
RESCALED PURE GREEDY ALGORITHM FOR CONVEX OPTIMIZATION

A Thesis

by

ZHEMING GAO

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Guergana Petrova
Committee Members, Peter Howard

Anirban Bhattacharya

Head of Department, Emil Straube

May 2016

Major Subject: Mathematics

Copyright 2016 Zheming Gao

ABSTRACT

In this thesis, we suggest a new algorithm for solving convex optimization prob-

lems in Banach spaces. This algorithm is based on a greedy strategy, and it could

be viewed as a nonlinear conjugate gradient type method. We prove its conver-

gent rates under a suitable behavior of the modulus of uniform smoothness of the

objective function. We apply the proposed algorithm on several examples such as

approximation in Hilbert spaces, solving linear systems, and others. We also perform

several numerical tests in the case when the objective function is the opposite of the

log-likelihood function under the Logistic Regression model. Our numerical results

confirm the fast convergence rate of the proposed algorithm and its potential for

solving real life problems.

ii

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor, Dr. Guergana Petrova at Texas

A&M University. It was her that taught me how to do research in Mathematics.

Whenever I ran into a trouble spot or had a question about my research or writing, I

could always get her help on time. She consistently steered me in the right direction

whenever she thought I needed it.

I would also like to thank all professors who were involved in this research project:

Dr. Peter Howard, Dr. Anirban Battacharya, and Dr. James Long. Without their

kind participation and help, I would have not been able to finish proving lemmas

and theorems, and gathering data for numerical tests.

Finally, I must express my very profound gratitude to my parents and to my

grilfriend for providing me with unfailing support and continuous encouragement

throughout my years of study and through the process of doing research and writing

this thesis. This accomplishment would not have been possible without them. I love

you all.

iii

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

TABLE OF CONTENTS . iv

LIST OF FIGURES . v

LIST OF TABLES . vi

1. INTRODUCTION . 1

2. PRELIMINARIES . 4

2.1 The Banach Space X . 4
2.2 The Objective Function E . 4

3. RESCALED PUREGREEDY STRATEGIES FOR CONVEXOPTIMIZA-
TION . 8

3.1 Rescaled Pure Greedy Algorithm (RPGA(co)) 8
3.2 The Weak Rescaled Pure Greedy Algorithm (WRPGA(co)) 13

4. EXAMPLES & NUMERICAL EXPERIMENTS 16

4.1 Best Approximation in Hilbert Space 16
4.2 The Space Rn . 19

4.2.1 Objective Functions of n Variables 19
4.2.2 Logistic Regression . 21
4.2.3 Linear Systems . 31
4.2.4 Stability Analysis . 36

5. SUMMARY . 38

REFERENCES . 39

iv

LIST OF FIGURES

FIGURE Page

4.1 Probability Distribution (Test 1) . 27

4.2 RPGA(LR)(D) Error (Test 1) . 28

4.3 RPGA(LR)(D) Error (Test 2) . 31

v

LIST OF TABLES

TABLE Page

4.1 Data for Test 1 (see [16]) . 26

4.2 Error & Steps for Test 1 . 28

4.3 Data for Test 2 (see [17]) . 29

4.4 Error & Steps for Test 2 . 30

vi

1. INTRODUCTION

The main goal in convex optimization is the development and analysis of algo-

rithms for solving the problem

inf
x∈Ω

E(x), (1.0.1)

where E is a given convex function and Ω is a bounded convex subset of a Banach

space X. E is called the objective function and satisfies the convexity condition

E(γx+ δy) ≤ γE(x) + δE(y), x, y ∈ Ω, γ, δ ≥ 0, γ + δ = 1.

While classical convex optimization deals with objective functions E defined on sub-

sets Ω in IRn for moderate values of n, see [2], some of the new applications require

that the dimension n is quite large or even ∞. The design of algorithms for such

cases is quite challenging since typical convergence results involve n, and therefore

deteriorate severely with the growth of n. This is the so-called curse of dimension-

ality. Recently, there has been an increased interest, see [4, 9, 10, 13], in developing

greedy based strategies for solving (1.0.1) with provable convergence rate depending

only on the properties of E and not on the dimension of the underlying space. These

algorithms provide approximations {E(xm)}, m = 1, 2, . . . to the solution of (1.0.1),

with xm being a linear combination of m elements from a given dictionary D ⊂ X. A

dictionary is any set D of norm one elements from X whose span is dense in X. An

example of a dictionary is any Schauder basis for X, or a union of several Schauder

bases. The current greedy algorithms pick an initial approximation E(0), a set Ω as

Ω := {x ∈ X : E(x) ≤ E(0)},

1

and generate a sequence of successive approximations Em := E(xm), m = 1, 2, . . .,

recursively, using the dictionary D. Some methods, such as the Weak Chebychev

Greedy Algorithm, see [9], provide at Step m an approximant xm to the point x̄ at

which E attains its global minimum, determined as

xm := argminx∈span{φj1
,...,φjm}E(x),

where φj1 , . . . , φjm are suitably chosen elements from D. Others choose xm as

xm := argminω,λ∈IRE(ωxm−1 + λφm),

or

xm := argminλ∈[0,1]E((1− λ)xm−1 + λφm),

for suitably chosen φm ∈ D, where xm−1 is the previously generated point. Con-

vergence rates for these algorithms are proved to be of order O(m1−q), where q is a

parameter related to the smoothness of the objective function E. Note that the last

two approaches are more computationally friendly, since they require solving two or

one dimensional optimization problems at each step. However, note that some of

these algorithms work only if the minimum of E is attained in the convex hull of D,

since the approximant xm is derived as a convex combination of xm−1 and φm.

In this thesis, we introduce a new greedy algorithm for convex optimization based

on one dimensional optimization at each step, which does not require the solution

of (1.0.1) to belong to the convex hull of D and has a rate of convergence O(m1−q).

This algorithm can be viewed also as a type of nonlinear conjugate gradient method.

The main difference from standard conjugate gradient methods is that rather than

2

building the next approximation xm, using the current approximation xm−1 as

xm = xm−1 + λmφm,

where λm and φm are appropriately chosen, see [5], we choose

xm = tm(xm−1 + λmφm),

for a suitably chosen real number tm. The presented technique is a generalization of

the recently introduced Rescaled Pure Greedy Algorithm (RPGA) for approximat-

ing functions in Hilbert and Banach spaces, see [8]. We call it RPGA(co).

The thesis is organized as follows. In chapter §2, we list several definitions and known

results about convex functions. In chapter §3, we present the RPGA(co), prove its

convergence rate, and introduce its weak version. In chapter §4, we perform several

numerical tests, and discuss the application of the proposed algorithm to particular

choices of objective functions E.

3

2. PRELIMINARIES

In this chapter, we introduce some notation and state several known facts and

definitions.

2.1 The Banach Space X

A Banach space X is a complete vector space with a norm ∥ ·∥. A set of functions

D := {φ} ⊂ X is called a dictionary for X if ||φ|| = 1 for every φ ∈ D and the

closure of span(D) is X. An example of a dictionary is any Schauder basis for X.

However, the main idea behind dictionaries is to cover redundant families such as

frames. A common example of dictionaries is the union of several Schauder bases.

For a general dictionary D ⊂ X, we define the class of elements

Ao
1(D,M) := {x =

∑
k∈Λ

ck(x)φk : φk ∈ D, |Λ| < ∞,
∑
k∈Λ

|ck(x)| ≤ M},

and by A1(D,M) its closure in X. Then, A1(D) is defined to be the union of the

classes A1(D,M) over all M > 0. For x ∈ A1(D), we define the norm of x as

||x||A1(D) := inf{M : x ∈ A1(D,M)}.

In what follows, we assume that the minimizer x̄ of the objective function E is

such that x̄ ∈ A1(D). Our algorithm will generate approximants xk ∈ X to x̄, where

each xk is a sum of at most k terms from the dictionary D.

2.2 The Objective Function E

Let us first recall several definitions.

• A function E is Fréchet differentiable at x ∈ Ω if there exists a bounded linear

4

functional, denoted by E ′(x) ∈ X∗, such that

lim
∥h∥→0

|E(x+ h)− E(x)− ⟨E ′(x), h⟩|
∥h∥

= 0.

Here, we use the notation ⟨F, x⟩ := F (x) to denote the action of the functional

F ∈ X∗ on the element x ∈ X.

• A function E : X → R is called convex if ∀x, y ∈ X, and ∀t ∈ [0, 1],

E(tx+ (1− t)y) ≤ tE(x) + (1− t)E(y).

The following lemmas are well known and we simply state them.

Lemma 2.2.1. Let E be a Fréchet differentiable function at each point in Ω and

convex on X. Then, for all x ∈ Ω and x′ ∈ X,

⟨E ′(x), x− x′⟩ ≥ E(x)− E(x′).

Proof. Clearly the inequality holds for x′ = x. Fix x ∈ Ω, x′ ∈ X, x′ ̸= x. It follows

from the definition of Fréchet derivative that for h = t(x′ − x), t ∈ R,

⟨E ′(x), x′ − x⟩ = lim
t→0

E((1− t)x+ tx′)− E(x)

t
.

For 0 < t < 1, E((1 − t)x + tx′) − E(x) ≤ (1 − t)E(x) + tE(x′), since E is convex,

and therefore

⟨E ′(x), x′ − x⟩ ≤ E(x′)− E(x),

which completes the proof.

5

Lemma 2.2.2. Let E be a Fréchet differentiable convex function, defined on a convex

domain Ω. Then E has a global minimum at x̄ ∈ Ω if and only if E ′(x̄) = 0.

Lemma 2.2.3. Let F be a Fréchet differentiable function, φ ∈ X be a fixed element

in X, and x∗ be such that x∗ = argmin{F (x) : x = tφ, t ∈ IR}. Then, ⟨F ′(x∗), x∗⟩ =

0.

In this thesis, we consider objective functions E that satisfy the following two

assumptions.

• Condition 0: E has Fréchet derivative E ′(x) ∈ X∗ at each point in Ω := {x ∈

X : E(x) ≤ E(0)}, Ω is bounded, and∥E ′(x)∥ ≤ M0, for x ∈ Ω.

• Uniform Smoothness (US): There are constants 0 < α, M > 0, and 1 <

q ≤ 2, such that for all x, x′ with ∥x− x′∥ ≤ M , x ∈ Ω, x′ ∈ X,

E(x′)− E(x)− ⟨E ′(x), x′ − x⟩ ≤ α∥x′ − x∥q.

TheUS condition on E is closely related to a condition on the modulus of smooth-

ness ρ of E. We refer the reader to [7], where these relations are discussed.

Next, we point out that when looking for the global minimizer x̄ of E, we can

restrict ourselves to the set

Ω := {x : E(x) ≤ E(0)},

since x̄ ∈ Ω. In what follows, we will consider the minimization problem (1.0.1) over

this set. Note that this is a convex set as a level set of a convex function.

Further in this thesis, we will use the folowing lemma, proved in [7]. Other

versions of this lemma have been discussed in [11].

6

Lemma 2.2.4. Let ℓ > 0, r > 0, B > 0, and {am}∞m=1 and {rm}∞m=2 be finite or

infinite sequences of non-negative numbers satisfying the inequalities

aJ ≤ B, am ≤ am−1(1−
rm
r
aℓm−1), m = J + 1, J + 2,

Then, we have

am ≤ max{1, ℓ−1/ℓ}r1/ℓ(rB−ℓ + Σm
k=J+1rk)

−1/ℓ, m = J + 1, J + 2,

7

3. RESCALED PURE GREEDY STRATEGIES FOR CONVEX

OPTIMIZATION

3.1 Rescaled Pure Greedy Algorithm (RPGA(co))

In this section, we describe our new algorithm for finding the minimum of a

convex function with parameter µ and a dictionary D.

RPGA(co)(µ,D):

• Step 0: Define x0 = 0. If E ′(x0) = 0, stop the algorithm and define xk :=

x0 = x̄, k ≥ 1.

• Step m: Assuming xm−1 has been defined and E ′(xm−1) ̸= 0.

– Choose a direction φjm ∈ D such that

|⟨E ′(xm−1), φjm⟩| = sup
φ∈D

|⟨E ′(xm−1), φ⟩|.

– With

λm := sgn{⟨E ′(xm−1), φjm⟩} (αµ)
− 1

q−1 |⟨E ′(xm−1), φjm⟩|
1

q−1 ,

compute x̂m := xm−1 − λmφjm , tm := argmint∈IRE(tx̂m)

– Define the next point to be

xm = tmx̂m.

• If E ′(xm) = 0, stop the algorithm and define xk = xm = x̄, for k > m.

8

• If E ′(xm) ̸= 0, proceed to Step m+ 1.

Let us observe that, because of Lemma 2.2.2, if E ′(xm) = 0 at Step m, the

output xm of the algorithm is the minimizer x̄. Note that the algorithm requires a

minimization of the objective function along the one dimensional space span{x̂m}.

This univariate optimization problem is called line search and is well studied in

optimization theory, see [6]. If at Step m we were to use x̂m as next approximant

and not xm, which is the minimizer of E along the line generated by x̂m, then the

algorithm would be very similar to the EGA(C) from [9] . The author there proves

a convergence rate of O(m−r), for any r ∈ (0, q−1
q+1

) under suitable conditions on

the parameters. Note that our algorithm, which simply adds a one dimensional

optimization at each step, makes it possible to achieve an optimal convergence rate

of O(m1−q). Also, in contrast to the other greedy algorithms from [9] that rely on one

dimensional minimization at each step, this algorithm provides convergent results for

all x̄, and not only for x̄ in the convex hull of the dictionary D.

Notice that all outputs {xk}∞k=1 generated by the RPGA(co)(µ,D) are in Ω,

since E(xk) ≤ E(0). The following theorem is our main convergence result.

Theorem 3.1.1. Let the convex function E satisfy Condition 0 and the US con-

dition, and the minimizer x̄ ∈ A1(D). Then, the RPGA(co)(µ,D) with parameter

µ, µ > max{1, α−1M0M
1−q}, applied to E and a dictionary D = {φ} outputs the

sequence {xk}∞k=0, where the error ek := E(xk)− E(x̄) satisfies the inequality

ek ≤ C1k
1−q, k ≥ 2,

with C1 = C1(q, α, E, µ).

Proof. If at Step k0 the RPGA(co)(µ,D) had stopped, this means that we had

9

recovered the point of minimum x̄, namely that x̄ = xk0 . Since we set xk = xk0 = x̄,

for k > k0, then the error ek = 0 for k ≥ k0. For values of k < k0, or when the

algorithm had not stopped, we have the following. We consider Step k, k = 1, 2, 3, . . .

of the algorithm. The definition of λk and the choice of parameter µ assures that

∥(xk−1 − λkφjk)− xk−1∥ =

(
|⟨E ′(xk−1), φjk⟩|

αµ

) 1
q−1

≤ M,

and therefore, applying the US condition to (xk−1 − λkφjk) and xk−1 gives

E(x̂k) = E(xk−1 − λkφjk) ≤ E(xk−1)− λk⟨E ′(xk−1), φjk⟩+ α|λk|q

= E(xk−1)−
µ− 1

µ
(αµ)−

1
q−1 |⟨E ′(xk−1), φjk⟩|

q
q−1 ,

where we use the fact that ∥φjk∥ = 1. Since E(xk) ≤ E(x̂k), we derive that

E(xk) ≤ E(xk−1)−
µ− 1

µ
(αµ)−

1
q−1 |⟨E ′(xk−1), φjk⟩|

q
q−1 . (3.1.1)

In particular, E(xk) ≤ E(xk−1), and therefore, by induction

E(xk) ≤ E(x0) = E(0),

which means that the generated approximations xk ∈ Ω. Next, we provide a lower

bound for |⟨E ′(xk−1), φjk⟩|. Let us fix ε > 0 and choose a representation for x̄ =∑
φ∈D cεφφ, such that ∑

φ∈D

|cεφ| < ∥x̄∥A1(D) + ε.

Since ⟨E ′(xk−1), xk−1⟩ = 0, because of the choice of xk−1 and Lemma 2.2.3, we have

10

that

⟨E ′(xk−1), xk−1 − x̄⟩ = −⟨E ′(xk−1), x̄⟩ = −
∑
φ

cεφ⟨E ′(xk−1), φ⟩

≤ |⟨E ′(xk−1), φjk⟩|
∑
φ

|cεφ|

< |⟨E ′(xk−1), φjk⟩(∥x̄∥A1(D) + ε),

where we have used the choice of φjk . We let ε → 0 and obtain the inequality

⟨E ′(xk−1), xk−1 − x̄⟩ ≤ |⟨E ′(xk−1), φjk⟩|∥x̄∥A1(D).

It follows from Lemma 2.2.1, with x = xk−1 and x′ = x̄ and the above inequality

that

∥x̄∥−1
A1(D)ek−1 ≤ |⟨E ′(xk−1), φjk⟩|, (3.1.2)

which is the desired estimate from below for |⟨E ′(xk−1), φjk⟩| In particular,

E(xk) ≤ E(xk−1)−
µ− 1

µ
(αµ)−

1
q−1 ∥x̄∥

− q
q−1

A1(D)e
q

q−1

k−1. (3.1.3)

Subtracting E(x̄) from both sides gives

ek ≤ ek−1

(
1− µ− 1

µ
(αµ)−

1
q−1 ∥x̄∥

− q
q−1

A1(D)e
1

q−1

k−1

)
.

Now we apply Lemma 2.2.4 for the sequence {ak}, with

ak :=
ek

αµ||x̄||A1(D)

,

11

and

rk = 1, ℓ =
1

q − 1
> 0, B =

||E ′(0)||
αµ

, r =
µ

µ− 1
||x̄||A1(D),

and derive that

ek ≤
αµq||x̄||qA1(D)

(µ− 1)q−1

(
k − 1 +

µ

µ− 1
||x̄||A1(D)

(
αµ

||E ′(0)||

) 1
q−1

)1−q

,

and the proof is completed.

Notice that we can optimize with respect to the parameter µ and select a specific

value for µ > max{1, α−1M0M
1−q} that will guarantee the best convergence rate in

terms of best constants.

Careful analysis of the above proof shows that a similar theorem holds in the

following case.

Theorem 3.1.2. Let the convex function E be Frechet differentiable and there are

constants 0 < α and 1 < q ≤ 2, such that for all x, x′ ∈ X,

E(x′)− E(x)− ⟨E ′(x), x′ − x⟩ ≤ α||x′ − x||q.

Let the minimizer x̄ of E be such that x̄ ∈ A1(D). Then, the application of

RPGA(co)(µ,D) with parameter µ > 1 and a dictionary D = {φ} outputs a se-

quence {xk}∞k=0, such that the error ek := E(xk)− E(x̄) satisfies the inequality

ek ≤ C1k
1−q,

for k ≥ 1 with C1 = C1(q, α, E, µ).

12

3.2 The Weak Rescaled Pure Greedy Algorithm (WRPGA(co))

In this section, we describe the weak version of our algorithm with weakness

sequence {ℓk}, ℓk ∈ (0, 1] k = 1, 2, . . ., and parameter sequence {µk}, where

µk > max{1, α−1M0M
1−q}, k = 1, 2, In the case when ℓk = 1 and µk = µ, k =

1, 2, . . ., the WRPGA(co)({ℓk}, {µk},D) is the RPGA(co)(µ,D). The weakness

sequence allows us to have some freedom in the selection of the next direction φjk ,

while the parameter sequence {µk} gives more choices in how much to advance along

the selected direction φjk .

WRPGA(co)({ℓk}, {µk},D):

• Step 0: Define x0 = 0. If E ′(x0) = 0, stop the algorithm and define xk := x0 =

x̄, k ≥ 1.

• Step m: Assuming xm−1 has been defined and E ′(xm−1) ̸= 0. Choose a direc-

tion φjm ∈ D such that

|⟨E ′(xm−1), φjm⟩| ≥ ℓm sup
φ∈D

|⟨E ′(xm−1), φ⟩|.

With x̂m := xm−1 − λmφjm , where

λm := sgn{⟨E ′(xm−1), φjm⟩} (αµm)
− 1

q−1 |⟨E ′(xm−1), φjm⟩|
1

q−1 ,

tm := argmint∈IRE(tx̂m),

define the next point to be

xm = tmx̂m.

• If E ′(xm) = 0, stop the algorithm and define xk = xm = x̄, for k > m.

13

• If E ′(xm) ̸= 0, proceed to Step m+ 1.

The next theorem is the main result about the convergence rate of the

WRPGA(co)({ℓk}, {µk},D).

Theorem 3.2.1. Let the convex function E satisfy Condition 0 and the US con-

dition, and its minimizer x̄ ∈ A1(D). Then, the application of the

WRPGA(co)({ℓk}, {µk},D) with a weakness sequence {ℓk}, parameter sequence

{µk}, µk > max{1, α−1M0M
1−q}, and a dictionary D = {φ} outputs the sequence

{xk}∞k=0, such that the following inequality holds

ek := E(xk)− e(x̄) ≤ α∥x̄∥qA1(D)

(
C1 +

k∑
j=2

(µj − 1)

(
ℓj
µj

) q
q−1

)1−q

, k ≥ 1,

with C1 = C1(q, α, E).

Proof. Similarly to the proof of Theorem 3.1.1, we have for k ≥ 2,

E(xk) ≤ E(xk−1)−
µk − 1

µk

(αµk)
− 1

q−1 |⟨E ′(xk−1), φjk⟩|
q

q−1 . (3.2.4)

The same way one can easily derive the lower estimate

∥x̄∥−1
A1(D)ℓkek−1 ≤ |⟨E ′(xk−1), φjk⟩|,

We use (3.2.4) and the lower estimate for |⟨E ′(xk−1), φjk⟩| to obtain

ek ≤ ek−1

(
1− µk − 1

µk

(αµk)
− 1

q−1 ℓ
q

q−1

k ∥x̄∥
− q

q−1

A1(D)e
1

q−1

k−1

)
.

It follows from the monotonicity that e1 ≤ e0 = E(0) − E(x̄). Now we apply

14

Lemma 2.2.4 for the sequence of errors {ek}∞k=1 and

rk = (µk−1)

(
ℓk
µk

) q
q−1

, ℓ =
1

q − 1
> 0, B = E(0)−E(x̄), r =

(
α∥x̄∥qA1(D)

) 1
q−1

,

and derive that

ek ≤ α∥x̄∥qA1(D)

(α∥x̄∥qA1(D)

E(0)− E(x̄)

) 1
q−1

+
k∑

j=2

(µj − 1)

(
ℓj
µj

) q
q−1

1−q

.

The proof is completed.

Theorem 3.2.2. Let the convex function E be Frechet differentiable and there are

constants 0 < α and 1 < q ≤ 2, such that for all x, x′ ∈ X,

E(x′)− E(x)− ⟨E ′(x), x′ − x⟩ ≤ α||x′ − x||q.

Let the minimizer x̄ of E be in A1(D). Then, the application of the

WRPGA(co)({ℓk}, {µk},D) with a weakness sequence {ℓk} and a parameter se-

quence {µk}, µk > 1, and a dictionary D = {φ} outputs a sequence {xk}∞k=0, such

that the error ek := E(xk)− E(x̄) satisfies the inequality

ek ≤ α∥x̄∥qA1(D)

(
C1 +

k∑
j=2

(µj − 1)

(
ℓj
µj

) q
q−1

)1−q

,

for k ≥ 1 with C1 = C1(q, α, E).

15

4. EXAMPLES & NUMERICAL EXPERIMENTS

In this chapter, we will apply the RPGA(co)(µ,D) to several convex objective

functions E.

4.1 Best Approximation in Hilbert Space

Let us consider the case when X is a Hilbert space H with a norm, induced by

scalar product, namely || · || = (·, ·)1/2 and an objective function E : H → R, defined

as

E(x) := ||x− x̄||2, (4.1.1)

where x̄ ∈ H is a fixed element in the Hilbert space H. Since ||x − x̄|| is convex

because of the properties of a norm, E is a convex function as a composition of the

increasing convex function g(t) = t2, t ≥ 0 and ||x − x̄||. It is easy to compute that

its Fréchet derivative at x ∈ H is the linear functional E ′(x), which acts on h ∈ H

as

⟨E ′(x), h⟩ = 2(x− x̄, h).

We have that

E(x′)− E(x)− ⟨E ′(x), x′ − x⟩ = ||x′ − x̄||2 − ||x− x̄||2 − 2(x− x̄, x′ − x)

= ||x− x′||2,

and therefore the objective function E satisfies the conditions of Theorem 3.1.2 with

α = 1 and q = 2. We call the RPGA(co)(µ,D) in this case the RPGA(µ,D) with

parameter µ > 1 and a dictionary D. The algorithm is the following.

RPGA(µ,D):

16

• Step 0: Define x0 = 0. If x0 = x̄, stop the algorithm and define xk := x0 = x̄,

k ≥ 1.

• Step m: Assuming xm−1 has been defined and xm−1 ̸= x̄.

– Choose φjm ∈ D such that

| (xm−1 − x̄, φjm) | = sup
φ∈D

| (xm−1 − x̄, φ) |.

– Compute

λm :=
2

µ
(xm−1 − x̄, φjm), x̂m := xm−1 − λmφjm , sm :=

(x̂m, x̄)

||x̄||2
,

– Define

xm = smx̂m.

• If xm = x̄, stop the algorithm and define xk = xm = x̄, for k > m.

• If xm ̸= x̄, proceed to Step m+ 1.

The next theorem is a direct consequence of Theorem 3.1.2 for the function

E(x) := ||x− x̄||2.

Theorem 4.1.1. If x̄ ∈ A1(D) ⊂ H, then the RPGA(µ,D) with parameter µ > 1

and a dictionary D = {φ} outputs the sequence {xk}∞k=0, where xk is a sum of k

terms from the dictionary, such that

||xk − x̄|| ≤ C1k
−1/2, k ≥ 1,

with C1 = C1(µ, x̄).

17

When µ = 2, the above algorithm is exactly the RPGA(D), presented in [8].

The latter was suggested as a modification to the Pure Greedy Algorithm, known

also as Matching Pursuit, and an alternative to the Relaxed Greedy Algorithm and

the Orthogonal Greedy Algorithm for Hilbert spaces. The theorem in [8] for the

convergence rate of this algorithm, see Theorem 3.1 from the latter paper, is actually

an improved version of Theorem 4.1.1. The improvement is in the constants since the

analysis of the algorithm uses the formula of the objective function rather than some

of its properties. We observe here that the RPGA(D) can be modified so that it

depends on a parameter µ > 1, see RPGA(µ,D). Similar arguments as in the proof

of Theorem 3.1 from [8], with little modifications that account for the parameter µ

give the following improved version of Theorem 4.1.1.

Theorem 4.1.2. Let x̄ ∈ A1(D) ⊂ H. The RPGA(µ,D), with parameter µ > 1

and a dictionary D outputs a sequence {xk}k≥0 of approximations to x̄ satisfying the

following error estimate

||x̄− xk|| ≤
µ

2
√
µ− 1

||x̄||A1(D)k
−1/2, k = 1, 2 . . . (4.1.2)

Proof. The proof follows the arguments from Theorem 3.1 in [8]. The presence of µ

is accounted for in the estimate

||x̄− xk||2 ≤ ||x̄− xk−1||2
(
1− 4(µ− 1)

µ2
||x̄||−2

A1(D)||x̄− xk−1||2
)
.

Application of Lemma 2.2.4 with ak = ||x̄ − xk||2, B = ||x̄||2A1(D), rk := 4(µ−1)
µ2 ,

r = ||x̄||2A1(D), and ℓ = 1 gives

18

||x̄− xk|| ≤ ||x̄||2A1(D)

(
1 +

4(µ− 1)

µ2
(k − 1)

)
≤ ||x̄||2A1(D)

µ2

4(µ− 1)
k−1,

and the proof is completed. Since the constant µ
2
√
µ−1

≥ 1, and its minimum value

1 is achieved when µ = 2, the best constant in the above estimate is achieved when

the parameter µ = 2.

4.2 The Space Rn

In this section, we discuss the case when the Banach space X = Rn, the norm ||·||

is the Euclidean norm, induced by the standard scalar product ||x||2 = (x, x), x ∈ Rn.

In this case, the dictionary D is any system {φ} of vectors in Rn(basis or not), such

that span{φ} = Rn. For any x ∈ Rn, we define the quantity

||x||A1(D) = inf{M : x =
∑
φ∈D

xφφ,
∑
φ∈D

|xφ| ≤ M}.

When D is a basis, ||x||A1(D) is just the ℓ1 norm of x with respect to this basis.

4.2.1 Objective Functions of n Variables

If the objective function E is a sufficiently smooth convex function, defined on

Rn, then its Fréchet derivative E ′(x) at x is the linear functional E ′(x) which acts

on h ∈ Rn as

⟨E ′(x), h⟩ =
n∑

j=1

∂E

∂xj

(x)hj = (∇E(x), h) , h = (h1, . . . , hn).

19

In this case, we denote our algorithm as RPGA(Rn)(µ,D), and present it below.

• Step 0: Define x0 = 0. If ∇E(x0) = 0, stop the algorithm and define xk :=

x0 = x̄, k ≥ 1.

• Step m: Assuming xm−1 has been defined and ∇E(xm−1) ̸= 0.

– Choose a direction φjm ∈ D such that

|(∇E(xm−1), φjm)| = sup
φ∈D

|(∇E(xm−1), φ)|.

– With

λm := sgn{(∇E(xm−1), φjm)} (αµ)
− 1

q−1 |(∇E(xm−1), φjm)|
1

q−1 ,

compute x̂m := xm−1 − λmφjm , tm := argmint∈IRE(tx̂m).

– Define the next point to be

xm = tmx̂m.

• If ∇E(xm) = 0, stop the algorithm and define xk = xm = x̄, for k > m.

• If ∇E(xm) ̸= 0, proceed to Step m+ 1.

Depending on the properties of the objective function E, versions of Theorem

3.1.1 and Theorem 3.1.2 hold for the RPGA(Rn)(µ,D), applied to E.

20

4.2.2 Logistic Regression

In this section, we consider the log-likelihood function under the LR model, as

our objective function. To be precise, we consider the opposite of this function. We

show that it satisfies the conditions of Theorem 3.1.2, and therefore we can apply

the RPGA(co) to find its minimum.

4.2.2.1 Background

Regression analysis is used to find relationships between data sets. Logistic re-

gression is a regression technique naturally suited to data related to binary outcomes.

Let (A, b) be a dataset with binary outcomes. For each experiment ai in A, the

outcome is either bi = 1 or bi = 0. Experiments with outcome bi = 1 are said to

belong to a positive class, while experiments with bi = 0 belong to a negative class.

We wish to create a regression model which allows classification of an experiment

a as positive or negative, that is, belonging to either the positive or negative class.

Though Logistic Regression is applicable to datasets with outcomes in [0, 1], we will

restrict our discussion to the binary case.

We can think of an experiment ai in A as a Bernoulli trial with mean parameter

µ(ai). Thus, bi is a Bernoulli random variable with mean µ(ai) and variance µ(ai)(1−

µ(ai)). It is important to note that the variance of bi depends on the mean, and hence

on the experiment ai. To model the relation between each experiment ai and the

expected value of its outcome, we will use the logistic function. This function is

written as

µ(a, x) =
exp(xTa)

1 + exp(xTa)
, x ∈ Rm, (4.2.3)

We may interpret the expectation function as the probability that bi=1, or equiv-

21

alently, that ai belongs to the positive class. Thus, we may compute the probability

of the i-th experiment and outcome in the dataset (A,b) as

P (ai, bi|x) = µ(ai, x)
bi(1− µ(ai, x))

1−bi

where bi ∈ {0, 1}, i = 1, 2, . . . , N . From this expression, we derive the likelihoood

and log-likelihood of the data (A,b) under the LR model with parameters x as

L(A,b, x) =
N∏
i=1

µ(ai, x)
bi(1− µ(ai, x))

1−bi ,

and

lnL(A,b, x) =
N∑
i=1

(bi ln(µ(ai, x)) + (1− bi) ln(1− µ(ai, x))) .

Our goal is to find the Maximum Likelihood Estimator(MLE) of the parameter x.

4.2.2.2 Objective Function

We consider the objective function E : Rm → R, defined as

E(x) = E(A,b, x) := −
N∑
i=1

[bi ln(µ(ai, x)) + (1− bi) ln(1− µ(ai, x))] , (4.2.4)

where A is an m × N matrix with i-th column ai, that is, A = (a1, . . . , aN), and

bi ∈ {0, 1}, i = 1, . . . , N . The gradient of E(x) is:

∇E(x) = −
N∑
i=1

ai(bi − µ(ai, x)),

or more precisely,

22

∂

∂xj

E(x) = −
N∑
i=1

aij(bi − µ(ai, x)).

Next, we obtain that

∂2

∂xj∂xk

E(x) =
N∑
i=1

µ(ai, x)(1− µ(ai, x))aijaik =
(
∇2E(x)

)
jk
. (4.2.5)

The following lemma shows that E is a convex function on Rm and satisfies the

conditions in Theorem 3.1.2 with α = 1
2
∥A∥22 and q = 2.

Lemma 4.2.1. The function E defined in (4.2.4) is convex. Moreover, for all x, x′ ∈

Rm, we have

E(x)− E(x′)− (∇E(x), x′ − x) ≤ 1

2
||A||22 · ||x′ − x||2. (4.2.6)

Proof. Let us fix x ∈ Rm and denote by D = D(x) := ∇2E(x), with elements djk,

j, k = 1, 2, . . . ,m. Then it follows from (4.2.5) that

djk =
N∑
i=1

[√
µ(ai, x)(1− µ(ai, x))aij

] [√
µ(ai, x)(1− µ(ai, x))aik

]
, (4.2.7)

where we have used the fact that 0 < µ(ai, x) < 1. Let us denote by D̃ the N ×m

matrix with elements

d̃ij :=
√
µ(ai, x)(1− µ(ai, x))aij. Then, (4.2.5) can be written as

djk =
N∑
i=1

d̃ij d̃ik,

which is D = D̃T D̃. Therefore, for all u ∈ Rm, uTDu = uT D̃T D̃u = ||D̃u||2 ≥ 0.

Hence, D is a positive semi-definite matrix, which proves that E is convex. Next, we

23

will prove (4.2.6). Since E is smooth, we apply Taylor’s theorem and obtain

E(x′) = E(x) +
∇TE(x)(x′ − x)

1!
+

(x′ − x)TD(ξ)(x′ − x)

2!
,

where ξ ∈ {tx + (1 − t)x′ : t ∈ [0, 1]}. Since
√
µ(ai, x)(1− µ(ai, x)) < 1, we have

that

E(x)− E(x′)−(∇E(x), x′ − x) =
(x′ − x)TD(ξ)(x′ − x)

2!

=
1

2
||D̃(ξ)(x′ − x)||22

≤ 1

2
||D̃(ξ)||22 · ||x′ − x||2

≤ 1

2
||A||22 · ||x′ − x||2

=
1

2
λmax(A

TA) · ||x′ − x||2,

and the proof is completed.

Next, we write theRPGA(Rm)(µ,D) for E, with µ = 2. We call itRPGA(LR)(D).

RPGA(LR)(D):

• Step 0: Define x0 = 0. If
∑N

i=1 ai(bi − 1
2
) = 0, stop the algorithm and define

xk := x0 = x̄, k ≥ 1.

• Step m: Assume xm−1 has been defined and
∑N

i=1 ai(bi − µ(ai, xm−1)) ̸= 0.

–Choose a direction φjm ∈ D such that

|(
N∑
i=1

ai(bi − µ(ai, xm−1)), φjm)| = sup
φ∈D

|(
N∑
i=1

ai(bi − µ(ai, xm−1)), φ)|.

– With

24

λm := sgn{

(
N∑
i=1

ai(bi − µ(ai, xm−1)), φjm

)
}|(
∑N

i=1 ai(bi − µ(ai, xm−1)), φjm)|
||A||22

,

compute x̂m := xm−1 − λmφjm , where tm satisfies tm = argmint∈RE(tx̂m).

–Define the next point to be

xm = tmx̂m.

• If
∑N

i=1 ai(bi − µ(ai, xm)) = 0, stop the algorithm and define xk = xm = x̄, for

k > m.

• If
∑N

i=1 ai(bi − µ(ai, xm)) ̸= 0, proceed to Step m+ 1.

Corollary 4.2.2. The RPGA(LR)(D) generates a sequence of vectors xk ∈ Rm,

such that

ek ≤ Ck−1, k = 1, 2, . . . , (4.2.8)

where C = C(A, b)

Proof. The proof is a direct application of Theorem 3.1.2 and Lemma 4.2.1.

4.2.2.3 Numerical Tests

Test1: We consitder the example of simple logistic regression from Suzuki et

al. (2006), where they measured sand grain size on 28 beaches in Japan and ob-

served the presence or absence of the burrowing wolf spider Lycosa ishikariana on

each beach (see [16]). One goal of this study is to determine whether there is a

relationship between sand grain size and the presence or absence of the species, in

25

Table 4.1: Data for Test 1 (see [16])

Grain Size(mm) Spiders Grain Size(mm) Spiders
0.245 absent 0.432 absent
0.247 absent 0.473 present
0.285 present 0.509 present
0.299 present 0.529 present
0.327 present 0.561 absent
0.347 present 0.569 absent
0.356 absent 0.594 present
0.36 present 0.638 present
0.363 absent 0.656 present
0.364 present 0.816 present
0.398 absent 0.853 present
0.400 present 0.938 present
0.409 absent 1.036 present
0.421 present 1.045 present

hopes of understanding more about the biology of the spiders. Because this species

is endangered, another goal would be to find an equation that would predict the

probability of a wolf spider population surviving on a beach with a particular sand

grain size, which would help determine which beaches to reintroduce the spider to.

The data is in the following table:

We construct a parameter matrix A and a vector b with the data above. Let A

be a m×N matrix, with all elements in the first row being 1. The elements in the

second row of A are the grain sizes, that is

A =

 1 1 · · · 1 1

0.245 0.247 · · · 1.036 1.045

 ,

where N = 28,m = 2. To satisfy the LR model we referred before, we denote

A = (a1, a2, · · · , aN), where ai is the ith column of A. Let the vector b ∈ RN×1

describe the absence or presence of the wolf spiders, i.e.

b = [0 0 1 · · · 1 1]T ,

26

where bi = 1 means the spider is present in the sample ai, and bi = 0 means the

spider is absent. Then we plug our parameter matrix A and parameter vector b

into (4.2.3) and (4.2.4) to obtain the objective function in this case and apply the

RPGA(LR)(D) to approximately find its minimum. We use a dictionary D =

{(1, 0), (0, 1)}. We know from [16] that one approximate solution to this problem is

x̄ = [−1.6474, 5.1212]T , which means that the probability for presence of the spider

on a beach with grain size s is

P (b = 1) =
exp(−1.6474 + 5.1212s)

1 + exp(−1.6474 + 5.1212s)
,

and its graph is depicted in figure 4.1. We use the value of x̄ derived in [16] as a

reference solution for our algorithm. That is, we stop the algorithm if ∥xk − x̄∥ < ϵ.

We select ϵ = 10−4 and use Linesearch(0.1, 0.5) to perfome the one dimensional

optimization at each step.

Figure 4.1: Probability Distribution (Test 1)

27

We plot the error ∥xk − x̄∥ for step sizes between [120, 160], see Figure 4.2.

Figure 4.2: RPGA(LR)(D) Error (Test 1)

At last, we present a table, which shows how many steps k are need, so that the

output xk is ϵ-close to the reference minimum x̄ = [−1.6474, 5.1212]T from [16].

Table 4.2: Error & Steps for Test 1

Error ϵ Steps

10−4 134

10−5 146

10−6 157

10−7 169

10−8 180

10−9 191

10−10 198

28

Note that we do not need to know x̄ in order to run the algorithm. We use it

here simply to demonstrate the convergence of our algorithm, and investigate the

number of steps needed to achieve certain prescribed accuracy.

Test 2: This test describes 20 male(denote 1) and female(denote 0) students

with aptitude score from 1 to 10 and their admission into a graduate program. (see

[17])

Table 4.3: Data for Test 2 (see [17])

Aptitude Gender Admission Aptitude Gender Admission

8 1 1 4 0 0

7 1 0 7 0 1

5 1 1 3 0 1

3 1 0 2 0 0

3 1 0 4 0 0

5 1 1 2 0 0

7 1 1 3 0 0

8 1 1 4 0 1

5 1 1 3 0 0

5 1 1 2 0 0

We construct the parameter matrix A and the vector b with the data above. Let

A be the m × N matrix, with all elements being 1 in the first row. The elements

29

in the second row reflect the sex of the students, and the elements in third row are

their scores of aptitude. The resulting matrix is

A =

1 1 · · · 1 1

1 1 · · · 0 0

8 7 · · · 3 2

 , (4.2.9)

where N = 20,m = 3, namely A = (a1, a2, · · · , aN), where ai is the ith column of

A. Let the vector b ∈ RN×1 describe the admission situation namely, bi = 1 means

to be admitted and bi = 0 means to be denied. The resulting vector is

b = [1 0 1 · · · 0 0]T .

We plug the parameter matrix A and the parameter vector b into (4.2.3) and

(4.2.4) to obtain the respective objective function and apply RPGA(LR)(D). We

use the dictionary D = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. We know from [17] that one

approximate solution to this problem is x̄ = [−4.028765, 0.8982803, 0.2671938]T . We

use this value as a stopping criteria for our algorithm. That is, we stop if ∥xk−x̄∥ < ϵ.

We select ϵ = 10−4 and use Linesearch(0.1, 0.5) to perfome the one dimensional

optimization at each step. We obtain the following table, which shows after how

many steps we have derived the solution within the prescribed accuracy ϵ.

Table 4.4: Error & Steps for Test 2

Error ϵ 10−4 10−5 10−6 10−7 10−8

Steps 3047 4319 5591 6862 8129

30

Next, we plot the error between 2000 and 3000 steps, see Figure 4.3.

Figure 4.3: RPGA(LR)(D) Error (Test 2)

We conclude, that both numerical examples confirm the fast convergence rate of

our algorithm and its potential to solving real life problems.

4.2.3 Linear Systems

We present a new iterative algorithm for solving linear systems

Ax̄ = b,

for any n×n matrix A with det(A) ̸= 0 that generates a sequence of vectors xk ∈ IRn.

This algorithm can be viewed as an application of the suggested rescaled pure greedy

algorithm to the function E(x) = ∥Ax−b∥2. Before continuing further, we introduce

31

the notation rk for the residual

rk := Axk − b,

and κ(A) for the condition number of A, κ(A) := ∥A−1∥∥A∥. All matrix norms,

unless specified otherwise, are the matrix norms induced by the Euclidean vector

norm ∥x∥2 = (x, x) =
∑n

i=1 x
2
i .

Let us define for any nonsingular matrix A the function

E(x) := ∥Ax− b∥2 = (Ax− b, Ax− b) = (Ax− b, A(x− x̄)),

and list several properties of E. First, for any vectors x′, x ∈ IRn, we have

E(x′)− E(x)− 2(Ax− b, A(x′ − x)) = ∥A(x′ − x)∥2 ≤ ∥A∥2∥x′ − x∥2. (4.2.10)

Since ∥A(x̄− x∗)∥2 = E(x∗), we have

∥x̄− x∗∥ ≤ ∥A−1∥∥A(x̄− x∗)∥ = ∥A−1∥∥Ax∗ − b∥ = ∥A−1∥E(x∗)1/2. (4.2.11)

Next, we present our iterative algorithm, which generates a sequence of vectors xk ∈

IRn, and prove the rate of convergence of xk → x̄ when k → ∞. Let B = {φi}ni=1

be an orthonormal basis for IRn. A canonical example for B is B = {ei}ni=1. In this

case the computation of Aφi is simplified since Aei = ai, where ai is the i-th column

of A.

RPGA(lin)(B) :

• Step 0: Define x0 = 0. Compute r0 := Ax0 − b. If r0 = 0, stop the algorithm

32

and define xk := x0 = x̄, k ≥ 1.

• Step m: Assuming xm−1 has been defined and rm−1 ̸= 0.

– choose a direction φjm ∈ B such that

|(rm−1, Aφjm)| = sup
φ∈B

|(rm−1, Aφ)|.

– compute

λm :=
1

∥A∥2
(rm−1, Aφjm), x̂m := xm−1 − λmφjm

and

tm :=
(Ax̂m, b)

(Ax̂m, Ax̂m)
.

– define the next approximation to be

xm = tmx̂m.

– compute the residual rm := Axm − b.

• If rm = 0, stop the algorithm and define xk = xm = x̄, for k > m.

• If rm ̸= 0, proceed to Step m+ 1.

The next theorem provides the rate of convergence of the proposed algorithm.

Theorem 4.2.3. Consider the linear system Ax̄ = b with an n × n nonsingular

matrix A. The RPGA(lin)(B) generates a sequence of vectors xk ∈ IRn such that

∥xk − x̄∥ ≤ ∥A−1∥∥b∥
(
1− 1

nκ(A)2

) k
2

, k ≥ 1,

33

where κ(A) is the condition number of A.

Proof. We first find an estimate for E(x̂k) by using (4.2.10) with the values

x′ = x̂k = xk−1 − λkφjk , x = xk−1.

As above, we get that

E(x̂k) = E(xk−1 − λkφjk) = E(xk−1)− 2λk(rk−1, Aφjk) + ∥A(λkφjk)∥2

≤ E(xk−1)− 2λk(rk−1, Aφjk) + ∥A∥2λ2
k

= E(xk−1)−
1

∥A∥2
(rk−1, Aφjk)

2, (4.2.12)

where we have used that ∥φjk∥ = 1 and the choice of λk. Since the quadratic function

Φ, defined as

Φ(t) := t2(Ax̂k, Ax̂k)− 2t(Ax̂k, b) + ∥b∥2 = ∥A(tx̂k)− b∥2 ≥ 0

achieves minimum at t = tk, we have that

E(xk) = Φ(tk) ≤ Φ(1) = E(x̂k),

and therefore it follows from (4.2.12) that

E(xk) ≤ E(x̂k) ≤ E(xk−1)−
1

∥A∥2
(rk−1, Aφjk)

2. (4.2.13)

Now we derive a lower bound for (rk−1, Aφjk)
2. Since

xk−1 − x̄ =
n∑

i=1

ci(xk−1 − x̄)φi,

34

where ci(xk−1 − x̄) are the coefficients in the representation of xk−1 − x̄ with respect

to the basis B, we have

E(xk−1) = (rk−1, A(xk−1 − x̄)) =
n∑

i=1

ci(xk−1 − x̄)(rk−1, Aφi)

≤ |(rk−1, Aφjk)|
n∑

i=1

|ci(xk−1 − x̄)|

≤ |(rk−1, Aφjk)|
√
n

√√√√ n∑
i=1

c2i (xk−1 − x̄),

= |(rk−1, Aφjk)|
√
n∥xk−1 − x̄∥,

≤ ∥A−1∥
√
n|(rk−1, Aφjk)|E(xk−1)

1/2,

where we have used the definition of φjk , Cauchy’s inequality and (4.2.11). Therefore,

we obtain the lower bound

1

n∥A−1∥2
E(xk−1) ≤ (rk−1, Aφjk)

2, (4.2.14)

and (4.2.13) becomes

E(xk) ≤ E(xk−1)−
1

n∥A∥2∥A−1∥2
E(xk−1)

= E(xk−1)

(
1− 1

nκ(A)2

)
.

Since E(x0) = ∥b∥2, the above inequality gives

E(xk) ≤ ∥b∥2
(
1− 1

nκ(A)2

)k

,

35

and therefore

∥xk − x̄∥ ≤ ∥A−1∥E(xk)
1/2 ≤ ∥A−1∥∥b∥

(
1− 1

nκ(A)2

) k
2

,

which completes the proof.

4.2.4 Stability Analysis

In this section, we present a stability analysis for our algorithm in the sense that

we investigate how errors in the computation of λm propagate. More precisely, we

compute λm the following way:

λm :=
1 + ϵm
∥A∥2

(rm−1, Aφjm), |ϵm| < 1. (4.2.15)

The following theorem holds.

Theorem 4.2.4. Consider the linear system Ax̄ = b with an n×n nonsingular matrix

A. The RPGA(lin)(B), where λm is computed according to (4.2.15) generates a

sequence of vectors xk ∈ IRn such that

∥xk − x̄∥ ≤ ∥A−1∥∥b∥
k∏

i=1

(
1− 1− ϵ2i

nκ(A)2

) 1
2

, k ≥ 1,

where κ(A) is the condition number of A.

Proof. As in the proof of Theorem 4.2.3, we derive that

E(xk) ≤ E(x̂k) ≤ E(xk−1)− 2λk(rk−1, Aφjk) + ∥A∥2λ2
k

= E(xk−1)−
1− ϵ2k
∥A∥2

(rk−1, Aφjk)
2. (4.2.16)

36

The lower bound for (rk−1, Aφjk)
2 is as in (4.2.14) and (4.2.16) becomes

E(xk) ≤ E(xk−1)

(
1− 1− ϵ2k

nκ(A)2

)
.

Since E(x0) = ∥b∥2, the above inequality gives

E(xk) ≤ ∥b∥2
k∏

i=1

(
1− 1− ϵ2i

nκ(A)2

)
,

and therefore

∥xk − x̄∥ ≤ ∥A−1∥E(xk)
1/2 ≤ ∥A−1∥∥b∥

k∏
i=1

(
1− 1− ϵ2i

nκ(A)2

) 1
2

,

which completes the proof.

Remark 4.2.5. If |ϵm| ≤ ϵ < 1 in (4.2.15), then

∥xk − x̄∥ ≤ ∥A−1∥∥b∥
(
1− 1− ϵ2

nκ(A)2

) k
2

,

37

5. SUMMARY

In the thesis, we introduced Rescaled Pure Greedy Algorithm (RPGA(co)) for

solving convex optimization problems in Banach spaces. In chapter 3 we discussed

RPGA(co) and analyzed its convergence rate. Moreover, we also introduced and

analyzed a weak form of RPGA(co), which is Weak Rescaled Pure Greedy Algo-

rithm (WRPGA(co)). Our analysis showed that RPGA(co) converges fast under

certain given conditions.

We also applied RPGA(co) on several examples in chapter 4, such as approx-

imation in Hilbert spaces, solving linear systems, and others. Especially in section

4.2.2, we performed several numerical tests, and compared with those results given

in [16, 17]. We concluded that RPGA(co) has fast convergence rate as we analyzed

in chapter 3 and confirmed its potential for solving real world problems.

We also applied RPGA(co) on solving linear systems. We analyzed the algo-

rithm and showed that the convergence rate is as good as that in chapter 3. In order

to verify our analysis, we will perform numerical tests for RPGA(co) in solving

linear systems in our future work.

38

REFERENCES

[1] J. Borwein, A. Guiro, P. Hajek, and J. Vanderwerff, Uniformly convex functions

on Banach Spaces, Proc. Amer. Math. Soc., 137, 1081–1091, 2009.

[2] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge University Press,

2009.

[3] R. DeVore, V. Temlyakov, Some remarks on greedy algorithms, Advances in Com-

putational Math., 5, 173–187, 1996.

[4] R. DeVore, V. Temlyakov, Convex optimization on Banach spaces, Foundations

of Computational Mathematics, accepted.

[5] W. W. Hager, H. Zhang, A survey of nonlinear conjugate gradient methods, Pa-

cific Journal of Optimization, 2 , 35–58, 2006.

[6] A. Nemirovski, Optimization II: Numerical methods for nonlinear continuous op-

timization, Lecture Notes, Israel Institute of Technology, 1999.

[7] H. Nguyen, G. Petrova, Greedy strategies for convex optimization, Calcolo, to

appear, arXiv:1401.1754.

[8] G. Petrova, Rescaled Pure Greedy Algorithm for Hilbert and Banach Spaces, Ap-

plied and Computational Harmonic Analysis, to appear, arXiv:1505.03604.

[9] V. Temlyakov, Greedy expansions in convex optimization, Proceedings of the

Steklov Institute of Mathematics, 284(1), 244–262, 2014.

[10] V. Temlyakov, Greedy approximation in convex optimization, Constr. Approx.,

41(2), 269–296, 2015.

39

[11] V. Temlyakov, Greedy approximation, Cambridge monographs on Applied and

Computational Mathematics, Cambridge University Press, 2011.

[12] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific Pub-

lishing Co. Inc., River Edge, NJ, 2002.

[13] T. Zhang, Sequential greedy approximation for certain convex optimization prob-

lems, IEEE Transactions on Information Theory, 49(3), 682–691, 2003.

[14] P. Komarek, Logistic Regression for Data Mining and High-Dimensional Clas-

sification, Chapter 4, 22-28, PhD Dissertation, Dept. of Math Sciences, Carnegie

Mellon University, 2004.

[15] G. Casella, R.L.Berger, Statistical Inference, Duxbury Press, 2002.

[16] J.H. McDonald, Handbook of Biological Statistics (3rd ed.). Sparky House Pub-

lishing, Baltimore, Maryland, 2014.

[17] Sharyn O’Halloran, 2005, Admission Data, Retrieved from

http://www.columbia.edu/∼so33/SusDev/Lecture

40

