

IMAGE RECONSTRUCTIONS OF COMPRESSED SENSING MRI WITH

MULTICHANNEL DATA

A Dissertation

by

CHING-HUA CHANG

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Jim Ji

Committee Members, Raffaella Righetti

 Henry Pfister

 Mary P. McDougall

Head of Department, Miroslav M. Begovic

May 2016

Major Subject: Electrical Engineering

Copyright 2016 Ching-Hua Chang

ii

ABSTRACT

Magnetic resonance imaging (MRI) provides high spatial resolution, high-quality

of soft-tissue contrast, and multi-dimensional images. However, the speed of data

acquisition limits potential applications. Compressed sensing (CS) theory allowing data

being sampled at sub-Nyquist rate provides a possibility to accelerate the MRI scan time.

Since most MRI scanners are currently equipped with multi-channel receiver systems,

integrating CS with multi-channel systems can further shorten the scan time and also

provide a better image quality. In this dissertation, we develop several techniques for

integrating CS with parallel MRI.

First, we propose a method which extends the reweighted l1 minimization to the

CS-MRI with multi-channel data. The individual channel images are recovered according

to the reweighted l1 minimization algorithm. Then, the final image is combined by the

sum-of-squares method. Computer simulations show that the new method can improve the

reconstruction quality at a slightly increased computation cost.

Second, we propose a reconstruction approach using the ubiquitously available

multi-core CPU to accelerate CS reconstructions of multiple channel data. CS

reconstructions for phase array system using iterative l1 minimization are significantly

time-consuming, where the computation complexity scales with the number of channels.

The experimental results show that the reconstruction efficiency benefits significantly

from parallelizing the CS reconstructions, and pipelining multi-channel data on multi-core

iii

processors. In our experiments, an additional speedup factor of 1.6 to 2.0 was achieved

using the proposed method on a quad-core CPU.

Finally, we present an efficient reconstruction method for high-dimensional CS

MRI with a GPU platform to shorten the time of iterative computations. Data

managements as well as the iterative algorithm are properly designed to meet the way of

SIMD (single instruction/multiple data) parallelizations. For three-dimension multi-

channel data, all slices along frequency encoding direction and multiple channels are

highly parallelized and simultaneously processed within GPU. Generally, the runtime on

GPU only requires 2.3 seconds for reconstructing a simulated 4-channel data with a

volume size of 256×256×32. Comparing to 67 seconds using CPU, it achieves 28 faster

with the proposed method. The rapid reconstruction algorithms demonstrated in this work

are expected to help bring high dimensional, multichannel parallel CS MRI closer to

clinical applications.

iv

DEDICATION

Dedicated to my father, Sheng-Ping Chang (1924-2013), who suffered from

WWII in the battle of Asia and retreated from Mainland China to Taiwan. He believed

that only education can help people get out of poverty and have a better life. I would not

finish this work without his support, encouragement, and endless love.

v

ACKNOWLEDGEMENTS

It is a long journey for me to earn the doctorate and to accomplish the dissertation.

Undoubtedly, this arduous goal cannot be achieved without many people’s help. First and

the foremost, I would like to express my heartfelt gratitude to my family for their constant

support and encouragement. The deepest thanks go to my parents, who are always proud

of me and never lose faith in me whenever I have difficulties. Their trust gives me a lot of

confidence and courage to take challenges. I am truly grateful to them. Thanks also go to

my brothers and sisters-in-law that they are supportive of me and the family, especially in

my absence from our father’s last few years. In their unfailing care, I still could spend time

and energy pursuing goals. Most important of all, it’s the family who convinced me that

the scene will be different after passing through a valley as I lost my persistence. I wish

that I could picture the open scenery of this achievement and share with them since they

accompany me in spirit along the way.

 Certainly, I am sincerely thankful to my committee chair, Dr. Ji for giving me

opportunities to do MRI research and also for his support, guidance and much patience as

I sometimes got stranded. Thanks also go to my committee members, Dr. Righetti, and

Dr. McDougall, who ever gave me valuable comments and suggestions. I also would like

to thank Dr. Pfister, who is my husband’s committee chair and my committee member,

for his support, advice, and for showing many kindnesses to my family.

 I also would like to thank my labmates, Ying, and Shuo, who are brilliant,

outstanding and always willing to help. I benefited a lot in class and in the lab from our

vi

discussions and their suggestions. It’s definitely my pleasure to work with them. Thanks

also go to another labmate, Aydin, who is kind and responsible. Although we didn’t get

many chances to spend time together, he offered a great help in my absence from the

campus. I am grateful to him.

Last but not the least, I would like to express my utmost appreciation to my

husband, Yung-Yih, who has been my classmate for 24 hours a day and 7 days a week. I

always gain much from our discussions. Besides, he sometimes plays roles of both father

and mother to our two daughters; sometimes, he plays roles of both partner and tutor to

me. Although I occasionally feel “appropriate pressure” from him, it has been the spur for

me to pursue the goal. Thanks also go to my two daughters, Alexis and Alina, who have

been the sweetest and greatest cheerleader. I wish to have 48 hours a day and spend a half

of the time with our beloved daughters.

I deeply appreciate that these people accompany, help, and keep me going.

Because of them, I have seen and cherished different scenes in this journey, and finally,

this can come to fulfillment in the end.

vii

NOMENCLATURE

MRI Magnetic Resonance Imaging

NMR Nuclear Magnetic Resonance

CS Compressed Sensing

FOV Field of View

RF Radio Frequency

SS Slice Selection

FE Frequency Encoding

PE Phase Encoding

PI Parallel Imaging

SENSE Sensitivity Encoding

TV Total Variation

DWT Discrete Wavelet Transform

FFT Fast Fourier Transform

FD Finite Difference

CPU Central Processing Unit

GPU Graphics Processing Unit

SMX Streaming Multiprocessors

CG Conjugate Gradient

ADMM Alternating Direction Method of Multipliers

SNR Signal-to-Noise Ratio

viii

TABLE OF CONTENTS

 Page

ABSTRACT ...ii

DEDICATION .. iv

ACKNOWLEDGEMENTS ... v

NOMENCLATURE ...vii

TABLE OF CONTENTS ... viii

LIST OF FIGURES .. x

LIST OF TABLES ... xiii

CHAPTER I INTRODUCTION OF MRI ... 1

Magnetic Resonance Imaging .. 1
Phase Array Receiver System .. 12
MRI Image Reconstructions... 19

CHAPTER II COMPRESSED SENSING MRI .. 26

Sparsity and Incoherence ... 26
Compressed Sensing MRI and Reconstruction Algorithms ... 30
Compressed Sensing MRI with Multiple Coils ... 42

CHAPTER III COMPRESSED SENSING MRI WITH MULTICHANNEL DATA

USING MULTICORE PROCESSORS ... 48

Objective .. 48
Methods .. 50
Results .. 54
Discussion .. 59

CHAPTER IV IMPROVED COMPRESSED SENSING MRI WITH

MULTICHANNEL DATA USING REWEIGHTED l1 MINIMIZATION 61

Objective .. 61
Methods .. 62
Results .. 66
Discussion .. 71

ix

CHAPTER V COMPRESSED SENSING RECONSTRUCTION FOR 3D

MULTICHANNEL DATA USING GRAPHICS PROCESSING UNIT (GPU) 73

Objective .. 73
Methods .. 76

Reconstruction Algorithm .. 78
GPU Implementation .. 82
Data Preparation and Evaluation .. 98

Results .. 100
Performance Considerations .. 112
Discussion .. 115

CHAPTER VI CONCLUSIONS ... 117

REFERENCES ... 122

APPENDIX A .. 137

Implementations of Reweighted l1 Minimization .. 137
Interior Point Method and Log-barrier ... 137
Newton’s Method ... 139
Steepest Descent and Conjugate Gradient.. 139
Nonlinear Conjugate Gradient ... 141
Modified Interior Point Method for Reweighting l1 Minimization 142

APPENDIX B .. 146

Codes for GPU Implementations ... 146

x

LIST OF FIGURES

 Page

Figure 1.1 Illustration of protons precession under the static 𝐵0field and the effect

when applying electromagnetic RF pulses. ... 3

Figure 1.2 Illustration of slice selection relative to Larmor equation. 4

Figure 1.3 Illustration of gradient echo sequence for Cartesian sampling. The pulse

diagram is repeated except that the amplitude of 𝐺𝑦 is changed one step

smaller. The signal 𝑠(𝑡) is digitized and shown the trajectory in k-space.

The image is finally recovered by taking 2D inverse Fourier transform. 8

Figure 1.4 (a) Illustration of eight-channel phased array. (b) Four-channel

sensitivity profiles – shifted linear Gaussian sensitivity. 14

Figure 2.1 Minimizations of a sparse signal using different norms; the green line

represents the feasible set, x = Ψy, and the balls in blue represent (a)

𝑙0 norm (b) 𝑙𝑝(0 < 𝑝 < 1) norm (c) 𝑙1 norm (d) 𝑙2 norm. 29

Figure 2.2 Random sampling for (a)2D single slice (b)2D multi-slice (c)3D

angiogram [79]. ... 31

Figure 2.3 Shrinkage function (a) of the original and (b) applied in 𝑙1 norm

regularization. .. 39

Figure 3.1 Illustration of the proposed algorithm on a multi-core CPU. Under-

sampled multi-channel data are input to n cores of CPU. The final

image is obtained by combining all individual channel images [85]. 51

Figure 3.2 Total computation time shown in portions: CS reconstruction,

computation starvation (cores stall), and file reading/writing. The

horizontal axis represents the numbers of CPU cores in use and the

vertical axis represents the computation time [85]. 57

Figure 3.3 Images reconstructed from the 8-channel in-vivo data using (a) sum of

squares from fully-sampled data, and (b) the proposed method from

33% of the total data. The time to reconstruct (b) is about 718 seconds,

whereas it takes about 1161 seconds without the proposed method [85]. .. 59

Figure 4.1 Reconstruction procedure for multi-channel receiver system using the

𝑙1 reweighted minimization [84]. .. 64

file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416034
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416034
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416035
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416036
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416036
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416036
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416036
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416037
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416037
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416121
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416121
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416121
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416122
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416122
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416124
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416124
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416325
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416325
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416325
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416326
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416326
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416326
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416326
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416327
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416327
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416327
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416327
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416339
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416339

xi

Figure 4.2 Original phantom image with selected regions and lines for

comparisons [84]. .. 68

Figure 4.3 Reconstruction details of the Zoom-in region 1 (top row images) and

region 2 (bottom row images) in the second channel image: (Left)

Reference from the fully sampled data (Middle) with conventional 𝑙1

minimization (TV) (Right) with the proposed reweighted 𝑙1

minimization [84]. ... 699

Figure 4.4 Surface plots of the corresponding zoom-in regions in Figure 4. 3(Left)

Reference from the fully sampled data (Middle) with conventional 𝑙1

minimization (TV) (Right) with the proposed reweighted 𝑙1

minimization [84]. ... 70

Figure 4.5 Reconstruction errors (differences between the original image and

reconstructed image) along (Left) Line 1 (Right) Line 2 [84]. 70

Figure 4.6 Images reconstructed from the 8-channel in-vivo data using (TOP)

sum-of-squares from fully sampled data, (Middle) the method in [71],

and (Bottom) the proposed method [84]. .. 71

Figure 5.1 Work flow of (a) conventional sequential reconstruction and (b)

parallel reconstruction with a GPU. .. 77

Figure 5.2 Example of the finite difference operator for calculating the horizontal

and vertical differences. .. 79

Figure 5.3 Data flow diagram of the parallel reconstructions using GPU. Gray

thick arrows indicate data transferring between devices, gray thin

arrows indicate save/load from global memory, and green arrows

indicate data flow direction of iterations. .. 83

Figure 5.4 Flowchart of Kernel_FD & Kernel_updata_ADMM without using shared

memory. ... 87

Figure 5.5 (a) Flowchart of Kernel_FD & Kernel_updata_ADMM using shared

memory. (b) Illustration of thread blocks and the tile block. 88

Figure 5.6 Flowchart of GPU codes for Kernel_IFD without using shared memory ... 90

Figure 5.7 (a) Method 1 – Flowchart for Kernel_IFD using 4 arrays in shared

memory. (b) Illustration of tiling concepts and the corresponding data. 91

Figure 5.8 Method 2 – Flowchart for Kernel_IFD using 2 arrays in shared memory... 93

file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416340
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416340
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416341
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416341
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416341
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416341
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416341
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416342
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416342
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416342
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416342
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416343
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416343
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416344
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416344
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416344
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416377
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416377
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416378
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416378
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416379
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416379
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416379
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416379
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416380
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416380
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416381
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416381
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416382
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416383
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416383
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416384

xii

Figure 5.9 Method 3 - GPU codes of two Kernel functions using 2 arrays in the

shared memory for calculating (a) Vertical IFD (b) Horizontal IFD. 95

Figure 5.10 Method 4 - GPU codes of two kernel functions using one array in the

shared memory for calculating (a) Vertical IFD(b) Horizontal IFD. 97

Figure 5.11 Runtime comparisons of kernel functions between (a) CPU vs. GPU

double precision (b) GPU double precision vs GPU single precision. 103

Figure 5.12 Pie charts showing the runtimes of kernel functions in percentage

when CPU, GPU double precision, and GPU single precision were

used. ... 104

Figure 5.13 Comparisons of iteration number, image quality and reconstruction

acceleration: (a) NMSE (×10-2) as a function of iteration number; (b)

speedup factor as a function of iteration. .. 107

Figure 5.14 Image reconstruction of an in-vivo human knee dataset with (a) SOS

(b) zero-filled (c) the proposed method by 33% of original data. It took

less than 1 second to reconstruct 34 slices of images with the proposed

method. .. 108

Figure 5.15 Image reconstruction of an in-vivo human knee dataset with (a) SOS

(b) zero-filled (c) the proposed method by 25% of original data. 109

Figure 5.16 Image reconstruction of an in-vivo human knee dataset with (a) SOS

(b) zero-filled (c) the proposed method by 20% of original data. 110

file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416385
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416385
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416386
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416386
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416387
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416387
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416388
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416388
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416388
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416389
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416389
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416389
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416390
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416390
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416390
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416390
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416391
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416391
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416392
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448416392

xiii

LIST OF TABLES

 Page

Table 3.1 (a) Total computation time (in seconds) in the simulated 4-channel

study with a quad-core CPU when different numbers of CPU cores are

used. (b) Computational speedup factors of the proposed method in the

4-channel study, as compared with the reconstruction using the quad-

core CPU without the proposed method. Note that the acceleration is

greater than one even with two cores using the proposed method [85]. 55

Table 3.2 Results of the simulated 8-channel and 16-channel studies: (a) total

computation time (in seconds) when different numbers of cores are

used; (b) Computational speedup factors, as compared with the

reconstruction using the quad-core CPU without the proposed method

[85]. ... 58

Table 4.1 NMSEs of the image reconstruction in the simulated 4-channel

phantom study [84]. ... 67

Table 4.2 NMSEs of the image reconstruction in the 8-channel in-vivo imaging

experiment [84]. .. 68

Table 5.1 Runtimes in milliseconds of kernel functions running on GPU,

compared with those running on CPU (iteration number, 𝑘𝑚𝑎𝑥=375). 101

Table 5.2 Runtime in milliseconds and speedup factor for a 4-channel dataset

with different volume sizes(iteration number, 𝑘𝑚𝑎𝑥=50). 105

Table 5.3 Comparisons of image quality in terms of NMSEs with various

sampling rates using simulated data (iteration number, 𝑘𝑚𝑎𝑥=50). 111

Table 5.4 Runtimes in milliseconds for Kernel_FD & Kernel_update_ADMM

with and without using the device shared memory(iteration number,

𝑘𝑚𝑎𝑥=10). .. 112

Table 5.5 Runtimes in milliseconds for Kernel_IFD with and without using the

device shared memory (iteration number, 𝑘𝑚𝑎𝑥=10). 113

file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417200
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417200
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417200
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417200
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417200
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417200
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417201
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417201
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417201
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417201
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417201
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417215
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417215
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417216
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417216
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417226
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417226
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417227
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417227
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417228
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417228
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417229
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417229
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417229
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417230
file:///C:/Users/Ching-Hua/Google%20Drive/Dissertation/Chinghua%20Chang%20Dissertation_v8.docx%23_Toc448417230

1

CHAPTER I

INTRODUCTION OF MRI

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI), which is a non-invasive technique, has steadily

developed in clinic applications and played an important role in assessing brain disease,

cardiac problem, spinal disorder, and angiography. Unlike Computer Tomography (CT),

Positron Emission Tomography (PET), or X-ray, MRI is a non-ionizing modality, giving

high dimension capabilities, high spatial resolution and excellent contrast of soft tissue. In

the early 1970s, MRI was developed from the technique of nuclear magnetic resonance

(NMR), which has been used in analyzing chemical compositions for many years.

Basically, in a strong magnet, nucleuses are magnetically polarized. By applying a weak

radio frequency (RF), which is a nonionizing electromagnetic radiation, causing the

protons precess coherently, the NMR signals arise from coils detectors where the voltage

is induced by the sum of all the precessing protons. Because the only RF is applied to the

body and the word “nuclear” is not relative to radioactivity, there are no damage or

alterations to cellular DNA in MRI scanning process. Therefore, it is widely used and

recommended when compared to CT [1-3].

From the fundamental of NMR, a quantum physical phenomenon, nuclei with an

odd number of protons, neutrons or both has nuclear magnetism. That is because it has an

electrical charge, spins very fast, and thus produces a noticeable magnetic field.

Approximately, 2/3 of all stable nuclei can be regarded as little magnets. Since water

2

composes the biggest part of human bodies, most clinical MRI scanning use abundant

hydrogen atoms (H1) to produce NMR signals. The protons of hydrogen with +1 electrical

charge exhibit the property of the magnetic dipole moment, causing proton spinning.

Commonly, the spinning protons can be regarded as little magnets and referred to as spins.

In normal condition, the spins point in random directions. By applying a strong static

magnetic field, 𝐵0 , whose direction is conventionally defined as the z-axis, spinning

protons align with or against the field. The excess number of spinning protons, which align

with the field is proportional to 𝐵0, usually ranging from 1.5 to 3 Teslas. The stronger the

static magnetic field is placed, the higher signal to noise ratio is gathered from MRI

scanner. That is because more excess protons contribute to the MRI signal. The spinning

protons precess about the z-axis of the external 𝐵0 . The frequency of precession is

proportional to the strength of 𝐵0. This is known as the Larmor equation,

 𝐵⃑ (𝑟) = (𝐵0 + 𝐺 ∙ 𝑟)𝑎̂𝑧 (1. 1)

where 𝜔0 is so-called Larmor frequency or resonance frequency, and γ is the constant

gyromagnetic ratio to every H1 atom, equal to 267.52 × 106.

Another field, commonly called, 𝐵1, is an electromagnetic radio frequency (RF)

pulse. The short-lived time-varying RF pulses, whose orientation is perpendicular to 𝐵0,

are applied at the resonance frequency and absorbed by the spinning protons. It causes

spins tip down toward x-y plane. Thus, the orientation, strength, and duration of RF pulses

are precisely designed to control the tip angle, 𝛼. After the spins spiral down and RF pulses

are completely transmitted, the rotating magnets cause the varying magnetic field and

produce electromagnetic radiation. The excited spins tend to return to the original

3

equilibrium, releasing the absorbed RF energy. They realign instantly toward the

orientation of 𝐵0 with the rate of T1 and T2 relaxation, which will be discussed later in

Block equation. Thus, the retransmitted RF energy from the excited nuclei can be received

and measured by the coils in MRI scanner.

The last important elements added in MRI are the gradients of magnetic field 𝐺 =

[𝐺𝑥, 𝐺𝑦, 𝐺𝑧]
𝑇, whose orientation is the same with 𝐵0, causing the strength of magnetic field

changing along x, y or z directions. This is accomplished by the gradient system,

consisting three orthogonal gradient coils and producing a time-varying magnetic field.

The gradient is zero at z=0, has odd symmetry about z-axis and is usually constant

throughout the field of view (FOV), creating a linear variation in the magnetic field and

the Larmor frequency with different positions. Therefore, the total static field is defined

by

 𝐵⃑ (𝑟) = (𝐵0 + 𝐺 ∙ 𝑟)𝑎̂𝑧

Figure 1.1 Illustration of protons precession under the static 𝑩𝟎field and the effect

when applying electromagnetic RF pulses.

4

Where 𝑟 = [𝑥, 𝑦, 𝑧]𝑇 represents the spatial position. Thus, eq.(1. 1) becomes as follows.

 𝑤(𝑟) = γ(𝐵0 + 𝐺 ∙ 𝑟)

This means that Larmor frequency varies according to the different spatial position. One

can scan a slice of an object by selecting the orientation of RF pulse and tuning the RF

signal to appropriate Larmor frequency. For example, one would like to select the imaging

plane at 𝑧 = 𝑧1, then the frequency of RF pulse is chosen equal to 𝑤1 = 𝑤0 + 𝛾𝐺𝑧𝑧1 as

shown in Figure 1.2. This leads to the spins in the plane being tipped down and leaving

those spins off the plane unaffected.

Block equation is an important formula describing the behavior of spins in the

magnetic field. In classical mechanics, each spin has its own magnetic dipole moment,

randomly distributed around the precession cone, and the abundant spins in bulk material

contribute the magnetization vector, which is the sum of individual dipole moments.

Figure 1.2 Illustration of slice selection relative to Larmor equation.

5

Considering the effect of a magnetic field on these spins, the motion of the magnetization

vector obeys the Block equation as follows,

𝑑𝑀⃑⃑

𝑑𝑡
= 𝛾𝑀⃑⃑ × 𝐵⃑ = 𝛾𝑀⃑⃑ × (𝐵⃑ 0 + 𝐵⃑ 1)

where 𝐵⃑ is the total magnetic field including 𝐵⃑ 0 and 𝐵⃑ 1 because magnetization vector is

affected by any magnetic field. When applying RF pulses and creating 𝐵⃑ 1 field, the

magnetization vector is tipped away from the equilibrium state as shown in Figure 1.1.

The magnetization defined as

𝑀⃑⃑ (𝑡) = [𝑀⃑⃑ 𝑧(𝑡), 𝑀⃑⃑ 𝑥(𝑡), 𝑀⃑⃑ 𝑦(𝑡)]
𝑇

= [𝑀𝑧
0, 𝑀𝑥

0𝑐𝑜𝑠𝛾𝐵0𝑡, −𝑀𝑥
0𝑠𝑖𝑛𝛾𝐵0𝑡]

𝑇

precesses around z-axis in a left-hand sense at the equilibrium state, where 𝑀𝑧
0 =

𝑀⃑⃑ 𝑧(𝑡 = 0) = 𝑀0, 𝑀𝑥
0 = 𝑀⃑⃑ 𝑥(𝑡 = 0) = 0,and 𝑀𝑦

0 = 𝑀⃑⃑ 𝑦(𝑡 = 0) = 0. It is easier to observe

the motion of magnetization vector in rotating frame in absence of other field

perturbations, such as 𝐵⃑ 1 or magnetic field inhomogeneities. The new axes, 𝑥′ and 𝑦′, in

the rotating frame rotate about the z-axis with a rotational frequency 𝑤⃑⃑ 𝑟𝑓 = 𝑤⃑⃑ 0 = −𝛾𝐵⃑ 0,

so that there is no precession about z-axis. The Block equation in rotating frame becomes

as follows,

𝜕𝑀⃑⃑ 𝑟𝑓

𝜕𝑡
= 𝛾𝑀⃑⃑ 𝑟𝑓 × 𝐵⃑ 𝑒𝑓𝑓

where 𝐵⃑ 𝑒𝑓𝑓 = 𝐵⃑ 𝑟𝑓 +
𝑤⃑⃑ 𝑟𝑓

𝛾
+ 𝐵⃑ 1

′ , 𝐵⃑ 𝑟𝑓 = 𝐵⃑ 0, and the first and second term will be canceled

in ideal z directed magnetic field. The left term, 𝐵⃑ 1
′ , is the applied RF field in the rotating

frame. Therefore, the magnetization vector will precess around 𝐵⃑ 1
′ in a left-handed sense,

6

causing the longitudinal magnetization 𝑀⃑⃑ 𝑧 decrease and the transverse magnetization 𝑀⃑⃑ 𝑥𝑦

increase as shown in Figure 1.1.

During the magnetization vector return to the equilibrium state, it undergoes T1 and

T2 relaxation processes. The 𝑀⃑⃑ 𝑧 component starts to recoever back to 𝑀0 and is governed

by the spin-lattice relaxation time (T1), due to protons losing the energy and heating up

the surrounding tissue. Therefore, the rate of heating must be considered when designing

RF excitation pulses. The magnitude of 𝑀⃑⃑ 𝑧(𝑡) after the spins are excited by the RF pules

is given by

𝑀⃑⃑ 𝑧(𝑡) = 𝑀0(1 − (1 − 𝑐𝑜𝑠𝛼) ∙ 𝑒
−𝑡

𝑇1
⁄)

Similar to T1 relaxation, T2 decay is relative to magnetization in the transverse plane. The

spins are all in phase when they are tilted down. As soon as the RF pulse is turned off,

they lose phase coherence because each spin precesses with difference frequencies. The

transverse magnetization decays due to spin-spin relaxation time (T2) is describe by an

exponential curve as follows

𝑀⃑⃑ 𝑥𝑦(𝑡) = 𝑀0 ∙ 𝑒
−𝑡

𝑇2
⁄

Therefore, considering the relaxation processes, the Block equation should be modified

by the following,

𝑑𝑀⃑⃑

𝑑𝑡
= 𝛾𝑀⃑⃑ × 𝐵⃑ −

𝑀𝑥𝑎̂𝑥 + 𝑀𝑦𝑎̂𝑦

𝑇2
−

(𝑀𝑧 − 𝑀0)𝑎̂𝑧

𝑇1

where T1 and T2 are unique to different tissues, so that they can be used to differentiate

between different types of tissues in clinical imaging.

7

 We have partially introduced about gradient encoding for slice selection (SS),

which is often along the z direction. The spatial variation in the magnetic field along the

other two directions (x, and y) can distinguish protons at different locations. Once the slice

is chosen, how to encode gradients along x-y plane for spatial information is relative to

the sampling of encoded data in frequency domain. The most common encoding method

is 2D Fourier, i.e. Cartesian sampling. Since NMR signal is received based on Faraday’s

law, and we have a time-varying magnetic field, 𝑀⃑⃑ 𝑥𝑦(𝑡), we will get the induced voltage,

𝑣(𝑡) = 𝑗√2𝑤∆𝑉𝑀𝑥𝑦
0 𝐵1𝑡𝑒

−
𝑡

𝑇2𝑒𝑗𝑤𝑡, where 𝐵1𝑡 denotes the effective coils sensitivity, ∆𝑉 is

the voxel size containing magnetization. After proper demodulation and digitized, the

signal, 𝑆(𝑡), received from all excited spins is obtained by integrating in x, y, and z,

𝑆(𝑡)

= ∬
1

√2
𝑗𝑤0∆𝑧𝑀𝑥𝑦

0 𝐵1𝑡𝑒
−

𝑡
𝑇2𝑒𝑗(𝑤−𝑤𝑚𝑖𝑥)𝑡𝑑𝑥𝑑𝑦

(1. 2)

where 𝑤𝑚𝑖𝑥 is the frequency for quadrature demodulator, and is usually set to Larmor

frequency, 𝑤𝑚𝑖𝑥 = 𝑤0. Assume that we have ideal constant gradients. Applying gradients

along x and y, known as frequency encoding (FE) and phase encoding (PE) respectively

shown in Figure 1.3, a general form of the equation becomes as follows.

𝑆(𝑡)

= ∬
1

√2
𝑗𝑤0∆𝑧𝑀𝑥𝑦

0 𝐵1𝑡𝑒
−

𝑡
𝑇2𝑒𝑗((𝑤0+𝛾𝐺𝑥𝑥)−𝑤𝑚𝑖𝑥)𝑡+𝑗𝛾𝐺𝑦𝑦𝑇𝑝𝑑𝑥𝑑𝑦

(1. 3)

8

By substituting𝑘𝑥 = 𝛾𝐺𝑥𝑡, and 𝑘𝑦 = 𝛾𝐺𝑦𝑇𝑝, 𝑆(𝑡) turns out only relative to 𝑘𝑥 and 𝑘𝑦 ,

which are commonly called k-space in MRI. The equation is simplified and becomes as

follows.

 𝑆(𝑘𝑥, 𝑘𝑦) = ∬𝐼(𝑥, 𝑦)𝑒𝑗𝑘𝑥𝑥𝑒𝑗𝑘𝑦𝑦𝑑𝑥𝑑𝑦 (1. 4)

Therefore, the image 𝐼(𝑥, 𝑦) can be reconstructed by applying the 2D discrete inverse

Fourier transform.

Figure 1.3 Illustration of gradient echo sequence for Cartesian sampling. The

pulse diagram is repeated except that the amplitude of 𝑮𝒚 is changed one step

smaller. The signal 𝒔(𝒕) is digitized and shown the trajectory in k-space. The

image is finally recovered by taking 2D inverse Fourier transform.

9

Figure 1.3 shows the pulse diagram of gradient echo sequence in MRI scanning.

First, a sinc-like RF pulse of finite duration is applied to select one slice of the desired

image. The bandwidth of the RF pulse controls the slice thickness of the desired image,

exciting the protons within the slice. The magnetization vector has been tipped down 90

degrees by the pulse. Because the absence of slice selection gradient, which is usually

referred to as logical z direction, the spins dephase with different frequencies, which can

be reversed by applying a gradient with opposite sign. The excitation is considered to act

on the spins at the midpoint of the RF pulse, and then dephasing starts instantaneously.

The amount of dephasing is the product of gradient and the duration. Therefore, making

the area equal can cancel the dephasing effect and all the spins are in phase by the end of

slice select (SS) gradient. Second, the gradients of phase encoding (PE) and frequency

encoding (FE), also known as readout channel, follow after the spins are excited. The first

phase encoding gradient for the first acquired view is commonly the largest. The positive

largest PE gradient and the negative FE gradient makes the sampling path go toward the

up-left corner of k-space. Note that because the spins start to dephase at the end of SS

gradient, it is better to avoid excessive long echo time (TE) shown in Figure 1.3. In order

to shorten TE, practically, SS rephasing, PE gradient, and readout gradient dephasing can

occur simultaneously. It means that the gradients that affect the phase of spins are put

together. Thus, the data is acquired right after SS rephasing. The NMR signal is digitized

by the analog-to-digital converter, and is acquired during the absence of positive FE

gradient in that sampling begins from left to right in the k-space. After acquiring a line of

samples in the k-space, the PE gradient is one step smaller so that the sampling path goes

10

to next line. The FE gradient repeats until the PE gradient gets to the amplitude with a

negative sign. The acquisition is also repeated for different amplitudes of PE. Figure 1.3

demonstrates the conventional Cartesian sampling in the k-space, and the desired image

can be reconstructed by taking 2D inverse Fourier transform.

Based on the Nyquist sampling theory, the sampling rate is relative to the

resolution of acquired data in k-space, which denotes as ∆𝑘𝑥 and ∆𝑘𝑦. From Figure 1.3

and eq.(1. 3), one knows that ∆𝑘𝑥 = 𝛾𝐺𝑥Δ𝑡 and ∆𝑘𝑦 = 𝛾Δ𝐺𝑦𝑇𝑝 for constant gradients.

Therefore, the k-space resolution along frequency encode is controlled by the amplitude

of FE gradient and the sampling rate, and the resolution along phase encode direction is

controlled by the duration and the increment of PE gradient. The maximum frequency that

we can sample is limited according to the equations, |𝑘𝑥,𝑚𝑎𝑥| ≤
𝛾𝐺𝑥𝑇𝑓

2
 , and |𝑘𝑦,𝑚𝑎𝑥| ≤

𝛾𝐺𝑦𝑇𝑝 based on the Nyquist sampling theory. To determine an appropriate range of MRI

images (FOV) and the resolution of the acquired data without spatial aliasing, the gradient

strength and the parameters for pulse sequence should be carefully chosen. According to

discrete Fourier transform, field of view (along x and y) are determined by 𝐹𝑂𝑉𝑥 =
2𝜋

∆𝑘𝑥

and 𝐹𝑂𝑉𝑦 =
2𝜋

∆𝑘𝑦
, and is inversely relative to the sampling rate and the step of PE gradient.

All these parameter settings should be bounded by the limited bandwidth, i.e. 2|𝑘𝑥,𝑚𝑎𝑥|

and 2|𝑘𝑦,𝑚𝑎𝑥|. Because field of view is also defined as 𝐹𝑂𝑉𝑥 = 𝑁∆𝑥 and 𝐹𝑂𝑉𝑦 = 𝑁∆𝑦,

the resolution of reconstructed image is determined by ∆𝑥 =
2𝜋

𝑁𝛾𝐺𝑥∆𝑡
 and ∆𝑦 =

2𝜋

𝑁𝛾∆𝐺𝑦𝑇𝑝
.

These parameters and the relation are illustrated in Figure 1.3. For different sampling

11

methods, such as radial sampling and spiral sampling, the gradient forms vary differently.

Therefore, a more general form of equation (is shown as follows,

 𝑆(𝑡) = ∫ 𝐼(𝑟)
𝑟

𝑒𝑗𝑘(𝑡)∙𝑟 𝑑𝑟 (1. 5)

where 𝑟 = [𝑥, 𝑦, 𝑧]𝑇, 𝑘⃑ (𝑡) = 𝛾 ∫ 𝐺(𝑟 , 𝜏)𝑑𝜏
𝑡

0
, and 𝐵⃑ (𝑟 , 𝑡) = (𝐵0 + ∫ 𝐺 (𝜏) ∙ 𝑟

𝑡

0
𝑑𝜏)𝑎̂𝑧. 𝑘⃑ (𝑡)

is known as the k-space trajectory. Essentially, the position in k-space can be located by

controlling the duration of gradients. By precisely designing 𝐺(𝑡) and sample times, we

can sample 2D or 3D, and uniform or non-uniform k-space data.

Usually, the temporal resolution of MRI imaging is much lower than CT or

ultrasound. Because the magnitude of gradients is usually bounded for safety reason and

limited by the physical hardware, we cannot increase the number of steps and the

magnitude of PE gradient arbitrarily. On the other hand, it is more flexible to change the

sampling rate of the analog to digital converter. Therefore, it is easier to achieve large

FOV along the frequency encode direction without affecting the acquisition time, and the

frequency encoding direction is typically chosen as the longest dimension when scanning

MRI image in order to avoid aliasing. However, larger FOV or smaller size of voxels

along phase encode direction requires more scan lines, which implies the total scan time

will also increase. In Cartesian or radial trajectories, one RF excitation can usually

generate one line of data with constant gradients. In general, it takes 2 to 10 minutes to

generate MRI images. This limits the clinical applications. For instance, children or

patients who have acute pain or claustrophobia may not be able to hold still. Besides, the

signal-to-noise ratio (SNR) of MRI images is also proportional acquisition time. It is

12

difficult to distinguish tissue contrast from the background noise when SNR is too low.

Therefore, to shorten the scan time, to reduce the motion blur and to increase patient’s

comfort has been an important goal of technical development.

Phase Array Receiver System

Since the speed of data acquisition has continued an important issue in MRI, many efforts

were spent on the techniques of RF pulse sequence design and fast gradient switching.

Another breakthrough in MRI is the development of multiple RF coils, which can receive

data in parallel.

Phased array is one type of MRI RF receiver system, which has multi-channel coils

and generally operate as “receive-only” device. Since each channel has its own receiver

coil, it obviously provides the advantage of speeding up scan time, increase patient

comfort and reduce image artifacts. Besides, array coils can gather more signals, and give

more information. The term, phased array in MRI, was inspired from antenna theory.

Many small antennas are grouped together to reduce noises and enhance overall signals.

Another advantage is to expand the anatomical coverage and to achieve a large field of

view, for instance, spine imaging or three-dimension angiogram. Therefore, with phased

array receiver system, MRI scan has been suggested rather than the high radiation CT in

some clinical applications.

The design and its application of coil arrays in MRI have been developing rapidly

for past 35 years. Dating back to 1980’s, switchable coil arrays were first used. Three

single-segment spine coils were coupled together, covering the patient and extending FOV

13

[4-6]. Because receiver channels were much more complicated and expensive, early MRI

scanner was usually equipped only one receiver channel and only one single segment spine

coil could be chosen at each time. The switchable feature significantly shortens the scan

time without moving the patient, even now this feature still remain in the modern design

of surface coils. That is because coil elements are much cheaper than the receiver channels,

which consist of amplifiers digitizing circuit design and computation module to

reconstruct the acquired signals. Currently, the number of receiver channels is still much

less than the number of coil elements.

In next advanced configuration of coil arrays, several small coils are combined

together, which is known as phased array[7, 8]. The data are acquired simultaneously and

fed independently into different receiver channels. Each coil has its own sensitive

reception volume according to a variable sensitivity profile, which depends on the distance

from the coil receiver. Originally, the MR phased array employed coils with, usually,

overlapping sensitivity profile. As the design of array coils evolved, some parallel MRI

reconstruction techniques, known as parallel imaging, has been developed rapidly in the

last decade. In parallel imaging, it generally avoids the sensitivity profiles overlapping

between coils because coil elements should not have magnetic interference and distinct

sensitivity profiles of coils are preferred [9]. Therefore, not all phased array receivers are

suitable for parallel MRI techniques although all coil elements used in parallel imaging

are phased arrays. Parallel imaging techniques take advantage of local coils reception

pattern and exploit the additional information of spatial encoding to further improve the

spatial and temporal resolutions, and to increase SNR.

14

Ideally, assume that the noises from all channel have equal variances, ignoring

correlations across channels, P independent phased array coils can improve SNR by a

factor of √𝑃. In reality, coil arrays are coupled and the induced magnetizations actually

make noises correlated. Although it is hard to achieve such a large gain, a number of group

explored the applications of coil arrays for possibility of fast imaging and better image

quality[10, 11].

Figure 1.4(a) shows eight-channel head array coils. According to eq.(1. 5), assume

that the phased array with a number of L coils receives all signals simultaneously. When

all relaxations are not considered, the signal received from the 𝑙𝑡ℎ coil can be formulated

as follows.

Figure 1.4 (a) Illustration of eight-channel phased array. (b) Four-channel

sensitivity profiles – shifted linear Gaussian sensitivity.

15

𝑆𝑙(𝐺𝑦
𝑖, 𝐺𝑧

𝑖, 𝑡)

= ∫ 𝐼(𝑟)𝑊𝑙(𝑟)𝑃
𝐿(𝑟)𝑒𝑗𝛾(𝐺𝑥

𝑖𝑥𝑡+𝐺𝑦
𝑖𝑦𝜏1+𝐺𝑧

𝑖𝑧𝜏2)𝑑𝑟
𝑟

(1. 6)

Here, 𝑟 = [𝑥, 𝑦, 𝑧]𝑇 and 𝑊𝑙(𝑟) is the function of complex 3-dimension sensitivity profile

for the 𝑙𝑡ℎcoil, where 𝑙 = 1, … , 𝐿. 𝑃𝐿(𝑟) represents the RF selective profile during the 𝑙𝑡ℎ

excitation. Frequency encoding is along x direction, and 𝜏1 and 𝜏2 respectively denote the

duration of phase encoding gradients along y and z directions. The index 𝑖 corresponds to

the 𝑖-th acquisition, so 𝐺𝑥
𝑖
, 𝐺𝑦

𝑖
 and 𝐺𝑧

𝑖
 represent the applied gradients during each data

acquisition. With Fourier sampling, the parameter 𝑃𝐿(𝑟) remains constant for all value of

𝑙, and 𝐺𝑥
𝑖
 is usually constant for each data acquisition. We take 2-dimension case for

specific instance. Note that the phased array coils have the effect of non-uniform spatial

encoding as shown in Figure 1.4(b), which illustrates linear Gaussian functions for the 2-

dimension sensitivity profile. In 2D Cartesian sampling, a slice in the 3D volume is

selected by the RF excitation. That means the parameter 𝑃𝐿(𝑟) is set to 1, and 0 outside

the desired slice. Assume that the preferred slice is at 𝑧0, then 𝑃𝐿(𝑟) is equal to 1 as

𝑧 = 𝑧0. The general eq.(1. 6) could be simplified for the scanned slice at 𝑧0,

𝑆𝑙(𝐺𝑦
𝑖, 𝑡)

= ∬𝐼(𝑥, 𝑦)𝑊𝑙(𝑥, 𝑦)𝑒𝑗𝛾(𝐺𝑥𝑥𝑡+𝐺𝑦
𝑖𝑦𝜏)𝑑𝑥𝑑𝑦

(1. 7)

where 𝐺𝑥 is constant for every acquisition because of 2D Cartesian sampling. After

digitizing the continuous Fourier equation, the index of x and y in spatial domain are

16

replaced by the index of m and n. With changing the variables, let 𝑘𝑥 = 𝛾𝐺𝑥 , which is a

constant, and 𝑘𝑦
𝑖 = 𝛾𝐺𝑦

𝑖𝜏, which is a variable. Then eq. (1. 7) become

𝑆𝑙(𝑘𝑦
𝑖 , 𝑡)

= ∑ ∑ 𝐼(𝑚, 𝑛)𝑊𝑙(𝑚, 𝑛)𝑒𝑗(𝑘𝑥𝑚𝑡+𝑘𝑦
𝑖𝑛)

𝑁

𝑛=1

𝑀

𝑚=1

(1. 8)

Here, 𝑡, 𝑚 and 𝑛 are discrete variables. The maximum value of sampled points for 𝑡 is

equal to the number of sample points along frequency encoding direction, 𝑀. If there are

𝑁 steps along phase encoding direction, then eq.(1. 8) can be formulated as a matrix form,

17

[

𝑆𝑙(𝐺𝑦

1, 1)

𝑆𝑙(𝐺𝑦
1, 2)
..

𝑆𝑙(𝐺𝑦
1, 𝑀)
..
.

𝑆𝑙(𝐺𝑦
𝑁 , 1)
.
.

𝑆𝑙(𝐺𝑦
𝑁 , 𝑀)]

=

[

 𝑊𝑙(1,1)𝑒

𝑗(𝑘𝑥1+𝑘𝑦
11)

𝑊𝑙(1,1)𝑒
𝑗(𝑘𝑥1∙2+𝑘𝑦

11)

.

.

.

.
.

𝑊𝑙(1,1)𝑒
𝑗(𝑘𝑥1∙𝑀+𝑘𝑦

11)

.

.

.

.

.

.

.

𝑊𝑙(𝑀,𝑁)𝑒𝑗(𝑘𝑥𝑀+𝑘𝑦
11)

𝑊𝑙(𝑁,𝑁)𝑒𝑗(𝑘𝑥𝑀∙2+𝑘𝑦
11)

.
.
.
.

.

𝑊𝑙(𝑀,𝑁)𝑒𝑗(𝑘𝑥𝑀∙𝑀+𝑘𝑦
11)

..
.

𝑊𝑙(1,1)𝑒
𝑗(𝑘𝑥1+𝑘𝑦

𝑁𝑁)

.

.

.
.
.

𝑊𝑙(1,1)𝑒𝑗(𝑘𝑥1∙𝑀+𝑘𝑦
𝑁𝑁)

.

.

.

.

.

.

.

.

𝑊𝑙(𝑀,𝑁)𝑒𝑗(𝑘𝑥𝑀+𝑘𝑦
𝑁𝑁)

.

.

.

.

.

𝑊𝑙(𝑀,𝑁)𝑒𝑗(𝑘𝑥𝑀∙𝑀+𝑘𝑦
𝑁𝑁)]

∙

[

𝐼(1,1)
𝐼(2,1)

..
𝐼(𝑀, 1)

..

.
𝐼(1, 𝑁)

.

.
𝐼(𝑀,𝑁)]

(1. 9)

The vector on the left-hand side is the time-varying signal received from the 𝑙-th channel,

which is arranged according to phase encoding step from 1 to 𝑁 . The size of the

acquisition system is 𝑀 × 𝑁 by 𝑀 × 𝑁. If there are 𝐿 coils, the system becomes 𝐿 by 𝑀 ×

𝑁 by 𝑀 × 𝑁. Therefore, it is computational inefficient to reconstruct image 𝐼 by inverting

18

the equations directly. However, sensitivity profile is regarded as an encoding matrix in

spatial domain. By applying the efficient 2D Fourier transform to the acquired matrix, we

can obtain [𝑊1𝐼 𝑊2𝐼 … 𝑊𝐿𝐼] from all channel data. The final image can be

reconstructed in the least square sense, also known as root sum-of-square method as

follows.

 𝐼 = (𝑊1
2 + 𝑊1

2 + ⋯+ 𝑊𝐿
2)𝐼 (1. 10)

This solution is the optimal combination when the coil sensitivities are unknown, as

proven in [7, 12]. The composite reconstructed image has high SNR, which is

asymptotically as same as the result of maximum ratio combining based on the sensitivity

profiles are perfectly known. Therefore, among advanced image reconstruction methods

for phased array, such as parallel imaging usually, root sum-of-square method is usually

used as a benchmark for comparisons.

Currently, one way to collect coil sensitivities is to gather from separate scans. It

assumes that coil sensitivities are time invariant as the receiver coils are fixed. A

calibration scan is processed prior to the desired image acquisition and the full k space

data is obtained. The resulting images from all channels are weighted and reconstructed

as 𝑊𝑘(𝑥, 𝑦)𝐼(𝑥, 𝑦). Using the body coil for the other scan, we can get 𝐼(𝑥, 𝑦)because the

sensitivity profiles of the body coil are assumed to be 1, 𝑊(𝑥, 𝑦) = 1. Then, taking the

ratio of two results from extra scans, we can get 𝑊𝑘(𝑥, 𝑦). Usually, the multiple coils are

placed around the FOV and the combined sensitivities are designed to be homogeneous,

so that adding all images are assumed to be 𝐼(𝑥, 𝑦), 𝐼𝑠(𝑥, 𝑦) = ∑ 𝐼𝑙
𝐿
𝑙=1 ≈ 𝐼. In this case,

there is no need to take an extra scan by the body coil.

19

The second way is to estimate from low-resolution images, which is reconstructed

from the central k-space data during the same scan[13]. Inaccurate estimations of coil

sensitivities may cause artifacts if the coil sensitivities differ during the dynamic scans.

Because sensitivity profiles vary smoothly according to spatial location, it is sufficient to

obtain profiles from contiguous low-frequency data in k space. With the same assumption

that the combined sensitivities are designed to be homogeneous, all channel-reconstructed

images, 𝑊𝑙𝐼𝐿𝐹, from low frequency data are added together, resulting in a low-resolution

image. 𝐼𝑠(𝑥, 𝑦) = ∑ 𝑊𝑙𝐼𝐿𝐹
𝐿
𝑙=1 ≈ 𝐼𝐿𝐹 . Similarly, taking the ratio of 𝑊𝑙𝐼𝐿𝐹 and 𝐼𝑠 , we can

estimate sensitivity profiles. With the phased array receiver coils and the estimation of

sensitivity profiles, the further researches make it possible for extending FOV, speeding

up acquisition time, reducing image artifacts and increasing SNR.

MRI Image Reconstructions

In order to shorten the acquisition time, the images are usually reconstructed from limited

Fourier data instead of fully sampled data according to Nyquist sampling theory. This

section provides a brief introduction to the inverse problem of the limited Fourier data

from multi-channel. A wide variety of advanced image reconstruction techniques for

multi-channel under-sampled data has emerged for past fifteen years. Among these

advanced image reconstruction methods, parallel MR imaging, which uses an array of

receiver coils to improve image quality and to increase SNR, is one of the most

representative techniques. Limited Fourier data can be acquired more quickly, but it causes

the spatial images to alias. Parallel imaging introduces algorithms for alias-free

20

reconstructions, one field of which regards the multiple receiver coils as a large linear

system and solve the inverse problem of unfolding images, such as sensitivity encoding

(SENSE) [14], SPACE RIP and PILS[13, 15, 16]. The other field is to interpolate missing

lines and to synthesize a full k-space of the image from multi-channel data, such as

SMASH [17] and GRAPPA [18]. Among these state-of-art methods, SENSE method,

which reduces the aliasing of images by solving the equations of a linear system, can be

combined with compressed sensing theory, and thus, there are many optimizations and

extensions with SENSE method. Because SENSE and SPACE RIP provide an important

way to formulate the system and regard the MRI reconstruction as an inverse problem, we

briefly describe the two methods in this section.

 SENSE solving a linear system relies on the information of estimated sensitivity

profiles. For Cartesian SENSE, it requires equal-spaced down sampling along phase

encoding lines according to the reduction factor R, which describes a ratio between

numbers of fully sampled lines and the reduced lines. The reduced sampling in phase

encoding direction causes a reduced FOV and alias artifacts in the spatial domain. Take R

equal to 2 for example, the alias pixel in the spatial domain at (𝑗, 𝑥) is actually a mixture

of 𝐼(𝑗, 𝑥) and 𝐼(𝑗 + 𝑁 2⁄ , 𝑥), which is located at another half of FOV. Thus, the spatially-

aliased image at (𝑗, 𝑥), resulting from taking the inverse Fourier transform of the down-

sampled k space data, can be formulated as

𝑎1(𝑗, 𝑥) = 𝑊1(𝑗, 𝑥)𝐼(𝑗, 𝑥)

+ 𝑊1(𝑗 + 𝑁 2⁄ , 𝑥)𝐼(𝑗 + 𝑁 2⁄ , 𝑥)

(1. 11)

21

The aliased image from the 1st coil is regarded as the sum of weighted pixels at a different

position. Assume that the number of coils 𝐿 is at least as larger as the reduction factor R,

then the general form of all collected alias pixel at (𝑗, 𝑥) from 𝐿 channel coils can be

expressed as,

[

𝑎1(𝑗, 𝑥)

𝑎2(𝑗, 𝑥)
⋮

𝑎𝐿(𝑗, 𝑥)

]

= [
𝑊1(𝑗, 𝑥) … 𝑊1(𝑗 + 𝑁(𝑅 − 1) 2⁄ , 𝑥)

⋮ ⋱ ⋮
𝑊𝐿(𝑗, 𝑥) … 𝑊𝐿(𝑗 + 𝑁(𝑅 − 1) 2⁄ , 𝑥)

] [
𝐼(𝑗, 𝑥)

⋮
𝐼(𝑗 + 𝑁(𝑅 − 1) 𝑅⁄ , 𝑥)

]

(1. 12)

It requires the condition of 𝐿 > 𝑅 for solving eq.(1. 12), which means the number of coils

is the upper bound of the number of reduction factor. To reconstruct MRI image from

sensitivity-weighted aliased images, we can construct the sensitivity matrix W with a size

of 𝐿 × 𝑅 in eq.(1. 12) based on the estimation of sensitivity profiles. On the other hand,

the aliased pixels are collected from the inverse DFT of the acquired data. The pixels of

MR image at the corresponding positions can be recovered by,

 I = (W𝐻W)−1W𝐻a (1. 13)

This formulation is repeated for each pixel at (𝑗, 𝑥), which represents the coordinate

system of aliased spatial domain. Noise can be considered in this linear system, where

generates an SNR-optimal results by the following,

 I = (W𝐻Λ−1W)−1W𝐻Λ−1a (1. 14)

Here, Λ denotes the noise covariance matrix across all coils, which can be obtained by a

noise-only preliminary scan without RF excitation. According to Papoulis generalized

22

sampling theorem, if sensitivity profiles are sufficient non-uniform, distinct, and is exact

known, SENSE method provides the optimal reconstruction compare to SMASH, PILS,

and GRAPPA. In addition, SENSE can be applied to 3D MRI, where the alias appears in

two phase encoding direction, and thus it gains great reduction in scan time[19].

Non-Cartesian trajectories can also be combined with SENSE method. The

difference is that the encoding matrix in eq.(1. 12) is not simply regarded as superposition.

For example, the alias of the spiral trajectory is continuous and ring-shaped. Therefore,

gridding algorithm is considered to construct encoding matrix[20]. The generalized form

of SENSE method for arbitrary trajectories is formulated as

[𝑊1
𝐻 𝑊2

𝐻 … 𝑊𝐿
𝐻] [

𝑊1

𝑊2

⋮
𝑊𝐿

] I

= [𝑊1
𝐻 𝑊2

𝐻 … 𝑊𝐿
𝐻] [

𝑎1

𝑎2

⋮
𝑎𝐿

]

(1. 15)

Encoding matrices 𝑊𝐻 and 𝑊 are generated by gridding algorithm, which can be

improved by non-uniform fast Fourier transform (NUFFT)[21]. The desired image is

reconstructed by solving eq.(1. 15) iteratively, such as conjugate gradient method.

Similar to SENSE, SPACE RIP solves a linear system of eq. (1. 7), where the Fourier

transform has been taken along frequency encode direction (x-axis) preliminary after the

acquired data is digitized. When the phase encoding gradient is applied alone, the acquired

data is the Fourier-encoded projection of a sensitivity-weighted image onto x-axis. After

digitized and applied IFFT, the eq.(1. 8) can be rewritten as

23

𝑆𝑙(𝑘𝑦
𝑖 , 𝑥) = ∑ 𝐼(𝑥, 𝑛)𝑊𝑙(𝑥, 𝑛)𝑒𝑗𝑘𝑦

𝑖𝑛

𝑁

𝑛=1

(1. 16)

For each m along the x direction, the matrix form of eq.(1. 9) becomes the following

equation,

[

𝑆1(𝐺𝑦

1, 𝑥)

𝑆1(𝐺𝑦
2, 𝑥)

..
𝑆1(𝐺𝑦

𝑁, 𝑥)
..
.

𝑆𝐿(𝐺𝑦
1, 𝑥)

.

.
𝑆𝐿(𝐺𝑦

𝑁, 𝑥)]

=

[

 𝑊1(𝑥, 1)𝑒

𝑗𝑘𝑦
11

𝑊1(𝑥, 1)𝑒
𝑗𝑘𝑦

21

.

.

.

.
.

𝑊1(𝑥, 1)𝑒𝑗𝑘𝑦
𝑁1

.

.

.

.

.

.

.

𝑊1(𝑥, 𝑁)𝑒𝑗𝑘𝑦
1𝑁

𝑊1(𝑥, 𝑁)𝑒𝑗𝑘𝑦
2𝑁

.
.
.
.

.

𝑊1(𝑥, 𝑁)𝑒𝑗𝑘𝑦
𝑁𝑁

..
.

𝑊𝐿(𝑥, 1)𝑒
𝑗𝑘𝑦

11

.

.

.
.
.

𝑊𝐿(𝑥, 1)𝑒𝑗𝑘𝑦
𝑁1

.

.

.

.

.

.

.

.

𝑊𝐿(𝑥, 𝑁)𝑒𝑗𝑘𝑦
1𝑁

.

.

.

.

.

𝑊𝐿(𝑥, 𝑁)𝑒𝑗𝑘𝑦
𝑁𝑁]

∙ [

𝐼(𝑥, 1)
𝐼(𝑥, 2)

⋮
𝐼(𝑥, 𝑁)

]

(1. 17)

The vector of the received data on the left-hand side has 𝑅 × 𝐿 elements. The matrix on

the right hand side is phase-encoded and sensitivity-weight. The vector 𝐼 with a size of 𝑁

represents one column of the desired image. Therefore, the whole image can be recovered

24

column by column independently according to different positions along x, which means

that all columns can be computed simultaneously and can be speeded up by resorting to

parallel computations. Similar to SENSE, it allows arbitrary down-sampling along phase

encoding direction, but causes the linear system poor conditioning if 𝑅 > 𝐿 or the noise

errors of sensitivity estimation.

Both the reconstructions of SENSE and SPACE RIP techniques are based on the

matrix inversion, where the matrix is a function of phase-encoding trajectories and the

coefficients of sensitivity profiles. Therefore, carefully selecting k-space trajectories and

minimizing the noise of estimated sensitivities play important roles in the performance of

SENSE and SPACE RIP methods. Some groups adopted iterative regularizations for

solving this inverse problem, such as POCS[22]. Tikhonov regularization is also

commonly applied to SENSE method for eliminating noise effect or alias artifacts [23].

As the reduction factor increases, causing the data inconsistent, heavy regularization is

usually applied. Bregman iteration is proposed to give sharp and better image structures

compared to Tikhonov regularization[24]. On the other hand, the accuracy of sensitivity

profiles cannot be guaranteed by estimating from a low-resolution image or via a separate

scan, and this usually causes alias artifacts. To reduce the incorrect estimation of

sensitivity profiles, JSENSE reconstructs MR images without prior knowledge of

sensitivity[25]. Based on this linear system, it regards coil sensitivities and the desired

image as unknown variables and uses an iterative optimization algorithm to solve the

nonlinear problem. For the past decade, compressed sensing has emerged in the

application of MR reconstruction. The concept of sparsity was applied in the linear system

25

of SENSE method, allowing total variation or 𝑙1 norm regularization to further reduce the

noise and alias artifacts. This will be discussed in the next chapter.

26

CHAPTER II

COMPRESSED SENSING MRI

Based on the conventional sampling theory, the bandlimited signals can be

perfectly recovered without any alias when they are sampled above Nyquist rate, which is

twice the bandwidth of the signals. In MRI scanning, sampling at Nyquist rate requires

longer acquisition time and it causes patients’ discomfort, motion blur, and higher medical

expense. For the past few years, Compressed Sensing emerged as an innovative theory,

which allows reducing measurements and recovering the signal by exploiting its sparsity

and compressibility [26-31]. CS has been found to be favorable for applying in MR images

because many MR images are compressible and sparse in the finite difference or wavelet

transform domain. In addition, random sampling in the k-space provides incoherence of

the measurements, which is highly needed for applying CS and is feasible in MR imaging.

Therefore, the number of acquired MRI data can be significantly lower than the traditional

sampling rate, and the images can be reconstructed and improved by optimization

algorithms according to CS theory. To make CS applied in MRI successful, both the

properties of sparsity and incoherence play important parts. The basic concepts of CS

theory and its applications in accelerating MRI scanning will be introduced in this chapter.

Sparsity and Incoherence

The simple definition of “sparsity” is that the signal with a length 𝑁 can be described by

a basis, where there are only 𝐾 nonzero coefficients and 𝐾 ≪ 𝑁. Many signals, including

27

natural images and most MR images, are compressible or “approximately” sparse in

certain sparsifying transforms. For example, discrete cosine transform (DCT) or discrete

wavelet transform (DWT) can map images into sparse coefficients, only few of which

have large magnitudes and the others are zero or very small. This property makes signals

compressible without much loss of information. DCT and DWT have been widely used in

JPEG or MPEG for compressing natural images. As for MR images, unlike data

compression after acquiring all the data, we exploit the sparsity at the beginning of data

acquisition and recover the signals from fewer measurements, and this is CS all about.

Mathematically, any signal can be well described by a known basis. Considering a real-

valued finite-length signal, which can be converted into a one-dimension vector, 𝐱 ∈ R𝑁,

now we can express the signal 𝐱 as the following equation,

 where 𝜓𝑖 ∈ R𝑁 . {𝜓𝑖}𝑖=1
𝑁 forming a 𝑁 × 𝑁 matrix 𝚿 can be a certain sparsifying

transform. All weighting coefficients, {𝑦𝑖}𝑖=1
𝑁 , measured by y𝑖 = 〈𝐱,𝜓𝑖〉 = 𝜓𝑖

𝑇𝐱, form a

𝑁-length vector 𝐲. When just a few measurements can exactly represent the signal 𝐱, we

say that the signal 𝐱 is sparse. More specifically, the signal 𝐱 is defined to be K-sparse if

Where the 𝑙0 norm denotes the numbers of nonzero sparse coefficients of the signal,

defined in eq.(2. 2). Because it is constant for 𝐲[n] ≠ 0, the measure of 𝑙0 norm makes a

larger nonzero coefficient as significant as a smaller nonzero coefficient. The sparsity

gives us an idea that a finite discrete signal can be exactly described by a number of

 𝐱 = ∑ y𝑖𝜓𝑖
𝑁
𝑖=1 or 𝐱 = 𝚿𝐲 (2. 1)

 ‖𝐲‖0 = ∑ 𝟏{𝐲[n]≠0}

𝑁−1

𝑛=0

≤ 𝐾 (2. 2)

28

degrees of freedom, 𝐾 , which is much smaller than its length. Under this sparsity

assumption, we may want to reconstruct the signal 𝐲 by solving the following optimization

problem,

However, 𝑙0 norm is not a convex function. Also it is discontinuous at the origin. The

optimization problem become a combinatorial search and is usually intractable to solve.

A most common alternative is the 𝑙1 norm, which is defined as ‖𝐲‖1 = ∑ |𝐲[n]|𝑁−1
𝑛=0 . The

measure of 𝑙1 norm satisfies the scalability and the triangle inequality of norm properties

and is most importantly convex. Therefore, the above combinatorial problem in eq.(2. 3)

can be recast as a linear program by replacing the objective function with the measure of

𝑙1 norm. Since it is a convex problem, there is a wide variety of techniques for solving 𝑙1

minimization quite efficiently. The other regularizations are popular used, such as the 𝑙𝑝

(0 < 𝑝 < 1) norms and the widely-used 𝑙2 norm, which are defined as ‖𝐲‖𝑝
𝑝 =

∑ |𝐲[n]|𝑝𝑁−1
𝑛=0 , ‖𝐲‖2

2 = ∑ |𝐲[n]|2𝑁−1
𝑛=0 respectively. As shown in Figure 2.1, the balls for the

𝑙0, 𝑙𝑝, 𝑙1, and 𝑙2 penalty functions are depicted in R2 space and the blue line represents the

feasible set of 𝐱 = 𝚿𝐲, which will be a hyperplane in R𝑁 space. As minimizing eq.(2. 3)

with respective to different norm of penalty functions, we blow up the ball approaching to

the line. Assume that 𝐲0 is the sparse solution close to the coordinate axes and we try to

recover. As shown in Figure 2.1(a)(b)(c), the 𝑙0, 𝑙𝑝 and 𝑙1 norms provide higher chance to

find the true solution since the ball may intersect the line at 𝐲0. However, the 𝑙0 and 𝑙𝑝

min‖𝐲‖0

s. t. 𝐱 = 𝚿𝐲

(2. 3)

29

norms are not convex (the line may intersect the ball at multiple points), while 𝑙1 norm

makes the problem convex and can be recast as a linear program. On the other hand, 𝑙2

ball touches the line at 𝐲1, which is close to the origin but not sparse, compared to the true

solution, 𝐲0. Therefore, we usually resort to 𝑙1 minimization to recover the sparse solution

with higher accuracy.

Another important requirement for using CS is incoherence, which is about the

property of sensing matrix. That means the signal, which has a sparse representation in the

sparse domain, 𝚿, must spread out in the domain where it is acquired. For example, a delta

function in time domain is constant in frequency domain, which is so-called “spread out”.

Then, most important of all, with “random” undersampling in the domain where it is

acquired, the artifacts are incoherent, which means the signal is noise-like in the domain

of sparsifying transform. More specifically, the mathematical form of the coherence is

defined as the following equation,

Figure 2.1 Minimizations of a sparse signal using different norms; the green

line represents the feasible set, 𝐱 = 𝚿𝐲, and the balls in blue represent (a) 𝒍𝟎

norm (b) 𝒍𝒑(𝟎 < 𝒑 < 𝟏) norm (c) 𝒍𝟏 norm (d) 𝒍𝟐 norm.

30

The quantity of 𝜇 measures the maximum correlation between two elements of P and Φ.

If the elements of P and Φ are correlated, the quantity of coherence 𝜇 is larger than 1. It

menas that P and Φ is incoherent when 𝜇 = 1, and they are hightly correlated when 𝜇 =

√𝑁. For example, Assume that P represents the impulse function 𝑝𝑘(𝑡) = 𝛿(𝑡 − 𝑘), and

Φ represents the Fourier transform, where 𝜙𝑗 =
1

√𝑁
𝑒−𝑖2𝜋𝑗𝑡/𝑁 . Because the Fourier

transform of an impulse fuction is a constant, it is obvious that they are incoherent. From

the quantity point of view, 𝜇(P,Φ) = 1 is the minimum value of coherence, which means

incoherence. Another example, commonly used in MRI application, is that P represents

the randomly-sensing matrix, and Φ is the Fourier transform of MRI system. It has been

proven that randomly-sampling matrices are considered incoherent with other fixed

transform, such as Fourier or wavelet. Based on the compressed sensing theory, for

instance, the matrix element 𝑝𝑘 is choosen as independent identically distributed random

variables according to Gaussian or ±binary. Random matrices P and any fixed basis Φ

can be shown to have restricted isometry property(RIP) with high probability, which

alternatively means that the randomly-sensing matrix P has a low coherence with every

possible fixed Φ . These two important properties, sparsity and incoherence lay the

foundation of MRI using compressed sensing.

Compressed Sensing MRI and Reconstruction Algorithms

Compressed sensing has been widely applied to the data acquisition of MRI because it

 𝜇(P,Φ) = √𝑁 ∙ max
1≤𝑘,𝑗≤𝑛

|〈𝑝𝑘, 𝜙𝑗〉|

31

provides great potential for reducing data samples, which can shorten the acquisition time.

In [32], wavelet transform together with total variation were first used in sparsifying the

representations of MR images in that most MR images are compressible. In addition,

although random sampling in all directions of k-space is impractical, Cartesian non-

uniform undersampling in phase encoding direction is still controllable by precisely

changing the gradient encode during the acquisition, which makes the alias artifacts

incoherent (noise-like). This Cartesian non-uniform sampling method can be applied in

three applications of MRI data acquisition: two-dimensional single slices, two-

dimensional multiple slices, and three-dimensional angiogram. Their sampling k-space

trajectories are shown in Figure 2.2 respectively.

In the first application, only one dimension can be subsampled along phase

encoding direction, where frequency encoding has to be kept smoothly due to the

limitation of MRI hardware consideration. Therefore, the reconstruction is modest in this

Figure 2.2 Random sampling for (a)2D single slice (b)2D multi-slice (c)3D

angiogram [79].

32

application. In the second application, the different random sampling trajectories are

applied to different slices, so that it provides lower coherence and the sparsity along the

slice direction can be exploited if the slices are thin and have some spatial redundancy. In

the application of 3D angiogram, it allows random under-sampling along the ky-kz plane,

which contributes to a higher degree of incoherence. The reduction of scan time in 3D

case is more demanding than 2D case and CS MRI provides an attractive method in 3D

angiogram applications. In addition, spatial-temporal sparsity is also exploited in dynamic

MRI sequences, such as cardiac imaging [33, 34]. By randomly sampling along the phase

encoding direction (ky), the alias is incoherent on the plane of spatial temporal-frequency

space (y-f), where the Fourier transform along the temporal direction generates sparse and

periodic representations.

Based on compressed sensing theory, the way to reconstruct MR images from the

incompletely sampled data is trying to enforce the image sparsity. The formulation of MRI

data acquisition is commonly modeled as follows,

Where 𝑃 represents the randomly-sensing matrix, and Φ is the Fourier transform of MRI

system. 𝐮 ∈ 𝐶𝑁 is the MR images to be reconstructed. 𝐯 ∈ 𝐶𝑀 is the acquired k-space

measurements with the noise 𝐧, where 𝑀 is in the order of 𝐾. Asume that Ψ is the wavelet

transform and 𝐲 is the sparse representation of wavelet transfom, then the model becomes

the following equation, 𝐯 = PΦΨ𝐲 + 𝐧 , where 𝐮 = Ψ𝐲 . Instead of solving 𝑙0 norm

problem, 𝑙1 norm minimization is more tractable and computationally feasible not only

because it provides a high chance to find the solutions as same as to the 𝑙𝑝 minimization

 𝐯 = 𝑃Φ𝐮 + 𝐧 (2. 4)

33

problem(𝑝 < 1) with the explainations of Figure 2.1, but also there exist a wide variety

of efficient numerical solvers using convex optimization. Therefore, the unknown image

𝐮 can be reconstructed by minimizing the following 𝑙1 norm problem, which is equal to

solving a constrained convex optimization.

The constraint is referred to the distance between the measured data and the estimated

data, which is commonly defined by 𝑙2 norm. Here, 𝜀 is the magnitude of errors, usually

set according to the variance of noise or the approximation of allowable errors. The

objective function can promote the sparsity in wavelet domain, and the constraint enforces

the consistency to the measured data and is regarded as a regularization term.

In addition, finite differences of the image, which is well known as total variation

(TV), can also be regarded as a sparsifying transform. In sparse MRI, it is defined by the

sum of absolute variations of the image (∑ |𝐷𝑗𝐮|𝑗 , viewed as 𝑙1 norm of image variations),

which is well known as an anisotropic version of total variation. The summation with

index j is taken over all pixels, ranging from 1 to N, and 𝐷𝑗𝐮 = [𝐷𝑗
(1)

; 𝐷𝑗
(2)

]𝐮 represents

the vertical and horizontal finite differences of 𝐮 at pixel j. Therefore, the objective

function can be rewritten as exploiting the sparsity of wavelet representations and image

variations.

min‖𝐲‖1

s. t. ‖PΦ𝐮 − 𝐯‖2 < 𝜀

(2. 5)

min‖𝐲‖1 + 𝛼𝑇𝑉(𝐮)

s. t. ‖PΦ𝐮 − 𝐯‖2 < 𝜀

(2. 6)

34

Where 𝛼 controls the effect between the sparsity of wavelet representations and the finite

differences. Eq.(2. 7) can be recast in a Lagrangian form and become an unconstrained

convex optimization problem.

Here, 𝜆 controls the penalty of data fidelity constraint, and governs the tradeoff between

the sparsity. The larger the value of parameters 𝜆 and 𝛼, the more the solutions tend to be

sparse. The 𝑙2 norm tends to suppress the large coefficients, making the solution closer to

the origin. Therefore, the estimated solutions may deviate from the true sparse solutions

as the equation is heavily penalized by the term of 𝑙2 norm regularization. Instead, when

𝜆 is chosen to emphasize the effect of minimizing 𝑙1 norm, the estimated solution is

usually sparse. For a proper choice of 𝜆 [35, 36], minimizing Eq.(2. 7) will yield the same

recovery of Eq.(2. 6).

With Nyquist-Shannon sampling theory, the signal is linearly recovered via the

interpolation of the Sinc function. However, unlike conventional signal processing, the

signal recovery of CS is achieved by certain nonlinear methods[37, 38]. There are a wide

variety of recovery algorithms for solving Eq.(2. 6). Among these advanced numerical

techniques, greedy pursuit[39] and convex optimization[40, 41] are often computationally

practical. The former relies on identifying the signal representations, which give the best

quality improvement, and then iteratively refining the coefficients. The representative

algorithms include orthogonal matching pursuit (OMP)[42] and iterative hard

thresholding (IHT). A tremendous variety of algorithms in the field of convex

 argmin
𝑢

𝜆‖Ψ−𝟏𝐮‖
1
+ 𝛼𝑇𝑉(𝐮) +

1

2
‖PΦ𝐮 − 𝐯‖2

2 (2. 7)

35

optimization is powerful for computing sparse representations. Iterative shrinkage-

thresholding [43-45], which is related to gradient-descent methods, has been extensively

used for past few years. The algorithms, such as interior point [46, 47], augmented

Lagrangian method[48], alternating direction method of multipliers[49], Bregman

iterative method [50-52], projection onto convex sets, and proximal gradient [53] are well-

developed for solving the 𝑙1 norm problem and CS reconstructions.

The iterative shrinkage, also known as soft-thresholding is widely used to solve

the 𝑙1 minimization problem. The general form is as follows,

Here, 𝐻(𝑢) is a convex and differentiable function, such as 𝑙2 norm function; 𝐺(𝑢) is a

convex and nonsmooth function, such as 𝑙1 norm function. More specifically, for a general

𝑙1 regularization, the equation becomes,

A basic approximation model for eq.(2. 8) is written as

For any 𝐿 > 0, and a given z, the first and second terms of 𝑄𝐿(𝑥, 𝑧) are the first order

Taylor expansion of function 𝐻(𝑥) at z. Because the approximation is only accurate for z

close to x, 𝑙2 norm is added to the objective function as a penalty term. As a result,

min
𝑥

𝐹(𝑥) implies min
𝑥

𝑄𝐿(𝑥, 𝑧). Based on an iterative scheme, minimizing 𝑄𝐿(𝑥, 𝑧) can

 min
𝑥

{𝐹(𝑥) ≡ 𝐺(𝑥) + 𝐻(𝑥)} (2. 8)

 min
𝑥

𝜇‖𝑥‖1 + 𝐻(𝑥) (2. 9)

min
𝑥

{𝑄𝐿(𝑥, 𝑧) ≡ 𝐻(𝑧) + 〈𝑥 − 𝑧, ∇𝐻(𝑧)〉

+
𝐿

2
‖𝑥 − 𝑧‖2 + 𝐺(𝑥)}

(2. 10)

36

be rewritten as min
𝑥

𝐺(𝑥) +
𝐿

2
‖𝑥 − (𝑧 −

1

𝐿
∇𝐻(𝑧))‖

2

because the two objective functions

are different only by a constant and the derivations are as follows,

min
𝑥

𝑄𝐿(𝑥, 𝑧) ≡ min
𝑥

{𝐻(𝑧) + 〈𝑥 − 𝑧, ∇𝐻(𝑧)〉 +
𝐿

2
‖𝑥 − 𝑧‖2 + 𝐺(𝑥)}

= min
𝑥

{𝐻(𝑧) + (𝑥 − 𝑧)𝑇∇𝐻(𝑧) +
𝐿

2
(𝑥 − 𝑧)𝑇(𝑥 − 𝑧) + 𝐺(𝑥)}

= min
𝑥

{𝐻(𝑧) + 𝑥𝑇∇𝐻(𝑧) − 𝑧𝑇∇𝐻(𝑧) +
𝐿

2
(𝑥𝑇𝑥 − 𝑥𝑇𝑧 − 𝑧𝑇𝑥 + 𝑧𝑇𝑧) + 𝐺(𝑥)}

= min
𝑥

{𝑥𝑇∇𝐻(𝑧) +
𝐿

2
(𝑥𝑇𝑥 − 𝑥𝑇𝑧 − 𝑧𝑇𝑥) + 𝐺(𝑥)}

= min
𝑥

{
𝐿

2
[𝑥𝑇𝑥 − 𝑥𝑇 (𝑧 −

1

𝐿
∇𝐻(𝑧)) − (𝑧 −

1

𝐿
∇𝐻(𝑧))

𝑇

𝑥] + 𝐺(𝑥)}

= min
𝑥

{
𝐿

2
[𝑥𝑇𝑥 − 𝑥𝑇 (𝑧 −

1

𝐿
∇𝐻(𝑧)) − (𝑧 −

1

𝐿
∇𝐻(𝑧))

𝑇

𝑥

+ (𝑧 −
1

𝐿
∇𝐻(𝑧))

𝑇

(𝑧 −
1

𝐿
∇𝐻(𝑧))] + 𝐺(𝑥)}

= min
𝑥

{
𝐿

2
[𝑥 − (𝑧 −

1

𝐿
∇𝐻(𝑧))]

𝑇

[𝑥 − (𝑧 −
1

𝐿
∇𝐻(𝑧))] + 𝐺(𝑥)}

= min
𝑥

{
𝐿

2
‖𝑥 − (𝑧 −

1

𝐿
∇𝐻(𝑧))‖

2

+ 𝐺(𝑥)}

Assume that 𝑝𝐿(𝑧) = argmin
𝑥

𝑄𝐿(𝑥, 𝑧), the iterative algorithm performs in a form of

𝑥𝑘+1 = 𝑝𝐿(𝑥
𝑘). For 𝑙1 norm regularization, the iterative algorithm becomes the following

equation.

37

For 𝑘 = 0,1, …, start from 𝑥0. Here, the parameter 𝛿𝑘 represents the step size and is set to

positive. Note that the unknown variable 𝑥 is component-wise separable, which means

that each component 𝑥𝑖(𝑖 = 0,1, … , 𝑛) of a vector 𝑥 can be independent obtained by the

shrinkage operator, also referred to as soft-thresholding shown in Figure 2.3,

where the shrinkage function is defined as follows.

The original shrinkage function is shown in Figure 2.3(a). Eq.(2. 11) yields the result of

eq.(2. 12) by taking the derivative of 𝑓(𝑥) and setting to zero. For each entry,
𝜕𝑓

𝜕𝑥𝑖
= 0

leads to the following equations.

𝜇 ∙ sign(𝑥𝑖
∗) +

1

𝛿𝑘
(𝑥𝑖

∗ − (𝑥𝑘 − 𝛿𝑘∇𝐻(𝑥𝑘))
𝑖
) = 0

Take the absolute value on both sides.

𝑥𝑘+1 ← argmin
𝑥

𝜇‖𝑥‖1

+
1

2𝛿𝑘
‖𝑥 − (𝑥𝑘 − 𝛿𝑘∇𝐻(𝑥𝑘))‖2

= argmin
𝑥

𝑓(𝑥)

(2. 11)

 𝑥𝑖
𝑘+1 = shrink((𝑥𝑘 − 𝛿𝑘∇𝐻(𝑥𝑘))

𝑖
, 𝜇𝛿𝑘) (2. 12)

shrink(y, 𝛼) ≔ sign(𝑦)max{|𝑦| − 𝛼, 0}

= {

𝑦 − 𝛼
0

𝑦 + 𝛼

𝑦 ∈ (𝛼,∞)
𝑦 ∈ [−𝛼, 𝛼]

𝑦 ∈ (−𝛼,−∞)

(2. 13)

 𝑥𝑖
∗ + 𝜇𝛿𝑘 ∙ sign(𝑥𝑖

∗) = (𝑥𝑘 − 𝛿𝑘∇𝐻(𝑥𝑘))
𝑖
 (2. 14)

38

From eq.(2. 14),

where

sign(𝑥𝑖
∗) =

sign(𝑥𝑖
∗)(|𝑥𝑖

∗| + 𝜇𝛿𝑘)

|𝑥𝑖
∗| + 𝜇𝛿𝑘

=
sign(𝑥𝑖

∗)|𝑥𝑖
∗| + sign(𝑥𝑖

∗)𝜇𝛿𝑘

|𝑥𝑖
∗| + 𝜇𝛿𝑘

=
𝑥𝑖

∗ + sign(𝑥𝑖
∗)𝜇𝛿𝑘

|𝑥𝑖
∗| + 𝜇𝛿𝑘

=
(𝑥𝑘 − 𝛿𝑘∇𝐻(𝑥𝑘))

𝑖

|(𝑥𝑘 − 𝛿𝑘∇𝐻(𝑥𝑘))
𝑖
|
= sign((𝑥𝑘 − 𝛿𝑘∇𝐻(𝑥𝑘))

𝑖
)

Let 𝑥𝑖
𝑘+1 = 𝑥𝑖

∗, then eq.(2. 14) becomes the iterative algorithm for 𝑙1 norm regularization,

and are illustrated in Figure 2.3(b), which is so-called shrinkage function.

|𝑥𝑖
∗ + 𝜇𝛿𝑘 ∙ sign(𝑥𝑖

∗)| = |(𝑥𝑘 − 𝛿𝑘∇𝐻(𝑥𝑘))
𝑖
|

= |𝑥𝑖
∗| + 𝜇𝛿𝑘

(2. 15)

𝑥𝑖
∗ = (𝑥𝑘 − 𝛿𝑘∇𝐻(𝑥𝑘))

𝑖
− 𝜇𝛿𝑘 ∙ sign(𝑥𝑖

∗)

= (𝑥𝑘 − 𝛿𝑘∇𝐻(𝑥𝑘))
𝑖
− 𝜇𝛿𝑘

∙ sign ((𝑥𝑘 − 𝛿𝑘∇𝐻(𝑥𝑘))
𝑖
)

(2. 16)

𝑥𝑖
𝑘+1 = 𝑥𝑖

∗ = sign ((𝑥𝑘 − 𝛿𝑘∇𝐻(𝑥𝑘))
𝑖
)

∙ max {|(𝑥𝑘 − 𝛿𝑘∇𝐻(𝑥𝑘))
𝑖
|

− 𝜇𝛿𝑘, 0}

= shrink((𝑥𝑘

− 𝛿𝑘∇𝐻(𝑥𝑘))
𝑖
, 𝜇𝛿𝑘)

(2. 17)

39

The shrinkage method can also be applied to TV regularization by replacing the term of 𝑙1

norm with TV function, leading to the following equation.

min
𝑥

𝜇𝑇𝑉(𝑥) + 𝐻(𝑥)

𝑥𝑘+1 ← argmin
𝑥

𝜇𝑇𝑉(𝑥) +
1

2𝛿𝑘
‖𝑥 − (𝑥𝑘 − 𝛿𝑘∇𝐻(𝑥𝑘))‖2

With the same iterative procedure, the solution to eq.(2. 6) can be efficiently found by

solving the two sub-problem.

Another widely used algorithm, known as Alternating direction method of

multipliers (ADMM), has drawn great attention for past decades due to the needs of

solving large-scale statistical tasks. ADMM decomposes a massive optimization problem

into distributed convex optimizations, which can be easily implemented by parallel

computing with a distributed-memory. Considering a general form of convex problem,

Figure 2.3 Shrinkage function (a) of the original and (b) applied in 𝒍𝟏 norm

regularization.

40

Here, 𝑥 ∈ 𝑅𝑛 , 𝐹(𝑥) and 𝐻(𝐴𝑥) are convex functions, and 𝐴 is 𝑚 × 𝑛 matrix. The

problem can be rewritten as a constrained minimization problem by introducing an

additional variable, 𝑦 ∈ 𝑅𝑚,

The augmented Lagrangian algorithm for problem (2. 19) is

Here, 𝑧 ∈ 𝑅𝑚 is the dual variable or Lagrangian multiplier and 𝜌 > 0 is known as penalty

parameter, where it is equivalent to standard Lagrangian form when 𝜌 = 0. By applying

dual ascent method, the recursions consist of the following steps.

This algorithm is known as the method of multipliers. The two primal variables, 𝑥 and 𝑦

is jointly updated by minimizing the augmented Lagrangian, and the dual variable

(Lagrangian multiplier), 𝑧 is estimated by the constraint. The method of multipliers

becomes less attractive because minimizing augmented Lagrangian makes the separable

objective functions, 𝐹(𝑥) and 𝐻(𝑦), be strongly coupled together by the penalty term,

𝜌

2
‖𝐴𝑥 − 𝑦‖2. On the contrary, ADMM decouples the objective function and updates the

 min
𝑥

𝐹(𝑥) + 𝐻(𝐴𝑥) (2. 18)

min
𝑥

𝐹(𝑥) + 𝐻(𝑦)

s.t. 𝐴𝑥 = 𝑦

(2. 19)

𝐿𝜌(𝑥, 𝑧) = 𝐹(𝑥) + 𝐻(𝑦) + 𝑧𝑇(𝐴𝑥 − 𝑦)

+
𝜌

2
‖𝐴𝑥 − 𝑦‖2

(2. 20)

(𝑥𝑘+1, 𝑦𝑘+1) ∈ argmin
𝑥,𝑦

𝐿𝜌 (𝑥, 𝑦, 𝑧𝑘)

𝑧𝑘+1 = 𝑧𝑘 + 𝜌(𝐴𝑥𝑘+1 − 𝑦𝑘+1)

(2. 21)

41

primal variables in an alternating fashion, which denotes the name “alternating direction”,

as shown in the following iterations.

The algorithm consists of three steps. The tangled minimization problem is divided into

two sub-problems. In the first step, the minimization focuses on a quadratic perturbation

of function 𝐹(𝑥) with respect to the variable 𝑥 while 𝑦𝑘 and 𝑧𝑘 are fixed. In the second

step, the minimization focuses on a quadratic perturbation of function 𝐻(𝑦) with respect

to the variable 𝑦 while 𝑥𝑘+1 and 𝑧𝑘 are fixed as constant. With the final step, the update

of dual variable 𝑧 uses the penalty parameter 𝜌 as a step size. The decoupling

minimization steps allow exploiting individual convex property of objective functions, so

that it is possible to compute in an efficient manner or carry out in parallel computing.

That’s how ADMM can take advantage of the decomposability of dual ascent and the

augmented Lagrangian for constrained optimization.

According to a recent research, the well-known Bregman iterative algorithm, is

equivalent to the method of multipliers, and the split Bregman method, which has been

applied in solving 𝑙1 minimization problem and CS applications, is actually equivalent to

ADMM. Although theoretical results of these algorithms were established few decades

ago, they are being used more widely as the needs for analyzing large-scale data are

growing and the massive computing system becomes available.

(𝑥𝑘+1) ≔ argmin
𝑥

𝐿𝜌 (𝑥, 𝑦𝑘, 𝑧𝑘)

(𝑦𝑘+1) ≔ argmin
𝑦

𝐿𝜌 (𝑥𝑘+1, 𝑦, 𝑧𝑘)

𝑧𝑘+1 = 𝑧𝑘 + 𝜌(𝐴𝑥𝑘+1 − 𝑦𝑘+1)

(2. 22)

42

Compressed Sensing MRI with Multiple Coils

Since imaging speed has been a major part of MRI revolutions and becomes the limitation

of MRI applications, up-to-date MRI scanners are often equipped with the phased array

receiver system, which has multiple coils as RF receiver for parallel collecting data. As a

result, various combinations of parallel imaging and compressed sensing or sparsity have

developed for further speeding up the scan time.

Compressed sensing was first tried to combine with SENSE parallel imaging

method [24, 54-57]. SparseSENSE is one of these techniques directly extending

sparseMRI to SENSE framework. The reconstruction is achieved by minimizing the

following equation

Here, 𝐹𝑢S is defined as a under-sampled Fourier and sensitivity-encoding matrix. As the

reduction factor is practically smaller than the number of channels, 𝐹𝑢S𝐮 represents an

overdetermined system. However, CS primarily considers solving an underdetermined

system and needs Φ to be an orthonormal basis. In addition, the incoherence between the

random sampling matrix and the sensitivity encoding matrix, which can make system ill-

conditioned due to the inaccuracy of estimating sensitivity, has not been explored.

Therefore, sparseSENSE is still regarded as an 𝑙1-regularized SENSE using sparsity.

𝐮̂ = min
𝐮

‖Ψ𝐮‖1 + 𝛼𝑇𝑉(𝐮)

s. t. ‖𝐹𝑢S𝐮 − 𝐯‖2 < 𝜀

(2. 23)

43

In CS-SENSE method [58], it divides the reconstruction into two stages. The first

step is to clean up the alias of coil images channel by channel, where random sampling

causes the eliminated alias.

Here, 𝐮𝑙
𝐴 is the aliased coil image from the 𝑙𝑡ℎ channel with a reduced FOV. The encoding

matrix Φ solely represents the Fourier transform since the coil images 𝐮𝑙
𝐴 are modulated

by coil sensitivity. In the second step, the aliased coil images are combined pixel-by-pixel

using the Cartesian SENSE method. The performance of these methods rely on the

accuracy of measuring coil sensitivities, where the estimation can be improved by

distributed compressed sensing[59, 60].

In Self-feeding sparse SENSE[61], it improved the performance of sparseSENSE

by splitting eq.(2. 24) with auxiliary variables as follows.

Here, ‖∇𝐮̂‖1is 𝑙1 norm of finite difference of the desired image. The problem can turn to

un-constrained minimization by placing a quadratic function and penalizing it with a

sufficient large 𝜇.

𝐮𝑙
𝐴̂ = min

𝐮𝑙
𝐴

‖Ψ𝐮𝑙
𝐴‖

1
+ 𝛼𝑇𝑉(𝐮𝑙

𝐴)

s. t. ‖𝐹𝑢𝐮𝑙
𝐴 − 𝐯𝑙‖2

< 𝜀

(2. 24)

min
𝐱

∑‖𝐹𝑢S𝑙𝐮 − 𝐯𝑙‖2

𝑐

𝑙=1

+ 𝜆‖Ψ𝐮̂‖1 + 𝛼‖∇𝐮̂‖1

s. t. 𝐮̂ = 𝐮

(2. 25)

44

Then, based on the alternating minimization method, the image can be iteratively

reconstructed by splitting variables and alternatively solving the 𝐮 sub-problem and the 𝐮̂

sub-problem.

The 𝐮 sub-problem is regarded as regularized SENSE with prior information 𝐮̂. The 𝐮̂

sub-problem is well known as image denoising with total variation and wavelet. It has no

effect of setting 𝜇2 = 1 because 𝜆 and 𝛼 can balance three terms sufficiently. The map of

g-factor is used to regularize the need of enforcing sparsity, and then 𝐮̂ subproblem

becomes

In addition, sensitivities can be iteratively updated after 𝐮̂ subproblem and the

reconstructed image can be improved by a better estimation of sensitivities.

Sparse BLIP provides an iterative manner to simultaneously reconstruct

sensitivities and the image by exploiting the sparsity of both sensitivities and the

min
𝐱

∑‖𝐹𝑢S𝑙𝐮 − 𝐯𝑙‖2

𝑐

𝑙=1

+ 𝜆‖Ψ𝐮̂‖1 + 𝛼‖∇𝐮̂‖1

+ 𝜇2‖ 𝐮̂ − 𝐮‖2
2

(2. 26)

min
𝐮

∑‖𝐹𝑢S𝑙𝐮 − 𝐯𝑙‖2

𝑐

𝑙=1

+ 𝜇2‖ 𝐮̂ − 𝐮‖2
2

min
𝐮̂

𝜇2‖ 𝐮̂ − 𝐮‖2
2 + 𝜆‖Ψ𝐮̂‖1 + 𝛼‖∇𝐮̂‖1

(2. 27)

min
𝐮̂

‖ 𝐮̂ − 𝐮‖2
2 + 𝜆‖(g − 1)Ψ𝐮̂‖1

+ 𝛼‖(g − 1)∇𝐮̂‖1

(2. 28)

45

image[62]. The image and sensitivities are jointly reconstructed by minimizing the

following equation.

Here, (∙) denotes the component-wise product. Based on the alternating minimization

method, the energy function can be split into two sub-problems with respective to 𝐮 and

S𝑙. With fixing S𝑙 = S𝑙
(𝑘−1)

, the image is updated as follows

With fixing 𝐮 = 𝐮𝑘, sensitivities are updated by minimizing the following equation.

Eq.(2. 30) is the same as sparse SENSE, where sparse BLIP improves sparse SENSE by

iteratively alternating the reconstructions of the image and sensitivities.

Some research papers focus on combining CS with GRAPPA. With sufficient

density around the center region, GRAPPA is used to fill out the location of missing data,

where leads to an incoherent-aliased image, and then used CS to eliminate the alias [63].

min
𝐮

∑‖𝐹𝑢(S𝑙 ∙ 𝐮) − 𝐯𝑙‖2

𝑐

𝑙=1

+ 𝜆‖Ψ𝐮‖1 + 𝛼‖∇𝐮‖1

+ 𝛽 ∑‖∇S𝑙‖1

𝑐

𝑙=1

(2. 29)

𝐮𝑘 = argmin
𝐮

∑‖𝐹𝑢(S𝑙
(𝑘−1) ∙ 𝐮) − 𝐯𝑙‖2

𝑐

𝑙=1

+ 𝜆‖Ψ𝐮‖1 + 𝛼‖∇𝐮‖1

(2. 30)

S𝑙
𝑘 = argmin

S𝑙

∑‖𝐹𝑢(S𝑙 ∙ 𝐮
𝑘) − 𝐯𝑙‖2

𝑐

𝑙=1

+ 𝛽 ∑‖∇S𝑙‖1

𝑐

𝑙=1

(2. 31)

46

In addition, 𝑙1 SPIR-iT uses iterative Self-consistent Parallel Imaging reconstruction

(SPIR-iT), which is an iterative GRAPPA-like approach, incorporating the sparsity into

the auto calibrating system [64-66]. The problem is formulated as follows.

Here, 𝐮 is the desired image, 𝐯 is the acquired data, and 𝐦 is the reconstructed k space

data. 𝐹 represents a full-sampled Fourier encoding matrix, and 𝐹𝑢 represents Fourier

encoding matrix with Poisson disc sampling, which can provide more incoherent

artifacts. 𝐺 is defined as an interpolation kernel, which is obtained from calibration. 𝑙1

SPIR-iT used joint 𝑙1 to enforcing sparsity, defined as ∑ √∑ |𝑤𝑟𝑐|2𝑐𝑟 , where 𝑤𝑟𝑐 is the

coefficient of sparse transform. With this definition, they penalize the coefficient from all

coils but at same spatial location and exploit both the sparsity and data consistency.

The above approaches incorporating CS require 𝑙1 minimization algorithms on

large-scale problem, which has well developed since the late 1970’s and early 1980’s due

to the explosion of computing power. That means the numerical algorithms are often

computationally expensive. Especially for three-dimensional MRI acquisition from

multiple coils, the high acceleration of scan time is achieved by combining parallel

imaging and CS. However, the cost could be an excessively long time in image

reconstructions, which make clinically impractical. For past decade, massive parallel

computing, such as graphics processing units (GPU) or multicore central processing unit

min Joint𝑙1(Ψ𝐮)

s. t. 𝐺𝐦 = 𝐦

𝐹𝑢𝐮 = 𝐯

𝐹𝐮 = 𝐦

(2. 32)

47

(CPU) has dramatically evolved, providing a good tool for calculating high computation

complexity operations on large-scale datasets. Multi-core processors draw great attentions

in accelerating the runtime of CS MRI reconstructions. Therefore, this dissertation focuses

on improving and speeding up the CS reconstructions of multichannel MRI data.

48

CHAPTER III

COMPRESSED SENSING MRI WITH MULTICHANNEL DATA USING

MULTICORE PROCESSORS

Objective

MRI using conventional Fourier imaging is relatively slow as compared with other

imaging modalities because the data acquisition speed is limited by hardware capability

and SNR factors. CS is a new sampling and reconstruction technique that allows a sparse

signal to be reconstructed from a set of randomly undersampled data, which in turn

shortens the data acquisition time [67-69]. Recently, Lustig et al have demonstrated the

use of CS in a number of MRI applications with remarkable acceleration [32].

Because array systems receive signals from multi-channel simultaneously, they

offer improved SNR [7, 70] or accelerated speed in PI methods. Several groups including

ours have investigated methods to integrate CS and PI with array systems [54-56, 71-73].

In these methods, CS and PI are generally coupled in a large linear system, which contains

data from all channels. Another novel approach is to apply the CS algorithm to reconstruct

an aliased image in each channel, followed by a conventional SENSE method [58].

However, an alternative approach to integrate them is to apply the CS reconstruction to

 Reprinted with permission from "Compressed sensing MRI with multichannel data using multicore

processors" by Ching-Hua Chang and Jim Ji, 2010. Magnetic Resonance in Medicine, vol. 64, pp. 1135-

1139, Copyright 2010 by Wiley-Liss, Inc.

49

each channel individually followed by a simple channel combination using a sum-of-

squares method.

One significant problem in the aforementioned methods is the computational

complexity. CS reconstruction involves non-linear optimization, which can be time-

consuming even for regular-sized data and images. With multi-channel array systems, the

computational complexity will scale with the number of channels. This problem can be

partially addressed with improved performance of central processing units (CPU).

Unfortunately, computation power growth using higher CPU clock frequency is limited

by the power consumption and physical wire size. Modern processor design is moving

towards multi-core architecture. The ubiquitously available duo-core, quad-core CPU, and

Graphics Processing Unit (GPU) offer new platforms for implementing parallel algorithms

to accelerate image reconstructions. In [74], a conjugate gradient (CG) solver was

implemented on NVIDIA’s G80 GPU. Borghi et al used the multi-core platform to solve

the CS reconstruction which involves 𝑙1 minimization [75]. Other advanced MRI

reconstruction algorithms were also implemented on NVIDIA’s Quadro FX 5600 GPU

[76, 77]. These previous work shows the tremendous potential of multi-core processors

for speeding up MRI reconstruction. However, most of the work is for single-channel data.

In addition, they usually require significant efforts to program the parallel algorithms on

the GPUs. For the multi-channel parallel imaging with CS algorithm, the methods in [54-

56, 71-73] cannot be parallelized straightforwardly as the linear system is coupled.

However, the methods discussed in [74-77] can be potentially adopted to accelerate these

reconstructions. In contrast to the previous cases, the method in [58] can directly benefit

50

from parallel computing because processing of different channels is decoupled before

using the SENSE reconstruction.

In this paper, we proposed an accelerated reconstruction procedure for combining

CS with the array receive systems, using widely available multi-core CPUs to accelerate

the image reconstruction. The results show that the reconstruction algorithm can benefit

significantly from the parallel computing and multi-core architecture. This work is

developed from a preliminary conference report in [78].

Methods

Based on the CS theory, an image x can be reconstructed from a reduced set of incomplete

k-space data y, where y = Φx with Φ being the randomly-sampled Fourier transform

operator implemented by encoding gradients. Specifically, the image x can be recovered

by the following constrained optimization problem

 min (‖𝚿𝐱‖1 + α TV(𝐱))

s. t. ‖𝐲 − 𝚽𝐱‖2 < 𝜀

(3. 1)

Here Ψ is a linear transform such as the wavelet transform and TV(x) is the total variation

of the image. Both terms reflect the sparsity of the image. Note that parameter α is to

balance the two terms and parameter ε corresponds to the data fidelity, which can be set

to zero for simplicity. With an array receiver system, a k-space data set will be acquired

from each channel. An image xk can be reconstructed from the kth channel data using the

CS method. Then, the images from all channels can be combined using the well-known

51

sum-of-squares method [7]. A desirable feature of this approach is that individual channels

are not coupled, which allows parallel reconstruction using multi-core architecture.

The overall reconstruction algorithm is illustrated in Figure 3.1. Here, yk, k = 1,

2, …, l, are the under-sampled data received from the l parallel channels. The data sets yk

are clustered into m groups. Each of the first m-1 groups contains n data sets, and the last

group m contains the rest l-n(m-1) data sets. Note that n corresponds to the number of CPU

cores for which is intended to be used. In reconstruction, m groups will be processed

sequentially, i.e., the first group of n data sets is fed to the n available processing cores

Figure 3.1 Illustration of the proposed algorithm on a multi-core CPU. Under-

sampled multi-channel data are input to n cores of CPU. The final image is

obtained by combining all individual channel images [85].

52

simultaneously, followed by the second group, and so on. After all m groups are processed

and all l individual channel images are reconstructed, the final image is obtained by the

sum-of-squares combination. In each processing core, the reconstruction for the kth

channel data is obtained by recasting Eq.(3. 1) as

min ‖𝚽𝐱̂𝑘 − 𝐲𝑘‖2
2 + λ1‖𝚿𝐱̂𝑘‖1

+ λ2TV(𝐱̂𝑘)

𝑘 = 1,2, … , 𝑙

(3. 2)

In this paper, SparseMRI software [79] was used for optimization, whose algorithms are

based on a non-linear CG method. The regularization parameters λ1 and λ2 are set to 0 and

0.001 experimentally.

The algorithm was tested on a platform that contained a standard Intel Core 2 Quad

Q8200 2.33 GHz CPU, with 4 MB L2 cache and 4GB DDR2 memory. All computer

simulation and image reconstruction were performed in Matlab (Mathworks, Natick, MA,

built 7.7.0.471). In the default mode, there is no multithread computation supporting of

the Parallel Computing Toolbox, a Matlab process is only able to utilize 25% of quad-core

CPU. To initialize the parallel process as shown in Figure 3.1, a method similar to the

message passing interface in [80] was used, which allows multiple Matlab processes run

on parallel computer clusters or multi-cores. In the proposed method with quad-core CPU,

four instances of Matlab are started at the beginning, each initiating a process. A primary

process in one instance will save the k-space data and reconstruction parameters for each

channel in a separate data file, and, in the end, will combine all channel images. As soon

as the files are ready, the primary and the other three slave processes will simultaneously

53

access and reconstruct the channel data. This parallel processing will finish until all

channel files are accessed and processed. At this point, the primary process, after realizing

that there is no more individual channel data to be processed, will perform the sum-of-

squares combination. To simplify programming and boost the efficiency, all processes

communicate through file reading/writing (R/W) only. This also avoids the potential

conflicts between processes and ensures that different processes do not access the same

channel data.

To test the proposed algorithm, both simulated and in-vivo data were used. The

multiple-channel (4-channel, 8-channel, and 16-channel) k-space data were simulated

using the ‘Shepp-Logan’ phantom and Gaussian channel sensitivities. For the 4-channel

data, five data sets with different size (32×32, 64×64, 128×128, 256×256, and 512×512)

were synthesized. This was to test the effect of image size on saving the computation time

and the overhead time. The individual channel data were under-sampled in the k-space

with radial sampling pattern. The under-sampling factor was about 40%, which meant that

only 40% of the total data were kept. For the 8-channel and 16-channel simulations, only

256×256 images were used with and an under-sampling factor of 33%. In addition, for

simulated data, using 1, 2, 3, or 4 cores in the CPU generated four sets of results. The total

reconstruction time was recorded and compared. The total time includes time for

launching and communicating through file R/W and computation starvation, which is

defined as the minimum absolute time that the primary or slaves waits for the data before

continuing on the next operations. Note that if multiple cores were working

simultaneously, we only recorded the maximum stalled time and the maximum overhead

54

time on file R/W among different cores of CPU. In addition, the computation speedup

factor was evaluated by comparing the proposed method with the reconstruction time

without the proposed method.

Finally, an 8-channel in-vivo brain MR data set was acquired and tested. The k-

space data with a size of 256×256 from each channel were acquired in full field-of-view,

i.e., without under-sampling. Then, the radial sampling was simulated by decimation with

an under-sampling factor of 33%. The under-sampled 8-channel data were then input to

the quad-core processor for image reconstruction as shown in Figure 3.1. To evaluate the

efficiency of using multi-core parallel reconstruction, the total reconstruction times for

both simulated data and in-vivo data were compared with the time required using the

conventional reconstruction method, where the quad-core CPU is used without the

proposed parallelization. To reduce the performance variation, each reconstruction test

was repeated ten times and the average time cost was calculated and shown.

Results

Table 3.1(a) lists the total reconstruction time for all experiments with the simulated 4-

channel data, including both time cost for file R/W and the CS reconstruction. As shown,

using 2 cores leads to significant reduction in the computation time per core, with the

reduction factor of about 1.7. In addition, using 4 cores gives the shortest reconstruction

time, where the average reduction factor is about 2.4. It is worth mentioning that for the

simulated 4-channel data, there is very little benefit from using 3 cores compared to using

2 cores. This is because, in both cases, 2 groups of datasets need to be processed. With 3

55

cores, there are 2 cores stalling during the second group, which contains only one channel

data being processed. Table 3.1(b) shows the computation speedup factors of the proposed

method. Note that the proposed parallel computation provides about 1.3 times speedup

when using 2 cores, and about 1.8 times speedup when using 4 cores, which are shown in

Table 3.1(b) factor 128×128 data sets.

Table 3.1 (a) Total computation time (in seconds) in the simulated 4-channel study

with a quad-core CPU when different numbers of CPU cores are used. (b)

Computational speedup factors of the proposed method in the 4-channel study, as

compared with the reconstruction using the quad-core CPU without the proposed

method. Note that the acceleration is greater than one even with two cores using

the proposed method [85].

56

Table 3.2 illustrates the total reconstruction time in the 4-channel simulated study

in these parts: CS reconstruction (CS), computation starvation time (Stall), and

communication time through file R/W (R/W). Comparing sub-plots for large image sizes

with that of image size 32, the overheads of file R/W and the stall time take a larger

percentage of the total computation time. However, when images become larger, the

percentages of these overheads are dramatically reduced and the parallelization of CS

reconstructions gains more benefits. Also, using 2 cores has less stall time, which is

implicitly contained in CS reconstruction time, comparing to using 3 cores and 4 cores.

Therefore, it provides maximum efficiency improvement per core, whereas using 3 cores

has the minimum efficiency improvement per core.

Table 3.2(a) shows the time of image reconstructions of simulated 8-channel data

and 16 channel data using a different number of cores of CPU. As shown in Table 3.2(b),

the computation speedup factor of using the proposed method is calculated. The range of

speedup factors in Table 3.2(b) is similar to that of Table 3.1(b), given minimum 0.8 times

speedup and maximum 1.8 times speedup, compared with the conventional method using

the quad-core CPU without the proposed parallelization.

57

Figure 3.2 Total computation time shown in portions: CS reconstruction,

computation starvation (cores stall), and file reading/writing. The horizontal axis

represents the numbers of CPU cores in use and the vertical axis represents the

computation time [85].

58

Figure 3.3 shows the image reconstruction in the 8-channel in-vivo human brain

imaging experiments. The sum-of-squares reconstruction from the fully-sampled 256×256

data is shown in Figure 3.3(a), and the result from using the proposed method is shown in

Figure 3.3(b). In this experiment, it took 718 seconds to reconstruct the image using the

proposed algorithm, whereas it took 1161 seconds without the proposed algorithm. The

speedup factor is about 1.6. Note that the image reconstruction quality used the proposed

algorithm is closed to the one from the fully sampled data.

Table 3.2 Results of the simulated 8-channel and 16-channel studies: (a) total

computation time (in seconds) when different numbers of cores are used; (b)

Computational speedup factors, as compared with the reconstruction using the

quad-core CPU without the proposed method [85].

59

Discussion

We described an innovative reconstruction procedure for CS imaging with MR array

receiver systems. The proposed method reconstructs images using the under-sampled data

from each channel individually and combines them via the sum-of-squares method. Multi-

core CPUs were used to reconstruct CS images simultaneously, which significantly

shortened the reconstruction time. In our experiments with simulated 4-channel data, using

2 cores of CPU gave maximum efficiency improvement per core; while using 4 cores gave

the fastest reconstruction. However, the efficiency was not doubled as we changed the

Figure 3.3 Images reconstructed from the 8-channel in-vivo data using (a) sum

of squares from fully-sampled data, and (b) the proposed method from 33% of

the total data. The time to reconstruct (b) is about 718 seconds, whereas it takes

about 1161 seconds without the proposed method [85].

60

number cores from 2 to 4. This is because the memory bandwidth and the memory size

are fixed and all cores share the same memory.

The proposed algorithm was tested for single slice 2D imaging in this work.

However, it can be directly applied to multi-slice 2D imaging where parallelization can be

used on multiple slices instead of multiple channels. For more computationally demanding

cases such as 3D imaging or multi-channel multi-slice imaging, the efficiency gain from

the parallelization will be even more beneficial. In CS image reconstruction studied in this

paper, the overhead is only a small portion of the total reconstruction time. Significant

computation time reductions were achieved using a quad-core CPU, especially for higher

computation complexity of the reconstruction algorithms using wavelet transforms.

Implementing the algorithms in C/C++ can further shorten the computational time

significantly. Such improvement will be complementary to the gains achieved by

parallelization. In addition, other existing methods using GPU architecture and more

advanced synergetic integration of multi-core CPUs with GPUs can be potentially used to

further accelerate the CS algorithms for 2D or 3D multi-channel data [76, 77]. These

possibilities will be further explored in the future research to fully realize the potential of

parallel computations for processing large, multi-channel data in MRI.

61

CHAPTER IV

IMPROVED COMPRESSED SENSING MRI WITH MULTICHANNEL DATA

USING REWEIGHTED 𝒍𝟏 MINIMIZATION

Objective

Imaging speed in magnetic resonance imaging (MRI) is an important issue, especially in

the acquisition of diagnostic images in clinical settings because shortening the scan time

can reduce the cost and increase throughput and patient’s comfort. However, the data

acquisition is practically limited by hardware capability and signal-to-noise (SNR) ratio

factors. Compressed Sensing (CS) emerged as a method that allows a sparse signal to be

reconstructed from a set of randomly undersampled projection data [67, 69]. It has been

demonstrated that CS is useful for speeding up MRI acquisition, where data is collected

in the k-space, i.e. Fourier space [32].

Multi-channel imaging using array receiver system offers improved SNR [7, 70]

or accelerated speed with parallel imaging (PI). Therefore, integrating CS with PI are

expected to further improve the MRI quality and/or speed [54-56, 71, 72]. In doing so, CS

and PI coupled in a large linear system or decoupled in separate steps. In the latter case,

CS algorithm is applied to each channel individually, then the final image can be

reconstructed using the sensitivity encoding method [58] or a root-sum-of-square method

[81]. In addition, the correlations of distributed compressed sensing have also been further

 Reprinted with permission from "Improving multi-channel compressed sensing MRI with reweighted l1

minimization" by Ching-Hua Chang and Jim Ji, 2014. Quantitative Imaging in Medicine and Surgery, vol.

4, pp. 19-23, Copyright 2014 AME Publishing Company.

62

applied in the system to improve the image quality [82]. In all the aforementioned methods,

image reconstructions involve in minimizing the 𝑙1 norm of a sparse image representation

in certain domains, such as the wavelet domain or a sparse gradient. Since 𝑙1 is an

approximation of the sparsity measurements, i.e. 𝑙0 norm of the sparse domain, there has

been efforts to further improve 𝑙1 minimization so that it will be closer to the 𝑙0

minimization solution.

In this chapter, we develop a method that reconstructs MRI image from multi-

channel data in the CS framework with a reweighted 𝑙1 minimization. The main feature of

the new method is that it uses an iterative, reweighted 𝑙1 minimization method to perform

the CS reconstruction of multi-channel MRI data. The method was compared with two

existing multi-channel CS reconstruction methods using computer simulations and in-vivo

MRI data. The results show that the proposed method can provide an improved

reconstruction quality at a slightly increased computation cost. The content of this chapter

is published on preliminary work presented in conference abstracts [81, 83], and on a

journal paper[84].

Methods

The phased array MR receiver system consists of a set of receiver channels, which are

individually connected to decoupled coil elements. With an array receiver system, a k-

space data set 𝒚𝑘, k = 1, 2,…, c, will be acquired from each channel. In applying CS

reconstruction, each channel can be formulated as an underdetermined system, 𝒚𝑘 = 𝚽𝒙𝑘,

where 𝚽 is a randomly under-sample Fourier transform operator implemented by the

63

phase-encoding and frequency-encoding gradients. The CS theory states that an image 𝒙𝑘

can be recovered from the incomplete k-space data 𝒚𝑘 if it is sufficiently sparse. However,

even the image itself is not sparse, it can often be transformed to a sparser domain and

there is high probability that the image can be recovered. A commonly used sparsifying

transform is the gradient operators; i.e. the image reconstruction can be achieved by

solving the following convex optimization problem,

min
𝐱𝑘

𝑇𝑉(𝐱𝑘) s. t. 𝐲𝑘 = 𝚽𝐱𝑘

k = 1, 2,…, c

(4. 1)

where 𝑇𝑉(𝐱𝑘) = ∑ ‖(𝐷𝐱𝑘)𝑖,𝑗‖2
1≤𝑖≤m
1≤𝑗≤n

, where (𝐷𝐱𝑘)𝑖,𝑗 represents the forward difference

between adjacent pixels defined as(x𝑖+1,𝑗 − x𝑖,𝑗, x𝑖,𝑗+1 − x𝑖,𝑗). Here, total variation is

considered as the l1 norm of the magnitudes of the gradients and is well known as an

isotropic version of total variation. This formulation follows the method described in [85].

After all channels images are reconstructed. They are combined using a root-sum-of-

squares method. The overall reconstruction procedure is shown in Figure 4.1. As shown,

under-sampled k-space data is fed to the use of l1 minimization algorithm, whose outputs

are recursively calculated as the weights of the next iteration and finally produce the final

image.

In this paper, we utilize the reweighted l1 minimization algorithm [86] to enhance

the CS image reconstruction from multi-channel data. To solve the minimization problem

in Eq. (4. 1), it is rewritten as a second-order cone problem with weights:

64

 min
t𝑘,𝐱𝑘

∑ 𝑡𝑘𝑖,𝑗1≤𝑖≤m
1≤𝑗≤n

s. t. 𝑤𝑘𝑖𝑗
‖(𝐷𝐱𝑘)𝑖,𝑗‖

2
≤ 𝑡𝑘𝑖,𝑗

𝐲𝑘 = 𝚽𝐱𝑘

(4. 2)

Where the weights are set to be inversely proportional to the signal magnitude. Based on

the theory of reweighted l1 minimization, the larger entries of 𝒘𝑘 , i.e., where signal

magnitude is close to zero, will discourage small entries of the reconstructed image 𝒙𝑘. In

the proposed method, small weights are calculated from the previous reconstructed images.

As a result, the weights can be considered as iterative parameters in the convex relaxation

to improve the image reconstruction.

Figure 4.1 Reconstruction procedure for multi-channel receiver system using the

𝒍𝟏 reweighted minimization [84].

65

Specifically, each image 𝒙𝑘 is reconstructed as follows.

1. Set the iteration count, 𝑙 = 1 and the initial weight, w𝑖,𝑗
(1)

= 1 for 𝑖 =

1, … ,m and 𝑗 = 1,⋯ , n. Note that w𝑖,𝑗
(1)

 is the weight on pixel (i, j).

2. Solve the weighted l1 minimization problem

This was performed using a home-made Matlab program by modifying the l1-

magic software package[46].

3. Update the weights:

The parameter ε is a small positive number to prevent zero-valued denominator.

Finally, all the reconstruction images are combined by the root-sum-of-squares of

all channel images.

To test the proposed method, both simulated and in-vivo data were used. The k-space data

of four channels were simulated using the ‘Shepp-Logan’ phantom with an image size of

128×128. The individual channel sensitivities are assumed to be shifted 2-dimension

Gaussian functions. The individual channel data were under-sampled in the k-space with

 𝐱𝑘
(𝑙) = argmin∑ w𝑘𝑖,𝑗

(𝑙)
1≤i≤m
1≤j≤n

‖(D𝐱𝑘)𝑖,𝑗‖2

s. t. 𝐲𝑘 = 𝚽𝐱𝑘

(4. 3)

 w𝑖,𝑗
(𝑙+1)

= 1 (‖(D𝐱𝑘
(𝑙)

)𝑖,𝑗‖
2
+ ϵ⁄) (4. 4)

 𝐱(𝑖, 𝑗) = √∑|𝐱𝑘
(𝑙𝑚𝑎𝑥)(𝑖, 𝑗)|2

c

𝑘=1

 (4. 5)

66

radial sampling pattern. The under-sampling factor was about 15%, which meant only

15% of the total data were used in reconstructions. Finally, an 8-channel in-vivo brain MR

data set was acquired and tested. The k-space data with an image size of 256×256 from

each channel were acquired in full field-of-view, i.e., without under-sampling. Then, the

radial sampling was simulated by decimation with an under-sampling factor of 25%.

Based on the same sampling factor, the reconstruction image using the proposed method

was compared with two methods: (1) conventional TV minimization (l1 minimization with

no reweighted iterations); and (2) a method shown in [71], which combine CS with

SPACE-RIP (Sensitivity Profiles from an Array of Coils for Encoding and Reconstruction

In Parallel).

The normalized means square error (NMSE) was used to evaluate the performance

and defined as follows

Note that 𝐱̂𝑘 is the referenced image, which is reconstructed from the fully sampled data

in the k-th channel.

Results

To show the quantitative improvement of the proposed approach the NMSE of the

reconstructions by the conventional TV (l1 minimization) and the proposed method is

shown in Table 4.1. It shows that the proposed method has a lower NMSE than the

conventional l1 minimization algorithm since low NMSE represents fewer reconstruction

 NMSE = ‖𝐱̂𝑘 − 𝐱𝑘
(𝑙𝑚𝑎𝑥)‖

2
‖𝐱̂𝑘‖2⁄ (4. 6)

67

errors; the proposed method is superior in this study. Figure 4.2 to Figure 4.5 show the

images and reconstruction details in the simulated phantom study.

Figure 4.2 indicates two regions and two lines of the original phantom study, which

are used to compare the reconstructed details and resolutions. The comparisons of the

reconstruction details are shown in Figure 4.3 and Figure 4.4. As the highlight region 1

and region 2 shown in Figure 4.3, the proposed method can recover more details of the

edges pointed by the arrows. This is also illustrated in Figure 4.4, which displays the

surface plots of the same corresponding zoom-in images shown in Figure 4.3. The three-

dimension angle of view is also indicated along the arrows shown in Figure 4.3. Besides

recovering sharper edges, it is observed that the proposed method can eliminate the

staircase artifacts around smooth area noted by these arrows of Figure 4.4. In addition, the

difference between the original image and the reconstructed image, i.e. reconstruction

errors along line 1 and line 2, are shown in Figure 4.5. Again, it demonstrates the proposed

method yields the reduced reconstruction errors.

Table 4.1 NMSEs of the image reconstruction in the simulated 4-channel phantom

study [84].

NMSE Ch 1 Ch2 Ch3 Ch4

TV

 (l1 minimization)
0.015 0.041 0.036 0.016

Proposed

(With reweighted l1

minimization)

0.011 0.026 0.025 0.014

68

Figure 4.6 compares the image reconstructions in an 8-channel in-vivo brain

imaging experiment. Here, the left column represents the reconstructed images from the

fully sampled data, the method in [71], where CS is integrated into a large linear system

of multiple receiver coils, and the proposed method, respectively. The middle and right

columns show the zoom-in views of the regions highlighted. To facilitate visualization,

arrows are placed at the area where significant differences can be observed. As can be

Table 4.2 NMSEs of the image reconstruction in the 8-channel in-vivo imaging

experiment [84].

NMSE Ch2 Ch4 Ch6 Ch8

TV

(l1 minimization)
0.092 0.086 0.096 0.086

Proposed

(With

reweighted l1

minimization)

0.091 0.086 0.093 0.083

Figure 4.2 Original phantom image with selected regions and lines for

comparisons [84].

69

seen, higher fidelity in details and sharper features are obtained with the proposed method.

Note that all images in the middle and bottom rows are reconstructed from 25% of the

fully sampled data.

A comparison between the proposed method and the conventional TV

minimization is shown in Table 4.2 (Only even channels are shown). The performance in

terms of NMSEs is shown. One can see that the proposed method has smaller quantitative

reconstruction errors.

Figure 4.3 Reconstruction details of the Zoom-in region 1 (top row images) and

region 2 (bottom row images) in the second channel image: (Left) Reference from

the fully sampled data (Middle) with conventional 𝒍𝟏 minimization (TV) (Right)

with the proposed reweighted 𝒍𝟏 minimization [84].

70

Figure 4.4 Surface plots of the corresponding zoom-in regions in Figure 4.3(Left)

Reference from the fully sampled data (Middle) with conventional 𝒍𝟏

minimization (TV) (Right) with the proposed reweighted 𝒍𝟏 minimization [84].

Figure 4.5 Reconstruction errors (differences between the original image and

reconstructed image) along (Left) Line 1 (Right) Line 2 [84].

71

Discussion

A new improved reconstruction method for compressive sensing MRI with multi-channel

phased array data was presented. In this method, the image is reconstructed using the

reweighted l1 minimization algorithm in a channel-by-channel fashion. The simulated

experimental results show that the new method can provide an improved image quality

Figure 4.6 Images reconstructed from the 8-channel in-vivo data using (TOP)

sum-of-squares from fully sampled data, (Middle) the method in [71], and

(Bottom) the proposed method [84].

72

from the same data. On the other hand, the new algorithm requires more iterations than

the conventional l1 minimization algorithm. This might pose a problem when immediate

delivery of images is preferred. In such cases, using multi-core processors such as graphics

processing units (GPUs) can be applied to parallelize the reconstruction and to shorten the

reconstruction time. The proposed method can also be applied to the other CS methods

where l1 minimization is used.

73

CHAPTER V

COMPRESSED SENSING RECONSTRUCTION FOR 3D MULTICHANNEL

DATA USING GRAPHICS PROCESSING UNIT (GPU)

Objective

Conventionally, MRI acquires data in the spatial frequency domain, i.e. k-space, and

perform the fast Fourier Transform to reconstruct the images. In this way, comparing to

other imaging modalities, the scan time of fully sampling along Cartesian trajectories is

usually unsatisfied. Clinically, longer scan time may cause patience’s discomfort, and

hence increase the imaging artifacts, such as motion blur.

Conceptually, reducing Nyquist rate can shorten the time of acquiring data. Non-

Cartesian subsampling, such as radial sampling and spiral sampling, is one of this way,

which directly uses interpolation or iterative method for image reconstruction[87, 88].

Another well-established technique for fast acquiring data is parallel imaging [17, 18, 20,

89]. It uses phased array receiver system to increase the frequency information and boots

the image quality [7]. Compressed sensing (CS), on the other hand, provides a solid theory

to reconstruct signals from fewer measurements, and therefore, it is of great interests in

MRI applications [32, 69, 90]. The idea of combining CS with array receiver system has

emerged because it can maximize the benefits of accelerating the data acquisition and/or

improving reconstruction quality[54, 55, 71]. Liang et al. considered the combination as a

two level reconstructions (CS-SENSE), and used CS reconstruction for random sampling

followed by a SENSE reconstruction for uniform sampling [58]. In [65], a method of

74

autocalibrating parallel imaging (PI) was integrated into a nonlinear reconstruction of CS,

well-known as l1-SPIRiT. The implementation of 3D pseudorandom gradient echo

sequence incorporating with l1-SPIRiT has been proved that can highly speed up and/or

improve image reconstructions compare to solely PI [64]. Otazo et al. presented a

combination of k-t sparse with SENSE for first-pass cardiac perfusion [91]. She et al.

proposed a novel iterative reconstruction which exploits the sparsity of both coil

sensitivity and MR image in some sparse domains [62]. Those methods integrating CS

into phased array receiver system require nonlinear regularization or l1 minimization for

image reconstructions. However, iterative reconstructions of CS MRI can be time-

consuming, especially for 3D data and large array systems.

For the past few years, multicore processors have been used for accelerating image

reconstructions in MRI, especially the applications and implementation in graphics

processing units (GPUs). Borghi et al. solved and compared the l1 minimization of CS

reconstruction with different multicore platforms [75]. UIUC group has pioneered in the

development of massively parallel computing on several advanced MRI reconstructions,

such as speeding up a conjugate gradient for regularization problems, optimizing gridding

algorithm and non-uniform Fourier transform for non-Cartesian sampling [92-94].

Sørensen et al. used GPU to accelerate gridding method followed by de-apodization for

radial SENSE [95, 96]. Kim et al compared the implementation of SENSE-type

regularization method on different platforms of multicore processors [97, 98]. Murphy et

al. presented an implementation of l1-SPIRiT, which requires dense lines in the center of

k-space for auto-calibration signal (ACS), comparing the parallelization among multiple

75

CPUs and GPUs [66, 99]. In [100], based on gridding and de-apodization method, l1

minimization for CS reconstruction of 3D radial sampled data is accelerated via GPU.

Multicore CPU/GPU is used for accelerating the computations of patch-based directional

wavelet or tight wavelet frame, which can improve the edge reconstruction in CS MRI

[101, 102]. Comparing to the different image size of datasets, GPU speeds up the

computations of CS MRI reconstructions using the split Bregman algorithm or the

projection onto convex sets according to its requirements of GPU memory[103, 104]. GPU

also speeds up the high-order singular decomposition method, which is used in the CS

reconstructions of dynamic MRI [105]. In [106], GPU speeds up the computations of k-

singular value decomposition and orthogonal matching pursuit, which are used for

dictionary learning and training the sparse representations in CS MRI reconstructions.

These previous work has shown powerful parallel computations of multicore processors

and explored the speedup ability in different algorithms of reconstructing MRI images,

which are computationally intensive with a large dataset. Most of them can achieve sub-

minutes runtime for a wide variety of MRI reconstructions.

In our previous work [85], multi-core Central Processing Unit (CPU) was used to

reconstruct multi-channel array data. Channel-by-channel CS reconstructions were

pipelined in 4 cores and later combined by the sum-of-squares method. However, due to

the limited number of cores, it still requires more than a minute to reconstruct a typical 2D

image and only a moderate speedup factor (1.6-2.0) is possible. The runtime for higher

dimensional multichannel MRI reconstruction is even longer. In this work, we used the

same reconstruction flow. Instead of using nonlinear conjugate gradient method for l1

76

minimization, an alternating direction algorithm is adopted, which is perfectly suitable for

this reconstruction flow. All CS reconstructions can be completed in the GPU

simultaneously. With proper data rearrangement in the memory, the element-wise

operations are highly parallel processed by the streaming processors. Comparing to the

above methods using GPU, our method requires no additional lines for ACS or the

estimation of coil sensitivities from low-resolution images, whose accuracy usually affects

the performance. Unlike gridding method, there are no approximation error in the iterative

reconstructions. In addition, as the number of channel increases, it can provide an

asymptotically optimal signal to noise ratio (SNR) because of the sum-of-square method

[12]. The performance is compared with the runtime using CPU and the usage of GPU

device memory is also analyzed in terms of the speedup ability. The content of this chapter

is based on preliminary work presented in the conference abstract [107].

Methods

As CS is applied in MRI, fast scan time via subsampling is achieved by exploiting the

sparsity of the signals. For large-scale data, the gain in shortening acquisition time may

exchange with more reconstruction time without considering parallel computing. Taking

three-dimensional (3D) k-space data with multiple channels, for instance, it practically

requires up to several minutes for recovering 4D data with the conventional architecture

of central processing unit (CPU). Using massively parallel processing, instead, the

reconstruction time can be shortened in a clinical runtime.

77

The basic idea of the proposed parallel CS reconstruction is shown in Figure 5.1,

which is based on a channel-by-channel CS reconstructions followed by a sum-of-square

method (SOS). The best feature of the proposed method is that all channel images are

decoupled and can be processed simultaneously. Especially, when the same acquisition

method, e.g. Cartesian, a stack of spiral or a stack of radial, is applied on x-y slices for

each z position, the reconstructions over each channel are regarded as multiple

independent 2-D reconstructions.

(a)

(b)

Figure 5.1 Work flow of (a) conventional sequential reconstruction and (b)

parallel reconstruction with a GPU.

78

Figure 5.1(a) shows a workflow with the conventional reconstruction running on

CPU without parallelization. Here, data from individual channels are processed

sequentially and combined with SOS or Cartesian SENSE algorithm. Note that here the

CS reconstruction is performed on individual channel data. Figure 5.1(b) shows the

parallel CS reconstruction with GPU. As shown, datasets from all channels are transferred

to the GPU memory before the execution of parallel CS solvers. This scheme allows

massively parallel processing of all channels and slices.

Reconstruction Algorithm

In an MRI multiple receiver system, the k-space channel data, 𝐯𝑖 ∈ 𝑅𝑀, is received from

a decoupled linear system, which can be formulated as

𝐯𝑖 = 𝑆𝐹𝐮𝑖 = Φ𝐮𝑖

Let Φ represent the combination of the subsampling operator S and the Fourier transform

𝐹, 𝐯𝑖 be the randomly-acquired k-space data, 𝐮𝑖 ∈ 𝑅𝑁 be the unknown image of the 𝑖𝑡ℎ

channel to be reconstructed, and 𝑐 be the total channel number. According to CS theory,

the channel image can be recovered by solving the following convex optimization problem:

min𝑇𝑉(𝐮𝑖)

𝑠. 𝑡. ‖Φ𝐮𝑖 − 𝐯𝑖‖ < 𝜖

(5. 1)

TV represents the total variation and is defined as ∑ ‖𝐷𝑗𝐮𝑖‖2𝑗 , where the summation of the

index j covers all pixels, ranging from 1 to N, and 𝐷𝑗𝐮𝑖 represents the vertical and

horizontal finite differences of 𝐮𝑖 at pixel j. Therefore, the objective function in eq.(5. 1)

can be regarded as a sparsifying transform, and the minimization exploits the sparsity of

79

gradient coefficients among the 𝑖𝑡ℎ channel image. The second line in eq.(5. 1) defines a

linear constraint for data consistency. The above linearly constrained problem can be

formulated as minimizing a Lagrangian function. However, the TV term is not

differentiable. Auxiliary variables, 𝐩𝑖 = [(𝐩𝑖)1 … (𝐩𝑖)𝑁] can be added to eq.(5. 1) to

make the Eq.(5. 1) become an equality constraint.

min
𝐮𝑖,𝐩𝒊

𝜇

2
‖Φ𝐮𝑖 − 𝐯𝑖‖2

2 + ∑‖(𝐩𝑖)𝑗‖2
𝑗

𝑠. 𝑡. (𝐩𝑖)𝑗 = 𝐷𝑗𝐮𝑖

(5. 2)

Let (𝐩𝑖)𝑗 ≜ 𝐷𝑗𝐮𝑖 = [
𝐷𝑗

(1)
𝐮𝑖

𝐷𝑗
(2)

𝐮𝑖

]is a 2-by-1 vector, and D is defined as (𝐷(1); 𝐷(2)), which is

a 2N-by-N matrix, representing the horizontal and vertical finite difference operator at

pixel j of the 𝑖𝑡ℎ channel. For example, assume that 𝐮𝑖 represents the image with a size of

4×4, and its vector size is 16-by-1. As shown in Figure 5.2, the finite difference operator

at pixel 6 (j=6), 𝐷6 = (𝐷6
(1); 𝐷6

(2)) is a 2-by-N matrix.

Figure 5.2 Example of the finite difference operator for calculating the horizontal

and vertical differences.

80

According to [108], the augmented Lagrangian function is applied to each 𝑖

channel and the linear equality constraint is resolved by adding a penalty term to the

objective function. Thus, eq. (5. 2) becomes an unconstrained problem,

min
𝐮𝑖,𝐩𝑖

𝜇

2
‖Φ𝐮𝑖 − 𝐯𝑖‖2

2 + ∑‖(𝐩𝑖)𝑗‖2
𝑗

+ 𝝀𝑖
𝑇(𝐩𝑖 − 𝐷𝐮𝑖)

+
𝛽

2
‖𝐩𝑖 − 𝐷𝐮𝑖‖2

2

(5. 3)

Here, the variable 𝝀𝑖 is an estimate of the Lagrange multiplier. Instead of solving the

augmented Lagrangian function, this 𝑙1-𝑙2convex function can be regarded as minimizing

two sub-problems based on the alternating direction method of multipliers (ADMM):

𝑙1 sub-problem with respect to 𝐩𝑖 and 𝑙2 sub-problem with respect to 𝐮𝑖 . For 𝑙1 sub-

problem, 𝐮𝑖 and 𝝀𝑖 are fixed, and the iterative shrinkage/thresholding method is

performed for solving sparse coefficients. i.e. finite difference when total variation is used

as a sparsifying transform,

 (𝐩𝑖)𝑗 = shrink(𝐷𝑗𝐮𝑖 +
(𝝀𝑖)𝑗

𝛽
,
1

𝛽
) (5. 4)

which is known as 2D shrinkage function according to the definition of TV.

 shrink (𝐰,
1

𝛽
) =

𝐰

‖𝐰‖2
∙ max (‖𝐰‖2 −

1

𝛽
, 0) (5. 5)

For 𝑙2 sub-problem, 𝐩𝑖 and 𝝀𝑖 are fixed, and the original eq.(5. 3) becomes a least-squares

problem.

81

min
𝐮𝑖

𝜇

2
‖Φ𝐮𝑖 − 𝐯𝑖‖2

2 +𝝀𝑖
𝑇(𝐩𝑖 − 𝐷𝐮𝑖)

+
𝛽

2
‖𝐩𝑖 − 𝐷𝐮𝑖‖2

2

(5. 6)

By taking the derivative with respect to 𝐮𝑖, finding the minimum of eq.(5. 6) is equivalent

to solving the following normal equation

𝜇Φ𝑇(Φ𝐮𝑖 − 𝐯𝑖) + (𝝀𝑖
𝑇𝐷)𝑇 + 𝛽𝐷𝑇(𝐩𝑖 − 𝐷𝐮𝑖) = 0

 (𝐷𝑇𝐷 +
𝜇

𝛽
Φ𝑇Φ)𝐮𝑖 = 𝐷𝑇 (𝐩𝑖 −

𝝀𝑖

𝛽
) +

𝜇

𝛽
Φ𝑇𝐯𝑖 (5. 7)

To solve eq.(5. 7) more efficiently, 𝐷T𝐷 is further diagonalized by the 2D discrete Fourier

Transform, F.

𝐹 (𝐷𝑇𝐷 +
𝜇

𝛽
Φ𝑇Φ)𝐹𝑇𝐹𝐮𝑖 = 𝐹𝐷𝑇 (𝐩𝑖 −

𝝀𝑖

𝛽
) +

𝜇

𝛽
𝐹Φ𝑇𝐯𝑖

 (𝐹𝐷T𝐷𝐹T +
𝜇

𝛽
S𝑇S) 𝐹𝐮𝑖 = 𝐹𝐷𝑇𝐩𝑖 +

𝜇

𝛽
S𝑇𝐯𝑖 (5. 8)

Where

 𝐹𝐷𝑇𝐷𝐹𝑇 = 𝐹[𝐷(1) 𝐷(2)] [𝐷
(1)

𝐷(2)
] 𝐹𝑇 (5. 9)

= 𝐹𝐷(1)𝑇𝐷(1)𝐹𝑇 + 𝐹𝐷(2)𝑇𝐷(2)𝐹𝑇

= 𝐹𝐷(1)𝑇(𝐹𝐷(1)𝑇)𝑇 + 𝐹𝐷(2)𝑇(𝐹𝐷(2)𝑇)𝑇

𝐹𝐷(1)𝑇 and 𝐹𝐷(2)𝑇 represent the vertical and horizontal finite difference operator in

frequency domain, so that the left-hand side of eq. (5. 8) becomes element-wise operation

for 𝐹𝐮𝑖. As a result, the iterative algorithm of solving the minimization problem of eq.(5.

1) for each i channel is shown as follows:

82

1. Setting the iteration count, 𝑘 = 0, and the initial multipliers, 𝜇 > 0, 𝛽 > 0, 𝛾 ∈

(0,
√5+1

2
), 𝝀𝑖 = 𝝀𝑖

0, 𝐮𝑖 = 𝐮𝑖
0.

2. Solving the 𝑙1 subproblem by shrinkage method: (𝐩𝑖)𝑗
𝑘+1 = shrink(𝐷𝑗𝐮𝑖

𝑘 +

(𝝀𝑖)𝑗
𝑘

𝛽
,
1

𝛽
)

3. Solving the 𝑙2 subproblem by solving eq. (5. 8): calculating 𝐮𝑖
𝑘+1 , where

(𝐩𝑖, 𝝀𝑖) = (𝐩𝑖
𝑘+1, 𝝀𝑖

𝑘).

4. Update multipliers of ADM, 𝝀𝑖
𝑘+1 = 𝝀𝑖

𝑘 − 𝛾𝛽(𝐩𝑖
𝑘+1 − 𝐷𝐮𝑖

𝑘+1)

5. If 𝑘 < 𝑘max and
‖𝐮𝑘+1−𝐮𝑘‖

2

‖𝐮𝑘‖
2

< tolerance, increase k and go to step 2.

Finally, all the reconstructed images, 𝐮𝑖 , are combined by the SOS method, which

computes the root-mean-square average of the channel images.

 𝐮 = √∑|𝐮𝑖
(𝑘𝑚𝑎𝑥)|2

𝑖

 (5. 10)

This iterative algorithm converges rapidly and performs few operations for each iteration.

GPU Implementation

The above algorithm is implemented on a graphics processing unit (GPU) platform. Since

power dissipation of cooling system limits the development of sequential microprocessors,

further acceleration of computations via increasing clock frequency was impractical. The

current trend of developing microprocessors is toward multi-core and many core models.

Although the move towards massively parallel computing with multi-core processors

83

increases the computational power, it also poses a challenge of speeding up applications

to software developers. Particularly, an efficient implementation of CS MRI

reconstructions with the multicore systems, such as GPU, requires the specific design of

parallelization and optimization.

Figure 5.3 shows the parallel reconstruction method designed with GPU. The blue

blocks illustrate the kernel functions (SOS is implemented on CPU). There are eight kernel

functions programmed on the GPU. There are eight kernel functions programmed on GPU.

For 𝑙1sub-problem, the kernel functions include

1) Make_data_w_b: making data with boundary and separating the real and

imaginary parts of the complex dataset.

Figure 5.3 Data flow diagram of the parallel reconstructions using GPU. Gray

thick arrows indicate data transferring between devices, gray thin arrows indicate

save/load from global memory, and green arrows indicate data flow direction of

iterations.

84

2) Kernel_FD & Kernel_update_ADMM: calculating finite difference and

updating ADM multipliers.

3) Kernel_shrinkage: element-wise operator for calculating sparse coefficients.

4) Kernel_IFD: calculating inverse finite difference.

For 𝑙1sub-problem, the kernel functions include

1) Make_data_wt_b: making data without boundary and rearranging the complex

data to be interleaved.

2) Para_2D_fft: launching parallel 2D FFT to calculate the first term in the right-

hand side of Eq.(5. 8).

3) Cal_ 𝐹𝐮𝑖: calculating 𝐹𝐮𝑖 in the left-hand side of Eq.(5. 8).

4) Para_2D_ifft: launching parallel 2D IFFT to calculate the channel image 𝐮𝑖.

Because finite difference matrices are diagonalized by discrete Fourier transform, they are

actually circulant operators according to eq.(5. 9). As a result, one-pixel periodic boundary

conditions are required for data, 𝐮𝑖, so that the stencil computation can be applied to each

pixel for calculating finite difference (FD) and inverse finite difference (IFD). There are

two data types defined in the device global memory. One is float/double for the data flow

in Kernel_FD & Kernel_update_ADMM, Kernel_shringkage and Kernel_IFD, where the

real and imaginary parts of complex datasets are declared separately in the device memory;

the other one is cufftComplex/ cufftDoubleComplex for the data flow in Para_2D_fft,

Cal_Fui and Para_2D_ifft, where the complex datasets are declared in an interleaved form

in the device memory. Therefore, Make_data_w_b is designed for making data, 𝐮𝑖, with

85

boundary and separating the real and imaginary parts of 𝐮𝑖. The advantage is that real and

imaginary parts of the datasets share same instructions as calculating FD and IFD, so that

the number of threads are doubled. On the other hand, in order to launch multiple parallel

FFTs and IFFTs by utilizing CUDA FFT library, it is necessary to prepare complex data

in an interleave format. Therefore, Make_data_wt_b is designed for making data without

boundary and rearranging the complex data to be interleaved.

Red arrows indicate the data access of kernel functions, each representing one

variable of 3D dataset saved or loaded from the device global memory. The green thick

arrows indicate the data flow direction of iterative CS reconstruction. All acquired data,

𝐯, are transferred from CPU memory to GPU global memory at the beginning, indicated

by a thick gray arrow. After all 3D channel images, 𝐮, are iteratively reconstructed by

GPU CS solver, they are transferred from the GPU global memory to the CPU memory.

This prevents frequent data access between devices from slowing down GPU. Note that

all acquired data, 𝐯𝑖, are transferred from CPU memory to GPU global memory at first.

Till GPU CS solver iteratively reconstructs all the channel images, 𝐮𝑖 , they can be

transferred once from GPU global memory to CPU memory at last. That is because

frequently access data between device and host memory will stop GPU from responding

and trigger the OS to recover the device. The gray thin arrows between GPU memory and

kernel functions represent the number of read and write for calculating the output of each

pixel. 3D multichannel MRI datasets are randomly undersampled according to the central-

weighted sampling along two phase encoding directions, and 1D IFFT can be applied

along frequency encoding direction first. Therefore, multiple channels and slices of a high

86

dimensional MRI data are highly parallelized, and operations of CS reconstructions can

be simultaneously processed by SMX.

In addition, Kernel_FD & Kernel_update_ADMM are actually combined together.

The flow chart of GPU kernel codes for Kernel_FD & Kernel_update_ADMM are shown

in Figure 5.4 and Figure 5.5. While Figure 5.4 shows the flowchart of kernel function

without using shared memory, Figure 5.5(a) presents the kernel function using shared

memory. The GPU kernel codes of Figure 5.4 deals with changing thread indices to a form

of column-row indices. Then, if indicating correct memory address, the thread can

compute FD and update ADM multipliers. On the other hand, a common strategy, known

as tiling, is required to partition the data into tile blocks when using the shared memory.

The concept of tiling is illustrated in Figure 5.5(b). Data 𝐮 is originally partitioned

according to the size of thread blocks. Normally, the size of tiles indicated as orange blocks

in Figure 5.5(b) is set according to the size of thread block, and each tile fits into the shared

memory. In this paper, BLOCK_SIZE represents the size of thread block. If the

BLOCK_SIZE is set to 4, the TILE_WIDTH will be 5, which is equal to BLOCK_SIZE+1,

due to the requirement for the value of right and down pixels in calculating FD. The size

of array 𝑠𝐮 declared in shared memory is set to match the tile size. After the data of tile

blocks are copied from global memory to the shared memory, threads indicated as blue

arrows can compute FD and updates the ADM multipliers. The settings for using tile

blocks and the shared memory are emphasized with gray color in Figure 5.5(a). Because

almost all elements of 𝐮 are accessed three times, this strategy can reduce the traffic of

accessing GPU global memory nearly by one-third. The function call, __syncthreads(), is

87

a barrier to avoid race condition and make sure that all data is loaded into the shared

memory ready for accessing. Threads in the same block will wait at the calling location

until each one reaches where the barrier locates.

Figure 5.4 Flowchart of Kernel_FD & Kernel_updata_ADMM without using

shared memory.

88

(a)

Figure 5.5 (a) Flowchart of Kernel_FD & Kernel_updata_ADMM using shared

memory. (b) Illustration of thread blocks and the tile block.

89

Another kernel function, Kernel_IFD, can also take advantage of using device

shared memory. There are five methods shown in Figure 5.6 to Figure 5.10. Figure 5.6

presents the GPU codes without using shared memory. In the function of Kernel_IFD,

there are four arrays, 𝐩(1) , 𝛌(1) , 𝐩(2) , 𝛌(2) representing the horizontal and vertical

FD(sparse coefficients) and the corresponding multipliers. The thread indices are changed

to a form of column-row indexing. Then, if the addresses classified by ‘col’ and ‘row’ are

within the data boundary, threads compute the value of 𝐷T (𝐩𝑖 −
𝝀𝑖

𝛽
) in eq. (5. 8) if the

addresses indicated by ‘col’ and ‘row’ are within the data boundary. Note that The

parameter 𝛽 has been preprocessed on 𝐩𝑖 or 𝝀𝑖, so that the division can be replaced by the

multiplication and allocated after the operation of FD. In Figure 5.6 using the shared

(b)

Figure 5.5 Continued.

90

memory, four arrays, s𝐩(1) , s𝛌(1) , s𝐩(2) , and s𝛌(2) refer to 𝐩 and 𝝀 in shared memory.

Because each elements of vertical and horizontal arrays is read twice, the total number of

accesses to the global memory can be reduced nearly by half. One concern is that the size

of array in use could exceed the capacity of the shared memory with the memory size

limitation. This could lead to the reduction of the maximum number of thread blocks being

processed in each SMX and therefore deteriorate the performance. It can be improved by

narrowing down the sizes of thread and tile blocks or using shared memory more

efficiently.

Figure 5.6 Flowchart of GPU codes for Kernel_IFD without using shared

memory.

91

(a)

Figure 5.7 (a) Method 1 – Flowchart for Kernel_IFD using 4 arrays in shared

memory. (b) Illustration of tiling concepts and the corresponding data.

92

The illustration in Figure 5.7(b) expresses the mappings of the tile block and thread

block to the global memory colored in orange and blue respectively. Threads of execution

are shifted to the right and down by setting tx=threadIdx.x+1 and ty=threadIdx.y+1.

Therefore, two more passes should be added for assigning data to the boundary of 𝑠𝐩(2),

𝑠𝛌(2), 𝑠𝐩(1),or 𝑠𝛌(1) when ‘tx’ or ‘ty’ is equal to 1. Because the index, ‘pos’, is added by

one column and row, the corresponding position in global memory is shifted to the right

and down by one. Thus, it should avoid to accessing the memory locations, which will

potentially exceed the physical range of the global memory. ‘Col’ and ‘row’ represent the

indices of shifted thread block, setting the conditions of ‘col<w’ and ‘row<h’.

(b)

Figure 5.7 Continued.

93

Instead of declaring 4 arrays in the shared memory, method 2 shown in Figure 5.8

calculates (𝐩𝑖 −
𝝀𝑖

𝛽
) initially, and saves the horizontal and vertical difference to two arrays

in the shared memory, 𝑠𝐝(1) and 𝑠𝐝(2), so that the numbers of arrays declared in the shared

Figure 5.8 Method 2 – Flowchart for Kernel_IFD using 2 arrays in shared

memory.

94

memory can be reduced from 4 to 2. The method without using shared memory, using

shared memory with Method 1, and with Method 2 are compared to see how the number

of block arrays declared in shared memory effects the performance. Besides, the effect of

reducing bandwidth for loading data from device global memory will be revealed

according to the comparisons among these methods.

Figure 5.9 shows the Method 3 using 2 arrays in the shared memory. Basically, the

kernel function in method 1 is split into 2 functions in order to reduce two blocks array of

using shared memory. Because horizontal and vertical inverse finite difference can be

calculated separately, the original function is split into two Kernel_IFDs, one is for

horizontal IFD and the other is for vertical IFD. In each kernel function, only two block

arrays are declared in the device shared memory. Method 4 shown in Figure 5.10

illustrates the implementation of two split functions. Similar to method 2, calculating

(𝐩𝑖 −
𝝀𝑖

𝛽
) preliminarily allows using only one array block in the shared memory. One can

compare method 1 to 4 to see how the number of block arrays declared in shared memory

effects the performance. Besides, the effect of reducing bandwidth for loading data from

device global memory will be revealed in comparing these methods.

95

(a)

Figure 5.9 Method 3 - GPU codes of two Kernel functions using 2 arrays in the

shared memory for calculating (a) Vertical IFD (b) Horizontal IFD.

96

(b)

Figure 5.9 Continued.

97

(a)

Figure 5.10 Method 4 - GPU codes of two kernel functions using one array in

the shared memory for calculating (a) Vertical IFD(b) Horizontal IFD.

98

Data Preparation and Evaluation

To evaluate the performance, both simulated phantom and in-vivo data were used. First, a

simulated phantom, which has a volume size of 128×128×16, 8 channel dataset, is used to

profile kernel functions of CPU version compared with GPU single precision and double

precision. In addition, to test the efficiency of different image size of datasets and the

corresponding speedup factors, four-channel datasets with a volume size of 256×256×32,

(b)

Figure 5.10 Continued.

99

240×240×32, 128×128×16, 64×64×16, 32×32×4 were synthesized. Three cases are

compared: CPU alone, GPU with double precision floating point, and GPU with single

precision floating point. Moreover, the four-channel, 256×256×32 dataset is used to test

the relation between the iteration number, acceleration and image quality. To evaluate the

performance, three measurements are used: (1) Speedup factor, defined as (total runtime

on CPU alone)/(total runtime of the proposed method) (2) Normalized mean square errors

(NMSEs) =
‖𝐮𝑘−𝐮𝑠𝑜𝑠‖2

‖𝐮𝑠𝑜𝑠‖2
 (3) Approximation error =

‖𝐮𝑐𝑝𝑢−𝐮𝑔𝑝𝑢‖
2

‖𝐮𝑐𝑝𝑢‖
2

. The entire simulated

phantom was down-sampled by random central weighted method along x and y directions.

The amount of sampled data was about 16% of a fully-sampled data in all cases. In the

last phantom simulation, 256×256×32 dataset is again used to test the image quality using

the proposed method compared with the zeros-filled method on various sampling rates.

 Moreover, to test the efficiency of reconstructing an in-vivo data, a 3D human

knee image acquired with 192×384×34 data matrix from a 4-channel knee coil and a

healthy volunteer. The number of iterations is set to 100 and the data was down-sampled

by 33%, 25%, and 20% on phase encoding directions. The execution time solely includes

the time spending on CS solver, which is running on GPU, compared with the Matlab

program running on CPU alone. As for the performance comparisons of utilizing hardware

resources, the human knee in-vivo data is used with a 33% sampling rate and the maximum

iteration is set to 10. There are two GPU kernel functions, which can be potentially

accelerated by utilizing the device shared memory. Two methods for the block of

Kernel_FD & Kernel_update_ADMM in Figure 5.4 and Figure 5.5 were compared to see

the performance of using the device shared memory. Finally, five methods with/without

100

using shared memory for Kernel_IFD shown in Figure 5.6 to Figure 5.10 were also

compared for analyzing the performance of reducing arrays in shared memory and the

bandwidth of loading data from the device global memory.

With our design, the program ran on a platform equipped with an Intel Quadcore

i7-3770 3.6 GHz CPU and 32G DDR3 memory. This main work used NVIDIA Geforce

GTX 650Ti with a 2G DDR5 memory for parallel CS solver. The Geforce GTX 650Ti has

NVIDIA the compute capability 3.0 based on the Kepler GK104 architecture, which

consists of 4 streaming multiprocessors (SMX) and each SMX has 192 CUDA cores, total

768 CUDA cores, running at 928MHz. Microsoft window 7, 64-bit operating system,

CUDA toolkit version 5.0 are installed. In addition, Matlab version R2012a is installed

for dealing with the data loading and the parameter settings of the user interface. The

programs for CS solvers are compiled into mex files. Thus, Matlab can launch the

reconstruction functions directly.

Results

Table 5.1 shows the kernel profiles under CPU and GPU with double-precision, and GPU

with single precision. The runtime was recorded in milliseconds. The number of iteration,

𝑘𝑚𝑎𝑥, was set to 375, which was the largest number of iteration as reconstructing images

channel by channel in Figure 5.1(a). Make_data_w_b and Make_data_wt_b were only

designed for data arrangement in GPU and they just take small part of the total runtime.

The last column describes the speedup factor compared with CPU and GPU single

precision. GPU gain significant improvements on all kernel functions. Especially for those

101

of element-wise operations, such as Kernel_shrinkage and Kernel_IFD, GPU provides

larger speed-up factors and has shown a great improvement. Generally, it takes 150

seconds using CPU, 9 seconds using GPU double precision and 4 seconds using GPU

single precision.

Figure 5.11(a) shows the runtime comparison between CPU and GPU double

precision. GPU provides significant reductions in the runtime. The overhead of preparing

data for GPU, such as Initialization, Output & free Mem, Make_data_w_b and

Make_data_wt_b, only took a small portion of runtime compared with CPU runtime.

Figure 5.11(b) shows the runtime comparison between GPU double precision and single

Table 5.1 Runtimes in milliseconds of kernel functions running on GPU,

compared with those running on CPU (iteration number, 𝒌𝒎𝒂𝒙=375).

 CPU GPU(double) GPU(single) Speed up

Kernel_FD &

Kernel_Update_ADM

38766 2243 1342 28.9

Kernel_shrinkage 34992 1142 566 61.8

Kernel_IFD 41022 1159 808 50.8

Make_data_wt_b x 467 228 x

Para_2D_fft &

Para_2D_ifft

20323 2960 730 27.8

Cal_Fui 12127 627 306 38.1

Makedata_w_b x 552 318 x

Total 149268 9215 4341 34.4

102

precision. For all kernel functions, it reduced over half of runtime by using single precision.

This indicates that the bandwidth of global memory access dominates the runtime.

Figure 5.12(a) illustrates the runtime percentage of kernel functions running on

CPU, GPU double precision and GPU single precision. With CPU as shown, Kernel_IDF

took the largest allocation; Kernel_shrinkage was the second, and then Kernel_FD &

Kernel_update_ADMM” was the third. In CPU codes, these function used for-loop to

calculate element-wise operations, which can be highly accelerated by the parallel

computing. The second pie chart in Figure 5.12(b) shows the kernel runtimes in percentage

using GPU double precision. Parallel 2D FFTs and IFFTs took the largest percentage

instead. With GPU double precision, the runtimes on these functions of element-wise

operations were significantly reduced because data were highly parallelized and same

operations can be simultaneously by GPU cores. With GPU single precision in Figure

5.12(c), Kernel_FD & Kernel_update_ADM took the largest portion. Because launching

parallel 2D FFTs and IFFTs consumed memory bandwidth, they gained more

improvements when the data were reduced to single precision.

103

(a)

(b)

Figure 5.11 Runtime comparisons of kernel functions between (a) CPU vs. GPU

double precision (b) GPU double precision vs GPU single precision.

104

Figure 5.12 Pie charts showing the runtimes of kernel functions in percentage

when CPU, GPU double precision, and GPU single precision were used.

105

In the next evaluation, Table 5.2 compares the efficiency of the proposed method

with CPU implementation for variable dataset size. The stop criteria of the iteration for a

4-channel data with a volume size of 256×256×32 is set to tolerance< 5.0 × 10−4, where

𝑘𝑚𝑎𝑥 is about 50. The same iteration number is applied to all datasets for comparisons.

For the first dataset, the runtime on GPU was only 2.3 seconds and 28 times faster than

single CPU. Intuitively, for the small size dataset, 32×32×4, the overhead of preparing

data for GPU, such as Initialization, Output & free Mem, Make_data_w_b and

Make_data_wt_b, become more significant. Therefore, the speedup factor is less than 1.

For larger datasets, the speedup factor increases because the benefits of data parallelism

become more dominant. Note that the speedup factor for the test dataset, 240×240×32×4

(channels), is around 22, which is a little lower than 128×128×16×4(channels) and

256×256×32×4(channels). This is because the dimensional array of threads is set to 16×16.

Therefore, the memory access for 240×240×32 dataset is not as efficient as these for the

Table 5.2 Runtime in milliseconds and speedup factor for a 4-channel dataset

with different volume sizes(iteration number, 𝒌𝒎𝒂𝒙=50).

[Nx Ny Nz] CPU (msec.) GPU (msec.) Speed up

256×256×32 67229 2385 28.5

240×240×32 60678 2746 22.1

128×128×16 8795 315 27.9

64×64×16 2497 222 11.2

32×32×4 139 144 0.9

106

other two datasets, where the size is multiples of 16. Figure 5.13 illustrates the relation

between image quality, reconstruction acceleration and iteration number. The image

quality in terms of NMSEs (× 10−2), which is used to compare the reconstruction error

with the reference image using SOS method. As shown, the speedup factor increases not

only with the size of data, but also with the iteration numbers. In these two experiments,

parallelization on GPU gain more improvements on large dataset and higher demand of

iterations. Table 5.3 shows the image quality of the reconstruction in terms of NMSEs

comparing various sampling rates. The image quality deteriorates when the sampling rate

goes down to 8.3%.

107

(a)

(b)

Figure 5.13 Comparisons of iteration number, image quality and reconstruction

acceleration: (a) NMSE (×10-2) as a function of iteration number; (b) speedup

factor as a function of iteration.

108

(a)

(b)

(c)

Figure 5.14 Image reconstruction of an in-vivo human knee dataset with (a) SOS

(b) zero-filled (c) the proposed method by 33% of original data. It took less than

1 second to reconstruct 34 slices of images with the proposed method.

109

(a)

(b)

(c)

Figure 5.15 Image reconstruction of an in-vivo human knee dataset with (a) SOS

(b) zero-filled (c) the proposed method by 25% of original data.

110

(a)

(b)

(c)

Figure 5.16 Image reconstruction of an in-vivo human knee dataset with (a) SOS

(b) zero-filled (c) the proposed method by 20% of original data.

111

Finally, the reconstructed images are presented in Figure 5.14 to Figure 5.16.

Figure (a) shows the reconstructions of the SOS method from fully sampled data. Figure

5.14(b) shows the reconstructions of the zero-filled method from 33% of the original

dataset, compared with the proposed method in Figure 5.14(c). Figure 5.15(b) and (c)

show the comparisons of the zero-filled method and the proposed method from 25% of

the original dataset. Figure 5.16(b) and (c) show the results from 20% of the original

dataset. The stop criteria for the iterations is set to tolerance< 3.5 × 10−5, where k is

about 100. In the last case, the CPU runtime is about 278 seconds while running on GPU

only requires 6.7 seconds, making 41 times faster than using CPU alone. The

approximation error between the reconstruction results of using CPU and GPU single

precision is less than 1.1×10-7. When 𝑘max = 10, the runtime on CPU is 19 seconds, and

the image quality degrades 1% in terms of
‖𝐮𝑐𝑝𝑢

100−𝐮𝑐𝑝𝑢
10‖

2

‖𝐮𝑐𝑝𝑢
100‖

2

. At this error, there is no image

artifacts in the reconstruction. Comparing to 0.95 second on GPU, the speed up factor is

about 20. Therefore, in this experiment, it can achieve sub-second reconstruction for a

practical 3D knee MRI acquisition.

Table 5.3 Comparisons of image quality in terms of NMSEs with various

sampling rates using simulated data (iteration number, 𝒌𝒎𝒂𝒙=50).

 25% 16.7% 12.5% 8.3%

Zero-filled 0.3 0.33 0.35 0.36

Proposed 0.3×10-2 0.49×10-2 0.72×10-2 2.1×10-2

112

Performance Considerations

In this section, the usages of the device shared memory, for two GPU kernels are compared.

In Geforce GTX 650Ti there is a 64KB configurable L1 and L2 cache for each SMX,

where the L1 cache is to cache temporary registers, and L2 cache (shared memory) is to

cache accesses from global memory.

Table 5.4 lists the runtime of Kernel_FD & Kernel_update_ADMM with and

without the device shared memory. The speed up factor is about 1.2. Since almost every

pixel are accessed by three times (except for the boundary pixels), the traffic of accessing

the global memory can be significantly reduced. With using shared memory, the execution

of each thread block accesses data from a tile block in the shared memory, which requires

an array size of 17×17×4(float) ≈ 1.13K bytes. In CUDA compute capability 3.0, the

maximum size of the configurable shared memory is 48K bytes, and the maximum number

of thread blocks is 16, which can be simultaneously processed in each SMX. Therefore, it

requires 1.13K×16 ≈ 18K bytes in total, which is below the capacity of the device shared

memory. In this case, the maximum number of thread blocks will not be changed, but the

traffic of accessing global memory can be reduced when using shared memory.

Table 5.4 Runtimes in milliseconds for Kernel_FD & Kernel_update_ADMM

with and without using the device shared memory(iteration number, 𝒌𝒎𝒂𝒙=10).

 Without shared With shared Speedup

Kernel_FD &

Kernel_update_ADM
198 164 1.2

113

Table 5.5 lists the runtime of Kernel_IFD without using shared memory and two

different methods using shared memory. Because each element of array variables is

accessed twice (except for the boundary), the traffic of accessing global memory could be

potentially reduced. In method 1, for the tile size of 17×17, the execution of each thread

block accesses four array data, which require 17×17×4(float)×4(arrays) ≈ 4.52K bytes in

the shared memory and allow only 10 thread blocks (48/4.52) in maximum being

processed concurrently. In this case, the maximum number of thread blocks will be

reduced from 16 to 10 in each SMX, which leads to a 3/8 reduction of thread block that

can reside in each SMX simultaneously. Conceptually, using the device shared memory

can increase the floating point operations per cycle, but the reduction of thread blocks in

SMX eliminates the parallelism, which may be the reason that there is no improvement

with the method 1 with the shared memory. Comparing to the method 2, the arrays in the

shared memory is reduced to two. Each thread block needs 17×17×4(float)×2(arrays) ≈

2.26K bytes, which reaches the maximum 16 thread blocks (48/2.26≈21). So the reduction

in the accesses of global memory contributes to 1.1 increases on the runtime.

In addition, the runtime increased when using method 3 and method 4 in Table 5.5.

Though the declaration of tile blocks is reduced from 4 to 2, the function is split into two

Table 5.5 Runtimes in milliseconds for Kernel_IFD with and without using the

device shared memory (iteration number, 𝒌𝒎𝒂𝒙=10).

 Without

shared

Method 1

(shared)

Method 2

(shared)

Method 3

(shared)

Method 4

(shared)

Speedup

Kernel_IFD 105 105 90 135 127 1.1

114

functions. One function deals with the horizontal IFD and the other deals with the vertical

IFD. The functions are called sequentially, so the number of operations that each thread

can process is significantly reduced, which leads to an increasing runtime. Comparing to

method 3, two arrays declared in the shared memory are reduced to one in method 4. The

usage of one or two arrays in the shared memory makes no difference to the maximum

number of thread block in SMX, the number of operations in the function is reduced,

which slightly shortens the runtime. However, when the memory is not a limiting factor

of parallelism, splitting functions is not a good strategy.

More hardware resources can be utilized for further improvements. For instance,

in the left-hand side of eq. (5. 8), 𝐷𝑇𝐷 is diagonalized by the 2D discrete Fourier

Transform, F. Therefore, horizontal and vertical finite difference operator become

element-wise operations, and can be saved as a table in the device memory, such as

constant memory or texture memory. This table will be accessed by the GPU kernel

function, Cal_Fui. However, the array table size varies according to different image sizes

of datasets, and there is only a 64KB constant memory for each SMX. Thus, it exceeds

the capacity of the constant memory for an image size of 256×256. Instead, texture

memory will be more suitable hardware resource to promote the runtime performance. In

our in-vivo MRI experiment, the GPU kernel, Cal_Fui, took about 39 millisecond, which

is not critical in the final performance. In this case, we will leave the usage of texture

memory in the future work.

In addition, to achieve a more aggressive sampling rate, the proposed

reconstruction method with GPU can directly fit CS-SENSE, where alias channel images

115

are independently reconstructed channel-by-channel based on CS, followed by a Cartesian

SENSE method. Because Cartesian SENSE is of pixel-wise operations, it can be highly

parallelized in GPU without increasing much computational complexity. Besides, in a

large array system, coil sensitivities are highly localized. We may assume that channel

images are sparser as the number of channel increases. In this case, we may achieve a

lower sampling rate and a better SNR in our proposed model. To proof this, more

experiments are required on lower sampling rates to test the sparsity of channel images in

a large MRI array system. These will be considered as our future work.

Discussion

This paper presented an efficient image reconstruction method of compressed sensing

MRI for parallel receive data using GPU. In this method, reconstructions of all channels

and slices can be parallelized on the GPU. The reconstruction is based on an efficient

alternating direction method of multiplier CS reconstruction for each channel. To balance

the bandwidth of accessing global memory and the number of parallel execution threads,

several methods to utilize the device shared memory were studied. Experiments and tests

with phantom and in-vivo MRI datasets demonstrated that GPU implementation can

accelerate image reconstruction by a speedup factor of 25-40. This capability makes it

possible to achieve sub-second 3D multi-slice CS reconstruction from array data. In

addition, judicial use of the shared memory can further accelerate the GPU

implementation of kernel functions by a speedup factor up to 2. The promising results of

the study confirm the benefits of GPU for CS-MRI reported in the early literature and

116

show potentials of enabling CS-MRI reconstructions in real time for future clinical

applications.

117

CHAPTER VI

CONCLUSIONS

Magnetic resonance imaging, providing superior soft-tissue contrast, high spatial

resolution and no exposure to ionizing radiation, is a versatile medical imaging technique.

However, the slow speed of data acquisition limits its clinical applications. Current up-to-

date MRI scanners are equipped with phased array receiver systems, which can speed up

the scan time and/or covers a wider area in each scan. As the phased array coils evolve,

the imaging approaches and reconstruction methods have been developed, such as well-

established parallel imaging. On the other hand, compressed sensing emerged as a

powerful theory in data acquisition during the past few years. As a result, it has drawn

great attentions in combining compressed sensing with phased array receiver system or

exploiting sparsity model in parallel imaging. Although applying CS in MRI acquisition

system offers a way to further reduce the number of acquired data, and therefore, shorten

the scan time, the cost is in exchanging of longer reconstruction time. CS requires 𝑙1

minimization, which can be solved by iterative numerical algorithms and is often

computationally intensive. Therefore, this dissertation mainly focuses on shortening the

image reconstructions of compressed sensing MRI with multichannel data using multicore

processors.

In chapter I and II, we introduce the background of MRI and the sparsity and

incoherence of CS when applied in MRI with multiple coils. A description of data

acquisition mechanism in MRI system is briefly presented in chapter I. With phased array

receiver system, well-developed parallel imaging methods, such as SENSE and

118

SPACERIP, are discussed for conventional accelerating data acquisition. The modern

theory of CS is described in chapter II. Certain frequently used algorithms for solving 𝑙1

minimization problems of CS recovering, such as iterative shrinkage thresholding and

alternating direction method of multipliers, are also presented in order to thoroughly

deploy recent research on CS MRI applications. Several CS MRI reconstruction methods

are briefly described including sparseSENSE, Self-feeding sparse SENSE, CS-SENSE

and 𝑙1 SPIR-iT. This gives a comprehension of current trends on CS MRI reconstructions,

which combine with parallel imaging and exploit the sparsity of multi-channel system.

From chapter III through V, we presented a straightforward reconstruction procedure for

applying CS in phased array receiver system. From randomly under-sampling channel

data, the proposed method independently reconstructs channel images by solving 𝑙1

minimization, and then combines all images via the sum-of-squire method, which provides

an asymptotically optimal SNR as the number of channel increases. The best feature of

this approach is that channel images are decoupled and can be reconstructed independently

and simultaneously. Therefore, it is possible for using multicore processors to accelerate

the runtime of image reconstructions. Since the computational complexity scales with the

number of channels, parallel computing is implemented to reduce an excessive long time

in signal recovery.

In chapter III, we used ubiquitous multi-core CPUs to reconstruct CS images

simultaneously. Channel data from different coils were automatically pipelined and

processed by different cores of CPU. The proposed reconstruction flow can benefit from

executing CS solvers in parallel with multiple cores of CPU, and therefore, the

119

reconstruction time can be significantly shortened via this sort of parallel computing. In

this work, the proposed reconstruction procedure was tested for multi-channel and single

slice 2D imaging. According to our experiment results, using 2 cores of CPU gave

maximum efficiency improvement per core with respect to the simulated 4-channel data;

while using 4 cores gave the fastest reconstruction. However, the efficiency was not

doubled as we changed the number of cores from 2 to 4. This is because all cores share

the same memory, whose bandwidth and the size are fixed. In addition, the proposed

procedure can also fit multi-slice 2D imaging where parallelization is implemented along

multiple slices instead of multiple channels. For more computationally intensive cases,

such as multi-slice multi-channel imaging or 3D imaging, the efficiency gained from the

parallelization will be even more beneficial. In all CS reconstructions studied in this

chapter, the overhead is only a small portion of the total runtime. Significant reductions

of computational time were achieved using a core 2 quad CPU, especially for higher

computation complexity of wavelet transforms using in the 𝑙1 minimization. In this work,

the parallelization was implemented with Matlab. However, implementing with C/C++,

where improvements will be complementary to the gains achieved by parallelization, can

further shorten the computational time. Other existing methods using GPU architecture

and more advanced synergetic integration of multi-core CPUs with GPUs can be

potentially used to further accelerate CS iterative algorithms for 2D or 3D multi-channel

data. These possibilities were explored in chapter V to fully realize the potential of parallel

computing for processing large-scale, multi-channel data in MRI.

120

In chapter IV, a new improved reconstruction method for CS MRI with multi-

channel data was presented. In this method, the image is reconstructed using the

reweighted l1 minimization algorithm in a channel-by-channel fashion. Since 𝑙1 norm is

an approximation of the sparsity measurements, using reweighted 𝑙1 norm will

theoretically give a closer solution to that of the 𝑙0 minimization. The simulated

experimental results show that the proposed method can provide an improved image

quality comparing to the results without reweighting. The proposed method can also be

applied to other CS methods where l1 minimization is used. However, the new algorithm

requires more iterations than the conventional l1 minimization algorithm. This might pose

a problem when immediate delivery of images is preferred. In such cases, using multi-

core processors such as graphics processing units (GPUs) can be applied to parallelize the

reconstructions and to shorten the reconstruction time.

Although iterative approaches of CS enable the possibility of high reduction factor

in MRI scanning and/or an improved image quality, long runtime still poses a barrier to

clinical applications. To solve this problem, we presented implementation strategies of CS

reconstructions using GPU in chapter IV, which generates results just in few seconds and

gain significant runtime improvements for 3D multi-channel data. In our proposed

method, channel data and the slices along frequency encode are highly parallelized.

Therefore, it substantially reduces reconstruction time by parallel computing with GPU.

Generally, for a simulated 4-channel data with a volume size of 256×256×32, the runtime

on GPU only requires 2.3 seconds. Comparing to 67 seconds on CPU, it achieves 28 faster

for parallel reconstructions. In all experiments, the speedup factors are around 22 to 28,

121

which can be higher depending on the number of iterations and the size of the dataset.

Moreover, with our method, it is needless to acquire more data for estimating coil

sensitivities. In addition, it doesn’t require gridding algorithm, which may cause some

approximation in reconstructions. In this paper, we present the image quality by

comparing with the other two traditional methods, recovering by zero-filled and SOS from

fully sampled data. Several approaches of using device shared memory are also analyzed

by comparing their runtime.

Future work will focus on increasing the reduction factor in MRI scanning since

acceleration rate is limited by the sparsity of MR images itself in a channel-by-channel CS

reconstruction. To achieve a more aggressive reduction factor, the proposed reconstruction

method using GPU can directly fit CS-SENSE, where channel images are independently

reconstructed channel-by-channel and its final image is reconstructed pixel by pixel using

Cartesian SENSE. In the second step of CS-SENSE, the operations for SENSE are

element-wise and can be highly parallelized in GPU, where the computation complexity

should fall in the same order of SOS. Therefore, the runtime may not increase too much

and these will leave as our future work.

122

REFERENCES

[1] Z.-P. Liang and P. C. Lauterbur, Principles of magnetic resonance imaging: a

signal processing perspective. New York: IEEE Press, 2000.

[2] L. Landini, V. Positano, and M. Santarelli, Advanced image processing in

magnetic resonance imaging. Boca Raton: CRC Press, 2005.

[3] N. B. Smith and A. Webb, Introduction to medical imaging: physics, engineering

and clinical applications. New York: Cambridge university press, 2010.

[4] J. S. Hyde, A. Jesmanowicz, T. M. Grist, W. Froncisz, and J. B. Kneeland,

"Quadrature detection surface coil," Magnetic Resonance in Medicine, vol. 4, pp.

179-184, 1987.

[5] J. F. Schenck, H. R. Hart, T. H. Foster, W. A. Edelstein, P. A. Bottomley, R. W.

Redington, et al., "Improved MR imaging of the orbit at 1.5 T with surface coils,"

American Journal of Neuroradiology, vol. 6, pp. 193-196, 1985.

[6] M. Hutchinson and U. Raff, "Fast MRI data acquisition using multiple detectors,"

Magnetic Resonance in Medicine, vol. 6, pp. 87-91, 1988.

[7] P. Roemer, W. Edelstein, C. Hayes, S. Souza, and O. Mueller, "The NMR phased

array," Magnetic Resonance in Medicine, vol. 16, pp. 192-225, 1990.

[8] C. E. Hayes, N. Hattes, and P. B. Roemer, "Volume imaging with MR phased

arrays," Magnetic Resonance in Medicine, vol. 18, pp. 309-319, 1991.

[9] M. A. Ohliger and D. K. Sodickson, "An introduction to coil array design for

parallel MRI," NMR in Biomedicine, vol. 19, pp. 300-315, 2006.

123

[10] J. Ra and C. Rim, "Fast imaging using subencoding data sets from multiple

detectors," Magnetic Resonance in Medicine, vol. 30, pp. 142-145, 1993.

[11] J. Carlson and T. Minemura, "Imaging time reduction through multiple receiver

coil data acquisition and image reconstruction," Magnetic Resonance in Medicine,

vol. 29, pp. 681-687, 1993.

[12] E. G. Larsson, D. Erdogmus, R. Yan, J. C. Principe, and J. R. Fitzsimmons, "SNR-

optimality of sum-of-squares reconstruction for phased-array magnetic resonance

imaging," Journal of Magnetic Resonance, vol. 163, pp. 121-123, 2003.

[13] M. Blaimer, F. Breuer, M. Mueller, R. M. Heidemann, M. A. Griswold, and P. M.

Jakob, "SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method,"

Topics in Magnetic Resonance Imaging, vol. 15, pp. 223-236, 2004.

[14] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, "SENSE:

sensitivity encoding for fast MRI," Magnetic Resonance in Medicine, vol. 42, pp.

952-962, 1999.

[15] W. E. Kyriakos, L. P. Panych, D. F. Kacher, C. F. Westin, S. M. Bao, R. V.

Mulkern, et al., "Sensitivity profiles from an array of coils for encoding and

reconstruction in parallel (SPACE RIP)," Magnetic Resonance in Medicine, vol.

44, pp. 301-8, Aug 2000.

[16] M. A. Griswold, P. M. Jakob, M. Nittka, J. W. Goldfarb, and A. Haase, "Partially

parallel imaging with localized sensitivities (PILS)," Magnetic Resonance in

Medicine, vol. 44, pp. 602-609, 2000.

124

[17] D. K. Sodickson and W. J. Manning, "Simultaneous acquisition of spatial

harmonics (SMASH): fast imaging with radiofrequency coil arrays," Magnetic

Resonance in Medicine, vol. 38, pp. 591-603, 1997.

[18] M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang, et

al., "Generalized autocalibrating partially parallel acquisitions (GRAPPA),"

Magnetic Resonance in Medicine, vol. 47, pp. 1202-1210, 2002.

[19] M. Weiger, K. P. Pruessmann, and P. Boesiger, "2D SENSE for faster 3D MRI,"

Magnetic Resonance Materials in Physics, Biology, and Medicine, vol. 14, pp. 10-

19, 2002.

[20] K. P. Pruessmann, M. Weiger, P. Börnert, and P. Boesiger, "Advances in

sensitivity encoding with arbitrary k‐space trajectories," Magnetic Resonance in

Medicine, vol. 46, pp. 638-651, 2001.

[21] L. Sha, H. Guo, and A. W. Song, "An improved gridding method for spiral MRI

using nonuniform fast Fourier transform," Journal of Magnetic Resonance, vol.

162, pp. 250-258, 2003.

[22] A. A. Samsonov, E. G. Kholmovski, D. L. Parker, and C. R. Johnson,

"POCSENSE: POCS‐based reconstruction for sensitivity encoded magnetic

resonance imaging," Magnetic Resonance in Medicine, vol. 52, pp. 1397-1406,

2004.

[23] F. H. Lin, K. K. Kwong, J. W. Belliveau, and L. L. Wald, "Parallel imaging

reconstruction using automatic regularization," Magnetic Resonance in Medicine,

vol. 51, pp. 559-567, 2004.

125

[24] B. Liu, K. King, M. Steckner, J. Xie, J. Sheng, and L. Ying, "Regularized

sensitivity encoding (SENSE) reconstruction using Bregman iterations," Magnetic

Resonance in Medicine, vol. 61, pp. 145-152, 2009.

[25] L. Ying and J. Sheng, "Joint image reconstruction and sensitivity estimation in

SENSE (JSENSE)," Magnetic Resonance in Medicine, vol. 57, pp. 1196-1202,

2007.

[26] R. Baraniuk, "Compressive sensing," IEEE Signal Processing Magazine, vol. 24,

pp. 118-121, 2007.

[27] E. J. Candè and M. B. Wakin, "An introduction to compressive sampling," IEEE

Signal Processing Magazine, vol. 25, pp. 21-30, 2008.

[28] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, "Compressed Sensing

MRI," IEEE Signal Processing Magazine, vol. 25, pp. 72-82, 2008.

[29] J. Romberg, "Imaging via compressive sampling," IEEE Signal Processing

Magazine, vol. 25, pp. 14-20, 2008.

[30] E. Candes and J. Romberg, "Sparsity and incoherence in compressive sampling,"

Inverse Problems, vol. 23, p. 969, 2007.

[31] Y. C. Eldar and G. Kutyniok, Compressed sensing: theory and applications. New

York: Cambridge University Press, 2012.

[32] M. Lustig, D. Donoho, and J. M. Pauly, "Sparse MRI: The application of

compressed sensing for rapid MR imaging," Magnetic Resonance in Medicine, vol.

58, pp. 1182-95, Dec 2007.

126

[33] M. Lustig, J. M. Santos, D. L. Donoho, and J. M. Pauly, "kt SPARSE: High frame

rate dynamic MRI exploiting spatio-temporal sparsity," in Proceedings of the 13th

Annual Meeting of ISMRM, Seattle, 2006.

[34] L. Feng, M. B. Srichai, R. P. Lim, A. Harrison, W. King, G. Adluru, et al., "Highly

accelerated real-time cardiac cine MRI using k–t SPARSE-SENSE," Magnetic

Resonance in Medicine, vol. 70, pp. 64-74, 2013.

[35] P. C. Hansen, Rank-deficient and discrete ill-posed problems: numerical aspects

of linear inversion. Philadelphia: Siam, 1998.

[36] D. H. Brooks, G. F. Ahmad, R. S. MacLeod, and G. M. Maratos, "Inverse

electrocardiography by simultaneous imposition of multiple constraints," IEEE

Transactions on Biomedical Engineering, vol. 46, pp. 3-18, 1999.

[37] J. Tropp and S. J. Wright, "Computational methods for sparse solution of linear

inverse problems," Proceedings of the IEEE, vol. 98, pp. 948-958, 2010.

[38] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok, "Introduction to

compressed sensing," in Compressed Sensing: Theory and Applications, ed New

York: Cambridge University Press, 2012, pp. 1-64.

[39] S. G. Mallat and Z. Zhang, "Matching pursuits with time-frequency dictionaries,"

IEEE Transactions on Signal Processing, vol. 41, pp. 3397-3415, 1993.

[40] S. Boyd and L. Vandenberghe, Convex optimization. New York: Cambridge

university press, 2004.

127

[41] S. R. Becker, E. J. Candès, and M. C. Grant, "Templates for convex cone problems

with applications to sparse signal recovery," Mathematical Programming

Computation, vol. 3, pp. 165-218, 2011.

[42] J. A. Tropp and A. C. Gilbert, "Signal Recovery From Random Measurements Via

Orthogonal Matching Pursuit," IEEE Transactions on Information Theory, vol. 53,

pp. 4655-4666, 2007.

[43] I. Daubechies, M. Defrise, and C. De Mol, "An iterative thresholding algorithm

for linear inverse problems with a sparsity constraint," Communications on Pure

and Applied Mathematics, vol. 57, pp. 1413-1457, 2004.

[44] A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for

linear inverse problems," SIAM journal on imaging sciences, vol. 2, pp. 183-202,

2009.

[45] J. M. Bioucas-Dias and M. A. Figueiredo, "A new TwIST: two-step iterative

shrinkage/thresholding algorithms for image restoration," IEEE Transactions on

Image Processing, vol. 16, pp. 2992-3004, 2007.

[46] E. Candes and J. Romberg. (2005). l1-magic: Recovery of sparse signals via

convex programming. Available: http://users.ece.gatech.edu/justin/l1magic/,

accessed in Feb. 2016.

[47] K. Koh, S.-J. Kim, and S. P. Boyd, "An Interior-Point Method for Large-Scale l1-

Regularized Logistic Regression," Journal of Machine Learning Research, vol. 8,

pp. 1519-1555, 2007.

http://users.ece.gatech.edu/justin/l1magic/

128

[48] J. Yang and Y. Zhang, "Alternating direction algorithms for l1-problems in

compressive sensing," SIAM Journal on Scientific Computing, vol. 33, pp. 250-

278, 2011.

[49] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization

and statistical learning via the alternating direction method of multipliers,"

Foundations and Trends® in Machine Learning, vol. 3, pp. 1-122, 2011.

[50] T. Goldstein and S. Osher, "The Split Bregman Method for L1-Regularized

Problems," SIAM Journal on Imaging Sciences, vol. 2, pp. 323-343, 2009.

[51] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, "Bregman iterative algorithms for

l1-minimization with applications to compressed sensing," SIAM Journal on

Imaging Sciences, vol. 1, pp. 143-168, 2008.

[52] E. Esser, "Applications of Lagrangian-based alternating direction methods and

connections to split Bregman," CAM report, vol. 9, p. 31, 2009.

[53] P. Tseng, "Alternating projection-proximal methods for convex programming and

variational inequalities," SIAM Journal on Optimization, vol. 7, pp. 951-965, 1997.

[54] B. Liu, F. Sebert, Y. Zou, and L. Ying, "SparseSENSE: randomly-sampled parallel

imaging using compressed sensing," in Proceedings of the 16th Annual Meeting

of ISMRM, Toronto, 2008.

[55] K. King, "Combining compressed sensing and parallel imaging," in Proceedings

of the 16th Annual Meeting of ISMRM, Toronto, 2008.

129

[56] B. Wu, R. Millane, R. Watts, and P. Bones, "Applying compressed sensing in

parallel MRI," in Proceedings of the 16th Annual Meeting of ISMRM, Toronto,

2008.

[57] J. X. Ji, Z. Chen, and L. Tao, "Compressed sensing parallel Magnetic Resonance

Imaging," in 2008 30th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society, Vancouver, 2008, pp. 1671-1674.

[58] D. Liang, B. Liu, J. Wang, and L. Ying, "Accelerating SENSE using compressed

sensing," Magnetic Resonance in Medicine, vol. 62, pp. 1574-1584, 2009.

[59] D. Liang, K. King, B. Liu, and L. Ying, "Accelerating SENSE using distributed

compressed sensing," in Proceedings of the 17th Annual Meeting of ISMRM,

Honolulu, 2009, p. 377.

[60] C. Prieto, B. Knowles, M. Usman, P. Batchelor, F. Odille, D. Atkinson, et al.,

"Autocalibrated approach for the combination of compressed sensing and

SENSE," in Proceedings of the 18th Annual Meeting of ISMRM, Stockholm, 2010,

p. 4862.

[61] F. Huang, Y. Chen, W. Yin, W. Lin, X. Ye, W. Guo, et al., "A rapid and robust

numerical algorithm for sensitivity encoding with sparsity constraints: Self-

feeding sparse SENSE," Magnetic Resonance in Medicine, vol. 64, pp. 1078-1088,

2010.

[62] H. She, R. R. Chen, D. Liang, E. V. Dibella, and L. Ying, "Sparse BLIP: BLind

Iterative Parallel imaging reconstruction using compressed sensing," Magnetic

Resonance in Medicine, vol. 71, pp. 645-660, Mar 18 2014.

130

[63] P. Beatty, K. King, L. Marinelli, C. Hardy, and M. Lustig, "Sequential application

of parallel imaging and compressed sensing," in Proceedings of the 17th Annual

Meeting of ISMRM, Honolulu, 2009, p. 2824.

[64] S. S. Vasanawala, M. T. Alley, B. A. Hargreaves, R. A. Barth, J. M. Pauly, and M.

Lustig, "Improved Pediatric MR Imaging with Compressed Sensing," Radiology,

vol. 256, pp. 607-616, 2010.

[65] M. Lustig, M. Alley, S. Vasanawala, D. Donoho, and J. Pauly, "L1 SPIR-iT:

autocalibrating parallel imaging compressed sensing," in Proceedings of the 17th

Annual Meeting of ISMRM, Honolulu, 2009, p. 379.

[66] S. Vasanawala, M. Murphy, M. Alley, P. Lai, K. Keutzer, J. M. Pauly, et al.,

"Practical parallel imaging compressed sensing MRI: Summary of two years of

experience in accelerating body MRI of pediatric patients," in 2011 IEEE

International Symposium on Biomedical Imaging, 2011, pp. 1039-1043.

[67] E. J. Candès, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal

reconstruction from highly incomplete frequency information," IEEE

Transactions on Information Theory, vol. 52, pp. 489-509, 2006.

[68] E. J. Candès, J. K. Romberg, and T. Tao, "Stable signal recovery from incomplete

and inaccurate measurements," Communications on Pure and Applied

Mathematics, vol. 59, pp. 1207-1223, 2006.

[69] D. Donoho, "Compressed sensing," IEEE Transactions on Information Theory,

vol. 52, pp. 1289-1306, 2006.

131

[70] S. Wright and L. Wald, "Theory and application of array coils in MR

spectroscopy," NMR in Biomedicine, vol. 10, pp. 394-410, 1997.

[71] C. Zhao, T. Lang, and J. Ji, "Compressed sensing parallel imaging," in Proceedings

of the 16th Annual Meeting of ISMRM, Toronto, 2008, p. 1478.

[72] L. Marinelli, C. Hardy, and D. Blezek, "MRI with accelerated multi-coil

compressed sensing," in Proceedings of the 16th Annual Meeting of ISMRM,

Toronto, 2008, p. 1484.

[73] D. Liang, B. Liu, and L. Ying, "Accelerating sensitivity encoding using

compressed sensing," in 2008 30th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, Vancouver, 2008, pp. 1667-1670.

[74] W. Wiggers, V. Bakker, A. Kokkeler, and G. Smit, "Implementing the conjugate

gradient algorithm on multi-core systems," in Proceedings of the IEEE

International Symposium on System-on-Chip 2007, pp. 1-4.

[75] A. Borghi, J. Darbon, S. Peyronnet, T. F. Chan, and S. Osher, "A simple

compressive sensing algorithm for parallel many-core architectures," Journal of

Signal Processing Systems, vol. 71, pp. 1-20, 2013.

[76] S. S. Stone, J. P. Haldar, S. C. Tsao, W.-m. W. Hwu, B. P. Sutton, and Z.-P. Liang,

"Accelerating advanced MRI reconstructions on GPUs," Journal of Parallel and

Distributed Computing, vol. 68, pp. 1307-1318, 2008.

[77] F. Knoll, M. Unger, F. Ebner, and R. Stollberger, "Real Time Elimination of

Undersampling Artifacts using 3D Total Variation on Graphics Hardware," in

Proceedings of the 17th Annual Meeting of ISMRM, Honolulu, 2009, p. 2838.

132

[78] C.-H. Chang and J. Ji, "Compressed sensing MRI with multi-channel data using

multi-core processors," in 2009 31th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, Minneapolis, 2009, pp. 2684-2687.

[79] M. Lustig. (2007). Sparse MRI. Available:

http://www.eecs.berkeley.edu/~mlustig/Software.html, accessed in Feb. 2016.

[80] J. V. Kepner, Parallel MATLAB for multicore and multinode computers.

Philadelphia: Society for Industrial and Applied Mathematics, 2009.

[81] C.-H. Chang and J. Ji, "Improved compressed sensing MRI with multi-channel

data using reweighted l 1 minimization," in 2010 32th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society, Argentina,

2010, pp. 875-878.

[82] D. Liang, K. King, B. Liu, and L. Ying, "Accelerating SENSE using distributed

compressed sensing," in Proceedings of the 17th Annual Meeting of ISMRM,

Honolulu, 2009, p. 377.

[83] C.-H. Chang and J. Ji, "Parallel compressed sensing mri using reweighted L1

minimization," in Proceedings of the 19th Annual Meeting of ISMRM, Montréal,

2011, p. 2866.

[84] C.-H. Chang and J. X. Ji, "Improving multi-channel compressed sensing MRI with

reweighted l1 minimization," Quantitative Imaging in Medicine and Surgery, vol.

4, pp. 19-23, 2014.

http://www.eecs.berkeley.edu/~mlustig/Software.html

133

[85] C.-H. Chang and J. Ji, "Compressed sensing MRI with multichannel data using

multicore processors," Magnetic Resonance in Medicine, vol. 64, pp. 1135-1139,

2010.

[86] E. J. Candès, M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted l1

minimization," Journal of Fourier Analysis and Applications, vol. 14, pp. 877-

905, 2008.

[87] L. Ying and Z.-P. Liang, "Parallel MRI using phased array coils," IEEE Signal

Processing Magazine, vol. 27, pp. 90-98, 2010.

[88] K. T. Block, M. Uecker, and J. Frahm, "Undersampled radial MRI with multiple

coils. Iterative image reconstruction using a total variation constraint," Magnetic

resonance in medicine, vol. 57, pp. 1086-1098, 2007.

[89] Y. Wang, "Description of parallel imaging in MRI using multiple coils," Magnetic

Resonance in Medicine, vol. 44, pp. 495-499, 2000.

[90] E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal

reconstruction from highly incomplete frequency information," IEEE

Transactions on Information Theory, vol. 52, pp. 489-509, Feb 2006.

[91] R. Otazo, D. Kim, L. Axel, and D. K. Sodickson, "Combination of compressed

sensing and parallel imaging for highly accelerated first-pass cardiac perfusion

MRI," Magnetic Resonance in Medicine, vol. 64, pp. 767-776, 2010.

[92] S. S. Stone, J. P. Haldar, S. C. Tsao, W.-m. Hwu, B. P. Sutton, and Z.-P. Liang,

"Accelerating advanced MRI reconstructions on GPUs," Journal of Parallel and

Distributed Computing, vol. 68, pp. 1307-1318, 2008.

134

[93] W. Xiao-Long, G. Jiading, L. Fan, F. Maojing, J. P. Haldar, Z. Yue, et al.,

"Impatient MRI: Illinois Massively Parallel Acceleration Toolkit for image

reconstruction with enhanced throughput in MRI," in 2011 IEEE International

Symposium on Biomedical Imaging, 2011, pp. 69-72.

[94] J. Gai, N. Obeid, J. L. Holtrop, X.-L. Wu, F. Lam, M. Fu, et al., "More

IMPATIENT: A gridding-accelerated Toeplitz-based strategy for non-Cartesian

high-resolution 3D MRI on GPUs," Journal of Parallel and Distributed

Computing, vol. 73, pp. 686-697, 2013.

[95] T. S. Sorensen, D. Atkinson, T. Schaeffter, and M. S. Hansen, "Real-time

reconstruction of sensitivity encoded radial magnetic resonance imaging using a

graphics processing unit," IEEE Transactions on Medical Imaging, vol. 28, pp.

1974-1985, 2009.

[96] M. S. Hansen, D. Atkinson, and T. S. Sorensen, "Cartesian SENSE and k-t SENSE

reconstruction using commodity graphics hardware," Magnetic Resonance in

Medicine, vol. 59, pp. 463-468, 2008.

[97] D. Kim, J. D. Trzasko, M. Smelyanskiy, C. R. Haider, A. Manduca, and P. Dubey,

"High-performance 3D compressive sensing MRI reconstruction," in 2010 32th

Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, Argentina, 2010, pp. 3321-3324.

[98] D. Kim, J. Trzasko, M. Smelyanskiy, C. Haider, P. Dubey, and A. Manduca,

"High-performance 3D compressive sensing MRI reconstruction using many-core

architectures," Journal of Biomedical Imaging, vol. 2011, p. 2, 2011.

135

[99] M. Murphy, M. Alley, J. Demmel, K. Keutzer, S. Vasanawala, and M. Lustig,

"Fast l1-SPIRiT Compressed Sensing Parallel Imaging MRI: Scalable Parallel

Implementation and Clinically Feasible Runtime," IEEE Transactions on Medical

Imaging, vol. 31, pp. 1250-1262, 2012.

[100] S. Nam, M. Akçakaya, T. Basha, C. Stehning, W. J. Manning, V. Tarokh, et al.,

"Compressed sensing reconstruction for whole-heart imaging with 3D radial

trajectories: A graphics processing unit implementation," Magnetic Resonance in

Medicine, vol. 69, pp. 91-102, 2013.

[101] Q. Li, X. Qu, Y. Liu, D. Guo, Z. Lai, J. Ye, et al., "Accelerating patch-based

directional wavelets with multicore parallel computing in compressed sensing

MRI," Magnetic Resonance Imaging, vol. 33, pp. 649-658, 2015.

[102] B. Hu, X. Ma, M. Joyce, P. Glover, and B. Naleem, "A GPGPU accelerated

compressed sensing with tight wavelet frame transform technique for MR imaging

reconstruction," in 2012 IEEE International Conference on Imaging Systems and

Techniques (IST), 2012, pp. 121-125.

[103] D. S. Smith, J. C. Gore, T. E. Yankeelov, and E. B. Welch, "Real-time compressive

sensing MRI reconstruction using GPU computing and split Bregman methods,"

International Journal of Biomedical Imaging, vol. 2012, p. 6 pages, 2012.

[104] F. Piccialli, S. Cuomo, and P. De Michele, "A regularized MRI image

reconstruction based on hessian penalty term on CPU/GPU systems," Procedia

Computer Science, vol. 18, pp. 2643-2646, 2013.

136

[105] Z. Feng, H. Guo, Y. Wang, Y. Yu, Y. Yang, F. Liu, et al., "GPU accelerated high-

dimensional compressed sensing MRI," in 2014 13th International Conference on

Control Automation Robotics & Vision (ICARCV), 2014, pp. 648-651.

[106] J. Li, J. Sun, Y. Song, and J. Zhao, "Accelerating MRI reconstruction via three-

dimensional dual-dictionary learning using CUDA," Journal of Supercomputing,

vol. 71, p. 2381, 2015.

[107] C.-H. Chang and J. X. Ji, "Compressed Sensing MRI with Multichannel Data

Using GPUs," in 2013 35th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, Osaka, 2013, p. 1391.

[108] Y. Junfeng, Z. Yin, and Y. Wotao, "A Fast Alternating Direction Method for

TVL1-L2 Signal Reconstruction From Partial Fourier Data," IEEE Journal of

Selected Topics in Signal Processing, vol. 4, pp. 288-297, 2010.

137

APPENDIX A

Implementations of Reweighted 𝒍𝟏 Minimization

Reweighted 𝑙1minimization is modified from the 𝑙1-magic package, which use several

algorithms and concepts, including interior point, newton’s method, and log-barrier for

recovery of sparse signals. This appendix introduces the related algorithms and shows the

modification for the reweighted 𝑙1minimization.

Interior Point Method and Log-barrier

Consider the following minimization problem.

min
𝑥

‖𝐴𝑥 − 𝑦‖2
2 + 𝜆‖𝑥‖1

The objective function contains two terms. One is the least square error and the other is 𝑙1

norm of x, which is regarded as a penalty term. In addition, 𝐴 ∈ 𝑅𝑚×𝑛(𝑚 < 𝑛), 𝑥 ∈ 𝑅𝑛

and 𝑦 ∈ 𝑅𝑚. The parameter, 𝜆 is a weight between the least square solution and 𝑙1norm

of x. Because ‖𝑥‖1 is not a smooth function, the gradient-based algorithm cannot be

applied. Still, the above problem can be reformulated as a constraint minimization

problem.

min
𝑥

‖𝐴𝑥 − 𝑦‖2
2 + 𝜆∑𝑢𝑖

𝑛

𝑖=1

subject to −𝑢𝑖 < 𝑥𝑖 < 𝑢𝑖, 𝑖 = 1, … , 𝑛

Therefore, it becomes a differential convex quadratic problem with linear inequality

constraints. One way to understand interior point method is by adding barrier function.

138

The above inequality constraints can be reformulated into objective function by an

indicator function, 𝐼+(𝑢) = {
0, 𝑢 ≥ 0

∞, 𝑢 < 0
. Then, the objective becomes as follows,

min 𝑓(𝑥, 𝑢) =min
𝑥

‖𝐴𝑥 − 𝑦‖2
2 + 𝜆∑𝑢𝑖

𝑛

𝑖=1

+ ∑𝐼+(𝑢𝑖 + 𝑥𝑖) + 𝐼+(𝑢𝑖 − 𝑥𝑖)

𝑛

𝑖=1

The third term works as penalty if 𝑥𝑖 does not satisfy the constraint. The above objective

function can be replaced with the following equation.

𝑓𝑡(𝑥, 𝑢) = ‖𝐴𝑥 − 𝑦‖2
2 + 𝜆∑𝑢𝑖

𝑛

𝑖=1

+
1

𝑡
∑−(log(𝑢𝑖 + 𝑥𝑖)

𝑛

𝑖=1

+ log(𝑢𝑖 − 𝑥𝑖))

When 𝑡 → ∞, 𝑓𝑡(𝑥, 𝑢) is approaching to 𝑓(𝑥, 𝑢). Therefore, in each iteration given a fixed

𝑡, the problem of solving min
𝑥,𝑢

𝑓𝑡(𝑥, 𝑢) is equivalent to solve min
𝑥,𝑢

𝑡𝑓𝑡(𝑥, 𝑢). The solution,

(𝑥∗(𝑡), 𝑢∗(𝑡)), of min
𝑥,𝑢

𝑡𝑓𝑡(𝑥, 𝑢) will be close to the true solution, (𝑥∗, 𝑢∗), of min
𝑥,𝑢

𝑓(𝑥, 𝑢)

as 𝑡 goes to infinity. The parameter 𝑡 is iteratively increased by 𝑡𝑘+1 = 𝜇𝑡𝑘, where the

trajectory of varying 𝑡 is known as central path, and (𝑥∗(𝑡), 𝑢∗(𝑡)) is called central point.

As long as the initial point is inside the interior of the constraints, the solution should

always stay inside the interior. One feasible starting point is 𝑥 = 0 and 𝑢 = 1.

139

Newton’s Method

Newton’s method in calculus is iteratively finding the roots (𝑓(𝑥) = 0) of a differentiable

function, 𝑓(𝑥). The concept was applied in optimization, which search the solution to

𝑓′(𝑥) = 0. In each iteration of the above minimization problem, Newton’s method can be

used to solve the unconstrained subproblem of min
𝑥,𝑢

𝑡𝑓𝑡(𝑥, 𝑢). Newton’s method is also an

iterative method, which solves the problem along (∆𝑥, ∆𝑢) and the search direction

satisfies 𝐻 [
∆𝑥
∆𝑢

] = −𝑔 , where 𝐻 = ∇2𝑓𝑡(𝑥, 𝑢) and 𝑔 = ∇𝑓𝑡(𝑥, 𝑢) . For large-scale

problem, it is more economic to solve by the matrix-free conjugate gradient method.

Steepest Descent and Conjugate Gradient

Descent method frameworks are widely used for unconstrained optimization. Basically,

they consist of two steps. First, find a descent direction, and then minimize the objective

function according to the line along the descent direction. The difference between steepest

descent and the conjugate gradient is the choice of descent direction. Before introducing

descent method, the gradient of a quadratic form must be clearly defined as 𝑓′(𝑥) =

[
𝜕

𝜕𝑥1
𝑓(𝑥)

𝜕

𝜕𝑥2
𝑓(𝑥) …

𝜕

𝜕𝑥𝑛
𝑓(𝑥)], which is a vector field. Its meaning of the gradient

is that given a point, 𝑥, it indicates the direction which has the greatest increase of 𝑓(𝑥).

Therefore, for steepest descent method (also known as gradient descent), the descent

direction is chosen as −𝑓′(𝑥), which implies the direction of greatest decrease of 𝑓(𝑥).

Therefore, the new point 𝑥(1) = 𝑥(0) + 𝛼𝑟(0) will fall somewhere on the line along

−𝑓′(𝑥), where residual 𝑟(𝑖) = −𝑓′(𝑥) is equal to the direction of steepest descent. 𝛼

140

denotes a step size, which minimizes 𝑓(𝑥) along the line as the directional derivative

𝑑

𝑑𝛼
𝑓(𝑥(1)) is equal to zero. The result becomes as

𝑑

𝑑𝛼
𝑓(𝑥(1)) = 𝑓′(𝑥(1))

𝑇 𝑑

𝑑𝛼
𝑥(1) =

𝑓′(𝑥(1))
𝑇𝑟(0) = 0 . Thus, one can find the value of 𝛼 such that 𝑓′(𝑥(1)) and 𝑟(0) are

orthogonal. Also, each residual is orthogonal to the previous residual, 𝑟(1)
𝑇𝑟(0) = 0

because 𝑓′(𝑥(1)) = −𝑟(1) . Note that the convergent path is zigzagging because each

descent direction is orthogonal to the previous gradient. If the curve of a quadratic function

is smooth and flat, it may converge extremely slowly.

On the other hand, the conjugate gradient can converge at most 𝑛 steps (where the

size of 𝑥 is equal to 𝑛). Assume there are 𝑛 search directions, {𝑑(0), 𝑑(1), … , 𝑑(𝑛−1)}. The

idea is that, in each search step, the length of the step is lined up evenly with one element

of 𝑥 . After 𝑛 steps, 𝑥(𝑖+1) = 𝑥(𝑖+1) + 𝛼(𝑖)𝑑(𝑖) , it converges to the solution, where

error,𝑒(𝑖+1) should be orthogonal to 𝑑(𝑖). In fact, the matrix 𝐴 is positive-definite and that

makes the contour ellipsoidal. Therefore, instead of making search directions orthogonal,

any two directions are 𝐴-orthogonal, or conjugate, defined as 𝑑(𝑖)
𝑇𝐴𝑑(𝑗) = 0. Also, 𝑒(𝑖+1)

requires being 𝐴-orthogonal to 𝑑(𝑖), which contributes a minimum point along the search

direction. According to
𝑑

𝑑𝛼
𝑓(𝑥(𝑖+1)) = 0, 𝛼 can be calculated. Another part is how to

decide the search directions,{𝑑(𝑖)} of conjugate gradient method. Assume that there are 𝑛

linear independent vectors {𝑢𝑖}. By applying conjugate Gram-schmidt process, 𝑑(𝑖) can be

calculated by subtracting components, which are not 𝐴-orthogonal to the previous 𝑑

vector. It turns out 𝑑(𝑖) = 𝑢𝑖 + ∑ 𝛽𝑖𝑘𝑑(𝑘)
𝑖−1
𝑘=0 , where 𝑖 > 0, and 𝑑(0) = 𝑢0. The difficulty

141

is that previous search directions must be kept in memory for calculating the new direction.

Replacing {𝑢𝑖} with the {𝑟(𝑖)} can solve this problem due to the important properties: the

residual 𝑟(𝑖+1) is 𝐴-orthogonal to the previous search direction except 𝑑(𝑖) . Therefore,

conjugate Gram-Schmidt process becomes easy as 𝑑(𝑖+1) = 𝑟(𝑖+1) + 𝛽(𝑖+1)𝑑(𝑖) , where

𝑑(0) = 𝑟(0). It is no longer to save previous search directions, and thus, CG can solve the

minimization problem very efficiently.

Nonlinear Conjugate Gradient

Conjugate gradient (CG) is used to solve a linear system and find the minimum of a

quadratic form, where system matrix is symmetric, positive-definite. It can also be used

to find a minimum of any continuous function, where 𝑓(𝑥) is differentiable. There are

three major differences between linear and nonlinear CG. First, in linear CG, the recursive

residual,𝑟(𝑖+1), is set to 𝑟(𝑖) + 𝛼(𝑖)𝐴𝑑(𝑖). Instead, the residual of nonlinear case is always

set to 𝑟(𝑖) = −𝑓′(𝑥(𝑖)). Second, the step size, 𝛼(𝑖), can be found by min
𝛼

𝑓(𝑥(𝑖) + 𝛼(𝑖)𝑑(𝑖)),

which ensures that gradient is orthogonal to the search direction. It is the same as linear

CG, and is usually more complicated to compute the step size. Finally, there are several

expressions of 𝛽, which are equivalent in linear cases. However, different choices of 𝛽

may lead to different rate of convergence. For example, with Fletcher-Reeves method,

𝛽(𝑖+1)
𝐹𝑅 =

𝑟(𝑖+1)
𝑇 𝑟(𝑖+1)

𝑟(𝑖)
𝑇 𝑟(𝑖)

, it converges if the initial point is close to the minimum. With Polak-

Ribière method, 𝛽(𝑖+1)
𝑃𝑅 =

𝑟(𝑖+1)
𝑇 (𝑟(𝑖+1)−𝑟(𝑖))

𝑟(𝑖)
𝑇 𝑟(𝑖)

, it often converges much quickly, but could take

142

infinite steps without converging in rare cases. Adding the condition, , can ensure the

convergence. Since CG can only generate 𝑛 conjugate vector for 𝑛 iterations for finding

the solution, it practically can be restarted every 𝑛 iterations.

Modified Interior Point Method for Reweighting 𝑙1 Minimization

As CS is applied in MRI applications, the problem can be formulated as

 min
𝑥

𝑇𝑉(𝑥) s.t. 𝑦 = Φ𝑥

where 𝑇𝑉(𝑥) = ∑ ‖𝐷𝑖𝑗𝑥‖
21≤𝑖,𝑗≤n and 𝐷𝑖,𝑗𝑥 = [

𝐷ℎ;𝑖𝑗𝑥

𝐷𝑣;𝑖𝑗𝑥
] . With this definition, the

minimization can be recast as a second order cone problem (SOCP), and solved by log-

barrier method. Adding the weights, and the 𝑇𝑉 minimization becomes

 min
𝑥

∑ 𝑤𝑖𝑗
(𝑙)

‖𝐷𝑖𝑗𝑥‖
21≤𝑖,𝑗≤n s.t. 𝑦 = Φ𝑥

Adding the slack variables, the equation is rewritten as

min
𝑡,𝑥

∑ 𝑢𝑖𝑗𝑖,𝑗

s.t. 𝑤𝑖𝑗
(𝑙)‖𝐷𝑖𝑗𝑥‖

2
≤ 𝑢𝑖𝑗

𝑦 = Φ𝑥

Because 𝑤𝑖𝑗
(𝑙)

 is chosen according to w𝑖,𝑗
(𝑙+1)

= 1 (‖D𝑖𝑗𝑥
(𝑙)‖

2
+ ε⁄), it is positive, and the

problem doesn’t change if the inequality is divided by 𝑤𝑖𝑗
(𝑙)

.

min
𝑡,𝑥

∑ 𝑢𝑖𝑗𝑖,𝑗

s.t. ‖𝐷𝑖𝑗𝑥‖
2
− 𝑤𝑖𝑗

(𝑙)−1
𝑢𝑖𝑗 ≤ 0

143

𝑦 = Φ𝑥

Let 𝑡𝑖𝑗 = 𝑤𝑖𝑗
(𝑙)−1

𝑢𝑖𝑗, and the problem is rewritten as

min
𝑡,𝑥

∑ 𝑤𝑖𝑗
(𝑙)𝑡𝑖𝑗𝑖,𝑗

s.t. ‖𝐷𝑖𝑗𝑥‖
2
− 𝑡𝑖𝑗 ≤ 0

𝑦 = Φ𝑥

Thus, it becomes obvious to put in a standard form as follows,

min 〈[
0
𝑤

] , [
𝑥
𝑡
]〉

s.t. 𝑓𝑡𝑖,𝑗(𝑧) =
1

2
(‖𝐷𝑖,𝑗𝑥‖

2

2
− 𝑡𝑖,𝑗

2) ≤ 0

[Φ 0] [
𝑥
𝑡
] = 𝑦, 𝑖, 𝑗 = 1,… , 𝑛

where the inequality functions, 𝑓𝑡𝑖,𝑗 , describes a second-order conic, 𝑐0 = [
0
𝑤

], 𝑧 = [
𝑥
𝑡
],

𝐴0 = [Φ 0] . The log-barrier method transforms the inequality constraints into the

objective function, in which log-barrier performs as a penalty function. When the

constraints are violated, the objective become infinite.

𝑓0(𝑧) = min〈𝑐0, 𝑧〉 +
1

𝜏𝑘
∑ − log(−𝑓𝑡𝑖,𝑗(𝑧))𝑖,𝑗

s.t. 𝐴0𝑧 = 𝑦

As 𝜏𝑘 gets large, the solution 𝑧𝑘 to the above equation approaches to the optimized

solution 𝑧∗. For each iteration 𝑘 of log-barrier method, the subproblem can be solved by

Newton’s method within a few iterations. Then, the solution 𝑧𝑘 is used as a starting point

for next sumbproblem, 𝑘 + 1. According to second order Taylor expansion of 𝑓0 around

𝑧.

144

 𝑓0(𝑧 + ∆𝑧) ≈ 𝑓0(𝑧) + 〈𝑔𝑧 , ∆𝑧〉 +
1

2
〈𝐻𝑧∆𝑧, ∆𝑧〉

where 𝑔𝑧 = 𝑐0 +
1

𝜏
∑

1

−𝑓𝑡𝑖,𝑗(𝑧)
∇𝑓𝑡𝑖,𝑗(𝑧)𝑖,𝑗 , and 𝐻𝑧 =

1

𝜏
∑

1

𝑓𝑡𝑖,𝑗(𝑧)
2 ∇𝑓𝑡𝑖,𝑗(𝑧)∇𝑓𝑡𝑖,𝑗(𝑧)

𝑇
𝑖,𝑗 +

1

𝜏
∑

1

−𝑓𝑡𝑖,𝑗(𝑧)
∇2𝑓𝑡𝑖,𝑗(𝑧)𝑖,𝑗 . Newton’s method solves the above equation by setting the

derivative with respective to ∆𝑧 equal to zero. Assume that 𝑣 represents the Lagrange

multipliers for the equality constraint 𝐴0𝑧 = 𝑦, the minimum can be found along direction

∆𝑧 given that 𝑧 is a feasible set to 𝐴0𝑧 = 𝑦. The search direction satisfies the following

equation,

 𝜏 [
𝐻𝑧

𝐴0

𝐴0
𝑇

0
] [

∆𝑧
𝑣

] = −𝜏 [
𝑔𝑧

0
]

For the problem of recovering images from noisy observation, there is no equality

condition. Instead, the data fidelity term can be added into the objective function using

log-barrier.

min 〈[
0
𝑤

] , [
𝑥
𝑡
]〉

s.t. 𝑓𝑡𝑖,𝑗(𝑧) =
1

2
(‖𝐷𝑖,𝑗𝑥‖

2

2
− 𝑡𝑖,𝑗

2) ≤ 0

𝑓𝜀(𝑧) =
1

2
(‖𝐴𝑥 − 𝑏‖2

2
− 𝜀2) ≤ 0

Since there is no equality constraint (𝐴0 = 0), the search direction satisfies the equation.

 𝜏𝐻𝑧∆𝑧 = −𝜏𝑔𝑧

Because adding weights only affects the elements of the vector 𝑐0, only 𝑔𝑧 needs to be

modified respectively. Note that the above equation is reformulated as

145

[
𝐻11

Σ12𝐵
𝑇

𝐵Σ12

Σ22
] [

∆𝑥
∆𝑡

] =

− [
𝐷ℎ

𝑇𝐹𝑡
−1𝐷ℎ𝑥 + 𝐷𝑣

𝑇𝐹𝑡
−1𝐷𝑣𝑥 + 𝐹𝜀

−1𝐴𝑇(𝐴𝑥 − 𝑏)

−𝜏𝑤(𝑙) − 𝐹𝑡
−1𝑡

]

The other details of equations are described in the package of 𝑙1magic notes. The system

𝐻𝑧 is symmetric, positive-definite. Thus, it can be solved by CG for large-scale data. As

soon as the search direction [
∆𝑥
∆𝑡

] is found, 𝑧 = [
𝑥
𝑡
] is updated by [

𝑥
𝑡
] = [

𝑥
𝑡
] + 𝑠 [

∆𝑥
∆𝑡

],

where the step size 𝑠 is decided by backtracking line search.

146

APPENDIX B

Codes for GPU Implementations

Kernel_FD and Kernel_updata_ADM without using shared memory:

__global__ void ComputeKernel_Ux_Uy_bx_by(VolumeType *pUx,

VolumeType *pUy, VolumeType *pbx, VolumeType *pby,
 VolumeType *pU, VolumeType *pWx, VolumeType *pWy, double

gamma, int width, int height)
{///without using shared memory//
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 int row = blockIdx.y * blockDim.y + threadIdx.y;

 int right;
 int down;
 int pos;

 if(col<width-1 && row<height-1)
 {//avoid accessing outside memory
 right = row * width + (col+1);
 pos = row * width + col;
 down = (row+1) * width + col;

 pUx[pos] = pU[down]-pU[pos];
 pUy[pos] = pU[right]-pU[pos];

 pbx[pos] += gamma*(pUx[pos] - pWx[pos]);
 pby[pos] += gamma*(pUy[pos] - pWy[pos]);
 }
}

147

Kernel_FD & Kernel_updata_ADMM using shared memory:

__global__ void ComputeKernel_Ux_Uy_bx_by(VolumeType *pUx,

VolumeType *pUy, VolumeType *pbx, VolumeType *pby,
 VolumeType *pU, VolumeType *pWx, VolumeType *pWy, double

gamma, int width, int height)
{
 __shared__ VolumeType sU[TILE_WIDTH][TILE_WIDTH];

 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x; int ty = threadIdx.y;

 int col = bx * blockDim.x + tx;
 int row = by * blockDim.y + ty;

 int pos;
 VolumeType tmpx, tmpy;

 pos = row * width + col;

 sU[ty][tx] = pU[pos];
 if(tx==blockDim.x-1)
 sU[ty][tx+1] = pU[pos+1];
 if(ty==blockDim.y-1)
 sU[ty+1][tx] = pU[pos+width];
 __syncthreads();

 if(col<width-1 && row<height-1)
 {//avoid accessing outside memory
 tmpx = sU[ty+1][tx]-sU[ty][tx];
 tmpy = sU[ty][tx+1]-sU[ty][tx];

 pUx[pos] = tmpx;
 pUy[pos] = tmpy;

 pbx[pos] += gamma*(tmpx - pWx[pos]);
 pby[pos] += gamma*(tmpy - pWy[pos]);
 }
}

148

Kernel_IFD without using the shared memory:

__global__ void ComputeKernel_rhs(VolumeType *prhs, VolumeType *pWx,

VolumeType *pWy, VolumeType *pbx, VolumeType *pby, float tau, int

width, int height)
{
 int col = blockIdx.x * blockDim.x + threadIdx.x + 1;
 int row = blockIdx.y * blockDim.y + threadIdx.y + 1;

 int left;
 int up;
 int pos;

 if(col<width && row<height)
 {
 pos = row * width + col;
 left = row * width+(col-1);
 up = (row-1) * width + col;

 prhs[pos] = tau*(pWx[up] - pbx[up] - pWx[pos] + pbx[pos] \
 + pWy[left] - pby[left] - pWy[pos] +

pby[pos]);
 }
}

149

Kernel_IFD using the shared memory Method 1:

__global__ void ComputeKernel_rhsUpLeft(VolumeType *prhs, VolumeType

*pWx, VolumeType *pWy, VolumeType *pbx, VolumeType *pby, float tau,

int width, int height)
{
 __shared__ VolumeType sWx[TILE_WIDTH][TILE_WIDTH];
 __shared__ VolumeType sbx[TILE_WIDTH][TILE_WIDTH];
 __shared__ VolumeType sWy[TILE_WIDTH][TILE_WIDTH];
 __shared__ VolumeType sby[TILE_WIDTH][TILE_WIDTH];

 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x + 1; int ty = threadIdx.y + 1;

 int col = bx * blockDim.x + tx ;
 int row = by * blockDim.y + ty ;

 int pos;
 pos = row * width + col;

 sWx[ty][tx] = pWx[pos];
 sbx[ty][tx] = pbx[pos];
 sWy[ty][tx] = pWy[pos];
 sby[ty][tx] = pby[pos];

 if(ty==1){
 sWx[ty-1][tx] = pWx[pos-width];
 sbx[ty-1][tx] = pbx[pos-width];
 }
 if(tx==1){
 sWy[ty][tx-1] = pWy[pos-1];
 sby[ty][tx-1] = pby[pos-1];
 }
 __syncthreads();

 if(col<width && row<height)
 {
 prhs[pos] = tau*(sWx[ty-1][tx] - sbx[ty-1][tx] -

sWx[ty][tx] + sbx[ty][tx] \
 + sWy[ty][tx-1] - sby[ty][tx-1] - sWy[ty][tx] +

sby[ty][tx]);
 }
}

150

Kernel_IFD using the shared memory Method 2:

__global__ void ComputeKernel_rhsUpLeftS1(VolumeType *prhs,

VolumeType *pWx, VolumeType *pWy, VolumeType *pbx, VolumeType *pby,

float tau, int width, int height)
{
 __shared__ VolumeType sDTx[TILE_WIDTH][TILE_WIDTH];
 __shared__ VolumeType sDTy[TILE_WIDTH][TILE_WIDTH];

 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x + 1; int ty = threadIdx.y + 1;

 int col = bx * blockDim.x + tx ;
 int row = by * blockDim.y + ty ;

 int pos;
 pos = row * width + col;

 sDTx[ty][tx] = pWx[pos]-pbx[pos];
 sDTy[ty][tx] = pWy[pos]-pby[pos];

 if(ty==1){
 sDTx[ty-1][tx] = pWx[pos-width]-pbx[pos-width];
 }
 if(tx==1){
 sDTy[ty][tx-1] = pWy[pos-1]-pby[pos-1];
 }
 __syncthreads();

 if(col<width && row<height)
 {
 prhs[pos] = tau*(sDTx[ty-1][tx] - sDTx[ty][tx] \
 + sDTy[ty][tx-1] - sDTy[ty][tx]);
 }

}

151

Kernel_IFD using the shared memory Method 3:

__global__ void ComputeKernel_rhsUp(VolumeType *prhs, VolumeType

*pWx, VolumeType *pbx, float tau, int width, int height)
{
 __shared__ VolumeType sWx[TILE_WIDTH][TILE_WIDTH];
 __shared__ VolumeType sbx[TILE_WIDTH][TILE_WIDTH];

 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x + 1; int ty = threadIdx.y + 1;

 int col = bx * blockDim.x + tx ;
 int row = by * blockDim.y + ty ;

 int pos;
 pos = row * width + col;

 sWx[ty][tx] = pWx[pos];
 sbx[ty][tx] = pbx[pos];
 if(ty==1){
 sWx[ty-1][tx] = pWx[pos-width];
 sbx[ty-1][tx] = pbx[pos-width];
 }
 __syncthreads();

 if(col<width && row<height)
 {
 prhs[pos] = tau*(sWx[ty-1][tx] - sbx[ty-1][tx] -

sWx[ty][tx] + sbx[ty][tx]);
 }
}

__global__ void ComputeKernel_rhsLeft(VolumeType *prhs, VolumeType

*pWy, VolumeType *pby, float tau, int width, int height)
{
 __shared__ VolumeType sWy[TILE_WIDTH][TILE_WIDTH];
 __shared__ VolumeType sby[TILE_WIDTH][TILE_WIDTH];

 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x + 1; int ty = threadIdx.y + 1;

 int col = bx * blockDim.x + tx ;
 int row = by * blockDim.y + ty ;

 int pos;
 pos = row * width + col;

152

Kernel_IFD using the shared memory Method 4:

sWy[ty][tx] = pWy[pos];
 sby[ty][tx] = pby[pos];
 if(tx==1){
 sWy[ty][tx-1] = pWy[pos-1];
 sby[ty][tx-1] = pby[pos-1];
 }
 __syncthreads();

 if(col<width && row<height)
 {
 prhs[pos] = prhs[pos] + tau*(sWy[ty][tx-1] - sby[ty][tx-1]

- sWy[ty][tx] + sby[ty][tx]);
 }
}

__global__ void ComputeKernel_rhsUpS1(VolumeType *prhs, VolumeType

*pWx, VolumeType *pbx, float tau, int width, int height)
{
 __shared__ VolumeType sDTx[TILE_WIDTH][TILE_WIDTH];

 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x + 1; int ty = threadIdx.y + 1;

 int col = bx * blockDim.x + tx ;
 int row = by * blockDim.y + ty ;

 int pos;
 pos = row * width + col;

 sDTx[ty][tx] = pWx[pos]-pbx[pos];
 if(ty==1){
 sDTx[ty-1][tx] = pWx[pos-width]-pbx[pos-width];
 }
 __syncthreads();

 if(col<width && row<height)
 {
 prhs[pos] = tau*(sDTx[ty-1][tx] - sDTx[ty][tx]);
 }
}

153

__global__ void ComputeKernel_rhsLeftS1(VolumeType *prhs, VolumeType

*pWy, VolumeType *pby, float tau, int width, int height)
{
 __shared__ VolumeType sDTy[TILE_WIDTH][TILE_WIDTH];

 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x + 1; int ty = threadIdx.y + 1;

 int col = bx * blockDim.x + tx ;
 int row = by * blockDim.y + ty ;

 int pos;
 pos = row * width + col;

 sDTy[ty][tx] = pWy[pos]-pby[pos];
 if(tx==1){
 sDTy[ty][tx-1] = pWy[pos-1]-pby[pos-1];
 }
 __syncthreads();

 if(col<width && row<height)
 {
 prhs[pos] = prhs[pos] + tau*(sDTy[ty][tx-1] - sDTy[ty][tx]

);
 }
}

