) expression data, all 31 L-SSMD gene 

sets had a larger SSMD than sets of randomly selected genes, while all 14 S-SSMD gene 

sets had a smaller SSMD. The same patterns were recovered with the raw RPKM 

expression data (Figure 4.4C). These results indicated that our results for L- or S-SSMD 

gene sets were robust against the normalization methods used and inherent technical 

variability in the measurements.  

We used independent gene expression data from additional tissues to validate our 

results. Data from whole blood and muscle (in 156 and 138 samples, respectively) from 

the pilot study of the Genotype-Tissue Expression project (GTEx) [222] were used to re-

compute SSMD and to conducted the same validation tests that were performed for the 

LCL data. With the GTEx data, the frequency of observed SSMD greater than random 

SSMD was significantly higher for L-SSMD gene sets than S-SSMD gene sets (K-S test, 

P = 1.02e-5 and 9.9e-4, for whole blood and muscle, respectively, Figure 4.4C). These 

results suggest that gene sets tending to have larger observed SSMD in LCL were more 

likely to have larger SSMD in the other two tested tissues, and vice versa. The 
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consistency in the direction of SSMD patterns among disparate tissue types validates the 

biological significance of L- and S-SSMD gene sets. 

4.3.6 Differences in aberrant expression between Europeans and Africans 

Next we examined which gene sets show strong population-specific SSMD. For 

a given gene set, we first computed MDi with the gene expression data for all 402 

samples of both European (EUR, n = 326) and African (AFR, n = 76) ancestries. We 

then use these MDi to compute SSMDEUR and SSMDAFR for EUR and AFR samples, 

respectively, and calculated the difference in SSMD between them: diffSSMDEUR-AFR = 

SSMDEUR-SSMDAFR. To assess the significance, we computed diffSSMDrand by randomly 

assigning samples without regard to their identities of original populations. For each 

gene set, we computed 1,000 permutations of diffSSMDrand to obtain the null distribution 

of expected diffSSMDEUR-AFR. We compared the value of diffSSMDEUR-AFR with the null 

distribution to obtain its significance. 

We used two random sets of genes (n = 20 and 40) to show that the values of 

diffSSMD were proportional to gene set size and changed linearly with the ratio by 

which the total samples were partitioned into two sub-groups (Figure 4.5A). In this test, 

we ignored the EUR and AFR ancestries of samples. We randomly shuffled the 402 

samples, partitioned them to two sub-groups with different ratios (such as, 201/201 or 

326/76), and computed the diffSSMD between the two sub-groups. We repeated this 

1,000 times per ratio to obtain null distributions of diffSSMD. We found that, regardless 

of gene set size, when samples were partitioned into groups of equal size (i.e., 201/201), 

the average diffSSMD was close to zero. When samples were partitioned unequally, the 
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average value of diffSSMD increased with the degree of inequality in a linear manner. 

When the ratio of partition was fixed (e.g., 326/76, the actual sample ratio of EUR and 

AFR), the average diffSSMD reflected the size of the gene set (e.g., twice as large for the 

40-gene set as the 20-gene set). When both the ratio of partition and the gene set was 

fixed, as we did in the real test for each gene set, the values of null diffSSMD fluctuated 

only due to the random assignment of samples into the two sub-groups. Similarly, in our 

significance test for diffSSMDEUR-AFR, both the gene set size and the ratio of partition 

(=326/76) were fixed, and the null distribution of diffSSMD, diffSSMDrand, was 

constructed from 1,000 random repeats of the partition of shuffled samples. An observed 

diffSSMDEUR-AFR was considered to be significant when it was greater or smaller than all 

values of diffSSMDrand. 

In total, 231 gene sets showed significantly smaller diffSSMDEUR-AFR than 

diffSSMDrand in our analysis. For these gene sets, the differences between SSMDEUR and 

SSMDAFR were relatively smaller than those differences calculated when EUR and AFR 

individuals were randomly assigned. This was likely caused by the relatively large 

SSMDAFR in real data. In other words, AFR samples were more likely to produce 

disproportionally larger SSMD than EUR samples. 

In contrast, only four gene sets showed the opposite pattern—that is 

diffSSMDEUR-AFR significantly larger than diffSSMDrand. Genes in these four sets included: 

(1) genes involved in the process preventing the degeneration of the photoreceptor (a 

specialized cell type that is sensitive to light), (2) genes down-regulated in prostate 

tumor (a tumor with distinct signatures differentiate between African-American and 
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European-American patients [223]), (3) genes associated with malignant fibrous 

histiocytoma tumors, and (4) genes up-regulated in colon tissue upon the knockout of 

MBD2, a methyl-CpG binding protein that mediates the methylation signal. 

Finally, a power analysis for diffSSMDEUR-AFR was conducted using the first gene 

set among the four with significantly larger diffSSMDEUR-AFR. The result suggested that 

the difference in sample size between EUR and AFR had little impact on the sensitivity 

of asserting that the tested gene set was significant. As shown in Figure 4.5B, when the 

EUR were subsampled from 326 to 76 (the sample size of AFR), the power of diffSSMD 

only slightly decreased.  

 

Figure 4.5 Change of diffSSMD as a function of the ratio between partitioned samples and the power of 

diffSSMD test under varying sample size. (A) The change of diffSSMD as a function of the size ratio of 

partitioned samples. The results with respect to two gene sets of size 20 and 40 are shown. For each ratio 

of partition, the distribution of diffSSMDrand was constructed from 100 randomly shuffled samples. (B) The 

change of the power of the diffSSMD test between EUR and AFR populations for the population-specific 

effect as a function of the size of EUR samples. The red line is fitted by using polynomial regression with 

the cubic model. 

 

4.3.7 Genetic and nongenetic factors contributing to aberrant expression 

To evaluate the contributions of genetic or nongenetic factors in causing aberrant 

expression, we utilized three statistical metrics to characterize L- and S-SSMD genes 
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and compared the properties of the two groups of genes (Materials and Methods). The 

three metrics were: (1) discordant gene expression, measured as the RMD in gene 

expression, between twin pairs, considering both MZ and DZ twins [176]; (2) the 

narrow-sense heritability (h2) of gene expression [215]; and (3) the CV of single-cell 

gene expression [217]. 

Discordant expression between twin pairs in L-SSMD genes is greater than that 

in S-SSMD genes in both types of twins (P = 2.8e-15 between MZ pairs and 3.0e-34 

between DZ pairs; K-S test, Figure 4.6A), but the difference is more pronounced for L-

SSMD genes than for S-SSMD genes (P = 5.6e-23 and 5.4e-6 for L- and S-SSMD genes, 

respectively). The more pronounced discordant expression between MZ pairs for L-

SSMD genes, compared to S-SSMD genes, is likely due to the effect of environmental 

factors. L-SSMD genes may have increased sensitivity to environmental factors. On the 

other hand, regardless of L- or S-SSMD genes, the discordant expression is always 

greater between DZ pairs than between MZ pairs. This suggests that genetic diversity 

increases the level of discordance in gene expression. 

Expression levels of L-SSMD genes tend to have a smaller h2 than S-SSMD 

genes (P = 3.6e-5, K-S test, Figure 4.6B). Similar results were obtained with different h2 

estimates (e.g., those using data from another twin cohort [117] and those using data 

from unrelated individuals [216]). Furthermore, L-SSMD genes showed greater 

expression variability at the single-cell level than S-SSMD (P = 7.7e-21, K-S test, 

Figure 4.6C). Forty genes were found to be shared between L-SSMD and S-SSMD 
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groups. Excluding these overlapping genes did not qualitatively change any of the results 

described above.  

 

Figure 4.6 Differences in expression discordance, heritability, and variability between L- and S-SSMD 

genes. (A) Normalized mean discordant expression (measure as the relative mean difference, RMD) per 

gene. (B) Heritability of gene expression. (C) CV of single-cell expression. 

 

4.3.8 Common regulatory variation is not responsible for aberrant expression 

 To evaluate the contribution of eQTLs to aberrant expression, we obtained 

419,983 cis-acting eQTL SNPs (eSNPs) associated with 13,703 genes from a previous 

study [183]. We found that 20.3% of L-SSMD genes and 19.3% of S-SSMD genes have 

cis-eSNP(s). That is to say, there is no difference in cis-eSNP occurrence between L- 

and S-SSMD genes (P = 0.67, Fisher’s exact test). Due to the prevalence of eSNPs, this 

result was not unexpected. 

 Next we examined whether outlier individuals are more likely to have an eQTL 

genotype that might explain their outlier status. In particular, we calculated the 

genotype-scaled effect size (β = |β|*genotype, where genotype = [0, 1, 2], to take into 

account of the direction of the effect) for all cis-eSNPs of associated genes in L-SSMD 

gene sets for outlier individuals. Multiple eSNPs in the same genes were treated 

independently and the values of genotype-scaled effect sizes were pooled together as 
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βoutlier. We did the same calculation for the same sets of genes for all non-outlier 

individuals to obtaine βnon-outlier.  

 We hypothesized that if cis-eSNPs cause the outlier’s gene expression level to 

deviate away from the population mean, then the genotype-scaled effect size of these 

eSNPs in outlier individuals should be less likely to be zero and more likely to be larger 

than that of non-outlier individuals. However, we found that 45.3% of βoutlier (n = 24,649, 

pooling from 63 outlier-gene pairs, i.e., pairs of outlier individual and gene in 

corresponding gene sets) and 46.2% of βnon-outlier (n = 3,329,296, pooling from 309 

outlier-gene pairs) were zeros, showing that there was no difference between the two 

fractions (P = 0.086, χ2 test). Considering that this result might be affected by LD 

between eSNPs that is not accounted for by our model, we performed the analysis again 

using only the most significant eSNP per gene. With this single-eSNP setting, we found 

that 9.49% of βoutlier (n = 875, pooling from 63 outlier-gene pairs) and 10.58% of βnon-

outlier (n = 118,965, pooling from 309 outlier-gene pairs) were zeros. Again, there was no 

difference between the two fractions (P = 0.3448, χ2 test). Furthermore, using only the 

most significant cis-eSNP per gene, we found that the distribution of nonzero βoutlier was 

highly similar to that of nonzero βnon-outlier (K-S test, P = 0.67, Figure 4.7). 

These results suggest that eSNPs, as commonly-occurring regulatory genetic variants, 

may not be responsible for aberrant expression of genes under their regulation. 
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Figure 4.7 Distributions of nonzero effect size β of cis-eSNPs of L-SSMD genes in outlier and non-outlier 

individuals. The effect size β is genotype-weighted (i.e., β =|β|*genotype, where genotype = [0, 1, 2]). 

4.3.9 Private variants may be responsible for aberrant expression 

We next considered whether private SNPs might be responsible for aberrant 

expression by testing to see if private SNPs are enriched in regulatory regions of L-

SSMD genes in outlier individuals. Private SNP density was calculated by pooling SNPs 

that were found uniquely in each outlier individual within the predefined 1Mb cis-

regulatory regions of L-SSMD genes. Based on ENCODE annotations [218], regulatory 

regions were divided into seven subclasses, namely, E (predicted enhancer), TSS 

(predicted promoter region including TSS), T (predicted transcribed region), PF 

(predicted promoter flanking region), CTCF (CTCF-enriched element), R (predicted 

repressed or low-activity region), and WE (predicted weak enhancer or open chromatin 

cis-regulatory element). 
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We found that the density of private SNPs in E regions of L-SSMD genes in 

outlier individuals was significantly higher than that in the same E regions in non-outlier 

individuals (P < 0.001, one-tailed t test). The density was also significantly higher than 

that derived from three additional control settings, including the reconstructed E regions 

from locations 10 Mb away from genes and randomly selected L-SSMD or S-SSMD 

genes (Materials and Methods). In summary, we randomly selected individuals or genes 

in four different manners to construct the control scenario, from which the private SNP 

density was calculated and compared with the observed density. The most salient finding 

was that for the E regions, the observed density of private SNPs in L-SSMD genes was 

significantly higher than any of the controls (Table 4.3). In addition, we also found that, 

for TSS, the density is significantly higher than in three controls (P < 0.001, one-tailed t 

test). These results are consistent with the findings of a previous study, which also 

focused on the effects of rare variant on causing outlier expression [224]. The rest of the 

region classes showed less significant enrichment or similar levels of density (Table 4.3).  

For illustrative purpose, two private SNPs, rs189458147 and rs117086221, located in E 

region of PMAIP1 and TSS region of NEIL1 are depicted (Figure 4.8). 
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Figure 4.8 Private SNPs located in ENCODE E (predicted enhancer) and TSS (predicted transcribed 

region) regions of corresponding L-SSMD genes. (A) Rs117086221 is located in the TSS region of gene 

NEIL1 in the individual NA12154.  (B) Rs189458147 locates in the potential E region of gene PMAIP1 in 

the individual HG00122. 
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Table 4.3 Density of private SNPs in ENCODE regulatory regions of L-SSMD genes. The symbol * 

indicates the SNP density in the corresponding control regions is significantly lower than that in the test 

regions of the outlier. The significance is assessed by one-tailed t test at the level of P = 0.001. Control 1: 

randomly selected non-outlier individuals to replace outlier individuals. Control 2: randomly selected 

genomic region located 10 Mb away from L-SSMD genes. Control 3: randomly shuffled L-SSMD genes 

in equal number to the original gene set. Control 4: randomly shuffled S-SSMD genes in equal number to 

the original gene set. 

Density of private SNP (per million bp) 

Abbreviation Description Oberserved 

(#/Mb) 

Control 

1 

Control 

2 

Control 

3 

Control 

4 

E Predicted enhancer 2.07 (308/149) 1.54* 1.41* 1.76* 1.73* 

TSS 

Predicted promoter region 

including transcription start 

site 

1.91 (408/214) 1.51* 1.23* 1.45* 1.82 

CTCF CTCF enriched element 1.89 (213/113) 1.71* 1.34* 1.56* 1.79 

T 

Predicted transcribed region 2.00 

(4184/2092) 

1.79* 1.52* 1.83 1.92 

PF 

Predicted promoter flanking 

region 

1.79 (94/53) 1.46* 1.33* 1.69 1.96 

R 

Predicted repressed or low 

activity region 

1.88 

(10152/5400) 

1.72* 1.45* 1.68* 1.79 

WE 

Predicted weak enhancer or 

open chromatin cis 

regulatory element 

1.93 (102/53) 1.59* 1.63* 2.15 2.00 

UNCL Unclassified region 1.64 (833/508) 1.41* 0.84* 1.53 1.60 
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4.4 Discussion 

We have used MD as a measure of distance between two points in the space 

defined by two or more correlated variables to quantify the deviation of individuals’ 

gene-set expression to the population mean. This quantity allowed us to identify 

expression outliers. The sum of squares this quantity across individuals (i.e., SSMD) 

allowed us to assess how likely a gene set is to be aberrantly expressed in outlier 

individuals. As expected, genes involved in fundamental molecular functions and 

metabolic pathways are unlikely to be aberrantly expressed, showing a small SSMD. In 

contrast, genes in the gene sets with large SSMD tend to be involved in regulation of 

cellular processes and modulation of signal transduction (see Table 4.1  Notably, three 

gene sets with large SSMD have GO distinctive definitions: (1) extracellular ligand 

gated ion channel activity, (2) G-protein coupled receptor activity, and (3) transmission 

of nerve impulse. G-protein coupled receptors constitute a large protein family of 

receptors that sense molecules outside the cell and activate inside signal transduction 

pathways, implicated in various human diseases and development processes [225-227].    

Widespread genetic regulatory variants have been uncovered by eQTL analyses. 

Most eQTLs are detected on the basis of significant linear regression between genotype 

and gene expression level. The inherent limitation of this method is that only commonly-

occurring regulatory genetic variants will be discovered. Our analysis of cis-acting 

eQTLs in gene sets suggests that the observed patterns of expression are unlikely to be 

related to commonly-occurring regulatory genetic variation. Our finding that eQTLs are 

less likely to be responsible for aberrant expression of genes under their regulation 
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underscores the technical limitation of the eQTL method in dealing with gene expression 

regulation in outliers. 

 Instead, we discovered that private SNPs are likely to be responsible for a large 

proportion of gene expression anomalies. Our results suggest that private SNPs are 

significantly enriched in enhancer and promoter regions of aberrantly-expressed genes. 

This is in agreement with the findings of [224], in which Montgomery and colleagues 

reported evidence of rare SNPs underlying large changes in gene expression by 

calculating whether individuals with outlier array expression values were enriched for 

rare genetic variants. They used Z-scores as a measurement of the magnitudes of 

deviations from the mean of the sample. They found that individuals with gene 

expression Z-scores ≥ 2 have an excess of rare variants within 100 kb of the 

transcription start site of anomalously expressed genes. The signal was found to be 

statistically significant for rare variants located in highly conserved sites [224]. Taken 

together, results from [195} and our present study suggest that rare or private SNPs 

contribute to large changes in gene expression. Awareness of this effect is important as it 

means that a rare genetic variant, even if observed in an individual genome, could 

potentially be regulating the expression of the phenotype to an extreme extent relative to 

the population mean. This makes sense from a population genetics standpoint because 

the recent explosion of human population size has created an abundance of rare genetic 

variants [80]. These variants, segregating in small groups of people or single individuals, 

have not been subject to the test of natural selection, and thus can potentially have 

stronger functional consequences. They may underlie aberrant gene expression and may 
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also underlie susceptibility to complex diseases. Therefore, the individual bearing 

private SNPs causing aberrant gene expression might be an interesting model of 

phenotypes relevant to the function of the aberrantly expressed gene. Otherwise, on the 

population level, the variants may bear little relevance to disease susceptibility 

phenotypes. 

Intrinsic properties of gene sets are defined not only by descriptive functions of 

genes they include but also several measurable genetic metrics. Combined use of these 

metrics has demonstrated the contribution of both genetic and environmental factors to 

aberrant expression. First, twin data facilitated the dissection of the contributions of 

genetic and nongenetic factors. The discordance in gene expression is expected to be 

larger between pairs of DZ twins than between pairs of MZ twins, as the phenotypic 

difference between DZ pairs may result from both genetic and environmental effects. 

We indeed observed the difference between MZ and DZ in discordant expression as 

expected, and to the same extent for genes tending to and tending not to be aberrantly 

expressed. This result suggests that genetic diversity increases overall expression 

variability. More importantly, we found that the discordant expression in MZ pairs for 

genes tending to be aberrantly expressed is greater than that for genes that tend not to be 

aberrantly expressed. This result suggests that under the same genetic background, 

aberrantly expressed genes are more likely to be sensitive to the change of 

environmental factors than non-aberrantly expressed genes. Second, heritability is a 

dimensionless measure of the weight of genetic factors in explaining the phenotypic 

variation among individuals [228-230]. We showed that genes with small SSMD have a 
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higher narrow-sense heritability (h2) of gene expression than genes with large SSMD. 

Third, we detected that genes tending to be aberrantly expressed have a higher 

expression variability at the single-cell level than genes tending not to be aberrantly 

expressed. This result suggests that intrinsic single-cell expression contributes to 

aberrant expression. 

In summary, we leveraged the 1,000 genomes RNA-seq data to identify aberrant 

gene expression in humans, and described a multivariate framework for detecting 

aberrantly expressed gene sets and outlier individuals, offering a new way of measuring 

inter-individual variation in gene expression. This novel perspective on how to measure 

differences in gene expression between individual human subjects may provide 

important clues to the mechanisms of human adaptation, and may also be helpful for the 

growing field of personalized medicine. 
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CHAPTER V 

SUMMARY AND CONCLUSION 

The impact of genetic variants on gene expression variation and variance are two 

major topics in modern biological inquiry. Historically, most research has focused on the 

contribution of common allelic variants to gene expression variation (eQTL) and ignored 

the sources of allelic expression variance (evQTL). In addition, existing methods for 

eQTL studies are designed for assessing the effects of common variants, but not rare 

variants. On one hand, increasing evidence had demonstrated that gene expression 

variance, as a heritable and quantitative trait, is also under genetic control; thus 

understanding the relationship between genetic variants and gene expression variance 

has a wide range of application in evolutionary biology, medical genetics, and 

agriculture selection programs.  On the other hand, the advent of NGS technologies has 

uncovered a large number of rare SNPs in human and other populations, which has 

created a critical need to develop a new methodologies for assessing the biological 

significance of these rare variants. In this dissertation, I presented three chapters that 

describe the major work I accomplished during my Ph.D. research to investigate the 

effect of common genetic variants on gene expression variance and interrogate the 

impact of rare variants on gene expression. 

In Chapters II and III, I described a systematic exploration of genome-wide 

association between common genetic variants and gene expression variability using 
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genotype and expression datasets from TwinsUK study and Geuvadis project study, 

respectively. Our results showed a significant association between variances of gene 

expression and specific genotypes, and highlight the importance of accounting for 

widespread variance-controlling variants (evQTLs) in the human populations genome-

wide association analyses of humans and other species.  In addition, we considered and 

contrasted two distinct effects that may generate evQTLs: interactions between genetic 

variants (GxG), and interactions between genotype and environment (GxE). We 

explicitly searched for signs of GxG that explain the formation of evQTLs, but found 

few such cases. Instead, our experiment results showed that for an individual 

homozygous for an evQTL SNP allele associated with larger variance, the stochastic 

noise of the evQTL gene’s expression (i.e., the random fluctuation of gene expression 

within replicated measures) is more pronounced than that in another individual with the 

evQTL SNP allele associated with smaller variance. This striking finding links gene 

expression variance estimated between individuals with that estimated between 

replicated measures, suggesting a consistent action of decanalization driven by GxE 

evQTL at the two different levels. Despite the progress of the evQTL study, evQTL 

remains largely a statistically described, population-level phenomenon, with insufficient 

experimental support to suggest molecular mechanisms. There is a critical need to 

validate the variance-controlling function of evQTLs and determine the precise 

molecular processes through which evQTL SNPs affect the magnitude of gene 

expression variance. In the absence of such knowledge, the real impact of genetic 

variants on changing phenotypic variances will remain elusive, which will eventually 
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hinder the development of effective association mapping for pinpointing causal variants 

of complex traits. 

In Chapter IV, we developed a multivariate method called aberrant gene 

expression analysis to study the effects of rare variants on gene expression by measuring 

levels of multigene expression dispersion. This method quantifies the dissimilarity in 

multigene expression patterns between individuals using Mahalanobis distance, which is 

an appropriate measure due to the consideration of the covariance between expression 

levels of multiple genes. Our results showed that, rare genetic variants of outlier 

individuals are enriched in the regulatory elements (enhancers, promoter regions 

elements) of corresponding aberrantly expressed genes, which suggests that rare variants 

may play a specific role in gene expression regulation.  
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