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ABSTRACT 

 Aflatoxins (AFs) are toxic metabolites produced by Aspergillus flavus and A. 

parasiticus. Fumonisins (FBs) are also toxic products of fungi, specifically Fusarium 

verticilloides and F. proliferatum. Both toxins commonly contaminate staple grains and 

cereals such as maize and groundnuts. Aflatoxin B1 (AFB1) is the most toxic and prevalent 

of the AFs. Chronic dietary exposure to AFs is a known risk factor for hepatocellular 

carcinoma and may also affect protein metabolism and the immune system. Fumonisin B1 

(FB1) is the most abundant and toxicologically significant of the congeners. In populations 

where AFs and FBs are inextricable contaminants, a multi-faceted approach must be 

implemented to reduce exposure to these toxins, especially in the young who are more 

susceptible. Alternative methods such as calcium montmorillonite clay (UPSN or 

ACCS100) as an enterosorbent therapy that focus on reducing biological exposure to AFs 

and FBs in foods already contaminated are desirable as a secondary defense to the harmful 

effects of these toxins. Therefore, I propose to test the efficacy of UPSN in food matrices, 

identify populations at high risk for AFs and FBs with urinary biomarkers, and finally, 

combine clay technology and biomarker analysis to intervene with UPSN or ACCS100 in 

frequently exposed human populations. 

 In these studies UPSN was able to significantly reduce AFB1 under common cooking 

conditions in a corn meal matrix suggesting a potential delivery of the clay directly in the 

contaminated food. A high prevalence of exposure to variable AFB1 and FB1 levels in 

participants from Monterrey, Mexico was observed. After a two week crossover trial in a 

high risk area of Kenya with 3.0g ACCS100/day mixed in water, urinary aflatoxin M1 (an 
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AFB1 metabolite) was significantly reduced compared to the placebo group. ACCS100 

was found to be safe and well tolerated suggesting potential for reducing exposure to AF 

in this particular population during outbreak situations. In a 3-month intervention with 

3.0g or 1.5g ACCS100/day (encapsulated) in San Antonio, Texas, AFB1-lysine (an AFB1 

protein adduct) was significantly reduced in the Low Dose group (1.5g) compared to 

Placebo. ACCS100 was well tolerated in the majority of participants and no significant 

changes in serum biochemistry or hematology were detected in any treatment group. Thus, 

use of calcium montmorillonite clay at doses as low as 1.5g/day and delivered in capsules, 

food, drink, or water may provide a viable strategy to reduce dietary AFB1 bioavailability 

in populations exposed to this toxin for up to 3 months. Moreover, AF and FB exposure 

is a global and unavoidable public health concern and biomarkers are important tools for 

monitoring exposure.  
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1. INTRODUCTION 

Aflatoxins (AFs) are known human carcinogens and common contaminants of 

globally important commodities, such as corn and groundnuts. Historically, AFs have been 

of significant interest in the areas of food safety and public health in developing countries. 

However, due to ongoing global climate change, AFs are of increasing concern in parts of 

the developed world, including North America and Europe. Aflatoxin B1 (AFB1) is one of 

four secondary metabolites produced by the fungi Aspergillus flavus and A. parasiticus 

and is the most prevalent and toxic of the AF congeners (Wild et al., 2002). Chronic AF 

exposure is greatest in communities that produce and consume their own food (Wild and 

Gong, 2010) but is of universal concern due to its association with an increased risk of 

hepatocellular carcinoma (HCC) (Eaton and Gallagher, 1994;  IARC, 1993;  IARC, 2002;  

Wild and Turner, 2002). HCC is the 5th and 3rd leading cause of cancer-related mortality 

in females and males, respectively.  Based on the results from a 2012 meta-analysis of 

AF-related HCC studies, the population at risk for AF-related HCC was estimated to be 

17% worldwide (Liu et al., 2012). Although the hepatotoxicity and genotoxicity of AFs 

have been studied extensively in relation to HCC, AFB1 is also known to be 

immunosuppressive and anti-nutritional (IARC, 2002, 2015), with these health effects 

becoming an increasing focus in high risk and vulnerable populations.  

Fumonisins (FBs) are also common contaminants of maize and have been found 

in high levels in Sub-Saharan Africa, Central America, and Southeast Asia. FBs, which 

are structurally different than AFs, are primarily produced by Fusarium verticilloides and 

F. proliferaturm. Of the naturally occurring homologues and derivatives, fumonisin B1 
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(FB1) is the most abundant and most toxicologically significant (JECFA, 2001). Although 

epidemiological studies have demonstrated correlations between FB-contaminated food 

with increased incidence of esophageal cancer in regions of China and South Africa, 

neural tube defects along the Texas-Mexico border, and primary liver cancer in patients 

from China (Chu and Li, 1994;  Marasas et al., 2004;  Shephard et al., 2007b;  Ueno et 

al., 1997), the actual impact on human health has not been well delineated.  

Geography and climate change are of increasing importance with regard to AF and 

FB contamination in foods and subsequent human exposure. AF contamination occurs 

mainly in tropical and semi-tropical climates, often called the “hot zone” between 40° 

north and south of the equator. Aspergillus fungi typically grow at temperatures >25° C 

(Cotty and Jaime-Garcia, 2007) in moist conditions, which leads to the production of AFs 

in mature crops (Cotty, 1991). However, higher temperatures during droughts have also 

been associated with increased AF contamination (Sanders et al., 1984). As climate warms 

and weather patterns become less predictable, countries such as the United States may 

become more vulnerable to these toxicants. When patterns change, good agricultural 

practices and proper planning may not be sufficient to prevent AF contamination in the 

food supply. It has been postulated that contamination may become widespread in areas 

such as the US Midwest that were previously unaffected (Cotty and Jaime-Garcia, 2007). 

Furthermore, poor grain storage practices that lead to higher moisture levels can cause 

increased AF levels in harvested grains previously infected with fungi in the field (CAST, 

2003).  
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Since ubiquitous AF and FB contamination of the food supply exists in developing 

countries due to lack of proper food quality control measures and food insecurity, methods 

to decrease exposure in foods already contaminated are needed. One strategy to ameliorate 

mycotoxin exposure is high affinity sorption of AFs and FBs with specific clays in the diet 

to decrease toxin bioavailability (Phillips, 2002). Such a strategy could positively affect 

outcomes in cancer development, growth, and immune function associated with 

mycotoxin exposure. 

1.1 Aflatoxin 

1.1.1 Problem defined 

AFs are fungal toxins that are members of a larger family of mycotoxins. 

Mycotoxins are structurally diverse chemical compounds produced by fungi and their 

carcinogenicity in humans and animals has been suspected for centuries. The word 

mycotoxin was first used by in 1955 (Forgacs et al., 1955) and derived from 

mycotoxicosis, or diseases of animals caused by fungal toxins. Subsequently, mycotoxin 

was defined as a toxin produced by a fungus. The primary route of exposure is ingestion; 

however dermal or inhalational exposure may occur. Due to their ubiquitous nature, 

mycotoxin contamination of food and feed supplies have the potential to increase the 

economic risks and affect the health humans and animals. Of the 300 naturally occurring 

mycotoxins, AF is the most toxic and therefore most widely studied. AFs are largely 

produced by the common fungi Aspergillus flavus and the closely related species A. 

parasiticus. To understand the risks associated with AF, knowledge of the following is 

required: (1) the toxicology of the compounds (2) recorded effects on exposed human and 
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animal populations, (3) effects of acute and chronic exposure, (4) human and animal 

exposure to the toxins (molecular epidemiology), and (5) method to mitigate exposures. 

1.1.2 Discovery  

Aflatoxins (AFs) are known human and animal carcinogens and common 

contaminants of globally important commodities, such as corn and groundnuts. 

Historically, AFs have been of significant interest in the areas of food safety and public 

health in developing countries but weren’t discovered until 1960 when turkey poults in 

England died of acute hepatotoxicity attributed to contaminated groundnut meal from 

Figure 1.  Chemical structures of naturally occurring aflatoxins B1, B2, G1, and G2. AFs are 
produced primarily by Aspergillus flavus and Aspergillus parasiticus fungi, and their series 
nomenclature denotes a characteristic fluorescence emission under UV light, that is, (B) blue 
and (G) green fluorescence. 
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Brazil (Blount, 1961). This event, reported as turkey “X” disease, was followed by similar 

poisonings in chickens and ducklings (Blount, 1961). The characteristics of the acute 

hepatotoxicity included necrosis, marked bile duct hyperplasia, acute loss of appetite, 

wing weakness, and lethargy and resulted in the attention of many scientific laboratories 

worldwide. A year later, Asplin and Carnaghan (Asplin and Carnaghan, 1961) identified 

the toxins as metabolites of Aspergillus flavus strains. This identification was followed by 

chemical characterization and the designation of the name AFs by Asao et al (1963). It 

was discovered that the AF metabolites consist of four major congeners designated as B1, 

B2, G1, and G2 (Figure 1) based on their fluorescence and Rf values from thin-layer 

chromatography. A. flavus produces only B aflatoxins, while A. parasiticus produces both 

B and G AFs (Diener et al., 1987;  Klick and Pitt, 1988).  In light of the findings resulting 

from the turkey “X” disease incident, it was suggested that several events preceding 1960 

could be attributed to AF poisoning including the death of hunting dogs fed a peanut-based 

diet (Newberne et al., 1955), high incidence of liver tumors in a colony of rats fed a diet 

containing peanut meal (Le Breton et al., 1964), and toxicosis in swine and cattle fed 

moldy corn (Burnside et al., 1957). Susceptibility to the toxic effects of AF varies widely 

between species with the duckling and rainbow trout being the most sensitive animals. 

Halver et al. (1967) was the first to demonstrate the carcinogenicity of AF in rainbow trout 

and subsequently recognizing AF as one of the most potent liver carcinogens. A variety 

of similar fungal species have also been identified as AF producers, however A. flavus and 

A. parasiticus are responsible for the overwhelming proportion of AFs found in foodstuffs 

throughout the word and have been studied in great detail. 
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1.1.3 Source of contamination 

Following the Turkey X incident in 1960, accumulation of AF was primarily 

considered a storage issue and thus research was focused on preventing post-harvest 

contamination (Asao et al., 1965;  Trenk and Hartman, 1970). However, a severe outbreak 

in the early 1970s in U.S. maize led to the discovery that A. flavus could both colonize and 

produce its toxic metabolites pre-harvest in developing maize kernels. Studies have shown 

that Aspergillus fungi colonize and inoculate crops through three main routes: 1) airborne 

spores, 2) soil contact, and 3) insect transfer. This initial colonization and inoculation is 

crop specific.  A. parasiticus appears to be adapted to a soil environment and therefore 

prominent in peanuts, whereas A. flavus is adapted to the aerial and foliar environment 

based on its dominance in corn, cottonseed, and tree nuts (Diener et al., 1987). 

Furthermore, it has been suggested that insects facilitate infection pre-harvest by 

transporting Aspergillus spores; A. flavus was found more often on insects inhabiting corn 

and A. parasiticus was found more often on insects associated with soil (Lillehoj et al., 

1980). The vectors do not need to be pests that cause damage but a relationship between 

insect injury and AF contamination in not surprising. Lee et al. (1980) demonstrated that 

this relationship between insect damage and AF contamination is related to enhanced AF 

production in damaged areas; however, the two are not mutually exclusive (Widstrom et 

al., 1976). 

Since the discovery of pre-harvest contamination, AF contamination is frequently 

broken down into two phases: the first phase occurring on the developing crop (pre-

harvest) and the second phase affecting the crop after maturation (harvest and post-
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harvest) (Cotty and Jaime-Garcia, 2007). It is important to note however, that crops 

infected with Aspergillus fungi do not always contain AF. Although contamination is 

usually associated with one phase or the other, contamination during both phases isn’t 

uncommon (Cotty and Jaime-Garcia, 2007). Generally, pre-harvest (or immediately 

following harvest) contamination by A. flavus only occurs in maize, cottonseed and by 

both A. flavus and A. parasiticus in peanuts. A. flavus lacks this affinity for other crops, so 

it is not normally a concern pre or during harvest (IARC et al., 2002). Rain and 

temperature largely influence the phases differently with dry, hot conditions favoring the 

first and warm, wet conditions favoring the second. However, in warm humid, subtropical, 

and tropical climates the storage fungi (second phase) often become the field (first phase) 

as well as the storage fungi (Wilson and Abramson, 1992). Generally, A. flavus and A. 

parasiticus fungi produce AFs when the temperatures are between 24 and 35° C, and will 

contaminate many commodities if the moisture content exceeds 7% (10% with ventilation) 

(Williams et al., 2004). The amount of contamination varies with climate both temporally 

and spatially. This becomes increasingly important as droughts become more frequent and 

persistent and global temperatures rise. What used to be considered the hot zone for AF 

contamination, 20° north and south of the equator, may now extend into areas the southern 

half of the US and Europe (at 40°). 

In addition to the effects of climate and weather conditions, factors that make crops 

vulnerable to Aspergillus growth and AF production include genetics, soil type, and insect 

activity. Timely harvest and rapid and adequate drying before storage are also important. 

However, even commodities dried to a satisfactory degree are vulnerable to isolated 
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pockets of fungal growth and AF production due to moisture generated by insect 

respiration and local condensation. Many of these facts are managed in AF-prone crops in 

developed countries, but this comes as a cost due to investments in production, drying and 

storage facilities. Despite these investments, sizable losses still occur regularly in the 

United States when farmers are unable to meet the more relaxed standards allowed for 

animal feed. 

1.1.4 Biotransformation 

1.1.4.1 Introduction 

Biotransformation is a necessary step regarding the toxicity and carcinogenicity of 

AFB1; it is important for the disposition and biological activity of the compound. Toxicity 

or carcinogenicity of the parent compound is directly related to the proportion of the 

mycotoxin converted to metabolites that bind to critical cellular macromolecules. In this 

regard, exposure to dietary compounds that affect the rates of AFB1 activation or 

elimination can ultimately affect AFB1 carcinogenicity. It is important to note that far less 

attention has been given to the role of biotransformation in acute AF toxicity. 

Biotransformation of AF can be broken down into several detoxification pathways: 

oxidation, reduction, and conjugation. Not all metabolites have been identified in all 

species and therefore significant quantitative differences in the formation of the various 

products may exist. 

1.1.4.2 Absorption 

After rapid absorption in the gastrointestinal tract, AFB1 is distributed among 

various tissues including the liver (Dalezios et al., 1973;  Dalezios and Wogan, 1972;  
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Steyn et al., 1971;  Wogan et al., 1967). Adsorption appears to occur in the small intestine 

(Wogan et al., 1967) with the specific site undecided. Earlier research demonstrated 

absorption from the jejunum after direct injection in anaesthetized rats (Shantha et al., 

1970). In separate rat studies, results indicate that absorption is most efficient in the 

duodenum (Hsieh and Wong, 1994;  Kumagai, 1989). The rate of absorption may be 

influenced by endocrine activity due to observed changes with age and reproductive stage, 

with the greatest absorption of AFB1 from the small intestine occurring in suckling rats 

(Kumagai, 1989). This could explain the higher susceptibility of the young rat to acute 

toxicity of AFB1 (Newberne and Butler, 1969). This is due to changes in lipid composition 

in the epithelial cell membrane during growth (Schwarz et al., 1985) since AF absorption 

is due to passive diffusion due to its lipid solubility (Shantha et al., 1970). Following 

absorption, AFB1 is almost exclusively transferred to the mesenteric blood (Shantha et al., 

1970;  Wilson et al., 1985a) indicating that although a hydrophobic compound, AFB1 does 

not partition into lipoproteins and circulate via intestinal lymphatic drainage like 

compounds with similar properties such as Benzo(a)pyrene. Transfer to the vascular 

system ultimately results in its immediate transport to the liver which contributes to AF’s 

hepatotoxicity; however, total hepatic exposure to AFB1 is limited by both incomplete 

absorption and gastrointestinal metabolism (Hsieh and Wong, 1994) (to be discussed 

later). 

1.1.4.3 Distribution 

Following absorption from the intestine, AFB1 enters the liver through the hepatic 

portal blood supply (Wilson et al., 1985a), and to a much lesser extent, the kidneys. 
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Radiolabeled AFB1 studies in rats (Wogan et al., 1967) and male rhesus monkeys 

(Dalezios and Wogan, 1972) found that 17 and 19% of the radioactivity was located in the 

liver, and 5 and 0.9% was contained in the kidneys, respectively, within the first 30-45 

min following intraperitoneal (ip) injection. This rapid hepatic uptake of AFB1 is 

consistent with studies in perfused rat liver and isolated rat hepatocytes (Chih and Devlin, 

1984;  Unger et al., 1977). AFB1 appears to be retained in the liver very effectively with 

most of it bound irreversibly to tissue macromolecules (Holeski et al., 1987). Based on 

the studies of Wong and Hsieh (1980), the volume of distribution, using the one-

compartment pharmacokinetic model, was consistent with the relative susceptibility for 

the monkey, rat, and mouse (ranked from most to least susceptible), i.e., greater volume, 

greater susceptibility Furthermore, the same order of susceptibility holds true for the first-

order rate constant for AFB1 elimination from plasma (KE), which were 1.1, 1.4, and 3.2 

hr-1 and plasma biological half-lives (t1/2), 36.5, 28.9, and 12.9 min. for the monkey, rat, 

and mouse, respectively. Using a two-compartment open model in the monkey and rat, the 

results further confirm that the rat has a slower rate of plasma to tissue transfer, meaning 

the tissue is less concentrated and therefore less susceptible to acute toxicity than the 

monkey (Wong and Hsieh, 1980). 

1.1.4.4 Metabolism 

Metabolism of the parent compound, AFB1, undergoes two phases as 

demonstrated in Figure 2. This process begins in the intestine where lower levels of the 

same biotransformation abilities in the liver can be found (Hartiala, 1977). The 

gastrointestinal mucosal cells possess the enzyme capability necessary for many 
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biotransformation reactions (Hartiala, 1977). AFB1 can be metabolized to several active 

forms (discussed further in the following paragraphs) which interact with protein at the 

gastrointestinal mucosa (Hsieh and Wong, 1994). These metabolites include the highly 

reactive AFB1-epoxide (AFBO), the AFB1-dihydrodiol, and AFB2α. One of the products 

of these reactive metabolites formed at or during absorption is the serum albumin adduct 

of AFB1. AFB1 is able to form a Schiff base between the lysine residues of serum albumin 

to produce a protein adduct in the blood. A serum albumin adduct indicates that AFB1 is 

metabolized to the epoxide either in the gut lumen, the gut wall, or in some blood 

components. This is not unlikely due to the presence of important metabolizing enzymes 

within the gut mucosa. Furthermore, the absence of phase I enzymes in the blood suggests 

that metabolites are rapidly conjugated by phase II enzymes or are already bound to 

proteins as previously mentioned (Hsieh and Wong, 1994). Although little attention has 

been paid to this step, it warrants attention, especially considering that the gut is the first 

line of immune defense. It is an intriguing hypothesis to go a step further and suggest 

AFB1 not only affects liver and kidney, but also can harm the integrity of the gut, and 

directly affect nutrient uptake and immune health. Importantly, the strong detoxification 

pathway in gastrointestinal metabolism of AFB1 limits the concentration of the parent 

compound in the portal inflow to the liver leading to the first line of defense from classic 

symptoms of AFB1 toxicity and carcinogenicity.  

As previously mentioned, AFB1 enters the liver through the hepatic portal blood 

supply (Wilson et al., 1985a) where a majority of the metabolism of the circulating AFB1 

occurs. In the liver, phase I microsomal cytochrome P450-dependent oxidation of the 
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double bond on the terminal furan of both AFB1 and AFG1 generates a very potent 

electrophilic species, AFB1-8,9-epoxide (AFO) (Eaton and Gallagher, 1994;  Essigmann 

et al., 1977;  Swenson et al., 1977). This process yields exo- and endo-AFB1 epoxide 

stereoisomers (Raney et al., 1992a). The initial critical lesion, 8,9-dihydro-8-(N7-guanyl)-

9-hydroxy-AFB1, is formed in the reaction of DNA with AFBO (Iyer, 1994). Of the 

reactive stereoisomers, the exo-epoxide is the dominant form and is the most reactive with 

DNA (Raney et al., 1992a). AFBO has not been isolated from biological systems due to 

its high reactivity, but was indirectly isolated from the products of its reactions with DNA 

and the detoxification product, GSH (Degen and Neumann, 1978;  Essigmann et al., 

1977). Ultimately, the proportion of AF activated by cytochrome P450 to the epoxide 

determines the amount of AFB1 that will bind to DNA.  

Much of the species difference in carcinogenicity is related to the 

biotransformation of AFB1 and the subsequent ratio of metabolites and detoxification 

processes. Cytochrome (CYP) activity contributes a significant portion of the observed 

species differences. Human liver microsomes are approximately one-fourth as efficient at 

activating AFB1 as are rat microsomes (Ramsdell and Eaton, 1990) and mice have an even 

higher activity for AFB1-8,9-epoxide production but are resistant to hepatocarcinogenic 

effects due to additional enzyme differences (Monroe and Eaton, 1987). Importantly, the 

microsomes active in AFB1 metabolism differ with substrate concentration. The 

proportion of AFB1 converted to AFBO was increased at the lower substrate 

concentrations representing dietary exposure in the rat and human microsome, but not with 
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the mouse or monkey microsome resulting in striking differences in the metabolites 

observed across species (Ramsdell and Eaton, 1990).  

Multiple studies have demonstrated that the biotransformation of AFB1 in human 

liver involves multiple CYP enzymes, each exhibiting different characteristics (Aoyama 

et al., 1990;  Forrester et al., 1990;  Gallagher et al., 1994;  Ramsdell et al., 1991). At least 

five CYP enzymes have been implicated in activating AFB1 to its mutagenic metabolites 

including CYP 1A2, 2A6, 2B7, 3A3, and 3A4 (Aoyama et al., 1990) with CYP 1A2 and 

3A4 being the predominant isoforms active in the conversion to AFBO (Gallagher et al., 

1994;  Raney et al., 1992a). In vitro data suggests that the dominant route for in vivo AFB1 

activation at dietary concentrations is primarily through CYP 1A2, although urinary 

metabolite data evidence suggests that both forms are involved (Gallagher et al., 1994). 

However, contrasting results from an early study in Thailand indicated a significant 

correlation between the formation of AFBO (as measured by AFB1 tris-diol formation) 

and AFQ1 (the major metabolite measured) with CYP3A4 expression at intermediate 

AFB1 concentrations (Kirby et al., 1993) suggesting that concentration influenced CYP 

activity. The same study also measured individual variation in expression of the various 

CYPs resulting in a >10-fold variation, including CYP3A4 (57-fold). This variation in 

expression is possibly be due to genetic polymorphisms or environmental factors and may 

be an important risk factor of liver cancer development in AFB1-exposed populations. 

Importantly, this also has implications for the analysis of the various metabolites and 

measurements of toxicant exposure. 
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In addition to the formation of AFBO, oxidation of AFs by microsomal 

cytochromes P450 1A2 and 3A4 at the 3 and 9a positions produces the metabolites AFQ1 

and AFM1 (Figure 2). O-demethylation at the 9a position by the same enzymes produces 

the metabolite, aflatoxin P1 (AFP1). In some species, reduction to aflatoxicol occurs, 

although it is not a major metabolite and is readily oxidized back to AFB1 (Salhab and 

Edwards, 1977). These metabolites are referred to as detoxification products due to their 

relatively low mutagenicity and carcinogenicity compared to the reactive AFBO and 

resulting DNA adduct. In human liver microsome studies, AFQ1, in addition to AFBO, 

are the major oxidative products formed from AFB1 at all substrate concentrations (Raney 

et al., 1992c). AFM1 and AFBO formation correlates (r2=0.976) under low substrate 

concentrations. Conversely, at high AFB1 concentrations, the correlation between AFBO 

and AFQ1 becomes much higher (r2=0.550). These results suggest that at low substrate 

concentrations, the “high affinity” (CYP1A2) form of P450 is responsible for the 

epoxidation of AFB1 and the oxidation of AFM1, whereas the “low affinity” form 

(CYP3A4) produces AFQ1 as well as AFBO (Ramsdell et al., 1991;  Raney et al., 1992c). 

The CYP P450 and metabolite patterns are similar to earlier work where phenobarbital 

induction of CYP 3A4, increased levels of AFQ1 and decreased levels of AFM1; however, 

the decreased AFM1 may have been due to increased conjugation enzymes (Monroe and 

Eaton, 1987). 
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Figure 2. Metabolism of aflatoxin B1 by phase I and phase II enzymes. Phase I enzymes include CYP 3A4 and 1A2. 
Biomarkers are highlighted in blood (white box) and urine (gray box). Adapted from Wild and Turner 2002.  
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AFB1 is further metabolized by phase II conjugation enzymes to form more water 

soluble that are excreted. The main phase II pathway for AFBO is through conjugation 

with glutathione by way of the cytosolic enzyme glutathione-S-transferase (GST). GST 

enzymes efficiently conjugate the tripeptide GSH with lipophilic electrophiles including 

the carcinogen benzo(a)pyrene diol epoxide (Robertson et al., 1986) and AFBO (Raney 

et al., 1992b). GST are a multigene family containing many enzymes with variable 

patterns of gene regulation and catalytic specificity that can act as an alternative 

nucleophilic site to the nucleophilic portions of DNA (Coles and Ketterer, 1990). 

Conjugation of AFBO with GSH gives the primary metabolite in the bile following AFB1 

treatment in rats (Degen and Neumann, 1978;  Holeski et al., 1987;  Raney et al., 1992b); 

about 10% of the administered dose was identified as the glutathione conjugate (Degen 

and Neumann, 1978). Conjugation of AFBO with GSH is typically followed by 

conversion to an AF-mercapturic acid residue by acetylases and peptidases which is then 

excreted in the urine (Wild and Turner, 2002). 

GST activity is an important factor in determining the susceptibility of different 

species to the carcinogenic effects of AFB1. This is evident in the species difference 

between rats and mice. Although AFB1 is readily bioactivated to the reactive AFBO in 

mice, they are resistant to AFB1 induction of tumors due to high levels of cytosolic GST 

which form an AFB-conjugate that is excreted. Rats on the other hand, poorly convert 

AFB1 to AFBO, which in turn is a poor substrate for GST enzymes. For example, oral 

doses as high as 10,000 ppb AFB1 do not cause liver cancer in mice while levels as low 

as 15 ppb cause increased tumors in rats (Wogan and Newberne, 1967). It was later 
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discovered that mice constitutively express murine GST A3-3, which allows conjugation 

of AFBO to occur up to 50 times faster than in sensitive species such as the rat (Eaton and 

Gallagher, 1994). Human cytosolic fractions and liver slices demonstrate relatively low 

AFBO conjugation (Heinonen et al., 1996;  Kirby et al., 1993;  Moss and Neal, 1985). In 

one particular study comparing the conjugation activities in mouse, rat and human liver 

cytosols, the human liver cytosol appears to conjugate AFBO, however, with lower 

efficiency than the rat (Raney et al., 1992b). GST mediated conjugation of AFBO in 

humans was supported by identification of the urinary mercapturic acid metabolite in the 

course of chemoprevention studies in the People’s Republic of China (Wang et al., 1999).  

The same hydroxylated AF products can undergo phase II conjugation with 

glurcuronide via UDP-glucuronyltransferase. Holeski et al. reported that AFP1-

glucuronide made up 4-15% of total biliary AFB1 metabolites, which is second only in rat 

bile to AFB-GSH (1987). Additional studies have confirmed that AFP1-glucuronide is the 

only significant glucuronide or sulfate conjugate of hydroxylated AFB1 metabolites (Eaton 

et al., 1994). 

1.1.4.5 Excretion 

Absorbed AFB1 and its metabolites are excreted in urine, while elimination in 

feces is a route for both unabsorbed AFB1 and the biliary excretion of metabolites. Early 

work identified biliary exertion as the primary route in rats with 60% of the administered 

radio-labeled AFB1 excreted within the first 24 hr, followed by 20% excreted in the urine 

(Wogan et al., 1967). Rhesus monkeys administered a low or high dose of radio-labeled 

AFB1 excreted 40% of the dose in urine and 42% in the feces within 7 days, independent 
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of the dose (Dalezios et al., 1973). The urine and blood still contained detectable 

radioactivity 5 weeks after administration. In this study, AFM1 was the major urinary 

metabolite during days 1-4 (18-20%), and unmetabolized AFB1 was excreted in small 

amounts on day 1 (0.05-0.2%). Eighty-three Chinese males with detectable levels of 

AFM1 were recruited to asess the fecal and urinary excretion of AFM1, AFQ1, and AFB-

N7-guanine. The concentration of fecal AFQ1 was 60 times higher than that of AFM1. 

Similarly, excretion of AFQ1 in urine was greater than that of AFM1 and AFB-N7-guanine 

(Mykkanen et al., 2005). Additionally, mammals excrete AFM1 in milk while nursing. In 

fact, the designation “M” comes from its discovery in milk, initially identified as a 

compound related to AFB1 (De Iongh et al., 1964). Figure 2 depicts the fate of the various 

AFB1 metabolites. Many of these metabolites serve as important biomarkers of AFB1 

exposure. 

1.1.5 Biomarkers of exposure 

Several AFB1 metabolites have been studied as potential biomarkers of exposure 

and biological effect. Typically, biomarkers are chemical compounds that can be 

measured and correlated with specific endpoints or molecular and cellular events that may 

be predictive of health risks. These compounds or events fall into the categories of 

exposure (exposure to a parent compound), effect (biological responses to an exposure), 

and susceptibility (individual response to an environmental agent) (Groopman, 1994). 

Importantly, AF biomarkers can serve as intermediate endpoints for assessing the efficacy 

of cancer prevention interventions. In 1989, Wogan defined the important attributes 

necessary for measuring exposure to environmental carcinogens such as AF. Viable 
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biomarkers must: have adequate analytical methods to detect and quantify exposure to 

carcinogens/mutagens at ambient levels in the environment; be applicable to cells or body 

fluids that are readily accessible; have measured values quantitatively related to exposure 

levels over a wide range; and integrate consequences of intermittent or continuous 

exposures to multiple agents (Wogan, 1989). The development of molecular biomarkers 

for AFs is based on the extensive data available about their metabolism, macromolecular 

adduct formation, and general mechanisms of actions which have been previously 

discussed. Several AFB1 serum and urinary markers fall into these categories and have 

been thoroughly researched and utilized in epidemiological studies and clinical 

intervention trials. These biomarkers include AFB1-N7-guanine, AFB1-albumin adduct, 

AF-mercapturic acid and AFM1. 

1.1.5.1 Aflatoxin M1 

Of the urinary metabolites assessed as biomarkers, only AFB-N7-Gua and AFM1 

have shown a dose-dependent relationship between AF intake and urinary levels. This is 

an important correlation for determining the risk associated with dietary AF exposure and 

therefore serves as an important measure of internal dose. Zhu et al. (Zhu et al., 1987) 

analyzed AFM1 concentration in urine samples by enzyme-linked immunoabsorbent assay 

and noted correlations between levels of AFM1 excretion and levels of AFB1 in corn and 

peanut oil samples collected from different households in Fusui County, Guangxi 

Autonomous Region, People’s Republic of China. A good correlation (r= 0.65) between 

total dietary AFB1 intake and total AFM1 excretion in human urine was observed during 

a 3-day period. However, one study did not report AFM1 as a major urinary metabolite 
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after using immunoabsorbent assays (Groopman et al., 1992a). Alternately, the same 

group was able to use immunoaffinity and HPLC methods (Groopman, 1994) and 

confirmed a strong and highly statistically significant correlation between AF intake with 

measurements of urinary exertion of AFM1 and DNA adduct AFB1-N7-guanine in 

samples from Shanghai, China. Several studies report similar correlations, as well as 

estimate that 1.2-2.2% of the total AFB1 intake is excreted as AFM1 in urine (Groopman 

et al., 1992a;  Nyathi et al., 1987). Rat dosimetry studies confirmed this work 

demonstrating excellent correlation between amount quantified in the urine and the dose 

administered resulting with a correlation coefficient of 0.93 (Groopman et al., 1992b). 

Because AFM1 is formed by the same cytochrome P450 that yields the 8,9-epoxide, AFM1 

serves as a reasonable surrogate for the genotoxic potential of AF exposures in individuals 

in addition to measuring internal dose.  

Furthermore, urinary levels of AFM1 may provide some index of altered risk for 

use in intervention studies aimed to reduce exposure and prevent cancer. Sun et al. (1999) 

utilized AFM1 to calculate risk of developing HCC due to AF exposure, concomitant 

exposure to hepatitis C virus or a family history of HCC and was able to show that 

exposure to AFM1 can account for a substantial part of the risk of developing HCC. When 

oltipraz, a chemopreventative agent that affects phase I and phase II metabolism of AF, 

was administered to rats exposed to AFB1, AFM1 levels were significantly reduced during 

the intervention followed by a rapid rebound following completion of treatment (Scholl et 

al., 1996). Continued work with oltipraz demonstrated similar decreases in AFM1 in 

addition to AF-mercapturic acid conjugate following 1 month of treatment in humans 
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(Wang et al., 1999). Intervention trials using an AF binder in a humans showed significant 

decreases in both AFB1-albumin adduct and AFM1 following 3-months of treatment 

(Wang et al., 2008). Mitchell et al. (2013) reported 55% reduction in urinary AFM1 levels 

by a clay treatment compared to the placebo. Furthermore, this was the first to show that 

daily urinary AFM1 levels can be used as a biomarker of internal AFB1 exposure in a 

short-term intervention trial. Due to the ease of sample collection, this biomarker proved 

to be especially useful in measuring the efficacy of the same clay binder in children 

(Mitchell et al., 2014a). It is important to note however, that AFM1 is indicative of AF 

exposure within the past two days due to its rapid excretion, which typically occurs in the 

first 12 hr and decreases to undetectable levels within 48 hr. 

As previously indicated, AFM1 is also measured in milk. Numerous studies have 

detected AFM1 in human breast milk with varying frequency, presumably due to 

differences in AF intake. These incidences range from 22% in Iran (Mahdavi et al. 2010) 

to 92% in the United Arab Emirates (Abdulrazzaq et al 2003). Recently, Columbian 

women were surveyed about their dietary habits and provided breast milk for HPLC 

analysis. AFM1 was detected in 90% of the milk samples with a mean of 5.2 pg/ml. In an 

earlier study conducted in Zimbabwe, 54 samples were obtained and 11% were found to 

contain up to 50 pg/ml in breast milk (Wild et al., 1987). In further studies, carryover from 

AFB1 intake to AFM1 in milk has ranged from 0.09 to 0.43% (Zarba et al., 1992) to 0.3-

6.2% (Creppy, 2002). AFM1 in milk provides an additional source of exposure. This 

source is of special concern due to the fact that milk is frequently consumed by children 

and as a result, the FDA action limit is 0.5 ppb AFM1 in milk. 
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1.1.5.2 Aflatoxin B1-N7-guanine  

As previously mentioned, multiple studies report a linear correlation with AFM1 

and AFB1-N7-Gua and AF intake and therefore serve as important biomarkers of 

exposure. However, if the measurement of carcinogen-DNA adducts is of primary interest 

and the subsequent representation of macromolecular damage and cancer initiation, AFB-

N7-Gua may serve as a more relevant biomarker of effect since it represents a surrogate 

measure of covalent binding to DNA. Furthermore, AFB1-N7-Gua was shown to be 

exclusively excreted in the urine of rats, which simplifies pharmacokinetics (Bennett et 

al., 1981). AFB1-N7-Gua was also determined to be a short-term biomarker due to its half-

life of 8-10 hr in rats (Groopman et al., 1980). Groopman and colleagues reported a 

correlation coefficient of 0.82 between AFB1-N7-Gua levels and dietary intake from daily 

samples collected for four consecutive days from Gambian participants. This same study 

raises the issue of rapid urinary excretion of AFs and the rapid fluctuation in urinary AF 

levels. Samples analyzed from 20 of the Gambian participants demonstrated marked 

fluctuation in urinary AF levels, exceeding two orders of magnitude in some cases. This 

was overcome by the integration of urinary levels over a number of days by collecting 

consecutive 24-hr urine samples. The mean daily urinary AF levels over the four days 

were then compared with the mean daily AF intake for each individual and resulted in the 

correlation previously reported. Importantly, formation and excretion of AFB1-N7-Gua in 

urine are similar in F344 rats and humans, thereby adding an important confirmation of 

the rat to human extrapolation (Groopman, 1994). A comparison of the dose-dependent 

levels of AF binding to liver DNA with the amount of urinary AFB1-N7-Gua in rats 
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demonstrated a correlation coefficient of 0.98 highlighting the use of the biomarker as a 

surrogate of AFB1-DNA binding (biomarker of effect) as well as a surrogate for AF intake 

(biomarker of exposure).  

1.1.5.3 Aflatoxin B1-albumin/Aflatoxin B1-lysine adduct 

The AF-adduct with serum albumin has been examined as a biomarker of 

exposure. Because of the longer in vivo half-life of albumin compared to the urinary DNA 

adduct, the serum albumin adduct can integrate AF exposures over longer time periods 

and act as a surrogate measure of covalent binding to DNA. Albumin is the only protein 

in serum that binds AFB1 to any significant extent in both monkeys and rats. Wild et al. 

(1986) found that 25 hr after a single dose of AFB1 (3.5-200u/kg AFB1), a total 0.98-

2.15% of the amount administered was bound to plasma protein in rats. Importantly, in a 

chronic study where animals were sacrificed on days 2, 3, 7, 14, 21, and 24, binding of 

AF to albumin accumulated to a 3-fold higher level than observed after a single dose. 

Furthermore, AFB1-albumin (AFB1-alb) binding reached a plateau between days 7 and 14 

of treatment indicting that this biomarker may represent stable chronic or long-term 

exposure.  

Gan et al. (1988) analyzed AFB1-alb adduct in samples collected from individuals 

living in Guangxi Province, P.R.C. and a high significant association between adduct and 

dietary intake was observed. It was determined in this study that 1.4-2.3% of the ingested 

AFB1 was covalently bound to serum albumin which was very comparable to the data 

observed in rats. Furthermore, the data for the DNA-adduct in urine and serum albumin 

adduct correlated significantly with a coefficient of 0.73.  Similarly, in samples collected 
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from The Gambia, another region of high incidence of HCC, the correlation between 

dietary AF intake and AF-alb biomarkers was equal to 0.83 (Groopman et al., 1992a). 

However, a separate study reported a weaker correlation (.0.55) between AFB1-alb and 

intake of AF-contaminated food in the Gambia (Wild et al., 1992). This conflicting data 

could be due to inaccurately measured dietary intake of AF or due to the fact that AF-alb 

biomarker is a measure of exposure over the past 2 to 3 months, and therefore dietary 

intake of AF prior to the 7-day study period would contribute to the adduct level observed 

at the end of the study period. AFB1 can decrease albumin levels as observed in swine fed 

AF-contaminated diets (Annau et al., 1964). This is not surprising considering the fact 

that the liver is the site of albumin synthesis as well as the site of AF-albumin adduct 

formation (Wild et al.,1992). However, the effects of decreased albumin levels following 

AF exposure on the stability of the AF-alb adduct have not been explored. 

Despite the animal model validation and epidemiological support, AF biomarker 

measurements have only been used as categorical data with simple dichotomization into 

positive or negative or high or low levels. Therefore, no quantitative data on dose-response 

from dietary exposure data can be generated. 

1.1.6 Carcinogenicity  

Following the identification of the hepatotoxic effects of AF in the 1960s, it was 

discovered that AF contamination was responsible for an outbreak of HCC in rainbow 

trout, a species not usually plagued with such malignancies (Halver, 1967). This finding 

led to the extensive study of chronic AF exposure. These studies utilized a variety of 

protocols including different dosing methods, rat strains, different periods of 



 

 
 

 

25 

administration and observation, etc. All reported the potency of AF in inducing HCC in 

rats when fed for periods of 20 weeks or longer. By 1977, three independent laboratories 

identified covalent modification of DNA by AF (Swenson et al., 1977). Additionally, 

some of the first epidemiological work in this field reported AF exposure as a risk factor 

in the development of HCC in Mozambique, Swaziland, and Philippines (Bulatao-Jayme 

et al., 1982;  Peers and Linsell, 1977;  Van Rensburg et al., 1985). Results from all three 

studies positively correlated mean AF exposure with HCC. Moreover, daily AF exposure 

in HCC cases was estimated to be 4.5 times higher than in controls. Due to strong 

epidemiological evidence the International Agency for Research on Cancer (IARC) 

classified AFB1 as a Group 1 carcinogen: human carcinogen, following multiple 

epidemiological studies in populations with high HCC incidence (IARC, 1993;  IARC, 

2002). 

Covalent modification of DNA through alkylation of nucleic acids is a critical 

reaction in tumor induction with AFB1. As previously mentioned, the reactive epoxide 

(AFBO) that is responsible for the carcinogenicity of the parent compound is formed 

following CYP oxidation. The alkylation of nucleic acid by AFBO occurs with high 

regiospecificity at the N7 position of guanine residues in DNA. AFBO can also form 

derivatives with RNA and proteins. Early work demonstrated that the exo-epoxide reacts 

with DNA by attack of the nitrogen atom at the 7 position of guanine on C8 of the epoxide. 

This reaction yields a trans DNA-adduct via an SN2 reaction to produce 8,9 dihydro-8-

(N7 guanyl)-9-hydroxdy AFB1 adduct (AFB1-N7-gua). The endo-epoxide fails to form an 

adduct at N7 or any site in DNA (Iyer et al., 1994). The positive imidazole ring on AFB1-
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N7-gua promotes depurination and results in the formation of an apurinic site. 

Additionally, under slightly alkaline conditions the imidazole ring opens and forms the 

more stable and persistent AFB1 formaminopyrimidine adduct (AFB1-FAPY adduct) 

(Wild and Turner, 2002).  Both AFB1-N7-gua and AFB1-FAPY adducts cause guanine 

(G) to thymine (T) transversion mutations (Foster et al., 1983;  Levy et al., 1992;  Lin et 

al., 2014;  Trottier et al., 1992). It is likely that these adducts and the AP site individually 

or collectively represent the chemical precursors to the genetic effects of AFB1; the 

dominant precursor to mutations induced by AFB1 is still unconfirmed (Wild and Turner, 

2002). 

This AF-induced mutational hotspot (GT transversion) occurs at the third 

position of codon 249 resulting in the ArgSer alteration in of the p53 gene. The p53 

gene, associated with tumor suppression, is mutated in >50% of tumors, including HCC 

(Bressac et al., 1991;  Hsu et al., 1991) and it can behave as a dominant oncogene. This 

gene fragment extends from the third position of codon 247 to the middle positon of codon 

250 (Aguilar et al 1993). The GCTA transversion is the most frequently observed 

mutation induced by AFB1 in vitro followed by the transversion of CA in the adjacent 

first position of codon 250 (Aguilar et al., 1993). These findings correlate with in vivo 

reports of GT hotspots in high AFB1 regions in east Asia and Africa (Bressac et al., 

1991;  Hsu et al., Harris, 1991;  Li et al., 1993;  Murakami et al., 1991). It is important to 

note that many of the early studies identifying this hotspot in human populations did not 

take hepatitis status into account; this confounder will be discussed in a later section. 

Recently, early life exposure, specifically during the embryonic period, was demonstrated 
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to be strikingly susceptible to the mutagenic effects of AFB1. AFB1-DNA adducts in the 

embryos of C57BL/6J mice dosed on gestation day 14 were shown to be 20-fold more 

potent inducers of mutagenesis than adducts in parallel-dosed adults (Chawanthayatham 

et al., 2015). The data revealed mutation spectra dominated by GCTA mutations in both 

the mother and offspring.  

The ras oncogene has also been identified at a molecular target in AF 

carcinogenesis. Studies using DNA from both AFB1-induced transformed cell lines and 

primary liver tumors, demonstrated that AFB1 produces mutations in codon 12 of all three 

types of c-ras oncogene (ha-ras, Ki-ras, and N-ras). However, few studies have identified 

activated c-ras oncogenes in human HCC obtained from AF-endemic areas (Eaton and 

Gallagher, 1994). One recent toxicogenomic study has also looked at microRNA 

expression responses following genotoxic doses of AFB1 in HepaRG cells (Marrone et al., 

2015). In this study, miR-410 was over-expressed as compared to exposure to the non-

carcinogenic analogue (AFB2). Previous studies have identified overexpression of miR-

410 in both rodent and human hepatocellular carcinogenesis (Luk et al., 2011). 

Furthermore, miR-122 was inhibited in a dose- and time-dependent manner providing a 

novel insight to a genotoxic mode of action (Marrone et al., 2015). miR-122 is a liver-

specific miRNA and is the most abundant miRNA accounting for 52% of the total 

miRNAs in the livers of adult humans and plays a central role in normal liver function 

(Lewis and Jopling, 2010). Furthermore, associations between reduced expression of miR-

122 and liver diseases have been reported, including (but not limited to) HBV, HCV, and 

hepatocellular carcinogenesis (Marrone et al., 2015). However, the exact mechanism of 



 

 
 

 

28 

miR-122 down-regulation during hepatocellular carcinogenesis is still poorly understood. 

Studies focusing on the abnormal expression of miRNAs in human cancers have suggested 

that the presence of miRNA could have some consequential effect on tumorigenesis, such 

as hepatocellular carcinogenesis (Fang et al., 2013).   

Despite the highly mutagenic potency of AFBO and the associated adducts, there 

is variability among species susceptibility to AF-induced HCC. As previously described, 

biotransformation of AFB1 appears to be a major determinant of the potency of its effects. 

Furthermore, glutathione activity and/or metabolism to a less mutagenic metabolite (i.e., 

AFQ1) also serve as crucial roles in the dose that ultimately binds to DNA. For example, 

GST activity is inversely related to the susceptibility of rodent species to AFB1-induced 

HCC (Degen and Neumann, 1981;  Monroe and Eaton, 1987). Alternately, primates 

appear to have low GST activity but metabolism favors the production of AFQ1 therefore 

limiting the amount converted to the reactive epoxide (Moss and Neal, 1985;  Roebuck 

and Wogan, 1977).  

In general, a species that is sensitive to acute toxic effects of AFB1 is more 

susceptible to hepatic cancers by some degree of exposure. For example, the LD50 of ducks 

is 0.34 mg/kg and ducks exposed to AF develop HCC. In comparison, chickens have a 

LD50 twice that of ducks and (15-18 mg/kg), however hepatic cancer from AF exposure 

has never been reported in chickens (Roebuck and Maxuitenki, 1994). Additionally, the 

level of liver DNA adduction per unit AFB1 dosage generally correlates with species 

susceptibility (Cole et al., 1988;  Lutz et al., 1980). After a single exposure, concentration 

of the initial AFB1-DNA adduct decreases at varying rates in different organisms or cell 



 

 
 

 

29 

types, based on conversion to persistent FAPY ring-opened derivatives, enzymatic DNA 

repair, spontaneous depurination, and growth dilution (Bailey, 1994). 

The AFB1 dose-response relationship has been explored, particularly regarding the 

possibility of a no-adduct threshold at low doses. Single-dose exposures of 10-1000 ng/kg 

in male F344 rats produced AFB1-DNA adducts in the liver in a dose-dependent manner. 

Macromolecular adduct formation was observed at 10 ng/kg, which is within the human 

exposure range. However, the curves produced were linear at low doses and less than 

linear at higher doses (Appleton et al., 1982). Male F344 rats chronically exposed to a 

series of AFB1 doses maintained levels of DNA-adduct that did not increase significantly 

after 4 weeks. These results indicate that a steady-state adduct formation and removal can 

be reached. Furthermore, the adduct levels were proportional to the dose given (Buss et 

al., 1990). These studies demonstrate DNA adduction by AFB1 at doses that extend as low 

as human exposure levels and provide no indication of a threshold dose below which AFB1 

exposure might impose no genotoxic risk. Similar effects were also observed in the 

extremely sensitive rainbow trout. Trout treated with carcinogenic doses of AFB1 for 2-4 

weeks showed dose-linear accumulation of liver AFB1-DNA adducts (Dashwood et al., 

1988). Importantly, this study also demonstrated a linear inhibitory response with low 

doses of indole-3-carbinol indicating the possible absence of any significant threshold of 

I3C protection against AFB1-DNA binding; even at low levels, I3C may offer some 

protection against chemically induced neoplasia. Similarly, Johnson et al. (2014) recently 

demonstrated complete protection from AF-induced liver tumors with a 66% reduction in 

urinary AFB1-N7-guanine through the use of a triterpenoid (CDDO-Im), compared to 96% 
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HCC incidence in the AFB1 treatment group. This study suggested that a threshold for 

AF-induced cancer might exist. 

HBV infection is a risk factor for HCC and is often prevalent in areas where AF 

exposure is endemic. Based on the results from a 2012 meta-analysis of AF-related HCC 

studies, the population at risk for AF-related HCC was estimated to be 17% worldwide 

(Liu et al., 2012). However, when factoring for individuals chronically exposed to HBV 

infection and AF, the risk of developing HCC nearly doubles (Groopman et al., 2008) 

suggesting an additive or synergistic response. AF also appears to have a synergistic effect 

on hepatitis C virus-induced liver cancer (Wild and Montesano, 2009), although the 

quantitative relationship is not as well established as that for AF and HBV in inducing 

HCC. It should be noted that while HBV infection occurs most commonly in developing 

countries early in life, infection with HCV normally manifests much later, thus affecting 

the time period over which AF and HCV may interact (Wild and Montesano, 2009).  

Studies quantifying the relationship between AF and HBV are well documented. 

Several have strongly demonstrated that concomitant exposure to AFs and HBV 

strengthens the risk of developing HCC. Groopman et al. (2008) reports the risk of liver 

cancer in individuals exposed to chronic HBV infection and AF to be up to 30 times 

greater than those exposed to AF alone. Another study in Shanghai revealed that hepatitis 

B virus surface antigen positive (HBsAg+) individuals exhibited a much greater risk for 

developing HCC when AF was detectable in the urine [59 risk ratio (RR)] compared to 

those with no detectable urinary AF (7 RR) (Qian et al., 1994;  Ross et al., 1992). Similar 

trends were observed in the Guangzi Shuang Autonomous Region of China (Yeh et al., 
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1985;  Yeh et al., 1989) and Taiwan (Sun et al. 2001). In a follow-up of the Taiwan cohort, 

it was discovered that HBsAg carriers who had detectable AF-alb adduct were more likely 

to develop HCC. In a recent prospective study in the Guangxi Province of China, tumor 

tissue and adjacent liver tissue from 397 HCC patients, and normal hepatic tissues from 

68 cases of hepatic hemangioma, liver resection and liver transplant donors were collected 

and subdivided by AF and HBV status (Qi et al., 2015). Interestingly, when the p53 

mutation spectrum was analyzed, the patients positive for AF and independent of HBV 

status, had a significantly higher p53 mutation rates compared to AF negative groups thus 

suggesting an AF-specific mutation. Furthermore, 93.3% of the 223 HCC specimens 

exhibited positive staining for p53 mutations. The authors suggest that the positive 

staining seen in the HCC specimens indicate the presence of mutant p53 protein, which 

has a longer half-life and is easier to detect compared to the wild type p53 protein with a 

short half-life. One of the potential mechanisms of AF and HBV interactions could 

possibly explain this observation with p53. Chronic liver injury and regenerative 

hyperplasia resulting from HBV infection are critical to the development of HCC (Hussain 

et al., 2007) and the HBV x gene (HBx) is frequently included in sequence of the virus 

that is integrated into cellular DNA (Kew, 2003). Cells transfected with the HBx gene are 

more prone to apoptosis and to induction of mutations at codon 249 of the p53 gene 

possibly by inhibiting excision repair thus leading to increased AFB1 DNA adduct 

persistence and mutation induction (Hussain et al., 2007;  Kew, 2003), i.e., greater 

expression of the mutant p53 protein. Inflammation and oxidative stress associated with 

chronic active hepatitis may also result in DNA damage and mutations (Wild and  
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Montesano, 2009). Finally, AFB1 is known to be immunosppressive in animals and may 

affect susceptibility to chronic viral infection in exposed individuals (Turner et al., 2003).  

AFM1 is approximately only 10% of the mutagenicity of AFB1 (Wogan et al., 

1974), however the acute toxicity of AFM1 is both quantitatively and qualitatively similar 

to AFB1 in ducklings and rats. A test for covalent binding to rat liver DNA revealed a 

covalent binding index of 2100 demonstrating that AFM1 must also be regarded as a strong 

Table 1. Comparative toxicity of AFB1 in various species of vertebrates
a 
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hepatocarcinogen (Lutz et al., 1980). For this reason, AFM1 is strongly regulated in diary 

which is frequently consumed by the young. 

1.1.7 Toxicity 

AF toxicity principally leads to structural and functional damage to the liver. The 

effects of toxic doses are well known in most laboratory animals and in several domestic 

animal species and are summarized in Table 1. Susceptibility to AF is greatest in the 

young, and there are significant differences between species, within species, and sexes 

(according to the concentrations of testosterone). The toxicity of AF also varies according 

to many nutritional factors (Pier, 1985). For instance, recovery from protein malnutrition 

is severely delayed by AF exposure (Rogers, 1993). In laboratory and domestic animals, 

chronic exposure to AFs compromises immunity and interferes with protein metabolism 

and multiple micronutrients that are critical to health. However, clinical data in humans is 

still limited. Acute AF poisoning, or aflatoxicosis in humans has been observed in multiple 

outbreaks and is characterized by vomiting, abdominal pain, pulmonary edema, and fatty 

infiltration and necrosis of the liver. Aflatoxicosis is the poisoning that results from AF 

exposure. Two forms of aflatoxicosis have been identified: the first is acute severe 

intoxication, which results in direct liver damage and subsequent illness or death, and the 

second is chronic subsympotmaic exposure (Williams et al., 2004). Depending on the dose 

and duration of the exposure, AF toxicity may lead to acute illness and death, usually 

through liver cirrhosis, nutritional and immunologic consequences, and cumulative effect 

on the risk of cancer. One of the most devastating outbreaks occurred in the winter through 

early summer of 2004 in eastern Kenya (Azziz-Baumgartner et al., 2005). This outbreak 
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resulted in 317 cases and 125 deaths. Health officials sampled maize from the affected 

area and measured AFB1 concentrations 220 times greater than the 20 ppb limit for food 

suggested by Kenyan authorities. Similar to studies conducted in animals, early symptoms 

of aflatoxicosis include anorexia, malaise, low-grade fever and progress to acute hepatitis 

with vomiting, abdominal pain, and death (Etzel, 2002). The first sign of exposure in all 

animal species is decreased growth and loss of appetite. This initial observation led to the 

early studies demonstrating the role of AF in nutritional modulation, growth suppression, 

and immune system impairment.  

Micronutrient deficiencies commonly occur in populations of developing 

countries and exposure to dietary AF can further aggravates the deficiencies. Animal 

studies indicate that exposure to AF may reduce plasma and tissue vitamin A and E 

concentrations. Broiler chicks and barrows dosed with AFB1 showed a depression of 

hepatic vitamin A (Harvey et al., 1994;  Pimpukdee et al., 2004). Vitamin A is vital for 

vision, programming of epithelial cell differentiation in the digestive tract and respiratory 

system, skin, bone, nervous system, and immune system, and for hematopoiesis (Sahin et 

al., 2002). Similarly, vitamin A and vitamin E serum levels decreased by half in young 

pigs exposed to AF-contaminated corn (500 ng/g AFB1) for 21 days (Harper et al., 2010). 

Vitamin E also plays an important role in maintenance of the immune system, possibly 

through enhancing T-cell proliferation and lowering measure of oxidative stress due to its 

antioxidant properties (Lee and Man-Fan Wan, 2000). Like vitamins A and E, vitamin D 

is strongly involved in the maintenance of immune system competence and has been 

shown to be affected by AFs in the diet in broiler chickens. AF (1ppm in the diet) reduced 
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plasma vitamin D concentrations after 5 days of treatment (Glahn et al., 1991). Results 

from a population in Ghana found a significant inverse relationship between AF-alb levels 

and both vitamin A and E concentrations (Obuseh et al., 2010;  Tang et al., 2009). 

Furthermore, participants who had high detectable levels of AF-alb (≥0.8 pmol/mg 

albumin) had increased odds for vitamin A deficiency compared to those with lower 

levels.  In contrast, a study measuring the modification of immune function through 

exposure to AF in Gambian children only observed a negative correlation with AF-alb and 

vitamin C (Turner et al., 2003). The authors of this study point out that seasonal variations 

exist for a number of micronutrients, which should be considered in future studies. 

Although AFB1 appears to modulate vitamin A and E levels in animal studies, there is an 

important need to clarify this role in relation to humans. 

AFs have been shown to have an effect on zinc and selenium concentrations. 

Importantly, these minerals are essential for healthy immune systems. Specifically, zinc 

is required to activate a thymic hormone, thymulin (ZnFTS), which is responsible for cell-

mediated immunity (Mocchegiani et al., 1998). Intestinal malabsorption occurs in piglets 

from AF-exposed sows with defects related to a reduced zinc intestinal absorption (Miller 

et al., 1981). Thymic involution, associated with depletion of thymocytes and reduction 

of both thymus and body weights, is an event that has been reported in animals exposed 

to AF (Harvey et al., 1988;  Panangala et al., 1986). This is possibly due to AF-associated 

zinc malabsorption. Piglets born to mothers exposed to AFB1 and G1 were deficient in 

zinc and had decreased thymic endocrine activity despite normal zinc milk concentrations 

from the lactating sows (Mocchegiani et al., 1998;  Silvotti et al., 1995). Active ZnFTS 
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were decreased and inactive thumulin (FTS) concentrations were high. The low peripheral 

zinc bioavailability induced by maternal AF exposure appears to be associated with the 

depletion of thymulin-secreting cells and cortical thymocytes. Interestingly, zinc levels in 

the AF-exposed sows were not affected (Mocchegiani et al., 1998). The authors suggest 

that the observed reduced thymus and body weights of the piglets may be largely due to 

the presence of AF in sow milk. Reduced zinc concentrations following AF exposure has 

also been observed in rats (Doyle et al., 1977;  Ikegwuonu, 1984) and lambs (Ramos et 

al., 1996). Importantly, the rat studies utilized intraperitoneal injections of AF rather than 

fed AF-contaminated diets like the lamb and pig studies suggesting that the observed 

depression in minerals is a biochemical effect rather than a consequence of AF-associated 

malabsorption. Similarly, selenium levels were found to be inversely related to AF 

exposure (Chen et al., 1982;  Chen et al., 2000;  Hegazy and Adachi, 2000). Early work 

in chickens demonstrated the depressing effect on Se by AF in a salmonella challenge 

model (Chen et al., 1982). Authors from this study also report increased liver and plasma 

GSH levels and decreased AF-DNA adducts with Se supplementation. Interestingly, an 

inverse association between plasma selenium levels and AFB1-alb adducts in men from 

Matzu, Taiwan was statistically significant but only among those with null genotypes of 

GSTM1 and GSTT1 (Chen et al., 2000). These results suggest that Se may be involved in 

AF metabolism through modulation of GSH and GST levels. 

AF exposure can occur in infancy, through weaning, and into adulthood, providing 

a strikingly dynamic pattern. The interference of AFB1 with prenatal development has 

been reported in mice (Arora et al., 1981), hamsters (Schmidt and Panciera, 1980), and 
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rats (Butler and Wigglesw, 1966;  Geissler and Faustman, 1988;  Mayura et al., 1998). 

Results from animal studies with in utero exposure demonstrate a delay of early response 

development, impaired locomotor coordination, impaired learning ability, and growth 

retardation (Kihara et al., 2000). Moreover, reduced feed intake and subsequent weight 

loss in animals exposed to AF have been reported in ducklings (Cheng et al., 2001), mice 

(Kocabas et al., 2003), Japanese quail (Sadana et al., 1992), chickens (Bryden et al., 1979;  

Doerr et al., 1983;  Pimpukdee et al., 2004), turkeys (Giambrone et al., 1985), pigs 

(Harvey et al., 1995;  Harvey et al., 1994;  Lindemann et al., 1993), red drum (Zychowski 

et al., 2013a), and Nile tilapia (Zychowski et al., 2013b).  

AF biomarkers have played an important role in supporting the growth inhibitory 

effects in humans. AFB1, AFG1, and AFQ1 were detected in 17 out of 35 Thai cord blood 

samples as compared to 2 out of 35 maternal blood samples indicating transfer of AFs 

from mothers to fetuses (Denning et al., 1990). Following analysis of results 

demonstrating much greater levels (up to 10 times) of AF-alb in the venous blood of 

Gambian mothers compared with those in matched cord blood samples, it has been 

suggested that fetal metabolism of AF to AF-alb may occur with low efficiency or that 

transplacental transfer may be low (Wild et al., 1991).  

Extensive research in West Africa has demonstrated a significant role for AF in 

early life growth faltering where dietary insufficiency and infectious disease only explain 

about half of the restricted growth (Turner, 2013). Importantly, children who are stunted 

often develop long-term developmental and cognitive problems and are more vulnerable 

to infectious diseases (Ricci et al., 2006). In separate surveys conducted in The Gambia, 
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Benin and Togo, a dose dependent association between AF-alb and growth/growth 

velocity was observed in children 16 weeks (Gambia) (Turner et al., 2007), 9-60 months 

(Benin and Togo) (Gong et al., 2002;  Gong et al., 2003), 16-37 months (Benin) (Gong et 

al., 2004), and 6-9 years (Gambia) (Turner et al., Wild, 2003) of age. Furthermore, 

mothers with high AF-alb adduct levels in Ghana were more likely to have low birth 

weight babies demonstrating a significant inverse relationship between birth weight and 

maternal AF-alb adduct (Shuaib et al., 2010). Findings from studies associating growth 

and AF have been summarized in Table 2. 

Even though in utero exposures can have a significant effect on faltering in infant 

growth (Shuaib et al., 2010;  Turner et al., 2007), AF exposure increases most dramatically 

after children are weaned from breastfeeding (Gong et al., 2003). In many parts of Africa, 

weaning food typically consist of varying ratios of maize meal and groundnuts. Weaned 

children in Benin and Togo had approximately two-fold higher mean AF-alb adduct levels 

than those receiving a mixture of breast milk and solid foods (Gong et al., 2003). It was 

recently determined that a highly exposed population in Ghana was consuming homemade 

“Weanimix” with average contamination levels exceeding 200 ppb AFB1 and some 

containing up to 500 ppb (Kumi et al., 2013). For comparison, after dosing for 4 or 10 

weeks, decreases in weight gain were observed in young pigs exposed to similar levels 

(Panangala et al., 1986;  Schell et al., 1993). 

 Although AF’s mode of action for growth stunting has not been definitively 

established, the role for DNA, RNA, and protein has been implicated. Recently, the 

contribution of hepatotoxic effects on growth hormone (GH) signaling and growth 
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stunting has been studied. A rat model studying liver injury demonstrated dose-dependent 

wasting and stunting, liver pathology, and suppression of hepatic targets of GH signaling 

in AFB1-exposed rats. The authors suggest a toxin-dependent liver injury and hepatic GH-

resistance mechanism for growth impairment (Knipstein et al., 2015). Another hypothesis 

that deserves attention is the combined damaging effect of AFs and other infectious agents 

on the intestinal epithelium leading to chronic inflammation, lowered resistance to 

systemic infection, and abnormalities in nutrient absorption. For the first time, exposure 

to AF was associated with childhood chronic hepatomegaly in school-age children from 

the Makueni district in Kenya (Gong et al., 2012). The long-term effects of this condition 

have yet to be defined but recent analysis suggests an association with slowed child growth 

(Wilson et al., 2010).  

AFB1 acts as a “force multiplier” synergizing the adverse effects of microbial 

pathogens and other agents or factors detrimental to health (Monson et al., 2015) including 

immune suppression. The effects of AF on the immune system have been well established 

in a number of animal species as reviewed by Bondy and Pestka (2000). The main target 

of such studies have been cell-mediated immune responses (Ali et al., 1994;  Bondy and 

Pestka, 2000;  Neiger et al., 1994). As previously implied, growth faltering and 

micronutrient deficiencies are associated with decreased immune and non-immune host 

defenses that increase susceptibility to infectious diseases (Wild, 2007) which contributes 

to the term immunotoxin.  

A cohort of Gambian children 6-9 years was studied to determine the effect of 

dietary AF exposure on immune parameters reflecting T-cell, B-cell, and mucosal 
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Table 2. AF and growth faltering 
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secretion as measured by secretory IgA (sIgA) levels in saliva, cell-mediated immunity 

(CMI) multi-test, and antibody responses to both rabies and pneumococcal polysaccharide 

vaccines. The study reported that sIgA was markedly lower in children with detectable 

AF-alb compared to those with non-detectable levels. There was a weak association with 

one of four pneumococcal serotypes (no response to rabies) and no association between 

CMI responses to test antigens of AF (Turner et al., 2003). The IgA suppression observed 

in this study suggests that AF exposure may influence susceptibility to infectious disease. 

In addition, the authors question the relevancy of using a long-term biomarker, specifically 

concerning the lack of an association between AF exposure and CMI, which is evidenced 

in animal studies. It is unknown whether recent or past exposure is important in 

determining immune modulation. In a separate study, the role of AFs in modifying the 

distribution and function of leukocyte subsets in Ghanaians was assessed (Jiang et al., 

2005). Correlation analyses indicate that high levels of AFB1 are significantly associated 

with low levels of CD3+ (T cells) and CD19+ (B cells) cells showing the CD69 activation 

marker. The CD69 activation marker is a co-stimulatory molecule for T-lymphocyte 

proliferation and ultimately results in amplified immune responses. CD8+ T cells that 

express perforin and granzyme A were also inversely associated with AF in this study. 

Overall, alteration of immunological parameters could result in impairments in cellular 

immunity that decrease host resistance. Importantly, Jiang and colleagues attempted at 

calculating general dietary exposure levels for this Ghanaian population estimating that 

10 µg of AFB1 a day would result in the effects observed. High AF-alb levels also 

appeared to accentuate some HIV associated changes in T-cell phenotypes and in B-cells
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in HIV positive participants from a more recent study in the same Ghanaian population 

(Jiang et al., 2008). Additionally, vitamin A induces lymphoproliferation resulting in a 

stimulated immune system; a deficiency can decrease specific antibody production, the 

number of circulating lymphocytes, and lymphocyte proliferation (West et al., 1991). As 

previously mentioned, AF has been associated decreased vitamin A levels therefore 

imparting an indirect effect on immune function.  

Mechanistically, the reactive AFBO has been associated with acute toxicity 

through multiple pathways via adduct formation with DNA, RNA, and proteins. Dramatic 

decreases in nuclear and nucleoar RNA synthesis has been observed in AFB1-treated 

animals (Yu, 1983;  Yu et al., 1988a;  Yu et al., 1988b) resulting in inhibition of the 

chromatin template and inhibition of RNA polymerase. Guanine nucelotides of RNA 

adducts are believed to interfere with cellular protein synthesis and to inhibit protein 

translation at ribosomes in acute aflatoxicosis (Sarasin and Moule, 1975). This RNA injury 

is considered the major factor in diminished cellular protein synthesis (Yu et al., 1988a). 

Recently, Zhuang et al. (2016) utilized immobilized affinity chromatography and liquid 

chromatography-tandem mass spectrometry to identify AFB1-binding proteins and 

observed AFB1 binding with RPSA (Zhuang et al., 2016). RPSA is a ribosomal subunit 

that can be found in cytoplasmic membrane, cytoplasm, and cell nuclei. This subunit is 

involved in ribosomal RNA processing and precursor assembly and is critical for 40S 

ribosome subunit maturation. Furthermore, overexpression of RPSA is common in a 

number of cancers and is hypothesized to play a role in chromatic regulation through 

interactions with histone proteins. Although these results represent one study in a limited 
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field, they would suggest a strong role for RNA and histone binding in the mechanism of 

toxicity through inhibition of RPSA. In addition to DNA and RNA binding, AFBO can 

bind to various proteins affecting structural and enzymatic protein functions (Viviers and 

Schabort, 1985), as well as inhibit cellular respiration through mitochondrial damage 

(Doherty and Campbell, 1972).  

1.2 Fumonisin 

1.2.1 Problem defined 

Similar to AF, Fumonisins (FB) are fungal toxins, or mycotoxins, produced by 

Fusarium verticilloides and F. proliferatum. Of the naturally occurring homologues and 

derivatives, fumonisin B1 (FB1) is the most abundant and most toxicologically significant 

(JECFA, 2001) analog. FB1 was involved in the fatal toxicosis of horses caused by equine 

leukoencephalomalacia (ELEM) (Kriek et al., 1981a;  Wilson et al., 1990) and exposure 

to higher levels can also cause porcine pulmonary edema in swine (Kriek et al., 1981a). 

A few studies have linked FB dietary exposure with oesophageal cancer in human 

populations in South Africa and China, as well as neural-tube defects along the Texas-

Mexico border (Missmer et al., 2006); however, the overall impact on human health has 

not been well delineated. To understand the risks associated with FB, knowledge of the 

following is required: (1) pre-harvest contamination and natural occurrence of FBs in food 

and feeds, (2) the toxicology of FB and the recorded effects on exposed humans and 

animals, (3) the effects of acute and chronic exposure, (4) the extent of human and animal 

exposure to the toxin (molecular epidemiology), and additionally, the methods to mitigate 

the exposure. 



 

 
 

 

44 

1.2.2 Discovery 

FBs were first discovered as toxic metabolites produced by Fusarium species by 

Gelderblom and colleagues (1988). Prior to this discovery, Fusarium fungal species had 

been known, to cause leukoencephalomalacia (ELEM) in horses (Marasas et al., 1976), 

and to be highly toxic in vervet monkeys, horses, pigs, sheep, rats, ducklings, (Jaskiewicz 

et al., 1987a;  Kriek et al., 1981a;  Kriek et al., 1981b) and hepatocarcinogenic in rats 

(Jaskiewicz et al., 1987b;  Marasas et al., 1984). In early studies, the toxic compound, was 

identified in F. moniliforme-infected corn after it was implicated in field outbreaks of 

ELEM. Samples from the outbreak were later reported to be hepatocarcinogenic in rats 

(Wilson et al., 1985b) suggesting that the toxicant and carcinogen were the same. 

Gelderblom and colleagues were able to isolate the cancer-promoting compounds in a 

short-term cancer initiation-promotion assay from F. moniliforme culture material and 

diethylnitrosamine. Two pure compounds were isolated, chemically characterized, and 

given the names fumonisin B1 and fumonisin B2 (FB1 and FB2, respectively) (Gelderblom 

et al., 1988). Fumonisin B1 was found to be the most dominant analog, although others in 

addition to FB2 have been identified (Voss et al., 2001). The toxic effects associated with 

the consumption of F. moniliforme-contaminated corn, including ELEM and porcine 

pulmonary edema, have been experimentally reproduced using purified FB1 (Alberts et 

al., 1993;  Harrison et al., 1990;  Haschek et al., 1992;  Kellerman et al., 1990;  Marasas 

et al., 1988b). The initial studies have resulted in a great interest in the toxicity and 

carcinogenicity of FB1 in humans in the past decades; however, the overall impact on 

human health is still unclear. 



 

 
 

 

45 

1.2.3 Source of contamination 

FBs are long-chain polyhydroxyl alkylamines fungal metabolites with two propane 

tricarboxylic acid moieties esterified to hydroxyls on adjacent carbons (Figure 3) 

(Bezuidenhout et al., 1988). Although Fusarium proliferatum is also capable of producing 

FBs, F. moniliforme is responsible for most of the contamination and is one of the most 

prevalent fungi found with maize and related crops (Marasas, 1995;  Shephard et al., 

1996a). Fusarium moniliforme has been shown to produce FB1, FB2, and Fumonisins B3 

(FB3) in substantial quantities (Cawood et al., 1991). As previously mentioned, FB1 and 

FB2 were identified and characterized in 1988 (Gelderblom et al., 1988). Following the 

identifications of these novel mycotoxins, other members of the FB family have been 

isolated and characterized including: FA1 and FA2 (Gelderblom et al., 1988); FB3, FB4, 

and FB’s hydrolysis products (Cawood et al., 1991); FC1 and FC2 (Branham and Plattner, 

1993); and FP1, FP2, and FP3 (Musser et al., 1996). 

Many of the F. moniliforme strains cover five continents including Africa and 

North American and have been isolated from not only corn and corn feeds, but also 

sorghum and millet (Scott, 1993). Fusarium can contribute to both nutritional losses and 

toxic contamination of staple substrates (Marin et al., 1999). A strain of F. moniliforme, 

MRC 826, was demonstrated to produce maximum yields of FB1 when incubated at 20° 

C for 13 days (Alberts et al., 1990). This temperature was later confirmed to be optimal 

for the production of FB1 on corn (La Bars et al., 1994). Further work demonstrated that 

biosynthesis of FBs by F. moniliforme appeared to primarily be a function of water activity 

(aw) as it grows on maize (Cahagnier et al., 1995): a 5% decrease in aw didn’t affect fungal 
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Figure 3. A) Molecular structure of fumonisin B
1
 B) Molecular structures of sphinganine, sphingosine, dihydroceramide, and ceramide. 
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growth but FB biosynthesis was reduced by threefold and a 10% reduction in aw from 1.0 

to 0.9 resulted in a 300-fold fumonisin reduction and 20-fold drop in fungal growth. The 

authors determined the threshold aw for growth of F. moniliforme to be around 0.85-0.86; 

at this activity, basic metabolism and growth was inhibited. Another study reported 

optimal conditions for growth of the Spanish strain of F. moniliforme and F. proliferatrum 

on maize to be 30° C with better growth with increasing aw; FB1 and FB2 were synthesized 

regardless of aw or temperature (Marin et al., 1995). In this study, the maximum mycotoxin 

production occurred at aw >0.95 at both 25° C and 30° C. In general, fumonisin production 

decreases with temperature and high aw conditions (Doohan et al., 2003) but significant 

production of FBs by F. moniliforme have been observed at temperatures as high as 37° 

C (Marin et al., 1999). Furthermore, conditions such as drought, high temperatures, and 

insect damage exert stress to the plant and increase the likelihood of Fusarium growth 

(Miller, 2001). The influence of climatic conditions on the incidence of Fusarium species 

is probably both direct (e.g. an effect on mode of reproduction) and indirect (e.g. an effect 

of soil and vegetation type) (Doohan et al., 2003).  

1.2.4 Adsorption, biodistribution, and pharmacokinetics 

FBs are poorly absorbed and rapidly excreted and the accumulation is found in 

small amounts mainly in liver and kidney. Biliary secretion appears to be an important 

route of excretion as a majority of FB1 is found in the feces (Norred et al., 1993). Early 

work demonstrated a mono-exponential elimination phase that fitted a one-compartment 

model in rats dosed intraperitoneally (Shephard et al., 1992a). However, no data for 

metabolism by liver, kidney, or other tissues exists for the rat (Voss et al., 2001); no 
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research has been reported in non-human primates and the kinetics and metabolism of FB1 

in humans has not been reported.  

FB1 is poorly absorbed in the gastrointestinal tract as demonstrated by comparisons 

of the different routes of exposure. In rats dosed intraperitoneally, 0.5% of the radiolabeled 

FB1 dose was primarily detected in the liver followed by the blood and kidney; FB1 was 

not detected in other tissue. Conversely, 45% of the radiolabeled FB1 dose injected 

intravenously appeared in the liver within 1 hr; measurable levels were also detected in 

muscle, fat, skin, and other tissues (Norred et al., 1993). Absorption of FB1 in rats is rapid, 

with maximum plasma level reached within 20 min (Shephard et al., 1992a). Norred et al. 

(1993) suggests the efficiency of absorption could be attributed to gut content. In rats 

fasted overnight prior to dosing, 70-80% of the dose was recovered in feces (Norred et al., 

1993) and in another study 101% of the dose was recovered in feces with no major 

retention in tissues (Shephard et al., 1992b). Overall, absorption has been estimated to be 

1% to 6% in non-ruminants (Martinez-Larranaga et al., 1999). 

A majority of the FB1 absorbed is rapidly eliminated through biliary secretion 

(Shephard et al., 1994a) and the remaining FB1 is circulated to the liver. After 4 hr of an 

oral dose of radiolabeled FB1 in rats, 0.5% of the dose was detected in the liver where it 

remained for at least 96 hr (Norred et al., 1993). In a continuation of the study, consecutive 

dosing revealed peak liver- and kidney-activities occur 24 hr after the final dose which 

persisted for another 48 hr. Secondary to the liver, FB1 was found in blood and kidney. 

Importantly, the amount of FB1 that is persistent is not metabolized in animals (Martinez-

Larranaga et al., 1999;  Shephard et al., 1992a;  Shephard et al., 1994a) with the exception 
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of vervet monkeys and they have been shown to partially hydrolyze FB1 in the gut 

(Shephard et al., 1994b). The apparent lack of metabolism (except for vervet monkeys) 

was demonstrated in a rat study by Norred et al. in which 80% of a radiolabeled dose was 

recovered from feces within 48 hr and less than 3% from urine within 96 hr (1993). 

1.2.5 Biomarkers of exposure 

In comparison to AF, very few FB biomarkers of exposure exist. This is due in 

part to the lack of metabolism of the parent compound providing no measurable 

metabolites. As a result, the limited data regarding the human health effects from FB1 

exposure can likely be attributed to the lack of sensitive and validated methods for 

determining exposure (Shephard et al., 2007a;  Shephard et al., 1996b). Despite their 

limitations, biomarkers have proven to be useful in assessing exposure at the population 

level. The most extensively studied FB biomarkers are the sphingoid bases, sphinganine 

(Sa) and sphingosine (So), followed by unmetabolized urinary FB1. 

Use of the sphingoid bases as biomarkers requires understanding of FB’s 

mechanism of action and this will be explained in greater detail in the following section 

(Fumonisin Toxicity). In short, FB disrupts sphingolipid metabolism thereby increasing 

the ratio of the two sphingoid precursors, sphinganine and sphingosine (Sa:So). This 

increased ratio has been detected in tissue, blood, and urine of vervet monkeys, ponies, 

chickens, rabbits, and rats and it was also utilized as a biomarker of exposure (Riley et al., 

1994b). However, other inhibitors of ceramide synthase exist (i.e., alternaria toxin and 

australifungins) which can decrease the specificity for Sa:So as a biomarker for FB1 

exposure (Merrill et al., 1997). Furthermore, the sensitivity of Sa:So method appears to 
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be an issue because this biomarker was developed based on limited non-human primate 

data. The levels fed (300 and 800 ug FB1 kg-1 b.wt. day-1) to vervet monkeys gave 

significantly altered Sa:So ratios in serum in contrast a non-significant increase of Sa:So 

in urine was detected (Shephard et al., 1996b). Although the administered doses from the 

vervet monkey feeding study are comparable to estimates for human populations 

consuming moldy corn (Thiel et al., 1992), most human exposures are 100-1000 times 

lower (de Nijs et al., 1998). Further evidence of limited sensitivity of this method was 

evident in mice and rat studies fed with smaller concentrations where only marginal 

changes in serum Sa:So ratios were observed (Castegnaro et al., 1998). Moreover, 

investigations into the possible elevation of Sa:So ratio in human blood and urine have 

generally failed to correlate with estimates of dietary fumonisin exposure (Shephard et al., 

2007b).  The Sa:So ratios in the plasma and urine of male and female volunteers 

consuming a staple diet of maize from the Transkei region of the Eastern Cape and 

KwaZulu-Natal province, South Africa and in the Bomet district of western Kenya failed 

to correlate with mean total FB levels in food collected from the respective regions (van 

der Westhuizen et al., 1999). Overall, Sa:So ratio may indicate dietary FB1 exposure, but 

this method is currently not sufficiently sensitive or specific for determining associations 

between individual exposure and health outcomes. 

The detection of free fumonisin has been developed in recent years as an 

alternative to the Sa:So ratio method but the effective use of this biomarker is matrix 

specific. Free fumonisin in human blood is unlikely to provide a useful biomarker due to 

rapid clearance from the bloodstream (i.e., a few hr in vervet monkeys) (Shephard et al., 
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1995). Biliary FB1 excreted from feces has been successfully detected (Chelule et al., 

2000;  Chelule et al., 2001;  Shephard et al., 2007b), however this method is not very 

sensitive (detection limit: 50 ng g-1) nor practical due to the difficult nature of the matrix 

in collection, extraction, and scale necessary for analysis. Urinary FB however appears to 

show promise as a valid biomarker of FB exposure. Shetty and colleagues (1998) were the 

first to publish a method for measuring FB1 in human urine with a detection limit of 10 ng 

mL-1. This detection limit could be used to monitor populations consuming > 28 ug FB1 

kg -1 b.wt. day-1 assuming a ~0.5% transfer to urine in a 70-kg adult producing 1 L of urine 

a day (Turner et al., 1999). Improvements have been made over the years with increased 

sensitivity using HPLC with fluorescence detection following derivatization or LC/MS-

MS. Using the latter detection method, Gong and colleagues reported a 75% incidence of 

urinary FB1 (UFB1) in samples collected from a cohort of women recruited in Morelos 

County, Mexico (Gong et al., 2008). This method permits the detection of 20 pg FB1/mL 

urine in a 10 mL urine sample. Furthermore, this study was able to correlate biomarker 

levels with dietary intake demonstrating increased concentrations of FB1 in the urine with 

increased consumption of corn tortillas. Similarly, urine samples provided by participants 

from communities of high- and low-exposure in Guatemala (previously determined by 

FB-maize survey results) were measured for UFB1 and the results mirrored FB intake 

(Torres et al., 2014). Overall, UFB1 appears to be a good proxy for dietary FB1 exposure. 

1.2.6 Mechanism of action 

In contrast to AFB1, metabolic activation is not required for FB1 toxicity. 

Overwhelming weight of evidence indicate that the biochemical mode of action of FB1 is 
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through the inhibition of the enzyme sphingosine (sphinganine) N-acyltransferase 

(ceramide synthase). In the sphingolipid biosynthestic pathway (Figure 4), ceramide 

synthase acylates the amino group of sphinganine with a fatty acid moiety. This process 

yields dihydroceramide, which is then converted to ceramide by the addition of the 4,5-

trans-double bond and finally to the more complex sphingolipids, such as sphingomyelin 

Figure 4. A simplified scheme of de novo sphingolipid synthesis and turnover in 
mammalian cells and the sites of action of FB1-induced inhibition of the enzyme ceramide 
synthase. (Modified from WHO, 2000; Merrill et al., 2001). 
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and glycosphingolipids, by the addition of the appropriate headgroup (Riley et al., 1996). 

Sphingolipids are critical components of the water barrier of skin by affecting the 

properties of cell membrane and lipoproteins. They serve both as ligands for extracellular 

matrix proteins and receptors for neighboring cells, enteric bacteria, and viruses. 

Additionally, sphingolipids can act as modulators of growth factor receptors and 

secondary messengers for agonists including but not limited to tumor necrosis factor-α, 

interleukin-1β, nerve growth factor, and 1α,25-dyhydroxyvitamin D3 (Merrill et al., 

1997). FB1 bears a structural similarity to free sphingoid bases, most notably 1-

deoxysphinganine (Zitomer et al., 2009), and as a result, it inhibits ceramide synthase. 

When ceramide synthase is inhibited, the de novo formation of ceramide from free 

sphingoid bases and fatty acyl-CoAs is blocked and a similar sphingolipid salvage 

pathway is also inhibited. This allows for accumulation of the sphingoid bases and their 

metabolites in liver, kidney, blood, and other tissues (Torres et al., 2015). This inhibition 

response that is the rationale for the Sa:So ratio biomarker method.  

Ceramide synthase is a major cellular target of FB (Wang et al., 1991), and FB can 

block the biosynthesis of complex sphingolipids resulting in accumulation of sphinganine 

which is toxic at high concentrations. Importantly, increases in sphinganine and its 1-

phosphate in tissues and blood are tightly correlated with the onset and severity of toxic, 

responses in target organs in multiple species studied (Voss and Riley, 2013). Cellular 

deregulation can also result in the increase in degradation products from catabolism of 

free sphingoid bases, lipid products derived from sphingoid base degradation, and free 

sphingosine from the inhibition of reacylation of sphingosine derived from either the diet 
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or catabolism of complex sphingolipids (Riley et al., 1994b).  In sum, it is difficult to 

clearly demonstrate a single biochemical pathway that could account for this specific 

effect on cell behavior. 

This disruption of de novo sphingolipid biosynthesis by FB has been demonstrated 

in rat liver microsomes (Wang et al., 1991), cultured renal cells (Yoo et al., 1992), cultured 

cerebellar neurons (Merrill et al., 1993), and in rat primary hepatocyte cultures 

(Gelderblom et al., 1995). FB-induced inhibition of sphingolipid biosynthesis and the 

consequent disruption of sphingolipid metabolism has been observed in all animal species 

studied thus far including horses, ponies, pigs, rats, chickens, catfish, and rabbits (Riley et 

al., 1994b). In a study using pigs, it was concluded that 1.) disruption of sphingolipid 

biosynthesis in liver, lung, and kidney occurs at lower concentrations of FB than 

concentrations that cause tissue lesions observed by light microscopy, 2.) elevation of free 

sphinganine and free Sa:So ratio and depletion of complex sphingolipids occur before 

serum indicators for tissue injury are elevated, and 3.) pure FB1 and diets containing 

contaminated corn both disrupt sphingolipid biosynthesis in liver, lung, and kidney to a 

much greater extent than other tissues (Riley et al., 1994b). In this study, the kidney was 

more sensitive to FB-induced toxicity than other tissue based on the relatively high level 

in free sphinganine and the free Sa:So ratio reported in the pigs. Similarly, in Sprague 

Dawley rats fed FB1 for 4 weeks, a close correlation between the severity of the 

ultrastructural changes in liver and kidney was observed; the greater sensitivity that was 

observed in the kidney likely is due to the increased concentration of free sphinganine and 

Sa:So ratio in the urine compared to serum (Riley et al., 1994a). 
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1.2.7 Carcinogenicity 

Based on the sufficient evidence in experimental animals and insufficient evidence 

in humans for the carcinogenicity of FB, FB1 is classified as possibly carcinogenic to 

humans (Group 2B) (IARC, 2002). FB1 is a carcinogen in rodents, exhibiting both cancer-

initiating and -promoting effects. Cancer promoting effects were observed in a short-term 

cancer initiation-promotion assay using a dietary level of 0.1% FB1 in diethylnitrosamine 

(DEN)-initiated rats (Gelderblom et al., 1988). In this study, FB1 significantly induced the 

formation of GGT+ foci in the DEN-initiated group. The induction of GGT+ is widely used 

as a marker of preneoplastic hepatic lesions during chemical carcinogenesis (Hanigan and 

Pitot, 1985). In another study, when rainbow trout were fed a diet containing 0, 3, 23, or 

104 mg/kg FB1 for 34 weeks, no liver tumors were seen at termination (60 weeks) (Carlson 

et al., 2001). However, when the fish were pre-treated with 100 mg/kg AFB1 or 35 mg/kg 

N-methyl-N’-nitro-N-nitrosoguanidine, liver tumors were observed at varying incidences 

and doses. 

In a long-term study in male BD IX rats, liver tumors developed in rats that died 

or were euthanized between 18 and 26 months (10/15 animals) after exposure to 50 mg/kg 

FB1 in the diet (estimated 1.6 mg/kg/day) (Gelderblom et al., 1991). The livers of all of 

the rats euthanized at 6 months and onwards presented hepatocyte nodules; the 

hepatocellular carcinoma that developed in the rats after 18-26 months were found to 

originate within one of these large regenerative nodules. In a subsequent 21-day feeding 

study, the initiation potential of FB1 was studied in rats fed 250, 500, or 750 mg FB1/kg 

diet. Results from this study indicate that FB1-induced hepatocellular carcinogenesis is a 
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function of time since a dosage of 29.7 mg/100 mg body wt. over 7 days did not initiate 

cancer while a similar dose over 21 days induced liver tumors (Gelderblom et al., 1994). 

The authors also suggest that a balance exits between compensatory cell proliferation and 

toxicity-induced inhbitory effect. In contrast, no liver tumors were observed in a 2-year 

National Toxicology Program feeding study using 50 male and female Fischer 344/N/Nctr 

BR rats (Howard et al., 2001). However, male rats did develop kidney adenomas and 

carcinomas. Results suggest a no-observed-effect-level (NOEL) for the induction of renal 

tumors in male rats that is between 15 and 50 ppm FB1. Interestingly, female 

B6C3F1/N/Nctr BR mice from the same study showed an increased incidence of 

hepatocellular adenomas and carcinomas with dietary levels >50 mg FB1/kg. The 

differences in organ and dose response observed in the contrasting studies have been 

postulated to occur as a result of dietary differences or deficiencies (Gelderblom et al., 

2004).  

In a single IV dose study, Sprague-Dawley rats were injected with FB1 at 0 or 1.25 

mg/kg and were euthanized at 12 hr or, 1, 2, 3, or 5 days (Lim et al., 1996). Results 

demonstrated that the kidney was the primary target organ of FB1 in rats. Neoplasia also 

occurred in the liver and esophagus, suggesting that the liver and esophagus are also 

targets for fumonisin toxicity. An early response in these target organs is apoptosis with 

some evidence of oncogenic necrosis following FB1 administration, especially in the liver 

(Dragan et al., 2001). This effect was thought to be modulated through tumor necrosis 

factor α (TNFα) production. In short-term studies from the NTP study, increases in tissue 
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Sa:So ratio correlated with apoptosis and hepatotoxicity was ameliorated in mice lacking 

either the TNFR1 or the TNFR2 TNFα receptor. 

Epidemiological data initially correlated esophageal cancer with Fusarium 

contamination in food samples from the Transkei region of South Africa and the Henan 

Province of China (Luo et al., 1990;  Marasas et al., 1988a;  Zhen et al., 1984). Following 

the identification of FBs in the 1980s, correlation studies were improved to focus on the 

specific toxin. Sydenham et al.(1990) measured FB1 and FB2 levels in uncontaminated 

corn samples collected from high and low prevalence areas for esophageal cancer in 

Transkei. Significantly higher toxin levels were present in samples from the high 

esophageal cancer area confirming previous studies correlating Fursarium species with 

cancer in this region. Similar trends were observed in Cixian and Linxian counties (Chu 

and Li, 1994) and Linxian and Shangxui counties (Yoshizawa et al., 1994), People’s 

Republic of China. Interestingly, Chu and Li (1994) noted that in addition to fusaria mold, 

nitrosamines in the diet were a major contributing factor in the etiology of esophageal 

cancer in this part of China (1994). A number of fungi, including F. moniliforme, are 

capable of forming secondary amines and nitrosamines presenting an interesting 

possibility of synergism or additively in diet related carcinogenesis which has not been 

further investigated. 

A critical component of FB1 carcinogenicity is apoptosis and continuous 

regeneration to compensate for apoptosis (Dragan et al., 2001). This is likely a 

consequence of ceramide synthase inhibition, TNFα production, and induction of 

apoptosis (Voss et al., 2002). The sphingoid bases, sphingoid base metabolites such as So-
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1-phosphate, ceramide, and other sphingolipids stimulate cellular events leading to 

apoptosis or mitosis. As a result, disruption of metabolism and cellular functions by these 

toxins is likely to be critical for cytotoxicity, apoptosis and carcinogenicity resulting from 

FB exposure (Voss et al., 2002). Additional evidence also supports the possibility that 

TNFα is involved in regulation of apoptosis and cell replication (Bazzoni and Beutler, 

1996). According to current data, FB1 may be the first example of an apparently 

nongenotoxic (non-DNA reactive) agent that induce tumors through a mode of action 

involving apoptosis, necrosis, atrophy, and consequent cell regeneration. 

1.2.8 Toxicity 

FB1 is neurotoxic, hepatotoxic, and nephrotoxic in animals and many of the effects 

are species and gender dependent (Dragan et al., 2001;  Stockmann-Juvala and 

Savolainen, 2008). Furthermore, FB1 caused hepatic injury in all species regardless of the 

route of administration (Wild and Gong, 2010). The primary role of FB1 in equine 

leukoencephalomalcia (Kellerman et al., 1990;  Marasas et al., 1988b) and pulmonary 

edema syndrome in swine has been well documented (Harrison et al., 1990).  In these 

diseases, as well as in FB1-induced carcinogenesis, the main mechanism is the inhibition 

of the enzyme ceramide synthase. However, there are several additional proposed 

mechanisms for different types of FB1-mediated toxicity and it seems that no one common 

pathway exists. Potential mechanisms include oxidative stress, cytotoxic effects, 

apoptosis, and immunotoxic effects, which have been demonstrated in various animal 

models and cell lines (Figure 5).  
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Recently, it was demonstrated that ceramide synthase inhibition by FB1 is 

dependent on the six mammalian ceramide synthase isoforms in a tissue-specific pattern 

(Loiseau et al., 2015). The results demonstrated that in a piglet model gavaged with 1.5 

mg FB1/kg body weight daily for 9 days, FB1 preferentially binds two isoforms of CS 

(CerS4 and CerS2) to deplete specific ceramides in lung while enriching them in liver. 

The authors postulate that this enzyme expression might explain the organ-specific 

adverse effects observed in various species. 

Due to the lack of data regarding the kinetics and metabolism of FB1 in humans, 

little is known about the toxic effects in humans. However, FB has been linked to neural 

tube defects (NTD; embryonic defects of the brain and spinal cord resulting from failure 

of the neural tube to close) in populations along the Texas-Mexico border. In 1990-1991, 

six anencephalic births occurred in 6 weeks at one hospital in Cameron County, Texas 

(Missmer et al., 2006). Already having linked an extreme cluster of ELEM to FB1 present 

in contaminated corn-fed horses, this outbreak of NTDs was hypothesized to be the 

consequence of exposure to high levels of FB1 (Missmer et al., 2006). Other regions with 

high corn-based food consumption and documented FB contamination also have high 

prevalence of NTD including regions of China and South Africa (Cornell et al., 1983;  

Moore et al., 1997;  Ncayiyana, 1986).  

Folate deficiency has been identified as a major risk factor for NTD. FB1 has been 

shown to disrupt folate transport and utilization in Caco-2 cells in vitro and in LM/Bc mice 

in vivo and this effect is associated with reduced complex sphingolipids (Gelineau‐van 

Waes et al., 2012;  Gelineau‐van Waes et al., 2005). Therefore, it has been proposed that
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Figure 5. Biochemical and cellular consequences of fumonisin inhibition of ceramide synthase(s) and global disruption of lipid 
metabolism. Adapted from Bulder et al. 2012. 
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the disruption of sphingolipid metabolism caused by FB1 may affect folate uptake and 

result in an increased risk for NTD. 

Importantly, exposure to FB alone or co-exposure with AFs may contribute to 

child growth impairment in Tanzania (Shirima et al., 2015). A prospective study of 166 

children 6-14 months of age demonstrated negative associations with length-for-age z-

scores (LAZ) and UFB1 at recruitment and 6 and 12 months following recruitment. AF-

alb and child growth did not reach statistical significance. However, causal mechanisms 

need to be investigated. 

1.3 Aflatoxin B1/fumonisn B1 co-exposure  

AFs and FBs are increasingly identified as a dual public health concern. Analysis 

of AF and FBs mixtures and investigating their possible antagonistic, additive, or 

synergistic toxic effects is ongoing. This is primarily due to their overlap in target organs 

(liver), common growth niches of the fungi, and shared nutrient source, i.e., maize. The 

combination of AF and FB exposure was of particular concern to the 74th meeting of the 

Joint FAO/WHO Expert Committee on Food Additives because of the well-known 

genotoxicity of AFB1 and the ability of FB1 to induce regenerative cell proliferation 

(Bulder et al., 2012). 

AFs and FBs have been simultaneously detected in maize in areas where maize 

consumption, HCC, chronic liver disease, and growth retardation in children are high. For 

example, in Guatemala, a country with a high incidence of children born with NTD and 

the fifth highest prevalence of stunting worldwide, a survey of 640 maize samples revealed 

a high risk of co-exposure (Torres et al., 2015). Their highest co-occurrence rate was 
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observed in stored maize (Hove et al., 2016). Another recent survey in sub-Saharan Africa 

found that of 388 samples analyzed, 81% and 65% were positive for FB and AF, 

respectively (Probst et al., 2014). Additional reports of co-exposure are presented in Table 

3. Based on this data, co-exposure in contaminated maize occurs on average of about 50%. 

Exact ratios of AFB1 and FB1 in stored maize have not been documented, however co-

exposure data suggests the occurrence of FBs in maize is at least 10 times greater than that 

of AFs (Hove et al., 2016). Additionally, biomarkers for both toxins were found in high 

frequency of an adult population residing in a high-risk area of rural Ghana (Robinson et 

al., 2012;  Wang, Afriyie-Gyawu et al., 2008). 

Additive and synergistic toxic effects from co-exposure to AF and FB have been 

reported in multiple animal models. Hydra maintained at pH 6.9-7.0 were exposed to 

AFB1, FB1, and AFB1/FB1 for 92 hr and measured for toxic responses based on 

morphology and mortality (Brown et al., 2014). Results demonstrated that combined 

AFB1 and FB1 exposure was more toxic than either individual mycotoxin with the hydra 

disintegrated by hr 92. McKean et al. (2006) demonstrated that AFB1 and FB1 interacted 

to produce alterations in the toxic responses with a strong additive interaction in F344 rats 

and mosquitofish. In combinative toxicity studies in rats, 25 mg/kg bw of FB1 additively 

increased the mortality of rats caused by the acute toxicity of AFB1 (dosed in various 

fractions of the AFB1 LD50 value, 2.71 mg/kg) evidenced by the interaction index value 

(K; [theoretical] LD50/Experimental [measured] LD50) of 1.98, indicating an additive 

interaction. Acute toxic effects such as depression and diarrhea occurred after a two lowest
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Table 3. Reported co-occurrence of AFB1 and FB1 in maize worldwide 
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Table 3. Continued 
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doses; dose dependent mortality also occurred. In the combinative toxicity study in 

mosquito fish there was no dose-dependent mortality, however a dose response in acute 

toxic symptoms such as reduction of activity and loss of righting reflex was observed at 

high concentrations. Similarly, the combinative toxicity index, K, was 1.98. In a 90-day 

feeding study, male Wistar rats were fed 40 µg/kg AFB1or a mixture containing 40 µg/kg 

AFB1 and 100 mg/kg FB1 (Theumer et al., 2010;  Theumer et al., 2008). The co-exposed 

group had higher numbers of tubular apoptotic cells in the kidney, which are signs of 

cellular mitosis and apoptosis in the liver compared to single mycotoxin treatment. The 

Joint FAO/WHO committee considers the data from Theumer et al. (2010) to be additive 

of the effects of AFB1 and FB1. Furthermore, a co-exposure study in growing barrows 

resulted in additive to synergistic responses in the barrows (Harvey et al., 1995). Less than 

additive to additive responses were observed in turkey poults fed AFB1/FB1 contaminated 

diets (Kubena et al., 1995). Another study showed no additive effects of AFB1/FB1 co-

exposure in barrows except for a decrease in feed consumption and feed conversion 

(Dilkin et al., 2003). However, this data was sufficient for the Joint FAO/WHO committee 

to consider the data additive (Bulder et al., 2012). 

The cancer initiation potential of AFB1 and FB1 was studied in F344 rats 

(Gelderblom et al., 2002). The effect of sequential exposure was investigated by treatment 

with AFB1 via gavage over a period of 14 days followed by FB1 treatment 3 weeks later 

over a period of 21 days. Treatment groups with individual mycotoxin exposure were also 

included. Individually, both toxins exhibit low cancer initiating potency as measured by 

the induction of foci and nodules stained positively for placental form of glutathione-S-



 

 
 

 

67 

transferase (GSTP+). However, when rats were co-treated sequentially, the number and 

size of GSTP+ lesions significantly increased. Furthermore, the sequential treatment 

induced cellular apoptosis and proliferation at the same time, leading cirrhotic livers with 

numerous dysplastic nodules. Although the authors suggested that that FB1 acted as a 

promoter, this cannot be concluded only based on the increase in foci and nodules; 

however, the data clearly suggest a synergistic effect on cancer initiation. Interestingly, in 

a one-week single-dose co-exposure study measuring urinary metabolites, F344 rats co-

exposed to AFB1 and FB1 excreted significantly less AFM1 than the AFM1 only group 

(Mitchell et al., 2014b). This study suggest that FB1 modulated the metabolism of AFB1 

to favor the formation of DNA-adduct-forming AFB1-expoxide. This modulation could 

possibly explain some of the additive or synergistic effects observed in AFB1 and FB1 

carcinogenesis. 

1.4 Reducing exposure in human populations   

In high-risk populations, where AFs and FBs are inextricable contaminants of 

food, a multi-faceted approach must be implemented to reduce exposure to these toxins, 

especially in the young population who are more susceptible. The same can be true for at 

risk populations in developed countries that may be highly exposed and vulnerable due to 

dietary and cultural practices. However, many of the proposed methods are difficult to 

implement and maintain in underserved communities.  

Innovative strategies that significantly diminish AF and, to a lesser extent, FB 

bioavailability and mitigate human and animal exposures from contaminated food and 

feed, have been reported. Based on the extant scientific literature, some of these 
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approaches are already in the stage of clinical intervention and translation. Studies 

describing materials that tightly adsorb AFs onto internal and/or external surfaces 

interfering with toxin uptake and bioavailability have recently been reviewed (Kensler et 

al., 2013; Miller et al., 2014). Extensive studies with calcium montmorillonite clay and 

dietary chlorophyllin in humans and animals indicate that they are approaching 

implementation, but still require further clinical evaluation in the field to delineate the 

effects of dose and time on efficacy and safety as well as acceptability (Phillips et al., 

2002;  Wild and Turner, 2002). Other AF sequestering materials that have limited 

evidence of efficacy require preclinical trials in animals to confirm safety followed by 

clinical intervention trials in humans prior to implementation. Before full-scale 

implementation, all of these products should be rigorously evaluated in vitro and in vivo, 

and should meet the following criteria: (1) favorable thermodynamic characteristics for 

AF sorption, (2) tolerable levels of potential hazardous contaminants, (3) safety and 

efficacy in multiple animal species, (4) safety and efficacy in long-term studies, (5) 

negligible interactions with vitamins, iron and zinc and other micronutrients. Based on 

these criteria, calcium montmorillonite clay is one of the most thoroughly characterized 

and has produced the most consistent clinical results across studies. Moreover, the use of 

calcium montmorillionte clay has demonstrated potential application for the remediation 

of FB and is the focus of this section. 

The concept of eating dirt (clay) falls under the scientific term, geophagy, which 

is practiced by humans and observe in animals. For centuries, people have used clays in 

food preparation for toxin removal, condiments or spices, or food during famine 



 

 
 

 

69 

(Callahan, 2003). Other common clay consumption practices include that for medication 

or during pregnancy with the latter being most common in cultures of sub-Saharan Africa 

(Callahan, 2003). This use for toxin removal was expanded further for the reduction of 

dietary AFs by pioneering work from the Phillips’ laboratory in the early 1980s. The 

observation that populations at high risk for exposure commonly engaged in geophagy, as 

well as the apparent success of zeolite, bentonite and spent bleaching clay from canola oil 

refining in reducing the effects of the T-2 and zearalenone mycotoxins in swine, led to the 

investigation of the sorbent properties of montmorillonite clays. Phillips and coworkers 

reported that a calcium montmorillonite is efficacious to decrease the negative health 

effects from AF exposure in multiple animal species in the 1980s. Furthermore, isothermal 

analyses and molecular modelling techniques have been employed to validate and 

characterize clay-based materials for the enterosorption of AFs and FBs. 

Clay minerals are structurally and chemically diverse. Many are ineffective and/or 

nonselective. However, research supports the hypothesis that calcium montmorillonite 

clay (CM) has a notable preference (and capacity) for AFB1. This is due to the structural 

and chemical composition of CM clay as well as the AFB1 molecule. The solid particles 

of soil are classified into three categories based on size: sand (0.05 – 2 mm), silt (0.002 – 

0.05 mm), and clay (less than 2 µm). The relative contribution of each type of particle to 

a particular soil determines its texture and other physical attributes and is used to name 

soil classes (Phillips et al., 2002). The soil mineral classes are divided based on the density 

of the dominant anionic group with silicates making up the largest class. The basic 

structural unit for the silicates is a SiO4 tetrahedron in which the Si4+ is located at the 
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center and together can form a variety of more complex structures including rings 

(cyclosilicates), chains (inosiliates), sheets (phyllosilicates) and three-dimensional 

arrangements (tectosilicates) (Phillips et al., 2002).  

CM falls under the phyllosilicate class. The functionality of this class of minerals 

is a result of the distinctive structural and chemical properties of the silicate layers 

containing both tetrahedral and octahedral sheets (Figure 6). The tetrahedral sheets are 

composed of the SiO4 tetrahedra linked together and each sheet shares three O2- ions with 

adjacent tetrahedral. Together, this forms a plane of basal oxygens. The fourth O2- of each 

tetrahedron is referred to as the apical oxygen and is free to bind to other elements. The 

Figure 6. Calcium montmorillonite clay structure: Al2Si4O10(OH)2; Si
4+ 

yellow (Silica tetrahedra); 
Al

3+
 blue (Aluminum octahedra); Hydrated Ca

2+ 
green (Interlayer) Common substitutions: Mg

2+ 
for 

Al
3+

, Al
3+

 for Si
4+ (Phillips and Grant, 1998).  



 

 
 

 

71 

octahedral sheet is comprised of two planes of OH- groups that form a hexagonal close 

packing arrangement. In the case of CM, to counter the negative charge of this structure, 

Al3+ fills two out of every three spaces to produce a dioctahedral arrangement. With this 

structure, the apical oxygens from the tetrahedral layer coordinate with Al3+ to link the 

octahedral and tetrahedral layers in a 2:1 layer structure in which an octahedral layer is 

bound on either side by a tetrahedral layer. Frequently, cations in either the tetrahedral or 

octahedral layers are missing or have been replaced through an isomorphic substitution 

with another cation of lesser charge which results in a permanent negative charge. To 

counteract the negative charge, CM clays attract Ca2+ into the region between the layers 

(i.e., the interlayer). This Ca2+ attraction into the interlayer creates the space responsible 

for the high binding capacity of CM for AF. The amount of charge necessary to balance 

the negative charge of the clay is referred to as the cation exchange capacity (CEC). As a 

phyllocilicate that is grouped as a smectite, CM has a layer charge per formula unit of 0.25 

to 0.6 (Phillips et al., 2002;  Schulze et al., 1989). 

Due to the overall negative charges on CM clay platelets, compounds with areas 

of electron deficiencies can also be attracted to these areas. The partial positive dicarbonyl 

system along with the general planarity of AFB1 (with the exception of the terminal furan) 

has been shown to be essential to the adsorption process.  Therefore, AFB1/CM binding is 

likely the result of a chemisorptive mechanism, through direct ion-dipole interactions and 

electron sharing (Deng et al., 2010;  Grant and Phillips, 1998;  Phillips, 1999;  Phillips et 

al., 2002). Early work demonstrated the importance of the spatial orientation of AFB1 in 

the CM/AFB1 binding phenomenon. In adsorption studies, data was fitted to multiple 
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isotherm equations, as described in detail by Kinniburgh (1986) and Grant (1988). Briefly, 

an isotherm is a plot of the concentration of a ligand left in solution versus the 

concentration bound to the surface of a solid which can then be utilized in the Langmuir 

equation to determine the capacity (QMax) and affinity of adsorption.  The shapes of the 

plots have been given classifications that describe the types of binding occurring (Giles et 

al., 1960;  Giles et al., 1974a;  Giles et al., 1974b). More specifically, the isotherm of 

AFB1 adsorption onto CM can be categorized as an L2 plot that is reaching a plateau. The 

maximum amount of AFB1 that was adsorbed onto CM was 0.336 mol/kg which equates 

to 72.9% of the binding capacity (Qmax) as derived from fitting the Langmuir model to the 

data. The LM was also used to estimate the Qmax at different isotherm temperatures and to 

calculate individual Kds for the calculation of enthalpy of adsorption. These results 

confirmed multiple sites (with dissimilar thermodynamic properties), and that all sites 

were probably involved in a chemisorption mechanism, since the enthalpy was near, or 

above, -40 jK/mol.  

The isotherm evidence combined with molecular modeling suggests that AF may 

react at multiple sites on CM clay particles, however, the interlayer region is the major 

site of chemisorption of AFB1 (Grant and Phillips, 1998). The importance of the interlayer 

in the sorption of AF was indirectly demonstrated by the decreased binding after heat-

collapsing the clay (removing the interlayer) and performing isothermal analyses. Results 

indicated that steriochemical differences of some AF analogues significantly affected the 

tightness of binding. Therefore, it was concluded that the molecular mechanism for the 

adsorption of AFB1 onto CM may favor the furan alignment away from the surface. 
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However, based on the good correlation between the magnitude of partial positive charges 

on carbons C11 and C1 of the β-dicarbonyl system and the strength of adsorption of planar 

analogs and derivatives of AFB1, an electron donor acceptor mechanism appears to be 

responsible for the AFB1 sorption. Recent characterizations have indicated a similar 

binding capacity and affinity for AFB1 with a CM marketed as NovaSil (NS) clay and 

refined to the final product called Uniform Particle Size NovaSil (UPSN) (Marroquin-

Cardona et al., 2011). 

The binding of FB1 by CM in vitro and in vivo was reported by Lemke (2000) who 

observed interlayer binding of FB1 by CM at acidic pH in vitro suggesting a possible 

cationic exchange reaction at negatively charged surfaces of the clay. These findings 

provide a possible mechanism for NS efficacy. This conclusion was a result of 

comparisons between various clays, including four different montmorillonites, and their 

binding capacity for FB1. Isothermal analysis data suggest that an exchange mechanism 

in the interlayer could be important to biding since this feature is characteristic of 

montmorillonite clays. The difference between the binding capacities of the 

montmorillonite clays tested is likely a product of the hydronium ion, which could aid 

protonation of FB1 and subsequent cation exchange. As previously described, CM 

contains hydronium ions within its interlayer. Importantly, sorption at pH 7 was not 

significant, supporting the hypothesis that only positively charged FB1 molecules 

participate in exchange. 

Although in vitro studies have confirmed that NS successfully binds AFB1 and 

FB1, in vivo short-term studies show that NS only protects animals against toxic levels of 
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AF. Importantly, it does not interfere with the utilization of essential vitamins and 

micronutrients in the diets (Phillips, 2002). Initially, CM was sold as an anticaking 

additive for animal feed and was identified as an attractive mitigating agent due to its 

GRAS (Generally Recognized as Safe) classification. Radiolabeled AFB1 ([14C]AFB1) 

studies in chicks demonstrated markedly diminished radioactivity in the blood and hepatic 

tissues in animals dosed with either 0.1 or 0.5% CM suggesting that CM decreased AF 

bioavailability in vivo (Davidson et al., 1987). Furthermore, the addition of 0.5% CM in 

the diet rescued broiler and leghorn chicks from the toxic effects of 7.5 ppm AFB1 (Phillips 

et al., 2006;  Phillips et al., 1988). Although the levels in this study were exceedingly high, 

they are still within the realm of possibility for acute outbreak situations (Phillips et al., 

1988).  Following these initial studies, the efficacy of CM clays for AF protection has 

been confirmed in multiple animal species including pregnant rodents (Mayura et al., 

1998), chickens (Kubena et al., 1990b;  Phillips et al., 1988;  Pimpukdee et al., 2004), 

turkeys (Kubena et al., 1991), swine (Lindemann et al., 1993), and lambs (Harvey et al., 

1991a). These studies have shown that CM is a preferential enterosorbent for AFs when 

included in the diet from 0.25 to 2% (w/w) in animal models (Phillips et al., 2002). A 

study in which Sprague-Dawley rats ingested CM clay at dietary concentrations as high 

as 2% throughout pregnancy showed neither maternal nor fetal toxicity, and did not show 

significant trace metal bioavailability in a variety of tissues (Wiles et al., 2004). A large 

volume of scientific literature has indicated that dietary inclusion of CM clay is effective 

for reducing AF exposure in multiple animal models (Table 4). Moreover, CM rescued 

diminished levels of vitamin A after AFB1 exposure in chickens (Pimpukdee et al., 2004) 
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and reduced the effects of AFB1 on serum concentrations of cholesterol, albumin, 

triglycerides, calcium, glucose, and total protein with 0.5% clay (Abo-Norag et al., 1995;  

Kubena et al., 1990a;  Kubena et al., 1993). In sum, no observable adverse effects were 

reported following ingestion of the dietary CM clay in these short-term animal studies 

(Phillips et al., 2002). Importantly, it was determined that the minimal effective dose to 

significantly reduce aflatoxicosis was 0.5% w/w CM clay (Phillips et al., 1990;  Phillips 

et al., 1995). Although CM at 2% in the diet of broiler chicks was not able to rescue the 

birds from FB1-induced toxicity, it is important to note that no LD50 exists for FB and that 

levels needed to induce toxicity in this study were very high (Lemke, 2000). The clay 

appears to have partially ameliorated the lowered weight gain and increased activity of 

alkaline phosphatase. 

In the early 1990s, urinary and milk AFM1 biomarkers were employed in CM 

safety and efficacy studies. These studies were able to demonstrate reduced bioavailability 

of AFB1 due to clay binding in the GI tract based on decreased metabolite measurements. 

In other words, the addition of clay decreased levels of parent compound available to 

metabolize. Inclusion of 1% CM clay was able to reduce excretion of AFM1 in the milk 

of dairy cows and goats by 44% and 51.9%, respectively (Harvey et al., 1991b;  Smith et 

al., 1994). Urinary AFM1 measurements revealed reductions of 48.4% in dogs (Bingham 

2004) and >90% in rats (Sarr et al., 1995). Ultimately, these studies demonstrated the use 

of biomarkers in measuring the efficacy of CM but also the differences in efficacy because 

of species differences in digestion, metabolism, dietary habits, and excretion. 
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Table 4. Safety and efficacy studies with calcium montmorillonite clay in animals and humans 

Animals 
fed clay 

Mycotoxin in 
feed 

Clay in feed 
(duration) 

Major effects of the clay 
reported in the study  References 

Chickens Aflatoxins 0.5% (28d) 
Growth inhibition 
diminished; gross hepatic 
changes prevented. 

 Phillips et al. 1988 

Chickens Aflatoxins 0.5% (28d) 
Growth inhibition 
diminished; decreased 
mortality. 

 Kubena et al. 1990 

Chickens Aflatoxins 0.1%; 0.5%    
(24h) 

Reduced bioavailability of 
Aflatoxin to the liver and 
blood in a dose-dependent 
manner. 

 Davidson et al. 
1987 

Chickens Aflatoxins 0.5%; 1.0%   
(21d)  

Growth inhibitory effects 
reduced.  Araba & Wyatt 

1991 

Chickens Aflatoxins 0%-1.0% 
(21d) 

Feed conversions improved; 
growth inhibition 
diminished. 

 Doerr 1989 

Chickens Aflatoxins 1.0% (21d) Growth inhibition 
completely prevented.  Ledoux et al. 1999 

Chickens Aflatoxins 
Ochratoxin A 0.5% (21d) 

Decreased growth 
inhibitory effects; no effect 
against ochratoxin. 

 Huff et al. 1992 

Chickens Aflatoxins 
Trichothecenes 0.5% (21d) 

Diminished growth 
inhibition; no effect against 
trichothecenes. 

 Kubena et al. 1990 

Chickens None 0.5%; 1.0%   
(14d) 

NS did not impair phytate 
or inorganic phosphorous 
utilization. 

 Chung & Baker 
1990 

Chickens None  0.5%; 1.0%   
(14d) 

NS did not impair 
utilization of riboflavin, 
vitamin A, or Mn; slight 
reduction of Zn.   

 Chung et al. 1990 

Chickens Aflatoxins 0.1%; 0.2% 

0.2% significantly reduced 
toxicity in the liver, 0.1% 
was not able to prevent 
toxicity. 

 Jayaprakash et al. 
1992 

Chickens Aflatoxins 
0.125%; 
0.25%; 0.5% 
(21d) 

Protected against vitamin A 
depletion in the livers of 
chicks exposed to 
aflatoxins. 
 

 Pimpukdee et al. 
2004 
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Table 4. Continued 
Animals 
fed clay 

Mycotoxin in 
feed 

Clay in feed 
(duration) 

Major effects of the clay 
reported in the study   References 

Chickens Aflatoxins 

0.5 HCSAS; 
0.5 HCSAS + 
16.5 mg 
VM/Kg       
(28d) 

HSCAS and HSCAS+VM 
(virginiamycin) 
counteracted some of the 
toxic effects of AF in 
growing broiler chicks. 

 Abo-Norag et al. 
1995 

Chickens Cyclopiazonic 
acid 1.0% (21d) 

Clay did not significantly 
prevent the adverse effects 
of clyclopiazonic acid. 

 Dwyer et al. 1997 

Chickens Aflatoxins 
0.5%; 0.5% + 
0.5 TMP         
(3wks) 

Improved feed intake and 
weight gain. Alleviated the 
adverse effects of AFB1 on 
some serum chemistry. 

 Gowda et al. 2008 

Chickens  Aflatoxins 0.1%; 0.2%   
(21d) 

Clay effectively alleviated 
the negative effect of AFB1 
on growth performance and 
liver damage. 

 Zhao et al. 2010 

Chickens 
Aflatoxin, 
Ochratoxin, T-
2 toxin 

0.2% (42d) 

Increased feed intake and 
apparent retention of 
phosphorus.  Prevented 
adverse effects to 
mycotoxins. 

 Liu et al. 2011 

Turkeys Aflatoxins 0.5% (21d) Decreased mortality.  Kubena et al. 1991 

Turkeys Aflatoxins 0.5% (21d) Decreased urinary excretion 
of aflatoxin M1.  Edrington et al. 

1996 

Pigs Aflatoxins 0.50% 
Decreased DNA adducts in 
the liver and reduced tissue 
residues of total aflatoxins.  

 Beaver et al. 1990 

Pigs Aflatoxins 0.5% (42d) Diminished growth 
inhibition.  Lindemann et al. 

1993 

Pigs Aflatoxins 0.5%; 2.0%   
(28d) 

Decreased growth 
inhibition; prevention of 
serum effects and hepatic 
lesions. 

 Harvey et al. 1994 

Pigs Aflatoxins 0.5%; 2.0%   
(28d) 

Diminished growth 
inhibition, hepatic lesions 
and immunosuppression. 

 Harvey et al. 1998 

Pigs Aflatoxins 0.5% (35d) Growth inhibitory effects 
reduced.   Schell et al. 1993  
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Table 4. Continued 
Animals 
fed clay 

Mycotoxin in 
feed 

Clay in feed 
(duration) 

Major effects of the clay 
reported in the study   References 

Pigs Ochratoxins 1.00% No significant effect.  Bauer 1994 

Pigs Trichothecenes 0.5%; 1.0%     
(7-13d) No significant effect.  Patterson & 

Young 1993 

Dogs Aflatoxins 0.5% (48h) 

Significantly reduced the 
bioavailability of aflatoxins 
and excretion of M1 in 
urine. 

 Bingham et al. 
2004 

Lambs Aflatoxins 2.0% (42d) 
Diminished growth 
inhibition and 
immunosuppression. 

 Harvey et al. 1991 

Mink Aflatoxins 0.5% (77d) Mortality was prevented.  Bonna et al. 1991 

Dairy 
Cows Aflatoxins 0.5%; 1.0%   

(28d) 
Reduction of aflatoxin M1 
in milk.  Harvey et al. 1991 

Dairy 
Goats Aflatoxins 1.0%; 2.0%; 

4.0% (12d) 
Reduction of aflatoxin M1 
in milk.  Smith et al. 1994 

Mice Zearalenone 
400 mg/kg 
bw; 5 g/kg 
bw (48h) 

Prevented the general 
toxicity of ZEN.  Abbès et al. 2006 

Rats (& 
Sheep) Ergotamine 

Rats: 2.0% 
(28d)   
Sheep: 20% 
(17d) 

HSCAS did not 
significantly protect rats or 
sheep from fescue toxicosis. 

 Chestnut et al. 
1992 

Rats Aflatoxins 0.1%; 1.0%     
(8 wks) 

Partial protection against 
lesions in the liver.  Voss et al. 1993 

Rats Aflatoxins 0.5% (21d) 
Significant prevention of 
maternal and developmental 
toxicity. 

 Mayura et al. 1998  

Rats Aflatoxins 0.5% (21d) Decreased growth 
inhibition in pregnant rats.  Abdel-Wahhab et 

al. 1998 

Rats Aflatoxins 0.5% (48h) 
Decreased urinary excretion 
of Aflatoxin metabolites 
(M1 & P1). 

  Sarr et al.  1995 
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Table 4. Continued 

Animals 
fed clay 

Mycotoxin in 
feed 

Clay in feed 
(duration) 

Major effects of the clay 
reported in the study   References 

Rats  None 2.0% (16d) 

In pregnant rats, Rb was 
reduced in groups with 
clay. Neither NSP nor 
SWY-2 influenced mineral 
intake. 

 Wiles et al. 2004 

Rats Aflatoxins, 
Fumonisins 

0.25%; 2.0%   
(1wk) 

Reduced bioavailability of 
AFB1 and FB1 individually 
and in combination. 

 Mitchell et al. 
2013 

Humans None 1.5 g; 3 g        
(2wks) 

Mild GI effects, not 
significantly different. No 
difference in hematology, 
electrolytes, liver and 
kidney function. 

 Wang et al. 2005 

Humans None 1.5 g/day; 3 
g/day (3mo)  

Moderate effects, though 
not significant. No 
significant difference in 
hematology, electrolytes, 
liver and kidney function. 

 Afriyie-Gyawu et 
al. 2008 

Humans None 
In capsules: 
1.5 g/d; 3 g/d 
(3mo) 

Significantly reduced AFM1 
biomarker in urine and 
AFB1-albumin biomarker in 
serum. 

 Wang et al. 2008 

Humans None 1.5 g/d; 3 g/d   
(3mo) 

No significant effects in 
vitamins A & E and 
micronutrients, except for 
Strontium.  

 Afriyie-Gyawu et 
al. 2008 

Humans 
(children) N/A 6 g/d; 12 

g/day (3d) 

Significantly reduced stool 
output in children with 
acute watery diarrhea 

 Dupont et al. 2009 

Hydra None 0.1%; 0.3%; 
0.5% (92hr) No toxicity from NS  

Marroquin-
Cardona et al. 
2009 

Hydra Aflatoxins, 
Fumonisins 

0.01%; 0.7%; 
1.4%; 2.0%   
(92hr) 

Protection from AFB1, FB1, 
and co-exposure to 
AFb1/FB1 

  Brown et al. 2014 
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 From this point on, the clay discussed in the various studies is still a CM but due 

to product source and branding, different nomenclature is used. Three of the clays that will 

be referenced are refined versions of CM. This was done to concentrate the smaller particle 

size to increase the overall uniformity of the product and make the product more palatable.  

A refined CM clay under the name Uniform Particle Size NovaSil (UPSN) has 

been investigated for its potential to mitigate co-exposures in animal models. NS was used 

to predict the detoxification efficacy of the clay and evaluate the toxicity of AFB1, FB1, 

and AFB1/FB1 using a hydra bioassay (Brown et al., 2014). The results confirmed earlier 

work with individual AFB1 and FB1 isotherms. The inclusion of an isothermal analysis 

using the toxin mixture revealed site-specific competition between the toxins and UPSN. 

However, when hydra were exposed to the AFB1/FB1 mixture in the presence of UPSN at 

1.4%, no toxic responses were observed based on morphology and mortality within 92-hr. 

The 0.01% UPSN + 400 µg/mL FB1 + 10 ug/mL AFB1 group was significantly different 

from controls at 4, 28, 68, and 92 hr, while the 0.7% UPSN group was significantly 

different at the 68-92 hr time points only. Based on urinary AFM1 and FB1 and AF-

albumin biomarkers, USPN (0.25% or 2%) significantly reduced the bioavailability of 

both AFB1 and FB1 in rats when dosed in combination (Mitchell et al., 2014b). With 2% 

inclusion, AFM1 was reduced by 97% and 99% when dosed with AFB1 and 95% and 76% 

when co-exposed with FB1 at 12 and 24 hr post-gavage, respectively. Interestingly, FB1 

reductions were not as marked in the co-exposed group. At 2% UPSN, urinary FB1 was 

reduced by 85% and 98% in the FB1-treatment only and by 51% and 59% in the co-
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exposed group by 12 and 24 hr after gavage, respectively. This is consistent with 

isothermal analysis indicating a site-specific competition. 

To determine the potential toxicity of long-term dietary exposure to NS, 5-6-week-

old male and female Sprague Dawley rats were fed rations containing 0, 0.25, 0.5, 1.0 or 

2.0% (w/w) of NS for 28 weeks (Afriyie-Gyawu et al., 2005). The parameters measured 

during this study included: body weight gain, feed conversion efficiency, relative organ 

weight, gross and histological appearance of major organs, hematological and serum 

biochemistry parameters, and essential nutrient levels including vitamins A and E, and Zn. 

There were very few statistically significant differences between rats consuming treated 

versus untreated diets with most differences not NS-related or dose dependent. Overall, 

the authors of this study concluded that ingestion of up to 2% NS was safe in a sub-chronic 

protocol. Notably, serum and hepatic vitamin A and E levels were slightly increased in the 

1% NS-females compared to untreated female rats. Dioxin and furan levels in NS were 

measured and showed negligible levels. In a more recent study, UPSN was utilized due to 

its more palatable texture and when Sprague-Dawley rats were dosed for 3 months study, 

no overall toxicity was observed for UPSN (Marroquin-Cardona et al., 2011). No changes 

were observed for most of the blood and serum biochemical parameters; increased serum 

Na, Ca, vitamin E and Na/K ratio and the reduction of serum K and Zn were reported in 

males with all parameter within the normal ranges reported for rats and no dose trends. 

The authors of this study conclude that the ingestion of low levels of UPSN does not 

present a health risk. 
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As a result of the extensive safety data in animal models, it was hypothesized that 

NS may be safe and beneficial for humans. A randomized and double-blinded phase I 

clinical trial was conducted to evaluate the safety and tolerance of NS, and to establish 

dosimetry protocols for long-term efficacy studies. The doses used for this study were 

extrapolated from dosimetry data in animal models (Phillips, 1999;  Phillips et al., 2002). 

The high dose (3.0 grams per day) was selected based on the fact that no toxic effects were 

demonstrated in experimental animals dosed at levels approximately ten times higher 

(Afriyie-Gyawu et al., 2005). The low dose (1.5 grams per day) was equivalent to the 

minimal effective concentration (minimal effective dose; MED) that reduced the effects 

of AF in animals. NS was measured for various environmental contaminants, including 

dioxins and heavy metals, with everything falling under JECFA or USEPA standards. NS 

capsules were then manufactured in the same color and size under sterile conditions using 

US Good Manufacturing Practices. Following the treatment of fifty healthy adult 

volunteers for two weeks, no significant differences for adverse effects, hematology, liver 

and kidney function, electrolytes, vitamins A and E, and minerals were observed between 

to the two randomized dosage groups. The only symptoms reported were gastrointestinal 

in nature and included abdominal pain (6%, 3/50), bloating, (4%, 2/50), constipation (2%, 

1/50), diarrhea (2%, 1/50), and flatulence (8%, 4/50). The results demonstrated the relative 

safety of NS clay in human subjects and served as a basis for long-term human trials in 

populations at high risk for aflatoxicosis. 

NS was then investigated for safety, tolerance, and AF-sorption efficacy in a 3-

month double-blind and placebo-controlled, phase IIa clinical trial in the Ejura-



 

 
 

 

83 

Sekyedumase district of the Ashanti region of Ghana (Afriyie-Gyawu et al., 2008a;  Wang 

et al., 2008). This region was chosen as the intervention study site based on a report that 

AFB1-alb adducts and AFM1 metabolites were detected in 100% of the 140 sera samples 

and 91.2% of 91 urine samples collected from study participants in the area (Jolly et al., 

2006), which is consistent with reports of 75-100% incidence of exposure in people of 

East and West Africa (Wild et al., 1992;  Wild and Turner, 2002). The NS dosimetry 

protocol was the same as reported by Wang et al. in 2005. Individuals who qualified as 

study subjects met the following criteria: healthy status based on physical examination 

results, age 18-58 years, intake of corn and/or groundnut-based foods at least four times a 

week, blood AFB1-alb adduct levels >0.5 pmol AFB1 per mg alb adducts, no history of 

chronic disease(s), no use of prescribed medications for chronic or acute illness, non-

pregnant and/or –breastfeeding females, normal ranges of hematological parameters, liver 

and renal function indicators (blood and urine parameters), and a signed consent form. 

The subjects who met the recruitment criteria were randomly divided into three study 

groups (60/group) based on serum AFB1-alb adduct levels to avoid selection bias. 

Importantly, this study employed the use of well-trained study monitors who delivered the 

capsules daily, witnessed ingestions, and recorded any symptoms that subjects might have 

experienced; NS was delivered before meals via capsules. Urine and blood samples from 

each participant were collected at the baseline, at months one, two, and three of treatment, 

and at month four to represent one month off treatment. Overall, there was a 92% 

completion for the study and compliance was over 97%. Similar to the safety study, 

adverse events were minimal and no significant differences were shown in hematology, 



 

 
 

 

84 

liver and kidney function, or electrolytes in the three treatment groups, nor did it interfere 

with levels of serum vitamins A and E, iron, or zinc (Afriyie-Gyawu et al., 2008b). 

Importantly, levels of AFB1-alb adduct were significantly decreased (>40% reduction) in 

HD and LD groups by month 3. Similarly, levels of AFM1 in urine samples were decreased 

by up to 58% in the median level of AFM1 in samples collected at 3 months in the HD 

group as comparted to the PL group. This study effectively demonstrated that NS clay 

capsules can be used to effectively reduce the bioavailability of dietary AF thus 

confirming earlier work in animal models.  

Samples from this study were later analyzed to evaluate the ability of NS clay to 

reduce urinary FB1. Fifty-six percent of the samples had detectable levels of FB1 and 

>90% of the median urinary FB1 was significantly decreased in the high dose NS group 

(2% w/w) (Robinson et al., 2012). Robinson et al. (2012) also demonstrated a significant 

decrease in UFB1 in rats after treatment with 2% clay by 20% at 24 hr post gavage and 

50% at 48 hr post-gavage.  

Implementation of CM as a food additive was investigated in a 2010 human 

crossover designed trial in the same region of Ghana. In this study, UPSN or placebo were 

included in prepared foods at 0.25% (w/w) for two weeks (Mitchell et al., 2013). 

Participants exhibited significantly decreased levels of urinary AFM1 compared to placebo 

groups (55% reduction) and reported no adverse reactions. Results indicated that UPSN 

can safely and effectively reduce AF exposure when included in food. Utilization of the 

clay as a food additive could allow for lowered cost of production, decreased impact of 

daily life (i.e., eliminate the daily routine of taking pills), and improved sustainability. 
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Results from the phase I and II clinical trials, in addition to the years of safety 

testing in animals, demonstrate that ingestion of up to 3 g/day in adults is safe for up to 3 

months. Based on these detailed studies, it was determined that ingestion of UPSN at 

levels efficacious for reducing AFB1 biomarkers would be reasonably safe in children. A 

phase I clinical intervention in children ages 3-9 was completed in the Ejura-Sykedumase 

district of Ghana. The study followed a double-blind, placebo-controlled trial design for 

2-weeks (Mitchell et al., 2013). The three treatment arms consisted of a placebo group, 

which received 0.75 g calcium carbonate two times daily, a low-dose group, which 

received 0.375 g UPSN two times daily, and a high-dose group, which received 0.75 g 

UPSN two times daily. Results indicated a significant reduction of AFM1 biomarkers, with 

serum biochemical and hematological parameters within the normal range for all groups. 

This study demonstrated, for the first time, that UPSN is a safe and effective product in 

children. 

1.5 Research objectives 

It has been well established that a number of detrimental effects result from the 

consumption of grains and peanuts contaminated with mycotoxins. Much of this research 

has focused on the more potent AFB1. However, recent work by the scientific community 

has allowed for greater insight into the toxicity and carcinogenicity of FB1. This is 

especially true for human public health implications of AFB1 and FB1 co-exposure. 

Despite advances in agricultural technology and education in methods to reduce 

mycotoxins, AF and FB contamination is an inextricable issue regarding the consumption 

of these important commodities. What was once considered a mainly a public health 
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concern in developing countries that subsist off these foods, is increasingly identified as a 

global health issue due to climate change and the resulting expansion of agroecological 

zones of mycotoxin-producing fungi.  

Due to government regulations and heterogeneous diets, developed nations face 

the possibility of chronic low-exposure. Conversely, in developing nations, such as those 

in sub-Saharan Africa, exposure can be both acute (aflatoxicosis) and chronic. 

Interestingly, there is few data regarding AF and FB exposure in Latin American. 

However, exposure is assumed to be high based on the frequent consumption of maize 

and maize-based products.  

Calcium montmorillonite has shown promising results in reducing bioavailability 

of both AFB1 and FB1. Until recently, human efficacy has only been invested in the high-

risk Ejura-Sykedumase district region of Ghana. Although determined to be safe in both 

children and adults, cultural and dietary habits are important determining factors of 

efficacy for reducing a dietary toxin. Therefore, the principle goals of this research were 

to: 

1) Determine the AFB1 binding capacity of UPSN in a food matrix under various 

cooking conditions typical of sub-Sahara African. The binding capacity of UPSN was 

determined by measuring AFB1 concentrations with and without the application of clay 

after exposure to various cooking challenges using a fluorometer and confirmed by HPLC 

with fluorescence detection.  
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2) Evaluate AF and FB exposure in participants from Monterrey, Mexico in 

relation to various sociodemographic and dietary factors through use of a questionnaire 

and one-time analysis of AFM1 and FB1 in urine.  

3) Determine efficacy, palatability, and acceptability of ACCS100 as a strategy 

to reduce AF exposure in a vulnerable Kenyan population when delivered in drinking 

water. A double-blind cross-over clinical trial design was followed for two weeks. AFM1 

and AFB1-lys biomarkers were analyzed in serum and urine and used to determine 

efficacy. Dietary survey, palatability, and acceptability data were collected and analyzed. 

4) Determine the efficacy of ACCS100 in reducing biomarkers of AF exposure 

after three months of treatment in Bexar County, Texas. AFM1 and AFB1-lys biomarkers 

were analyzed in serum and urine and used to determine efficacy. Dietary survey data 

were collected and analyzed. 
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2. COMMON AFRICAN COOKING PROCESSES DO NOT AFFECT THE

AFLATOXIN BINDING EFFICACY OF REFINED CALCUIM 

MONTMORILLONITE CLAY 

2.1 Introduction 

In many parts of West Africa, populations are chronically exposed to AFs 

beginning in utero (Partanen et al., 2010;  Turner et al., 2007;  Turner et al., 2012). 

Exposure typically continues through the first years of life, with the presence of the toxic 

secondary metabolite AFM1 in breast milk (Gong et al., 2003;  Shephard, 2008;  Zarba et 

al., 1992), and well into childhood and adulthood where exposure to AFB1 can be present 

in fermented corn meals and porridges (Andah, 1972;  Lartey et al., 1999). Recently, a 

sampling of corn-based weaning foods intended for children between the ages of 6 months 

and 2 years in the Ashanti region of Ghana were found to contain high levels of AFs 

(Kumi, 2011). All of the 36 samples tested were contaminated with AFs, with 83% 

containing concentrations above the U.S. FDA action level of 20 ppb AFB1 and some 

samples ranging as high as 500 ppb. Despite the fact that fermenting and heating these 

weaning foods and breakfast gruels may prevent spoilage and enhance food safety, AFs 

are resistant to degradation by thermal inactivation and fermentation (Christensen et al., 

1977) and therefore remain a constant source of concern. 

Methods that focus on reducing dietary exposure to AFs in contaminated foods are 

___________________________ 
*Reprinted from Food Control, 37, by SE Elmore, N Mitchell, T Mays, K Brown, A Marroquin-Cardona, 

et al., "Common  African cooking  processes do not  affect the aflatoxin binding efficacy of refined calcium
montmorillonite clay", 27-32, Copyright 2014, with permission from Elsevier Ltd., doi.org/10.1016/j.foodcont.
2013.08.037.
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highly desirable as a practical strategy to mitigate the harmful effects of this toxin 

(Williams et al., 2004). Preferential sorption of AFs in the gastrointestinal tract with the 

inclusion of certain clays in the diet is one example of this type of approach.  NS is a 

calcium montmorillonite clay with high binding affinity and capacity for AFB1. NS has 

been shown to be safe and effective in preventing aflatoxicosis in animals and reducing 

biomarkers of AF exposure in humans and animals (Harvey et al., 1991a;  Harvey et al., 

1991b;  Kubena et al., 1991;  Lindemann et al., 1993;  Phillips, 1999;  Phillips et al., 2006;  

Phillips et al., 1988;  Phillips et al., 2002;  Pimpukdee et al., 2004). These studies have 

shown that NS is effective as an enterosorbent for AFs when included in the diet at levels 

ranging from 0.25 to 2% (w/w) in animals (Phillips et al., 2002).  Additionally, a minimal 

effective dose of NS 0.25% w/w delivered in capsules for three months in a high risk 

Ghanaian population was successful in decreasing biomarkers of AF exposure and did not 

interfere with the levels of serum vitamins A and E, iron, or zinc (Afriyie-Gyawu et al., 

2008b). Parent NS clay was refined to form UPSN (Uniform Particle Size NovaSil) 

through a process that served to improve the palatability and consistency of the clay for 

food delivery. The refining process resulted in a higher percentage of NS particle sizes 

between 45-100 µm and lower levels of quartz; however, NS and UPSN were compared 

and shown to have similar AF sorption properties (Marroquin-Cardona et al., 2011). Rats 

fed UPSN at levels as high as 2% (w/w) for 13 wk displayed no detectable toxicity 

(Marroquin-Cardona et al., 2011). Recently, UPSN inclusion in foods has been 

investigated in populations at high-risk of AF exposure.  In a crossover study in Ghana, 

UPSN was shown to be palatable and well-tolerated when added to fermented foods.  
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Moreover, those participants consuming 0.25% UPSN exhibited significantly decreased 

levels of urinary AFM1 compared to the placebo group. Also, no adverse reactions from 

the treatment or placebo were reported. This study indicated that UPSN (when delivered 

in common fermented foods) was acceptable and could safely and effectively reduce AF 

exposure when included in contaminated diets (Mitchell et al., 2013).  

Fermentation of corn-based foods in West Africa is common and the effects of 

acidity and ethanol production during this process are important parameters that could 

interfere with toxin sorption by clay (UPSN) and thus need to be investigated. Also, 

knowledge regarding the effects of different cooking conditions (temperature and 

fermentation time) on the AF-clay complex is needed to determine AF adsorption ability 

of the clay in a cornmeal matrix. Hence, the objective of the present study was to determine 

UPSN stability and AFB1 sorption during fermentation and heating protocols that typify 

the production of common corn-based foods intended for consumption in this region.  

2.2  Materials and methods 

2.2.1 Materials 

Acetonitrile (ACN) and methanol (MeOH) utilized were HPLC analytical grade 

(Fisher Scientific, Fair Lawn, NJ). Ultrapure deionized water (18.2 MΩ) was generated 

using an Ultrapure automated filtration system (Elga™ Woodridge, IL). Aflatoxin B1 was 

purchased from Sigma-Aldrich Corporation (St. Louis, Mo). Cornmeal was purchased 

from a local grocery store in College Station, TX. Extraction equipment, including 

AflaTest® immunoaffinity columns, was purchased from Vicam® (Watertown, Ma) and 

utilized according to the manufacturer’s instructions. Uniform Particle Size NovaSil 
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(UPSN) was obtained from Texas Enterosorbents (Bastrop, TX). Quantitative analysis of 

AFB1 was performed using a Vicam Series 4 Fluorometer and verified on a Waters HPLC 

with fluorescence detection (Watertown, Ma).  

2.2.2 Cornmeal preparation  

Purchased cornmeal contained an average of 1 ppb AFB1 as measured by Vicam 

analysis (see section 2.2.6). AFB1 standard was diluted in water to obtain a 25 ppm stock 

solution for spiking cornmeal samples. The concentration was verified daily using UV 

spectrophotometry (Shimadzu UV-1800). Cornmeal samples (50 g) were prepared in 

triplicate, containing 5, 50, 100, 300, 500, and 1000 ppb AFB1, for both the control and 

UPSN-treated groups.  UPSN (1.5 g) was added to AFB1-spiked cornmeal samples to 

comprise the clay test group. The amount of UPSN was calculated based on the high dose 

of UPSN that was delivered per person in clinical intervention trials in Ghana (1.5 g in 

each meal) (Mitchell et al., 2013). AFB1-spiked samples and clay were mixed together for 

15 seconds to disburse the clay throughout the cornmeal. This procedure was repeated for 

all samples and served as a base mixture before additional processing steps were applied 

as described in the following Sections 2.2.3, 2.2.4, and 2.2.5.  

2.2.3 Base product 

AFB1 was extracted from samples immediately following the base (non-processed) 

cornmeal product to assess binding capacity of UPSN for AFB1 within the cornmeal 

matrix without any fermentation or cooking. The same procedure was also repeated at pH 

3.5 to simulate the average pH observed during the fermentation of corn dough (Plahar 
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and Leung, 1983). This was achieved by adjusting the mixture with HCl until stabilized 

at pH 3.5.  

2.2.4 Fermented product 

Fermentation of the base product was allowed to occur naturally in covered flasks 

simulating the process used in Africa. Water (50 mL) was added and mixed by agitating 

the flask until uniform in appearance and thoroughly moist. Mixtures were allowed to 

ferment for 24 or 72 hr in a NUAIRE™ TS Autoflow Incubator (Plymouth, Mn) 

maintained at 30° C. This procedure represents both the average temperature and typical 

fermentation environment that would occur in West Africa. Additionally, samples with 

the same AFB1 concentrations and controls were subjected to heat treatment by adding 50 

mL boiling water following fermentation. Then, the dough and water were mixed together 

without further heating, resulting in a matrix with the consistency of a thick soup or gruel. 

Mixtures were allowed to sit at room temperature for 10 min prior to processing.  

2.2.5 Sterilized product 

Sterilized samples were produced by autoclaving the base products and water at 

220°C for 30 min prior to the 72 hr incubation period. Throughout this publication, the 

term “fermentation” will refer to samples that were not sterilized and allowed to ferment 

by naturally present species of bacteria and other fermenting microorganisms, whereas 

“sterilized” will refer to samples that were autoclaved and incubated but did not ferment.  

2.2.6 Extraction and quantification of aflatoxin B1 

The USDA-FGIS (Federal Grain Inspection Service) single filtration procedure for 

corn (0-1000 ppb) was used with modifications for the extraction of AFB1. In brief, 250 
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mL of water was added to each 50 g cornmeal sample and allowed to mix (887 xg) for 30 

min on a plate shaker. This step allowed for thorough UPSN interaction with AFB1 and 

maintained the clay’s interlayer structure responsible for sequestering AFB1 prior to 

extraction with a solvent. AFB1 extraction procedures require use of   alcohols and solvents 

which may disrupt the interlayer structure and decrease AFB1 binding potential. To 

circumvent this problem, all samples were first mixed in water to allow for UPSN to bind 

AFB1 prior to toxin extraction procedures (Phillips TD, 1990).  Following mixing with 

water, 100 mL of 85:15 acetonitrile:water was added and samples were shaken again for 

30 min to extract AFB1 from the corn matrix. The slurry was then filtered through 8-12 

µm X 24 cm fluted filter paper (Vicam). The extract was collected in a clean vessel and 

filtered a second time through a 1.5 µm X 11 cm glass microfiber filter (Vicam). The final 

filtered extract was stirred for 10 sec, and 2 mL were passed through an AflaTest 

immunoaffinity column (Vicam) at a rate of 1-2 drops/sec. Columns were washed twice 

with 3 mL water and eluted with 1 mL MeOH into a glass cuvette. AflaTest developer 

was added and mixed with the eluate prior to fluorescence detection on a Series 4 Vicam 

fluorometer with excitation and emission wavelengths of 365 nm and 440 nm, 

respectively.  

To verify overall trends observed with the Vicam analysis, AFB1 concentrations 

from representative samples were also measured by HPLC with fluorescence detection. 

Unlike HPLC, the Vicam method accounts for a loss of AF during immunoaffinity 

extraction through internal calibrations. AOAC AF extraction protocol (991.31) was 

utilized for HPLC-fluorescence analysis. For HPLC sample extraction, fermented and 
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sterilized samples spiked with 5, 500, and 1000 ppb AFB1 were prepared as previously 

mentioned. The samples were then transferred to a blender jar with 250 mL extraction 

solvent (70:30 MeOH: water) and blended at high speed for 2 min. The slurry was filtered 

through 8-12 µm X 24 cm fluted filter paper (Vicam) into a clean vessel. The extract 

was then divided into 10 mL aliquots and diluted with 20 mL water and vortexed. The 

diluted extract was filtered again through a 1.5 µm X 11 cm glass microfiber filter 

(Vicam). For samples spiked with 5 ppb AFB1, 6 mL extract was passed through an 

AflaTest immunoaffinity column at a rate of 1-2 drops/sec. For 500 and 1000 ppb samples, 

2 mL extract was passed through the columns.  Columns were washed twice with 10 mL 

water and eluted with 1 mL MeOH into a glass cuvette. Water (1 mL) was added to each 

cuvette and mixed well prior to syringe filtering. A mobile phase of 3:1:1 

water:ACN:MeOH with a flow rate of 1.0 mL/min was utilized with a Waters Spherisorb 

C18 column for separation. Corresponding external standards were prepared for each level 

of AFB1 and injected (100 µL) prior to sample injection. Concentrations of AFB1 from 

0.1 to 10 µg/mL were linear (r2= 0.99) using this method. Excitation and emission 

wavelengths were set at 360 and 420 nm, respectively. Quantification was achieved by 

peak-area measurement using Breeze™ HPLC analysis software (Waters).  

Although different extraction methods were utilized for Vicam and HPLC 

analysis, comparison of the overall trends between sample groups was the primary focus 

of this manuscript, rather than comparison of absolute extractable values between AF 

analytical methods.    
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Figure 7. Reduction of AFB1 in unfermented cornmeal with UPSN. Cornmeal was spiked (5-1000 ppb) in the presence of UPSN 
at pH 6 (A) and pH 3.5 (B). Differences between control and UPSN-treated samples were considered significant at *p < 0.05. Error 
bars represent standard error of the mean. 
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2.2.7 Calculations and statistical analysis 

All data obtained with the Series 4 Vicam fluorometer was standardized with the 

values obtained for unfermented cornmeal control samples. For HPLC data, a dilution 

factor of 5 was applied to samples spiked with 5 ppb AFB1 and a factor of 15 to the 500 

and 1000 ppb AFB1 samples.  JMP 9 software (SAS, Carry, NC) was used to perform 

factorial analysis of treatments and included Summary of Fit, Analysis of Variance and 

Student t-test analyses. Percent reduction of AFB1 was calculated by dividing the 

treatment average by the control average for each sample concentration. Results were 

considered significant at p≤0.05. 

2.3 Results 

2.3.1 UPSN reduction of aflatoxin B1 in unfermented products  

Figure 7 demonstrates the binding capacity of UPSN in cornmeal samples at 

unadjusted (pH 6, Fig. 7a) and acidified pH (pH 3.5, figure 7b). A significant decrease in 

the amount of extractable AFB1 was observed in the presence of UPSN at both pH values 

(p < 0.002) and percent reductions for unadjusted and pH 3.5 samples ranged from 68-

77% and 49-70%, respectively. UPSN-treated sample values were compared between 

unadjusted and pH 3.5 conditions to assess the effect of acidic pH on the efficacy of UPSN 

binding. There was no significant difference between 5, 50, 100, 500, and 1000 ppb AFB1 

samples.  

2.3.2 UPSN reduction of aflatoxin B1 in fermented products 

In samples that were allowed to ferment for 24 or 72 hr, UPSN significantly 

reduced the amount of AFB1 compared to controls (figure 8). Percent reduction ranged 
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from 79-88% for 24 hr and from 98-100% for 72 hr fermented products. UPSN binding 

capacity at 72 hr was enhanced; these samples contained significantly lower AFB1 levels 

in the presence of UPSN compared to the 24 hr data at AFB1 concentrations between 50 

to 1000 ppb. Since there was no dose-dependent difference between fermented controls at 

24 and 72 hr, these results suggest that AFs were not significantly degraded by 

fermentation (consistent with the literature), but instead were reduced due to clay sorption 

processes that were time dependent. 

Similarly, samples containing UPSN that were fermented for 72 hr. followed by 

the addition of boiling water (simulating the production of corn-based porridge or gruel) 

significantly reduced AFB1 levels compared to controls with percent reduction ranging 

from 91-100% (figure 9a).  Samples that were treated with UPSN and incubated for 72 hr. 

following sterilization demonstrated significant reduction of AFB1 in the presence of 

UPSN (p < 0.0001) and total sorption ranged from 85-100% (figure 9b).   

2.3.3 HPLC verification 

HPLC fluorometric analysis of sample extracts confirmed UPSN sorption efficacy 

observed using the Vicam method. The overall trend remained the same between HPLC 

and Vicam samples. UPSN significantly reduced the amount of AFB1 present in samples 

that were unfermented, fermented for 72 hr., or incubated for 72 hr. following sterilization 

(figure 10). Percent reductions ranged from 66-92%, 99-100%, and 99-100% for 

unfermented, fermented, and sterilized samples with UPSN, respectively (Table 5).  
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Figure 8. Reduction of AFB1 in fermented cornmeal with UPSN. AFB1 (5-1000) was added to 
cornmeal and allowed to ferment  for 24 or 72 hr. AF reduction between control and UPSN-
treated samples at either time point was considered significant at * p < 0.05. Significant 
differences (p < 0.05) in AF reduction between 24 and 72 hr are indicated by †. Bars represent 
standard error of the mean. 
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Figure 9. Reduction of AFB1 in cornmeal in the presence of UPSN after heat 
exposure or sterilization. Cornmeal samples spiked with 5-1000ppb were 
allowed to ferment for 72 hr, then exposed to boiling water (A) or sterilized 
and allowed to incubate without fermentation for 72 hr (B). UPSN reduction 
of AFB1 compared to controls (no UPSN) was considered significant at *p < 
0.05. Bars represent standard error of the mean. 
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  Figure 10. HPLC detection of AFB1 levels in unfermented, fermented, and 
sterilized samples. All samples were spiked with 1000 ppb AFB1. 
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1Three samples per treatment (n=3). 
2AFB1 was recovered at 0 hr (prior to fermentation), at 72 hr with fermentation, and at 72 hr in sterilized samples. 
3In all samples containing UPSN, significantly less AFB1 was detected compared to control. Values were considered significant at p < 0.05.  
 

Table 5. Percent AFB1 reduction trends in cornmeal verified by HPLC. 
Comparison of samples unfermented, fermented for 72 hr, or incubated for 72 hr with and without UPSN. 
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2.4 Discussion 

AF contamination in African cornmeal products is a major public health issue that 

has yet to be resolved; importantly, the vulnerable in susceptible regions are at 

considerable risk for life-long exposure (IARC, 2012). One suggested solution that has 

shown promise for wide-scale application is the use of UPSN enterosorption therapy. 

Since the fermentation of corn-based foods in West Africa is common, the objective of 

the present study was to determine UPSN stability and AFB1 sorption during fermentation 

and heating protocols that typify the production of common corn-based foods intended for 

consumption in this region. This is a concern because heat treatment via cooking and acid 

and ethanol created during the fermentation process could potentially interfere with the 

sorption of AFB1 on the surfaces of UPSN. Fermentation results in the production of 

ethanol, which can affect the interlayer stability of calcium montmorillonites such as 

UPSN. The effects of acidity, fermentation, time of fermentation, and heat application on 

the ability of UPSN to bind AFB1 were investigated using a Vicam fluorometer with 

HPLC validation. By testing cornmeal under these conditions, we were able to determine 

the difference in UPSN’s sorption of AFB1.  In all corn samples, UPSN was able to 

significantly reduce the amount of extractable AFB1. This suggests that the clay is stable 

during fermentation (72 hr) and in the presence of heat while in a food matrix. Thus, the 

addition of UPSN to foods prior to processing could help to reduce hazardous exposures 

to AFB1 from contaminated food sources.  

The effect of acidic pH, similar to that produced by the process of fermentation, 

was assessed and compared to unfermented cornmeal at unadjusted pH. In both conditions, 
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AFB1 was significantly reduced by UPSN. The lack of significant difference in binding 

due to alteration of pH is consistent with in vitro binding models conducted in our 

laboratory, where UPSN has previously been shown to be an effective AFB1 sorbent at a 

pH as low as 2 from a series of isothermal analyses (Marroquin-Cardona et al., 2011). 

This preliminary data supported further work to assess the effects of relevant African food 

preparation techniques on AF binding by UPSN. 

Results from this study indicate that length of fermentation influenced sorption 

ability, as UPSN was significantly more effective in reducing AF at 72 hr compared to the 

earlier time points. Our findings suggest that small amounts of UPSN (1.5 g) included in 

foods, prior to fermentation, could significantly reduce physiologically relevant levels of 

AFs in corn-based foods. It is possible that this dose delivery platform could result in 

increased efficacy in vivo. When the majority of binding occurs within foods that are 

hydrated prior to ingestion, the likelihood of potential physiological interactions is 

reduced, therefore decreasing the risk of exposure and associated toxicities.  

Overall, samples that were exposed to heat following fermentation (72 hr) were 

statistically similar to samples that were fermented without heat. These findings are 

supported by previous research showing that calcium montmorillonite interlayer structures 

are stable at temperatures up to 400° C, where the clay can delaminate (Deng Y., 2010) 

and become inactivated. In order to decrease variability due to time of cooking, the 

primary preparation step for gruel was simulated in this study. Traditionally, boiling water 

is added to reconstitute the matrix and allowed to cook for 2-20 min. This boiling time 

(and the recipe) can vary according to the region and community. Thus, our design was 
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focused on the addition of boiling water to bring the matrix (and AFB1) to a uniform slurry 

prior to extraction and analysis. Importantly, we demonstrated that boiling water and/or 

sterilization temperatures had no effects on the ability of UPSN to bind AFB1.    

Although fermented samples with UPSN exhibited decreased levels of AFB1, we 

wanted to determine if treatment time contributed to the effect of UPSN. Sterilized 

samples were incubated for the same length of time (72 hr) without fermentation. 

Although comparison between the fermented and sterilized cornmeal did show 

significantly decreased binding in the sterilized samples with 100 and 500 ppb AFB1, this 

trend was not dose-dependent. These findings suggest that the fermentation process itself 

did not enhance binding, but that time appeared to be the primary factor in the increased 

sorption of AFB1 following fermentation. Importantly, inclusion of UPSN in foods before 

fermentation or cooking does not negatively affect the binding capacity, but allows more 

opportunity for interaction between UPSN and AFB1, enhancing its efficacy.  

Dietary exposure in Africa is often associated with consumption of both 

groundnuts and corn; however, it is likely that the majority of AF ingestion occurs through 

corn-based foods. Exposure assessment and risk characterization for AF-induced health 

disparities in several African countries indicated that corn consumption, particularly in 

Ghana, could be as high as 1,000 g per day (Shepard, 2008). Furthermore, dietary intake 

questionnaires administered by our laboratory in various regions in Ghana revealed that 

62% of adults reported consuming corn or corn-based products every day, while only 12% 

reported daily consumption of groundnuts or groundnut products (Mitchell et al., 2013). 

However, it is important to note that clays similar to UPSN can effectively bind AF in a 
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peanut matrix (Seifert et al., 2010), therefore it is likely that UPSN would be effective in 

a diet consisting of both corn and groundnuts. 

Another objective of this study was to develop practical strategies and analytical 

protocols that would be applicable in parts of the world where AF contamination is often 

coupled with food scarcity and lack of access to sophisticated analytical technology. Since 

most field laboratories in areas affected by frequent and high level exposures to AF have 

the capacity to perform the Vicam assay, we designed this study to use this method.  The 

Vicam assay is relatively inexpensive and field practical which is ideal for situations 

where rapid screening is desired to monitor and mitigate AF outbreaks. HPLC (with 

fluorescence detection) was used as a secondary method to validate the ability of UPSN 

to sorb AF from a food matrix. Although different extraction methods were utilized for 

Vicam and HPLC analysis, comparison of the overall trends between sample groups was 

the primary focus of this manuscript, rather than comparison of absolute extractable values 

between methods. Preliminary work indicated that both methods were similar in their 

ability to detect the binding of AFs by clay (data not shown).  

Furthermore, we hope that this technology can be translated at the village level by 

including UPSN or similar clays at local mills during corn processing. In the case of AF 

outbreaks, this would empower the village millers to help prevent aflatoxicosis by adding 

AF binders to the cornmeal prior to distribution, not unlike iodine inclusion in salt. This 

novel application could afford villages increased self-sufficiency and entrepreneurial 

capability. Additionally, advantages of adding the UPSN at the mill include assurance of 

uniform UPSN distribution within the cornmeal and added consumer convenience. 
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In this study we were able to demonstrate that a refined calcium montmorillonite 

clay, UPSN, was able to significantly reduce AFB1 under common cooking conditions in 

a corn meal matrix using a field-practical technique. Therefore, the addition of UPSN to 

foods at any stage of preparation could be a sustainable approach to alleviate AF-

associated public health issues in high-risk populations, enhance the benefits of potentially 

contaminated foods and nutritional supplements, and empower high risk populations 

during times of food scarcity and high AF exposures. 
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3. EPIDEMIOLOGICAL SURVEY OF AFLATOXIN AND FUMONISN IN 

MONTERREY, MEXICO 

3.1 Introduction 

The assurance of food safety and quality represents a major challenge worldwide. 

Contamination of foods with fungal metabolites known as mycotoxins is an unavoidable 

problem, particularly in regions with limited resources. AF and FB are mycotoxins 

commonly found as co-contaminants of staple foods (e.g., corn and nuts) and produced by 

certain strains of Aspergillus and Fusarium species, respectively. Of the toxic congeners, 

AFB1 and FB1 are the most potent and prevalent analogs of the AFs and FBs. AFB1 is 

listed as a group 1 human carcinogen (IARC, 2012), and has been associated with child 

growth impairment (Gong et al., 2002;  Gong et al., 2004;  Shouman et al., 2012), 

suppressed immune function (Turner et al., 2003), hepatomegaly (Gong et al., 2012), and 

death due to acute poisoning (Probst et al., 2007). FB1 is a group 2 compound, i.e., 

“possibly carcinogenic in humans” (IARC, 2002), which is found to be associated with 

esophageal cancer (Rheeder et al., 1992), neural tube defects in humans (Missmer et al., 

2006) and possibly primary liver cancer (Ueno et al., 1997). FB-AF co-exposure data is 

limited, with much of it lacking causal mechanisms. However, co-exposure has been 

shown to increase toxicity in a hydra model (Brown, et al., 2014), alter toxic responses in 

rats and mosquito fish (McKean et al., 2006), lower feed conversion and mean body 

weight in pigs (Dilkin et al., 2003), and increase the development of hepatocyte nodules 

in rodents (Gelderblom et al., 2002). Several studies indicate the need for further 
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investigation into the prevalence and source of AF and FB co-exposure, especially for 

liver cancer risk. 

AF and FB have been detected in maize samples worldwide. According to Food 

and Agriculture Organization data for the year 2010, per capita maize consumptions were 

13 and 117 kg in the United States and Mexico, respectively (United Nations, 2015). 

Mexico has a long history of maize consumption with daily consumption ranging from 

400 to 600 g (Plasencia, 2004). Due to high consumption levels of maize, the co-exposure 

to AF and FB is expected to be one of the highest in the world for Mexican populations. 

Consumption of maize (as corn ear or powdered products) by Mexican populations or 

Hispanic populations in other countries has resulted in measurable levels of AFs and FBs. 

Previous data from our laboratory conducted in a Hispanic population with high incidence 

of HCC in the U.S. suggested that AF exposure may play a role in the carcinogenesis. 

Questionnaires which investigated the dietary habits of this population reported that 

consumption of corn tortillas, rice, and nuts were related to AF exposure (based on 

measurement of urine biomarkers) (Johnson et al., 2010). In a cohort from Morelos 

County, Mexico, women with high intake of maize-based tortillas had a 3-fold increase in 

average FB1 levels comparing to that of the low intake control group (Gong et al., 2008).  

Although the individual exposure to both AF and FB in Mexican populations has 

been previously shown using blood (Soini et al., 1996) and urine biomarkers (Gong et al., 

2008), respectively, AF and FB co-exposure in Mexicans has not been investigated. 

Furthermore, the potential source of exposure due to the high consumption of corn 

products is unknown. We report here co-exposure to AFs and FBs in Mexican volunteers 
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using urine biomarkers of exposure and investigate the role of corn products from street 

markets as a potential source of exposure.  

3.2 Materials and methods 

3.2.1 Chemicals 

AFM1 was obtained from Sigma Aldrich (St. Louis, MO, USA). FB1 was 

purchased from PROMEC Unit of South Africa Medical Research Council (Tygerberg, 

South Africa). AflaTestWB and FumoniTestWB Immunoaffinity columns were purchased 

from VICAM (Watertown, MA, USA). All solvents were purchased from Fischer and 

were LC/MS grade. Ultrapure deionized water (18.2 MΩ cm) was used in all extractions. 

3.2.2 Participant recruitment and sample collection 

Institutional Review boards from Texas A&M University (TAMU, College 

Station, TX) and Universidad Automonoma de Nuevo Leon (UANL, Monterrey, Mexico) 

reviewed and approved protocols for analysis of human samples. Enrollment of 

participants was achieved in 9 cities from the metropolitan area of the city of Monterrey, 

Nuevo Leon state in Mexico. These cities are the most populated urban areas in the state 

and include Apodaca, Escobedo, Garcia, Guadalupe, Juarez, Monterrey, San Nicolas, San 

Pedro, and Santa Catalina (Figure 11). Recruitment criteria for participants included: age 

(18 and 75), no history of chronic kidney disease or liver disease, consumption of maize 

or maize products from street markets (at least one a week), and written informed consent. 

Recruitment teams visited homes from February 2015 to April 2015. Homes were located 

near street markets (same zip code). Upon arrival to participants’ home, teams explained 

the study and obtained informed consent and at the same time a dietary questionnaire was 
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administered. The questionnaire was designed to investigate the frequency of maize and 

maize products consumption. Questions focused on exploring the role of dietary toxins on 

mycotoxin excretion in urine. Urine collection flasks were given to each participant along 

with instructions for collecting the first morning urine sample. Teams collected the urine 

in the morning (7:00 am-9:00 am). Upon collection, participants were given a $100 pesos 

gift card. Urines collected were kept in a cooler with refrigerant during transfer to the 

laboratory where samples were placed in a -80 °C freezer. A urine subsample (2 mL) was 

sent for creatinine analysis within 5 hr of urine collection. Urine samples were maintained 

at -80°C until shipment for analysis at TAMU. An aliquot of urine remained at UANL for 

creatinine analysis. 

 

 

 

 

Figure 11. Recruitment area in Monterrey, Nuevo Leon, Mexico 
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3.2.3 Determination of aflatoxin M1 in urine 

Extraction of urinary AFM1 followed the method of Groopman (1992) with 

modifications of Sarr (1995) and Wang (1999). Urine samples were centrifuged at 887 xg, 

and 5.0 mL of supernatant was collected and diluted with water to a total volume of 10.0 

ml. Samples were then loaded onto a 3 mL preparative Aflatest® WB immunoaffinity 

column (VICAM) at a flow rate of 1 ml/min. Following washing of the column, the AF 

fraction was eluted from the column with 2 ml of 80% methanol, dried under N2
 and re-

suspended in 200 µL of a 1:1 solution of methanol:water.  

Samples were analyzed using a Waters Acquity H-Class UPLC-MS/MS (Waters 

Corporation) and separation using a 2.1 x 50 mm Acquity UPLC BEH C18 column with 

a particle size of 1.7 µm.   Isocratic separation was achieved with 70% water buffered with 

1% formic acid and 30% ACN buffered with 1% formic acid. Samples (10 µL) were 

injected onto the column and the elution rate was 0.325 ml/min. The column effluent was 

directly coupled to the MS, which was operated in the positive electrospray ionization 

mode. MS/MS conditions were optimized for AFM1 and based on Warth et al. (2012). 

The precursor ion was set to 329.00 Da and the two product ions were 273.00 Da 

(quantifying ion) and 259.1 Da (qualifying ion). Urinary AFM1 concentrations were 

expressed as pg/mg creatinine (pg/mg crt) to correct for variations in urine dilution among 

samples. External AFM1 standards were prepared weekly and injected following every 

five injections of samples. LOD for this method is 3 ppt. Recovery from extractions was 

greater than 85% with a relative standard deviation of less than 5%. 
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3.2.4 Determination of fumonisin B1 in urine 

Extraction of urinary FB1 levels followed methods by Robinson (Robinson et al. 

2012). Urine samples were centrifuged at 887 xg, and 5.0 mL of supernatant was collected 

and loaded onto a preparative Fumonitest® WB immunoaffinity column (Vicam) at a flow 

rate of 1mL/min. The column was then washed with 6 mL of PBS, followed by 6 mL H2O. 

After the washes were complete, the FB1 fraction was eluted from the column with 2 mL 

methanol, dried under a gentle stream of Nitrogen gas, and re-suspected in 1 mL of a 1:1 

solution of acetonitrile and water. Detection and quantification was performed using a 

Waters Acquity H-Class UPLC-MS/MS (Waters Corporation). Separation was achieved 

using a 2.1 x 50 mm Acquity UPLC BEH C18 column with a particle size of 1.7 µm. Both 

eluents contained 1% formic acid and were composed of water (eluent A) and ACN (eluent 

B). After an initial time of 2.69 min at 90% A and 10% B, the proportion of B was 

increased linearly to 90% within 1.71 min, followed by a hold-time of 1.4 min, then a 

steep return and column re-equilibration for 1.10 min, and 5 min wash before the next 

injection. The flow rate was 0.4 ml/min. The column effluent was directly coupled to the 

MS, which was operated in the positive electrospray ionization mode. MS/MS conditions 

were optimized for FB1 as described by Warth et al. (2012). The precursor ion was set to 

722.5 Da and the two product ions were 334.4 Da (quantifying ion) and 352.2 Da 

(qualifying ion). Urinary FB1 concentrations were expressed as pg/mg creatinine (pg/mg 

crt) to correct for variations in urine dilution among samples. External FB1 standards were 

prepared weekly and injected daily. LOD for the method was determined to be 40 ppt. 
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Recovery from extractions was greater than 85% with a relative standard deviation of 

<5%. 

3.2.5 Statistical analysis 

The GLIMMIX procedure was used in SAS University Edition software (SAS 

Institute, Cary, NS, USA) because the original dependent variables (adjusted toxin levels 

in urine) did not follow a normal distribution. The lognormal distribution was used to fit 

the data. The following variables were tested in order to explain the toxin urine 

levels: Age, sex, the other toxin levels, the frequency of and amounts of traditional 

Mexican food consumption, corn, and corn products in the food survey. Possible 

interactions and inclusion of continuous covariates were also analyzed in order to explain 

the variability in the dependent variables.  

Secondary analyses with AFM1 were done using JMP version 9 software (SAS 

Institute, Cary, NC, USA). Toxin levels were analyzed as categorical variables and used 

in chi-square analyses with demographic and dietary survey information. For all 

comparisons, p < 0.05 was considered to be statistically significant. 

3.3 Results 

Table 6 represents the study population statistics. Males and females were evenly 

represented in this study. All were of Mexican nationality at an average age of 44 years 

old (median: 44; range: 18-81 years). The majority of participants were originally from 

Nuevo Leon (91%), the state in which the study was conducted. Most participants claimed 

an average yearly income of less than 10,000 Pesos (82.4%). Majority of study participants 

were on no special diet at the time of recruitment.  Of those with children, there was only 
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Table 6. Demographic characteristics of study 
participants from Monterrey, Mexico 

Characteristic n (%) 
Sex   

 Male 53    (49.1) 
  Female  55    (50.9) 
Age   

 18-29 29    (26.9)  
 30-39 15    (13.9) 
 40-49 17    (15.7) 
 50-59 24    (22.2) 
 60-69 15    (13.9) 

  >70 8      (7.4)  
Nationality   
  Mexican 108  (100) 
State   

 Coachuila 5      (4.6) 
 Nayarit 2      (1.9) 
 Nuevo Leon 91    (84.3) 
 San Luis Potosi 2      (1.9) 
 Tamaulipas 6      (5.6) 
 Veracruz 1      (0.9) 

  No Answer 1      (0.9) 
Income   

 < 10,000 89   (82.4) 
 10,000-20,000 14   (13.0) 
 20,000-30,000 3     (2.8) 

  No Answer 2      (1.9) 
Special diet   

 Reduced Sugar and Salt 1      (0.9) 
 Reduced Sugar and Salt 4      (3.7) 
 Reduced Salt 1      (0.9) 
 Reduced Fat 1      (0.9) 
 Reduced Carbohydrates 2      (1.9) 
 Arthritic Diet 1      (0.9) 
 Gluten-Free 1      (0.9) 

  No special Diet 97   (89.8) 
Children with birth defects  

 Yes 1      (0.9) 
 No 104  (96.3)  

  No Answer 3      (2.8) 
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one report of a child born with a defect and it was not related to the neural tube. 

Of the 108 participants recruited, 106 urine samples were available for analysis. 

Table 7 shows the descriptive statistics for each mycotoxin. Urinary AFM1 was detectable 

in 68.9% (73/106) of samples analyzed with the average level of 4.29 pg/mg creatinine 

(median: 2.82; detectable range: 0.29-25.98 pg/mg creatinine). There is no significant 

difference in demographics among the participants with detectable levels of AFM1. 

Urinary FB1 was detectable in 71.7% (76/106) of samples analyzed with the average level 

of 43.40 pg/mg creatinine (median: 29.10; detectable range: 1.11-248.57 pg/mg 

creatinine). Similarly, there was not a significant difference in demographics among the 

participants with detectable FB1. Of those participants with detectable levels of AFM1 or 

FB1, 55.7% were co-exposed to both toxins. When grouped by co-exposure, there were no 

Table 7.  Level of urinary AFM1 and FB1 in study participants in 
Mexico independent of co-exposure status 

AFM1 levels (pg/mg 
creatinine) FB1 levels (pg/mg creatinine) 

Number Positive 73 Number Positive 76 

Mean ± SD 
4.29 ± 
3.76 Mean ± SD 49.40 ± 51.50 

Median 2.82 Median 29.1 
Range 0.29-25.98 Range 1.11-248.47 
Percentiles  Percentiles  

25 2.19 25 10.4 
50 2.82 50 29.1 
75 6.72 75 68.13 
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differences in the mean and median levels as compared to independent mycotoxin analysis 

(Table 8). Geographic distribution of co-exposure was significant by χ2 analysis (p = 0.03) 

with a majority of those co-exposed concentrated in the cities of Guadalupe, Juarez, and 

San Nicolas (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

A dietary survey was administered to determine dietary factors that may contribute 

to AF and FB exposure (Table 9). Results from questions on food consumption show that 

participants consume traditional Mexican food between one and five times a week. Of the 

corn products questioned in the survey, corn tortillas were the most frequently consumed 

with 40% of the study population consuming them more than twice a day. No significant 

Table 8. Level of urinary AFM1 and FB1 in study participants in 
Mexico by co-exposure status 

AFM1 levels (pg/mg 
creatinine) FB1 levels (pg/mg creatinine) 

Number Positive 56 Number Positive 56 

Mean ± SD 
3.80 ± 
2.66 Mean ± SD 45.76 ± 48.95 

Median 2.69 Median 24.6 
Range 0.29-10.38 Range 1.11-193.98 
Percentiles  Percentiles  

25 1.9 25 9.4 
50 2.69 50 24.6 
75 5.07 75 67.86 
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associations were observed between frequency of consumption of the various foods and 

detection of AFB1, FB1, or co-exposure. However, the amount of corn tortilla and rice was 

significantly associated with detectable level of AFM1 (p = 0.044 and p = 0.005, 

respectively). Detection of FB1 was positively associated with corn tortilla consumption 

(p = 0.06); 92.11% of participants with detectable levels reported consuming more than 

two tortillas a day. Consumption quantity of corn ear or canned corn and corn tortillas was 

statistically significant when categorized by co-exposure status (p = 0.03 and p = 0.01, 

respectively). Twice as many participants in the co-exposure group reported consuming 

more than one ear or cup of corn (canned or fresh) daily. Similarly, 96% of those in the 

co-exposed group reported eating more than two tortillas a day compared to 78% of 

participants who did not have detectable levels of AFM1 and FB1.  

No evidence was found to support the premise that individual toxin urine levels 

(pg/mg crt) vary according to any dependent variable tested (i.e., sex, food consumption) 

(p>0.1 Tukey's adjusted, data not shown).  

3.4 Discussion 

Results from this study demonstrate a high prevalence of AFB1 and FB1 exposure 

in participants recruited from Monterrey, Mexico, a metropolitan area of northeast 

Mexico. Although frequently exposed, LC-MS/MS data revealed relatively low levels of 

AF exposure. Comparisons with dietary data did not indicate any associations with toxin 

concentrations. In contrast, other studies have shown associations between food 

consumption and toxin levels in urine (Gong et al., 2008;  Torres et al., 2014;  Zhu et al., 

1987). Our analyses do not support such associations and this is possibly due to the fact  
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Table 9. Percent food consumption in Mexico study population by co-exposure status   

   CO-EXPOSED  
  ALL YES NO  

Variable  n= 106 n= 56 n=50 p-value 

Frequency of 
consumption:           

Traditional Mexican food    0.3122 

 
Greater than 

twice per day 2 (1.9) 2 (3.6) 0 (0.0)  
 Once a day 6 (5.7) 4 (7.1) 2 (4.0)  

 
2-5 times a 

week 38 (35.9) 20 (35.7) 18 (36.0)  
 Once a week 38 (35.9) 22 (39.3) 16 (32.0)  

  
Less than 

once per week 22 (20.8) 8 (14.3) 14 (28.0)   

Ear of corn or canned Corn    0.5705 
 Once a day 1 (0.9) 0 (0.0) 1 (0.9)  

 
2-5 times a 

week 13 (12.3) 5 (8.9) 8 (16.0)  
 Once a week 24 (22.6) 15 (26.8) 9 (18.0)  

 
Less than 

once per week 47 (44.3) 24 (42.9) 23 (46.0)  
 Never 20 (18.9) 1 (1.8) 0 (0.0)  

  No answer 1 (0.9) 1 (1.8) 0 (0.0)   

Maize products    0.2701 

 
Greater than 

twice per day 5 (4.7) 2 (3.6) 3 (6.0)  
 Once a day 2 (1.9) 2 (3.6) 0 (0.0)  

 
2-5 times a 

week 20 (18.9) 9 (16.1) 11 (22.0)  
 Once a week 37 (34.9) 17 (30.4) 20 (40.0)  

 
Less than 

once per week 37 (34.9) 24 (42.9) 13 (26.0)  
 Never 4 (3.8) 1 (1.8) 3 (6.0)  

  No answer 1 (0.9) 1 (1.8) 0 (0.0)   
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Table 9. Continued         

   CO-EXPOSED  
  ALL YES NO  

Variable  n= 106 n= 56 n=50 p-value 

Frequency of 
consumption:           
Corn tortilla     0.79 

 
Greater than 

twice per day 43 (40.6) 23 (41.1) 20 (40.0)  
 Once a day 40 (37.7) 20 (35.7) 20 (40.0)  

 
2-5 times a 

week 18 (17.0) 11 (19.6) 7 (14.0)  
 Once a week 3 (2.8) 1 (1.8) 2 (4.0)  

  
Less than 

once per week 1 (0.9) 1 (1.8) 0 (0.0)   
Flour tortilla     0.24 

 
Greater than 

twice per day 7 (6.6) 2 (3.6) 5 (10.0)  

 Once a day 16 (15.1) 11 (19.6) 5 (10.0)  

 
2-5 times a 

week 27 (25.5) 13 (23.2) 14 (28.0)  
 Once a week 24 (22.6) 16 (28.6) 8 (16.0)  

 
Less than 

once per week 18 (17.0) 8 (14.3) 10 (20.0)  
  Never 13 (12.3) 5 (8.9) 8 (16.0)   
Rice     0.14 

 
Greater than 

twice per day 5 (4.7) 2 (3.6) 3 (6.0)  

 Once a day 15 (14.1) 12 (21.4) 3 (6.0)  

 
2-5 times a 

week 50 (47.2) 25 (44.6) 25 (50.0)  
 Once a week 20 (18.9) 10 (17.9) 10 (17.9)  

 
Less than 

once per week 13 (12.3) 7 (12.5) 6 (12.0)  
  Never 3 (2.8) 0 (0.0) 3 (6.0)   
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Table 9. Continued         

   CO-EXPOSED  
  ALL YES NO  

Variable  n= 106 n= 56 n=50 p-value 
Frequency of 
consumption:           
Peanut butter     0.74 

 Once a day 2 (1.9) 0 (0.0) 2 (4.0)  

 
2-5 times a 

week 8 (7.6) 3 (5.4) 5 (10.0)  
 Once a week 9 (8.5) 5 (8.9) 4 (8.0)  

 
Less than 

once a week 24 (22.6) 13 (23.2) 11 (22.0)  
 Never 60 (56.6) 33 (58.9) 27 (54.0)  

  No answer 3 (2.8) 2 (3.6) 1 (2.0)   
Nuts     0.09 

 Once a day 6 (5.7) 1 (1.8) 5 (10.0)  

 
2-5 times a 

week 23 (21.7) 10 (17.9) 13 (26.0)  
 Once a week 31 (29.3) 21 (37.5) 10 (20.0)  

 
Less than 

once a week 31 (29.3) 14 (25.0) 17 (34.0)  
 Never 14 (13.2) 9 (16.1) 5 (10)  

  No answer 1 (0.9) 1 (1.8) 0 (0.0)   
Corn chips     0.72 

 Once a day 9 (8.5) 6 (10.7) 3 (6.0)  

 
2-5 times a 

week 17 (16.0) 8 (14.3) 9 (18.0)  

 Once a week 25 (23.6) 15 (26.8) 10 (20.0)  

 
Less than 

once a week 28 (26.4) 15 (26.8) 13 (26.0)  
  Never 27 (25.5) 12 (21.4) 15 (30.00)   
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Table 9. Continued         

   CO-EXPOSED  
  ALL YES NO  

Variable  n= 106 n= 56 n=50 p-value 
Quantity consumed:         
Ear of corn or canned corn    0.03* 

 
More than 1 

ear or cup 23 (21.7) 16 (28.6) 7 (14.0)  

 
1 ear or 1/2-

1 cup 38 (35.9) 15 (26.8) 23 (46.0)  

 

Less than 1 
ear or 1/2-1 

cup 38 (35.9) 19 (33.9) 19 (38.0)  

 
Doesn't 

know 5 (4.7) 5 (8.9) 0 (0.0)  
  No answer 2 (1.9) 1 (1.8) 1 (2.0)   
Maize products    0.32 

 

Greater than 
or equal to 1 

cup 52 (49.1) 30 (53.6) 22 (44.0)  
 1-1/2 cup 19 (17.9) 10 (17.9) 9 (18.0)  

 
Less than 1-

1/2 cup 29 (27.4) 12 (21.4) 17 (34.0)  

 
Doesn't 

know 5 (4.7) 4 (7.1) 1 (2.0)  
  No answer 1 (0.9) 0 (0.0) 1 (2.0)   
Corn tortilla     0.01* 

 More than 2 93 (87.7) 54 (96.4) 39 (78.0)  
 1-2 10 (9.4) 2 (3.6) 8 (16.0)  
 Less than 1 2 (1.9) 0 (0.0) 2 (4.0)  

  
Doesn't 

know 1 (0.9) 0 (0.0) 1 (2.0)   
Flour tortilla     0.22 

 More than 2 69 (65.1) 41 (73.2) 28 (56.0)  
 1-2 9 (8.5) 5 (8.9) 4 (8.0)  
 Less than 1 23 (21.7) 9 (16.1) 14 (28.0)  

 
Doesn't 

know 2 (1.9) 0 (0.0) 2 (4.0)  
  No answer 3 (2.8) 1 (1.8) 2 (4.0)   
* p≤0.05 in comparison of distribution in co-exposed and not co-exposed groups in Fisher exact test 
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that an individual's levels of toxin in urine are unique and the time of year when samples 

were collected could reflect different exposure levels. 

A dietary survey could be an inadequate method to make conclusions on toxin 

exposure and dietary habits in a population with a high frequency of maize consumption 

and low toxin exposure levels; significance can be masked. Previous studies suggest that 

24 hr recall is the best method for dietary assessment in low-income households, followed 

by weighted inventory, food checklist, and semi-weighted method (Holmes and Nelson, 

2009). However, when exposure is treated as a categorical variable (detectable vs non-

detectable; co-exposed or not co-exposed), results from the current study demonstrate an 

association between the quantity of corn and corn tortillas consumed and co-exposure or 

detectable toxin status (Table 9). In a study conducted in a primarily Hispanic population 

of San Antonio, TX, similar results were reported with AFM1 exposure (detectable v. non-

detectable) and dietary survey data (Johnson et al., 2010). Future investigations could be 

improved by matching 24 hr dietary data with short-term biomarkers such as AFM1 and 

FB1. In addition, co-exposed participants appear to be concentrated in the cities of 

Guadalupe, Juarez, and San Nicolas and the product quality in those areas and product 

origin should be determined. 

In the course of this study, much of Mexico was experiencing moderate to high 

levels of precipitation (Hydroclimate Research Lab, 2016). Drought and high ambient 

temperatures during certain stages of maize growth have been identified as the 

environmental conditions most conducive to AF contamination in maize (Lisker and 

Lillehoj, 1991;  Vincelli et al., 1995). Moreover, significantly higher biomarker levels of 
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AF have been observed during dry season in the Gambia than in the rainy season (Turner 

et al., 2000;  Wild et al., 2000). This could be one explanation for the overall low levels 

of AF exposure as reflected by the urinary biomarkers results reported in the current study 

as compared to other high-risk areas such as Ghana (Jolly et al., 2006). Therefore, the 

sampling from February to April may not represent the highest risk associated with 

mycotoxins for Northern Mexico. 

The ratios of AFM1 and FB1 levels are comparable to previous reports supporting 

a higher frequency of FB exposure. This could be a reflection of competition in the field 

between the mycotoxigenic fungi. Marin et al. reported that the activity of Fusarium 

moniliforme and F. proliferatum in grain reduced the presence of Aspergillus flavus, A. 

niger, and A. ochraveus, particularly at 15°C and higher water availabilities (Marin et al., 

1998b). In general, F. moniliforme and F. proliferatrum are very competitive and 

dominant against A. flavus (Marin et al., 1998a). Although an overlap of niches between 

the fungi exist and is influenced by both temperature and water availability, the 

mechanism of how this overlap affects mycotoxin production is unknown. 

When discussing AF and FB exposure, the idea of mixtures and modulation of 

metabolism should be addressed. In a co-exposure rat study with AFB1 and FB1, lower 

levels of AFM1 were reported when rats were dosed with both toxins as compared to the 

AFB1 or FB1 exposure groups (Mitchell et al., 2014b). The highest average AFM1 

concentration in animals given the AFB1/FB1 mixture was approximately two times lower 

than the average concentration in animals dosed with AFB1. Considerable variation was 

observed in the overall excretion of AFM1 in this treatment group. The authors suggest 
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that AFB1 and FB1 could be altering each other’s absorption from the gut since FB1 levels 

were unchanged. While AFM1 levels were reduced, the blood AFB1-alb biomarker was 

increased in the presence of FB1. This could be a result of modulation in the AF metabolic 

pathway by FB1 to favor the formation of the albumin adduct and as a result, reducing 

levels of AFM1 excreted in the urine. More studies are warranted to investigate the 

consequence of this toxin combination in the diet and the implication for biomarkers of 

exposure. Although AFM1 concentrations remain consistent regardless of co-exposure 

status in the current study, measurements of toxin concentrations in foods is necessary for 

any conclusion regarding metabolism modulation to be made in this scenario. 

Unlike sub-Saharan Africa where deaths from aflatoxicosis have occurred, none 

have been reported in Mexico despite the daily consumption of maize and maize products. 

A cooking process that is practiced in Latin America, including Mexico, is the inclusion 

of an alkaline-lime treatment to corn products. Termed nixtamalization, maize is cooked 

and steeped in alkaline water, separated from the water, rinsed, then further processed to 

make masa flour, tortillas, fried chips, and other foods (Torres et al., 2015). This process 

has been demonstrated to effectively reduce FB concentrations in maize foods (Palencia 

et al., 2003) and reduce toxicity in animal models (Burns et al., 2008;  Voss et al., 2013;  

Voss et al., 2009). However, reductions are incomplete. Results from the current data 

support the findings of incomplete FB1 reductions via nixtamalization since a high 

percentage of FB1 was detected in participant urine. At the same time, the consumption of 

non-alkalized maize must be considered. Future surveys in this region should include 

questions on the employment of nixtamalization in food preparation.  
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Protection from AF-toxicity by nixtamalization in animal models is unclear. The 

breakdown of AFB1 during nixtamalization is attributed to the hydrolytic opening of the 

lactone ring, thus increasing solubility and allowing for extraction into the cooking-liquid, 

which is typically poured off. However, under acidic conditions, such as the low pH in the 

stomach, this open structure can revert to the original configuration and undergo normal 

metabolism once becoming bioavailable. Some studies have indicated protection from 

masa (alkaline-processed maize). For example, chickens fed contaminated masa (AFB1= 

260 µg over five days) survived and showed no obvious differences from the controls 

other than poor plumage. The contaminated maize-fed group died after five days 

(Anguiano-Ruvalcaba et al., 2005). Juvenile Wistar rats that were fed with tortillas 

prepared from nixtamalized-contaminated-maize exhibited decreased weight gain and 

food consumption compared to control; negative control juveniles died within two weeks 

(Torres et al., 2015). Comparisons of HCC burden and nixtamalization have also been 

made; HCC burden can be much higher in parts of Africa and Asia where nixtamalization 

is not practiced (Liu and Wu, 2010). However, it is important to factor HBV prevalence 

in such associations. HBV is more prevalent in the high AF exposure regions/countries in 

Africa compared to Latin America (Liu and Wu, 2010). In contrast to the observations 

made by Liu and Wu (2010), Latin American countries with the highest incidence of HCC, 

cirrhosis and chronic liver disease such as Mexico are also the countries that are most 

likely to consume nixtamalized maize-based foods (Torres et al., 2015). In conclusion, 

nixtamalization appears to provide some reduction to the toxic effects of AF and FB, but 

the extent of the protection to public health is unclear and warrants further investigation. 
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The current study is the first report of urinary AFM1 levels in a Mexican 

population. The only previous report of AF biomarker exposure was of the AF-albumin 

adduct, which represents long-term exposure. FB1 levels unadjusted for creatinine (data 

not shown) reported here were similar to those by Gong (2008) in Mexico and by Torres 

(2014a) et al. in Guatemala. Torres et al. (2015) measured AFB1 levels in maize from 

Guatemala with 78% < 20 ppb, but also detected the toxin in levels known to be harmful 

to animals and humans. Using Mexico and Guatemala as proxies, evidence suggests that 

much of Latin America is exposed to both AFs and FBs with a high risk of co-exposure. 

Implications of co-exposure for human health are numerous, but one aspect of particular 

concern is the potential of FB1 to modulate AFB1 hepatotoxicity and/or 

hepatocarcinogenicity. Recently, Goss et al. stated that the incidence of HCC in 

Guatemala and Mexico is attributed to high rates of chronic viral hepatitis, alcohol use, 

and AF exposure (2013). It is hypothesized that HCC cancer risk is increased by AF/HBV 

interaction through mechanisms of chronic inflammation and cell proliferation 

(Groopman and Kensler, 2005). It is not unlikely for FB to synergize the cell proliferation 

process due to its ability to alter the balance of biochemical mediators of cell death and 

survival in target tissues through the inhibition of ceramide synthase (Bulder et al., 2012). 

However, this interaction has not been definitively demonstrated. Therefore, based on the 

variable toxin exposures in this region of Northern Mexico and the implication for AF and 

FB in HCC development, more data on the risk of mycotoxins to public health is 

warranted.  
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4. EFFICACY OF DIETARY INTERVENTION DELIVERED IN WATER TO 

REDUCE EXPOSURE TO AFLATOXIN IN EASTERN KENYA 

4.1 Introduction 

Acute exposure to AFs can lead to aflatoxicosis and liver failure (Wild & Gong 

2010), with documented fatality rates in Kenya as high as 40% (Centers for Disease 

Control and Prevention, 2004). In Kenya, the first reported aflatoxicosis outbreak occurred 

in 1981 (Ngindu, 1982). In the period from 2004 to 2014, subsequent outbreaks have 

affected nearly 600 individuals and caused 211 deaths (personal communication with 

Kenya Ministry of Health).  

There is a need to implement and evaluate evidence-based interventions in Kenya 

to decrease AF exposure and subsequently avert adverse health effects, particularly in 

regions with recurring outbreaks. One possible approach to prevent illness associated with 

acute AF exposure is through the use of processed calcium montmorillonite clay 

(ACCS100). ACCS100 is produced from Hydrated Sodium Calcium Aluminosilicate, a 

clay composition that is generally recognized as safe by the U.S. Food and Drug 

Administration (U.S. Federal Drug Agency). ACCS100 clay can be included in the diet to 

tightly adsorb AFs in the gastrointestinal tract, leading to decreased bioavailability and 

prevention of toxin-induced disease.  High affinity binding of AFs to clay (Grant and 

Phillips, 1998;  Phillips, et al., 2002), reduction of AF bioavailability, prevention of 

aflatoxicosis, and safety at doses as high as 2% clay in the diet have been well-documented 

in animal studies (Afriyie-Gyawu et al., 2005;  Harvey et al., 1993;  Harvey et al., 1991a;  

Mayura et al., 1998;  Phillips, 1999;  Phillips et al., 1988;  Phillips et al., 2002;  Phillips 
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et al., 1995).  Following successful results in animal models, a two-week study was carried 

out in 50 adults in the U.S. (Wang et al., 2005). Following demonstration of safety, trials 

were moved to Ghana where a three month phase IIa clinical trial in adults, a two-week 

crossover trial in adults, and a two-week safety study in children indicated that the clay 

was safe for human consumption at levels as high as 0.5% in the diet and deemed to be 

efficacious (40-58% reduction in  serum AFB1-albumin adduct and urine AFM1 

biomarkers of exposure) (Afriyie-Gyawu et al., 2008a;  Mitchell et al., 2014a;  Mitchell 

et al., 2013;  Wang et al., 2008).  No significant differences in hematology, liver and 

kidney function, electrolytes, or minerals were evident between placebo and active 

treatment groups. Furthermore, ACCS100 did not affect blood levels of micro- and macro-

nutrients, such as vitamins A and E (Afriyie-Gyawu et al., 2008).   

Although long- and short-term biomarkers of AF exposure were both utilized in 

previous intervention trials with CM clay conducted in Ghana, Mitchell et al. was the first 

to report a clinical trial supported only by AFM1 biomarker data (Mitchell et al., 2013). 

AFM1 in urine reflects recent AFB1 exposure (Zhu et al., 1987) and can be easily collected. 

Use of a urinary biomarker is desirable, especially for use in shorter pilot trials in children 

and other vulnerable groups, where appropriate dosimetry has not yet been defined. This 

approach was applied in a crossover study in a region of Ghana with historically high 

levels of AF exposure. Data showed that a refined CM clay (UPSN) reduced AFM1 

biomarkers by 55% compared to the placebo in as little as five days. Furthermore, Mitchell 

and colleagues demonstrated that urinary AFM1 levels can be used as a biomarker of 

internal AFB1 exposure in short-term intervention trials to determine efficacy. This finding 
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was followed-up by a short-term safety and efficacy trial in children from the same region 

(Mitchell et al., 2014a). Healthy children ages 6-9 with parental consent, ingested 0.75 or 

1.5 g UPSN or Placebo for 14 days. Urine samples were collected at baseline, halfway 

through the study (day 7), and the morning after the final dose (day 15). A significant 

reduction in median AFM1 was observed in the high-dose group by 52% compared to 

placebo. Furthermore, these studies demonstrate that utilization of the AFM1 biomarker 

to prove efficacy could significantly decrease the time participants need to be treated with 

an investigational therapy and also to lower overall invasiveness of such intervention 

trials. Based on the results by Mitchell et al.  in 2013 and 2014, detection of urinary AFM1 

could facilitate rapid surveillance of aflatoxicosis outbreaks and rapid identification of 

effective strategies to mitigate aflatoxicosis.  

Despite the apparent effectiveness of CM, there is a need to establish feasibility 

and efficacy in Kenya—a country that has a well-documented history of aflatoxicosis 

outbreaks. There are differences between Ghana and Kenya (e.g., different cultures, 

ethnicities, diets, institutional policies, infrastructure, etc.) that could affect the efficacy, 

palatability, and acceptability of CM. Thus, our objectives were to assess these qualities 

of ACCS100, a CM clay, in a population with a known history of aflatoxicosis outbreaks 

in the Eastern Province of Kenya.  

4.2 Materials and methods 

4.2.1 Materials 

AFM1 was obtained from Sigma Aldrich (St. Louis, MO, USA). AflaTestWB 

columns were purchased from VICAM (Watertown, MA, USA). All solvents were 
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purchased from Fischer and were of the highest grade. Ultrapure deionized water (18.2 

MΩ cm) was used in all extractions. ACCS100 and calcium carbonate were purchased 

from Texas Enterosorbents, Inc. (Bastrop, TX). All materials designated for human 

consumption were treated with electron beam radiation prior to study initiation. 

4.2.2 Aflatoxin B1 sorption analysis with ACCS100 

Isothermal analyses of AFB1 sorption onto surfaces of ACCS100 at equilibrium 

were performed according to methods reported by Grant and Phillips (1998) and described 

in detail by (Marroquin-Cardona et al., 2009). ACCS100 clay or calcium carbonate (50 

ng) were mixed with 11 different concentrations of AFB1, all done in triplicate, for 2 h at 

a pH 6.5. Samples were then centrifuged and the absorbance read at 362 nm using a 

Shimadzu scanning UV visible spectrophotometer (Shimadzu Corporation, Kyoto, Japan). 

Computer-generated equilibrium isotherms were fit to the Langmuir model (based on r2 

values and randomness of the residuals). The parameters of Qmax and Kd were estimated 

to determine the maximum sorption to the surface and the affinity of the sorption 

interaction. Isothermal analyses of the placebo material, calcium carbonate, indicated that 

it was a very weak sorbent of AFB1 at pH 2 and 6.5, with 13% and 5% bound, respectively 

(Mitchell et al., 2013). As the concentration of AFB1 increased, the percent bound to 

carbonate became negligible at pH 2, suggesting that calcium carbonate dissolves under 

acidic conditions. 

4.2.3 Study design and procedures 

The study protocols (ID 2603, 6535.0 and 2013-0311F) were approved by the 

Institutional Review Boards at Kenya Medical Research Institute (KEMRI), Centers for 
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Disease Control and Prevention (CDC) and Texas A&M University, respectively.  The 

study was conducted in July 2014 through August 2014. A double-blinded, crossover 

clinical trial was employed in which 50 participants were randomly assigned to Group I 

or Group II (Figure 12). Group I participants ingested 1 g calcium carbonate placebo in 

water three times per day for seven days, then entered a 5-day washout period during 

which no test material was consumed. Following the washout period, Group I participants 

ingested 1 g of ACCS100 mixed in water three times per day for the last seven days. Group 

II participants followed the same schedule, except they began with ACCS100 first and 

finished with placebo.  

Texas EnteroSorbents Inc. provided ACCS100 and placebo in 1 g dose foil sachets 

packaged for individual use. Confectioners sugar was added to each treatment to enhance 

the taste. We asked participants to consume 3 g of ACCS100 or placebo per day during 

the study arms. We also instructed them to consume one sachet with each of their three 

main meals by diluting the sachet in water provided by the study. The sachets were 

coloured as pink or green to designate the content (ACCS100 or placebo). Each day during 

the study, we provided each participant with a sterile urine cup, three treatment sachets, 

and three 500-mL bottles of clean water  

Trial efficacy was assessed by comparing urinary AFM1 while on ACCS100 or 

placebo treatment to urinary AFM1 at baseline. Participants provided a first morning void 

urine sample at baseline, and again for each of the seven days of each treatment arm. Urine 

samples were collected, aliquoted and frozen each morning, then kept frozen until 

laboratory analysis. 
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Figure 12. Overall study design and participant flow for ACCS100 crossover trial 
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4.2.4 Study population and enrollment 

The study was implemented in the Kalimani and Kamboo villages of Kamboo sub 

location in Makueni County, Kenya. The region is predominately agricultural and 

composed of subsistence farming, where the residents maintain a maize-based diet. These 

villages were chosen because they had experienced multiple aflatoxicosis outbreaks within 

the past decade.   

Field teams employed convenience sampling and went door-to-door to recruit 

participants, enrolling one adult per household. Inclusion criteria consisted of the 

following: 1) aged ≥18 years; 2) consumed maize and/or groundnuts at least four times 

per week; and 3) agreed to participate. Once a participant was identified, written informed 

consent was obtained. Consent forms were supplied in the local language (Akamba) as 

well as the national language (Kiswahili). Participants could decline to participate in any 

part of the study and were free to withdraw at any point. Upon completion, participants 

were reimbursed with cooking items worth approximately 400 Kenya shillings (4 U.S. 

dollars).  

After providing consent, each person’s medical history, height, and weight was 

recorded and their current health status assessed. Urine glucose and protein levels were 

tested using Chemistrip®2 GP from Roche Diagnostics (Indianapolis, IN, USA). 

Pregnancy was tested using Sure-Vue® Urine hCG strips (Fisher Healthcare, Pittsburgh, 

PA, USA). Participants who were pregnant or who had a history of thyroid disease, heart 

disease, lung disease, kidney disease, gastrointestinal disease, or diabetes were excluded. 

Participants who were not excluded were randomized into the study. An enrollment survey 
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was administered that included questions regarding duration of residency in the village, 

source of maize, and the shelf life of their maize stock.  

4.2.5 Palatability  

Palatability was assessed by administering a questionnaire after each arm that 

asked participants to rate the taste, aftertaste, smell, texture, appearance, and color of the 

sachet contents they had been consuming using a 5-point Likert scale (1 = really bad, 

5 = really good).  

4.2.6 Adherence and acceptability 

Study monitors completed a worksheet each day during the study arms to record 

participant adherence to the study protocol (i.e., daily use of ACCS100 or placebo), the 

occurrence of side effects, and diet. Additional information was collected regarding the 

side effect severity (i.e., mild, moderate, or severe), time of day the effect occurred (i.e., 

AM, Noon, or PM), and whether or not the participant sought treatment. We assessed 

acceptance by administering a questionnaire at the end of the study to collect the 

participant’s perceptions of ACCS100, information sources regarding AF, and whether 

they would find ACCS100 to be acceptable as a future intervention to reduce AF exposure. 

4.2.7 Determination of urinary aflatoxin M1 and serum aflatoxin B1-lysine adduct level 

Analysis of urinary AFM1 levels followed methods by Groopman et al. (1992) and 

the modifications of Sarr (1995) and Wang (1999).  Urine samples were centrifuged at 

887 xg, and 5.0 mL of supernatant was collected, acidified with 0.5 mL of 1.0 M 

ammonium formate (pH 4.5) and diluted with water to a total volume of 10.0 ml. Samples 

were then loaded onto a 3 mL preparative Aflatest® WB immunoaffinity column 
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(VICAM, Watertown, MA, USA) at a flow rate of 1 mL/min. Following washing of the 

column, the AF fraction was eluted from the column with 2 ml of 80% methanol, dried 

under N2
 and re-suspended in 200 µL of a 1:1 solution of methanol:20mM ammonium 

formate. Samples were analyzed using a Shimadzu HPLC system (Waters, Watertown, 

MA, USA) with fluorescence detection capabilities. A 50 x 4.6 mm Luna C-18 column 

with pore size 100 Å and particle size 5 µm (Phenomenex, Torrance, CA USA) was used 

to resolve AF metabolites. The mobile phase consisted of 22% ethanol buffered with 20 

mM ammonium formate (pH 3.0) in water. Isocratic elution of the mobile phase for 20 

min at a rate of 1 ml/min allowed for proper chromatographic separation. External AFM1 

standards were prepared weekly and injected following every 5 injections of samples. The 

limit of detection for this method was 1.2 pg for AFM1.  

Aliquots of random samples were collected for additional verification using a 

Waters Acquity H-Class UPLC-MS/MS (Waters Corporation, Milford, MA, USA). 

Separation was achieved using a 2.1 x 50 mm Acquity UPLC BEH C18 column with a 

particle size of 1.7 µm.   Isocratic separation occurred with 70% water buffered with 1% 

formic acid and 30% ACN buffered with 1% formic acid. Samples (10 µL) were injected 

onto the column and the elution rate was 0.325 ml/min. The column effluent was directly 

coupled to the MS, which was operated in the positive electrospray ionization mode. 

MS/MS conditions were optimized for AFM1 and based on Warth et al. (2012). The 

precursor ion was set to 329.00 Da and the two product ions were 273.00 Da (quantifying 

ion) and 259.1 Da (qualifying ion).  
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Urinary AFM1 concentrations were expressed as pg/mg creatinine to correct for 

variations in urine dilution among samples. Creatinine concentrations were measured at 

Baylor Scott & White Hospital (Temple, TX, USA). 

Previous measurements of AF exposure in Kenya have been based on the serum 

AFB1-lys, a biomarker for long-term AF exposure. For this study, two blood samples were 

also collected from each participant at baseline (Day 0) and completion (Day 21) of the 

trial for AFB1-lys analysis. This allowed for comparisons of AF exposure to levels 

recorded during previous outbreaks. CDC’s National Center for Environmental Health 

Division of Laboratory Sciences analyzed serum specimens for AFB1-lys adduct, which 

consisted of two measurements: 1) analysis of AFB1‐lys by LC-MS/MS (McCoy et al., 

2005); and 2) albumin measurement. To allow the release of AFB1-lys from albumin, 

protein in serum specimens was digested in the presence of stable‐isotopically labeled 

internal standard (2H4‐AFB1‐lys) for at least 15 hr at 37 °C by use of a commercially 

available mixture of proteinases (Pronase™). AFB1‐lys and 2H4‐AFB1‐lys were then 

extracted by use of mixed‐mode anion exchange reversed-phase solid‐phase extraction. 

Each solid‐phase extraction eluate was evaporated, reconstituted in mobile phase, and 

injected onto a reversed-phase C18 column. AFB1-lys was chromatographically separated 

from other compounds using gradient mobile phase. Both AFB1-lys and 2H4‐AFB1‐lys 

were detected with positive electrospray ionization (ESI) in selective reaction monitoring 

mode using tandem quadruple mass spectrometry (McCoy et al., 2005). Quantitation was 

based on peak area ratios interpolated against a seven‐point aqueous linear calibration 

curve with 1/x weighting. The limit of detection (LOD) for AFB1-lys was 0.02 ng/mL. 
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Serum albumin was analyzed on the Hitachi Modular P clinical analyzer using the Roche® 

colorimetric assay. The LOD for albumin was 0.2 g/dL.  

4.2.8 Statistical analysis   

Data were entered into Epi Info™ 7 (CDC, Atlanta, GA, USA) and analyzed using 

SAS Enterprise Guide version 4.3 (SAS Institute, Cary, NC, USA) or JMP version 9 

software (SAS Institute, Cary, NC, USA). All statistical analyses were blinded. For 

urinary AFM1 and serum AFB1-lys, levels below the LOD were substituted with LOD 

divided by two. Urinary AFM1 and serum AFB1-lys levels were not normally distributed.  

AFM1 levels were analyzed under nonparametric conditions (Kruskal-Wallis) and 

parametric conditions (ANOVA) following a log transformation of the data. Both 

parametric and nonparametric analyses were used to compare groups by days and by 

treatment arms. A p-value <0.05 (two-tailed) was considered significant. Statistical 

significance was not changed between parametric and nonparametric testing. Data was 

analyzed with participants acting as their own controls over two different time periods and 

with AFM1 levels being compared between participants during a common time period. 

Data was also grouped by treatment for days 1-5 and grouped separately for days 8-12 and 

analyzed by ANOVA. 

Serum AFB1-lys levels were compared before and after the study using a paired t-

test of the log-transformed data. To compare the palatability data, a Wilcoxon rank sum 

test was performed to account for the matched design. For all comparisons, p < 0.05 was 

considered to be statistically significant. 
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Questionnaire data was analyzed categorically with a chi-square test by treatments. 

Tea was chosen for additional analyses due to its frequency of consumption in this region 

and possible modulating effects of polyphenols naturally present in tea. Baseline levels of 

log transformed AFM1 in Arm 1 and Arm 2 were compared against the report of tea or not 

in the dietary survey for that day and analyzed by ANOVA. 

4.3 Results 

4.3.1 Aflatoxin B1 sorption analysis with ACCS100 

The parameters of Qmax and Kd were derived for sorption of AFB1 at pH 6.5 onto 

ACCS100. Isotherms are run at both a pH of 6.5 to simulate conditions the clay would  

encounter in the intestine. The sorption of AFB1 onto surfaces of ACCS100 fit the 

Langmuir model (r2 ≥0.92) with an L-shape pattern indicating saturable binding at sites 

similar to those shown on parent NS clay (Figure 13). As previously reported by 

Marroquin-Cardona et al. (2011) the theoretical Qmax values calculated for UPSN, or 

ACCS100, were 0.44 ± 0.05 mol AFB1 kg-1 at pH 2 and 6.5, respectively (Marroquin-

Cardona et al., 2011).  At a pH of 6.5, ACCS100 demonstrated a Qmax of 0.524 indicating 

a high binding capacity with an affinity of 13x105 (Kd). This demonstrates that the sugar 

added to ACCS100 for taste enhancement did not interfere with the binding of AFB1.  

4.3.2 Study population and demographics 

In order to enroll our study population of 50 participants, a total of 68 potential 

participants were assessed. Eighteen participants were not enrolled (Figure 12). Study 

retention for randomized participants was 98%. One male participant dropped out on day 

three after being randomized and completing two treatment sessions. Thus, we included  



 

 
 

 

139 

 

 

49 participants in our statistical analyses. The majority of participants were female (n=36, 

72%) (Table 10). Participants ranged in age from 21 to 75 years (Mean=39.3 years). 

Participant sex, age, weight, height, and amount of time living in the village did not differ 

by group.  

4.3.3 Compliance 

The majority of participants consumed all 21 sachets during both the ACCS100 

(n=45) and the placebo (n=44) treatment. The majority (n=46) of participants always 

ingested the sachet with water; four individuals each reported consumption of a sachet 

without water once throughout the study (but with food). There were 23 participants who 

consumed a sachet without food; this occurred between one and three times per person.  
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Figure 13. AFB1 isotherm onto ACCS100 at pH 6.5. ACCS100 is depicted in a L-shape curve 
characteristic of a saturation of binding sites by AFB1 in a planar configuration (Marroquin-
Cardona et al. 2011). 
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4.3.4 Analysis of urinary aflatoxin M1 and serum aflatoxin B1-lysine levels 

All 49 participants contributed data to both arms of the study and thus were 

included in the efficacy analyses. Participants provided 784 (98%) of the intended 800 

urine samples. Overall, 48% of samples contained detectable levels of urinary AFM1 

Table 10. Kenya study population demographics, by group 
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(Range: <LOD–1986 pg/mg crt). Participants consumed an average of 1.9 maize-

containing meals per day; this did not differ by treatment (Placebo, 1.8 maize-containing 

meals per day; ACCS100, 1.9 maize-containing meals per day). Thus, the number of 

maize-containing meals as a confounder was not assessed. Baseline urinary AFM1 levels 

did not vary statistically by treatment. Furthermore, there was little correlation in an 

individual’s urinary AFM1 levels over time, either when comparing the baseline of Arm 1 

to the baseline of Arm 2, or when comparing Day 1 to Day 2. Thus, we did not include 

baseline urinary AFM1 levels in the efficacy analyses.  

Interestingly, a significant difference was observed when baseline AFM1 levels 

were categorized by consumption of tea that day (Figure 14). Pooled AFM1 baseline levels  

 

 

 

 

 

 

 

 

 

 

 
Figure 14. AFM1 excretion by tea consumption. Baseline mean 
AFM1 levels based on report of tea consumption in daily diary. *p = 
0.05 
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revealed lower concentrations of the metabolite in individuals who had consumed tea. No 

significant differences in tea consumption between treatment groups or study arms were 

observed and therefore not included as a confounder in trial efficacy.  

Average AFM1 levels from days 2-8 during both study arms were significantly 

lower in participants on ACCS100 when compared to placebo within groups and treatment 

arms (Figure 15). Figure 16 shows daily median urinary AFM1 over the full 14 days of 

treatment and demonstrates the crossover in treatments for the groups with a switch in 

AFM1 levels occurring by the 15th treatment day of the study. Comparisons between the 

ACCS100 treated groups and placebo groups were conducted for each time point by a 

one-way analysis. Significance was achieved in arm 1 by day 8 (day 7 on treatment) by 

nonparametric analysis with lower AFM1 levels in Group 2 (ACCS100) than Group 1 

(Placebo) (p = 0.0386). By day 2 on treatment in the second arm, Group 1 (ACCS100) 

had significantly lower levels of AFM1 than Group 2 (p = 0.0235). This trend was 

maintained throughout arm 2, with significance achieved on day 18 (p = 0.0112) (Figure 

16). Pooled AFM1 levels by treatment group revealed a 46.6% reduction in AFM1 

excretion. 

Thirty-nine participants provided serum data at both time points and thus were 

included in this analysis. Serum levels exhibited a statistically significant decrease from 

Day 0 (GM: 12 pg/mg albumin, 95% CI: 8.7–16 pg/mg albumin) to Day 20 (GM: 5.4 

pg/mg albumin, 95% CI: 3.9–7.4 pg/mg albumin). The difference remained statistically 

significant when analyzed by treatment (data not shown) and resulted in a 55% reduction 

of AFB1-levels in the ACCS100 group.  
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Figure 15. AFM1 distribution within groups and treatment arms. The box values ranges from 22 to 75 percentiles of the total samples, 
the line within it indicated the median value. The bars on both sides of a box represent values ranging from 5 to 25 and from 75 to 95 
percentiles, respectively. A) Comparison of ACCS100 and placebo treatment with the same group. Analysis of the data in this manner 
allowed for each person to be used as their own control and account for inter-individual differences in AFB1 metabolism and AFM1 
excretion. B) Distribution of AFM1 levels by arm/group. Comparison of median AFM1 levels were compared between groups based on 
time points (Arm 1: days 1-7; Arm 2: days 14-21) to account for differences in daily dietary AFB1 intake. Placebo data in Arm 1 were 
compared with ACCS100 data in Arm 1 and the same was calculated for Arm 2. *p < 0.05 as compared with placebo. 
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4.3.5 Palatability 

There was a statistically significant difference in smell by treatment, with 

participants on average rating the placebo as 0.25 Likert points better than ACCS100. 

There were no statistically significant differences in ratings of taste, aftertaste, appearance, 

color, or texture by treatment (Table 11). The majority of participants rated aftertaste, 

Figure 16. Daily median AFM1 levels for 2 weeks of crossover study. Day 1 and 14 represent 
baseline urine samples taken for participants. Group 1 (green) was on placebo treatment days 
2-8 and ACCS100 treatment days 15-21. Group 2 (pink) was on ACCS100 treatment days 2-8 
and placebo days 15-21. * p < 0.05 as compared with placebo at the same time point. Bar 
between days 8 and 14 represent the washout period. Switch in treatments is highlighted by the 
grey box. 
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texture, appearance, smell, and color as either okay, good, or really good for both the 

placebo and ACCS100. No one reported appearance, color and taste as bad for the placebo. 

However, ACCS100 received a “bad” rating from one participant (2.2%) for appearance, 

one (2.2%) for color, one (2.2%) for taste, and one (2.2%) for texture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.6 Acceptability 

Forty-seven participants completed the end of the study questionnaire. Most 

participants (96%) had heard of AF prior to the study, and most (91%) worried about 

becoming sick as a result of exposure to it. Over half of participants (67%) knew of 

someone who had become sick from AF exposure in the past, and 9% believed they 

Table 11. Kenya study palatabilitya ratings 
reported by treatment 
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themselves had been sick from AF exposure in the past. Most participants (98%) did not 

have any concerns about ACCS100 and would be willing to take the ACCS100 (98%) or 

give it to their children (98%) if they knew it would provide them protection against 

aflatoxicosis. The majority of participants (72%) reported that they would prefer to take  

the clay in water as they had done during the study; the other commonly mentioned option 

was taking the clay plain (i.e., licking it; 13%). Participants would be willing to take the 

clay for at least two weeks (40%) or as long as it was recommended (38%). Similarly, 

participants would be willing to let their children take the clay for at least two weeks (36%) 

or as long as it was recommended (47%).  

Table 12. Kenya study adverse events reported by treatment 
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4.3.7 Adverse events 

Approximately one-quarter of participants in both the placebo and ACCS100 

groups reported at least one adverse event (n=12, 26% and n=14, 28% respectively). The 

most commonly reported adverse events for placebo were nausea (14%) and abdominal 

discomfort (8%), while for ACCS100 abdominal discomfort (14%) and increased appetite 

(8%) occurred (Table 12). Other side effects reported at least once were diarrhea (reported 

once, by one individual while on ACCS100), and dizziness with headache (reported once, 

by one individual while on ACCS100).  Frequency of an adverse event was reported as 

the potential number of times when it could have been reported. There were no statistically 

significant differences in the reporting of adverse events by treatment. No adverse events 

were graded as severe. Approximately one-third of side effects on ACCS100 (n=6; 35%) 

and placebo (n=7; 39%) were rated as moderate.  

4.4 Discussion 

ACCS100 was found to be safe, with no relationship between adverse events and 

ACCS100 use. Two of the most commonly reported side effects in our study were 

abdominal discomfort and nausea, and both have been reported in previous studies. One 

notable difference in the present study is that a small number of participants reported 

increased appetite. It is possible that participants may have paid more attention to their 

level of hunger since we performed our study during a time of relatively high food 

insecurity. Another difference between our study and earlier work is in the delivery 

mechanism insecurity. Another difference between our study and earlier work is in the 

delivery mechanism. Previously, ACCS100 had been delivered in food or capsule. This is 
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the first study to show that ACCS100 can be palatable and acceptable when mixed with 

water which would be a rapid and effective method of delivery and therapy during an 

outbreak period.  

We found ACCS100 to be effective in reducing AF exposure from the diet. 

Participants in both groups had lower urinary AFM1 levels while taking ACCS100 

compared to placebo. During a similar cross-over study in Ghana, participants also 

exhibited lower urinary AFM1 levels, though the effect was statistically significant in only 

one group but pooled AFM1 levels revealed a 55% reduction in the clay treatment group 

(Mitchell et al., 2013). Similarly, the current study reports a 46% reduction in urinary AF 

levels.  

Baseline urinary AFM1 levels were approximately 80 times higher during the 

clinical trial in Ghana than observed in Kenya, suggesting that participants in our study 

had lower exposure to AF. This could be a result of lower daily caloric intake of AF-

containing foods. Our ability to observe statistical significance in both of our study groups 

could also be a reflection of participants’ exposure to AF remaining relatively stable 

throughout the study period, as evidenced by the average number of meals containing 

maize remaining fairly constant across each day of the study. Results from prior outbreaks 

have shown that this community is at high risk for AF exposure, with exposure typically 

originating from the consumption of homegrown maize (Daniel et al., 2011). During this 

clinical trial, this region was in a drought. There had been no recent harvest, and thus all 

participants were eating maize from the market, instead of homegrown maize. This might 

have been one reason why AF exposure was relatively low. Another possibility is the 
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modulating effect of tea on AF metabolism (Tang et al., 2008; Qin et al., 1997). Results 

from a study examining the use of green tea polyphenols (GTP) as a chemopreventative 

agent for lowering AF biomarkers indicated that 500 mg of GTP reduced up to 43% 

median AFM1 as compared with the placebo (L. Tang 2008). Furthermore, significant 

elevations in median AFB1-mercapturic acid were found with GTP intervention therefore 

suggesting modulation of the metabolic pathway to favor the GST conjugation of AFB1-

exo 8,9-epoxide followed by urinary excretion as AFB1-mercapturic acid over CYP 1A2 

hydroxylation to AFM1. A majority of study participants from the current study consumed 

tea on a daily basis. In this region, black is more readily consumed over green tea; 

however, studies have reported similar levels of bioavailable polyphenols in both teas 

(Henning et al., 2006). When baseline levels were analyzed by tea consumption, mean, 

median, and range were significantly lower in the tea consuming group consistent with 

modulation of metabolism as previously reported (Tang et al, 2008). Although, 

determined not to be a confounder in trial efficacy based on even distribution between 

treatment groups, this modulation could explain the overall low-level exposure for such a 

high-risk area as compared to previous reports of AFM1 in Ghana. Importantly, this is the 

first report of urinary AFM1 levels in this region. Follow-up measurements are necessary 

to associate exposure levels with source (homegrown vs. imported maize) and to identify 

tea as a metabolic moderator for this particular population. Analysis of an additional short-

term biomarker should also be employed in this scenario and the possibility of clay 

delivered in tea presents an interesting opportunity for increased protection. This delivery 

would allow for the reduction of bioavailability of the toxin by clay and chemoprevention 
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from the tea. In other words, the amount of toxin absorbed would be significantly reduced 

and what does make it into circulation and metabolism will favor rapid excretion as AFB1-

mercapturic acid therefor limiting the number of AFB1-DNA adducts. 

Median AFB1-lys levels in our study participants (9.2 pg/mg alb at the beginning 

and 6.4 pg/mg alb at the end) were similar to median levels reported during a previous 

study that measured AFB1-lys levels in Kenya’s Eastern Province during a non-outbreak 

period (7.9 pg/mg alb) (Yard et al. 2013). Notably, AFB1-lys levels were much lower 

during this study compared to levels reported among patients with potential liver 

dysfunction during aflatoxicosis outbreaks in Kenya in 2004, 2005, and 2010, when 

geometric mean levels ranged from 120–1,200 pg/mg alb (Azziz-Baumgartner et al., 

2005). Interestingly, a reduction of 55% of AFB1-lys levels was observed after seven days 

of clay treatment and two-weeks between sampling. Previous intervention studies have 

only observed a treatment effect after 1 month citing the stability of albumin and the time 

required to see reductions in this biomarker (Wang et al., 2008).  

There are multiple strategies to prevent AF contamination and exposure. A variety 

of long-term solutions include reducing AF contamination in maize through improved 

harvesting, drying, and storage (Turner et al., 2005); planting resistant cultivars (Hell et 

al., 2008), biocontrol (Cotty et al., 2007; Yin et al., 2008), and/or a gradual shift to a more 

diverse diet (Wu et al., 2014). However, implementation of these strategies has been 

limited due to the difficulty of eliminating AFs completely. Thus, short-term interventions 

are needed in Kenya during times of outbreak. Currently, there are limited interventional 

options associated with aflatoxicosis outbreak responses in Kenya. The current outbreak 
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response activities include characterizing the outbreak, identifying risk factors associated 

with sickness, testing AF levels in food, and educating the community on AF prevention 

strategies. If ACCS100 clay continues to prove to be efficacious in future studies, it has 

the potential to be incorporated in outbreak response activities with an aim of preventing 

poisoning and protecting people during high risk or outbreaks. 

Baseline AF exposure was relatively low during the study period. This prevented 

our ability to determine whether ACCS100 would be effective at the higher exposure 

levels typically seen during acute outbreaks. However, this allowed us to test the safety, 

acceptability, palatability, and delivery mechanism, during a relatively lower exposure 

burden. Compliance with the study protocol was measured via self-reported data, which 

may have biased results towards the null. However, this appeared not to have been an 

issue, as we still observed statistical significance. Finally, this study was conducted in a 

small region of Kenya that had a very high awareness of AF due to prior outbreaks. It is 

possible that other regions of Kenya may not have been as accepting of ACCS100 or found 

it as palatable. However, this is the region of Kenya where ACCS100 would most likely 

be used in the future.  

ACCS100 shows promise as a potential method for reducing exposure to AF in 

this particular high-risk population in Kenya during outbreak situations; we found it to be 

safe, effective, acceptable, and palatable. More work is still needed to better understand 

whether ACCS100 could be used during a time of crisis to decrease the risk of 

aflatoxicosis. Further studies might characterize urinary AF levels during aflatoxicosis 

outbreaks and determine if ACCS100 remains effective at these extreme levels of 



 

 
 

 

152 

exposure. There is also a need to test the safety, efficacy, acceptability, and palatability 

among vulnerable populations, such as children, individuals in poor health, and pregnant 

women who are often most at-risk for aflatoxicosis. 
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5. ACCS100 CLAY INTERVENTION IN A U.S. POPULATION WITH A HIGH 

INCIDENCE OF HEPATOCELLULAR CARCINOMA 

5.1 Introduction 

Although chronic exposure to AFs is one of the major risk factors of HCC in many 

developing regions of the world, such as Southeast Asia and Sub-Saharan Africa (Kensler 

et al., 2003;  Turner et al., 2002), the U.S. food supply is highly regulated and typically 

presents less risk for exposure (Brown et al., 1999;  Phillips et al., 1994). However, there 

is a potential for increased exposure in individuals consuming diets that can be relatively 

high in foods prone to contamination, such as corn and corn-based products (e.g., 

cornmeal, corn tortillas, etc.). It has been estimated that there will be 35,660 new cases 

and 24,550 deaths in the U.S. due to HCC in 2015 (American Cancer Society, 2015). The 

State of Texas reports the highest HCC mortality in the U.S. and end-stage liver disease 

mortality is significantly higher in Hispanic populations (Perez et al., 2004). Specifically, 

South Texas Hispanics have the highest HCC rates in the country, which are 3 to 4 times 

higher than those of non-Hispanic whites (Ramirez et al., 2014). Although the causative 

factors for this disparity are not well delineated and may be attributed to a variety of factors 

including hepatitis infection, exposure to environmental and dietary carcinogens are also 

potential risk factors in this population. 

Previously, we have shown that AF exposure in a predominantly Hispanic 

community in San Antonio, Texas may be a contributing factor in the significantly 

increased incidence of HCC in the region, where levels of AF in blood and urine correlated 

with consumption of corn tortillas and rice (Johnson et al., 2010). Since it can be difficult 
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to avoid staple dietary components (and potential exposure to AF), intervention therapies 

to alleviate AF-induced liver disease and cancer in such populations are high priorities. 

To address this need, the efficacy of a refined calcium montmorillonite clay (ACCS100) 

intervention, as measured by AF biomarkers of exposure, was evaluated in 640 serum 

samples collected from 234 study participants during a 3-month randomized phase II 

intervention trial in Bexar and Medina Counties, Texas. Biomarker levels were evaluated 

prior to the beginning of the study (baseline), at 1 and 3 months, and 1-month post-

intervention.  

5.2 Materials and methods 

5.2.1 Recruitment and eligibility 

The study was carried out according to The Code of Ethics of the World Medical 

Association (Declaration of Helsinki), and approved by the institutional review boards at 

the University of Texas Health Science Center in San Antonio (UTHSCSA) and Texas 

A&M University, and by the Protocol Review Committee of the Cancer Therapy and 

Research Center at UTHSCSA (Clinicaltrials.gov Identifier: NCT01677195) and by the 

Cancer Therapy and Research Center Protocol Review Committee. After obtaining written 

informed consent (from September, 2012 to May, 2014), 380 participants were screened 

from a variety of public and residential sites in Bexar County and adjacent Medina County, 

Texas. These sites contain most of the population of the metropolitan area of the City of 

San Antonio, Texas. Many of the participants were not fluent in English. To address this, 

our recruitment team was bilingual and sensitive to the cultural dimensions of the study 

population. Individuals with a history of uncontrolled chronic disease and women who 
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were pregnant or breastfeeding were not allowed to participate.  Eligibility for the 

randomized trial portion of this study was restricted to the 234 recruited participants (54 

men and 180 women, ages 18-77) with AFB1-lys adduct ≥ 1.0 pg/mg albumin. 

Sociodemographic and general health information was collected via a questionnaire 

administered at baseline including medical history and diet. Dietary survey included 

frequency and amount of consumption focused around corn- and peanut-based foods.  

Anthropometric data including age, race/ethnicity, height, weight, and vital signs were 

collected during the study. A schedule of procedures and tests performed is shown in 

Figure 17. An independent Data and Safety Monitoring Committee (DSMC) oversaw the 

study protocol and procedures, and reviewed the trial data at least biannually. 

5.2.2 ACCS100 dosing and treatment schedule 

This clinical study was conducted under U.S. FDA IND #114005. The test article 

was produced by Premier Research Laboratories (PRLabs, Austin, TX) and provided at 

no cost by Texas EnteroSorbents Inc. (TxESI, Bastrop, TX). This material was examined 

for various environmental contaminants, including dioxins and heavy metals, to ensure 

compliance with federal and international standards. Metal and dioxin analyses of 

ACCS100 were reported to be well under the tolerable daily intake or provisional tolerable 

daily intake set forth by the World Health Organization and the Joint Food and Agriculture 

Organization/WHO Expert Committee on Food Additives (Marroquin-Cardona, et al., 

2011). ACCS100 was sterilized by gamma radiation (Sterigenics, Fort Worth, TX) to 

prevent any possible bacterial or viral contamination before trial initiation. The clinical 

intervention was a randomized, double-blind, and placebo-controlled trial in which  
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participants were  randomly allocated to three groups (stratified on gender): High dose, 

Low dose and Placebo. The High dose group received two 500 mg ACCS100 capsules 

before each meal and the Low dose group received two capsules containing 250 mg 

ACCS100 and 250 mg calcium carbonate placebo each. The Placebo group received the 

same size and color capsules containing 500 mg calcium carbonate. Doses were derived 

based on previous titrations with parent clay (NovaSil) in vivo. More specifically, the High 

dose of ACCS100 (3 g) represented an inclusion rate of only 0.25% (w/w) in the diet  

Figure 17. A summary of the study procedure for 3 month intervention in San Antonio. 
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which was equal to the MED required for efficacy in earlier work in animals (Phillips et 

al., 2002;  Pimpukdee et al., 2004).  Participant study medication compliance using pill 

count was recorded during each visit. 

5.2.3 Adverse effects monitoring 

Based on the existing literature describing consumption of dioctahedral smectite 

clays (including CM) in adults and children, no severe toxicity was expected as a result of 

ACCS100 treatment. Adverse effects were carefully monitored throughout the trial. Daily 

diary worksheets and symptom checklists were provided to study participants as 

assessment tools for adverse events monitoring and were completed two times daily after 

ingestion of each treatment dose. Adverse events are described as percentages of the total 

numbers of adverse event reports out of the total numbers of completed daily diary 

worksheets per treatment group. In the event of an adverse treatment effect or unrelated 

condition, medical treatment was available to participants at no cost to the participant. 

Adverse events (AEs) and symptoms were graded according to the following criteria:  

 

Grade 1 Mild; asymptomatic or mild symptoms; clinical or diagnostic 

observations only; intervention not indicated. 

Grade 2 Moderate; minimal, local or noninvasive intervention indicated; 

limiting age-appropriate instrumental activities of daily life.  

Grade 3 Severe or medically significant but not immediately life-

threatening; hospitalization or prolongation of hospitalization 

indicated; disabling; limiting self-care. 
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 Grade 4  Life threatening consequences; urgent intervention indicated. 

 Grade 5 Death related AE 

 

Any participant experiencing a severe symptom was advised to seek immediate medical 

attention. Any symptoms that were attributed to the ACCS100 treatment by the study 

physicians on the DSMC would result in immediate discontinuation of treatment for that 

subject. 

5.2.4 Blood and urine collection and processing 

Blood was collected from participants during screening (Visit 1) at the community 

recruitment sites. Subsequent blood and urine specimens were obtained at baseline (Visit 

2), at weeks 4 (Visit 3), 12 (Visit 4), and 16 (Visit 5) (Figure 17) conducted at UTHSCSA 

or community recruitment sites. A portion of the blood was centrifuged within 1hr of 

collection to obtain the serum fraction, which was then stored at –80°C, and shipped to 

the University of Georgia for AFB1-lys adduct analysis. Aliquots were also sent to 

LabCorp (San Antonio, Texas) for complete blood count to generate a differential and 

comprehensive metabolic profile. Premenopausal women provided urine for hCG 

pregnancy tests at Visits 1–3.  Additionally, these participants were provided with a 

pregnancy test at Visit 3 with instructions to test at 8 weeks (between Visits 3 and 4). 

5.2.5 Analysis of serum aflatoxin B1-lysine adduct  

Detection and quantification of serum AFB1-lys adducts was performed as 

previously reported (Qian et al., 2010;  Wang et al., 1996). In brief, serum samples were 

digested with Pronase to release mono-AFB1-lysine adduct. The digests were loaded onto 
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an Oasis Max cartridge (Waters, Milford, MA) which was sequentially washed to 

concentrate and purify the adduct. The adduct was eluted with 2% formic acid in methanol. 

The eluents were evaporated to dryness and reconstituted with 10% methanol prior to 

HPLC analysis (Agilent 1200). Chromatographic separation was performed on an Agilent 

C18 column (5 μm particle size, 250 X 4.6 mm) and the mobile phase consisted of 20 mM 

ammonium phosphate monobasic (pH 7.2) and methanol in a linear gradient. The 

concentration of AFB1-lys adducts were monitored at 405 nm (ex) and 470 nm (em). 

Authentic AFB1-lys adduct standard was spiked into normal human serum (Sigma-

Aldrich) for generating a standard curve and for quality control.  AFB1-lys adduct levels 

were adjusted by serum albumin concentration and expressed as the amount of AFB1-lys 

adducts in pg/mg albumin. The limit of detection was 0.4 pg/mg albumin and the average 

recovery with various spiked AFB1-lys adduct concentrations was 92%. 

5.2.6 Analysis of urinary aflatoxin M1  

Analysis of urinary AFM1 levels followed methods by Groopman et al. (1992b) 

and modifications by Sarr et al. (1995) and Wang et al. (1999).  Urine samples were 

centrifuged at 887 xg, and 5.0 mL of supernatant was collected, acidified with 0.5 mL of 

1.0 M ammonium formate (pH 4.5) and diluted with water to a total volume of 10.0 mL. 

Samples were then loaded onto a 3 mL preparative Aflatest® WB immunoaffinity column 

(VICAM, Watertown, MA, USA) at a flow rate of 1 mL/min. Following washing of the 

column, the AF fraction was eluted from the column with 2 mL of 80% methanol, dried 

under N2 and re-suspended in 200 µL of a 1:1 solution of methanol:20 mM ammonium 

formate. Samples were analyzed using a Shimadzu HPLC system (Waters, Watertown, 
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MA, USA) with fluorescence detection capabilities. A 250 x 4.6 mm LiCrospher RP-18 

column with pore size 100 Å and particle size 5 µm (Alltech Associates, Deerfield, IL, 

USA) was used to resolve AF metabolites. The mobile phase consisted of 22% ethanol 

buffered with 20 mM ammonium formate (pH 3.0) in water. Isocratic elution of the mobile 

phase for 20 min at a rate of 1 mL/min allowed for proper chromatographic separation. 

External AFM1 standards were prepared weekly and injected following every five 

injections of samples. The limit of detection for this method was 4.8 pg for AFM1 and the 

average recovery with various spiked AFM1 adduct concentrations was great than 85%. 

Urinary AFM1 concentrations were expressed as pg/mg creatinine to correct for variations 

in urine dilution among samples. Creatinine concentrations were measured by auto-

analyzer at Baylor Scott & White Hospital (Temple, Texas). 

5.2.7 Statistical analysis 

All efficacy analyses were conducted using an intent-to-treat approach for 

randomized subjects who received and took at least one dose of the test article (placebo or 

ACCS100). Sample size was determined based on a comparison of quantitative reduction 

from baseline to 3-month adduct levels of at least 20% in the High dose arm compared to 

0% in the Placebo arm with 80% power and a two-sided α=0.05. 

The statistical analysis for the intervention data was comprised of four steps: a 

comparison of serum AFB1-lysine adduct levels among treatment arms at the baseline 

prior to ACCS100 administration; an evaluation of the overall effects of ACCS100 on 

serum AFB1-lysine adduct levels; an evaluation for effects underlying the baseline values 

adjustment, and analyses of each time point for treatment groups. Response variables that 
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were not normally distributed were logarithmically transformed to improve normality. To 

evaluate the overall treatment effects, log mixed-effect models for serum AFB1-lysine 

adducts were constructed. The models included the intercept, indicators for treatment 

group, time, and a treatment × time interaction term as fixed effect terms. Then, individual-

level intercept and time variables were included as random effects. The final mixed model 

was fitted using PROC MIXED in SAS software (Brown and Prescott, 2009). Parameters 

of the mixed model were estimated using the Maximum Likelihood Estimation method. 

The Akaike Information Criteria (AIC) and the Bayesian Information Criteria (BIC), 

where smaller values for both are considered more preferable, were used as measures of 

the relative qualities of particular models. Both AIC and BIC dealt with the trade-off 

between the goodness of fit of the model and the complexity of the model, and thus 

provided valid means for model selection (Egner et al., 2014). The separate analyses at 

different time points were conducted using the Wilcoxon rank-sum test. Hypothesis tests 

were two-tailed and assumed an α=0.05. All analyses were conducted in SAS 9.4 (SAS 

Institute, Cary, NC, USA). 

Statistical analysis of all other data was conducted using JMP 10 software (SAS 

Institute, NC). Analysis of variance and Tukey’s tests were conducted on all demographic, 

hematological, and biochemical parameters for comparisons among treatment groups. 

Adverse events and dietary survey data was analyzed using a χ2. A χ2 ratio was generated 

for the relationship between various dietary factors and AF biomarkers.  A two-sided p-

value ≤ 0.05 was considered statistically significant.  
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5.3 Results 

5.3.1 Sample collection and demographics 

A total of 380 participants were screened in the Bexar and Medina Counties region, 

including urban and rural locations. Demographic characteristics of the study population 

and anthropometric information, including age, weight, height, blood pressure, and pulse 

are presented in Table 13. The three treatment groups were similar in terms of gender, age, 

height, and ethnicity. Although randomized evenly across treatment groups, significantly 

more females were recruited into the study than males (p <0.0001*). Physical parameters 

such as body weight, systolic blood pressure, diastolic blood pressure, and pulse were not 

significantly affected after 3 months of ACCS100 treatment and were not different among 

treatment groups. Of those participants, 234 subjects who had detectable serum adduct 

(234/380, 61.5%) with levels>1 pg/mg alb, were randomized to a High dose group (n=71), 

Low dose group (n=83), or Placebo group (n=80). A flow diagram from recruitment to 

completion which is presented in Figure 18. Out of 355 urine samples collected at 

recruitment, 21.69% (77/355) had detectable levels of AFM1. The overall study 

completion was similar between treatment groups (Table 14). A total of 147 subjects 

(62.8%) completed the 3-month trial.  The study regimen had an overall adherence 

(number of times capsules were taken) of 85.1%. However, the High dose had 

significantly better adherence than the Placebo group (p < 0.0001 for both treatments). 

Detailed information about medication adherence is listed in Table 14.  
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 Treatment group 
 Placebo  Low Dose  High Dose  
Participants completed trial 52 51 44 
Gender    

Male (percent) 10 (19) 10 (20) 14 (32) 
Female (percent) 42 (81) 41 (80) 30 (68) 

Age (years) 42.2 ± 13.6 39.2 ± 13.9 41.9 ± 14.2 
Ethnicity    

Hispanic (percent) 35 (67) 34(67) 32 (73) 
Non-Hispanic (percent) 17 (33) 17(33) 12 (27) 

Body weight (lbs)    

Baseline  185.0 ± 54.8 189.1 ± 46.9 173.9 ± 32.3 
Post-treatment  184.3 ± 54.0 190.1 ± 48.0 176.2 ± 32.8 

Height (ft) 5.4 ± 0.4 5.4 ± 0.3 5.4 ± 0.3 
Systolic blood pressure  (mm/Hg)    

Baseline 130 ± 19 129 ± 17 129 ± 17 
Post-treatment 125 ± 15 126 ± 19 127 ± 18 

Diastolic blood pressure (mm/Hg)    
Baseline 80 ± 11 80 ± 11  80 ± 10 
Post-treatment 79 ± 10 79 ± 10 78 ± 11 

Pulse (BPM)    

Baseline 71 ± 11 75 ± 11 74 ± 13 
Post-treatment 74 ± 9 77 ± 11 74 ± 13 

Table 13. San Antonio study demographic distribution [% (n) or mean 
± s.d.] of enrolled participants by treatment group. 
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Figure 18. A flow diagram from recruitment to completion.  
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 Treatment group 
 Placebo  Low 

Dose  
High 
Dose  Overall 

Participants     
Randomized  80 83 71 234 
Completed (3 months treatment) 52 51 44 147 
Completion (%) 65.0 61.4 62.0 62.8 
     

Treatment Regimen     
Capsules to be ingested 27216 27888 23688 78792 
Capsules missed

a 4504 3967 3236 11707 
Capsules taken

a 22712 23921 20452 67085 
Total reported adherence (%)  83.5 85.8

b 86.3
b 85.1 

Table 14. San Antonio study participant adherence and completion of 
treatment regimen 

a
Reported at visits 3 and 4; 

b
p < 0.05 compared to Placebo group 
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5.3.2 Trial efficacy—aflatoxin B1-lysine adduct 

Out of 640 samples collected from trial participants over 4 months, all had 

detectable levels of the serum AFB1-lys adduct (>0.4 pg/mg albumin). In Table 15, mean 

values for AFB1-lys adduct are shown for the treatment groups at baseline (0 weeks), the 

first follow-up (4 weeks), the second follow-up (12 weeks), and 4 weeks after 

 Placebo Low Dose High Dose 

Week Mean ± s.d. Mean ± s.d. Mean ± s.d. 
0 4.26 ± 3.15 4.09 ± 2.25 3.77 ± 2.52 
4 3.06 ± 1.66 2.62 ± 1.08 3.00 ± 1.30 

12 3.22 ± 1.85 2.71 ± 1.35 2.87 ± 1.53 
16 3.03± 1.77 2.99 ± 1.26 2.74 ± 1.44 

Table 15. Change in AFB1-lys adduct (pg/mg albumin) over time in 
serum from San Antonio study participants.  
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discontinuation (16 weeks). There were no significant differences in mean serum AFB1-

lys adduct level at the baseline among treatment groups (4.26, 4.09, and 3.77 pg/mg 

albumin for the Placebo, Low dose, and High dose group, respectively). Overall, log 

transformed adduct levels decreased for all groups over time (p = 0.0448, data not shown). 

Following baseline adjustment of serum AFB1-lys adduct values across the treatment 

arms, it was determined by nonparametric analysis that the adduct levels Low dose group 

was significantly decreased at 1 month compared to Placebo (p < 0.003). Levels of AFB1-

lys adduct at 1, 3, and 4 months in the active treatment groups were compared to Placebo.  

Although AFB1-lys adduct levels were decreased by month 3 for both treatment groups, 

the Low dose was the only treatment that was significant and resulted in 33% reduction 

from baseline levels (p = 0.0005) (Figure 19).  

The results of the mix model regression analysis showed a significant correlation 

between AFB1-lysine adduct level and time (p < 0.001), but not for the treatment group × 

time interaction term (p = 0.99). The model-adjusted means are shown in Figure 20 for 

the three treatment groups over time. Considering the rolling recruitment, a mixed effects 

model was run with treatment group, visit (time), and year of enrollment which were set 

as fixed effects. The results of the model showed a significant correlation between AFB1-

lys level and time (p = 0.0002) and a significant correlation between AFB1-lys level at 

visit 1 (baseline) and year of enrollment (2012) (p = 0.0049). A oneway ANOVA analysis 

of baseline AFB1-lys levels by year enrolled confirms this association (p = 0.0011); further 

post hoc analysis reveals that baseline measurements taken in 2012 were significantly 

higher than those measured in 2013 or 2014 (Figure 21).  
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  Figure 19. Distribution of AFB1-lys adduct over time by group. Box and whisker plot showing 
the distribution of aflatoxin B1-lysine adduct (pg/mg albumin) over time for each of the 
treatment groups. The upper, middle, and lower horizontal lines of the box represent the 75th 
percentile, 50% percentile, and 25th percentile, respectively. The whiskers represent the 95% 
confidence interval and the extreme values are shown as dots.  
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 . Figure 20. Log mixed-effect regression model showing estimated AFB1-lys adduct. AFB1-lys 
adduct (pg/mg albumin) levels for each treatment group are represented over time.  
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Placebo Low Dose High Dose 

Week Mean ± s.d. Mean ± s.d. Mean ± s.d. 
0 6.43 ± 35.62 7.18 ± 27.28 6.42 ± 25.01 
4 0.47 ± 1.53   21.27 ± 101.09 51.77 ± 300.18 

12 0.89 ± 2.37 8.87 ± 58.75 1.12 ± 4.02 
16 1.32 ± 3.46 2.56 ± 10.78 0.30 ± 1.16 

Table 16. Change in AFM1 (pg/mg crt) over time in urine from 
San Antonio study participants. 

Figure 21. Distribution of AFB1-lys adduct by recruitment year. Mean AFB1-lysine 
adduct (pg/mg albumin) levels from the year 2010 were significantly higher than 
levels measured at 2013 and 2014.  
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5.3.3 Trial efficacy—aflatoxin M1 

 In Table 16, mean values for AFM1 are shown for the treatment groups at baseline 

(0 weeks), the first follow-up (4 weeks), the second follow-up (12 weeks), and 4 weeks 

after discontinuation (16 weeks). Due to the low incidence at baseline, treatment effect 

analyses were only conducted in those who had detectable levels of AFM1 at screening. 

AFM1 positive results at screening were evenly distributed but resulted in poor sample 

sizes: Placebo (n=11), Low Dose (n=8), and High Dose (n=7). There were no significant 

differences in mean or median AFM1 at the baseline among treatment groups (26.26, 3.06; 

21.16, 2.75; 22.621, 2.65 pg AFM1/mg Crt for the Placebo, Low dose, and High dose 

group, respectively). However, a dose-response trend was observed with average AFM1 

levels decreasing with treatment, and rebounding by month 4 (Figure 22). By month 3, no 

detectable levels of AFM1 were observed in the High Dose group with average levels in 

Low Dose and Placebo of 0.61 and 2.07 pg AFM1/mg crt, respectively. 

5.3.4 Adverse events and serum biochemistry 

Participants were encouraged to report all self-suspected adverse effects to the 

study monitors in person, or by phone at any time.  A variety of AEs were reported 

throughout this study for all treatment groups, including the Placebo and both doses of 

ACCS100. Most of the AEs that were reported were graded as “mild” (Grade 1) and were 

gastrointestinal in nature, including indigestion/heartburn, nausea, constipation, diarrhea, 

flatulence, abdominal discomfort, and bloating (data not shown). For Grade 1 symptoms, 

a significant difference was observed between the Placebo group and the Low dose (p = 

0.0014) and High dose (p = 0.0044) groups. However, most of these events were reported 
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Figure 22. AFM1 distribution within groups over the study period. Urine was collected at 
each study visit. The box values ranges from 22 to 75 percentiles of the total samples, and 
the line within it indicated the median value. The bars on both sides of a box represent 
values ranging from 5 to 25 and from 75 to 95 percentiles, respectively.  
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Table 17. Hematological analysis and serum biochemistry analysis in San Antonio study 
participants. 
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by only 1-3 participants in the study.  Grade 4 symptoms included anxiety (from 2 different 

participants in the Placebo and Low dose groups), and one report of temporary colitis 

symptoms from a participant in the Low dose group. However, the participant 

experiencing colitis did not feel these symptoms were related to the ingestion of the study 

medication, and this was verified by magnetic resonance imaging. All three participants 

who experienced Grade 4 events were removed from the study and, upon further scrutiny, 

their symptoms were determined to not be life threatening as the definition states.  

Importantly, all AEs reported were determined to be unrelated to the study agent; no 

participants were hospitalized throughout the trial, and no grade 5 events occurred. 

Hematological and blood serum analysis (Table 17) revealed no significant 

differences or dose-dependent effects in any of the parameters tested at visit 1 (baseline) 

or visit 4. Protein values decreased after treatment for all groups (p = 0.003), including the 

Placebo group, but remained within normal levels. Analysis of serum chloride levels 

indicated a significant difference between treatment arms (p = 0.03). Upon further post 

hoc analysis, the values in the Placebo group were not significantly different from either 

the Low dose or High dose ACCS100 groups at Visit 1 or 4. 

5.3.5 Dietary survey 

 Dietary survey information (data not shown) was completed for the 234 

enrolled participants. Analysis of dietary survey information revealed that a majority of 

the study population consumed Mexican foods once to five times a week. Corn is eaten 

less than once a week and equal to about 1 ear or ½-1 cup. Similarly, corn products are 

consumed less than once a week and equal to 1 or more items greater than or equal to half 
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a cup. Frequency of corn tortilla consumption was evenly distributed with 90 participants 

reporting consumption of one to two tortillas less than once a week. Rice was reported at 

a frequency of 1-5 times a week with ½ to 1 cup of rice. Consumption of 1 to 8 tablespoons 

of peanut butter less than once a week was reported by the majority. Similar trends were 

observed for peanut consumption. About half of the study population consumed 10 to 25 

tortilla chips once to 5 times per week. About a quarter of the study population consumes 

4 to 8 ounces of a corn and rice drink (horchata) less than once a week. 

When responses were compared to AFB1-lys adduct, there was a significant 

association between detectable adduct levels and rice corn drink (p = 0.0483). When 

responses were compared to AFM1, there was a significant association between detectable 

levels and the frequency (p = 0.0238) and amount (p = 0.0338) of corn tortilla chips 

consumed. 

5.4 Discussion 

AFB1 has been implicated as a major factor in the etiology of HCC (IARC, 1993;  

IARC, 2002) and end-stage liver disease (Kuniholm et al., 2008). The incidence of HCC 

in the United States has steadily increased over time (El-Serag and Mason, 1999), with the 

State of Texas reporting the highest mortality rate in the country (Devesa et al., 1999). In 

South Texas, the incidence of HCC for Hispanics is considerably higher than all other 

races (Ramirez et al., 2012). Multiple factors may be attributed to higher incidence 

including diet, environment, lifestyle, hepatitis B or C infection status, and possibly 

genetic susceptibility. Additionally, as climate warms and weather patterns become less 

predictable, countries such as the United States may become more vulnerable to 
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environmental contaminants. Due to increased temperatures and droughts which 

encourage Aspergillus growth, good agricultural practices are not be sufficient to prevent 

AF contamination in the food supply; it has been postulated that contamination may 

become widespread in areas such as the US Midwest that were previously unaffected 

(Cotty and Jaime-Garcia, 2007). Exposure to AFs in many parts of the developing world 

is well above that observed in the United States, where levels in the food supply are 

commonly regulated.  As a result, the U.S. public is less aware of AF contamination and 

its associated adverse health effects. Importantly, we observed a prevalence of AF 

exposure approximately three times higher than reported in our previous survey in Bexar 

County (Johnson et al., 2010). Thus, strategies to educate and mitigate chronic exposures 

to AFs in the U.S. are warranted. 

  The current study was based on a similar 3-month efficacy trial conducted in 

Ghana, a country with historically high AF exposure, where the levels of AFB1-albumin 

adduct at three months were significantly decreased in both the Low dose and the High 

dose groups compared with levels in the Placebo group (Wang et al., 2008). Importantly, 

baseline levels in Ghana (1.52 pmol/mg alb or 474.2 pg/mg alb) were almost 100 times 

higher than those observed in Texas (0.013 pmol/mg alb or 4.04 pg/mg alb). In Ghana, the 

reduction rates of AFB1-lys for the Low and High dose groups were 22.3 and 22.4% at 

one month of intervention and 42.8 and 40.2% at three months of intervention, 

respectively.  In the current study, a reduction rate of 36 and 20% at 1 month after the 

intervention and 33 and 24% at 3 months after was observed in the Low dose and High 
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dose treatment group, respectively.  Findings from these studies suggest that low dose 

usage of ACCS100 could significantly protect against AF-derived adverse health effects.  

Previous studies suggest that no safe level for AF exists due to its lack of a threshold for 

dose-dependent adduct formation (Appleton et al., 1982;  Buss et al., 1990;  Lutz et al., 

1980;  Phillips, 1999;  Wild et al., 1986). However, Johnson et al. (2014) recently 

demonstrated complete protection from AF-induced liver tumors with a 66% reduction in 

urinary AFB1-N7-guanine through the use of CDDO-IM, compared to 96% HCC incidence 

in the AFB1 treatment group. This study proposes that a threshold for AF-induced cancer 

may exist.  Similarly, ACCS100 reduces the formation of DNA adducts by decreasing 

bioavailability of the toxin and may also be effective in protection against HCC, and as 

therapy during emergency outbreaks of aflatoxicosis. In this study, we found that the 

ACCS100 was well tolerated because of the limited incidence of high grade AEs.  Also, 

none of these were deemed to be attributable to the test article.  

Results presented here are similar to our previous 3-month study in Africa where 

AFB1-lysine adduct levels were decreased over time in all three groups, including placebo. 

This suggests that subjects may have adjusted their intake of foods associated with AF 

exposure. This is further supported by the fact that adduct levels never returned to baseline 

after a month of no treatment, suggesting a behavioral change. The baseline assessment 

included a dietary questionnaire that focused on foods that are associated with AF 

exposure. Such awareness could have altered subject behavior by decreasing consumption 

of specific foods associated with AF exposure.  This type of behavior is largely  
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unavoidable and has been observed in other clinical trials since investigators are required 

to explain detailed study protocols, potential risks and benefits to study participants.  

Another possibility for the downward trend observed in all three treatment groups 

is the overall decrease in AF exposure during the 3-year study period as demonstrated by 

baseline AFB1-lys adduct levels distributed by the year collected (Figure 23). This could 

be explained by the onset of drought that was experienced in Texas and the Southern Plains 

in 2011, which was recorded as one of the hottest and driest summers in history (National 

Weather Service, 2016). Figure 23 shows the percent of area in Texas experiencing 

drought from 2011-2014 highlighting the record-breaking 2011-year and the subsequent 

return to average levels. Therefore, due to the relatively stability of AFB1-lys adduct 

biomarker and possibility of commodities harvested in 2011 and sold in 2012 (i.e., corn  

meal), the significantly higher biomarker levels measured in 2012 from the current study 

could also be a reflection of the 2011 drought.  Baseline adduct levels and the percentage 

   Abnormally Dry     Moderate Drought     Severe Drought     Extreme Drought     Exceptional Drought 

Figure 23. Percent area of Texas in drought from January 2011 to April 2014. Source: National 

Drought Mitigation Center, 2016  
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of Texas in drought both decreased in 2013 and 2014. This trend could explain the 

decrease observed over the study period in all three groups, including placebo, as a factor 

of time and overall decrease in exposure.  

Unlike the intervention trial in Ghana, AFB1-lys levels in San Antonio were not 

decreased in a dose-dependent manner. This may have occurred for a variety of reasons 

including: 1) considerably lower AF exposures in the U.S. (which makes it harder to detect 

substantial reductions over the course of the study); 2) sub-optimal subject adherence; and 

3) possible differences in dispersion and reactivity of clay from capsules containing high 

versus low doses. Although the self-reported adherence rate for the current study was 

satisfactory, this may not have translated to actual compliance.  This could also explain 

why we did not observe a dose-dependent response in the High dose group. In comparison 

to our previous 3-month intervention trial in Ghana, where maximum compliance was 

achieved through the daily in-home monitoring of capsule distribution and ingestion, the 

current study relied on participant reports collected during monthly visits. With this 

design, total compliance was difficult to assess because participants may forget about 

doses taken or missed (Claxton et al., 2001); however, in-the-field daily monitoring by 

study personnel was not practical for this study, and therefore self-reporting was the only 

option. It is also possible that rolling enrollment could have led to an uneven distribution 

of AF exposure in study participants, however, it is the most common practice for 

community-based intervention studies. Nevertheless, the randomization procedure used 

produced an even distribution of the adduct levels at the baseline in the three treatment 

groups. 
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Analysis of the urinary AFM1 data for participants with detectable levels at 

screening (n=26) revealed a dose-dependent reduction trend of the metabolite biomarker 

(Fig 21). It is important to note that the sample size in this analysis is very small and 

therefore statistically invalid. However, this observation raises the potential benefit for the 

use of both long- and short-term biomarkers of exposure for intervention recruitment since 

the 26 participants represented in this data were positive for AFM1 and AFB1-lys (required 

for enrollment). This “double positive” situation could occur when an individual has a 

history of exposure (AFB1-lys) and is currently exposed (AFM1) therefore representing an 

optimal candidate for a dietary intervention. 

Based on the fact that ACCS100 was well tolerated in the majority of participants 

and no significant changes in serum biochemistry or hematology were detected in any 

treatment group, we postulate that this AF-reduction strategy was safe for a period of three 

months in this population. This conclusion agrees with our findings from other clay-based 

clinical intervention trials in humans and animals. Thus, long-term use of CM clay (i.e., 

UPSN, ACCS100) at low doses may provide a viable strategy to reduce dietary AFB1 

bioavailability in populations exposed to this carcinogen. Studies are warranted to further 

establish dosimetry in humans.  
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6. SUMMARY 

 AFs are known human carcinogens that contaminate dietary staples such as corn 

and peanuts. AFs have also been demonstrated in animal models to compromise the 

immune system, interfere with protein metabolism and block the adsorption of 

micronutrients and their effect have also been confirmed in human epidemiology studies. 

The contamination levels of AFs in food vary with seasons, but the problem is largely 

driven by drought stress in the field and poor storage conditions post-harvest. 

Unfortunately, in many developing countries, the primary food source is derived from 

corn and/or peanut product, leading to the estimation that ~4.5 billion people living 

between 40° north and south of the equator are chronically exposed to AFs (Williams et 

al., 2004). Furthermore, HBV is prevalent in regions afflicted with AF exposure and HBV 

and AF co-exposure has a synergistic effect in causing HCC. This has been observed in 

western Africa and southeast Asia where AF and HBV have been implicated as major risk 

factors for the development of HCC. Recently, a population in south Texas with a high 

incidence for HCC was surveyed for AF exposure (Johnson et al., 2010) and AFB1-lys 

adduct was detected in 20.6% of the samples with a high hepatitis C virus positivity (7.1%) 

was observed. The study also suggested that although AF levels were significantly lower 

than those reported in Africa, individuals consuming higher amounts of foods prone to AF 

contamination may be more vulnerable to exposure and interactions with other 

environmental/biological factors.  
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What was once considered a public health issue for developing countries with 

inadequate agricultural technology and food insecurity and now is emerging as a global 

issue due to increased exposure as a result of prolonged drought and unpredictable 

climates. Strategies to reduce exposure include investments in production, drying, and 

storage facilities, to education on properly sorting and washing contaminated food. Thus 

far, these strategies have not proven to be sustainable in the developing world. 

Furthermore, due to the heterogeneous nature of AF in grains, they often enter the food 

chain undetected regardless of national GDP. As a result, interventions with clay binders 

have been introduced to high-risk populations to mitigate AF exposure. It should be noted 

that acceptance by the study subjects and successful delivery of the active compound is 

critical to achieve confident efficacy values. Therefore, many factors including culture, 

economics and logistics should be considered when implementing such intervention. 

The objective of the first study was to determine the efficacy of a calcium 

montmorillonite clay (UPSN) in binding AF when delivered as a food additive. UPSN 

must be stable in complex, acidic mixtures that are often exposed to heat during the 

process of fermented gruel preparation, which is commonly consumed in sub-Saharan 

Africa. Therefore, the objective of the present study was to test the ability of UPSN to sorb 

AF while common cooking conditions were applied. The process of fermentation, heat 

treatment, acidity, and processing time were investigated with and without UPSN. 

Analyses were performed using the field-practical Vicam assay with HPLC verification. 

My data demonstrated that UPSN significantly reduced AF levels (47-100%) in cornmeal, 

regardless of processing conditions. Among each cooking process element tested, time 
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appeared to be the most important factor in UPSN efficacy. The greatest reductions in AF 

concentrations were reported in samples that were allowed to incubate (with and without 

fermentation) for 72 hr. These data suggest that the addition of UPSN in foods where a 

higher incidence of AF contamination occurs would be a sustainable approach to reduce 

the exposure to this food toxin. 

Maize is frequently consumed in the Hispanic community, however very little is 

known about exposure to combinations of AF and FB, a frequent co-contaminant of maize, 

in Mexico. Initial work in animals with co-exposure to AF and FB have demonstrated 

either additive or synergistic effects in cellular toxicity and development of HCC. Recent 

studies have demonstrated that both AF and FB were associated with growth stunting. 

Therefore, investigation of co-exposure in Mexico, would have important implications for 

public health and possibly identify populations in need of intervention. The objective of 

this co-exposure study was to assess exposure through AF and FB biomarker analyses in 

spot urine samples from individuals recruited in the metropolitan area of Monterrey, 

Mexico. Participant urine samples were tested positive for AFM1 in 69% of the study 

population which represents the AFB1 consumed in the 24-48 hr prior to sample collection. 

Similarly, the urinary FB1 biomarker was detected in 71% of samples and is also indicative 

of recent exposure. Out of 106 urine samples, 55% contained both AFM1 and FB1. It 

should be noted that AFM1 levels were considerably lower than those observed in Ghana 

(Obuseh et al., 2010). However, many variables must be considered before stating that 

this study population represents a low AF exposure community. Samples should be taken 

at various points throughout the year to identify any seasonal variation in AF exposure in 
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a region and more information regarding maize handling and storage should be 

considered. FB1 concentrations were similar to those reported in Guatemala. However, no 

NOAELs or LOAELs exist for FB; thus the data are insufficient to make a conclusion 

from these exposure levels. Unlike parts of sub-Saharan Africa and southeast Asia, 

peanuts are not commonly consumed in Mexico; thus, maize is the likely source of 

exposure. Not surprisingly, analysis of the dietary survey revealed associations between 

corn tortillas and mycotoxin status, with greater than 90% of the study population 

consuming two or more in one serving. However, statistical significance was only reached 

when asked about the quantity and not frequency, thus exposing a weakness of dietary 

surveys and the importance of reliable biomarkers of exposure. The role for 

nixtamalization in the reduction of AF and FB was not addressed in this study, but should 

be explored in future studies to determine exposure risk in Mexico and Latin America. 

Overall, the high frequency of exposure to AF and FB demonstrates a potentially 

significant public health risk and more information is required before mitigation therapy 

with CM clay is suggested in this region. 

Unlike Mexico, eastern Kenya has a history of AF outbreaks and aflatoxicosis-

related deaths. In 2004, consumption of AF-contaminated foods resulted in 125 deaths in 

this region. Due to poverty, food scarcity, and drought, intervening with a CM to prevent 

bioavailability of foodborne toxins is an attractive strategy. This strategy has proven to be 

effective in reducing AF biomarkers of exposure in Ghanaian adults and children at doses 

up to 2.0% and 1.5% w/w, respectively. Despite the apparent effectiveness of ACCS100, 

there is a need to establish feasibility and efficacy in Kenya. There are differences between 
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Ghana and Kenya (e.g., different cultures, ethnicities, diets, institutional policies, 

infrastructure, etc.) that could affect the efficacy, palatability, and acceptability of 

ACCS100. Thus, the study’s objectives were to assess these qualities of ACCS100 in a 

high-risk population. Previous work has demonstrated the successful use of the short-term 

biomarker, AFM1, in a cross-over study design. This biomarker is a preferred endpoint, as 

it is field practical and is cost and time-efficient compared to serum analysis, which require 

months-long intervention trials. Although AFM1 excretion positively correlates with 

AFB1 intake, the day to day variability complicates statistical analyses. Daily urine 

samples and pooling weekly data in a cross-over design has been demonstrated to negate 

that variability. Therefore, the objective of the Kenya study was to determine the efficacy, 

acceptability, and palatability of a calcium montmorillonite (ACCS100) to reduce 

biomarkers of exposure when delivered as a mixture in water in a Kenyan population. 

Urinary AFM1 was reduced by 46.6% within seven days in the ACCS100 treated group 

when pooled and compared to placebo. This is similar to the 55% reduction observed by 

Mitchell et al. (2013). Furthermore, the cross-over design clearly showed the switch from 

placebo to ACCS100. Seven days of ACCS100 treatment also reduced the long-term 

exposure biomarker, AFB1-lys, further supporting the reduced bioavailability of AFB1 by 

calcium montmorillonite clay. This is an especially interesting finding since previous 

studies utilizing this biomarker and clay report a stable half-life of albumin indicating a 

biomarker representative of a month of exposure and intervention trials that require one 

month to observe significant decreases. The current study showed a reduction in AFB1-

lys levels after seven days of treatment and two weeks between sampling. This short 
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duration of efficacy could be due to the significantly lower AFB1-lys levels reported in 

this study population compared to those collected during outbreak times. Further studies 

are warranted to confirm the stability of albumin (lysine) as a biomarker of long-term 

exposure and/or appropriate interpretation of results from studies completed in less than 

20 days (half-life of albumin). The data showed the reduction of AF biomarkers within a 

week. The intervention strategy is potentially applicable in an outbreak situation. 

However, this strategy should be validated at higher exposure levels to confirm efficacy. 

In addition to the threat of acute exposure to AF, chronic exposure can increase 

the risk of developing HCC. In the United States, South Texas currently has the highest 

incidence of HCC, a disease that disproportionately affects Hispanic populations in the 

region. AFB1 is present in a variety of foods in the U.S., including corn and corn products. 

In a randomized double-blind placebo controlled trial, the effects of a three-month 

administration of ACCS100 on AF exposure biomarkers and serum biochemistry were 

evaluated in 234 healthy men and women residing in Bexar and Medina County, Texas. 

Participants recruited from 2012–2014 received either a Placebo, 1.5 g, or 3 g ACCS100 

each day for three months, and no treatment during the 4th month. Adverse event rates 

were similar across treatment groups; no significant differences were observed for serum 

biochemistry and hematology parameters. Differences in levels of AFB1-lys adduct at 1, 

3, and 4 months were compared between Placebo and active treatment groups. Although 

AFB1-lys adduct levels were decreased by month 3 for both treatment groups, the Low 

dose was the only treatment that was significant (p = 0.0005). The return to baseline at 

month 4 supported the efficacy of ACCS100. A possible association with drought was 
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also observed as baseline AFB1-lys levels were significantly higher in participants 

recruited in 2012, the year following the worst drought recorded in Texas. This finding 

highlights the vulnerability of populations in developed nations possibly due to effects of 

an unpredictable climate. 

In summary, AF and FB exposure is a global and unavoidable public health 

concern. Moreover, it is a dynamic threat with the magnitude seemingly associated with 

climatic conditions and food insecurity, making prevention of exposure a difficult and 

moving target. Biomarkers are important tools for monitoring exposure. However, 

because modulators of metabolism can effect biomarker levels and measurements, more 

than one biomarker should be measured to evaluated exposure risk. The use of CM clay 

such as ACCS100 may be a viable strategy to reduce dietary AFB1 bioavailability during 

AF outbreaks and can serve as a therapeutic option in populations chronically exposed to 

this carcinogen. Furthermore, CM clay delivery can be tailored to the recipient population 

(i.e., capsule, mixed in water, or added to food) allowing for increased acceptability and 

adherence to the treatment regimen which would translate to optimal protection.  
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