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ABSTRACT 

   

Among the challenges facing the Texas winegrape industry is Phymatotrichopsis 

omnivora, the cotton root rot (CRR) pathogen. A survey instrument was created and 

distributed to grape growers which revealed that the disease is a serious problem in 

counties where acreage of new vineyards is on the increase.  Grape growers expressed 

significant concern because there were no effective recommendations for disease 

control.    

 One control option for growers is the use of promising rootstock x scion 

combinations.  In 2012, a root stock field trial was planted with two own-rooted grape 

varieties (Chardonnay, Merlot) and the same two varieties on Dog Ridge root stock.  

Both varieties on the root stock showed a significant statistical difference in disease 

development when compared to own-rooted vines.  Merlot own-rooted vines were more 

resistant than the Chardonnay own-rooted vines.    

 Two experimental fungicide field trials were initiated in vineyards in the spring 

of 2012.  In one vineyard, several fungicides were tested including flutriafol, a fungicide 

being used successfully to control CRR on cotton.  In the commercial vineyard in Travis 

County, TX, flutriafol was applied at 0.26 lbs/a.i./acre (1X), 2.6 lbs/a.i./acre (10X), and 

5.2 lbs/a.i./acre (20X) through a manually applied soil drench. There was a significantly 

lower level of disease development in the 10X plots, as compared to untreated controls. 

Vines treated with a 10X rate of flutriafol also showed decreased incidence of non-target 

foliar pathogens and possible plant health effects when compared to the other treatments.   
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In 2014, two new field trials were established using chemigation at an established 

vineyard and a newly planted vineyard.   The experimental block at the newly planted 

vineyard consisted of 30 rows of Petite Syrah on 5BB rootstock containing 118 

vines/row.  Two rates of flutriafol at 0.26 lbs/a.i./acre (1X) and 0.52 lbs/a.i./acre (2X) 

were applied through the irrigation system with 10 plots (rows)/treatment.  In the 

untreated plots, disease increased from 0-5.5% over a 12 week period following 

treatments.  No disease was observed until week 11 in any of the treated plots.  

However, by week 12, disease incidence had increased to 2.5% and 1.4% in the 1X and 

2X plots, respectively.   Based on these and similar studies, a Section 24(c) special local 

needs registration was requested and granted for use by the grape growers to control 

Phymatotrichopsis omnivora.   
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NOMENCLATURE 

CITI Collaborative Institutional Training Initiative 

CRR Cotton Root Rot 

DNA Deoxyribonucleic Acid 

EPA Environmental Protection Agency 

FRAC Fungicide Resistance Action Committee 

IRB Internal Review Board 

lb/a.i./ac Pounds per active ingredient per acre 

ul Microliter 

ml Milliliters 

mm Millimeters 

PCR Polymerase Chain Reaction 

PDA Potato Dextrose Agar 

PGR Plant Growth Regulator 

P.o, Phymatotrichopsis omnivora 

ppm Parts per million 

spp. Species 

TDA Texas Department of Agriculture 

TLC Thin Layer Chromatography 

TPDDL Texas Plant Disease Diagnostic Laboratory 

TX Texas 
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1. INTRODUCTION 

 

 Texas is currently the 5
th

 largest wine producing state in the nation. In 2013, 

there were 286 wineries in Texas with an economic impact of 1.8 billion dollars (2). As 

grapevine acreage has increased to supply the demand for wine production, there is a 

growing concern for the widespread and destructive presence of the cotton root rot 

(CRR) pathogen, Phymatotrichopsis omnivora (Duggar) Hennebert, (syn. 

Phymatotrichum omnivorum Duggar) (7).  

       Phymatotrichopsis omnivora was first described in 1880 on cotton (19, 26, 33).   

The pathogen is a soil-borne fungus which occurs in the high pH, calcareous soils of 

southwestern U.S. and northern Mexico (17, 27).  Pathogen survival can last for several 

decades because the fungus produces sclerotia with the ability to lie dormant until 

encountered by the root system of a susceptible plant (1, 10, 16, 19, 34).  When present, 

CRR causes significant economic losses on many specialty crops, such as, peanuts, 

pecans, peaches, apples and winegrapes (28, 34).  P. omnivora colonizes the grapevine 

root system and spreads to adjacent vines through the soil, and under the right 

environmental conditions can lead to death of the vine.  Heavy losses have occurred in 

grapevines at high risk sites with own-rooted Vitis vinifera varieties and vines grafted on 

susceptible rootstocks (22).  There are some promising control measures with the 

potential to offer relief to growers, but there must be further research before 

recommendations can be made.   
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 CRR has been extensively studied on other crops such as cotton, but research 

with grape is extremely limited.  One of the possible control measures is the use of 

rootstocks previously thought to have resistance/tolerance to the pathogen (3, 4, 21, 22, 

23).  As early as 1924, J. J. Bayles (4) in his grape trials in Balmorhea, TX showed 

Champanel, Black Spanish, Mustang and St. George was resistant to CRR.  In 1934, W. 

J. Bach’s (3) grape trials in Weslaco, TX also had shown Champanel, Black Spanish, 

and Mustang, to be tolerant as well as Dogridge (V. champini, a central Texas natural 

hybrid between V. mustangensis x V. rupestris), and V. solanis.  Research was conducted 

by Ernest Mortensen in 1931 (22), in which 46 grape varieties were planted in Winter 

Haven, TX for an adaptation test.    The climate was favorable for grape production; 

however CRR was the limiting factor.   He observed most of the Texas native varieties 

such as Dog Ridge, Champanel, and Lukfata were survivors of CRR.   He further 

observed that varieties of V. champini, V. candicans, V. monticola and V. berlandieri 

origin usually have good survival. He also concluded, V. vinifera varieties on their own 

roots are highly susceptible to CRR, and will have to be grafted on resistant rootstock.  

Rootstocks in vineyard production are an important variable for growers because they 

impart many influences on the vigor of a grapevine (11).  Therefore, there are many 

choices available to growers to match rootstocks to the site, growing conditions and the 

variety of grape being considered.  A greenhouse rootstock-screening procedure was 

developed to artificially inoculate containerized grapevines with the pathogen and 

monitor for root growth and symptom development (11, 18).   
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 Another potential management strategy for CRR is the application of appropriate 

fungicides.  Phymatotrichopsis omnivora is sensitive to triazole fungicides in the 

laboratory and field (13, 14, 31, 36).  The use of propiconazole for grape CRR control 

was previously suggested based on successful studies in greenhouse tests, but no 

vineyard field trials have been attempted (8).   Recent field research has shown when the 

fungicide flutriafol was applied through “t-band” drench applications in cotton, the 

impact of the disease was reduced (14).  Due to trellises, drip irrigation, and other 

infrastructure issues, the equipment involved for “t-band” applications in a vineyard 

setting would not be appropriate.  A method for the necessary soil application could be 

adapted to test flutriafol in grapevines.  

Due to the enhanced systemic movement of triazole fungicides (31, 36), a 

concern for the wine industry would be whether or not the fungicide is present in the 

fruit at harvest.  The fermentation process, taste, and quality of the wine are high 

priorities for the wine makers (24).  Another concern with the use of triazole fungicides 

is potential phytotoxicity, as has been observed in cotton (8, 14).  If the application of 

flutriafol to grapevines proves to be efficacious against P. omnivora, sufficient testing 

will be needed to register the fungicide for use on grapevines in TX.  One of the criteria 

in obtaining final approval through the Environmental Protection Agency (EPA) will be 

to test the grapes growing on treated grapevines for fungicide residuals (see website 

Exemption from Registrations http://www.epa.gov/agriculture/lfra.html#Emergency ). 

http://www.epa.gov/agriculture/lfra.html#Emergency
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The purpose of this study is to address the critical deficiencies in the 

understanding of CRR on grapevines by approaching the problem with the following 

three objectives. Objective one was to assess the impact of CRR in the winegrape 

industry in Texas. Objective two was to test the efficacy of potential fungicides and 

rootstock selections for control of CRR. Objective three was to find a cost effective way 

to determine if there is any detectable fungicide residual in the grape. 
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2. MATERIAL AND METHODS

2.1 Objective one

The first objective was to determine the impact of cotton root rot (CRR) in Texas 

vineyards to improve recommendations for management and inform growers of the 

disease risk. With final approval from the Texas A&M University Internal Review 

Board (IRB) (https://vpr.tamu.edu/compliance/rcc/irb) and required Collaborative 

Institutional Training Initiative (CITI) training (https://www.citiprogram.org/), a survey 

instrument was created and distributed to the Texas Wine and Grape Grower Association 

annual grape camp meeting.  The survey included questions pertaining to acreage, 

variety (rootstock/scion), county, soil pH, and whether or not they have suspected or had 

confirmation of CRR in their vineyards (Appendix A).  A history of grapevine samples 

submitted to the Texas Plant Disease Diagnostic Lab and confirmed positive for CRR 

was also included in the assessment.  The data were collected and a county map of Texas 

was generated indicating the counties with confirmed CRR. 
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2.2 Objective two 

Laboratory: This component of Objective 2 compares the efficacy of two 

triazole fungicides, propiconazole (Alamo 
®
) and flutriafol (Topguard 

®
), to inhibit

growth of P. omnivora in vitro with poison plate assays.    At Flat Creek Estates 

Vineyard a potentially positive vine showing the classic symptoms of rapid wilting and 

chlorotic leaves was excavated to obtain a pure culture of P. omnivora.  The roots were 

microscopically inspected for the presence of typical P. omnivora mycelial strands (Fig. 

1A).  Fine tipped forceps were used to tease several sections of mycelial strands from the 

infected roots.  The sections were further dissected into smaller sections and placed in a 

sterile petri dish with 15 ml sterile distilled water.  The petri dishes with the segments of 

mycelia were periodically observed microscopically for hyphal growth in the sterile 

water (Fig. 1B).  Difco 
®

Potato Dextrose Agar (PDA) plates were prepared according to

manufacturer’s directions.  Hyphal tips were transferred to PDA and incubated at 27
o
C.

PDA plates were observed for the typical growth of P. omnivora (Fig. 1C).   DNA 

extraction of mycelia from the pure culture was performed using the Qiagen 
®
 DNeasy

Blood & Tissue kit.  Conventional PCR was performed according to Go Taq Colorless 
®

directions using Internal Transcribed Spacers (ITS1 and ITS4) primers. PCR parameters 

were set at 95
o
C for 3 minutes, [95

o
Cfor 30 seconds, 55

o
Cfor 1 minute, 72

o
C for 1

minute] for 40 cycles, 72
o
C for 10 minutes, 4

o
C until ready to load reactions into an
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A B C 

Fig 1.  Characteristic signs of P. omnivora.  A.  Hyphal strands infecting grapevine 

root.  B.  Microscopic view of a mycelial filament growing from a strand.  C.  

Culture plates of P. omnivora. 



 

8 

 

 

agarose gel   PCR reactions were electrophoresed on a 1% agarose gel with Tris-Borate-

EDTA (TBE) buffer.  The identification of the isolate was confirmed by sequencing the 

approximate 700 bp PCR amplicon at the Texas A&M University Gene Technology Lab 

(http://www.idmb.tamu.edu/gtl/) and using a Basic Local Alignment Search Tool 

(BLAST) search to confirm homology (http://blast.ncbi.nlm.nih.gov/Blast.cgi ).    

 Pure cultures were maintained on PDA for use in the poison plate assays and 

greenhouse mini-rhizotron experiments (described in next section).  PDA was amended 

with the following concentrations of the two fungicides (0.1ppm, 0.05ppm, 0.02ppm, 

0.01ppm, and 0.004ppm) and poured into sterile petri plates.  Un-amended PDA 

(control) plates served as controls.    A sterile cork borer (No. 2) was used to extract a 

mycelial plug of P. omnivora and then the plug was transferred to the center of the PDA 

plates. Every 1-2 days for 10 days the diameter was measured for growth inhibition.  The 

percentage growth reduction was plotted against the log of the fungicide concentrations 

(29).  The EC50 was calculated through the use of a web-based, Microsoft Excel routine 

ED50plus v1.0 (see website 

http://www.sciencegateway.org/protocols/cellbio/drug/hcic50.htm).   

 Greenhouse experiments: A mini-rhizotron prototype screening method was 

developed to assess the interaction of different grapevine rootstocks to P. omnivora.  A 

growth box was constructed from 0.118” clear acrylic plexiglass and ¼” plywood cut 

into 12” wide by 24” sections.  Clear tubing (¾” PVC) was used as a spacer between the 

plexiglass and plywood to contain the soil and grape roots while directly observing the 

growing root system.  All three components were sandwiched together with washers, 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.sciencegateway.org/protocols/cellbio/drug/hcic50.htm
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nuts and bolts (Fig. 2A).   Merlot cuttings were propagated according to standard 

horticultural practices for grape cultivation (21).  Field soil from Flat Creek Vineyards 

was collected and sieved.  The soil was moistened with distilled water, autoclaved for 

one hour and placed at room temperature for 24 hours.  The soil was then autoclaved 

again for an additional hour and allowed to cool.  Ten mini-rhizotrons were filled with 

the sterile soil, 10 filled with non-sterile soil, and then all were planted with the merlot 

rooted cuttings.  When the rooted cuttings were established in the mini-rhizotrons, they 

were artificially inoculated with P. omnivora by removing the plexi-glass and placing a 

plug of mycelium from a PDA culture plate.  The roots were observed for root growth 

and colonization of the fungus from April 2014 until October 2014. 

 Field experiments: With the information gathered from the grower survey, two 

grape grower cooperators with histories of CRR in high risk regions of Texas were 

identified.    

The first site was planted in an established commercial vineyard (Flat Creek 

Estates, Marble Falls, TX) with a fifteen year history of CRR (Fig. 3).  The existing 

mature, dead and declining vines were rated for symptoms of CRR and rogued to 

establish the experimental block in an area known for the presence of CRR.  Sangiovese 

on SO4 rootstock vines were purchased in 2011 (Vintage Nursery, CA) and potted in 6” 

plastic horticulture pots with Metro-Mix 360.  Vines were grown and maintained in the 

greenhouse during the months of June through March 2012.   In the spring of 2012, the 
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A B 

Fig 2.  The mini-rhizotrons used to grow grapevines (Merlot) for visual observation 

of root growth.  A.  Root chamber with a plexi-glass front for observation of root 

growth.  B.  Covered, stacked rhizotrons with vine growth emerging from tops of the 

box. 
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 Fig. 3.  Vineyard and winery view of Flat Creek Estates in Travis County, TX, 

designated as Site Number One. 
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vines were planted on 8’ spacing including border vines planted between each treatment 

to prevent confounding treatment effects by runoff of fungicide among plots.  The 

experimental field design was a randomized complete block with 4 treatments, 5 

vines/treatment and 5 replications (Fig. 4).  The four treatments included three different 

rates of flutriafol and untreated controls: 1X=28 fluid ounces per acre, 10X=280 fluid 

ounces per acre, 20X=560 fluid ounces per acre.  The three different fungicide 

concentrations were applied via a slow-drip drench method using 5 gallon buckets with 

six 1/32” holes drilled in the bottoms. Furrows were made under the drip-line next to the 

vines with two buckets placed on either side of the vine. Half a gallon of fungicide was 

poured into each bucket and allowed to drain and drench the soil (Fig. 5).   Immediately 

after treatment, the drip irrigation was turned on to help the fungicide penetrate to the 

surrounding root zone.  No disease ratings were collected in 2012.  In 2013, 2014, and 

2015 vines were treated again as described above. In 2013 and 2014, disease ratings of 

0-5, where 0 = dead, 1 = mostly necrotic foliage, 2 = more than half chlorotic/necrotic, 

wilt, 3 = less than half chlorotic, mild wilting, 4 = minimal chlorosis, 5 = healthy, were 

collected at the end of each growing season.  Data were subjected to a Kruskal-Wallis 

analysis using SAS Proc NPAR1WAY, SAS version 9.4 to determine if there was 

statistical difference among treatments in disease ratings.   Pruning weights were taken 

in the winters of 2014 and 2015 prior to treatment.  Data were subjected to SAS Proc 

GLM, SAS version 9.4 to determine if there was a treatment effect of the fungicide on 

growth of canes.  In 2015, plant health ratings were collected.  Health ratings of 0-5, 

where 0 = dead, 1 = mostly defoliated, 2 = more than half defoliated, wilt, 3 = minimal 
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Fig. 4.  A map depicting the treatment plots at Site Number One (Flat Creek Estates, 

TX). 
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Fig. 5.  Application of flutriafol using a slow-drip drench method with 

modified, 5 gal. buckets. A. Close up of buckets with six 1/32 in. holes in 

bottoms.  B.  Filling the buckets with 0.5 gal. of fungicide solution. 

A 

B 
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defoliation and chlorosis, 4 = minimal chlorosis and leaf spots, 5 = no foliar symptoms 

were used as the basis for quantifying vine health.  Data were again subjected to a 

Kruskal-Wallis analysis using SAS Proc NPAR1WAY, SAS version 9.4 to determine if 

there was statistical difference between treatments. 

Site number two was a newly established experimental vineyard in a high risk 

area for the presence of P. omnivora (Frio Canyon Vineyard, Leakey, TX) (Fig. 6A).    

Merlot was grafted onto 5BB rootstock in 2010 and allowed to grow in the greenhouse 

until planted in May of 2011.   The experimental design for the fungicide trial was a 

randomized complete block with 8 treatments, 5 vines/treatment and 6 replications (Fig 

7).  In March 2012, the vines were treated with a pre-selected multiclass of fungicides 

applied via the slow-drip drench method (described previously) (Table 1).     A border 

vine was planted between each treatment along the row.  No disease ratings were taken 

in 2012.  In 2013 the vines were treated again as previously described above.   Vines 

were rated for disease development in 2013 at the end of the growing season as 

described for the first site. Data were subjected to a Kruskal-Wallis analysis using SAS 

Proc NPAR1WAY, SAS version 9.4 to compare any statistical differences between 

treatments.     

The Frio Canyon Vineyard also included a rootstock trial.  The experimental 

design consisted of Chardonnay and Merlot on own roots and each variety grafted on 

Vitis champinii (Dog Ridge) rootstock under natural disease pressure.  The experiment 

consisted of a completely randomized block design within two vineyard rows.  Each 
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A 

B 

Fig. 6.  Site locations for: A. Leakey Experimental Vineyard (Site Number Two, 

Real County, TX), and B.  Hoover Valley Vineyard (Site Number Three, Burnet 

County, TX). 
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 Fig.  7.  Map depicting the treatment plots at the Leakey Experimental Vineyard (Site Number Three). 
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Chemical 

Trade 

name 

Chemical 

Company 

Active 

Ingredient 

Class of 

Fungicide 

Mode of action 

Registered 

for Grapes 

Rate per 

acre 

Maximum 

per year 

Topguard®  

FMC 

(formally 

Cheminova) 

 

Flutriofol 

(11.8%) 

 

Group 3 

Sterol inhibitor 

 

  NO 

 

16-32 oz. 

 

 

28 oz./acre 

No more than 

3 apps/year 

 

Pristine® 

 

BASF 

 

Pyraclostrobin 

(12.8%) 

Boscalid 

(25.2%) 

 

Group 7,11 

Carboximide, 

Strobilurin 

 

  YES 

 

8-12.5 oz. 

 

69 oz./acre 

No more than 

5 apps/year 

 

Omega® 

 

Syngenta 

 

Fluazinam 

(40%) 

 

Group 29 

 

  NO 

 

1.25 

pints/acre 

 

 

6 pints 

Vanguard® Syngenta Cyprodinil 

(75%) 

Group 9 

Anilinopyrimidine 

  YES 10oz/acre 

 

30 oz./acre 

 

 

Table 1.  Fungicides and their characteristics used to treat winegrapes at the experimental vineyard in Leakey, TX. 
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plots had 3 vines repeated ten times per variety. Vines were surveyed for CRR symptom 

development and in 2015 disease ratings as previously described were collected.  Data 

were subjected to a Kruskal-Wallis analysis using SAS Proc NPAR1WAY, SAS version 

9.4 to compare any statistical differences between rootstocks. 

In 2014, an additional third site, Hoover Valley Vineyards (Fig. 6B), was treated 

with two different concentrations of flutriafol, 1X = 0.26 lb a.i. /acre, and 2X = 0.52 lb 

a.i./acre via chemigation.   The field trial  consisted of 30 rows, 118 vines/row, 10 plots

(rows)/treatment  planted with Petit Syrah on 5BB rootstock in 2012 (Fig. 8).  Disease 

progress was recorded for 7 weeks with ratings of dead vine (red dots), symptomatic 

vine for CRR (black dots), and healthy (green dots).  A disease progress curve was 

created from these data with the x axis being the observation date and the y axis being 

numbers of dead vines infected with P. omnivora. 
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Fig.  8.  A map depicting the treatment plots at Hoover Valley Vineyards. 
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2.3 Objective three 

The bioassay for detecting residual fungicide in grapes was based on organic 

extracts from treated and untreated vines processed on thin layer chromatography (TLC) 

plates.  The bioassay organism used as the indicator on the developed plates was a 

Cladosporium spp.   The Cladosporium spp. was isolated from a spinach sample 

submitted to the TPDDL.  A pure culture was obtained by needle transfer of spores to 

PDA plates and a subsequent hyphal tip transfer to additional PDA.  The pure culture 

was maintained on PDA plates until harvested for spraying on the developed plates.  

In June 2014, grapes were collected from Flat Creek Estates six weeks after 

fungicide application.  Grapes were also collected at the end of the growing season in 

August from Flat Creek Estates and Hoover Valley Vineyards.  Grape samples (20 gm) 

were weighed out and crushed with a glass rod in a 500ml Erlenmeyer flask.  Ethyl 

acetate (200 ml) was added to the crushed grape samples.  Flasks were shaken at 125rpm 

on ice for 2 hours.  The ethyl acetate sample was transferred to a 500ml round bottomed 

evaporation flask.  The round bottomed flask was then attached to a rotary evaporator 

and flash evaporated until approximately 5ml remained.   Five ml of acetone was added 

to the extracts with the entire solution   transferred to a screw-top vial and placed in the 

refrigerator until ready to load onto a TLC plate (15, 25).  TLC plates were heat 

activated at 100
0
C for 1 hour and allowed to cool prior to spotting the plate with the

extracts.  

 To calibrate the system and determine end points for detection, serial dilutions 

of flutriafol (10, 5, 1, 0.5, 0.1, 0.05, 0.01 ppm) were originally spotted on a TLC plate.  
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Additional TLC plates were spotted with 10µl of the grape extractions, 10µl flutriafol in 

acetone (fungicide standard), and 10µl of acetone to serve as positive and negative 

controls.  The TLC plates were then placed into a developing tank with 80ml of a carrier 

solvent consisting of toluene:chloroform:acetone (40:25:35) for approximately twenty to 

twenty five minutes.  The plates were allowed to dry at room temperature for 10 

minutes.  Malt extract broth (10 ml) with tween 80 was added to a month-old 

Cladosporium spp. culture plate.  A bent glass rod was used to gently scrape the surface 

of the culture to suspend the spores in the broth.  The spore suspension was poured into a 

50ml conical tube and an additional 15ml of malt extract broth was added.  The 

suspension of Cladosporium spp. spores was counted with a hemacytometer and a final 

concentration of 5.0x10
5
 spores/ml was prepared. .  The spore suspension was placed in 

an aerosol spray bottle and over-sprayed evenly on the TLC plate without significant 

run-off.  A PDA plate was also sprayed to insure the viability of the spores.  The TLC 

plates were placed into a plastic box with the bottom lined with moist paper towels.  

Plates were incubated for approximately 4 days and then observed for zones of 

inhibition.    Plates with higher concentrations of flutriafol (1,000, 500, 400, 300, 200, 

and 100 ppm) were also included in the calibration process.   



23 

3. RESULTS

3.1 Objective one

Approximately 120 grape growers at the annual TWGGA grape camp meeting 

were invited to participate in a survey to determine the impact of CRR in Texas 

vineyards.  Thirty six growers completed the survey.  Those thirty-six growers reported 

growing 26 different varieties of grapes.  The top six varieties, in terms of numbers of 

growers (n), were Tempranillo (n = 7), Syrah (n = 7), Black Spanish (n = 6), Sangiovese 

(n = 6), Blanc du Bois (n = 5), and Cabernet sauvignon (n = 5).  The responses of the 

growers had numerous inconsistencies, so that precise numbers of acres in vineyard size 

and other details such as rootstock/scion combinations were difficult to assess.  

According to the responses, the size of the plantings ranged from a few vines up to 480 

acres.  Eight growers reported their vineyard was affected by CRR (Appendix A).  Seven 

respondents indicated CRR was diagnosed either by TPDDL or in the field.  The seven 

vineyards were in five counties:  three in Gillespie, two in Blanco, and one in each of 

Travis, Austin, and Victoria.  A map was created with the counties reported from the 

survey along with the vineyards confirmed with CRR who submitted samples to the 

TPDDL (Fig. 9).   The growers also reported the varieties (rootstock/scion) planted in 

their vineyards and the number of vines affected by CRR (data not shown). 

3.2 Objective two

Laboratory:  Poison plate assays were used to test the efficacy of the two 

triazole fungicides, propiconazole (Alamo
®

) and flutriafol (Topguard
®
).  The isolate
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Fig  9 .    Map of Texas counties confirmed with CRR in vineyards.  

Counties indicated in blue: Knox, Kerr, Hidalgo, Grayson, Travis, Harris, 

Dallas, Austin, Lavaca, Goliad, Real, Gillespie, Burnet, Washington, 

Colorado, and Victoria. 
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Subsequently, this study demonstrated in vitro sensitivity levels of P. omnivora toward 

flutriafol and propiconazole. 

The average diameter of growth and the percentage growth reduction is presented 

in Table 2. And these values are plotted against the log of the fungicide concentrations 

(Fig. 10) (29).  A convenient interactive Microsoft Excel tool to calculate the precise 

EC50 value (50% growth reduction) was used: 

(http://www.sciencegateway.org/protocols/cellbio/drug/hcic50.htm).  The EC50 values 

for P. omnivora were calculated as 0.007 ppm for propiconazole and 0.025 ppm for 

flutriafol. 

Greenhouse:  Twenty mini-rhizotrons were built and planted with Merlot 

cuttings in sterile field soil. Ten were artificially inoculated with a plug of P .omnivora 

and observed for colonization of the roots.  The vines were able to grow in the mini-

rhizotrons.  However,  inoculation of the roots did not result in colonization of the 

fungus or death of the vines.  

Field experiments:  At site number one, disease rating data were collected in 

2013 and 2014 and subjected to a Kruskal-Wallis analysis (9, 12). Kruskal-Wallis is a 

non-parametrical statistical method used when data are categorical, but the analysis does 

not identify which treatment is significantly different. Therefore, a pairwise testing 

method was performed comparing the control.  No difference was detected between 

of P. omnivora used in this investigation was confirmed to 98% homology with the 

BLAST data base.  This analysis gave confidence the isolate was P. omnivora.  

http://www.sciencegateway.org/protocols/cellbio/drug/hcic50.htm
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  Fungicide Levels   

 

0 ppm .004 ppm .01 ppm .02 ppm .05 ppm 

.10 

ppm 

   Propiconazole    

Diameter 1 85 51.5 31.5 26.75 17.25 14.25 

Diameter 2 85 51.5 32.75 27.25 18 14.75 

Avg. Dia. 85 51.5 32.125 27 17.625 14.5 

% of Growth 100 60.6 37.8 31.8 20.7 17 

% Reduction 

 

39.4 62.2 68.2 79.3 83 

   Flutriafol    

Diameter 1 62.25 56.75 45.25 35.75 21.5 13 

Diameter 2 63.5 56.5 45 37.25 20.75 14.75 

Avg. Dia. 62.875 56.625 45.125 36.5 21.125 13.875 

% of Growth 100 90 71.8 58 33.6 22.1 

% reduction  10 28.2 42 66.4 77.9 

       

       

 

 

 

 

 

Table 2.  Growth of P. omnivora (mm) after 10 days on PDA amended with 6 levels 

of the fungicides propiconazole and flutriafol.  
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Fig 10.  Results of growth of P. omnivora on fungicide-amended agar petri 

plates.  A.  Diameter growth plotted against the log of Alamo
®
 concentrations.   

B.  Diameter growth plotted against the log of flutriafol concentrations.  C.  

Percent growth reduction plotted against the log of Alamo
®
 concentrations.  D.  

Percent growth reduction plotted against the log of Flutriafol concentrations. 
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disease development in the control and the 1X rate.  However, there were statistical 

differences when comparing disease Wallis each treatment individually against 

development in the control group to the 10X and 20X rates (Table 3). Because of the late 

season field observations of increased vigor seen in 2013, pruning weight data were 

collected during December – January of 2014 and 2015 and subjected to SAS Proc 

GLM, SAS version 9.4. There were no statistical differences in the weights of cuttings 

from vines among treatments.  However, positive trends in the pruning weights for each 

year were observed suggesting a treatment effect on vine vigor.  For example, in both 

years, the mean weights of the control groups were less than the 1X treatment groups.  

Also, the 1X treatment groups were less than the higher rate treatments in each year 

(Table 4). In 2015, due to the observed non-target foliar pathogen suppression, plant 

health ratings collected and the data were subjected to a Kruskal-Wallis analysis. When 

comparing the control individually against the 1X, 10X and 20X rates, there were 

statistical differences in the health ratings (Table 5).     

  At site number two, vines were rated for disease development in 2013 and data 

were subjected to a Kruskal-Wallis analysis. Statistical differences in the disease ratings 

(Pr >Chi 0.0024) were found between the 10X rate and the untreated vines (data not 

shown).  In 2013, field observations mimicked site number one with an increase in vigor.  

Pruning weight data were collected were in the winters of 2014 and 2015 and subjected 

to SAS Proc GLM, SAS version 9.4.  In 2014 there were no statistical differences among 

treatments.  In 2015, the 10X rate was significantly higher than the 1X and control 

treatments (Table 6). 
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Treatment Mean DF Chi-square Pr>Chi 

2013     

Inclusive 2.48 3 23.4612 0.0001 

1X vs. Control 2.68 1 2.5930 0.1073 

10X vs. Control 3.76 1 18.4616 0.001
b
 

20X vs. Control 3.88 1 7.8662 0.005
b
 

2014     

Inclusive 2.68 3 44.5390 0.0001 

1X vs. Control 3.12 1 0.8036 0.3700 

10X vs. Control 4.00 1 20.7541 0.001
b
 

20X vs. Control 3.56 1 24.2016 0.001
b
 

          

 

 

 

 

Table  3. Kruskal-Wallis inclusive and pairwise 

comparisons (Proc NPAR1WAY, SAS 9.4) of disease 

ratings
a
 for plots treated with 3 rates of flutriafol growing 

in Flat Creek Estates (site one) during 2013 and 2014. 

a  
Disease ratings range from 0 (dead) to 5 (healthy) – see 

text for further description of the rating system. 
b  

Value indicates significant difference at p =0.01. 
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Treatment N Mean 

2014 

 

 2 (10X) 25 0.2210a 

4 (20X) 25 0.1852a 

1 (1X) 25 0.1736a 

3 (Ctl) 25 0.1480a 

2015  

 2 (10X) 25 0.4912a 

4 (20X) 25 0.4760a 

1 (1X) 25 0.3916a 

3 (Ctl) 25 0.3384a 

 

 

 

 

 

Table  4.  Mean pruning weights for 3 flutriafol 

treatments and control plots during 2014 and 

2015 in grapevines growing at Flat Creek 

Estates. 

a
  Means for each treatment within a column 

followed by same letters are not statistically 

different (Tukey’s Test, P = 0.05, PROC 

GLM, SAS 9.4). 
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2015 Mean DF Chi-square Pr>Chi 

Kruskal-Wallis 2.88 3 11.3271 0.0101 

1X vs. Control 4.08 1 10.2374 0.0014
b
 

10X vs. 

Control 

3.92 1 8.0660 0.0045
b
 

20X vs. 

Control 

3.40 1 1.6054 0.005
b
 

Table 5 .  Kruskal-Wallis inclusive and pairwise comparisons (Proc NPAR1WAY, 

SAS 9.4) of plant health ratings
a
 for plots treated with 3 rates of flutriafol growing 

in Flat Creek Estates (site one) during 2015. 

a  
 Plant health ratings range from 0 (dead) to 5 (healthy) – see text for further 

description of the rating system. 
b  

Value indicates significant difference at p =0.01. 
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      In 2015, statistical differences were found between Dog ridge rootstock with the 

different scions and own-rooted varieties.  There was also a statistical difference 

between the two own-rooted varieties (Table 7).   

            In 2014, the newly planted vineyard, site number three was treated with two rates 

of flutriafol (1X and 2X) via chemigation and disease development was recorded for 7 

weeks.  The disease progressed in the untreated plots until August 29, 2014 when a few 

vines in the 1X and 2X plots died from CRR (Fig. 11). The rapid rate in disease progress 

in the untreated plots can clearly be seen in Fig.12.  Recorded mortality showed that the 

fungicide was able to control CRR until the end of the growing season in August, 2014.  

Again, the increase in disease following August can be seen in the disease progress in 

the treated (1X and 2X) plots (Fig. 7). 
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Treatment N Mean 

2014   

2 (10X Fl) 30 0.2433a 

3 (Om 1X) 30 0.2450a 

1 (1X Fl) 

 

7 (Vn 1X) 

 

5 (Pr 1X) 

 

4 (Om 2X) 

 

6 (Pr 2X) 

 

8 (Ctl) 

30 

30 

30 

30 

30 

30 

0.2343a 

0.2340a 

0.2170a 

0.2130a 

0.2023a 

0.1917a 

2015   

2 (10X Fl) 30 0.2417a 

1 (1X Fl) 30 0.1767b 

8 (Ctl) 30 0.1623b 

 

 

Table 6.  Mean pruning weights (kg.) for 2014 and 2015 in plots 

treated with 4 fungicides
a
 at 2 rates and untreated control plots in 

an experimental vineyard in Leakey, TX. 

a  
The four fungicides are designated as follows: F = Flutriafol, 

Om = Omega
®
, Vn = Vanguard

®
, Pr = Pristine

®
. 

b
  Means for each treatment within a column followed by same 

letters are not statistically different (Tukey’s Test, P = 0.05, 

PROC GLM, SAS 9.4). 
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2015 Mean DF Chi-square Pr>Chi 

Kruskal-Wallis  3 72.7341 0.0001 

MD vs. M 2.48 1 28.4037 0.0001
c
 

CD vs. C 2.68 1 44.0656 0.0001
c
 

CD vs. MD 3.76 1 0.0046 0.9460 

C vs. M 3.88 1 3.9757 0.0462
c
 

Table 7. Kruskal-Wallis inclusive and pairwise comparisons (Proc NPAR1WAY, 

SAS 9.4) of disease ratings
a
 for the grapevine 4 rootstocks

b
 at Leakey, TX.  

a 
 Disease ratings range from 0 (dead) to 5 (healthy) – see text for further description 

of the rating system. 
b
 Rootstocks are designated as follows: M = Merlot own rooted, C = Chardonnay 

own rooted,  MD = Merlot on Dogridge, and CD = Chardonnay on Dogridge. 
c
 Value indicates significant difference at p = 0.05. 
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A 

B 

Legend 

Fig 11.   Disease development in the experimental plot at Hoover Valley 

Vineyard.  A, June 13, 2014, B, September 8, 2014.  (Green dots represent 

healthy vines, the black dots are diseased vines, and the red dots are dead 

vines).  
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Fig 12.  Disease progress curves for treated (1X and 2X) and untreated (none) plots 

of vineyard rows at Hoover Valley Vineyards. 
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3.3 Objective three 

Originally, tests were performed to determine the detection limits of the bioassay.  

These tests revealed that the bioassay was not sufficiently sensitive to detect flutriafol at 

rates less than 10 ppm (data not shown).  In subsequent tests, rates and volumes were 

increased.  In those experiments zones of inhibition could be seen at the following 

concentrations: 1000ppm, 500ppm, 400ppm, 300ppm (Fig. 13). The rate of 300 ppm was 

the lowest detectable level. The faint zone of inhibition can be seen in Fig. 13. A. in lane 

number 7 at the position on the TLC plate where flutriafol migrates.  The grape extracts 

(50ul) were spotted on the heat activated TLC plates and over-sprayed with the 

Cladosporium spp. spore suspension resulting in no zones of inhibition at the position 

where flutriafol would be expected (Fig. 8).  There were, however, zones of inhibition in 

the grape extracts indicating an unknown fungitoxic compound was present and 

migrating beyond the zones of either fungicide.  



 

38 

 

 

 

 

 

 

 

1 4 2 5 3 6 8 7 9 

8 7 6 5 4 1 2 3 9 10 12 11 

A B 

Fig 13.  Bioassay TLC plates developed to detect fungicides.  A.  Trial run to 

demonstrate detection limits.  Numbered lanes contain the following solutions; 

1=propiconazole at 1000 ppm, 2 and 3 = acetone, 4 = flutriafol at 1000 ppm, 5 = 

500 ppm flutriafol, 6 = 400 ppm, 7 = 300, 8 = 200 ppm, and lane 9 = 100 ppm.  B.  

Results of testing grape extracts from site 1. Numbered lanes contain the following 

solutions;  1 = propiconazole at 1000 ppm, 2 = acetone, 3 = blank, 4 = 500 ppm 

flutriafol, 5 = blank, 6 = untreated grape extract, 7 = blank, 8 = 1X rate extract, 9 = 

blank, 10 = 10X extract, 11 blank, 12 = 20X extract.  
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4. SUMMARY AND DISCUSSION 

  

 Since Pammel (26) first described Phymatotrichopsis omnivora over a century 

ago, many attempts have been made to find a control for cotton root rot in cotton and 

other specialty crops in TX.  Attempts such as lowering the pH of the soil, adding 

ammonium nitrate, incorporating green manure, applying soil fumigants or application 

of fungicides available in the past failed to  adequately control  CRR (8, 13, 14, 20, 32, 

36).  Despite the disappointments with control attempts in the past, plant pathologists 

continued to try developing management strategies for this recalcitrant disease.  This 

frustration is not limited to just the cotton industry, but has also been a hindrance in the 

winegrape industry. Winegrapes have been grown in Texas since the 17
th

 century by 

Spanish padres who brought cuttings from the old world to produce sacramental wine for 

their new founded missions (28).  From 1931 to 1936, Mortensen (22) concluded that 

Phymatotrichum root rot was the major limiting factor in grapevine performance after 

evaluating table grape cultivars at the Crystal City, Texas Agricultural Experiment 

Station.  With the phenomenal expansion of winegrape production in Texas during the 

last decade, CRR has again become a major detriment to of the wine and grape industry.  

This concern was the driving factor in the inception of this project, and the development 

of an immediate relief to growers was the overall goal of the project.    

 The first objective in this study was an attempt to understand more completely 

the concerns of grape growers with respect to P. omnivora in their vineyards.  A survey 

instrument was created and distributed to grape growers, which indicated the desire 
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among grape growers for reasonable management strategies to control CRR in their 

vineyards (Appendix B).  In addition to CRR, early and late frosts, other diseases such a 

Pierce’s disease, insects, hail, poor site selection, nutrient variability and even the 

availability of a trained workforce make winegrape growing in TX difficult.  The 

addition of CRR to these limitations may discourage new growers as well as limit 

expansion of existing vineyards.  The economic impact of the Texas wine industry has 

increased dramatically in recent years.   To achieve the recent initiative for increasing 

wine production in TX, a control for CRR is pertinent in areas where vineyards are at 

risk for CRR.   The survey was also useful in identifying the cooperators for the 

experimental field plots.  The commercial vineyard (site number one) grower had been 

experiencing devastating losses of vines due to CRR for 15 years.  He had attempted to 

reduce the pH of the soil with phosphoric acid chemigation as well as incorporating 

green manure for control measures, but to no avail.  The other cooperator (site number 

three) became discouraged as his young vineyard was losing second leaf vines due to 

CRR at alarming rates.  He was inspired to cooperate with the probability of obtaining 

control through the use of flutriafol.  As a result of the field testing and development of a 

potential solution to the CRR problem in winegrapes, this survey also provided an 

important benchmark for future surveys regarding diseases of winegrapes in TX.          

 Two different approaches to possible CRR control were studied.  The first 

approach was the use of a triazole fungicide, Topguard
®
 with the active ingredient,1H-

1,2,4-Triazole-1-ethanol, alpha-(2-fluorophenyl)-alpha-(4-fluorophenyl) (generic name 

flutriafol). Flutriafol is in the FRAC chemical class Group 3 (see website 
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www.frac.info).  Group 3 fungicides include the triazoles, which achieve control by 

inhibiting ergosterol production in fungi.  Flutriafol is a de-methylation inhibitor in the 

ergosterol biosynthesis pathway.  The second approach was the use of rootstocks to 

convey resistance to otherwise susceptible, yet desirable, varieties of winegrapes.  A 

field evaluation was conducted with Chardonnay and Merlot varieties grafted on Dog 

ridge rootstock and, own-rooted vines in a field at high risk of CRR (site number two). 

In addition to field testing, experiments were conducted in rhizotrons in order to 

facilitate rootstock trials under controlled, greenhouse conditions.  These two approaches 

indicated that the best CRR control was achieved through the applications of Topguard
®
 

when applied to grapevines either via the soil drench bucket method or through 

chemigation.  The higher concentrations of the flutriafol used in site number one (2.6 

lbs/a.i./acre (10X), and 5.2 lbs/a.i./acre (20X) and site number two (2.6 lbs/a.i./acre 

(10X),  were applied due to concerns from previous data indicating pronounced PGR 

and phytotoxicity effects of triazole fungicides such as propiconazole, myclobutanil, and 

flutriafol (8, 14, 31).  In previous greenhouse studies, triazole fungicides have been 

shown to reduce grapevine shoot elongation, rate of growth, number and length of 

nodes, leaf area, number of leaves, area per leaf, and lateral roots (8).  In the current 

study, another potential PGR effect was discovered through field observations and 

subsequent plant health ratings at site number one.  The application of the 2.6 

lbs/a.i./acre (10X) rate of flutriafol controlled non-target foliar disease organisms such as 

Erysiphe necator (powdery mildew) and Guignardia bidwellii (black rot) and thus 

improved the plant health of the vines.  This could be explained by the systemic 
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movement of flutriafol following uptake from the grapevine roots into the xylem.  The 

control of these non-target pathogens may be due to the direct, fungicidal effect of the 

systemic flutriafol.  Or, the fungicide may be stimulating an SAR response by the vine, 

thus influencing development of these foliar pathogens.  Also, at sites one and two, field 

observations and pruning weights showed an increase in vine vigor, possibly due to the 

PGR effect of the flutriafol. Grape growers do not always desire an increase in vine 

vigor due to canopy shading and the influence on grape quality.   Additional research 

needs to be conducted to explain the effects flutriafol has on growth and response within 

the vines.   

 At site three, application of two rates of flutriafol at 0.26 lbs/a.i./acre (1X) and 

0.52 lbs/a.i./acre (2X) were applied through the irrigation system in 2014.  These rates of 

flutriafol are more practical relative to the current accepted rate for use on cotton.  Site 

three proved to have the best experimental results due to the high natural disease 

pressure and the disease progress within the untreated plots.  However, by the end of the 

growing season, CRR began showing up in the treated plots.  One possibility is the 

degradation of the fungicide in the soil.  Another possibility could be the soil 

structure/type in which the fungicide was applied.  Site three is a sandy loam soil with 

good drainage, and the flutriafol may be leached out of the root zones of the vines.  

Previous studies found that flutriafol is relatively persistent in soil when compared to 

other triazole fungicides.  Flutriafol was also found in those previous studies to be more 

readily leached into lower soil layers due to the polar nature of the molecule (5, 37).  

Based on these and similar studies a Section 24(c) special local needs registration was 
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requested and granted by the Texas Department of Agriculture for use by the grape 

growers to control P. omnivora (see Appendix C).  

 A concern in the winemaking industry is the presence of fungicide residues in 

grapes.  Fungicides can have an influence on fermentation and the organoleptic 

characteristics of wine, not to mention the health and toxicological effects on the 

consumer (24).  The winemakers and consumers would have a reason to be concerned if, 

or for how long, the flutriafol remained in the grapes.   In this current study, attempts 

were made to develop a cost effective TLC bioassay for detecting flutriafol in the grapes.  

Unfortunately, the sensitivity of this bioassay was only able to detect 300 ppm.  As was 

shown in the poison plate assays, P. omnivora was sensitive at levels far below 300 ppm. 

There were also other compounds in the grape extracts detected from an unknown 

source.  There are obviously limitations to using a TLC bioassay.   For instance natural 

chemical compounds in the grape skins or the possible application of fungicides to target 

other pathogens could complicate the detection of the flutriafol.  There are more 

sophisticated methods such as High Pressure Liquid Chromatography for detecting 

fungicides in fresh produce and other food crops but they can be costly (15).   

       The rootstock field study at site two was with 2 different varieties, Chardonnay 

and Merlot own-rooted and both varieties grafted onto Dog ridge rootstock.  This study 

statistically showed what had been previously described in the literature. Mortensen (22) 

observed Texas native varieties such as Dog Ridge, Champanel, and Lukfata as 

survivors of CRR.  Dr. George Ray McEachern in the Department of Horticultural 

Sciences, TAMU (personal communication) also stated Dog Ridge was the best 
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rootstock resistant to CRR.  Dog Ridge (a natural hybrid between V. candicans and V. 

rupestris) is a true native Texas vine selected by T.V. Munson (23) in Bell County along 

what is called the Dog Ridge between Nolanville and Belton, TX.  Dog Ridge has been 

shown to be tolerant of CRR due to its ability to regenerate roots at rates higher than the 

pathogen is infecting them (8).  This could be explained by natural evolutionary 

tolerance in the native Dog Ridge grapevine which developed to adapt to the presence of 

P. omnivora.   Selection pressure on plants by pathogens and the development of 

resistance and tolerance is a well- known premise in other plant pathogens and their 

hosts (1). 

Another method to evaluate possible rootstock resistance or tolerance to CRR 

was the use of rhizotrons that enable observations of grapevine roots interacting with P. 

omnivora.  Rhizotrons have been used through the years to observe P. omnivora 

infection in cotton. (16). In 2013, at an ASEV Rootstock Symposium in Monterey, CA, 

Dr. Andy Walker from UC Davis described a rhizotron he used in his grape rootstock 

breeding program (11).  He was able to observe and chart root development with regards 

to his efforts to breed a grape rootstock resistant to pests and diseases.  In the current 

study, a rhizotron prototype was constructed that was similar to Dr. Walker’s in attempt 

to evaluate rootstocks with resistance or tolerance to CRR.   However, the rhizotron 

prototypes in this study were not successful in the attempt to demonstrate susceptibility 

or tolerance of the own-rooted Merlot cuttings.  No infections were observed in the 

inoculated vines.  This may have been due to greenhouse conditions, watering practices, 

method of inoculation, amount of inoculum, or an insufficient incubation period to 
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observe infection.  In the future, with modification to the rhizotron prototype and fine-

tuning the cultural practices, this tool could prove valuable to screen potential varieties 

of rootstocks with regards to resistance or tolerance to CRR.  Even though flutriafol was 

approved for use under the Topguard TERRA 24(c) exemption, the approval was only 

granted for the 2016 grape growing season.  The exemption will be assessed from year 

to year as to whether it will be granted in future years.  Continued rootstock screening, 

with the use of rhizotrons and field testing, could provide evidence for new, resistant 

rootstocks and give grape growers an alternative to flutriafol.  Rootstocks with native 

Texas parentage are continually being bred in the search for superior disease resistance 

combined with desirable traits (11).  The use of superior rootstocks would address 

potential environmental issues connected to the use of fungicides and alleviate the 

uncertainty of the temporary status granted under the 24(c) exemption. 

The 24c label for use of flutriafol in winegrapes was the culmination of a highly 

cooperative project involving research scientists, extension specialists, growers, industry 

representatives and ultimately the Texas Department of Agriculture.  Although not 

entirely efficacious, the fungicide flutriafol offers a management tool for growers until 

other, more sustainable approaches are developed.  There is also hope for these studies 

for the use of flutriafol to manage CRR in other crops, such as olives, peaches, apples, 

and landscape ornamentals.  Additionally, this fungicide should be tested against other 

root rot pathogens, such as Armillaria spp. and Ganoderma spp. that have proven to be 

impossible to manage by other means. 
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Table A.  Appendix B Results of Grape Grower Survey regarding Cotton Root Rot and Vineyard  Characteristics. 

Vineyard Site Observed Symptoms 

Vine age Sudden Dried Interest in 

Vineyard  Acres (years) County  pH Drainage Scorch Death  eaves Confirmed? confirmation? 

1 4 3-25 Austin 6 adequate x x N No 

2 0.25 1-2 Washington adequate N Not Yet 

3 2 11-16 Austin 6.7 excellent x Lab Yes 

4 0.33 0-3 Goliad 6 adequate N Yes 

5 1 1-3 Live Oak adequate N Yes 

6 1.5 .5-1.5 Fayette 7.8 adequate x N Not Now 

7 480 3rd Leaf Houston excellent N No 

8 1 1-3 Grimes 6.4 excellent N Yes 

9 2.1 3-5 Burleson 4.5 variable x x x N Yes 

10 5 1 Grimes 7.6 adequate x x N No 

11 5 10+ Walker 6 poor N No 

12 0.5 2-8 Harris 6.5 excellent N 

13 1 5-34 Victoria 7-8.2 

poor-

adequate x Lab Yes 

14 1 1-5 Kimble 7.3 excellent x N Yes 

15 15 1-5 Kerr >7 excellent x N Yes 

16 10 0-16 San Saba 8-8.3 adequate x x x N Yes 

17 13 1-5 Terry 7.3 excellent N 

18 17 6-15 Gillespie adequate x x N No 

19 5 9-10 Gillespie 7.3 excellent x x Yes 

20 0.5 0-1 Gillespie 7.8-8 adequate x N Yes 

21 4 2,4,12 Blanco 7.5 excellent x x Y 

22 0.5 3-4 Gillespie 7.8 adequate x Field Yes 
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Table A. Continued. 

Vineyard Site    Observed Symptoms 

Vineyard Acres 

Vine age 

(years County pH Drainage Scorch 

Sudden 

Death 

Dried 

Leaves Confirmed? 

Interest in 

confirmation? 

23 1.25 3rd Leaf Mason 7 adequate N Yes 

24 3 3 Lampasas 6-7 adequate x x N Yes 

25 15 15 Gillespie 

6.2-

6.7 adequate Field Yes 

26 2 3 or 6 Kimble 8-9 adequate x x N Yes 

27 2 1 Gillespie 6-6.5 adequate 

28 10 1-13 Travis 7 variable x x x N Yes 

29 3.5 1-10 Blanco 8+ adequate x x N Yes 

30 3 5-7 Gillespie excellent x Lab Yes 

31 10 1-3 Sutton 8.2 adequate x x N Yes 

32 1 2 mos Llano 5.9 adequate 

33 20 10-12 Travis 7.9 excellent x x x Lab Yes 

34 1 3-4 Kerr 7.9 excellent x x x N Yes 

35 4 0-6 Blanco 

7.5-

8.5 excellent x x x Lab 

36 0.25 Bell Cove excellent 
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